

Lecture Notes in Computer Science 6741
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Haralambos Mouratidis Colette Rolland (Eds.)

Advanced Information
Systems Engineering

23rd International Conference, CAiSE 2011
London, UK, June 20-24, 2011
Proceedings

13

Volume Editors

Haralambos Mouratidis
University of East London
School of Computing, IT and Engineering
Docklands Campus, 4/6 University Way, E16 2RD London, UK
E-mail: H.Mouratidis@uel.ac.uk

Colette Rolland
Université Paris1 Panthéon Sorbonne
CRI
90 Rue de Tolbiac, 75013 Paris, France
E-mail: rolland@univ-paris1.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-21639-8 e-ISBN 978-3-642-21640-4
DOI 10.1007/978-3-642-21640-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011928907

CR Subject Classification (1998): H.4, H.3, D.2, C.2, J.1, I.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

A warm welcome to the proceedings of the 23rd International Conference on
Advanced Information Systems Engineering (CAiSE 2011)! The CAiSE series
of conferences started in 1989 with the objective to provide a forum for the
exchange of experience, research results, ideas and prototypes in the field of in-
formation systems engineering. Twenty-two years later, CAiSE has established
itself as a leading venue in the information systems area for presenting and ex-
changing results of emerging methods and technologies that facilitate innovation
and create business opportunities.

CAiSE 2011, held in London during June 20–24, 2011 continued this tra-
dition. The theme of CAiSE 2011 was “Information Systems Olympics: Infor-
mation Systems in a Diverse World.” This year’s CAiSE conference theme was
linked to the coming London Olympic and Paralympic Games 2012, two inter-
national multi-sport events that bring together athletes from all continents to
celebrate sporting excellence but also human diversity. Diversity is an impor-
tant concept for modern information systems. Information systems are diverse
by nature ranging from basic systems to complex ones and from small to large.
The process of constructing such systems is also diverse ranging from ad-hoc
methods to structured and formal methods. Diversity is also present among in-
formation systems developers, from novice to experienced. Moreover, the wide
acceptance of information systems and their usage in almost every aspect of hu-
man life has also introduced diversity among users. Users are both novice and
experienced and they demonstrate differences related to race, ethnicity, gender,
socio-economic status, age, physical abilities, religious beliefs, and so on. It is
therefore the responsibility of the information systems engineering community
to engineer information systems that operate in such a diverse world.

CAiSE 2011 received 320 submissions, the largest number ever received in the
CAiSE conference series. Most of the submissions came from Germany, Spain,
Italy, France and China. Following an extensive review process, which included
a Program Committee/Program Board meeting during February 13–14, 2011
in London, 42 submissions were accepted as full papers and 5 as short papers.
Accepted papers addressed a large variety of issues related to the conference
and were organized into ten themes: Requirements, Adaptation and Evolution,
Model Transformation, Conceptual Design, Domain-Specific Languages, Case
Studies and Experiences, Mining and Matching, Service and Management, Val-
idation and Quality, Business Process Modeling. The program of the conference
was also supplemented by a number of tutorials, 11 workshops, a Doctoral Con-
sortium, the CAiSE Forum, and two working conferences. Two keynote speeches
were delivered as part of the conference program. Anthony Finkelstein talked
about “Open Challenges at the Boundaries Software Engineering and Informa-
tion Systems,” while Dimitrios Beis talked about “Information Systems for the

VI Preface

Olympics Games.” Moreover, a panel discussed issues related to “Green and
Sustainable Information Systems.”

The organization and successful running of a large conference such as CAiSE
would not be possible without the valuable help and time of a large number
of people. As editors of this volume, we would like to express our gratitude to
the Program Committee members, additional reviewers and the Program Board
members for their valuable support in selecting the papers for the scientific pro-
gram of the conference; to the authors of the papers for sending their work to
CAiSE; to the presenters of the papers; and to the participants of the conference
for their contribution. We also thank our sponsors and the General Chair and
Chairs of the various CAiSE 2011 committees for their assistance in creating
an exciting scientific program. We would also like to thank the local Organiz-
ing Committee at the University of East London for their hospitality and the
organization of the social events of the conference.

March 2011 Colette Rolland
Haralambos Mouratidis

Organization

Advisory Committee

Arne Sølvberg Norwegian University of Science and Technology, Norway
Janis Bubenko Jr. Royal Institute of Technology, Sweden
Colette Rolland Université Paris 1 Panthéon Sorbonne, France

General Chair

Pericles Loucopoulos Loughborough University, UK

Program Chairs

Haralambos Mouratidis University of East London, UK
Colette Rolland Université Paris 1 Panthéon Sorbonne, France

Local Arrangements Chairs

Elias Pimenidis University of East London, UK
Miltos Petridis University of Greenwich, UK

Workshop and Tutorial Chairs

Oscar Pastor Valencia University of Technology, Spain
Camille Salinesi Université Paris 1 Panthéon Sorbonne, France

Forum Chair

Selmin Nurcan Université Paris 1 Panthéon Sorbonne, France

Panel Chair

Barbara Pernici Politecnico di Milano, Italy

Doctoral Consortium Chairs

Michel Léonard Université de Genève, Switzerland
Bernhard Thalheim Christian Albrechts University Kiel, Germany
Cornelia Boldyreff University of East London, UK

VIII Organization

Publication Chairs

Jolita Ralyté Université de Genève, Switzerland
David Preston University of East London, UK

Publicity Chairs

Rebecca Deneckere Université Paris 1 Panthéon Sorbonne, France
Jaelson Castro Universidade Federal de Pernambuco, Brazil
Leszek Maciaszek Macquarie University, Australia
Kecheng Liu University of Reading, UK
Keng Siau University of Nebraska-Lincoln, USA

Finance Chair

Mohammad Dastbaz University of East London, UK

Webmasters

Michalis Pavlidis University of East London, UK
Sambhu Singh University of East London, UK

Program Committee Board

Marco Bajec, Slovenia
Nacer Boudjilida, France
Eric Dubois, Luxembourg
Xavier Franch, Spain
Marina Jirotka, UK
Moira Norrie, Switzerland

Barbara Pernici, Italy
Klaus Pohl, Germany
Jolita Ralyté, Switzerland
Camille Salinesi, France
Janis Stirna, Sweden
Roel Wieringa, The Netherlands

Program Committee

Wil van der Aalst, The Netherlands
Peggy Aravantinou, Greece
Pär Ågerfalk, Sweden
Hans Akkermans, The Netherlands
Antonia Albani, The Netherlands
Daniel Amyot, Canada
Paris Avgeriou, The Netherlands
Luciano Baresi, Italy
Ahmad Barfourosh, Iran
Zohra Bellahsene, France

Boalem Benatallah, Australia
Giuseppe Berio, France
Mokrane Bouzeghoub, France
Silvana Castano, Italy
Jaelson Castro, Brazil
Corine Cauvet, France
Donna Champion, UK
Vasilis Chrisikopoulos, Greece
Ioanna Constantiou, Denmark
Panos Constantopoulos, Greece

Organization IX

Valeria De Antonellis, Italy
Joerg Evermann, Canada
João Falcão a Cunha, Portugal
Paolo Falcarin, UK
Mariagrazia Fugini, Italy
Paolo Giorgini, Italy
Stefanos Gritzalis, Greece
Remigijus Gustas, Sweden
Terry Halpin, USA
Willem-Jan van den Heuvel,

The Netherlands
Patrick Heymans, Belgium
Jane Huang, USA
Matthias Jarke, Germany
Paul Johannesson, Sweden
Christos Kalloniatis, Greece
Dimitris Karagiannis, Austria
Panagiotis Karras, Singapore
Evangelia Kavakli, Greece
Zoubida Kedad, France
Marite Kirikova, Latvia
Naoufel Kraiem, Tunisia
John Krogstie, Norway
Wilfried Lemahieu, Belgium
Michel Leonard, Switzerland
Panos Louridas, Greece
Kalle Lyytinen, USA
Raimundas Matulevicius, Estonia
Jan Mendling, Germany
Isabelle Mirbel, France
John Mylopoulos, Canada
Selmin Nuncan, France
Andreas Oberweis, Germany
Antoni Olive, Spain
Andreas Opdahl, Norway
Mike Papazoglou, The Netherlands
Jeffrey Parsons, Canada
Oscar Pastor, Spain

Anne Persson, Sweden
Michael Petit, Belgium
Yves Pigneur, Switzerland
Elias Pimenidis, UK
Geert Poels, Belgium
Naveen Prakash, India
Erik Proper, The Netherlands
Sudha Ram, USA
Ruth Raventos, Spain
Manfred Reichert, Germany
Stephan Reiff-Marganiec, UK
Bill Robinson, USA
Michael Rosemann, Australia
Gustavo Rossi, Argentina
Matti Rossi, Finland
Motoshi Saeki, Japan
Christos Schizas, Cyprus
Keng Siau, USA
Monique Snoeck, Belgium
Pnina Soffer, Israel
Carine Souveyet, France
Arnon Sturm, Israel
Kenji Taguchi, Japan
David Taniar, Australia
Ernest Teniente, Spain
Bernhard Thalheim, Germany
Aphrodite Tsalgatidou, Greece
Irene Vanderfeesten, The Netherlands
Olegas Vasilecas, Lithuania
Yannis Vassiliou, Greece
Yair Wand, Canada
Hans Weigand, The Netherlands
Mathias Weske, Germany
Jon Whittle, UK
Carson Woo, Canada
Eric Yu, Canada
Konstantinos Zografos, Greece

X Organization

Additional Referees

Alberto Abelló
David Aguilera-Moncusi
Saeed Ahmadi-Behnam
Naved Ahmed
Reza Akbarinia
Fernanda Alencar
Raian Ali
Christos Anagnostopoulos
Birger Andersson
Vasilios Andrikopoulos
Ion Androutsopoulos
Luca Ardito
George Athanasopoulos
Ahmed Awad
Daniele Barone
Saeed Ahmadi Behnam
Maria Bergholtz
Maxime Bernaert
Devis Bianchini
Riccardo Bonazzi
Boris Brandherm
Glenn J. Browne
Stephan Buchwald
Andrea Capiluppi
Amit Chopra
Remi Coletta
Ajantha Dahanayake
Fabiano Dalpiaz
Rébecca Deneckère
Olfa Djebbi
Vicky Dritsou
Fabien Duchateau
Rami Eid-Sabbagh
Golnaz Elahi
Amal Elgammal
Thibault Estier
Alfio Ferrara
Kunihiko Fujita
Matthias Galster
Dimitris Gavrilis
Andrew Gemino
Sepideh Ghanavati
Emmanuel Giakoumakis

Bas van Gils
Daniela Grigori
Irit Hadar
Stijn Hoppenbrouwers
Ela Hunt
Shareeful Islam
Lei Jiang
Rim Kaabi
Diana Kalibatiene
Christos Kalloniatis
Maya Kaner
Haki Kazem
Takashi Kitamura
David Knuplesch
Spyros Kokolakis
Jens Kolb
Takafumi Komoto
Panos Kourouthanassis
Eleni Koutrouli
Vera Kuenzle
Ales Kumer
Matthias Kunze
Andreas Lanz
Alexei Lapouchnian
Dejan Lavbic
Evaldas Lebedys
Francesco Lelli
Zhan Liu
Mathias Lohrmann
Linh Thao Ly
Alexander Lübbe
Manolis Maragoudakis
Michele Melchiori
Slim Mesfar
Marco Mesiti
Alexandre Métrailler
Wolfgang Molnar
Geert Monsieur
Stefano Montanelli
Gunter Mussbacher
Wanda Opprecht
Sami Ouali
Michael Pantazoglou

Organization XI

Michael Parkin
Adamantia Pateli
Michalis Pavlidis
Raul Mazo Pena
João Pimentel
Eric Platon
Viara Popova
Alireza Pourshahid
Ruediger Pryss
Ricardo Ramos
Jan Recker
Evangelos Rekleitis
Oscar Romero
Christoph Rosenkranz
Ulysse Rosselet
Khalid Saleem
Camille Salinesi
Emanuel Santos
Sihem Ben Sassi
Ricardo Seguel
Azalia Shamsaei
Omri Shiv
Patricio Silva
David Simms
Jonas Sjöström
Aidas Smaizys
Sergey Smirnov

Sergejus Sosunovas
Kilian Stoffel
Klaas-Jan Stol
Lovro Subelj
Yehia Taher
Ilias P. Tatsiopoulos
B. Veeresh Thummadi
Chouki Tibermacine
Julian Tiedeken
Dan Tofan
Federico Tomassetti
Justas Trinkunas
Christina Tsagkani
Aggeliki Tsohou
Dimitrios Tsoumakos
Oktay Turetken
Gaia Varese
Yannis Velegrakis
Antonio Vetró
Kaja Vidmar
Antonio Villegas
Emmanuel Waller
Matthias Weidlich
Michael Wufka
Iyad Zikra
Slavko Zitnik
Aljaz Zrnec

Table of Contents

Keynotes

Ten Open Challenges at the Boundaries of Software Engineering and
Information Systems (Abstract) . 1

Anthony Finkelstein

Total Integration: The Case of Information Systems for Olympic
Games (Abstract) . 2

Dimitrios A. Beis

Session 1: Requirements

Requirements Management with Semantic Technology: An Empirical
Study on Automated Requirements Categorization and Conflict
Analysis . 3

Thomas Moser, Dietmar Winkler, Matthias Heindl, and Stefan Biffl

S3C: Using Service Discovery to Support Requirements Elicitation in
the ERP Domain . 18

Markus Nöbauer, Norbert Seyff, Neil Maiden, and
Konstantinos Zachos

Requirements Engineering for Self-Adaptive Systems: Core Ontology
and Problem Statement . 33

Nauman A. Qureshi, Ivan J. Jureta, and Anna Perini

Session 2: Adaptation and Evolution

A Fuzzy Service Adaptation Based on QoS Satisfaction 48
Barbara Pernici and Seyed Hossein Siadat

Dealing with Known Unknowns: Towards a Game-Theoretic Foundation
for Software Requirement Evolution . 62

Le Minh Sang Tran and Fabio Massacci

Goal-Based Behavioral Customization of Information Systems 77
Sotirios Liaskos, Marin Litoiu, Marina Daoud Jungblut, and
John Mylopoulos

XIV Table of Contents

Session 3: Model Transformation 1

From Requirements to Models: Feedback Generation as a Result of
Formalization . 93

Leonid Kof and Birgit Penzenstadler

A Web Usability Evaluation Process for Model-Driven Web
Development . 108

Adrian Fernandez, Silvia Abrahão, and Emilio Insfran

A Trace Metamodel Proposal Based on the Model Driven Architecture
Framework for the Traceability of User Requirements in Data
Warehouses . 123

Alejandro Maté and Juan Trujillo

Session 4: Conceptual Design 1

Ontological Foundations for Conceptual Part-Whole Relations:
The Case of Collectives and Their Parts . 138

Giancarlo Guizzardi

Product-Based Workflow Design for Monitoring of Collaborative
Business Processes . 154

Marco Comuzzi and Irene T.P. Vanderfeesten

Modeling Design Patterns with Description Logics: A Case Study 169
Yudistira Asnar, Elda Paja, and John Mylopoulos

Session 5: Conceptual Design 2

Interactively Eliciting Database Constraints and Dependencies 184
Ravi Ramdoyal and Jean-Luc Hainaut

A Conceptual Model for Integrated Governance, Risk and
Compliance . 199

Pedro Vicente and Miguel Mira da Silva

Using Synchronised Tag Clouds for Browsing Data Collections 214
Alexandre de Spindler, Stefania Leone, Michael Nebeling,
Matthias Geel, and Moira C. Norrie

Revisiting Naur’s Programming as Theory Building for Enterprise
Architecture Modelling . 229

Balbir S. Barn and Tony Clark

Table of Contents XV

Session 6: Domain Specific Languages

A DSL for Corporate Wiki Initialization . 237
Oscar Dı́az and Gorka Puente

The REA-DSL: A Domain Specific Modeling Language for Business
Models . 252

Christian Sonnenberg, Christian Huemer, Birgit Hofreiter,
Dieter Mayrhofer, and Alessio Maria Braccini

A Foundational Approach for Managing Process Variability 267
Matthias Weidlich, Jan Mendling, and Mathias Weske

Session 7: Case Studies and Experiences

Tangible Media in Process Modeling – A Controlled Experiment 283
Alexander Luebbe and Mathias Weske

Experiences of Using Different Communication Styles in Business
Process Support Systems with the Shared Spaces Architecture 299

Ilia Bider, Paul Johannesson, and Rainer Schmidt

What Methodology Attributes Are Critical for Potential Users?
Understanding the Effect of Human Needs . 314

Kunal Mohan and Frederik Ahlemann

Exploratory Case Study Research on SOA Investment Decision
Processes in Austria . 329

Lukas Auer, Eugene Belov, Natalia Kryvinska, and Christine Strauss

Session 8: Model Transformation 2

A Metamodelling Approach for i* Model Translations 337
Carlos Cares and Xavier Franch

Automatic Generation of a Data-Centered View of Business
Processes . 352

Cristina Cabanillas, Manuel Resinas, Antonio Ruiz-Cortés, and
Ahmed Awad

Connecting Security Requirements Analysis and Secure Design Using
Patterns and UMLsec . 367

Holger Schmidt and Jan Jürjens

Transforming Enterprise Architecture Models: An Artificial Ontology
View . 383

Sandeep Purao, Richard Martin, and Edward Robertson

XVI Table of Contents

Session 9: Mining and Matching

Handling Concept Drift in Process Mining . 391
R.P. Jagadeesh Chandra Bose, Wil M.P. van der Aalst,
Indrė Žliobaitė, and Mykola Pechenizkiy

An Iterative Approach for Business Process Template Synthesis from
Compliance Rules . 406

Ahmed Awad, Rajeev Goré, James Thomson, and Matthias Weidlich

A Design of Business-Technology Alignment Consulting Framework 422
Kecheng Liu, Lily Sun, Dian Jambari, Vaughan Michell, and
Sam Chong

ONTECTAS: Bridging the Gap between Collaborative Tagging Systems
and Structured Data . 436

Ali Moosavi, Tianyu Li, Laks V.S. Lakshmanan, and
Rachel Pottinger

Session 10: Business Process Modelling

Cognitive Complexity in Business Process Modeling 452
Kathrin Figl and Ralf Laue

Human-Centered Process Engineering Based on Content Analysis and
Process View Aggregation . 467

Sonja Kabicher and Stefanie Rinderle-Ma

Process Model Generation from Natural Language Text 482
Fabian Friedrich, Jan Mendling, and Frank Puhlmann

A Semantic Approach for Business Process Model Abstraction 497
Sergey Smirnov, Hajo A. Reijers, and Mathias Weske

On the Automatic Labeling of Process Models . 512
Henrik Leopold, Jan Mendling, and Hajo A. Reijers

Session 11: Validation and Quality

Pattern-Based Modeling and Formalizing of Business Process Quality
Constraints . 521

Lial Khaluf, Christian Gerth, and Gregor Engels

Quality Evaluation and Improvement Framework for Database
Schemas - Using Defect Taxonomies . 536

Jonathan Lemaitre and Jean-Luc Hainaut

Table of Contents XVII

Validation of Families of Business Processes . 551
Gerd Gröner, Christian Wende, Marko Bošković,
Fernando Silva Parreiras, Tobias Walter, Florian Heidenreich,
Dragan Gašević, and Steffen Staab

Session 12: Service and Management 1

Using SOA Governance Design Methodologies to Augment Enterprise
Service Descriptions . 566

Marcus Roy, Basem Suleiman, Dennis Schmidt, Ingo Weber, and
Boualem Benatallah

Management Services – A Framework for Design . 582
Hans Weigand, Paul Johannesson, Birger Andersson,
Jeewanie Jayasinghe Arachchige, and Maria Bergholtz

Bottom-Up Fault Management in Composite Web Services 597
Brahim Medjahed and Zaki Malik

Understanding the Diversity of Services Based on Users’ Identities 612
Junjun Sun, Feng Liu, He Zhang, Lin Liu, and Eric Yu

Session 13: Service and Management 2

Request/Response Aspects for Web Services . 627
Ernst Juhnke, Dominik Seiler, Ralph Ewerth, Matthew Smith, and
Bernd Freisleben

Using Graph Aggregation for Service Interaction Message
Correlation . 642

Adnene Guabtni, Hamid Reza Motahari-Nezhad, and
Boualem Benatallah

Supporting Dynamic, People-Driven Processes through Self-learning of
Message Flows . 657

Christoph Dorn and Schahram Dustdar

Business Process Service Oriented Methodology (BPSOM) with Service
Generation in SoaML . 672

Andrea Delgado, Francisco Ruiz,
Ignacio Garćıa-Rodŕıguez de Guzmán, and Mario Piattini

Session 14

Panel on Green and Sustainable IS (Abstract) . 681
Barbara Pernici

Author Index . 683

Ten Open Challenges at the Boundaries of

Software Engineering and Information Systems

Anthony Finkelstein

Department of Computer Science, University College London, UK

Abstract. In this talk, intended to provoke discussion, I will suggest
ten important open challenges at boundaries where Software Engineer-
ing & Information Systems meet. I will focus on challenges are both
intellectually demanding and of industrial importance. I will suggest
some approaches to meeting these challenges and will lay stress upon the
interdisciplinary opportunities they give rise to.

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, p. 1, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Total Integration: The Case of Information

Systems for Olympic Games

Dimitrios A. Beis

Global Event Experts

Abstract. The Olympic Games, the most demanding Sports Mega
Event, have evolved through the years to complexity levels unparallel in
any man designed process. Information Systems play the key role both as
an enabler and critical performer for an Olympic Event if not surpass-
ing at least in equal terms with the stars of the Games, the Athletes.
Just data registering of records and performance of sports and athletes
is not a viable option today for the Olympic Games. The total integra-
tion of all functions that make the 15 dream days of the Olympics is
the target. Olympic family services, spectator services, cultural integra-
tion, media and broadcasting services, world participation and host city
performance in transportation, crowd regulation and security must be
supported in a first time easy to use, reliable and sub second response
performance with 100% availability of all systems. The IS implemented
in support of the last three Olympiads in Sydney, Athens and Beijing
will be presented, critical issues of success factors analysed and expected
developments projected.

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, p. 2, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 3–17, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Requirements Management with Semantic Technology:
An Empirical Study on Automated Requirements

Categorization and Conflict Analysis

Thomas Moser, Dietmar Winkler, Matthias Heindl, and Stefan Biffl

Christian Doppler Laboratory
Software Engineering Integration for Flexible Automation Systems

Institute of Software Technology and Interactive Systems
Vienna University of Technology, Vienna, Austria
{firstname.lastname}@tuwien.ac.at

Abstract. Requirements managers aim at keeping the set of requirements con-
sistent and up to date throughout the project by conducting the following tasks:
requirements categorization, requirements conflict analysis, and requirements
tracing. However, the manual conduct of these tasks takes significant effort and
is error-prone. In this paper we propose to use semantic technology as founda-
tion for automating the requirements management tasks and introduce the
ontology-based reporting approach OntRep. We evaluate the effectiveness and
effort the OntRep approach based on a real-world industrial empirical study
with professional Austrian IT project managers. Major results were that OntRep
provides reasonable capabilities for the automated categorization of require-
ments, was when compared to a manual approach considerably more effective
to identify conflicts, and produced less false positives with similar effort.

Keywords: Requirements categorization, requirements conflict analysis,
consistency checking, requirements tracing, case study, empirical evaluation.

1 Introduction

A major goal of requirements engineering is to achieve a common understanding on
the set of requirements between all project stakeholders. Modern IT projects are
complex due to the high number and complexity of requirements, and geographically
distributed project stakeholders with different backgrounds and terminologies. There-
fore, adequate requirements management (ReqM) tools are a major contribution
to address these challenges. Current ReqM tools typically work with a common
requirements database, which can be accessed by all stakeholders to retrieve informa-
tion on requirements content, state, and interdependencies.

ReqM tools help project managers and requirements engineers to keep the overview
on large amounts of requirements by supporting: (a) Requirements categorization by
clustering requirements into user-defined subsets to help users find relevant require-
ments more quickly, e.g., by sorting and filtering attribute values; (b) Requirements
conflict analysis (or consistency checking) by analyzing requirements from different

4 T. Moser et al.

stakeholders for symptoms of inconsistency, e.g., contradicting requirements; and (c)
Requirements tracing by identifying dependencies between requirements and artifacts
to support analyses for change impact and requirements coverage. Unfortunately,
ReqM suffers from the following challenges and limitations:

• Incompleteness [7] of requirements categorization and conflict identification, in
particular, when performed manually.

• High human effort for requirements categorization, conflict analysis and tracing,
especially with a large number of requirements [7].

• Insufficient completeness [6] for conflict analysis and tracing with automated
approaches.

• Tracing on syntactic rather than on concept level: requirements are often traced
on the syntactic level by explicitly linking requirements to each other. However,
requirements engineers actually want to trace concepts, i.e., link requirements
based on their meaning, which can be achieved only partially by information re-
trieval approaches like “keyword matching” [12] [13].

The use of semantic technologies seems promising to address these challenges:
Ontologies provide the means for describing the concepts of a domain and the rela-
tionships between these concepts in a way that allows automated reasoning [18].
Automated reasoning can support tasks for requirements categorization, requirements
conflict analysis, and requirements tracing.

In this paper, we propose OntRep, an automated ontology-based reporting
approach for requirements categorization, conflict analysis and tracing based on on-
tologies and semantic reasoning mechanisms. The main criteria for the evaluation are:
correctness and completeness of identified requirements conflicts, effort to develop a
project or domain ontology. OntRep aims at lowering the effort for requirements
management, while keeping high requirements consistency.

The OntRep approach automatically categorizes requirements into a given set of
categories using ontology classes modeled in Protégé and mapping the terms used in
the requirements to these classes. Further, OntRep analyzes the content of the re-
quirements and identifies conflicts between requirements. Therefore, conflict analysis
is not only based on traditional keyword-matching-approaches, but can also work
when different terminologies are used for requirements formulation.

We empirically evaluate OntRep with a real-life project at Siemens Austria, where
six project managers in two teams (a) categorized the requirements of the case study
project into a set of categories and (b) inspected the given project requirements to
identify conflicts between requirements. A requirements engineering expert provided
control data for all tasks. Then, we performed the same tasks with OntRep to compare
the effort necessary and the quality of results.

The remainder of the paper is organized as follows: Section 2 summarizes related
work on requirements categorization, conflict analysis, tracing, and natural language
processing technologies; Section 3 introduces the OntRep approach and motivates
research issues. Section 4 outlines the case study and Section 5 presents results.
Section discusses the results, concludes and suggests further work.

 Requirements Management with Semantic Technology: An Empirical Study 5

2 Related Work

This section presents related work on natural language processing technologies as
foundation for automating the ReqM tasks requirements categorization, conflict anal-
ysis, and requirements tracing approaches.

2.1 Requirement Conflicts Detection and Requirements Tracing

Requirements conflict with each other if they make contradicting statements about
common software attributes [7]. Requirements authors may use different terminol-
ogies for specifying requirements, although the terms used can be derived from the
same common concepts.

• In principle there are the following main strategies to identify and eliminate re-
quirements conflicts: Negotiation methods, where stakeholders manually (or with
tool support) categorize, discuss, and analyze requirements for conflicts, such as
the win-win requirements negotiation approach [1] or its tool-supported variant
easy-win-win [2],

• Automation approaches for conflict analysis ([4][6][12]) that use tools to analyze
requirements consistency in order to reduce human effort.

“Given that there may be up to n2 conflicts among n requirements, the number of
potential conflicts, could be enormous, burdening the engineer with the time-intensive
and error-prone task of identifying the true conflicts” [7]. Several approaches address
the issue of automated requirements conflict identification:

The Trace Analyzer by Egyed and Grünbacher [7] analyzes the footprint of test
cases to generate trace dependencies. If two requirements affect the same part of a
system, then their test runs execute overlapping lines of code. Trace dependencies and
potential conflicts can be identified among requirements, if their test scenarios exe-
cute the same lines of code. However, the Trace Analyzer needs executable code to
identify requirements conflicts, which is often not available in early project phases,
when conflict analysis is a major goal.

Heitmeyer et al. [11] describe a formal analysis technique, called consistency
checking, for the automated detection of errors, such as type errors, non-determinism,
missing cases, and circular definitions, in requirements specifications. The approach
only considers syntactical consistency and does not address semantic conflicts.

Automated requirements tracing approaches are also relevant for requirements con-
flict analysis: requirements tracing deals with identifying interdependencies between
requirements [10] and conflicts between two requirements can be seen as a particular
type of interdependency, i.e., tracing is a precondition for conflict analysis. There are
reports on several trace automation approaches, such as Egyed’s scenario-driven ap-
proach to traceability [6], Jackson’s key-phrase-based traceability scheme [12]. Fur-
ther, there are the heterogeneous traceability approach Cleland-Huang et al. [4], and
approaches by Pinheiro et al. [20], Leuser [14], and McMillan et al. [16]. These ap-
proaches use different techniques to identify requirements interdependencies. Some of
them require executable code, so they cannot be used for the identification of interde-
pendencies in early project phases when there is no sufficient code base.

6 T. Moser et al.

Within these trace automation approaches, information retrieval approaches, such
as the RETH approach [13], seem of particular interest as they use keyword-matching
techniques to identify requirements interdependencies. However, these techniques do
not allow identifying conflicts or other interdependencies between requirements, if
they use different terms for similar concepts. In practice these approaches are less
effective, because they cannot identify the full set of interdependencies between re-
quirements.

The extended Bakkus-Naur-Form (EBNF) [21] (see Fig. 2) is a general formal lan-
guage description approach, which is used in the field of requirements analysis to
improve the understandability of requirements for humans and machines. EBNF re-
quirements templates contain mandatory and optional elements, e.g. conditions, obli-
gations, actors, process verbs, which are the basis for clear requirements statements.

2.2 Natural Language Processing

Natural language processing (NLP) techniques are useful to parse and extract struc-
ture and content of requirements given in natural language for transformation into the
structure of an ontology. NLP generally refers to a range of theoretically motivated
and computational techniques for analyzing and representing naturally occurring texts
[3]. The core purpose of NLP techniques is to achieve human-like language process-
ing for a range of tasks or applications [15].

The core NLP models used in this research are part-of-speech (POS) tagging and
sentence parsers [3]. POS tagging involves marking up the words in a text as corre-
sponding to a particular part of speech, based on both its definition, as well as its
context. In addition, sentence parsers transform text into a data structure (also called
parse tree), which provides insight into the grammatical structure and implied hierar-
chy of the input text [3]. Standford parser/tagger1 and OpenNLP2 are the core set of
NLP tools used in this research.

Another tool that can be used is WordNet, a large lexical database of English [17].
Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms
(synsets), each expressing a distinct concept. Synsets are interlinked by means of
conceptual-semantic and lexical relations. WordNet is a useful building block for
requirements analysis (see below).

These NLP technologies can be used for our purpose, namely to improve the effec-
tiveness of requirements management activities like categorization, conflict analysis,
and tracing.

3 Ontology-Based Reporting

Due to the limitations of requirements analysis approaches that address only links
between requirements based on syntactic equality, we explore in this work an ap-
proach based on semantic equality, i.e., OntRep links similar concepts, if they share
the same meaning even if their syntactic representations are different. As ontologies
are versatile for representing knowledge on requirements and for deriving new links

1 http://nlp.stanford.edu/software/lex-parser.shtml
2 http://opennlp.sourceforge.net

 Requirements Management with Semantic Technology: An Empirical Study 7

between requirements, we introduce an ontology-based approach for reporting analy-
sis results on a set of requirements, so-called ontology-based reporting.

The goal of the ontology-based reporting approach OntRep is making ReqM tasks
like requirements categorization, conflict analysis and requirements tracing more
efficient based on the automation of selected steps in these tasks. The following sub-
sections provide an overview on the approach and motivate research issues.

Fig. 1. Components and numbered steps of OntRep

We developed a prototype tool for the OntRep approach a plug-in to Trac3, an open
source collaboration platform consisting of a Wiki, ticket management system, and
subversion integration, which can be extended by Python plug-ins.

Fig. 1 illustrates the OntRep tool (together with Protégé) consisting of two main
components: 1) Instance fetcher takes input data, e.g., requirement tickets from Trac,
analyzes their contents and assigns them requirements categories (classes) defined in
the ontology; 2) Reporting component reasons on the input data and generates a re-
quirements conflict report based on the analyzed requirements.

3.1 Semantic Requirements Categorization

In a first phase natural language texts have to be linked to semantic categories as
preparation for further analysis and reporting. The following steps automate require-
ments categorization with OntRep (see numbered circles in Fig. 1):

1) Define the requirement categories in Protégé, e.g., categories X, Y, Z. Each cat-
egory is defined as an ontology class in Protégé. It is important to define project-
relevant “semantic” categories and not formal ones in order to enable the automated

3 http://trac.edgewall.org/

8 T. Moser et al.

categorization, e.g., “Security”. Typically, these categories can be defined based on a
project glossary that contains important project-specific terms.

2) Provide input data to be categorized: Requirements are represented as tickets in
Trac. For our research prototype we export these requirements (the small grey circles
in Fig. 1) via CSV from Trac and import them into the instance fetcher.

3) Remove irrelevant stop-words, like “and”, “any”, “but”, which cannot be used for
categorization. This step is performed automatically using a standard stop-word list4.

4) Bring all remaining words into their root form: this process is called “stem-
ming” based on a well-known algorithm, like the “Porter Stemmer” algorithm [19].
An example is to stem “jumping” to “jump”.

5) Get all synonyms and hyponyms of the analyzed words in the requirements by
using the natural language processing library “WordNet” [17]. For example, “house”
is a synonym for “building”, “dog” is a hyponym of “animal”. Further check all rele-
vant substrings of a word like “net” as a substring of “network”.

6) Heuristic-based assignment of each requirement to the defined categories de-
pending on the number of hits for 1) synonyms, 2) hyponyms and 3) substring
matches. The heuristic checks if the hits for synonym, hyponym and substring
matches meet the given threshold values. So the number of met thresholds is between
0 and 3. If this number is equal of higher than the number of thresholds that must be
met, the word will be related to that category, otherwise not. If several categories
reach these thresholds, the requirement will be categorized into all of these categories
(multi-dimensional categorization is allowed)

7) Save the element as an individual of the ontology class, if it is not already in the
class. This can only be checked if one or more of the elements attributes have been
declared as primary keys (uniquely identifying the element). If the element has al-
ready been saved in another class as well (which could be the case), declare that the
new element is the same as the already existing one with the “owl:sameAs” property.

8) Semantic requirements conflict analysis: If the requirements are formally de-
scribed using a specified grammar (e.g., EBNF), the information contained in the
textual requirement descriptions can be semantically analyzed in order to identify
possible inconsistencies and/or conflicts, see subsection 3.2.

3.2 Semantic Conflict Analysis

In the second phase, analysis and reporting approaches build on the mapping of re-
quirements to semantic categories. For formally specified requirement semantics, in
our case following an EBNF template (see Fig. 2), semantic analysis can identify
inconsistencies and conflicts using a set of assertions that should hold true for all
available facts. These assertions are based on the available requirements, while the
available facts are based on the environment and properties of the target system.

Fig. 3 depicts examples for conflicts between requirements (the CRR conflict type
explained in section 4), e.g. the third conflict contains an inconsistency between
requirements nr. 16 and nr.13: The “thing to be processed” part of requirement nr. 16
contains a value of 30 for “number of index updates”, whereas requirement nr. 13
contains the value 20 for “number of index updates, which finally is a requirements
conflict.

4 http://www.textfixer.com/resources/common-english-words.txt

 Requirements Management with Semantic Technology: An Empirical Study 9

Fig. 2. EBNF requirements structure (sentence level) [21]

Fig. 3. Example report on requirements conflicts

3.3 Research Issues

The underlying idea of this research is to use advanced semantic technologies, like
ontologies and reasoning mechanisms, to increase the effectiveness and efficiency of
ReqM activities. In a large software project, tasks like requirements categorization,
conflict analysis, and tracing would need human effort and duration that often prohibits
their use in practice. Therefore, software projects often end up with (a) unstructured
requirements and (b) conflicts that get discovered late and expensively.

In this context, the main research question of this paper is: To what extent can a se-
mantic-technology-based approach, like OntRep, increase the effectiveness and effi-
ciency of requirements categorization and conflict analysis compared to a traditional

10 T. Moser et al.

manual approach? In order to address the research question we derived the following
variables (according to [8]) to consider for evaluation:

• The number of requirements determines the effort necessary for categorization
and conflict analysis.

• Number of requirement categories used to categorize the requirements. Further,
the total number of true requirements conflicts existing in a list of requirements,
which can be identified by various approaches for conflict detection. This is a
baseline measurement for the effectiveness of an approach, i.e., a perfect ap-
proach would find 100% of the true requirements conflicts.

• Approach for categorization/conflict analysis: e.g., for automation approaches
the formal structure of requirements is an important factor. As described above,
we use the EBNF template for specifying requirements. Using plain text or other
formats probably affects the correctness and completeness of identified conflicts.

Dependent variables that we want to study by the evaluation are:

• Number of conflicts identified. This number consists of two measures: recall
(number of correctly identified conflicts), for measuring the effectiveness of an
approach, and false positives (number of wrongly identified conflicts).

• True conflicts that have not been identified (false negatives): subtracting the
number of correctly identified conflicts from the total number of true require-
ments conflicts tells us about the recall of conflict identification.

• Plausibility of requirements classification: regarding categorization two kinds of
error can occur: (1) requirements have been assigned to a wrong category, and (2)
requirements have not been assigned to a category they actually belong to. In or-
der to measure these parameters, we take the manual categorization results of a
requirements engineering expert as reference. In addition, we count the number of
requirements in each category.

Besides these parameters we also record the effort for requirements categorization and
conflict analysis. This includes preparation effort (e.g., creating the ontology that is
used for categorization and conflict analysis), categorization effort, and conflict
analysis effort. The case study is described in detail in the following section.

4 Case Study Description

The following subsections describe the characteristics of the pilot study design.

Study Subject. The case study project “Technoweb 2.0” is an IT development project
with the goal to design and implement a web application that serves as a platform for
communication and networking between technology experts within Siemens. This
platform builds on the Java technology Liferay, where portlets act as components of
the web application. The project is performed in an agile way using the software de-
velopment process “SCRUM” and the configuration & project management platform
Trac. In Trac all requirements, tasks and bugs are stored as tickets.

 Requirements Management with Semantic Technology: An Empirical Study 11

Fig. 4. Evaluation Setting: Manual (left), OntRep (right)

Study Design, Material, Participants, and Process. We applied the standard prac-
tices of empirical software engineering research according to Freimut et al. [8] and
Wohlin et al. [22]. Fig. 4 illustrates the steps of the empirical study.

A1, B1) Study preparation: This step dealt with the creation/preparation of all arti-
facts necessary for the evaluation: 23 requirements in EBNF syntax, 8 categories as
input for the requirements categorization step, deployment of 22 seeded conflicts
(based on typical requirements conflicts found in practice at Siemens Austria). Fur-
ther, we used questionnaires to capture the individual background experience of the
participants and a feedback questionnaire to capture, whether the participants found
the approach useful and usable.

A2, A3) Participant selection and team building: There were 6 participants who
performed the manual categorization and conflict analysis tasks. They had similar
experience on project management (3 to 5 years) and on requirements management
but advanced general software engineering know-how. In addition, we had one expert
with deeper know-how and experience, especially in ReqM. Finally, there was one
OntRep tool user. He was well familiar with OntRep and had similar experience as
the other participants. As described below, the evaluation consisted of individual
work and team work. For the latter, the teams were assigned randomly.

A4, B2) Introduction (Guidelines and Data Collection): Before execution of tasks
the study organizer introduced the participants to the project and the manual require-
ments categorization and conflict detection tasks. Further, the participants were

12 T. Moser et al.

guided step-by-step through the requirements classification and conflict detection
process. The participants were sitting in one room without talking to each other. In the
team phase, the two teams (3 participants each) worked in separated rooms. The ex-
pert, as well as the OntRep tool user, also worked separately.

A5) Background questionnaire: before they started with the actual ReqM tasks, the
participants filled in the questionnaire.

A6) Individual requirements categorization: Then the participants read through the
23 given requirements. The participants individually categorized the requirements
into one or more of the given 8 categories. Each participant conducts the requirements
categorization individually. In addition, one Requirements Engineering expert also
does the categorization. The time needed by each participant is captured.

A7) Individual requirements conflict analysis: In addition to the 23 requirements
that had been categorized before, further elements were displayed (as rows below the
other requirements), namely: 11 constraints (technical and business), and 4 formal
documentation rules (documentation guidelines).

The participants again read through the task description and then had to identify
conflicts and enter them into the sheet. A conflict can have one of the following types:
conflict between requirements (CRR), conflict of a requirement with a constraint
(CRC), conflict of a requirement with a formal guideline, i.e., ill-formed requirement
(CRG). In total, the case study data contained: 5 conflicts of type CRR, 7 of type
CRC, and 10 of type CRG. After the evaluation of the manual approach, we again
have the 6 individual results. Again, one Requirements Engineering expert also con-
ducted the conflict analysis. The effort needed by each participant was captured.

A8) Team requirements categorization & conflict analysis: Afterwards, the par-
ticipants harmonized their individual results within 2 randomly assigned groups. Ef-
fort was captured for this task. The results are 2 team sheets.

A9) Feedback forms: filled in at the end by the participants.
A10, B6) Evaluation of study results: The manually created results of the expert

and the teams were then compared with the result generated by OntRep.

The process for the automated approach is:
B3) Ontology preparation: A tool expert created one ontology class in OntRep

(Protégé) for each category and then imported the given requirements from Trac as
CSV into OntRep.

B4) OntRep requirements categorization: The tool then executed the categoriza-
tion and generated a final result. We captured the effort to create the ontology classes
and to generate the final report.

B5) OntRep requirements conflict analysis: Then, we again provided the require-
ments as CSV-input to OntRep. Further, the tool expert had to model the constraints
as facts and the formal guidelines as rules in the ontology. We captured the effort for
this. Then, the tool executed the conflict identification and generated a final report.

Data Capturing Analysis and Statistical Evaluation. Finally, we analyzed and
evaluated the following results: (a) 6 spreadsheets for requirements categorization and
6 spreadsheets for conflict analysis from each of the 6 individual participants, (b) 1
categorization spreadsheet and 1 conflict analysis spreadsheet from a requirement
engineering expert, and finally (c) 1 categorization spreadsheet and 1 conflict analysis

 Requirements Management with Semantic Technology: An Empirical Study 13

spreadsheet created with the OntRep approach. The results were evaluated with de-
scriptive statistics in Excel and R and are described in the following section.

5 Results

The following subsections describe the results of the pilot study regarding require-
ments categorization and conflict analysis.

5.1 Requirements Categorization

In order to evaluate the requirements categorization task, we took the categorization
result of the requirements engineering expert as reference solution for comparing the
results of the manual and automated approaches.

Table 1. Results of manual and automated req. categorization

 Individuals
avg./std.dev.

Groups
avg./std.dev.

OntRep

 MANUAL AUTOMATED
1. Overfulfilled 9.5/3.9 12.5/3,5 6.0
2. Correct 5.7/2.7 6.0/2.8 8.0
Sum 1. & 2. 15.2/2.3 18,5/0.7 14.0
3. Partly correct 2.0/1.1 0.0/0.0 2.0

4. False 5.8/1.7 4.5/0.7 7.0

Table 1 summarizes the results of the manual and automated requirements categori-
zation approaches: the rows in the table contain the quality levels of the categorization:
“overfulfilled” means that a requirement was categorized into all correct categories but
also into one or more additional ones, “correct” means that a requirement was catego-
rized in the right categories. “Partially correct” means that a requirement was catego-
rized in some but not all of the correct categories, “false” means that a requirement was
categorized into wrong categories but not the right ones. The group results are better
than the individual results: the number of false categorizations is reduced, and the
number of correct and overfulfilled categorization is increased. Overfulfillment is not a
problem, because all requirements are categorized into the right categories, and into
some more categories, but this is just additional information which is allowed.

Categorization with OntRep was more accurate, i.e., 8 requirements (more than
with the manual approach) have been categorized into the right categories without
categorizing them in additional categories. On the other hand, comparing the sum of
correctly categorized requirements (overfulfilled + correct) shows the lowest value for
automation. Further, the number of false categorizations is also the highest. This is
due to the fact, 4 requirements were not categorized at all. The reason therefore is that
the terms used in these requirements could not be mapped to the categories, neither
through substrings, synonyms or hyponyms.

14 T. Moser et al.

The average effort for manual categorization was around 15 min per person. The
group work took ca. 12 min in addition, resulting in an additional group effort of 36
person minutes. With OntRep the following preparations were necessary to enable the
automated categorization: conversion of requirements into EBNF form (30 min.),
preparation of ontology classes and user-defined synonyms (14 min.). After this, the
run time for categorization was ca. 2 minutes. If the requirements exist in EBNF form,
which is the case for some larger projects at Siemens Austria, the effort is similar to
the manual average effort of manual categorization, but much more scalable.

5.2 Requirements Conflict Analysis

We analyzed conflicts of the three types described above, because conflicts of this
type can be modeled in OntRep by means of facts and rules. The OntRep results for
these conflicts are complete: all 22 conflicts of the defined conflict classes in the
given data were identified, because OntRep works reliably, when the following pre-
requisite are met: requirements exist in EBNF as input via CSV, modeling of glos-
sary terms in ontology (10 min.), modeling facts, constraints and rules in the ontology
(46 min.). Therefore, the total OntRep preparation time is 100 min. for the given case.
The overall report generation took 4 minutes.

Table 2. Results of conflict detection capability analysis

 # correctly identified
conflicts
(avg./
std.dev.)

Avg. % of true
conflicts found
(avg./
std.dev.)

conflicts
found
(avg./
std.dev.)

False positives in
% (avg./
std.dev.) of #
conflicts found

Individuals 7.0/3.9 31.8/18 17.0/6.8 58.8/22.0

Groups 10.5/0.7 47.7/3.0 21.5/0.7 51.2/4.9

Expert 15.0 68.2 17.0 11.8

OntRep 22.0 100.0 22.0 0.0

In comparison, the manual conflict analysis approach resulted in a lower complete-

ness (see Table 2): the individual participants identified only 31.8% of existing
conflicts on average. The harmonization of results within the groups brought an im-
provement to 47.7%, which means that approximately 3 additional conflicts have
been identified by merging of the individual results into one group result. Also the
number of false positives was slightly reduced by 1. The correctness of the manual
approach was also lower than with the OntRep approach: 58.8% of identified conflicts
were false positives. This percentage could only slightly be reduced by the group
harmonization. i.e., ca. 1-2 false positives were been eliminated during team work.

In addition to comparing the individual and group results with OntRep results, but
also had one expert performing the conflict analysis. Compared to the other participants
and the team results, he provided the best results, i.e., the highest number of correctly
identified traces, and the lowest percentage of false positives. Regarding effort, the

 Requirements Management with Semantic Technology: An Empirical Study 15

expert was also the best with the manual approach: He needed 45 min. for conflict
analysis, whereas the other participants needed 97 min. on average. In addition the
group phase took 37 min., resulting in an additional group effort 111 person minutes.

5.3 Threats to Validity

We addressed threats internal validity [10] of the study by two measures: a) intensive
reviews of the study concept and materials, and b) a test run of the study conducted by
a test person in order to make sure that the guidelines, explanations, and task descrip-
tions are understandable for the participants and to estimate the required effort/time
frame. Regarding external validity [30], we performed this initial case study in a pro-
fessional context at a software development company. The participants had medium
requirements management know-how and advanced software engineering know-how.
In addition, we had a requirements engineering expert as experimental “control
group”. Nevertheless, the small number of participants might limit the generalization
of results. Therefore, we suggest replicating the study in a larger context.

Further, the requirements in this case study were formulated using the EBNF syn-
tax, which is a major condition for OntRep to analyze the requirements. We did
not yet analyze the quality of results with a set of requirements, which is not or only
partially formulated in EBNF. Further studies are needed to evaluate this.

6 Discussion and Conclusion

Software and systems engineering projects are complex due to the increasing number
and complexity of requirements, and the project participants with different domain
backgrounds and terminologies. To keep the overview on requirements, project man-
agers conduct requirements categorization, conflict analysis, and tracing. However,
the manual conduct of these tasks takes significant effort and is error-prone.

In this paper we proposed semantic technology as foundation for automating the
requirements management tasks and introduced the automated ontology-based report-
ing approach OntRep based on a project ontology and a reasoning mechanism. We
used requirements formulated in EBNF as input to the proposed OntRep approach,
which supports automated requirements categorization and requirements consistency
checking. We evaluated the effectiveness and effort the OntRep approach based on a
real-world industrial case study with 6 project managers in 2 teams. The study fo-
cused on requirements categorization and requirements conflict analysis. During the
evaluation the study participants a) categorized the requirements of the case study
project into a set of categories and b) inspected the given project requirements to
identify conflicts between requirements. In addition a requirements expert and an
OntRep user performed the same tasks to enable comparing the quality of results and
the effort for all activities.

The case study results suggest that OntRep can be an attractive alternative for
requirements categorization in typical software development projects, because it pro-
vides slightly lower effectiveness with similar effort compared to manual approaches,
but much more scalable. OntRep’s performance can be increased by adding addi-
tional, synonyms or hyponyms to the ontology (which has to be done manually at the

16 T. Moser et al.

moment), so that all used terms in requirements can be mapped to categories. Regard-
ing conflict analysis, OntRep found all conflicts in the requirements during the em-
pirical study, while manual conflict analysis identified only 50 to 60% of the conflicts
and produced more false positives with similar effort. OntRep analyzes three types of
conflicts at the moment: conflicts between requirements, conflicts between require-
ments and some constraints, or conflicts of requirements with some formal guidelines.
The OntRep automation approach seems beneficial for project managers who want to
manage their requirements with less effort, but in the same turn keep the requirements
consistency high. Using the OntRep approach, organizations in software development
projects could benefit from reduced manual effort for categorization and conflict
analysis, and reduced communication and clarification effort through semi-automated
semantic conflict analysis support.

Further work will focus on the replication of this pilot study in a larger context,
i.e., with more participants to improve the external validity of results. In addition, we
want to increase the number of requirements to be categorized and analyzed for con-
flicts in order to analyze the correctness, completeness, and especially the effort for
larger sets of requirements. We assume that especially the efficiency of OntRep will
improve with the number of requirements when compared to a manual approach.
Another aspect is to adapt OntRep for application to a set of requirements.

Acknowledgments. We want to thank Alexander Wagner for the prototype imple-
mentation of the OntRep concepts and his support during the pilot study. This work
has been supported by the Christian Doppler Forschungsgesellschaft and the BMWFJ,
Austria.

References

1. Boehm, B., In, H.: Identifying Quality-Requirement Conflicts. IEEE Software (1996)
2. Briggs, R.O., Grünbacher, P.: EasyWinWin: Managing Complexity in Requirements

Negotiation with GSS. In: Proceedings of the 35th Hawaii International Conference on
System Sciences (2002)

3. Choi, F.Y.Y.: Advances in domain independent linear text segmentation. In: Proceedings
of the 1st North American Chapter of the Association for Computational Linguistics Con-
ference. Morgan Kaufmann Publishers Inc., Seattle (2000)

4. Cleland-Huang, J., Zemont, G., Kukasik, W.: A Heterogeneous Solution for Improving the
Return on Investment of Requirements Traceability. In: 12th IEEE Int. Conf. on Require-
ments Engineering (2004)

5. Cruz, I.R., Huiyong, X., Feihong, H.: An ontology-based framework for XML semantic
integration. In: International Database Engineering and Applications Symposium (IDEAS
2004), pp. 217–226. IEEE, Los Alamitos (2004)

6. Egyed, A.: A Scenario-Driven Approach to Traceability. In: Proceedings of the 23rd Inter-
national Conference on Software Engineering (ICSE), Toronto, Canada, pp. 123–132
(2001)

7. Egyed, A., Grünbacher, P.: Identifying Requirements Conflicts and Cooperation: How
Quality Attributes and Automated Traceability Can Help. IEEE Software (2004)

8. Freimut, B., Punter, T., Biffl, S., Ciolkowski, M.: State-of-the-Art in Empirical Studies,
Report: ViSEK/007/E, Fraunhofer Inst. of Experimental Software Engineering (2002)

 Requirements Management with Semantic Technology: An Empirical Study 17

9. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A.: Sweetening WordNet with DOLCE.
AI Magazine 24(4), 13–24 (2003)

10. Gotel, O., Finkelstein, A.C.W.: An analysis of the requirements traceability problem. In:
1st International Conference on Requirements Engineering, pp. 94–101 (1994)

11. Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: Automated consistency checking of
requirements specifications. In: 2nd International Symposium on Requirements Engineer-
ing (RE 1995), York, England (1995)

12. Jackson, J.: A Keyphrase Based Traceability Scheme. IEEE Colloquium on Tools and
Techniques for Maintaining Traceability During Design, 2-1-2/4 (1991)

13. Kaindl, H.: The Missing Link in Requirements Engineering. ACM SigSoft Software Engi-
neering Notes 18(2), 30–39 (1993)

14. Leuser, J.: Challenges for semi-automatic trace recovery in the automotive domain. In:
Proceedings of the ICSE Workshop on Traceability in Emerging Forms of Software Engi-
neering, TEFSE (2009)

15. Liddy, E.D.: Natural Language Processing, 2nd edn. Encyclopedia of Library and Informa-
tion Science. Marcel Decker, Inc., NY (2001)

16. McMillan, C., Poshyvanyk, D., Revelle, M.: Combining textual and structural analysis of
software artifacts for traceability link recovery. In: Proceedings of the ICSE Workshop on
Traceability in Emerging Forms of Software Engineering, TEFSE (2009)

17. Miller, G.A.: WordNet: A Lexical Database for English. Communications of the
ACM 38(11), 39–41 (1995)

18. Pedrinaci, C., Domingue, J., Alves de Medeiros, A.K.: A core ontology for business proc-
ess analysis. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC
2008. LNCS, vol. 5021, pp. 49–64. Springer, Heidelberg (2008)

19. van Rijsbergen, C.J., Robertson, S.E., Porter, M.F.: New models in probabilistic informa-
tion retrieval, British Library Research and Development Report, no. 5587 (1980)

20. Pinheiro, F.A.C., Goguen, J.A.: An Object-Oriented Tool for Tracing Requirements. IEEE
Software 13(2), 52–64 (1996)

21. Rupp, C.: Requirements Engineering und –Management. Hanser (2002)
22. Wohlin, C., Höst, M., et al.: Controlled Experiments in Software Engineering. Journal for

Information and Software Technology, 921–924 (2001)

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 18–32, 2011.
© Springer-Verlag Berlin Heidelberg 2011

S3C: Using Service Discovery to Support
Requirements Elicitation in the ERP Domain

Markus Nöbauer1, Norbert Seyff2, Neil Maiden3, and Konstantinos Zachos3

1 InsideAX GmbH, Lunzerstraße 64, 4031 Linz, Austria
markus.noebauer@insideAx.at

2 University of Zurich, Requirements Engineering Research Group, Zurich, Switzerland
seyff@ifi.uzh.ch

3 City University London, Centre for HCI Design, London EC1V 0HB, UK
n.a.m.maiden@city.ac.uk, kzachos@soi.city.ac.uk

Abstract. Requirements Elicitation and Fit-Gap Analysis are amongst the
most time and effort-consuming tasks in an ERP project. There is a potentially
high rate of reuse in ERP projects as solutions are mainly based on standard
software components and services. However, the consultants’ ability to iden-
tify relevant components for reuse is affected by the increasing number of ser-
vices available to them. The work described in this experience paper focuses
on providing support for consultants to identify existing solutions informing
system design. We report the development of a tool-supported approach called
S3C, based on Microsoft Sure Step methodology and SeCSE open source
service discovery tools. The S3C approach is tailored to the needs of SME
companies in the ERP domain and overcomes limitations of Sure Step. The
initial application and evaluation of the S3C approach also allows presenting
lessons learned.

Keywords: Information systems, requirements elicitation, service discovery,
ERP.

1 Introduction

Enterprise Resource Planning (ERP) systems are software systems that support busi-
ness operations. They were first introduced in material management but nowadays
ERP systems support a broad range of business activities [1]. Woods [2] highlights
that the service-oriented paradigm has changed the nature of ERP systems. Novel
ERP systems are based on software services and software vendors provide various
tool support and frameworks to integrate ERP systems in broader service-oriented
systems [3].

The rising number of services makes the task of the consultants, who align an ERP
system with a customer’s requirements, increasingly difficult: the consultants need
to know all these services, their functionality and quality of service in order to do
their job properly. We observed this problem in two companies that provide ERP

S3C: Using Service Discovery to Support Requirements Elicitation in the ERP Domain 19

solutions based on Microsoft Dynamics AX for their customers. Dynamics AX is a
business management solution that combines ERP functionality and additional
domain specific modules [4]. The consultants at both companies apply Microsoft’s
Sure Step methodology [5], which provides guidance and support for gathering cus-
tomers’ requirements and identifying which requirements can be satisfied using stan-
dard ERP system functionality (Fit-Gap Analysis). However, the increasing number
of services both provided by Dynamics AX [6] and developed by partner companies
raises challenges for the application of Sure Step. The consultants find it increasingly
difficult to keep track of the available services. This limits their ability to identify
adequate services and negatively affects later system design and development.

In our current research, we are addressing the challenges resulting from the intro-
duction of software services in the ERP domain. The research focuses on system
design activities within ERP projects based on Sure Step. We explore the ways con-
sultants can be supported in handling the increasing number of services within ERP
systems. This paper presents the Semantic Service Search & Composition (S3C) ap-
proach, a tool-based solution supporting consultants in identifying requirements and
relevant services to inform the Fit-Gap Analysis within ERP projects. We further
discuss the experience gained from two studies where the S3C Solution Explorer was
applied by ERP consultants at two different companies.

The remainder of the paper is organized as follows. Section 2 presents the Sure
Step analysis phase and highlights the limitations of this approach and the challenges
raised by service-centric system development. Section 3 presents the research goal
and research objectives in more detail. In that section we then present the needs of
ERP consultants. We further discuss the SeCSE Requirements Process which in-
formed our solution. Section 3 then presents the S3C approach which adapts Sure Step
towards service-centric development. In the last part of Section 3 we present novel
tools which were developed to support the S3C approach as well as integrated service
discovery components from SeCSE. In Section 4 we present and discuss the results of
the initial evaluation of the S3C Solution Explorer. Section 5 presents lessons learned
and Section 6 concludes and presents further work.

2 Requirements Elicitation Based on Sure Step and Its Limitations

Sure Step defines roles such as that of the application consultant who is responsible
for gathering and specifying requirements and for conducting a Fit-Gap Analysis.
Figure 1 gives a detailed overview of Sure Step which divides an ERP installation
project into six phases: Diagnostic, Analysis, Design, Development, Deployment and
Operation. Each phase consists of mandatory and optional activities. In addition, there
exist Cross Phase Processes that span across multiple phases. There are four activities
relevant to this research which focuses on requirements elicitation and system design.
These activities are usually conducted in sequential order. The following paragraphs
give a more detailed description:

20 M. Nöbauer et al.

Fig. 1. Microsoft Dynamics Sure Step Phase Model

Conduct Business Process Analysis. A detailed business process analysis is con-
ducted in a workshop, therefore consultants compare the customers’ current business
process with standard ERP processes. The result is a To-Be process model (see Figure
2) which describes business process steps using natural language text. For example,
an item arrival process could include events such as: A vendor delivers goods from
different purchase orders.

Gather Business Requirements. After defining the To-Be process model consult-
ants and customer start to gather and document requirements following a predefined
Word-template. Consultants document upcoming requirements using the Functional
and Non-Functional Requirements Document (see Figure 2). An example requirement
descriptions supporting the item arrival process could be: The system should inform
the warehouse worker if the delivered quantity is higher than the ordered quantity.

Conduct Fit-Gap Analysis. After the workshop consultants conduct a Fit-Gap
Analysis. For each requirement consultants try to identify an available solution. If the
consultants are able to identify a software solution they document it as fit, otherwise it
is a gap. In a next step the consultants and the customer jointly investigate ways to
resolve the gaps. There are three ways to deal with gaps: (i) Adding a 3rd party solu-
tion; (ii) Changing the business process; (iii) Customizing the standard application to
fit the requirements. Fits and gap resolutions are documented in the Fit-Gap Work-
sheet (see Figure 2).

Derive Functional Design Documents. After the Fit-Gap Analysis consultants
create a Functional Design Document for Configuration which describes how selected
standard software services need to be configured to fulfill customer needs. Further-
more, developers and consultants create a Functional Design Document for Customi-
zation. This document describes the planned development work needed to provide
solutions for the gaps.

S3C: Using Service Discovery to Support Requirements Elicitation in the ERP Domain 21

Fig. 2. Information Flow from Analysis to Design Phase in Sure Step

Sure Step was not designed to support the development of service-oriented sys-
tems. It is a document-oriented process which separates requirements elicitation
workshops, investigation in gap resolutions and solution design. With a growing
number of services, it is getting harder for consultants to identify suitable services.
These circumstances lead to the following limitations of Sure Step in practice:

Services are not identified. Although existing services could provide a solution and
fulfill a customer’s request, a consultant might not be able to identify a suitable ser-
vice solution due to the high number of services available. As a result, new services
are developed instead of reusing existing services.

Inadequate services are selected. While the number of available services is in-
creasing, the functionality provided by existing services changes. Consultants there-
fore cannot keep an overview on all existing services and the provided functionality
of their current and depreciated versions. As a result, consultants select services they
are familiar with although other services would provide more accurate functionality.

Late service discovery. In a later design phase, developers might identify services
more accurate than those specified in the Fit-Gap Worksheet. This causes renegotia-
tion of customer requirements. However, in most cases it is too late to change the
planned solution as development has already started.

Inaccurate estimates. Time and cost estimations are based on the Fit-Gap Work-
sheet. Due to the inadequate selection of services, the Fit-Gap Worksheet may be
incorrect. This results in inaccurate time and cost estimates.

Insufficient information for customers. Consultants do not have a deep knowledge
of particular service functionality. Therefore, in Sure Step, consultants and customers
usually do not discuss the functionality provided by selected services. However, con-
sultants have found that such discussions provide an important input for customers;
they even help triggering new customer requirements.

Time consuming approach. After defining the To-Be business process and gather-
ing customers’ requirements within an initial workshop, consultants have to conduct a
Fit-Gap Analysis. As this task is very time consuming it is done after the workshop.
However, consultants need to approach customers again to agree on gap resolutions.

The discussed limitations delay the completion of projects. Furthermore, these
limitations lead to an unnecessary increase of costs to realize ERP systems.

22 M. Nöbauer et al.

3 Semantic Service Search and Composition (S3C)

In the Semantic Service Search & Composition (S3C) project, we are exploring
the challenges of introducing services in the ERP domain. We are focusing on SMEs
developing ERP systems by following the Microsoft Sure Step methodology.
The goal is to develop possible solutions to overcome identified problems and to
apply these solutions in practice. We want our research to supports consultants in
identifying requirements and relevant services to inform Fit-Gap Analysis within ERP
projects. We used action research [7] to conducting this work and aimed at meeting
the following research objectives:

RO 1: Identify the needs of consultants regarding requirements elicitation in ERP
projects based on Sure Step.

RO 2: Adapt and extend relevant service discovery approaches to support ERP
projects based on Sure Step.

RO 3: Evaluate the benefits and limitations of the developed tool-supported
approach.

The first research objective focuses on identifying the consultants’ needs in order
to overcome limitations of the existing approach. The second research objective in-
vestigates how to extend Sure Step. This task includes the identification of relevant
research whose results could inform a possible tool-supported solution for require-
ments elicitation in ERP projects based on Sure Step. The third research objective
focuses on investigating the usability and utility of the tool-supported approach. Our
aim is to investigate if the envisioned tool-supported approach does support the daily
work of consultants in ERP projects based on Sure Step.

3.1 Identifying the Needs of Business Consultants

In a first step we identified and analyzed the needs of consultants. We therefore inter-
viewed 4 employees at Terna1, an Austrian ERP partner following Sure Step. We
discussed the identified limitations of Sure Step and asked them about their needs
regarding a novel tool-supported approach which would overcome existing limita-
tions. The following paragraphs describe the consultants’ key requirements.

Integrated description of business processes and requirements. Sure Step uses
Word templates to specify business processes and requirements. This results in the
creation of several different documents and the distribution of information across
several documents. Handling documents is therefore time consuming and often results
in inconsistencies. The new tool-based approach should therefore provide an inte-
grated solution which allows the structured and integrated specification of business
process information and requirements.

Linking requirements and use cases. As discussed, Sure Step provides Word tem-
plates for documenting business processes and requirements. This means that there is
no support for linking a requirement to a particular use case – a feature that should be
supported by the new approach.

1 Terna is an Austrian ERP company owned by Allgeier Holding AG. They are Microsoft

Dynamics AX partner, Lawson M3 distributor and maintain AMS4U based on AS400.

S3C: Using Service Discovery to Support Requirements Elicitation in the ERP Domain 23

Identifying existing solutions. Sure Step does not support the automatic identifica-
tion of existing solutions. The new approach should be able to identify services based
on use cases and linked requirements. More specifically, a novel integrated approach
should propose a list of candidate services and provide service descriptions.

Narrow down service discovery results. In our discussions consultants empathized
that the time to discuss solutions with customers is limited and that they would need a
feature supporting them by highlighting the most promising solution(s). A novel
approach should highlight the fact that this service only has a low priority and that it
is unlikely that it can contribute to the envisioned solution.

Provide details on services of interest. Details of a service of interest need to be
immediately accessible for further discussion. The new approach should allow con-
sultants to access important information related to a selected service.

3.2 Identifying Research Informing S3C

An analysis of existing work shows that similarity analysis is a well-described issue in
ERP literature [8, 9]. However, we could not identify relevant work focusing on
service discovery mechanisms for similarity matching. Also in requirements research,
little has been reported on service discovery. Schmid et al. [10] discuss a require-
ments-led process enabling runtime service discovery but do not report on tool sup-
port. Elsewhere, Esmaeilsabzali et al. [11] present new models for requirements-based
service discovery that assume formal expression of system operations. Zachos et al.
[12] have researched new tools and techniques to form service queries from incom-
plete requirements specifications as part of the EU-funded SeCSE Integrated Project
[13]. We considered the work by Zachos et al. [14] to be most promising for extend-
ing Sure Step.

The SeCSE requirements process is depicted in Figure 3. Service queries are ex-
tracted from a service request constructed from a requirements specification and then
fired at service registries. The retrieved service descriptions enable consultants and
customers to select the most appropriate service(s). The main innovation is to expand
service queries to handle requirements expressed in natural language. As such, SeCSE
appears to be the first approach to integrate requirements and service discovery meth-
ods and tools. Therefore it was chosen to be the base for the S3C project.

Fig. 3. SeCSE’s Requirements Process

24 M. Nöbauer et al.

3.3 The S3C Approach

The S3C approach is based on Microsoft Sure Step and SeCSE to provide advanced
support for consultants. It extends Sure Step by integrating SeCSE’s service discovery
mechanisms. However, a main contribution of the S3C project are novel tools
which provide support for consultants (see Section 3.4). The S3C approach integrates
Business Process Analysis, Gathering Business Requirements and Fit-Gap Analysis
within the same workshop. Figure 4 shows the modified information flow with inte-
grated service discovery.

Conduct Business Process Analysis. As in Sure Step a detailed business process
analysis is conducted in a workshop. Consultants compare the customer’s current
business process with standard ERP processes and document results with the help of a
To-Be process model (see Figure 4).

Gather Business Requirements. In the same workshop consultants and customers
identify and discuss requirements on how the planned ERP system will support the
To-Be process. These requirements are linked to the business process and are speci-
fied in the Requirements Document (see Figure 4).

Identify and Discuss Relevant Solutions (Fits). The To-Be business process de-
scription and gathered requirements are used as input to identify existing services
which potentially can fulfill the customers’ needs. For an item arrival use case the
system will suggest a vendor service, described as “Enables external systems to read,
create, update and delete vendors.” Consultants and customers walk through and
discuss the listed solutions. This can trigger new requirements which can then cause
modifications in the list of relevant solutions. This iterative approach strengthens the
interaction between consultants and customers and allows the customer to participate
in the solution design. Selected solutions are documented as fits in the Fit-Gap Work-
sheet (see Figure 4).

Discuss Gap Resolutions. In a next step the consultants and the customer investi-
gate gap resolutions which are documented in the Fit-Gap Worksheet.

Derive Functional Design Documents. As in Sure Step the Fit-Gap Worksheet is
used to create the Functional Design Document for Configuration and Functional
Design Document for Customization (see Figure 4).

Fig. 4. Information Flow in Sure Step with Service Discovery (S3C)

S3C: Using Service Discovery to Support Requirements Elicitation in the ERP Domain 25

3.4 The S3C Tool Environment

We developed adequate tool support based on the conceptual solution – as outlined in
the previous section. The S3C Tool Environment consists of a variety of applications,
services, prototypes and databases. The main technical contribution are novel S3C tool
which were built on top of selected SeCSE components. Figure 5 shows the S3C Tool
Environment including newly developed tools as well as original SeCSE components.

Fig. 5. S3C Tool Environment

The S3C Solution Explorer is an application for onsite consultants; it enables them
to document the To-Be business model in the form of use cases and to link and
document requirements. This information can be used as input to perform service
discovery requests. To do so, the use case description and the linked requirements are
compiled into an XML query document. The query document is used as input for the
EDDiE service discovery engine. The query result is a XML document including
candidate services, in order of relevance (calculated by the EDDiE service discovery
engine). With this information, the S3C Solution Explorer presents a ranked list of
relevant services also highlighting the matching probability for each service. The
descriptions of these candidate services provide input for further discussions with
customers and support solution selection. Figure 6 shows the S3C Solution Explorer
representing the Item Arrival Use Case.

The S3C Management Studio is used by system administrations to access the ser-
vice registry to keep the stored information up to date. Managing the service registry
includes providing and updating information about services, such as the service pro-
vider, a description and other meta-data. Accurate information about services is vital
for service discovery requests as it enables the system to identify accurate candidate
services.

The S3C Proxy Layer was introduced to overcome the heterogonous nature of the
SeCSE platform. Due to the involvement of different research partners in SeCSE the
provided solution is a mix of different platforms and technologies. The S3C Proxy
Layer is an abstraction layer that provides an interface for performing service discov-
ery and manipulating services in the service registry. The S3C Proxy is built using
Microsoft .NET technology and translates either in Java or XML to the SeCSE com-
ponents. All S³C tools are built upon the S3C Proxy Layer and have no contact with
the underlying SeCSE components.

26 M. Nöbauer et al.

Fig. 6. The S³C Solution Explorer Application

The EDDiE Service Discovery Engine uses the information gathered with the S3C
Solution Explorer as input to retrieve services. EDDiE implements advanced term
disambiguation and query expansion algorithms to add different terms with similar
meanings to the query using the WordNet online lexicon [15, 16], thus increasing the
number of web services retrieved from the registries. Furthermore, EDDiE provides
capabilities to calculate the relevance of a discovered service [14].

The SeCSE Management Service provides an application interface to the SeCSE
Registry via a web service. It is used to manage providers, services and meta-data
such as description, quality of service, commercial information and signatures.

The SeCSE Service Registry is a XML database that holds all the information about
services and their descriptions. While SeCSE tools used a federated online database,
the S3C solution is based on a locally installed database.

4 Initial Evaluation of the S3C Solution Explorer

Our evaluation strategy focused on investigating the utility of the S3C Tool Environ-
ment. We conducted two studies at different ERP partners who both follow Sure Step.
We first performed an initial utility and usability study at Terna to figure out whether
the S3C Solution Explorer application fulfills the key requirements of consultants. The
second evaluation was conducted at InsideAx2 to investigate the utility of the S3C
Solution Explorer in more detail. This study focused on comparing the time needed to
identify relevant services with the help of the S3C Solution Explorer to Sure Step and
investigated the correctness and completeness of the solution.

2 InsideAx is an Austrian ERP company focusing on Microsoft Dynamics AX Solutions.

S3C: Using Service Discovery to Support Requirements Elicitation in the ERP Domain 27

4.1 S3C Solution Explorer Initial Utility and Usability Evaluation at Terna

Three consultants participated in the initial utility evaluation of the S3C Solution Ex-
plorer at Terna. Each has a master degree in business informatics and more than three
years of experience in ERP system customization. None of the consultants is an
author of this paper, and none had had contact with the S3C Solution Explorer prior to
the evaluation. However, two of the consultants also participated in the first interview
where requirements for S3C approach were identified (see Section 3.1).

Each evaluation was structured in 3 parts – briefing, evaluation and debriefing.
During the briefing each participant was informed of the study’s purpose and the task
they were intended to perform. The briefing also included a short introduction to the
S3C Solution Explorer. For the study we prepared a typical ERP use case describing
how a warehouse worker handles the receipt of goods – the item arrival use case. The
example use case also included four requirements which were gathered from custom-
ers in previous projects (e.g. The system should provide a unique identification num-
ber for each vendor). During the evaluation each consultant used the S3C Solution
Explorer to enter the use case and the related requirements. Furthermore, they were
asked to use the Solution Explorer to identify relevant services for that use case. One
of the authors observed each consultant who spoke loudly throughout the process. The
utility of the S3C Solution Explorer concerning the previously discovered consultants’
requirements (see Section 3.1) was discussed during the debriefing. The debriefing
was then used to discuss usability problems of the S3C Solution Explorer. All 3 con-
sultants completed the evaluation and debriefing, which lasted on average 20 and 25
minutes respectively.

Observations and qualitative feedback were encouraging but they also identified
some limitations. The study revealed that the S3C Solution Explorer does fulfill most
of the consultants’ requirements (see Section 3.1):

• The consultants were able to document use cases and requirements.
• The consultants said that the tool provides a clear structure in linking use cases

and requirements.
• The consultants were able to use the tool to run service queries.
• The consultants said that the tool suggested relevant service solutions.
• The consultants said that a ranked list of relevant services and the provided

matching probabilities supported them in narrowing down the discovered results.
• The consultants said that the current service description does provide key infor-

mation which (in most cases) allows them to decide whether a service is relevant.
However, they requested more detailed service descriptions to improve the deci-
sion process. For example, consultants requested information about the usage of
the service in previous projects.

In the debriefing meetings, the consultants also highlighted the fact that they would be
willing to use a tool such as the S3C Solution Explorer for their daily work with cus-
tomers. However, the interview also revealed several usability issues. They pointed
out that the first prototype does present too much information at a time and that it is
therefore hard to keep an overview. They argued that service discovery queries take
too much time (on the average 3 seconds) and that they would prefer quicker re-
sponses in order to strengthen seamless discussions with customers. They requested

28 M. Nöbauer et al.

that the list of relevant services should be automatically updated in time when enter-
ing new requirements.

However, results from the debriefing sessions indicated that most usability defi-
ciencies were not critical to the main tasks and that the current S3C Solution Explorer
prototype does fulfill the consultants’ key requirements. With these results, we
decided to use the S3C Solution Explorer without further development in more natu-
ralistic studies in order to explore its utility in more detail.

4.2 S3C Solution Explorer Utility Evaluation at InsideAx

This study investigated the effect of the S3C Solution Explorer on the discovery of
relevant services. We explored whether consultants need less time to identify relevant
services with the help of the S3C Solution Explorer compared to non-tool supported
service identification. Furthermore, we investigated the correctness and completeness
of these solutions. Three consultants from InsideAx participated in this S3C Solution
Explorer evaluation. One has a master degree in business informatics and more than
three years of experience in ERP system customization (Consultant 1). The second
consultant had more than three years of experience in ERP system customization
while the 3rd consultant only had one year experience. None of the consultants is an
author of this paper, and none had had contact with the S3C Solution Explorer prior to
the evaluation.

As for the first study, each evaluation was structured in briefing, evaluation and
debriefing. For the evaluation we prepared an application example which included
three use cases and typical use case requirements derived from previous projects.
For each of the use case we reviewed existing implementations and ERP system docu-
mentations and defined a list of relevant services out of more than 70 available ser-
vices. This standard solution was used as a basis for evaluating consultants’ solutions.
The application example consisted of following use cases:

• Item Arrival describing the handling of delivered goods from vendors. Five rele-
vant services were identified as standard solution for this use case.

• Transfer production goods to warehouse representing events relevant for inven-
tory management. Again, five relevant services were identified as standard
solution for this use case.

• Buy Item in a Web Shop discussing sale related events. Six services were consid-
ered to be the standard solution for this use case.

In the briefing session, the consultants were told about the purpose of the study. We
further discussed the application example with the consultants. Each of them was
asked to estimate the time he would need for the identification of relevant services
without tool support (see Table 1). During the evaluation each consultant used the
S3C Solution Explorer to identify relevant services for the three use cases and to doc-
ument the results. The debriefing session was used to discuss their solution and to
identify utility issues regarding the S3C Solution Explorer. We compared particularly
the time required for the identification of relevant services to the estimates. Further-
more, the developed solutions were compared to the standard solution in terms of
correctness and completeness (see Figure 7).

S3C: Using Service Discovery to Support Requirements Elicitation in the ERP Domain 29

Fig. 7. Correctness and Completeness metrics

The results of the evaluation are shown in Table 1. The consultants’ estimates for
performing the service identification without tool support ranged from 2:30 hours to
4:20 hours. The experiment revealed that using the S³C Solution Explorer consultants
needed between 45 minutes and 1:20 hours to actually conduct the task. Consultants
were able to indentify correct services − apart from one exception; all identified
services were included in the standard solution. Services completeness ranged from
50% to 80%. On the average consultants identified 62% of the relevant services.

Table 1. InsideAx Evaluation Results

Correctness Completeness

T
im

e
E

st
im

at
io

n

(n
o

to
ol

 s
up

po
rt

)

A
ct

ua
l T

im
e

(w
it

h
to

ol
 s

up
po

rt
)

It
em

 A
rr

iv
al

U

se
 C

as
e

In
ve

nt
 T

ra
ns

fe
r

U
se

 C
as

e

W
eb

 s
ho

p
U

se
 C

as
e

It
em

 A
rr

iv
al

U

se
 C

as
e

In
ve

nt
 T

ra
ns

fe
r

U
se

 C
as

e

W
eb

 s
ho

p
U

se
 C

as
e

Consultant 1 02:30 01:05 100% 100% 100% 60% 80% 50%

Consultant 2 04:00 00:45 100% 100% 100% 60% 60% 66%

Consultant 3 04:20 01:20 75% 100% 100% 60% 60% 66%

The results reveal that the S3C Solution Explorer enables consultants to discover

relevant services in significantly less time than their estimates for service identifica-
tion without tool support. In debriefing meetings consultants said that service identifi-
cation with the help of S3C Solution Explorer was faster because services were
presented using a ranked list with matching probabilities.

The two experienced consultants had a 100% correctness rate. In the debriefing
meeting they argued that having service descriptions and requirements presented next
to each other did support their matching process and did speed up the actual decision.
However, they also mentioned that their experience did support them in taking deci-
sions. The two experienced consultants argued that their knowledge about ERP sys-
tems did in particular support them in taking the right decision when the provided
service description was limited (e.g. the Inventory Transaction Service was described
as “Describes the inventory transactions document”). The less experienced consultant
(Consultant 3) argued that he needed more time to make decisions. He said that in
most of the cases the provided service description did allow him to make a correct
decision. However, he also mentioned that more information on the services would
have been helpful and would have made him more confident in his decisions.

30 M. Nöbauer et al.

The consultants did indentify key services relevant for the use case. However, oth-
er relevant services were not identified in this first iteration. Discussions with
the consultants revealed that they did focus on correctness rather than completeness.
They explained that they only selected services where they felt certain that they were
relevant. They also explained that they did consider other services to be relevant.
However, in most cases they preferred not to select them because of doubts caused by
limited descriptions.

As for the initial evaluation all consultants’ said that a tool such as the S3C Solu-
tion Explorer can support their daily work. However, they also mentioned utility and
usability issues.

4.3 Threats to Validity

The validity of the reported results was subject to the following possible threats. The
limited number of experiments and the limited number of participants within the
experiments does not allow drawing any statistically relevant conclusions. No com-
parative evaluation has been undertaken. Because of time and resource constraints, we
decided not to have a control group to conduct the experiment without tool support.
Although time estimations made by consultants do reflect experiences from practice,
not having a control group means that these results need to be interpreted with care.
This issue also applies to the presented results on service selection correctness and
completeness. However, the uniqueness of the presented S3C approach and the pau-
city of data on service discovery tools within the ERP domain means that the results
presented provide a valuable input for further evaluations.

5 Lessons Learned

In the following we do present lessons learned that highlight benefits and weaknesses
and discuss interesting facts regarding the conducted research:

Lesson 1: Adequate service descriptions are essential to decide about the relevance
of a service. Our studies revealed that, in some cases, the provided service descrip-
tions are too short to make a clear decision. In such cases, it was easier for experi-
enced analysts compared with inexperienced to make a decision. We do see great
potential in providing more detailed service descriptions. This might have positive
effects on completeness and might further enable analysts to make decisions faster.

Lesson 2: Using the S3C solution did allow substantial time savings, compared to
estimates for non-tool supported Sure Step. One of the consultants was able to per-
form the analysis in about 20% of the estimated time. Even the analyst who had the
lowest estimate was able to finish the task in less than half of the estimated time.

Lesson 3: Discussions with ERP experts of the two companies revealed that time
estimates are normally of high quality. However, there are no records showing the
correctness and completeness regarding the output of the analysis phase. The lack
of such a baseline did not allow a more detailed comparison of our study results.
However, ERP domain experts did consider the quality of the output of the second
evaluation as good.

S3C: Using Service Discovery to Support Requirements Elicitation in the ERP Domain 31

Lesson 4: Companies argue that the output of the analysis strongly depends on the
experience of the consultant. Our experiment indicates that the S3C Solution Explorer
particularly supports inexperienced consultants to come up with good quality results
(which were similar to results from experienced consultants).

Lesson 5: Current usability and utility issues still limit the usage of the S3C Solu-
tion Explorer in real-world projects. However, the presented studies revealed its
potential. Consultants were able to work with the S3C Solution Explorer without train-
ing and all confirmed that they want to use an improved version of the S3C Solution
Explorer in customer workshops.

6 Conclusions and Further Work

In this paper, we present the tool-supported S3C approach which was built to over-
come limitations of Microsoft Dynamics Sure Step, an existing approach used for
requirements elicitation and Fit-Gap Analysis within ERP projects. In a first step, we
discussed the limitations of Sure Step which result from the increasing use of software
services in the ERP domain. The high number of services hinders consultants in dis-
covering and selecting appropriate service-based solutions. As a result, projects take
longer which leads to increased costs.

To figure out how to overcome these limitations (RO 1), we asked consultants in
an ERP company about their needs on a tool-supported approach which enables them
to identify relevant service solutions. Considering the identified needs and we identi-
fied SeCSE as a base for our research and realized the tool-supported S3C approach
(RO 2). It is based on Sure Step but provides sophisticated service discovery mecha-
nisms and novel tool support for consultants. The S3C Solution Explorer enables
consultants to identify relevant solutions while they discuss upcoming requirements
with customers. The evaluation of the benefits and limitations of the S3C solution (RO
3) suggests that the tool-supported S³C approach fulfils the consultants’ needs and has
the potential to support them in their daily work.

The development and evaluation of the S3C solution is the main contribution of our
work. Although our research is focusing on ERP projects based on Sure Step, we
assume that companies in the ERP domain that follow other approaches face similar
challenges. We envision that the tool-supported S3C approach will stimulate further
research in the field and support other ERP companies in overcoming the issues raised
by introducing services in the ERP domain.

Our future research will focus on case studies to investigate the benefits and limita-
tions of the S3C approach in real-world projects. We plan to evaluate whether the
usage of the S3C Solution Explorer leads to more and more complete requirements.
Informed by the results of such studies, we plan to provide an improved version of the
S3C tools and more guidance and support for consultants on how to apply the S3C
approach.

32 M. Nöbauer et al.

Acknowledgements

The research conducted was in part funded by the Austrian Research Promotion
Agency (FFG, Project Nr.: 821614).

References

1. Daneva, M., Wieringa, R.: Requirements Engineering for Cross-organizational ERP Im-
plementation: Undocumented Assumptions and Potential Mismatches (2005)

2. Woods, J.: Business Managers Need to Care About SOA in ERP. Gartner Research (2008)
3. Microsoft Corporation: Enabling "Real World SOA" through the Microsoft Platform

(2006)
4. Microsoft Corporation: Microsoft Dynamics AX 2009: Designed to Enhance Productivity

(2010), http://download.microsoft.com/download/E/2/2/E228B46E-
F0E2-4C38-8F02-A21B7B544B39/AX_User_Productivitywp.xps

5. Microsoft Corporation: Microsoft Dynamics Sure Step Methodology, Platform 2.6.4.0
(2009)

6. Microsoft Corporation: Standard Axd Documents,
http://msdn.microsoft.com/en-us/library/aa859008.aspx

7. Davison, R.M., Martinsons, M.G., Kock, N.: Principles of canonical action research.
Information Systems Journal (2004)

8. Rolland, C., Prakash, N.: Bridging the gap between organizational needs and ERP func-
tionality. Requirements Eng. 41, 180–193 (2000)

9. Salinesi, C., Bouzid, M., Elfassy, E.: An Experience of Reuse Based Requirements Engi-
neering in ERP Implementation Projects. In: 11th IEEE International Enterprise Distrib-
uted Object Computing Conference

10. Schmid, K., Eisenbarth, M., Grund, M.: From Requirements Engineering to Knowledge
Engineering: Challenges in Adaptive Systems. In: Proceedings SOCCER Workshop, RE
2005 Conference, Paris (2005)

11. Esmaeilsabzali, S., Day, N., Mavadatt, F.: Specifying Search Queries for Web Service
Discovery. In: Proceedings SOCCER (Service-Oriented Computing: Consequences for
Engineering Requirements) Workshop, RE 2005 Conference, Paris (2005)

12. Zachos, K., Maiden, N.A.M., Zhu, X., Jones, S.V.: Discovering Web Services to Specify
More Complete System Requirements. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.)
CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 142–157. Springer, Heidelberg (2007)

13. SeCSE Home (2010), http://www.secse-project.eu/
14. Zachos, K.: Using Discovered Services to Create Requirements for Service-centric

System, Centre of Human-Computer Interaction Design, City University London (2008)
15. WordNet (2010), http://wordnet.princeton.edu/
16. Voorhees, E.: Using wordnet to disarnbiguate word senses for text retrieval. In: Proceed-

ings of the 16th ACM-SIGIR Conference, pp. 171–180 (1993)

Requirements Engineering for Self-Adaptive Systems:
Core Ontology and Problem Statement

Nauman A. Qureshi1, Ivan J. Jureta2, and Anna Perini1

1 Fondazione Bruno Kessler - IRST, Software Engineering Research Group
Via Sommarive, 18, 38050 Trento, Italy

{qureshi,perini}@fbk.eu
2 FNRS & Louvain School of Management, University of Namur, Belgium

ivan.jureta@fundp.ac.be

Abstract. The vision for self-adaptive systems (SAS) is that they should continu-
ously adapt their behavior at runtime in response to changing user’s requirements,
operating contexts, and resource availability. Realizing this vision requires that
we understand precisely how the various steps in the engineering of SAS depart
from the established body of knowledge in information systems engineering. We
focus in this paper on the requirements engineering for SAS. We argue that SAS
need to have an internal representation of the requirements problem that they are
solving for their users. We formally define a minimal set of concepts and rela-
tions needed to formulate the requirements problem, its solutions, the changes
in its formulation that arise from changes in the operating context, requirements,
and resource availability. We thereby precisely define the runtime requirements
adaptation problem that a SAS should be engineered to solve.

Keywords: Requirements Engineering, Runtime, Adaptation Problem,
Self-Adaptive Systems.

1 Introduction

Contemporary software systems, such as service-based mobile applications that are in-
creasingly immersed in users’ everyday life, must continuously adapt their behavior to
changes in users’ requirements, operating conditions, and resource availability [5]. For
instance, a music download application may need to behave differently when the user’s
device is connected through the mobile phone to the Internet, than when it is connected
via Wi-Fi, when the device is plugged to a docking station rather than on battery power,
when the user’s preferred music delivery service is not available, and another needs to
be selected, and so on. Such software has to cope with such problems as incomplete
specifications of its operating conditions, unanticipated events, variable quality of ser-
vice from third-party services.

The vision for self-adaptive systems (SAS) is that they should continuously adapt
their behavior at runtime in response to changing user’s requirements, operating con-
texts, and resource availability. Realizing this vision requires that we understand pre-
cisely how the various steps in the engineering of SAS depart from the established
body of knowledge in information systems engineering. Research agendas for SAS

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 33–47, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

34 N.A. Qureshi, I.J. Jureta, and A. Perini

have been proposed in various communities. For instance, the Software Engineering for
Self-Adaptive Systems (SEAMS) community focuses on issues pertaining to system
architectures1, while the Requirements Engineering community has proposed methods
for analyzing requirements for self-adaptivity and suggested that requirements should
become artifacts used, processed, and changed at runtime [2,11,18,21]. This led to pro-
posals for various methods to engineer requirements for SAS. However, there has been
limited consensus among the research communities on two issues: (i) what main con-
cepts and relations are needed to define the requirements for SAS, and (ii) how does
the requirements problem (i.e., the problem to solve during requirements engineering)
differ for SAS, compared to systems that are not self-adaptive.

Taking the perspective of requirements engineering (RE) for SAS, we envision SAS
to have an internal representation of their user’s requirements, and of their operational
environment, by being equipped with automated reasoning capabilities for monitoring,
analyzing changes that occur dynamically at runtime and finding solutions (i.e. set of
tasks that can satisfy the requirements using an available services or otherwise) to meet
them, thus ensuring the consistency with the intended system’s requirements.

The aim of this paper is to identify concepts and relations, which are necessary to
deal with while eliciting and analyzing requirements for SAS and are important to take
adaptation decision at runtime by the system itself. This leads us to formulate the run-
time requirements adaptation problem that a SAS should be engineered to solve.

Section 2 presents the conceptual tools used in the rest of the paper. We introduce
the runtime requirements adaptation problem in Section 3. In Section 4, we present
how adaptation problem is connected to RE by extending the core ontology for RE and
proposing concepts and relationships needed to determine the runtime requirements
adaptation problem using examples related to travel planning software. Related work
and discussion are presented in Section 5 and 6. The paper ends with conclusions and a
summary of directions for future work.

2 Preliminaries

2.1 General Requirements Problem

The overall aim of RE is to identify the purpose of the system-to-be and to describe as
precisely and completely as possible the properties and behaviors that the system-to-be
should exhibit in order to satisfy that purpose. This is also a rough statement of the
requirements problem that should be solved when engineering requirements.

Zave & Jackson [24] formalized the requirements problem as finding a specification
(S) in order to satisfy requirements (R) and not violate domain assumptions (K), to
ensure that K, S � R. This formulation highlights the importance of the specification to
be consistent with domain assumptions, and that requirements should be derivable from
K and S. It was subsequently argued that there is more to the requirements problem
than this formulation states [7]. Namely, a new core ontology for requirements (CORE)
was suggested along with a new formulation of the requirements problem to recognize
that in addition to goals and tasks, different stakeholders have different preferences

1 http://www.hpi.uni-potsdam.de/giese/public/selfadapt/front-page

Requirements Engineering for SAS: Core Ontology and Problem Statement 35

over requirements, that they are interested in choosing among candidate solutions to
the requirements problem, that potentially many candidate solutions exist (as in the
case of service-/agent-oriented systems, where different services/agents may compete
in offering the same functions), and that requirements are not fixed, but change with
new information from the stakeholders or the operational environment. In absence of
preferences, it is (i) not clear how candidate solutions to the requirements problem can
be compared, (ii) what criteria (should) serve for comparison, and (iii) how these criteria
are represented in requirements models.

Techne [8], an abstract requirements modeling language was recently introduced as
a starting point for the development of new requirements modeling languages that can
be used to represent information and perform reasoning needed to solve the require-
ments problem. Techne is abstract in that it assumes no particular visual syntax (e.g.,
diagrammatic notation such as present in Tropos [14]), and it includes only the min-
imum concepts and relations needed to formalize the requirements problem and the
properties of its solutions. Techne is a convenient formalism for the formulation of the
runtime requirements adaptation problem, as it is adapted to the concepts, such as goal,
task, domain assumption, and relations (e.g. Consequence, Preference, Is-mandatory, Is-
optional) that remain relevant for the RE of SAS. To keep the discussion simple in this
paper, we assume that requirements and other information is available in propositional
form, so that every proposition is nothing but a natural language sentence. We overview
below the requirements problem formulation using parts of Techne that we need in the
rest of the paper. In [15], we provide definitions of the consequence relation |�τ used in
the definition of the candidate solution below.

Definition 1. Requirements problem: Given the elicited or otherwise acquired: do-
main assumptions (in the set K),tasks in T,goals in G, quality constraints in Q, softgoals
in S, and preference, is-mandatory and is-optional relations in A, find all candidate so-
lutions to the requirements problem and compare them using preference and is-optional
relations from A to identify the most desirable candidate solution.

Definition 2. Candidate solution: A set of tasks T∗ and a set of domain assumptions
K∗ are a candidate solution to the requirements problem if and only if:

1. K∗ and T∗ are not inconsistent,
2. K∗, T∗ |�τ G∗, Q∗, where G∗ ⊆ G and Q∗ ⊆ Q,
3. G∗ and Q∗ include, respectively, all mandatory goals and quality constraints, and
4. all mandatory softgoals are approximated by the consequences of K∗ ∪ T∗, so that

K∗, T∗ |�τ SM, where SM is the set of mandatory softgoals.

We start below from the CORE ontology and problem formulation in Techne, and add
concepts specific to the RE for SAS, which leads us to an ontology for requirements
in SAS and the formulation of the requirements problem in context for SAS. We sub-
sequently show how to formulate the runtime requirements adaptation problem as a
dynamic RE problem of changing (e.g. switching, re-configuring, optimizing) the SAS
from one requirements problem to another requirements problem, whereby the chang-
ing is due to change in requirements, context conditions, and/or resource availability.

36 N.A. Qureshi, I.J. Jureta, and A. Perini

2.2 Adaptive Requirements and Continuous Adaptive RE (CARE) Framework

To support the analysis at design-time, we proposed adaptive (functional or non-
functional) requirements. They have some degree of flexibility in their achievement
conditions, which in turn requires the monitoring of the specification, while taking into
account the changes in the operating context, evaluation criteria and alternative software
behaviors [16].

More recently, we have proposed a Continuous Adaptive Requirements Engineering
(CARE) framework [17,18,19] that views adaptive requirements as runtime artifact that
reflect the system’s monitoring and adaptation capabilities. RE is performed at runtime
by updating initial requirements with new ones, or by removing requirements.

We proposed a classification of adaptation types in the CARE framework, that can
be performed by the system itself or by involving the user (both the end-user or the de-
signer) [19]. Mainly, type 1 and 2 adaptations are performed by the system itself, type
1 corresponds to system exploiting existing available solutions when needed, where
type 2 is related to monitored information i.e. exploiting it to evaluate changes and se-
lect alternative solution. Type 3 and 4 adaptations involves users. In type 3 end-users
may express new requirements or change existing ones at any given time, by giving
input information correspondingly system analyzes it by finding solutions (adapts) for
new/refined needs of the end-users. In type 4, requirements for which there are no possi-
ble solutions available analyst/designers are involved for offline evolution of the system.

3 Runtime Requirements Adaptation Problem

Various definitions of SAS have been offered in the literature. We remain aligned with
the usual conception, namely, that a SAS is a software system that can alter its behavior
in response to the changes that occur dynamically in its operating environment. The
operating environment can include anything that is observable by the software itself
including operational setting in a context, end-user’s input, profile and resources.

SAS must be “aware” at runtime of the changes in requirements, its operating con-
text, and in the availability of resources. SAS at runtime need the ability to sense
changes. We interpret this as a sort of RE that we call “RE@runtime”, where SAS plays
– to the feasible extent – the role of an analyst. It has a representation of requirements, of
the conditions in its operating contexts (acquired through sensors, for instance), and of
the resources it uses. It can add, remove, or otherwise change these, depending on the
changes detected through interfaces with the users, environment, and resources. New
information thereby acquired can affect the “requirements problem” leading the SAS
to query the user for new requirements, or otherwise adapt following the adaptation
types [19]. E.g., (a) select a predefined available behavior or look for an alternative
behavior the SAS has been designed and implemented for, by exercising its internal
monitor-eval-adapt loop (i.e., adaptation types 1 and 2); (b) compose a new solution by
exploiting knowledge on available services or explicitly acquired through user’s input
or change in context (i.e., adaptation type 3); (c) if no solution can be found for the new
information, SAS must inform the user for further instructions (adaptation type 4).

Requirements Engineering for SAS: Core Ontology and Problem Statement 37

We see runtime adaptation as a dynamic RE problem, where changes in requirements,
context, and resources lead to a new requirements problem, and this in turn requires the
resolution of that new problem. The dynamic aspect is that move from one requirements
problem formulation to another due to the changes that the SAS can detect. The problem
of reformulating the requirements problem when changes occur, and then solving the
changed problem is what we call the Runtime requirements adaptation problem. To
resolve this problem, we argue that it is necessary to know what kinds of information
and which relations are crucial for the system to capture. We therefore make explicit the
dynamic parts in the requirements problem formulation based on the CORE ontology.

4 RE for SAS and Its Core Ontology

Building upon the above considerations, we argue that concepts such as user’s context
and resources must be considered as first class citizens on top of the existing CORE
ontology to engineer requirements for SAS. We add two new concepts, Context and
Resource on top of the CORE ontology to accommodate the changes that might occur
at runtime, which not only demands adaptation (i.e. dynamically changing from one
requirements problem to another) but also requires an update to the specification (i.e.
refinement of requirements).

Influence

Relegate

Communicated
information

Context (c)

Goal

Task (t)

Domain assumption (k)

Evaluation

Depend-on

Comparative evaluation
(“Preference” in Techne)Individual evaluation

Is-optional relation
(Techne)

Is-mandatory
relation (Techne)

Is-a

Is-a

Resource (r)

Refer-to

Quality constraint (q)

Softgoal (s)

Functional goal (g)

Is-a

Is-a

Fig. 1. Revised ontology with new concepts (Context and Resource) and relations (Relegation
and Influence) related to the concepts of the CORE ontology for RE (for details, see [7])

The revised ontology of the concepts is proposed taking into account the concepts
proposed in Techne [8] to support the definition of runtime requirements adaptation
problem. In Fig. 1, concepts (Context and Resource) and relations (Relegation and
Influence) are presented, relating them to the concepts of the CORE ontology. Below,
we start by introducing the concept of a requirements database.

38 N.A. Qureshi, I.J. Jureta, and A. Perini

Definition 3. Requirements database: A requirements database, denoted Δ is the set
of all information elicited or otherwise acquired during the RE of a system-to-be.

Remark 1. Since Δ should include all information elicited or otherwise acquired in
RE, it should include all instances of domain assumptions (i.e. invariants in the appli-
cation domain), goals, softgoals, quality constraints, and tasks that we elicited, found
through refinement or otherwise identified during RE. One can view Δ as a repository
of information that is usually found in what is informally referred to as a “require-
ments model”. The notation used in the definition of the requirements problem, note
that Δ = K ∪ T ∪ G ∪ Q ∪ S. �

Remark 2. Below, we will use the term requirement to abbreviate “member of the re-
quirements database Δ”. I.e., we will call every member of Δ a requirement. �

To get to the definition of the runtime requirements adaptation problem, we start intro-
ducing the Context concept. In [15], we discussed how this definition relates to existing
conceptions and use of Context in the AI and RE literatures (e.g., [12,6,20,1]).

Definition 4. Context: An instance C of the Context concept is a set of information that
is presupposed by the stakeholders to hold when they communicate particular require-
ments. We say that every requirement depends on one or more contexts to say that the
requirement would not be retracted by the stakeholders in every one of these contexts.

Firstly, we need a language to write this information that is presupposed, and is thereby
in the set of information that we call a particular context. We develop that language be-
low. Secondly, the dependence of a requirement on a context means that every require-
ment is specific to one or more contexts, and thus, requirements need to be annotated by
contexts, which begs additional questions on how the engineer comes to determine con-
texts. At this point, we revise the Techne language to allow information that is included
in contexts. This results in adding one more sort.

Definition 5. Techne for SAS: The language LSAS is a finite set of expressions, in
which every expression φ ∈ LSAS satisfies the following BNF specification2:

x ::= k(p) | g(p) | q(p) | s(p) | t(p) (4.1)

q ::= c(p) (4.2)

w ::= x | q (4.3)

y ::=
n∧

i=1

wi → w |
n∧

i=1

wi → ⊥ (4.4)

φ ::= w | k(y) | c(y) (4.5)

Remark 3. We used (indexed/primed p, q, r) as an arbitrary atomic statement, every
φ an arbitrary complex statement, and every x an arbitrary label to represent Techne
labeled propositions i.e. domain assumption (k(p)), a goal (g(p)), etc., to distinguish
from these basic labeled propositions the context propositions (i.e., propositions about

2 In BNF: “::=” reads “defines”; “|” reads “or”.

Requirements Engineering for SAS: Core Ontology and Problem Statement 39

context), c(p) is added separately in the BNF specification, via q, and every w can either
be x or q. Every y represents a complex statement as a formula with conjunction and
implication such that y can be either w or ⊥, where w is some requirement in a context
propositions and ⊥ refers to logical inconsistency. We can then rewrite φ as a complex
statement consists of either w or k(y) or c(y). �

Definition 6. Consequence relation of Techne in context: Let Π ⊆ LSAS, φ ∈ LSAS,
and z ∈ {φ,⊥}, then:

1. Π |�cτ φ if φ ∈ Π , or
2. Π |�cτ z if ∀1 ≤ i ≤ n, Π |�cτ φi and k(

∧n
i=1 φi → z) ∈ Π .

The consequence relation |�cτ is sound w.r.t. standard entailment in propositional logic.
It deduces only positive statement by being paraconsistent, thus all admissible candi-
date solutions are found via paraconsistent and non-monotonic reasoning. Reasoning
is paraconsistent because an inconsistent Δ or C should not allow us to conclude the
satisfaction of all requirements therein; it is non-monotonic in that prior conclusions
drawn from a Δ or a C may be retracted after new requirements are introduced.

We also need a function that tells us which contexts a requirement applies to.

Definition 7. Contextualization function: Let C be the set of all contexts. C : ℘(LSAS)
−→ ℘(C) (where ℘ returns the powerset) is called the contextualization function that
for a given set of formulas returns the set of contexts to which these formulas apply to.
By “apply to”, we mean that C ∈ C(φ) iff the following conditions are satisfied:

1. C, φ
|�τ ⊥, i.e., φ is not inconsistent with context C,
2. C is such that ∃X ⊆ Δ such that C, X |�τ φ, i.e., the context C together with some

requirements X from Δ lets us deduce φ.

Several remarks are in order. Firstly, with LSAS, we now have a new sort for expressions
that are members of a set that defines a context. Recall that we defined an instance C of
Context as a set of information, so that now LSAS tells us that one member of that set can
either be a proposition p, denoted c(p), or can be a formula with implication, denoted
c(y) in the BNF specification. E.g., if the engineer assumes that the stakeholders wants
that her goal g(p) for “arrive at destination” be satisfied both in the context C1 in which
the context proposition “c(q): flight is on time” holds (i.e., c(q) ∈ C1), and in the
context C2 in which the context proposition “c(r): flight is delayed but not more than
5 hours” holds (i.e., c(r) ∈ C2), then C1 ∈ C(g(p)) and C1 ∈ C(g(p)).

Secondly, observe that the BNF specification lets us write formulas in which we com-
bine context propositions and requirements, e.g.: k(p) ∧ c(q) → ⊥, which the require-
ments engineer can use to state that the domain assumption k(p) that was communicated
by the stakeholder does not hold in contexts in which the context proposition c(q) holds.

Since we can combine context formulas and requirements, we can state very useful
relations, such as that some requirements conflict with some contexts, by saying that
these requirements are inconsistent with some of the context formulas in these contexts.
As an aside, rules that connect requirements and context formulas need not be specified
in a definite way by the requirements engineer. It is also possible to learn them by
asking feedback to the user i.e. a SAS at runtime can perform this task. For example,

40 N.A. Qureshi, I.J. Jureta, and A. Perini

if the system asks the user a question of the form: Your flight is delayed by 5 hours or
more. Do you wish to rebook a flight for the next day? This question can be reformulated
as a question on which of these two formulas to add to the current context of the user
(i.e. the context in which we asked the user that question):

c(c(p) ∧ g(q1) → ⊥) (4.6)

c(c(p) ∧ g(q2) → ⊥) (4.7)

where c(p) is for “flight delayed by more than 5 hours”, g(q1) is for the goal “keep the
booked flight”, and g(q2) is for the goal “rebook the same flight for the next day”. If the
user answers “yes”, then add formula c(c(p) ∧ g(q1)) → ⊥ to the context in which we
asked the user that question; if the user answers “no”, then we add c(c(p)∧g(q2)) → ⊥
to the current context.

We now add the Resource concept. Since the formal language that we use in this
paper is propositional, we will keep the resource concept out of it.

Definition 8. Resource: An instance R of the Resource concept is an entity referred to
by one or more instances of Communicated information.

In order to introduce resources in the definition of the runtime requirements adaptation
problem, we need a function that tells us which resources are referred to by a task,
domain assumption, or a context proposition, as these resources will need to be available
and used in some way in order to ensure that the relevant domain assumptions and
context propositions hold, and that the tasks can be executed.

Definition 9. Resource selector function: Let C be the set of all contexts. Given a set of
tasks, domain assumptions, and/or context propositions, the resource selector function
returns the identifiers of resources necessary for the domain assumptions and/or context
propositions to hold, and/or tasks to be executed:

R : ℘(T ∪ K ∪
⋃

C) −→ ℘(R) (4.8)

The domain of R are domain assumptions, context propositions, and tasks. The reason
that goals, softgoals, and quality constraints are absent is that the resources will be
mobilized to realize a candidate solution to the requirements problem, and the candidate
solution includes only domain assumptions and tasks. Since these domain assumptions
and tasks are contextualized, we need to ensure the availability of resources that are
needed in the context on which these domain assumptions and tasks depend on. Note
also that we have

⋃
C because C is a set of sets, so that we need to get the union of all

of the sets in C.
We can now formulate the runtime requirements adaptation problem for SAS.

Definition 10. Runtime requirements adaptation problem: Given a candidate solu-
tion CS(C1) in the context C1 ∈ C to the requirements problem RP(C1) in context
C1 ∈ C, and a change from context C1 to C2
= C1, find the requirements problem
RP(C2) in context C2 ∈ C and choose among candidate solutions to RP(C2) a solution
CS(C2) in the context C2 to the requirements problem RP (C2) in the context C2 ∈ C.

Requirements Engineering for SAS: Core Ontology and Problem Statement 41

The definition of the runtime requirements adaptation problem reflects the intuition that
by changing the context, the requirements problem may change – as requirements can
change – and from there, a new solution needs to be found to the requirements problem
in the new context.

We now reformulate the requirements problem so as to highlight the role of context
in it, as well as of the resources.

Definition 11. Requirements problem RP(C) in context C: Given the elicited or oth-
erwise acquired: domain assumptions in the set K, tasks in T, goals in G, quality con-
straints in Q, softgoals in S, preference, is-mandatory and is-optional relations in A, a
context C on which K∪T∪G∪Q∪S and A depend on, find all candidate solutions in
context C to RP(C) and compare them using preference and is-optional relations from
A to identify the most desirable candidate solution.

Definition 12. Candidate solution CS in the context C: A set of tasks T∗ and a set of
domain assumptions K∗ are a candidate solution in the context C to the requirements
problem RP(C) in context C if and only if:

1. K∗ and T∗ are not inconsistent,
2. C, K∗, T∗ |�cτ G∗, Q∗, where G∗ ⊆ G and Q∗ ⊆ Q,
3. G∗ and Q∗ include, respectively, all mandatory goals and quality constraints,
4. all mandatory softgoals are approximated by the consequences of C, K∗ ∪ T∗, so

that K∗, T∗ |�cτ SM, where SM is the set of mandatory softgoals, and
5. resources R(C ∪ K∗ ∪ T∗) needed to realize this candidate solution are available.

As discussed earlier, we view runtime requirements adaptation problem as a dynamic
RE problem. To support the analysis, we add two relations in the CORE ontology. We
now define the relegation relation via the inference and preference relations in Techne.

Definition 13. Relegation relation: A relegation relation is an (n+1)-ary relation that
stands between a requirement φ ∈ Δ and n other sets of requirements Π1, Π2, . . . , Πn

⊆ Δ if and only if there is an inference relation from every Πi to φ and there is a binary
relation: φ⊆ {Πi | 1 ≤ i ≤ n}×{Πi | 1 ≤ i ≤ n} whereby Πi φ Πj if it is strictly
more desirable to satisfy φ by ensuring that Πi holds, than to satisfy φ by ensuring that
Πj holds.

The inference relations required by a relegation relations indicate that a relegation rela-
tion can only be defined for requirements that we know how to satisfy in different ways.
For example, if we have a goal g(p), and we have two ways to satisfy that goal, e.g.:

Π1 = {t(q1), b(t(q1) → g(p))} (4.9)

Π2 = {t(q2), b(t(q2) → g(p))} (4.10)

then we have satisfied the first condition from the definition of the relegation relation,
since Π1 |�cτ g(p) and Π2 |�cτ g(p).

The second condition in the definition of the relegation relation says that we need to
define a preference relation g(p) between different ways of satisfying g(p). Observe
that we defineg(p) between sets of information, not pieces of information. The Techne

42 N.A. Qureshi, I.J. Jureta, and A. Perini

preference relation defines preference between individual pieces of information, so we
can use preference relations between members of Π1 and Π2 to define g(p).

Suppose that t(q1) t(q2), i.e., that we prefer to execute task t(q1) to executing
the task t(q2). We can define g(p) as a function of the Techne preference relation,

i.e., g(p)
def
= f(), that is, from the information that the preference relation already

includes. Namely, in this example it is appropriate to say that, if t(q1) t(q2), then
Π1 g(p) Π2. Since we have only Π1 and Π2, it is enough to know that Π1 g(p) Π2

to know everything we need to define the relegation relation.
Namely, the relegation relation (g(p), Π1, Π2,g(p)) tells us that, if we cannot sat-

isfy g(p) through Π1 then we will relegate to Π2, i.e., satisfy g(p) through Π2.
Finally, we define the influence relation. Note that it is simple here, since we have no

numerical values, so we cannot speak about influence as correlation. We can only say
that some information influences some other information if the absence of the former
makes it impossible for us to satisfy the latter.

Definition 14. Influence relation: An influence relation is a binary relation from ψ ∈
LSAS to φ ∈ LSAS, iff either:

1. ∃Π ⊆ Δ ∪ C s.t. Π |�cτ φ and Π \ ψ
|�cτ φ, or
2. ∀Π ⊆ Δ ∪ C s.t. Π |�cτ φ and Π \ ψ
|�cτ φ.

In the first case above, we say that ψ weakly influences φ, denoted ψ
wi−→ φ. In the

second case above, we say that ψ strongly influences φ, denoted ψ
si−→ φ.

Remark 4. If ψ
si−→ φ, then we have no way to satisfy φ if ψ is not satisfied. If ψ

wi−→ φ,
then some ways of satisfying φ cannot be used to do so if ψ is not satisfied. �

4.1 Runtime Requirements Adaptation Problem Illustration

We now revisit the above definitions and use scenarios from travel exemplar case study
to illustrate how SAS, instantiating CARE and running on user’s mobile phone, resolves
the “runtime requirements adaptation problem” at runtime.

For example, user arrives at the airport to avail her flight from Italy to Canada via
Paris for a business meeting. While at the airport after the boarding, user want to connect
to the Internet using her mobile phone to check emails and flight details before checking
in for the plane. Moreover, user wants to be informed about any flight delay.

Taking the above example, we now present SAS adaptation sequence at runtime in
case of change in context C along the time T = t1,tn as shown in the Fig.2. Let CS
be a set of candidate solution, thereby determining the runtime requirements adaptation
problem as a combination of instances of the tasks T∗) and domain assumptions K∗

such that G∗, Q∗ and SM are satisfied. In case of changes in the context C = C1,Cn

overtime for which CS needs to be re-evaluated by the system and R is required to be
used or identified in a given context C to realize CS. By re-evaluation we mean that
system at runtime exploits its monitored information, evaluate all the possible alterna-
tive CS or search for new ones (i.e. exploiting available services) that can satisfy the
runtime adaptation problem in response to changes in the C therefore adapting to the

Requirements Engineering for SAS: Core Ontology and Problem Statement 43

Time

CS(C1) = (K *
C1

; T*
C1

)

Change to
context

C1

System works according to solution:

Change to
context

C2
C1

That solution
solves:

RP(C1)

Current
context:

CS(C1) = (K *
C1

; T*
C1

)

System still works according to
solution:

But that solution is inadequate,
because problem is now:

RP(C2)

C2

Current
context:

Time during Adaptation as per change
in context from to

CS(C2) = (K *
C2

; T*
C2

)

System works according to solution:

That solution
solves:

RP(C2)

Time before Adaptation in
Context C1 C1 C2

Time after Adaptation to satisfy
context C2

Fig. 2. System Adaptation Sequence in Time

candidate solution CS. At this SAS may perform at sub-optimal level and can exploit
automated reasoning techniques such as planning or decision making techniques such
as analytic hierarchy process (AHP)3.

Before Adaptation: Assume that at time t1, the user’s goals G∗ are to connect to the
Internet for checking details of itinerary and inform about the flight delays with the
quality constraint Q to have the Internet connectivity not less than 256Kbps. To satisfy
these requirements, SAS is running according to its candidate solution CS i.e., using
the set of tasks T∗, e.g. search for available connection, enable Wi-Fi, get itinerary
details and show flight itinerary, in the current context i.e. C1 is at the airport, and the
domain assumption K∗

t1 Internet must be available at the airport, is not violated. This
implies that, CS(C1) = (K∗

C1, T
∗
C1) and CS(C1) satisfies the runtime requirements

adaptation problem i.e. RP (C1). We can rewrite this as:

C1, K∗
C1

, T∗
C1

|�cτ G∗
C1

, Q∗
C1

where R(C1∪K∗
C1

∪T∗
C1

) identifies the set of resources R available, e.g. (Airport Wi-Fi
hotspot, Mobile Phone of the user) to perform T∗

C1
.

During Adaptation: SAS while executing CS(C1), observes a change in context i.e.
the airport Wi-Fi connection becomes unavailable at time t2. Due to this change in
context from C1 to C2, the existing candidate solution CS(C1) might be valid but is
not adequate to satisfy the current context C2. As a consequence, the SAS needs to re-
evaluate its candidate solutions CS by searching in its solution base i.e. Δ or looking
for solutions that can be realized through available services. For instance, a new candi-
date solution CS(C2) could be, e.g. connect to the Internet using data services either
3G or Edge on mobile phone R; or recommending user to move to the area where the
signal strength is stronger; or avail the Internet on the free booths. At this stage, SAS

3 Discussing such techniques are out the scope of this paper. We present three scenarios to
illustrate how the SAS can adapt at runtime by resolving the runtime requirements adaptation
problem.

44 N.A. Qureshi, I.J. Jureta, and A. Perini

may use relegation relation to infer, if the G∗ with a Q is to have the Internet connec-
tivity not less than 256Kbps can be relegated. After re-evaluating the possibilities, SAS
finds CS(C2) i.e. set of tasks T∗, e.g. enable 3G or Edge service and connect to the
Internet with a refined Q i.e. Internet connectivity greater than 256Kbps for the user.
At this stage the influence relation is also used to ascertain the influence of CS(C2) on
user’s goals and preference, e.g. Hi-speed Internet is preferred than no Internet connec-
tion. SAS can derive conclusions that adapting to CS(C2) will not affect K∗

C2 i.e. Any
flight information must be communicated to the customer and goal G∗ i.e. to connect to
the Internet to view itinerary and inform about the flight delays will be satisfied. There-
fore, CS(C2) = (K∗

C2, T
∗
C2); satisfying the runtime requirements adaptation problem

i.e. RP (C2). We can rewrite this as:

C2, K∗
C2

, T∗
C2

|�cτ G∗
C2

, Q∗
C2

where R(C2 ∪ K∗
C2

∪ T∗
C2

) identifies the set of resources R available, e.g. (Access 3G
or Edge data services, Mobile Phone of the user) to perform T∗

C2
.

After Adaptation: At time t3, SAS adapts to the candidate solution CS(C2) taking
into account the context C2 and available resources R i.e. Access 3G or Edge data
services, Mobile Phone of the user, thus not violating the K∗

C2. Adaptation is performed
dynamically at runtime by changing (e.g. switching, re-configuring, optimizing) SAS
from one requirements problem to another i.e. RP (C1) to RP (C2), in response to
changes in the context, user’s needs or resource variability.

5 Related Work

Requirements engineering is carried out at the outset of the whole development pro-
cess, but in the context of SAS, RE activities are also needed at runtime thus enabling
a seamless adaptation. Research on SAS has recently received attention from variety of
research communities mainly targeting the software engineering of SAS from require-
ments, design and implementation perspectives. Focusing on requirements engineering
for SAS, research agenda from SEAMS [5] and RE community has identified key chal-
lenges that must be addressed while developing such systems.

For instance, in [23], a declarative language (RELAX) is proposed to capture uncer-
tainty, using temporal operators (such as eventually, until) by formalizing the semantics
in Fuzzy Branching Temporal logic, to specify requirements for SAS. Similarly, adopt-
ing goal-oriented analysis for adaptive systems, mitigation strategies are proposed to
accommodate uncertainty and failures by using obstacle analysis in [4]. Requirements
reflection is another aspect, where ideas from computational reflection has been bor-
rowed to provide SAS the capability to be aware of its own requirements [21]. Similarly,
online goal refinement [9] is of prime importance considering the underline architecture
of the intended SAS. Taking the engineering perspective, making the role of feedback
loops more explicit in the design of SAS has been recognized as a key requirement for
developing SAS in [3].

In our previous work, we proposed similar ideas to engineer adaptive requirements
using goal models and ontologies by making explicit the requirements for feedback loop
(i.e. monitoring, evaluation criteria, and adaptation alternative) more explicit in [16]. We

Requirements Engineering for SAS: Core Ontology and Problem Statement 45

extend this work in [17,18,19] by proposing a Continuous Adaptive RE (CARE) frame-
work for continuous online refinement of requirements at runtime by the system itself
involving the end-user. We proposed an architecture of an application that instantiate
CARE. We proposed a classification of adaptation at runtime by exploiting incremental
reasoning over adaptive requirements represented as runtime artifact. Similar ideas has
been proposed treating goals as fuzzy goals formalized using fuzzy logic representing
strategies for adaptation and operationalizing them as BPEL processes in [2]. Another
variation of this idea has been advocated in [22] as “Awareness Requirements”, as a
way to express constraints on requirements as meta requirements to deal with uncer-
tainty while developing SAS.

In goal-oriented modeling, Tropos has been extended to capture the contextual vari-
ability (mainly location) [1] by leveraging the concept of variation points [10] exploiting
the decomposition rules in a goal tree. Mainly, it helps in linking the alternative in the
goal model to the corresponding context (location) that helps in monitoring facts and
reasoning for adaptation in case of change in the context (location). Extended design ab-
stractions, including environment models, explicit goal types, and conditions for build-
ing adaptive agents have been proposed as an extension of Tropos, in Tropos4AS [13].

6 Discussion

It is worth to further discuss assumptions underlying the suggested problem formula-
tion, its generality as well as its practical impact. The problem formulation suggested
in this paper makes no assumptions and imposes no constraints on how the information
that is used and acquired. We thereby recognize that not all information can be col-
lected during requirements engineering, or at design time, but that this will depend on
the technologies used to implement the system. For example, the information about the
context, the formulas in C may – if the implementation technology allows – be obtained
by recognizing patterns in the data that arrives through sensors, then matching patterns
of data to templates of proposition or implications. We stayed in the propositional case,
since this was enough to define the main concepts and relations, and subsequently use
them to formulate the runtime requirements adaptation problem. The actual system will
operate using perhaps more elaborate, first-order formalisms to represent information,
so as to make that information useful for planning algorithms applied to identify can-
didate solutions. However, regardless of the formalism used, the system still needs to
be designed to ensure the general conditions and relations that the problem formulation
states: e.g., that the system needs an internal representation of information pertaining to
contexts, domain assumptions, tasks, goals, and so on, that goals and quality constraints
are satisfied through consistent combinations of C, K and T, among others.

Concerning generality of the proposed problem formulation and practical implica-
tion, our aim in this work was first to understand the general problem, and then focus
on developing particular requirements modeling languages to handle it. In this regards
we believe that recently proposed frameworks for engineering requirements for SAS
can be reconnected to our problem formulation. Consider, for example RELAX [23],
which proposes a formalism for the specification of requirements and a particular way
to relax them at runtime: if a requirement cannot be satisfied to the desired extent, then

46 N.A. Qureshi, I.J. Jureta, and A. Perini

alternative requirements can be specified in RELAX, stating thereby how achievement
conditions for the original requirement can be relaxed. This mechanism can be consid-
ered a particular way to implement the Relegate relation, that is the RELAX mecha-
nism obtains a straightforward interpretation in the language we used here. There can
be other ways to handle uncertainty and relaxation of requirements, and our aim in this
paper was to remain independent of particular approaches.

7 Conclusions and Future Work

We argued in this paper for a general formulation of the runtime requirements adapta-
tion problem, using recent work on the revised general requirements problem and its
core ontology. Taking into account our work on continuous adaptive RE in CARE, and
the types of adaptation defined in CARE, in this paper, we proposed to make explicit
the dynamic parts in requirements representation and formulated the runtime require-
ments adaptation problem. In particular, two key concepts help managing runtime re-
quirements changes, namely the concept of context and resource, while the relegation
and influence relations capture changes at runtime. The proposed runtime requirements
adaptation problem is envisioned as dynamic RE problem for adaptive systems i.e. re-
formulating the requirements problem when changes occur that a SAS can detect, and
then solving the changed problem at runtime.

Ongoing work aims at exploiting these formal definitions of concepts and relations
into a more concrete modeling and analysis language. The concept of requirements
database Δ introduced in this paper provides premise to define operations (e.g. adding,
removing, substituting requirements) that a SAS may perform over Δ to update its own
specification at runtime thus help realizing continuous adaptive RE (see CARE [17,18]).
Moreover, the application at runtime of automated reasoning (such as in AI planning)
and decision-making techniques (e.g., Analytic Hierarchy Process) may be relevant for
the engineering and running of SAS. They require further investigation.

References

1. Ali, R., Dalpiaz, F., Giorgini, P.: Location-based software modeling and analysis: Tropos-
based approach. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS,
vol. 5231, pp. 169–182. Springer, Heidelberg (2008)

2. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy goals for requirements-driven adaptation. In:
18th IEEE Int. Requirements Eng. Conf., Sydney, Australia, pp. 125–134 (2010)

3. Brun, Y., Serugendo, G.D.M., Gacek, C., Giese, H.M., Kienle, H., Litoiu, M., Müller, H.A.,
Pezzè, M., Shaw, M.: Engineering self-adaptive systems through feedback loops. Software
Engineering for Self-Adaptive Systems 5525, 48–70 (2009)

4. Cheng, B.H.C., Sawyer, P., Bencomo, N., Whittle, J.: A goal-based modeling approach to
develop requirements of an adaptive system with environmental uncertainty. In: Schürr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 468–483. Springer, Heidelberg (2009)

5. Cheng, B.H., de Lemos, R., Giese, H., Inverardi, P., Magee, J.: Software Engineering for Self-
Adaptive Systems: A Research Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inver-
ardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525,
pp. 1–26. Springer, Heidelberg (2009)

Requirements Engineering for SAS: Core Ontology and Problem Statement 47

6. Dey, A.K.: Understanding and using context. Personal Ubiquitous Comput. 5(1), 4–7 (2001)
7. Jureta, I.J., Mylopoulos, J., Faulkner, S.: Revisiting the core ontology and problem in require-

ments engineering. In: 16th IEEE Int. Requirements Eng. Conf., pp. 71–80 (2008)
8. Jureta, I.J., Borgida, A., Ernst, N.A., Mylopoulos, J.: Techne: Towards a new generation of

requirements modeling languages with goals, preferences, and inconsistency handling. In:
18th IEEE Int. Requirements Eng. Conf., Sydney, Australia, pp. 115–124 (2010)

9. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Future of Soft-
ware Engineering, 2007. FOSE 2007, pp. 259–268 (May 2007)

10. Liaskos, S., Lapouchnian, A., Yu, Y., Yu, E., Mylopoulos, J.: On goal-based variability ac-
quisition and analysis. In: 14th IEEE Int. Requirements Eng. Conf., pp. 79–88 (2006)

11. Liaskos, S., McIlraith, S.A., Mylopoulos, J.: Integrating preferences into goal models for
requirements engineering. In: 18th IEEE Int. Requirements Eng. Conf., Sydney, Australia,
pp. 135–144 (2010)

12. McCarthy, J.: Notes on formalizing context. In: Proceedings of the 13th International Joint
Conference on Artifical Intelligence, vol. 1, pp. 555–560. Morgan Kaufmann Publishers Inc.,
San Francisco (1993)

13. Morandini, M., Penserini, L., Perini, A.: Towards goal-oriented development of self-adaptive
systems. In: ICSE Workshop on Software Engineering for Adaptive and Self-Managing Sys-
tems (SEAMS 2008), pp. 9–16. ACM, New York (2008)

14. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: High variability design for software agents:
Extending Tropos. TAAS 2(4) (2007)

15. Qureshi, N.A., Jureta, I., Perini, A.: On runtime requirements adaptation problem for self-
adaptive systems, SE Research Group Technical Report (TR-FBK-SE-2010-1), FBK, Trento,
Italy (2010), http://se.fbk.eu/files/TR-FBK-SE-2010-1.pdf

16. Qureshi, N.A., Perini, A.: Engineering adaptive requirements. In: ICSE Workshop on Soft-
ware Engineering for Adaptive and Self-Managing Systems (SEAMS 2009), pp. 126–131.
IEEE Computer Society, Washington, DC, USA (2009)

17. Qureshi, N.A., Perini, A.: Continuous adaptive requirements engineering: An architec-
ture for self-adaptive service-based applications. In: First Int. Workshop on Require-
ments@Run.Time (RE@RunTime), Sydney, Australia, pp. 17–24 (2010)

18. Qureshi, N.A., Perini, A.: Requirements engineering for adaptive service based applications.
In: 18th IEEE Int. Requirements Eng. Conf., Sydney, Australia, pp. 108–111 (2010)

19. Qureshi, N.A., Perini, A., Ernst, N.A., Mylopoulos, J.: Towards a continuous require-
ments engineering framework for self-adaptive systems. In: First Int. Workshop on Require-
ments@Run.Time (RE@RunTime), held at (RE 2010), Sydney, Australia, pp. 9–16 (2010)

20. M., Salifu, Yu, Y., Nuseibeh, B.: Specifying monitoring and switching problems in context.
In: 15th IEEE Int. Requirements Eng. Conf., pp. 211–220 (2007)

21. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-aware systems
a research agenda for re for self-adaptive systems. In: 18th IEEE Int. Requirements Eng.
Conf., Sydney, Australia, pp. 95–103 (2010)

22. Souza, V.E.S., Lapouchnian, A., Robinson, W.N., Mylopoulos, J.: Awareness requirements
for adaptive systems, technical Report DISI-10-049, DISI, Universit‘a di Trento, Italy (2010)

23. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H., Bruel, J.-M.: RELAX: Incorporating
Uncertainty into the Specification of Self-Adaptive Systems. In: 17th IEEE Int. Requirements
Eng. Conf., Atlanta, pp. 79–88 (2009)

24. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans. Softw.
Eng. Methodol. 6(1), 1–30 (1997)

http://se.fbk.eu/files/TR-FBK-SE-2010-1.pdf

A Fuzzy Service Adaptation Based on QoS

Satisfaction

Barbara Pernici and Seyed Hossein Siadat

Politecnico di Milano
Dipartimento di Elettronica e Informazione

Piazza Leonardo da Vinci 32, 20133 Milano, Italy
{pernici,siadat}@elet.polimi.it

Abstract. Quality of Service (QoS) once defined in a contract between
two parties may change during the life-cycle of Service-Based Applica-
tions (SBAs). Changes could be due to system failures or evolution of
quality requirements from the involved parties. Therefore, Web Services
need to be able to adapt dynamically to respond to such changes. Adap-
tation and evolution of services are playing an important task in this
domain. An essential issue to be addressed is how to efficiently select an
adaptation while, there exists different strategies. We propose a fuzzy
service adaptation approach that works based on the degree of QoS sat-
isfaction. In particular, we define fuzzy parameters for the QoS property
descriptions of Web Services. This way, partial satisfaction of param-
eters is allowed through measuring imprecise requirements. The QoS
satisfaction degree is measured using membership functions provided for
each parameter. Experimental results show the effectiveness of the fuzzy
approach using the satisfaction degree in selecting the best adaptation
strategy.

Keywords: QoS, service adaptation and evolution, fuzzy logic.

1 Introduction

In Service-Based Applications (SBAs), Quality of Service (QoS) parameters may
change during the life cycle of the application. Web service adaptation is an im-
portant phase to deal with such changes. Handling changes in a demanding and
adaptive environment is a vital task. One main issue lies in QoS property descrip-
tions of Web Services. This involves specifying service requirements in a formal
way, monitoring and dynamically adapting and evolving the services with respect
to the QoS changes. Static adaptation is impractical due to the changing envi-
ronment and high cost of maintenance and development. Specifying all possible
alternative behaviour for adaptation at design time is impossible. Therefore, a
declarative approach is required at run-time to support adaptation decisions.

In order to perform run-time decisions for adaptation in a volatile environ-
ment, one issue is to consider the imprecise evaluation of QoS properties. Existing
approaches do not allow partial satisfaction of parameters. It is required that

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 48–61, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Fuzzy Service Adaptation Based on QoS Satisfaction 49

services should be able to tolerate a range of violation in their quality descrip-
tion. However, handling this toleration need to be done with special care. An
important issue to address in SBAs is to what extent the QoS parameters of a
Web Service are satisfiable. The answer to this issue could be a basic for making
adaptation decisions. However, this issue has not been addressed adequately in
the literatures. Evaluating the extent of parameter satisfaction is necessary to
help the selection of best adaptation strategy.

As an initial step to this, in [3] we provided conditions under which QoS
changes are acceptable. We used a temporal logic namely Allen’s Interval Algebra
(AIA) [2] to formally specify the non-functional properties of web services. We
then used the AIA to reason about changes of quality parameters and their
evolution. In this paper, we extend [3] and propose a fuzzy approach to support
service adaptation and evolution. We define fuzzy parameters for QoS property
description of Web Services. Fuzzy parameters could be considered as fuzzy sets
and measured based on their value of membership. Satisfaction degree of fuzzy
parameters is measured according to their actual distance of the agreed quality
ranges in the contract. The goal of this paper is to provide flexibility for service
specification by applying fuzzy parameters. Using a fuzzy approach allows us to
deal with reasoning on the quality violations that is approximate rather than
accurate. At the end, we propose different categories of adaptation that perform
based on the satisfaction degree. Experimental results show the effectiveness
of using the fuzzy approach over the non-fuzzy one in making decisions for
adaptation.

The remainder of the paper is structured as follows. Section 2 describes the
major related work. In Section 3 we present a definition for QoS property descrip-
tion of services through introducing fuzzy parameters. In Section 4 we specify
satisfaction functions for each parameter to measure to what extend the QoS is
achieved with respect to the existing contract. We explain the decision making
mechanism in Section 5 that works based on the satisfaction degree. Section
6 provides experimental result using a simulator and evaluates the effective-
ness of the proposed approach. Section 7 concludes the paper and discusses our
future work.

2 Related Work

Deviation of quality ranges from the existing contract may produce a system
failure and bring dissatisfaction for customers. To this end, the evolution and
adaptation of web services are becoming two important issues in reacting to
the various changes in order to provide the agreed QoS stated in the contract.
Recently, many adaptation strategies and methods have been proposed in the
literature. However, most of the work in service adaptation concentrates on the
technical issues and definition of mechanisms for adaptation rather than con-
sidering QoS perspective. A list of adaptation strategies for repair processes in
SBAs is provided in [6] and [1]. For example, [7] proposed a service replacement
approach for adaptive Web Service composition and execution, while Canfora

50 B. Pernici and S.H. Siadat

et al. [5] presented a re-composition approach dealing QoS replanning issues at
run time using late binding technique. However, none of these works consider
the consequences and potential overheads of adaptation. To this end, for exam-
ple, an environment for compensation of Web Service transactions is proposed
in [25]. In order to consider the overall value of a change, [15] presented an ap-
proach called value of changed information (VOC). Furthermore, an adaptation
mechanism is proposed based on VOC in [8]. However, these works have the
limitation that they do not take into account the satisfaction level of services.
Making adaptation decisions and evaluating them is therefore complicated and
has consequences that are often neglected. Some qualitative and quantitative
techniques has been proposed, however evaluating impacts of adaptation still
remains as an open challenge.

One core issue to address is the definition of a flexible description for Web Ser-
vices. Formulation of service specifications/requirements has been studied in the
literature. In autonomic systems and in particular web services, reasoning about
such specification is a hard job due to the changing environment that affects ser-
vice requirements. Although a lot of research has been conducted for functional
Web Service description, only a few efforts have been done with respect to non-
functional properties description of Web Service. Among syntactic and semantic
WS description we refer to the work done in [30], [21] and [16] which they also
provided algorithms for service selection based on such description. A major lim-
itation of those papers and other similar ones is due to not considering the partial
satisfaction of the QoS attributes. With this regards, [23] provided a semantic
Policy Centered Meta-model (PCM) approach for non-functional property de-
scription of web services. A number of operators (e.g. greaterEqual, atLeast) for
numeric values are defined in the model for determining tradeoffs between vari-
ous requests. Therefore, the approach can support the selection of Web Services
that partially satisfy user constraints. In [20] and [19], the authors extend the
approach proposed in [23] by proving a solution for Web Service evaluation based
on constraint satisfaction problem. The approach uses utility function to present
the level of preferences for each value ranges defined in the service description.
However, it does not take care of adaptation issues and controlling values at
run-time. In [22], the authors discuss about fixable and non-fixable properties
to deal with bounded uncertainty issue. Constraint programming is used as a
solution, however, there is no evaluation of the work.

It is required to provide a framework to evaluate alternatives and quantify
their impact for making decision decisions. Each alternative has different degree
of satisfaction and their impact has to be evaluated in order to select the best
adaptation strategy. A quantitative approach applying a probabilistic modeling
is used for partial goal satisfaction in [18]. Dealing with the uncertainty issue
is one major problem in order to formulate and manage service specification.
Thus, recently researchers are investigating to incorporate this uncertainty into
the service specification. In [14], the author provides support for reasoning about
uncertainty. A goal-base approach for requirement modeling in adaptive systems
is proposed in [9] which uncertainty of the environment is taken into account.

A Fuzzy Service Adaptation Based on QoS Satisfaction 51

Furthermore, a language named RELAX is developed for specifying requirements
in adaptive systems [26,27] in which certain requirements could be temporarily
relaxed in favor of others. In general, different temporal logics have been used for
formal specification of requirement. Linear Temporal Logic (LTL) has been used
in [4,11] to formally specify requirements in a goal oriented approach. In partic-
ular, LTL is extended in [31] and named A-LTL to support adaptive program
semantics by introducing an adaptation operator. [3] uses Allen’s interval alge-
bra for the formal specification of service requirement. Those approaches have
limitations such that they are unable to consider environmental uncertainty and
behave in a binary satisfaction manner.

Fuzzy approach [29] is an alternative to concur such limitations of aforemen-
tioned approaches. However, the fuzzy approach may not be the only alternative
to deal with uncertainty. Different mathematical and frameworks are presented
in the literature to address the uncertainty issue and partial satisfaction of the
requirements. For example, making decisions about non-functional properties us-
ing Bayesian networks is proposed in [13] while [17] used a probabilistic method
for this purpose. Applying fuzzy logic to incorporate uncertainty and making
decisions has been proposed in other domains such as management, economy
and many aspects of computer science, however, to the best of our knowledge
there is very little of such application in adaptation of web services. As of such,
[10] proposed a fuzzy approach for assigning fitness degrees to service policies in
a context-aware mobile computing middleware. A trade-off analysis using fuzzy
approach for addressing conflicts using imprecise requirements in proposed in
[28]. With respect to partial satisfaction of requirements, [12] provided a web
service selection approach using imprecise QoS constraints.

There are several different approaches towards adaptation of web services.
This diversity yields from a missing consensus on the required decision making
to automatically perform web service adaptation. Therefore, in this paper we
propose a fuzzy adaptation approach as a possible way in providing a foundation
of such a consensus which is based on the satisfaction degree of QoS parameters.

3 Fuzzy Parameters for QoS Property Description

This section is devoted to present a formal definition of quality parameters in a
service description and is concerned with QoS property descriptions of Web Ser-
vices. The formal specification we propose has been inspired and is an extension
of our previous work [3]. We extended the work by defining fuzzy parameters
for such service description. Fuzzy parameters could be considered as fuzzy sets
and measured based on their value of membership. Satisfaction degree of fuzzy
parameters is measured according to their actual distance of the agreed quality
ranges in the contract. Having introduced the fuzzy parameters it is possible to
understand to what extent the quality parameters are violated/satisfied. This
way, partial satisfaction of parameters is allowed through measuring imprecise
requirements.

52 B. Pernici and S.H. Siadat

We define set D to contain the quality dimensions (such as availability, exe-
cution time, price or throughput) identified and agreed by the service provider
and consumer. Each quality dimension has a domain and range; e.g., availabil-
ity is a probability usually expressed as a percentage in the range 0-100% and
execution time is in the domain of real numbers in the range 0.. +∞. A quality
dimension d can be considered monotonic (denoted by d+) or antitonic (d−);
monotonicity indicates that values closer to the upper bound of the range are
considered better, whilst with antitonic dimensions values closer to the lower
bound are considered better. A parameter m associates a quality dimension to
a value range [3].

If a parameter is non-fuzzy (strict) its satisfaction degree will be evaluated in a
binary manner (Yes or No). In contrast, fuzzy parameters (relaxed) will be eval-
uated in a fuzzy manner which shows different degree of satisfaction (x ∈ [0, 1]).
Note that we also provide value ranges for both parameters regardless of being
fuzzy or non-fuzzy. The satisfaction degree of fuzzy parameters will be measured
using membership functions provided for each parameter. In the following we
provide the extended definition of a parameter based on the definition intro-
duced in [3]. In particular, we define a type t for a parameter that can be either
strict or fuzzy.

Definition 1 (Parameter). We define a Parameter m ∈ M as a tuple m :=
(d, v, t), d ∈ D, v ∈ V , t ∈ {s, f}. where D is the set of quality dimensions, V is
the set of ranges for all quality dimensions D, s represent a strict parameter and
f represent a fuzzy parameter.

QoS once defined in a contract between two parties may change during a ser-
vice life-cycle. Changes could be due to system failures or evolution of quality
requirements from the involved parties. Therefore, Web Services need to be able
to adapt dynamically to respond to such changes. Adaptation and evolution
of services are playing an important task in this domain. However, adaptation
of web services needs to be performed in an appropriate manner to accommo-
date QoS changes/violations by choosing the best adaptation strategy. Defining
service description with the proposed fuzzy parameters provides a flexible situ-
ation in dealing with adaptation decisions. We discuss how it can facilitate the
adaptation of web services through an example. According to the new definition
of parameters, we consider availability and response time as fuzzy parameters.
Let us assume an example of a contract with initial value ranges of availability
between 80% to 90% and response time between 2 to 5 seconds. We use this
example throughout the paper.

We provided situations in which new QoS ranges could be still acceptable for
both parties according to the existing contract [3]. We introduced a compati-
bility mechanism that used parameter subtyping relation and Allen’s Interval
Algebra [2] for comparing value ranges and their evolution. The provider and
requestor are compatible with each other according to the existing contract if
the QoS changes are in one of the acceptable situations. If the compatibility
is not provided, however it does not give any information about the degree of
satisfaction/dissatisfaction of the offered service. For example if the new range

A Fuzzy Service Adaptation Based on QoS Satisfaction 53

Fig. 1. Membership functions for response time

of availability is less than 80%, this is not considered as an acceptable situation
and it is considered as a violation. In such cases, we would also like to under-
stand to what extent the quality parameter and the aggregated service quality
are satisfactory. An availability of 75% might still be acceptable if we consider
the partial satisfaction of quality ranges.

4 Specifying Satisfaction Function

Having defined the fuzzy parameters we are able to apply the fuzzy logic. As
for the first step we need to know the right amount of quality satisfaction.
Previously in [3], we provided a compatibility mechanism to understand under
which conditions the changes are acceptable. The approach suffers from the
limitation that changes are considered either compatible or incompatible with
the contract. This means, quality changes are calculated in a binary approach
which it does not take into account clearly the relation of quality parameters
with their satisfaction. To say it in other way, the QoS parameters are measured
in a precise manner and their partial satisfaction is not taken into account.
In the following we provide mechanisms to allow partial satisfaction of quality
parameters imprecisely using fuzzy sets.

The main point of using fuzzy logic is to find a relation and to map our input
space to the output space. The inputs here are namely service availability and
response time and the output is the overall satisfaction degree of them. For each
QoS parameter in the service description we provide a membership function that
represent the level of satisfaction of each parameter. The membership functions
map the value of each parameter to a membership value between 0 and 1. We
use a piece-wise linear function, named trapezoidal membership function, for this
purpose. Membership functions for ResponseTime and availability are shown in
Figures 1 and 2. Both membership functions have two linguistic states namely
compatible and incompatible and they are identified according to the initial value
ranges of the contract. Figure 1 shows that the response time of 0 to 5 has the

54 B. Pernici and S.H. Siadat

maximum degree of compatibility; however, the membership degree decreases
while the response time increases. It also shows that response time has the mini-
mum degree of incompatibility between 0 to 5 seconds; however, the membership
degree increases while the response time increases. Note that the response time is
set to be 2 to 5 seconds in the contract; however, the range between 0 to 2 is also
acceptable with the same membership value as the initial range in the contract
has [3]. With the same reasoning, the availability of 80 to 100 has the maximum
degree of compatibility illustrated in Figure 2. However, the membership degree
of compatibility decreases while the availability decreases.

Fig. 2. Membership functions for ResponseTime and Availability

Having defined the membership functions, the mapping between the input and
output space will be done by defining a list of if-then statements called rules. We
have already defined what do we mean being compatible and incompatible for
the quality parameters and specified their ranges using membership functions.
Since we are relaxing the antecedent using a fuzzy statement, it is also required
to represent the membership degree of the output (i.e. here satisfaction). There-
fore, the satisfaction degree is also represented as fuzzy sets: satisfaction is low,
satisfaction is average and satisfaction is high.

We define three if-then rules as below. it represents the antecedent and con-
sequent of the rule. All the rules are applied in parallel and their order in unim-
portant. We define the fuzzy union/disjunction (OR) and the fuzzy conjunction/
intersection (AND) using max and min functions respectively. Therefore
AAND B is represented as min(A, B) and AOR B is represented as max(A, B).

1. If (ResponseT ime is compatible) and (Availability is Compatible)
then (Satisfaction is high).

2. If (ResponseT ime is incompatible) or (Availability is incompatible)
then (Satisfaction is average).

3. If (ResponseT ime is incompatible) and (Availability is incompatible)
then (Satisfaction is low).

A Fuzzy Service Adaptation Based on QoS Satisfaction 55

5 Decision Making for Adaptation and Evolution

We use the satisfaction degree calculated using the fuzzy inference system for
the adaptation and evolution decision making. The decision making mechanism
works based on the algorithm we provided in [24]. The algorithm evaluates the
evolution of the service and decides which adaptation strategy to take with
respect to the predefined threshold degree for QoS satisfaction. The two main
decisions are the internal renegotiation in which the changes are compatible
with the service description in the contract and service replacement in which
the changes are incompatible with the existing contract. The former case deals
with the internal contract modification with the same provider and requester
while the earlier case requires the selection of a new service and establishment
of a new contract which can result in a huge loss of time and money.

Having provided such a decision making mechanism allows us to offer a flexible
adaptation mechanism. This is done by identifying threshold to what constitutes
compatible and incompatible. Using satisfaction degree allows us to define the
criticality of a change/violation. Therefore, we are able to understand whether
a violation is critical and it results in a service replacement or the violation is
still acceptable. This way, a slight change from the quality ranges defined in the
contract will not trigger the adaptation. Table 1 shows the result of checking
for compatibility for a possible set of changes. The comparison is between our
fuzzy approach and a traditional non-fuzzy one that works based on the precise
evaluation of the quality ranges in the contract.

Table 1. Comparing the adaptation decisions using fuzzy and non-fuzzy approach

Change Replacement? Change Replacement?
(Non-fuzzy/Fuzzy) (Non-fuzzy/Fuzzy)

S1 = (6, .90) Yes/No S2 = (7, .75) Yes/Yes
S3 = (5, .85) No/No S4 = (3, .70) Yes/No
S5 = (2, .85) No/No S6 = (2, .78) Yes/No
S7 = (2, .60) Yes/Yes S8 = (3, .90) No/No
S9 = (7, .95) Yes/Yes S10 = (6, .50) Yes/Yes

In the fuzzy approach the replacement is based on the satisfaction degree.
However, in the non-fuzzy approach a service replacement is necessary if any
parameters are violated from the initial range, albeit minor deviation. For ex-
ample in S1 = (6, .90), changing the response-time to 6s will not result a service
replacement applying the fuzzy approach since it has the satisfaction degree of
almost 83%. While applying a non-fuzzy approach, it is considered a violation
because it does not respect the initial response-time range (2, 5) in the contract.
However, if a change results in a low satisfaction degree, service replacement is
necessary in both approaches as in the case S10 = (6, .50) which the satisfaction
degree is around 62%.

56 B. Pernici and S.H. Siadat

6 Experiments and Implementation

Having defined the membership functions and rules in the previous sections,
we have built and simulated a fuzzy inference system to interpret rules. The
process has different steps including: fuzzification of input quality parameters,
applying fuzzy operators to the antecedent, implication from the antecedent to
the consequent, aggregation of the results for each rule, and defuzzification. A
view of the simulator including the previous steps is illustrated in Figure 3 in
which a complete fuzzy inference system is represented.

The first step is to apply the membership functions to map each QoS param-
eters to the appropriate fuzzy set (between 0 and 1). We used two inputs of
Availability (interval between 0 to 100) and Response-time (interval between 0
to 10). The inputs are mapped to fuzzy linguistic sets: availability is compatible,
availability is incompatible, response-time is compatible, and response-time is
incompatible. Figures 1 and 2 show to what extent the availability and response-
time are compatible. The next step is to give the result of the fuzzified input
parameters to the fuzzy operators. According to the rules, AND and OR oper-
ators are applicable. This will give us a degree of support for each rule. Next
is applying the implication method that uses the degree of support to calculate
the output fuzzy set. We used a minimum method to truncate the output fuzzy
set for all the rules separately. However, we apply all the rules in parallel and
we do not define any priority and weight for them.

At the end of the implication, we apply an aggregation method to combine all
the rules. This way, the outputs of each rule represented in fuzzy sets are com-
bined into a single fuzzy set. A maximum method is used for the aggregation.
The last step is to defuzzify the fuzzy set resulted after the aggregation step.
We applied a centroid method to calculate the defuzzification process. The
method returns the center of the area under the curve. Figure 3 shows that the

Fig. 3. A view of the simulator for fuzzy inference system

A Fuzzy Service Adaptation Based on QoS Satisfaction 57

Fig. 4. The output of satisfaction degree according to ResponseTime and Availability
membership function

Fig. 5. Satisfaction degree

response-time of 3.67 seconds and availability of 68.6% result a satisfaction de-
gree of 82.8. Figure 4 shows a surface map for the system and the dependency
of the satisfaction degree on the response-time and availability.

We evaluate the effectiveness of the fuzzy approach with a non-fuzzy approach
with respect to the stability of the system in terms of number of times a service
needs to be replaced. The fuzzy approach performs the adaptation based on the
QoS satisfaction. Only if the result of the satisfaction is lower than a threshold
a service replacement occurs. While in the non-fuzzy approach, the replacement
decision is done based on the precise evaluation of the QoS value ranges. We
have conducted our experiment 200 times, each time providing random data for
the input parameters. Figure 5 illustrates the output (satisfaction degree) of the
experiment. The satisfaction threshold was set to 70%.

Figure 6 represents the stability of the fuzzy and non-fuzzy systems. As it
is shown, the number of service replacement in a non-fuzzy approach is much

58 B. Pernici and S.H. Siadat

Non-Fuzzy

Fuzzy

0

10

20

30

40

50

60

70

80

Number of Replacements

System Stability

Fig. 6. System stability of using fuzzy and non-fuzzy approach

higher than when we apply a fuzzy approach. This actually is a direct proof of
our approach. Using fuzzy parameters we allow partial satisfaction of the param-
eters. Therefore, the decision making for adaptation is not based on the precise
evaluation of the quality ranges and it is rather imprecise and allows the param-
eters to be relaxed. The non-fuzzy approach involved the maximum number of
service replacement which includes more queries for the service selection. This
can results in a huge loss of time and money. The cost of establishing a new
contract is also considerable.

7 Conclusions and Future Work

In this paper, we used fuzzy parameters for the QoS property descriptions of Web
Services and a fuzzy approach is taken in order to select adaptation strategy.
However, interpreting and presenting adaptation decisions based on fuzzy logic
is still a hot research area that requires to be investigated more in the research
community of software and service engineering.

In particular, we used linear trapezoidal membership function for the sake of
simplicity. Currently, we are conducting more experiment to investigate the usage
of Gaussian distribution function and Sigmoid curve that have the advantages
of being smooth and non-zero all the time.

As for the future work, we aim to continue exploring the use of fuzzy pa-
rameters for the QoS matching. Applying more sophisticated functions using AI
to Map the satisfaction degree to the appropriate adaptation decision might be
worth exploring. However, there are still challenges that need to be addressed.
For example, to what extent a parameter could be relaxed yet consider no vi-
olation? We also plan to incorporate more QoS parameters for calculating the
overall satisfaction degree that influence the process of decision making. This

A Fuzzy Service Adaptation Based on QoS Satisfaction 59

requires the definition of more complex rules that represent the relation and
dependencies between parameters.

Last but not least, applying an appropriate decision making requires an an-
alytical evaluation based on a cost model. We would like to know under which
circumstances the proposed approach is beneficial considering both QoS and
business value criteria.

Acknowledgements

The research leading to these results has received funding from the European
Community’s Seventh Framework Programme FP7/2007-2013 under grant agree-
ment 215483 (S-Cube).

References

1. Di Nitto, E., Kazhamiakin, R., Mazza, V., Bucchiarone, A., Cappiello, C., Pistore,
M.: Design for adaptation of service-based applications: Main issues and require-
ments. In: The Fifth International Workshop on Engineering Service-Oriented Ap-
plications: Supporting Software Service Development Lifecycles, WESOA (2009)

2. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of
the ACM 26(11), 832–843 (1983)

3. Andrikopoulos, V., Fugini, M., Papazoglou, M.P., Parkin, M., Pernici, B., Siadat,
S.H.: Qos contract formation and evolution. In: EC-Web, pp. 119–130 (2010)

4. Brown, G., Cheng, B.H.C., Goldsby, H., Zhang, J.: Goal-oriented specification of
adaptation requirements engineering in adaptive systems. In: SEAMS 2006: Pro-
ceedings of the 2006 International Workshop on Self-Adaptation and Self-Managing
Systems, pp. 23–29. ACM, New York (2006)

5. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: Qos-aware replanning of
composite web services. In: ICWS, pp. 121–129 (2005)

6. Cappiello, C., Pernici, B.: Quality-aware design of repairable processes. In: The
13th International Conference on Information Quality (ICIQ 2008), pp. 382–396
(2008)

7. Chafle, G., Dasgupta, K., Kumar, A., Mittal, S., Srivastava, B.: Adaptation in web
service composition and execution. In: ICWS, pp. 549–557 (2006)

8. Chafle, G., Doshi, P., Harney, J., Mittal, S., Srivastava, B.: Improved adaptation
of web service compositions using value of changed information. In: ICWS, pp.
784–791 (2007)

9. Cheng, B.H., Sawyer, P., Bencomo, N., Whittle, J.: A Goal-Based Modeling
Approach to Develop Requirements of an Adaptive System with Environmental
Uncertainty. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp.
468–483. Springer, Heidelberg (2009)

10. Cheung, R., Cao, J., Yao, G., Chan, A.T.S.: A fuzzy-based service adaptation mid-
dleware for context-aware computing. In: Sha, E., Han, S.-K., Xu, C.-Z., Kim, M.-
H., Yang, L.T., Xiao, B. (eds.) EUC 2006. LNCS, vol. 4096, pp. 580–590. Springer,
Heidelberg (2006)

11. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Sci. Comput. Program 20, 3–50 (1993)

60 B. Pernici and S.H. Siadat

12. Cock, M.D., Chung, S., Hafeez, O.: Selection of web services with imprecise QoS
constraints. In: Proceedings of the IEEE/WIC/ACM International Conference on
Web Intelligence, WI 2007, pp. 535–541. IEEE Computer Society, Washington,
DC, USA (2007)

13. Fenton, N., Neil, M.: Making decisions: using bayesian nets and mcda. Knowledge-
Based Systems 14(7), 307–325 (2001)

14. Halpern, J.Y.: Reasoning about Uncertainty. MIT Press, Cambridge (2003)
15. Harney, J., Doshi, P.: Adaptive web processes using value of changed information.

In: International Conference on Service-Oriented Computing (ICSOC), pp. 179–
190 (2006)

16. Kritikos, K., Plexousakis, D.: Semantic QoS-based web service discovery algo-
rithms. In: ECOWS, pp. 181–190 (2007)

17. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking
with PRISM: A hybrid approach. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002.
LNCS, vol. 2280, pp. 52–66. Springer, Heidelberg (2002)

18. Letier, E., van Lamsweerde, A.: Reasoning about partial goal satisfaction for
requirements and design engineering. SIGSOFT Softw. Eng. Notes 29, 53–62
(2004)

19. Li, P., Comerio, M., Maurino, A., De Paoli, F.: Advanced non-functional property
evaluation of web services. In: Proceedings of the 2009 Seventh IEEE European
Conference on Web Services, ECOWS 2009, pp. 27–36. IEEE Computer Society,
Washington, DC, USA (2009)

20. Li, P., Comerio, M., Maurino, A., De Paoli, F.: An approach to non-functional
property evaluation of web services. In: Proceedings of the 2009 IEEE International
Conference on Web Services, ICWS 2009, pp. 1004–1005. IEEE Computer Society,
Washington, DC, USA (2009)

21. Mart́ın-Dı́az, O., Cortés, A.R., Benavides, D., Durán, A., Toro, M.: A quality-aware
approach to web services procurement. In: Benatallah, B., Shan, M.-C. (eds.) TES
2003. LNCS, vol. 2819, pp. 42–53. Springer, Heidelberg (2003)

22. Mart́ın-Dı́az, O., Cortés, A.R., Garćıa, J.M., Toro, M.: Dealing with fixable and
non-fixable properties in service matchmaking. In: Dan, A., Gittler, F., Toumani,
F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 228–237. Springer, Hei-
delberg (2010)

23. De Paoli, F., Palmonari, M., Comerio, M., Maurino, A.: A meta-model for non-
functional property descriptions of web services. In: Proceedings of the 2008 IEEE
International Conference on Web Services, pp. 393–400. IEEE Computer Society,
Washington, DC, USA (2008)

24. Pernici, B., Siadat, S.H.: Adaptation of web services based on QoS satisfaction.
In: WESOA 2010: Proceedings of the 6th International Workshop on Engineering
Service-Oriented Applications. Springer, Heidelberg (2010)

25. Schäfer, M., Dolog, P., Nejdl, W.: An environment for flexible advanced compen-
sations of web service transactions. ACM Trans. Web 2, 14:1–14:36 (2008)

26. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.-M.: Relax: Incor-
porating uncertainty into the specification of self-adaptive systems. In: RE, pp.
79–88 (2009)

27. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.-M.: Relax: a
language to address uncertainty in self-adaptive systems requirement. Requir.
Eng. 15(2), 177–196 (2010)

A Fuzzy Service Adaptation Based on QoS Satisfaction 61

28. Yen, J., Tiao, W.A.: A systematic tradeoff analysis for conflicting imprecise require-
ments. In: Proceedings of the 3rd IEEE International Symposium on Requirements
Engineering, RE 1997, pp. 87–96. IEEE Computer Society, Washington, DC, USA
(1997)

29. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)
30. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang,

H.: Qos-aware middleware for web services composition. IEEE Trans. Softw.
Eng. 30(5), 311–327 (2004)

31. Zhang, J., Cheng, B.H.C.: Using temporal logic to specify adaptive program se-
mantics. Journal of Systems and Software 79(10), 1361–1369 (2006)

Dealing with Known Unknowns: Towards a

Game-Theoretic Foundation for Software
Requirement Evolution�

Le Minh Sang Tran and Fabio Massacci

Università degli Studi di Trento, I-38100 Trento, Italy
{tran,fabio.massacci}@disi.unitn.it

Abstract. Requirement evolution has drawn a lot of attention from
the community with a major focus on management and consistency of
requirements. Here, we tackle the fundamental, albeit less explored, al-
ternative of modeling the future evolution of requirements.

Our approach is based on the explicit representation of controllable evo-
lutions vs observable evolutions, which can only be estimated with a cer-
tain probability. Since classical interpretations of probability do not suit
well the characteristics of software design, we introduce a game-theoretic
approach to give an explanation to the semantic behind probabilities.
Based on this approach we also introduce quantitative metrics to support
the choice among evolution-resilient solutions for the system-to-be.

To illustrate and show the applicability of our work, we present and
discuss examples taken from a concrete case study (the security of the
SWIM system in Air Traffic Management).

Keywords: software engineering, requirement evolution, observable and
controllable rules, game-theoretic.

1 Introduction

“...There are known unknowns: that is to say, there are things
that we now know we don’t know...”

— Donald Rumsfeld, United States Secretary of Defense

In the domain of software, evolution refers to a process of continually updating
software systems in accordance to changes in their working environments such
as business requirements, regulations and standards. While some evolutions are
unpredictable, many others can be predicted albeit with some uncertainty (e.g.
a new standard does not appear overnight, but is the result of a long process).

The term software evolution has been introduced by Lehman in his work on
laws of software evolution [17, 18], and was widely adopted since 90s. Recent
studies in software evolutions attempt to understand causes, processes, and ef-
fects of the phenomenon [2, 14, 16]; or focus on the methods, tools that manage
the effects of evolution [19, 25, 28].
� This work is supported by the European Commission under project EU-FET-IP-

SECURECHANGE.

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 62–76, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Dealing with Known Unknowns: Towards a Game-Theoretic Foundation 63

Requirement evolution has also been the subject of significant research [12,
15, 24, 26, 31]. However, to our understanding, most of these works focus on the
issue of management and consistency of requirements. Here, we tackle a more
fundamental question of modeling uncertain evolving requirements in terms of
evolution rules. Our ultimate goal is to support the decision maker in answer-
ing such a question “Given these anticipated evolutions, what is a solution to
implement an evolution-resilient system?”.

This motivates our research in modeling and reasoning on a requirement model
of a system which might evolve sometime in the future. We assume that stake-
holders will know the tentative possible evolutions of the system-to-be, but with
some uncertainty. For example, the Federal Aviation Authority (FAA) document
of the System Wide Information Management (SWIM) for Air Traffic Manage-
ment (ATM) lists a number of potential alternatives that subject to other high-
level decisions (e.g., the existence of an organizational agreement for nation-wide
identity management of SWIM users). Such organization-level agreements do not
happen overnight (and may shipwreck at any time) and stakeholders with expe-
rience and high-level positions have a clear visibility of the likely alternatives,
the possible but unlikely solutions, and the politically impossible alternatives.

Our objective is to model the evolution of requirements when it is known to
be possible, but it is unknown whether it would happen: the known unknown.

1.1 The Contributions of This Paper

We set up a game-theoretic foundation for modeling and reasoning on evolution-
ary requirement models:

– A way to model requirement evolutions in terms of two kinds of evolution
rules: controllable and observable rules that are applicable to many require-
ment engineering models (from problem frames to goal models).

– A game-theoretic based explanation for probabilities of an observable
evolution.

– Two quantitative metrics to help the designer in deciding optimal things to
implement for the system-to-be.

This paper is started by a sketch of a case study (§2). To our purpose, we
only focus on requirements of a part of the system-under-study. We distinguish
which requirements are compulsory, and which are optional at design time. Based
on these, we construct simple evolution scenario to illustrate our approach in
subsequent sections, i.e. some compulsory requirements become obsoleted, and
some optional ones turn to be mandatory.

Then, we discuss how to model requirement evolution (§3) using evolution
rules and probabilities of evolution occurrences. We employ the game-theoretic
interpretation to account for the semantic of probabilities.

We also introduce two quantitative metrics to support reasoning on rule-based
evolutionary requirement models (§4). The reasoning is firstly performed on a
simple scenario. Then we show a programmatic way to adapt the technique to
a more complex scenario (e.g., large model, multiple evolutions) (§5).

64 L.M.S. Tran and F. Massacci

Table 1. High level requirements of ISS-ENT and ISS-BP in SWIM Security Services

ID Requirement Opt.

RE1 Manage keys and identities of system entities (human, software, devices,...)

RE2 Support Single Sign-On (SSO) •
RE3 Support a robust Identity and Key Management Infrastructure (IKMI)

that can be scaled up to large number of applications and users.
•

RE4 Intrusion detection and response

RB1 Less cross-program dependencies for External Boundary Protection System

RB2 More robust and scalable common security solution •
RB3 Simpler operation of External Boundary Protection System •
RB4 Support overall security assessment •

The Opt(ional) column determines whether a requirement is compulsory or not at current design
time. Due to evolution, optional requirements may turn to be compulsory, and current compulsory
ones may no longer be needed in the future.

In addition, we discuss current limits of our work, but not the approach, as
well as our plan to address them (§6). Finally, we review related works (§7) and
conclude the paper(§8).

2 Case Study

Throughout this work, to give a clearer understanding of the proposed approach
we draw examples taken from the design architecture of SWIM [23,7] in ATM.

SWIM provides a secure, overarching, net-centric data network, and intro-
duces a Service-Oriented Architecture (SOA) paradigm for airspace manage-
ment. The United States FAA [7] has proposed a logical architecture of SWIM
which consists of several function blocks, among which we choose to consider the
Security Services block. At high level analysis of Security Services, there are five
security areas: i) Enterprise Information Security System (ISS-ENT), ii) Bound-
ary Protection ISS (ISS-BP), iii) SWIM Core ISS, iv) National Air Space (NAS)
End System ISS, and v) Registry control. To avoid a detailed discussion on the
architecture of SWIM Secure Services, which are not main topic of this work,
while providing enough information for illustrating our work we refine our scope
of interest on two areas: ISS-ENT and ISS-BP.

– ISS-ENT includes security requirements that are provided as part of an
underlying IT/ISS infrastructure used by systems throughout the NAS.

– ISS-BP includes requirements with regard to control connections and in-
formation exchanges between internal NAS and external entities. These re-
quirements refer to both network layer control. (e.g., VPNs, firewalls) and
application layer control.

Table 1 lists high level requirements of ISS-ENT and ISS-BP. For convenience,
each requirement has a corresponding identifier: two characters for the security
area (RE - stands for ISS-ENT requirements, RB - stands for ISS-BP ones),

Dealing with Known Unknowns: Towards a Game-Theoretic Foundation 65

Table 2. Design elements that support requirements listed in Table 1

ID Element Description RE1 RE2 RE3 RE4 RB1 RB2 RB3 RB4

A Simple IKMI •
B1 OpenLDAP based IKMI • •
B2 Active Directory based IKMI • • •
B3 Oracle Identity Directory based IKMI • • • •
C Ad-hoc SSO •
D Network Intrusion Detection System •
E Common application gateway for External

Boundary Protection System
• •

F Centralized Policy Decision Point (PDP) •
G Application-based solution for External

Boundary Protection System
•

Each element in this table can support (or fulfill) requirements listed in columns. To prevent useless
redundancy, some elements are exclusive to due to functionality overlapping (e.g., A, B1, B2 and
B3 are mutual exclusive each other).

and a sequence number. There are compulsory requirements (i.e. they are es-
sential at the time the system is designed) and optional ones (i.e. they can be
ignored at present, but might be critical sometime in the future). Solutions for
these requirements are listed in Table 2. Each solution has an IDentifier, a short
description and a checklist of requirements that it can fulfill.

3 Modeling Requirement Evolution

In this section, we describe how we model evolution, which essentially affects to
any further analysis. We capture evolutions by classifying them into two groups:
controllable and observable. Furthermore, we include in this section the game-
theoretic account for probability.

3.1 Evolution on Requirement Model: Controllable and Observable

Stakeholder requirements, mostly in textual format, are their wishes about the
system-to-be. Analyzing requirements in such format is difficult and inefficient.
Designer thus has to model requirements and design decisions by using various
approaches (e.g., model-based, goal-based) and techniques (e.g., DFD, UML).

Generally, a requirement model is a set of elements and relationships, which
depend on particular approach. For instance, according to Jackson and Zave [30],
model elements are Requirements, Domain assumptions, Specifications ; in a goal-
based model (e.g., i*), elements are goals, actors and so on.

Here we do not investigate any specific requirement model (e.g., goal-based
model, UML models), nor go to details about how many kinds of element and
relationship a model would have. The choice of a one’s favorite model to represent
these aspects can be as passionate as the choice of a one’s religion or football
team, so it is out of scope. Instead, we treat elements at abstract meaning, and
only be interested in the satisfaction relationship among elements.

66 L.M.S. Tran and F. Massacci

In our work, we define the satisfaction relationship in terms of usefulness.
That an element set X is useful to another element set Y depends on the ability
to satisfy (or fulfill) Y if X is satisfied. We define a predicate useful(X, Y) which is
true (1) if X can satisfy all elements of Y, otherwise false (0). The implementation
of useful depends on the specific requirement model. For examples:

– Goal models [20]: useful corresponds to Decomposition and Means-end re-
lationships. The former denotes a goal can be achieved by satisfying its
subgoals. The later refers to achieving an (end) goal by doing (means) tasks.

– Problem frames [13]: useful corresponds to requirement references and domain
interfaces relationships. Requirements are imposed by machines, which con-
nect to problem world via domain interfaces. Problem world in turn connects
to requirements via requirement references.

For evolutionary software systems which may evolve under some circumstances
(e.g., changes in requirements due to changes in business agreements, regula-
tions, or domain assumption), their requirement models should be able to ex-
press as much as possible the information about known unknowns i.e. potential
changes. These potential changes are analyzed by evolution assessment algo-
rithms to contribute to the decision making process, where a designer decides
what would be in the next phase of the development process.

Based on the actor who can decide which evolution would happen, we cate-
gorize requirement evolutions into two classes:

– controllable evolution is under control of designer to meet high level require-
ments from stakeholder.

– observable evolution is not under control of designer, but its occurrence can
be estimated with a certain level of confidence.

Controllable evolutions, in other words, are designer’s moves to identify differ-
ent design alternatives to implement a system. The designer then can choose
the most “optimal” one based on her experience and some analyses on these
alternatives. In this sense, controllable evolution is also known as design choice.

Observable ones, in contrast, correspond to potential evolutions of which real-
ization is outside the control of the designer. They are moves of reality to decide
how a requirement model looks like in the future. Therefore, the stakeholder
and designer have to forecast the reality’s choice with a level of uncertainty. The
responses are then incorporated into the model.

We capture the evolution in terms of evolution rule. We have controllable rule
and observable rule corresponding to controllable and observable evolution.

Definition 1. A controllable rule rc is a set of tuples 〈RM, RMi〉 that consists
of an original model RM and its possible design alternative RMi.

rc =
n⋃
i

{
RM

∗−→ RMi

}

Dealing with Known Unknowns: Towards a Game-Theoretic Foundation 67

RE1

B1 B2
B3A

(a) Controllable rule

ISS-ENT-1
ISS-ENT-2

RE1 RE2 RE3 RE4

Description of models

ISS-ENT-1 ISS-ENT-2

(b) Observable rule

Fig. 1. Example of controllable rule (a), and observable rule (b)

Definition 2. An observable rule ro is a set of triples 〈RM, pi, RMi〉 that con-
sists of an original model RM and its potential evolution RMi. The probability
that RM evolves to RMi is pi. All these probabilities should sum up to one.

ro =
n⋃

i=1

{
RM

pi−→ RMi

}

Fig. 1 is a graphical representation of evolution rules taken from SWIM case
study. Left, Fig. 1(a) describes a controllable rule where a requirement model
containing IKMI (RE1) has four design choices: A, B1, B2, and B4 (see Table 1
and Table 2). Right, Fig. 1(b) shows that the initial model ISS-ENT-1 (including
RE1 and RE4) can evolve to ISS-ENT-2 (including RE1 to RE4), or remain
unchanged with probabilities of α and 1 − α. These rules are as follows:

rc =
{

RE1 ∗−→ A, RE1 ∗−→ B1, RE1 ∗−→ B2, RE1 ∗−→ B3
}

ro =
{

ISS-ENT-1
α1−→ ISS-ENT-2, ISS-ENT-1

1−α1−−−→ ISS-ENT-1
}

3.2 Game-Theoretic Account for Probability

Here, we discuss about why and how we employ game-theoretic (or betting
interpretation) to account for probabilities in observable rules.

As mentioned, each potential evolution in an observable rule has an associ-
ated probability; these probabilities sum up to 1. However, who tells us? And
what is the semantic of probability? To answer the first question, we, as sys-
tem Designers, agree that Stakeholder will tell us possible changes in a period
of time. About the second question, we need an interpretation for semantic of
probability.

Basically, there are two broad categories of probability interpretation, called
“physical” and “evidential” probabilities. Physical probabilities, in which fre-
quentist is a representative, are associated with a random process. Evidential
probability, also called Bayesian probability (or subjectivist probability), are
considered to be degrees of belief, defined in terms of disposition to gamble at
certain odds; no random process is involved in this interpretation.

To account for probability associated with an observable rule, we can use the
Bayesian probability as an alternative to the frequentist because we have no event

68 L.M.S. Tran and F. Massacci

to be repeated, no random variable to be sampled, no issue about measurability
(the system that designers are going to build is often unique in some respects).
However, we need a method to calculate the value of probability as well as
to explain the semantic of the number. Since probability is acquired from the
requirement eliciting process involving the stakeholder, we propose using the
game-theoretic method in which we treat probability as a price. It seems to be
easier for stakeholder to reason on price (or cost) rather than probability.

The game-theoretic approach, discussed by Shafer et al. [27] in Computational
Finance, begins with a game of three players, i.e. Forecaster, Skeptic, and Re-
ality. Forecaster offers prices for tickets (uncertain payoffs), and Skeptic decides
a number of tickets to buy (even a fractional or negative number). Reality then
announces real prices for tickets. In this sense, probability of an event E is the
initial stake needed to get 1 if E happens, 0 if E does not happen. In other
words, the mathematics of probability is done by finding betting strategies.

In this paper, we do not deal with stock market but the design of evolving
software, i.e. we extend it for software design. We then need to change rules of the
game. Our proposed game has three players: Stakeholder, Designer, and Reality.
For the sake of brevity we will use “he” for Stakeholder, “she” for Designer and
“it” for Reality. The sketch of this game is denoted in protocol 1.

Protocol 1
Game has n round, each round plays on a software Ci

FOR i = 1 to n
Stakeholder announces pi

Designer announces her decision di: believe, don’t believe
If Designer believes

Ki = Ki−1 + Mi × (ri − pi)
Designer does not believe

Ki = Ki−1 + Mi × (pi − ri)
Reality announces ri

The game is about Stakeholder’s desire of having a software C. He asks De-
signer to implement C, which has a cost of M $. However, she does not have
enough money to do this. So she has to borrow money from either Stakeholder
or National Bank with the return of interest (ROI) p or r, respectively.

Stakeholder starts the game by announcing p which is his belief about the
minimum ROI for investing M $ on C. In other words, he claims that r would
be greater than p. If M equals 1, p is the minimum amount of money one can
receive for 1$ of investment. Stakeholder shows his belief on p by a commitment
that he is willing to buy C for price (1 + p)M if Designer does not believe him
and borrow money from someone else.

If Designer believes Stakeholder, she will borrow M from Stakeholder. Later
on, she can sell C to him for M(1+ r) and return M(1+ p) to him. So, the final
amount of money Designer can earn from playing the game is M(r − p).

Dealing with Known Unknowns: Towards a Game-Theoretic Foundation 69

If Designer does not believe Stakeholder, she will borrow money from National
Bank, and has to return M(1 + r). Then, Stakeholder is willing to buy C with
M(1 + p). In this case, Designer can earn M(p − r).

Suppose that Designer has an initial capital of K0. After round i-th of the
game, she can accumulate either Ki = Ki−1+M(r−p) or Ki = Ki−1+M(p−r),
depend on whether she believes Stakeholder or not. Designer has a winning
strategy if she can select the values under her control (the M $) so that she
always keeps her capital never decrease, intuitively, Ki >= Ki−1 for all rounds.

The law of large numbers here corresponds to say that if unlikely events
happen then Designer has a strategy to multiply her capital by a large amount.
In other words, if Stakeholder estimates Reality correctly then Designer has a
strategy for costs not to run over budget.

4 Making Decision: What Are the Best Things to
Implement

One of the main objectives of modeling evolution is to provide a metric (or set of
metrics) to indicate how well a system design can adapt to evolution. Together
with other assessment metrics, designers have clues to decide what an “optimal”
solution for a system-to-be is.

The major concern in assessment evolution is answering the question: “Whether
a model element (or set of elements) becomes either useful or useless after evolu-
tion?”. Since the occurrence of evolution is uncertain, so the usefulness of an ele-
ment set is evaluated in term of probability. In this sense, this work proposes two
metrics to measure the usefulness of element set as follows.

Max Belief. (MaxB): of an element set X is a function that measures the max-
imum belief supported by Stakeholder such that X is useful to a set of top
requirements after evolution happens. This belief of usefulness for a set of
model element is inspired from a game in which Stakeholder play a game
together with Designer and Reality to decide which elements are going to
implementation phase.

Residual Risk. (RRisk): of an element set X is the complement of total belief
supported by Stakeholder such that X is useful to set of top requirements
after evolution happens. In other words, residual risk of X is the total belief
that X is not useful to top requirements with regard to evolution. Impor-
tantly, do not confuse this notion of residual risk with the one in risk analysis
studies which are different in nature.

Given an evolutionary requirement model RM = 〈RM, ro,rc〉 where

ro=

⋃
i

{
RM

pi−→ RMi

}
is an observable rule, and rc =

⋃
ij

{
RMi

∗−→ RMij

}
is a

controllable rule, the calculation of max belief and residual risk is illustrated in
Eq. 1, Eq. 2 as follows.

70 L.M.S. Tran and F. Massacci

MaxB(X) = max
RM

pi−→RMi∈S
pi (1)

RRisk(X) = 1 −
∑

RM
pi−→RMi∈S

pi (2)

where S is set of potential evolutions in which X is useful.

S =
{
RM

pi−→ RMi|∃(RMi
∗−→ RMij) ∈ rc st.useful(X, RMij)

}

One may argue about the rationale of these two metrics. Because he (or she)
can intuitively measure the usefulness of an element set by calculating the Total
Belief which is exactly the complement of our proposed Residual Risk. However,
using only Total Belief (or Residual Risk) may mislead designers in case of a
long-tail problem.

The long-tail problem, firstly coined by Anderson [1], describes a larger pop-
ulation rests within the tail of a normal distribution than observed. A long-tail
example depicted in Fig. 2 where a requirement model RM might evolve to
several potential evolutions with very low probabilities (say, eleven potential
evolutions with 5% each), and another extra potential evolution with dominat-
ing probability (say, the twelfth one with 45%). Suppose that an element A
appears in the first eleven potential evolutions, and an element B appears in the
last twelfth potential evolution. Apparently, A is better than B due to A’s total
belief is 55% which is greater than that of B, say 45%. However, at the end of
the day, only one potential evolution becomes effective (i.e. chosen by Reality)
rather than ‘several’ potential evolutions are together chosen. If we thus consider
every single potential evolution to be chosen, the twelfth one (45%) seems to be
the most promising and Max Belief makes sense here. Arguing that A is better
than B or versa is still highly debatable. Ones might put their support on the
long tail [1], and ones do the other way round [5]. Therefore, we introduce both
Residual Risk and Max Belief to avoid any misleading in the decision making
process that can be caused when using only Total Belief.

For a better understanding of Max Belief and Residual Risk, we conclude this
section by applying our proposed metrics to the evolution of SWIM
Security Services discussed in previous section. In Fig. 3, here we have an initial re-
quirement model RM0(ISS-ENT-1,ISS-BP-1) that will evolve to RM1(ISS-ENT-
2,ISS-BP-1), RM2(ISS-ENT-1,ISS-BP-2), and RM3(ISS-ENT-2,ISS-BP-2) with
probabilities of 28%, 18% and 42%, respectively. There are 12% that RM0 stays

RM

RM1
A

RM2
A

RM11
A

RM12
B…....

Fig. 2. The long-tail problem

Dealing with Known Unknowns: Towards a Game-Theoretic Foundation 71

ISS-ENT-2,
ISS-BP-2

B1 D
C E F

B2 D
E F B3 D

E

Security Services
(ISS-ENT-1,
ISS-BP-1)

A D
G

B1 D
G

B3 D
G

B2 D
G

28%

12%

18%
42% ISS-ENT-1,

ISS-BP-2

A D
E F

B1 D
E F

B2 D
E F

B3 D
EISS-ENT-2,

ISS-BP-1
B1 D

C
G

B2 D
G

B3 D
G

Fig. 3. Evolution of the SWIM Security Service

Table 3. Examples of Max Belief and Residual Risk

Element set Max Belief Residual Risk

{A, D,} n/a n/a

{A, E, D, G, F} 18% 70%

{B3, D, G} 28% 60%

{B1, D, G, C} 28% 60%

{B3, D, E, G} 42% 0%

{B2, D, E, F, G} 42% 0%

unchanged. Each requirement model is represented as a bubble in which there is
a controllable rule with several design alternatives. Each design alternative is an
element set represented as a rounded rectangle that contains elements (such as A,
D, and G) to support (fulfill) requirements of that requirement model.

Table 3 shows some examples, where the first column displays element sets,
and the two next columns show values of max belief and residual risk. Notice
that the max belief and residual risk in the first row, where the element set is
{A, D}, are n/a which means that we are unable to find any potential evolution
that {A, D} can support all top requirements.

In Table 3, {B3, D, E, G} and {B2, D, E, F, G} seem to be the best choices,
since they have a high max belief (42%) and low residual risk (0%). The zero
residual risk means these element sets are surely still useful after evolution. If
the cost of implementation is the second criteria and assume that each element
has equal cost, then {B3, D, E, G} seems to be better.

5 Handling Complex Evolution

If a model is too large and complex, instead of dealing with the evolution of the
whole model, we can consider evolution in each subpart. If a subpart is still too
large and complex, we can recursively divide it into smaller ones, each with its
local evolution rule, until we are able to deal with.

72 L.M.S. Tran and F. Massacci

We then need to combine these local rules together to produce a global evo-
lution one for the whole model. For simplicity, we assume that:

ASS-1: Independence of evolutions. All observable rules are independent.
It means that they do not influent each other. In other words, the probability
that an evolution rule is applied does not affect to that of other rules.

ASS-2: Order of evolutions. Controllable evolutions are only considered af-
ter observable evolutions.

As discussed, observable rules are analyzed on independent subparts. Prevail-
ing paradigms of software development (e.g., Object-Oriented, Service-Oriented)
encourage encapsulation and loosely coupling. Evolutions applying to subparts,
therefore, are often independent. Nevertheless, if there are two evolution rules
which influent each other, we can combine them into a single one. We assume
that dependent evolutions do happen, but not a common case. Hence manual
combination of these rules is still doable.

The second assumption is the way we deal with controllable rules. If we apply
controllable rules before observable ones, it means we look at design alternatives
before observable evolutions happen. This makes the problem more complex
since under the effect of evolution, some design alternatives are no longer valid,
and some others new are introduced. Here, for simplicity, we look at design
alternatives for evolved requirement models that will be stable at the end of
their evolution process.

After all local evolutions at subparts are identified, we then combine these
rules into a global evolution rule that applies to the whole model. The rationale of
this combination is the effort to reuse the notion of Max Belief and Residual Risk
(§4) without any extra treatment. In the following we discuss how to combine
two independent observable evolution rules.
Given two observable rules:

ro1 =
n⋃

i=1

{
RM1

p1i−−→ RM1i

}
and ro2 =

m⋃
j=1

{
RM2

p2j−−→ RM2j

}

Let ro is combined rule from ro1 and ro2, we have:

ro =
⋃

1≤i≤n
1≤j≤m

{
RM1 ∪ RM2

p1i∗p2j−−−−−→ RM1i ∪ RM2j

}

Fig. 4 illustrates an example of combining two observable rules into a single
one. In this example, there are two subparts of SWIM Security Service: ISS-ENT
and ISS-BP. The left hand side of the figure displays two rules for these parts,
and in the right hand side, it is the combined rule.

In general case, we have multiple steps of evolution i.e. evolution happens for
many times. For the ease of reading, step 0 will be the first step of evolution,
where no evolution is applied. We use RMd

i to denote the i-th model in step d,
and rod,i to denote the observable evolution rule that applies to RMd

i , i.e. rod,i

takes RMd
i as its original model.

Dealing with Known Unknowns: Towards a Game-Theoretic Foundation 73

ro1

ro2

ro = ro1 + ro2

ISS-ENT-1 ISS-ENT-2

ISS-BP-2ISS-BP-1

Security Services
(ISS-ENT-1,
ISS-BP-1)

ISS-ENT-2,
ISS-BP-1

ISS-ENT-1,
ISS-BP-2

ISS-ENT-2,
ISS-BP-2

ISS-ENT-1
ISS-ENT-2

RE1 RE2 RE3 RE4

Description of models

ISS-BP-1
ISS-BP-2

RB1 RB2 RB3 RB4

Fig. 4. Example of combining two observable evolution rules

p13p12
p11

p21 p22 p23 p26p24 p25 p27 p28 p29

Fig. 5. Multiple steps (phases) evolving requirement model

The multi-step evolution begins with an original model RM0
1 . This model can

evolve to one of the potential evolutions RM1
i . In the second step, each RM1

i

then also evolves to one of many potential evolutions RM2
j . The evolution stops

after k steps. If we represent a model as a node, and connect a model to its
potential evolutions as we have done as aforementioned, then we have a tree-like
graph, called evolution tree with k-depth.

Fig. 5 illustrates a two-step evolution, in which observable rules are denoted
as dotted boxes. The original model lays on top part of a box, and all potential
evolutions are in sub boxes laid at the bottom. There are directed edges connect-
ing the original model to potential evolutions. The label on each edge represents
the probability such that original model evolves to target model.

In Fig. 5, an initial requirement model RM0
1 evolves to either RM1

1 , RM1
2

or RM1
3 . Likewise, RM1

i evolves to RM2
j , where i=1..3 and j=1..9. Here, we

have a ternary complete tree of depth 2. Generally, the evolution tree of a k -step
consecutive evolution is a complete k -depth, m-ary tree.

We can always collapse a k -step evolution into an equivalent 1-step one in
terms of probability by letting the original model evolve directly to the very last
models with the probabilities that are multiplication of probabilities of interme-
diate steps. Therefore, any k-step evolution has an equivalent 1-step evolution.
Hence all analyses discussed in §4 are applicable without any modification.

74 L.M.S. Tran and F. Massacci

6 Limitation

Obviously there are limitations in this work:

– Real world applicability. Even though we work on a real world case study,
this work is still pure theory. It needs to be elaborated and then evaluated
with the industry. We plan to prove our work in the field of Air Traffic
Management (ATM), where we interact with designers and stakeholder of
an ATM system, and get their feedback for validation.

– Obtaining probability. Since evolution probabilities are obtained from stake-
holder, they are individual opinions. To deal with the problem, we shall work
on an interaction protocol with stakeholder to minimize inaccuracy, as well
as equip an appropriate mathematic foundation (e.g., Dempster and Shafer’s
theory) for our reasoning.

– Independence of evolution. Complex models may require many probabilities
that are not independent. This breaks the assumptions discussed in §5. Even
though designers can solve this problem by manually combining dependent
evolutions, we still need a more systematic way to deal with them.

7 Related Works

A majority of approaches to software evolution has focused on the evolution
of architecture and source code level. However, in recent years, changes at the
requirement level have been identified as one of the drivers of software evolu-
tion [4, 12, 31]. As a way to understand how requirements evolve, research in
PROTEUS [24] classifies changing requirements (that of Harker et al [11]) into
five types, which are related to the development environment, stakeholder, devel-
opment processes, requirement understanding and requirement relation. Later,
Lam and Loomes [15] present the EVE framework for characterizing changes,
but without providing specifics on the problem beyond a meta model.

Several approaches have been proposed to support requirements evolution.
Zowgi and Offen [31] work at meta level logic to capture intuitive aspects of
managing changes to requirement models. Their approach involves modeling
requirement models as theories and reasoning changes by mapping changes be-
tween models. However, this approach has a limitation of overhead in encoding
requirement models into logic.

Russo et al [26] propose an analysis and revision approach to restructure re-
quirements to detect inconsistency and manage changes. The main idea is to
allow evolutionary changes to occur first and then, in the next step, verify their
impact on requirement satisfaction. Also based on this idea, Garcez et al [4] aim
at preserving goals and requirements during evolution. In the analysis, a spec-
ification is checked if it satisfies a given requirement. If it does not, diagnosis
information is generated to guide the modification of specification in order to
satisfy the requirement. In the revision, the specification is changed according
to diagnosis information generated. Similar to Garcez et al, Ghose’s [9] frame-
work is based on formal default reasoning and belief revision, aims to address

Dealing with Known Unknowns: Towards a Game-Theoretic Foundation 75

the problem of inconsistencies due to requirement evolution. This approach is
supported by automated tools [10]. Also relating to inconsistencies, Fabrinni et
al [6] deal with requirement evolution expressed in natural language, which is
challenging to capture precisely requirement changes. Their approach employs
formal concept analysis to enable a systematic and precise verification of consis-
tency among different stages, hence, controls requirement evolution.

Other notable approaches include Brier et al.’s [3] to capture, analyze, and
understand how software systems adapt to changing requirements in an organiza-
tional context; Felici et al [8] concern with the nature of requirements evolving in
the early phase of systems; Stark et al [29] study the information on how change
occurs in the software system and attempt to produce a prediction model of
changes; Lormans et al [21] use a formal requirement management system to
motivate a more structural approach to requirement evolution.

8 Conclusion

We have discussed a rule-based representation of evolutions on requirement mod-
els. We proposed game-theoretic approach to explain the uncertainty of evolu-
tions. We also introduced two notions of max belief and residual risk to reason
on evolutionary models, in which the higher max belief and lower residual risk
models seem to be more evolution-resilient than others. Together with other
analyses (e.g., cost, risk), these values can help designers in making decision.

During the discussion, we provided many examples taken from a real world
project, SWIM. These examples not only help to explain better our idea, but
also show the promising applicability of our approach.

For future work, we plan to instantiate our approach to a concrete modeling
language (e.g., goal-based language) and apply to a more convincing case study.
We shall interact with stakeholder and designers, show them our approach and
get their feedback to validate the usability of proposed approach.

References

1. Anderson, C.: The long tail. Wired (October 2004)
2. Anton, A., Potts, C.: Functional paleontology: The evolution of user-visible system

services. TSE 29(2), 151–166 (2003)
3. Brier, J., Rapanotti, L., Hall, J.: Problem-based analysis of organisational change:

a real-world example. In: Proc. of IWAAPF 2006. ACM, New York (2006)
4. d’Avila Garcez, A., Russo, A., Nuseibeh, B., Kramer, J.: Combining abductive

reasoning and inductive learning to evolve requirements specifications. IEEE Pro-
ceedings - Software 150(1), 25–38 (2003)

5. Elberse, A.: Should you invest in the long tail? Harvard Business Review (2008)
6. Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: Controlling requirements evolution:

a formal concept analysis-based approach. In: ICSEA 2007 (2007)
7. FAA. System wide information management (SWIM) segment 2 technical review.

Tech. report (2009)
8. Felici, M.: Observational Models of Requirements Evolution. PhD thesis (2004)

76 L.M.S. Tran and F. Massacci

9. Ghose, A.: A formal basis for consistency, evolution and rationale management in
requirements engineering. In: ICTAI 1999 (1999)

10. Ghose, A.: Formal tools for managing inconsistency and change in re. In: IWSSD
2000. IEEE Computer Society, Washington, DC, USA (2000)

11. Harker, S., Eason, K., Dobson, J.: The change and evolution of requirements as a
challenge to the practice of software engineering. In: RE 2001 (1993)

12. Hassine, J., Rilling, J., Hewitt, J., Dssouli, R.: Change impact analysis for require-
ment evolution using use case maps. In: IWPSE 2005 (2005)

13. Jackson, M.: Problem Frames: Analysing & Structuring Software Development
Problems. Addison-Wesley, Reading (2001)

14. Kemerer, C.F., Slaughter, S.: An empirical approach to studying software evolu-
tion. TSE 25(4), 493–509 (1999)

15. Lam, W., Loomes, M.: Requirements evolution in the midst of environmental
change: a managed approach. In: CSMR 1998 (1998)

16. LaMantia, M., Cai, Y., MacCormack, A., Rusnak, J.: Analyzing the evolution of
large-scale software systems using design structure matrices and design rule theory:
Two exploratory cases. In: Proc. of WICSA 2008, pp. 83–92 (2008)

17. Lehman, M.: On understanding laws, evolution and conservation in the large pro-
gram life cycle. J. of Sys. and Soft. 1(3), 213–221 (1980)

18. Lehman, M.: Programs, life cycles, and laws of software evolution. Proc. IEEE
68(9), 1060–1076 (1980)

19. Lin, L., Prowell, S., Poore, J.: The impact of requirements changes on specifications
and state machines. SPE 39(6), 573–610 (2009)

20. Liu, L., Eric Yu, E.: Designing information systems in social context: A goal and
scenario modelling approach. Info. Syst. 29, 187–203 (2003)

21. Lormans, M., van Dijk, H., van Deursen, A., Nocker, E., de Zeeuw, A.: Managing
evolving requirements in an outsourcing context: an industrial experience report.
In: IWPSE 2004, pp. 149–158 (2004)

22. Mens, T., Ramil, J., Godfrey, M.: Analyzing the evolution of large-scale software. J.
of Soft. Maintenance and Evolution: Research and Practice 16(6), 363–365 (2004)

23. Program SWIM-SUIT. D1.5.1 Overall SWIM users requirements. Tech. report,
2008.

24. Project PROTEUS. Deliverable 1.3: Meeting the challenge of chainging require-
ments. Tech. report, Centre for Soft. Reliab., Univ. of Newcastle upon Tyne (1996)

25. Ravichandar, R., Arthur, J., Bohner, S., Tegarden, D.: Improving change tolerance
through capabilities-based design: an empirical analysis. J. of Soft. Maintenance
and Evolution: Research and Practice 20(2), 135–170 (2008)

26. Russo, A., Nuseibeh, B., Kramer, J.: Restructuring requirements specifications.
IEEE Proceedings: Software 146, 44–53 (1999)

27. Shafer, G., Vovk, V., Chychyla, R.: How to base probability theory on perfect-
information games. BEATCS 100, 115–148 (2010)

28. Soffer, P.: Scope analysis: identifying the impact of changes in business process
models. J. of Soft. Process: Improvement and Practice 10(4), 393–402 (2005)

29. Stark, G., Oman, P., Skillicorn, A., Ameele, A.: An examination of the effects of
requirements changes on software maintenance releases. J. of Soft. Maintenance:
Research and Practice, 293–309 (1999)

30. Zave, P., Jackson, M.: Four dark corners of req. eng. TSEM 6(1), 1–30 (1997)
31. Zowghi, D., Offen, R.: A logical framework for modeling and reasoning about the

evolution of requirements. In: ICRE 1997 (1997)

Goal-Based Behavioral Customization of Information
Systems

Sotirios Liaskos1, Marin Litoiu1, Marina Daoud Jungblut1, and John Mylopoulos2

1 School of Information Technology, York University, Toronto, Canada
{liaskos,mlitoiu,djmarina}@yorku.ca

2 Department of Information Engineering and Computer Science, University of Trento, Italy
jm@disi.unitn.it

Abstract. Customizing software to perfectly fit individual needs is becoming in-
creasingly important in information systems engineering. Users want to be able to
customize software behavior through reference to terms familiar to their diverse
needs and experience. We present a requirements-driven approach to behavioral
customization of software systems. Goal models are constructed to represent al-
ternative behaviors that users can exhibit to achieve their goals. Customization
information is then added to restrict the space of possibilities to those that fit
specific users, contexts or situations. Meanwhile, elements of the goal model are
mapped to units of source code. This way, customization preferences posed at
the requirements level are directly translated into system customizations. Our ap-
proach, which we apply to an on-line shopping cart system, does not assume
adoption of a particular development methodology, platform or variability imple-
mentation technique and keeps the reasoning computation overhead from inter-
fering with execution of the configured application.

Keywords: Information Systems Engineering, Goal Modeling, Software
Customization, Adaptive Systems.

1 Introduction

Adaptation is emerging as an important mechanism in engineering more flexible and
simpler to maintain and manage information systems. To cope with changes in the en-
vironment or in user requirements, adaptive systems are able to change their structure
and behavior so that they fit to the new conditions [1,2]. An important manifestation of
adaptivity is the ability of individual organizations and users to customize their software
to their unique and changing needs in different situations and contexts.

Consider, for example, an on-line store where users can browse and purchase items.
Normally, an anonymous user can browse the products, view their price information and
user comments, add them to the cart, log-in and check-out. But different shop-owners
may want variations of this process for different users. They may need, for example,
to withhold prices, user comments or other product information unless the user has
logged in, or only if the user’s IP belongs to a certain set of countries. Or they may
wish to rearrange the sequence of screens that guide the buyer through the check-out
process. Or, finally, they may wish to disable purchasing and allow just browsing, with
only some frequent buyers allowed to add comments – with or without logging in first.

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 77–92, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

78 S. Liaskos et al.

The shop-owner should be able to devise, specify and change such rules every time she
feels it is necessary and then just observe the system reconfigure appropriately without
resorting to expert help. But how easy is this?

Satisfying a great number of behavioral possibilities and switching from one to the
other is a challenging problem in information systems engineering. While there is sig-
nificant research on modeling and implementing variability and adaptation, e.g. in the
areas of Software Product-Lines and Adaptive Systems, two aspects of the problem
seem to still require more attention. Firstly, the need to easily communicate and actuate
the desired customization, using language and terms that reflect the needs and experi-
ence of the stakeholders, such us the shop owner of our example. Secondly, the need to
allow the stakeholders to construct their customization preferences themselves, instead
of selecting from a restricted set of predefined ones, allowing them, thus, to acquire a
customization that is better tailored to their individual needs.

To address these issues, in this paper we extend our earlier work on goal variabil-
ity analysis [3,4] and introduce a goal-driven technique for customizing the behavioral
aspect of a software system. A generic goal-decomposition model is constructed to rep-
resent a great number of alternative ways by which human agents can use the system to
achieve their goals through performance of various tasks. The system-to-be is developed
and instrumented in a way that the chunks of code that can enable or prevent perfor-
mance of such user tasks are clearly located and controlled in the source code. After
completion and deployment of the application, to address their specific needs and cir-
cumstances, individual stakeholders can refine the goal model by specifying additional
constraints to the ways by which human and machine actions are selected and ordered
in time. A preference-based AI planner is used to calculate such admissible behaviors
and a tree structure representing these behavioral possibilities is constructed. Thanks to
having appropriately instrumented the source code, that tree structure can be used as a
plug-in which is inserted in the system and enforces the desired system behavior. This
way, high-level expressions of desired arrangements of user actions are automatically
translated into behavioral configurations of the software system. Amongst the benefits
of our approach are both that it brings the customization practice to the requirements
level and that it allows leverage of larger number of customization possibilities in a flex-
ible way, without imposing restrictions to the choice of development process, software
architecture or platform technology.

The paper is organized as follows. In Section 2 we present the core goal modeling
language and the temporal extension that we are using for representing behavioral al-
ternatives. In Section 3 we show how we connect the goal model with the source code,
how we express goal-level customization desires and how we translate them into be-
haviors of the system. We discuss the feasibility of our approach in Section 4. Finally,
in Section 5 we discuss related work and conclude in Section 6.

2 Goal Models

Goal models [5,6] are known to be effective in concisely capturing alternative ways by
which high-level stakeholder goals can be met. This is possible through the construction
of AND/OR goal decomposition graphs. Such a graph can be seen in Figure 1. The

Goal-Based Behavioral Customization of Information Systems 79

Shop On-
Line

Login

AND

Browse
Items

AND

Check Out

Review
Order

AND

Provide New
Address Info

AND

AND

AND

View
Prices View Basic

Product Info

AND

Logout

AND

AND

Provide
CC Info

AND

Confirm
Check Out

AND

View and Post
Comments

View
Comments

AND

Add
Comment

AND

AND

Learn About
Items

AND

Consult
Printed
Catalog

AND View Items

AND
Use

External
Web Site

AND

Use
Cart pre

pre
pre

pre

pre
pre

pre
pre

View Product
Image

AND

t1

t2

t3 t4 t7

t8

t9

t10

t11

t12

t13

Change
Ordering

AND

t15

t16

t5

pre

pre

pre

pre

Provide
Address Info

Use Stored
Address Info

OR
OR

t6

t14

Fig. 1. A goal model

model shows alternative ways by which an on-line store can be used for browsing and
purchasing products.

The graph consists of goals and tasks. Goals – the ovals in the figure – are states of
affairs or conditions that one or more actors of interest would like to achieve [6]. Tasks
– the hexagonal elements – describe particular low-level activity that the actors perform
in order to fulfill their goals. To ease our presentation, next to each task shape a circular
annotation containing a literal of the form ti has been added, which we will use in the
rest of the paper to concisely refer to the task. For example, t7 refers to the task View
Basic Product Info.

Tasks can be classified into two different categories depending on what the system
involvement is during their performance. Thus, human-agent tasks are to be performed
by the user alone without the support or other involvement of the system under consid-
eration – an external system outside the scope of the analysis may be used though. For
example Consult Printed Catalog (t3) belongs to this category because it is performed
without involvement of the system. On the other hand, mixed-agent tasks are tasks that
are performed in collaboration with the system under consideration. Thus Add Com-
ment is a mixed-agent task as the user will add the comment and the system will offer
the facility to do so. Another example of a mixed-agent task is View Image: the system
needs to display an image and the user must view it in order for the task to be consid-
ered performed. All tasks of Figure 1 are mixed-agent except for t3 and t8 which are
human-agent tasks.

Goals and tasks are connected with each other using AND- and OR-decomposition
links, meaning, respectively, that all (resp. one) of the subgoals of the decomposition
need(s) to be satisfied for the parent goal to be considered satisfied. In addition, chil-
dren of AND-decompositions can be designated as optional. This is visually repre-
sented through a small circular decoration on top of the optional goal. In the presence
of optional goals, the definition of an AND-decomposition is refined to exclude op-
tional sub-goals from the sub-goals that must necessarily be met in order for the parent
goal to be satisfied. For example, for the goal View Items to be fulfilled, the task View
Basic Product Info is only mandatory – tasks View Prices, Change Ordering and View
Product Image may or may not be chosen to be performed by the user.

80 S. Liaskos et al.

Furthermore, the order by which goals are fulfilled and tasks are performed is rele-
vant in our framework. To express constraints in satisfaction ordering we use the prece-
dence link (

pre−→). The precedence link is drawn from a goal or task to another goal or
task, meaning that satisfaction/performance of the target of the link cannot begin unless
the origin is satisfied or performed. For example the precedence link from the task Use
Cart (t2) to the goal Check Out implies that none of the tasks under Check Out can be
performed unless the task Use Cart has already been performed.

Given the relevance of ordering in task fulfillment, solutions of the goal model
come in the form or plans. A plan for the root goal is a sequence of leaf level tasks
that both satisfy the AND/OR decomposition tree and possible precedence links. In
plan [t1, t7, t4, t2, t12, t14, t15, t16, t11] for example, the user logs-in, browses the prod-
ucts with their prices, adds some of them to the cart and then checks out. In plan
[t1, t7, t4, t9, t10, t2, t12, t14, t15, t16, t11], the user also views and adds comments.

The goal model implies a potentially very large variety of such plans, which are
understood as a representation of the variability of behaviors that an actor may exhibit
in order to achieve their goals. Note that this behavioral variability is to be contrasted
with variability of the actual software system, in that the same system variant may be
used in a variety of ways by the user. For example, the user of our on-line store may
variably choose to use or not to use the Add Comment feature, even if that feature is
invariably available to them.

3 Enabling Goal-Driven Customization

Let us now see how our framework allows specification of preferred user behaviors and
enables subsequent customization of the software system in a way that these preferred
behaviors are actually enforced. A schematic of our overall approach can be seen in
Figure 2. At design time the system is developed in a way that the code that enables
each leaf level task is clearly identified in the source code (frame B in the Figure) and
can be disabled or enabled using information appropriately acquired from replaceable
customization plug-ins, whose construction takes place after deployment, as described
below. After deployment of the application, the users can define behavioral customiza-
tion constraints at a high-level using structured English (frame C). These constraints are
translated into formulae in Linear Temporal Logic (D), which, together with the goal
model (A) are provided to a preference-based planner. The latter produces plans of the
goal model that best satisfy the given behavioral constraints (E). These plans are finally
merged into a structure called policy tree (F) which is then plugged into the application
so that the latter, thanks to the instrumentation that took place at design time (B), ex-
hibits the behavior that is desired in the original customization constraints. In the rest
of this section we describe each of these steps in more detail.

3.1 Connecting Goal Models with Code

To allow interpretation of preferred plans into preferred software customizations, the
system is developed in a way such that elements of the source code are associated with
tasks of the goal model. In our framework, the nature of this association as well as

Goal-Based Behavioral Customization of Information Systems 81

Customization Formula

 Plans
 [t1, t4 , t7, t2, t10, t12 , t13, t15,...]
 [t

1
, t

3
, t

4
, t

7
, t

2
, t

10
, t

12
, t

14
,...]

 ….

Goal Model

Pre-Deployment
(Design Time)

Post Deployment

Plug-In

Policy Tree

perform(t)

canBePerformed(t)

hasBeenPerformed(t)

Instrumentation

Instrumented Code
...
<?php if($tree->canBePerformed("addComment")) { ?>
 <p> Writting comment </
font></p>
 <form method='POST' action='commentControl.php'>
 Title
 <input type='text'
name='title'>

 Body
 <textarea rows="10" cols="30"
name='body'></textarea>
 ...

$tree->perform("addComment")
<?php } ?>
…

Planner

Interpreter

Customization
Desires
des1: “Add Comment is
never satisfied.”
des2: “Provide CC Info is
satisfied after Provide
Address Info is satisfied.”
des3: “View Prices is not
satisfied before Login is
satisfied.”

A

B

CD

E

F

...

Fig. 2. From Customization Desires to Policy Trees

the way it is established is transparent from a particular implementation technology
or architectural approach (e.g. agent-, service- or component-orientation) or particular
development process that, for example, goal-oriented development methodologies pro-
pose (e.g. [7]). It is also independent of variability implementation and composition
techniques (e.g. [8,9,10]) in a sense that any such technique could potentially be chosen
and applied. Thus, to establish the association between goal models and code we only
identify two general principles, which, if applied during development – in whatever ar-
chitectural or process context – our framework becomes applicable. These principles
refer to task separation and task instrumentation, explained below.

Task Separation. For every mixed-agent task in the goal model there exists a set of
statements which are dedicated to exclusively supporting that task – and, thus, serve no
other purpose. Furthermore, it should be possible to prevent these statements from exe-
cuting, preventing in effect the user from performing the task. There is no requirement
that these statements are located in the same part of the implementation and not scat-
tered across components, modules, classes etc. – thus the principle is not a suggestion
of task-oriented modularization. We call this code mapped code (fragment) to the task.
Back in the on-line cart example, the mapped code for task Login is the code for drawing
the username and password text boxes as well as the “Submit” and “Clear” button on
the user screen. This code exists exclusively for allowing the user to perform this task.
Not drawing those widgets, through conditioning the mapped code, effectively prevents
execution of the task. As we will see, we found that the mapped code is predominantly
code that conveniently exists in the view layer of an application.

Task Instrumentation Points. For every mixed-agent task, there is a location in the
source code where the state of the system suggests that a task has been performed. In the
Login example this might be the point in which confirmation that the login credentials
are correct is sent back from the database and the application is ready to redirect control
elsewhere. In the task Review Order, this can be the point where a summary of the

82 S. Liaskos et al.

order has been displayed on the screen – and we assume that the user has successfully
performed the subsequent reviewing task.

The above principles are deliberately general and informal so that they can be easily
refined and applied in a variety of architectural, composition and variability implemen-
tation scenarios. In a component-based or service-oriented setting, for example, the
mapped code of each task can be associated with existing interfaces or services – or
adapters thereof – which may or may not be used by the process engine or other orches-
tration/composition environment. In an aspect-oriented application, on the other hand,
modularization need not follow task separation. Instead tasks can be written as advice
to be weaved (or not) in appropriate locations in the source code. Later in the paper,
drawing from our case study with the on-line cart system, we show how fulfilling the
above principles turned out to be a very natural process.

3.2 Adding Customization Constraints

The temporally extended goal model with its precedence links is intended to be an un-
constrained and behaviorally rich model of the domain at hand. Indeed, the goal model
of Figure 1 describes a large variety of ways by which the user could go about fulfilling
the root goal, as long as each of these ways is physically possible and reasonable. How-
ever the shop owner may wish to restrict certain possibilities. For example, she may
want to disallow the user to view the prices unless he logs in first or prevent the user
from viewing and/or adding comments, before logging in or in general. She may even
go on to disallow use of the cart, again prior to logging in or even for the entire session.
In the last case, this would effectively imply turning the system into a tool for browsing
products only.

To express additional constraints on how users can achieve their goals we augment
the goal model with the appropriate customization formulae (CFs - frame D in Figure
2). CFs are formulae in linear temporal logic (LTL) grounded on elements of the goal
model. Different stakeholders in different contexts and situations may wish to augment
the goal model with a different set of CFs, restricting thereby the space of possible
plans to fit particular requirements. To construct CFs we use 0-argument predicates such
as useCart or browseItems to denote satisfaction of tasks and goals. These predicates
become (and stay) true once the task or goal they represent is respectively performed
or satisfied. Furthermore, symbols �,�, ◦ and U are used to represent the standard
temporal operators always, eventually, next and until, respectively.

Using CFs we can represent interesting temporal constraints that performance of
tasks or satisfaction of goals must obey. Back to our on-line shop example, assume that
the shop owner would like to disallow certain users from browsing the products without
them having logged in first. This could be written as a CF as follows:

¬ viewBasicProductInfo U login

The above means that, in a use scenario, the task View Basic Product Info (t7) should
not be performed (signified by predicate viewBasicProductInfo becoming true) before
the task Login (t1) is performed for the first time (thus, predicate login becoming true).
For another class of users there may be a more relaxed constraint:

¬ viewPrices U login

Goal-Based Behavioral Customization of Information Systems 83

Universal and existential constraints are also relevant. For example the shop owner
may want to disallow users from adding comments, thus:

�¬addComment

If, in addition to these, she wants to prevent them from viewing prices, logging in
and using the cart, this translates into a longer conjunction of universal properties seen
in Figure 3. In effect, with the property of the figure the shop owner allows the users to
only browse the products, their basic information and their images.

(�¬ addComment) ∧ (�¬ viewPrices)∧
(�¬ login) ∧ (�¬ useCart)

Fig. 3. A Customization Formula

While CFs, as LTL formulae, can in theory be of arbitrary complexity, we found
in our experimentation that most CFs that are useful in practical applications are of
specific and simple form. Thus simple existence, absence and precedence properties
are enough to construct useful customization constraints. Hence, LTL patterns such as
the ones introduced by Dwyer et al. [11], can be used to facilitate construction of CFs
without reference to temporal operators. In our application, we used patterns in the form
of templates in structured language. Thus, CFs can be expressed in forms such as “h1

is [not] satisfied before/after h2 is satisfied” to express precedence as well as “h is
eventually [not] satisfied” to express existential properties, where h, h1, h2 are goals or
tasks of the goal model. Examples of customization desire expressions can be seen in
frame C of Figure 2. A simple interpreter performs the translation of such customization
desires into actual LTL formulae. In this way, construction of simple yet useful CFs is
possible by users who are not trained in LTL.

3.3 Identifying Admissible Plans

Adding CFs significantly restricts the space of possible plans by which the root goal can
be satisfied. Given a CF, we call the plans of the goal model that satisfy the CF admissi-
ble plans for the CF. Thus, all [t7], [t7, t5],[t7, t10, t6], [t8, t7, t6, t5] and [t3, t7, t10] are
examples of admissible plans for the CF of Figure 3. However, plan [t1, t7, t4, t9, t2, t12,
t14, t15, t16, t11], although it satisfies the goal model and its precedence constraints, it
is not admissible because it violates the CF – all its conjuncts actually.

To allow the identification of plans that satisfy a given CF, we are adapting and using
a preference-based AI planner, called PPLan [12]. The planner is given as input a goal
model, automatically translated to a planning problem specification as well as a CF
and returns the set of all admissible plans for the CF (frame E in Figure 2). Unless
interrupted, the planner will continue to immediately output plans it finds until there
are no more such. Details on how the planner is adapted can be found in [3].

3.4 Constructing and Using the Policy Tree

We saw that the introduction of a CF dramatically decreases the number of plans that
are implied by the goal model into a smaller set of admissible ones that also satisfy

84 S. Liaskos et al.

login (t1)

root

View basic prod. Info (t7)

View prod. Image (t6)

View

Prices (t4)

View Comments (t10)

Add Comment (t9) Logout (t11)

...

...

...

...

... state
pointer

login (t1)

root

View basic

prod. Info (t7)

View prod.

Image (t6)

View Prices (t4)

Use Cart (t2) logout (t11)

...

...

...

state
pointer

state
pointer

I

II

IIICF

CF

Fig. 4. The effect of Customization Formulae

the CF. The policy tree is simply a concise representation of those admissible plans –
with the difference that it includes only the mixed-agent tasks. In particular, each node
of the policy tree represents a task in the goal model. Given a set of plans P – where
human-agent tasks have been removed – the policy tree is constructed in a way that
every sequence of nodes that constitutes a path from the root to a leaf node is a plan in
P and vice versa. It follows that every intermediate node in the policy tree represents
both a plan prefix – i.e. the first n tasks of a plan – that can be found in P (by looking at
the path from the root) and a set of continuation possibilities that yield complete plans
of P (by looking at possible paths towards the leafs).

Goal-Based Behavioral Customization of Information Systems 85

The policy tree is also supplied with a pointer that points to one of the nodes of the
tree. We call this the state pointer. The role of the state pointer is to maintain informa-
tion about what tasks have been performed in a given use scenario at run time. Thus, the
state pointer pointing to a given node means that the tasks of the plan prefix associated
to that node (the associated prefix) have already been performed. On the other hand, the
tasks that can possibly be performed from that point are restricted to the children of the
node currently pointed at, or any of the tasks in the associated prefix – in a sense that
these tasks can be repeated.

In Figure 4, for example, on the left side of the bottom frame, part of a policy tree
can be seen together with the CF it originated from (�¬useCart). Through use of the
planner, that CF results in a set of admissible plans, say P . Some of those plans have a
prefix [t1, t7, t6, t4, t10, . . .]. Thus, in the resulting policy tree that is depicted, there is a
path from the root to the node t10 that constructs this prefix. By looking at the children
of node t10, we infer that only two expansions of the prefix at hand will yield a longer
prefix that also exists in P and therefore is admissible with respect to the CF: t9 and
t11. In practice, this means that if we are to keep satisfying the CF, we should either
perform one of those two actions or repeat actions of the existing prefix (but without
moving the state pointer).

An algorithm for constructing a policy tree, from a list of admissible plans that the
planner returns can be found in our technical report [13]. It is important to note here
that a new plan can always be appended to an existing policy tree in linear time and
enrich the behavioral possibilities. This allows us to use partial outputs of the planner
immediately while gradually enriching the tree as new plans are generated.

3.5 Conditioning and Instrumenting the Source Code

Let us now see how the policy tree can be plugged into the software system to enable
a behaviors that comply with the expressed customization desires. Preparation for this
needs to actually happen at design time, when the application is developed. Recall that
the system is built following the principles of task separation and task instrumentation.
This means that, on one hand, each mixed-agent task is associated with a set of state-
ments (the mapped code) whose removal can prevent execution of the task, and on the
other hand, for each task there is a well defined location in the code that marks comple-
tion of the task. The policy tree is integrated by conditioning access to the mapped code
based on the position of the state pointer, and by adding statements in the instrumenta-
tion points that advance the position of the state pointer accordingly.

More specifically, the former is implemented through the use of the function can-
BePerformed(t). The function canBePerformed(t) returns true iff task t is one of the
children of the node currently pointed at by the state pointer or part of the associated
prefix. In other words, the code fragment can be entered only if the new plan prefix that
would result from performing the task that maps to that fragment belongs to at least one
of the admissible plans. For example the mapped code of the task Use Cart involves
buttons for adding items to the cart, text fields for specifying quantities, links for view-
ing the cart content etc. All these will be displayed only if canBePerformed(useCart) is
true, that is the task Use Cart is in one of the children of the state pointer, or it is part
of the path from the root to the state pointer. If this is not the case, the mapped code

86 S. Liaskos et al.

viewDetailedProductInfo.php:
...

<?php if($tree->canBePerformed("addComment")) { ?>
 <p> Writting comment </p>

 <form method='POST' action='commentControl.php'>
 Title
 <input type='text' name='title'>

 Body
 <textarea rows="10" cols="30" name='body'>
 </textarea>

 ...
 <input type='submit' name='submitComment' value='Submit'>

 <input type='reset' name='reset' value='Clear'>

 ...
<?php } ?>

...

commentControl.php:
...

$title = $_POST['title'];
$body = $_POST['body'];

$inventoryID = $_POST['inventoryID'];
$userID =$_POST['userID'];

$commentControl = new commentControl();
$commentControl->setComment($title, $body, $userID,

$inventoryID);
$tree->perform("addComment");
header("Location:http://

".$_SERVER['HTTP_HOST'].$clientRoot."productControl/
viewDetailProductInfo.php?inventoryID=$inventoryID");

...

viewCart.php:
...
<?php
 if($tree->canBePerformed("reviewOrder"))

 && ($CartControl->getNumOfItem()>0){?>
 <form action="CartControl.php"

method="POST"><p>
 <input type='submit' value='Checkout'

name='continue'/></p>

 <?php } ?>
...

Fig. 5. Conditioning and Instrumenting Code

will not be accessed, preventing rendering of the user interface elements, which in turn
prevents performance of the task by the user.

Advancement of the position of the state pointer, on the other hand, is implemented
through simple perform(t) statements inserted in the instrumentation points, where t is
the task that was just performed. The effect of the perform(t) statement is that the state
pointer advances to the child labeled with t or stays where it is if t is part of the path
from the root to the state pointer.

In Figure 5, examples of conditioning and instrumentation are shown for our PHP-
based on-line cart system. The upper right frame shows how displaying the widgets for
performing the task Add Comment is conditional to canBePerformed(addComment) be-
ing true. Once the user presses the submit button, a different file (commentControl.php)
arranges to insert the comment to the database and, among other workings, a call to per-
form(addComment) is made (seen in upper left frame), so that the policy tree advances
to the corresponding node. In the lower right frame, how customization conditions are
mixed with run-time conditions is illustrated. Thus, the “Checkout” button is visible if
“Checkout” is allowed by the current customization policy and the cart is non-empty,
which is something irrelevant of policy tree. It is important to notice, therefore, that
the policy tree is not used to completely arrange the details of the control flow of the
application but to only enforce more abstract customization decisions that have been
made at the requirements level. Note also that use of the policy tree is not restricted to
the functions discussed above. For example the function hasBeenPerformed(t), which
returns true iff task t is part of the associated prefix of the node currently pointed,
proved in our application to be helpful in handling large numbers of task permutation
possibilities.

Goal-Based Behavioral Customization of Information Systems 87

Note, again, that the injection of conditioning and instrumentation code discussed
above is taking place at design time and based on the goal model. It is therefore in-
dependent of the actual structure of the policy tree, which, once the system is up and
running, varies based on the customization constraints that are in effect each time.

3.6 In Action

Let us now see a complete example of how a system is customized through expression
of high-level customization desires. Back to our on-line shop, consider the scenario in
which the shop-owner wants to construct CFs for newly identified groups within her
customer base. In Figure 4, two different CF scenarios she devised can be seen together
with screen-shots showing the effect they have to system behavior. On the scenario
on the top frame the CF prevents the users from – among other things – viewing any
product information before they login. In effect this means that once the session starts
the only user action that is allowed is logging in. Indeed, in the policy tree, login is the
only child of the root. This explains the bare-bones screen that is offered to the users
(upper screen-shot labeled [I]). Later in the same scenario of the top frame the user
has logged in and is browsing products. However, the CF prevents the user from adding
any comments. Hence, this facility is absent when viewing detailed product information
(screen-shot [II]). Nevertheless, at that stage, making use of the cart or logging out is
possible as seen in the policy tree. Thus, the button “Add to cart” is visible next to the
product and the button “Logout” on the top left of the screen. The scenario on the lower
frame of Figure 4, on the other hand, tailored to e.g. customers from a particular country
overseas, prevents use of the cart but does not prevent addition of comments. Thus, at a
stage where detailed product information is viewed, the user cannot add the item to the
cart as before, but she can post a comment or log-out (screen-shot [III]). This is exactly
what the state pointer indicates.

4 Applying Goal-Based Customization

Let us now discuss some of the experiences we acquired from our case study with our
on-line cart system. A detailed account on this application can be found in [13].

Code Development and Instrumentation. The on-line cart system we built is a 5 thou-
sand lines-of-code (5KLOC) application in PHP, following a common 3-layer architec-
tural style – i.e. separating view, application logic and storage layers. Two developers,
senior undergraduate students at that time, where asked to develop the system following
a standard textbook object-oriented approach with the only goal model related restric-
tion that the leaf level tasks of the goal model (which was maintained exclusively by the
first author) would be treated as acceptance tests for the end-product and that optional
and alternative tasks maintain that status in the implementation. Looking at the result
afterwards we found that task separation not only was possible but emerged naturally
in the development process. Interestingly, the mapped code would tend to appear at the
view layer of the application. Furthermore, subsequent conditioning and instrumenta-
tion of the mapped code did not pose difficulties either. Policy trees, on the other hand,
are plugged as separate globally visible PHP classes in the application. The use of the

88 S. Liaskos et al.

methods canBePerformed(t) and performed(t) to query/manipulate the tree did not pose
any obvious perception problems or design issues requiring intense problem solving
effort.

Anchoring the Policy Control Process. An issue that triggered further investigation is
that of scoping behaviors. In our example, a plan prefix reflects the use of the system
by one user at a particular time. The same or a different behavior may unfold from the
beginning in a different client system (some other customer trying to buy something),
or by the same customer later that day. With the term anchor we refer to any type of
entity, or group thereof, whose lifetime is bound to a plan prefix. In our example, the an-
chor is the web session. If, for example, the session expires so does the plan prefix that
has been constructed to that point. A new session always means an empty plan prefix
(i.e. state pointer points to the root of the policy tree) waiting to be expanded through
user actions. In different applications different anchoring entities can be thought. In an
application processing business process, e.g. for academic admissions, a student appli-
cation can be considered as the anchoring entity. Thus, for each new application that
arrives a new empty prefix is constructed which is then augmented (through progres-
sion of the state pointer) based on tasks that are performed to process that particular
application. Interestingly, different anchoring entities can be treated by different policy
trees. For example different users of our on-line store (identified through e.g. a cookie
mechanism) may experience different behavioral customizations, through assigning a
separate policy tree to each of them.

Performance and Tool Considerations. The construction of a policy tree is an off-line
activity and can afford longer computation times on separate computing infrastructure.
This way, we avoid unpredictably expensive computational steps to intervene in the
normal control flow. In our experimentation with several CFs over the bookseller goal
model we found that the first hundred of admissible plans can be calculated within a
time period ranging between one and 30 minutes. It is important to note that a working
customization can be achieved even if a subset (in our case some tens) of all admissible
plans is provided, though the resulting policy may prevent behaviors that are otherwise
desired. The policy tree can keep being updated as the planner returns new plans. We
definitely anticipate improved performance as the field of preference-based planning
is fast progressing. For example, an HTN-based planner with preferences has recently
been introduced which offers dramatically better performance through utilization of the
domain knowledge expressed as task hierarchies ([14]). The principles applied in this
paper are applicable to any preference-based planner that can generate sets of plans.

5 Related Work

Our proposal for requirements-driven software customization relates to research on a
variety of topics including adaptive systems, product lines and software/service com-
position.

General goal-driven adaptation has been proposed by several authors. Thus, Zhang
et al. [15] use temporal logic to specify adaptive program semantics. Further, work
by Brown et al. [16] uses goal models to explicitly specify what should occur during

Goal-Based Behavioral Customization of Information Systems 89

adaptation. Their approach uses goal models to specify the adaptation process; in our
approach the adaptation is the indirect result of imposing customization and precedence
constraints on goals. Strategy trees have also been used to evaluate alternative recon-
figurations of software systems in the context of QoS and structural changes [17]. Our
approach differs in that it deals with user goals and behavior adaptation.

Researchers have also proposed different ways to model and bind variability in busi-
ness processes. Lapouchnian et al. use goal models for analyzing alternative business
process configurations [18]. Lu et al. propose the construction of flexible business pro-
cess templates that lay the basic constraints that must be met [19]. Elsewhere [20,21]
variability constructs are added to existing business process notations. In requirements
engineering, a constraint language with temporal features has been proposed to analyze
families of scenarios [22]. In general, such frameworks do not include an implementa-
tion approach, and when they do, this is restricted to specialized frameworks such as
workflow engines [21] or e.g. BPEL-based service composition platforms [18].

The extensive literature on software composition, on the other hand (e.g. [9] for a
taxonomy), is focusing on specific technologies, frameworks or techniques by which
composition can be implemented – e.g. composition of services ([23]), the AHEAD
framework and its descendants [24,25] or Aspect Orientation [26], Domain Specific
Languages and Generators [27,28]. Use of existing AI planning applications to service
composition, in particular, ([29,30] – cf. [10] for a survey), requires certain assumptions
such as, for example, availability of cleanly defined services, limited degree of user
intervention or the existence of some implementation and execution technique of the
desired composition that also alleviates increased reasoning times. Our customization
framework attempts to be more generally applicable, has a stronger focus on the im-
plementation aspect without making platform or architectural assumptions and it also
focuses on user interactions and therefore families of behaviours (system customiza-
tions) rather than single-purpose compositions. At the same time, it focuses on the re-
quirements aspect of the problem, that is how the desired customization result can be
communicated through reference to terms related to the experience and the goals of the
actual users, rather than technical features of the system.

6 Conclusions

Tailoring the behavior of a software system to the needs of individual stakeholders,
contexts and situations as these change over time has emerged as an important need
in today’s systems development. However, it also poses a challenging engineering and
maintenance problem.

The main contribution of our paper is a technique to exactly allow this translation
of high-level customization requirements into an appropriately configured system, in a
flexible and accessible way. The merits of our approach lie in the following features.
Firstly, it offers a direct linkage of software customization with user requirements using
goal models and high-level customization desire specifications. This way customization
is performed through talking about the user activity and experience rather than features
of the system to be. Secondly, our proposal for constructive customization, where users
express their exact needs, versus selective, where users select from predefined options,

90 S. Liaskos et al.

allows for flexibly leveraging a much larger space of customization possibilities, leading
to systems that are better tailored to the exact needs of users. Thirdly, the proposed
approach implies minimum impact to the implementation process, being transparent
to the architectural, modularization, process and platform choices the engineers have
made, as long as two simple mapping principles are followed and the ability to maintain
and query the policy tree is arranged. Our application in the on-line cart system offered
us strong evidence that both the customization practice per se and the engineering and
development intervention that enables it are feasible and exhibit the above advantages.

Our proposal opens a variety of possibilities for future research. One of them is an
extended empirical investigation on the applicability and generality of our basic im-
plementation principles. Such empirical work also includes evaluating with end-users
the extent and manner by which they can construct customization desires of various
levels of complexity. Furthermore, application of the technique in a variety of system
types would allow better understanding of whether the current form of the policy tree
offers the right level of information or whether adding more expressiveness should be
attempted. This could include, for example, adaptation of the semantics of satisfaction
predicates so that task repetition also becomes subject to CF compliance or addition of
run-time instance-level information to the produced policy structure. Such extensions
would potentially allow for finer grain customization, but at the significant expense of
simplicity, of impact minimality to the design and of maintaining a modest computa-
tional cost.

References

1. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evolution. In:
Proceedings of the 20th International Conference on Software Engineering (ICSE 1998),
Washington, DC, USA, pp. 177–186 (1998)

2. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Future of Soft-
ware Engineering (FOSE 2007), Washington, DC, USA, pp. 259–268 (2007)

3. Liaskos, S., McIlraith, S.A., Mylopoulos, J.: Towards augmenting requirements models with
preferences. In: Proceedings of the 24th International Conference on Automated Software
Engineering (ASE 2009), Auckland, New Zealand, pp. 565–569 (2009)

4. Liaskos, S., McIlraith, S.A., Mylopoulos, J.: Integrating preferences into goal models for re-
quirements engineering. In: Proceedings of the 10th International Requirements Engineering
Conference (RE 2010), Sydney, Australia, pp. 135–144 (2010)

5. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci-
ence of Computer Programming 20(1-2), 3–50 (1993)

6. Yu, E.S.K., Mylopoulos, J.: Understanding “why” in software process modelling, analysis,
and design. In: Proceedings of the Sixteenth International Conference on Software Engineer-
ing (ICSE 1994), pp. 159–168 (1994)

7. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: High variability design for software agents:
Extending Tropos. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 2(4)
(2007)

8. Gacek, C., Anastasopoules, M.: Implementing product line variabilities. SIGSOFT Software
Engineering Notes 26(3), 109–117 (2001)

Goal-Based Behavioral Customization of Information Systems 91

9. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing adaptive software.
IEEE Computer 37(7), 56–64 (2004)

10. Rao, J., Su, X.: A survey of automated web service composition methods. In: Cardoso, J.,
Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer, Heidelberg (2005)

11. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state
verification. In: Proceedings of the 21st International Conference on Software Engineering
(ICSE 1999), Los Alamitos, CA, USA, pp. 411–420 (1999)

12. Bienvenu, M., Fritz, C., McIlraith, S.: Planning with qualitative temporal preferences. In:
Proceedings of the 10th International Conference on Principles of Knowledge Representation
and Reasoning (KR 2006), Lake District, UK, pp. 134–144 (2006)

13. Liaskos, S., Litoiu, M., Jungblut, M.D., Mylopoulos, J.: Goal-based Behavioral Customiza-
tion of Information Systems. Technical Report CSE-2010-10, York University (2010)

14. Sohrabi, S., Baier, J.A., McIlraith, S.: HTN planning with preferences. In: Proceedings of the
21st International Joint Conference on Artificial Intelligence (IJCAI 2009), Pasadena, CA,
USA, pp. 1790–1797 (2009)

15. Zhang, J., Cheng, B.H.C.: Using temporal logic to specify adaptive program semantics. Jour-
nal of Systems and Software (Special Issue on Architecting Dependable Systems) 79(10),
1361–1369 (2006)

16. Brown, G., Cheng, B.H.C., Goldsby, H., Zhang, J.: Goal-oriented specification of adapta-
tion requirements engineering in adaptive systems. In: Proceedings of the 2006 Interna-
tional Workshop on Self-Adaptation and Self-Managing Systems (SEAMS 2006), pp. 23–29.
ACM, New York (2006)

17. Simmons, B.: Strategy-trees: A Novel Approach to Policy-Based Management. PhD thesis,
University of Western Ontario (February 2010)

18. Lapouchnian, A., Yu, Y., Mylopoulos, J.: Requirements-driven design and configuration
management of business processes. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM
2007. LNCS, vol. 4714, pp. 246–261. Springer, Heidelberg (2007)

19. Lu, R., Sadiq, S., Governatori, G.: On managing business processes variants. Data and
Knowledge Engineering 68(7), 642–664 (2009)

20. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H., La Rosa, M.: Configurable
workflow models. International Journal of Cooperative Information Systems (IJCIS) 17(02),
177–221 (2008)

21. Sadiq, S.W., Orlowska, M.E., Sadiq, W.: Specification and validation of process constraints
for flexible workflows. Information Systems 30(5), 349 (2005)

22. Sutcliffe, A.G., Maiden, N.A.M., Minocha, S., Manuel, D.: Supporting scenario-based re-
quirements engineering. IEEE Transactions on Software Engineering 24(12), 1072–1088
(1998)

23. Baresi, L., Pasquale, L.: Live goals for adaptive service compositions. In: Proceedings of the
2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS 2010), pp. 114–123 (2010)

24. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. In: Proceedings of
the 25th International Conference on Software Engineering (ICSE 2003), Washington, DC,
USA, pp. 187–197 (2003)

25. Apel, S., Kastner, C., Lengauer, C.: Featurehouse: Language-independent, automated soft-
ware composition. In: Proceedings of the 31st International Conference on Software Engi-
neering (ICSE 2009), pp. 221–231 (2009)

26. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-m., Irwin, J.:
Aspect-oriented programming. In: Liu, Y., Auletta, V. (eds.) ECOOP 1997. LNCS, vol. 1241,
p. 313. Springer, Heidelberg (1997)

92 S. Liaskos et al.

27. Cleaveland, J.C.: Building application generators. IEEE Software 5(4), 25–33 (1988)
28. Czarnecki, K., Eisenecker, U.W.: Generative Programming - Methods, Tools, and Applica-

tions. Addison-Wesley, Reading (2000)
29. Sohrabi, S., Prokoshyna, N., McIlraith, S.A.: Web service composition via generic proce-

dures and customizing user preferences. In: Cruz, I., Decker, S., Allemang, D., Preist, C.,
Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp.
597–611. Springer, Heidelberg (2006)

30. Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.S.: Automating DAML-S web services
composition using SHOP2. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003.
LNCS, vol. 2870, pp. 195–210. Springer, Heidelberg (2003)

From Requirements to Models: Feedback Generation as
a Result of Formalization�

Leonid Kof and Birgit Penzenstadler

Fakultät für Informatik, Technische Universität München,
Boltzmannstr. 3, D-85748, Garching bei München, Germany
{kof,penzenst}@informatik.tu-muenchen.de

Abstract. Natural language is the main presentation means in industrial require-
ments documents. In addition, communication between the different stakeholders
is often insufficient, therefore requirements documents are frequently incomplete
and inconsistent. This causes problems during modeling or programming.

The aim of the presented paper is to make deficiencies in behavior specifi-
cations apparent in the early project stage. The basic idea is to model the re-
quired system behavior and to generate feedback for human analysts, based on
the deficiencies of the resulting models. The presented feedback generation was
evaluated in an experiment. It was found that it can address genuine problems of
requirements documents.

Keywords: Requirements Engineering, Model Extraction, Feedback Generation.

1 Requirements Documents Suffer from Missing Information

At the beginning of a software project, the requirements of different stakeholders are
usually gathered in a document. The majority of these documents are written in natural
language, as the survey by Mich et al. shows [1]. Diversity of stakeholders and insuf-
ficient communication results in imprecise, incomplete, and inconsistent requirements
documents, because precision, completeness and consistency are extremely difficult to
achieve using mere natural language as the main presentation means.

In software development, the later an error is found, the more expensive its correc-
tion. Thus, it is one of the goals of requirements analysis to find and to correct the
deficiencies of requirements documents. A practical way to detect errors in require-
ments documents is to convert informal specifications to system models. In this case,
errors in documents would lead to inconsistencies or omissions in models, and, due to
the more formal nature of models, inconsistencies and omissions are easier to detect in
models than in textual documents.

Although there exist a number of automatic approaches that analyze specifications
written in natural language and provide a model, the existing approaches go in one
direction only: they transform a textual specification into a formal model. However,
in the case that the specification exhibits some deficiencies, they either heuristically
compensate these deficiencies or fail silently.

� This work was supported by the German Research Council (DFG), Grant BR 887/26-1.

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 93–107, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

94 L. Kof and B. Penzenstadler

Contribution: The goal of the presented paper is to show, how the deficiencies of the
models resulting from the text can be used to generate feedback for human analysts.
The feedback can be presented in two forms: (1) in natural language and (2) by spe-
cial markings on the produced models. The effectiveness of the generated feedback
was evaluated in an experiment and it was found that the generated feedback can ad-
dress genuine problems of requirements specifications that would be overseen by human
analysts.

Outline: The remainder of the paper is organized as follows: Section 2 presents our
approaches to text-to-model translation, used as the basis for the presented work on
feedback generation. Sections 3 and 4 are the technical core of the paper, they present
the feedback generation and its evaluation. Finally, Section 5 gives an overview of
related work and Section 6 summarizes the paper.

2 From Text to Models: Our Existing Approaches

In our survey of existing modeling techniques [2] it was shown that all existing in-
dustrially relevant formalisms are based either on interaction sequences or on finite
automata. For this reason, the target model types for the behavior modeling are either
finite automata or Message Sequence Charts (MSCs), serving as a representative for
interaction-based modeling techniques. The translation from text to MSCs is presented
in Section 2.1, and the translation to finite automata in Section 2.2.

2.1 From Scenarios to Message Sequence Charts

Translation of textual scenarios to message sequence charts was presented in [3,4]. For
the translation we assume that every message sequence chart (MSC) consists of a set
of actors, a sequence of messages sent and received by these actors, and a sequence of
conditions (or assertions) interleaved with the message sequence. This terminology is
illustrated in Figure 1.

Fig. 1. MSCs, terminology

The basic idea of the scenario-to-MSC translation can be illustrated on the following
scenario, taken from the Instrument Cluster Specification [5]:

From Requirements to Models: Feedback Generation as a Result of Formalization 95

1. The driver switches on the car (ignition key in position ignition on).
2. The instrument cluster is turned on and stays active.
3. After the trip the driver switches off the ignition.
4. The instrument cluster stays active for 30 seconds and then turns itself off.
5. The driver leaves the car.

A possible manual translation of this scenario to an MSC is shown in Figure 2. There
are two challenge/response interactions in this MSC: The instrument cluster replies to
the requests of the main controller (“car”).

Fig. 2. Possible interpretation of the example scenario

To model challenge/response patterns in MSCs translated from textual scenarios,
we organize messages in a stack: If a new message m represents an answer to some
previously pushed message m′, m′ and the messages above it are popped from the
stack. Otherwise, the new message m is pushed onto the stack.

We assume that the actors involved in the MSC are provided before the actual text-
to-MSC translation. They can be extracted from the requirements document (cf. [4])
or listed manually. The list of actors allows us to decide, which sentences should be
translated to messages, and which to assertions: A sentence is translated to a message,
if its subject is contained in the set of actors, the sentence is in active voice and contains
a grammatical object. All other sentences are translated to assertions (cf. [4]).

For the sentences translated to messages, we assume that the sentence subject is the
message sender. For the message receiver there are two possibilities: if the sentence ob-
ject is contained in the set of actors, the sentence object becomes the message receiver.
If the sentence object is not contained in the set of actors, we have to infer the message
receiver from the message stack: Let mtop be the message on the top of the stack and
mnew the message under analysis. Then, we assume that mnew is the response to mtop

and, therefore, the receiver of mnew is the sender of mtop . In a similar way, we can infer
missing messages: if the sender of mnew is not equal to the receiver of mtop , we assume
that there is a missing message m′ from the receiver of mtop to the sender of mnew .
We put this missing message m′ on the stack too. The details of stack management are
presented in [3].

96 L. Kof and B. Penzenstadler

2.2 From Automata Descriptions to Automata

Similarly to the text-to-MSC translation, it is possible to translate text pieces describing
automata to automata themselves, as presented in [6]. The difference lies in the relation
between sentences that we have to model. This can be illustrated on the specification
excerpt in Table 1 (from [7]). The header and the first sentence of this excerpt set the
context (“normal mode”), and further sentences refer to this context. Thus, instead of a
message stack, we have to model the context setting and the usage of the set context.

Table 1. The Steam Boiler, specification excerpt (copied from [7])

Normal mode

1. The normal mode is the standard operating mode in which the program tries to maintain
the water level in the steam-boiler between N1 and N2 with all physical units operating
correctly.

2. As soon as the water level is below N1 or above N2 the level can be adjusted by the
program by switching the pumps on or off.

3. The corresponding decision is taken on the basis of the information which has been
received from the physical units.

We model the context by assigning every (sub)sentence to one of the four categories:
“state transition”, “transition condition”, “context setting”, or “irrelevant”. The assign-
ment of sentence segments to categories takes place in the following steps: (1) splitting
of every sentence to segments, (2) assignment of segments to categories on the basis
of grammatical information only, and (3) re-assignment of segments to categories, by
using context information. Each of these steps is described below.

Sentence splitting: Punctuation symbols, the words “if” and “when” as well as the
conjunctions “and” and “or” are used as splitting marks, unless they directly follow an
adjective or a number.1 A splitting example is shown in Table 2.

Table 2. Splitting example

Original sentence
As soon as this signal has been received, the program enters either the mode normal if all
the physical units operate correctly or the mode degraded if any physical unit is defective

Splitting
1. As soon as this signal has been received
2. the program enters either the mode normal
3. all the physical units operate correctly
4. the mode degraded
5. any physical unit is defective

1 These heuristics prevent splitting of, e.g., “if the water level lies between N1 and N2, . . . ”.

From Requirements to Models: Feedback Generation as a Result of Formalization 97

Assignment of segments to categories on the basis of grammatical information:
Identification of the four segment classes is possible on the basis of the Part-of-Speech
(POS) tags: A POS tagger decides, for every word, if this word is a noun, verb, adjec-
tive, . . . The applied tagger has the precision of about 97% [8] which makes it unlikely
to become an error source. Furthermore, we assume that the names of the automaton
states are extracted from the specification before the actual text-to-automaton transla-
tion, cf. [6]. The assignment of the sentence segment to one of the four classes takes
place in the following way:

– If the sentence segment does not contain any reference to a state, it is marked as
“irrelevant”. This holds, for example, for the first segment in Table 2.

– If the sentence segment contains a reference to a state, but first occurrence of the
state is not preceded by a verb, this segment is marked as “context setting”. For
example, in Table 1, the header (“normal mode”) and the first sentence set the
context for the translation of the following sentences.

– Otherwise, the sentence segment is marked as “state transition”.

Here it is important to emphasize that in the first phase no sentence segment is marked
as “transition condition”.

Re-assignment of segments to categories, by using context information: To take
context into account, it is necessary to revise the “context setting”-marks first. Here, the
following heuristics is applied: If, for a given sentence, any of its segments is marked as
“state transition”, then all segments marked as “context setting” are relabeled to “state
transition”. This compensates for potentially missing verbs in some sentence segments.
In the case of the example shown in Table 2, it marks the fourth segment as “state
transition” and leaves the other marks unchanged.

When the marking of segments as “state transition” is finished, it is possible to iden-
tify transition conditions:

– If a sentence segment is marked as “irrelevant” and directly precedes a segment
marked as “state transition”, then the former segment is relabeled to “transition
condition” (e.g., the first segment of the example in Table 2).

– If a sentence segment is marked as “irrelevant” and directly follows a segment
marked as “state transition”, then the former segment is relabeled to “transition
condition”. This allows to treat conditions like “〈some transition〉 if 〈some
condition〉”.

When this relabeling process is finished, transitions are created from the sentence seg-
ments marked as “state transition”. Transition conditions, as well as source and target
state of transitions, are inferred from the adjacent “context setting” and “transition con-
dition” segments.

The presented approach is domain-independent and only relies on a special writing
style with guidelines for industrial requirements specifications: The complete set of
system states is known, sentences describing state transitions contain a reference to the
target state, and context setting is stated explicitly (for details, see [6]).

98 L. Kof and B. Penzenstadler

3 Feedback Generation Instead of Inference Assumptions

The translation approaches presented in Section 2 use different inference rules in order
to complete information not explicitly stated in the text. The main idea of feedback gen-
eration is to turn off the inference, and, whenever the inference would become neces-
sary, to generate feedback questions addressing the missing information. For MSCs, this
missing information can be the unspecified message receiver or an unspecified interme-
diate message that is inferred by the means of the stack model. Feedback generation
for MSCs is presented in Section 3.1. For automata, the missing information is always
the source state of a state transition (due to peculiarities of the algorithm presented in
Section 2.2). Feedback generation for automata is presented in Section 3.2.

In general, the generated questions can refer either to the specification text or to the
extracted model. Reference to the model means that, in addition to the actual models,
special markers are generated that pinpoint the problematic model elements. Reference
to the text means that hints in natural language are generated, in the following form:

– Problematic sentence: 〈sentence cited〉
– Detected problem: 〈problem description〉

Both for automata and for MSCs, we implemented the generation of both representa-
tions.

3.1 Feedback Generation for MSCs

The algorithm for MSC generation presented in Section 2.1 can infer unspecified mes-
sage receivers and whole missing messages. Correspondingly, the feedback questions
that are generated for MSCs, address (1) unspecified message receivers or (2) messages
that are necessary from the point of view of a continuous message flow, but not explic-
itly specified in the document.

Every type of the feedback question (addressing the missing receiver or the missing
messages) can refer both to the model and to the specification text. Reference to the text
means that we generate questions or hints in natural language, addressing the detected
problem. Reference to the model means that we use special markers in the generated
MSCs in order to address the detected problems.

Missing message receivers result from active sentences only, as passive sentences
are translated to MSC assertions, cf. [4]. Furthermore, an active sentence needs a gram-
matical object to be a candidate for an MSC message. Nevertheless, if the sentence
object is not contained in the set of potential MSC actors, inference rules sketched in
Section 2.1 must be applied. Thus, in order to address missing message receivers, we
generate schematic hints referring to the specification text, structured as follows:

〈sentence cited〉
Problem: Problematic active sentence: object 〈sentence object〉 is not con-
tained in the list of actors. Message receiver cannot be identified.

The inference of missing messages becomes necessary when the sender (basically,
grammatical subject) of the sentence under consideration does not coincide with the
receiver of the last message. In this case we generate coherence questions:

From Requirements to Models: Feedback Generation as a Result of Formalization 99

〈sentence cited〉
Problem: COHERENCE: Which component / who controls the 〈sentence sub-
ject〉 to perform this action?

Additionally to the two above question types, based completely on the inference
rules presented in Section 2.1, we address a further problem, resulting from passive
sentences: whenever we come across a passive sentence, we check if the subject of
the sentence coincides with the receiver of the last message. If this is not the case, we
generate the following question:

〈sentence cited〉
Problem: Problematic sentence: passive, actor unspecified (Who / which com-
ponent controls the 〈sentence subject〉?)

As an example, the set of questions addressing the problems of the scenario on page 95
is presented in Table 3.

Table 3. Questions referring to the specification text, generated for the scenario on page 95

1. The instrument cluster is turned on
Problem: Problematic sentence: passive, actor unspecified (Who / which component
controls the instrument cluster?)

2. The instrument cluster stays active for 30 seconds
(a) Problem: Problematic active sentence: object ”seconds” is not contained in the list
of actors. Message receiver cannot be identified.
(b) Problem: COHERENCE: Which component / who controls the instrument cluster
to perform this action?

For the questions referring to the model, we further develop the idea shown in Fig-
ure 2: there, the inferred missing message was represented as a “?”-marked message. To
generate the same types of questions as above, we introduce a special actor named “???”
and send all the messages where the message receiver is not explicitly specified, to the
“???”-actor. Similarly, every missing message is “?”-marked. Missing messages in the
sense of Section 2.1 are split into two: a message from the inferred message sender to
the “???”-actor, and a message from the “???”-actor to the inferred receiver.

The set of questions generated for the example on page 95 is shown in Figure 3. It is
easy to see the correspondence to the questions referring to the specification: Question 1
from Table 3 is represented by two “?”-messages before the first assertions, Question 2a
is represented by two messages between the assertions, and Question 2b by the “?”-
messages after the second assertion.

3.2 Feedback Generation for Automata

The algorithm for automata generation presented in Section 2.2 infers, if necessary, the
source state of the transition from the discourse context. It is easy to turn this inference

100 L. Kof and B. Penzenstadler

Fig. 3. Questions referring to the model, generated for the scenario on page 95

into feedback generation: whenever the source state of a transition is not explicitly
specified, we can generate a corresponding question.

To generate questions referring to the specification text, we create schematic hints
structured as follows:

– Sentence: 〈sentence cited〉
– Unspecified source state: transition 〈transition condition〉 to state 〈target state〉

For the specification excerpt shown in Table 1, this results in the set of questions pre-
sented in Table 4.

To generate questions referring to the model, we use the same representation as used
in [6] for generated automata. In [6], the generated automata are represented as a three-
column table: Every line of the table represents exactly one state transition: it contains
the source and the target state, and the transition condition. The generated questions
are represented in a similar table, with the only difference that the states that are not
explicitly specified in the text are marked as “unknown”. For the specification excerpt
shown in Table 1, this results in the set of questions presented in Table 5.

4 Evaluation

The presented approach to question generation was evaluated in an experiment. The
goal of the experiment was to see, if the generated questions address genuine specifi-
cation problems that would be overseen by human analysts. The experiment setting is
presented in Section 4.1. In the experiment, it was found that the generated questions
can address genuine specification problems, not detected by human analysts. The re-
sults of the experiment are presented in Section 4.2. It was found, furthermore, that the
problems not addressed by the generated questions can be detected by other techniques.
The lessons learned in the experiment are presented in Section 4.3.

From Requirements to Models: Feedback Generation as a Result of Formalization 101

Table 4. Questions referring to the text, generated for the specification in Table 1

Specification Generated Question

Sentence: the unit for detection of the level of
steam is defective – that is , when v is not equal
to zero – the program enters the emergency stop
mode.

Unspecified source state: transition “the unit
for detection of the level of steam is defective –
that is , when v is not equal to zero – the pro-
gram enters” to state “emergency stop mode”.

Sentence: the program realizes a failure of the
water level detection unit it enters the emer-
gency stop mode.

Unspecified source state: transition “the pro-
gram realizes a failure of the water level de-
tection unit it enters” to state “emergency stop
mode”.

Sentence: as soon as this signal has been re-
ceived , the program enters either the mode nor-
mal all the physical units operate correctly the
mode degraded any physical unit is defective.

Unspecified source state: transition “all the
physical units operate correctly” to state “mode
normal”.

Sentence: as soon as this signal has been re-
ceived , the program enters either the mode nor-
mal all the physical units operate correctly the
mode degraded any physical unit is defective.

Unspecified source state: transition “any phys-
ical unit is defective.” to state “mode degraded”.

Sentence: a transmission failure puts the pro-
gram into the mode emergency stop.

Unspecified source state: transition “a trans-
mission failure puts” to state “mode emergency
stop”.

4.1 Experiment Setting

In order to evaluate the generated feedback questions, the following evaluation hypoth-
esis was put forward:

H : The automatically generated questions address deficiencies of the specification that
would be overseen by human analysts.

In total, 9 PhD candidates/postdocs in computer science participated in the evalua-
tion. The evaluation took place in the following way:

1. First, the experiment subjects were given the chapter of the Steam Boiler Specifica-
tion [7] that refers to the system behavior (2 pages). Each subject was asked to read

Table 5. Questions referring to the model, generated for the specification in Table 1

Source Target Condition

unknown state emergency stop mode the unit for detection of the level of steam is defective
– that is , when v is not equal to zero – the program
enters

unknown state emergency stop mode the program realizes a failure of the water level de-
tection unit it enters

unknown state mode normal all the physical units operate correctly
unknown state mode degraded any physical unit is defective .
unknown state mode emergency stop a transmission failure puts

102 L. Kof and B. Penzenstadler

the specification and to mark words, word sequences or sentences that, in his/her
opinion, would cause problems if we model the system behavior.

2. Then, every subject was given a set of questions generated as presented in Sec-
tion 3.2, and asked, for every generated question, to evaluate if the question ad-
dresses a genuine problem of the specification.

3. Similarly to step 1, every subject was given 15 (out of 41) scenarios from the In-
strument Cluster Specification [5]. The 15 scenarios were selected in such a way
that they represent typical system behavior. Thus, the results obtained with the 15
scenarios can be extrapolated to all scenarios provided in the specification.
Analogously to step 1, every subject was asked to read the specification and to mark
words, word sequences or sentences that, in his/her opinion, would cause problems
if we model the system behavior.

4. Analogously to step 2, every subject was given a set of generated questions and
asked, for every generated question, to evaluate if the question addresses a genuine
problem of the specification.

In order to address different representations of the generated questions, the subjects
were separated in two groups: One group was given questions referring to the specifi-
cation text for the Steam Boiler and questions referring to the model for the Instrument
Cluster. The other group, inversely, was given questions referring to the model for the
Steam Boiler and questions referring to the specification text for the Instrument Cluster.
Due to this setting, we avoid two potential threats to validity of the results:

– Every subject was given one set of questions referring to the model and one set of
questions referring to the specification. Thus, the differences in subjects’ responses
cannot be attributed to the differences in the representation of the questions.

– Every subject was given one set of questions about the Steam Boiler Specification,
and one set of questions about the Instrument Cluster Specification. This way, we
avoid learning effects that would become important if we would have given two
sets of questions about the same specification to the same subject.

The evaluation was performed in groups, but the subjects were not allowed to commu-
nicate with each other. In total, every subject spent approximately two hours performing
the above steps 1-4.

4.2 Experiment Results

The results of the experiment are presented in Table 6. The numbers in the cells repre-
sent the number of manually marked problems or generated/confirmed questions. The
number of questions generated for the Steam Boiler Specification (automaton-based)
coincide for the questions referring to the model and to the text, as the differences in
the representations are not too big. For the Instrument Cluster (MSCs), however, differ-
ences in representations result in the different number of generated questions (cf. Sec-
tion 3.1).

Questions generated for the Steam Boiler Specification (automaton-based) were con-
sidered by the most subjects as spurious. With one notable exception, most subjects

From Requirements to Models: Feedback Generation as a Result of Formalization 103

Table 6. Experiment results. Numbers of found/addressed deficiencies.

Generated Subject Manual Generatedconfirmed Manual ∩ Generated Manual ∩ Generatedconfirmed

Automaton,
questions

referring to the
text

21

1 32 1 1 1
2 30 1 1 1
3 13 0 0 0
4 29 19 0 0

MSCs, questions
referring to the

model
87

1 38 73 0 0
2 38 46 5 5
3 25 43 0 0
4 16 52 0 0

Automaton,
questions

referring to the
model

21

1 9 1 0 0
2 4 5 0 0
3 11 0 0 0
4 14 2 0 0
5 12 1 0 0

MSCs, questions
referring to the

text
50

1 26 31 8 8
2 18 7 1 1
3 19 28 3 1
4 11 27 0 0
5 14 1 0 0

found that the generated questions do not address genuine problems of the specifica-
tion. Thus, the experiment hypothesis has to be rejected for the automaton-based speci-
fication. For the Instrument Cluster Specification (MSCs), however, the subjects found
that many more generated questions address genuine problems of the specification text.
The fraction of questions addressing genuine problems (column “Generatedconfirmed”
of Table 6) varies from 2% (1 out of 50) to 84% (73 out of 87). It looks like the number
of generated questions addressing genuine problems is higher for the questions refer-
ring to the model than for the questions referring to the text: For the questions referring
to the text, at most 31 out 50 questions (62%) are found to address genuine problems.
For the questions referring to the model, though, this rate varies from 49% (43 out of
87) to 84% (73 out of 87). The size of the sample, though, is too small to claim that
questions referring to the model better help to detect specification problems.

The most interesting finding of the experiment is presented in the last two columns of
Table 6: the manually found problems and the problems addressed by the automatically
generated questions are almost always disjoint. The figures in both columns coincide,
except for one line. This line results from the following situation: the subject marked
two sentences as problematic. The tool marked the same two sentences as problematic
too. However, the subject did not confirm the generated questions as addressing gen-
uine problems. The most probable reason is that the subject saw different problems in
these sentences than the tool. However, as the subject did not explicitly write down the
identified problems, this remains solely our interpretation of the discrepancy.

Two last columns of Table 6, together with the number of generated questions that
the subjects found to address genuine specification problems, allow us to claim that
the hypothesis is confirmed for the Instrument Cluster Specification, namely, that the
automatically generated questions address deficiencies of the specification that would
be overseen by human analysts.

104 L. Kof and B. Penzenstadler

4.3 Lessons Learned

The specification problems that were detected by our subjects were highly different
from the problems addressed by the automatically generated questions. The problems
most often marked by the human analysts were pertinent to unclear phrasing. The auto-
matically generated questions, to the contrary, addressed missing specification pieces.
For example, our subjects marked following phrases as problematic:

– For the Steam Boiler Specification:
• “Once all the units which were defective have been repaired, the program

comes back to normal mode.”
Evaluator’s comment: how is it detected that all the units have been repaired?

• “. . . when either the vital units have a failure. . . ”
Evaluator’s comment: which units count as “vital”?

• “As soon as the water measuring unit is repaired. . . ”
Evaluator’s comment: what does “as soon as” really mean?

– For the Instrument Cluster Specification:
• “. . . and the instrument cluster is activated temporarily.”

Evaluator’s comment: by whom is the instrument cluster activated? And what
does “temporarily” really mean?

• “The system displays the calculated speed”
Evaluator’s comment: how is the speed calculated?

• “The input signals from the motor are sent regularly”
Evaluator’s comment: to which component are they sent? And what does “reg-
ularly” mean?

These phrases are indeed problematic if we want to build a system model, but they
represent fuzzy specification, not completely missing facts.

In order to address such fuzzy phrasings, it makes sense to apply the previously de-
veloped tool that detects poor phrasings [9]. In its current version, the tool detects poor
phrasings listed in the Ambiguity Handbook [10]. Adding further patterns for prob-
lematic phrases, however, is a matter of minor extension of the configuration files. An
integrated tool, detecting both missing specification pieces (as in the presented paper)
and poor phrasings, would provide a reliable means of specification analysis.

5 Related Work

Work related to the presented paper can be subdivided in two areas: work on text-based
modeling and work on natural language processing (NLP) in requirements engineering.
Both areas are presented below.

5.1 Text-Based Modeling

Saeki at al. [11], Overmyer et al. [12], and Ermagan et al. [13] introduced tools provid-
ing modeling approaches. The approach by Saeki et al. allows the user to mark words in
the requirements documents, and then to assign the marked word to some noun or verb

From Requirements to Models: Feedback Generation as a Result of Formalization 105

type. Then, the approach maps nouns to classes (in the sense of object oriented design),
and verbs to operations. The approach can handle four predefined verb classes.

Overmyer et al. developed a tool allowing the user to mark words or word sequences
and map them to classes, roles, and operations. As opposed to the approach by Saeki et
al., they do not assume that the verb must fall into one of the four predefined categories.

Ermagan et al. developed the tool SODA, allowing to link textual use cases to behav-
ior models. However, SODA sticks to manual modeling and does not provide automatic
extraction of model elements.

Our approach has the important advantage that it does not assume the textual doc-
ument to contain sufficient information to generate models. Thus, it can cope with in-
complete documents and make the incompleteness apparent.

5.2 Natural Language Processing in Requirements Engineering

There are three areas where natural language processing is applied to requirements engi-
neering: assessment of document quality, identification and classification of application
specific concepts, and analysis of system behavior.

Approaches to the assessment of document quality were introduced, for example, by
Rupp [14], Fabbrini et al. [15], Kamsties et al. [16], and Chantree et al. [17]. These
approaches define writing guidelines and measure document quality by the degree to
which the document satisfies the guidelines. These approaches have a different focus
from our work: their aim is to detect poor phrasing and to improve it, they do not target
system modeling, and do not generate any model-related feedback, as our approach does.

Another class of approaches, as, for example, those by Goldin and Berry [18], Ab-
bott [19], or Sawyer et al. [20] analyzes the requirements documents, extracts applica-
tion-specific concepts, and provides an initial static model of the application domain.
However, these approaches do not generate feedback addressing specification incom-
pleteness either.

The approaches analyzing system behavior translate requirements documents to ex-
ecutable models by analyzing linguistic patterns. Vadera and Meziane [21] propose a
procedure to translate certain linguistic patterns into first order logic and then to the
specification language VDM, but they do not provide automation for this procedure.
Gervasi and Zowghi [22] go further and introduce a restricted language, a subset of
English. They automatically translate textual requirements written in this restricted lan-
guage to first order logic. Similarly, Breaux et al. [23] introduce a restricted language
and translate this language to description logic. Avrunin et al. [24] translate natural lan-
guage to temporal logic. Our work goes further than the above approaches, as we not
only translate textual descriptions to models, but also use the resulting models to make
the deficiencies of the textual specification apparent.

To summarize, to the best of our knowledge, there is no approach to documents
analysis, yet, able not only to translate model descriptions to models themselves, but
also to generate feedback concerning the deficiencies of the document.

6 Summary

Even though many formal and semi-formal specification techniques exist, requirements
specifications in natural language remain a de-facto standard. Apart from being readable

106 L. Kof and B. Penzenstadler

by all stakeholders, specifications in natural language entail a lot of problems with poor
phrasings, inconsistencies, and missing information.

The approach presented in our paper analyzes missing information in behavior speci-
fications and automatically generates questions addressing these findings. As evaluated
in our experiment, the generated questions can address specification deficiencies that
would otherwise be overseen by human analysts. Thus, the presented method should be
one of the means to ensure the quality of requirements specifications.

Acknowledgments

We want to thank the participants of the experiment: Mou Dongyue, Florian Hölzl,
Maged Khalil, Alexander Krauss, Christian Leuxner, Daniel Méndez Fernández, David
Trachtenherz, and Andreas Vogelsang.

References

1. Mich, L., Franch, M., Novi Inverardi, P.: Market research on requirements analysis using
linguistic tools. Requirements Engineering 9(1), 40–56 (2004)

2. Kof, L., Schätz, B.: Combining aspects of reactive systems. In: Broy, M., Zamulin, A.V.
(eds.) PSI 2003. LNCS, vol. 2890, pp. 344–349. Springer, Heidelberg (2004)

3. Kof, L.: Scenarios: Identifying missing objects and actions by means of computational lin-
guistics. In: 15th IEEE International Requirements Engineering Conference, October 15–19,
pp. 121–130. IEEE Computer Society Conference Publishing Services, New Delhi (2007)

4. Kof, L.: From Textual Scenarios to Message Sequence Charts: Inclusion of Condition
Generation and Actor Extraction. In: 16th IEEE International Requirements Engineering
Conference, September 10-12, pp. 331–332. IEEE Computer Society Conference Publish-
ing Services, Barcelona (2008)

5. Buhr, K., Heumesser, N., Houdek, F., Omasreiter, H., Rothermehl, F., Tavakoli,
R., Zink, T.: DaimlerChrysler demonstrator: System specification instrument cluster
(2004), http://www.empress-itea.org/deliverables/D5.1_Appendix_
B_v1.0_Public_Version.pdf (accessed 16.02.2010)

6. Kof, L.: Translation of Textual Specifications to Automata by Means of Discourse Context
Modeling. In: Glinz, M., Heymans, P. (eds.) REFSQ 2009. LNCS, vol. 5512, pp. 197–211.
Springer, Heidelberg (2009)

7. Abrial, J.-R., Börger, E., Langmaack, H.: The steam boiler case study: Competition of formal
program specification and development methods. In: Abrial, J.-R., Börger, E., Langmaack, H.
(eds.) Dagstuhl Seminar 1995. LNCS, vol. 1165. Springer, Heidelberg (1996), citeseer.
nj.nec.com/abrial96steam.html

8. Clark, S., Curran, J.R.: Parsing the WSJ using CCG and log-linear models. In: ACL 2004:
Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, p.
103. Association for Computational Linguistics, Morristown (2004)

9. Gleich, B., Creighton, O., Kof, L.: Ambiguity detection: Towards a tool explaining ambigu-
ity sources. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS, vol. 6182. Springer,
Heidelberg (2010)

10. Berry, D.M., Kamsties, E., Krieger, M.M.: From contract drafting to software spec-
ification: Linguistic sources of ambiguity, http://se.uwaterloo.ca/˜dberry/
handbook/ambiguityHandbook.pdf (accessed 18.11.2004)

http://www.empress-itea.org/deliverables/D5.1_Appendix_B_v1.0_Public_Version.pdf
http://www.empress-itea.org/deliverables/D5.1_Appendix_B_v1.0_Public_Version.pdf
citeseer.nj.nec.com/abrial96steam.html
citeseer.nj.nec.com/abrial96steam.html
http://se.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf
http://se.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf

From Requirements to Models: Feedback Generation as a Result of Formalization 107

11. Saeki, M., Horai, H., Enomoto, H.: Software development process from natural language
specification. In: Proceedings of the 11th International Conference on Software Engineering,
pp. 64–73. ACM Press, New York (1989)

12. Overmyer, S.P., Lavoie, B., Rambow, O.: Conceptual modeling through linguistic analysis
using LIDA. In: ICSE 2001: Proceedings of the 23rd International Conference on Software
Engineering, pp. 401–410. IEEE Computer Society, Washington, DC, USA (2001)

13. Ermagan, V., Huang, T.-J., Krüger, I., Meisinger, M., Menarini, M., Moorthy, P.: Towards
Tool Support for Service-Oriented Development of Embedded Automotive Systems. In: Pro-
ceedings of the Dagstuhl Workshop on Model-Based Development of Embedded Systems
(MBEES 2007), Informatik-Bericht 2007-01, Fakultät für Informatik, Technische Univer-
sität Braunschweig (2007)

14. Rupp, C.: Requirements-Engineering und -Management. Professionelle, iterative An-
forderungsanalyse für die Praxis, 2nd edn. Hanser–Verlag (May 2002) ISBN 3-446-21960-9

15. Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: The linguistic approach to the natural lan-
guage requirements quality: benefit of the use of an automatic tool. In: 26th Annual NASA
Goddard Software Engineering Workshop, pp. 97–105. IEEE Computer Society, Green-
belt (2001), http://fmt.isti.cnr.it/WEBPAPER/fabbrini_nlrquality.
pdf (accessed 08.02.2010)

16. Kamsties, E., Berry, D.M., Paech, B.: Detecting ambiguities in requirements documents us-
ing inspections. In: Workshop on Inspections in Software Engineering, Paris, France, pp.
68–80 (2001)

17. Chantree, F., Nuseibeh, B., de Roeck, A., Willis, A.: Identifying nocuous ambiguities in natu-
ral language requirements. In: RE 2006: Proceedings of the 14th IEEE International Require-
ments Engineering Conference (RE 2006), pp. 56–65. IEEE Computer Society, Washington,
DC, USA (2006)

18. Goldin, L., Berry, D.M.: AbstFinder, a prototype natural language text abstraction finder for
use in requirements elicitation. Automated Software Eng. 4(4), 375–412 (1997)

19. Abbott, R.J.: Program design by informal English descriptions. Communications of the
ACM 26(11), 882–894 (1983)

20. Sawyer, P., Rayson, P., Cosh, K.: Shallow knowledge as an aid to deep understanding in early
phase requirements engineering. IEEE Trans. Softw. Eng. 31(11), 969–981 (2005)

21. Vadera, S., Meziane, F.: From English to formal specifications. The Computer Journal 37(9),
753–763 (1994)

22. Gervasi, V., Zowghi, D.: Reasoning about inconsistencies in natural language requirements.
ACM Trans. Softw. Eng. Methodol. 14(3), 277–330 (2005)

23. Breaux, T.D., Antón, A.I., Doyle, J.: Semantic parameterization: A process for modeling
domain descriptions. ACM Trans. Softw. Eng. Methodol. 18(2), 1–27 (2008)

24. Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: Propel: an approach supporting
property elucidation. In: ICSE 2002: Proceedings of the 24th International Conference on
Software Engineering, pp. 11–21. ACM, New York (2002)

http://fmt.isti.cnr.it/WEBPAPER/fabbrini_nlrquality.pdf
http://fmt.isti.cnr.it/WEBPAPER/fabbrini_nlrquality.pdf

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 108–122, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Web Usability Evaluation Process for Model-Driven
Web Development

Adrian Fernandez, Silvia Abrahão, and Emilio Insfran

ISSI Research Group, Departamento de Sistemas Informáticos y Computación,
Universitat Politècnica de València, Camino de Vera, s/n, 46022, Valencia, Spain

{afernandez,einsfran,sabrahao}@dsic.upv.es

Abstract. Most of usability evaluation methods for the Web domain have sev-
eral limitations such as: the concept of usability is only partially supported; us-
ability evaluations are mainly performed when the Web application has been
completed; there is a lack of guidelines on how to properly integrate usability
into Web development. This paper addresses these issues through the presenta-
tion of a Web Usability Evaluation Process (WUEP) for integrating usability
evaluations at different stages of model-driven Web development processes. A
case study was performed in order to analyze the feasibility of the approach by
applying WUEP to evaluate the usability of a real Web application that was de-
veloped by using a specific model-driven development process in the industrial
domain. The results suggest that WUEP provides good insights into the per-
formance of usability evaluations. The usability problems are corrected at the
model and model-transformation levels, thereby improving the usability of the
final Web application.

Keywords: Web Usability, Evaluation Process, Web Metrics, Model-Driven
Web Development.

1 Introduction

Usability is considered to be one of the most important quality factors for Web appli-
cations, along with others such as reliability and security [23]. It is not sufficient to
satisfy the functional requirements of a Web application in order to ensure its success.
The ease or difficulty experienced by users of these Web applications is largely
responsible for determining their success or failure. Usability evaluations and tech-
nologies that support the usability design process have therefore become critical in
ensuring the success of Web applications [20].

The challenge of developing more usable Web applications has promoted the emer-
gence of a large number of usability evaluation methods. However, most of these
methods only consider usability evaluations during the last stages of the Web devel-
opment process. Works such as Juristo et al. [17] claim that usability evaluations
should also be performed during the early stages of the Web development process in
order to improve user experience and decrease maintenance costs.

This is in line with the results of a systematic mapping study that we performed to
investigate which usability evaluation methods have been used to evaluate Web

 A Web Usability Evaluation Process for Model-Driven Web Development 109

artifacts and how they were employed [12]. The study suggests several areas for fur-
ther research, such as the need for usability evaluation methods that can be applied
during the early stages of the Web development process, methods that evaluate differ-
ent usability aspects depending on the underlying definition of the usability concept,
the need for evaluation methods that provide explicit feedback or suggestions to im-
prove Web artifacts created during the process, and guidance for Web developers on
how the usability evaluation methods can properly be integrated at relevant points of a
Web development process.

The majority of Web development processes do not take advantage of the artifacts
produced at the requirements and design stages. These intermediate artifacts are prin-
cipally used to guide developers and to document the Web application. Since the
traceability between artifacts and the final Web application is not well-defined, per-
forming usability evaluations of these artifacts can be difficult. This problem is allevi-
ated in Model-Driven Web Development processes (MDWD) where intermediate
artifacts (models), which represent different views of a Web application, are used in
all the steps of the development process, and the final source code is automatically
generated from these models.

Most MDWD processes break up the Web application design into three models:
content, navigation and presentation. These dimensions allow proper levels of ab-
straction to be established [7]. An MDWD process basically transforms models that
are independent of technological implementation details (i.e., Platform-Independent
Models - PIMs) such as structural models, navigational models or abstract user
interface (UI) models into other models that contain specific aspects from a specific
technological platform (i.e., Platform-Specific Models - PSMs) such as specific UI
models, database schemas. This is done by automatically applying transformation
rules. PSMs can be automatically compiled to generate the source code of the final
Web application (Code Model - CM). This approach is followed by several methods
such as: OO-H [13] or WebML [8]. The evaluation of these models (PIMs, PSMs, and
CMs) can provide usability evaluation reports which propose changes that can be
directly reflected in the final source code.

In a previous work [11] we followed these ideas to present a Web Usability Model
that decomposes the usability concept into sub-characteristics and measurable attrib-
utes, which are then associated with Web metrics in order to quantify them. The aim
was to evaluate usability attributes in several artifacts obtained from a Web develop-
ment process that follows an MDWD approach. In this paper, we present an inspec-
tion method called Web Usability Evaluation Process (WUEP) that employs our Web
Usability Model in order to integrate usability evaluations into several stages of
MDWD processes.

This paper is organized as follows. Section 2 discusses related works that report
usability evaluation processes based on inspection methods for Web development.
Section 3 presents the Web Usability Evaluation Process. Section 4 presents a real
case study that has been performed to illustrate the feasibility of WUEP. Finally,
Section 5 presents our conclusions and further work.

2 Related Work

Usability evaluation methods can be mainly classified into two groups: empirical
methods and inspection methods. Empirical methods are based on capturing and

110 A. Fernandez, S. Abrahão, and E. Insfran

analyzing usage data from real end-users, while inspection methods are performed by
expert evaluators or designers and are based on reviewing the usability aspects of
Web artifacts, which are commonly user interfaces, with regard to their conformance
with a set of guidelines.

Usability inspection methods have emerged as an alternative to empirical methods
as a means to identify usability problems since they do not require end-user participa-
tion and they can be employed during the early stages of the Web development proc-
ess [9]. There are several proposals based on inspection methods to deal with Web
usability issues, such as the Cognitive Walkthrough for the Web (CWW) [4] and the
Web Design Perspectives (WDP) [10]. CWW assesses the ease with which a user can
explore a Website by using semantic algorithms. However, this method only supports
ease of navigation. WDP extends and adapts the heuristics proposed by Nielsen [21]
with the aim of drawing closer to the dimensions that characterize a Web application:
content, structure, navigation and presentation. However, this kind of methods tends
to present a considerable degree of subjectivity in usability evaluations.

Other works present Web usability inspection methods that are based on applying
metrics in order to minimize the subjectivity of the evaluation, such as the WebTango
methodology [14] and Web Quality Evaluation Method (WebQEM) [22]. The Web-
Tango methodology allows us to obtain quantitative measures, which are based on
empirically validated metrics for user interfaces, to build predictive models in order to
evaluate other user interfaces. WebQEM performs a quantitative evaluation of the
usability aspects proposed in the ISO 9126-1 standard [15], and these quantitative
measures are aggregated in order to provide usability indicators.

The aforementioned inspection methods are oriented towards application in the
traditional Web development context; they are therefore principally employed in the
later stages of Web development processes. As mentioned above, model-driven Web
development offers a suitable context for early usability evaluations since it allows
models, which are applied in all the stages, to be evaluated. This research line has
emerged recently, and only a few works address Web usability issues, such as those
of Atterer [3], Abrahão and Insfran [2], and Molina and Toval [19].

Atterer [3] proposed a prototype of a model-based usability validator with which to
analyze models that represent enriched Web user interfaces. This approach takes
advantage of models that represent the navigation (how the Website is traversed), and
the UI of a Web application (abstract properties of the page layout).

Abrahão and Insfran [2] proposed a usability model to evaluate software products
that are obtained as a result of model-driven development processes. Although this
model is based on the usability sub-characteristics proposed in the ISO 9126 standard
[15], it is not specific to Web applications and does not provide specific metrics. The
same model was used in [24] with the aim of providing metrics for a set of attributes
which would be applicable to the conceptual models that are obtained as a result of a
specific MDWD process.

Molina and Toval [19] presented an approach to extend the expressivity of models
that represent the navigation of Web applications in order to incorporate usability
requirements. It improves the application of metrics and indicators to these models.

Nevertheless, to the best of our knowledge, there is no generic process for integrat-
ing usability evaluations into Model-Driven Web development processes.

 A Web Usability Evaluation Process for Model-Driven Web Development 111

3 Web Usability Evaluation Process

The Web Usability Evaluation Process (WUEP) has been defined by extending and
refining the quality evaluation process that is proposed in the ISO 25000 standard
[16]. The aim is to integrate usability evaluations into model-driven Web develop-
ment processes by employing a Web Usability Model as the principal input artifact.
This model decomposes the usability concept into sub-characteristics and measurable
attributes, which are then associated with metrics in order to quantify them. These
metrics provide a generic definition, which should be operationalized in order to be
applicable to artifacts from different abstraction levels (PIMs, PSMs, and, CMs) in
different MDWD processes (e.g., OO-H, WebML, UWE).

Figure 1 shows an overview of the main stages of WUEP. Three roles are in-
volved: evaluation designer, evaluator, and Web developer. The evaluation designer
performs the first three stages: 1) Establishing the requirements of the evaluation, 2)
Specification of the evaluation, and 3) Design of the evaluation. The evaluator per-
forms the fourth stage: 4) Execution of the evaluation. Finally, the Web developer
performs the last stage: 5) Analysis of changes. The following sub-sections describe
each of the main stages by including the activities into which they are decomposed.

Fig. 1. An overview of the Web Usability Evaluation Process

3.1 Establishment of Evaluation Requirements

The aim of this stage is to establish the requirements of the evaluation to delimit the
scope of the evaluation. The activities involved in this stage are described below.

1. Establish the Purpose of Evaluation. This activity determines the aim of the
usability evaluation, i.e., whether the evaluation will be performed in a Web applica-
tion in order to provide feedback during the Web development process, or whether
different Web applications, belonging to the same Web application family, are com-
pared in order to establish a ranking among them.

2. Specify Profiles. The different factors that will condition the evaluation are deter-
mined. These factors are: the type of Web application, since each family of Web
applications has different goals that make an impact on the selection of usability at-
tributes, i.e., navigability might be more relevant to Intranets whereas attractiveness
might be more relevant to social networks; the Web development method, since
knowledge about its process and artifacts is needed in order to properly integrate the

112 A. Fernandez, S. Abrahão, and E. Insfran

usability evaluations; and the context of use, which takes into account parameters such
as type of users, user age, work environment, etc.

3. Select the Web Artifacts to Be Evaluated. The artifacts selected may depend on
either the Web development method or the technological platform. The artifacts to be
considered might be: Platform-Independent models (e.g., content/domain models,
navigational models, abstract user interface models) which are obtained as output
from the analysis and design stages of an MDWD process; Platform-Specific models
(e.g., specific user interface models, database schemas) which are obtained as output
from the model transformation stage of an MDWD process; and Code models (e.g.,
source code, final user interfaces) which are obtained as output from the code genera-
tion stage of an MDWD process.

4. Select Usability Attributes. The Web Usability Model is used as a catalog in order
to select which usability attributes will be evaluated. This Web Usability Model is
based on the decomposition of the usability characteristic proposed in the ISO 25000
(SQuaRE) [16] quality model. The first version of this model was presented in [11] and
has been improved by considering other usability guidelines (e.g., [18]), in order to
discover 15 new usability attributes that are relevant to the Web domain. The Web
Usability Model currently considers two different views: usability of the software
product, and usability in use. In this paper, we focus solely on the usability of the soft-
ware product, since it can be assessed during the Web development process by inspect-
ing Web artifacts. Usability from a software product perspective is decomposed into
seven sub-characteristics: Appropriateness recognisability, Learnability, Ease of use,
Helpfulness, Technical accessibility, Attractiveness, and Compliance. These are
also decomposed into other sub-characteristics and measurable attributes. The Web
Usability Model, including all the sub-characteristics attributes and their associated
metrics, is available at http://www.dsic.upv.es/~afernandez/CAiSE11/
WebUsabilityModel.

The outcomes of the above activities represent the Evaluation Requirements that
will be used as input by the next stage.

3.2 Specification of the Evaluation

The aim of this stage is to specify the evaluation in terms of which metrics are in-
tended to be applied and how the values obtained by these metrics allow usability
problems to be detected. The activities involved in this stage are described below.

1. Select the Metrics to Be Applied. The Web Usability Model is used to discover
which of the metrics are associated with the usability attributes selected. Metrics al-
low us to interpret whether or not these attributes contribute to achieving a certain
degree of usability in the Web application. The Web metrics that are included in the
Web Usability Model were taken from different sources: surveys that contain metrics
that had been theoretically and empirically validated (e.g., Calero et al. [6]); quality
standards (e.g., SQuaRE [16]) and Web guidelines (e.g., W3C [26]). Each metric was
studied by considering its parameters (i.e., purpose, interpretation, artifacts to which it
can be applied, etc.) in order to provide a generic definition of the metric. The aim of
providing a generic definition is to allow metrics to be applied to artifacts of different

 A Web Usability Evaluation Process for Model-Driven Web Development 113

abstraction levels and from different MDWD processes. Appendix A includes two
examples of metrics from the Web Usability Model with their generic definition.

2. Operationalize the Metrics. The calculation formulas of the selected metrics
should be operationalized by identifying variables from the generic definition of the
metric in the modeling primitives of the selected artifacts, in other words, by estab-
lishing a mapping between the generic description of the metric and the concepts that
are represented in the artifacts. In the evaluation of models (PIM, PSM, and CM), the
calculation of the operationalized formulas may require assistance from an evaluator
to determine the values of the variables involved, or it may require a verification tool
if these formulas are expressed in variables that can be automatically computed from
the input models by query languages such as the Object Constraint Language (OCL).

3. Establish Rating Levels for Metrics. Rating levels are established for ranges of
values obtained for each metric by considering their scale type and the guidelines
related to each metric whenever possible. These rating levels allow us to discover
whether the associated attribute improves the Web application’s level of usability, and
are also relevant in detecting usability problems that can be classified by their level of
severity.

The outcomes of the above activities represent the Evaluation specification that
will be used as input by the next stage.

3.3 Design of the Evaluation

The aim of this stage is to design how the evaluation will be performed and what
information will be collected during the evaluation.

1. Define the Template for Usability Reports. This template is defined in order to
present all the data that is related to the usability problems detected. A usability report
is commonly a list of usability problems (UP). Each UP can be described by the fol-
lowing fields: ID, which refers to a single UP; description of the UP; affected attrib-
ute from the Web Usability Model; severity level, which could be low, medium or
critical; artifact evaluated, in which metrics have been applied; source of the problem,
which refers to the artifact that originates the usability problem (e.g., PIMs, PSMs,
CMs, and transformation rules); occurrences, which refer to the number of appear-
ances of the same UP; and recommendations to correct the UP detected (some rec-
ommendations might also be automatically provided by interpreting the range values).
Other fields that are useful to post-analyze the UP detected can also be added, such as
priority of the UP; effort that is needed to correct the UP; and changes that must be
performed in order to take the aforementioned fields into consideration.

2. Elaborate an Evaluation Plan. Designing the evaluation plan implies: establish-
ing an evaluation order of artifacts; establishing a number of evaluators; assigning
tasks to these evaluators, and considering any restrictions that might conditioned the
evaluation. The recommended order is to first evaluate the artifacts that belong to a
higher abstraction level (PIMs), since these artifacts drive the development of the
final Web application. This allows us to detect usability problems during the early
stages of the Web development process. The artifacts that belong to a lower level of
abstraction (PSMs and CMs) are then evaluated.

114 A. Fernandez, S. Abrahão, and E. Insfran

The outcomes of the above activities represent the Evaluation Plan that will be
used as input by the next stage.

3.4 Execution of the Evaluation

The aim of this stage is to execute the evaluation in accordance with the Evaluation
Plan. The evaluator applies the operationalized metrics to the artifacts that have been
selected. If the rating levels obtained identify a UP, the elements of the artifact in-
volved that contribute to achieving this metric value are analyzed. This helps us to
determine the source of the usability problem thanks to the traceability that exists
among the models in an MDWD process.

The outcomes of this stage are: a platform-independent usability report, which col-
lect the UPs that are detected during the evaluation of PIMs; a platform-specific us-
ability report, which collects the UPs that are detected during the evaluation of PSMs;
and a final Web application usability report, which collects the UPs that are detected
during the evaluation of CMs.

3.5 Analysis of Changes

The aim of this stage is to classify all the UPs detected from each of the usability
reports shown above and to analyze the recommendations provided in order to pro-
pose changes with which to correct the artifacts. Usability problems whose source is
located in PIMs that are related to content and navigation (e.g., UP detected in struc-
tural models, navigational models) are collected to create the improvement report in
analysis. Usability problems whose source is located in PIMs that are related to pres-
entation (e.g., UP detected in abstract user interfaces models) are collected to create
the improvement report in design. Usability problems whose source is located in
PSMs or transformation rules among PIMs and PSMs are collected to create the im-
provement report in model transformation. Finally, usability problems whose source
is located in the generation rules among PSMs and CMs are collected to create the
improvement report in code generation. The last two reports are useful for providing
feedback in order to improve the Computer-Aided Web Engineering tool (CAWE)
that supports the Web development method and performs the transformations among
models, along with the generation rules among models and the final source code.

It is important to note that after applying the changes suggested by the improve-
ment reports, re-evaluations of the artifacts might be necessary.

4 Case Study

An exploratory case study was performed by following the guidelines presented in
[25] in order to study the feasibility of applying WUEP in industrial contexts. The
stages of which the case study was comprised were: design, preparation, collection of
data, and analysis of data, each of which is explained below.

4.1 Design of the Case Study

The case study was designed by considering the five components that are proposed in
[25]: purpose of the study, underlying conceptual framework, research questions to be
addressed, sampling strategy, and methods employed.

 A Web Usability Evaluation Process for Model-Driven Web Development 115

The purpose of the case study is to show the feasibility of applying WUEP to dis-
cover usability problems at different levels of abstraction of a MDWD process. The
conceptual framework that links the phenomena to be studied is the idea based on
integrating usability evaluations into MDWD processes [11]. The research questions
that are intended to be addressed are: a) What type of usability problems can be de-
tected in each phase of a model-driven Web development process and what are their
implications for intermediate artifacts (models)?, and b) What limitations does the
Web Usability Evaluation Process present?.

The sampling strategy of the case study is based on an embedded single-case de-
sign. We contacted a Web development company located in Alicante (Spain) in order
to apply WUEP to a real Web application from a project in progress. The company
provided us with access to a task management system. The aim was to perform
evaluations on the artifacts that define this Web application at different abstraction
levels in an MDWD process.

WUEP was applied as follows: two of the authors performed the evaluation
designer role in order to design an evaluation plan (in critical activities such as the
selection of usability attributes, we required the help of two external Web usability
experts); and the evaluator role was performed by five evaluators: the other author
and four other independent evaluators with an average of five years’ experience in
usability evaluations. The technique that was used to obtain feedback about the feasi-
bility of WUEP was the analysis of the usability reports and observation of the
evaluators when performing the execution of the evaluation. We have not considered
the analysis of changes stage since the aim of this case study was to show the feasibil-
ity of WUEP in discovering usability problems.

4.2 Preparation of the Case Study

An evaluation plan was defined by following WUEP. With regard to the establish-
ment of evaluation requirements stage of WUEP, the purpose of the evaluation was to
perform a usability evaluation during the development of the Web application men-
tioned above. The type of Web application was an Intranet that was developed using
the OO-H method [13] supported by the VisualWade tool (www.visualwade.com).
The context in which the Web application will be used is a software development
company, and there are two kinds of users: project manager and programmers.

OO-H is an MDWD method that provides the semantics and notation for develop-
ing Web applications. The platform-independent models (PIMs) that represent the
different concerns of a Web application are: a class model, a navigational model, and
a presentation model. The class model is UML-based and specifies the content re-
quirements; the navigational model is composed of a set of Navigational Access Dia-
grams (NADs) that specify the functional requirements in terms of navigational needs
and users’ actions; and the presentation model is composed of a set of Abstract Pres-
entation Diagrams (APDs), whose initial version is obtained by merging the former
models, which are then refined in order to represent the visual properties of the final
UI. The platform-specific models (PSMs) are embedded into a model compiler, which
automatically obtains the source code (CM) from the Web application by taking all
the previous PIMs as input.

116 A. Fernandez, S. Abrahão, and E. Insfran

The Web artifacts selected to be evaluated were all the platform-independent mod-
els and the final UIs (i.e., 1 class model, 4 NADs, 4 APDs and 4 final UIs). PSMs
cannot be evaluated since they are embedded in the model compiler. Figure 2(a)
shows an excerpt of a NAD and Figure 2(b) shows an excerpt of an APD.

A set of 20 usability attributes were selected from the Web Usability Model
through the consensus of the evaluator designers and the Web usability experts. The
attributes were selected by considering which of them would be more relevant to the
type of Web application and the context in which it is going to be used (e.g., Inter-
connectivity, Clickability, Permanence of links, etc.). Only 20 attributes were selected
in order to avoid extending the duration of the execution stage.

With regard to the specification of the evaluation stage of WUEP, metrics associ-
ated with the selected attributes were obtained from the Web Usability Model, and
then associated with the artifact in which they could be applied. Since metrics can be
applied at different abstraction levels, the highest level of application was selected.
For example, the metrics presented in Appendix A indicate that: the Compactness
metric could be applied to models that specify the navigation (i.e., NADs); and the
Discernible links metric could be applied to models that specify the UI (i.e., APDs).

Once the metrics had been associated with the artifacts, metrics were operational-
ized in order to provide a calculation formula for artifacts from the OO-H method (in
this case), and to establish rating levels for them. Appendix B shows an example of
operationalization and rating levels for the metrics from Appendix A.

With regard to the design of the evaluation stage of WUEP, a template for usability
reports was defined by considering the same fields proposed in the previous section.
The evaluation plan that was elaborated takes into consideration the following evalua-
tion order of the artifacts: class model; NADs, APDs, and final UIs. Five evaluators
were selected to perform the execution stage of WUEP, as mentioned above. This
number was selected by following the recommendations of studies which claim that
five or more evaluators are needed to perform usability inspections [21]. The evalua-
tors attended a training session of 2 hours at which they were informed of the artifacts
from the OO-H method and the tasks to be performed.

Fig. 2. Excerpts from artifacts (PIMs) of the Web application developed in OO-H

 A Web Usability Evaluation Process for Model-Driven Web Development 117

4.3 Collection of the Data

The data for this case study was collected during the execution of the evaluation stage
of WUEP. As an example, we show values obtained after the evaluators applied cer-
tain operationalized metrics to the excerpts of models that are shown in Figure 2.

In the NAD (Fig. 2 (a)), the value of the Compactness metric is: Cp (NAD) = (448-
347) / (448-56) = 0.26 since the components of the formula are: n=k=8; Max=448;
Min=56; and ∑i ∑j Dij=347. The rating level of this metric (0.2 < x ≤ 0.8) therefore
indicates that there is no usability problem related to the Interconnectivity attribute in
this NAD.

In the APD (Fig. 2 (b)), the value of the Discernible links metric is: DL (APD) = 1-
0.5(2/5+3/13) = 0.68 since there are 2 links (title_and_author and report_title) that
might be confused with labels, and there are 3 labels (date, content and BD_content)
that might be confused with links as a result of their visual properties. The rating level
of this metric (0.5 < x ≤ 0.7) therefore indicates the existence of a medium usability
problem (UP001) related to the Clickability attribute in this APD.

Each evaluator presented the usability problems detected in usability reports by us-
ing the defined template. As an example, Table 1 shows an excerpt of the usability
report that is presented in the UP001.

Table 1. Usability problem detected: UP001

ID UP001

Description
title_and_author and report_title links are confused with labels, whereas date,
content and BD_content labels are confused with links.

Affected attribute Appropriateness recognisability / Navigability / Clickability
Severity level Medium (0.68)
Artifact evaluated Abstract Presentation Diagram (APD no. 3)
Source problem Abstract Presentation Diagram (APD no. 3)
Occurrences 5 errors in the same APD

Recommendations
Change the visual properties of links and labels to another face/color in order for
them to be discernible. The use of typographies, such as blue, and an underlined
face for links is recommended.

4.4 Analysis of Data

The usability problems reported in the execution stage were analyzed to address our
research questions.

Usability Problems and their Implications for Intermediate Artifacts. The evalua-
tion performed for the case study only considers two different abstraction levels: the
platform-independent models: class model, navigational model (NADs), and presenta-
tion model (APDs); and the code model: final user interfaces.

With regard to the class model, a mean of 0.6 UPs (std. dev. 0.54) were detected by
the evaluators since the expressiveness of its modeling primitives makes it difficult to
operationalize metrics. However, UPs related to the minimization of user effort were
detected (e.g., “does not provide default values for elements that are needed for user
input”). These can be solved by correcting the class model itself by adding default
values to attributes from classes.

118 A. Fernandez, S. Abrahão, and E. Insfran

With regard to the navigational model, a mean of 2.2 UPs (std. dev. 0.83) were de-
tected by the evaluators since the navigation steps for carrying out possible actions are
considered to be proper by values of metrics such as navigation density, navigation
depth, etc. However, UPs related to the lack of return paths were detected (e.g., “does
not provide backs link” or “no link to go home”). These can be solved in the naviga-
tional model itself by adding links that connect the information previously obtained.

With regard to the presentation model, a mean of 10.6 UPs (std. dev. 1.51) were
detected by the evaluators since the expressiveness of its modeling primitives allows
several metrics to be operationalized (e.g., “error messages are not meaningful” and
“links and labels are not discernible”). The former can be solved in the presentation
model itself by correcting the label that shows the message, and the latter can be
solved in the navigational model since names for links can be provided as properties
of them.

With regard to the final user interface, a mean of 12.2 UPs (std. dev. 1.78) were de-
tected by the evaluators. Some examples of the UPs detected were related to the sup-
port to operation cancellation (e.g., “the creation of a new task cannot be canceled”).
This can be solved in the navigational model since links can be added to permit can-
celation paths. Other UPs related to the immediate feedback that provide UI controls
were also detected (e.g., “tabs of the main menu do not show the current user state”).
This can be solved in the transformation rules that map the representation of tabs with
a specific UI control of the technological platform.

It is important to note that some usability attributes such as the uniformity of the
UI position are directly supported by the modeling primitives of the APDs.

Lessons Learned. The case study has been useful in that it has allowed us to learn
more about the potentialities and limitations of our proposal and how WUEP can be
improved.

WUEP can detect several usability problems from a wide range of types in several
artifacts employed during the early stages of an MDWD process. The application of
operationalized metrics and traceability among models not only provides a list of
usability problems, but also facilitates the provision of recommendations with which
to correct them. Metric operationalization also allows WUEP to be applied to differ-
ent MDWD processes by establishing a mapping between the generic description of
the metric and the modeling primitives of artifacts, in addition to other traditional
development processes, by operationalizing metrics only in final user interfaces.
However, usability reports will only provide feedback to the implementation stage
since traceability between artifacts is not well-defined. Moreover, the evaluation
process may be a means to discover which usability attributes are directly supported
by the modeling primitives or to discover limitations in the expressiveness of these
artifacts.

During the execution of the case study, several aspects related to how WUEP is
applied were detected to be improved. For example, the application of metrics was
detected as being a very tedious task when performed manually, particularly when the
metrics provided a complex calculation formula (e.g., Compactness, Depth of the
navigation, etc.). In addition, some metrics obtained different values depending on the
evaluator since these metrics imply a certain degree of subjectivity (e.g., Discernible
links, properly chosen Metaphors, etc.). These issues could be alleviated, at least to
some extent, by providing better guidelines in order to minimize the subjectivity in

 A Web Usability Evaluation Process for Model-Driven Web Development 119

the employment of operationalized metrics and by developing a tool that automates a
large part of the evaluation process.

Limitations of the Study. Since the aim of the case study was to show the feasibility
of applying WUEP in an MDWD process in industrial contexts, we selected a real
Web application that was under development by a company, and we focused princi-
pally on the first four stages of WUEP. However, this case study presents some limi-
tations, such as the fact that only one type of Web application was considered since
the company imposed certain restrictions. Although the usability attributes to be
evaluated were selected through the consensus of the evaluation designers and the two
independent Web usability experts, they might not have been very representative. In
order to overcome such limitations it is necessary to determine which usability attrib-
utes are most relevant for each family of Web applications by considering several
opinions from Web usability experts.

5 Conclusions and Further Work

This paper presents the Web Usability Evaluation Process (WUEP) as a usability
inspection method that integrates usability evaluations during several stages of
Model-Driven Web Development (MDWD) processes. WUEP provides broad support
to the concept of usability since its underlying Web Usability Model has been ex-
tended and adapted to the Web domain by considering the new ISO 25000 series of
standards (SQuaRE), along with several usability guidelines. The explicit definition
of the activities and artifacts of WUEP also provides evaluators with more guidance
and offers the possibility of automating (at least to some extent) several activities in
the evaluation process by means of a process automation tool.

We believe that the inherent features of MDWD processes (e.g., traceability be-
tween models by means of model transformations) provide a suitable environment for
performing usability evaluations. The integration of WUEP into these environments is
thus based on the evaluation of artifacts, particularly intermediate artifacts (models),
at several abstraction levels from different MDWD processes. The evaluation of these
models (by considering the traceability among them) allows the source of the usabil-
ity problem to be discovered and facilitates the provision of recommendations to
correct these problems during the earlier stages of the Web development process. This
signifies that if the usability of an automatically generated user interface can be as-
sessed, the usability of any future user interface produced by MDWD processes could
be predicted. In other words, we are referring to a user interface that can be usable by
construction [1], at least to some extent. Usability can thus be taken into consideration
throughout the entire Web development process. This enables better quality Web
applications to be developed, thereby reducing effort at the maintenance stage.

In the future we intend to do the following: to analyze different proposals concern-
ing the inclusion of aggregation mechanisms to merge values from metrics in order to
provide scores for usability attributes that will allow different Web applications from
the same family to be compared; to determine the most relevant usability attributes for
different families of Web applications according to Web domain experts in order to
provide pre-defined selections of operationalized metrics; to apply WUEP to different
MDWD processes; to evaluate different types of Web applications such as Web

120 A. Fernandez, S. Abrahão, and E. Insfran

applications 2.0 and Rich Internet Applications (RIA) that are developed thorough an
MDWD process; to perform controlled experiments in order to assess the effective-
ness and ease of use of WUEP by comparing it to other usability evaluation methods;
and finally, to develop a tool with the capability of automating a large part of the
evaluation process.

Acknowledgments. This research work is funded by the MULTIPLE project
(TIN2009-13838) and the FPU program (AP2007-03731) from the Spanish Ministry
of Science and Education.

References

1. Abrahão, S., Iborra, E., Vanderdonckt, J.: Usability Evaluation of User Interfaces Gener-
ated with a Model-Driven Architecture Tool. In: Maturing Usability: Quality in Software,
Interaction and Value, Springer, pp. 3-32 (2007)

2. Abrahão, S., Insfran, E.: Early Usability Evaluation in Model-Driven Architecture Envi-
ronments. In: 6th IEEE International Conference on Quality Software (QSIC 2006), pp.
287–294. IEEE Computer Society, Beijing (2006)

3. Atterer, R., Schmidt, A.: Adding Usability to Web Engineering Models and Tools. In:
Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 36–41. Springer, Hei-
delberg (2005)

4. Blackmon, M.H., Polson, P.G., Kitajima, M., Lewis, C.: Cognitive Walkthrough for the
Web. In: Proc. of the ACM CHI 2002, USA, pp. 463–470 (2002)

5. Botafogo, R., Rivlin, E., Shneiderman, B.: Structural analysis of hypertexts: Identifying
hierarchies and useful metrics. ACM Trans. Inf. Systems 10(2), 142–180 (1992)

6. Calero, C., Ruiz, J., Piattini, M.: Classifying Web metrics using the Web quality model.
Online Information Review Journal. Emerald Group. 29(3), 227–248 (2005)

7. Casteleyn, S., Daniel, F., Dolog, P., Matera, M.: Engineering Web Applications. Springer,
Heidelberg (2009)

8. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): A Modeling Lan-
guage for Designing Web Sites. In: Proc. of the 9th WWW Conf., pp. 137–157 (2000)

9. Cockton, G., Lavery, D., Woolrychn, A.: Inspection-based evaluations. In: Jacko, J.A.,
Sears, A. (eds.) The Human-Computer Interaction Handbook, 2nd edn., pp. 1171–1190
(2003)

10. Conte, T., Massollar, J., Mendes, E., Travassos, G.H.: Usability Evaluation Based on Web
Design Perspectives. In: 1st Int. Symposium on Empirical Software Engineering and
Measurement (ESEM 2007), Spain, pp. 146–155 (2007)

11. Fernandez, A., Insfran, E., Abrahão, S.: Integrating a Usability Model into Model-Driven
Web Development Processes. In: Vossen, G., Long, D.D.E., Yu, J.X. (eds.) WISE 2009.
LNCS, vol. 5802, pp. 497–510. Springer, Heidelberg (2009)

12. Fernandez, A., Insfran, E., Abrahão, S.: Usability Evaluation Methods for the Web: A
Systematic Mapping Study. In: Information and Software Technology (2011),
doi:10.1016/j.infsof.2011.02.007

13. Gomez, J., Cachero, C., Pastor, O.: Conceptual Modeling of Device-Independent Web
Applications. IEEE MultiMedia 8(2), 26–39 (2001)

14. Ivory, M.Y.: An Empirical Foundation for Automated Web Interface Evaluation. PhD
Thesis, University of California, Berkeley, Computer Science Division (2001)

15. ISO/IEC 9126-1 Standard, Software Engineering, Product Quality - Part 1: Quality Model
(2001)

16. ISO/IEC 25000 series, Software Engineering, Software Product Quality Requirements and
Evaluation, SQuaRE (2005)

 A Web Usability Evaluation Process for Model-Driven Web Development 121

17. Juristo, N., Moreno, A., Sanchez-Segura, M.I.: Guidelines for eliciting usability function-
alities. IEEE Transactions on Software Engineering 33(11), 744–758 (2007)

18. Leavit, M., Shneiderman, B.: Research-Based Web Design & Usability Guidelines. U.S.
Government Printing Office (2006),
http://usability.gov/guidelines/index.html (last access: March 2011)

19. Molina, F., Toval, J.A.: Integrating usability requirements that can be evaluated in design
time into Model Driven Engineering of Web Information Systems. Advances in Engineer-
ing Software 40(12), 1306–1317 (2009)

20. Neuwirth, C. M., Regli, S. H.: IEEE Internet Computing Special Issue on Usability and the
Web, vol. 6(2) (2002)

21. Nielsen, J., Molich, R.: Heuristic evaluation of user interfaces. In: Proc. ACM CHI 1990
Conf., Seattle, WA, pp. 249–256 (1990)

22. Olsina, L., Rossi, G.: Measuring Web Application Quality with WebQEM. IEEE Multi-
media 9(4), 20–29 (2002)

23. Offutt, J.: Quality Attributes of Web Software Applications. IEEE Software: Special Issue
on Software Engineering of Internet Software, 25–32 (2002)

24. Panach, I., Condori, N., Valverde, F., Aquino, N., Pastor, O.: Understandability measure-
ment in an early usability evaluation for model-driven development: an empirical study.
In: Int. Empirical Software Engineering and Measurement (ESEM 2008), pp. 354–356
(2008)

25. Runeson, P., Höst, M.: Guidelines for Conducting and Reporting Case Study Research in
Software Engineering. Empirical Software Engineering 14(2) (2009)

26. World Wide Web Consortium W3C: Web Content Accessibility Guidelines (WCAG) 2.0
(2008), http://www.w3.org/TR/WCAG/ (last access: March 2011)

122 A. Fernandez, S. Abrahão, and E. Insfran

Appendix A: Examples of Metrics with Their Generic Description

Name Compactness (Cp)
Attribute Appropriateness recognisability / Navigability / Interconnectivity.
Description The degree of interconnection among nodes belonging to a hypermedia graph. Its

formula is Cp = (Max – ∑i ∑j Dij) / (Max – Min), where Max = (n2 - n)*k; Min =
(n2 - n); n = quantity of nodes in the graph; k = constant superior to the amount of
nodes; ∑i ∑j Dij = the sum of distances taken from the matrix of converted distances
(with factor k); and Dij = the distance between the nodes i and j.

Scale type Ratio between 0 and 1.
Interpretation Values closer to 1 signify that each node can easily reach any other node in the

graph. However, a fully connected graph may lead to disorientation.
Application
level

At the PIM/PSM level, if navigation is modeled as a graph where nodes represent
pages and edges are links among pages; and at the CM level by analyzing the link’s
targets included in the source code for each page.

Name Discernible links (DL)
Attribute Appropriateness recognisability / Navigability / Clickability.
Description The degree to which links are discernible from other textual elements. Its formula is

DL = 1 - 0.5(CL / NL + CT / NT), where CL = the number of links that may be
confused with textual elements; NL= total number of links; CT = number of textual
elements that may be confused with links; and NT = total number of textual ele-
ments.

Scale type Ratio between 0 and 1.
Interpretation Values closer to 1 indicate that users can differentiate links from textual elements.
Application
level

At the PIM/PSM level, if the expressiveness of abstract user interface models allows
aesthetic properties to be defined for links such as color or style; and at the CM level
by assessing the elements from the source code that define the visual appearance of
links in the final user interface (e.g., Cascading Style Sheets).

Appendix B: Examples of Operationalized Metrics for OO-H

Compactness (Cp): In an OO-H navigational model, the compactness is calculated by
considering the navigational classes and links of each NAD as a hypermedia graph in
which classes are nodes and links are edges. If we consider the scale type and the
recommendations suggested by Botafogo et al. [5], then the rating levels are estab-
lished as no UP (0.2 < x ≤ 0.8), and medium UP (0 ≤ x < 0.2 and 0.8 < x ≤1).

Discernible links (DL): In an OO-H presentation model, the visual properties of tex-
tual elements in each APD (i.e., links and labels) are represented as attributes such as
font, color, and face. The operationalized metric is:

DL (APD) = 1 - 0.5(CLi / NTLi + CLa / NTLa)

where CLi signifies the number of links with similar visual properties to most of the
labels, CLa signifies the number of labels with similar visual properties to most of the
links, whereas NTLi and NTLa signify the total number of links and labels, respec-
tively. If we consider the scale type, then the rating levels are established as no UP
(0.99 < x ≤ 1), low UP (0.7 < x ≤ 0.99), medium UP (0.5 < x ≤ 0.7), and critical UP (0
< x ≤ 0.5).

A Trace Metamodel Proposal Based on the

Model Driven Architecture Framework for the
Traceability of User Requirements in Data

Warehouses

Alejandro Maté and Juan Trujillo

Lucentia Research Group
Department of Software and Computing Systems

University of Alicante
{amate,jtrujillo}@dlsi.ua.es

Abstract. The complexity of the Data Warehouse (DW) development
process requires to follow a methodological approach in order to be suc-
cessful. A widely accepted approach for this development is the hybrid
one, in which requirements and data sources must be accommodated to
a new DW model. The main problem is that we lose the relationships be-
tween requirements, elements in the conceptual models and data sources
in the process, since no traceability is explicitly specified. Therefore,
this hurts requirements validation capability and increases the complex-
ity of Extraction, Transformation and Load processes. In this paper, we
propose the first trace metamodel for DWs and focus on the relation-
ships between requirements and conceptual models. We propose a set of
Query/View/Transformation rules to include traceability in DWs in an
automatic way, allowing us to trace every requirement to the conceptual
model and further increasing user satisfaction.

Keywords: Data Warehouses, traceability, user requirements, MDA.

1 Introduction

Data Warehouses (DW) integrate several heterogeneous data sources in multi-
dimensional structures (i.e. facts and dimensions) in support of the decision-
making process [10, 12]. Therefore, the development of the DW is a complex
process which must be carefully planned in order to meet user needs. In order
to develop the DW, three different approaches, similar to the existing ones in
Software Engineering (bottom-up, top-down, and hybrid), were proposed [21,4].

The first approach follows a bottom-up process and makes use of the infor-
mation in the data sources while ignoring the user requirements. As the schema
is not adapted to the user needs [21] the DW fails to meet the user expecta-
tions. The second approach follows a top-down process and focuses on the user
requirements while ignoring the data sources. Therefore, it is possible that some
of the user needs cannot be satisfied because the necessary data has not been

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 123–137, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

124 A. Maté and J. Trujillo

stored [4]. The third approach (hybrid) makes use of both data sources and user
requirements [16]. With this approach, user requirements which cannot be sat-
isfied are noticed in earlier stages. Once the information from both worlds is
collected, the incompatibilities have to be solved by acommodating both data
sources and requirements in a single model.

However, with the hybrid approach a new problem arises. In the top-down and
bottom-up approaches, every element used for the implementation of the DW
comes from a single source only (either requirements or data sources), thereby
allowing us to trace elements by name matching. Nevertheless, in the hybrid
approach, additional effort is required in order to check which parts of the DW
match, not only with each requirement, but also with each part of the data
sources. Due to our experience, by following the hybrid approach, changes are
done almost in every project, since it is very common that user requirements
and data sources do not match, thus losing the implicit traceability.

In this process, the relationships between the elements are not recorded and
lost, since there is no explicit traceability included in the development process.
In turn, this hurts requirements validation [24, 26, 29], making unable to check
the current status of each requirement or take decisions about alternative imple-
mentations if a given requirement cannot be fulfilled. Although the traceability
aspect has been thoroughly studied [1,5,11,22,2,8,9,23,26], it has been almost
completely overlooked in DW development. To the best of our knowledge, the
only references to requirements traceability in DW are those from [15], which
only mention implicit traceability by name matching.

In our previous works [14, 15, 16, 17], we defined a hybrid DW development
approach in the context of the Model Driven Architecture (MDA) framework
[19]. DWs are sensitive to be developed by using MDA, cutting development
time and making the process less error prone, since transformations from the top
layer to the final implementation are performed in an semi-automatic way. In
our approach, requirements are specified in a Computation Independent Model
(CIM) by means of a UML profile [15] based on the i* framework [30]. Then,
they are automatically derived, reconciliated with the data sources in a hybrid
model, and refined through a series of layers (Platform Independent Model (PIM)
layer and Platform Specific Model (PSM) layer) until the final implementation
is achieved, as seen in figure 1.

The automatic derivation is done by means of model to model transformations
specified by Query/View/Transformation (QVT) [20] rules. QVT is a language
defined by the Object Management Group (OMG) and proposed as a standard to
create model to model transformations. However, due to our experience in real-
world projects, the lack of traceability does not allow us to adequately validate
requirements and incurs in additional costs when requirements change.

In this paper, we complement our previous works with the inclusion of the first
traceability metamodel for DWs and an automatic derivation of the correspoding
trace models. In this way, by including traceability, we improve the reusability,
maintainability and rationale comprehension of the models [24, 29], and we are

A Traceability Proposal for DW 125

Fig. 1. Layers in our DW approach

able to easily analyze which requirements have been met and which elements
from the models will be affected by a change in a given requirement.

The rest of the paper is structured as follows. Section 2 presents related work
about traceability. Section 3 introduces our traceability metamodel for DWs
and the inclusion of trace models in our approach. Section 4 presents the QVT
rules for automatic derivation of traces in the DW context. Section 5 presents an
example of application, in order to show the benefits of our proposal and Section
6 outlines the conclusions and sketches the future work to be done in this area.

2 Related Work

In this section, we will discuss the existing traceability research in other fields,
its benefits and problems, and we will also discuss its current status in the DW
field. Currently, traceability can be studied from two different points of view.
The first one is the Requirements Engineering (RE) field, whereas the second
one is the Model Driven Development (MDD) field. Although both fields are
focused in different aspects of traceability, they also have some common issues.

Most of the work done until now has been in the RE field [1,2,3,8,9,23,26,31].
Some authors [8, 29] consider pre-requirement specification (pre-RS) as a more
complex scenario, since it has to deal with artifacts written in natural language
and different points of view, and post-requirement specification (post-RS) as a
simpler, one since the requirements are already modeled.

The main benefits provided by traceability have been studied in this field
[2, 23, 24]. Traceability helps assesing the impact of changes and rationale com-
prehension, by identifying which parts of the implementation belong to each
requirement [2]. It also helps the reusability and maintainability, since the scope
of each part of the project is known and defined thanks to the traces. In turn,
these benefits help lowering the costs associated with the project [23, 24].

The main drawbacks mentioned about traceability are the non-existence of a
standard traceability definition or metamodel, the manual recording of traces,

126 A. Maté and J. Trujillo

and that traceability itself is seen as a burden until it is necessary later on
although its benefits have been tested [24]. This situation creates a problem
which makes difficult to succesfully apply traceability.

In order to alleviate the first drawback, a classification of eight categories for
traces was presented in [26]. The second and third drawbacks can be solved by
automating the trace recording. However, in the RE field, the trace recording is
focused on pre-RS traceability, and needs to find traces in documents in natural
language. In turn, this generates models that must be supervised, with a high
percentage of irrelevant traces that difficult the comprehension and visualization
of the trace model, which usually has a huge number of traces already [28].

On the other hand, in the MDD field, the MDA framework is used [1, 5, 11,
22, 28]. The automatic derivation process starts from a CIM layer, where the
requirements are specified as models, usually by means of goal-oriented models
[7, 13, 15, 18, 21, 25, 32]. In this sense, the traceability research in the MDD field
is mainly focused on post-RS, which makes the automation of traces an easier
task and less prone to errors, since everything is either a model or an element in
a model. However, although more restrictive, the traceability definitions in this
field are not standard either. There are mainly two definitions of traceability in
the MDD community. The definition we will use in this paper comes from [22];
They define traceability as “[...] the ability to chronologically interrelate uniquely
identifiable entities in a way that matters. [...] [It] refers to the capability for
tracing artifacts along a set of chained [manual or automated] operations.”

In the DW field, as we previously stated, there is no mention of traceability
being included in the process, even though there are approaches which would
benefit from it. These approaches are based on model transformations through
multiple layers, either following MDA [16] or a similar set of layers [27]. Currently,
whenever a change to an element is done, the traceability as defined in [22] is lost,
since the elements are associated by name matching. Therefore, we lose all the
aforementioned benefits of traceability, which can be obtained in the DW field at
a low cost, since trace recording can be automated. Moreover, the quality metrics
presented in [27] could be provided in a more automated way with traceability
support, as opposed to performing the process manually, allowing us to increase
the quality of the final implementation.

Due to the peculiarity and idiosyncrasy of data warehouses, we will need to
difference between (i) the traces coming from the requirements (for requirements
validation and impact change analysis), (ii) the traces coming from the data
sources (for querying and derivation of initial Extraction, Transformation and
Load processes) and (iii) the traces linking elements in the multidimensional
conceptual models, based on their particular relationships [14].

3 A Traceability Approach and a Trace Metamodel for
Data Warehouses

As previously stated, if we wish to perform automatic operations with traces,
we must be able to identify the meaning of each trace. In order to do this, we

A Traceability Proposal for DW 127

need to elaborate a set of trace types, which define the semantic of the relation-
ships between elements. In this section, we will introduce the trace metamodels
proposed in the MDD field along with our proposed metamodel for DW.

3.1 Model Driven Architecture Metamodels for Traceability

Our traceability approach is based on the trace framework proposed by the
OMG, which is included in the MDA framework [19].

Fig. 2. Metamodel for traceability in MDA

The metamodel, presented in figure 2, is composed by a transformation record
which represents the transformation that generated the traces. The transforma-
tion record contains the set of traces produced and can have associated metadata
as, for example, the parameters passed to the transformation when it was exe-
cuted. For each trace recorded, there is a set of model elements which are linked
by the previously-mentioned trace, varying from 0 to N elements. As in the pre-
vious case, the trace can have associated metadata as, for example, which was
the rule of the transformation created each trace.

According to this proposal there is a core metamodel for the ATLAS Model
Weaver (AMW) [6], used for linking elements from models. This core metamodel
constitutes the base for the traceability metamodel which we extend.

3.2 Proposed Metamodel

Our proposed metamodel for traceability extends AMW metamodel for trace-
ability, including the necessary semantic types for traceability in DW. The result
can be seen in figure 3.

In this metamodel, a TraceModel has a set of models (wovenModels) linked
by the trace model. Each of these woven models has the list of references (Ele-
mentRef) which identify the elements linked by the traces. The trace model has
also a set of TraceLinks, which define the relationships between the elements in
the woven models. Each trace link has a set of sourceElements, which were the
source of the automatic derivation, and a set of targetElements which were the

128 A. Maté and J. Trujillo

Fig. 3. AMW Metamodel for traceability extended with semantic links for DWs

result of the automatic derivation. A trace link can also have one parent, as well
as a set of children trace links. This is an important feature, since it allows us to
group traces forming hierarchies, providing different levels of detail in the trace
models. Therefore, the trace models allow us to visualize over a hundred traces,
which they typically store, in a scalable way. The elements linked by the traces
are represented by the TraceLinkEnds, which reference the identifiers listed in
the woven models.

In order to add semantics to the traces in the metamodel, we extend the
TraceLink element, aligning the types with the classification made in [26]. We
could use a reduced set of links, since in our case Overlap and Conflict are
very similar. However, for the sake of standarization, we include the whole set.
Nevertheless, in our case, each trace will only have one semantic type attached
(since we do not include roles because they are included at the CIM level).
Therefore, the definition of each trace link type is as follows:

– Satisfiability and Dependency will be used for vertical traceability (between
different layers). In the first case, the traces with this type will be those
coming from the requirements (in the CIM layer) to the elements in the
PIM. In the second case, we will use a specialization of the Dependency type,
Derived from, in order to specify the traces coming from the data sources to
the multidimensional elements at the PIM level.

– Evolution links will be included to handle horizontal traceability which takes
care of element changes at the same layer (e.g. from PIM to PIM).

– Overlap and Conflict will be used for solving conflicts where the same el-
ement comes both from the requirements and from the data sources in a

A Traceability Proposal for DW 129

different shape. In this case, the designer will decide which derived element
is the correct solution to the conflict.

– Rationalization links will be included as means of enabling the user to record
his own annotations in the trace model about changes or decisions taken.

Once we have defined our trace metamodel, we need to define an approach to
create the trace models in an automatic way, which models will be created and
what information will they store. In order to include traceability in our ap-
proach [15, 16], we will introduce the trace models shown in figure 4. The first
step to include traceability and support for automated operations (like require-
ments and transformation validation, calculation of traceability measures and
derivation including source datatypes) in our approach, is to make the relation-
ships (shown in [15, 16]) between the CIM and PIM elements explicit. This is
a vertical traceability (source and target models are in a different MDA layer)
case in which all the relations are perfectly known, since they are created in an
automatic way, so we just need to create the elements which correspond to the
traces simultaneously as the transformation is executed and the target model is
created. This CIM2PIMTrace model will be storing mainly Satisfiability traces.

The second step,is to be able to record the traces between the data sources
represented in the PSM and the hybrid PIM. The hybrid PIM is the result of
a transformation using as input the first PIM (from now on “initial PIM”) and
the data sources. The hybrid PIM should be traced both to the initial PIM, in
order to be able to trace the original requirements, and to the data sources, in
order to keep track of the source tables and attributes. This hybrid PIM can
contain conflicts between concepts that come from both the requirements and
from the data sources, either defining the same concept differing only in their
name (overlap) or totally differing both in name and attributes (conflict). In
this sense, this hybrid PIM will have both vertical (between the data sources
and the hybrid PIM, DS2PIMTrace) and horizontal (between the initial PIM
and the hybrid PIM, PIM2PIMTrace1) traceability models. The vertical trace

Fig. 4. Inclusion of traceability models in DW development process

130 A. Maté and J. Trujillo

model between the PSM and the hybrid PIM will record the Derived from traces,
whereas the horizontal trace model between the initial PIM and the hybrid
PIM will record the Evolution traces. An additional PIM2PIMTrace2 model can
be added to record the existing Overlaps and Conflicts, but these should be
manually added, since only the designer knows which elements in the model
refer to the same concept. It is important to note that, these kind of traces, are
not less important than the automatic ones, since they will act as a bridge to
map certain requirements to the data sources.

The last step is deriving the final PIM, which will be used to generate the
target DW. This final PIM retains only the elements from the hybrid PIM which
will be finally used. In this sense, this PIM is the result of filtering the undesired
elements and resolving the conflicts which appeared in the hybrid PIM. There-
fore, the traces from the hybrid PIM to the final PIM will show which concepts
were the ones chosen as a solution to each existing conflict. The type of these
traces will be Evolution and will be stored in the PIM2PIMTrace3 model.

Since the development process is performed by succesive deriving, adding,
and filtering elements while most elements are not altered, the traces have low
volatility. In this sense, developing a reactive framework which automatically
updates the corresponding traces whenever a change (update or delete) is made
would minimize the maintenance effort.

Once we have defined the trace metamodel and we have shown all the required
trace models, we need to formally define the automatic derivation of the traces
by means of QVT [20] rules.

4 Automatic Derivation of Traceability Models in Data
Warehouses

In this section, we will discuss the necessary transformations to automatically
generate the aforementioned traces and store them in trace models, which can be
updated over time. Due to paper constraints, we will focus on the traces coming
from CIM to PIM, both in this section and in our example.

According to our proposal for developing DWs [15, 16], we use a hybrid ap-
proach deriving the elements in an initial PIM model from the requirements
by means of QVT rules. QVT rules specify a transformation by checking for
a defined pattern in the source model. Once the pattern is found, a QVT rule
transforms elements from the source metamodel into the target metamodel. A
QVT, which creates the links between the CIM business process element and
the PIM fact and fact attribute elements, is shown in figure 5.

On the left hand of the transformation rule is the source metamodel, which
in our case, is our i* profile in order to model requirements for DWs. In this
QVT rule, we have a business process with its associated rationale, which is
modeled by means of strategic, decisional and information goals. These goals
model the business logic from which we obtain the information requirements
which, in turn are decomposed into measures, which are indicators of business
performance, and contexts.

A Traceability Proposal for DW 131

Fig. 5. QVT rule to derive a fact from a business process along with the associ-
ated trace

On the right hand of the transformation rule are the target metamodels. On
the one hand, we have our multidimensional profile, composed by the fact (focus
of the analysis, related to the business process) and the associated fact attribute
(indicator of performance, related to the measure). On the other hand we also
have the trace metamodel we proposed, composed in this case by the trace link
which makes explicit the relationship between the business process and the fact.
In an analogous way, the trace link for making explicit the relationship between
the measure and the fact attribute would be also created, but due to space
constraints it is omitted.

The “C” at the center of the figure means that the source model is checked,
whereas the “E” means that the target models are enforced. This means that,
each time that the described pattern is found in the source models, the target
patterns are enforced (generated) in the resulting target models. The rest of the
QVT relationships between models in our approach (without including trace-
ability) can be found in [16]. The corresponding QVT rule for transforming a
context into a dimension can be seen in figure 6.

In this figure, a context “c” from the CIM, on the left hand, is transformed
into a dimension “d” and its associated base level “b” in the PIM, at the right
hand of the figure. The associated trace link to this transformation has a source
element reference, which is the context from the CIM, and three (one omit-
ted) trace link ends. Each trace link end references a different element but has
the same model reference (since the elements are in the same target model). The

132 A. Maté and J. Trujillo

Fig. 6. QVT transformation for deriving a context into a dimension with its associated
trace

omitted trace link corresponds to the association between the base level and the
dimension. The rest of the relationships between the CIM and PIM elements is
summarized in table 1, along with its corresponding rule name.

Table 1. Relationships between CIM elements and PIM elements

Transformation rule name Source element (CIM) Target Element (PIM)

BusinessProcess2Fact BusinessProcess StarPackage

BusinessProcess2Fact BusinessProcess FactPackage

BusinessProcess2Fact BusinessProcess Fact

Measure2FactAttribute Measure FactAttribute

Context2Dimension Context DimensionPackage

Context2Dimension Context Dimension

Context2Dimension, Context2Base Context Level

Context2Dimension, Context2Base Context Association

The contexts can derive either into a dimension package, its corresponding
dimension and first level if the context is the base of the dimension, or into a
level and an association with the previous level in the dimension hierachy. A
graphic example of the generic relationships is shown in figure 7.

In this figure, we can see the previously described elements in the QVT from
the CIM at left side. The business process has its associated rationale represented
by means of succesive goals, which derive into an information requirement for

A Traceability Proposal for DW 133

Fig. 7. Generic relationships between CIM elements and PIM Elements

the DW. In turn, this information requirement is decomposed into contexts and
measures. At the right hand of the figure, the corresponding multidimensional
elements from the PIM appear. As aforementioned, the business process is re-
lated to the fact (and the corresponding packages), whereas the first context is
related to the dimension package, the dimension, the base level and its associ-
tation with the dimension. On the other hand, the second context is associated
with the second level in the dimension. With this approach, if we wish to check
the result of the transformations for debugging, we can check which rule created
each element with the information stored in the traces. In addition, these traces
allow us to keep track of which elements in the PIM model match with each
requirement in the CIM model, making requirements validation easier. More-
over, if any requirement is changed, we know which elements are affected and
which rule created them, being able to execute the corresponding rule of the
transformation to regenerate the affected part of the PIM.

Although in this section we have presented the generation of traces from a
goal-based CIM, the traces could be used to trace any element in a different CIM
model from another proposal, as long as it has a unique reference identifier.

5 Example of Application

In this section, we will present an example of application for our traceability
proposal, showing how the traces can be navigated to retrieve useful information.

A University wishes to build a DW in order to analyze the factors which
influence the performance of the students. This university has a transactional
database created for managing the information about professors, degrees, sub-
jects and students, which will serve as data source for the data warehouse. The
analysts wish to analyze the students grades by subject, professor who teaches
them, and student, taking into account how many hours they spend studying

134 A. Maté and J. Trujillo

Fig. 8. Requirements modeled by using our i* profile for DW and its corresponding
multidimensional model

per week. These requirements are recorded in a CIM which acts as the starting
point for the process.

In figure 8, we can see the requirements on the left side, where the business
process (focus of the analysis) in this case is the student success. Its correspond-
ing contexts are the students and the students grouped by hours of study per
week (shown in the figure), the subjects and the professors (omitted due to
space constraints). On the right hand of the figure, we can see the PIM with
the StarPackage “SP student success, the FactPackage “FP student success and
the Fact “Student success”, associated with the business process. The measure
“student grades” is associated with its corresponding FactAttribute, whereas
the “student” context derives into the DimensionPackage “DP Student”, the
Dimension “Student”, the base level “Student” and its association with the di-
mension. Lastly, the aggregated context “Students by hours of study” derives
into its corresponding level and the association towards the previous level in the
dimension (in this case “student” level). Table 2 summarizes the relationships
between elements and its corresponding transformation rule.

Table 2. Elements linked between CIM and PIM models by satisfiability links

Satisfiability link rule name Source Elements (CIM) Target Elements (PIM)

BusinessProcess2Fact Student success SP Student sucess,
FP Student sucess,

Student sucess

Measure2FactAttribute Grades Grades

Context2Dimension Student DP Student,Student(Dime)
Student(Level),Association

Context2Base Students by hours of study Students by
hours of study (Level),

Association

A Traceability Proposal for DW 135

Fig. 9. New version of the CIM and its corresponding PIM obtanied by applying our
trace metamodel and the transformations

Once the PIM has been derived, the analysts wish to change the requirements
model. They wish to remove the “Student” context from the requirements. The
context is removed from the model, and the previously aggregated context “Stu-
dents by hours of study” now satisfies the information requirement from which
“Students” derived in the CIM. With our approach we can track the changes
done in the CIM model and identify the affected elements. In this case, the
contexts associated with the information requirement in the CIM model will
be affected, as well as the dimension “DP Students” and its corresponding el-
ements in the PIM model. The rule used to generate the PIM elements was
Context2Dimension, so we will need to execute this rule again with the new
parameters (in this case “Students by hours of study” context) to regenerate the
affected part in the derived model. The result is shown in figure 9.

In this model, the “Students by hours of study” dimension replaces the pre-
vious “Students” dimension, association and base level while the other elements
remain the same.

This example is a simplification from a real-world project of another univer-
sity. Three different data marts were designed, each data mart CIM averaging
forty to fifty decisional goals, deriving into an average of twenty eight to thirty
four contexts and measures per data mart. A change in a decisional goal would
affect an average of other three to four goals and their derived contexts and mea-
sures, with the corresponding changes at the PIM level. Thanks to the traces, the
designer knew which elements had to be changed in the final implementation,
cutting the development time of the project.

6 Conclusions and Future Work

In this paper, we have proposed the first trace metamodel for DW development
based on the MDA framework, in order to include semantic traces. We have
shown the necessary trace models to be included in our development process.
Furthermore, we have focused on the relationships between the CIM and the PIM

136 A. Maté and J. Trujillo

and have proposed a set of QVT transformations to automatically generate the
corresponding trace models. The great benefit of our proposal is the improvement
in requirements validation and the identification of the corresponding elements in
the PIM models, being able to easily assess the impact of changes and regenerate
the affected parts. This was shown by means of the presented example.

Our plans for the immediate future are developing a new set of QVT trans-
formations to explore the relationships between the PIM and PSM and explore
the potential of using the information recorded in the traces in order to support
automated analysis. We will also develop a traceability framework in order to
make the maintenance of traces as automatic as possible.

Acknowledgments. This work has been partially supported by the MESO-
LAP (TIN2010-14860) and SERENIDAD (PEII-11-0327-7035) projects from the
Spanish Ministry of Education and the Junta de Comunidades de Castilla La
Mancha. Alejandro Maté is funded by the Generalitat Valenciana under an ACIF
grant (ACIF/2010/298).

References

1. Aizenbud-Reshef, N., Nolan, B., Rubin, J., Shaham-Gafni, Y.: Model traceability.
IBM Systems Journal 45(3), 515–526 (2006)

2. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering trace-
ability links between code and documentation. IEEE Transactions on Software
Engineering 28(10), 970–983 (2002)

3. Arkley, P., Mason, P., Riddle, S.: Position paper: Enabling traceability. In: Pro-
ceedings of the 1st International Workshop on Traceability in Emerging Forms of
Software Engineering, Edinburgh, Scotland, pp. 61–65 (2002)

4. Ballou, D., Tayi, G.: Enhancing data quality in data warehouse environments.
Communications of the ACM 42(1), 73–78 (1999)

5. Barbero, M., Del Fabro, M., Bézivin, J.: Traceability and provenance issues in
global model management. In: ECMDA-TW, pp. 47–56 (2007)

6. Del Fabro, M., Bézivin, J., Valduriez, P.: Weaving Models with the Eclipse AMW
plugin. In: Eclipse Modeling Symposium, Eclipse Summit Europe 2006, Esslingen,
Germany (2006)

7. Franch, X.: Incorporating Modules into the i* Framework. In: Pernici, B. (ed.)
CAiSE 2010. LNCS, vol. 6051, pp. 439–454. Springer, Heidelberg (2010)

8. Gotel, O., Finkelstein, A.: An analysis of the requirements traceability problem.
In: ICRE, pp. 94–101. IEEE, Los Alamitos (1994)

9. Gotel, O.C.Z., Morris, S.J.: Macro-level Traceability Via Media Transformations.
In: Rolland, C. (ed.) REFSQ 2008. LNCS, vol. 5025, pp. 129–134. Springer, Hei-
delberg (2008)

10. Inmon, W.H.: Building the data warehouse. Wiley-India, Chichester (2009)
11. Jouault, F.: Loosely coupled traceability for atl. In: ECMDA-TW, Nuremberg,

Germany, pp. 29–37 (2005)
12. Kimball, R.: The data warehouse toolkit. Wiley-India, Chichester (2009)
13. Kolp, M., Giorgini, P., Mylopoulos, J.: Organizational Patterns for Early Require-

ments Analysis. In: Advanced Information Systems Engineering (CAiSE), LNCS,
vol. 2681, pp. 617–633. Springer Berlin (2003)

A Traceability Proposal for DW 137

14. Luján-Mora, S., Trujillo, J., Song, I.-Y.: A UML profile for multidimensional mod-
eling in data warehouses. DKE 59(3), 725–769 (2006)

15. Mazón, J.-N., Trujillo, J.: A model driven modernization approach for automati-
cally deriving multidimensional models in data warehouses. In: Parent, C., Schewe,
K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 56–71.
Springer, Heidelberg (2007)

16. Mazon, J.N., Pardillo, J., Trujillo, J.: An MDA approach for the development of
data warehouses. DSS 45(1), 41–58 (2008)

17. Mazón, J.-N., Trujillo, J., Lechtenbörger, J.: Reconciling requirement-driven data
warehouses with data sources via multidimensional normal forms. DKE 63(3), 725–
751 (2007)

18. Mouratidis, H., Giorgini, P., Manson, G.: Integrating Security and Systems En-
gineering: Towards the Modelling of Secure Information Systems. In: Eder, J.,
Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 63–78. Springer, Heidelberg
(2003)

19. OMG: A Proposal for an MDA Foundation Model (2005)
20. OMG: The Meta-Object Facility 2.0 Query/View/Transformation. Final Adopted

Specification (2005)
21. Giorgini, P., Rizzi, S., Garzetti, M.: GRAnD: A goal-oriented approach to require-

ment analysis in data warehouses. DSS 45(1), 4–21 (2008)
22. Paige, R., Olsen, G., Kolovos, D., Zschaler, S., Power, C.: Building model-driven

engineering traceability classifications. In: ECMDA-TW, pp. 49–58 (2008)
23. Ramesh, B., Jarke, M.: Toward reference models for requirements traceability.

IEEE Transactions on Software Engineering 27(1), 58–93 (2001)
24. Ramesh, B., Stubbs, C., Powers, T., Edwards, M.: Requirements traceability: The-

ory and practice. Annals of Software Engineering 3(1), 397–415 (1997)
25. Samia Kaabi, R., Souveyet, C., Rolland, C.: Eliciting service composition in a goal

driven manner. In: ICSOC, pp. 308–315 (2004)
26. Spanoudakis, G., Zisman, A.: Software traceability: a roadmap. Handbook of Soft-

ware Engineering and Knowledge Engineering (2005)
27. Vassiliadis, P.: Data Warehouse Modeling and Quality Issues. Ph.D. thesis, Athens

(2000)
28. Walderhaug, S., Stav, E., Johansen, U., Olsen, G.K.: Traceability in Model-Driven

Software Development. Designing Software-Intensive Systems: Methods and Prin-
ciple, 133–159 (2008)

29. Winkler, S., von Pilgrim, J.: A survey of traceability in requirements engineering
and model-driven development. Software and Systems Modeling 9, 529–565 (2010)

30. Yu, E.S.K.: Modelling strategic relationships for process reengineering. Ph.D. the-
sis, Toronto, Ont., Canada (1995)

31. Yu, Y., Jurjens, J., Mylopoulos, J.: Traceability for the maintenance of secure
software. In: ICSM 2008, pp. 297–306. IEEE, Los Alamitos (2008)

32. Yu, Y., Niu, N., Gonzalez-Baixauli, B., Candillon, W., Mylopoulos, J., Easterbrook,
S., do Leite, J., Vanwormhoudt, G.: Tracing and validating goal aspects. In: RE
2007, pp. 53–56. IEEE, Los Alamitos (2007)

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 138–153, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Ontological Foundations for Conceptual Part-Whole
Relations: The Case of Collectives and Their Parts

Giancarlo Guizzardi

Ontology and Conceptual Modeling Research Group (NEMO),
Federal University of Espírito Santo (UFES), Vitória (ES), Brazil

gguizzardi@inf.ufes.br

Abstract. In a series of publications, we have employed ontological theories
and principles to evaluate and improve the quality of conceptual modeling
grammars and models. In this article, we advance this research program by
conducting an ontological analysis to investigate the proper representation of
types whose instances are collectives, as well as the representation of
part-whole relations involving them. As a result, we provide an ontological in-
terpretation for these notions, as well as modeling guidelines for their sound
representation in conceptual modeling. Moreover, we present a precise qualifi-
cation for the parthood relations of member-collective and subcollective-
collective in terms of formal mereological theories of parthood, as well as in
terms of the modal meta-properties of essential and inseparable parts.

Keywords: ontological foundations for conceptual modeling, part-whole rela-
tions, representation of collectives.

1 Introduction

In recent years, there has been a growing interest in the application of Foundational
Ontologies, i.e., formal ontological theories in the philosophical sense, for providing
real-world semantics for conceptual modeling languages, and theoretically sound
foundations and methodological guidelines for evaluating and improving the individ-
ual models produced using these languages.

In a series of publications, we have successfully employed ontological theories and
principles to analyze a number of fundamental conceptual modeling constructs such
as Types, Roles and Taxonomic Structures, Relations, Attributes, among others (e.g.,
[1,2]). In this article we continue this work by investigating a specific aspect of the
representation of part-whole relations. In particular, we focus on the ontological
analysis of collectives and the part-whole relations involving them. The focus on
collectives is timely given the increasing recognition of the importance of finding
well-founded manners to represent collectives in domains such as bioinformatics in
which collectives and their parts abound [3,4].

Parthood is a relation of fundamental importance in conceptual modeling, being
present as a modeling primitive in practically all major conceptual modeling lan-
guages. Motivated by this, a number of attempts have been made to employ theories
of different sorts to provide a foundation for part-whole relations. These initiatives

 Ontological Foundations for Conceptual Part-Whole Relations 139

fall roughly in three different classes: (i) proposals that employ classical ontological
theories of parthood (Mereologies). In this class, there is a number of works in the
literature that employ the ontological theory put forth by the philosopher Mario
Bunge [5] typically accessed through its most popular adaptation termed the BWW
ontology [6,7]; (ii) proposals that are based on research from linguistics and cognitive
science in which different sorts of Meronymic relations are elaborated. Most contribu-
tions in this class are based on the theory developed by Winston , Chaffin and
Herrmann (henceforth WCH) [8]. An example of a pioneering article in this class is
[9]; (iii) proposals which define a number of so-called secondary properties which
have been used to further qualify parthood relations [6]. These include distinctions
which reflect different modal aspects of parthood reflecting different relations of
dependence (e.g., generic versus existential dependence). An example is the distinc-
tion between essential and inseparable parthood in [2].

Despite their important contributions, there are significant shortcomings in the cur-
rent scenario considering the aforementioned approaches. On the one hand, accounts
of parthood solely based on WCH suffer from many difficulties inherited from the
original theory. As discussed in [10,11], WCH’s original taxonomy turned out to be
overly linguistically motivated, focusing on the linguistic term part-of (and its cog-
nates). In fact, as demonstrated by these authors, the six linguistically-motivated types
of part-whole relation originally proposed in WCH give rise to only four distinct
ontological types, namely: (a) subquantity-quantity: modeling parts of an amount of
matter (e.g., alcohol-wine, gin-Martini, Chocolate-Toddy); (b) member-collective:
modeling a collective entity in which all parts play an equal role w.r.t. the whole (e.g.,
tree–forest, card–deck, lion-pack); (c) subcollective-collective: modeling a relation
between a collective and the subcollectives that provide further structure to the former
(e.g., the north part of the black forest-black forest, the underage children of John-the
children on John); (d) component – functional complex: modeling an entity in which
all parts play a different role w.r.t. the whole, thus, contributing to the functionality of
the latter (e.g., heart-circulatory system, engine – car).

On the other hand, conceptual modeling accounts of parthood based on BWW
inherit the limitations of Bunge’s original treatment of parthood in its most basic core.
Mereology is a mature discipline with well-defined and formally characterized theo-
ries. These in fact form a lattice of theories such that there is not one single formal
meaning of part in mereology but several alternative axiomatizations of parthood that
extend each other. Mapping modeling primitives representing part-whole relations to
these theories can indeed provide an important contribution to conceptual modeling.
Firstly, in a direct manner because these theories can provide sound and fully charac-
terized formal semantics for these relations. But, also because nowadays several au-
thors have proposed codifications of different mereological theories by mapping them
to different Description Logics, hence, providing a mechanism for automated reason-
ing with partonomies in conceptual models [12,13]. The negative point here is that
Bunge’s theory of parthood corresponds to the weakest theory in mereology. In fact a
theory which is even considered to be too weak to count as a characterization for a
true part-whole relation [14].

Finally, most current approaches limit themselves to analyze the relation between
the whole and its parts. However, as discussed in [15], a conceptual theory of
parthood should also countenance a theory of wholes, in which the relations that tie

140 G. Guizzardi

the parts of a whole together are also considered. To put it simply, the composite
objects in which we are interested in conceptual modeling are not mere aggregations
of arbitrary entities but complex entities suitably unified by proper binding relations.

This paper should then be seen as a companion to the publications in [2,16] and
[17]. In this research program, we have managed to show that the three classification
schemes aforementioned, namely, the linguistic-cognitive meronymic distinctions, the
mereological theories of parthood, and the so-called secondary properties are not
orthogonal. In fact, each particular meronymic distinction in the first scheme commits
to basic mereological properties, secondary properties, and even requires binding
relations of specific kinds to take place between their parts. In [17], we have managed
to show the interconnection between these classification schemes for the case of the
subquantity-quantity relation. In a complementary form, we did the same in [2,16] for
the case of the component – functional complex relation. The objective of this paper is
to follow the same program for the case of part-whole relations involving collectives,
namely, the member-collective and the subcollective-collective relations. This paper
is, thus, a substantial extension to the preliminary work reported in [18] in which only
the member-collective relation is analyzed and in some of its aspects.

The remainder of this article is organized as follows. Section 2 reviews the theories
put forth by classical mereology as well as its connection with modal secondary prop-
erties of parts and wholes. The section also discusses how these mereological theories
can be supplemented by a theory of (integral) wholes. In section 3, we discuss collec-
tives as integral wholes and present some modeling consequences of the view de-
fended there. Moreover, we elaborate on some ontological properties of collectives
that differentiate them not only from their sibling categories (quantities and functional
complexes), but also from sets (in a set-theoretical sense). The latter aspect is of rele-
vance since collectives as well as the member-collective and subcollective-collective
relations are frequently taken to be identical to sets, set membership and the subset
relation, respectively. In section 4, we promote an ontological analysis of two part-
whole relations involving collectives, clarifying on how these relations stand w.r.t. to
basic mereological properties (e.g., transitivity, weak supplementation, extensionality)
as well as regarding the modal secondary properties of essential and inseparable
parthood. As an additional result connected to this analysis, we outline a number of
metamodeling constraints that have been used to implement a UML modeling profile
for representing collectives and their subparts in conceptual modeling. Section 5 pre-
sents final considerations of this paper.

2 A Review of Formal Part-Whole Theories

In practically all philosophical theories of parts, the relation of (proper) parthood
(symbolized as <) stands for a strict partial ordering, i.e., an asymmetric (2) and tran-
sitive relation (3), from which irreflexivity follows (1):

∀x ¬(x < x) (1)

∀x,y ((x < y) → ¬(y < x)) (2)

∀x,y,z ((x < y) ∧ (y < z) → (x < z)) (3)

 Ontological Foundations for Conceptual Part-Whole Relations 141

These axioms amount to what is referred in the literature by the name of Ground
Mereology (M), which is the core of any theory of parts, i.e., the axioms (1-3) define
the minimal (partial ordering) constraints that every relation must fulfill to be consid-
ered a parthood relation. As previously mentioned, Mario Bunge’s mereological the-
ory (Assembly Theory) corresponds to the axiomatization of Ground Mereology (with
the only difference of assuming the existence of a null individual which is supposed
to be part of everything else) [5]. Although necessary, these constraints are not suffi-
cient, i.e., it is not the case that any partial ordering relation qualifies as a parthood
relation. Most authors require an extra axiom termed the weak supplementation prin-
ciple (WSP) (4) as constitutive of the meaning of part and, hence, consider (1-3) plus
(4) (the so-called Minimal Mereology (MM)) as the minimal constraints that a
mereological theory should incorporate [14,19]:

∀x,y ((y < x) → ∃z (z < x) ∧ ¬overlap(z,y)) (4)

Figure 1.a below illustrates this notion of weak supplementation. It shows that if y is a
part of x then there must exist another part of x which is disjoint from y (the “miss-
ing” part of x). Without this “missing” part, what differentiates y and x? Notice that x
and y are supposed to be different given that parthood is irreflexive (1). From a prac-
tical point of view, without WSP, models such as the one in figure 1.b cannot be
deemed incorrect. Now, following that model, suppose an event E which is composed
of one single subevent. Isn’t this alleged part identical to the event E itself? In a sound
model, events are either atomic or are composed of at least two disjoint subevents.

Fig. 1. Invalid situation (a) and invalid conceptual model (b) according to Minimum
Mereology

There is an extension to MM that has then been created by strengthening the sup-
plementation principle represented by (4). In this system, (4) is thus replaced by
something termed the stronger supplementation principle (SSP). The resulting theory
is named Extensional Mereology (EM). A known consequence of the introduction of
SSP is that in EM we have that two objects are identical iff they have the same parts,
i.e., SSP entails a mereological counterpart of the extensionality principle (of identity)
in set theory. As a consequence, if an entity is identical to the (mereological) sum of
its parts, thus, changing any of its parts changes the identity of that entity. Ergo, an
entity cannot exist without each of its parts, which is the same as saying that all its
parts are essential parts.

Essential parthood can be defined as a case of existential dependence between in-
dividuals, i.e., x is an essential part of y iff y cannot possibly exist without having
that specific individual x as part [2]. This specific mode of existential dependence can
also be defined from the part x to the whole y. We say that x is an inseparable part of
y iff x cannot possibly exist without being a part of that specific individual y [2]. A

142 G. Guizzardi

stereotypical example of an essential part of a car is its chassis, since that specific car
cannot exist without that specific chassis (changing the chassis legally changes the
identity of the car); A stereotypical example of an inseparable part of a living cell is
its membrane, since the membrane cannot exist without being part of that particular
cell. As discussed in depth in [2], essential and inseparable parthood play a fundamen-
tal role in conceptual modeling. However, it is not the case for all types of entities that
all their parts are essential. In other words, although EM describes the basic meaning
of parthood for some types of entities (e.g., quantities [17] and events [14]), this is not
the case for entities of all ontological categories. In particular, as we have shown in
[16], for functional complexes while some of their parts are essential (inseparable),
not all of them are essential (inseparable). As discussed in section 4, EM is too strong
a theory in this sense also for the case of the member-collective and the subcollective-
collective relations.

Classical mereological theories focus solely on the relation from the parts to the
wholes. Thus, just like in set theories we can create sets by enumerating any number
of arbitrary entities, in classical mereologies one can create a new object by summing
up individuals that can even belong to different ontological categories. For example,
in these systems, the individual created by the aggregation (termed mereological sum)
of Noam Chomsky’s left foot, the first act of Puccini’s Turandot and the number 3, is
an entity considered as legitimate as any other. However, as argued by [10], humans
only accept the aggregation of entities if the resulting mereological sum plays some
role in their conceptual schemes. To use an example: the sum of a frame, a piece of
electrical equipment and a bulb constitutes a whole that is considered meaningful to
our conceptual classification system. For this reason, this sum deserves a specific
concept in cognition and a name in human language. The same does not hold for the
sum of bulb and the lamp’s base.

According to Simons [14], the difference between purely formal mereological
sums and, what he terms, integral wholes is an ontological one, which can be under-
stood by comparing their existence conditions. For sums, these conditions are mini-
mal: the sum exists just when the constituent parts exist. By contrast, for an integral
whole (composed of the same parts of the corresponding sum) to exist, a further unify-
ing condition among the constituent parts must be fulfilled. A unifying condition or
relation can be used to define a closure system in the following manner. A set B is a
closure system under the relation R, or simply, R-closure system iff

cs 〈R〉 B =def (cl 〈R〉 B) ∧ (con 〈R〉 B) (5)

where (cl 〈R〉 B) means that the set B is closed under R (R-Closed) and (con 〈R〉 B)
means that the set B is connected under R (R-Connected). R-Closed and R-Connected
are then defined as:

cl 〈R〉 B =def ∀x ((x∈B) → ((∀y R(x,y) ∨ R(y,x) → (y∈B))) (6)

con 〈R〉 B =def ∀x ((x∈B) → (∀y (y∈B) → (R(x,y) ∨ R(y,x))) (7)

An integral whole is then defined as an object whose parts form a closure system
induced by what Simons terms a unifying (or characterizing) relation R.

 Ontological Foundations for Conceptual Part-Whole Relations 143

3 What are Collectives?

According to WCH, the main distinction between collectives and quantities is that the
latter but not the former are said to be homeomeros wholes [8]. In simple terms, ho-
meorosity means that the entity at hand is composed solely of parts of the same type
(homo=same, mereos = part). The fact that quantities are homeomeros (e.g., all sub-
portions of wine are still wine) causes a problem for their representation (and the
representation of relationships involving them) in conceptual modeling. In order to
illustrate this idea, we use the example depicted in figure 2.a below. In this model, the
idea is to represent that a certain portion of wine is composed of all subportions of
wine belonging to a certain vintage, and that a wine tank can store several portions of
wine (perhaps an assemblage of different vintages). However, since Wine is ho-
meomeros and infinitely divisable in subportions of the same type, if we have that a
Wine portion x has as part a subportion y then it also has as part all the subparts of y
[17]. Likewise, a wine tank storing two different “portions of wine” actually stores all
the subparts of these two portions, i.e., it actually stores infinite portions of wine. In
other words, maximum cardinality relations involving quantities cannot be specified
in a finite manner. As discussed, for instance in [20], finite satisfiability is a funda-
mental requirement for conceptual models which are intended to be used in informa-
tion systems. This feature of quantities, thus, requires a special treatment so that they
can be property modeled in structural conceptual models. A treatment that does not
take quantities to be mere aggregations (mereological sums) of subportions of the
same kind but integral wholes unified by a characterizing relation of topological
maximal self-connectedness [17].

Group of Visitors Guide

1..* 1responsible for

*
*

Fig. 2. Representations of a Quantity (a-left) and a Collective (b-right) with their respective
parts in UML conceptual Models

As correctly defined by WCH, collectives are not homeomeros. They are com-
posed of subparts parts that are not of the same kind (e.g., a tree is not forest). More-
over, they are also not infinitely divisible. As a consequence, a representation of a
collection as a simple aggregation of entities (analogous to an enumerated set of enti-
ties) does not lead to the same complications as for the case of quantities. Take, for
instance, the example depicted in figure 2.b, which represents a situation analogous to
the one of figure 2.a. Different from the former case, there is no longer the danger of
an infinite regress or the impossibility of specifying finite cardinality constraints. In
figure 2.b, the usual maximum cardinality of “many” can be used to express that a
group of visitors has as parts possibly many other groups of visitors and that a guide
is responsible for possibly many groups of visitors.

Nonetheless, in many examples (such as this one), this model of figure 2.b implies
a somewhat counterintuitive reading. In general, the intended idea is to express that,

144 G. Guizzardi

for instance, John as a guide, is responsible for the group formed by {Paul, Marc,
Lisa} and for the other group formed by {Richard, Tom}. The intention is not to ex-
press that John is responsible for the groups {Paul, Marc, Lisa}, {Paul, Marc}, {Marc,
Lisa}, {Paul, Lisa}, and {Richard, Tom}, i.e., that being responsible for the group
{Paul, Marc, Lisa}, John should be responsible for all its subgroups. A simple solu-
tion to this problem is to consider groups of visitors as maximal sums, i.e., groups that
are not parts of any other groups. In this case, depicted in figure 3, the cardinality
constraints acquire a different meaning and it is no longer possible to say that a group
of visitors is composed of other groups of visitors in this technical sense.

Group of Visitors Guide

1..* 1

responsible for

Fig. 3. Representation of Collections as Maximal Sums

The solution above is similar to taking the meaning of a quantity K to be that of a
maximally-self-connected-portion of K [17]. However, in the case of collections,
topological connection cannot be used as a unifying or characterizing relation to form
an integral whole, since collections can easily be spatially scattered. Nonetheless,
another type of connection (e.g., social) should always be found. A question begging
issue at this point is: why does it seem to be conceptually relevant to find unifying
relations leading to (maximal) collections? As discussed in the previous section, col-
lections taken as arbitrary sums of entities make little cognitive sense: we are not
interested in the sum of a light bulb, the North Sea, the number 3 and Aida’s second
act. Instead, we are interested in aggregations of individuals that have a purpose for
some cognitive task. So, we require all collectives in our system to form closure sys-
tems unified under a proper characterizing relation. For example, a group of visitors
of interest can be composed by all those people that are attending a certain museum
exhibition at a certain time. Now, by definition, a closure system is maximal (see
formula (5)), thus, there can be no group of visitors in this same sense that is part of
another group of visitors (i.e., another integral whole unified by the same relation).

Nonetheless, it can be the case that, among the parts of a group of visitors, further
structure is obtained by the presence of other collections unified by different relations.
For example, it can be the case that among the parts of a group of visitors A, there are
collections B and C composed of the English and Dutch speaking people in that
group, respectively. Now, neither the English speaking segment nor the Dutch speak-
ing segment are groups of visitors in the technical sense just defined, since the latter
has properties lacking in both of them (e.g., the property of having both English and
Dutch segments). Moreover, the unifying relations of B and C are both specializations
of A’s unifying relation. For example, A is the collection of all parties attending an
exhibition and the B is the collection of all English speakers among the parties attend-
ing that same exhibition. We return to this point in section 4.2.

By not being homeomeros and infinitely divisible, collectives actually bear a
stronger similarity to functional complexes than to quantities in the classifications of
[10,11]. In [11], for instance, the authors propose that the difference between a collec-
tive and a functional complex is that whilst the former has a uniform structure, the

 Ontological Foundations for Conceptual Part-Whole Relations 145

latter has a heterogeneous and complex one. We propose to rephrase this statement in
other terms. In a collective, all member parts play the same role type w.r.t. the whole.
For example, all trees in a forest can be said to play the role of a forest member. In
complexes, conversely, a variety of roles can be played by different components. For
example, if all ships of a fleet are conceptualized as playing solely the role of “mem-
ber of a fleet” then it can be said to be a collection of ships. Contrariwise, if this role
is further specialized in “leading ship”, “defense ship”, “storage ship” and so forth,
the fleet must be conceived as a functional complex.

Finally, we would like to call attention to the fact that collectives are not sets and,
thus, the member-collective and the subcollective-collective relations are not the same
as the membership (∈) and subset (⊂) relations, respectively. Firstly, collectives and
sets belong to different ontological categories: the former are concrete entities that
have spatiotemporal features; the latter, in contrast, are abstract entities that are out-
side space and time and that bear no causal relation to concrete entities [1]. Secondly,
unlike sets, collectives do not necessarily obey an extensional principle of identity,
i.e., it is not the case that a collective is always completely defined by the sum of its
members. We take that some collectives can be considered extensional by certain
conceptualizations; however, we also acknowledge the existence of intentional collec-
tives obeying non-extensional principles of identity [21]. Thirdly, collectives are inte-
gral wholes unified by proper characterizing relations; sets can be simply postulated
by enumerating their members. This feature of the latter is named ontological ex-
travagance and it is a feature to be ruled out from any ontological system [19]. Fi-
nally, contrary to sets, we do not admit the existence of empty or unitary collectives.
As a consequence, we eliminate a feature of set theory named ontological exuberance
[19]. Ontological exuberance refers to the feature of some formal systems that allows
for the creation of a multitude of entities without differentiation in content. For in-
stance, in set theory, the elements a, {a}, {{a}}, {{{a}}}, {…{{{a}}}…} are all
considered to be distinct entities. We shall return to some of these points in the next
section.

4 Parthood Relations Involving Collectives

4.1 The Member-Collection Relation

According to [22], classical semantic analysis of plurals and groups distinguish be-
tween atomic entities, which can be singular or collectives, and plural entities. From a
linguistic point of view, the member-collection relation is considered to be one that
holds between an atomic entity (e.g., John, the deck of cards) and either a plural (e.g.,
{John, Marcus}) or a collective term (e.g., the children of Joseph, the collection of
ancient decks).

Before we can continue, a formal qualification of this notion of atomicity is
needed. Suppose an integral whole W unified under a relation R. By using this unify-
ing (or characterizing) relation R, we can then define a composition relation <R such
that (x <R W) iff: (i) there is a set B such that cs 〈R〉 B; (iii) (x < W) and (x ∈ B).
Intuitively, this relation captures the idea that there is indeed a genuine connection
between a part x and the whole W (as opposed to a merely formal one). Now, one

146 G. Guizzardi

important thing to highlight is that if (x <R W) then there is no y such (y <R x). In other
words, the closure set defined by relation R are the R-atoms of W. This is because, the
whole W unified under R is maximal under this relation (by the definition of an R-
closure system). The fact that no R-part of W can be unified under the same relation R
of course does not imply that these R-parts need to be atomic in an absolute sense. In
fact, given an element x such that (x <R W), x itself can be an integral wholes unified
by a different relation R’. However, it should be clear by now that the sets of R’-
atoms of x and the set of R-atoms of W (of which x is a member) are disjoint.

An example of a relation that takes place between an atom under relation R and an
integral whole unified under that relation is the member-collective relation (symbol-
ized as M(part,whole)). Following the above discussion, we have that these relations
are never transitive, i.e., they are intransitive. Thus, if M(x,W) then x is atomic for W,
and if we have M(y,x), we also have necessarily that ¬M(y,W). In other words, for
the case of the member-collective relation, to say that a member must be a singular
entity coincides with this entity being an atom in the sense just discussed, i.e., an atom
w.r.t. to a characterizing relation unifying that specific whole.

The following example illustrates the intransitivity of the member-collection rela-
tion: “I am member of a club C (collective) and my club is a member of an Interna-
tional Association of clubs C’ (collective). However, it does not follow that I am a
member of this International Association of Clubs C’ since this only has clubs as
members, not individuals”. However, an even more general statement about the in-
transitivity of this relation can be made. Since members of a collective are considered
to be atomic w.r.t. the context in which the collective is defined, if an individual x is a
part of (member of) a collection y, then for every z which is part of (member of, func-
tional part of, sub-collection of) x, then z is not a part of (member of) y. In other
words, the member-collective relation causes the part to necessarily be seen as atomic
in the context of the whole, hence, “blocking” a possible transitive chain of part-
whole relations. Thus, for instance, although an individual John can be part of (mem-
ber of) a Club, none of John’s parts (e.g., his heart) is part of that Club.

Regarding the weak supplementation axiom, some authors claim that this axiom is
too hard a constraint to be imposed to the member-collective relation [4]. From a
formal point of view, this view implies that we accept reflexive characterizing rela-
tions for collectives as integral wholes. Such an approach seems at first to be some-
how afforded by common sense. For instance, we can conceive a book of poems
composed of a single poem, a CD composed of a single track, a purchase order com-
posed of single order item, or a journal issue composed by a single article. Now, are
there disadvantages to such an approach? We can foresee two of them.

Firstly, abandoning weak supplementation would set this relation apart from all the
other parthood relations that we have considered, since this axiom (considered to be
constitutive of the very meaning of part) is assumed by the relations of component-
functional complex [16], subquantity-quantity [17], and subcollective-collective (sec-
tion 4.2). Secondly, this choice opens the possibility for the creation of collectives
with one single member. But what then would be the difference between John,
{John}, {{John}}, {…{{John}}…}, etc? If entities such as these are generally
adopted, then our system can face the objection of ontological extravagance, and we
should be reminded that avoiding this feature was one of the motivations of mereol-
ogy in the first place [19]. Given these two reasons, we adopt in this paper the view

 Ontological Foundations for Conceptual Part-Whole Relations 147

that weak supplementation should be part of the axiomatization of the member-
collective relation. This obviously does not imply that we cannot have single-track
CD’s or single-article journal issues. Following [1], in these cases, we consider the
relation between, for instance, the tracks and the CDs to be a relation of constitution
as opposed to one of parthood. Relations of constitution abound in ontology. An ex-
ample is the relation between a marble statue and the (single portion of marble) that
constitutes it [1]. In fact, a more detailed analysis of WCH initial proposal showed
that some of their original meronymic relations are in fact cases of constitution [1,11].

Finally, let us take the case of the secondary (modal) property of essentiality. As
we have previously discussed, unlike sets and mereological sums, collectives do not
necessarily have an extensional criterion of identity. That is, whereas for some collec-
tives the addition or subtraction of a member renders a different individual, it is not
the case that this holds for all of them. However, when this is the case, all member-
collective relations that the extensional collective participates as a whole are relations
of essential parthood. This is because, since a collective (by definition) has a uniform
structure, then all members of a collective must be indistinguishable w.r.t. the whole.
As a consequence, it cannot be the case that some members of a collection are essen-
tial while others are not. In summary, member-collective relations are only relations
of essential parthood if the collective in the association end connected to the whole is
an extensional individual. In the converse reading, if a collective is extensional then
all its parts (members) are essential.

4.2 The Subcollective-Collective Relation

In contrast with the member-collective relation, from a linguistic point of view, the
subcollective-collective is a relation that holds between two plural entities, or collec-
tives constituted by such plural entities, such that all atoms of the first are also atoms
of the second [22].

Let us start with an example. Figure 4 depicts an integral whole termed the DSRG
(Distributed Systems Research Group) unified by the relation of carrying out re-
search in the area of distributed systems at University X (UtX). The R-atoms of
DSRG are them {John, Mary, Peter, Mark}. The fact that no R-part of W can be uni-
fied under the same relation R also does not imply that these R-parts cannot be further
structured to form new wholes. In other words, for example, we can take two different
relations R’and R’’ which are specializations of R, such that they can be used to form
new closure systems among the R-parts of DSRG. Let R’ be the relation of carrying
out research in the same sub-area of modeling of distributed systems at UtX, and R’
be the relation of carrying out research in the same sub-area of performance of dis-
tributed systems at UtX. This situation is depicted in figure 5.

Indeed, the fact that R’ is a specialization of the condition R implies that the possi-
ble relata of R’ are the R-atoms of R, i.e., R’⊆ R. When this is the case, we name the
integral whole W’ unified under R’ a subcollective of the whole W unified under R.
Let us name the relation between W’ and W the relation of subcollective-collective,
symbolized as C(W’,W). We then have that C(W’,W) iff: (i) all formal parts of W’
are formal parts of W; (ii) the characterizing relation R’ of W’ is a specialization of
the characterizing relation R of W. Now, suppose an integral whole W’’ unified by
relation R’’ and C(W’’,W’). By the above definition of the C-parthood relation, we

148 G. Guizzardi

John Mary
R

Peter Mark

R

R

R R

R
R

Distributed Systems Research Group

Fig. 4. Examples of an integral whole (collective) and its members

John

Modeling of
Distributed Systems

Mary
R’

Peter

Performance Analysis of
Distributed Systems

Mark
R’’

Distributed Systems Research Group

Fig. 5. Examples of a collective and its subcollectives

have that R’’⊆ R’, and that all parts of W’’ are also parts of W’. Due to the transitiv-
ity of both formal parthood (<) and the subset relation (⊆), we have that R’’⊆ R, and
also that all formal parts of W’’ are also formal parts of W. Again, by definition, we
conclude that C(W’’,W) holds. In other words, the subcollective-collective relation is
always transitive.

A second property we would like to demonstrate is the following. Suppose we have
that M(y,x) and C(x,W), and that R’ and R are the characterizing relations of x and
W, respectively. Since M(y,x), we have both that (y < x) and that y is an R’-atom of x.
From C(x,W), we have that all formal parts of x are formal parts of W, but also that
R’⊆ R. Again, due to the transitivity of both < and ⊆, we have both that (y < W) and
that y is a R-atom of W. From this, we conclude that M(y,W). In other words, transi-
tivity always holds across a member-collective relation combined with a subcollec-
tive-collective relation.

Now, how does the subcollective-collective relation stand w.r.t. weak supplemen-
tation? Suppose that we have two collectives x and y such that C(y,x). As we have
previously discussed, x is closure system unified by relation R, and y must be a clo-
sure system unified by a specialization of this condition R’. Since the subcollective-
collective relation is irreflexive, we have that R’ is necessarily a proper subset of R,
i.e., there are R-atoms of x which are not R’-atoms of y. This, at first, seems to imply
that we can always have an integral whole z which is unified by another specialization
R’’ of R (the complement of R w.r.t. R’). However, the fact that there are members of
x which are not part of y does not mean that these members can define a genuine
integral whole. In other words, it can be the case that the only relation in common
between these entities is that they obey the condition implied by R and the negation
the condition implied by R’. As discussed in [1,5], characterizing entities based on
negative properties is a poor ontological choice. For this reason, if we have that
C(y,x) we do not require that there is a z different from y such that C(z,x), but we do
require that there is a z such that ¬overlap(z,y) and M(z,x).

 Ontological Foundations for Conceptual Part-Whole Relations 149

In the previous sections, we have discussed that collectives are not necessarily ex-
tensional and that, if a member of a collective is essential to the collective, then the
collective is an extensional entity, i.e., all its members are essential. How do subcol-
lectives stand w.r.t. to this secondary property? Suppose that we have a collective W
composed of the subcollective W’ and W’’ such that the former is an essential part of
W but not the latter. Now, as we have discussed, the structure of collectives is defined
via specialization of the collective’s unifying relation, i.e., the members of W’ and
W’’ are also members of W. This implies that all subcollectives of W are inseparable
parts of it, i.e., W’ and W’’ come to existence by refining the structure of W and by
grouping the specific members of W. As a consequence, they cannot exist without
that whole. A second observation we can make is that if there is an x which is a mem-
ber of W’, and x is an essential member of W then x must also be an essential member
of W’. The argument can be made as follows. If x is an essential part of W then W
cannot exist without x; If W’ is an inseparable part of W then W’ cannot exist without
W; due to the transitivity of existential dependence [14], we have that W’ cannot exist
without x, ergo, x is an essential part of W’. Finally, since we are admitting that col-
lectives are not necessarily extensional entities, it is conceivable that a whole W has
an essential part W’ composed of members which are not essential for either W or
W’. For instance, suppose that by law, all juries must have at least two members
which are older than sixty years old. Although this subcollective would be essential to
the whole, it is conceivable that its individual members are exchangeable. By the
same reasoning, one could admit a particular subcollective to be essential to a whole,
without requiring the other collectives of that whole to be likewise essential.

4.3 Towards a UML Profile for Modeling Collectives and Their Parts

We summarize the results of these sections in a proposal that has been incorporated in
a UML profile for representing the member-collective and the subcollective-collective
relations (table 1). Since a profile is constituted by syntactical constraints and, since
UML conceptual models are always defined at the type level, the meta-properties of
irreflexivity, anti-symmetry and transitivity (at instance level) cannot be captured by
profile constraints. We have included a constraint to guarantee weak supplementation
for these relations taking into consideration the type-level nature of a UML class
diagram, i.e., taking into consideration the minimum cardinality constraints of all
parthood relations connected to the same type representing a whole.

Metaclass Description

A «collective» represents a type whose instances are collectives, i.e., they are
collections of entities that have a uniform structure. Examples include a deck
of cards, a forest, a group of visitors, a pile of bricks.

subcollective-
collective

This parthood relation holds between two collectives. Examples include: (a)
the north part of the Black Forest is part of the Black Forest; (b) The collec-
tion of Jokers in a deck of cards is part of that deck; (c) the collection of
forks in a cutlery set is part of that cutlery set. We use the symbols

C and C to represent the shareable and non-
shareable (see http://www.uml.org/) versions of this relation, respectively.

«collective»
A

150 G. Guizzardi

member-
collective

This is a parthood relation between a functional complex or a collective (as a
part) and a collective (as a whole). Examples include: (a) a tree is part of
forest; (b) a card is part of a deck of cards; (c) a club member is part of a
club. We use the symbols M and M to represent the
shareable and non-shareable versions of this relation, respectively.

 General Constraints

1. Weak Supplementation: Let T be a type whose instances are wholes and let {T1…T2}
be a set of types related to T via the subcollective-collective or member-collective
relations. Let lowerCi be the value of the minimum cardinality constraint of the
association end connected to Ci in the aggregation relation. Then, we have that

(∑
=

n

i 1

lowerCi) ≥ 2;

 Constraints applied to the subcollective-collective relation

1. This relation only holds between collectives, i.e., they must be either stereotyped as
«collective» or be a subtype of a type stereotyped as «collective»;

2. Collectives are maximal entities. For this reason, it is not the case that a collective can
have as a part another collective of the same type (i.e., unified by the same relation). As a
consequence, these relations are irreflexive at the type level. In UML terms, the two
association ends of this relation must be connected to classes of different types (albeit
both stereotyped as «collective»);

3. Also because collectives are maximal entities, a collective can have at maximum one
subcollective of a given type. For this reason, the maximum cardinality constraint in the
association end connected to the part in this relation must be one (in UML terms,
self.target.upper = 1);

4. All subcollective-collective relations are relations of inseparable parthood. These
relations are marked with a tagged value {insperable} and the association end connected
to the whole must be immutable (in UML terms, self.source.readOnly = true);

5. This relation conforms to the axiomatization of Minimum Mereology (MM), i.e., it is an
Irreflexive, Asymmetric and Transitivity relation which obeys the Weak Supplementation
axiom. Moreover, if a collective W has one single direct subcollective W’, then it must
have members which are disjoint from W’;

 Constraints applied to the member-collective relation

1. This relation can only represent essential parthood if the object representing the whole
on this relation is an extensional individual. In this case, all parthood relations in which
this individual participates as a whole are essential parthood relations. These relations
are marked with tagged value {essential} and the association end connected to the part
must be immutable (in UML terms, self.target.readOnly = true);

2. The class connected to association end relative to the whole individual must be a type
whose instances are collectives, i.e., they must be either stereotyped as «collective» or
be a subtype of a type stereotyped as «collective»;

3. This is an Irreflexive and Asymmetric relation which obeys the Weak Supplementation
axiom. However, it is also an Intransitive relation. Although transitivity does not hold
across two member-collective relations, a member-collective relation followed by

 Ontological Foundations for Conceptual Part-Whole Relations 151

subcollective-collective relation is transitive. That is, for all a,b,c, if M(a,b) and M(b,c)

then ¬M(a,c), but if M(a,b) and C(b,c) then M(a,c).

4. Asides from being intransitive, a member x of a collective W is atomic w.r.t. the
collective. This means that for if an entity y is part of x then y is not a member of W.

For the sake of illustration, we revisit in figures 6.a and 6.b two of the examples
discussed in this paper, explicitly representing them with the modeling primitives
proposed in table 1. As one can observe, we decorate the standard UML symbol for
aggregation with a C and an M to represent a subcollective-collective and member-
collective relations, respectively.

«collective»
Club ClubMember

«kind»
Person

1..* 2..*

M

«collective»
Association of Clubs

M

2..*

*

«collective»
Group of Visitors Guide

responsible for

«collective»
EnglishSpeakingSegment

«collective»
DutchSpeakingSegment

EnglishSpeakingMember DutchSpeakingMember

Person

C C

M M

1 1

2..* 2..*

{inseparable}{inseparable}

1..* 1

Fig. 6. Examples of subcollective-collective and member-collective part-whole relations

5 Final Considerations

The development of suitable foundational theories is an important step towards the
definition of precise real-world semantics and sound methodological principles for
conceptual modeling languages. This article concludes a sequence of papers that aim
at addressing the three fundamental types of wholes prescribed by theories in linguis-
tics and cognitive sciences, namely, functional complexes, quantities, and collectives.
The first of these roughly correspond to our common sense notion of object and,
hence, the standard interpretation of objects (or entities) in the conceptual modeling
literature is one of functional complexes. The latter two categories, in contrast, have
traditionally been neglected both in conceptual modeling as well as in the ontological
analyzes of conceptual modeling grammars.

In this paper, we conduct one such ontological analysis to investigate the proper
representation of types whose instances are collectives, as well as the representation
of parthood relations involving them. As result, we were able to provide a sound onto-
logical interpretation for these notions, as well as modeling guidelines for their proper
representation in conceptual modeling. In addition, we have managed to provide a
precise qualification for the relations of member-collective and subcollective-
collective w.r.t. to both classical mereological properties (e.g., transitivity, weak sup-
plementation, extensionality) as well as modal secondary properties that differentiate
essential and inseparable parts. Finally, the results advanced here contribute to the
definition of concrete engineering tools for the practice of conceptual modeling. In

152 G. Guizzardi

particular, the metamodel extensions and associated constraints outlined here have
been implemented in a Model-Driven Editor using available UML metamodeling
tools [23].

Acknowledgements. This is research is funded by FAPES (grant # 45444080/09) and
CNPq (grant # 481906/2009-6) as well as a CNPq research productivity grant.

References

[1] Guizzardi, G.: Ontological Foundations for Structural Conceptual Models, Telematica
Institute Fundamental Research Series, The Netherlands (2005) ISBN 90-75176-81-3

[2] Guizzardi, G.: Modal aspects of object types and part-whole relations and the shape de
re/de dicto distinction. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and
WES 2007. LNCS, vol. 4495, pp. 5–20. Springer, Heidelberg (2007)

[3] Rector, A., Rogers, J., Bittner, T.: Granularity, scale and collectivity: When size does and
does not matter. Journal of Biomedical Informatics 39(3), 333–349 (2006)

[4] Bittner, R., Donelly, M., Smith, B.: Individuals, Universals, Collections: On the Founda-
tional Relations of Ontology. In: 3rd Intl. Conf. on Formal Ontology in Inf. Systems
(FOIS 2004), Torino, Italy (2004)

[5] Bunge, M., Ontology I.: The Furniture of the World. Springer, Heidelberg (1977)
[6] Opdahl, A., Henderson-Sellers, B., Barbier, F.: Ontological Analysis of whole-part rela-

tionships in OO-models. Information and Software Technology 43, 387–399 (2001)
[7] Wand, Y., Storey, V.C., Weber, R.: An ontological analysis of the relationship construct

in conceptual modeling. ACM Transactions on Database Systems 24(4), 494–528 (1999)
[8] Winston, M.E., Chaffin, R., Herrman, D.: A Taxonomy of Part-Whole relations. Cogni-

tive Science (1987)
[9] Odell, J.J.: Six Different Kinds of Composition. Journal of Object-Oriented Program-

ming 5/8 (1994)
[10] Pribbenow, S.: Meronymic Relationships: From Classical Mereology to Complex Part-

Whole Relations, The Semantics of Relationships. Kluwer Academic Publishers,
Dordrecht (2002)

[11] Gerstl, P., Pribbenow, S.: Midwinters, End Games, and Bodyparts. A Classification of
Part-Whole Relations. Intl. Journal of Human-Computer Studies 43, 865–889 (1995)

[12] Bittner, T., Donnelly, M.: Logical properties of foundational relations in bio-ontologies.
Artificial Intelligence in Medicine 39, 197–216 (2007)

[13] Keet, C.M., Artale, A.: Representing and Reasoning over a Taxonomy of Part-Whole
Relations. Applied Ontology 3(1-2), 91–110 (2008)

[14] Simons, P.M.: Parts. An Essay in Ontology. Clarendon Press, Oxford (1987)
[15] Gangemi, A., Guarino, N., Masolo, C., Oltramari, A.: Understanding top-level ontologi-

cal distinction. In: Proceedings of IJCAI 2001, Workshop on Ontologies and Information
Sharing (2001)

[16] Guizzardi, G.: The problem of transitivity of part-whole relations in conceptual modeling
revisited. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565,
pp. 94–109. Springer, Heidelberg (2009)

[17] Guizzardi, G.: On the Representation of Quantities and their Parts in Conceptual Model-
ing. In: 6th International Conf. on Formal Ontology and Information Systems (FOIS
2010), Toronto, Canada (2010)

 Ontological Foundations for Conceptual Part-Whole Relations 153

[18] Guizzardi, G.: Representation of Collectives and their Members in UML Conceptual
Models: An Ontological Analysis. In: Proc. of the 6th FP-UML International Workshop,
Vancouver, Canada (2010)

[19] Varzi, A.C.: Parts, wholes, and part-whole relations: The prospects of mereotopology.
Journal of Data and Knowledge Engineering 20, 259–286 (1996)

[20] Cadoli, M., Calvanese, D., De Giacomo, G., Mancini, T.: Finite satisfiability of UML
class diagrams by constraint programming. In: Workshop on CSP Techniques with Im-
mediate Application (2004)

[21] Botazzi, E., Catenacci, C., Gangemi, A., Lehmann, J.: From Collective Intentionality to
Intentional Collectives: An Ontological Perspective, Cognitive Systems Research, Spe-
cial Issue on Cognition and Collective Intentionality (2006)

[22] Vieu, L., Aurnague, M.: Part-of Relations, Functionality and Dependence, Categorization
of Spatial Entities in Language and Cognition. John Benjamins, Amsterdam (2007)

[23] Benevides, A.B., Guizzardi, G.: A model-based tool for conceptual modeling and domain
ontology engineering in ontoUML. In: Filipe, J., Cordeiro, J. (eds.) Enterprise Informa-
tion Systems. Lecture Notes in Business Information Processing, vol. 24, pp. 528–538.
Springer, Heidelberg (2009)

Product-Based Workflow Design for Monitoring

of Collaborative Business Processes

Marco Comuzzi and Irene T.P. Vanderfeesten

School of Industrial Engineering, Eindhoven University of Technology
P.O. Box 513, 5600MB Eindhoven, The Netherlands

{m.comuzzi,i.t.p.vanderfeesten}@tue.nl

Abstract. Monitoring of cross-organizational processes requires the def-
inition and implementation of monitoring processes that can deliver the
right information to the right party in the collaboration. Monitoring
processes should account for the temporal and aggregation dependencies
among the monitoring information made available by the set of collabo-
rating parties. We solve the problem of designing monitoring processes in
collaborative settings using Product-Based Workflow Design (PBWD).
We first discuss a methodology to apply PBWD in this context and then
propose an architecture to implement the methodology using a service-
oriented approach.

Keywords: Monitoring, business process design, cross-organizational
processes.

1 Introduction

Continuous monitoring of a business process can be defined as the set of method-
ology and tools to collect and disseminate relevant information about the process
execution to interested stakeholders simultaneously with, or within a reasonably
short period after, the occurrence of relevant events in the process [6]. Continu-
ous monitoring has straightforward benefits, such as the opportunity for process
providers to detect anomalies in (almost) real time and apply control actions
on-the-fly.

Research on (continuous) monitoring in cross-organizational processes has
usually taken an information-centric perspective, focusing on the definition of
monitoring requirements for the collaborating parties and their evolution [6,11],
the design of architectures and tools to capture monitoring information [17], the
detection of contract violations, given the available monitoring information [3], or
the verification of the compliance of execution logs to a process specification [18].

Although the information-centric view can suffice for intra-organizational pro-
cess monitoring, where all monitoring information is produced in a given busi-
ness domain, in cross-organizational settings researchers stress the importance
of process- and communication-oriented mechanisms to transmit relevant infor-
mation to interested parties across the collaborative network [7,11]. In other
words, once the monitoring information is captured and made available by the

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 154–168, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Product-Based Workflow Design 155

Factor
(bank)4Contractor 1

Business process
1.Consumer places an order with supplier
2.Supplier requests financing with factor (selling invoices)
3 Factor verifies credit rating of consumer7

Supplier
(hub)

Consumer
1

2 3

5
6

3.Factor verifies credit rating of consumer
4.Factor pays the supplier
5.Supplier and contractors produce goods
6.Supplier sends goods and invoices to consumer
7.Consumer pays Factor (e.g. after 30 days)

Contractor 2

Fig. 1. Factoring example

collaborating parties, a process must be built to allow a specific party to retrieve
(or be delivered) the monitoring information in the right way. Such monitoring
process should account for the temporal and aggregation dependencies among
monitoring information.

Let us consider the running example of a business network for factoring in
the manufacturing industry (see Fig. 1), constituted by a supplier, a set of con-
tractors (two in our case), a consumer, and a factor. The supplier, in particular,
acts as the coordinating hub of the set of contractors, which execute the process
required to deliver the product ordered by the consumer. Factoring is a financial
transaction whereby a business (supplier) sells its account receivables (invoices)
to a third party financial institution (factor) in exchange for immediate payment.
Factoring allows consumers to obtain financing at an interest rate, i.e. the one
provided by the factor, lower than the one they could obtain directly from the
supplier [10]. In this context, continuous monitoring may help reducing the risks
associated to the collaboration, e.g. the risk that the supplier will not deliver
the goods as promised or the risk that the consumer will not be able to pay.
Therefore, continuous monitoring may help to further increase the benefits that
the involved parties achieve through the collaboration.

In this scenario, the supplier wants to monitor when the consumer has made
the payment to the factor and when the factor has received such payment. If
the consumer does not pay, in fact, the supplier should not agree to further
transactions in the future involving the same consumer. Note that (i) payment
confirmations are not conveyed to the supplier in the process depicted in Fig. 1
and (ii) a temporal dependency exists between monitoring information, i.e. if the
supplier checks the factor acknowledgment of the payment without knowing if the
consumer has actually sent out the payment, he or she may have an inconsistent
view on the process (and may take wrong corrective actions accordingly).

The factor, similarly, wants to monitor the progress and quality of the process
on the supplier side to reduce its own risk. The consumer, in fact, may not be
satisfied with the goods, e.g. because of late delivery or poor quality, and, as a
consequence, may not be willing to pay the factor according to established terms.
This information may be delivered either by the supplier, or being reconstructed
through more detailed progress information made available by the contractors
and aggregated correctly. Again, note that progress information is not conveyed
to the factor in the business collaboration depicted in Fig. 1.

The latter example also shows that there could be different alternatives for a
party to obtain the required monitoring information and each alternative may

156 M. Comuzzi and I.T.P. Vanderfeesten

be characterized in non-functional terms, e.g. in terms of cost and quality. For
instance, progress information made available by contractors may be of higher
quality and cost, whereas the supplier may only have limited visibility on the
progress of an order once this is outsourced to contractors, and therefore may
provide such information at a cheaper price.

In this paper, we propose a methodology to design monitoring processes in col-
laborative business settings. The methodology considers as input the monitoring
information made available by the collaborating parties and builds monitoring
processes embedding temporal and aggregation dependencies among monitoring
information. Moreover, monitoring information in our methodology can be de-
scribed also in non-functional terms, e.g. by cost, quality, and availability. Among
the set of possible alternatives, the proposed methodology allows the selection
of the monitoring process satisfying also the party non-functional requirements,
e.g. the minimum cost monitoring process or the highest quality process, given
a budget constraint.

The design of the monitoring process for cross-organizational business pro-
cesses is framed as a PBWD (Product-Based Workflow Design, [16,20,22]) prob-
lem. PBWD is an analytical method for automatically deriving business process
specifications from the set of information products involved in the process and
their dependencies. In the monitoring of collaborative processes, information
products are represented by the monitoring information made available by the
actors involved in the collaboration.

The paper is organised as follows. Related work is discussed in Section 2, while
Section 3 introduces the background on PBWD and explains its novel applica-
tion to the problem of cross-organizational process monitoring. The architecture
to integrate the PBWD design of monitoring processes in a service-oriented en-
vironment is presented in Section 4, while conclusions are eventually drawn in
Section 5.

2 Related Work

Monitoring of cross-organizational business processes has been investigated, from
a requirements engineering perspective, in [7] and [11]. In order to achieve
a successful collaboration, both papers stress the importance of process- and
communication-oriented mechanisms to transmit relevant information to inter-
ested parties across the network. Similarly, [5] considers the need to define ex-
ternal information requirements, i.e. information required by a consumer from
its providers to correctly monitor and enforce a multiparty contract.

From the design and implementation perspectives, the CrossFlow [8] and
CrossWork [9] projects consider architectural support for cross-organizational
business processes. Both projects investigate issues such as the design of flexible
architecture to support monitoring [9] and the definition of specific monitor-
ing points in electronic contracts [8]. Monitoring, however, is still considered
information-centric, i.e. the dependency among monitoring information prod-
ucts produced by various sources or the aggregation of monitoring information
from several parties are not considered.

Product-Based Workflow Design 157

Research on Web service-based business processes has also extensively inves-
tigated the issue of monitoring. Web service-based processes are intrinsically
cross-organizational, since each orchestrated Web service can in principle be ex-
posed by a different organization. In this context, we can distinguish between
intrusive and non-intrusive monitoring [2,13]. The former involves the interleav-
ing of service and monitoring activities at runtime, whereas the latter separates
the business from the monitoring logic, since information relevant for monitoring
can be captured non-intrusively while a process is executing, e.g. intercepting
service operation calls and responses or from the log of the process engine [13].
Cross-organizational settings require non-intrusive monitoring, since it would
not be feasible to implement a different instrumentation to satisfy the moni-
toring requirements of each different party with which an organization has to
interact. Furthermore, while the aforementioned approaches only consider the
monitoring of performance variables, such as response time and availability, or
simple conditions describing the behavior of a service, in this paper we take a
business perspective, since PBWD considers business-related information that
is deemed relevant by the user of a process.

The innovation of the approach presented in this paper concerns also the
aggregation, according to user-specific dependencies, of monitoring information
to design a customized monitoring process. Web service-based process monitor-
ing considers also aggregation of monitoring information from multiple sources
[2,13]. However, monitoring information, such as the timestamps of service calls
or process variables, are meaningful only at a technical level, and they require
further translation before becoming meaningful to and, therefore, relevant for a
process user [12]. PBWD considers only informational products meaningful at
a business level and, therefore, enables us to design monitoring processes using
informational products that do not need translation.

3 Using PBWD for Collaborative Process Monitoring

This section introduces some background on the PBWD approach and shows
how PBWD can be used to generate monitoring processes. PBWD is a scientifi-
cally grounded method for business process (re)design. The focus of this method
is on the design of processes that deliver informational products, the so-called
workflow processes. The PBWD methodology takes the structure of the informa-
tional product, which is described in a Product Data Model (PDM), as a starting
point to derive a process model. Informational products are, for instance, a deci-
sion on an insurance claim, the allocation of a subsidy, or the approval of a loan.
Based on the input data provided by the client or retrieved from other systems,
the end (informational) product is constructed step-by-step. In each step new
information is produced based on the specific data available for the case.

Over recent years, PBWD has shown to be a successful business process
(re)design method [15]. For instance, the annual reporting process for mutual
funds at a large Dutch bank was successfully redesigned using PBWD. The in-
sights in the informational product, achieved by PBWD, led to a 50% decrease
in throughput time [20].

158 M. Comuzzi and I.T.P. Vanderfeesten

1. Monitoring
requirements
elicitation

3. Service
oriented

implementation

2.1 Design
Product Data
Model (PDM)

2.2 Select
optimal path

2.3 Generate
process
model for
l d h

2. PBWD design of monitoring process

elicitation implementationModel (PDM) selected path

Fig. 2. Methodology for PBWD of monitoring processes

PBWD is particularly well-suited for achieving a process-centric view on mon-
itoring in cross-organizational processes because of two reasons:

– Clean-sheet approach to process design: PBWD builds process models di-
rectly from the specification of the informational products involved in the
process and their dependencies. This approach is a perfect fit for monitoring
cross-organizational business processes, since the monitoring process must
be built from the monitoring information made available by the collaborat-
ing parties. Note that, in highly dynamic collaborations, partner selection
is late-bound, and collaborating parties are selected dynamically as they be-
come available [9];

– Cost- and quality-aware process design: PDMs, i.e. available informational
products and their dependencies, can be enriched with information about
the cost of producing an information product or its quality for the interested
stakeholders. PBWD can then derive various process specifications for the
same PDM that differ for their overall costs and quality. The possibility to
tune the costs and the quality of the process is an essential feature to derive
the most suitable monitoring process for a given stakeholder. When a process
is not mission critical, for instance, the monitoring process can be designed
by maximizing its quality given a budget constraint, whereas in contexts
characterized by severe quality requirements, for instance in highly regu-
lated industries, such as healthcare, monitoring processes can be designed
by minimizing the monitoring costs while guaranteeing a given required level
of quality.

Fig. 2 shows the steps of the methodology for creating monitoring processes using
PBWD for a specific stakeholder in the collaboration. After having analyzed
the monitoring requirements of the stakeholder, the application of PBWD to
monitoring processes design involves three steps.

First, the Product Data Model (PDM) of the stakeholder is designed. The
PDM, which is the starting point for the PBWD method, is similar to the concept
of a Bill-of-Materials (BoM) [14] used in manufacturing environments to manage
and control production processes. Since (digital) information is more flexible
than physical products, however, the PDM contains more complex structures
than a BoM, such as re-use of information or alternative paths to produce an
information element.

Second, among the set of all paths in the PDM that can lead to the correct
production of monitoring information, the path which satisfies the non-functional
requirements of the stakeholder is selected. As discussed later, we consider the
cost, (data) quality, and availability dimensions to specify non-functional re-
quirements.

Product-Based Workflow Design 159

In the third step, a process model is generated for the chosen path.
Eventually, the last step in the methodology concerns the implementation of

the monitoring process. In this regard, we discuss an architecture for the imple-
mentation of the methodology in a service-oriented environment. This discussion
is made in Section 4.

From now on, the paper will focus on the application of PBWD to design
monitoring processes to satisfy the monitoring requirements of the consumer
(stakeholder) in the running example depicted in Fig. 1. In order to decrease its
own risk, the consumer is interested in monitoring (i) the status of the payment
and (ii) the progress of requests on the supplier side. Monitoring information
on the payment can be reconstructed as a combination of information on when
the factor sent out the payment and information on when the supplier received
the payment. If for instance, the factor has sent out the payment, but this has
not been acknowledged by the supplier in a reasonably short period, then the
payment may not have been successful.

Monitoring information on the progress of an order can be provided either by
the supplier or directly by the contractors. The supplier has only a low-quality
view on the order progress, e.g. the supplier may only report that the order
has been sent to contractor 1, but he cannot access the details of the internal
enactment of contractor 1’s process. More detailed monitoring information can
be provided directly by contractors.

3.1 The Product Data Model

Fig. 3 summarizes in a PDM the information products available to satisfy the
monitoring information requirements of the consumer. A PDM is constituted
by information products and operations. Information products in the PDM are
depicted by circles, while the operations performed on the input elements to
produce the output are represented by hyperarcs. Each operation has zero or
more input elements and has exactly one output element, i.e. the information
product obtained through the combination of its input elements. A PDM may
contain alternative paths to produce a certain information element. Hence, we
define a path as any sub-graph of the PDM. A complete path is a sub-graph of
the PDM containing the root element.

In our example, the correct monitoring information for the consumer (MON)
is obtained combining information on the delivery of the payment (PAY) and
information on the progress of the request (PRO). The monitoring information
PAY can be obtained either as information on when the factor has sent out
the payment (PF), information on when the supplier has received the payment
(PS), or a combination thereof. The progress report (PRO) can be obtained
either from the supplier (SPx) or from the contractors (Eyx). Note that x rep-
resents the quality of the provided monitoring information, i.e. High or Low
(x ∈ {H, L}), whereas y identifies the contractor (y ∈ {1, 2}). The supplier and
contractors 1 and 2 can provide two different types of monitoring information,
that is, more or less accurate (see SPH and SPL or E1H and E1L).

160 M. Comuzzi and I.T.P. Vanderfeesten

MON

OP1

OP10

PAY PRO

OP2 OP5 OP8

OP9

PF PS SPH SPL E1H E1L E2H E2L

OP2

OP3
OP4 OP5

OP6 OP7

PF PS SPH SPL E1H E1L E2H E2L

OP18OP17OP16OP15OP14OP13OP12OP11

Fig. 3. Factoring monitoring product data model

Table 1. Constraints on example monitoring product data model

Operation C Q A Operation C Q A

Op01 0 1 1.0 Op10 0.5 0.5 1.0
Op02 0.6 0.3 1.0 Op11 0.2 1 0.9
Op03 0.8 0.8 1.0 Op12 0.7 1 0.7
Op04 0.1 0.7 1.0 Op13 1 1 0.7
Op05 0.1 0.4 1.0 Op14 0.8 1 0.9
Op06 0.1 0.2 1.0 Op15 0.5 1 0.63
Op07 0.8 1 1.0 Op16 0.3 1 0.7
Op08 0.6 0.7 1.0 Op17 0.3 1 0.7
Op09 0.6 0.7 1.0 Op18 0.1 1 0.8

Operations in the PDM signify the production of an information product.
In particular, leaf operations (Op11 to Op18) signify the production of moni-
toring information made by the supplier, contractors, and the factor, while the
other operations signify the combination of data elements to produce the parent.
In this respect, for instance, Op07 signifies the combination, made by the con-
sumer, of high quality monitoring information from contractors (E1H and E2H)
to produce the PRO data element, whereas Op03 signifies the combination of
payment information from the factor (PF) and the supplier (PS) to produce the
payment monitoring information PAY.

We express a path by listing its set of operations. For instance, the path
{Op11, Op02, Op13, Op05, Op01} is complete, since it leads to the production of
the root element MON.

Apart from the functional structure, a PDM also contains additional infor-
mation concerning the non-functional aspects of operations. Three dimensions
characterize an operation from the non-functional point of view:

– Cost (C). Represents the cost of executing the operation. In other words,
for leaf operations, it is the cost sustained by an actor to provide the cor-
respondent monitoring information product, whereas for other operations
it is the cost for the monitoring stakeholder (consumer in our case) to

Product-Based Workflow Design 161

combine the leaf information products to obtain the parent product. Costs
are summative, i.e. the cost of an information product is the sum of the costs
of operations executed to obtain such an information product [1];

– Quality (Q). Represents the quality of the information product perceived
by the stakeholder of the monitoring product model. Quality of monitor-
ing information should be intended as fit for use, i.e. the ability of a piece
information to satisfy the monitoring information requirements of its user
[23]. Fit for use quality of an information product is aggregated using the
minimum value of data quality over all operations required to create the
information product [1];

– Availability (A). Represents the probability that an operation produces its
output element(i.e., the output element becomes available after the execution
of the operation). Availability is aggregated multiplying the availabilities of
all considered operations [1].

Table 1 shows the values assigned to the non-functional dimensions for the PDM
of Fig. 3. Note, for instance, that the high quality progress status information,
i.e. obtained through operation Op13 or Op15, is more costly than the corre-
sponding low quality information, i.e. the one obtained through Op14 and Op16,
respectively. This because a supplier needs to capture more information from the
infrastructure executing the process to provide high quality monitoring informa-
tion. Note also that the cost for the consumer of combining monitoring informa-
tion produced by other parties is very low. We assume, in fact, that monitoring
information is made available digitally and, therefore, its aggregation is almost
costless. Concerning availability, note that aggregation operations executed by
the consumer, e.g. Op07 or Op03, have always highest availability, whereas the
availability of the leaf operations may not be optimal, since it depends on the
availability of the infrastructure in which monitoring information is captured by
the supplier(s) or the factor.

Apart from the cost, quality, and availability, other properties can be also
considered. Ardagna and Pernici [1], for instance, consider execution time and
reputation in addition, while Vanderfeesten et al. [21] also consider duration of
execution.

3.2 Optimal Path in the PDM

After the design of the PDM, the next step in our methodology (see Fig. 2)
is the selection of the optimal path. As explained in the previous section, the
PDM may accommodate several alternative paths to produce the end product.
The objective of this step is therefore to select a complete path that satisfies
the requirements of the considered stakeholder, in terms of cost, quality, or
availability of the monitoring information, or a combination thereof.

In order to select the optimal path, different constraints may be considered.
In this paper we use the following scenarios to illustrate our approach: (i) opti-
mal path considering the availability dimension only (A-path), (ii) optimal path
minimizing costs given a minimum quality level (Cq-path), and (iii) optimal

162 M. Comuzzi and I.T.P. Vanderfeesten

Table 2. Values for the different dimensions (Cost, data quality, availability) for each
path in the example product data model

Path Operations Total
Cost

Total
Quality

Total
Avail-
ability

1 Op01 Op02 Op11 Op06 Op14 1,7 0,2 0,81
2 Op01 Op02 Op11 Op05 Op13 1,9 0,3 0,72
3 Op01 Op02 Op11 Op08 Op15 Op18 2,0 0,3 0,43
4 Op01 Op02 Op11 Op10 Op16 Op18 1,7 0,3 0,50
5 Op01 Op02 Op11 Op07 Op15 Op17 2,4 0,3 0,38
6 Op01 Op02 Op11 Op09 Op16 Op17 2,0 0,3 0,44
7 Op01 Op03 Op11 Op12 Op06 Op14 2,6 0,2 0,57
8 Op01 Op03 Op11 Op12 Op05 Op13 2,8 0,4 0,50
9 Op01 Op03 Op11 Op12 Op08 Op15 Op18 2,9 0,7 0,30
10 Op01 Op03 Op11 Op12 Op10 Op16 Op18 2,6 0,5 0,35
11 Op01 Op03 Op11 Op12 Op07 Op15 Op17 3,3 0,8 0,26
12 Op01 Op03 Op11 Op12 Op09 Op16 Op17 2,9 0,6 0,31
13 Op01 Op04 Op12 Op06 Op14 1,7 0,2 0,63
14 Op01 Op04 Op12 Op05 Op13 1,9 0,4 0,56
15 Op01 Op04 Op12 Op08 Op15 Op18 2,0 0,7 0,17
16 Op01 Op04 Op12 Op10 Op16 Op18 1,7 0,5 0,39
17 Op01 Op04 Op12 Op07 Op15 Op17 2,4 0,7 0,15
18 Op01 Op04 Op12 Op09 Op16 Op17 2,0 0,6 0,34

path maximizing quality given maximum costs and minimum availability level
(Qc,a-path). We chose these type of constraints to exemplify our methodology.
In the general case, however, the selection of the optimal path should be seen as
the optimization of a utility function. Stakeholders can define the utility func-
tion, for instance, as the weighted sum of partial utility functions on individual
dimensions [1].

From the PDM of Fig. 3 and the operation properties of Table 1, we derive
18 complete paths for the monitoring process that may all serve the need for
monitoring the consumer order fulfillment process. These paths are reported in
Table 2. Among the available complete paths, we now discuss the above men-
tioned optimal ones:

A-path. The path with the highest availability, i.e. the highest probability of de-
livering the required end product in the form of monitoring information (MON),
is path 1. It produces the end product (MON) by executing operations Op01,
Op02, Op11, Op06, Op14. The total availability of this plan is 0.81.

Cq-path. A cost optimal path given a minimum quality level is the monitoring
path with the lowest cost that satisfies a quality requirement set by the consumer.
Suppose the consumer sets the threshold for the quality level to 0.5. Then, paths
9, 10, 11, 12, 15, 16, 17, and 18 are to be considered. The path with the lowest
cost is selected from this subset. The cost optimal path given a minimum data
quality level therefore is path 16, with quality 0.5 and cost 1.7.

Qc,a-path. The third scenario concerns the determination of the quality optimal
path given maximum costs and a minimum level of availability. If the consumer
has a budget constraint of at most 2.0 and wants to be for at least 50% sure
that the monitoring information is delivered, then the highest quality possible

Product-Based Workflow Design 163

Op01

Op02 Op06

Op11 Op14

(a)

Op01

Op04 Op07

Op12 Op15 Op17

(b)

Op01

Op02 Op10

Op11 Op16 Op18

(c)

(d)

(e)

(f)

Fig. 4. (a) PDM of the A-path (path 1); (b) PDM of the Cq-path (path 16); (c) PDM
of the selected Qc,a-path (path 4); (d) Process model for path 1; (e) Process model for
path 16; (f) Process model for path 4

is achieved by paths 2 and 4. Since there are two optimal paths and we want to
have just one prescriptive process model, it has to be decided which one of the
paths is best. In general, if more than one path satisfy the given constraints, then
several approaches can be chosen to select an optimal path. These include: (i)
random selection of one path among the identified optimal ones, (ii) selection (by
the monitoring stakeholder) of one of the optimal paths by ranking the criteria,
or (iii) selection of the path involving the lowest number of operations. As an
illustration, we choose the second case and we define the cost as being the second

164 M. Comuzzi and I.T.P. Vanderfeesten

most important criterion after the quality. From paths 2 and 4 we now select
the one with the lowest cost (path 4).

3.3 Derivation of Process Models

After the determination of the optimal path in the PDM with respect to a
certain criterion, a process model can be generated for the monitoring process
(see Fig. 4). Several algorithms have been proposed to transform the PDM into a
process model executable, for instance, by a workflow management system [22].
We use the algorithm described in [19] to automatically generate a process model
for the optimal path of the PDM. This algorithm is implemented in the ProM
framework for process analysis [20]. The resulting process models of our three
optimal paths are discussed below. These process models are represented in the
Petri Net language. The transitions (squares) represent the operations in the
PDM and are named after the output element of the operation, e.g. transition
MON indicates the operation that produces data element MON based on the
input elements PAY and PRO.

A-path. Fig. 4(d) shows the process model for the optimal path with respect to
the availability. There are two parallel branches in the process model that can be
executed concurrently: (i) a branch in which first the element PF is determined
followed by the element PAY, and (ii) a branch in which SPH is determined
followed by PRO. Once both elements PAY and PRO are determined, the final
element MON can be produced. Note that the black activity at the left hand
side of the process model is a ‘silent’ activity, i.e. it is added only for routing
purposes but does not process information. Using this process, the consumer
retrieves monitoring information on the progress of its request only from the
supplier and information on the payment only from the factor.

Cq-path. Fig. 4(e) depicts the process model for the optimal path Cq. Again
there are two parallel branches in the process model, both providing input to
produce MON. On the one hand, PAY is obtained using PS first. On the other
hand, PRO is determined by E1H and E2H, which can be determined in parallel
as well.

Qc,a-path. Fig. 4(f) shows the process model for the optimal path Qc,a. It is
similar in structure to the process model of Fig. 4(e), but it uses elements PF,
E1L, and E2L in place of PS, E1H, and E2H, respectively.

4 Implementing the Methodology

In this section we discuss the last step of the methodology proposed in this paper
(see Fig. 2), i.e. its implementation in a service-oriented environment.

We take a service-oriented approach to the definition of the product data and
the implementation of monitoring processes (see the architecture in Fig. 5(a)).
The combination of PBWD and service orientation for design and execution of
monitoring processes, respectively, can address the need for structural and oper-
ational dynamicity in business networks [9]. Concerning network structure, the

Product-Based Workflow Design 165

Business Network

Process User
ProM Toolkit

Process
Execution

Monitoring
Service A

on
ito

rA
PI

Provider A
ProM Toolkit

PetriNet2BPEL
plugin

WS BPEL
Specification

4.DEPLOY

M
r

Provider B WS BPEL
Engine Product Data Model

() l

Petri Net
model

3.DESIGN
5.USE

Process
Execution

Monitoring
Service B

Ad
Ho

c
M
on

ito
r (PDM) plugin

Monitoring Services
descriptions 2.RETRIEVE

Monitoring
Process
Execution

Monitoring
Service C

on
ito

rA
PI

Provider C
(functional & quality)

1.PUBLISH
g

Service
Registry

M
o

(a)

(b)

Fig. 5. (a) PBWD-based monitoring process creation architecture; (b) The ProM
toolkit, showing a PDM, the relative process model, and the WS-BPEL export
functionality

actors in the network can be dynamically replaced. Suppliers of spare parts in
an automotive industrial district, for instance, can be dynamically substituted
by the car manufacturer as new suppliers providing more convenient or higher
quality options become available. Concerning network operations, the network
business processes can be reconfigured on-the-fly as new business opportunities
arise. Insurance companies, for instance, may decide to outsource part of their
claim management process only on a temporary basis, e.g. to manage an ab-
normal amount of claims resulting from a possible fraud. Both scenarios require
the dynamic set-up or update of monitoring processes as the network dynami-
cally evolves. This is addressed by our methodology at design time, by adopting

166 M. Comuzzi and I.T.P. Vanderfeesten

PBWD, and at runtime, by using a service oriented approach, where services
providing monitoring information can be dynamically orchestrated in the moni-
toring processes obtained through PBWD.

The elementary monitoring information products are the monitoring infor-
mation that can be made available by actors in the business network to other
actors for monitoring purposes. e.g. the progress information made available by
the supplier or the factor in our running example. In the information system
or process engine executing a process to be monitored, monitoring information
can be captured from various sources and through different mechanisms, such
as (i) native APIs of the actor’s ERP system, e.g. SAP monitoring architecture,
workflow or BPEL engine and (ii) ad-hoc instrumentation, e.g. through the de-
velopment of event captors or other online process inspection techniques [2].

Irrespectively of how monitoring information is captured, the process provider
can make such information available to users by exposing a Web service [6] im-
plementing, for instance, a different operation for each leaf element in the moni-
toring product data model. The cost, quality, and availability of the monitoring
information (see Table 1) can be then specified in a policy document [4], that
can be attached to such service before its publication.

In a service-oriented architecture, process providers publish their monitoring
services in a service registry (STEP 1 in Fig. 5(a)) and process users browse the
registry to get service descriptions and build their monitoring PDM (STEP 2).
Note that, in Fig. 5(a), process provider and user should be intended as roles,
since an actor in the business network can act at the same time as a provider of
processes and a user of processes contributed by other actors.

The architecture depicted in Fig. 5(a) supports also the creation of an exe-
cutable monitoring process. Specifically, a process user in the business network
interested in building a monitoring process retrieves the required monitoring
service description from the registry. Service descriptions are then used to build
a monitoring product data model using the ProM toolkit (STEP 3). Currently,
as discussed in the previous sections, the algorithms for obtaining monitoring
process models (STEP 3), expressed as Petri nets and satisfying given quality
constraints, have been implemented as plugins of the ProM toolkit. ProM also
provides a plugin for the translation of models from Petri nets to (abstract)
WS-BPEL specifications (see Fig. 5(b)). The abstract WS-BPEL specification
is bound by the monitoring stakeholder to the required monitoring services in
the registry, in order to make it executable, and deployed in a process engine
(STEP 4). When in execution, a monitoring process will use the monitoring ser-
vices originally published by actors in the business network, according to the
aggregation and dependency constraints specified in the monitoring PDM and
the derived monitoring process model (STEP 5).

In respect of the scenario depicted in Fig. 5(a), most of the steps of our
methodology, such as the definition and retrieval of monitoring services from the
registry, the binding of the WS-BPEL specification obtained through ProM to
actual services in the registry, and the deployment of the WS-BPEL specification
in the process engine, are still executed manually. Future work will concern the

Product-Based Workflow Design 167

implementation of an integrated approach in which the aforementioned activities
could be fully automated.

5 Conclusions

This paper presents an innovative application of PBWD, that is, the product-
based design of monitoring processes in collaborative business networks. The
innovation brought about by this paper is twofold. On the one hand, given a col-
laborative scenario and available monitoring information, we propose a method-
ology to design from scratch a monitoring process that matches the process user’s
requirements, in terms of cost, (data) quality, and availability of monitoring in-
formation. On the other hand, we discussed an architecture for implementing
the proposed methodology.

A first area of improvement for this work concerns the implementation of
the architecture reported in Fig. 5(a) and, specifically, the connections between
the implemented ProM’s plugins and the service-oriented process execution en-
vironment. Future work will also concern the extension and refinement of the
product-based generation of monitoring processes. In particular, we plan to con-
sider additional non-functional dimensions, such as reputation, and more com-
plex utility functions for capturing the monitoring stakeholder requirements.
Constraints describing monitoring products can also become dependent on the
type of monitoring information and the type of stakeholder requiring it. Hence,
we want to investigate the issue of provider and user profiling for automatically
designing more customized monitoring processes. Also, while this paper consid-
ers the monitoring requirements for a stakeholder at the process level, we are
planning to consider also instance-level monitoring requirements, i.e., monitor-
ing requirements that can change with every different instance involving a given
stakeholder. Finally, from the modeling perspective, we want to investigate the
opportunity of specifying monitoring processes as choreographies, e.g. in BPMN
2.0, for capturing more complex dependencies among monitoring information.

References

1. Ardagna, D., Pernici, B.: Adaptive Service Compostion in Flexible Processes. IEEE
Transactions on Software Engineering 33(6), 369–384 (2007)

2. Baresi, L., Guinea, S., Nano, O., Spanoudakis, G.: Comprehensive monitoring of
BPEL processes. IEEE Internet Computing 14(3), 50–57 (2010)

3. Baresi, L., Guinea, S., Pistore, M., Trainotti, M.: Dynamo + Astro: An integrated
approach for BPEL monitoring. In: Proc. ICWS (2009)

4. Cappiello, C., Comuzzi, M., Plebani, P.: On automated generation of web service
level agreements. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and
WES 2007. CAiSE, vol. 4495, pp. 264–278. Springer, Heidelberg (2007)

5. Chiu, D.K.W., Karlapalem, K., Li, Q., Kafeza, E.: Workflow view based E-contracts
in a cross-organizational E-services environment. Distrib. Parallel. Dat. 12, 193–216
(2002)

168 M. Comuzzi and I.T.P. Vanderfeesten

6. Comuzzi, M., Vonk, J., Grefen, P.: Continuous monitoring in evolving business
networks. In: Proc. CoopIS, pp. 168–185 (2010)

7. Daneva, M., Wieringa, R.: A requirements engineering framework for cross-
organizational erp systems. Requirements Engineering 11, 194–204 (2006)

8. Grefen, P., Aberer, K., Hoffner, Y., Ludwig, H.: CrossFlow: cross-organizational
workflow management in dynamic virtual enterprises. Comput. Syst. Sci. & Eng. 5,
277–290 (2000)

9. Grefen, P., Eshuis, R., Mehandijev, N., Kouvas, G., Weichart, G.: Internet-based
support for process-oriented instant virtual enterpises. IEEE Internet Comput.,
30–38 (2009)

10. Kappler, L.: The role of factoring for financing small and medium enterprises.
Journal of Banking and Finance 30, 3111–3130 (2006)

11. Kartseva, V., Hulstijn, J., Gordijn, J., Tan, Y.-H.: Control patterns in a health-care
network. European Journal of Information Systems 19, 320–343 (2010)

12. Kotsokalis, C., Winkler, U.: Translation of service level agreements: A generic prob-
lem definition. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave
2009. LNCS, vol. 6275, pp. 248–257. Springer, Heidelberg (2010)

13. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adap-
tation for ws-bpel. In: Proc. WWW (2008)

14. Orlicky, J.: Structuring the Bill of Materials for MRP. In: Production and Inventory
Management, pp. 19–42 (December 1972)

15. Reijers, H.A. (ed.): Design and Control of Workflow Processes. LNCS, vol. 2617.
Springer, Heidelberg (2003)

16. Reijers, H., Limam, S., van der Aalst, W.: Product-Based Workflow Design. Jorunal
of Management Information Systems 20(1), 229–262 (2003)

17. Robinson, W.: A requirements monitoring framework for enterprise systems.
Requirements Engineering 11, 17–41 (2006)

18. Rozinat, A., van der Aalst, W.: Conformance checking of processes based on
monitoring real behavior. Information Systems 33(1), 64–95 (2008)

19. van der Aalst, W.: On the Automatic Generation of Workflow Processes based on
Product Structures. Computers in Industry 39, 97–111 (1999)

20. Vanderfeesten, I.: Product-Based Design and Support of Workflow Processes. PhD
thesis, Eindhoven University of Technology, Eindhoven, the Netherlands (2009)

21. Vanderfeesten, I., Reijers, H., van der Aalst, W.: Product-Based Workflow Support.
Information Systems (2011) (to appear)

22. Vanderfeesten, I., Reijers, H., van der Aalst, W., Vogelaar, J.: Automatic Support
for Product Based Workflow Design: Generation of Process Models from a Product
Data Model. In: OTM 2010 Workshops, pp. 665–674 (2010)

23. Wang, R.: A product perspective on total data quality management. Communica-
tions of the ACM 41(2), 58–65 (1998)

Modeling Design Patterns with Description Logics:
A Case Study

Yudistira Asnar, Elda Paja, and John Mylopoulos

Department of Information Engineering and Computer Science
University of Trento, Italy

{yudis.asnar,paja,jm}@disi.unitn.it

Abstract. Design Patterns constitute an effective way to model design knowl-
edge for future reuse. There has been much research on topics such as object-
oriented patterns, architectural styles, requirements patterns, security patterns,
and more. Typically, such patterns are specified informally in natural language,
and it is up to designers to determine if a pattern is applicable to a problem-at-
hand, and what solution that pattern offers. Of course, this activity does not scale
well, either with respect to a growing pattern library or a growing problem. In
this work, we propose to formalize such patterns in a formal modeling language,
thereby automating pattern matching for a given problem. The patterns and the
problem are formalized in a description logic. Our proposed framework is eval-
uated with a case study involving Security & Dependability patterns specified in
Tropos SI*. The paper presents the formalization of all concepts in SI* and the
modeling of problems using OWL-DL and SWRL. We then encode patterns as
SPARQL and SQWRL queries. To evaluate the scalability of our approach, we
present experimental results using models inspired by an industrial case study.

Keywords: design patterns, description logics, pattern matching.

1 Introduction

Design patterns represent recurring design problems and how to solve them. Design
patterns gained prominence initially in Architecture [1], and within Computer Science
with the widely-known and used design patterns for object-oriented design [2]. Today,
there are dozens of proposals for design patterns covering a range of design domains,
such as: requirements, software architectures, business processes, workflows etc.

Generally speaking, a design pattern consists of a triple (context, problem-to-solve,
solution-pattern) [1]. To use a pattern one needs to first match the design problem-at-
hand to the context, (if successful), match the problem-at-hand to the pattern context
(thereby creating mapping for pattern variables), and revise the problem at-hand by
using the solution-pattern. However, design patterns often are represented and docu-
mented informally in natural language (for an example [2]). This means that it is up to
users of a pattern library to determine which patterns are relevant, and also exactly how
they apply to the design problem-at-hand. Unfortunately, this approach does not scale
with respect to the size of the pattern library, the problem-at-hand, or the expertise of
the designer. Indeed, there is plenty of evidence that pattern libraries have low accept-
ability rates, especially so among non-expert users by now [3]. Some of the prominent

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 169–183, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

170 Y. Asnar, E. Paja, and J. Mylopoulos

reasons are (i) finding patterns relevant to the problem-at-hand is hard [3], often because
pattern libraries are unstructured; (ii) understanding patterns requires some expertise [4]
that users often do not have.

The main objective of this paper is to address this situation by formalizing design pat-
terns in a language that has a built-in matching operation, thereby offering automated
support for the identification of applicable patterns for a given design problem, also for
formulating a design solution. In this work, we formalize the pattern library as well
as the design problem as a knowledge base using description logics [5], and represent
the context of the patterns as a query to the knowledge base (SPARQL and SQWRL).
To evaluate the proposed framework, we use a case study coming from SERENITY
Security and Dependability (S&D) patterns [6]. Our evaluation is conducted along two
fronts. Firstly we want to see to what extent a description logic can accommodate pat-
terns expressed in an ontologically rich pattern language with built-in concepts such as
goal, agent, strategic dependencies among agents, and more. After all, description logics
are ontologically simple in the sense that they usually come only with two primitives:
concepts and roles (binary relationships). Secondly, we want to know if our proposed
solution scales as the size of the design problem to be matched against patterns in the
pattern library grow.

The rest of the paper is structured as follows. We outline the research baseline (de-
scription logic and OWL-DL) in Section 2. Section 3 presents the case study, while
Section 4 details the formalization of patterns. In Section 5, we explain the experimen-
tal setup we used and its results. We then offer a discussion of related work in Section 6
and concluding remarks in Section 7.

2 Baseline

Description Logics (DL). [5] are used to formalize design patterns and also the
problem-at-hand in terms of concepts, roles, individuals and their relations. In DL there
is no explicit use of variables. Instead, operators are exploited to define complex con-
cepts and roles starting from atomic ones. The set of operators is restricted to ensure
tractability for reasoning, such as deciding if a concept is a generalization (subsumes)
another concept. A DL knowledge base is composed of two components: 1) a termino-
logical box (TBox) consisting of definitions for concepts and roles, and 2) an assertional
box (ABox) consisting of individuals and true facts about them. For instance, if we con-
sider a knowledge base about persons, the TBox would contain concepts such as Person,
Male, Female, Parent, Child etc., and roles such as hasChild, and axioms of the form:

Person � Male � Female

Man ≡ Person � Male

Father � Man

Father ≡ Man � ∃hasChild.Person

The ABox, on the other hand, contains assertions regarding individuals, such as axioms
of the form: Father(Tom).

Modeling Design Patterns with Description Logics: A Case Study 171

OWL-DL Among DLs, we chose OWL-DL because it is state-of-the-art as far as DL
go, it is part of W3C standard, and is readily available with several possible implemen-
tations to choose from. Our use of description logics is as follows: we formalize the
modeling language concepts using OWL-DL(creating the TBox), and we use this as a
basis for representing formally the context of the patterns. We perform matching at the
instance level (ABox), that is why we represent patterns as queries. However, the ex-
pressiveness of OWL-DL alone is weak to represent some constraints, such as the ones
related to individuals. We solved the problem by adopting the SWRL rule language [7].
This allows us to enrich the formal pattern description with inferred knowledge, thereby
ensuring better pattern matching for the problem-at-hand.

3 Case Study

Several works have been proposed in the literature on S&D patterns (e.g., fault-tolerant
patterns [8], security patterns [9], SERENITY patterns [6]). In this work, we use
SERENITY patterns, developed within the EU SERENITY project, it is state-of-the-
art for its intended application domain and we had expertise on both the patterns and
their uses.

SERENITY Patterns. [6] are represented using Alexander’s pattern language as
triples: 〈Context, S&D Requirements, S&D Solution〉 The Context defines the state-
of-affairs the problem/situation where the pattern could be applied, which is depicted
in terms of the minimum set of actors and relationships, where the S&D Requirements
are not fulfilled. S&D Requirements specify the required S&D Properties that must be
satisfied in the model (representing the problem). S&D Solution describes the modifica-
tions that need to be performed to the context in order to meet S&D Requirements. The
description of SERENITY patterns is enriched with additional description about when,
how, and for what the patterns are intended for.

In [6], patterns are identified in scenarios extracted from business cases (e.g., Air
Traffic Management, e-Business, Online-Tax, Smart-home) and then described in nat-
ural language. Patterns, then, are represented formally; Context and S&D Solution are
represented in terms of SI* models, whereas the S&D Requirements in ASP (answer
set programming - an extension of DATALOG). The pattern library is composed of 29
SERENITY patterns (4 legal, 3 privacy, 11 security and 11 dependability patterns) [6].
Table 1 presents some of the SERENITY patterns described in natural language. For
an illustrative example, we use pattern DP2.1 on Collaboration in Small Groups for
Risky Activities. In addition, the SERENITY pattern library was used for evaluating the
performance of our implementation (Section 5).

Tropos SI*. [10,11] is a modeling language for security requirements. The language
offers primitive concepts such as actor, goal, task, as well as various kinds of relation-
ships among actors. This modeling language is used for representing Context and S&D
Solution of SERENITY patterns.

Fig. 1 depicts one of the SERENITY scenarios (e.g., Air Traffic Management -
ATM). SI* considers intentional Actor as basic concept (e.g., Executive Controller,

172 Y. Asnar, E. Paja, and J. Mylopoulos

Table 1. SERENITY S&D Patterns in Natural Language

Pattern Name Natural Language Description

SP1. Proof of Fulfillment for
Ensuring Non-Repudiation

To prevent repudiation, the executor needs to provide evidence of
performing the action to the benefitor, in addition to performing the
action.

SP4. Artefact Generation as
an Audit Trail

To prevent repudiation of some actions upon a shared resource, a
group of agents needs to keep a common audit trail.

DP2.1. Collaboration in
Small Groups for Risky
Activities

To cope with an activity where a tight coordination among agents is
crucial, a failure on a risky sub-activity may compromise the team
goal. However, one team member might have a capability to mitigate
the risk of the risky sub-activity therefore that team member must
mitigate the risk for the team success.

DP6. Reinforcing Overlap-
ping Responsibilities for Ro-
bustness

A critical task must be completed successfully most of the time.
Therefore, several team members are responsible to perform the
task.

PP1. Sign an Agreement to
Address Lack of Trust on the
Use of Private Data

Sometime a customer does not trust an organization accessing its
data. Therefore a representative agent of the organization needs to
ask for customer consent before accessing customer’s data.

Supervisor, Alice) that wants to achieve goals (ensure traffic safety in its sector,
form team sectors). Actors are equipped with certain abilities (e.g., resolve traffic
conflict), have beliefs, etc. They are further specialized into roles (e.g., Supervisor,
Executive Controller, and Team sector) as abstract actors in an organization that are
played by agents (e.g., Bob, Alice, Dan), which are concrete actors.

Actors (e.g., executive controllers) intend to achieve/satisfy their business goals
(manage traffic in the sector) by relying on their capabilities and those of other actors
(e.g., resolve traffic conflict). The term Business Object refers to a goal, a task, or a
resource. Goal represents a state-of-affair that an actor intends to achieve (manage
traffic in sector). Task is a course of actions performed by an actor to achieve a desired
goal (give airway commands). Resource refers to physical or informational entities
required to achieve goals (flight progress strips) or to perform tasks (air situation
display). However, the fulfillment of these business objects is affected by uncertain
events. Events that can cause a goal failure are risks (overload traffic), while events
that can help in the fulfillment of a goal are treated as opportunities (deployment new
system for air conflict prediction).

In addition to capturing the strategic rationale of an actor, SI* captures strategic inter-
dependencies among actors in an organization. Inter-dependencies can be either dele-
gation and trust relationships among actors. Delegations also come in two flavours: 1)
execution of business objects and 2) permission/entitlement on business objects. Del-
egation refers to the transfer of responsibilities (Delegation on Execution) or rights
(Delegation on Permission). In Fig. 1, team sector delegates the execution of man-
age inbound traffic to another actor - planning controller. Trust refers to the belief
and expectation of an actor that another actor (trustee) will fulfill its commitments (will
execute all assigned business objects) and will respect its permissions. For an example,
Alice trusts Bob to fulfill managing traffic in Sector SU1.

Modeling Design Patterns with Description Logics: A Case Study 173

Supervisor

Ensure safe
operations of a

team

Form team
sectors

Alice

Team Sector Ensure traffic
safety in its

sector

Manage traffic in
sector

Manage ibound
traffic

Executive
Controller

Resolve traffic
conflict

Manage traffic in
sector

Planning
Controller

Manage inbound
traffic

Overload Traffic

Bob

Dan

Manage traffic in
sector SU1

AND

++ D

Play

P

-

-

Play Play

AND

R

Is Part Of

Supervise

Is Part Of

Play

Te

Te

++ D

Fig. 1. A SI* Diagram from a fragment of the Air Traffic Management scenario

A SI* model captures relationships between concepts using several basic relations:
1) AND/OR-decomposition to refine a goal, 2) contribution to capture the effects of
a goal to another, 3) impact to model the impact of an uncertain event to a business
object. Fig. 1 depicts the goal ensure traffic safety in its sector is AND-decomposed
into manage traffic in sector and manage inbound traffic, where the achievement
of both subgoals are necessary to achieve the up-level goal. Moreover, the achievement
of the latter goal contributes positively to the success of the former one. In ATM, we
consider the effect of overload traffic event to the goal manage traffic in sector, and
it can be mitigated with the capability of an actor in resolve traffic conflict.

4 Formalizing Patterns

Our formalization process includes four steps: (i) Formalize the SI* language by defin-
ing non-overlapping OWL-DL concepts for all SI* primitives and one or more roles
for every primitive SI* relationship; (ii) Formalize the context of each pattern using
the concepts and roles introduced in step (i); (iii) Enrich the formal pattern descrip-
tions with implicit knowledge 1; (iv) Represent the problem-at-hand in the ABox by
instantiating the concepts and roles of step (i).

4.1 Formalizing SI* Primitives

In general, we represent nodes (e.g., goal, task, resource, event) in a SI* model as con-
cepts and binary relations (e.g., actor’s associations, contributions, decompositions, im-

1 Availability of a domain expert is essential here because this implicit knowledge (constraints,
alternatives, and more) is often missing from the informal pattern description.

174 Y. Asnar, E. Paja, and J. Mylopoulos

pacts) as roles. Moreover, inter-actor relations (e.g., delegation, trust, monitoring) are
encoded as concepts as well, since they are ternary relations. Later, we discuss some
considerations that underlie our formalization.

In the following, we discuss some issues that have arisen while formalizing concept-
s/relations of the language in terms of DL concepts/roles.

Role versus Subsumption. The relationship between a goal and its subgoals could
have been represented as a subsumption relationship or a role, say hasSubgoal:

Subgoal � Goal vs. hasSubgoal.Goal

But instances of a subgoal do not need to also be instances of the parent goal (for exam-
ple, consider goal “schedule meeting” and subgoal “collect timetables”). Accordingly,
we chose to go with the second option.

Ternary/n-ary relations. Since OWL-DL does not support N-ary relations, N ≥ 3,
we decided to represent such relationships in terms of a concept and several roles. For
example,

DelegationOnExecution ≡ DelegationOnExecution� (hasDelegator = 1) �
(hasDelegatum = 1) � (hasDelegatee = 1)

Consider Fig. 1, where Team Sector delegates execution of manage traffic in the
sector to Executive Controller. In the ABox, a delegation on execution in such a
setting is represented as follows:

DelegationOnExecution(Del-exec1)
hasDelegator(Del-exec1, Team Sector)

hasDelegater(Del-exec1, Executive Controller)
hasDelegatum(Del-exec1, Manage traffic in sector)

4.2 Understanding and Formalizing a Pattern as a Query

Once designers specify the pattern language in the DL TBox, the next step is under-
standing the essence of the pattern description and formalizes the context in terms of
OWL queries (i.e., using terms specified in the DL TBox). Designers need to be aware
that some patterns are very generic and sometimes vague, (e.g., patterns described in
natural language in [8]), and others are rather restrictive because of the limitation of
the pattern language (e.g., patterns described using a modeling language, such as [6]).
In this phase, we leave it in the hands of the designers to decide how much detail they
want to put into the patterns or how generic the pattern should be.

In [6], the context of the patterns is modeled in terms of an “abstract” SI* model
that includes variables (denoted by identifiers with capitalized letters). For instance in

Modeling Design Patterns with Description Logics: A Case Study 175

Team

Goal

G1
G2

Agent 1
G1

Agent 2

G2

Mitigate Risk

Risk

AND

++ D

R

Is Part Of

Is Part Of

AND

De

De

++ D
-

P

-

Fig. 2. The “Collaboration in Small Groups for Risky Activities” pattern

Fig. 2, the pattern indicates TEAM delegates execution of G1 to AGENT1 will
match elements that involve two roles, where the first role delegates execution of a goal
to the second role. Moreover, in some patterns (e.g., GoF [2]) pattern contexts are left
implicit and designers need to fill the details. A pattern is applicable to the problem-at-
hand if all constructs in the pattern match corresponding elements of the problem. When
such a match is found, the reasoner returns not only true, but also mappings for pattern
variables. Patterns are formalized in two parts: (i) the mandatory part must be matched
in the problem-at-hand for the pattern match to succeed; (ii) the optional part can bring
about useful mappings for variables, but do not affect the outcome of a pattern match. In
our approach, matching is performed at the individual level (ABox) of the knowledge
base. Therefore, the reasoner checks for individuals present in the problem and the
relationships among them, and lists all individuals that match the pattern context. Note
that reasoners can return more than one resultset, since it is likely there are several parts
of the model that match a given pattern context.

In the context of security and dependability, the optional part is only used to define a
new actor (including its capabilities & responsibilities) that is not necessarily present in
the problem. For instance, A client needs to buy a house from Company A, but he does
not trust Company A. Based on [6], to ensure security, the designers can “patch” the
trust issue by having a contract arranged by a lawyer. However, in most cases the lawyer
does not exist in the “current” statement of the problem, hence the need for optional
elements during a pattern match. Application of the pattern basically introduces, a new
role - lawyer (i.e., a trusted 3rdparty).

OWL-DL models can be queried using two languages: SPARQL [12], and SQWRL
[13]. The SPARQL is a W3C Recommendation [12] for querying RDF. RDF essentially
offers directed labeled graph data format, built out of triples. Thus, SPARQL queries are
expressed in terms of triple patterns, consisting of a subject, predicate, and object. The

176 Y. Asnar, E. Paja, and J. Mylopoulos

p r e f i x t r o p o s : <h t t p : / / www. owl−o n t o l o g i e s . com / T r o p o s O n t o l o g y . owl#>
SELECT ? team ? g o a l ? a g e n t 1 ? a g e n t 2 ? s u b g o a l 1 ? s u b g o a l 2
WHERE {

? team t r o p o s : r e q u e s t ? g o a l .
? g o a l t r o p o s : i sAndDecompos i t ionOf ? g1 .
? g o a l t r o p o s : i sAndDecompos i t ionOf ? g2 .

FILTER (? s u b g o a l 1 != ? s u b g o a l 2) .
? a g e n t 1 t r o p o s : i s P a r t O f ? team .
? a g e n t 2 t r o p o s : i s P a r t O f ? team .

FILTER (? a g e n t 1 != ? a g e n t 2) .
? team t r o p o s : h a s D e l e g a t i o n ? d1 .
? d1 t r o p o s : h a s D e l e g a t e e ? a g e n t 1 .
? d1 t r o p o s : hasDelega tum ? g1 .
? team t r o p o s : h a s D e l e g a t i o n ? d2 .
? d2 t r o p o s : h a s D e l e g a t e e ? a g e n t 2 .
? d2 t r o p o s : hasDelega tum ? g2 .
? a g e n t 2 t r o p o s : p r o v i d e s ? m i t i g a t e R i s k .
? g1 t r o p o s : h a s N e g D C o n t r i b u t i o n ? g2 .
? t a s k t r o p o s : h a s N e g C o n t r i b u t i o n ? r i s k .
? r i s k t r o p o s : hasNegImpact ? g1 .

OPTIONAL{? a g e n t 2 t r o p o s : r e q u e s t s ? m i t i g a t e R i s k .}
}

Fig. 3. SPARQL representation of DP 2.1

Turtle data format 2 is used to represent triple patterns. The query attempts to match the
triples on the graph pattern against the model [14]. SPARQL just queries the model and
does not support inference [12], nor does it modify the RDF dataset. However, some
frameworks (e.g., JENA) and rule engines [15], have the capacity to perform inference
and update the dataset by performing OWL reasoning.

Alternatively, a more expressive query language that is founded on DL semantics
and supports comprehensive querying of OWL is SQWRL [13]. SQWRL is a SWRL-
based query language [7]. SQWRL provides SQL-like operations to retrieve knowledge
from an OWL ontology. Similarly to SPARQL, in SQWRL we try to capture all con-
cepts and relationships present in a pattern. Since SQWRL understands the semantics of
OWL and SWRL rules, it understands not only the explicit, but also the inferred knowl-
edge. For example, the DP2.1 of SERENITY pattern (Fig. 2 described in Table 1), can
be translated into a SPARQL Query (Fig. 3). Each node of the pattern context is a vari-
able in the query and each edge is an RDF triplet. For a SQWRL Query, the DP2.1
translational is shown in Fig. 4.

4.3 Enriching DL T-Box with Implicit Knowledge

Often details of the patterns are described in natural language, due to the expressivity
limitation of the pattern language. This was certainly the case with our case study.

Back to our example in DP2.1, in SI* the notion of “request” means that an actor
intends to achieve a particular goal. However, based on DP2.1’s description the intent

2 Turtle: http://www.w3.org/TeamSubmission/turtle/

http://www.w3.org/TeamSubmission/turtle/

Modeling Design Patterns with Description Logics: A Case Study 177

1 : requests(?team, ?goal) ∧ isPartOf(?agent1, ?team) ∧ isPartOf(?agent2, ?team) ∧
2 : hasSubgoal(?goal, ?g1) ∧ hasSubgoal(?goal, ?g2) ∧
3 : hasDelegation(?team, ?d1) ∧ hasDelegatee(?d1, ?agent1) ∧ hasDelegatum(?d1, ?g1) ∧
4 : hasDelegation(?team, ?d2) ∧ hasDelegatee(?d2, ?agent2) ∧ hasDelegatum(?d2, ?g2) ∧
5 : hasNegDContribution(?goal1, ?goal2) ∧ provides(?agent2, ?mitigateRisk) ∧
6 : hasNegImpact(?risk, ?g1) ∧ hasNegContribution(?mitigateRisk, ?risk) →
7 : sqwrl : select(?team, ?goal, ?agent1, ?g1, ?agent2, ?g2, ?risk, ?mitigateRisk) ∧
8 : sqwrl : columnNames(”team”, ”goal”, ”agent1”, ”g1”, ”agent2”, ”g2”, ”risk”, ”mitigateRisk”)

Fig. 4. SQWRL representation of DP 2.1

aim(?a, ?goal) ← requests(?a, ?goal)
aim(?a2, ?goal) ← requests(?a1, ?goal) ∧ hasDelegation(?a1, ?d)∧

hasDelegatee(?d, ?a2) ∧ hasDelegatum(?d, ?goal)
aim(?a2, ?goal) ← aim(?a1, ?goal) ∧ hasDelegation(?a1, ?d) ∧ hasDelegatee(?d, ?a2)∧

hasDelegatum(?d, ?goal)

Fig. 5. Relaxing “request” on SI* in SQWRL

of “request” is more relaxed – direct request (i.e., the actor “requests” fulfillment of a
goal) or indirect request (i.e., another actor delegates the execution of a goal to him/her,
to the actor). Accordingly, we decided to extent the DL TBox and revise the pattern
formalization using those new concepts/roles. However, this extension can only be done
when we use SQWRL and not SPARQL. In Fig. 5, we illustrate an example of the
extension of the “request” relation in SI*, namely “aim”. To be closer with the DP2.1’s
description one needs to replace line 3-4 of Fig. 4 with the following:

aim(?agent1, ?g1) ∧ aim(?agent2, ?g2)

4.4 Representing the Problem in the ABox

Finally, designers need to represent the problem-at-hand in terms of instances of con-
cepts and roles in the ABox.

Concept versus Individual. Individuals have a unique identity, and their description
can be modified by adding more assertions in the ABox. Conversely, the definition of
concepts cannot be modified [16].

The first alternative (i.e., subclasses of the DL TBox) allows us to reason whether a
pattern appears anywhere in the problem, but it cannot provide the mapping between
construct in the pattern’s solution and the problem-at-hand. The second alternative (i.e.,
individuals in the DL ABox) on the other hand can provide such mappings, but it will
not allow us to reason in a situation where the problem contains both abstract and con-
crete entities in the real world, because both entities will be encoded as individuals and
the reasoner will treat them equally. Since we deal with the problem at the design level
where mostly models capture the class level instead of the object one, we have chosen
the second alternative (i.e., as series of individuals) as the most suitable to our needs.

178 Y. Asnar, E. Paja, and J. Mylopoulos

Moreover, providing mapping between the pattern and the problem is a critical fea-
ture to support designers in applying the patterns to resolve their problem.

Here is a fragment of the representation of the problem-at-hand in Fig. 1 in terms of
concept and role instances in the ABox:

– Role(Team Sector)
– Role(Executive Controller)
– Role(Planning Controller)
– Agent(Bob)
– Goal(Ensure traffic safety in its sector)
– Goal(Manage traffic in sector)
– Goal(Manage inbound traffic)
– Goal(Resolve traffic conflict)
– play(Bob, Executive Controller)
– play(Bob, Planning Controller)
– isPartOf(Executive Controller, Team Sector)
– isAndDecompositionOf(Ensure traffic safety in its sector, Manage traffic in sector)
– isAndDecompositionOf(Ensure traffic safety in its sector, Manage inbound traffic)
– hasPosContribution(Manage inbound traffic, Manage traffic in sector)
– provide(Executive Controller, Resolve traffic conflict)
– DelegationOnExecution(Del-exec1)
– hasDelegator(Del-exec1,Team Sector)
– hasDelegater(Del-exec1,Executive Controller)
– hasDelegatum(Del-exec1,Manage traffic in sector)

4.5 System Architecture

Fig. 6 depicts the architecture of our implemented system. Though this work supports
two types of queries (SPARQL and SQWRL), most system components and artifacts
are common for both inputs (normal line). The ones with thick lines refer to parts for
SPARQL, while dashed lines to SQWRL. In both cases, the implemented system re-
quires the same input SI* model representing the problem-at-hand and a set of SI* mod-
els representing patterns.

Since we need some inference capabilities to deduce implicit facts, we use a rule
engine (i.e., JESS) that is integrated in Protégé. Essentially, a rule engine takes an input
(rules and facts) and produces a model. In SQWRL setting, the input consists of the
TBox and ABox defined so far, patterns in SQWRL, and SWRL rules 3. In this sys-
tem, the model (produced by the rule engine) contains the resultset of the matching. In
SPARQL setting, the input to the rule engine only contains TBox, ABox, and SWRL
rules. The rule engine produces a model containing inferred knowledge from available
facts and rules. Using the Model-to-OWL library in Protégé, inferred knowledge is
added to the knowledge base (TBox and ABox). By means of the OWL-DL reasoner
(e.g., Pellet, JENA), we can query the revised knowledge base to find a match to a pat-
tern. In both settings, if the length of resultset is zero, then there is no match found in

3 available at:http://www.w3.org/Submission/SWRL/swrl.owl

http://www.w3.org/Submission/SWRL/swrl.owl

Modeling Design Patterns with Description Logics: A Case Study 179

Translator
SI* to OWLSI* model

Knowledge Base

Tropos SI*
Ontology

SI* Model
in OWL

SWRL
Rules

Pattern
Context in

SI*

Pattern in
SQWRL

Pattern in
SPARQL

Facts +
Rules

DL Reasoner

Model
Model to

OWL

KB'

Result Set

Rules
Engine

Translator
SI* to OWL Query

SI* --> SPARQL

SI* --> SQWRL

Fig. 6. System Architecture for Pattern Matching

the problem. The resultset will contain several sets when a pattern matches to several
parts of the problem. Moreover, each set will provide a mapping from a pattern’s con-
structs to the problem. We have implemented this approach using Java Platform v1.6
along some features from Protégé libraries.

5 Experimental Results

Design of experiments. To evaluate this approach and its implementation, we have
conducted experiments using a laptop Intel Core2 Duo T7300 2.0GHz, 2Gb DDR2 667.
Through these experiments we intend to assess the performance of our implementation,
and investigate how performance (i.e., execution time) is affected by an increase in
problem size. To make the experiment realistic, we consider the ATM Scenario [17] as
the problem-at-hand. First, the SI* model of the problem is translated to a corresponding
model in OWL-DL. Similarly, we translate SERENITY S&D patterns (21 patterns),
defined in [6], into OWL-DL queries in SPARQL and SQWRL. The model is then
queried using SPARQL and SQWRL queries to find matches to those patterns. Bigger
models are obtained by cloning the OWL-DL model of ATM scenario facilitated by
the “deep copy” feature of Protégé. Originally, the model of ATM scenario has the size
of 472 elements composed of 83 nodes and 389 relations 4. Cloning was performed on
the ATM model by cloning nodes and their respective relations. The cloning process
was not linear; as we could not control the number of relations a node participates in.
Seven models were obtained through this process, starting from a model size of 832
(136 nodes) up to the biggest model with size 6203 (941 nodes).

In the experiment, each pattern is matched against 8 different models. To ensure
stability of “execution time”, we perform 20 executions for each pair (pattern, model)
and used the average of each execution time. Moreover, a manual verification has been
performed to validate the correctness of each pattern match.

4 All datasets can be found at http://disi.unitn.it/˜yudis/lib/exe/fetch.
php?media=files:dataset.rar

http://disi.unitn.it/~yudis/lib/exe/fetch.php?media=files:dataset.rar
http://disi.unitn.it/~yudis/lib/exe/fetch.php?media=files:dataset.rar

180 Y. Asnar, E. Paja, and J. Mylopoulos

(a) Execution time in SPARQL (b) Execution time in SQWRL

Fig. 7. Performance of Pattern Matching

Results. After running the queries (patterns) over the ATM model we found that there
are four applicable patterns (e.g., SP1, SP8, DP2.1, DP6). In Fig. 7, we present the
performance in milliseconds, of our implementation for both: SPARQL and SQWRL.

In general, there are significant differences between the two query representations.
In particular, the worst performance in SPARQL (11.7ms) is much faster then the best
performance in SQWRL (713ms). The main reason is that in the case of SPARQL
queries, the inferred model is computed only once before the matching starts and used
throughout all the queries. Thus, the inference time is not taken into account in the
SPARQL execution time. In the SQWRL case, execution time is highly affected by the
inference time.

Considering Fig. 7(b), it is an almost linear correlation between the size of the prob-
lem model and execution time. However, Fig. 7(a) indicates that the SPARQL perfor-
mance is constant after a certain model size (model size ≥ 2378) 5. Even though the
SPARQL case outperforms the SQWRL case, designers need to be aware on the fact
that SPARQL engine does not exploit the semantics of OWL-DL. Moreover, SPARQL
is meant to be used for querying RDF and OWL-DL needs to be serialized before it
can be queried. This serialization of OWL-DL to RDF is vendor specific therefore it
could be the case that the same OWL-DL has several representations in RDF and conse-
quently different SPARQL queries. However, this dilemma does not hold for SQWRL.

6 Related Work

The growing size of pattern libraries has spawned the following challenges: 1) finding
a relevant pattern in the pattern library, 2) selecting a pattern that is suited with the
problem-at-hand, and 3) applying a pattern. For the first challenge, though there is no
central index as mentioned in [3] several initiatives are trying to collect software design

5 We acknowledge some irregularities on the execution time for the 3 smallest models.

Modeling Design Patterns with Description Logics: A Case Study 181

patterns (e.g., Pattern Forge 6, Net Objectives 7, Portland Pattern Repository 8). In
comparison to our approach, such initiatives receive a pattern contribution in natural
language without formalizing it. In addition to disadvantages presented in Section 4.2,
users might have difficulties in finding relevant patterns in the library because textual
matching does poorly without domain knowledge.

To improve the finding and the selection phase, several works use (semi-)formal
languages for representing patterns and selection mechanisms of such representation.
In [18], Mens et al. use DL to detect inconsistencies between UML models in evolving
systems. In that work, the authors take advantage of the underlying DL representation
and reason about UML models exploiting the DL reasoning engine (e.g., Racer, Loom).
In a nutshell, this work takes a similar approach to ours where the TBox formalizes the
UML meta-model and the ABox represents instances in the designers’ model. In our
work, the query represents the context of a pattern, while in this work the query repre-
sents the rules characterizing model constraints. In [19], the authors describe how to use
a meta-model to obtain a representation of a pattern at the code level. The meta-model
consists of a set of entities and interaction rules between them, and defines pattern se-
mantics. The meta-model is further specialized by adding structural and behavioral con-
stituents, thereby obtaining an abstract representation of patterns. These are gathered in
a repository and used to generate code automatically.

Some works facilitate the selection phase by structuring the pattern library in a cer-
tain manner. In [20,21], the authors proposed a structure to organize patterns. Moreover,
other authors [22,23] provide systematic and automated reasoning to select a pattern. In
these works, the authors do not formalize the pattern itself, but rather formalizing the
structure and relationships among patterns. Conversely, our approach formalizes a pat-
tern and does not prescribe a particular structure on the pattern library. In our approach,
we aim to find an applicable pattern and provide a mapping, while these works intends
to limit the solution space so that the pattern users need only evaluate a small number
of patterns. In other words, these approaches require less efforts in contributing a new
pattern because they only require where a pattern should be categorized and its relation-
ships with other patterns, while in our approach “the formalization” of a pattern defines
the performance, in term of correctness, of the system. Note that these approaches does
not guarantee the resulted pattern will be applicable to the problem-at-hand, while ours

Some works concentrate on how to apply the patterns in the problem-at-hand. For
instance, Eden et al. [24] represent patterns as meta-programs that modify other code
(i.e., the problem-at-hand). The authors have implemented a prototype that supports de-
sign pattern specification and realization in a given program and this approach allows
programmers to edit the source code at any time in the process. In comparison to our ap-
proach, this work aims at modifying the problem before implementing a chosen pattern,
whereas ours aims to find the pattern(s) that are applicable to solve a given problem.

In the area of Model-Driven Engineering, several frameworks have been proposed to
support model transformations [25]. In comparison to ours, their approaches are more
expressive in describing how a pattern is to be applied. However, these frameworks

6 http://www.patternforge.net/
7 http://www.netobjectives.com/PatternRepository
8 http://c2.com/ppr/

http://www.patternforge.net/
http://www.netobjectives.com/PatternRepository
http://c2.com/ppr/

182 Y. Asnar, E. Paja, and J. Mylopoulos

have some limitations in finding a match because matching is based on graph similarity
techniques only, rather than inference in a DL. More generally, our framework can
leverage reasoning provided by DL to support pattern matching and pattern application.

7 Final Remarks

We have presented an approach to formalize problems and patterns using Description
Logics, so that, given a problem, we can find applicable patterns from a pattern library.
Moreover, when a pattern match succeeds, it provides mapping between elements of the
problem and variables in the pattern. These mapping are useful in determining how to
apply the pattern to a given problem. Our proposal has been evaluated in terms of a case
study using the SERENITY pattern library. Our experiences suggest that description
logics do constitute a viable solution to formalize patterns, and the problem represented
by a rich modeling language such as SI* can be accommodated in a description logic
using its concept definition facilities. A corollary of our case study is that there is an
important trade-off in formalizing patterns between making them too generic or too spe-
cific. Generic patterns match in many contexts but offer vanilla solutions. Conversely,
specific ones match few concepts but offer insightful solutions. Pattern designers need
to tread carefully as they navigate between these alternatives.

Our future work includes applying our framework to other pattern libraries. In ad-
dition, we propose to conduct a controlled experiment to empirically evaluate our ap-
proach with pattern designers and pattern users.

Acknowledgments

The research leading to these results has received funding from the EU FP7 under grants
no. 216917 MASTER, no. 256980 NESSoS, and no. 257930 ANIKETOS.

References

1. Alexander, C., Ishikawa, S., Silverstein, M.: A pattern language. Oxford Press (1977)
2. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc., Reading (1995)
3. Manolescu, D., Kozaczynski, W., Miller, A., Hogg, J.: The growing divide in the patterns

world. IEEE Software 24(4), 61–67 (2007)
4. Sommerville, I.: Software Engineering, 7th edn. Addison Wesley, Reading (May 2004)
5. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The

description logic handbook: theory, implementation, and applications. Cambridge University
Press, New York (2003)

6. Asnar, Y., Bryl, V., Dalpiaz, F., El-Khoury, P., Felici, M., Halas, H., Krausová, A., Li, K.,
Riccucci, C., Saidane, A., Séguran, M., Yautsiukhin, A.: Final set of S&D Patterns at Orga-
nizational Level. Project Deliverable A1.D3.3, SERENITY Consortium (January 2009)

7. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML (May 2004), http://www.
w3.org/Submission/2004/SUBM-SWRL-20040521/

http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

Modeling Design Patterns with Description Logics: A Case Study 183

8. Hanmer, R.: Patterns for Fault Tolerant Software. Wiley, Chichester (2007)
9. Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., Sommerlad, P.:

Security Patterns: Integrating Security and Systems Engineering, 1st edn. Wiley, Chichester
(2006)

10. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Requirements Engineering for Trust
Management: Model, Methodology, and Reasoning. IJIS 5(4), 257–274 (2006)

11. Asnar, Y., Giorgini, P., Mylopoulos, J.: Goal-driven risk assessment in requirements engi-
neering. REJ, 1–16 (2010)

12. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (February 2004),
http://www.w3.org/TR/rdf-sparql-query/ (lastchecked: March 7, 2010)

13. O’Connor, M., Das, A.: SQWRL: a query language for OWL. In: Proc. of OWLED 2009
(2009)

14. McCarthy, P.: Search RDF data with SPARQL: SPARQL and the Jena Toolkit open up the
semantic Web (May 2005), http://www.ibm.com/developerworks/library/
j-sparql/ (lastchecked: March 1, 2010)

15. Friedman-Hill, E.: Jess Rule Engine, http://www.jessrules.com/ (lastchecked: De-
cember 2009)

16. Görz, G.: Description Logics, Knowledge Bases, Formal Ontologies and Data Bases: Con-
tent. Lecture Notes (2008)

17. Asnar, Y., Giorgini, P., Massacci, F., Saidane, A., Bonato, R., Meduri, V., Riccucci, C.: Secure
and Dependable Patterns in Organizations: An Empirical Approach. In: Proc. of RE 2007
(2007)

18. Mens, T., Van Der Straeten, R., Simmonds, J.: Maintaining consistency between UML mod-
els with description logic tools. In: Proc. of UML 2003, Workshop on Consistency Problems
in UML-based Software Development II (2003)

19. Albin-amiot, H., gaël Guéhéneuc, Y., Kastler, R.A.: Meta-modeling design patterns: Applica-
tion to pattern detection and code synthesis. In: Proc. of ECOOP 2001 Workshop Automating
Object-Oriented Software Development Methods, pp. 1–35 (2001)

20. Manolescu, D., Kozaczynski, W., Miller, A., Hogg, J.: The growing divide in the patterns
world. IEEE Software 24(4), 61–67 (2007)

21. Zdun, U.: Systematic pattern selection using pattern language grammars and design space
analysis. Software: Practice and Experience 37(9), 983–1016 (2007)

22. Gross, D., Yu, E.: From Non-Functional requirements to design through patterns. Require-
ments Engineering 6(1), 18–36 (2001)

23. Weiss, M., Mouratidis, H.: Selecting security patterns that fulfill security requirements. In:
16th IEEE International Requirements Engineering, RE 2008, pp. 169–172 (2008)

24. Eden, A.H., Yehudai, A., Gil, J.: Precise specification and automatic application of design
patterns. In: Proc. of ASE 1997, pp. 143–152 (1997)

25. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In: Proc. of
OOPSLA 2003 Workshop on Generative Techniques in the Context of the MDA (2003)

http://www.w3.org/TR/rdf-sparql-query/
http://www.ibm.com/developerworks/library/j-sparql/
http://www.ibm.com/developerworks/library/j-sparql/
http://www.jessrules.com/

Interactively Eliciting Database Constraints and

Dependencies

Ravi Ramdoyal and Jean-Luc Hainaut

Laboratory of Database Application Engineering - PReCISE Research Centre
Faculty of Computer Science, University of Namur
Rue Grandgagnage 21 - B-5000 Namur, Belgium

{rra,jlh}@info.fundp.ac.be

http://www.fundp.ac.be/precise

Abstract. When designing the conceptual schema of a future informa-
tion system, it is crucial to define a set of constraints that will guarantee
the consistency of the subsequent database once it is implemented and
operational. Eliciting and expressing such constraints and dependencies
is far from trivial, especially when end-users are involved and when there
is no directly usable data to play with. In this paper, we present an inter-
active process aimed to elicit hidden constraints such as value domains,
functional dependencies, attribute and role optionality and existence con-
straints. Inspired by the principles of Armstrong relations, it attempts to
acquire minimal data samples in order to validate declared constraints,
to elicit hidden constraints and to reject irrelevant constraints in concep-
tual schemas. This process is part of the RAINBOW approach, destined
to develop the data model of an information system based, among others,
on the reverse engineering of user-drawn form-based interfaces.

Keywords: Information Systems Engineering, Requirements Engineer-
ing, Database Engineering, Electronic Forms Reverse Engineering,
Constraint Discovery.

1 Introduction

In the realm of Requirements engineering, Database engineering focuses on data
modelling, where the static data requirements are typically expressed by means
of a conceptual schema, which is an abstract view of the static objects of the
application domain. There are numerous types of constraints and dependencies
that can be established for such a schema. They can concern individual elements,
their components, or even how (the components of) an element can affect (the
components of) other elements. Traditional database elicitation techniques, such
as the analysis of corporate documents and interviews of stakeholders, usually
yield many relevant constraints during the design of the conceptual schema,
however some constraints may be forgotten, typically because the domain experts
were not aware of them, or (more probably) because they are part of some tacit
knowledge.

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 184–198, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Interactively Eliciting Database Constraints and Dependencies 185

Though the necessity to associate end-users of the future system with its spec-
ification and development steps has long been advocated [1], several approaches
rather propose to deal with the discovery of such constraints by analysing the
content of a related database (or at least, a set of relevant data samples). How-
ever, they rely on the preexistence of large sets of data, which can obviously be
problematic in the process of designing a new information system: there might
be no usable legacy database, or gathering and reencoding a significant amount
of data would be unrealistic.

In this context, the RAINBOW approach [2] provides an alternative and in-
teractive process based on the analysis of a limited set of user-provided data
samples in order to elicit and suggest database constraints and dependencies for
a given schema. RAINBOW is a collaborative and interactive user-oriented ap-
proach to develop the static data model of an information system based on the
reverse engineering of user-drawn form-based interfaces. It relies on the adapta-
tion and integration of principles and techniques coming from various fields of
study, ranging from Database Forward and Reverse Engineering to Prototyping
and Participatory Design.

In this paper, we present how to use the RAINBOW approach to discover
constraints and dependencies. In particular, we focus on the elicitation of func-
tional dependencies, which are a fundamental and critical aspect of conceptual
modelling that has proved difficult to apprehend. The remainder of the paper is
structured as follows. Section 2 delineates the research context, while Section 3
describes the related works. The main principles of the proposal are detailed
in Section 4. Section 5 discusses the evaluation of this process, while Section 6
discusses the proposal and concludes this paper.

2 Research Context

2.1 The RAINBOW Approach

The RAINBOW approach is a collaborative and interactive user-oriented ap-
proach to design database conceptual schemas in the context of Information
System engineering [2]. It exploits the expressiveness of user-drawn form-based
interfaces and prototypes, and specialises and integrates standard techniques
to help acquire and validate data specifications from existing artefacts in or-
der to use such interfaces as a two-way channel to communicate static data
requirements between end-users and analysts. The approach is formalised by a
semi-automatic seven-step process dealing with the progressive modelling of the
application domain:

1. Represent : the end-users are invited to draw and specify a set of form-based
interfaces to perform usual tasks of their application domain;

2. Adapt : the forms are “translated” into data models, which basically consists
in extracting a data model from each interface using mapping rules;

3. Investigate: the data models are cross-analysed to highlight and arbitrate
semantic and structural similarities and produce a pre-integrated schema;

186 R. Ramdoyal and J.-L. Hainaut

4. Nurture: using the interfaces that they drew, the end-users are invited to
provide data examples that are analysed to infer and arbitrate possible con-
straints and dependencies;

5. Bind : the pre-integrated schema is completed and refined into a non redun-
dant integrated conceptual schema;

6. Objectify: from the integrated conceptual schema, the artefacts of a proto-
typical data manager application are generated;

7. Wander : finally, the end-users are invited to play with the prototype in order
to refine and ultimately validate the integrated conceptual schema.

In order to position end-users as major stakeholders throughout the data require-
ments process, the approach uses form-based interfaces as a controlled basis for
joint development, analysis and discussion. In particular, in order to make the
development of the interfaces more accessible and focus the drawing on the sub-
stance rather than (ironically) the form, the available graphical elements are
restricted to the most commonly used ones (forms, fieldsets and tables, in-
puts, selections and buttons) and limited the layout of forms as a vertical
sequence of elements, which also simplifies the transition from the form model
and the ER model. This drawing phase is supported by the RAINBOW Toolkit,
which is the dedicated and integrated tool support intended to assist end-users
and analysts during the different RAINBOW processes.

The interfaces being drawn by non experts and possibly multiple end-users
increases the possible inconsistencies among the individual labels and the struc-
tures used in the forms [2]. The semantic and structural similarities are therefore
analysed to manage commonality and standardise the form constructs and their
underlying data counterpart. Semantic similarities arise due to the richness of
written natural language, which can lead to spelling and meaning ambiguities.
Structural similarities which occurs when two entity types share a pattern, which
is a bijection between two sets of attributes belonging to different entity types.
RAINBOW deals with the elicitation and subsequent unification of semantic
similarities using String Metrics, Ontologies and dictionaries. Though the forms
and their underlying data models have a tree-like arborescence, their structure
is simple and does not necessitate using complex techniques such as tree min-
ing approaches to discover structural similarities. The shared patterns are in-
stead elicited by comparing the different entity types, and the structures are
subsequently unified according to the meaning of the pattern (equality, union,
comprehension, complementarity, composition or difference).

The RAINBOW approach also deals with the integration of each schema cor-
responding to a form into a single normalised schema representing the domain
of application, before generating and testing the resulting associated applica-
tive components. However, before leading these processes, an important step
consists in eliciting the relevant constraints and dependencies of the domain of
application.

Interactively Eliciting Database Constraints and Dependencies 187

2.2 Constraints and Dependencies in Conceptual Schemas

When designing a conceptual schema, it is indeed important to define a set of
constraints that will guarantee that once the subsequent database is implemented
and operational, any change made to its content by authorised users will main-
tain its consistency. Typically, inserting, modifying or deleting values from the
database should not result into data anomalies or unnecessary redundancies. For
this purpose, let us introduce the relational model of a database according to the
First normal form (1NF), which is a database model based on first-order pred-
icate logic, first formulated and proposed by Codd [3]. In the relational model,
all the data is represented through relations (also known as tables). A relation
is composed of attributes (a.k.a. as columns), each of which is defined on a do-
main, which is a given set of values. A tuple (a.k.a. row) contains all the data
of a single instance, that is, a value for each attribute of the relation. Relations
and attributes of the relational model will be used to model entity types and
attributes in the GER model1, as illustrated in Figure 1.

The transition between conceptual and relational models is facilitated in the
RAINBOW approach since the complex conceptual schemas obtained from the
form-based interfaces are recursively transformed until they reduce to simple
schemas including flat entity types (with elementary attributes) and binary re-
lationship types. Coping with these relationship types in the 1NF relational
modeling requires a little trick; the roles are represented through role attributes,
so that they appear as attributes for which the value belongs to the possible
tuples of the entity type associated through the binary relationship type. In
addition, when no value is provided in a form for a given attribute, a default
“empty” value (noted ∅) is encoded, so that null values are avoided.

Fig. 1. The representation of a Customer using the GER and relational model

Among the many constraints usually found in database schema, we have se-
lected the following ones. Domains of values restrict the possible values of given
attributes, for instance using domain types, sets or ranges of (un)authorised
values, rule-based formulas for the values, and so on. For instance, a Customer
Number may be restricted to integer values, and the Gender limited to the set
of values {Female, Male}. Cardinality constraints define the minimal (typically

1 The Generic Entity-Relationship (GER) model is a wide-spectrum model used to
describe database schemas in various abstraction levels and paradigms [4].

188 R. Ramdoyal and J.-L. Hainaut

zero or one) and maximal numbers (typically one or infinite) of occurrence(s) of
given attributes and roles. Existence constraints define how optional components
(attributes and roles) may influence each other. For two components A and B,
these constraints can be:

– coexistence, which implies that A and B must always be not null simultane-
ously;

– exclusion, which implies that A and B cannot be not null simultaneously;
– at-least-one, which implies that A and B cannot be null simultaneously;
– exactly-one, which implies that if A is not null, then B should be null, and

vice-versa;
– implication, where A implies B means that A can be not null only if B is not

null itself;

For a relation, an identifier (a.k.a. candidate key) is a set of attributes so that,
when considering all the possible tuples of the relation, there cannot be more than
one tuple having the same combination of domain values for these attributes.
For instance, from the tuples visible in Figure 1, we could assume that Customer
Number forms an identifier for relation Customer, since there are no two tuples
with the same value of this attribute.

A similar notion is the concept of functional dependencies, which are mate-
rialised by the explicit or implicit constraints between two sets of attributes in
a relation. Given relation R, a set of attributes X ⊆ R is said to functionally
determine another set of attributes Y ⊆ R, if and only if all the tuples with
the same combined values of X also have the same combined values of Y . This
functional dependency is written R : X → Y , with X and Y respectively called
the left-hand side (a.k.a. determinant) and right-hand side (a.k.a. dependent) of
the functional dependency f . For instance, from the tuples visible in Figure 1,
it seems that the functional dependency Customer:First Name → Last Name
does not hold, since there are two persons named “Bill” but with a different
family name. On the other hand, the functional dependency Customer:First
Name, Last Name → Gender could hold, but would need to be validated.

3 State of the Art in Constraints and Functional
Dependencies Mining

Analysing the content of a database or a subset of data samples can intuitively
lead to make plausible assumptions on, e.g., the domains of values, the cardinal-
ities of the attributes, their existence constraints and possibly their identifiers.
Let t[C] be the restriction of a tuple t to the set of components C (called pro-
jection of t onto C), and t[C] be the restriction of t onto a given component C.
Now consider for instance an optional textual attribute A: if for any tuple ti,
we observe that ti[A] is never null and always composed of a number, we could
easily wonder if A is not actually a mandatory numeric attribute. Moreover, if
all the ti have different values A, this could suggest that A is in fact an identifier.
The same kind of induction can be applied on optional attributes to assess their

Interactively Eliciting Database Constraints and Dependencies 189

possible existence constraints. However, functional dependencies mining is far
less trivial.

Back in 1995, Ram presented four types of approaches to derive functional
dependencies from an existing conceptual ER schema [5]. The first category con-
sists in using keyword analysis to identify intra-entity functional dependencies:
typically, attributes bearing a suffix or prefix such as “id” or “number” should be
considered potential determinants, while attributes bearing a suffix or prefix such
as “maximum”, “minimum”, “average” or “total” should be considered potential
dependent attributes. The second category consists in analysing the cardinalities
of binary relationships to identity inter-entity functional dependencies, typically
between their identifiers. The third category is similar, but concerns N-ary rela-
tionships. And finally, the fourth category consists in analysing sample data to
elicit undiscovered functional dependencies. These principles were supported by
the FDExpert tool.

The first three categories rely on the analysis of the schema itself, while the
latter category, known as the dependency discovery problem, focuses on the con-
tent of the database. The latter category is a standard issue, especially in data
mining, database archiving, data warehouses and Online Analytical Processing
(OLAP). The most prominent existing algorithms dealing with this issue can be
classified in three categories, that are difficult to compare qualitatively [6,7].

The first two categories basically try to explore the search space (i.e. the pos-
sible combinations of the attributes for a given relation) in the most efficient way
possible, in order to test the associated functional dependencies using a stripped
partition database computed from that relation. The candidate generate-and-test
approach progressively explores and prunes the search space in a levelwise man-
ner, while partitioning the database using attribute-based equivalence classes, as
in Huhtala et al.’s TANE [8], Novelli and Cicchetti’s FUN [9], or Yao and Hamil-
ton’s FD Mine [7]. The minimal cover approach structures the search space using
hypergraphs that are explored to discover the minimal cover of the set of FDs
for a given database, i.e. the minimal set of FDs from which the entire set of
FDs can be generated using the Armstrong axioms, as in DepMiner, proposed
by Lopes et al. [10] and FastFDs, proposed by Wyss et al. [11].

Finally, Formal concept analysis (FCA) has also been used recently to find
and represent logical implications in datasets [12], mainly through a closure op-
erator from which concepts (closed sets) can be derived. For instance, Baixeries
uses Galois connections and concept lattices as a framework to find functional
dependencies [13], while Rancz et al. optimise an existing method introduced
by [14], which provides a direct translation from relational databases into the
language of power context families, in order to build inverted index files to opti-
mise the elicitation the functional dependencies in a relational table through the
construction of their formal context [15]. The latter authors also developed the
subsequent FCAFuncDepMine software to detect functional dependencies in re-
lational database tables [16]. Similar principles were also used in Flory’s method,
which was based on the definition and analysis of a matrix and its associated
graph of functional dependencies [17].

190 R. Ramdoyal and J.-L. Hainaut

4 An Interactive Process to Elicit Constraints and
Functional Dependencies

4.1 Overview

As we have seen, traditional elicitation techniques may neglect constraints, while
dependency discovery approaches rely on massive pre-existing data sets, which is
problematic when there is no data samples available, or when their re-encoding
would be too expensive. To tackle this problem, the RAINBOW approach pro-
poses to use form-based interfaces that were previously drawn by the end-users
themselves in order to let them provide a limited set of data samples from which
constraints and dependencies could be inferred and suggested. Though such con-
straints can be provided directly, it appears that the interactive acquisition and
processing of data samples is useful and more natural in this process, as it also
helps to visualise the implications of existing constraints.

In this section, we present an interactive process inspired by the principles of
Armstrong relations, which are relations that satisfy each functional dependency
implied by a given set of functional dependencies, but no functional dependency
that is not implied by that set [18]. This twofold process focuses on eliciting the
constraints and dependencies mentioned in Section 2.2, i.e. domains of value,
cardinalities, existence constraints, identifiers and functional dependencies. On
the one hand, data samples are acquired to restrict the potentially “hidden” con-
straints, and on the other hand, potential constraints are arbitrated to conversely
restrict the tuples that can be encoded. Some of these properties can be trivial
and may be expressed directly, or have been expressed during the preliminary
drawing of the form-based interfaces. For instance, in the form of Fig. 2, the
Last Name of a Person is mandatory, while its Title appears to be optional.
Likewise, the Birth date has been encoded as a date value, while the Zip code
of the Contact may have been encoded as a textual value. However, the speci-
fied properties may need to be refined (for instance, the Zip code may prove to
be numeric), and there may be some unsuspected constraints and dependencies
among the elements of the schema.

We therefore propose to start by envisaging initial potential constraints and
dependencies. Then, using user input, we progressively validate or discard them,
and generate alternatives until they are all arbitrated. This process hence relies
on several sub processes:

– the initialisation of all the currently declared (explicitly expressed during the
drawing step) and potential (implicitly verified by the present set of tuples)
constraints and dependencies;

– the acquisition and analysis of new valid data samples in order to automati-
cally discard the invalid potential constraints and dependencies, and possibly
generate acceptable potential alternatives;

– the arbitration of potential constraints and dependencies through user
validation or discardure, and the subsequent generation of new potential
alternatives;

Interactively Eliciting Database Constraints and Dependencies 191

Fig. 2. A form-based interface describing a “Person” and its associated conceptual
schema, using the GER representation2

– the processing of the validated constraints and dependencies, once there are
no other potential constraints or dependencies left.

The acquisition of data samples progressively restricts the set of potential con-
straints, while conversely, validating constraints also restricts the future data
samples that will be encodable.

4.2 Initialisation

Before beginning the interaction with the end-users, we start by initialising an
empty set of tuples and defining the initial sets of validated, potential and dis-
carded constraints and dependencies for each entity type associated with a given
form. The validated constraints are initially the same than the previously de-
clared constraints. From these initial validated constraints, the potential domains
of value, cardinalities and existence constraints are initialised using induction.
Typically, if a given component is considered optional so far, it could actually
be mandatory if there is no tuple with this component empty (whereas the op-
posite is not possible). Similarly, an attribute declared as textual could be of
any other type, while an attribute declared as real could only be restricted to
the type integer. In the same way, any subset of optional components for which
no existence constraint has been declared should be submitted to existence con-
straint elicitation. Consider for instance that the attribute Zip code has been
declared optional and textual in Fig. 2. Further examination should therefore
check whether this attribute is not mandatory and whether its value domain is
not restricted to integers, reals, dates, ...

Regarding functional dependencies, the ideal process should lead us to build
a set of data samples and dependencies so that each entity type of the underly-
ing conceptual schema becomes an Armstrong relation. Reaching such a state is
2 Note that the GER notation uses the participation interpretation rather than the

look-across interpretation (as in UML). In the given example, the notation therefore
indicates that same contact details may apply to more than one person.

192 R. Ramdoyal and J.-L. Hainaut

obviously not trivial per se, and these principles are here inapplicable due to the
requirement of user involvement. However, we can try to near it by progressively
narrowing the functional dependencies. Since the number of possible functional
dependencies for each entity types can be very high, we start from the set of
strongest dependencies, through which each component of a given entity type
determines the other components. For instance, the form of Fig. 2 induces the
initial functional dependencies F1, F2, F3, F4, F5 and F6 of Fig. 3. From these
dependencies, we will be able to recursively generate weaker functional depen-
dencies to cover all the existing ones, by progressively reducing the right-hand
sides and enlarging the left-hand sides. The objective is to favour functional
dependencies with minimal left-hand sides and maximal right-hand sides.

Fig. 3. The initial functional dependencies F1, F2, F3, F4, F5 and F6 for form of Fig. 2,
as well as alternatives for F2

Finally, potential unique constraints are induced from validated and potential
functional dependencies, using the fact that the left-hand side of a given func-
tional dependency f : X → Y is a potential identifier for an entity type having
the set of components C = X ∪ Y .

4.3 Analysing New Data Samples to Suggest Constraints and
Dependencies

Once the sets of constraints and dependencies have been initialised, we take
advantage of user input to acquire data samples that will progressively reduce
the set of potential constraints and dependencies. To be consistent with the
previously validated constraints and dependencies, any new tuple must respect
the latter to be accepted. Once a new tuple is acceptable, we proceed with
its analysis to determine which potential constraints and dependencies do not
hold any more. The invalidated constraints are discarded, while the invalidated
functional dependencies are replaced by alternative dependencies. Let us explicit
this process for each type of constraint and dependency when adding a new valid
tuple. Fig. 4 illustrates three data samples that could be encoded for the form of
Fig. 2, and Fig. 5 illustrated the underlying relation Person after the acquisition
of these data samples. Despite the apparent structure of attribute Contact, this
relation is in 1NF. Indeed, the compound value must be considered as a whole
whose unique goal is to reference a target tuple in the CONTACT table.

First of all, discarding the potential domains of value and cardinalities that
do not hold any more is relatively straightforward, since it consists in removing

Interactively Eliciting Database Constraints and Dependencies 193

Fig. 4. Three data samples for the form of Fig. 2

Fig. 5. The relation Person after the acquisition of the data samples of Fig. 4. The
compound value of attribute Contact must be considered as a whole whose unique goal
is to reference a target tuple in the corresponding CONTACT table.

the constraints with which the tuple does not agree. Regarding the cardinalities,
we remove the possible mandatory constraints for components that are empty,
and we remove the value type constraints that are not compatible with the
value provided for each attribute and replace the value size if the provided value
is longer. For instance, adding the first data sample confirms that the Title
is definitely optional, while the Birth date potentially remains a mandatory
attribute. The Zip Code of a Contact can now only be validated as integer, real
or textual. The second data sample still supports Birth date being a possibly
mandatory attribute.

Secondly, discarding the potential existence constraints that do not stand any
more also consists in removing the constraints with which the tuple does not
agree. Consequently, coexistence constraints are removed if their set of compo-
nents is different from the set of non empty optional components of the tuple.
Exactly-one, exclusion and at-least-one constraints are respectively removed if
there is not one and only one, more than one or less than one of their components
that is not null among the set of non empty optional components of the tuple.
Finally, we remove all the implication constraints for optional components if the
suggested prerequisite components are not part of the non empty components
of the tuple. The first data sample for instance suggests that there could be at-
least one, at-most one or exactly one value of Title or Birth date, or that the

194 R. Ramdoyal and J.-L. Hainaut

former could require the latter (implication). The second data sample implies
that the only remaining potential configurations for Title or a Birth date is
at-least-one, or that the former requires the latter.

We also analyse each potential functional dependency to check if there is a
conflictual tuple among the previously provided tuples, i.e. if an existing tuple
has the same left-hand side but a different right-hand side when considering the
components of the functional dependency. If such a conflictual tuple exists, the
functional dependency is discarded and alternatives are recursively generated.
First of all, this implies that the right-hand side may be too large with respect
to left-hand side, and we therefore consider smaller right-hand sides by remov-
ing a component. The removed component may be purely dismissed, or added
to the left-hand side to consequently generate two alternatives per component.
For instance, the first data sample doesn’t jeopardize the potential functional
dependencies, but the second data sample discards the FD F2 and generates the
alternatives F21, F22, F23, F24 and F25 of Fig. 3. The second data sample then
discards the FD F4 and generates its subsequent alternatives.

Understanding the implications of a functional dependency is not always triv-
ial and easy to grasp. Presenting the end-users with automatically generated
data samples that would contradict the validity of existing functional dependen-
cies therefore helps them to visualise the relevance of these dependencies, while
reducing the number of tuples that they would need to provide by themselves. As
we can observe, a tuple t is actually problematic for the functional dependency
f : X → Y and the existing set of tuples T if ∃ t′ ∈ T : t′[X] = t[X]∧t′[Y] �= t[Y].
If we already have several tuples in the tuples set of a given entity type, we gen-
erate problematic data samples for a given dependency by putting together pre-
viously provided data samples. Accepting such a generated data sample would
imply discarding the associated functional dependency and generate alternatives.
For instance, considering the functional dependency F23, we generate the prob-
lematic tuple illustrated in Fig. 6 from the composition of the second and third
data samples of Fig. 4.

Finally, potential unique constraints are again induced from validated and po-
tential functional dependencies, using the same principle than during the initial-
isation of the process, i.e. the left-hand side of a functional dependency involving
all the components of a given entity type is a potential identifier for that entity
type.

4.4 Acquiring Constraints and Dependencies

Another way to take advantage of user input is to directly acquire validated
or discarded constraints and dependencies, whenever they are trivial and easy
to express for the participants, and to invite them to arbitrate the potential
constraints and dependencies that could be suggested after the acquisition of
multiple data samples. The end-users should indeed be able to directly spec-
ify validated or discarded constraints and dependencies, even without look-
ing at possible suggestions. To be accepted as validated, a given constraint or

Interactively Eliciting Database Constraints and Dependencies 195

Fig. 6. A problematic data sample for the FD Title → National number, Last

name, First name, Birth date, Contact, given the valid data samples of Fig. 4

dependency must be satisfied by the existing set of tuples associated with the
considered entity type.

Alternatively, the participants can also take advantage of the potential con-
straints and dependencies to arbitrate them, i.e. to validate or discard them. The
advantages of this approach are that the participants do not have to imagine all
the possible constraints and dependencies for each entity type, and that we di-
rectly know that each candidate constraint or dependency is currently potential
for the given entity type. One can suspect that validating or discarding a con-
straint or a dependency may impact on the constraints or dependencies of other
types. Such a correlation actually exists between functional dependencies and
unique constraints. Indeed, discarding a potential functional dependency may
change the potential unique constraints, whereas validating a unique constraint
automatically validates its underlying functional dependency and discards oth-
ers. When these cases occur, the relevant sets must therefore be updated.

Besides, it obviously appears that the number of suggested constraints and
dependencies can eventually become very high. It is therefore crucial to organ-
ise these suggestions in an accessible fashion, so that the end-users do not feel
overwhelmed. Besides, this underlines the importance of the analyst to guide
the end-users through this collaborative process, by assessing the relevance of
these suggestions. This observation is especially true regarding the elicitation
of the functional dependencies, since the number of suggestions can increase
dramatically.

We therefore propose to filter the potential functional dependencies in or-
der to limit the number of relevant suggestions, while privileging the “stronger”
functional dependencies (i.e. the dependencies with smaller left-hand side and
larger right-hand side, as previously explained). For this purpose, we therefore
propose to “hide” dependencies that can be obtained from other potential de-
pendencies using Armstrong’s axioms, which are a set of inference rules used to
infer all the functional dependencies on a relation [19]. Hiding these functional

196 R. Ramdoyal and J.-L. Hainaut

dependencies does not mean discarding them. Indeed, they are still potential,
and may eventually become visible again with the progressive arbitration of the
other dependencies. Still, we observed that this filtering helps keeping the focus
of the end-users during this elicitation process.

5 Evaluation

To experiment and evaluate the RAINBOW approach, a validation protocol
was defined based on the Participant-Observer principles to monitor the use
of the RAINBOW approach, and the Brainstorming/Focus group principles to
analyse the resulting conceptual schemas, as defined in [20]. This protocol was
used for a first series of experiments where pairs of end-users and analysts were
asked to jointly define the conceptual schema of a future information system,
including constraints and dependencies, using the RAINBOW approach and its
tool support.

For each project, the first task consisted in preparing the experimentation
by defining the subject based on real-life concerns of the end-users, then train-
ing the participants to understand the method and to use the tools. Secondly,
the end-users and analysts were asked to apply the approach on their project
and focus on the five first phases, while observers took notes. In particular, for
the Nurture phase which dealt with the elicitation of constraints and depen-
dencies, the participants were asked to progressively provide data samples and
constraints, while arbitrating the candidate constraints suggestions. Thirdly, the
observations on the efficiency of the approach were analysed, and finally, the
quality of the produced schemas was debated, taking in account schemas that
were designed by the analysts independently of the approach.

The analysis of these experiments notably highlighted that the RAINBOW
approach and tool support did help end-users and analysts to communicate
static data requirements to each other, inclusive of constraints and dependen-
cies. Though all the requirements could not be expressed through the toolkit, the
latter did serve as a basis for discussion and modifications. Since the validation
aspect of the proposed approach cannot be addressed more extensively in this
paper, the interested reader may refer to [21] for further details on the validation
process and methodology.

6 Conclusion

In this paper, we extend the user-oriented RAINBOW approach presented in
[2], and describe how it can be used to interactively elicit database constraints
and dependencies, and more specifically domains of values, optionality, exis-
tence constraints, identifiers and functional dependencies. The process, inspired
by the principles of Armstrong relations, uses form-based interfaces that were
previously drawn by the end-users themselves in order to let them provide a
limited set of data samples that will restrict the potential implicit constraints of
the underlying conceptual schema. Conversely, end-users are invited to arbitrate

Interactively Eliciting Database Constraints and Dependencies 197

potential constraints that will in turn restrict the tuples that can be encoded.
Such a process prevents the development of unsatisfiable systems of constraints
and dependencies, since such set of constraints will never accept the introduction
of new tuples. Whereas usual dependency discovery approaches rely on extensive
data sets, this specific modus operandi is particularly adapted when engineering
information systems with no legacy data samples available, or when their re-
encoding would be too expensive. The application of this approach to different
case studies have proved that such intensive end-user involvement with inter-
active support is particularly fruitful and sustainable, while merely providing,
without support, significant amount of data samples is a particularly tedious and
time-consuming process, and in most situations, unrealistic. Besides, manipulat-
ing form-based interfaces to encode data samples leads to directly expressing
trivial constraints, while inducing further discussion and reflection on their un-
derlying conceptual schema. Though this approach relies on a set of pre-existing
form-based interfaces, its principles are easily generalisable to any given concep-
tual schema. Indeed, the constructs of the schema can first be transformed to
comply with the structures used in the RAINBOW approach [4]. Subsequently, a
set of form-based interfaces can then be generated from this transformed schema
[22], hence enabling the encoding of data samples and the application of the pro-
posed approach.

References

1. Rosson, M.B., Carroll, J.M.: Usability Engineering: Scenario-Based Development
of Human-Computer Interaction (Interactive Technologies). Morgan Kaufmann,
San Diego (2001)

2. Ramdoyal, R., Cleve, A., Hainaut, J.-L.: Reverse engineering user interfaces for
interactive database conceptual analysis. In: Pernici, B. (ed.) CAiSE 2010. LNCS,
vol. 6051, pp. 332–347. Springer, Heidelberg (2010)

3. Codd, E.F.: A relational model of data for large shared data banks. Communica-
tions of the ACM 13(6), 377–387 (1970)

4. Hainaut, J.-L.: The transformational approach to database engineering. In: Läm-
mel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 95–143.
Springer, Heidelberg (2006)

5. Ram, S.: Deriving functional dependencies from the entity-relationship model.
Communications of the ACM 38(9), 95–107 (1995)

6. Lopes, S., Petit, J.-M., Lakhal, L.: Functional and approximate dependency min-
ing: database and FCA points of view. Journal of Experimental and Theoretical
Artificial Intelligence (JETAI) 14(2-3), 93–114 (2002)

7. Yao, H., Hamilton, H.J.: Mining functional dependencies from data. Data Mining
and Knowledge Discovery 16(2), 197–219 (2008)

8. Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: TANE: An efficient algo-
rithm for discovering functional and approximate dependencies. Computer Jour-
nal 42(2), 100–111 (1999)

9. Novelli, N., Cicchetti, R.: FUN: An efficient algorithm for mining functional and
embedded dependencies. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001.
LNCS, vol. 1973, pp. 189–203. Springer, Heidelberg (2000)

198 R. Ramdoyal and J.-L. Hainaut

10. Lopes, S., Petit, J.-M., Lakhal, L.: Efficient discovery of functional dependencies
and armstrong relations. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C.
(eds.) EDBT 2000. LNCS, vol. 1777, pp. 350–364. Springer, Heidelberg (2000)

11. Wyss, C.M., Giannella, C., Robertson, E.L.: Fastfds: A heuristic-driven, depth-first
algorithm for mining functional dependencies from relation instances. In: Kam-
bayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2001. LNCS, vol. 2114,
pp. 101–110. Springer, Heidelberg (2001)

12. Priss, U.: Establishing connections between formal concept analysis and relational
databases. In: Common Semantics for Sharing Knowledge: Contributions to ICCS
2005, pp. 132–145 (2005)

13. Baixeries, J.: A formal concept analysis framework to mine functional dependencies.
In: Proceeding of Mathematical Methods for Learning 2004: Advances in Data
Mining and Knowledge Discovery (2004)

14. Correia, J.H.: Relational scaling and databases. In: Proceedings of the 10th Inter-
national Conference on Conceptual Structures (ICCS 2002), Borovets, Bulgaria,
July 15-19, pp. 62–76 (2002)

15. Rancz, K.T.J., Varga, V.: A method for mining functional dependencies in rela-
tional database design using FCA. Studia Universitatis Babes-Bolyai Cluj-Napoca,
Informatica LIII(1), 17–28 (2008)

16. Rancz, K.T.J., Varga, V., Puskas, J.: A software tool for data analysis based on
formal concept analysis. Studia Universitatis Babes-Bolyai Cluj-Napoca, Informat-
ica LIII(2), 67–78 (2008)

17. Flory, A.: Bases de données: conception et réalisation. In: ECONOMICA, Paris
(1982)

18. Lopes, S., Petit, J.-M., Lakhal, L.: Efficient discovery of functional dependencies
and armstrong relations. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C.
(eds.) EDBT 2000. LNCS, vol. 1777, pp. 350–364. Springer, Heidelberg (2000)

19. Armstrong, W.W.: Dependency structures of data base relationships. In: IFIP
Congress, pp. 580–583 (1974)

20. Singer, J., Sim, S.E., Lethbridge, T.C.: Software engineering data collection for field
studies. In: Shull, F., Singer, J., Sjøberg, D.I. (eds.) Guide to Advanced Empirical
Software Engineering, pp. 9–34. Springer, Heidelberg (2008)

21. Ramdoyal, R.: Reverse Engineering User-Drawn Form-Based Interfaces for
Interactive Database Conceptual Analysis. PhD thesis, University of Na-
mur, Namur, Belgium, (December 2010) Electronic version available from
http://www.info.fundp.ac.be/libd/rainbow

22. Pizano, A., Shirota, Y., Iizawa, A.: Automatic generation of graphical user in-
terfaces for interactive database applications. In: CIKM 1993: Proceedings of the
Second International Conference on Information and Knowledge Management, pp.
344–355. ACM, New York (1993)

http://www.info.fundp.ac.be/libd/rainbow

A Conceptual Model for Integrated Governance,

Risk and Compliance

Pedro Vicente and Miguel Mira da Silva

Instituto Superior Técnico, Universidade Técnica de Lisboa,
Avenida Rovisco Pais, 1, 1049-001 Lisboa, Portugal

{pedro.vicente,mms}@ist.utl.pt

Abstract. As integrated Governance, Risk and Compliance (GRC) be-
comes one of the most important business requirements in organizations,
the market is incongruously struggling to satisfy organizations’ needs.
The absence of scientific references regarding GRC is leading to a dis-
persion of concepts involving this topic. Without boundaries and correct
domain definition, poor implementation of GRC solutions can lead to low
performances and high vulnerabilities for organizations. This paper pro-
poses a set of high level concepts covering the GRC domain. Through
literature review and framework research we propose key functions of
governance, risk and compliance and their associations, resulting in a
reference conceptual model for integrated GRC. The model was evalu-
ated by comparing the GRC capability model from OCEG with a quality
model evaluation framework. We concluded that the proposed model is
valid and complete.

Keywords: governance, risk, compliance, conceptual model, integrated.

1 Introduction

Some research is starting to finally arise in the study of governance, risk and com-
pliance as an integrated concept. Since PricewaterhouseCoopers introduced the
term GRC in 2004 [1], a bewildering amount of definitions have been presented,
distinguishing in terms of scope and levels of integration.

The first scientific definition for integrated Governance, Risk and Compliance
(GRC) was proposed by Racz et al. [2] and states that: “GRC is an integrated,
holistic approach to organization-wide governance, risk and compliance ensuring
that an organization acts ethically correct and in accordance with its risk appetite,
internal policies and external regulations, through the alignment of strategy, pro-
cesses, technology and people, thereby improving efficiency and effectiveness.”

However, if you ask 10 organizations to describe governance, risk and com-
pliance, probably you will get at least 20 definitions [3]. Therefore, there is
not a common understanding of what GRC is. Instead, there are very different
perspectives [4].

Just like Enterprise Resource Planning (ERP), GRC is becoming one of the
most important business requirements of an organization [5], mainly due to the

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 199–213, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

200 P. Vicente and M. Mira da Silva

rapid globalization, increasing regulations like BASEL II, the Sarbanes-Oxley
Act (SOX), Anti-Money Laundering (AML), etc., and growing demands of trans-
parency for companies [5].

Traditionally, governance, risk and compliance activities were scattered in
silos all over the organization, which has a negative impact on transparency
and decision making. GRC activities are important in organizations, not only to
boost their performance, but above all, to protect organizations from the inside
and the outside. To accomplish this objective, organizations need to shift these
activities from niche groups to business units [5] in order to improve these same
activities.

Although many organizations agree on the benefits that arise from integrating
GRC processes, there is no congruence between software vendors, organizations
and market research [4].

In this paper we use conceptual modelling to define the domain of integrated
GRC. It is widely accepted that conceptual models are a prerequisite for suc-
cessfully planning and designing complex systems, particularly information sys-
tems [6,7,8,9]. Over the last decades, conceptual modelling has been employed to
facilitate, systematize, and aid the process of information system engineering [8].

Based on the four design artefacts produced by design science research in
information systems - constructs, models, methods and instantiations - we will
focus on constructs and models. Constructs are necessary to describe certain as-
pects of a problem domain and allow the development of the research project’s
terminology [10]. In other words, they provide the language in which problems
and solutions are defined and communicated [11]. Models use constructs to rep-
resent a real world situation, the design problem and the solution space [12].

A conceptual reference model, a specific type of conceptual models, is a “claim
that the model comprises knowledge that is useful in the design of specific solu-
tions for a particular domain” [10]. A conceptual model is a typically graphical
representation, hence can provide limited vocabulary [10], constructed by IS pro-
fessionals of someone’s or some group’s perception of a real-world domain [13].

Conceptual modelling may be used to ease the implementation of an infor-
mation system or to provide a common understating between the organization’s
needs and an enterprise application [13]. It is also suitable to systematize knowl-
edge, provide guiding research and map a portion of reality [14].

In this paper, we use conceptual modelling to supply a reference model to
the scientific community that can lead to a common understanding of what
constitutes the universe of integrated GRC. Currently, the most complete and
recognized framework for integrated GRC was developed by the “Open Compli-
ance & Ethics Group”(OCEG). OCEG is a non-profit organization that uniquely
helps other organizations to enhance corporate culture and integrate governance,
risk management, and compliance processes. The GRC Capability Model [15] is
the central piece of the OCEG framework and describes practices to implement
and manage GRC activities.

Our approach is to design a conceptual model that contains domain level con-
cepts, representing a high level of integration between the following sub-domains:

A Conceptual Model for Integrated Governance, Risk and Compliance 201

governance, risk management and compliance. The higher the semantic content
of those concepts, the better the integration [7]. Although it may seem impossi-
ble to find general and meaningful concepts for the entire domain of integrated
GRC, it is better to adopt the so-called “constructive” research strategy [7].

2 Methodology

The methodology applied is divided according to the two processes of design
science research in information system, build and evaluate [16]. The build process
is composed by two stages whereas and the evaluation process is composed by
only one stage (Fig. 1).

Fig. 1. Research Methodology

The first stage, construct definition, has two main milestones: conceptual do-
main establishment and conceptual definition within the set up boundaries estab-
lished. In this stage we have proceeded with literature study and benchmarking
of integrated GRC solutions in the market. Throughout it, we have come to
support the observations made by Racz et al. [2]: “there is basically no scientific
research on GRC as an integrated concept”, “software vendors, analysts and
consultancies are the main GRC publishers” and “software technology is the
prevailing primary topic”. Hence, gathering solid information was a hard task
due to the lack of scientific research. Also, at this stage, we began to categorize
the concepts that we will present in Sect. 3.

According to Hevner et al. [17], the results from this stage can be called con-
structs. “Constructs provide the vocabulary and symbols used to define problems
and solutions” within an outlined domain. To favour the boundary definition of
the domain, we used the design science research pattern proposed by Vaishnavi
and Kuechler [18], building blocks, which consists in dividing “the given complex
research problem into smaller problems that can form the building blocks for
solving the original problem”. Especially in this case, we divided the domain in
G, R and C areas so as to simplify it and the concepts involved.

In the second stage the concepts were separated according to their most ev-
ident domain. For example, risks are more likely to belong to the risk domain
(R in GRC). However, this does not imply that they could not be represented
in governance and compliance domains for they might maintain relations with
other concepts. One of the goals of this phase was to identify the concepts du-
plicated among domains. This way we could determine the integration points

202 P. Vicente and M. Mira da Silva

between the three areas. Also, by having concepts divided into smaller domains,
it became simpler to define the relations between them.

Still at this stage, three conceptual models were built, one for each area, G, R
and C (Sects. 3.1, 3.2 and 3.3). In Sect. 3.4 we present the domain of integrated
GRC with concepts and relations adjusted to the integrated context.

Even though little is known about how to validate conceptual models effec-
tively and efficiently [13], in the final stage, we proceeded with the evaluation
of the final conceptual model, by mapping the relations between concepts with
the eight components of the GRC Capability Model presented by OCEG [15].
We used this mapping to evaluate the quality of the conceptual model accord-
ing to its syntactic and semantic quality, using the Conceptual Model Quality
Framework proposed by Moody et al. [19].

3 Conceptual Model

Information integration is one of the core problems in cooperative information
systems [20]. Also, GRC functionalities have shown to overlap themselves [15,21]
making integration difficult. Governance, risk and compliance as separate con-
cepts are nothing new [1] and many researchers have addressed each area. The
proposed model describes GRC functionalities and information that are consid-
ered to be within the scope of each of the three areas (G, R and C).

The components of the model. Before we begin describing each of the three
scopes, a proper explanation concerning the model is required. The model has
three types of concepts, represented by different colours and different shapes.
The rectangular concepts, coloured orange, stand for what we propose to be the
GRC main functionalities:

1. Audit Management
2. Policy Management
3. Issues Management
4. Risk Management

We have chosen the four functionalities for three reasons. First, a study per-
formed by Racz et al. [4] concluded that Risk Management, Policy Management
and Audit Management were mentioned seven times by GRC vendors as GRC
functionalities. Issues Management was mentioned six times. Second, we decided
to propose these four core functionalities to maintain the conceptual model sim-
ple without withdrawing GRC capabilities. Finally, although there are diverse
opinions, the benchmarking performed supports these functionalities. The im-
portance and role of each one will be described in the next sections.

Additionally, rectangular concepts, coloured grey (Reporting, Dashboards and
Monitoring), also represent imperative functionalities to access and deliver im-
portant information in real-time through an automated manner. It is arguable
that the four main functionalities presented implicitly cover reporting, dash-
boards and monitoring but we opted to include them since they represent essen-
tial functions for GRC to perform in an adequate, efficient and effective basis [22].

A Conceptual Model for Integrated Governance, Risk and Compliance 203

For this reason, they are explicitly represented. We have distinguished these four
from the key functions, because they represent horizontal functionalities avail-
able through the three areas.

The concepts, in a blue round shape, represent information that is managed
by these functionalities or are presented as a responsibility of the G, R or C
areas. As stated before, G, R and C areas overlap [15,21], and some information
is managed by different areas simultaneously. One way to observe the points
of integration of GRC is through the information that is used collaboratively
between governance, risk management and compliance.

Next, we address governance, risk and compliance separately and in more
detail.

3.1 Governance

OCEG states that “governance is the culture, values, mission, structure, layers
of policies, processes and measures by which organizations are directed and con-
trolled” [15]. According to this definition, one of the most important responsibil-
ities of governance is to determine guidelines, which are translated into policies
composed by culture, values, mission, objectives and supported by procedures
(see Fig. 2).

Policy Management, a key functionality, can be said to be an important ac-
tivity with direct governance responsibility. Policy management must “develop,
record, organize, modify, maintain, communicate, and administer organizational
policies and procedures in response to new or changing requirements or princi-
ples, and correlate them to one another” [23].

Policies play an essential role at GRC, because they represent the board and
top management’s point of view on how the organization should be driven. It
can be said that governance defines an interface, and the rest of the organization
implements it to operate according with what is established. Once agreed upon,
policies have to be transmitted across the organization. It is also important that
they be reviewed and preserved. It is all part of the policy life cycle that must
be set up (Fig. 2).

Since governance defines how the organization should perform, describing
through policies what is acceptable and unacceptable, compliance is the area
responsible for inspecting and proving that they are: adequate, being implement
and followed. In Sect. 3.3 we will address the influence of compliance in policy
management in more detail.

Governance is also responsible for risk and compliance oversight, as well as
evaluating performance against enterprise objectives [21]. “The board acts as
an active monitor for shareholders’ and stakeholders’ benefit, with the goal of
Board oversight to make management accountable, and thus more effective” [15].
Accordingly, governance should be able to understand and foresee the organiza-
tion’s vulnerabilities and, hence make decisions to reduce them.

Also, governance should distribute power to provide insight and intelligence,
at the right time, so that the right people in the management can make risk-aware
decisions in accordance with key business objectives. Risk-awareness is possible

204 P. Vicente and M. Mira da Silva

Fig. 2. Conceptual Model for Governance

through the close proximity that governance should have with risk management,
which may provide very useful information in strategy setting and decision mak-
ing. We will address the relation with risk management in Sect. 3.2.

Controlling the organization over intelligent, reliable and real-time informa-
tion that is available through dashboards, appropriate reporting and monitoring
mechanisms, provides C-level executives a paramount tool for an effective and
efficient supervision of the performance of all GRC activities.

3.2 Risk Management

Risk management is more than to just identify and respond to risks. Risk man-
agement enables us to predict and avoid risk taking consequently decreasing the
possibility of unexpected events to occur. A well-structured risk management
must be aligned and linked with both governance and compliance information
in order to attain advantages (Fig. 3).

According to OCEG [15], risk management is “the systematic application of
processes and structure that enable an organization to identify, evaluate, analyse,
optimize, monitor, improve, or transfer risk while communicating risk and risk

A Conceptual Model for Integrated Governance, Risk and Compliance 205

Fig. 3. Conceptual Model for Risk Management

decisions to stakeholders”. A strong risk management structure can provide for
a better decision making and strategy setting.

Nowadays, risk management itself cannot take full advantage of its features.
It needs structured governance and compliance management in order to better
align business aims with risks and assist audit management in improving controls
which in turn will help detect and prevent risks. This way the organization as a
whole can benefit from all risk management capabilities.

So, in order to make risk management more effective in detecting and miti-
gating risks that can compromise the achievement of business goals, risk iden-
tification should be based on a holistic top-down approach by aligning risk
management with key corporate objectives defined by governance (see Fig. 3).
This approach enables risk management to be infused into the corporate culture,
quickly identifying gaps, while maintaining a proactive approach [24]. Accord-
ingly, risk appetite must be seen as a component of both the culture and strategy
of organizations.

By identifying information that is mutual or has influence between governance
and risk management, we can identify several specific points of integration:

1. The defined corporate objectives should be taken into consideration in the
identification of risks, adopting a top-down approach while avoiding an ex-
pensive and ineffective bottom-up approach;

206 P. Vicente and M. Mira da Silva

2. Reporting and dashboards are also very appreciated by management, allow-
ing for the consolidation of important information, in real-time. It also lets
stakeholders reach an increased level of trust on the organization since they
possess valuable and trusted information concerning the level of exposure to
risks;

3. The level of risk appetite must be collaboratively defined in order to make
governance and business performance more risk-aware in decision making [15].

Another important aspect that can be very helpful in risk identification is the
information concerning complaints, incidents, suggestions, etc., that are reported
when something happens. This we present as issues. An issue is a nonroutine
stimulus that requires a response [25]. It may be positive or negative, internal
or external to the organization. Issues can be risks that occur or risks that were
not identified in the first place.

As risk management acts on the prediction of events, issue management iden-
tifies threats that occurred and need to be categorized and addressed. Addi-
tionally, it is in the organization’s interest not only to correct what is wrong,
but also to have a mechanism in place that could help improve the organiza-
tion itself, for example, through suggestions from clients. By integrating this
functionality in the GRC system, the information from issues management can
be helpful in identifying new sources of risk and improve the activities of the
organization.

Monitoring plays a crucial role on the efficiency of risk management, since it
provides the capability to effectively and efficiently identify potential risks and
issues. Therefore, it gives the organization the key to identify opportunities and
mitigate “risks in the context of corporate strategy and performance” [24]. Inter-
nal Controls can be seen as a monitoring tool, since their role in risk management
is to help prevent, detect, correct and also track risks.

Monitoring, reporting and dashboards are essential in risk and issue man-
agement because they allow organizations to answer very important questions:
What are our top 10 risks? What is the percentage of issues that were identified
as risks? What are the impacts of those risks and what is their status? Which
risks can our organization endure? What objectives are compromised?

3.3 Compliance

Compliance must assure that the organization is following all its obligations, and
thus is operating within the defined boundaries. According to OCEG, “compli-
ance is the act of adhering to, and the ability to demonstrate adherence to,
mandated requirements defined by laws and regulations, as well as voluntary
requirements resulting from contractual obligations and internal policies” [15].
Through this definition, the relation between governance and compliance be-
comes clearer.

Compliant organizations need an effective approach to verify that they are in
conformity with external (standards, regulations) and internal (internal policies)
rules. This approach is assisted by risk management, which must identify and

A Conceptual Model for Integrated Governance, Risk and Compliance 207

Fig. 4. Conceptual Model for Compliance

prioritize risks that are already aligned with corporate objectives defined by
governance (Fig. 4).

This way, audit management, one of the key components of GRC, is responsi-
ble for auditing the processes or departments of the organization in which risks
that menaced and compromised the achievement of goals were identified. By hav-
ing risks aligned with objectives, audit teams can address the most important
threats that place organizations’ compliance under risk. Audit management is
responsible for internal controls testing and policies review [22] in order to report
findings and produce recommendations that will subsequently improve controls
and policies (Fig. 4). Findings and issues are very similar. Organizations, there-
fore, need to pay close attention to them to know what needs to be fixed, who
is responsible and what is the progress in accomplishing it [22].

Although audit management is very important and a crucial piece of the
puzzle, it must be presented as an independent and neutral component [21],
so as to preserve reliable conclusions and results that can be translated into
important improvements. Consequently, compliance is responsible for defining
the tactical approach that the organization should follow in order to be com-
pliant with standards and regulations and translate it to policies and proce-
dures. By tactical approach, we mean implementing communications so that

208 P. Vicente and M. Mira da Silva

everyone knows about the compliance problems [21], through training, surveys
and self-assessments.

This is very much related to policy management, as compliance must deter-
mine if the organization is conforming to its defined policies. If it is not, the
organization must take the necessary measures to upgrade the current policies
and, thus influence the policy life-cycle.

Summarizing, we can identify more relations between compliance, governance
and risk areas:

1. Risk categorization is used to schedule and prioritize audits. Consequently,
investigations and recommendations have an impact on risks due to the
improvement of controls;

2. Policies are reviewed and improved by compliance, mirroring the impact of
external regulations, standards and audits, and thus has an influence on
policy management and the inherent life-cycle of policies.

Real-time monitoring also provides the opportunity to eliminate or greatly reduce
sample-based audits [26]. This way, through continuous monitoring, auditors can
rely in the existence of automated controls as evidence of compliance [26].

3.4 Integrated GRC Conceptual Model

In this section we present an integrated view of the three scopes presented(Fig. 5).
The points of integration that we specified in each section are now combined in
an integrated model. We opted not to include monitoring, dashboards and re-
porting to remove further complexity from the model.

As previously stated, internal controls are paramount in this model since
they are crucial for governance, risk and compliance activities [15]. Controls are
clearly a common thread among the GRC components (Fig. 5). An organization
should, then, develop and implement adequate controls that mirror policies and
procedures’ objectives.

According to the Committee of Sponsoring Organizations of the Treadway
Commission (COSO), controls are also indispensable to achieve key business ob-
jectives through the mitigation of risks that menace the same objectives, and
thus have a tremendous impact on effective risk management. Compliance man-
ages controls through audit management, which is responsible for testing and
improving controls based on findings and respective recommendations, a travail
of auditors’ work. By having adequate, effective and efficient controls, organi-
zations are not only better prepared and safeguarded from external audits, but
also guarantee organizations’ health.

Risks and processes are also presented with a central role in integrated GRC,
because they are linked to everything. In all activities, there are processes and
subsequently, risks. In order to successfully and proficiently manage all GRC ac-
tivities, processes must be associated with risks, and risks have to be linked with
controls. This way, all information is organized, making it highly manageable
and traceable.

A Conceptual Model for Integrated Governance, Risk and Compliance 209

Fig. 5. Integrated GRC Conceptual Model

Finally, we opted to include policies into this crucial group that represents the
integration of the three areas. On the one hand, because they are linked to con-
trols that help ensure the fulfilment of policies, and on the other hand, because
policies articulate culture and accountability at the level of governance, risk and
compliance, consequently having an impact across the entire organization.

The integrated conceptual model in Fig. 5 shows the information with cen-
tral roles in integrated GRC, thus it should be centralized and properly
associated.

4 Evaluation

4.1 OCEG Capability Model

We opted to map the relations between the concepts of the model with OCEG
Capability Model components (Fig. 6), a recognized framework that provides
eight components that gather detailed practices (Fig. 7).

The components contain 32 associated elements with 132 practices. The re-
lations that cover elements and practices of the component have been coloured
with the according shade attributed to the component(Fig. 7).

210 P. Vicente and M. Mira da Silva

Fig. 6. Mapping between the Reference Model and the OCEG Capability Model

Fig. 7. GRC Capability Model Components

4.2 Conceptual Model Quality

The quality framework used to assess the conceptual model (Fig. 8) presents four
components (Interpretation, Domain, Language and Model) and three quality
categories (Syntactic, Semantic and Pragmatic quality) [19].

A model has syntactic correctness if there are no statements included in the
model that are not a part of the language [19]. Syntactic quality is the relation-
ship between the model and the language while semantic quality is the relation-
ship between the model and the domain, and it is divided into two goals: Validity
and Completeness. A model is valid if there are no statements in the model that
are not correct and relevant about the domain [19]. A model is complete if there
are no statements that are correct and relevant about the domain, but are not
included in the model [19].

A Conceptual Model for Integrated Governance, Risk and Compliance 211

Fig. 8. Conceptual Model Quality Framework - adapted from [19]

The model presented in Fig. 6, shows that every relation is signalled with a
colour, proving the validity of the model. Concerning the model’s completeness,
this attribute is not entirely fulfilled, because some elements of the components
were not shown in the conceptual model. Since the language used to create the
model was ad-hoc, we will not consider syntactic quality.

The completeness of the model can be measured by calculating the relation
between the number of elements and practices covered by the conceptual model
and the total number of elements and practices of the OCEG Capability Model.
After an analysis of the elements presented in the capability model, we have
identified 100 practices and the corresponding 24 elements that our model fulfils,
with a result of approximately 76% of coverage (75,75%).

Pragmatic quality is the relationship between the model and the audience’s
interpretation and has not been accomplished in this research.

5 Conclusion

In this paper, we developed and evaluated a high-level conceptual model for
integrated GRC and thus providing new research concerning the topic. The
conceptual model was built from the integration of the three domains - gover-
nance, risk Management and compliance - but always maintaining an integrated
context.

Through the identification of the concepts of each domain, the conceptual
models were merged through common concepts and relations between G, R and
C, resulting in a conceptual model for integrated GRC. The evaluation was
performed by combining two frameworks: the OCEG capability model [15] and
a conceptual model quality framework [19].

However, the evaluation is not yet complete. The pragmatic quality of the
conceptual model needs to be assessed. As a future research, we will conduct
surveys to obtain critical enhancements from GRC professionals in order to
improve the model, and thus feed the build and evaluate loop of design science
research.

212 P. Vicente and M. Mira da Silva

Acknowledgments. We would like to acknowledge the support provided by
Methodus to our research work in the scope of an innovation project partly
financed by QREN.

References

1. PricewaterhouseCoopers: 8th annual global CEO survey (2004),
http://www.grc-resource.com/resources/

pwc integritydrivenperformance.pdf

2. Racz, N., Weippl, E., Seufert, A.: A Frame of Reference for Research of Integrated
Governance, Risk and Compliance (GRC). In: De Decker, B., Schaumüller-Bichl,
I. (eds.) CMS 2010. LNCS, vol. 6109, pp. 106–117. Springer, Heidelberg (2010)

3. Hagerty, J., Kraus, B.: GRC in 2010: $29.8B in Spending Sparked by Risk, Visi-
bility, and Efficiency (2009)

4. Racz, N., Weippl, E., Seufert, A.: Governance, Risk & Compliance (GRC) Software
An Exploratory Study of Software Vendor and Market Research Perspectives. In:
Proceedings of the 44th Hawaii International Conference on System Sciences (2011)

5. Gill, S., Purushottam, U.: Integrated GRC - Is your Organization Ready to Move?
In: Governance, Risk and Compliance. SETLabs Briefings, PP. 37–46 (2008)

6. Moody, D.L., Shanks, G.G.: Improving the Quality of Data Models: Empirical
Validation of a Quality Management Framework. Inf. Syst. 28, 619–650 (2003)

7. Frank, U.: Conceptual Modelling as the Core of the Information Systems Discipline:
Perspectives and Epistemological Challenges. In: Proceedings of the Fifth Amer-
ica’s Conference on Information Systems (AMCIS 1999), Milwaukee, Association
for Information Systems, pp. 695–698 (1999)

8. Recker, J.C.: Conceptual Model Evaluation. Towards more Paradigmatic Rigor. In:
Halpin, T., Siau, K., Krogstie, J. (eds.) Proceedings of the Workshop on Evaluating
Modeling Methods for Systems Analysis and Design (EMMSAD 2005), Held in
Conjunctiun with the 17th Conference on Advanced Information Systems (CAiSE
2005), Porto, Portugal, EU, FEUP (2005)

9. Jeusfeld, M.A., Jarke, M., Nissen, H.W., Staudt, M.: ConceptBase: Managing Con-
ceptual Models about Information Systems. In: Bernus, P., Mertins, K., Schmidt,
G. (eds.) Handbook on Architectures of Information Systems. International Hand-
books Information System, pp. 273–294. Springer, Heidelberg (2006)

10. Schermann, M., Böhmann, T., Krcmar, H.: Explicating Design Theories with Con-
ceptual Models: Towards a Theoretical Role of Reference Models. In: Becker, J.,
Krcmar, H., Niehaves, B. (eds.) Wissenschaftstheorie und Gestaltungsorientierte
Wirtschaftsinformatik, pp. 175–194. Physica-Verlag, HD (2009)

11. Schon, D.A.: The reflective practitioner: how professionals think in action. Basic
Books, New York (1983)

12. Simon, H.A.: The Sciences of the Artificial - 3rd Edition, 3rd edn. The MIT Press,
Cambridge (1996)

13. Shanks, G., Tansley, E., Weber, R.: Using Ontology to Validate Conceptual Models.
Commun. ACM 46, 85–89 (2003)

14. Järvelin, K., Wilson, T.D.: On Conceptual Models for Information Seeking and
Retrieval Research. Information Research 9 (2003)

15. OCEG: GRC Capability Model (2009), http://www.oceg.com
16. March, S.T., Smith, G.F.: Design and natural science research on information tech-

nology. Decis. Support Syst. 15, 251–266 (1995)

http://www.grc-resource.com/resources/pwc_integritydrivenperformance.pdf
http://www.grc-resource.com/resources/pwc_integritydrivenperformance.pdf
http://www.oceg.com

A Conceptual Model for Integrated Governance, Risk and Compliance 213

17. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Sys-
tems Research. MIS Quarterly 28, 75–106 (2004)

18. Vaishnavi, V.K., Kuechler, W.: Design Science Research Methods and Patterns:
Innovating Information and Communication Technology, 1st edn. Auerbach Pub-
lications, Boca Raton (2008)

19. Moody, D.L., Sindre, G., Brasethvik, T., Sølvberg, A.: Evaluating the Quality of
Information Models: Empirical Testing of a Conceptual Model Quality Framework.
In: Proceedings of the 25th International Conference on Software Engineering.
ICSE 2003, pp. 295–305. IEEE Computer Society, Los Alamitos (2003)

20. Calvanese, D., de Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Information
Integration: Conceptual Modeling and Reasoning Support. In: IFCIS International
Conference on Cooperative Information Systems, P. 280 (1998)

21. Mitchell, S.L.: GRC360: A Framework to help Organisations drive Principled Per-
formance. International Journal of Disclosure and Governance 4, 279–296 (2007)

22. Tarantino, A.: Governance, Risk and Compliance Handbook: Technology, Finance,
Environmental and International Guidance and Best Practices. John Wiley & Sons,
Hoboken (2008)

23. Rasmussen, M.: Defining a Policy Management Lifecycle. (2010),
http://www.corp-integrity.com/compliance-management/

defining-a-policy-management-lifecycle

24. Chatterjee, A., Milam, D.: Gaining Competitive Advantage from Compliance and
Risk Management. In: Pantaleo, D., Pal, N. (eds.) From Strategy to Execution,
pp. 167–183. Springer, Heidelberg (2008)

25. Brache, A.P.: How Organizations Work: Taking a Holistic Approach to Enterprise
Health. Wiley, Chichester (2001)

26. Rasmussen, M.: Achieve GRC Value: Efficient Business Process and Application
Monitoring (2010),
http://www.corp-integrity.com/wp-content/uploads/2010/12/Achieve-GRC-

Value-Efficient-Business-Process-and-Application-Monitoring.pdf

http://www.corp-integrity.com/compliance-management/defining-a-policy-management-lifecycle
http://www.corp-integrity.com/compliance-management/defining-a-policy-management-lifecycle
http://www.corp-integrity.com/wp-content/uploads/2010/12/Achieve-GRC-Value-Efficient-Business-Process-and-Application-Monitoring.pdf
http://www.corp-integrity.com/wp-content/uploads/2010/12/Achieve-GRC-Value-Efficient-Business-Process-and-Application-Monitoring.pdf

Using Synchronised Tag Clouds for Browsing

Data Collections

Alexandre de Spindler, Stefania Leone, Michael Nebeling,
Matthias Geel, and Moira C. Norrie

Institute for Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland

{despindler,leone,nebeling,geel,norrie}@inf.ethz.ch

Abstract. Tag clouds have become a popular means of visualising and
browsing data, especially in Web 2.0 applications. We show how they
can be used to provide flexible and intuitive interfaces to web search ser-
vices over data collections by using multiple synchronised tag clouds to
browse that data. A data collection can have alternative tag clouds and
a tag cloud alternative visualisations, with the choice of tag cloud and
visualisation at any time controlled by a combination of user selection,
developer specification and default system behaviour. A search interface
is defined by an augmented data model that specifies the viewer classes,
their associated tag clouds and the visualisations of these tag clouds.
We demonstrate the approach by describing how we implemented a web
application to browse data related to researchers and their publications.

Keywords: search service, tag clouds, data browsing, data visualisation.

1 Introduction

Tag clouds and faceted browsing have been used to address the challenge of
providing users with intuitive interfaces to web search services. They offer visu-
alisations of data collections that allow users to construct search queries through
simple data selection. While faceted browsing allows complex search queries over
a data collection to be constructed in a multi-step refinement process, tag clouds
typically support only simple selections. However, the advantage of tag clouds is
their capability to represent multiple features of a data collection within a single
visualisation.

In this paper, we show how we have extended the use of tag clouds to allow
the formulation of complex search queries by developing a browser that can offer
multiple synchronised tag clouds to visualise the data stored in one or more data
collections. By supporting alternative tag cloud representations for selected data
collections within a database as well as alternative visualisations, we are able to
combine features of tag clouds and faceted browsing.

The application developer can configure the browser through an extension
of the data modelling language that is used to specify the view model of the
database. We present an extension of SQL used to define the view model and the

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 214–228, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Using Synchronised Tag Clouds for Browsing Data Collections 215

process of generating a browser from this model. To demonstrate the approach,
we describe how a web application to browse data about researchers and their
publications has been implemented.

We begin in Sect. 2 with a more detailed discussion of the background to this
work and related research before going on to describe our approach in Sect. 3.
Sect. 4 then introduces the SQL extension used to define the view model and
shows how it can be used to specify a browser for a particular web search service.
Sect. 5 provides details of the system architecture and the process of generating
a browser from the view model definition. Implementation details are then given
in Sect. 6. We discuss the contributions of our work in Sect. 7, and concluding
remarks are given in Sect. 8.

2 Background

Tag clouds have become an extremely popular way of providing visual summaries
of data collections and are nowadays used in many Web 2.0 sites to provide
a basic search service based on user-generated tags. For example, both Flickr1

and Del.icio.us2 provide search services based on collaborative tagging. Although
very simple, tag clouds can be used to support search, browsing and recognition
as well as forming and presenting impressions [1,9]. In previous work, we have
shown that tag clouds can also be used as the basis for a generic database
browser [6].

The presentation and layout of tags can be controlled so that features such as
the font size, type and colour can be used to give some measure of the importance
of a given tag, while the positioning of tags may be based on pure aesthetics,
alphabetical sorting or some form of relationship between tags. Studies have
experimented with such features and their impact on users, concluding that font
size, font weight and intensity are the most important features [7,1]. A study on
search performance [8] found that topic-based layouts produced better results
than random arrangements, but alphabetic layouts were best.

More recently tag clouds have been proposed as a means of summarising and
refining the results of keyword searches over structured as well as unstructured
data [5,3,4]. In [5], tag clouds are used to summarise query results of the PubMed
biomedical literature database based on words extracted from the abstracts re-
turned by a query. The term data cloud is used in [3,4] to refer to their particular
adaptation of tag clouds for summarising keyword search results. Data clouds
were implemented as part of CourseRank, an application that enables students to
search for classes, give comments and ratings, and also organise their classes into
a personalised schedule. The developer of a data cloud application specifies how
application entities can be composed from the relations in the database in or-
der that keyword search can be applied to entities rather than simple attributes
or tuples. The keyword search is based on a traditional information retrieval

1 http://www.flickr.com
2 http://www.delicious.com

http://www.flickr.com
http://www.delicious.com

216 A. de Spindler et al.

approach where entities are considered as documents and attribute values as
weighted terms.

At the same time, the use of faceted browsers for web search services has
become widespread. Faceted browsing allows items in a data collection to be
filtered based on the selection of values of one or more properties of these items.
For example, the Flamenco image browser [12] provides facets such as shape,
colour, location and date to search and browse image collections. Unlike a simple
hierarchical scheme, faceted browsing gives users the ability to find items based
on more than one dimension. Another example is yelp.com, a local search and
reviewing platform, where users can browse for information of interest using a
mix of keyword search and filtering. A user might initially search on keyword
and then refine the result collection based on multiple facets which are then
refined with every filter selection.

Faceted browsers come in various flavours and have been extended with var-
ious features. Facets are usually visualised as ordered lists of possible values,
where each value is followed by the number of items associated with that value.
Non-directional browsers such as Flamenco [12] and the faceted browser for
DBLP3 offer multiple such lists, from which users can select values as part of
the filtering process. In the case of Flamenco, the selection of a value in one
facet filters the values of all other facets, but DBLP does not offer such synchro-
nisation of facets. Directional browsers, such as Apple’s iTunes, have a specific
order of facets, most often represented as columns, where the browsing process
goes from left to right. The selection of a facet value in one column, triggers a
filtering action on facet values of all subsequent columns. In [11], they extend
the column representation of facets with the concept of backward highlighting,
where the selection of an item or facet value highlights all possible facet values of
precedent columns associated with the current selection and that could have led
to that selection. In [10], the information presentation is extended with so called
elastic lists4 that visualise the weight cardinality of the facet values. Facets are
presented in the form of an ordered list where the size of a facet value indicates
the cardinality of information items associated with that value.

Both faceted browsing and tag clouds simplify search processes for users,
but have limitations in terms of how they are usually used. Often they only
support searches over one particular data collection such as products in the case
of online stores or publications in the case of DBLP. While tag clouds offer
richer visualisation in terms of being able to encode different properties of a
data collection in a single visualisation, clearly only limited information can
be visualised at one time and usually they support only very simple selection
processes. We propose an approach that combines the features of facets and
tag clouds, and extends their use to support more general search services over
multiple data collections. Our approach has been inspired by [2], where they
provide a search tool to summarise, browse and compare search results over
clinical trial data that combines faceted browsing with tag cloud visualisation.

3 http://dblp.l3s.de
4 http://well-formed-data.net/experiments/elastic_lists

http://dblp.l3s.de
http://well-formed-data.net/experiments/elastic_lists

Using Synchronised Tag Clouds for Browsing Data Collections 217

3 Approach

Before introducing our view model that developers can use to specify a browser
interface for a particular application, we will present an overview of the publica-
tions application that we developed in order to explain the main ideas behind the
approach. In contrast to our previous work where we aimed to realise a generic
database browser based on tag clouds [6], we now focus on providing developers
with a framework that enables them to provide users with simple data browsers
tailored to a particular application domain.

Fig. 1 shows the initial screenshot of the application when started. The in-
terface comprises three tag clouds—one showing ranges of author names, one
showing keywords associated with publications and one showing the names of
conferences where papers have been published. In all three cases, the size of
the tag is relative to the number of associated publications. Each tag cloud is
labelled with the name of the data collection that it visualises, followed by the
properties used for the tag cloud visualisation.

Fig. 1. Initial browser view

In contrast to the conference names and publication keywords, the authors are
not represented by their names but by ranges of names instead. This happens
if the number of tags shown in a tag cloud exceeds what can be displayed in a
browser. In the example, Authors initially contains tags for alphabetical ranges
“A..M” and “N..Z”, where the size is relative to the number of publications
aggregated for the respective range of authors. When a user selects one of the
ranges, the author names contained in the range are displayed. The intervals used
for the ranges can be controlled by the application developer who can specify a
threshold limiting the number of tags shown in a tag cloud.

The three tag clouds are synchronised and users can filter data by clicking on
a tag in any of the three clouds and the effect will be that values are filtered
accordingly in all three clouds. So a user could, for example, click on the tag
CAiSE in Conferences and the Authors cloud would then show only the names
of people who have authored at least one CAiSE paper, the Publications cloud

218 A. de Spindler et al.

would show only the keywords associated with CAiSE papers and the Confer-
ences cloud would show only CAiSE.

Presenting single items in one of the tag clouds is useful in terms of showing
the context in which the other tag clouds should be interpreted. However, once
a tag has been selected there are no further selections possible in that cloud
and this is one of the limitations of using tag clouds that we alluded to before
when we stated that they can only support simple, single step searches. To
support further filtering of Conferences based on other properties, an application
developer could specify alternative tag clouds for that data collection and these
would be available through a dropdown menu. As illustrated in Fig. 2, we also
offer a tag cloud for Conferences showing the year of conference as well as one
showing the title instead of keywords for Publications.

Fig. 2. Browsing example

For users to keep track of the selections they have made while browsing the
database, we show the navigation path in terms of the tags that have been
selected from the tag clouds at the top of the browser. In the example of Fig. 2,
the user has first selected the CAiSE conference and the keyword Web before
switching to an alternative view for Conferences to select the year 2010. The
user has then also switched the Publications view to show the titles instead
of the keywords of the resulting three publications. Users can use this kind of
breadcrumb navigation to go one or more steps back in the sequence of tag
selections or click on All to return to the initial browser view shown in Fig. 1.

For each tag cloud, the items resulting from the filtering process are visualised
in the designated areas beneath the respective tag cloud if the number of results
does not exceed a certain threshold also defined by the application developer. A
user can view these items by simply clicking on them. In the case of the Authors
tag cloud, the author information of a specific author can be accessed. For the
Publications cloud, publications can be accessed as PDF files and, in the case of
the Conferences cloud, the conference proceedings can be viewed.

We offer different visualisations for tag clouds so that the developer may
choose one appropriate to the information to be displayed and even the task at

Using Synchronised Tag Clouds for Browsing Data Collections 219

hand. For example, if the titles of a collection of publications are to be displayed,
then it is more appropriate to display these as an ordered list rather than as
the sorts of tag clouds one typically sees where several tags are displayed in a
single line. We therefore provide a set of basic visualisation types, illustrated in
Figure 3, from which a developer may choose. We will describe each of these
working from left to right.

Corsin Decurtins
Matthias Geel
Adriana Ispas
Stefania Leone
Fabrice Matulic
Michael Nebeling
Moira Norrie
Alexandre de Spindler
Tilmann Zaeschke
Christoph Zimmerli

Adriana Ispas Alexandre
de Spindler Christoph Zimmerli

Corsin Decurtins Fabrice

Matulic Matthias Geel Michael

Nebeling Moira Norrie
Stefania Leone Tilmann Zaeschke

Fig. 3. Visualisation modes for authors

The first visualisation is a simple list of author names, sorted alphabetically
by surname and with no variable visual features. The second visualisation is
a tag cloud where the tags are aligned horizontally, sorted alphabetically by
forename, and their size indicates the number of publications of the author. We
refer to this as a line-based visualisation. The third visualisation is similar to
ones produced by tools such as Wordle5 where an advanced algorithm is used
to align tags with aesthetics in mind and it can also be used to visualise various
forms of relationships between tags. We refer to this as a spiral visualisation
since the tag cloud is formed working from a central point and then positioning
tags around that point while moving outwards. The fourth visualisation shows
that we also support non-textual tags such as images. Any of the three basic
visualisation types—list, line-based and spiral—can be used with both textual
and non-textual tags.

4 Model and Specification

Our approach builds on the model of a browser that can define multiple syn-
chronised tag clouds to visualise the data stored in one or more data collections.
The application developer can configure such a browser as a search interface
through an augmented data model that specifies the viewer classes, their asso-
ciated views in the form of tag clouds and the visualisations of these tag clouds.
Figure 4 illustrates this concept and how it extends the data model stored in
a relational database with a view model based on the shared concept of views.
Note that we use the relational model and later SQL, since the majority of web
sites build on relational database systems, such as MySQL, for the storage and
retrieval of data. However, we note critically that our approach is based on gen-
eral database principles, such as data tuples and views, and is therefore not tied
to a particular database system or modelling language.
5 http://www.wordle.net

http://www.wordle.net

220 A. de Spindler et al.

View Model

Data Model

Viewer

View

hasBrowser has

Database Relationhas has

shows shows has

Visualisation

Fig. 4. Extension of the data model with a view model

iN a relational database, the concept of a browser translates to one or more
viewer classes used to visualise the tuples stored in a relation. The concept of
views is shared by both the data and view model so that viewer classes can
associate them with different visualisations, such as simple vertical and horizon-
tal line-based as well as spiral tag clouds. By building directly on the database
to specify the view model, many aspects of the visualisations presented in the
previous section can be derived directly from the data. For instance, the at-
tribute types of data tuples decide how tags are formatted and displayed, e.g. as
text or images, and the number of occurrences of a tag within a data collection
determines its size in the visualisation.

To give a concrete example of how a given data model can be augmented
to define a search interface using a combination of faceted browsing and tag
clouds, Fig. 5 shows a simple domain model for the management of conferences,
publications and authors. We will show how the browser and viewer classes cor-
responding to the interface illustrated in Figures 1 and 2 were defined. The
domain model translates to the following relational schema.

Publication AuthorauthoredConference published

Fig. 5. Example of a simple domain model

Authors (id, first name, last name, image)

Publications (id, title, keywords, abstract, image)

Conferences (id, name, year, image)

Authored (author id, publication id)

Published (publication id, conference id)

The relational schema uses a separate relation to store the tuples, not only for
each entity defined in the model above, but also for the foreign key relationships,
i.e. Authored and Published, between authors and publications or publications
and conferences, respectively. It also covers attributes, such as image, which are
primarily used for visualisation when showing the results. In our example from
the previous section, the image attribute for authors is used to show a photo,

Using Synchronised Tag Clouds for Browsing Data Collections 221

while publications and conference proceedings are represented by a general PDF
icon or thumbnail of the front page. Based on this relational schema, Listing 1
now defines the necessary browser and viewer classes using an enhanced version
of SQL, which we will describe in more detail later.

CREATEVIEWERVRAUTH (
"Name"

(SELECT CONCAT(a.first name, " ", a.last name) AS tag, COUNT(ap.
publication id) AS count , a.id, ap.author id FROM Authors AS a,

Authored AS ap WHERE a. id = ap.author id GROUPBY ap.publication id
RANGE 15)

LINE MULTISELECT ,
);

CREATEVIEWERVRPUB (
"Titles"

(SELECT tit le AS tag FROM Publications LIMIT 30)
LIST ,

"Keywords "
(SELECT SPLIT(keywords) AS tag FROM Publications LIMIT 100 ORDERBY tag

ASC)
LINE ,

);

CREATEVIEWERVRCONF (
"Name"

(SELECT c.name AS tag, COUNT(p. id) AS count , c.id, p.conference id FROM
Conferences AS c, Publications AS p WHERE c. id = p.conference id
GROUPBY p. id ORDERBY c.name ASC)

LINE ,
"Year"

(SELECT c.year AS tag, COUNT(c.year) AS count , c.id, p.conference id FROM
Conferences AS c, Publications AS p WHERE c. id = p.conference id

GROUPBY c.year ORDERBY c.year DESC)
SPIRAL,

);

CREATEBROWSERBPUBLICATIONS (
"Publications" VRPUB,
"Authors " VRAUTH,
"Conferences" VRCONF,

);

Listing 1. Example browser in SQL

The first viewer class, VR AUTH, defines a single view over all authors with
each tag built using SQL’s standard CONCAT function to combine the first and
last names. The tag size is calculated using an SQL count over the authored
publications. This view is then associated with a horizontal, line-based tag cloud
visualisation that will use count to make the size of an author’s name dependent
on the number of publications that they have. The viewer also allows for multiple
selections of authors so that publications authored or co-authored by selected
authors will be shown. Additionally, we use ranges in the case that more than
15 authors are displayed in the cloud. The next viewer, VR PUB, associates
a view over all titles of the publications with a vertical list visualisation. An
alternative view of the publications is defined as the top 100 keywords in a
line-based tag cloud. Here we use a non-standard SQL function SPLIT that we
have defined to parse a comma-separated VARCHAR value and return the set
of tokens. VR CONF defines a primary view for conferences by name, where the

222 A. de Spindler et al.

size of the tag is relative to the number of publications in that conference. A
variation here is to use an advanced, spiral tag cloud visualisation to show the
publications by year starting from the latest conference, where the size of the
tag is relative to the number of publications in the year. Finally, the browser
B PUBLICATIONS defines the search interface with the three viewer classes.

CREATEVIEW <view_name> (tag, [count , <other_columns>]) AS (SELECT <column >
AS tag[, COUNT(<column >) AS count , <other_columns>] FROM <table_1 >[, <
other_tables>] [GROUPBY <column >] [ORDERBY <column > ASC|DESC] [LIMIT <
number >] [RANGE <number >]);

CREATEVIEWER <viewer_name> (
"View Name" <view_name>|<inner_view_definition> LIST|LINE|SPIRAL|<

other_visualisations> [MULTISELECT],
[<other_views>]

);

CREATEBROWSER <browser_name> (
"Viewer Name" <viewer_name>,
[<other_viewers>]

);

Listing 2. Extended SQL to specify browsers and viewer classes based on views

Listing 2 gives more details of the extended SQL syntax used above to define
the view model. In SQL, views are essentially named SELECT statements that
represent stored queries in the form of a virtual table composed of the respective
result sets. We build on this concept of views to enable different visualisations
of the data. Note that views can either be defined as an inner view as part of
the viewer class or referenced by name, which enables re-use and combinations
of views. For the proposed visualisations, the developer is required to specify a
reserved column tag that will represent the tuples used to display the tags in the
tag cloud visualisation. If the tags are to be displayed in different sizes according
to certain criteria, then a second reserved column count is required that can build
on SQL’s COUNT aggregator function to count the occurrences of different values
for a given column. In that case, also the GROUP BY statement is required to
group the result set by the aggregated values. Note that other SQL statements
such as ORDER BY and LIMIT can be used to sort tags in ascending or descending
order as well as to limit the amount of tags displayed. Additionally, we define the
RANGE statement to display the range of values rather than all retrieved values
if the number of tags returned for the query exceeds the specified number. This
can be helpful to navigate through large amounts of tags within a single view, e.g.
by first showing ranges A..E, F..J and so forth, and, upon selection, showing the
names of the respective subset of authors. Such ranges can be built by a custom
SQL function that we defined to first sort all retrieved tags and then divide them
into categories. For example, in the case of type VARCHAR, ranges could be built
from only the first letters of all tags. Finally, the set of values used to display
and size the tags typically comes from different columns and not necessarily from
the same entity, e.g. to use a larger font for authors the more publications they
have. While other columns will then be required for joining associated relations,
they will be ignored by the default tag cloud visualisations. On the other hand,

Using Synchronised Tag Clouds for Browsing Data Collections 223

additional columns offer a simple way of allowing for extensions and refinements.
For example, new reserved columns, such as color, could be introduced to extend
the proposed visualisations and visually group the result set by a specified range
of colours.

In addition to this augmentation of view definitions, we further extend SQL
with VIEWER and BROWSER definitions, respectively. A viewer class defines
a set of alternative views, each of which is associated with a name displayed
for the user to switch between visualisations, and a combination of parameters
LIST, LINE or SPIRAL and MULTISELECT. The first three determine which of
the visualisations shown in Fig. 3 will be used, where LIST represents the verti-
cal alignment of tags, LINE a horizontal, line-based visualisation and SPIRAL the
advanced tag cloud visualisation. Again, other visualisations could be supported
by introducing new parameters that represent the respective visualisations. If the
optional parameter MULTISELECT is provided, then the associated visualisation
must allow for multiple selection of tags. With multiple selection, a combination
of conjunctive queries between and disjunctive queries within views can be sup-
ported. Finally, a BROWSER defines a set of viewer classes and also provides a
display name for each of them.

By using these augmentations of SQL, we can build on established database
concepts and directly benefit from the rich support for SQL expressions and func-
tions such as COUNT. Moreover, the caching strategies and high performance of
query execution in many database management systems, such as MySQL, makes
it optimal for web search interfaces. The way in which the final presentation of
the tag clouds is generated as well as how the synchronisation between views on
selection of a particular tag works are discussed in the next section.

5 Framework

Having described our language extension, we now present a framework that can
process such browser specifications and generate a browser interface to search
and browse specific data collections. The framework is shown in Fig. 6 in terms
of its main components and their interactions. The browser defined in terms of
an extended SQL specification is provided as input to the framework 1©. The
framework processes this specification as follows. First, a document template
representing the browser’s web interface is generated 2©. This document con-
tains one designated placeholder for each viewer, in which the tag clouds will be
inserted at application runtime. Second, a browser-specific SQL view manager
is created 3© based on the viewer specifications that will create the SQL views
specified for each viewer in the database. At run-time, the SQL view manager
queries these views 4© to retrieve the tags and their sizes which then provide the
necessary input for the tag cloud generator that is called to create the tag clouds
and the associated visualisations 5©. In a final step, these generated tag clouds
are inserted into the placeholders of the document template 6©, which yields the
final browser interface presented to the user.

When a user selects a tag in one of the tag clouds, the current view associated
with that tag cloud as well as the associated views of all other tag clouds are

224 A. de Spindler et al.

Framework

2

Database

SQL

Language
Processor

1

3

4

5

6

Browser
Generator

SQL View
Manager

Tag Cloud
Generator

Fig. 6. Framework architecture and workflow

synchronised according to the selection. For this purpose, the view manager first
restricts the current view by temporarily extending the WHERE clause in order
to reflect the user selection. This updated view is then used as the starting point
for the PROPAGATE-UPDATE function shown in Fig. 7, which implements an
algorithm propagating the tag selection to associated views in order to keep
them synchronised.

PROPAGATE-UPDATE(V iew)
1 N ← ∅
2 N ← GET-ASSOCIATED-VIEWS(V iew)
3 for ∀ n ∈ N
4 do ALTER-VIEW(V iew,n)
5 PROPAGATE-UPDATE(n)

Fig. 7. Update Propagation Algorithm

For the view passed as the argument, the set N of all associated views are
retrieved using the GET-ASSOCIATED-VIEWS function. For every view n ∈ N ,
the view creation statement is extended by a join operation with respect to the
view argument. Such extensions are carried out by the ALTER-VIEW function.
Then, the PROPAGATE-UPDATE function is invoked recursively, in order to
propagate the selection to all views related to the one currently processed. Note
that, if multiple tags are selected subsequently, the algorithm is executed for
each affected entity.

As a result, the selection of a tag is propagated along the relationships among
database relations and, therefore, all related tag clouds are synchronised. For
example, if a conference tag is selected, the view associated with the tag cloud is
extended in order to filter the selected conference. Next, all associated views are
determined, which, in our publication browser example, would be the publica-
tions and authors views. Then, the publications view would be filtered for those
publications that were published in the selected conference. Finally, the authors

Using Synchronised Tag Clouds for Browsing Data Collections 225

view is extended in order to retrieve only those authors who have a publication
at the selected conference.

In general, the sequence of views to be extended is determined by starting with
the view in which the tag selection occurred and then following the relationships
in a breadth-first manner. Note that this propagation algorithm was designed to
work with data models that can be represented as connected and acyclic graphs.
However, if there were cycles, endless loops are avoided because the framework
keeps track of the views already extended. If there is a viewer showing a database
relation not connected to any other, this viewer is independent and therefore
cannot be synchronised.

As users continue selecting tags, the cumulated selections are propagated in-
dividually and in the same order as they were made by the users. Finally, if users
make multiple disjunctive selections at once, the WHERE clause of the respective
view is extended with all selection criteria combined in a disjunctive manner.
Similarly, if a tag representing a range is selected, all values contained in this
range are taken as disjunctive selection criteria.

6 Implementation

We now present how the framework was implemented in the form of a web
application. We used a standard Client/Server setup consisting of HTML, CSS
and JavaScript on the client side and PHP and MySQL on the server side. The
web application provides an administration page where developers can input and
execute a browser specification in extended SQL to generate a new browser that
is then available from a new URL. Users may then interact with the browser as
described in the previous sections.

Figure 8 shows the PHP classes which are involved in the creation of a browser
as well as in processing user interactions at runtime. The specification of a
browser in extended SQL is handled by the method generateBrowser declared
in the LanguageProcessor class as follows. First, the information required to
generate the HTML document template is extracted, which includes the number
of viewers, their names and contained views. This information is passed on to
the generate method defined in the BrowserGenerator class in order to create
the client-side browser interface. It consists of the top bar for the breadcrumb
navigation, the viewers with their names, the views and the dropdown menus
for the selection of alternative views, the placeholders for the tag clouds and the
bottom bar for the result sets.

update(List<Selection>): List<SQLView>
- update-propagate(SQLView)

SQLViewManager

generateBrowser(ExtendedSQL): URL

LanguageProcessor

generate(ExtendedSQL): Document

BrowserGenerator

generate(Type, SQLView): TagCloud

TagCloudGenerator

Fig. 8. Classes implementing the framework

226 A. de Spindler et al.

Second, the SQL view definitions are extracted from the extended SQL. The
respective views are created in the database and their names are stored in a sep-
arate database relation from where they can be accessed at application runtime.
Finally, a new folder is created on the server, containing the generated browser
interface and a PHP script index.php responsible for processing user tag selec-
tions and returning viewer contents where tag clouds reflecting user selections are
dynamically updated at runtime. The URL returned by the generateBrowser
method in the LanguageProcessor class points to this folder. The generated
browser interface can then be tailored and styled according to specific applica-
tion requirements.

The initial tag clouds presented to the users consist of tags that are HTML
links. These links point to the index.php file created for the current browser, and
the selection to be carried out when a particular link is chosen by the user is
appended as a query string. The following example URL is the target of a link
associated to the CAiSE tag in the Conferences viewer.

index.php?Conferences=CAiSE

Such a request is processed on the server side by the SQLViewManager class. Its
method update takes the selection contained in the query string as a param-
eter and performs the update propagation algorithm described in the previous
section. As a result of this update propagation, all extended SQL views reflect-
ing the user selection are created. For each of these extended SQL views, the
generate method in the TagCloudGenerator class creates an updated tag cloud
which is merged with the document template and returned to the client. The
URLs in the links of these updated tag clouds contain the previous selection in
the query string as well as the subsequent selection they represent. For example,
the URL of a link associated to the author Matthias Geel would be written as
follows.

index.php?Conferences=CAiSE&Authors=Matthias%20Geel

For each tag selection specified by a user, the URLs of the links in the updated
tag clouds are extended in order to contain all previous selections as well as the
one to be carried out if the link was followed.

Similarly, the breadcrumb navigation consists of links pointing to the URLs
previously requested. Due to the fact that our implementation follows a stateless
approach, the implementation of the breadcrumb navigation is a simple manner
of creating URLs including the respective query strings.

In order to support multiple disjunctive tag selections at once, the user can
switch to a multi select mode. In this mode, the selection of a tag does not
immediately initiate a request to the server. Instead, a search button is added
to the browser interface which triggers the request to the server when the user
is finished selecting tags.

7 Discussion

We have presented a general framework that supports the configuration of search
interfaces for browsing and querying data collections using multiple synchronised

Using Synchronised Tag Clouds for Browsing Data Collections 227

tag clouds. We have illustrated its use based on the example of browsing a pub-
lication collection. Such interfaces could support a web search service either of a
single research group’s publications or over an entire digital library—simply by
adapting the specification. While there are faceted search interfaces to publica-
tion collections, such as DBLP, our approach is much more flexible, since it not
only supports searching for publications, but users can also shift their search fo-
cus to other entities of interest, such as authors or conferences. Furthermore, the
selection of the visualised entities, their relationship and alternative tag cloud vi-
sualisations are configurable based on a combination of user selection, developer
specification and default system behaviour.

Our approach is not dissimilar to the one taken by [2], where they provide
a domain-specific tool for searching semi-structured clinical trial data where a
set of predefined categories are represented using tag clouds. As with standard
faceted browsing, users can start with a keyword search and the number of rel-
evant documents are returned as a list, which can be further refined using the
tag clouds. The selection of a tag in one dimension triggers the synchronisation
of the tag clouds representing all other dimensions, as well as the filtering of
the search result. While our approach could be seen as a generalisation of their
work as we propose an augmented data model and a framework that supports
the configuration of search interfaces for a domain of choice, it is also impor-
tant to highlight the differences. Their interface consists of a set of predefined
facets represented as a tag cloud, while we offer configurability at the interface
level through dropdown menus that allow the selection of other tag cloud rep-
resentations of the same entity. Furthermore, their data model corresponds to
a typical data model underlying faceted browsing that is often based on star
or multi-dimensional schemas, while our synchronised tag clouds do not evolve
around a particular pivot entity. This means that there is no central entity that
all other dimensions depend upon. In addition, with our approach, the tag size
can be configured to represent dependencies to other entities of interest or simply
the occurrence of a specific term, while with their approach the tag size always
refers to the number of occurrences of a term in relation to the entity of interest,
which in their case is clinical trial data. However, there are also some restrictions
to the database schemas we support. The schema has to be a connected acyclic
graph in order for our propagation algorithm to calculate the tags for each viewer
correctly. While with cyclic structures, the propagation algorithm simply uses
a shortest path approach, we could extend our framework so that a developer
could configure the algorithm to achieve a different behaviour, if desired.

We note that our current implementation follows a stateless approach. This
has some implications on system performance. Users can always choose to navi-
gate to a breadcrumb, which is a bookmark to an individual search and allows
a user to continue from there. With our current approach, these queries are
executed again, invoking the propagation algorithm to adapt all adjacent tag
clouds, while with a stateful approach these views could simply be cached. How-
ever, such an approach would be memory-intensive since it requires these views
to be materialised.

228 A. de Spindler et al.

8 Conclusions

We have presented an approach for browsing and searching data collections based
on an extended data model that supports the configuration of a synchronised
tag cloud browser for a domain of choice and we have illustrated its use through
a publication browser. The generation of the browser is automated and its con-
figuration is a mix of developer configuration using the extended SQL syntax,
system default behaviour and user selection. We are also planning a user study
to compare our approach to regular web search interfaces as well as faceted
browsers.

References

1. Bateman, S., Gutwin, C., Nacenta, M.: Seeing Things in the Clouds: The Effect of
Visual Features on Tag Cloud Selections. In: Proc. ACM Conf. on Hypertext and
Hypermedia, HT 2008, pp. 193–202 (2008)

2. Hernandez, M.E., Falconer, S.M., Storey, M.A., Carini, S., Sim, I.: Synchronized
Tag Clouds for Exploring Semi-Structured Clinical Trial Data. In: Proc. Conf. of
the Center for Advanced Studies on Collaborative Research (CASCON 2008), pp.
42–56 (2008)

3. Koutrika, G., Zadeh, Z.M., Garcia-Molina, H.: Data Clouds: Summarizing Keyword
Search Results over Structured Data. In: Proc. Intl. Conf. on Extending Database
Technology (EDBT 2009), pp. 391–402 (2009)

4. Koutrika, G., Zadeh, Z.M., Garcia-Molina, H.: CourseCloud: Summarizing and Re-
fining Keyword Searches over Structured Data. In: Proc. Intl. Conf. on Extending
Database Technology (EDBT 2009), pp. 1132–1135 (2009)

5. Kuo, B.Y.L., Hentrich, T., Good, B.M., Wilkinson, M.D.: Tag Clouds for Sum-
marizing Web Search Results. In: Proc. Intl. Conf. on World Wide Web (WWW
2007), pp. 1203–1204 (2007)

6. Leone, S., Geel, M., Müller, C., Norrie, M.C.: Exploiting tag clouds for database
browsing and querying. In: Information Systems Evolution. LNBIP, vol. 72, pp.
15–28 (2011)

7. Rivadeneira, A.W., Gruen, D.M., Muller, M.J., Millen, D.R.: Getting our Head
in the Clouds: Toward Evaluation Studies of Tag Clouds. In: Proc. Intl. Conf. on
Human Factors in Computing Systems (CHI 2007), pp. 995–998 (2007)

8. Schrammel, J., Leitner, M., Tscheligi, M.: Semantically Structured Tag Clouds: An
Empirical Evaluation of Clustered Presentation Approaches. In: Proc. Intl. Conf.
on Human Factors in Computing Systems (CHI 2009), pp. 2037–2040 (2009)

9. de Spindler, A., Leone, S., Geel, M., Norrie, M.C.: Using Tag Clouds to Promote
Community Awareness in Research Environments. In: Luo, Y. (ed.) CDVE 2010.
LNCS, vol. 6240, pp. 3–10. Springer, Heidelberg (2010)

10. Stefaner, M., Muller, B.: Elastic Lists for Facet Browsers. In: Wagner, R., Rev-
ell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 217–221. Springer,
Heidelberg (2007)

11. Wilson, M.L., André, P., Schraefel, m.c.: Backward Highlighting: Enhancing
Faceted Search. In: Proc. ACM Symposium on User Interface Software and Tech-
nology (UIST 2008), pp. 235–238 (2008)

12. Yee, K.P., Swearingen, K., Li, K., Hearst, M.: Faceted Metadata for Image Search
and Browsing. In: Proc. ACM Intl. Conf. on Human-Computer Interaction (CHI
2003), pp. 401–408 (2003)

Revisiting Naur’s Programming as Theory
Building for Enterprise Architecture Modelling

Balbir S. Barn and Tony Clark

Middlesex University, Hendon, London, UK, NW4 4BT
b.barn@mdx.ac.uk, t.n.clark@mdx.ac.uk

Abstract. The recent burgeoning interest in Enterprise Architecture
and its focus on artifact driven methods is taken as a motivation for the
re-appraisal of Peter Naur’s notion of “programming as theory building”.
Naur strongly disputes the value of the role and orientation of the IS
discipline around artifacts and argues that algorithmic methods do not
lead to a theory of a domain. Such a viewpoint provides an alternative
lens with which to view current developments and may lead to addi-
tional insights by providing the reader with a source for questioning and
reflecting critically on the re-focusing of method design on conversation
rather than artifact production . It is suggested that such a conversa-
tional framework based on Toulmin and Pask may provide a means to
establish and test theory building views of enterprise architecture.

1 Introduction

This account sets out to re-appraise Peter Naur’s influential paper on Program-
ming as Theory Building [11] in the context of model building and the recent
focus on Enterprise Architecture. It is the intention of this paper to evaluate how
theory building can play an important role in helping organizations make more
use of their enterprise architecture activity and in particular how theory building
may influence methods, techniques and tools to support enterprise architecture
by focusing on conceptual modelling as a conversation process.

The starting point for this work has been triggered by the extent of activity that
is currently surrounding Enterprise Architecture. As systems supporting business
become increasingly more significant and complex an important approach to man-
agement and planning of systems that has gained prominence is model-based
Enterprise Architecture (EA). EA has its origins in Zachman’s original EA frame-
work [21] while other leading examples include the Open Group Architecture
Framework (TOGAF) [17] and the framework promulgated by the Department
of Defense (DoDAF) [19]. In addition to frameworks that describe the nature of
models required for EA, modeling languages specifically designed for EA have also
emerged. One leading architecture modelling language is Archimate [7].

Central to enterprise architecture is the notion of development and presen-
tation of models. Given the plethora of models available two concerns of note
arise: Firstly, given the range of models available, it is difficult to ascertain why
a particular model is relevant and preferable over others. This arises from a

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 229–236, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

230 B.S. Barn and T. Clark

lack of clarity of the link between the contents and structure of a model on one
hand and its purpose on the other [4]. Secondly, evaluation of quality of mod-
els in general, and therefore EA models, is relatively under researched. While
there are international standards for software systems there is “little agreement
among experts as to what makes a “good” model” [8]. Empirical measurements
of the goodness of an EA model are generally lacking in the literature. Is that
because we want to evaluate the final outputs of the modelling process rather
than the success of the modelling process? Would a re-appraisal of Naur’s ideas
will provide a new insight and approach to questioning the “why” of a model?
Similarly, would a re-appraisal provide insight to the “goodness” of a model for
assessing the efficacy of a model in representing knowledge of a domain? These
questions are the subject of this paper.

The remainder of the paper is structured as follows: Section 2 outlines the
main hypotheses posed by Naur. Section 3 and 4 presents a more detailed anal-
ysis of aspects of the hypotheses (programs as models and methods). Section
5 provides an alternative view of how methods for EA should structured and
presents two underlying philosophical and psychological theories and their con-
ceptual integration as the basis for a conversation framework approach to EA
method design rather than the algorithmic artifact oriented views that are cur-
rently prevalent. Section 6 concludes with an overview of the implications arising
from this re-appraisal of Naur’s seminal paper in the context of conversational
processes for EA modelling.

2 Programming as Theory Building

Peter Naur wrote “Programming as Theory Building” in 1985, it was reprinted
later in his collection of works, Computing: A Human Activity in 1992 [10]. The
paper presents a discussion that contributes to what programming is. While
it is tempting to assume from the title of the paper that Naur is focused on
the minutiae of programming, he is specific in that programming denotes the
“whole activity of design and implementation” and thus his theory applies to the
field of software engineering. The fundamental premise asserts that program-
ming should be regarded as an activity by which programmers achieve a certain
insight or theory of some aspect of the domain that they are addressing. The
knowledge, insight or theory that the programmer has come into possession of
is a theory in the sense of Ryle [15]. That is, a person who has a theory knows
how to do certain things and can support the actual doing with explanations,
justifications and responses to queries. That insight or theory is primarily one
of building up a certain kind of knowledge that is intrinsic to the programmer
whilst any auxillary documentation remains a secondary product. Of particular
interest, is how Naur explains the life-cycle of a program. Programs are created
by the establishment of a theory, the maintenance of a program is dependent
on the theory being transferred between programmers; and the program dies
when the theory has decayed. Program revival is described as re-establishing the
theory behind the program which cannot be done merely from documentation

Revisiting Naur’s Programming as Theory Building 231

and should only be considered in exceptional circumstances as the cost of the-
ory revival is prohibitive and the resulting theory may be different from that
originally conceived.

In addition to the theory view of a program life cycle, he also directed criticism
at the then significant emphasis of methods for program development. He claimed
that the methods based on sequences of actions of certain kinds cannot lead to
the development of a theory of the program because the intrinsic knowledge held
by a human has no inherent division into parts nor an inherent ordering. Instead
the person possessing the knowledge is able to present multiple viewpoints as
responses to requests. Where methods were supplemented with notations or
formalizations then these were treated as secondary items as the theory of a
program is intrinsic and cannot be expressed. Thus: “...there can be no right
method”.

Having outlined the basic hypotheses of Naur’s paper, the remainder of this
account continues the critique of Naur’s ideas and applies them to modeling and
Enterprise Architecture.

3 Programs as Models

Naur was concerned with programs, but Enterprise Architecture is concerned
with the production of models of interconnected systems or components. Thus
we need to explore the relationship between programs and models and use that
as a basis for analysing the applicability of Naur’s hypothesis in the context of
Enterprise Architecture.

A major activity in software engineering and computer science in general is
modelling and as Fetzer [1] has noted “the role of models in computer science
appears to be even more pervasive than has been generally acknowledged..”. A
key feature of modelling is the existence of an isomorphic relationship between
the parts of the model and the parts of the thing modelled at some level of
abstraction. Smith [16] whilst noting these different types of models emphasizes
the nature and importance of “representation”:

“To build a model is to conceive of the world in a certain delimited
way... Computers have a special dependence on these models: you write
an explicit description of the model down inside the computer...”.

Smith suggests this feature distinguishes computers from other machines because
they run by manipulating representations. “Thus there is no computation with-
out representation” [16, p, 360] If we pursue this analysis further: From Naur
we can state that the program is a theory; from general computation principles,
we can state: the program is a model. This leads to the notion that there is
an equivalence between program = theory = model. We might moderate this
further by noting that a program is a representation of a slice of “the” theory. In
general though, this blurring between programs, theories and models is confus-
ing and inaccurate. While models may exhibit an isomorphic relationship with
their subject matter, this relationship may not reveal the theoretical connections

232 B.S. Barn and T. Clark

that allow the theory to be defended in the form of Ryle’s definition of a theory.
Ideally, then, the theory must be statable independent of the computer model.
In an essay that predates Naur’s paper but still based on a prevailing view of
the time that programs are theories, James Moor notes:

“My claim is that this is rarely, if ever, the correct response. Even if
there is some theory behind a model, it cannot be obtained by simply
examining the computer program. The program will be a collection of
instructions which are not true or false, but the theory will be a collec-
tion of statements which are true or false. Thus, the program must be
interpreted in order to generate a theory. Abstracting a theory from the
program is not a simple matter for different groupings of the program
can generate different theories. Therefore, to the extent that a program,
understood as a model, embodies one theory it may well embody many
theories.”[9, p.221]

From this analysis arises two key concerns. Firstly, programs and models may
have multiple theories and a program or model may not refer to the same theory.
Secondly these theories must be state-able independent of the program or the
model. Then, there is an additional dichotomy: Is a program a representation of
one view of an aggregate theory or is the program a representation of a compo-
nent theory of the aggregate theory? These complexities, in the case of Naur’s
Programming as theory perspective have implications, because if the program is
the only vehicle through which a theory can demonstrate that requirements of
the intended system have been met, then, that theory testing process comes too
late in the system life cycle.

4 On Methods and Theory Building

Earlier we noted that Naur had reserved considerable criticism for methods. We
develop this discussion further in this section. The tendency of methods research
in the IS discipline is to propose algorithmic steps to analysing and designing
solutions to problems. As Naur notes: “A method implies a claim that program
development can and should proceed as a sequence of actions leading to a partic-
ular kind of documented result”. In contrast, a theory building view holds that
a theory “held by a person has no inherent division into parts and no inherent
ordering”. At large, IS/SE research is embarked on a journey based on episte-
mological foundations and as a consequence has mostly neglected techne (the
technical know how of getting things done) and phronosis (wisdom derived from
socialised practices) [20]. In a more generalised form, this has correspondence to
the distinctions between explicit and tacit knowledge [12] and Naur would seem
to be arguing the case for methods research that suggests more attunement with
the effects that methods may have in the education of programmers. That is,
the creation and embedding of tacit knowledge rather than the production of
artifacts representing explicit knowledge through an algorithmic process.

Revisiting Naur’s Programming as Theory Building 233

Naur cites a study of five different methods by Floyd et al (cited here for
completeness [2])where the key result that a system of rules will lead to good
solutions is an illusion, what remains is the effect of methods on the education
of programmers. Thus the use of methods may themselves not lead to a good
design but the practice of the method may lead to a better innate ability for
theory building.

5 Theory Building and Testing as a Conversation Process

The act of constructing a conceptual model that describes an enterprise archi-
tecture is essentially all about communication. For example, when we engage
in a discussion of budgetary requirements, we are requiring the architecture de-
scription to provide us with a theory of budgetary models. A description of the
communication of how that theory is explicated is at the heart of that architec-
ture description. In a modelling process, participants such as the domain expert
and the systems analyst (who may have no knowledge of the domain) engage in a
conversational process through which concepts understood by the domain expert
are formalised by the systems analyst through some dialogue document in a con-
trolled language[3]. The goal of the modelling process is to reach a state where
all participants agree that they have some degree of common understanding[14].

When Naur describes theory building amongst teams of programmers who
share the same theory he would appear to be alluding to a similar socialisation
process. More recently and in line with what we propose in this section, Kruchten
[5] provides a critique of software architecture from a knowledge management
perspective where architectural knowledge is a composite of the architecture (de-
sign) and a rationale for design decisions. The support for the rationale comes
through a socialisation process framed by the SECI (socialisation, externalisa-
tion, combination, internalisation), model [12]. Significantly, though, the artifact
remains central albeit augmented by more human centred activity.

In the development of a theory, Naur also suggests three tests to check if the
programmers knowledge transcends the written documentation consistent with
Ryle’s notions that a theory should be defensible and justifiable by the presenta-
tion of evidence. These are: the programmer can explain how the solution relates
to the affairs of the worlds that it helps to handle; the programmer can explain
why each part of the program is what it is, in other words, is able to support
the actual program text with a justification of some sort; and the programmer
is able to respond constructively to any demand for a modification.

Here we propose that the first test can be addressed by consideration of an
integration of two other philosophical theories in this field: Toulmin’s informal
argumentation model [18] and Pask’s conversation theory [13] and to suggest
that theory testing can be achieved by constrained conversations using models
as the subject. More pertinently, it may help us to address the “why” of an
enterprise architecture.

234 B.S. Barn and T. Clark

5.1 Conversation Theory

A conceptual model represents the arrival of a shared understanding of a sub-
ject area between two different actors – the domain expert and the systems
designer. One way of viewing the process of understanding is through the lens
of Conversation Theory (CT) [13]. As theory of exposition and defence, CT can
be summarised as follows: one participant (say, the domain expert) describes a
body of knowledge to a second participant (the Systems Analyst). Both these
participants are a type of organization – the psychological (p-) individual. A
p-individual is a stable closed system comprising memory (facts), rules for inter-
preting the memory (concepts), rules for structuring the derivation of concepts
– “how to” understand concepts and rules for understanding how topics in the
memory relate to each other. In a basic conversation (“skeleton of a conversa-
tion”), there are two levels – the “how” and “why”. The “how” level describes
how to do a topic for example, recognizing, constructing and maintaining a topic,
while the “why” level is focused on explaining or justifying the topic perhaps in
terms of other topics. The basic conversation is provocative, that is participants
are provoked into constructing understandings of each others’ beliefs. A “mod-
eling facility” provides the medium in which concepts are understood between
individuals.

A key aspect of CT is the embodiment of knowledg (e.g. the workings of the
combustion engine, finite state machines or any other coherent whole) which is
viewed as a set of topics or facts that are related to each other. Relations be-
tween topics are either decompositional (hierarchical) or analogous (heterarchi-
cal), when such relationships and topics are static then that static representation
is called an entailment structure. When a topic is understood by a learner (via
a reproducible procedure) then the topic also exists as a concept for potential
sharing with another p-individual.

5.2 Argumentation Theory

A person who has or possesses a theory knows how to do certain things and can
support those actions with explanations, justifications and answers to queries.
This is similar to Toulmin’s argumentation model [18] - a logical structure for
reasoning about the validity of arguments, the structure of which are described
below:

Claim. A proposition representing a claim being made in an argument;
Grounds. One or more propositions acting as evidence justifying the Claim;
Warrant. One or more rules of inference describing how the Grounds contribute

to the Claim;
Backing. The knowledge establishing the Grounds for believing the Warrant;
Qualifier. A phrase qualifying the degree of certainty in the argument for the

Claim;
Rebuttal. One or more propositions challenging the validity of the Claim.

Revisiting Naur’s Programming as Theory Building 235

An example of a Toulmin argumentation model might be as follows: Object
oriented modelling is a more natural way for most business analysts to capture
requirements. Such a statement is a claim that includes a qualifier - most. The
grounds for this statement might refer to hard facts or evidence that supports
this claim. The warrant might indicate how object concepts provide a closer
correspondence to objects in the real world. The backing for the claim might be:
because object modeling is derived from entity modeling and entity relationship
modeling has considerable history of efficacy in requirements capture. A rebuttal
is a counter claim and has its own argumentation model.

Taken together, the two theories present a potential opportunity to review
how we design methods and their supporting tools. The argumentation model
presents a conversational framework which allows the theory builder to create
an orderly and intelligible conversation - a discussion of the theory. But because
such discourse analysis has the potential to generate large amounts of data by
utilizing a limited set of concepts derived from the domain (the topics in the
entailment mesh from conversation theory) it is possible to make the resulting
analysis more amenable.

6 Implications for Enterprise Architecture

Enterprise Architecture (unlike programming) has no target theory. The exe-
cution of a program can be used to validate the quality of the theory that a
programmer constructed but mechanisms for executing enterprise architectures
are still largely an area of research focus. Prevailing methods and languages for
EA (and using ArchiMate as a canonical example) have focused on developing
artifacts and models for explicit knowledge [6, p.75] and so are subject to Naur’s
criticisms. EA frameworks such as TOGAF provides an exhaustive set of activ-
ities, phases of activities, ordering of activities and artifacts to be produced by
activities with the intent of capturing in its entirety a theory of the EA. Accept-
ing the theory building view forces us to reject firstly that such an exhaustive
methodological approach can lead us to a universal theory of Enterprise Archi-
tecture for a domain. Secondly the focus on explicit knowledge does not allow
us to extract from the plethora of method the essence of “why”. Instead, a model
of incremental, modular theory building which involves the real world thorugh a
conversational process as a source of knowledge and validation may unlock the
real value of an enterprise architecture.

This takes us then to a more fundamental re-thinking of method development.
A method for EA should not (algorithmically) take us to a model of EA (because
no one model exists), instead a method should instill in the practitioner, the
cognitive processes for constructing theories about the enterprise architecture.
The conversational approach outlined earlier is one such candidate basis for such
cognitive processes as it enables both the testing of a theory and the collaborative
development of a theory. Indeed it might allow us to measure the efficacy of a
method not by how a solution is designed or quality of solution but by how the

236 B.S. Barn and T. Clark

engineer has modified their psychological processes for theory building and so
the corresponding implications for software engineering education.

References

1. Fetzer, J.H.: The role of models in computer science. The Monist 82(1), 20–36
(1999)

2. Floyd, C.: Eine untersuchung von software-entwicklings-methoden. In: Morgen-
brod, H., Sammer, W., Tagung, I. (eds.) Programmierumgebugnen und Compiler,
Tuebner Verlag (1984)

3. Hoppenbrouwers, S., Proper, H.A., der Weide, T.P.: A fundamental view on the
process of conceptual modeling. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., My-
lopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 128–143. Springer,
Heidelberg (2005)

4. Johnson, P., Ekstedt, M., Silva, E., Plazaola, L.: Using enterprise architecture for
cio decision-making: On the importance of theory. In: The Proceedings of the 2nd
Annual Conference on Systems Engineering Research, CSER (2004)

5. Kruchten, P.: Documentation of Software Architecture from a Knowledge Manage-
ment Perspective–Design Representation. Software Architecture Knowledge Man-
agement, 39–57

6. Lankhorst, M.: Enterprise architecture at work: Modelling, communication and
analysis. Springer-Verlag New York Inc., Heidelberg (2009)

7. Lankhorst, M.M., Proper, H.A., Jonkers, J.: The Anatomy of the ArchiMate Lan-
guage. International Journal of Information System Modeling and Design 1(1)

8. Moody, D.L.: Theoretical and practical issues in evaluating the quality of con-
ceptual models: current state and future directions. Data & Knowledge Engineer-
ing 55(3), 243–276 (2005)

9. Moor, J.H.: Three myths of computer science. British Journal for the Philosophy
of Science 29(3), 213–222 (1978)

10. Naur, P.: Computing: a human activity. ACM, New York (1992)
11. Naur, P.: Programming as theory building. Microprocessing and Microprogram-

ming 15(5), 253–261 (1985)
12. Nonaka, I., Takeuchi, H.: The knowledge-creating company, New York, vol. 1 (1995)
13. Pask, G.: Conversation, cognition and learning. Elsevier, Amsterdam (1975)
14. Pohl, K.: The three dimensions of requirements engineering: A framework and its

applications* 1. Information Systems 19(3), 243–258 (1994)
15. Ryle, G.: The concept ofmind, London, Hutchinson (1949)
16. Smith, B.C.: Limits of correctness in computers. Academic Press Professional, Inc.,

London (1991)
17. Spencer, J., et al.: TOGAF Enterprise Edition Version 8.1 (2004)
18. Toulmin, S.E.: The uses of argument. Cambridge Univ Pr., Cambridge (2003)
19. Wisnosky, D.E., Vogel, J.: DoDAF Wizdom: A Practical Guide to Planning, Man-

aging and Executing Projects to Build Enterprise Architectures Using the Depart-
ment of Defense Architecture Framework, DoDAF (2004)

20. Wyssusek, B.: A philosophical re-appraisal of peter naur’s notion of programming
as theory building. In: European Conference on Information Systems, ECIS (2007)

21. Zachman, J.A.: A framework for information systems architecture. IBM Systems
Journal 38(2/3), 454–470 (1999)

A DSL for Corporate Wiki Initialization

Oscar Díaz and Gorka Puente

Onekin Research Group, University of the Basque Country, Spain
{oscar.diaz,gorka.puente}@ehu.es

Abstract. Some wikis support virtual communities that are built
around the wiki itself (e.g., Wikipedia). By contrast, corporate wikis
are not created in a vacuum since the community already exists.
Documentation, organigrams, etc are all there by the time the wiki
is created. The wiki should then be tuned to the existing information
ecosystem. That is, wiki concerns (e.g., categories, permissions) are to be
influenced by the corporate settings. So far, “all wikis are created equal”:
empty. This paper advocates for corporate wikis to be initialized with a
“wiki scaffolding”: a wiki installation where some categories, permissions,
etc, are initialized to mimic the corporate settings. Such scaffolding is
specified in terms of a Domain Specific Language (DSL). The DSL engine
is then able to turn the DSL expression into a MediaWiki installation
which is ready to be populated but now, along the company settings.
The DSL is provided as a FreeMind plugin, and DSL expressions are
denoted as mindmaps.

Keywords: wiki, dsl, MDE, information system.

1 Introduction

Wiki’s pioneer, Ward Cunningham, defines wikis as "the simplest online database
that could possibly work”[4]. Nowadays, wikis are becoming a favourite approach
for collaborative knowledge formation and knowledge sharing [12]. So far, most
studies are conducted for public-access wikis or wikis for supporting learning
activities [13]. However, companies are increasingly realizing the benefits of wikis
[3]. Indeed, the Intranet 2.0 Global Survey reports that around 47% of the
respondent companies were somehow using wikis [10]. Based on these figures,
we can expect an increasing adoption of wikis among companies.

As any other Information System, the interplay of technology, work practice,
and organization is paramount to achieve successful wiki deployments. Therefore,
we can expect differences when wikis are deployed to sustain open communities
(e.g., Wikipedia), offered within a learning organization [13] or are deployed at
a company [8]. The peculiarities of each organization will certainly percolate
the wiki itself. Indeed, unlike other settings, companies provide an existing
infrastructure that frames the wiki. Users, roles, permissions, terminology,
documents, templates or project milestones are already there before the wiki is
created. This is not the case (or at least not to the same extent) in open-access
wikis (e.g., Wikipedia) where the community originates around the wiki itself.

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 237–251, 2011.
© Springer-Verlag Berlin Heidelberg 2011

238 O. Díaz and G. Puente

Educational settings sit in-between since they offer some pre-existing context
but with less demanding constraints than companies.

Consequently, our premise is that, unlike other environments, corporations
have all, personal organigrams, documentation practices and task schedules
that frame both wiki users and wiki editing. The term “wiki scaffolding”
is introduced to denote a wiki installation where some categories, templates,
permissions, etc are initialized at the outset to mimic the corporate background.
This includes structural concerns (e.g., how are wiki pages arranged along
which categories), communication means (who is going to be notified of what),
permission needs (e.g., who is allowed to do what), etc. So far, this background
is patiently replicated by wiki users that, in some cases, are forced to go down
to code.

Wiki scaffolding implies not only being knowledgeable about the wiki engine
(e.g., MediaWiki) but also installing third-party extensions. This can certainly
discourage users. Lawyer, architects, medical doctors are all profiting from wikis.
Hence, our aim is for wiki scaffolding to be made accessible to non technical
people (who) that collaboratively agree (how) on a blueprint for the wiki
(what). To this end, we propose the use of a Domain Specific Language (DSL).
DSLs are reckoned to enhance the quality, productivity, maintainability and
portability while permitting domain experts understand, validate and develop
the DSL programs themselves [7]. Additionally, collaboration and easy sharing
can be promoted by using a graphical DSL (as opposed to a textual DSL).
Specifically, the collaborative mandate suggests capitalizing on existing tools
for supporting brainstorming. A common way of recording and expressing
brainstorming sessions are mind maps. A mindmap is a diagram to express
ideas around a central topic. Now, this central topic is “wiki scaffolding”, and
mindmaps constructs are reinterpreted to denote scaffolding concerns.

This paper presents the Wiki Scaffolding Language (WSL) (pronounced
“whistle”). WSL is built on top of FreeMind [1], a popular, open source tool
to create mindmaps. Hence, WSL expressions are mindmaps. Our bet is that
users might already been exposed to mindmaps and even to FreeMind, hence
reducing the learning curve for WSL. These maps (i.e., WSL expressions) are
then compiled into a set of MediaWiki directives whose execution generates the
wiki scaffold. MediaWiki is one of the most popular wiki engines [2].

This paper is organized along the design and use of WSL: WSL analysis
(Section 2), WSL design (Section 3), WSL realization (Section 4), WSL
verification (Section 5) and WSL enactment (Section 6). Discussion through
related work is presented in Section 7. Some conclusions 8 end the paper.

2 WSL Analysis

This section identifies the scope and main abstractions behind Wiki Scaffolding
(WS). The aim is to capture the company’s work practice and settings as long
as their impact on wiki operation. A main outcome of this analysis is a feature
diagram that describes the commonalities and variabilities of domain concepts

A DSL for Corporate Wiki Initialization 239

Fig. 1. Feature diagram

and their interdependencies [6]. Fig. 1 depicts the feature diagram for WS. The
diagram states that a WS expression captures the company settings in terms
of existing documentation practices, communication means, restrictions, the
existing organigram and finally, presentation concerns. Next paragraphs delve
into these notions.

Documentation Setting. A common problem for open communities is that
of fixing a common terminology and understanding. This is easier in the
case of corporate wikis where glossaries, documentation guidelines or even,
some content might already exists. This setting needs to be captured in wiki
terms. A basic classification of wiki pages is that of “articles”, “categories” and
“templates”. Articles stand for the content that is progressively and socially
edited. Next, categories are commonly used as tags to easily locate, organize and
navigate among articles. Glossaries can help to identify initial wiki categories.
Finally, templates provide content to be embedded in other pages. Through
parameterization, they permit to reuse and ensure a formatted content along
distinct pages. Corporate guidelines can then be re-interpreted as wiki templates
that guide article editing.

Fig. 1 depicts “glossary”, “content” and “guideline” as three features of
the company’s documentation setting that can impact the wiki Moreover, wikis
frequently support living projects where project milestones might need to be
accounted for by the wiki. This does not apply to other settings where content
is the result of free-willing participation and hence, contribution is not tight
to pressing schedules. Wiki wise, this implies that “event” is a semantically
meaningful piece of data, and so should it be markuped and rendered (e.g.,
through a calendar).

Communication Setting. Wikis are an effective mechanism to support knowl-
edge building through collaboration. This implies the existence of coordination
and conflict resolution strategies. When wikis are deployed in an existing
organization, wikis become an additional means that should be integrated with
existing communication channels. This poses a range of questions: who is going

240 O. Díaz and G. Puente

to be notified of what? Does the existing organizational structure need to
be mirrored in the wiki? How is currently achieved such communication? Is
email/phone/chatting used for this purpose?

Wiki wise, communication can be internal or external. Internal communication
is achieved within the wiki. At this respect, two mechanisms are considered:
“discussion pages” and “templates” . Discussion pages (a.k.a. “talk” pages in
MediaWiki) can be used for discussion and communicating with other users.
In this way, discussions are kept aside from the content of the associated
page. Templates have also been identified as effective means to deliver fixed
messages (e.g., warnings, to-do reminders, etc). On the other hand, external
communication refers to the ability to notify wiki changes outside the wiki itself
(e.g., through “RSS feeds” any rss client can be used).

Organigram Setting. Companies tend to be organized somehow, what is
indicated with the distinct “roles” that the “employees” adopt in projects.

Restriction Setting. Unlike public-access wikis, corporate wikis normally limit
access to employees. Permissions are counterintuitive in a wiki setting where
openness is a hallmark. Indeed, MediaWiki natively supports a basic mechanism
where the scope of permissions is the whole wiki: you can either edit the whole set
of wiki pages or not (e.g., anonymous users cannot read pages). By default, wiki
pages can be freely operated. However, permission demands are more stringent
in a company setting. Indeed, a study on the use of wikis in the enterprise reports
that “power relationships and competition between stakeholders created a need
to read access in the ResearchWiki” [5]. For the time being, two permissions are
considered: “read” and “edit” . Additional permissions could be added in future
releases if feedback so advises1.

Presentation Setting. Most companies project a unified image in terms of
rendering and presentation. Wikis resort to “skins”2 for rendering. These skins
are engine specific. However, we do not expect our target audience to know
about skins. We should strive to capture presentation concerns in abstract terms,
better said, through domain criteria that could later be used by the DSL engine
to determine the most appropriate skin. Specifically, we consider “wikiSize”
and “wikiEditFreq” . Based on the expected size and edit frequency of the wiki,
heuristics can make an educated guess about the wiki skin. In this way, the DSL
engine frees stakeholders from being knowledgeable about presentation issues,
offering good-enough outputs. Notice that the wiki administrator can latter
change this automatically-selected skin. Additionally, the “logo” and “sidebar”
features are introduced for customizing both headers and index panes which are
available for speeding up wiki access.

1 MediaWiki permissions include “read”, “edit”, “createpage”, “createtalk”, “upload”,
“delete”, “protect” (i.e., allows locking a page to prevent edits and moves), etc.

2 A skin is “a preset package containing graphical appearance details”, used to customise
the look and feel of wiki pages.

A DSL for Corporate Wiki Initialization 241

3 WSL Design

The aforementioned concerns are now captured through a DSL. DSL design
implies first to set the abstract syntax, and next, select one of the possible
concrete syntaxes [11]. Based on the feature diagram, the abstract syntax
describes the concepts of the language, the relationships among them, and the
structuring rules that constrain the model elements and their combinations in
order to respect the domain rules. This is expressed as the DSL metamodel.
Fig. 2 depicts the abstract syntax for WSL. A scaffolding model includes four
main model classes, namely:

(1) The Content class, which is a graph described along Items and Links.
Items capture the different kinds of data existing in the company that need to be
also available at wiki inception. As identified in section 2, this content includes
glossary terms (“category” itemType), content ready to be available as a wiki
article (“article” itemType), guides for content structure (“template” itemType) or
events to capture scheduling milestones (“event” itemType). Next, Links relate
these Items together. Links are also typed based on the type of the related
items : “relatedWith” link (a general item-to-item association); “belongsTo” link
(to associate a category to an item); “templatedBy” link (to associate a template
to an item); “scheduledFor” link (to associate an event to an item). Items also
hold three boolean properties: discussion (to indicate whether this item is
subject to discussion), rssFeed (to specify the availability of a feed subscription
for this item) and indexPaneEntry (to capture that the item is to be indexed
in the sidebar).

(2) The Organigram class, which captures a basic arrangement of Employ-
ees in terms of Roles.

Fig. 2. WSL metamodel (abstract syntax)

242 O. Díaz and G. Puente

(3) The Restriction class, which binds together three elements: a permission
subject (i.e., an Item), a permission grantee (i.e., a Role) and a denial (i.e.,
“read” and “edit”).

(4) The Presentation class, which holds properties to guide the rendering
of the wiki. Specifically, index requirements are captured through four common
indexing schemas: toolboxPane (entries include “what links here”, “Upload file”,
“printable version”, etc), navigationPane (entries include “recent changes”, “help”
“main page”, etc), indexPane (where entries are set by the designer through the
Item’s indexPaneEntry attribute), and searchPane (as a search facility to locate
articles based on content). The logo is also captured here.

Next, this abstract syntax is realized through a concrete syntax. This
implies a mapping between the metamodel concepts and their textual or
visual representation. Preliminary feedback indicates that a visual syntax
would be more suitable. The user profile (i.e., domain experts) as well as the
collaboratively way of obtaining the wiki blueprint, advise to go for a visual
DSL. Rather than developing our own visual language, we decide to capitalize
on an existing one: FreeMind. With over 6,000 daily downloads, FreeMind is one
of the most popular tools for mindmap drawing. Fig. 3 shows a snapshot of a
FreeMind map. The main advantage of this tool is the easiness to play around
to capture your mental model (e.g., nodes, and their descendants, can be easily
moved around; branches can be collapsed, etc). This decision not only speeds up
development but, more importantly, it will hopefully facilitate WSL adoption
among end users. Next section introduces WSL as a visual language on top of
FreeMind.

4 WSL Realization

WSL is a visual language on top of FreeMind. That is, a WSL expression is
a compliant FreeMind map. However, the opposite does not hold. Some maps
might not deliver a compliant wiki scaffolding, where compliance is determined
by the abstract syntax in fig. 2. Therefore, WSL maps are a subset of FreeMind
maps. FreeMind maps are internally represented as XML files along an XML
schema. On top of it, WSL imposes an additional set of constraints that ensures
that maps account for compliant scaffoldings (i.e., conform to the WSL abstract
syntax). Before delving into how WSL constructs are mapped into FreeMind
elements, next subsection introduces an example.

4.1 WSL Example

Consider the use of wikis to support software projects. The scattering of
stakeholders, the need for collaboration and tracking, and the iterative manners
that characterize software projects make wikis an attractive platform [9]. Fig. 3
provides an example for the Purchase Project as a WSL mindmap.

A DSL for Corporate Wiki Initialization 243

Fig. 3. Purchase Project Scaffolding

FreeMind depicts ideas and their relationships as nodes and edges that follow a
radial distribution. In our example, the Organigram branch captures the existing
roles as well as the employees assigned to these roles. The Restriction branch
lists limitations in terms of wiki operations. The Event branch captures two
milestones attached to pages “Requirement analysis” and “Software desiNG”
at the onset. Next, the company already has some guidelines to capture
use cases and document deliverables. Such practices should also be adhered
to when in the wiki. The Template branch refers to two such guidelines
through the “UseCaseTemplate” node and the “DeliverableGuidelines” node. The
Presentation branch will impact on the rendering of the wiki based on the
expected “wikiSize” and “wikiEditingFreq”. A “traffic light ” icon is used to
indicate the three possible values of these properties: large (red light), medium
(yellow light) and small (green light). As for the sidebar, this node includes a
navigation pane (denoted by the “ list” icon) and a search pane (denote by
the “magnifier ” icon). The sidebar is finally completed with an index pane
(denoted by the “look here” icon on categories “Use Cases”, “Test”, etc).
Regarding to restrictions, “priority” icon sets a restriction whereby “Coders”
(i.e., the role) are restricted from reading (i.e., the denial) the article “Customer
class diagram” (i.e., the item).

244 O. Díaz and G. Puente

As for the corporate glossary, common terms already in use include “Use
Cases”, “Functional Test”, “Compatibility Test” etc. These terms find their way
as wiki categories. Hierarchical relationships among categories are captured by
describing a category as a child of the parent category (e.g., “Test” ← “Functional
Test”). Wiki articles are denoted as bubbled nodes (e.g., “Requirements analysis”
stands for an article which is categorised as “Deliverable”). The title of a node
behaves as an identifier, so that two FreeMind nodes placed differently but with
the very same title, stand for the same notion. This permits the Content graph
to be flattened as a FreeMind tree.

It can look odd to introduce articles at wiki inception since wiki’s raison
d’etre is precisely collaborative article editing. Indeed, we do not expect too
many articles to be introduced at scaffolding time. However, the need to come
up with some articles might be known from the very beginning. The scaffolding
permits so by introducing a node whose title becomes the title of the wiki article.
For instance, the node “Software design” yields a wiki article with the namesake
title. Even more, some relationships might be known at the outset. For instance,
trace requirements made advisable to keep a hyperlink between the “Purchase
entry test” and the “Purchase entry UC”. This is depicted as an arrow between
the node counterparts.

Based on preliminary user feedback, we also consider article content to be
known at scaffolding time. This is realized as a child of the given article (together
with the “info” icon). Fig. 3 illustrates the two options. The content of
“Purchase entry test” is explicitly provided as the text of its child node. By
contrast, the content of “Purchase rejection test” is already available at the
company as a Word document. FreeMind permits to introduce hyperlinks as
node content (denoted through a small red arrow). This facility is used to our
advantage to link “Purchase rejection test” to the external document holding its
content. Likewise, corporate guidelines can find their way as wiki templates. So
far, WSL only supports Word documents (exported as XML). At deployment
time (i.e., when the WSL map is enacted), these external documents are turned
into either, article content or wiki templates. Fig. 6 provides a screenshot of the
main page as generated by the WSL engine. The rest of this section provides a
detail account of WSL expressivity.

4.2 WSL Concrete Syntax

WSL abstract syntax is realized as a graphical concrete syntax. A mapping is
then set between elements of the abstract syntax and their visual counterparts
in FreeMind. These “visual counterparts” are set by the FreeMind metamodel.
Therefore, a set of mappings between elements of the WSL metamodel and
elements of the FreeMind metamodel is realized. Additionally, some constraints
need to restrict the expressiveness of FreeMind to result in valid “scaffolding
maps” (i.e., compliant with the WSL metamodel).

FreeMind metamodel (see fig. 4). A Map is a compound of Nodes. Nodes
have a title and might hold a link to an external document (local or remote) as
well as a set of properties mainly referring to rendering concerns. For instance,

A DSL for Corporate Wiki Initialization 245

Fig. 4. FreeMind metamodel: primitives for mindmap drawing

the Style property can be fork and bubble and determines the look of the node
as a tagged line tag or a bubble, respectively. Next, nodes are basically arranged
in a tree-like way. A central node serves as the common root. Tree structures
are constructed using Edges. An Edge is a connector that relates a node with
its parent node. Additionally, Arrowlinks are also connectors but in this case,
the connection is between two arbitrary nodes. Finally, Icons3 and Fonts can
be associated with nodes in an attempt to reflect the underlying semantics of
the node. Of course, this semantics resides in the users’ head.

WSL-to-FreeMind mapping (see Table 1, first two columns). Once
FreeMind visual symbols are introduced, the next step is to indicate a mapping
between the WSL abstract syntax and these symbols:

– Scaffolding class. The root node is the FreeMind counterpart of this class.
– Organigram class. A bubble node with title “Organigram” denotes the origin

of the organigram hierarchy. Nodes having “Organigram” as parent denote
roles. Likewise, nodes having “Organigram” as grandparent are interpreted
as employees.

– Presentation class. A bubble node with title “Presentation” denotes this
class. Boolean properties are captured as icons on “Presentation”. Value-
based properties are represented as children nodes: logo (captured as a link
to an image file), wikiSize and wikiEditFreq. The latter are decorated with
traffic-light icons to account for their values.

3 Freemind provides a fixed set of icons. In the last version, users can introduce their
own icons, though it is not recommended for interoperability reasons.

246 O. Díaz and G. Puente

Table 1. WikiScaffolding-to-FreeMind mapping & FreeMind -to-MediaWiki mapping

– Restriction class. A bubble node with title “Restriction” denotes this class. A
restriction is a triplet: subject (i.e., an Item node), grantee (a Role node), and
the denial type (i.e., read or edit). We resort to priority icons to denote those
elements that conform to a restriction unit. That is, map nodes decorated
with the same priority icon belong to the same restriction. Due to icon
availability, permissions are limited to ten (“priority” icon ..).

4 CategoryTree extension: www.mediawiki.org/wiki/Extension:CategoryTree
5 MediaWiki skins include monobook (default), vector (e.g., used by Wikipedia), etc.

WSL completes the offer with cavendish, rilpoint, guMax, guMaxDD and guMaxv.
6 Blacklist extension at www.mediawiki.org/wiki/Extension:Blacklist
7 Barrylb extension at www.mediawiki.org/wiki/Extension:Calendar_(Barrylb)
8 WikiArticleFeeds extension at www.mediawiki.org/wiki/Extension:WikiArticleFeeds

A DSL for Corporate Wiki Initialization 247

– Content class. There is not a FreeMind counterpart for the Content class as
such. Rather all nodes in the map except for “Organigram”, “Presentation”,
“Restriction”, “Event” and “Template” nodes (and descendants) stand for
Content Items. The node title behaves as an identifier, so that two FreeMind
nodes placed differently but with the same title, stand for the same Item.
This allows the Content graph to be flattened as a FreeMind tree.

– Item class. Items are typed as “category”, “article”, “template” and “event”.
Category Items are denoted as fork nodes (i.e., nodes with the “fork” style).
Article Items are captured as bubble nodes. Next, Template Items are
children of the “Template” node. These nodes can either hold the page text
content (i.e., text attribute) themselves as a child with the “info” icon or
point to external documents from where the content is obtained at compile
time (only txt and word as xml exported files in the current version) Finally,
Event Items are children of the “Event ” node. As for the boolean properties,
discussion, rssFeed and indexPaneEntry, the affected Items (regardless of
their type) are decorated with the “stop sign” icon , a “flag” icon and
“ look here” icon , respectively.

– Link class. Links are classified as relatedWith, belongsTo, templatedBy and
scheduledFor. FreeMind offers two kinds of connectors: Edges, which are the
default arcs connecting a node with its child, and ArrowLinks, which are
arcs connecting two nodes anywhere in the map. Edges are interpreted as
belongsTo links when they connect an Item to a category Item (e.g., fig.
3, arc from “Database design” to “Deliverables”) and as scheduledFor when
they connect an Item to an event Item (e.g., fig. 3, edge from “Requirement
analysis” to “01/19/2011 ”). As for ArrowLinks, they sustain (1) RelatedWith
links when they relate an Item to another Item (e.g., fig. 3, arc from “Software
design” to “Database design”) and (3) TemplatedBy links when the ingoing
node stands for a template Item (e.g., fig. 3, arc from “Purchase entry UC ”
to “UseCaseTemplate”).

5 Verification of WSL Maps

WSL maps are a subset of FreeMind maps, i.e., WSL metamodel imposes
additional constraints on top of the FreeMind metamodel. Such constraints
can be verified on user request or at deployment time. Fig. 5 provides a
snapshot of the “Tools” menu now extended to address WSL maps: “WSL
configuration” permits to configure parameters for the MediaWiki installation;
“WSL deployment” causes the generation of the wiki instance from the WSL
specification; “WSL Skeleton” provides a FreeMind map with the basic WSL
nodes (e.g., Organigram, Restriction, etc) so that misspells are prevented; and
finally, “WSL Map Checking” triggers WSL map verification.

Fig. 5 depicts the verification outcome for our sample problem (see fig. 3).
Messages can be warnings and errors. For our sample, two warnings are noted.

248 O. Díaz and G. Puente

Fig. 5. Verifying the WSL map at fig. 3

One informs about the lack of the optional Presentation node which, in this
example, is due to a misspelling (“Presentationnn”). The other warning notifies
about a common mistake in wiki construction: setting a relatedWith relationship
between an article and a category. This is an odd situation that could be mistaken
with the belongsTo relationship, and so is it indicated. As for errors, they prevent
the wiki from being generated. For our sample case, these errors include: a
misspelling of an event date (e.g., “01/19/2011”); referring to a non-existent
node (e.g., “Software desiNG”); partial definition of a restriction where either the
denial, the employee or the article is missing (e.g., restriction); unsupported
document extension (e.g., extension “XMK” is not supported; so far, only XML
and TXT files can become page content).

A DSL for Corporate Wiki Initialization 249

6 Enactment of WSL Maps

Fig. 6. “Purchase Project” wiki main
page as generated by WSL

By selecting the “WSL deployment”
option of the Tool menu (see fig. 5),
the current map is turned into a wiki
installation in MediaWiki. This means
that around 400 LOC (mainly SQL
statements) are automatically generated
for the current example. Figs. 6 and 7
provides three screenshots of the gener-
ated pages: the main page (illustrating
the use of the CategoryTree and Calen-
dar extensions), the “Purchase rejection
Test” article page (which is obtained
from a Word XML document) and the
“Purchase Rejection UC” (which follows
the “UseCaseTemplate” also externally
obtained). Space limitations prevent us
from giving a detail account of this
generation process. For the purpose of
this paper, it is enough to show the
mapping between FreeMind constructs
and MediaWiki primitives. The last
two columns in Table 1 indicates such
mappings.

It is important to notice that some
scaffolding features require additional
MediaWiki extensions (e.g., Category-
Tree). The WSL engine builds upon
MediaWiki version 1.16 and the exten-
sions have been tested against it. Such
composition is provided as a unit by WSL. This raises the issue of platform
evolution, i.e., new versions of MediaWiki (or its extensions) might impact the
WSL engine. This is certainly true. But, how real is this threat? First, MediaWiki
is a stable platform backed by thousands of installations. And second, wikis can
be upgraded once deployed. That is, WSL can be used to generate the wiki
scaffold, and next, the user can upgrade to the newest version (just two clicks
away). This makes us confident about the lifespan of WSL.

7 Discussion through Related Work

Mindmaps have long been recognized as a useful technique for brainstorming.
Recently, enhancements have been proposed to improve the efficacy of mind
maps (e.g., use of pictorial stimuli [14]). Although benefits are reported, these
extensions decrease simplicity, and jeopardize interoperability. There certainly

250 O. Díaz and G. Puente

Fig. 7. Template and article pages as generated by WSL

exists more sophisticated tools for brainstorming than FreeMind, but we value
popularity, simplicity and cost as main selection criteria.

Another important remark is that of scalability. Although it is not the aim of
scaffolding to offer a complete wiki map but just a blueprint, large projects can
require large scaffoldings. This can lead to cluttered WSL maps. Fortunately,
FreeMind offer view-like mechanisms that permit to filter map nodes based on
content and relationships. Testing stakeholders can filter those nodes based on
containing the string “test”, whereas template-minded stakeholders can restrict
the view to those nodes related with a template.

As for visual DSLs, they are still scarce compare with textual DSL ([11] for an
overview). Our insight here is that the context where the DSL is to be deployed is
generally overlooked in DSL publications. Our experience is that DSL success not
only depends on finding the right abstractions but also on producing minimum
disturbance to existing practices. FreeMind was chosen on these grounds.

8 Conclusions

We introduced the notion of “wiki scaffolding” as a way to capture the contextual
setting for wikis deployed in an existing organization. While wikis for virtual
communities create such setting as they go along, corporate wikis know this
context at the onset. We introduced a DSL for wiki scaffolding that abstracts
from the technicalities that go in setting those parameters down to wiki code.
By capitalizing on FreeMind as the conduit for WSL concrete syntax, we expect
non-technical communities to benefit from the scaffolding. Anecdotical evidences
suggest that the benefits of the DSL go beyond speeding up wiki deployment

A DSL for Corporate Wiki Initialization 251

or promoting user participation. Knowledge retention is achieved by the DSL
engine embedding good practices about both presentation and structure. This
helps introducing wikis in organizations without wiki experience. As for the
expressiveness of WSL, current constructs are based on a literature survey about
the use of wikis in companies. Social conventions and incentives will emerge and
evolve to guide contributors, resolve disputes and help manage wiki deployments
in organizations. As these issues find support in wiki engines, WSL constructs
will need to be extended.

Acknowledgments. This work is co-supported by the Spanish Ministry of
Education, and the European Social Fund under contract TIN2008-06507-C02-
01/TIN (MODELINE), and Conserjería de Educación y Ciencia of Castilla-La
Mancha under contract PAC08-0160-6141 (IDONEO). Puente has a doctoral
grant from the Spanish Ministry of Science & Education.

References

1. Freemind. Online, http://freemind.sourceforge.net (accessed November 25,
2010)

2. Mediawiki. Online, http://www.mediawiki.org (accessed November 25, 2010)
3. Carlin, D.: Corporate Wikis Go Viral. Online, http://www.businessweek.com/

technology/content/mar2007/tc20070312_476504.htm (accessed November 25,
2010)

4. Cunningham, W.: What is a Wiki. Online,
http://www.wiki.org/wiki.cgi?WhatIsWiki (accessed November 25, 2010)

5. Danis, C., Singer, D.: A Wiki Instance in the Enterprise: Opportunities, Concerns
and Reality. In: Computer Supported Cooperative Work, CSCW (2008)

6. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
oriented domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon
University Software Engineering Institute (1990)

7. Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling: Enabling Full Code
Generation. Wiley-IEEE Computer Society (2008)

8. Lee, H., Bonk, C.: The Use of Wikis for Collaboration in Corporations: Perceptions
and Implications for Future Research. In: World Conference on E-Learning in
Corporate, Government, Healthcare, and Higher Education (2010)

9. Louridas, P.: Using wikis in software development. IEEE Software 23(2), 88–91
(2006)

10. Prescient Digital Media. Intranet 2.0 Global Survey. Online,
http://intranetblog.blogware.com/blog/_archives/2009/5/15/4187339.html
(accessed November 25, 2010)

11. Mernik, M., Heering, J., Sloane, A.M.: When and How to Develop Domain-Specific
Languages. ACM Computing Surveys 37(4), 316–344 (2005)

12. Raman, M.: Wiki Technology as A "Free" Collaborative Tool within an
Organizational Setting. IS Management 23, 59–66 (2006)

13. Toker, S., Moseley, J.L., Chow, A.T.: There a Wiki in Your Future?: Applications
for Education, Instructional Design, and General Use. Educational Technology
Magazine, 6 (2008)

14. Wang, H.-C., Cosley, D., Fussell, S.R.: Idea Expander: Supporting Group
Brainstorming with Conversationally Triggered Visual Thinking Stimuli. In:
Computer Supported Cooperative Work (CSCW), pp. 103–106 (2010)

http://freemind.sourceforge.net
http://www.mediawiki.org
http://www.businessweek.com/technology/content/mar2007/tc20070312_476504.htm
http://www.businessweek.com/technology/content/mar2007/tc20070312_476504.htm
http://www.wiki.org/wiki.cgi?WhatIsWiki
http://intranetblog.blogware.com/blog/_archives/2009/5/15/4187339.html

The REA-DSL: A Domain Specific Modeling

Language for Business Models

Christian Sonnenberg2, Christian Huemer1, Birgit Hofreiter2,
Dieter Mayrhofer1, and Alessio Braccini3

1 TU Vienna
last@big.tuwien.ac.at

2 University of Liechtenstein
{first.last}@uni.li
3 LUISS University
abraccini@luiss.it

Abstract. In the discipline of accounting, the resource-event-agent
(REA) ontology is a well accepted conceptual accounting framework to
analyze the economic phenomena within and across enterprises. Accord-
ingly, it seems to be appropriate to use REA in the requirements elicita-
tion to develop an information architecture of accounting and enterprise
information systems. However, REA has received comparatively less at-
tention in the field of business informatics and computer science. Some of
the reasons may be that the REA ontology despite of its well grounded
core concepts is (1) sometimes vague in the definition of the relationships
between these core concepts, (2) misses a precise language to describe
the models, and (3) does not come with an easy to understand graphical
notation. Accordingly, we have started developing a domain specific mod-
eling language specifically dedicated to REA models and corresponding
tool support to overcome these limitations. In this paper we present our
REA DSL which supports the basic set of REA concepts.

Keywords: Domain Specific Languages, Conceptual Modeling, Business
Models, Accounting Information Systems.

1 Introduction

Analyzing the economic phenomena on which companies base their business
may serve as a good starting point in the requirements elicitation phase when
developing enterprise information systems. Business models specify - amongst
other things - the main actors, their relationships and the values exchanged
between them (cf. [1]).

We see three main ontologies to conceptualize business models: the Business
Model Ontology (BMO) [2], the e3-value ontology [3], and the Resource-Event-
Agent ontology (REA) [4]. BMO is easy to use by the domain expert because
it focuses mainly on the categorization of aspects relevant for the delivery of
products and services to fulfill customers’ requests. It helps the domain expert
to ask herself the right questions when developing a business model, but has

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 252–266, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The REA-DSL: A Domain Specific Modeling Language for Business Models 253

a limited focus on conceptualizing the elements of the business model. In con-
trary, e3-value defines a conceptual model to describe the exchanges of value
among actors in a network. e3-value comes with a graphical syntax that is easy
understood by the domain expert. Furthermore, it allows the domain expert to
perform financial assessment of the value exchanges.

The Resource-Event-Agent (REA) ontology has its roots in the accounting
discipline and was originally developed as a reference framework to conceptualize
economic phenomena in an enterprise. In its proposal in 1982, McCarthy already
had the vision to facilitate the design of data structures of accounting information
systems by means of REA [4]. Since this time the REA model has been further
extended and evolved into a domain ontology [5]. All REA concepts are based on
well established concepts of the literature in economic theory - which is certainly
one of the strengths of REA. However, REA has no dedicated representation
format and, consequently, no graphical syntax. Thus, users may struggle when
describing the REA models leading to the impression that REA is a rather heavy-
weight approach. A dedicated graphical syntax - such as it exists for e3-value -
may help in overcoming this problem and may lead to a much more significant
adoption of REA. Accordingly, we have started the endeavor of developing a
domain specific modeling language for REA.

Most domain-specific languages (DSL) are small textual and usually declara-
tive languages. A DSL offers expressive power through appropriate notations and
abstractions focused on – and usually restricted to – a particular problem do-
main [6]. Besides textual DSLs, we see an increasing interest in domain-specific
modeling languages [7,8] based on dedicated meta-models and notations. van
Deursenet et al. claim [6] the following benefits of a DSL approach: They allow
solutions to be expressed at the level of abstraction of the problem domain. As
a matter of fact, domain experts themselves can understand, validate and of-
ten modify DSL programs/models. The DSL programs/models are concise and
self documenting to a large extent. They enhance productivity, reliability and
maintainability. DSLs allow for validation and optimization at the domain level.

When developing our REA-DSL we followed methodological steps that have
been suggested by Strembeck and Zdun for the systematic development of do-
main specific languages [9]. Amongst other variants, they describe the develop-
ment process for extracting a DSL from an existing system, which is appropriate
for our needs, because we extract the DSL from the existing REA ontology. Ac-
cordingly, we started with (1) the identification of elements in the REA ontology.
Next, we underwent a number of revision cycles of (2) deriving the abstract syn-
tax of the REA model including the core language model and the language
model constraints and (3) defining the DSL behavior, i.e. determining how the
language elements of the DSL interact to produce the intended behavior. Once
we had reached a stable state, we defined the DSL concrete syntax (4). Finally,
we implemented a modeling tool support for the DSL (5), but we skipped the
last step described in [9], i.e. integrating the DSL into a software platform, since
REA stays at the platform independent level.

254 C. Sonnenberg et al.

The remainder of this paper is structured as follows: In Section 2 we give a
basic introduction into the REA ontology including an illustrative example. The
core of the paper in Section 3 presents our DSL for REA models. We elaborate on
the meta model of our REA DSL for describing duality models and value chains.
Furthermore, we use the same example as in Section 2 to illustrate our DSL.
Section 4 reports on our evaluation by means of a REA DSL tool. A summary
and remarks on future work conclude the paper in Section 5.

2 Resource - Event - Agent (REA)

2.1 The REA Ontology

The objective of the REA ontology is the conceptualization of common eco-
nomic phenomena of a firm independent of application-specific demands. REA
accounting information systems focus on economic exchanges as the central unit
of analysis. Instead of representing these exchanges with double-entry bookkeep-
ing artifacts (e.g. debits, credits, accounts), REA proposes concepts and patterns
to derive semantic models of economic exchanges and transformations. The un-
derlying assumption of REA is that all business enterprises operate in the same
manner [10] according to an entrepreneurial script: acquiring financial resources,
engaging in a chain of economic exchanges with other parties, each time giving
up an economic resource in return for another resource of greater value [10].
After executing this script, the business generates a justifiable profit after hav-
ing paid interests and creditors. This entrepreneurial script essentially discloses
the entrepreneurial rationale of a business. Hence, the REA ontology is not only
used to facilitate the design of accounting information systems but in particular
for business modeling.

The basic REA ontology is a stereotypical representation of an economic ex-
change as a core economic phenomenon [5]. This exchange is executed between
parties inside and outside of a firm’s boundaries and follows a particular object
pattern (cf. [5], see also Figure 1(a) and 1(b)). In order to conceptualize this
pattern, the REA ontology suggests three concepts that constitute an exchange:
resource, event, and agent. Resources are things being exchanged between partic-
ipating agents. In an exchange, an agent (inside agent) usually gives up control
of a resource to an outside agent in order to gain control over another resource.
Events occur in the course of executing economic activities. In REA basically two
types of events are distinguished: increment and decrement events. Extensions of
the REA ontology [11] also distinguish between transfer (exchanges with external
actors) and transformation (concerns value creation within the firm) events.

Furthermore, the following economic primitives (relationship types) are spec-
ified by the REA: duality, stock-flow, and participation. A duality relationship
connects decrement events with corresponding increment events and thus pro-
vides the rationale of individual economic activities. Stock-flow relationships con-
nect economic resources with economic events (decrement or increment events).
Depending on the connected event type, the following stock-flow relationship

The REA-DSL: A Domain Specific Modeling Language for Business Models 255

EconomicResource

EconomicEvent

EconomicAgent

stock-flow

inside outside

<<duality>>
+initiating

+terminating

(a) REA Meta Model

<<EconomicResource>>

Fish
<<stock-flow>>

<<duality>>
+initiating +terminating

<<EconomicResource>>

Cash

<<EconomicEvent>>

FishSale
<<EconomicEvent>>

Payment

<<EconomicAgent>>

Salesperson
<<EconomicAgent>>

Customer
<<EconomicAgent>>

Cashier

<<stock-flow>>

 -
GI

VE
 +TAKE

provide
<<inside>>

receive
<<inside>>

receive
<<outside>>

provide
<<outside>>

(b) REA Object Constellation

Fig. 1. Basic REA Ontology

types are distinguished: give and take (transfer events), use, consume, and pro-
duce (transformation events). Participation relationships describe the involve-
ment of an agent in an economic event. As such, the basic REA ontology not
only conceptualizes economic exchanges but also relates to business process con-
cepts. It captures Who is involved in an exchange (economic agents), What is
being exchanged (economic resources), When (and under what conditions) do
the components of an exchange occur (economic events), Why are the partici-
pants engaged in an exchange (duality relationships, stock-flows), and How do
the exchanges materialize as economic activities or business processes (series of
small events that move business process through to completion) (cf. [12]).

The basic REA ontology with its economic primitives is illustrated in Figure
1(a) by means of a UML class diagram. Figure 1(b) shows an instantiation of
the REA ontology, a so called object constellation. Furthermore, the ontology
defines three axioms that restrict the use of the concepts and primitives for
conceptualizing economic exchanges (cf. [11]):

– Axiom 1: At least one take event and one give event exist for each eco-
nomic resource (guarantees modeling of economic activities as a sequence of
exchanges).

– Axiom 2: All events effecting a resource decrement must be eventually
paired in duality relationships with events effecting an increment and vice
versa (ensures correct enumerations of exchanges).

– Axiom 3: Each exchange needs an instance of both the ”inside” and the
”outside” agents(ensures presence of exchanges between parties with com-
peting economic interests).

Axioms one to three apply for transfer events. Axiom two also holds for trans-
formation events.

Since its proposal in 1982, some extensions to the basic REA ontology have
been proposed (e.g. [5]). The extended REA ontology envisions a vertical and
horizontal layering of economic exchanges. With regard to the vertical layering, a
hierarchy consisting of three levels is proposed: (1) the value chain specification
level, (2) the duality specification level, and (3) the task or workflow level ([5]).
In this paper we focus on the upper two specification layers: the value chain and
the duality . Thereby, we base our work on the diagram style used by Geerts
and McCarty in [13], which has never been formalized.

256 C. Sonnenberg et al.

The horizontal layering in REA enables the analysis of economic exchanges
at different points in time on all three vertical layers described above. There-
fore, the REA ontology considers an accountability infrastructure and a policy
infrastructure [5]. The REA accountability infrastructure conceptualizes actual
business events and captures ”what has occurred” or ”what is or has been”. The
policy infrastructure conceptualizes what ”could be” or ”should be” within the
context of a defined portfolio of a firm’s resources and capabilities [5]. In this
paper we focus on the concepts associated with the REA accountability infras-
tructure. Concepts associated with the policy infrastructure like commitments,
agreements, and type images are not covered here but are subject to future work.

In the following section the REA ontology is applied to a simplified example
in order to demonstrate how the REA constructs can be used to specify an
entrepreneurial script.

2.2 REA Ontology Example

The simplified example used to apply the REA ontology is taken from [13]. It is
based on an actual company and is called Sy’s Fish and is introduced below:

Sy’s Fish is a distributor of seafood and provides his base of restaurant cus-
tomers with over 50 types of fish which can be stored at all locations or stores.
However, each store usually specializes in local favorites. Fish are purchased from
local fishers, cleaned at the store, and then sold at restaurants to customers. Cus-
tomers are allowed to buy on credit, and all pay on the last day of the month.
Most employees are generalists and can perform many duties such as purchasing,
cleaning, and delivering fish. They fill out time cards fortnightly upon which they
may note the percentage of time devoted each day to buying, cleaning and selling
fish. Non-generalist employees for the most part comprise of cashiers. Sy’s also
possesses a fleet of trucks, used to bring fish from the docks and to deliver fish
to the restaurants. Both the truck and the employees involved in each purchase
and sale of fish are noted. All trucks are leased on yearly contracts, and lease
payments are made monthly. Cash receipts and disbursements are made to/from
one of the multiple checking accounts of the firm.

The value chain of Sy’s Fish (i.e. the entrepreneurial script) comprises the
processes payroll, truck acquisition and store processing. The last process is

«EconomicResource»
Cash

«EconomicEven...
FishObtained

«EconomicEvent»
CashDisbursementLease

«EconomicEvent»
LaborAcquisition

«EconomicEvent»
Lease

«EconomicResourc...
Cash

«EconomicResourc...
Truck

«EconomicResource»
Fish

«EconomicEvent»
CashDisbursementLabor

«EconomicResourc...
Cash

«EconomicResourc...
Labor

«EconomicEvent»
PaymentForFish

«EconomicEvent»
TransportIn

«EconomicEvent»
TransportOut

«EconomicResource»
Fish

«EconomicEve...
CleanIn

«EconomicEve...
CleanOut

«EconomicEvent»
FishSale

«EconomicEve...
Payment

«EconomicResourc...
Fish

«EconomicEvent»
Cash

«duality»

give

«stock-flow»

«duality»«duality»

take

«stock-flow»

«duality»

give

«stock-flow»

take

«stock-flow»

give

«stock-flow»

«duality»

give

«stock-flow»

«duality»

give

«stock-flow»

take

«stock-flow»

take

«stock-flow»

take

«stock-flow»

give

«stock-flow»

give

«stock-flow»

give

«stock-flow»

give

«stock-flow»

give

«stock-flow»

give

«stock-flow»

take

«stock-flow»

Fig. 2. REA Sy’s Fish Example

The REA-DSL: A Domain Specific Modeling Language for Business Models 257

further decomposed into the processes buying, cleaning, and selling. The process
level specification is provided in 2 as a UML class diagram. It depicts the object
constellations for the entire value chain. Due to space limitations, economic
agents have been omitted from the process level specification. The process level
specification with its sequence of duality relationships determines the rationale
of how Sy’s makes money. Initial outlays (cash disbursements) are followed by
subsequent cash flows. These cash flows can be used to pay creditors and interests
or to finance further economic activities.

2.3 Limitations of the REA Ontology

A first limitation of REA is given with regard to the clarity of ontological state-
ments. Although the REA model has evolved into a domain ontology, REA leaves
space for diverging interpretations of the relationships between core concepts. In
particular, the multiplicities for individual relationships are not clearly defined.
It remains unclear, whether a resource increment or decrement is caused by one
event or by multiple events. Moreover, it is not clear if an event can be related
to multiple stock-flows and agents. Furthermore, there is no axiom restricting
event-resource (stock-flow) relationships. In its original specification, REA would
allow to connect a single event with stock-flows to resources which are incre-
mented and also to those which are decremented. However, this is not compliant
with the duality concept which is established between an increment event(s) and
decrement event(s) which are well distinguished from each other. Accordingly
increment events are connected by stock-flow reletationships to resources which
are incremented and decrement events to those which are decremented.

These ambiguities and potential semantic inconsistencies may be due to a
lack of a dedicated specification language. In the current state no means have
been proposed to specify precisely how to relate the REA concepts and how to
enforce compliance of REA models with the axioms stated above. The compli-
ance of REA models can only be checked manually. Thus, domain experts are
responsible for including the REA pattern into particular enterprise information
architectures. There is no conceptual facility that enables the development of
interoperable REA models (a modeling language would help here).

A third limitation is the complexity of REA models which increases pro-
gressively even with very few processes to be modeled. Each process generally
includes eight entities which have to be modeled (two events, two resources, two
times an inside and an outside agent) [10]. A dedicated REA modeling notation
would help to overcome the complexity. However, proposing a modeling notation
necessitates resolving the inconsistencies and incompleteness of the ontological
statements. This is subject to the following sections.

3 The REA Domain Specific Language

Given these limitations we started to develop a graphical domain specific lan-
guage (DSL) for REA. We based the development of the REA DSL on The

258 C. Sonnenberg et al.

Object Management Group’s(OMG) metamodeling architecture called Meta-
Object Facility (MOF) [14]. MOF comes with a meta-meta model (M3 layer)
that allows us to define the structure, i.e. the abstract syntax, of the REA DSL
as a meta-model (M2 layer). The resulting REA DSL meta-model comprises
three interlinked views, of which we describe in detail the duality and the value
chain perspective. Due to space limitations, we do not elaborate in detail on the
third view on economic resources. However, it is important to note that economic
resources - scarce objects having utility and under control of an enterprise [15]
- may form a generalization hierarchy.

3.1 The Duality Model

The duality relationship is a core concept in REA. It links an increment in the
resource set with a corresponding decrement; where increments and decrements
must be members of two different event entity sets. In the REA ontology, the
duality relationship is characterized by the unary relationship assigned to the
concept of an economic event (see Figure 3(a)).

Duality

Transfer Transformation

nonConsumingTransformation ConsumingTransformation

Give Take Use Produce Consume

EntitySet

Economic
Event StockFlow Participation

EconomicResource EconomicAgent

EconomicResourceSeries InsideAgent OutsideAgent

Economic
EventSeries

Economic
Resource

Economic
ResourceSeries

nonConsuming
Transformation

Consuming
Transformation

Stock
Flow

Economic
Agent

Inside
Agent

Outside
Agent

Participation

Transformation

Entity
Set

(a) Meta Model

E1

E2 E3 E4

R1

R2

R3

R4 R5

Inside1 Outside1

Inside2 Inside3 Outside1 Inside4 Inside5 Outside1 Inside6 Outside1

(b) Example

Fig. 3. Duality

In the REA DSL, duality becomes a core model element that serves as a
building block for further purposes. The duality meta model is depicted in Figure
3(a). Figure 3(b) presents a (rather abstract) example model - which should help
understanding the meta model concepts and to introduce the concrete syntax
and the corresponding stencils.

The duality concept applies to transfers (exchanges with external actors) and
transformations (value creation inside the enterprise). In the case of transforma-
tions we distinguish between resource-consuming and non-resource consuming
transformation. As a consequence, the meta model defines consuming transfor-
mation and non-consuming transformation as special kinds of transformation as
well as transfer and transformation as specializations of duality.

The REA-DSL: A Domain Specific Modeling Language for Business Models 259

No matter which kind of specialization it is, a duality always covers two dis-
tinct entity sets ; one describing the increments in the resource sets and the other
one the decrements in the resource sets. In the case of a transfer the decrement is
called give and the increment is called take. The decrement of a non-consuming
transformation is denoted as use and the one of a consuming transformation
is denoted as consume. In both kinds of transformation the increment is called
produce.

Figure 3(b) shows an abstract example of a duality model to illustrate the
concepts and their stencils. An entity set is modeled as a partition. Accordingly,
a duality model includes two partitions. The duality shown in the example is a
transfer. It follows that one entity set is a give and the other one is a take. The
kind of entity set is denoted in the upper left corner of the partition.

According to the meta model, an entity set covers at least one but up to mul-
tiple economic events. An economic event is considered as a class of phenomena
reflecting changes in scare means [16]. An economic event is specific to the entity
set it belongs to. Following the principles of duality, all economic events in the
decrement entity set (give, use, consume) are counterbalanced by the economic
events in the corresponding increment entity set (take, produce) of the same
duality model.

An economic event is usually executed at a certain point in time. However, in
certain cases the increment/decrement is realized by a series of economic events
each of the same nature. For example, consider that the payment for goods is
split into a number of partial payments. For this purpose we use the concept of an
economic event series, which is defined as a specialization of the economic event
in the meta model. Consequently, the concept of an economic event series may
substitute an economic event. This means, instead of modeling each economic
event of each partial payment, one may model a single economic event series of
partial payments.

An economic event in a give/use/consume entity set decrements resource(s).
Similarly, an economic event in a take/produce entity set increments resource(s).
This relationship between an economic event and an economic resource is de-
scribed by the concept of a stock-flow. A stock-flow models an association
between exactly one economic event and exactly one economic resource. An
economic event will affect most of the time one economic resource only, but it
may affect multiple ones. Thus, an economic event may have one up to many
stock-flows connected. An economic resource usually is affected by many differ-
ent economic events (in different entity sets of different duality models). At a
minimum an economic resource is affected by one economic event - otherwise it
would not be worth considering the economic resource at all. Consequently, an
economic resource is connected to one up to many stock-flows.

A similar concept to economic event series is defined for economic resources :
the economic resource series. An economic resource series is used if an economic
event affects a number of economic resources of the same kind. For example, on a
high level of abstraction one may define raw material as an economic resource and
an economic event may affect a number of economic resources. It is important

260 C. Sonnenberg et al.

to note that an economic resource series may substitute an economic resource
in a stock-flow, but the economic resource series must not be used in economic
resource generalization hierarchies. This is prohibited by a corresponding OCL
constraint to the meta model. An economic resource series must always be based
on exactly one existing economic resource. For an economic resource one may
define zero to many economic resource series (used in different stock-flows).

An economic event involves economic agents. We distinguish between outside
agents, i.e. trading partners outside the company, and inside agents who are ac-
countable inside the company. The involvement of economic agents in economic
events is denoted by the concept of participation. A participation is an associ-
ation that connects exactly one economic event with one economic agent. An
economic event is associated to at least one, but up to many economic agents.
Hence, an economic event has one to many participation associations. An eco-
nomic agent participates in at least one, but up to many economic events (in the
same, but also in different entity sets of the same or different duality models).
Thus, an economic agent has one to many participations connected.

In addition, there are further constraints assigned to the meta model to handle
specifics of transfers. In case of a transfer, each economic event must be assigned
to exactly one outside agent and, in addition, to at least one inside agent. All
economic events of the same transfer (both in the give and the take entity set)
must involve one and the same outside agent.

The relationships among economic events, economic resources, and economic
agents within an entity set is also illustrated in the abstract example of Figure
3(b). Economic events are denoted by an hexagon. In the give partition, there
is only one economic event E1. This economic event leads to a decrement of
the only associated economic resource R1, notated by a drop. Since the duality
model is a transfer, exactly one outside agent Outside 1 and an inside agent
Inside 1 is involved. The symbol for economic agents is a stickman - outside
agents have a black head, whereas inside agents have a white head.

The take partition includes three economic events E2, E3, and E4; one of
which (E3) is an economic event series. The symbol of an economic event series
is a pack of hexagons. All three economic events together compensate the single
economic event E1 of the give partition. E2 is associated with two economic
resources R2 and R3 that are incremented, whereas the series E3 increments
only the economic resource R4. E4 leads to an increase of the economic resource
series R5. An economic resource series is depicted by a pack of drops. Given the
example of a transfer, all three events in the take partition must be associated
with the same outside agent as the economic event of the give partition: Outside
1. In addition, E2 and E3 involve two inside agents and E4 only one.

3.2 The Value Chain

According to Geerts and McCarty [13], the duality relationships introduced in
the previous chapter are the glue that binds a company’s economic events to-
gether into rational economic processes, while ”stock-flow” relationships weave
these processes together into an enterprise value chain. In the latter case, they

The REA-DSL: A Domain Specific Modeling Language for Business Models 261

1..*

Economic
Resource

Value
Chain

Business
Process Transfer Business

Event

Economic
ResourceFlow

Economic
Resource

1

1

1

0..1 0..1
0..* 0..*

0..*

1..* 1..*

2..*

+target +source

+in +out

(a) Meta Model (b) Example

Fig. 4. Value Chain

do not refer to the stock-flows within a single duality model. Rather, they mean
that an increment in a resource as a result of one duality model will serve as a
chance to decrement this resource in a subsequent duality model. In other words,
a value chain is built by a well defined series of duality models. The transitions
between the duality models reflect the resource dependencies between the duality
models.

These general ideas are reflected in the value chain meta model of Figure 4(a).
A value chain is built by a number of business processes. A business process is
defined as a transfer or a transformation, and in addition the tasks needed to
execute the transfer/transformation. It follows a business process points to an
underlying transfer/transformation described by a duality model. Furthermore,
a business process results in a number of business events, two of which are the
economic events of the underlying duality model.

A value chain includes one to many business processes. A business process
is used only once in one distinctive value chain. A business process points to
exactly one duality model. A duality model is usually the basis of one business
process, but may be referred to by multiple business processes. A business process
involves at least two business events, these are the two economic events (which
are considered as special kinds of business events). Usually, there will be more
business events associated to a business process as a result of the tasks needed
to execute the transfer/transformation.

Economic resources tie the business processes together. Thus, an economic
resource flow - which points to exactly one economic resource - connects two
business processes. An economic resource flow is a directed association that usu-
ally starts from a source business process and ends at a target business process.
However, we also allow for economic resource flows that have either no source
business process or no target business process. This allows for a partial analysis,
when one considers a certain economic resource as given or when an economic
resource is considered as final output of the value chain. Typically, cash is often
assigned to such economic resource flows.

262 C. Sonnenberg et al.

A business process has at least one, but up to many outgoing economic re-
source flows. Similarly, a business process has at least one, but up to many
ingoing economic resource flows. In order to deliver a consistent value chain
two important constraints on the business processes have to be considered: For
each economic resource in the give / use / consume entity set of the underly-
ing duality model, at least one corresponding incoming economic resource flow
pointing to the same economic resource must exist. In analogy, for each eco-
nomic resource in the take / produce entity set of the underlying duality model,
at least one corresponding outgoing economic resource flow pointing to the same
economic resource must exist. However, one may consider the substitutability
concept of more general and more specific economic resources as defined in a
resource generalization hierarchy. In other words, a duality model expecting an
economic resource in give / use / consume entity set may also accept a more
specific economic resource in the incoming economic resource flow.

In Figure 4(b) we depict an abstract example of a value chain to illustrate
its concepts and their stencils. Our value chain example includes four business
processes BP1, BP2, BP3, and BP4. The symbol for a business process is a
rounded rectangle. Economic resource flows are depicted by an arrow with the
economic resource assigned to this arrow. For example, the economic resource R2
flows from BP1 to BP3. However, for esthetic reasons we provide an alternative
(but still similar) notation for economic resource flows that do not start from
or do not end in a business process. In this case, the arrow may start from the
economic resource or may lead to the economic resource, instead of assigning the
economic resource to the arrow. Examples are the resource flows of R1 leading
into BP1 and of R8 starting from BP4.

BP1 points to the duality model of Figure 3(b). In this duality model the
economic resource R1 sits in the give partition; and the economic resources R2,
R3, R4, and R5 - where the latter is a economic resources series - are included in
the take partition. This is consistent with the economic resource flows to/from
BP1 in the value chain model of Figure 4(b). BP1 receives R1 and delivers
R2, R3, R4, and R5. It should be noted that the number of ingoing/outgoing
transitions does not necessarily meet the number of economic resources in the
duality model, since a business process may provide an economic resource or -
more unlikely in practice - receive a resource from multiple business processes.
For example, BP2 provides R6 to both BP3 and BP4.

Let us assume that the duality model on which BP2 is based requires the
economic resources R3, R5, and R7. In this case one might think of an incon-
sistency since BP2 receives R3 and R5, but R4 instead of R7. However, if R4
is defined as a specialization of R7 in a resource generalization hierarchy, the
model is consistent since in this case R4 may substitute R7 in the duality model
of BP2.

3.3 REA DSL Example

Having introduced the meta models and rather abstract examples, we now
demonstrate our REA DSL by means of a simple, but more realistic example.

The REA-DSL: A Domain Specific Modeling Language for Business Models 263

PayrollProcess Buying

TruckAcquisition Transport Cleaning Selling

CashDisbursementLabor

LaborAquisition

PaymentForFish

FishObtained

PaymentForTruck

TruckLease

TransportIn

TransportOut

CleanIn

CleanOut

FishSale

Payment

Cash Cash

Cash

Cash

Labor

Labor

Labor

Labor

Labor

Fish

Fish Fish

Fish

Fish Fish Truck

Truck

Logistics Truck Rental

Cashier Truck Rental

Cashier Cashier Worker

Worker

Fisherman

Fisherman Purchaser Human Resource

Driver

Driver

Cleaner

Cleaner Cashier

Salesman Customer

Customer

Fig. 5. Sy’s Fish Value Chain and Dualities

For this purpose we use again the Sy’s Fish example [13] of subsection 2.2. The
resulting Sy’s Fish value chain and duality models are depicted in Figure 5.

The value chain begins with the payroll process which receives some cash
to realize a transfer. By the duality relationship of the economic events cash
disbursement and labor acquisition, the economic resource cash is decre-
mented and labor is incremented. The resulting labor is then input for the busi-
ness processes buying, transport, cleaning, and selling.

Buying transfers labor and additionally cash to fish, by the dual economic
events payment for fish and fish obtained. Truck acquisition is another
transfer that turns cash into a truck that is leased by the duality of payment
for truck and truck lease.

Transport uses all acquired resource - labor, fish, and truck - to deliver the
fish to the company. The transport is done by the company itself, so it does not
involve an outside actor. Accordingly, it is a transformation process that uses,
but does not consume its economic resources in the economic event transport
in. The dual economic event transport out results again in the fish, this time
at the right place. Cleaning is another non-consuming transformation process
that receives the fish and turns it into a cleaned fish.

The final transfer in the value chain is selling. Labor and fish are given in
the fish sale in order to take cash as result of the payment.

264 C. Sonnenberg et al.

4 REA DSL Tool Support

Having developed our DSL approach towards REA modeling in theory, we wanted
to evaluate our approach by practical means. Thereby, we focused on three major
steps. Firstly, we evaluated the technical feasibility of the DSL by an implemen-
tation based on Microsoft DSL tool kits. Thereby, we were able to eliminate
technical flaws in the meta model. Secondly, we wanted to test our tool if it
properly supports existing REA models. For this purpose we had 32 REA mod-
els available and successfully completed the reengineering task to represent these
models within our REA DSL. During our reengineering activities the strengths
of our rather strict meta model became evident - we were able to recognize flaws
in the existing REA models which have not been recognized before due to the
complexity in the ontology representation and missing tool support. Thirdly, we
approached the originator of REA - William McCarthy - to seek his advise and
to report inconsistencies in existing REA models. However, so far we have not
yet done any usability studies, nor have we used the tool set in real world case
studies. We will conduct these kinds of evaluations once we extend our approach
to cover the REA policy infrastructure.

We implemented the graphical REA-DSL tool based on Microsoft’s Visual
Studio 2010 Visualization & Modeling SDK (V&M SDK). Accordingly we used
the V&M SDK to create the meta models explained before in Section 3. Addi-
tional custom code enables to set further constraints, necessary for the validation
of the REA model. In a second step the designer - see Figure 6 - is created to
support the REA modeling.

AB C

D

E

Fig. 6. REA-designer

The designer is separated into five major areas: The modeling canvas (A) the
toolbox (B), the solution explorer (C), the property window (D) and the valida-
tion window (E). By dragging the modeling elements from the toolbox on the
modeling canvas, a REA model can be assembled in a graphical representation.
The solution explorer provides a tree based overview of the elements of the cur-
rently displayed model as well as a file and directory structure to hold different

The REA-DSL: A Domain Specific Modeling Language for Business Models 265

model instances. Properties of the selected model element can be changed in the
property window. The validation window informs the user of any errors/warnings.

5 Summary and Future Work

In this paper we proposed a domain specific modeling language to support the
conceptual modeling of economic events based on the REA ontology. Conceptual
models based on our modeling language – the REA-DSL – aim at facilitating the
requirements elicitation process during the design of accounting and enterprise
information systems. The original REA ontology has a long history in accounting
and is based on well grounded accounting concepts. However, REA leaves space
for diverging interpretations of the relationships between core concepts. This has
also been criticized by Gailly and Poels who have proposed a new conceptual
representation of REA guided by proven ontology engineering principles [17].
They come up with a presentation based on UML class diagrams, which we feel
results in a complex visual representation that is hardly understood by domain
experts (cf. Figure 2). Similar to Gailly and Poels, we developed a representation
format that does not leave space for divergent interpretations. In our case, the
relationships between the core concepts are precisely defined by using OMG’s
Meta Object Facility (MOF) leading to a dedicated REA domain specific model-
ing language. The MOF-based approach enables the development of a graphical
syntax that is dedicated to the needs of business modeling. Furthermore, our
REA-DSL comes with a graphical syntax covering a set of stencils that facilitate
the understanding of the domain expert. Beside proposing a meta model and a
graphical language, we developed a REA-DSL tool as a proof of concept.

In this work, we concentrated on the basic REA principles [4] and the value
chain perspective [13]. In future work, we will gradually extend the REA-DSL.
Currently, we are working on an integration of the REA policy infrastructure
[18] covering commitments, agreements and, furthermore, the typification of the
operational concepts [5]. Next, we plan to extend the REA-DSL by concepts to
derive a database design for enterprise information systems, which has been one
of the original goals of REA. For this purpose, we have already introduced the
concepts of economic event series and economic resource series in the current
DSL, because they will affect the multiplicities in the database design. By in-
cluding the policy infrastructure and the REA-driven database design, it will
become more obvious that REA models are of structural nature rather and do
not concentrate on the behavioral aspects of process models. Another intended
REA-DSL extension addresses the perspective from which the REA models are
described. Currently, we focus on the perspective of a single enterprise which ex-
changes value with other enterprises. In the Open-edi reference model (ISO/IEC
15944-4) REA concepts are used to describe the exchanges of value among en-
terprises from a neutral observer’s point of view. We plan to integrate the ob-
server’s perspective into our REA-DSL and to support semi-automatic mappings
between the perspectives.

266 C. Sonnenberg et al.

References

1. Andersson, B., Bergholtz, M., Edirisuriya, A., Ilayperuma, T., Johannesson, P.,
Gordijn, J., Grégoire, B., Schmitt, M., Martinez, F.H., Abels, S., Hahn, A., Wan-
gler, B., Weigand, H.: Towards a reference ontology for business models. In: Embley,
D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 482–496. Springer,
Heidelberg (2006)

2. Osterwalder, A., Pigneur, Y., Tucci, C.L.: Clarifying Business Models: Origins,
Present and Future of the Concept. Communications of the Association for Infor-
mation Science (CAIS) 15, 751–775 (2005)

3. Gordijn, J., Akkermans, H.: E3-value: Designing and evaluating e-business models.
IEEE Intelligent Systems 16(4), 11–17 (2001)

4. McCarthy, W.E.: The REA Accounting Model: A Generalized Framework for
Accounting Systems in a Shared Data Environment. The Accounting Review 57(3)
(1982)

5. Geerts, G.L., McCarthy, W.E.: An ontological analysis of the economic primitives
of the extended-rea enterprise information architecture. International Journal of
Accounting Information Systems 3(1), 1–16 (2002)

6. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. SIGPLAN Not. 35(6), 26–36 (2000)

7. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling. Wiley-IEEE Computer Soci-
ety Press (2008)

8. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories. John Wiley, Chich-
ester (2008)

9. Strembeck, M., Zdun, U.: An approach for the systematic development of domain-
specific languages. Softw., Pract. Exper. 39(15), 1253–1292 (2009)

10. Geerts, G.L., McCarthy, W.E.: An Accounting Object Infrastructure for
Knowledge-Based Enterprise Models. IEEE Intelligent Systems 14(4), 89–94 (1999)

11. Geerts, G.L., McCarthy, W.E.: The Ontological Foundations of REA Enterprise
Systems (August 2000)

12. Motal, T., Schuster, R.: From e3-value to REA: Modeling multi-party eBusiness
Collaborations. In: Proc. of the 11th IEEE Conference on Commerce and Enterprise
Computing, pp. 202–208. IEEE CS, Los Alamitos (2009)

13. Geerts, G.L., McCarthy, W.E.: Modeling business enterprises as value-added pro-
cess hierarchies with resource-event-agent object templates. In: Business Object
Design and Implementation, pp. 94–113. Springer, Heidelberg (1997)

14. OMG: Meta Object Facility (MOF) Core Specification, Version 2.0 (January 2006)
15. Ijiri, Y.: Theory of accounting measurement. American Accounting Association,

Sarasota (1975)
16. Yu, S.C.: The Structure of Accounting Theory. The University Presses of Florida

(1976)
17. Gailly, F., Poels, G.: Ontology-driven business modelling: Improving the conceptual

representation of the REA ontology. In: Parent, C., Schewe, K.-D., Storey, V.C.,
Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 407–422. Springer, Heidelberg
(2007)

18. Geerts, G.L., McCarthy, W.E.: Policy-level specification in rea enterprise informa-
tion systems. Journal of Information Systems 20(2), 37–63 (2006)

A Foundational Approach for

Managing Process Variability

Matthias Weidlich1, Jan Mendling2, and Mathias Weske1

1 Hasso Plattner Institute at the University of Potsdam, Germany
{Matthias.Weidlich,Mathias.Weske}@hpi.uni-potsdam.de

2 Humboldt-Universität zu Berlin, Germany
Jan.Mendling@wiwi.hu-berlin.de

Abstract. A business process often shows different variations in a large
organisation, due to different legal requirements in different countries,
deviations in the IT infrastructure, or organisational differences. These
variants are documented in separate independent process models. Man-
agement of these variants imposes various challenges. Invariant behaviour
needs to be identified and redundancies among the variants have to be
avoided. In this paper, we address these questions by defining a set-
algebra for behavioural profiles. These profiles represent a behavioural
abstraction of process models that can be computed efficiently. We trace
back many questions of process variability management to set-theoretic
operations and relations defined for behavioural profiles. As a validation,
we apply our approach to an industry model collection.

1 Introduction

In large organisations, a business process often exists in many variations. Those
stem from different legal requirements in different countries, deviations in the IT
infrastructure, or organisational differences [1]. The existence of process variants
is inevitable – a certain degree of variability is needed to meet the concerns
of a specific organisational unit. Variants are often documented in independent
process models. As the variability is not made explicit, synergies between variants
are hard to explore and process harmonisation is impeded.

Recently, approaches to control the creation of process variants based on well-
defined change patterns [2,3,4] or configurations [5,6] have been presented. How-
ever, enforcement of such a controlled variability of processes is hard to achieve
once process variants are created independently in different organisational units.
Therefore, we focus on the use case of managing decoupled process variants. To
this end, identification of commonalities and differences between process variants
is of central importance. Those have to be made explicit to allow for a compar-
ison of the variants. This is a prerequisite for any process harmonisation effort
that aims at reducing the amount of allowed process variability.

There are two fundamental challenges towards efficient management of pro-
cess variants: the appropriate specification of formal operations to support rea-
soning with process variants, and the foundation of such operations upon an

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 267–282, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

268 M. Weidlich, J. Mendling, and M. Weske

appropriate behavioural abstraction of processes. Throughout this paper, we
will demonstrate that the essential variant management questions can be an-
swered based on set algebraic operations of complementation, intersection, and
union, and the relations of set equivalence and inclusion. Although there are sev-
eral works on particular subsets of these aspects such as inclusion (or behaviour
inheritance) [7,8,9] and union (or merging behaviour) [10,11,12,13], we currently
miss an overarching set algebra which provides the means to efficiently calculate
with behaviour.

There is a wide spectrum of behavioural abstraction available upon which alge-
braic operations could be defined. Existing work on behaviour inheritance [8,9,14]
builds on an adapted notion of branching bisimilarity. That is, activities that are
without counterpart can either be blocked or hidden when assessing behavioural
equivalence. Such an approach has the drawback that the underlying notion of
branching bisimilarity is computationally hard as it is based on state space anal-
ysis, cf., [15]. Therefore, we base our set algebra on behavioural profiles, a be-
havioural abstraction of process models that can be computed efficiently for a
broad class of models. Behavioural profiles capture the essential behaviour of the
set of traces of a process in terms of order constraints, and they are insensitive to
skipping of an activity. Differences related to causal constraints are often observed
among process variants, and behavioural profiles have been found to provide a suit-
able abstraction to reason about consistency of process variants [16].

Our contribution is a formal definition of a set algebra for calculating with
behavioural profiles of process variants. Our approach is inspired by work on a
set algebra for service interaction [17]. The concepts are applied to an industry
model collection, for which we identify variant clusters and analyse behavioural
commonalities. In this way, our work informs formal research on behavioural
inheritance as much as engineering approaches towards merging of behaviour.

The remainder of this paper is structured as follows. The next section illustrate
the use case in more detail and presents formal preliminaries. Section 3 defines
a set algebra for behavioural profiles, which is applied in Section 4 to address
various questions on managing process variability. We present findings from a
case study with industry models in Section 5. Finally, Section 6 discusses our
approach in the light of related work, before Section 7 concludes the paper.

2 Background

This section introduces the background of our work. First, Section 2.1 elaborates
on the use case of managing decoupled process variants. Subsequently, Section 2.2
presents our formal model and Section 2.3 defines behavioural profiles.

2.1 Challenges for Managing Decoupled Process Variants

We illustrate our use case using the two process models depicted in Fig. 1. Both
models capture the process of registering a newborn and are adapted versions of
the models obtained in different Dutch municipalities, cf., [18]. The administra-
tive processes of Dutch municipalities are rather similar due to legal regulations

A Foundational Approach for Managing Process Variability 269

Receive Birth
Notification

Confirm
Identity

Check
GBA Data

Sign Birth
Certificate

Send
Notifications

Update
GBA Data

Search
GBA Data

Search
GBA Data

(3)

Close
Case (9)

Update GBA
Data (6)

Confirm
Identity

(2)

Send Notifications
(5)

Receive Birth
Notification

(1)

(I)

(II)

else

Identity
Issue

else

Update required

Found
no data

else

Inconsistency
in certificate

else

Close
Case

Escalate
Case

Hand
over Docs

(8)

Case
to be closed

Check
Validity

(7)

Issue Birth
Certificate

(4)

Fig. 1. Variants of the process of registering a newborn

and a non-normative reference model. Nevertheless, these processes show a cer-
tain degree of variation caused by, for instance, the size of the municipality or
the used information systems, and evolve independently from each other.

Identification of best practices or reducing of the number of process variants
among the municipalities can be seen as driven factors for process harmonisation.
This requires the identification of semantically corresponding activities of differ-
ent process models based on linguistic or structural analysis [19,20,21]. Those
techniques may reveal that the activity ‘Sign Birth Certificate’ in model (I) cor-
responds to the activity ‘Issue Birth Certificate’ in model (II). For this paper,
we assume correspondences between activities to be given.

Once we identify correspondences between activities of various pairs of models,
we can define clusters of related models that capture variants of the same process.
The following challenges must be addressed to support process harmonisation
efforts for a particular cluster of process variants.

C1: Given a set of variants, what are their commonalities in terms of shared
behaviour? This question relates to the challenge of identifying the behaviour
that is invariably agreed on by all variants, i.e., the implemented invariant
behaviour.

C2: Given a set of variants, what is the most general allowed behaviour? The
challenge when answering this question is to integrate the behaviour defined by
all process variants, such that the most general behaviour becomes visible. This
is required to come to a notion of a configurable model known from [5,6], which
subsumes the complete behaviour defined in single variants.

C3: Given a set of variants, what are their commonalities in terms of shared
forbidden behaviour? Similar to the first question, also the shared forbidden
behaviour is of interest for managing process variants.

C4: Given a set of variants, which variants are redundant in terms of the
specified behaviour? The challenge behind this question is to identify variants
for which the specified behaviour is completely subsumed by another process
variant. In that case, the existence of the former variant may be challenged.

Although these questions may be approached on a structural level by in-
vestigating the set of shared activities, more detailed conclusions can only be
drawn once the behavioural perspective is considered. For instance, the activities

270 M. Weidlich, J. Mendling, and M. Weske

‘Update GBA Data’ and ‘Send Notifications’ show different behavioural con-
straints in the models in Fig. 1. To consider such differences, we approach the
aforementioned questions based on a set algebra for behavioural profiles. Be-
havioural profiles are a behavioural abstraction that focusses on order constraints
and is insensitive to causal constraints between activities, such as skipping an
activity. Fig. 1 illustrates that such differences are often observed among pro-
cess variants due to additional process entries and exits. Behavioural profiles
have been found to provide a suitable abstraction to reason about consistency
of process variants [16].

2.2 Formal Model

We use a notion of a process model that is based on a graph containing activity
nodes and control nodes. It captures the commonalities of process description
languages. For illustration purposes, we use a subset of BPMN and EPCs.

Definition 1. (Process Model)
A process model is a tuple P = (A, s, e, C, F, T) where:
◦ A is a finite non-empty set of activity nodes,
◦ C is a finite set of control nodes,
◦ N = A ∪ C is a finite set of nodes with A ∩ C = ∅,
◦ F ⊆ N × N is the flow relation, such that (N, F) is a connected graph,
◦ •n = {n′ ∈ N |(n′, n) ∈ F} and n• = {n′ ∈ N |(n, n′) ∈ F} denote direct pre-

decessors and successors, we require ∀ a ∈ A : | • a| ≤ 1 ∧ |a • | ≤ 1,
◦ s ∈ A is the only start node, such that •s = ∅,
◦ e ∈ A is the only end node, such that e• = ∅,
◦ T : C → {and, xor} associates each control node with a type.

The start and end activity nodes are assumed to carry no semantic meaning
but indicate initialisation and termination of a process. Refactoring may be
applied to arrive at these start and end activity nodes [22]. We assume trace
semantics for process models. Execution semantics of a process model is defined
by a translation into a Petri net following on common formalisations, cf., [23].
As our notion of a process model comprises a dedicated start and end activity
nodes, the resulting Petri net is a workflow net (WF-net) [24]. All control nodes
are of type and or xor, such that the WF-net is free-choice [24]. The translation
into WF-nets defines the behaviour of a process model P = (A, s, e, C, F, T),
which is captured by a set of traces TP . It comprises a set of lists of the form
s · A∗, which represent the execution order of activities.

2.3 Behavioural Profiles

A behavioural profile captures behavioural characteristics of a process model by
three relations between pairs of activity nodes. These relations are based on the
notion of weak order. Two activities of a process model are in weak order, if
there exists a trace in which one activity occurs after the other. Note that we
require only the existence of such a trace.

A Foundational Approach for Managing Process Variability 271

Definition 2 (Weak Order Relation). Let P = (A, s, e, C, F, T) be a process
model and TP its set of traces. The weak order relation �P ⊆ A×A contains all
pairs (x, y), such that there is a trace σ = n1, . . . , nm in TP with j ∈ {1, . . . , m−
1} and j < k ≤ m for which holds nj = x and nk = y.

Two activity nodes of a process model might be related by weak order in three
different ways, which define the characteristic relations of the behavioural profile.

Definition 3 (Behavioural Profile). Let P = (A, s, e, C, F, T) be a process
model. A pair (x, y) ∈ A × A is in one of the following relations:
◦ The strict order relation �P , if x �P y and y ��P x.
◦ The exclusiveness relation +P , if x ��P y and y ��P x.
◦ The interleaving order relation ||P , if x �P y and y �P x.

The set BP = {�P , +P , ||P } of all three relations is the behavioural profile of P .

We illustrate the relations of the behavioural profile for the lower model in Fig. 1.
For instance, it holds (1) � (5) as both activities are ordered whenever they oc-
cur together in a trace. It holds (8) + (9) as both activities will never occur in
a single trace, and (5)||(6) due to the potential concurrent execution. The rela-
tions of the behavioural profile are mutually exclusive. Along with the reverse
strict order �−1= {(x, y) ∈ (A × A) | (y, x) ∈ �}, the relations partition the
Cartesian product of activities. An activity is either said to be exclusive to itself
(e.g., (1) + (1) in Fig. 1) or in interleaving order to itself (e.g., (6)||(6)). The
former holds, when an activity cannot be repeated, whereas the latter implies
that the activity may be executed multiple times. The behavioural profile is a
behavioural abstraction. Hence, there may be process models that show differ-
ent trace semantics but have equal behavioural profiles. Moreover, behavioural
profiles may be lifted from activities to labels of activities. Still, this may re-
sult in serious information loss as two occurrences of activities with equal la-
bels would not be distinguished. The behavioural profile BP of a process model
P = (A, s, e, C, F, T) may be restricted to a subset of activity nodes A′ ⊂ A by
restricting the definition of the three relations �P ,+P , and ||P to A′ × A′. We
refer to this restricted profile as the behavioural profile over A′.

Computation of the behavioural profile of a process model is done efficiently
under the assumption of soundness. Soundness is a correctness criteria that guar-
antees the absence of behavioural anomalies, such as deadlocks [25]. It has been
defined for WF-nets, so that it can be directly applied to our notion of a pro-
cess model. We are able to reuse techniques for the computation of behavioural
profiles introduced for sound free-choice WF-nets [16]. Using these results, be-
havioural profiles are computed in O(n3) time with n as the number of nodes of
the respective WF-net.

3 A Set Algebra for Behavioural Profiles

To introduce a set algebra for behavioural profiles, we first discuss a notion of
strictness for profile relations in Section 3.1. Then, Section 3.2 introduces set-
theoretic relations, while Section 3.3 turns the focus on set-theoretic operations.

272 M. Weidlich, J. Mendling, and M. Weske

3.1 Strictness of Behavioural Relations

(x||y)

(x->-1y) (x->y)
(x+y)

<…x…x…>
<…x…>

<…y…><…y…x...x…>

<…y…x…>

<…x…y...y…>

<…x…y…>
<…>

<…y...x…y…>
<…x...y…x…x…y...y>

<…x...y...x…y…> <…x...y...y…x…>

Fig. 2. Sets of traces induced by the relations of the
behavioural profile for two activities x and y

The relations of the be-
havioural profile can be clas-
sified according to their
strictness, as they allow differ-
ent levels of freedom for the
occurrences of activities in a
trace. Interleaving order can
be seen as the absence of any
restriction on the order of po-
tential occurrence – the activities are allowed to appear in an arbitrary order.
In contrast, (reverse) strict order defines a particular order of execution for two
activities, whereas exclusiveness completely prohibits the occurrence of two ac-
tivities together in one trace. Therefore, we consider interleaving order to be
the weakest relation, while exclusiveness is the strictest relation. For a dedicated
pair of activities (x, y), this strictness is also reflected in the containment hierar-
chy of traces that show either none, one, or both activities, illustrated in Fig. 2.
Here, all traces that conform to a specific behavioural relation are part of the
encircled set of traces. A process model that defines interleaving order between
two activities x and y allows for any trace, i.e., it may contain none, one, or both
activities in any order. A model that imposes exclusiveness for both activities
is most restrictive. It allows for traces that comprise none or only one of the
activities. This set is a proper subset of the traces induced by interleaving order.

This notion of strictness is the foundation for the definition of a set algebra for
behavioural profiles. Our operations and relations are not defined based on sets
of traces, but on the relations of the behavioural profile. Still, the strictness of
behavioural relations illustrated above with sets of traces is taken into account.

3.2 Set-Theoretic Relations

We start by introducing three set relations, i.e., equivalence, inclusion, and empti-
ness for behavioural profiles. Most use cases require the application of these con-
cepts for behavioural profiles of different models for which a separate relation
identifies corresponding pairs of activities. To keep the formalisation concise, we
abstract from such correspondences and assume corresponding activities to be
identical. As partially overlapping sets of activities do not impose serious chal-
lenges, we restrict the discussion to the behavioural aspects and assume identical
sets of activities once more than one behavioural profile is considered.

Equivalence. Two behavioural profiles are equivalent, if they enforce equal be-
havioural constraints for the shared activities. Equivalence of behavioural profiles
does not imply equal trace semantics for the shared activities, cf., [16].

Definition 4 (Equivalence). Let B1 = {�1, +1, ||1} and B2 = {�2, +2, ||2}
be two behavioural profiles over a set of activities A. B1 equals B2, denoted by
B1 = B2, if and only if their relations are equal for all activities, i.e., �1=�2,
+1 = +2, and ||1 = ||2.

A Foundational Approach for Managing Process Variability 273

A B
A
B

A B
+

+

(a)

B

A
A
B

A B
+

++
+

(b)

Fig. 3. The behavioural profile of (a) includes the one of (b)

Inclusion. An inclusion holds between two behavioural profiles, if one profile
completely subsumes the behavioural constraints of another profile for shared
activities according to the notion of strictness discussed in the previous section.

Definition 5 (Inclusion). Let B1 = {�1, +1, ||1} and B2 = {�2, +2, ||2} be
two behavioural profiles over a set of activities A. B1 includes B2, denoted by
B1 ⊆ B2, if and only if for all pairs of activities (a1, a2) ∈ A × A it holds:
◦ a1 +1 a2 implies a1 +2 a2,
◦ a1 �1 a2 implies a1 +2 a2 or a1 �2 a2,
◦ a1 �−1

1 a2 implies a1 +2 a2 or a1 �−1
2 a2.

If B1 ⊆ B2, but not B1 = B2, we speak of proper inclusion, denoted by B1 ⊂ B2.

Fig. 3 illustrates inclusion of behavioural profiles (relations for start and end
nodes are omitted). The profile of model 3(a) includes the one of model 3(b) as
the former is less restrictive. It allows for ordered execution of activities A and B,
whereas model 3(b) forbids any occurrence of both activities in the same trace.
Due to the assumed behavioural abstraction, inclusion of the behavioural profiles
does not imply inclusion of the respective sets of traces. Still, the behavioural
abstraction allows us to cope with variations as they are visible for activities
‘Search GBA Data’ and ‘Update GBA Data’ in our example in Fig. 1. Model (II)
defines strict order for both activities, whereas model (I) completely disallows
joint occurrence of both activities. Hence, the behavioural constraints imposed
by model (I) are included in the constraints imposed by model (II). Any trace-
based assessment will fail to address such cases.

Emptiness. A behavioural profile is empty, if it defines all pairs of activities,
except for the start and end activity, to be exclusive. Such a profile forbids the
execution of any activity other than the start and the end activity. As those
activities are assumed to carry no semantic meaning but indicate initialisation
and termination of the process, such a trace is considered to be empty.

Definition 6 (Emptiness). Let B = {�, +, ||} be a behavioural profile over a
set of activities A with s, e ∈ A being start and end activities. B is empty, if and
only if all activity pairs (a1, a2) ∈ (A×A) \ {(s, e), (e, s)} are exclusive, a1 + a2.

3.3 Set-Theoretic Operations

We introduce three set operations for behavioural profiles, i.e., complementation,
intersection, and union. Again, we abstract from a correspondence relation, as-
sume that corresponding activities are identical, and focus on the constraints for
shared activities once multiple behavioural profiles are considered.

274 M. Weidlich, J. Mendling, and M. Weske

A

C

B A
B

A B
||

+
C

C

++
+

(a)

C

B A A
B

A B

||
C

C
+

||
||

||

(b)

Fig. 4. Process models with complementary behavioural profiles

Complementation. The complement operation is defined for a single
behavioural profile and returns a profile that specifies reverse relations for all
pairs of activities of the original behavioural profile.

Definition 7 (Complement). Let B = {�, +, ||} be a behavioural profile over
a set of activities A. The complement B = {�C , +C , ||C} of B is a behavioural
profile over A, such that for all pairs of activities (a1, a2) ∈ A × A it holds:
◦ a1 +C a2 if and only if a1 || a2,
◦ a1 �C a2 if and only if a1 �−1 a2,
◦ a1 ||C a2 if and only if a1 + a2.

The complement operation is illustrated in Fig. 4. Model 4(a) and model 4(b)
show complementary behavioural profiles (neglecting start and end nodes) – the
profile of the left model is the complement of the profile of the right model,
and vice versa. For instance, there is a strict order constraint between activities
A and B in model 4(a), whereas both activities are in reverse strict order in
model 4(b). Further, activity A may occur multiple times in model 4(a), whereas
it is exclusive to itself in model 4(b).

Intersection. Given two behavioural profiles, the intersection operation yields a
third behavioural profile that combines the strictest relations of the behavioural
profile for all shared pairs of activities. Therefore, the intersection represents the
behavioural constraints that are shared by both profiles.

Definition 8 (Intersection). Let B1 = {�1, +1, ||1} and B2 = {�2, +2, ||2}
be two behavioural profiles over a set of activities A. The intersection ∩ of these
profiles is a behavioural profile B3 = {�3, +3, ||3} over A, denoted by B1 ∩B2 =
B3, such that for all pairs of activities (a1, a2) ∈ A × A it holds:
◦ a1 +3 a2 if and only if either a1 +1 a2, a1 +2 a2, (a1 �1 a2 ∧ a1 �−1

2 a2), or
(a1 �−1

1 a2 ∧ a1 �2 a2),
◦ a1 �3 a2 if and only if either (a1 �1 a2 ∧ (a1 �2 a2 ∨ a1 ||2 a2)) or

(a1 �2 a2 ∧ (a1 �1 a2 ∨ a1 ||1 a2)),
◦ a1 ||3 a2 if and only if a1 ||1 a2 and a1 ||2 a2.

We illustrate the intersection of behavioural profiles with the models in Fig. 5. The
lower model (c) shows a behavioural profile that corresponds to the intersection
of the behavioural profiles of the upper two models (a) and (b). Consider, for in-
stance, activities A and B. While model (a) allows for interleaving order between
both activities, model (b) is more restrictive and enforces strict order. Hence, the
intersection also defines strict order for both activities. Due to the assumed be-
havioural abstraction, again, model (c) does not represent the intersection of the

A Foundational Approach for Managing Process Variability 275

D

C A CB

B

A D

D

CA B

A
B

A B

C

C
+

D

D

||
|| +

+
+

+
+

A
B

A B

C

C
+

D

D

+
+

+A
B

A B

C

C
+

D

D

+

+
+
+

+

(a) (b)

(c)

Fig. 5. The behavioural profile of model (c) corresponds to the intersection of the
profiles of models (a) and (b)

sets of traces of models (a) and (b). Referring to our example in Fig. 1, the set of
shared complete traces is empty for both models. The evident behavioural com-
monalities of both models are not revealed by a trace-based assessment. The in-
tersection of behavioural profiles allows to address such scenarios.

Union. The union operation for two behavioural profiles yields a third be-
havioural profile that combines the weakest constraints of the two profiles given
as input parameters for all pairs of activities. We trace back the definition of the
union operation to the complement and intersection operations using De Mor-
gan’s rule. The union B3 of two behavioural profiles B1 and B2 over a set of
activities A, denoted by B3 = B1 ∪ B2 is defined as B3 = B1 ∩ B2.

4 Managing Process Variability

In this section, we discuss how the set algebra for behavioural profiles is applied
to address the questions raised in Section 2.1 regarding the management of
decoupled process variants. Let P1, . . . , Pn be a set of models that were found to
capture different variants of a business process with A being the shared activities.

C1: Shared behaviour: Greatest Common Divisor. The shared behaviour may
be referred to as the Greatest Common Divisor (GCD), cf., [14]. Given a set of
process variants, the GCD is characterised by a behavioural profile BGCD over A
that is derived by computing the intersection of all profiles BP1 , . . . ,BPn . Hence,
the GCD integrates the constraints shared by all variants. The profile BGCD

may be checked for emptiness. If it is empty, all variants impose contradicting
constraints for the shared activities. A model representing the GCD can be syn-
thesized from the profile BGCD following the approach introduced in [26]. Note
that the synthesises imposes certain consistency requirements on the behavioural
profile. Further, the behavioural commonality between a single variant Pi and
the GCD is quantified as the relative share of activity pairs that have equal rela-
tions in BGCD and BPi . This measure quantifies how much additional behaviour
the variant allows for, relative to the behaviour shared with all variants.

276 M. Weidlich, J. Mendling, and M. Weske

Receive Birth
Notification

Confirm
Identity

Sign/Issue
Birth Certificate

Send
Notifications

Update
GBA Data

Search
GBA Data

Close
Case

Search
GBA Data

Sign/Issue
Birth Certificate

Send
Notifications

Update
GBA Data

Close
Case

Receive Birth
Notification

Confirm
Identity

(GCD)

(LCM)

Fig. 6. Synthesised GCD and LCM for the scenario of Fig. 1

Fig. 6 depicts the GCD for the variants of our initial example in Fig. 1. The
behavioural profile of the GCD comprises all constraints from model (I) as they
are more restrictive than those imposed by model (II). The GCD visualises the
basic ordering constraints of both variants. Still, it is not identical to model (I)
as certain causalities are abstracted by the behavioural profile.

C2: Most general behaviour: Least Common Multiple. The most general be-
haviour is referred to as the Least Common Multiple (LCM) of a set of variants.
It is characterised by a behavioural profile BLCM over A that is derived by
computing the union of all profiles BP1 , . . . ,BPn . The LCM imposes solely the
weakest constraints for a pair of activities in the set of variants. Again, a model
is derived from BLCM using the synthesis approach for behavioural profiles.

Fig. 6 depicts the LCM for the variants of our initial example. The parallel
execution of three activities is caused by the interleaving order imposed by the
profile of the LCM. As all of them may be executed multiple times (interleaving
order as a self-relation), they are also part of a control flow cycle. Note that
model synthesis for these activities includes various design decisions on how to
represent interleaving order (by concurrency or by cyclic structures) [26]. Hence,
the synthesis approach may be adapted so that an LCM with a different struc-
ture, but identical behavioural profile is created.

C3: Shared forbidden behaviour: Complementary LCM. In order to charac-
terise the behaviour that is forbidden by all variants for shared activities, a
behavioural profile BSFB over A is created as the complement of the LCM,
BSFB = BLCM . However, this profile does not directly capture all constraints
that are not implemented in any variant due to the strictness of behavioural
relations, cf., Section 3.1. Conclusions are drawn solely from the (reverse) strict
order and interleaving order relations of the profile BSFB. If BSFB defines in-
terleaving order between two activities, all variants show exclusiveness for these
activities. Hence, the potentially arbitrary order implied by the interleaving or-
der constraint is forbidden in all variants. Similar conclusions are drawn for
(reverse) strict order constraints in BSFB.

We illustrate this concept with the activities ‘Update GBA Data’ and ‘Send
Notifications’ of our initial example. For both activities, the LCM defines inter-
leaving order, which yields exclusiveness in the complement. As exclusiveness is
the strictest relation, we cannot draw any conclusions on shared forbidden be-
haviour. For the activities ‘Confirm Identity’ and ‘Update GBA Data’, however,

A Foundational Approach for Managing Process Variability 277

the LCM defines a strict order constraint from the former to the latter. There-
fore, the reverse strict order in the complement is shared forbidden behaviour
and prevents execution of activity ‘Update GBA Data’ before ‘Confirm Identity’.

C4: Redundancy of variants: Inclusion of variants. Given the behavioural
profiles of two process variants Pi and Pj , the question whether the behaviour
of one variant is captured in the other variant for the shared activities is traced
back to the inclusion of their behavioural profiles, i.e., BPi ⊆ BPj . In this case,
all constraints imposed by Pi would be equal or less strict than the constraints
imposed by Pj , so that the behaviour (according to the behavioural profile) of
Pj is covered by Pi. That suggests integration of variant Pj into variant Pi.

Investigating the two models given in Fig. 1, the behavioural profile of model
(II) includes the profile of model (I) for the shared activities. Hence, when aiming
at reducing the number of variants, the existence of model (I) may be challenged.

5 Case Study

Our approach to managing process variability has been evaluated based on the
SAP reference model [27]. This model collection describes the functionality of the
SAP R/3 system and comprises 604 process diagrams, which are expanded to 737
models in EPC notation as some diagrams contain multiple disconnected EPCs.
These EPC models capture different functional aspects of an enterprise, such
as sales or accounting. However, the models are not fully orthogonal. Various
models show an overlap, such that events and functions with identical labels
occur in multiple models. These models, therefore, represent process variants.

For our analysis, we excluded all models that showed behavioural anomalies,
such as deadlocks and livelocks [28], or ambiguous instantiation semantics [29].
We also normalised multiple start and end events, and replaced block-structured
OR-split and OR-join connectors with AND connectors, which does not impact
on the behavioural profile. These selections and transformations led to a set of
493 EPC models, that are grounded on our formal model introduced in Sec-
tion 2.2. Hence, we were able to leverage the efficient techniques mentioned in
Section 2.3, so that behavioural profiles were computed in milliseconds.

Table 1 gives on overview of the observed clusters of process variants in the
SAP reference model. Given a threshold of shared nodes, we derived all process
model clusters of maximal size for which the set of shared nodes was equal or

Table 1. Variant clusters in the SAP reference model

Shared Nodes (Min) 4 6 8 10 12 14 16 18 20 22 24 26
Variant Clusters 84 48 33 23 23 21 15 11 9 2 1 0
Avg Size of Clusters 3 3 3 3 3 2.6 2.4 2.3 2.3 2 2 0
Max Size of Clusters 10 9 8 8 7 6 4 4 4 2 2 0
Models in Clusters 212 124 88 63 56 47 36 25 21 4 2 0

Subsumed Models 127 73 55 41 35 28 20 14 12 2 1 0

278 M. Weidlich, J. Mendling, and M. Weske

Asset master
record is

incomplete

V

XOR

Creation of
group asset

Creation of
master record

for tangible
assets

Creation of
leased asset

master record

Fixed asset
created

XOR

Retirements to
be entered

Depreciation
should be

posted
regularly

Post-
capitalisation
to be posted

Depreciation
terms should
be changed

Cost center
plan was
changed

Several asset
master records

should be
changed

V

Asset master
record is

incomplete

V

XOR

Leased asset
is created

Retirements to
be entered

Depreciation
should be

posted
regularly

Post-
capitalisation
to be posted

Several asset
master records

should be
changed

V

V XOR

Depreciation
terms should
be changed

Cost center
plan was
changed

Fig. 7. Excerpts of two process variants in the SAP reference model

larger than the threshold. For these clusters, Table 1 depicts the number of
clusters, their average and maximal size, and the number of considered models.
For instance, requiring variants to share at least 12 nodes led to 23 clusters
comprising 56 distinct models. The average size of the clusters is three models,
the maximum size is seven models. The derived values witness the existence of
a large number of process variants in the model collection.

In order to analyse the commonalities for all identified model clusters, we
implemented the presented set algebra and derived the LCM. This analysis re-
vealed that the behavioural profile of the LCM was often equal to the profile
of at least one model in the cluster. Based on this observation, we checked for
all clusters of variants whether the behavioural profile of one variant includes
the profiles of all other variants for the shared nodes. In fact, this was the case
for all but two clusters. The identified LCM models could be used as a starting
point for harmonising the reference model by removing redundant variants and
integrating their non-shared nodes into the former model. Consider, for instance,
the excerpts of two encountered process variants in Fig. 7. Both models share 16
nodes, some of them are highlighted in the excerpt. For some shared nodes both
models define different behavioural constraints. Still, the behaviour of the right
model includes the behaviour of the left model for shared nodes, which suggests
integration of the processing defined by the left model into the right one.

Using this approach, more than half of the identified variants could be removed
from the collection as indicated by the last row in Table 1. Depending on the
number of required shared nodes, the reference model could be reduced by up
to 127 process models.

6 Related Work

Research related to our work is conducted mainly in three areas: comparison of
behaviour, modelling of process variants, and behaviour synthesis.

The comparison of behaviour as defined by the operators in this paper is re-
lated to various notions of behavioural equivalence of the linear time – branching

A Foundational Approach for Managing Process Variability 279

time spectrum [30]. Behavioural profiles provide an abstraction which approxi-
mates trace equivalence at the weaker end of this spectrum. Notions of inclusion
are discussed in work on behavioural equivalence [7,8,9]. Recent works calculate
a degree of behavioural similarity between process models based on linguistic,
graph-matching, and state-based concepts, see [31] for an overview. Our work
instead provides a precise definition of how to determine the behavioural intersec-
tion of two process models. There is also work that aims to determine the union
of the behaviour captured by two process models [10,11,12,13]. None of these
works has been integrated and extended towards the definition of an algebra.

The requirements for representing variants of a process have been addressed
by different modelling approaches. In our work we build on the assumption that
the union or intersection of two process models is again a process model. This
approach is in line with work on the configuration of workflow models [6]. Other
approaches use dedicated elements for capturing variation points on the level of
the modelling language. Such languages include Configurable EPCs [5,32], ag-
gregated EPCs [33], Provop [3], or variant rich process models [34], which pick
up ideas and concepts from modelling of software product families [35] and fea-
ture diagrams [36]. These approaches typically assume that variation is identified
and explicitly represented by a human modeller while our algebraic operations
permit the calculation of intersection or union from two model variants.

Similar relations, but not exactly those of behavioural profiles, are used in a
pre-processing step of approaches to synthesize a process model [37]. Please refer
to [38] for a discussion of the conceptual differences between the relations used
in [37] and those of the behavioural profile. Our general idea of defining an algebra
for managing process variants is inspired by an algebra for operating guidelines, a
formal concept for the synthesis of interaction partners for a process [17].

7 Conclusion

In this paper, we addressed two fundamental challenges of managing process
variants, the specification of formal operations for reasoning with variants, and
the foundation of such operations upon an appropriate behavioural abstraction.
As a solution, we proposed a set algebra for behavioural profiles that enables
conclusions on behavioural commonalities and differences using set-theoretic re-
lations and operations. We showed how these concepts are used to address the
problem of managing process variants. Our case study illustrated the potential
of our approach for harmonisation of process model collections.

Having defined a complete algebra for the (abstracted) behaviour of processes
allows for behavioural analysis way beyond similarity measurement. For instance,
a process model may be used to encode forbidden behaviour. Using our algebraic
operations, a model collection may then be analysed whether it allows for the
forbidden behaviour. Our operations may also be used during the design of
process models. As an example, subsumption of behavioural profiles may hint at
the creation of model fragments that can be found in a model collection already.

280 M. Weidlich, J. Mendling, and M. Weske

We also have to reflect on some limitations of our approach. We focus on
the control flow perspective and neglect data and resource assignments. We
foresee that our set algebraic approach may be extended in these directions. As
a starting point, the standard set theoretic operations may be applied to sets
of data artefacts and resources. However, operations that consider the interplay
between the perspectives (i.e., the intersection of data access constraints for a
certain role) can be assumed to provide even more value. Another restriction
is our assumption of elementary 1:1 correspondences between activities of two
behavioural profiles. Differences in the abstraction level are likely to be observed
in practice, in particular if models are created for different purposes (e.g., process
analysis vs. process design). In future work, we aim at lifting our approach to
the level of n:m correspondences between activities.

References

1. Wijnhoven, F., Spil, T., Stegwee, R., Fa, R.: Post-merger IT integration strategies:
An IT alignment perspective. The Journal of Strategic Information Systems 15(1),
5–28 (2006)

2. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive process management
with ADEPT2. In: ICDE, pp. 1113–1114. IEEE Computer Society, Los Alamitos
(2005)

3. Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process
models: the provop approach. Journal of Software Maintenance 22(6-7), 519–546
(2010)

4. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features - enhancing flexibility in process-aware information systems. Data Knowl.
Eng. 66(3), 438–466 (2008)

5. Rosemann, M., van der Aalst, W.M.P.: A configurable reference modelling language.
Inf. Syst. 32(1), 1–23 (2007)

6. Gottschalk, F., van der Aalst, W., Jansen-Vullers, M., Rosa, M.L.: Configurable
workflow models. International Journal of Cooperative Information Systems (IJ-
CIS) 17(2), 177–221 (2008)

7. Ebert, J., Engels, G.: Observable or Invocable Behaviour - You Have to Choose.
Technical Report 94-38, Leiden University (December 1994)

8. Schrefl, M., Stumptner, M.: Behavior-consistent specialization of object life cycles.
ACM Trans. Softw. Eng. Methodol. 11(1), 92–148 (2002)

9. Basten, T., van der Aalst, W.M.P.: Inheritance of Behavior. Journal of Logic and
Algebraic Programming (JLAP) 47(2), 47–145 (2001)

10. Preuner, G., Conrad, S., Schrefl, M.: View integration of behavior in object-oriented
databases. Data & Knowledge Engineering 36(2), 153–183 (2001)

11. Mendling, J., Simon, C.: Business Process Design by View Integration. In: Eder,
J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 55–64. Springer,
Heidelberg (2006)

12. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H.: Merging event-driven
process chains. In: Chung, S. (ed.) OTM 2008, Part I. LNCS, vol. 5331, pp. 418–426.
Springer, Heidelberg (2008)

13. Rosa, M.L., Dumas, M., Uba, R., Dijkman, R.M.: Merging business process models.
In: Meersman, R., Dillon, T.S., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp.
96–113. Springer, Heidelberg (2010)

A Foundational Approach for Managing Process Variability 281

14. van der Aalst, W.M.P.: Inheritance of business processes: A journey visiting four
notorious problems. In: Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri
Net Technology for Communication-Based Systems. LNCS, vol. 2472, pp. 383–408.
Springer, Heidelberg (2003)

15. van Glabbeek, R.J., Goltz, U.: Refinement of actions and equivalence notions for
concurrent systems. Acta Inf. 37(4/5), 229–327 (2001)

16. Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based on
behavioural profiles of process models. IEEE Transactions on Software Engineering
(2010) (to appear)

17. Kaschner, K., Wolf, K.: Set algebra for service behavior: Applications and construc-
tions. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS,
vol. 5701, pp. 193–210. Springer, Heidelberg (2009)

18. Gottschalk, F.: Configurable Process Models. PhD thesis, Eindhoven University of
Technology, The Netherlands (December 2009)

19. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S.M., Zave, P.: Matching
and merging of statecharts specifications. In: ICSE, pp. 54–64. IEEE Computer
Society, Los Alamitos (2007)

20. Dijkman, R.M., Dumas, M., Garćıa-Bañuelos, L., Käärik, R.: Aligning business pro-
cess models. In: EDOC, pp. 45–53. IEEE Computer Society, Los Alamitos (2009)

21. Weidlich, M., Dijkman, R.M., Mendling, J.: The iCoP framework: Identification of
correspondences between process models. In: Pernici, B. (ed.) CAiSE 2010. LNCS,
vol. 6051, pp. 483–498. Springer, Heidelberg (2010)

22. Vanhatalo, J., Völzer, H., Leymann, F., Moser, S.: Automatic workflow graph
refactoring and completion. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.)
ICSOC 2008. LNCS, vol. 5364, pp. 100–115. Springer, Heidelberg (2008)

23. Lohmann, N., Verbeek, E., Dijkman, R.M.: Petri net transformations for business
processes - a survey. TOPNOC 2, 46–63 (2009)

24. Aalst, W.: The application of Petri nets to workflow management. Journal of Cir-
cuits, Systems, and Computers 8(1), 21–66 (1998)

25. Aalst, W.: Workflow verification: Finding control-flow errors using petri-net-based
techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) BPM. LNCS,
vol. 1806, pp. 161–183. Springer, Heidelberg (2000)

26. Smirnov, S., Weidlich, M., Mendling, J.: Business process model abstraction based
on behavioral profiles. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.)
ICSOC 2010. LNCS, vol. 6470, pp. 1–16. Springer, Heidelberg (2010)

27. Curran, T.A., Keller, G., Ladd, A.: SAP R/3 Business Blueprint: Understanding
the Business Process Reference Model. Prentice-Hall, Englewood Cliffs (1997)

28. Mendling, J., Verbeek, H.M.W., van Dongen, B.F., van der Aalst, W.M.P., Neu-
mann, G.: Detection and prediction of errors in EPCs of the SAP reference model.
Data Knowl. Eng. 64(1), 312–329 (2008)

29. Decker, G., Mendling, J.: Process instantiation. Data Knowl. Eng. 68, 777–792
(2009)

30. van Glabbeek, R.: The linear time - brancing time spectrum I. The semantics of
concrete, sequential processes. In: Handbook of Process Algebra, pp. 3–99. Elsevier,
Amsterdam (2001)

31. Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of
business process models: Metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)

32. La Rosa, M., Dumas, M., ter Hofstede, A., Mendling, J.: Configurable multi-
perspective business process models. Inf. Syst. 36(2), 313–340 (2011)

33. Reijers, H., Mans, R., van der Toorn, R.: Improved model management with ag-
gregated business process models. Data Knowl. Eng. 68(2), 221–243 (2009)

282 M. Weidlich, J. Mendling, and M. Weske

34. Schnieders, A., Puhlmann, F.: Variability mechanisms in e-business process families.
LNI, vol. 85, pp. 583–601. GI (2006)

35. Pohl, K., Böckle, G., Van Der Linden, F.: Software product line engineering: foun-
dations, principles, and techniques. Springer New York Inc., Heidelberg (2005)

36. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Generic semantics of
feature diagrams. Computer Networks 51(2), 456–479 (2007)

37. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142
(2004)

38. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Efficient computation of
causal behavioural profiles using structural decomposition. In: Lilius, J., Penczek,
W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 63–83. Springer, Heidelberg
(2010)

Tangible Media in Process Modeling

– A Controlled Experiment

Alexander Luebbe and Mathias Weske

Hasso Plattner Institute, University of Potsdam, Germany
{alexander.luebbe,mathias.weske}@hpi.uni-potsdam.de

http://bpt.hpi.uni-potsdam.de

Abstract. In current practice, business processes modeling is done by
trained method experts. Domain experts are interviewed to elicit their pro-
cess information but typically not involved in actual modeling. We created
a tangible toolkit for process modeling to be used with domain experts. We
hypothesize that it results in more effective process elicitation.

This paper assesses nine aspects related to ”effective elicitation” in a
controlled experiment using questionnaires and video analysis. We com-
pare our approach to structured interviews in a repeated measurement
design. Subjects were 17 student clerks from a trade school.

We conclude that tangible modeling leads to more effective elicitation
through activation of participants and validation of results. In particular,
subjects take more time to think about their process and apply more
corrections to it. They also report to get insights into process modeling.

Keywords: process elicitation, tangible media, controlled experiment.

1 Introduction

In business process management graphically depicted process models serve as com-
munication vehicles about the working procedures of organizations. They are the
basis for a shared understanding and process improvements. Moreover, process
models are often used as requirements engineering artifacts for software imple-
mentation projects. Supporting processes with software offers great potential to
save time, enhance reliability and deliver standardized output [9]. At the same
time, misunderstandings in early stages lead to expensive change requests at later
stages of the software project. Thus, the quality of communication between stake-
holders is crucial to translate process requirements into software implementation.

In current practice, process models are created by trained method experts,
typically external consultants. They gather the required information in inter-
views or workshops with the stakeholders of the process [1]. Afterwards, the
method expert creates a business process model using notations such as EPC or
BPMN. Creation of process models is done with dedicated software.

Domain experts provide information upfront but are typically passive while
their knowledge is translated into a process model by the modeling expert. This
translation step undertaken by the modeling expert de-couples the domain expert

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 283–298, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

284 A. Luebbe and M. Weske

from the model. When asked for feedback, additional effort is needed to explain
the models meaning and to resolve misunderstandings. This paper addresses
this problem by introducing an approach to couple domain experts with process
models using tangible objects.

We have developed the tangible business process modeling (t.BPM) toolkit.
It is a transcribable set of plastic tiles that can be used to model processes on
a table. It reflects the iconography of the Business Process Model and Notation
(BPMN), see Fig. 1. It consists of shapes for activities, gateways, events and
data objects. Control flow and roles are drawn on the table. In our opinion, it
enables domain experts to actively shape their processes and allows the method
expert to act as a facilitator rather than a translator. For the scope of our work,
we consider domain experts to be the stakeholders of the project, i.e. clerks
or managers. The method expert is either an external process consultant or
an internal process expert who is trained in methods and notations to frame
knowledge in process-oriented projects.

Fig. 1. Same process: modeled with t.BPM (left) and in a software modeling tool
(right)

This paper reports on a controlled experiment in which we analyze one-to-one
interview situations with respect of the effectiveness of process elicitation with
or without t.BPM. It is a condensed version of a extensive technical report [15]
on this experiment. Two hypotheses were cut out and discussed in detail in a
separate publication [8]. Three more hypotheses were dropped for this paper as
they did not hold and don’t add value to the discussion here.

We review related research on process modeling in the next section. After-
wards, we explain the hypotheses, the experiment setup, the variables and the
analysis procedures used in Section 3. The experiment execution is discussed in
Section 4 and the data analysis is reported in Section 5. The results from the
analysis are interpreted in Section 6 and the paper is concluded in Section 7.

2 Related Work

Empirical research on process modeling is typically focussed on the models that
are produced with software tools and can be automatically analyzed, e.g. [5].
Only some research is turned towards the modelers in front of the screen and
the process of model creation.

Tangible Media in Process Modeling – A Controlled Experiment 285

As examples, Sedera et al. [21] used case study research and survey methods to
derive qualitatively a framework of factors that influence the success of process
modeling efforts. Amongst others, they found tooling and participation to be key
drivers. Participative model building was investigated by Persson [16]. She found
that it leads to enhanced model quality, more stakeholder consensus and more
commitment to results. The workshops are set up with a dedicated software
tool operator to channel participant knowledge and create a common picture
at the projector [23]. Rittgen developed software and guidance for modeling
workshops in which the participants themselves use the software to create the
model together [18]. Our approach uses intuitive tooling to remove software as
a barrier for individuals to participate.

For individuals, Recker found that modeler performance is influenced by the
complexity of the grammar [17], modeling experience and modeling background.
Controlled experiments with individuals have been conducted e.g. by Weber et
al. [24] to investigate the effect of events on process planing performance or by
Holschke [10] to investigate the influence of model granularity on reusability of
artifacts. To our best knowledge there is no controlled experiment that investi-
gates the presence of an intuitive mapping tool for business process modeling.

The setup and execution of our controlled experiment was guided by Creswell
[3] and Wohlin et al. [25]. We use literature from experimental software engineer-
ing [12] and statistics [6] to inform the structure of the paper and the level of
reporting.

3 Experiment Planning

We outline all planning activities in this section. We start by deriving our hy-
potheses, talk about setup, the actual measurement of the hypotheses and the
analysis procedures.

3.1 Goal and Hypotheses

The goal of this paper is to examine the effect of t.BPM on process elicitation
with individuals. Therefore we compare t.BPM to structured interviews which
are seen as the most effective requirements elicitation technique [4]. By ’effective’
we mean that it produces a ’desired or intended result’ [22]. In requirements en-
gineering, more information is typically indicating more effective elicitation. But
it was already shown that the presence of visual representations does not neces-
sarily elicit more information [4]. We argue that effective process elicitation has
more aspects such as user engagement and validated results. Fig. 2 visualizes how
we refine our model towards hypotheses based on the following considerations:

User engagement is widely recognized as a key factor for success of IT
projects [21]. Our approach uses tangible media which is seen as a key factor
for task engagement, e.g. in HCI research [11]. In those cases, engagement is
typically measured as the time spent on a problem, e.g. by Xie et al. [26]. Since
tangible modeling consumes time to handle the tool itself (e.g, writing on tiles),

286 A. Luebbe and M. Weske

fun

motivation

committed to
solution

corrections

insights into
process thinking

time spent talking

reviews

clear goal

effective
elicitation

engagement

validated
results

creates

time spent
on problem

activation

identification

time spent
thinking

feedback

competencies

creates

H1

H3

H4

H5

H6

H7

H8

H9

Xie et al 2008

Schaufeli 2002

Schneider 2007

Frederiks et. al. 2006

H2

Schaufeli 2002

Fig. 2. Effective elicitation decomposed into nine hypotheses

we split up the time into more fine granular observations. We hypothesize that
people will spent more time talking (H1) about the process but also spent more
time to think (H2) about what they do.

Schaufeli segments engagement into the dimensions activation and identifica-
tion [19]. While activation is already measured with the time spent on the task,
we additionally hypothesize that people have more fun (H3) as a further aspect
of activation. The dimension of identification inspires us to hypothesize that
people modeling with t.BPM will have more motivation (H4) to accomplish the
task and will be more committed to the solution(H5) that they shaped.

The second key aspect that we see for effective elicitation is a validated result.
Schneider [20] points out that validation cycles are a time consuming aspect
of requirements elicitation projects. He proposes to create a model during the
elicitation to trigger instant feedback and speedup validation. Validation cycles
are characterized by reviews and adjustments to the model. We hypothesize that
people will do more reviews (H6) when using t.BPM and apply more corrections
(H7) to their process model.

Finally, validation in model building depends on the competencies of the par-
ticipants. Frederiks [7] proposes that users validate models by deciding on the
significance of information. We propose that this depends on a clear understand-
ing of the modeling goal. We hypothesize that t.BPM provides a clearer goal (H8)
for the elicitation session. Frederiks also proposes that modeling experts guide
the validation by grammatical analysis, in other words their modeling knowledge.
We hypothesize that tangible modeling can create insights into process thinking
(H9) for the user and thereby support the validation process.

We note that the hypotheses are not a forced consequence of the identified
aspects and their building involved interpretation. We come back to this decom-
position when we assess the measurement validity in Section 5.3.

3.2 Experiment Setup and Sampling Strategy

We design the following experimental setup as illustrated in Fig. 3. Subjects get
first conditioned to a certain level of BPM understanding. Afterwards they are

Tangible Media in Process Modeling – A Controlled Experiment 287

BPM intro sample

interview

t.BPM modeling

repeated measurement design (random order)

conditioning experimental task data collection

questionnaire

Fig. 3. Experiment Setup for this study

randomly assigned to do either interviews or model with t.BPM. The topic is
randomly chosen between buying expensive equipment and running a call for
tender. Two persons operate the experiment. One guides the subjects in the
role of an interviewer, the other one observes the situation and ensures a stable
treatment throughout the experiment. They randomly swap roles.

During the experimental task data is collected using video recording. After-
wards, a questionnaire is to be filled in by the subjects. In every step of the
experiment, the time is tracked but time constrains are not imposed on subjects.
After the first run, subjects rerun the experimental task using the other method
and the other process to report on.

In other words, we use a randomized balanced single factor design with re-
peated measurements [25] also known as a within-subjects design. All subjects
get both treatments assigned in different order. All subjects do interviews and
process modeling. Finally, all subjects are rewarded for their participation with
a chocolate bar and a cinema voucher.

3.3 Experimental Material

We briefly outline and explain the printed material used in this experiment. The
original documents are appended to the technical report [15]. Like the experi-
ment, the experimental material is in German.

• BPM introduction: Two pages explaining the terms Business Process Man-
agement, Business Process Modeling and process models.

• Sample model: One page depicting the process of ”Making Pasta” and four
pragmatical hints on process modeling such as verb-object style labeling.

• 2x task sheet: One paragraph explaining the process to report on. It explicitly
sets the context, the start and the end-point of the process.

• Interview guide (for experimenter): Experimenters read out the same six
questions in each experimental task. The sheet also contains standardized
answers to potential questions from participants.

• Questionnaire: Items to be rated on a 5-point Likert scale. Details are ex-
plained in Section 3.5.

288 A. Luebbe and M. Weske

3.4 Participant Selection

The sample population used in research studies should be representatives of
the population to which the researchers wish to generalize [2]. Thus, we want
potential users of t.BPM to participate in the study. We got the opportunity to
run an on-site experiment at a trade school in Potsdam (Germany) with graduate
office and industrial clerk students. They all work in companies and study part
time at the trade school. Industrial clerks do planing, execution and controlling
of business activities. Office clerks do supporting activities in a department, e.g.
as office managers. Both groups might be questioned in process-oriented projects
by external consultants. Thus, they represent the target population that we like
to address with t.BPM.

3.5 Operationalized Hypotheses

We operationalize the hypotheses presented in Section 3.1 by means of a question-
naire and video analysis. We define each hypothesis as Hx and its null hypothesis
as H0x.

Questionnaire-Based Hypotheses (H3,H4,H5,H8,H9): Hypotheses which
rely on perceived measures are tested using a questionnaire. On a five-point Lik-
ert scale, subjects rate their agreement to, in summary, fifteen statements. Three
statements together represent one hypothesis. Two statements are formulated to-
wards the hypotheses, one is negatively formulated. The level of agreement is
mapped to the values [1..5] where 1 is no agreement and 5 is a strong agreement.
The values are aggregated (negative statement is turned around by calculating
6 − value) to retrieve the actual value to work with. The hypothesis holds if
there is a significant difference according to the method immediately used be-
fore, t.BPM or interviews. We test the following hypotheses:

• H3: Subjects report more fun in t.BPM sessions than in interviews.
H03: Subjects don’t more fun in t.BPM sessions.

• H4: Subjects report to be more motivated in t.BPM sessions than in inter-
views.
H04: Subjects don’t report to be more motivated in t.BPM sessions.

• H5: Subjects report to be more committed to the solution in t.BPM sessions
than in interviews.
H05: Subjects report to be more committed to the solution in t.BPM sessions.

• H8: Subjects report a clearer goal understanding in t.BPM sessions than in
interviews.
H08: Subjects don’t report a clearer goal understanding in t.BPM sessions.

• H9: Subjects report to gain more new insights in process understanding from
t.BPM sessions than from interviews.
H09: Subjects don’t report to gain more new insights in process understand-
ing from t.BPM sessions.

Video Hypotheses (H1,H2,H6,H7): We operationalize hypotheses related to
time and actions taken during the experimental task using video coding analysis.
We define the following coding schemes:

Tangible Media in Process Modeling – A Controlled Experiment 289

Time Slicing(H1,H2): The duration of the experimental task is sliced exclu-
sively to belong to one of five categories. The use of t.BPM (UsetBPM) such as
labeling and positioning the shapes without talking, TalktBPM/int is the time
people talk about the process, UseTalktBPM is talking and using t.BPM (to
avoid overlap between UsetBPM and TalktBPM). We define a code for the time
spent silent (SilencetBPM/int) when people do not talk and do not handle t.BPM.
Finally, ResttBPM/int captures remaining time such as interactions with the in-
terviewer. The same coding scheme is used for both experimental tasks. However,
Use and UseTalk do not apply for interviews as there is no t.BPM to use.

Corrections and Reviews(H6,H7): Both are coded as distinct events. We
code CorrectionstBPM/int if the context of an already explained process part is
explicitly changed. In t.BPM sessions this involves re-labeling or repositioning
that impacts the process model meaning. In interviews explicit revisions of pre-
viously stated information is considered a correction. The ReviewstBPM/int are
coded if subjects decide to recapitulate their process. This must involve talking
about the process as we cannot account possibly silent reviews. This scheme is
the same for both experimental tasks.

Using this coding scheme we operationalize the video hypotheses in the
following way:

• H1: Subjects talk more in t.BPM sessions than in interviews,
i.e. TalktBPM + UseTalktBPM > Talkint.
H01: Subjects don’t talk more in t.BPM sessions,
i.e. TalktBPM + UseTalktBPM �> Talkint.

• H2: Subjects are more silent in t.BPM sessions than in interviews,
i.e. Silencet.BPM > Silenceint

H02: Subjects are not more silent in t.BPM sessions,
i.e. Silencet.BPM �> Silenceint

• H6: Subjects make more reviews in t.BPM sessions than in interviews,
i.e. Reviewst.BPM > Reviewsint

H06: Subjects don’t make more reviews in t.BPM sessions,
i.e. Reviewst.BPM �> Reviewsint

• H7: Subjects make more corrections in t.BPM sessions than in interviews,
i.e. CorrectionstBPM > Correctionsint.
H07: Subjects don’t make more corrections in t.BPM sessions,
i.e. CorrectionstBPM �> Correctionsint.

3.6 Variables

The independent variable in this experiment setup is the method used for process
elicitation. Subjects do either a structured interview or the same structured
interview in the presence of t.BPM, the tangible modeling toolkit. The dependent
variables are formed from the data collected during and immediately after a
session. We use a notational convention for the data sets collected: intentionV/Qx.
As an example, talkingV 1 describes the set of talking times as measured with the
video analysis for hypothesis 1. Likewise, funQ3 is the set of all ratings collected
with the fun related questionnaire items for hypothesis 3.

290 A. Luebbe and M. Weske

3.7 Analysis Procedures

For hypothesis testing, we use a one-way repeated-measures ANOVA (analysis
of variances). It aims to determine the variation within subjects that is caused
by the method. Additionally, we carry out a dependent t-test with acceptance
level p<.05. It is used to get a different view on the data and to assess potentially
confounding factors that might have influenced the performance of the subjects.

To assess reliability of the questionnaire, we use Cronbach’s alpha. It deter-
mines the internal consistency of the three questionnaire items measuring one
hypothesis. The video data is analyzed by two independent reviewers. They com-
pare their results and (if needed) resolve conflicts by negotiation. Cohen’s Kappa
is used to determine the inter-rater agreement before negotiation to assess the
quality of our coding guidelines.

4 Experiment Execution and Data Collection

The experiment design was executed in December 2009 at a trade school in
Potsdam. Slots were offered to the students by short teasers given in the classes.
All subjects were at the age of nineteen to twenty-one. Students could choose
to swap one lecture unit for experiment participation (about 1h). We expected
to test industrial clerks only, but only ten volunteered. Thus, we opened up the
experiment to office clerks as well. We ended up testing 7 office clerks and 10
industrial clerks within the week.

Fig. 4. Photos from the experiment execution. Subject giving interview (left) and mod-
eling with t.BPM (right). Taped by the video cameras.

Each experiment run started with a short informal warm-up chat and after-
wards followed the design as outlined in Section 3.2. One experimenter ran the
experiment, the other one operated the cameras and observed the situation to
ensure a stable treatment. Fig. 4 depicts the two experimental tasks as taped by
the cameras. One video taping went wrong, leading to a sample size of sixteen
for the video coding hypotheses.

5 Data Analysis

We explain the analysis techniques used and the results found in this section.
We reason about the results in Section 6.

Tangible Media in Process Modeling – A Controlled Experiment 291

5.1 Descriptive Statistics

From seventeen students in two runs, we collected 34 questionnaires with 510
statements in total. The video analysis is based on 6,74 hours of video material.
One t.BPM session taping went wrong. That results in N=16 for all hypotheses
that rely on video analysis. Videos taken during t.BPM sessions took twenty
minutes (19.52) on average ranging from ten (10.25) to almost forty minutes
(38.98). On the other hand, interviews took about five minutes (5.42) on average
ranging from three and a half (3.53) to ten minutes (9.68) at most.

5.2 Data Set Preparation

The data was tested with the Kolmogorov-Smirnov and Shapiro-Wilk test and
is normally distributed. The original experiment evaluation involved two more
video codings and three more questionnaire items. The related hypotheses did
not hold and the data was therefore dropped for discussion in this paper due to
the limited space. Apart from that, no collected data was excluded from the set.

5.3 Measurement Reliability and Validity

According to Kirk and Miller the reliability is the extent to which ”a measure-
ment procedure yields the same answer however and whenever carried out” ([13],
p.19) while validity is the ”extent to which it gives the correct answer”.

We assess two aspects of measurement reliability. First we check the inter-rater
agreement for the video codings using Cohen’s kappa coeficient (κ). It compares
both video codings before the negotiation process. The inter-rater agreement
over all videos and all coding schemes is κ = .463 where 0.41 < κ < 0.60 is
a moderate agreement level [14]. Thus, we interpret our coding instructions as
reasonably reliable and the results as moderately reproducible.

Furthermore, the reliability of the questionnaire is measured using Cronbach’s
alpha (α). It determines the degree to which the items related to one hypothesis
coincide. In other words, whether they actually measure the same underlying
concept, e.g. fun. In the literature [6] α >.8 is suggested to be a good value for
questionnaires, while α >0.7 is still acceptable. All our variables had α > .8,
except for α(motivationQ4) = .702 and α(clarityQ8) = .687. We keep those
exceptions in mind but overall a high degree of reliability is indicated for the
questionnaire.

Validating whether our variables correctly describe ”effective elicitation” is
not directly possible. We use effective elicitation as an umbrella term for the
aspects of engagement and result validation. From there we derive variables to
measure these aspects. In [15] we conducted a principal component analysis for
validation. It is a technique to determine sets of strongly correlating variables
which are approximated with one factor, the principal component [6]. Ideally, the
variables would form two factors. Those that reflect the measures for engagement
and those measuring result validation.

Using orthogonal (varimax) rotation, our nine dependent variables split up to
three factors that do not match our hypothesis decomposition. Interestingly, all

292 A. Luebbe and M. Weske

questionnaire based variables aggregate to one large principal component. These
measures rely on self-perception of the subjects and therefore describe one side
of the coin. Moreover, the time for talkingV 1 and silenceV 2 strongly correlate
with the amount of reviewsV 6 done. It indicates the degree to which people were
involved with the task. Finally, correctionsV 7 builds a single factor. Overall, the
measurement validation calls for a more thought-out hypothesis decomposition
and clever selection of measurement instruments.

5.4 Hypothesis Testing

We use the repeated-measures ANOVA to determine the effect of our indepen-
dent variable (method) within each individual per dependent variable. In other
words, to what extend did the method influence the performance of each individ-
ual? Fig. 5 illustrates how our data is partitioned. From the overall variability
(SST), we identify the performance difference within participants (SSW) and
can further distinguish the variation caused by the treatment (SSM) and the
variation not explained by our treatment(SSR).

Other variation
(Error)

Between Participants Variation

Variation caused
by method

Within Participants Variation

Total Variation
SST = SSB + SSW

SSB SSW = SSM + SSR

SSM SSR

Fig. 5. Data partitioning for rep.-measures ANOVA. Drawing adopted from [6] p.463

The ratio of explained to unexplained variability in our dataset is described
by F = SSM

dfM
/SSR

dfR
. Where df are the degrees of freedom calculated from the

number of different methods (dfM=2-1=1) and the participant number (dfR=17-
1=16). The critical ratio F.05(dfM , dfR) is the value to pass before the result is
actually significant with an acceptance level of p<.05. For our variables collected
in questionnaires F.05(1, 16) > 4.49 is a significant result, for the video codings
we only have N=16 thus F.05(1, 15) > 4.54 is a significant ratio. In Table 1 we
sorted the variables according to descending F.05 ratios. We also report SSB,
SSM , SSR and η2 (eta squared). The value of η2 = SSM

SSW
describes the ratio of

variation within the subjects that can be explained by the treatment method. It
is an effect size measure.

Furthermore we conduct a dependent t-test to create a different view on the
data, see Table 2. It compares the groups doing t.BPM and interviews by their
mean scores (V =in minutes, Q=Likert scale [1..5]), the statistical significance
of this difference (one-tailed with acceptance level p<.05) and the confidence
interval. The upper and lower boundaries indicate that the real mean difference

Tangible Media in Process Modeling – A Controlled Experiment 293

Table 1. ANOVA result table based on dfM=1. Sorted by F.05 ratios

dependend Variable dfR SST SSB SSM SSR F.05 η2

correctionsV 7 15 119.22 42.72 57.78 18.72 46.30 0.76

silenceV 2 15 398.55 129.58 167.92 101.05 24.93 0.62

insightsQ9 16 18.24 14.9 0.84 2.50 5.36 0.25

reviewsV 6 15 38.01 23.00 3.13 11.88 3.95 0.21

talkingV 1 15 116.56 56.92 10.86 48.79 3.34 0.18

funQ3 16 18.31 15.03 0.55 2.73 3.24 0.17

commitmentQ5 16 24.68 20.90 0.33 3.45 1.52 0.09

clarityQ8 16 32.78 25.78 0.12 6.88 0.27 0.02

motivationQ4 16 10.90 9.46 0.05 1.39 0.23 0.04

Table 2. (one-tailed) t-test comparing groups by method. Ordered like Table 1

dependent Effect Size Significance Confidence Intervals
variable t.BPM interview lower boundary upper boundary

correctionsV 7 3.00 0.31 .000 1.85 3.53

silenceV 2 5.54 0.95 .000 2.63 6.54

insightsQ9 3.75 3.43 .017 0.03 0.60

reviewsV 6 0.81 0.19 .033 -.046 1.30

talkingV 1 4.65 3.49 .044 -0.19 2.52

funQ3 4.16 3.90 .046 -0.05 0.56

commitmentQ5 3.31 3.51 .118 -0.53 0.14

clarityQ8 3.37 3.49 .304 -0.59 0.36

motivationQ4 4.45 4.37 .225 -0.14 0.29

between the groups is in that range with 95 percent probability. It should not
include zero to be sure about the effect between the groups.

From both tables we see, that all parameters for correctionsV 7, silenceV 2 and
insightsQ9 meet scientific standards. For reviewsV 6, talkingV 1 and funQ3 we
see that they just missed acceptable standards in both tests. E.g. the difference
between the groups is significant in Table 2 but the confidence intervals do not
allow acceptance by rigor scientific standards. Finally, commitmentQ5, clarityQ8

and motivationQ4 did not hold.

5.5 Testing Potentially Influential Factors

We use a two-tailed dependent t-test to compare groups were two different influ-
ences were applied. For example, we had two processes to report on, two exper-
imenters, and two different educational groups. Furthermore, each subject goes
through the experimental task twice. Repetition effects might have influenced
the performance of the subjects.

While the experimenters had no significant influence on the dependent vari-
ables, we found that the second experimental task led to significantly more
clarityQ8 about the goal (1st=3.1, 2nd=3.77, p=.001) and more commitmentQ5

to the solution (1st=3.2, 2nd=3.63, p=.004).

294 A. Luebbe and M. Weske

Participants’ education had significant influence on clarityQ8 and insightsQ9.
In particular, office clerks reported to have a clearer goal understanding (o-
clerks=3.98, i-clerks=3.05, p=.031) and get more new insights into process think-
ing (o-clerks=4.05, i-clerks=3.30, p=.022). In all cases, the confidence intervals
left no doubt about the effect.

6 Interpretation of Results

We can identify three types of variables. Those that support their hypothesis,
those that do not support their hypothesis, and those that just missed rigor
scientific standards. We consider the latter ones as conditionally supportive and
argue that a slightly larger sample set would have made the difference.

This claim is based on the t-test in Table 2. It indicates a significant dif-
ference for talkingV 1,funQ3, and reviewsV 6 due to method. The confidence
intervals do not allow acceptance with scientific rigor. That means, we can-
not rule out with 95 percent probability that the actual effect size is zero.
For example, talkingV 1 time is significantly higher (p=.044) in t.BPM sessions
(t.BPM=4.65min, int=3.49min) but the confidence interval includes zero (lb=-
0.19min, ub=2.52min). In this case we miss rigor acceptable levels by twelve
seconds. The rest of the discussion is structured according to the hypothesis
decomposition in Fig. 2.

The engagement variables to measure activation indicate a positive effect
through method. Participants in t.BPM sessions did spend more time talking
(F0.5(1, 15) = 3.34, η2 = 0.18) and significantly more time thinking (F0.5(1, 15) =
24.93, η2 = 0.62) about their process. They also report more fun (F0.5(1, 16) =
3.24, η2 = 0.17) in t.BPM sessions. We reject H02 and argue that H01 and H03

might be rejected with a bigger sample size.
The engagement variables measuring the dimension of identification did not

hold. People did not report significantly more motivation or commitment to their
solution due to the method used. We assume a ceiling effect for motivationQ4.
Participants got off from class, plus a chocolate bar and a cinema voucher for com-
pensation. On a five point Likert scale we could not find a statistically relevant
difference in motivationQ4 due to the method applied (t.BPM=4.45, int=4.37).
For commitmentQ5 we found in Section 5.5 that it significantly raises with rep-
etition (p=.004). Thus, we assume that commitment (as operationalized by us)
indicates self-confidence that raises with due to the learning effect. We do neither
reject H04 nor H05.

The variables that operationalize the aspect of validated results show a mixed
picture. We note more reviews (F0.5(1, 15) = 3.95, η2 = 0.21) and significantly
more corrections (F0.5(1, 15) = 46.3, η2 = 0.76) due to the method. We reject
H07 and argue that H06 might be accepted with a sightly larger sample size. We
conclude that t.BPM provokes more feedback in process elicitation sessions.

The competencies required for result validation rely on perceived measures.
We see that people report significantly more insights into process thinking
(F0.5(1, 15) = 5.36, η2 = 0.25) in t.BPM sessions but the goal clarity does not

Tangible Media in Process Modeling – A Controlled Experiment 295

raise likewise (F0.5(1, 15) = 0.27, η2 = 0.02). In Section 5.5 we found that goal
clarity significantly raises with repetition (p=.001). We conclude that, similar to
commitment, the goal clarity is determined by learning rather than the method.
We reject H09 but not H08.

In summary, we interpret the t.BPM method to be engaging through activa-
tion of subjects. We can not reason on the concept of identification which was
determined by other effects in this experiment. The t.BPM method also leads
to validated results through more feedback on the model. The competencies
for result validation raise partially with the method and partially with learning
through repetition.

6.1 Validity Threats

The internal validity was addressed by the experiment design. In particular,
we use two processes and two experimenters assigned in random order. In Sec-
tion 5.5 we assess potentially confounding variables for their influence. While
experimenters and processes did not harm the results, we found learning effects
due to the repeated measurements design on clarityQ8 and commitmentQ5.

We found education to be influential on the reported clarityQ8 and insightsQ9.
In short, office clerks tend to report better scores while scoring worse in objective
tasks [8]. While group heterogeneity is a threat to the internal validity, it also
increases the external validity as both groups represent the population that we
address with our tool. This is as important as choosing domain processes rather
than artificial graphs to test with. We chose the domain processes in coordination
with the school to ensure all students are equally familiar with them. However,
we did not assess to which extend individuals are exposed to these processes in
their companies. The measurement instruments were tested in one pre-study
with ten computer science students. Small adjustments were made afterwards.
To ensure quality standards for data analysis, we used two independent coders
for the video analysis and we have split each questionnaire variable into three
items, one poled negatively. Finally, we provide a longer version of this paper
including more data and the experimental material in [15].

6.2 Generalizability of Findings

We think the findings about t.BPM can be generalized from the sample group
to the general population. Besides their age (19-21years) the students represent
exactly the group we address with the t.BPM tool.

We also think that the findings will hold for other tangible modeling ap-
proaches when compared to pure talking. Some aspects have also been reported
for visual mappings of requirements such as instant feedback [20]. However, a
different tests would be needed to determine exactly the aspects that lead to
activation of participants.

6.3 Lessons Learned

If we had to start over again, we would put more effort into the reliability of our
questionnaire items, in particular clarityQ8. But we also learned that people may

296 A. Luebbe and M. Weske

report a glorified self-image. Thus, we suggest to mix measurement instruments
for each measured concept. In other words, complement perceived measures with
external measures such as video codings. But we also had to learn that rigor video
analysis is the most time-consuming evaluation task.

Besides all that, we think that the compact on-site experiment was a good
idea. Instead of spreading it out over various weeks with changing conditions,
we could collect the data in a compact week with a stable setup. Moreover, the
two experimenters to review each others work did ensure a stable setup.

7 Conclusion

This paper reports on a controlled experiment which was conducted with 17
student clerks at a trade school. We investigate the process elicitation method
as an independent variable. Subjects did structured interviews and t.BPM in
a repeated measurement design. We claim that t.BPM enables more efficient
process elicitation. We argue that efficient elicitation is not about the amount
of information but about user engagement and validated results. We decompose
these aspects into nine operationalized hypotheses. Three hypotheses did hold.
Three more might hold with a larger sample set.

The results show strong support for user engagement through activation of
participants and validated results through more feedback from participants. We
think that these findings are reproducible with other tangible system modeling
approaches when compared with interviews.

Our findings are limited by the measurement instruments and the small sam-
ple size (N=17). A future experiment with a larger group and better tested
instruments might re-enforce our findings and also support H1,H3 and H6. In
other words, it would extend our rigor findings to more talking, more fun and
more reviews with tangible media. For now we only showed significantly more
thinking time (H2), more corrections (H7) and more insights into modeling (H9)
when using tangible media instead of interviews.

Acknowledgements

We are grateful to the students that helped setting up, running, and evaluating
this experiment, namely Karin Telschow, Markus Güntert and Carlotta Mayolo.
We’d also like to thank the reviewers for their valuable feedback. It led to a
substantial revision of Sections 3.1 and 6.

References

1. Byrd, T., Cossick, K., Zmud, R.: A synthesis of research on requirements analysis
and knowledge acquisition techniques. MIS Quarterly, 117–138 (1992)

2. Cooper, D., Schindler, P.: Business Research Methods, 10th edn. McGraw-Hill
Higher Education, New York (2008)

Tangible Media in Process Modeling – A Controlled Experiment 297

3. Creswell, J.W.: Research design: Qualitative, quantitative, and mixed methods
approaches. Sage Pubns, Thousand Oaks (2008)

4. Davis, A., Dieste, O., Hickey, A., Juristo, N., Moreno, A.: Effectiveness of require-
ments elicitation techniques: Empirical results derived from a systematic review.
In: 14th IEEE International Conference Requirements Engineering, pp. 179–188
(2006)

5. van Dongen, B., van der Aalst, W., Verbeek, H.: Verification of ePCs: Using re-
duction rules and petri nets. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005.
LNCS, vol. 3520, pp. 372–386. Springer, Heidelberg (2005)

6. Field, A.: Discovering statistics using SPSS. SAGE publications Ltd, Thousand
Oaks (2009)

7. Frederiks, P.J.M., Van der Weide, T.P.: Information modeling: the process and the
required competencies of its participants. Data & Knowledge Engineering 58(1),
4–20 (2006)

8. Grosskopf, A., Weske, M.: On business process model reviews. In: CAiSE 2010, pp.
31–42. Springer, Heidelberg (2010)

9. Hammer, M., Champy, J.: Reengineering the corporation: A manifesto for business
revolution. Collins Business (2003)

10. Holschke, O., Rake, J., Levina, O.: Granularity as a cognitive factor in the effective-
ness of business process model reuse. In: Dayal, U., Eder, J., Koehler, J., Reijers,
H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 245–260. Springer, Heidelberg (2009)

11. Ishii, H., Ullmer, B.: Tangible bits: towards seamless interfaces between people,
bits and atoms. In: SIGCHI, pp. 234–241. ACM, New York (1997)

12. Jedlitschka, A., Ciolkowski, M., Pfahl, D.: Reporting experiments in software engi-
neering. Guide to Advanced Empirical Software Engineering, 201–228 (2008)

13. Kirk, J., Miller, M.: Reliability and validity in qualitative research. Sage Publica-
tions, Inc., Newbury Park (1986)

14. Landis, J., Koch, G.: The measurement of observer agreement for categorical data.
Biometrics 33(1), 159–174 (1977)

15. Luebbe, A., Weske, M.: The effect of tangible media on individuals in business
process modeling - a controlled experiment. Tech. Rep. 41, Hasso-Plattner-Institute
for IT Systems Engineering (2010),
http://bpt.hpi.uni-potsdam.de/Public/AlexanderGrosskopf

16. Persson, A.: Enterprise modelling in practice: situational factors and their influence
on adopting a participative approach. Ph.D. thesis, Stockholm University (2001)

17. Recker, J., Rosemann, M.: The measurement of perceived ontological deficiencies
of conceptual modeling grammars. Data & Knowledge Engineering (2010)

18. Rittgen, P.: Success factors of e-collaboration in business process modeling. In:
Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 24–37. Springer, Heidelberg
(2010)

19. Schaufeli, W., Salanova, M., González-Romá, V., Bakker, A.: The measurement
of engagement and burnout: A two sample confirmatory factor analytic approach.
Journal of Happiness Studies 3(1), 71–92 (2002)

20. Schneider, K.: Generating Fast Feedback in Requirements Elicitation. In: Sawyer,
P., Heymans, P. (eds.) REFSQ 2007. LNCS, vol. 4542, pp. 160–174. Springer, Hei-
delberg (2007)

21. Sedera, W., Gable, G., Rosemann, M., Smyth, R.: A success model for business
process modeling: findings from a multiple case study. In: PACIS, Shanghai (2004)

22. Stevenson, A.: Oxford Dictionary of English, vol. 24. Oxford University Press,
Oxford (2010)

http://bpt.hpi.uni-potsdam.de/Public/AlexanderGrosskopf

298 A. Luebbe and M. Weske

23. Stirna, J., Persson, A., Sandkuhl, K.: Participative Enterprise Modeling: Expe-
riences and Recommendations. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.)
CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 546–560. Springer, Heidelberg
(2007)

24. Weber, B., Pinggera, J., Zugal, S., Wild, W.: Handling events during business
process execution: An empirical test. In: ER-POIS at CAISE, pp. 19–30 (2010)

25. Wohlin, C., Runeson, P., Höst, M.: Experimentation in software engineering: an
introduction. Springer, Netherlands (2000)

26. Xie, L., Antle, A.N., Motamedi, N.: Are tangibles more fun?: comparing children’s
enjoyment and engagement using physical, graphical and tangible user interfaces.
In: Proceedings of TEI, pp. 191–198. ACM, New York (2008)

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 299–313, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Experiences of Using Different Communication Styles in
Business Process Support Systems with the Shared

Spaces Architecture

Ilia Bider1,2, Paul Johannesson2, and Rainer Schmidt3

1 IbisSoft ab/SU, Sweden
ilia@ibissoft.se

2 SU, Sweden
pajo@dsv.su.se

3 HTW-Aalen, Germany
Rainer.Schmidt@htw-aalen.de

Abstract. Though the concept of shared spaces had been known for quite a
while, it did not become popular until the arrival of the internet and social
software. Via this way, the concept has penetrated other IT-areas, including the
area of Business Process Management, which brings about the needs of
investigating the usage of shared spaces in connection to Business Process
Support (BPS). The first part of this experience report describes the authors'
experience of building, introducing in the operational practice, and using BPS
systems based on the shared spaces architecture. It presents three examples of
applications aimed at supporting collaboration/communication in the frame of
business process instances. These systems use three different mechanisms
for arranging communication/collaboration. The first system is based on
collaborative planning; the second one is based on the specialized structure of
the shared spaces, and the third one on changes in the status of the processes.
The second part of the paper is devoted to the analysis of the examples from the
first part in order to create a preliminary taxonomy of communication styles in
systems with shared spaces architecture. For this end, the authors identified
three binary parameters that characterize the way invitations to visit a shared
space are issued. These parameters can be used for analyzing communication
capabilities of BPS systems, as well as other types of computer systems, with
the shared spaces architecture.

Keywords: business process, groupware, communication, shared space.

1 Introduction

The concept of shared spaces is well known [1][2] and has become widely used in the
Internet era in connection with advances of social software. A blog, personal journal,
and even a photo album are all examples of shared spaces, as they allow sharing
information.

Now, shared spaces begin to penetrate the business world as a new generation of
workers, brought up with computers, arrives to the labor market. Most of them are

300 I. Bider, P. Johannesson, and R. Schmidt

digital natives [3] fully integrated into a multitude of social networks and continuously
using shared spaces. The trend of using shared spaces for communication concerns the
area of business processes in the highest degree [4].

We believe that proper employment of shared spaces in BPS systems requires good
understanding of how such spaces enable communication and what kind of
advantages and limitations they have. Therefore, we undertake an attempt to identify
important styles of communication via shared spaces.

The goal of this paper is twofold. The first sub-goal is to present our experience of
building, introducing in the operational practice, and using BPS systems based on the
shared spaces architecture. The second sub-goal is to analyze this experience in order
to create a preliminary taxonomy of various communication styles in systems with
shared spaces architecture.

In order to create a proper foundation for the later considerations, we start with
reviewing the role of shared spaces in BPS systems (Section 2). We also explain how
a system that employs shared spaces differs from a traditional business process
support system based on workflow.

The first sub-goal of the paper is achieved by discussing three examples of
applications aimed at supporting collaboration/communication in the frame of
business process instances (Sections 3-5). All three systems have been built based on
the state-oriented view on business processes [5], and all of them use shared spaces to
facilitate communication between process participants. The systems employ three
different ways of using shared spaces for communication. The first system uses
collaborative planning. In the second one, communication is based on the specialized
structure of shared spaces. In the third one, the communication is based on changes in
the status of processes.

The way of using shared spaces in each of the systems is not arbitrary but reflects
the types of business processes each system supports. In the first case, the system
supports loosely-structured processes that require much ad-hoc communication
between people engaged in them. In the second case, the system supports relatively
structured processes. In the third case, the system supports simple real-time processes
with high requirements on the speed of communication.

The second sub-goal of the paper is achieved by analyzing the differences between
the systems in respect of how the invitations to visit shared spaces are issued (Section
6). Based on this analysis, three binary parameters are introduced to differentiate
communication styles in systems with shared spaces architecture.

In the last part of the paper, we give a short overview of related works (Section 7),
and discuss our experience and draw plans for the future research based on it (Section
8). As the paper is an experience report, in the “Related works” section, we pay
special consideration to list our own works that explain the theoretical background of
our experience as well as give the possibility for the reader to learn about some parts
of our experience in more details.

2 A Role of Shared Spaces in BPS Systems

There exist numerous definitions of what a business process is, each of them focusing
on a particular property of business processes. For the sake of this paper, we take the
following view on business processes:

 Experiences of Using Different Communication Styles in BPS Systems 301

“A business process is a way of combining efforts of several people for reaching a
(well or not so well defined) goal”.

Accepting this view, we consider only those business processes in which people
play a role of the driving force behind the processes, leaving totally automated
processes, and processes where people are used just for well-defined operations aside.
Such processes require extensive communication between the participants of each
process instance in order to reach the operational goal of the instance.

By a BPS system, we understand a system that helps process participants to run their
process instances according to a process (type) definition. From the communication
point of view, a BPS system with shared spaces differs from a pure workflow system by
the kind of “information logistics” the system employs for providing process
participants with instructions and information needed to complete their tasks in the
frame of a process instance [6]. The workflow-type BPS systems use a so-called
“conveyor belt” logistics [6] in which instructions, and information that is needed are
sent to the “next in-line”.

A BPS system with shared spaces employs a so-called “construction site”
information logistics [6]. Such a system has no explicit data/information flow. A
shared information space is created for each process instance to hold all information
that is relevant to the process instance, e.g., documents received and sent, information
on tasks planned and completed, reports on results achieved when completing these
tasks, etc. All this information is easily available each time a process participant is
invited to visit this space and complete some task related to it. Thus, a shared space is
similar to a construction site where different kinds of workers are invited to complete
their own tasks and leave the rest to the others.

The functioning of a BPS system based on shared spaces can be described in the
following way:

− When a new process instance starts, a new shared space is created. It gets a unique
name, an owner (responsible for the instance), and possibly, an instance team.

− When the process instance reaches its operational goal, the shared space is closed
(sealed), but remains accessible for reading (an instance goes to the archive).

− A person who is assigned a task in the frame of the process instance “goes” to this
instance's shared space to get information he/she needs for completing the task and
reports the results achieved in the same space.

The “construction site” information logistics via shared spaces has certain advantages
compared to the traditional communication schemes for those business processes in
which instances can vary considerably from one to another. In such a situation, it is
difficult to decide what and how much information needs to be sent to a person
completing a certain task. When a person is invited to visit a certain part of a shared
space, he/she oversees not only this local part, but also everything adjacent to it, and
can use this additional information when completing his/her task without being
explicitly told to do so. In other words, if using a traditional communication scheme
you send one document to a person, and this is all he/she gets. If you send a person to
work on a certain document placed in some corner of a shared space, he/she can
access not only this document, but also other documents in this corner, or anywhere
else in the whole shared space. More detailed justification of using shared spaces in
BPS systems from the business point of view can be found in [7].

302 I. Bider, P. Johannesson, and R. Schmidt

For the shared spaces technique to work efficiently in a BPS system, two
conditions should be fulfilled:

• Shared spaces are properly structured. In a normal business environment, a person
participates in many process instances, and, often, in parallel. For the shared space
technique to work efficiently, he/she needs to understand the situation in a shared
space he/she is visiting at a glance, and quickly find all information related to the
task at hand.

• Invitations should give process participants a clear understanding on why they
have been invited and what they are expected to do in each particular shared space.

Note that invitations to visit shared spaces in BPS systems have a different meaning
from that in social software. In the latter, invitations are not binding; a person invited
may not visit the shared space at all. In a BPS system, however, following an
invitation is mandatory or at least strongly recommended; otherwise the whole
communication /collaboration scheme will break down.

Naturally, getting an invitation does not constitute the only reason why a person
would like to visit a shared space. He/she can do it in an arbitrary manner, or because
some event happened in the frame of a process instance that is of value to be
registered in its shared space.

In the next three sections, we will introduce three examples of BPS systems that
use the principles outlined in this section.

3 A System with Collaborative Planning

3.1 Description

A system called ProBis was developed based on ideas from [5] for a Swedish interest
organization (The Swedish Union of Tenants) in 2003-2006 as described in [8][9]. A
shared space in ProBis is presented to the end-user as a window divided in several
areas by using the tab dialogues technique, see Fig. 1.

Some areas of the window are standard, i.e. independent from the type of the
business process; others are specific for each process type supported by the system.
Standard areas comprise such attributes and links as:

• Name and informal description of a process instance
• Links to the owner, and, possibly, the process team
• Links to the relevant documents, created inside the organization, and received from

the outside

The standard part of ProBis shared space includes also the task area (tab) that contains
two lists, as in Fig. 1. The to-do list (to the left in Fig. 1) includes tasks planned for
the given process instance; the done list (to the right in Fig.1) includes tasks
completed in the frame of it. A planned task defines what and when something should
be done in the frame of the process instance, as well as who should do it. All tasks
planned for a given person from all process instances are shown in the end-user’s
personal calendar. From the calendar, the user can go to any shared space for which a
task is assigned to him/her in order to inspect, change, or execute this task.

 Experiences of Using Different Communication Styles in BPS Systems 303

Fig. 1. View on the ProBis shared space

Fig. 2. Assigning a task to another user in ProBis

304 I. Bider, P. Johannesson, and R. Schmidt

The only way of communicating via ProBis is by assigning a task to the
communication partner. This is done by filling a form as in Fig. 2. One chooses the task
from the list, assigns it to another user of the system, adds a textual description and
some parameters, for example a document that is already registered in the process
instance space. The task list is configurable and can be adjusted for each installation and
process type.

To further facilitate communication, several more advanced features were added to
ProBis. For example, there is a possibility to plan the same task to many users.
Additional users can be added from the list with the “+” button (See Fig. 2), or can be
fetched from a predefined group. Each user gets its own task in the calendar and will
need to go and complete it independently of other users. Multi-user planning gives a
possibility to easily raise attention of several people to some event that has happened
in the process instance. Another advanced feature is the “Returned receipt” check-box
which ensures that the planner gets a special “Attention” task planned as soon as the
task he/she has assigned to somebody else has been completed.

3.2 Experience of Use

Based on our experience with ProBis, collaborative planning provides a very efficient
way of communication/collaboration in the frame of business process instances. It is
especially useful for:

• loosely structured processes, i.e. processes for which there are no predefined ways
for handling each instance.

• processes driven by a professional team that knows how to use the system quite
well.

There are, however, two drawbacks with the approach when using it for more
structured processes that involve occasional users:

• The dynamic aspect of business processes is poorly visualized. One needs to go
through the done-list and browse the history to get an understanding of how a
given process instance is developing in time.

• Using the system puts some requirements on the user, as he/she needs to
understand the general ideas built in the system and get some training. This means
that the system is not very friendly for newcomers and casual users. Planning as a
way of communication causes the major problem here, as it is considered to be
counter-intuitive. Detailed planning is not as widespread in business life as one can
imagine.

4 A System with Specialized Structure of Shared Spaces

4.1 Description

In a system with a specialized structure, shared spaces are structured according to the
process map designed for a particular process type. In our case, such a map is
designed with a tool called iPB [10]. Several systems have been built with the help of
this tool. The biggest one is employed in the social office of one of the Swedish

 Experiences of Using Different Communication Styles in BPS Systems 305

municipalities (municipality of Jönköping), where it helps to conduct investigations
on suspected child abuse.

A process map in iPB is a drawing that consists of boxes placed in some order, see
Fig. 3. Each box represents a step of the process, and the name of the step appears
inside the box (no lines or connecters between the boxes). A textual description is
attached to each step that explains the work to be done. Each process instance gets its
own copy of the map that serves as a table of contents for its shared space, see Fig. 3.
The map is used for multiple purposes: as an overview of the case, guidelines for
handling the case, and a menu for navigating inside the shared space. The user
navigates through the shared space by clicking on the boxes of the steps with which
he/she wants to work. Not all boxes are clickable at the beginning; those that are
grayed require that one or several previous steps are dealt with first, see Fig. 3. These
constraints are defined with the help of so-called business rules.

Fig. 3. A map used for structuring the shared space of a process instance

A click on a step box redirects the end-user to a web-form that assists him in
completing the step. The form contains text fields, option menus and radio-buttons to
make choices, checkboxes, as well as more complex fields. The form may also
include “static” texts that explain what should be done before one can fill some fields.

From the shared spaces architecture point of view, the iPB solution can be
interpreted as follows. The total process instance shared space is divided into a
number of subspaces called process steps. The steps are graphically represented to the
end-users as boxes. Subspaces may or may not intersect. The structure of a step
subspace is represented to the end-users as a form to fill. Intersecting subspaces
means that forms attached to different steps may contain the same field(s). Usually, in
this case, the intersecting fields can be changed only in one form; they are made read-
only in the second one.

The progress in filling the step forms is reflected in the map attached to the shared
space via steps coloring. A gray box means that the step form has not been filled and
cannot be filled for the moment. A white box means that the step form is empty but can
be filled. A step with a half-filled form gets the green color, and additional information
about when the work on it has been started, and who started it. A step with a fully
filled form gets the blue color, and additional information about the finish date.

The primary way of “forcing” a person to visit a particular shared space in iPB is
by assigning him/her to become an owner/co-owner of some step. Such an assignment
results in an email message being delivered to this person, and the process to appear

306 I. Bider, P. Johannesson, and R. Schmidt

in his/her list of “My processes”. When visiting a process shared space, a person can
see directly on the map what step(s) are assigned to him, see a green box in Fig. 3.

4.2 Experience of Use

The communication possibilities in an iPB-based system may seem to be too limited.
The only way of attracting a given person's attention to visit a particular shared space
is by assigning him/her to be an owner/co-owner of some step in the given process
instance. No clarification or explanation is given when making the assignment. This
should be figured out by the person him/herself from the state of the process, i.e. from
the partly filled step form.

However, in practice, this communication mechanism works quite well for
relatively structured processes for which it is possible to identify steps. A system of
this kind is quite easy to introduce in operational practice, which cannot be said about
systems with a collaborative planning style. The communication works well even
when participants do not know each other personally.

To extend communication possibilities, we added a rudimentary planning scheme
similar to ProBis. In the systems currently introduced, however, this additional
mechanism is not being widely used.

5 A System with Communication Based on Status Changes

5.1 Description

The system called eForm was developed for a large Swedish call center (Eniro
118118) to solve the daily staffing problems that can be defined as follows [11]. The
scheduling software is run once per month. Staffing requirements may change from
day to day (if not from hour to hour) due to changing volumes of inbound calls. In
addition, unscheduled absences due to illness, traffic jams, snowfall, etc. make it
impossible to totally rely on the pre-generated schedule even when the call volume
follows the established pattern. Corrections in the schedule are constantly made to
cope with fluctuations in volumes of calls and the number of agents not appearing for
work. More agents need to be called in to deal with an increase in the volume of calls
or increase in the number of absentees. Alternatively, fewer agents are required when
the call volume decreases, or the sick rate due to a seasonable epidemics diminishes.

Effective dealing with fluctuations in the staffing level at a call center requires fast
communication channels between agents and managers responsible for operative
staffing of the call center. eForm is a web 2.0 system providing efficient channels of
communication between three different categories of workers at a call center:

• Central staffing center, aka Control Tower, or just Tower
• Agents
• Coaches (managers)

The system works according to a simple scheme: a communication process starts when
one of the participants fills an electronic form that serves as a shared space for this
process. This form gets the status New and immediately appears in the list watched by

 Experiences of Using Different Communication Styles in BPS Systems 307

another communication partner. The latter processes the form and sets its status to
Finished or changes its status to something else that requires further processing, for
example, Question. In the former case, the form disappears from the actual list; but it
can still be found through search in the archive (if needed). In the second case, the
form disappears from the actual list of this communication partner and appears in the
list of some other communication partner, e.g. the one who originally filled the form.

Let us demonstrate how this scheme works on a particular example. Unscheduled
absences are reported by agents to their coaches via direct phone calls. A coach
communicates this information to the Tower via eForm with a couple of touches of
the keyboard by selecting the agent’s name, time, and reason for an unscheduled
absence. While filling the form, the coach has access to the information about
previous unscheduled absences of the same agent. Thus, he/she has a possibility to see
a pattern of absences and discuss the matter with the agent. The coach has also a
possibility to promptly fill an absence form that concerns more than one agent, for
example, in case of an unscheduled training session.

As soon as the coach saves the form, it appears in the absentees list at the Tower. A
tower worker makes corrections to the schedule accordingly, after which the form
disappears from the actual list (but remains accessible via the archive search). In case
of any uncertainty, the Tower quickly returns the form to the coach with a comment
by changing its status to Questioned. The coach corrects the form, after which it again
appears in the Tower’s absentees list.

5.2 Experience of Use

In eForm, there are no explicit “calls” to visit a shared space. The form appears in the
list of one of the participating partners dependent on the state of the process, more
exactly on the value of one or more fields of the form. From our experience, this
mechanism creates a very efficient communication channel, and the system is easy to
learn, and introduce in operational practice. This is an important factor in the above
business case, because the turnover of agents in a typical call center is, usually, quite
high. The communication mechanism works very well for simple real-time processes
with strong requirements on the speed of communication.

6 Identifying Communication Styles

Let us investigate differences between the three BPS systems types discussed in
Sections 3-5. First of all, there is a difference in the structure of shared spaces. In
ProBis – a shared space has a generalized, logical structure. Similar types of objects
are gathered on the same tab. For example, there is a separate tab for documents, a
separate tab for planned and completed tasks, etc. (see Fig. 1). This reflects the area of
ProBis usage – loosely structured processes for which it is not possible to create a
more exact structure. In iPB, a shared space is structured in steps according to the
“dynamics” of a particular business process type (see Fig. 4). In eForm, shared spaces
are quite simple and do not require complex structuring.

Secondly, these three systems implement, on the surface, completely different
mechanisms of using shared spaces to facilitate communication/collaboration. ProBis
uses collaborative planning. An iPB- based application uses assignment of owners/

308 I. Bider, P. Johannesson, and R. Schmidt

co-owners to process steps. eForm uses a list management system to attract the
attention of the end-users.

To compare the above mechanisms, we need to abstract from the technical details
and consider each mechanism as a way of issuing invitations to visit a shared space.
Then, the three mechanisms described in the previous sections can be interpreted as
follows.

In ProBis, a task planned for a person represents a manually issued invitation for
him/her to visit the process instance shared space with detailed instructions of what
he/she is supposed to do there (whom to call, what document to read, etc.). In an iPB-
based application, assignment to be owner/co-owner of a step represents a manually
issued invitation for this person to visit a particular part of the process instance shared
space (a form corresponding to the given step) without any instructions on what
he/she is supposed to do there. In eForm, a form appearing in the given person's
process list represents an automatically issued invitation to visit the process instance
shared space without any instructions on what he/she is supposed to do there.

Generalizing the above, we suggest the following three parameters with binary
values for identifying communication styles:

• Issuing technique (Manual/Automatic) – an invitation is issued manually by one of
the process participants, or automatically by a system based on the state of the
shared space.

• Invitation scope (Global/Localized) – a person is invited to visit the whole shared
space or a particular part of it.

• Invitation instructiveness (Non-instructive/Instructive) – a person should
him/herself figure out what to do in the shared space based on the state in which
he/she finds it when he/she comes there, or an invitation may include instructions
on what a person is supposed to do there.

Instructiveness

Issuing
Technique

Scope

Basic
Style

Instructive

Localized

Automatic

Pure styles

Mixed styles

Fig. 4. Communication Styles

 Experiences of Using Different Communication Styles in BPS Systems 309

The above parameters formally give eight classes that we call communication styles.
Let us consider Automatic as a more advanced feature than Manual, Localized as a
more advanced feature than Global, and Instructive as a more advanced feature than
Non-instructive. Then we can present the classification as a cube in a three-
dimensional space where a “basic” style Manual/Global/Non-instructive constitutes a
zero point, see Fig. 4.

Table 1 below presents styles employed in the systems discussed in this paper.
As we can see, each system employs a style that includes only one advanced feature,
which means that all styles employed in the systems lie on the axes of the cube in
Fig. 4. We call such styles “pure” communication styles, as an opposite to other non-
basic styles, which we call “mixed” styles.

Table 1. Communication styles employed in the systems discussed

 Issuing technique Invitation scope Invitation
instructiveness

Collaborative
planning (ProBis)

Manual Global Instructive

Specialized
structure (iPB)

Manual Localized Non-instructive

Status change
(eForm)

Automatic Global Non-instructive

In Section 2, we stressed that an invitation to visit a particular shared space should

give the process participant a clear understanding on why he/she has been invited and
what he/she is expected to do there. In the case of eForm, shared spaces are simply
structured, thus neither localization nor instructiveness is needed for the invited
person to understand what he/she is supposed to do.

Both ProBis and iPB allow quite complicated structures of shared spaces, thus
some help is needed to find out what is required from the invited person. In ProBis,
this help is provided by instructiveness, which compensates the absence of
localization. In iPB, this help is provided by localization, which compensates the
absence of instructiveness.

As we already mentioned, the systems discussed in this paper implement “pure”
communication styles (only one advanced feature is present in each of them). It does
not mean that a mixture is not possible or useful, but only that one advanced feature is
sufficient for certain practical purposes as outlined in Sections 3.2, 4.2 and 5.2.

7 Related Works

Works on which the current paper is based are as follows. The earliest attempt to
systematically build a BPS system based on the principles outlined in Section 2
(shared spaces along with collaborative and automated planning) was made in 1989-
1990. The project, called “DealDriver”, is described in [12], [13]. The ideas from
the DealDriver project were first presented to the research audience in [14]. More
detailed introduction into the state-oriented view on business processes that has been

310 I. Bider, P. Johannesson, and R. Schmidt

developed in connection to the DealDriver project can be found in [5]. For an
overview of the practical experience in BPS systems development up to the time of
building the first version of ProBis see [8]. The high-level theory underlying the state-
oriented view on business processes is presented in [15][16]. Both DealDriver and
ProBis belong to the category of case-handling systems later identified in [17].

Other research works that directly or indirectly belong to the topic of this paper are as
follows. The concept of shared spaces is not a new one. It has been widely used in
research literature for some time, see, for example, [1]. The simultaneous integration of
face to face communication and the exchange of graphical information has been
introduced by [2]. The integration of video and audio is proposed by [18]. Embodiments
are used to enhance virtual shared spaces in [19]. In [20] media spaces are differentiated
from collaborative virtual environments and spatial video conferences.

Using shared spaces for business collaboration was discussed in many research
works. A task-oriented collaboration comparable to our collaborative planning can be
found in [21]. The new media model introduced in [22] shows tight relationships to
shared spaces. Media are spaces where agents can collect and represent information.
Roles, describing rights and obligations determine the behavior of agents. In
PRODNET [23], a federated database architecture has been used to support shared
spaces. Gaia – a middleware infrastructure to enable spaces for cooperatively solving
tasks - is presented in [24]. An introduction on how to manage multiple and
collaborative tasks is give in [25]. An early system that incorporates some features of
ProBis and iPB is OASIS [26]. It supports its users to cooperate for achieving a
common goal.

8 Discussion and Future Plans

As was stated in the introduction, the goal of this paper was twofold. The first sub-goal
was to present our experience in building domain-specific applications for supporting
communication/collaboration in the frame of business process instances. This sub-goal
was fulfilled by presenting examples of three systems. Each example contains the
description of a system and the review of experience of its usage. In the latter, we
outline types of business contexts for which each of the systems is best suited.

As any experience, ours is unique, though some features found in our systems can
be found in others, as well. The main characteristic of our approach to building BPS
system that differentiate us from others is that all our systems are systematically being
built based on the principles of shared spaces architecture outlined in Section 2, and
the state-oriented view on business processes from [7]. We are not aware of any other
attempts of creating a line of on the surface dissimilar systems that implement these
architectural and theoretical principles. In addition, our second example represents not
a system, but a tool that can be (and already is) used by others for building BPS
systems with the shared spaces architecture. The approach accepted for building BPS
system implemented in iPB, as far as we know, is unique.

The second sub-goal was to introduce a taxonomy of communication styles for
collaborative systems with shared spaces architecture. This was done based on the
analysis of our experience and resulted in the introduction of three parameters with
binary values: issuing technique, scope, and instructiveness.

 Experiences of Using Different Communication Styles in BPS Systems 311

The parameters proposed for the style identification can be applied for the analysis
of publicly and commercially available systems that employ shared spaces for
communication/collaboration. As an example, let us consider Google Sites [27],
which is a shared spaces system created in the context of Google's E-Mail system
Gmail [28]. A Google site is a tree-structured collection of pages that can be edited
without an external tool using a browser-based interface. Other users may be invited
to collaborate as a site owner, editor or reader. Furthermore, it is possible to share a
site with everyone on the web. In the enterprise edition of Google Sites, it is possible
to give read or write access to all users of the enterprise’s domain. Google Calendar is
used to delegate tasks. This can be done if the addressee of the delegation shares
his/her calendar with the delegating person. The delegating person can create tasks in
the calendar of the addressees and thus to delegate tasks to him/her.

According to the communication styles scheme suggested in section 6, Google
Sites uses the manual issuing technique (through the calendars). An invitation always
has a global scope, as it concerns the whole site. Invitations are instructive, as it is
possible to specify what has to be done in the delegated task.

From the point of view of the parameters introduced, the three systems from our
experience represent “pure” communication styles, which, of course, does not exclude
creating a mixture of styles. In fact, we are in the process of adding the automatic
issuing technique to both ProBis (based on [16]), and iPB.

The three parameters for style identification proposed in this paper give only basic
characterization of communication capabilities of a system with the shared spaces
architecture. More detailed classification is required for covering the nuances. For
example, the automatic issuing technique can be divided into two subcategories:
general rules, and instance rules. General rules ensure automatic issuing of invitation
that covers all instances of the given process type. Instance rules mean a capability to
ensure automatic invitations for a particular process instance/case. The latter are often
expressed in the form of subscription to certain events in a shared space (see, for
example, proposals for adding instance rules to ProBis in [16]).

As follows from the experience presented in the paper, different communication
styles suit different kinds of business contexts. For example, high requirements on
speed of communication, as in eForm, warrant automatic issuing technique. A complex
structure of shared spaces, as in ProBis and iPB, requires either instructiveness or
localization (or both).

To find a proper mixture of communication styles for a practical business case, the
properties of each communication style should be understood, so that the styles
are mixed based on the requirements of a particular business environment. Our
current research in progress is devoted to this task. In this research, we analyze our
experience from the point of view of business requirements that can be set on the
communication/collaboration mechanisms. Here, we differentiate several groups of
requirements: functional requirements (e.g., possibility of inviting an arbitrary person
at any moment of time), security requirements (e.g., restricting a person's capability of
viewing parts of the shared space), social requirements (e.g., support of week ties),
and business process requirements (e.g., support for predefined tasks for the given
process type).

312 I. Bider, P. Johannesson, and R. Schmidt

Acknowledgments. This paper would have never been written without considerable
efforts of the team of developers who have designed and implemented ProBis, iPB,
and eForm. We are especially thankful to Tomas Andersson, Alexander Durnovo,
Alexey Striy and Rogier Svensson.

References

[1] Takemura, H., Kishino, F.: Cooperative work environment using virtual workspace. In:
Proceedings of the 1992 ACM Conference on Computer-Supported Cooperative Work,
pp. 226–232 (1992)

[2] Ishii, H., Kobayashi, M., Grudin, J.: Integration of interpersonal space and shared
workspace: ClearBoard design and experiments. ACM Transactions on Information
Systems (TOIS) 11(4), 349–375 (1993)

[3] Prensky, M.: Digital natives, digital immigrants. On the Horizon 9(5), 1–6 (2001)
[4] Nurcan, S., Schmidt, R.: Introduction to the first international workshop on business

process management and social software (BPMS2 2008). In: Ardagna, D., Mecella, M.,
Yang, J. (eds.) Business Process Management Workshops. Lecture Notes in Business
Information Processing, vol. 17, pp. 647–648. Springer, Heidelberg (2009)

[5] Khomyakov, M., Bider, I.: Achieving Workflow Flexibility through Taming the Chaos.
In: OOIS 2000-6th International Conference on Object Oriented Information Systems, pp.
85–92. Springer, Heidelberg (2000)

[6] Bider, I., Perjons, E., Johannesson, P.: In Search of the Holy Grail: Integrating social
software with BPM. Experience Report. In: EB-PISM. LNBIP, vol. 50, pp. 1–13.
Springer, Heidelberg (2010)

[7] Bider, I., Perjons, E., Johannesson, P.: A strategy for integrating social software with
business process support. In: LNBIP, vol. 66, pp. 372–383. Springer, Heidelberg (2011)

[8] Andersson, T., Bider, I., Svensson, R.: Aligning people to business processes experience
report. Software Process Improvement and Practice 10(4), 403–413 (2005)

[9] Bider, I., Striy, A.: Controlling business process instance flexibility via rules of planning.
International Journal of Business Process Integration and Management 3(1), 15–25
(2008)

[10] iPB Reference Manual on-line documentation (Online),
http://docs.ibissoft.se/node/3 (accessed June 20, 2010)

[11] eForm – a Staffing Communication System for running day-to-day operations at a call-
center (Online), http://www.ibissoft.se/node/144 (accessed: June 20, 2010)

[12] Bider, I.: Developing tool support for process oriented management. In: Handbook of
Systems Development, vol. 1999, pp. 205–222. CRC Press, Boca Raton (1998)

[13] Bider, I.: Object driver: a method for analysis, design, and implementation of interactive
applications. In: Handbook of Systems Development, vol. 1999, pp. 81–96. CRC Press,
Boca Raton (1998)

[14] Bider, I., Khomyakov, M.: Object-oriented model for representing software production
processes. Object-Oriented Technologys, 319–322 (1998)

[15] Bider, I., Khomyakov, M., Pushchinsky, E.: Logic of change: Semantics of object
systems with active relations. Automated Software Engineering 7(1), 9–37 (2000)

[16] Bider, I., Khomyakov: New technology - Great Opportunities. How to Exploit Them. In:
Filipe, J. (ed.) Enterprise Information Systems, Kluver (2003)

[17] Van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm for
business process support. Data & Knowledge Engineering 53(2), 129–162 (2005)

 Experiences of Using Different Communication Styles in BPS Systems 313

[18] Bly, S.A., Harrison, S.R., Irwin, S.: Media spaces: bringing people together in a video,
audio, and computing environment. Communications of the ACM 36(1), 46 (1993)

[19] Benford, S., Bowers, J., Fahlén, L.E., Greenhalgh, C., Snowdon, D.: User embodiment in
collaborative virtual environments. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 242–249 (1995)

[20] Benford, S., Brown, C., Reynard, G., Greenhalgh, C.: Shared spaces: transportation,
artificiality, and spatiality. In: Proceedings of the 1996 ACM Conference on Computer
Supported Cooperative Work, pp. 77–86 (1996)

[21] Dillenbourg, P., Traum, D., Schneider, D.: Grounding in multi-modal task-oriented
collaboration. In: Proceedings of the European Conference on AI in Education, pp. 401–
407(1996)

[22] Schmid, B.F.: The concept of media. In: Workshop on Electronic Markets (1997)
[23] Garita, C., Afsarmanesh, H., Hertzberger, L.O.: The prodnet cooperative information

management for industrial virtual enterprises. Journal of Intelligent Manufacturing 12(2),
151–170 (2001)

[24] Roman, M., Hess, C.K., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrstedt, K.:
Gaia: A middleware infrastructure to enable active spaces. IEEE Pervasive
Computing 1(4), 74–83 (2002)

[25] Johnson, P., May, J., Johnson, H.: Introduction to multiple and collaborative tasks. ACM
Transactions on Computer-Human Interaction (TOCHI) 10(4), 277–280 (2003)

[26] Martens, C., Woo, C.C.: OASIS: An Integrative Toolkit for Developing Autonomous
Applications in Decentralized Environments. Journal of Organizational Computing and
Electronic Commerce 7(2&3), 227–251 (1997)

[27] Google Sites, (Online),
http://www.google.com/sites, http://sites.google.com/ (accessed
June 18, 2010)

[28] Google Mail, (Online), http://www.google.com/mail (accessed June 18, 2010)

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 314–328, 2011.
© Springer-Verlag Berlin Heidelberg 2011

What Methodology Attributes Are Critical for Potential
Users? Understanding the Effect of Human Needs

Kunal Mohan and Frederik Ahlemann

EBS Business School, Söhnleinstraße 8D, 65201 Wiesbaden
kunal.mohan@ebs.edu, frederik.ahlemann@ebs.edu

Abstract. Despite the overwhelming advantages of using IS development and
management (ISDM) methodologies, organisations are rarely able to motivate
their staff to use them. The resulting lack of methodology usage by individuals
fails to deliver the expected advantages of better quality, control, less time, and
less effort in IS development projects. We analyse the technical as well as
non-technical aspects of an individual’s use of ISDM methodologies, in order to
enable organisations to engineer those that meet the needs of actual users and
are actually used by them in a productive manner. We construct a conceptual
model, based upon which, we posit that: technical methodology attributes such
as relative advantage, complexity, compatibility, demonstrability, visibility,
triability, and reinventability influence an individual’s methodology usage be-
haviour. We also propose that the strengths of these relationships depend on
non-technical, deeply rooted psychological needs of the people.

Keywords: Methodology acceptance, IS development, method engineering.

1 Introduction

In the search for ways to arrive at replicable, pragmatic, cost-effective, and timely
solutions to real-world problems in systematic and predictable ways, organisations
either adopt or customise and adaptively apply methodologies, which consist of tested
bodies of methods, rules, and procedures. Despite the overwhelming advantages of
using any methodology, only a handful of organisations are actually able to make
their staff use such methodologies [18]. A software development project survey
conducted by Russo et al. [41] shows that only 6% of organisations claim that their
methodologies are always used as specified. Eva and Guilford [15] find that only 17%
of respondents, in their survey of 152 organisations, claim to use a methodology in its
entirety. Organisational theorists have long recognised that individual behavioural
resistance against new methodology use is because they might not share the goals of
the organisations in which they work and that exert pressure on them to use new
methodologies [46]. The roots of this problem of methodology acceptance, which our
research addresses, lies – among other factors – in the failure to understand individual
attitudes towards a methodology’s use, which ultimately leads to the development and
implementation of a methodology that might be considered unsuitable and might be
rejected by users [31].

 What Methodology Attributes Are Critical for Potential Users? 315

Diffusions of innovation theory (DOI) has directed considerable attention towards
understanding the diffusion of innovations [38]. Research in a vast array of academic
disciplines such as anthropology, communication, geography, sociology, marketing,
political science, public health, economics, social psychology, sociology, and political
science has applied DOI to understand the process through which new ideas and
technologies become accepted by people. Some of these studies have attempted to
examine individual usage behaviour regarding IS methodologies from a technology
adoption perspective. They view software development methodologies as technology
innovations and make use of DOI and the technology acceptance model (TAM) (e.g.,
[22,37]). Others apply sociological models such as the theory of planned behaviour
(TPB) and Triandis’s theory of interpersonal behaviour to examine the development
of individuals’ intention to use methodologies (e.g., [21,26]).

Both approaches come to similar conclusions, and state that methodology character-
istic usefulness is the single most important determinant of methodology acceptance
and use by its actual users [22,37]. Subsequent research has therefore focused on this
particular variable, but has neglected other potential crucial methodology attributes.
Critics have also suggested that TAM and TPB are too parsimonious and need to be
expanded by integrating variables specific to the innovation under investigation [49].
However, even when a handful of researchers seek to examine other methodology
attributes, attributes are found to be either not significant, or of negligible effect (e.g.,
[22,37]), partly because these studies neglect to integrate other non-technical and
non-economic variables from related theoretical perspectives [49], such as personality
attributes like needs of individuals. As Warner [53] observes, the concept of adoption
is a complex social phenomenon that involves both technical and non-technical factors,
and sociologists would undoubtedly agree with this view. Unfortunately, the various
disciplines, generally concentrating on their individual variables, have neglected to
incorporate personality attributes in understanding the methodology acceptance prob-
lem. Little is known about the interactive effects of the attributes of methodologies and
the non-technical personality characteristics, and it seems reasonable that variables
from both sets are important in explaining the problem at hand [53].

Our study seeks to identify additional methodology attributes and to examine
which of these attributes is more important for which type of person in which situa-
tions. Neglecting the impact of such complex relationships might lead to results that
are not always valid [23]. Our study is a step toward filling the gap in the methodol-
ogy development, adoption and implementation literature, which until now has not
developed a theoretically and practically complete and relevant taxonomy of potential
methodology characteristics and has also not studied the effect of personal traits such
as needs on the effectiveness of the various methodology attributes. This leads us to
fundamental questions regarding the impact of methodology attributes on an individ-
ual’s usage behaviour: a) Which methodology attributes affect an individual’s deci-
sion to use it? b) How do basic individual needs influence the predictive power of
these different methodology attributes?

The remainder of the paper is organised as follows: Section 2 defines the research
scope, and provides an overview of the conceptual foundations and the basic theories
that provide the framework for our conceptual model. We also discuss prior research
on the topic in order to clarify what has been done and what needs to be done.
In Section 3, we present our research model and hypotheses, pointing out validated

316 K. Mohan and F. Ahlemann

survey instruments that might be used to operationalize our constructs. In Section 4
we discuss the study’s implications and contributions. Being research-in-progress, in
section 5, we outline the next steps in our research to describe how we plan to execute
the study’s next phase.

2 Theoretical Foundations

We focus on examining the behaviour of individual users rather than an organisation
as a whole because, although a particular methodology is developed and implemented
by an organisation, the extent of its use is usually decided by the methodology’s
actual users [37,26]. We also focus only on the use of methodologies instead of meth-
ods/techniques (e.g., stakeholder analysis, earned value analysis, etc.) and tools (e.g.,
CASE tools, Word/Excel templates, project management software, etc.), because
tools, techniques, and methods can be used in the absence of a formal methodology,
and the use of a methodology represents a radical change [22]. Reasons why new
methodology adoption and use might be so different from and so much more chal-
lenging than the adoption of specific methods and tools lies partly in the tacit organ-
isational and individual problems caused by the new methodology introduction.
For example, the stress associated with the learning of a new methodology, fear, the
impact on self-esteem and identity associated with the organisational restructuring or
re-engineering as well as the emotional costs of role conflict and ambiguity and/or
workplace transformation might be serious inhibitors of methodology acceptance and
usage [51].

DOI has been used over the past five decades to study how innovations diffuse and
become adopted within wider social networks [38]. While early research using DOI
concentrated on the diffusion and acceptance of products, the research community
recently reached consensus on the fact that ideas and practices such as methodologies
can also be regarded as innovations if they are perceived to be new by the potential
adopter [38]. The foundations of DOI can be traced back to the three mainstream
school of thoughts of Bass [5], Moore [30], and Rogers [38], with the Rogers gaining
more attention and popularity. Bass [5] used mathematical methods to develop a
model of innovations diffusions in 1969 in which he proposed five adopter categories
depicting which type of person adopt innovations, and when: innovators, early adopt-
ers, the early majority, the late majority, and laggards. Moore [30] developed his own
model of technology diffusion using the same adopter categories and the same terms
as Bass [5].

The major difference between the two schools was that Moore’s [30] work was
based on the assumption of a discontinuous innovation process and focused only on
organization, with a new technology adoption requirement. However, the best-known
innovation diffusion theory was introduced by Rogers in 1962 in Diffusion of Innova-
tions. Rogers classifies diffusion in his innovation adoption framework into five
stages: innovators, early adopters, the early majority, the late majority, and laggards,
with 2.5%, 13.5%, 34%, 34%, and 16% of the population respectively. According to
Rogers, one of the most influential factors that determine an innovation’s adoption
rate is the innovation itself, i.e. its characteristics. Furthermore, differences between
the adoption stages, i.e. how quickly an innovation gets adopted, depends on adopter

 What Methodology Attributes Are Critical for Potential Users? 317

characteristics such as socioeconomic status and personality values [53]. Another
distinguishing feature of Rogers’ theory, which makes it very attractive for our study,
is that it can also be applied to individuals. As such, we find that Rogers’ diffusion of
innovations theory provides the most fertile theoretical foundation for our research.

A key aspect of diffusion theories relates to the perception of innovations by poten-
tial adopters. Based on DOI, a methodology’s characteristics play a crucial role in
how quickly it is accepted by potential users [9]. The more attractive the attributes of
a methodology are perceived to be, the more swiftly it is accepted by potential users.
Empirical studies related to Rogers’ DOI theory have therefore focused on the identi-
fication and examination of innovations’ characteristics. Rogers and Shoemaker’s
[40] comprehensive list includes relative advantage (e.g., profit, productivity, and the
innovation’s prestige-conferring qualities); compatibility with users skills and ways of
working; complexity of use and understanding of the innovation; trialability (i.e.
divisibility, as the ability to be tested by the potential adopter); and observability
(the degree to which others see the results of use of an innovation; also called
communicability) [53].

Extensive empirical research in the past has found that some of the elements are
more important than others. After conducting a meta-analysis of 75 articles pertaining
to innovation characteristics, Tornatzky and Klein [47] found that relative advantage,
complexity, and compatibility were the only innovation characteristics consistently
related to innovation adoption and implementation. Later, Moore and Benbasat [29]
expanded Rogers and Shoemaker’s [39] list to include image (enhancement of social
image or status), result demonstrability (of tangible advantages), and voluntariness
(free will to adopt). Although extensive empirical evidence in various fields suggests
that these influences do hold [53] in the context of methodology adoption, except
relative advantage, most of them have either been neglected or have been found to be
insignificant. For example, in the study of Riemenschneider et al. [37], five theoreti-
cal models of individual intention to accept information technology tools were tested
individually using least-square regression analysis, to understand why software de-
velopers accept or resist methodologies. They came to the following conclusions:
perceived usefulness was the only significant variable across all five models (p <
0.001), voluntariness was found not significant (or was not included) in three models,
compatibility was found not significant (or was not included) in four models, and
result demonstrability, complexity, observability, and image were found to be not
significant (or were not included) across all five models. In their study, Hardgrave et
al. [23] also study software developers’ intentions to use methodologies, and also find
usefulness to significant (although comparatively weaker), complexity to not be sig-
nificant, and voluntariness and compatibility to be significant but weak.

Seeing the large gap in the innovation attributes proposed by DOI and those
studied in the context of methodology acceptance, we identify two areas in need of
attention: a) examining which of the wide number of innovation characteristics apply
to the methodology domain, and b) which of these different attributes are more impor-
tant to what type of individuals. While, as mentioned earlier, DOI does provide a
comprehensive list of attributes to examine the former issue (a), the latter problem (b)
is virgin territory.

Recently, consumer research has acknowledged that personality-specific traits are
of greater interest than demographic or psychographic influences, since they are “at

318 K. Mohan and F. Ahlemann

the heart of consumer attitude formation and behavioural intentions” [11]. Over the
past few decades, various categories of needs theories – e.g., Maslow’s well-known
hierarchy of needs [28] – have been developed so as to understand and predict human
behaviour. They have become widely accepted in research studies, because they are
considered to be the most enduring ways to understand an individual’s motivation to
act in a particular way [3]. According to the needs theories, an individual in an agent-
target relationship is expected to be influenced by a certain user influence tactic
(UIT), if this UIT corresponds to his or her desires and needs (e.g., the need for
knowledge, affiliation with peers, etc.). Many definitions of basic needs have been
proposed, of which Ryan and Deci’s [42] is most consistent with the scope of this
study. They indicate that “a basic need, whether it be a physiological need or a psy-
chological need, is an energizing state that, if satisfied, conduces toward health and
well-being but, if not satisfied, contributes to pathology and ill-being” [42]. This im-
plies that, if an methodology attribute is not aligned with the potential adopters’ basic
needs, this might result in serious stress, anxiety, and depression, and that this dis-
comfort might be visible in the weak effect of the particular attribute to motivate
an individual to use the methodology. This view might help explain why previous
methodology acceptance found inconsistent results (i.e. because they were void of
personality factors such as needs of an individual).

Maslow’s hierarchy of needs theory [27] is one of the most fundamental and influ-
ential needs theories. It suggests that there exists a hierarchy of needs and that certain
lower needs must be satisfied in order for higher needs to be recognised as unfulfilled.
However, critics of the theory state that: a) there is hardly any evidence of the
existence of a definite hierarchy of needs or that fundamental human needs are non-
hierarchical, and b) little evidence suggests that people satisfy only one motivating
need at a time, except in situations where needs conflict (i.e. are mutually exclusive)
[52]. Empirical research, finds that a) more than one need may motivate at any one
time, and b) that different needs have different values for different people. For the
purpose of our study, we therefore employ, Murray’s theory of psychogenic needs
[32], and Reiss’ theory of 16 basic desires [36] as these are considered the most fun-
damental and comprehensive list of underlying psychological human needs and have
been empirically tested in a number of studies.

3 Conceptual Model and Research Hypotheses

The decision as to whether or not to adopt a methodology often requires time, energy,
and careful consideration by the potential adopter [38]. Based on the complementary
use of DOI and needs theory in humanistic psychology, individuals are expected to
use a methodology based on their perceptions that methodology attributes will enable
them to fulfil their specific needs. Needs of an individual are therefore expected to
play a moderating role (see Figure 1), and influence the explanatory power of the
effect of different methodology attributes on an individual’s use of a methodology.
The reason why we focus on perceptions of methodology attributes, rather than
primary attributes (intrinsic to a methodology, independent of the perceptions of po-
tential adopters) is that individual behaviour is predicted by how one perceives these

 What Methodology Attributes Are Critical for Potential Users? 319

primary attributes [29]. Since different adopters might perceive primary attributes in
different ways, their eventual behaviour might differ [29].

In our research, we specifically focus on moderating effects because, besides the
examination of direct effects, scholars are increasingly seeking to understand complex
relationships [23]. While the importance of taking moderation effects is emphasised
repeatedly in the literature [10], its neglect has led to a lack of relevance, as
“…relationships that hold true independently of context factors are often trivial” [23].
In the remainder of this section, we define each of the determinants, specify the role
of key moderators, and provide theoretical justification for our hypotheses.

3.1 Attributes of a Methodology

Relative advantage (RA) is the degree to which a methodology is perceived as being
superior to its precursor by potential adopters, which is either the previous way of
doing things (if there is no current way), the current way of doing things, or doing
nothing [9]. A methodology’s superiority is not only measured in economic terms, but
also in terms of reduced or increased status and other benefits (e.g., because of an
increase in productivity and efficiency). The higher the relative advantage, the higher
the rate of adoption, all other factors being equal. The expected favourable outcome
or usefulness of a behaviour has emerged as a core construct in the field of MIS,
driven largely by the use of the theory of planned behaviour (attitude) [1] and the
technology acceptance model (TAM) (perceived usefulness) [12] in examining indi-
vidual beliefs regarding performing a behaviour. A plethora of empirical research in
various fields has confirmed that the favourable outcome or usefulness of a behaviour
is the most important aspect in predicting it – e.g., [12,49,50]. Hardgrave et al. [22]
state that “…usefulness generally has a beta (path coefficient) of around 0.60 in TAM
studies”. In the context of methodology adoption, Khalifa and Verner [26] find that
better process and product quality have a substantial effect on a software developer’s
decision to use waterfall and prototyping methodologies. Riemenschneider et al. [37]
apply five theoretical models and conclude that “…if a methodology is not regarded
as useful by developers, its prospects of successful deployment may be seriously
undermined”. Consequently, we propose that relative advantage will have a positive
effect of methodology use.

Complexity (CL) is the degree to which a methodology is perceived as difficult to
understand and use. The more complex a methodology is perceived to be, the more
resistance it is expected to generate. The complexity construct can be traced back to
Bandura’s [4] self-efficacy concept, which refers to the belief that one has the capabil-
ity to perform certain actions in order to be able to use a methodology. Judgment of
one’s personal competence, reflected in one’s self-efficacy, therefore not only deter-
mines if a person decides to use an methodology, but also how much effort he or she
will expend to use it, how long he or she will persevere when confronting obstacles,
and how resilient he or she will prove in the face of adverse situations [33]. The more
complex a methodology is perceived to be, the more an individual doubts his or her
own ability to be able to use a methodology properly. In technology adoption litera-
ture, complexity has been addressed through the ease of use construct (which is also
based on the concept of self-efficacy), which refers to the degree to which a person
believes that using a particular methodology would be a) free of physical and mental

320 K. Mohan and F. Ahlemann

effort, and b) easy to learn [12]. Numerous empirical evaluations of self-efficacy
and ease of use find them to be an important predictor of human behaviour (e.g.,
[12,48-50]) and therefore provide substantial justification for including the complexity
construct in our model. As such, we propose that complexity will have a negative
effect on methodology use.

Fig. 1. Conceptual model

Compatibility (CA): is the degree to which a methodology is perceived to be con-
sistent with existing social cultural values, and past experiences of potential adopters
[9]. The higher the compatibility, the higher the desire to use the methodology.
The roots of this lies in the understanding that individuals in organisations might be
reluctant to change their habits, which they have learned unconsciously through past
repetitions, and might therefore be unwilling to adopt new methodologies if they
cause radical change. The more a methodology departs from the current work proc-
esses of an individual, the longer and harder he or she must strive to unlearn old rou-
tines and learn new ones [22]. In matters of radical change, as is the case with new
methodology adoption (see Section 2), the methodology might not be compatible with
the habits of potential users and would therefore activate negative feelings and emo-
tions and, consequently, resistance. Past methodology acceptance research has found
a significant positive but weak effect of compatibility on an individual’s intention to
use a methodology (e.g., [37]). However, research on this crucial construct is still
relatively scarce, which calls for further attention. Based upon this discussion, we
propose that compatibility will have a positive effect on methodology use.

Perceived observability is another attribute originally identified by Rogers [38];
it is the degree to which an individual believes that the results of using a methodology
are visible [38]. However, this definition of observability indicates that the construct
is complex and has been found to possess two unique dimensions [29]: a) the demon-
strability of results to others, and b) the visibility of the innovation itself. While
conducting a sorting exercise with a panel of judges, Moore and Benbasat [29] found

 What Methodology Attributes Are Critical for Potential Users? 321

that the items of the observability construct tapped into these two dimensions. As a
result, they decided to split the construct into visibility and demonstrability. Similar to
Moore and Benbasat [29], we hold that, in order to glean a deeper understanding of
how observability influences methodology adoption, we need to study the effect of
visibility and demonstrability individually. Result demonstrability (RD) is the degree
to which the results of using a methodology are observable by others. While in some
methodologies it is easy for others to see the results of a methodology’s usage, this
might not be the case with others (e.g., because of poor transparency or poor commu-
nication of outcomes achieved). Being able to show and communicate results
achieved by using a methodology is important in acquiring tangible and intangible
benefits such as praise, bonus, and promotion, since organisational incentive systems
and management can only reward productive and efficient employees if they can
observe these improvements. Furthermore, the easier it is for potential users to
experience and see for themselves the positive effects of using a new methodology,
the more confident they will be that they will also be able to realise the positive
outcomes. In short, high observability acts as a motivator by reducing the risk in a
potential adopter’s mindset that using a methodology will be unfruitful (i.e. a high
chance of the methodology not generating the promised positive results).

Result demonstrability might be especially critical to the methodology domain, be-
cause methodology outcome is characterised by the a) benefits not being realised
swiftly [22], b) diffusion of potential benefits in a highly complex network of multiple
actors. These characteristics make is hard to quantify and communicate total method-
ology usage benefits achieved to potential adopters (this is also a general problem in
the IT field). Visibility (VS) is the degree to which a methodology is actually visible in
the work environment. Visibility here implies that potential adopters can see their
peers or seniors as they use methodologies, or know that they use them. Research has
shown that mere exposure to objects (i.e. methodologies) is capable of rendering an
individual’s attitude towards these objects more positive. Extensive empirical re-
search on human behaviour has shown that individuals would use a methodology
because of their motivation to satisfy their notion of self-definition by doing what
their peers (whom they want to be like) do [7]. Consequently, the more a potential
adopter is able to observer his or her peers and seniors use a methodology, the more
he or she will be inclined to use it. Consequently, we propose that result demonstra-
bility and visibility will have a positive effect on methodology use.

Triability (TR) is the degree to which an individual believes he or she can experi-
ment with a methodology on a limited basis prior to adoption. The chance to “test” a
methodology prior to an individual making the final decision to adopt and use it helps
to clear doubts relating to usefulness, complexity, and compatibility. High triability
enables an individual to make a well-informed rational choice for himself, and is
considered to be crucial for sceptical individuals who do not simply trust what they
are told [16]. A number of studies also find strong evidence of the motivational effect
of triability (e.g., [20,35]). Furthermore, prior testing of a methodology might also
help a potential adopter to discover until then unknown or uncommunicated method-
ology benefits considered useful by the tester, since the evaluation of functionality is
subjective and differs from person to person [16]. As such, we expect triability to
have a positive effect on methodology use.

322 K. Mohan and F. Ahlemann

Reinventability (RE) is the degree to which a methodology is perceived to be modi-
fiable by a potential user. If potential adopters can adapt, refine, or otherwise modify
the methodology to suit their own needs and situation, it will be adopted more easily
[19]. The concept of reinvention – the assumption that one size does not fit all – has
been embraced by researchers, to the extent that a dedicated research stream, entitled
method engineering, has developed (e.g., [40]). A number of empirical studies find
strong empirical evidence of the motivational effect of reinventability on a person’s
decision to use an innovation (e.g., [38]). Although this construct has been widely
neglected in methodology acceptance studies, based upon existing research findings,
we consider it an important predictor in our model. We propose that reinventibility
will have a positive effect on methodology use.

Although Moore and Benbasat [29] propose voluntariness of use and image as fur-
ther attributes, we hold that they might not apply to our research, since enhancement
of social image can be considered an aspect of usefulness, rather than a distinct meth-
odology characteristic. Rogers [38] also includes the concept of image under relative
advantage. Furthermore, in our research, we consider methodology use to be volun-
tary. Even though organisations can deploy obligatory methodologies, their actual use
in a productive manner cannot be forced, and correct usage is ultimately a voluntary
user act.

3.2 Personal Characteristics

Need for affiliation (nAffi) is the desire to achieve acceptance from one’s social sur-
roundings [32]. Individuals with a high need for affiliation tend to enjoy being with
other people, making friends, and maintaining personal relationships. In a work envi-
ronment, materialistic status symbols like promotion, higher salary, gifts, and praise
from seniors have been found in a number of studies to be conveyors of, and an ade-
quate substitute for, positive interpersonal relationships and feelings of acceptance
[6]. Also, since individuals high in nAffi depend on approval from their work envi-
ronment, it is critical to them that the results are visible to their peers and superiors.
Based on this reasoning, nAffi is expected to have a moderating effect on the strength
of the effect of relative advantage methodology use, result demonstrability
methodology use, and visibility methodology use.

Need for achievement (nAch) refers to an individual’s desire to do things better, ac-
complish difficult tasks, overcome obstacles and become an expert, achieve high
performance standards, or a need for significant task-related accomplishment [32].
Such individuals are focused on internal motivation and personal achievement, rather
than on external rewards and recognition. They would be more inclined to use a
methodology if they feel that it is useful and would help them to be more efficient and
productive in their job. Furthermore, the more complex a methodology, the more
gratification/satisfaction people high in nAch are expected to feel, since being
successful at using methodologies which others fail to master symbolises and com-
municates personal competence. Individuals high in nAch are expected to expend
more effort and persevere longer when confronted with obstacles, and show resilience
in the face of adverse situations [36]. In order to achieve high performance and excel
at using a methodology, individuals high in nAch will be interested in modifying and

 What Methodology Attributes Are Critical for Potential Users? 323

adapting the methodology to suit their own skills set and context of use. We therefore
propose that nAch will have a moderating effect on the strength of the effect of rela-
tive advantage methodology use, complexity methodology use, and reinvent-
ability methodology use.

Need for cognition (nCog) is the desire for knowledge, reasoning [32,36] as well as
the need to explore and discover. Individuals high in nCog tend to naturally seek, ac-
quire, think about, and reflect on information by experimenting and exploring, to make
sense of a problem at hand [8]. Therefore, people high in nCog are more likely to want
to try out methodologies, to better understand for themselves how proposed benefits
are expected to be achieved, whether or not the promises are justified, and how their
way of doing things changes. The desire to try out, extract, and process information
by oneself, instead of simply “buying into” the anecdotes, demonstrations, reasoning
tactics, and rational appeals of peers or experts is what characterises cognitive behav-
iour. Consequently, we expect nCog to have a moderating effect on the strength of the
effect of triability methodology use, and reinventability methodology use.

Need for harm avoidance (nHav) is a personality trait characterised by excessive
worrying, pessimism, fearfulness, and doubtfulness. Harm-avoidant individuals are
biased in the direction of seeking to end behaviours that might involve worrying, fear
of uncertainty, and increased risk of anxiety [32]. As such, individuals high in nHav
attempt to pursue behaviour that helps them reduce any risk and uncertainty attached
to new methodology use. Methodologies that are considered complex and hard to
execute are avoided, since risk of failure increases with rising complexity. A method-
ology perceived to be compatible with old routines involves minimal change and is
therefore considered safe, because it corresponds to previous experience. Similarly,
individuals will seek to experiment and try out methodologies prior to making their
final choice, in order to identify those that might be potentially risky and carry a high
degree of outcome uncertainty. As a result, we propose that nHav will have a moder-
ating effect on the strength of the effect of complexity methodology use, compati-
bility methodology use, and triability methodology use.

Empirical research has shown that the above-mentioned needs are largely uncorre-
lated with one another [36,45]. Although the list of needs in the literature is extensive,
we consider these four needs to be representative of the most fundamental high-level
primary needs in the context of influence tactics, in the sense of being innate or “hard-
wired” [45]. Other secondary needs can be derived from these high-level primary
needs. For example, Murray’s need for play, need for curiosity, and need for under-
standing may be attributed to nCog, the need for contrarience, and the need for ac-
quisition may be derived from nAch. The need for family – as proposed by Reiss [36]
– and the need for social recognition may be attributed to nAffi, and the need to com-
pete or win can also be derived from nAch [45]. Another reason to study fewer needs,
rather than more, relates to the value of a parsimonious approach: as the list of needs
increases, the utility of the approach diminishes. A long, unwieldy list of needs is
precisely the reason why earlier needs-related theories fell out of favour [13].

The related research hypotheses are summarised in Table 1, which also provides an
overview of some studies that have used validated instruments to operationalize the
constructs of our conceptual model.

324 K. Mohan and F. Ahlemann

Table 1. Research hypotheses and prior operationalization of constructs

H1: RAf is positively associated with methodology usea (MU).
H2: CLg will be negatively associated with methodology use.
H3: CAh will be positively associated with methodology use.
H4: RDi will be positively associated with methodology use.
H5: VSj will be positively associated with methodology use.
H5: TRk will be positively associated with methodology use.
H6: REl will be positively associated with methodology use.
H7: The influence of RA on methodology use will be moderated by nAffib and nAche, such that
the effect will be stronger for individuals with these specific needs.
H8: The influence of CL on methodology use will be moderated by nAch and nHavc, such that
the effect will be stronger for individuals with these specific needs.
H9: The influence of CA on methodology use will be moderated by nHav, such that the effect
will be stronger for individuals with this specific need.
H10 The influence of RD on methodology use will be moderated by nAffi, such that the effect
will be stronger for individuals with this specific need.
H11 The influence of VS on methodology use will be moderated by nAffi, such that the effect
will be stronger for individuals with this specific need.
H12 The influence of TR on methodology use will be moderated by nCogd and nHav, such that
the effect will be stronger for individuals with these specific needs.
H13 The influence of RE on methodology use will be moderated by nCog and nAch, such that
the effect will be stronger for individuals with these specific needs.

a [49,50]; b, e [14,17]; c [34,54] ; d [8]; f, g, h, i, j, k, l [29].

4 Discussion and Implications

Our work seeks to further the research on acceptance and use of methodologies by
individuals by unifying the theoretical perspectives on the attributes of a methodology
and needs of individuals within a single model. Such a holistic approach for under-
standing why certain employees adopt a methodology while others reject it [25] is
important, because people are not passive recipients of innovations. They actively
seek new effective methodologies, “…experiment with them, evaluate them, find (or
fail to find) meaning in them, develop feelings (positive or negative) about them,
challenge them, worry about them, complain about them, ‘work around’ them, gain
experience with them, modify them to fit particular tasks, and try to improve or redes-
ign them—often through dialogue with other users” [19]. Only when we understand
and acknowledge that such a diverse list of actions and feelings are typical of human
behaviour, do we view the acceptance of new methodologies as a complex process
and realise that research needs a holistic lens, integrating technical as well as non-
technical factors.

Based on validated theories, we develop a conceptual model that holds that per-
sonal traits of individual – especially their needs – determine which technical meth-
odology attributes has a larger effect on an individual’s use of a methodology. The
proposed multidimensionality of “what is a methodology” from a technical perspec-
tive represents a departure from traditional operationalization (which is devoid of
human factors) and might reveal more complex and as yet unknown interaction ef-
fects on human decision-making, especially in regard to the use of new methodolo-
gies. Our findings might have significant implications not only for the MIS research

 What Methodology Attributes Are Critical for Potential Users? 325

community, but also for related fields as it might be able to explain how changes in
needs change attitudes and preferences. Human needs have always played a key role
in organisational development, and the proposed study is an attempt to “humanise”
organisational methodologies [2], that is, to enable organisations to be more respon-
sive to human concerns when developing and implementing new methodologies.
Furthermore, by creating a theoretically and practically relevant and parsimonious
taxonomy of attributes of methodologies, we present researchers as well as practitio-
ners with a framework to help identify and understand the characteristics that their
methodologies possess or should possess.

Our research also has significant implications for practitioners. Each of the pro-
posed constructs reveals a different aspect of human behaviour and personality, and
each can serve as a point of attack for organisations in their attempts to steer them in
the desired direction [1] by means of tailor-made methodologies. Our findings could
help organisations manage the selection, development, and implementation of new
methodologies. We would like to propose that future research study the determinants
of the constructs identified in this study as well as the interrelationships between
them. For example, we still know very little about how an organisation perceives the
needs of their employees, since misinterpretation might lead to misleading conclu-
sions. Another very promising focus area is how culture influences the importance
assigned by individuals to the specific attributes. Although the understanding of cul-
tural influences is repeatedly emphasised by top journal editors (e.g., Straub [43]),
this is seldom incorporated in research generally, because of the difficulty of data
collection. If it is successful in collecting data that is sufficient for statistical analysis
from a wide range of different types of cultures (categorised by Hofstede [24]), our
study – as proposed – will further improve the generalisability of our findings as well
as seek to reveal new avenues for future research. A better understanding of these
determinants would enable us to design organisational interventions that would in-
crease new methodology usage in order to improve productivity and quality as well as
to reduce effort.

5 Future Research

The next steps in our research include developing a survey instrument to test the pre-
sented conceptual model. Regarding the operationalization of the proposed constructs,
there might be a possibility that prior instruments may not be suitable to establish
appropriate levels of construct validity in the context of our study; new scales might
therefore need to be developed. In developing the initial set of items, we will follow
the advice of Straub [44] and employ a rigorous step-by-step iterative process as well
as utilise the existing literature (see Table 2 for an overview of the prior operationali-
sation of constructs). After obtaining the initial battery of items, two researchers will
conduct expert interviews with six subject matter experts (three academics and three
practitioners) to obtain specific information as to whether the initial items are com-
prehensible, valid, and complete [44]. To further improve content and construct valid-
ity, we will then conduct a Q-sorting and item ranking in two rounds. In the final step,
we will subject the questionnaire to a pre-test based on a convenience sample with
individuals representing the target population. The final survey instrument will be

326 K. Mohan and F. Ahlemann

administered web-based to a diverse population of methodology users, to collect
quantitative data needed for testing the model and hypotheses. To understand cultural
influences, data will be collected from the USA, Germany, Austria, Switzerland, and
India. We will seek to include more countries, especially developing and Asian na-
tions such as Japan, China, and the African nations, as research based on Hofstede’s
cultural dimensions [24] shows that individuals from these nations, when compared to
Western nations, are governed by different attitudes, preferences, and norms.

In conclusion, user acceptance of organisational methodologies remains a complex
and elusive yet extremely important phenomenon. Past research has made some pro-
gress in unravelling some of its mysteries. The development and testing of our model
seeks to advance theory and research on this fundamental matter.

References

1. Ajzen, I.: The theory of planned behavior. Organizational Behavior and Human Decision
Processes 50(2), 179–211 (1991)

2. Alderfer, C.P.: Organizational Development. Annual Review of Psychology 28, 197
(1977)

3. Arnolds, C.A., et al.: Does higher remuneration equal higher job performance?: an empiri-
cal assessment of the need-progression proposition in selected need theories. South African
Journal of Business Management 31(2), 53 (2000)

4. Bandura, A.: Social foundations of thought and action: a social cognitive theory. Social
Foundations of Thought and Action: A Social Cognitive Theory (1986)

5. Bass, F.M.: A New Product Growth for Model Consumer Durables. Management
Science 15(5), 215–227 (1969)

6. Belk, R.W.: Materialism: Trait Aspects of Living in the Material World. Journal of
Consumer Research 12(3), 265–280 (1985)

7. Burnkrant, R.E., et al.: Informational and Normative Social Influence on Buyer Behavior.
Journal of Consumer Research 2(3), 206–215 (1975)

8. Cacioppo, J.T., et al.: Dispositional differences in cognitive motivation: The life and times
of individuals varying in need for cognition. Psychological Bulletin 119, 197–253 (1996)

9. Chigona, W., et al.: Using Diffusion of Innovations Framework to Explain Communal
Computing Facilities Adoption Among the Urban Poor. Information Technologies & In-
ternational Development 4(3), 57–73 (2008)

10. Chin, W.W., et al.: A Partial Least Squares Latent Variable Modeling Approach for Meas-
uring Interaction Effects: Results from a Monte Carlo Simulation Study and an Electronic-
Mail Emotion/Adoption Study. Information Systems Research 14(2), 189–217 (2003)

11. Dabholkar, P.A., et al.: An Attitudinal Model of Technology-Based Self-Service: Moderat-
ing Effects of Consumer Traits and Situational Factors. Journal of the Academy of Market-
ing Science 30(3), 184–201 (2002)

12. Davis, F.D.: Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Infor-
mation Technology. MIS Quarterly 13(3), 319–340 (1989)

13. Deci, E.L.: The Darker and Brighter Sides of Human Existence: Basic Psychological
Needs as a Unifying Concept. Psychological Inquiry 11(4), 319–338 (2000)

14. Edwards, A.L.: Edwards personal preference schedule. Psychological Corporation, New
York (1959)

15. Eva, M., et al.: Committed to a Radical approach? A survey of systems development
methods in practice. In: Proceedings of the Fourth Conference of the British Computer
Society Information Systems Methodologies Specialist Group, pp. 87–96 (1996)

 What Methodology Attributes Are Critical for Potential Users? 327

16. Ford, G.T., et al.: Consumer Skepticism of Advertising Claims: Testing Hypotheses from
Economics of Information. Journal of Consumer Research 16(4), 433–441 (1990)

17. Frs, R.H., et al.: A Validity Study of Scales to Measure Need Achievement, Need Affilia-
tion, Impulsiveness, and Intellectuality. Educational and Psychological Measure-
ment 32(1), 147–154 (1972)

18. Glass, R.L.: A Snapshot of Systems Development Practice. IEEE Softw. 16(3), 111–112
(1999)

19. Greenhalgh, T., et al.: Diffusion of Innovations in Service Organizations: Systematic Re-
view and Recommendations. Milbank Quarterly 82(4), 581–629 (2004)

20. Grill, R., et al.: Evaluating the Message: The Relationship Between Compliance Rate and
the Subject of a Practice Guideline (1992)

21. Hardgrave, B., et al.: Toward an information systems development acceptance model: the
case of object-oriented systems development. IEEE Transactions on Engineering Man-
agement 50(3), 322–336 (2003)

22. Hardgrave, B.C., et al.: Investigating Determinants of Software Developers’ Intentions to
Follow Methodologies. Journal of Management Information Systems 20(1), 123–151
(2003)

23. Henseler, J., et al.: Testing Moderating Effects in PLS Path Models: An Illustration of
Available Procedures. Handbook of Partial Least Squares, pp. 713-735 (2010)

24. Hofstede, D.G.: Culture’s Consequences: Comparing Values, Behaviors, Institutions and
Organizations Across Nations. Sage Publications, Inc., Newbury Park (2003)

25. Kanter, R.M.: Change Masters. Free Press, New York (1985)
26. Khalifa, M., et al.: Drivers for Software Development Method Usage. IEEE Transactions

on Engineering Management 47(3), 360 (2000)
27. Maslow, A.H.: A Theory of Human Motivation. Psychological Review 50(4), 370–396

(1943)
28. Maslow, A.H.: Motivation and Personality. Harper & Brothers (1954)
29. Moore, G., et al.: Development of an Instrument to Measure the Perceptions of Adopting

an Information Technology Innovation. Information Systems Research 2, 3, 222, 192
(1991)

30. Moore, G.A.: Crossing the Chasm: Marketing and Selling High-Tech Products to Main-
stream Customers. HarperBusiness (1999)

31. Munns, A., et al.: The role of project management in achieving project success. Interna-
tional Journal of Project Management 14(2), 81–87 (1996)

32. Murray, H.A.: Explorations in Personality. John Wiley & Sons Inc., Chichester (1938)
33. Pajares, F.: Current directions in self-efficacy research. Advances in Motivation and

Achievement 10, 1–49 (1997)
34. Pietrefesa, A.S., et al.: Moving Beyond an Exclusive Focus on Harm Avoidance in Obses-

sive Compulsive Disorder: Considering the Role of Incompleteness. Behavior Ther-
apy 39(3), 224–231 (2008)

35. Plsek, P.E.: Complexity and the adoption of innovation in health care: For Accelerating
Quality Improvement in Health Care Strategies to Speed the Diffusion of Evidence-Based.
held in Washington, D.C. January 27-28, 2003. National Committee for Quality Health
Care (2003)

36. Reiss, S.: Multifaceted Nature of Intrinsic Motivation: The Theory of 16 Basic Desires.
Review of General Psychology 8(3), 179–193 (2004)

37. Riemenschneider, C.K., et al.: Explaining Software Developer Acceptance of Methodolo-
gies: A Comparison of Five Theoretical Models. IEEE Transactions on Software Engineer-
ing 28(12), 1135–1145 (2002)

38. Rogers, E.M.: Diffusion of Innovations, 5th edn. Free Press, New York (2003)
39. Rogers, E.M., et al.: Communication of Innovations: A Cross-Cultural Approach. Free

Press, New York (1971)

328 K. Mohan and F. Ahlemann

40. Rossi, M., et al.: Managing Evolutionary Method Engineering by Method Rationale. Jour-
nal of the Association for Information Systems 5(9), 356–391 (2004)

41. Russo, N.L., et al.: The Failure of Methodologies to Meet the Needs of Current Develop-
ment Environments. In: Proceedings of the British Computer Society’s Annual Conference
on Information System Methodologies, pp. 387–393 (1996)

42. Ryan, R.M., et al.: Self-Determination Theory and the Facilitation of Intrinsic Motivation,
Social Development, and Well-Being. American Psychologist 55(1), 68 (2000)

43. Straub, D.W.: Creating Blue Oceans of Thought Via Highly Citable Articles. MIS Quar-
terly 33(4), iii-vii (2009)

44. Straub, D.W.: Validating Instruments in MIS Research. MIS Quarterly 13(2), 147–169
(1989)

45. Sun, R.: Motivational Representations within a Computational Cognitive Architecture.
Cognitive Computation 1(1), 91–103 (2009)

46. Teodoro, M.P.: Bureaucratic Job Mobility and The Diffusion of Innovations. American
Journal of Political Science 53(1), 175–189 (2009)

47. Tornatzky, L.G., et al.: Innovation Characteristics and Innovation Adoption-
Implementation: A Meta-Analysis of Findings. IEEE Transactions on Engineering Man-
agement 29, 28–45 (1982)

48. Venkatesh, V.: Determinants of Perceived Ease of Use: Integrating Control, Intrinsic
Motivation, and Emotion into the Technology Acceptance Model. Information Systems
Research 11(4), 342 (2000)

49. Venkatesh, V., et al.: A Theoretical Extension of the Technology Acceptance Model: Four
Longitudinal Field Studies. Management Science 46(2), 186 (2000)

50. Venkatesh, V., et al.: User Acceptance of Information Technology: Toward a Unified
View. MIS Quarterly 27(3), 425–478 (2003)

51. Vickers, M.H.: Information technology development methodologies. Journal of Manage-
ment Development 18(3), 255 (1999)

52. Wahba, M.A., et al.: Maslow Reconsidered: A Review of Research on the Need Hierarchy
Theory. Organizational Behavior & Human Performance 15(2), 212–240 (1976)

53. Warner, K.E.: The Need for Some Innovative Concepts of Innovation: An Examination of
Research on the Diffusion of Innovations. Policy Sciences 5(4), 433–451 (1974)

54. Wilson, R.S., et al.: Harm Avoidance and Disability in Old Age. Experimental Aging
Research: An International Journal Devoted to the Scientific Study of the Aging Proc-
ess 32(3), 243 (2006)

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 329–336, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Exploratory Case Study Research on SOA Investment
Decision Processes in Austria

Lukas Auer1, Eugene Belov2, Natalia Kryvinska1, and Christine Strauss1

1 Department of Business Administration, University of Vienna,
Bruenner Strasse 72, A-1210 Vienna, Austria

{lukas.auer,natalia.kryvinska,christine.strauss}@univie.ac.at
2 FH Wien University of Applied Science of WKW,

Waehringer Guertel 97, A-1180 Vienna, Austria
eugene.belov@gmail.com

Abstract. Aligning information systems to financial key performance indicators
and measure its returns has become one of the most important topics over the
last years. However, despite the growing investments of many corporations into
IT in general, an increasing number of questions and concerns have been arising
to the effectiveness of these investments and their payoffs. Hence, an evaluation
of an enterprise’s IT architecture, as a part of IT investments, has been increas-
ing its role throughout organizations worldwide. Numerous conceptual studies
and tools to predict the business value of IT/SOA investment portfolios are
being offered; nevertheless most of them substantially lack accuracy. For this
purpose, we empirically investigate the application of SOA investment criteria
in large Austrian corporations, which will be realized through a multiple case
study collection reflecting current investment strategies and measurements.

Keywords: Business Value, IT, Empirical Study, Service-Oriented Architecture
(SOA).

1 Introduction

The business value of information technologies in general and the adoption of different
enterprise IT architecture paradigms in particular have been the cause of discussion for
both academics and practitioners for ages [1, 2]. A particular challenge IT departments
have been facing during the last several years is the question of how to measure the
value of service-oriented architectures (SOA). The enterprise architectural model
called SOA can be defined as a computing paradigm that utilizes services as the basic con-
structs to support the development of rapid, low-cost and easy composition of distributed appli-
cations even in heterogeneous environments [3]. However, IT infrastructure maintenance
requires substantial financial resources; hence benefits should outweigh the costs and
suffice expected returns. It is often argued that enterprises which made substantial
investments in IT projects are often dissatisfied with their return on IT investments
[4], as value assessments are frequently conducted inefficiently, using improper or
not comprehensive methodologies, or are completely abandoned [5]. The challenge
of whether or not to pursue SOA as a key element of a company’s IT strategy was

330 L. Auer et al.

primarily based upon the lack of clarity regarding potential benefits of this type of
architecture. Various IT success models [6], SOA business value frameworks [2, 7]
and SOA value drivers have been identified [8]. Yet a thorough literature review dis-
played that most empiric publications focus on either enhancing SOA and Web service
concepts or exploring their adoption in practice [9]. It has been argued that an invest-
ment into SOA often cannot be properly evaluated because value potentials of this
investment have not been made visible enough [10], in addition the consideration of risk
is virtually absent in research on the returns on IT investment, even though the risks are widely
recognized [11].

2 Research Design

This paper aims to empirically investigate SOA investment-decision making practices
in large Austrian companies from a finance perspective, i.e. the underlying investment
criteria rather than exploring organizational SOA effects [12], business process impli-
cations [13] or setting up a business case including detailed benefits and costs [14].
We also intend to examine the consideration of lag effects, i.e. the timing of IT in-
vestment decisions1, which have been neglected in past literature reviews [15]. A total
of six public and private companies (semi-structured interviews with 2 interviewees
per case) have been analyzed and coded by 2 different interviewers from January to
March 2010. After independent within-case and cross-case data analysis using an
inductive approach [16], common patterns and experiences among the selected com-
panies have been identified. Derived from the considerations explained so far, the
research questions for this case study can be formulated as follows:

1. What is the strategy and expected business impact behind SOA initiatives?
2. What investment methodologies and investment criteria (qualitative and quantita-

tive) are being applied by leading Austrian companies to evaluate initial and con-
tinuous SOA investments?

Based on a thorough literature review and the nature of the research questions, case
study research for has been selected as the appropriate form of methodology [17],
which needs to instantiate well-defined models before the data collection begins [18]
and data collection methods used for this research had to follow a well-structured
conceptual framework for this IT business value research [19], which is depicted in
Figure 1. The categories covered include SOA strategy, investment evaluation, which

Fig. 1. Case Study Framework

1 For an overview of the numerous models and valuation methods we refer to Frisk (2007) [20].

 Exploratory Case Study Research on SOA Investment Decision Processes in Austria 331

is split into initial investments and continuous investments to investigate on potential
consideration of timing or lag effects. Examination on investment evaluation also
reflects the distinction between quantitative and qualitative aspects influencing an IT
manager’s investment decision.

3 Case Analysis

Case 1 - Banking Group
The company is an Austrian banking group with a total of more than 2000 branches in
Austria and the bank's strategy is focused on retail customers.

The touch point for SOA was the idea to integrate separate services from different
technologies into a singular platform. Over the course of development the focus has
shifted to business process management. Back then, cost savings were not an issue for
the group because of its good financial performance, however, due to the financial
crisis, cost pressure has become more severe and the need to reduce costs has sud-
denly emerged. Key business processes have been identified and categorized in their
respective fields based on their automation potential, eventually it is planned to cover
all the key processes in the bank with SOA, despite the fact that it was stated by the
CIO that services reuse was very hard to achieve with SOA due to the high degree of
services customization. Initial investments into the new SOA framework were primar-
ily based on qualitative aspects and didn’t require any quantitative measurements,
whereas continuous investments needed a 5-year ROI calculation. Continuous in-
vestments were primarily based on automation potential, e.g. process execution time
is measured “by standing behind the account manager with a stop-watch”, Qualitative as-
pects are not measured for continuous investments; moreover no calculations for
potential future benefits of the investment are required. Based on the interview, the
company is satisfied with its measurement techniques, and the measurements they
deliver are “rather precise”.

Case 2 - Telecommunications Group
The company’s core business includes all aspects of mobile communication ranging
from telephony to data transmission. It holds a strong market position in the Austrian
market and is present in 8 countries in Europe. Altogether, the group serves approxi-
mately 20 million customers and employs approximately 20,000 employees. First
SOA attempts were carried out in 2004 to eliminate excessive utilization of resources,
increase transparency and reduce time-to-market, which is crucial to success in the
dynamic and fast-paced telecom sector. A major benefit which has been realized
with the first SOA implementations was the enablement of enterprise-wide communi-
cation in terms of a bridging between IT and other departments. There is no overall
strategy behind the company’s SOA initiatives to transform the whole architecture
service-oriented; it is primarily used as a connecting layer between different silos with
standard software, e.g. ERP or CRM systems. In terms of initial SOA investment
evaluation mostly qualitative aspects on the benefits side of the equation have been
used. Investment decisions were solely driven by the IT department; therefore no
business case had to be calculated. All continuous IT projects are usually initiated by
a change request coming from the business side, which requires a static business case
containing a 5-year total cost of ownership calculation. In cases like automating

332 L. Auer et al.

processes to lower the load of the call center, the amount of minutes saved by the
investment, and therefore ROI, is relatively easy to calculate, however, it has been
mentioned that is far more difficult to calculate revenue increases due the number of
people who would for instance “switch their tariff plan based on the implementation of
certain new services”.

Case 3 – Federal Ministry of the Interior
The department within the ministry is responsible for managing Austria’s central resi-
dence registry and the foundation of Austrian’s e-government services. The company
only uses open-source software; also the process engine is based on an open source
workflow system. The SOA implementation started in 2001 with XML and there were
no pilot projects in the beginning on its way to SOA. The main reasoning behind the
SOA implementation was to become faster, reduce errors, enable flexibility and im-
prove change management. As a result, the company managed to hold its costs at a
constant level, while traffic and number of users and transactions more than tripled. It
has been stated by the company that one of the major advantages gained by SOA is the
reuse of separate SOA blocks; accordingly all the processes of the company are cur-
rently supported by SOA. The decision to pursue a SOA strategy was primarily taken
on qualitative aspects as no calculations have been made prior to the investment. On-
going projects are evaluated with an static ROI calculation and investment costs are
simply compared to the costs saved. The company is satisfied with its investments in
SOA and during the past 4 years, the company managed to run at the same budget,
although the amount of traffic, users and transactions has more than tripled.

Case 4 – Publishing Company
The company is the leading publisher of newspapers and magazines in Austria. It
publishes 3 daily newspapers, 6 weekly magazines and employs more than 2000 em-
ployees in Austria. The company operates in a very heterogeneous IT environment,
therefore key challenges include the ability to build processes quicker, cost-efficiency
and the possibility to implement open-source technology more easily. In contrast to
the Telco case, the publishing business does not require very short time-to-market,
nevertheless SOA investment decisions have also taken by the IT department in order
to be better prepared for possible future developments.

Based on its strategic nature, initial SOA investments have not required any ROI
calculation at all. Main aspects proposed by the IT department to evaluate potential
investments have included cost and time savings in development, flexibility due to the
implementation of open-source technologies as well as support of future business-to-
business processes. In terms of continuous investments a 5-year ROI calculation is
required. The IT department is responsible for calculating the costs, while business
units are responsible for researching the benefits, either in cost savings or in revenue
increase dimensions and subsequently both parts are compared over a 5-year period.
No business project is approved if it doesn't break-even within the next 5 years,
though cost savings had been identified very quickly during the first process automa-
tion projects, e.g. to reduce the workload of the call-center or implementation of an
electronic billing system as the amount of minutes and postage expenses saved were
easy to calculate and quick-wins. The company has recently started its company-wide
SOA initiative and is satisfied with the results so far.

 Exploratory Case Study Research on SOA Investment Decision Processes in Austria 333

Case 5 - Data Service Provider
The company is the IT service provider for the Austrian public sector. Its two major
customers include the Ministry of Finance and Ministry of Justice, whose IT infra-
structure and architectural development are at very different stages.

The main drivers behind SOA initiatives were flexibility, quicker time to market,
cost efficiency and synergy potential through services reuse. In the Ministry of Fi-
nance SOA is currently being implemented in the area of customs and taxes. The
initial project started in 2007 and it was originally planned to transform the entire
applications landscape service-oriented. In the Ministry of Justice SOA has been
approached incrementally, focusing on optimization potential in the area of process
development, currently services specification and development accounts for about
15% of the annual IT budget. For any initial SOA investments, similar to projects
which are legally required to be implemented, no ROI calculations have to be com-
pleted. The main drivers that facilitated the decision to pursue SOA were qualitative
aspects such as flexibility, transparency and faster time-to-market. Every continuous
investment is evaluated based on several key criteria, e.g. IT strategy fit, investment
costs, cost saved in operations and development. Current projects such as the elec-
tronic document exchange have been easy to justify as the calculation of time to be
saved by eliminating manual process steps.

Case 6 - Insurance Group
The company is an international insurance group with its headquarters in Vienna. It is
present in more than 20 countries in Europe and together with all its subsidiaries
abroad, the company employs more than 20,000 employees and serves more than 7
million customers. The company is one of the SOA pioneers in Austria and has one of
the most SOA-intensive architectures in the country. SOA currently accounts for
approximately 1/3 of the total architecture of the group utilizing mostly web services,
while large part of the group's architecture is comprised of old legacy systems. The
main reasons behind the SOA implementation were expected efficiency increases, IT
centralization as well as cost savings. After first steps in the late nineties, the scope of
the first big SOA initiative included a business process management system, which
was originally implemented as a pilot project by the company’s own development
team. However, the group decided to shift from in-house development to investing
in ready-made solutions instead. The first large investment into SOA was not sup-
ported by any ROI calculation due to its strategic importance; still all continuous
investments in the company are usually evaluated based on qualitative and quantita-
tive aspects. Qualitative aspects include the alignment of IT and business processes
overall efficiency improvements. Quantitative aspects consist of a 3-year Total Cost
of Ownership calculation.

4 Research Results Analysis

After evaluating 6 cases of SOA implementations in large Austrian companies in
various industries a distinct pattern of investment criteria has been examined which
is depicted in Table 1. In almost all cases, initial investments into SOA were sup-
ported by primarily qualitative aspects. These included transparency, efficiency and

334 L. Auer et al.

flexibility, services reuse, faster time-to-market, strategic reasons or focus on key
business processes. Some of the companies had conducted pilot projects prior to their
investment decision, while others went straight to implementation. In none of the
cases stakeholders were fully aware of all the costs and benefits of SOA implementa-
tions with regards specifically to their company. However, it must be stated, that all
of the interview partners were satisfied with their investments into SOA. In spite of
the numerous existing IT valuation methods, advanced techniques have hardly been
used and managers interviewed in this study predominantly used methods they intui-
tively understood [21]. Some of the reasons put forward for the failure to monitor
benefits of their investments are [22]:

• Assessment of benefits was not required due to business strategy guidelines
• Difficulty to asses benefits after project implementation

In contrast to initial SOA investments, the evaluation focus of continuous projects in
SOA environments observed shift to more quantitative aspects, with ROI in various
forms serving as primary evaluation metric, while qualitative aspects have been play-
ing a secondary role at this stage. Interestingly, some interview partners have given
contradictory statements about certain benefits of SOA, such as reuse. It became also
transparent that still IT employees are responsible for decisions related to SOA budg-
eting and spending, which is highly questionable [23]. The main reasons for the in-
consistency of SOA investment evaluation included the choice of incomprehensive
evaluation methodologies, inadequate assessment of inputs and outputs and the com-
plexity behind establishing the total value of SOA [24], therefore the most common
and accepted measure to justify IT investments based on this study has been a static
Return on Investment (ROI) calculation. Nevertheless, it is uncertain if such a finan-
cial measure and other metrics can reflect intangible benefits, long-term strategic
advantages and also the risk that enfold SOA-related investments.

Table 1. Cross-Case Analysis

Case Banking Teleco Ministry Media Data Service Provider Insurance

SOA Pilot

Transparency

Efficiency

Flexibility

Re-use

Time

Strategy

Process Focus

Q
 u

 a
 l

i t
 a

 t
 i

v
e

A
 s

 p
 e

 c
 t

s

Investment Criteria

Q
 u

 a
 n

 t
 i

t a
 t

 i
v

e
A

 s
 p

 e
 c

 t
 s

Costs

Revenue Increase

ROI

 Exploratory Case Study Research on SOA Investment Decision Processes in Austria 335

5 Conclusions and Further Research

It has been shown in this paper that it is still unclear how appropriate financial evalua-
tion methods used in practice are to fully capture proposed SOA benefits and that a
gap between science and practice is still undeniable. Based on the results presented
we will concentrate our future research on (1) financial performance measures capa-
ble of evaluating all aspects that arise from SOA-related investments and (2) how to
estimate payoffs from previous or future SOA investments. We are currently working
on a real-options approach allowing to measure for risk and staged investments in a
SOA context, which has been ignored in the past [11] and recommend to further in-
vestigate on this topic.

References

[1] Thomas, O., vom Brocke, J.: A value-driven approach to the design of service-oriented
information systems - making use of conceptual models. Information Systems and e-
Business Management (ISeB) 8(1), 67–97 (2009)

[2] Stewart, W., Coulson, S., Wilson, R.: Information Technology: When is it Worth the In-
vestment? Communications of the IIMA 7(3), 119–122 (2007)

[3] Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing:
a Research Roadmap. Int. J. Cooperative Inf. Syst. 17(2), 223–255 (2008)

[4] Willcocks, L.: Evaluating Information Technology investments: research findings and re-
appraisal. Information Systems Journal 2, 243–268 (1992)

[5] Grembergen, W.: Information Technology Evaluation Methods and Management. John
Wiley & Sons, Inc., New York (2001)

[6] DeLone, W.H., McLean, E.R.: The DeLone and McLean Model of Information Systems
Success – A Ten-Year Update. Journal of Management Information Systems 19(4), 9–30
(2003)

[7] Lagerstrom, R., Ohrstrom, J.: A Framework for Assessing Business Value of Service
Oriented Architectures. In: Services Computing, IEEE International Conference on
Services Computing, pp. 670–671 (2007)

[8] Beimborn, D., Joachim, N., Weitzel, T.: Drivers and Inhibitors of SOA Business Value:
Conceptualizing a Research Model. In: AMCIS 2008 Proceedings, Toronto (2008)

[9] Viering, G., Legner, C., Ahlemann, F.: The (Lacking) Business Perspective on SOA -
Critical Themes in SOA Research. Wirtschaftsinformatik 1, 45–54 (2009)

[10] Becker, A., Buxmann, P., Widjaja, T.: Value Potential and Challenges of Service-
Oriented Architectures - A User and Vendor Perspective. In: Proceedings of the 17th
European Conference on Information Systems, Verona (2009)

[11] Dewan, S., Shi, C., Gurbaxani, V.: Investigating the risk-return relationship of informa-
tion technology investment: firm-level empirical analysis. Management Science 53(12),
1829–1842 (2007)

[12] Yoon, T., Carter, P.: Investigating the Antecedents and Benefits of SOA Implementation:
A Multi-Case Study Approach. In: AMCIS Proceedings (2007)

[13] Beimborn, D., Joachim, N., Münstermann, B.: Impact of Service-oriented Architectures
(SOA) on Business Process Standardization - Proposing a Research Model. In: Proceed-
ings of the 17th European Conference on Information Systems (ECIS), Verona (2009)

[14] Starke, G., Tilkov, S.: SOA Expertenwissen – Methoden, Konzepte und Praxis
serviceorientierter Architekturen (2007)

336 L. Auer et al.

[15] Schryen, G.: Preserving knowledge on IS business value: what literature reviews have
done. In: Business & Information Systems Engineering (BISE), vol. 52(4), pp. 225–237
(2010)

[16] Glaser, B., Strauss, A.: The discovery of grounded theory. de Gruyter, New York (1967)
[17] Yin, R.: Case Study Research: Design & Methods, Thousand Oaks (2007)
[18] Kauffman, R.J., Weill, P.: An evaluative framework for research on the performance ef-

fects of information technology investment. In: Proc. 10th International Conference on
Information Systems, Boston (1989)

[19] Miles, M.B., Huberman, A.M.: Qualitative data analysis: an expanded sourcebook, 2nd
edn. Sage Publications, Thousand Oaks (2005)

[20] Frisk, E.: Categorization and overview of IT perspectives – A literature review. In: Proc.
of the European Conference on Information Management and Evaluation (2007)

[21] Nijland, M.: Understanding the Use of IT Evaluation Methods in Organizations, London
School of Economics, PhD Dissertation (2004)

[22] Lin, C., Pervan, G.: The practice of IS/IT benefits management in large Australian or-
ganizations. Inf. Manage. 41(1), 13–24 (2003)

[23] Ross, J., Weill, P.: Six IT decisions your IT people shouldn’t make. Harvard Business
Review 80(11), 5–11 (2002)

[24] Brynjolfsson, E.: The productivity paradox of information technology. Commun.
ACM 36(12), 66–77 (1993)

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 337–351, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Metamodelling Approach for i* Model Translations*

Carlos Cares1,2 and Xavier Franch1

1 Universitat Politècnica de Catalunya (UPC)
c/Jordi Girona, 1-3, E-08034 Barcelona, Spain
{ccares,franch}@essi.upc.edu

2 Universidad de la Frontera (UFRO)
Fco. Salazar 01145 Temuco, Chile
carlos.cares@ceisufro.cl

Abstract. The i* (i-star) framework has been widely adopted by the informa-
tion systems community. Since the time it was proposed, different variations
have arisen. Some of them just propose slight changes in the language defini-
tion, whilst others introduce constructs for particular usages. This flexibility is
one of the reasons that makes i* attractive, but it has as counterpart the impos-
sibility of automatically porting i* models from one context of use to another.
This lack of interoperability makes difficult to build a repository of models, to
adopt directly techniques defined for one variation, or to use i* tools in a fea-
ture-oriented instead of a variant-oriented way. In this paper, we explore in
more detail the interoperability problem from a metamodel perspective. We
analyse the state of the art concerning variations of the i* language, from these
variations and following a proposal from Wachsmuth, we define a supermeta-
model hosting identified variations, general enough so as to embrace others yet
to exist. We present a translation algorithm oriented to semantic preservation
and we use the XML-based iStarML interchange format to illustrate the inter-
connection of two tools.

Keywords: i*, i-star, interoperability, semantic preservation, iStarML.

1 Introduction

The i* (pronounced i-star) framework [1] is currently one of the most widespread
goal- and agent-oriented modelling and reasoning frameworks. It has been applied for
modelling organizations, business processes and system requirements, among others.

Throughout the years, different research groups have proposed variations to the
modelling language proposed in the i* framework (for the sake of brevity, we will
name it “the i* language”). There are basically two reasons behind this fact:

– The definition of the i* language is loose in some parts, and some groups have
opted by different solutions or proposed slight changes to the original definition.
The absence of a universally agreed metamodel has accentuated this effect [2].

* This work has been partially supported by the Spanish project TIN2010-19130-c02-01

338 C. Cares and X. Franch

– Some groups have used the i* framework with very different purposes thus differ-
ent concepts have become necessary, from intentional ones like trust, delegation
and compliance, to other more related with the modelling of things, like service or
aspect (see [3] for an updated summary).

The adaptability of i* to these different needs is part of its own nature, therefore these
variations are not to be considered pernicious, on the contrary, flexibility may be
considered one of the framework’s key success features. However, there are some
obvious implications that are not so desirable:

– It makes difficult to build a repository of i* models shared and directly used by
the whole community.

– It also hampers the possibility of interconnecting different i* tools that are not
compliant to the same i* language variation.

– Finally, it makes techniques defined for one i* variation not directly applicable
into another variation.

The work presented here addresses these problems and specifically tries to answer the
following research questions:

– What types of i* variations are proposed and how can they be characterized?
– Which is an appropriate semantic framework for analysing i* interoperability?
– Given two i* variations A and B, to what extent is it possible to translate models

built with A to B and the other way round according to this semantic framework?
– Given two i* variations A and B, how can a model from A be translated to B, in

the light of the limitations identified in the previous question?

The rest of the paper is structured as follows. Section 2 provides the background
about i* variations. Section 3 presents the metamodel framework for translation re-
marking why the concepts of supermetamodel and semantic-preservation can be used
for dealing with interoperability among i* variants. Section 4 proposes the super-
metamodel for i* variants, and Section 5 presents a translation algorithm to maximize
semantic-preservation illustrated with an example of model interchange between two
i* tools. Finally, Section 6 states the conclusions and future work.

Basic knowledge of i* is assumed, see [1] and the i* wiki [4] for details.

2 The i* Framework: Evolution and Existent Variations

The i* framework was issued in the mid-nineties and the first full definition was in-
cluded in the PhD thesis by Eric Yu [1]. Some of its concepts were previously pro-
posed and used in KAOS [5] and in the NFR Framework [6]. This original work on i*
has been the most cited in the community. Recently, an updated version has been
included as part of the i* wiki [4], with minor differences with respect to the seminal
one (e.g., richer types of contribution links).

From this major trunk, we may consider two main variations. On one hand, the
Goal-oriented Requirement Language (GRL) which is part of the User Requirements
Notation (URN) [7]. On the other hand, Tropos [8], an agent-oriented software
methodology that adopts i* as its modelling language. In both cases, the differences
with respect to the seminal Yu’s i* are not that relevant to consider them as different

 A Metamodelling Approach for i* Model Translations 339

notations, but due to its adoption by the community we consider them as major varia-
tions. Thus, we may say that i* has three main dialects: the seminal i* currently repre-
sented by the wiki definition, GRL, and the language adopted by Tropos.

On top of these three main dialects, we may find many proposals for particular
purposes. Some of them are bound to a particular domain, e.g., security as in Secure-
Tropos [9], or norm compliance as in Nòmos [10]. Others propose very particular
concepts for a particular purpose, like the concept of module or constraint. Finally,
some others propose more fundamental variations affecting the way of modelling, as
the concepts of service, variation point or aspect.

Table 1 presents a comparative analysis of the proposals issued by the community
in the last 5 years. We have carried out a review in the following conferences and
journals for the period 2006-2010: CAiSE, REJ, DKE, IS Journal, RE, ER, RiGiM,
WER, i* workshop, and also including the recent book on i* [3]. Our goal has not
been carrying out a systematic review but to get a representative sample of the com-
munity proposals in this period as a way to know what the major trends concerning
language variability are. In total, we have found 146 papers about i* in these sources
(without including papers talking about goal-modelling, since we are interested in
language-specific issues). From them, we have discarded 83 which are not really
relevant to our goals (i.e., papers not directly related with the constructs offered by the
language). For the remaining 63, the table shows how many of them propose addition,
removal or modification of concepts classified into six different types. It must be
taken into account that a single paper may propose more than one construct variation
and that similar changes are proposed or assumed in different papers. Also it is neces-
sary to remark that most papers just focus on some specific part of the language, in
that case we assume that the other part remains unchanged.

Table 1. Variations proposed by the i* community in the last 5 years (selected venues only).
Each paper increments at most in 1 each column.

 Actors Actor links Dependencies Intentional elements (IE) IE links Diagrams
 New 4 24 10 21 21 19
 Removed 8 5 2 1 0 0
 Changed 3 1 1 36 43 0

An analysis of this table follows:

– On actors. The most usual variation is getting rid of the distinction on types of
actors, like remarkably GRL1 does. Some special type (e.g., “team”) may appear.

– On actor links. Most of the variants include is_part_of and is_a but some get rid
of one (e.g., GRL just keeps is_part_of) or even both. Of course, having just a ge-
neric type of actor means not having the links bound to specific types like plays.
Finally, some proposals use new actor links, like in Nòmos: A embodies B means
the domain actor A has to be considered as the legal subject B in a law.

– On intentional elements. Although all virtually all variants keep the four standard
types (goal, softgoal, task and resource), we may find a lot of proposals of new

1 In the rest of the paper, we refer to the GRL implementation supported by the jUCMNav tool,

http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/.

340 C. Cares and X. Franch

intentional elements. To name a few, GRL adds beliefs, Nòmos adds norms, and
even aspects appear as dependums. There are not many modification proposals,
e.g., resources may be classified as physical or informational with consequences
for class diagram generation in an MDD process.

– On intentional element links. Most of the variants keep the general idea of the
three link types (means-end, task decompositions and softgoal contributions),
some of them merge two of them, e.g., GRL defines a link decomposition that
merges means-end and task-decomposition. Then we have lots of variations about
types of decompositions (e.g, Tropos allows both AND and OR means-end links),
contribution values (labels such as +,- vs. make, help, etc.), correctness conditions
(e.g., whether a resource may be a mean for a goal), etc. Finally, some modifica-
tions usually occur in the form of labels, e.g., quantitative labels for contributions
in GRL, multiplicity in some Tropos-based variants, etc. A special type of modifi-
cation is relaxing some conditions, e.g., allowing links among intentional elements
that belong to different actors, or contributions to goals.

– On dependencies. About modifications, we may find the addition of attributes
which qualify the type of dependency, e.g., Secure-Tropos adds trust and owner-
ship qualifiers. Then, we have new types of relationships that may be interpreted
as dependencies, like Nòmos’ legal relations. Also, a quite usual variation is to get
rid of dependencies’ strength, probably due to the difficulty of interpreting the
concept in a reasoning framework. The type of depender and dependee also pre-
sents constraints sometimes, e.g., GRL forces them to be intentional elements, ac-
tors are not allowed in this context.

– On diagrams. The distinction among SD and SR diagrams is not always kept,
some proposals just have a single model in which the actors may be gradually re-
fined. One type of diagram that was depicted in Yu’s thesis but not recognised as
such was actor diagram, and some authors have promoted this third type of dia-
gram as such. On addition, several proposals of types of diagrams exist, from the
generic concept of module to specific proposals like interaction channel.

The result of this study shows the complexity of the model transformation problem. In
fact, one may easily anticipate that it will be impossible to get an automatic transfor-
mation technique for any pair of existing proposals. It becomes necessary to investi-
gate the limits of model transformation in i* and provide a general customizable
framework.

3 A Metamodel View of i* Model Translation

Metamodels have been the traditional tool in Software Engineering to express valid
models of a certain modelling language [11]. The language used to specify a meta-
model is called metalanguage. Note that metamodels represent only what can be ex-
pressed in valid models but not what these expressions mean, i.e., a metamodel speci-
fies the syntax of a modelling language but not its semantics.

In the case of i* transformations, the different i* variants mentioned in Section 2
correspond to their own metamodels which are expressed using different metalan-
guages (e.g., UML, EBNF, Telos). The problem of transforming a source model into a

 A Metamodelling Approach for i* Model Translations 341

target model can be viewed as a particular case of applying general rules to transform
the differences between the corresponding metamodels.

3.1 Wachsmuth’s Proposal on Metamodel Adaptation

In 2007, Guido Wachsmuth presented a proposal [12] to deal with the problem of
metamodel evolution and its implications for adapting its instance models according
to this evolution (see Fig. 1, left). The basic hypothesis is that co-adaptation of
models can be automatically derived from well-defined metamodel evolution steps.
Wachsmuth defines different semantic-preserving categories and matches them
with specific refactoring operations on metamodels. The way of handling semantic-
preserving features respond to the concept of semantics already introduced, i.e., se-
mantic preservation is not characterized by meaning but by structural changes on
corresponding metamodels.

Here, we are proposing the adoption of this framework in the context of the prob-
lem of translating models among metamodels which have a common set of concepts
(see Fig. 1, right). In other words, we change the perspective:

– from: given a model mA created as instance of a metamodel MA, translate it into
another model mB created as instance of a metamodel MB via a metamodel corre-
spondence,

– into: given a model mA created as instance of a metamodel MA, and given a
metamodel evolution from MA to MB, co-adapt the model mA into another model
mB created as instance of MB via some metamodel refactoring operations.

Fig. 1. Comparative between co-adaptation and interoperability via metamodel refactoring

3.2 Wachsmuth’s Proposal: Relationships and Semantic Preservation

To characterize refactoring operations Wachsmuth proposes some basic concepts:

− MM represents all the metamodels conforming to a specific metamodel formalism
M, denoted by MM := {μ╞ M}. Although it is not really relevant, we may assume
MOF 2.0 formalism in this paper.

− CM(μ) represents the concepts defined by a particular metamodel μ. In our case,
typical concepts would be actor, intentional element, etc.

342 C. Cares and X. Franch

− I(μ) represents the set of all metamodel instances conforming to a metamodel μ,
denoted by I(μ):= { ι╞ μ }. In our case, we focus on those μ which are a meta-
model of some i* variation (e.g., i*-wiki metamodel, GRL metamodel, Tropos
metamodel) and then for each μ , I(μ) are i* models built as instances of μ.

− IC(μ) represents the set of instances I(μ) of restricted the specific set of concepts C,
i.e., IC(μ) ⊆ I(μ). For instance, we may refer to the set of concepts C which are part
of SD models, and then IC(μ) would represent SD models built according to the
metamodel μ.

Using these concepts, 5 types of generic relationships between metamodels are
defined (see 1st and 2nd columns of Fig. 2.) which yield to 5 degrees of semantic pres-
ervation. The transformation from one metamodel to another implies a relationship R
between the source and target metamodels, thus, the type of semantic preservation of
R (if any) will depend of which of these generic relationships is subset (see 3rd col-
umn of Fig. 2). Besides, the different types of semantic preservation imply different
types of instance preservation (see 4th column of Fig. 2).

Fig. 2. Summary of semantic preserving relationships in Wachsmuth’s framework [12]

3.3 Wachsmuth’s Proposal: A Framework for i* Interoperability

As we have already said, most of the i* variants have their own metamodel which
conforms a different modelling formalism. However, this diversity of formalisms
seems to be just a representational problem. We have assessed this opinion in earlier
works by proposing an i* reference metamodel and proposing a set of refactoring
operations to allow obtaining the different variants [13].

But this preliminary result that we obtained, although valuable as a first step, exhib-
its an important drawback that the set of common concepts was intentionally kept to a
minimum (i.e., we wanted to represent the universally agreed concepts). Whilst provid-
ing a good ontological basis, this decision was damaging the model interoperability
goal that we are targeting here. Wachsmuth allows stating the reason why: model
translation was suffering from eliminating or decreasing semantic preser-vation. In this

 A Metamodelling Approach for i* Model Translations 343

work, we search for the fundamental property of instance preservation: given an i*
model that is instance of a metamodel MA that represents a source variation then, when
applying the mapping from MA to MB (the metamodel that represents the target varia-
tion) the model can also be considered an instance of MB.

Let’s assume that a model, named the i* supermetamodel, exists, therefore any ex-
isting metamodel of i* variation is a submetamodel of the i* supermetamodel. Then,
if we could model refactoring operations from the i* supermetamodel to the particular
variants, then we would have a feasible translation from each variant to another. This
hypothetical scenario would exhibit three advantages: (i) supporting at some extent
interoperability between models belonging to different metamodels; (ii) given k i*
variants, providing a framework that offers translation from one variant to each other
with linear complexity in terms of transformation functions (k functions) instead of
quadratic (k2-k pair-wise functions); (iii) the type of semantic preservation would be
characterized with a clear specification of preservation (strict, modulo varia-tion,
increasing or decreasing). In Figure 3 we illustrate this hypothetical assumption.

Although it may appear hard to sustain that such an i* supermetamodel exists (due
to the continuous proposals that modify it), in the next section we will discuss
the conditions under which its existence appears reasonable to sustain and a first i*
supermetamodel approach will be presented.

Fig. 3. Comparing absence and presence of an i* supermetamodel for model translations

4 A Supermetamodel for i*

From its definition, we can colloquially understand a supermetamodel as a metamodel
which contains the superset of language constructs existing on other metamodels. In
the case of the i* framework, this means that if M is a supermetamodel for i* then the
different values of softgoals contributions (some+, helps, makes, +, ++, - , --) should
be modelled in M. Besides, the same for intentional element types, actor types, etc.

Therefore, in the attempt of formulating a supermetamodel for the existing variants
and, ideally, upcoming ones, we need to answer two questions: (i) how to put under
the same metamodel a set of different language constructs coming from different i*
variants?, (ii) how to make this supermetamodel stable enough in order to suffer
minimal modifications (if any) when a new i* variant is proposed? To satisfactorily
answer both questions, the key concept is abstraction to allow putting different
concepts together. It is crucial to capture the right level of abstraction: if the

344 C. Cares and X. Franch

metamodel is too abstract (e.g., only differentiating nodes and links) it may fail in
capturing the essence of i*; if it is too detailed, the metamodel can result in a rigid
structure which requires high effort to be refactorized. In the first case, an additional
problem appears, because using a high abstraction level means adjusting basic syntax
formations by means of textual (e.g., OCL) constraints, and textual constraints are not
considered in the Wachsmuth’s framework, therefore semantic preservation could not
be qualified. Therefore, we are looking for a metamodel which allows representing
different i* variant structures and possible extensions whilst, at the same time, keep-
ing the core i* language constructions.

These two situations appear in the two most related works we may found in the lit-
erature. Amyot et al. have proposed a metamodel for GRL [14] that contains concepts
such as metadata, links and groupings that enable the language to be extended and
tailored, also using OCL constraints. So it may be classified as too abstract. In addi-
tion, it presents some peculiarities that forces its customization either in quite classical
i* contexts (e.g., types of actors are not defined, dependencies linking actors –not
intentional elements– are not allowed; dependencies without dependums are allowed)
or in non-classical contexts (e.g., types of boundaries are impossible to be set). On the
other hand, the reference metamodel presented by Cares et al. [13] proposes the use of
refactoring operations to map into other variants. However, there are specializations
for representing specific i* elements, therefore, adding a new language element would
mean adding new classes to the metamodel. Thus, the reference model has a great
value, but the problem comes when we want to use it in the context of model transla-
tion since it would imply alterations to classes.

The i* supermetamodel proposal is based on the reference model but incorporates
the concept of metadata appearing in the GRL metamodel. From the i* reference
model we obtain a more abstract metamodel using i* related concepts and their exten-
sions are handled with metainformation. We formalize this idea into UML stereo-
types. The result is the metamodel that appears in Fig. 4. Actor and IElement are the
central classes. Then ActorLink and IElementLink are recursive binary associations on
them. Boundary is a binary association among IElement and Actor (note that an IEle-
ment may appear outside any boundary, e.g., dependums). Finally the concept of
dependency is implemented with two associations: dependencies are divided into
DependencySegment which is an easy way to allow different properties at each end,
or even with just one end defined. Each DependencySegment connects an Actor
(considered depender or dependee depending on the value of the participatorType
attribute) and an IElement (the dependum) and then may (or not) be connected to a
particular IElement that would be an internal element inside the corresponding Actor.
We remark that this high-level model is providing stability since abstract concepts are
shared in the different variants, and according to the historical track of the language,
we may assume that future variants will still adhere to them.

The resulting UML stereotypes are: (a) <<XEnum>> which represents a special
kind of enumeration class that may grow (i.e., may be assigned more values). We
have included as class attributes only the most consolidated ones (i.e., name of Actor
and IElement; value of IElementLink as optional for those links without values;
strengths for DependencySegment among others). (b) <<XClass>> which allows
having an additional list of attribute-value pairs. To take full profit of this definitions,
plain associations are converted into association classes with stereotype <<XClass>>.

 A Metamodelling Approach for i* Model Translations 345

The i* supermetamodel as presented is capable to represent as instances those i*
models built with any of the variations mentioned or referenced so far. In order to
illustrate this expressive power we show, in Figure 5, an object diagram correspond-
ing to the i* supermetamodel. It represents a specific i* model selected from [15].
We may observe different usual elements (types of actors, goals, softgoals, etc.) then
some particular elements, more precisely costs in contribution links (both a label and
a quantitative value). We have tested the i* supermetamodel with additional represen-
tations including service-oriented i* [16], i* with norms [10] and the different secure-
oriented i* variants [9].

Fig. 4. The i* supermetamodel

It is interesting to remark that, in spite of its expressive power, the i* supermeta-
model cannot be considered an i* variant by itself. Although it is a metamodel, it just
represents a wide set of possible i* configurations but considered by itself, there are
hundred of instances of the i* supermetamodel that have not any sense into any i*
community, e.g., a belief decomposed into resources. Therefore, the i* supermeta-
model has to be considered just a reference framework for supporting model interop-
erability. Nevertheless, it must be mentioned that the i* supermetamodel does impose
basic syntactic validity conditions for models to be really considered an i* variant.
For instance, it is stated through multiplicities that an intentional element cannot be-
long to more than one actor. Other additional conditions are not shown graphically
but exist in the form of OCL integrity constraints. Just to name one, in the case of
DependencySegments that arrive to an IElement, it must hold that the IElement is
inside the boundary of the Actor linked by the segment:

context DependencySegment::IElementInsideActor() inv:
 self.IElement->notEmpty() implies self.iElement.itsActor->notEmpty()

 and self.iElement.itsActor = self.Actor

It must be mentioned that the current i* supermetamodel proposed here does not
cover the complete range of constructs that appear in the state of the art, that remain

346 C. Cares and X. Franch

Fig. 5. An excerpt of a particular i* model considered as an instance of the i* supermetamodel

for the next version. The elements remarkably left are: links to external elements (i.e.,
from other conceptual models, e.g., UML classes), boundaries other than actors and
some types of intentional links (e.g., GRL’s correlations).

5 Implementing i* Variants Translation

Now we face the ultimate goal of our work: given a model m1 built as an instance of a
metamodel M1 that represents a particular i* variant, how to proceed in order to ob-
tain a model m2 built as instance of a metamodel M2 that represents a different i*
variant, so that the loss of information is kept to a minimum. To implement this
translation, we need an algorithm and a computational representation of the i*
supermetamodel.

Let’s start by the second point, which is simpler. As computational representation
of the metamodel we use the iStarML interchange format [17]. It was designed with
the reference model in mind but it may easily match the i* supermetamodel as
well. XML was chosen as interchange language, therefore we may use a broad set of

 A Metamodelling Approach for i* Model Translations 347

Table 2. Correspondence between the i* supermetamodel and iStarML

i* Supermetamodel Element iStarML Construction

XClass Actor <actor>
XClass Intentional Element <ielement>
Association XClass Boundary <boundary> nested under <actor>
Association XClass Dependency Segment <dependee> or <dependeder> nested under

<dependency>
XClass ActorLink <actorLink>
XClass IElementLink <ielementLink>
Association XClass ArrivesTo <dependency> nested under <ielement>

technologies in order to parse and process iStarML files. The particular XML ele-
ments of iStarML correspond to supermetamodel concepts as we show in Table 2.

For the translation algorithm, it is important to start reminding from Section 3 that,
since we are using the i* supermetamodel, then the departing model m1 is considered
an instance of the i* supermetamodel. Therefore the translation from the metamodel
M1 to M2 should be considered in fact as a translation from the i* supermetamodel to
M2. Since the target variant corresponds to a restricted version of the very i* super-
metamodel, then the refactoring operations required for translation can be only to
restrict attributes of the existing classes or to constraint the set of values of specific
attributes. In our iStarML implementation, this means to omit some attribute of an
existing XML element or to translate specific values of attributes to a different set.
Both types of translations (if any) can imply different semantic-preserving situations.

In order to minimize information loss, an algorithm is proposed (Figure 6). It is
presented as a UML activity diagram labelled with information about the semantic-
preservation consequences considering Wachsmuth’s framework. The activities are:

− Copy known formations. The part of m1 that is also a valid instance of M2 is di-
rectly considered as part of m2. In other words, the concepts which are shared by
both metamodels M1 and M2 are kept. In case that the full model m1 is a valid in-
stance of M2, we finish and classify the translation as strictly semantic preserving.
Example: a generic actor is always kept as a generic actor.

− Translate using bijective mappings. Let’s name m1A the part of m1 that has not
been treated in the previous activity. The part of m1A for which we may establish a
bijective mapping between its elements and corresponding elements, which are
instance of M2, is translated using this bijective mapping. In other words, the
concepts that can be expressed in both metamodels M1 and M2 but with different
constructs, are just translated. In case that after this activity the full m1 has been
treated, then the translation is semantic preserving modulo variation. Example: a
task can be translated into plan and a plan into a task.

− Translate using injective mappings. Let’s name m1B the part of m1 that has not
been treated in the previous activity. The part of m1B for which we may establish
an injective mapping from its elements to others which are instance of M2, is trans-
lated using this mapping. In case that after this activity the full m1 has been treated,
then the translation is decreasing modulo variation (the variation introduced by
the mapping). Example: a make contribution from GRL can be translated into ++
contribution in seminal i*, but not any ++ is a make contribution.

348 C. Cares and X. Franch

Fig. 6. Translation algorithm from the i* supermetamodel to an i* variant

− Forget non translating formations. Finally, those constructs in m1 which have not
been translated in the previous activities, are just removed. Example: a belief from
GRL when translating into Aspectual i*.

In order to illustrate the process, we have designed a proof-of-concept for translating
models built with the OME tool [18] into the jUCMNav tool [19]. The metamodels
involved are determined in this case by the implementation of the tool. Basically
OME is offering the i* variant available in the i* wiki, whilst jUCMNav is imple-
menting GRL’s metamodel, although a closer look reveals some minor differences
not relevant for the purposes of this paper. For the technical implementation of the
algorithm we have used XSLT, a declarative language for transforming XML files
[20]. The algorithm is implemented as a Java applet and currently available at
http://www.essi.upc.edu/~gessi/iStarML/. Besides, jUCMNav has been modified in
order to import and export iStarML files [21]. We prove the approach doing XSLT
transformation from OME representations (i*), as special case of supermetamodel, to
jUCMNav representations (GRL). In Table 3 we show four submodels to illustrate the
four different outputs of the translation algorithm. We explain below each row:

− Row 1: dependency from an intentional element into another. Strictly semantic
preserving: all the model is translated without changes. Output 1 in Figure 6.

− Row 2: task decomposition with dependency to an intentional element. Semantic
preservation modulo variation: the task decomposition in OME is translated into an
AND-decomposition in jUCMMNav. Note that it would be possible to recreate the
original model. Therefore, this is a bijective mapping. Output 2 in Figure 6.

− Row 3: dependency from an intentional element into an actor. Please note that
jUCMNav does not admit dependencies with actors as dependers or dependees
(i.e., the 0..1 multiplicity in arrives-to in the i* supermetamodel of Figure 4 be-
comes 1 in jUCMNav). Decreasing modulo variation: it is possible to translate the
dependency by creating an intentional element in the target actor and attaching de-
pendency on it, but the original model can not be recreated, since it is not known if

 A Metamodelling Approach for i* Model Translations 349

the added intentional element is really new or not. In particular, note that this
jUCMNav model is identical to the previous one, clearly showing the lack of bijec-
tion with respect to this particular point. Output 3 in Figure 6.

− Row 4: agent as instance of actor. Although the agent is converted into actor
(decreasing modulo variation), the instance link is lost. Eliminating semantic pres-
ervation: the element can not be kept and is removed. Informational loss. Output 4
in Figure 6.

We remark that we are not proposing specific semantic equivalences from one variant
to another, we are just showing a proof-of-concept of our approach by describing a
general procedure to maximize semantic preservation reducing the complexity of

Table 3. Classification of specific model translations from OME to jUCMNav

from OME to jUCMNav

350 C. Cares and X. Franch

the translation problem. The existence of many i* variants implies the existence of
different semantic-pragmatic communities and the equivalences or mappings among
metamodels (in fact, from the i* supermetamodel to variants’ metamodels) should be
a matter of a meaning-making process inside that specific community. Just to mention
an example, row 3 and row 4 are proposing two different strategies for dealing with
one specific construct (dependency with an actor as dependee) that is supported in
the departing metamodel but not in the target metamodel. Choosing one or another
depends on the target community.

6 Conclusions and Future Work

In this paper we have dealt with the problem of interoperability among i* variants
under a metamodel perspective. We organized the research into 4 questions which we
think have been satisfactorily explored:

– We have surveyed 146 proposals presented by the community in the last 5 years,
and we have classified them in terms of additions, removals and modifications of
i* constructs organized into six categories. Thus, we have obtained a quite com-
plete characterization of the i* variability to support interoperability goals.

– We have proposed a framework for the interoperability problem based on an ap-
proach that can be considered consolidated and widespread in the MDE commu-
nity. We have customised this framework about model evolution into the i* model
interoperability problem. As cornerstone of this customization, we have defined a
supermetamodel for i* that eases interoperability by metamodel containment.

– Given the framework above, we have classified the surveyed i* variation types in
terms of the semantic impact of their translation, having then a general idea about
what types of information loss may happen and to what extent the analyst may
provide information (mappings) to minimize this loss.

– We have defined a process for translating a model compliant to one metamodel to
another compliant to a different metamodel, and we have demonstrated how it
works by exploring the translations of models built with the OME tool to the
jUCMNav tool.

As a summary, we may say that we have provided a first consolidated step towards
not just syntactic but also semantic interoperability in the i* framework. Our approach
may help creating a repository of i* models (using the i* supermetamodel as universal
reference model), may favour the application of techniques that work over different
metamodels, and may possibilitate the interchange of models between tools.

Our future work spreads along four different axes. First, improving the translation
algorithm which is currently able to deal just with reductions, to tackle increasing
modulo variations. Second, to offer a portfolio of tool interconnections in similar way
to the one between OME to jUCMNav explained here (in fact, we have a more com-
plete case of interconnection among the jUCMNav and HiME [22] tools, described in
[21]). Third, consider not just syntax and semantics but also ontological issues in the
translation process. Forth, digging into more details of Wachsmuth’s framework for
proposing translation heuristics depending on the refactoring distance between the
source and target metamodels, allowing thus having some default translation rules
instead of a pure case-by-case analysis (although as remarked at the end of Section 5,
translation will ultimately depend on the community ontological perception of i*).

 A Metamodelling Approach for i* Model Translations 351

References

1. Yu, E.: Modelling Strategic Relationships for Process Reengineering. PhD. Computer Sci-
ence, University of Toronto, Toronto (1995)

2. Franch, X.: Fostering the Adoption of i* by Practitioners: Some Challenges and Research
Directions. In: Intentional Perspectives on Information Systems Engineering. Springer,
Berlin (2010)

3. Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J. (eds.): Social Modeling for Requirements
Engineering. The MIT Press, Cambridge (2011)

4. The i* Wiki, http://istar.rwth-aachen.de
5. Dardenne, A., Lamsweerde, A.v., Fickas, S.: v. and Fickas S.: Goal-directed Requirements

Acquisition. Science of Computer Programming 20(1-2), 3–50 (1993)
6. Chung, L.K., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-functional Requirements in Soft-

ware Engineering. Kluwer Academic Publishing, Dordrecht (2000)
7. ITU-T Recommendation Z.151 (11/08), User Requirements Notation (URN) - Language

Definition (2008), http://www.itu.int/rec/T-REC-Z.151/en
8. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An Agent-

Oriented Software Development Methodology. Autonomous Agents and Multi-Agent Sys-
tems 8(3), 203–236 (2004)

9. Mouratidis, H., Giorgini, P., Manson, G.: Integrating Security and Systems Engineering:
Towards the Modelling of Secure Information Systems. In: Eder, J., Missikoff, M. (eds.)
CAiSE 2003. LNCS, vol. 2681, pp. 63–78. Springer, Heidelberg (2003)

10. Siena, A.: Engineering Law-compliant Requirements. The Nòmos Framework. PhD. The-
sis, University of Trento, Trento (2008)

11. Seidewitz, E.: What Models Mean. IEEE Software 20(5), 26–32 (2002)
12. Wachsmuth, G.: Metamodel Adaptation and Model Co-adaptation. In: Bateni, M. (ed.)

ECOOP 2007. LNCS, vol. 4609, pp. 600–624. Springer, Heidelberg (2007)
13. Cares, C., Franch, X., Mayol, E., Quer, C.: A Reference Model for i*. In: Yu, E., Giorgini,

P., Maiden, N., Mylopoulos, J. (eds.) Social Modeling for Requirements Engineering, pp.
573–606. The MIT Press, Cambridge (2011)

14. Amyot, D., Horkoff, J., Gross, D., Mussbacher, G.: A Lightweight GRL Profile for i*
Modeling. In: Heuser, C.A., Pernul, G. (eds.) ER 2009. LNCS, vol. 5833, pp. 254–264.
Springer, Heidelberg (2009)

15. Liu, L., Yu, E.: Designing Information Systems in Social Context: a Goal and Scenario
Modelling Approach. Information Systems 29(2), 187–203 (2004)

16. Estrada, H., Martínez, A., Pastor, O., Mylopoulos, J., Giorgini, P.: Extending Organiza-
tional Modeling with Business Services Concepts: An Overview of the Proposed Architec-
ture. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS,
vol. 6412, pp. 483–488. Springer, Heidelberg (2010)

17. Cares, C., Franch, X., Perini, A., Susi, A.: Towards i* Interoperability using iStarML.
Computer Standards and Interfaces 33, 69–79 (2010)

18. OME Tool, http://www.cs.toronto.edu/km/ome
19. jUCMNav Tool, http://jucmnav.softwareengineering.ca
20. XSL Transformations (XSLT) V1.0 W3C Consortium (1999),

http://www.w3.org/TR/xslt (1999)
21. Colomer, D., Lopez, L., Cares, C., Franch, X.: Model Interchange and Tool Interoperabil-

ity in the i* Framework: A Proof of Concept. In: WER 2011 (2011)
22. López L., Franch X. and Marco J.: HiME: Hierarchical i* Modeling Editor. Revista de In-

formática Teórica e Aplicada (RITA), 16, 2, (2009)

Automatic Generation of a Data-Centered View

of Business Processes�

Cristina Cabanillas1, Manuel Resinas1,
Antonio Ruiz-Cortés1, and Ahmed Awad2

1 Universidad de Sevilla, Spain
{cristinacabanillas,resinas,aruiz}@us.es

2 Hasso Plattner Institute at the University of Potsdam
ahmed.awad@hpi.uni-potsdam.de

Abstract. Most commonly used business process (BP) notations, such
as BPMN, focus on defining the control flow of the activities of a BP,
i.e., they are activity-centered. In these notations, data play a secondary
role, just as inputs or outputs of the activities. However, there is an in-
creasing interest in analysing the life cycle of the data objects that are
handled in a BP because it helps understand how data is modified dur-
ing the execution of the process, detect data anomalies such as checking
whether an activity requires a data object in a state that is unreachable,
and check data compliance rules such as checking whether only a certain
role can change the state of a data object. To carry out such an analy-
sis, it is very appealing to provide a mechanism to transform from the
usual activity-centered model of a BP to the set of life cycles of all the
data objects involved in the process (i.e., a data-centered model). Un-
fortunately, although some proposals describe such transformation, they
do not deal with data anomalies in the original BP model nor include
information about the activities of the BP that are executed in the state
transitions of the data object, which limits the analysis capabilities of
the life cycle models. In this paper, we describe a model-driven proce-
dure to automatically transform from an activity-centered model to a
data-centered model of a BP that solves the aforementioned limitations
of other proposals.

Keywords: business process, data management, object life cycle, data
anomalies, Petri net, reachability graph.

1 Introduction

It is widely known that business processes (BPs) involve different kinds of el-
ements, to be named control flow, time, data and resources. However, most

� This work has been partially supported by the European Commission (FEDER),
Spanish Government under the CICYT project SETI (TIN2009-07366); and projects
THEOS (TIC-5906) and ISABEL (P07-TIC-2533) funded by the Andalusian Local
Government.

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 352–366, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Automatic Generation of a Data-Centered View of Business Processes 353

commonly used BP models and notations focus on the control flow and the tim-
ing of activities in the BP. As a consequence, in most BP models, data (e.g.,
documents, reports, invoices, emails and the like) play a secondary role, just as
inputs or outputs of the activities of the process.

Nevertheless, understanding and analysing how data is modified during the ex-
ecution of a BP is getting an increased interest from both industry and academy.
For instance, BPMN, the de-facto standard for BP modelling, has incorporated
more advanced constructs for data management in its last version [1]. In addi-
tion, there is an increasing number of research proposals to analyse the way data
is used in a BP to detect anomalies [2,3,4] and to define data-aware compliance
rules [5] for BPs. Therefore, providing a mechanism to transform from the usual
activity-centered view of a BP to a data-centered view that focuses on the data
handled during the process is very appealing to this goal of understanding and
analysing how data is modified during the execution of a BP.

In this paper we describe a model-driven procedure based on Petri nets for
carrying out this transformation automatically. In particular, the input of the
procedure is a BP diagram expressed in BPMN 2.0 (cf. Figure 1). We use this
notation because it is the de-facto standard for BP modelling. Such diagrams
represent data objects connected to the BP activities that use them either to
read them or write them, or for both things. A data object has a type and can
have one or more states along the execution of a process. For instance, in the BP
of opening a bank account, the data object application filled by the new customer
could go through states sent, accepted and stored. The output of the procedure
is a data-centered view composed of the set of object life cycles (OLCs) of all the
data objects that are involved in a BP. They represent the allowed transitions
between the states of the data object according to the BP diagram. In addition,
these transitions also include information about the activities of the BP that
are executed in the transition between states of the data object (cf. Figure 2).
Furthermore our procedure also deals with some data anomalies that may appear
in a BP model (cf. Section 4 for more details).

Our approach has the following advantages: (i) it is fully automated; (ii) it
is based on Petri nets, which allows us to use efficient and well-tested Petri
net algorithms; (iii) since it includes information about the activities that are
executed in each transition, it provides the same full information required to
understand BP execution as activity-centered process diagrams; and (iv) it is
robust in the sense that it provides an accurate data-centered view despite having
a BP with data anomalies as input. Moreover, it informs the user about these
data anomalies.

The remaining of the paper is organised as follows. Section 2 introduces a
use case used to exemplify the output produced by the procedure. Section 3
contains the description of the whole procedure for OLC generation. In Section
4 the detection and handling of data anomalies is introduced. Section 5 contains
a summary of related work and in Section 6 we draw a set of conclusions and
outline some future work.

354 C. Cabanillas et al.

IN
T

ER
N

A
T

IO
N

A
L

O
LY

M
PI

C
 C

O
M

M
IT

T
EE

INTERNATIONAL OLYMPIC COMMITTEE

Collect
candidates

Assess
candidates

Approve
accepted

candidates
Vote Check

winner

Delete last
posit ion

Is there a winner?

Notify
results

Publish
winnerCandidatures

created

Candidatures
assessed

Candidatures
selected

Resolut ion
created

Candidatures
updated

Resolut ion
updated

Resolut ion
notif ied

Resolut ion
published

Candidatures
stored

N
o

Y
es

Fig. 1. Business process for assigning the venue for the Olympic Games

2 Use Case

To illustrate our approach we use the BP for assigning the venue for the Olympic
Games (Figure 1) as use case in this paper1. The International Olympic Com-
mittee is in charge of this process. This committee first receives the applications
of the cities that want to organize the Olympic Games. Each city is evaluated in
order to keep only those which fulfill all the requirements. After this filter is ap-
plied, an approval of the final candidates is necessary. Once the list of candidates
is ready, a secret voting is carried out. If there is consensus and only one city
is selected, then the winner venue is published. Otherwise, the least voted city
is eliminated from the list of candidates and a new voting is performed. This
is repeated until there are only two cities left. Then, the city with a greatest
number of votes wins.

There are two data objects in this BP model. Data object Candidates repre-
sents a document that contains a list of the cities that applied for the venue. The
information of each candidate in the document includes the name of the city,
its description, what it offers for each requirement needed, and the mark given
by the committee to discern between accepted and rejected candidates. This
document may be updated during the voting repetitive process. Data object
Resolution represents the result of the voting and, thus, is a document with the
same list of candidates and the number of votes each of them received. Again,
this data object will be updated if more than one voting is performed. If there is
no winner yet, the resolution is notified. Otherwise, the resolution is completed
with the features of the final venue and published.

The output of the procedure presented in this paper is a set of finite-state
machines (FSM) representing the life cycles of the data objects modelled in a

1 Note that this process is used for illustration purposes only, so there may be differ-
ences with the actual process of the Olympic Games venue selection process.

Automatic Generation of a Data-Centered View of Business Processes 355

Collect
candidates

Assess
candidates

Approve
accepted

candidates

Approve
accepted

candidates
Vote Check

winner

Check
winner

Delete last
posit ion

Is there a winner?

Notify
results

N
o

Vote Check
winner

Notify
results

Check
winner

Is there a winner?

Publish
winner

Y
es

Publish
winner

created

published

updated notified

Fig. 2. Object life cycle of data object Resolution of the business process in Fig. 1

BP. Figure 2 depicts the life cycle of data object Resolution of our use case.
The life cycles of a data object have one start state (represented with a filled
circle), one final state (represented with a semi-filled circle), and one or more
intermediate states (represented with a rectangle) that correspond with states of
the data object in the BP model. Transitions (represented with directed arrows)
connect two states and contain the parts of the BP that are executed in the
transition between states of the data object.

3 BP2OLC Procedure

BP2OLC is our approach to automatically generate the OLCs of the data ob-
jects represented in a BPMN model2. As depicted in Figure 3, it is a three-step
procedure based on model transformations which involves four different models.
The procedure must be carried out for each data object type present in the BP
model. We assume the source BP model has the following features:

1. As far as control flow is concerned, the BP model is sound, which basically
means it has no control flow deadlocks and terminates properly [6].

2. There is only one copy of each data object in each instance of the process,
e.g., there is only one data object Resolution in one instance of the process.

2 All the terms referring to elements of a BP model are used in the same sense as in
the BPMN 2.0 specification [1].

356 C. Cabanillas et al.

A2

A3

A4

A5A1

D1
created

D1
blocked

D1
unblocked

D1
stored

created

blockedunblocked

stored

Fig. 3. Overview of the BP2OLC procedure

Besides, data objects are created within the BP instance that uses them (i.e.
data objects created outside of the process are not considered).

3. Each data object has always a state. In case an appearance of a data object
in the BP model is not associated with any state, this appearance will be
ignored.

4. The BP model can contain data objects connected to any kind of activity
(sub-processes are treated like task activities). Only XOR gateways can be
used.

Assumption 1 is made because control-flow soundness is out of the scope of this
paper. Assumptions 2 and 3 are reasonable and have also been made elsewhere
[2]. The last assumption is related to the reach of the current approach.

3.1 Step 1. From BPMN Model to Petri Net

We believe that providing a semantic mapping [7] between a BPMN model and
a target domain such as Petri nets, whose semantics has been formally defined,
is a good approach because it allows one to use the techniques specific to the
target semantic domain for analysing the source models. We chose Petri nets for
two reasons: (i) plenty of processing algorithms on Petri nets have already been
developed and can be useful for our purpose [6,8]; and (ii) the transformation
of the control flow of a BP model into an equivalent Petri net has already been
described in [6].

Definition 1. A Petri net is a 3-tuple PN = (TPN , P, F), where:

– TPN = {t1, t2, ..., tn} is the set of transitions of the Petri net, represented
graphically as rectangles.

– P = {p1, p2, ..., pn} is the set of places of the Petri net, represented graphi-
cally as circles.

– F ⊆ (P×TPN)
⋃

(TPN×P) is the set of arcs of the Petri net (flow relation),
represented as arrows.

A marking (state) or markup assigns a nonnegative integer to each place of a
Petri net. If it assigns to place p a nonnegative integer k, we say that p is marked
with k tokens. Pictorially, we place k black dots (tokens) in place p. A markup

Automatic Generation of a Data-Centered View of Business Processes 357

Table 1. Mapping for data objects association with loop activities

PrevA A PostA

DataObject
state1

DataObject
state2

Prev- A

DataObject_state1

A

A

PostA
A- A- PostA

DataObject_state2

PrevA A PostA

DataObject DataObject
state2

PrevA A PostA

DataObject
state2

Prev- A

DataObject_state1
A

A

PostA
A- A- PostA

DataObject_state2
A

A
DataObject_stateN

is denoted by M, an m-vector, where m is the total number of places. The pth
component of M, denoted by M(p), is the number of tokens in place p. The firing
of an enabled transition will change the token distribution (marking) in a net [8].

We use the set of rules introduced by Awad et al. [2] to do the semantic
mapping between elements of a BP model with data objects and elements of
a Petri net. Let EBP be the set of flow nodes of a BP (model), i.e. activities,
gateways and events, DBP the set of states of a data object of that BP, and
WRITERSBP ⊆ EBP be the set of activities of the BP that write that data
object. The result of the semantic mapping is a Petri net with the following
characteristics:

– The places of the Petri net are of two different kinds: control places PC and
data places PD. Therefore P = PC

⋃
PD and PC

⋂
PD = ∅.

• PC = {pc1, pc2, ..., pcn} corresponds to those places that represent se-
quence flow elements (arrows) of the business process. Each pci = (eii, eoi),
where eii, eoi ∈ EBP is a pair of values composed of the two flow nodes of
the business process that the sequence flow element connects.

• PD = {pd1, pd2, ..., pdn} = DBP corresponds to those places that repre-
sent states of the data object whose object life cycle we are generating.
There is exactly one data place for each possible state of the data object.

– The transitions of the Petri net represent flow nodes of the business process
model. It follows an n : 1 relationship, i.e., each transition represents only
one flow node of the business process and a flow node may appear several
times in a Petri net. Function elem : TPN → EBP represents such relation.

358 C. Cabanillas et al.

An example of the transformation rules is depicted in Table 1, which illustrates
an extension of the catalogue of transformations proposed in [2] to deal with
loop activities. As stated in [1], a loop activity executes the inner activity as
long as a loop condition evaluates to true. An attribute can be set to specify a
maximal number of iterations. An example of loop activity is an activity Update
order that updates an order in a restaurant (by customer’s command) until an
event or a received message indicates no more updates are allowed. For more
details about the other transformations we refer the reader to [2].

Finally, note that there is a small difference between this mapping and the one
presented in [2] because in this paper we consider no data objects are supposed
to exist before the execution of a BP in our BP2OLC procedure, whereas [2]
considers data objects have an initial state when instantiating a BP. This differ-
ence causes the transformation in [2] referring to the writing of the data object
has to be slightly changed for the first writing of the object in our BP2OLC
procedure, in order to comply with our assumption 2. It means the first time
the data object is written, the responsible transition of the Petri net does not
have any input data places.

3.2 Step 2. Reachability Graph from Petri Net

Definition 2. A reachability graph related to a Petri net is a 3-tuple RGPN =
(N, M, TRG), where:

– N = {n1, n2, ..., nn} is the set of nodes of the reachability graph. ∀ni ∈ N, •ni

and ni• represent immediately previous and next nodes of ni, respectively.
– M : P ×N → N represents the markup of the net.
– TRG ⊆ (N ×N) are the transitions of the reachability graph.

The reachability graph is obtained by analysing the Petri net by means of well-
known algorithms. Each node of the reachability graph represents a reachable
marking state of the net and each arc a possible change of state, i.e. the firing of a
transition. However, due to the characteristics of our semantic mapping between
BPMN and Petri net, in the reachability graph resulting from such Petri nets it
holds that M(p, n) ∈ [0, 1], ∀n ∈ N, ∀p ∈ P . In addition, the information about
the markup of the net contained in every node always corresponds with both a
sequence flow of the BP model and a state of the data object, as illustrated in
Figure 4. It means there is always one token in a control place of the Petri net
and one in a data place, except in the beginning (until an activity writes the
data object for the first time) and in the final nodes of the reachability graph (in
which, on the contrary, all the tokens in control places have been consumed).

Given the previous definitions, the following functions can be defined:

– Function map : TRG → TPN is defined to map the transitions of a reacha-
bility graph into the transitions of a Petri net.

– Function state : N → PD returns the state of the data object of the busi-
ness process model contained in the current node of the reachability graph.
state(n) = {pd ∈ PD : M(pd, n) = 1}.

Automatic Generation of a Data-Centered View of Business Processes 359

 END

 END

XOR1

 Act1
 ,

 ,

 ,

 ...

 ...

XOR1

Fig. 4. Content of the arcs and nodes of a reachability graph

– Function flow : P(N) → P(PC) returns the set of sequence flow elements
of the business process model contained in a set of nodes of the reachability
graph. flow(N ′) = {pc ∈ Pc : ∃n ∈ N ′(M(pc, n) = 1))}.

– Function activity : N → EBP returns the flow node of the business process
model contained in the input arc of the current node of the reachability
graph. activity(n) = {ei ∈ EBP : pc = (ei, eo) ∧M(pc, n) = 1}.

The node of the reachability graph with no input arrows is called firstNode ∈
N :	 ∃ • firstNode and it is the start node of a reachability graph. The nodes
of the reachability graph with no output arrows, whose input is called END
and with no tokens in a control place are normal final nodes of the reachability
graph. We will describe abnormal final nodes in Section 3.3.

3.3 Step 3. Object Life Cycle from Reachability Graph

Definition 3. An object life cycle of a data object of a business process is a
2-tuple OLC = (SOLC , TOLC), where:

– SOLC = {s1, s2, ..., sn} is the set of states in which the data object can be.
∀si ∈ SOLC , •si and si• represent immediately previous and next states of
state si, respectively. Let start ∈ S and end ∈ S be the start and the final
states of the OLC, respectively. Then, SOLC \ (start

⋃
end) = PD = DBP

– TOLC ⊆ SOLC × SOLC × P(N) is the set of transitions that appear in the
object life cycle. Each transition contains a set of nodes of the reachability
graph from which it has been generated. Function replace : TOLC × N ×
P(N) → TOLC replaces the set of nodes before node N in the path of a
transition for a specific set of nodes.

We have defined Algorithms 1 and 2 to obtain an OLC from a reachability
graph. Algorithm 1 receives the reachability graph resulting from the previous
step and the list of activities of the BP that write the data object. Its out-
put is the OLC together with a set of data anomalies found while creating it.

360 C. Cabanillas et al.

Algorithm 1. Algorithm to initialize an object life cycle, call Algorithm 2 from a
reachability graph and post-process nodes already processed in Algorithm 2 (RG2OLC)

1: IN: RGDPN = (N, M, TRG); WRITERSBP

2: OUT: SOLC ; TOLC ; WARN ⊆ N
3: SOLC ← {START STATE}; TOLC ← ∅
4: INPUT ← (WRITERS,firstNode, START STATE, ∅, ∅, ∅, ∅, SOLC , TOLC)
5: (SOLC , TOLC , PNODES, PP, WARN) ← RG2OLC(INPUT)
6: found ← 1 // Post-processing of nodes in PP
7: while found �= 0 do
8: found ← 0
9: for all (node, assocPath) ∈ PP do

10: for all (si, so, path) ∈ TOLC do
11: if node ∈ path then
12: found ← found + 1; newT ← (si, so, path)
13: TOLC ← TOLC

⋃
replace(newT,node, assocPath)

14: end if
15: end for
16: end for
17: end while
18: return (SOLC, TOLC, WARN)

Its behaviour consists of calling Algorithm 2 with the appropriate parameters
and post-processing the resulting reachability graph. Algorithm 2 is a recursive
algorithm that builds an OLC by processing a reachability graph node by node
from its start node. Its input set and steps are described below.

Input of Algorithm 2.
– WRIT ⊆ E is the set of activities that write the data object.
– cNode ∈ N is the node being processed.
– cState ∈ D is the current state of the data object.
– PNODES ⊆ N is the set of already processed nodes.
– PATH ⊆ N contains a set of nodes of the reachability graph, which is

the information required in the transitions of the object life cycle.
– PP = {pair1, pair2, ..., pairn}, where pairi = (node, assocPath), nodei ∈

N, assocPathi ⊆ N is a set of pairs containing a node of the reachability
graph and a set of nodes associated to that node, which conceptually
corresponds to the path contained in variable PATH when processing
that node.

– WARN ⊆ N is a set of nodes related to deadlocks in the Petri net.
– S′

OLC ⊆ SOLC is the set of states of the resulting object life cycle.
– T ′

OLC ⊆ TOLC is the set of transitions of the resulting object life cycle.

Check for and add new transitions (lines 3-7). A new transition of one of
the types shown in Figures 5a and 5b must be added to the OLC in case that
a new state of the data object is found in the reachability graph. If, on the
contrary, the node shows that the data object is still in the current state but

Automatic Generation of a Data-Centered View of Business Processes 361

Algorithm 2. Algorithm to generate the life cycle of a data object from a reachability
graph (RG2OLC)

1: IN: WRIT, cNode, cState, PNODES, PATH,PP, WARN,S′
OLC , T ′

OLC

2: OUT: S′
OLC , T ′

OLC , PNODES, PP, WARN
3: if state(cNode) �= ∅ ∧ (cState �= state(cNode) ∨ activity(cNode) ∈

WRIT) then
4: S′

OLC ← S′
OLC

⋃
state(cNode)

5: T ′
OLC ← T ′

OLC

⋃
(cState, state(cNode), PATH)

6: cState ← state(cNode); PATH ← cNode
7: end if
8: PATH ← PATH

⋃
cNode

9: if cNode �∈ PNODES then
10: PNODES ← PNODES

⋃
cNode

11: if cNode• = ∅ then
12: if activity(cNode) = END then
13: S′

OLC ← S′
OLC

⋃
FINAL STATE

14: T ′
OLC ← T ′

OLC

⋃
(cState, F INAL STATE,PATH)

15: else
16: WARN ← WARN

⋃
cNode // Deadlock detected

17: end if
18: else
19: for all next ∈ cNode• do
20: IN ← (WRIT,next, cState, PNODES, PATH,PP, WARN,S′

OLC , T ′
OLC)

21: (S′′
OLC , T ′′

OLC , PNODES′, PP ′, WARN ′) ← RG2OLC(IN)
22: S′

OLC ← S′
OLC

⋃
S′′

OLC ; T ′
OLC ← T ′

OLC

⋃
T ′′

OLC ; PP ← PP
⋃

PP ′

23: PNODES ← PNODES
⋃

PNODES′; WARN ← WARN
⋃

WARN ′

24: end for
25: end if
26: else
27: if activity(cNode) �∈ WRIT then
28: PP ← PP

⋃
(cNode, PATH) // Save for post-processing

29: end if
30: end if
31: return (S′

OLC, T ′
OLC, PNODES, PP, WARN)

we find that the activity of the node is one of those that write the data object
in the BP model, a self-transition will be added (Figure 5c). For instance: (i)
in loops in a BP a data object may be written by an activity consecutively
twice, giving rise to a self-transition (e.g. data object Candidates of Figure
1 has a self-transition in state updated due to a loop); (ii) loop activities also
cause self-transitions, as can be inferred from Table 1.

Update variable PATH (line 8). New nodes will be added to the path in
order to collect the information contained in the transitions of the life cycle3.

3 Note that operator union (
⋃

) neither inserts duplicates nor null or empty values.

362 C. Cabanillas et al.

A

(a) Start transition

A B

(b) Transition between
two different states

A

(c) Self-
transition

A

(d) Final transition

Fig. 5. Kinds of transitions of an object life cycle

Revise the last activity executed and act consistently (lines 9-31).
Algorithm 2 is returned either when a normal final node of the reachability
graph is reached, when an abnormal final node4 is found, or when the current
node is in the list of processed nodes. In the last case, if, furthermore, the
activity represented in the node writes the data object, the node has been
properly processed in lines 3-7 and the rest of the reachability graph does not
have to be re-processed. Otherwise, the already processed node is saved in a
list of nodes that must be properly post-processed later. This way we avoid
processing nodes of the reachability graph more than once and we ensure that
Algorithm 2 always terminates. If none of the previous situations appears,
we must go on processing the reachability graph and update the variables
whose values must be propagated.

Post-process the necessary nodes (lines 6-17 of Algorithm 1). Some
scenarios represented in a BP model can give rise to the appearance of tran-
sitions between the same two states, which differ from each other in their
contents. This situation is detected in the reachability graph when reaching
a node that has already been processed and its corresponding activity of the
BP does not modify the data object being examined. In Algorithm 2 only
one of the transitions is added to the OLC. To add the new transition with
the right content, we must find the transition to which the node refers, add
a duplicate transition to the OLC and set its content to the proper value.

4 Detecting and Showing Data Anomalies

As aforementioned in this paper, we assume soundness (also called correctness)
in the control flow of BPs, but the process can be unsound regarding data
perspective. The data-related deadlocks that appear in a reachability graph (i.e.
abnormal final nodes) indicate data-related anomalous situations (known as data

4 Abnormal final nodes are those with no output transitions and with no input tran-
sitions called END. They indicate there is a deadlock in the Petri net that stops the
execution. We collect them in a list of warnings that will have to be addressed later.

Automatic Generation of a Data-Centered View of Business Processes 363

A3 A5

D1
s1

D1
s2

D1
s3

D1
s0

D1
s2

A1 A2

TRP

US

TRP + US

A4

D1
s3

D1
s4

D1
s5

Fig. 6. Business process model with data anomalies

anomalies) in the represented BP model. All these data anomalies cause dead-
locks in the Petri net, so the OLC generated is not complete. For example, in
Figure 7 only the states and transitions outlined with black solid lines are gen-
erated when processing the actual reachability graph that represents the BP
model in Figure 65. States such as s0 and s5 are not detected without man-
aging some data anomalies present in the BP model previously. There are two
different groups of anomalous situations, which can be mapped into data-related
problems defined in [2,3]. The resolution of the data anomalies in the BP is out
of the scope of this paper. We explain how to modify the Petri net to solve the
deadlocks and be able to simulate the whole execution of the BP modelled, with
the aim of generating all the states and transitions there represented.

Too restrictive preconditions (TRP). This kind of problems appear when
the data object specified as input of an activity can be in a different state at
that moment, and so the activity may stay waiting indefinitely. For instance,
in the BP model of Figure 6, activity A2 will get blocked if A1 writes data
object D1 in state s1, and A5 will get blocked if D1 is in either s3 or s4.
To fix this kind of problems we relax the precondition, assuming that the
state of the data object that caused the deadlock is also a precondition of
the blocked activity.

Unreachable states (US). In this case, the state specified for the input
data object of an activity is unreachable (either because it does not exist
yet or because the object is in another state at that moment), blocking
the execution of the activity. It appears in activities A3 and A5 of the BP
model in Figure 6. To fix it, we assume the data object can be at that state at
that moment and so we continue processing the BP model from the blocked
activity with that “unreachable” state.

There may be other alternatives for dealing with data anomalies, but their study
is out of the scope of this paper. To apply the solutions described above, the
Petri net has to be “re-constructed” in order to obtain a new reachability graph
5 For the sake of clarity we are using a simplified BP to illustrate the data anomalies.

364 C. Cabanillas et al.

s1

s0

s4

s3

s2

s5

LEGEND

- Solid black line = normal execution
- Dashed red line = too restrictive
preconditions
- Dotted blue line = unreachable state

Fig. 7. Object life cycle of data object D1 of the business process in Fig. 6

and then process it. For too restrictive preconditions, this re-construction has 4
steps. The resulting Petri net is kept while processing the rest of warnings.

1. Find the transition at which the deadlock takes place.
2. Identify the data place that is input of the blocked transition.
3. Identify the data place at which there is a token.
4. As we now know the transition that could not be triggered (step 1) and the

actual current state of the data object (step 3), to re-construct the Petri
net we have to duplicate the blocked transition and replace the arrow from
the data place without token (step 2) by an arrow from the data place with
token (step 3), leaving the rest of inputs and outputs like they are.

Unreachable states are reflected in a Petri net in the form of unfired transitions.
To detect them and fix them, we have to find the transitions that were never
triggered and set the markup of the net with a token in each of their input
places. Then a new reachability graph with this configuration is obtained and
we can examine the rest of the net from that point by processing it.

In order to warn the modeller/analyst about the presence of data anomalies
in the BP model, new elements emerged from dealing with them are marked
in a different way in the OLC. In Figure 7, transitions and states generated
from too restrictive preconditions are shown with dashed red lines, and those
corresponding to unreachable states have dotted blue lines.

5 Related Work

The importance of complementing the activity-centered view of BP models with
an object-oriented view has been described by Snoeck et al. [9]. We are generating
such a view from the data objects that appear in a BP model.

The work most related to our approach is the one of Ryndina et al. In [10]
they present an ad-hoc approach for the automatic generation of OLCs from a
BP model and propose some techniques to analyse the consistency of BPs and
OLCs on the basis of the concepts of conformance and coverage between OLCs.

Automatic Generation of a Data-Centered View of Business Processes 365

Their procedure is based on transformation rules that are applied directly to
a BP model. However, no data anomalies are described nor detected in their
approach. Besides, our use of well-known Petri nets algorithms makes it more
unlikely to introduce errors while implementing the procedure. In [11] the oppo-
site procedure is introduced, i.e. an approach for generating a BP model from
OLCs of different data objects is described.

Data anomalies in BP models have been addressed by several researchers.
Sadiq et al. [3] explain the importance of managing the data requirements in
BPs and introduce some ideas related to the modelling and validation of data,
such as the importance of considering the type of data and their structure. They
also state some data anomalies that may appear in a BP model, which in turn are
referenced by the authors in [4]. In that work, Sun et al. divide the same problems
into three main groups with one or more scenarios, and then they explain the
matching of every scenario with the data anomalies in [3]. Awad et al. describe
three kinds of data anomalies that can also be mapped to anomalies defined in the
previously mentioned work [2]. They have developed an approach for diagnosing
and automatically repairing these three kinds of problems on the basis of Petri
nets. A prototype has been implemented in Oryx [12]. Besides, they propose
some validation algorithms targeted at fixing these data anomalies, which are
being implemented to correct BPMN models. In our BP2OLC procedure, we use
the transformations described in that work to carry out step 1 of the BP2OLC
procedure. However, the mentioned work on data anomalies does not consider
the generation of OLCs from a BP model.

Finally, Sakr et al. have developed a framework for querying both control flow
and data flow perspectives of BPs [13]. Data perspective can be queried from
OLCs. However, no automatic generation of OLCs is included and the framework
is not targeted at the detection and management of data anomalies.

6 Conclusions and Future Work

In this paper we introduce a model-driven approach for the automatic generation
of a data-centered view of a BP composed of the life cycles of the data objects
the BP model has. It consists of mapping a BPMN model into a target semantic
domain, Petri nets, which allows us to use techniques specific to that domain,
in particular obtaining its reachability graph, for analysing the source model.
Then, the reachability graph is mapped into an OLC model. An advantage of
our procedure is that the resulting OLCs include information about the activ-
ities that are executed in each transition and, hence, it provides the same full
information required to understand BP execution as activity-centered process
diagrams.

Besides, our procedure is robust in the sense that it provides an accurate
result despite having a BP with data anomalies as input. Furthermore, we detail
how this procedure can be used to detect two kinds of data anomalies present in
a BP model. For each group of data anomalies identified, the following questions
have been answered: (i) what does the anomalous situation mean in terms of the

366 C. Cabanillas et al.

BP model and the resulting OLC?; (ii) how can it be detected in the reachability
graph?; and (iii) how can the Petri net be re-constructed to fix the deadlock?

A prototype of the BP2OLC procedure has been implemented reusing the code
of ProM6, an open-source platform for process mining that counts on a number
of plugins and components to work with Petri nets. The developed prototype
corresponds to steps 2 and 3 of the BP2OLC procedure and also contains the
detection and handling of the data anomalies described above. It receives a Petri
net in format PNML 1.3.2. as input and returns the life cycle of the data object
represented in that net. The software is available upon request.

As future work, we plan to extend the kinds of BP structures considered, to
take data objects from repositories into account, and to study alternatives to
manage and repair the detected data anomalies in the source BP model.

References

1. Bpmn 2.0, recommendation, OMG (2011)
2. Awad, A., Decker, G., Lohmann, N.: Diagnosing and repairing data anomalies in

process models. In: BPM Workshops, pp. 5–16 (2009)
3. Sadiq, S., Orlowska, M.E., Sadiq, W., Foulger, C.: Data flow and validation in work-

flow modelling. In: Fifteenth Australasian Database Conference (ADC). CRPIT,
vol. 27, pp. 207–214. ACS (2004)

4. Sun, S.X., Zhao, J.L., Nunamaker, J.F., Sheng, O.R.L.: Formulating the Data-Flow
perspective for business process management. Info. Sys. Research 17(4), 374–391
(2006)

5. Awad, A., Weidlich, M., Weske, M.: Specification, verification and explanation of
violation for data aware compliance rules. In: Baresi, L., Chi, C.-H., Suzuki, J.
(eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 500–515. Springer, Heidel-
berg (2009)

6. van der Aalst, W.M.P.: The application of petri nets to workflow management.
Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998)

7. Harel, D., Rumpe, B.: “Meaningful modeling: what’s the semantics of ”semantics”?
Computer 37(10), 64–72 (2004)

8. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

9. Snoeck, M., Poelmans, S., Dedene, G.: An architecture for bridging oo and busi-
ness process modelling. In: Proceedings of the 33rd International Conference on
Technology of Object-Oriented Languages, TOOLS 33, pp. 132–143 (2000)

10. Ryndina, K., Kuster, J., Gall, H.: Consistency of business process models and
object life cycles. Models in Software Engineering, 80–90 (2007)

11. Kuster, J., Ryndina, K., Gall, H.: Generation of business process models for object
life cycle compliance. In: Business Process Management, pp. 165–181 (2007)

12. Decker, G., Overdick, H., Weske, M.: Oryx - an open modeling platform for the
BPM community. In: Proceedings of the 6th International Conference on Business
Process Management, pp. 382–385. Springer, Heidelberg (2008)

13. Sakr, S., Awad, A.: A framework for querying graph-based business process models.
In: WWW, pp. 1297–1300 (2010)

6 http://prom.win.tue.nl/tools/prom/

Connecting Security Requirements Analysis and

Secure Design Using Patterns and UMLsec

Holger Schmidt1 and Jan Jürjens1,2

1 Software Engineering, Department of Computer Science, TU Dortmund, Germany
2 Fraunhofer ISST, Germany

{holger.schmidt,jan.jurjens}@cs.tu-dortmund.de

Abstract. Existing approaches only provide informal guidelines for the
transition from security requirements to secure design. Carrying out this
transition is highly non-trivial and error-prone, leaving the risk of intro-
ducing vulnerabilities.

This paper presents a pattern-oriented approach to connect security
requirements analysis and secure architectural design. Following the di-
vide & conquer principle, a software development problem is divided
into simpler subproblems based on security requirements analysis pat-
terns. We complement each of these patterns with architectural security
patterns tailored to solve classes of security subproblems. We use UMLsec
together with the advanced modeling possibilities for software architec-
tures of UML 2.3 to equip the architectural security patterns with se-
curity properties, and to allow tool-supported analysis and composition
of instances of these patterns. We validate our approach using two case
studies and illustrate its support for Common Criteria certifications.

Keywords: security requirement, secure design, architectural pattern.

1 Introduction

When building secure systems, it is instrumental to take security requirements
into account right from the beginning of the development process to reach the
best possible match between the expressed requirements and the developed soft-
ware product, and to eliminate any source of error as early as possible. Knowing
that building secure systems is a highly sensitive process, it is important to
reuse the experience of commonly encountered challenges in this field. This idea
of using patterns has proved to be of value in software engineering, and it is
also a promising approach in secure software engineering. Moreover, tool support
greatly increases the practical applicability of secure software engineering ap-
proaches. Tools not only guide software developers in their daily activities, they
also help to make the construction of complex secure systems feasible and less
error-prone.

In fact, there already exist a number of approaches to security requirements
analysis and secure design. Although this can be considered a positive develop-
ment, the different approaches are mostly not integrated with each other. In par-
ticular, relatively little work has been done on bridging the gap between security

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 367–382, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

368 H. Schmidt and J. Jürjens

requirements analysis and design, and existing approaches only provide informal
guidelines for the transition from security requirements to design. Carrying out
the transition manually at the hand of these guidelines is highly non-trivial and
error-prone, which leaves the risk of inadvertently introducing vulnerabilities in
the process. Ultimately, this would lead to the security requirements not to be
enforced in the system design (and later its implementation).

This paper presents an integrated and pattern-oriented approach connecting
security requirements analysis and secure architectural design. We use a security
requirement analysis method [14] that makes extensive use of different kinds of
patterns for structuring, characterizing, analyzing, and finally realizing security
requirements. We extend this approach by architectural security patterns to con-
struct platform-independent secure software architectures that realize previously
specified security requirements. We specify structural and behavioral views of
these architectural security patterns using UML1 (Unified Modeling Language)
class diagrams, composite structure diagrams, and sequence diagrams. We an-
notate these diagrams based on an improved version of the security extension
UMLsec [8] named UMLsec4UML2 [15] to represent results from security re-
quirements analysis in the architectural security patterns. More specifically, we
apply the advanced modeling possibilities of UML2.3 and UMLsec4UML2 to
architectural design to construct the architectural security patterns presented
in this paper. Moreover, our approach allows the tool-supported analysis of in-
stances of these patterns with respect to security.

The rest of the paper is organized as follows: we present background about
the patterns for security requirements engineering in Sect. 2. In Sect. 3, we first
give an overview of the UMLsec4UML2-profile that adopts UMLsec to support
UML2.3. Then, we use this profile to specify security patterns for software com-
ponents and architectures. Furthermore, we generally discuss the application of
these patterns yielding global secure software architectures. In Sect. 4, we vali-
date our approach using two case studies and illustrate its support for Common
Criteria certifications. We consider related work in Sect. 5. In Sect. 6, we give a
summary and directions for future research.

2 Pattern-Oriented Security Requirements Analysis

SEPP (Security Engineering Process using Patterns) (see [14] for a comprehen-
sive overview) is a pattern-based approach to construct secure software systems
that especially deals with the early software development phases. SEPP makes
use of security problem frames (SPF) and concretized security problem frames
(CSPF), which constitute patterns for security requirements analysis. (C)SPFs
are inspired by problem frames invented by Jackson [7] for functional require-
ments. SPFs are patterns for structuring, characterizing, and analyzing prob-
lems that occur frequently in secure software engineering. Following the divide
& conquer principle, SPFs are used to decompose an initially large software de-
velopment problem into smaller subproblems. Then, for each instantiated SPF,
1 http://www.omg.org/spec/UML/2.3/Superstructure/PDF/

http://www.omg.org/spec/UML/2.3/Superstructure/PDF/

Connecting Security Requirements Analysis and Secure Design 369

a CSPF is selected and instantiated. CSPFs involve first solution approaches
for the problems described by SPFs. For example, there exists an SPF for the
problem class of confidential transmission of data over an insecure network, and
a CSPF that represents the corresponding solution class of using cryptographic
key-based symmetric encryption to protect such data transmissions.

Each CSPF contains a machine domain, which represents the software to be
developed in order to fulfill the requirement. The environment, in which the
software development problem is located, is described by problem domains. Ac-
cording to Jackson [7], we distinguish causal domains that comply with some
physical laws, lexical domains that are data representations, and biddable do-
mains that are usually people. Each domain has at least one interface. Interfaces
consist of shared phenomena, which may be events, operation calls, messages,
and the like. They are observable by at least two domains, but controlled by only
one domain. Since requirements refer to the environment, requirement references
between the domains and the requirement exist. At least one of these references is
a constraining reference. That is, the domain this constraining references points
to is influenced by the machine so that the requirement can be fulfilled. We
developed a comprehensive set of SPFs for confidential and integrity-preserving
data transmission and data storage, and authentication problems and the cor-
responding CSPFs that use symmetric and asymmetric encryption, keyed and
non-keyed hashing, digital signatures, password-based and cryptographic key-
based mechanisms (see [14] for details).

3 Pattern-Oriented Transition to Secure Architectural
Design

This section contains the main scientific contributions of this paper. To proceed
after security requirements analysis following SEPP to the development of secure
software architectures that realize the security requirements, we develop in this
section architectural security patterns. We specify these patterns using UML and
an improved version of the security extension UMLsec, which is introduced in
Sect. 3.1. We describe patterns for security components in Sect. 3.2, and we
present patterns for secure software architectures related to CSPFs in Sect. 3.3.
In Sect. 3.4, we briefly explain the process of instantiating GSAs. Then, we
discuss the composition of different instances of GSAs yielding global secure
software architectures in Sect. 3.5. Finally, we outline an approach to verify
global secure software architectures based on the UMLsec4UML2-profile and
the UMLsec tool suite in Sect 3.6.

3.1 UMLsec4UML2

In this section, we present an overview of a notation for the specification of
structural as well as behavioral views of architectural security patterns based on
UML. As explained in [11], UML includes special support for modeling software
architectures since version 2.0. For example, the current UML version 2.3 sup-
ports typical architectural concepts such as parts, i.e., black-box components,

370 H. Schmidt and J. Jürjens

connectors, and required and provided interfaces (see Sects. 3.2 and 3.3 for de-
tails). For this reason, we specify our architectural security patterns based on
different kinds of UML2.3 diagram types, i.e., class diagrams, composite struc-
ture diagrams, and sequence diagrams. Moreover, we use UMLsec [8] to pick up
results from security requirements analysis, and to annotate the different UML
diagrams representing the structural and behavioral views of architectural secu-
rity patterns accordingly. Since UMLsec is a profile for UML1.52, we developed
a UML2.3-compatible profile called UMLsec4UML2 that adopts the UML1.5-
compatible profile UMLsec. The UMLsec4UML2-profile, all examples shown in
this paper, as well as additional material are published in a technical report [15].

We constructed the UMLsec4UML2-profile using the Papyrus UML3 editing
tool. as a UML2.3 profile diagram. It defines several stereotypes and tags. Stereo-
types give a specific meaning to the elements of a UML diagram they are attached
to, and they are represented by labels surrounded by double angle brackets. A
tag or tagged value is a name-value pair in curly brackets associating data with
elements in a UML diagram.

The original version of UMLsec for UML1.5 is complemented by a tool suite4

that supports static checks for stereotypes that restrict structural design models,
a permission analyzer for access control mechanisms, and checks integrated with
external verification tools to verify stereotypes that restrict behavioral design
models. Basically, models created based on the UMLsec4UML2-profile can be
verified using this tool suite. However, the UMLsec4UML2-profile introduces
a novel way to verify models directly within the UML editing tool. For this
purpose, the UMLsec4UML2-profile is enriched with constraints denoted in the
Object Constraint Language (OCL)5, which is part of UML2.3. OCL is a formal
notation to describe constraints on object-oriented modeling artifacts. The static
checks available in the tool suite of the original version of UMLsec are covered
by the OCL constraints that are integrated into the UMLsec4UML2-profile.

We use the UMLsec4UML2-profile in the subsequent sections to specify struc-
tural as well as behavioral views of architectural security patterns. There, we also
explain details about the profile where necessary.

3.2 Generic Security Components

The generic security components (GSC) discussed in this section constitute pat-
terns for software components that realize concretized security requirements. We
call them “generic”, because they are a kind of conceptual pattern for concrete
software components. They are platform-independent6. An example for a GSC
is an encryption component defined neither referring to a specific encryption al-
gorithm nor cryptographic keys with a certain structure and length. In addition
2 http://www.omg.org/cgi-bin/doc?formal/03-03-01
3 http://www.papyrusuml.org/
4 http://www.umlsec.de/
5 http://www.omg.org/docs/formal/06-05-01.pdf
6 The term platform-independent is defined according to the Model-Driven Architec-

ture (MDA) approach (http://www.omg.org/mda/).

http://www.omg.org/cgi-bin/doc?formal/03-03-01
http://www.papyrusuml.org/
http://www.umlsec.de/
http://www.omg.org/docs/formal/06-05-01.pdf
http://www.omg.org/mda/

Connecting Security Requirements Analysis and Secure Design 371

to GSCs, generic non-security components (GNC) are necessary, which do not
realize any security requirements. Instead, they represent auxiliary components
for GSCs. Typical examples for GNCs are user interface, driver, and storage
management components.

According to [16], the architecture of software is multifaceted: there exists
a structural view, a process-oriented view, a function-oriented view, an object-
oriented view with classes and relations, and a data flow view on a given software
architecture. Hence, we specify each GSC and GNC based on a structural view
using UML2.3 class and composite structure diagrams, and control and data flow
views using UML2.3 sequence diagrams. We make required and provided inter-
faces of GSCs and GNCs explicit using sockets, lollipops, and interface classes.
After GSCs are instantiated, the process-oriented and object-oriented views can
be integrated seamlessly into the structural view. Semantic descriptions of the
operations provided and used by the components’ interfaces can be expressed as
OCL pre- and postconditions.

We use GSCs and GNCs to structure the machine domain of a CSPF. The
GSCs and GNCs describe the machine’s interfaces to its environment and the
machine-internal interfaces, i.e., the interfaces between the GSCs and GNCs.
Each CSPF is related to a set of GSCs and GNCs.

Given a CSPF, the following procedure can be applied to construct GSCs and
GNCs that help to realize the concretized security requirement of the CSPF:

1. Each interface of the machine with the environment must coincide with an
interface of some GSCs and GNCs.

2. GSCs and GNCs that serve the same purpose can be represented by one such
component, e.g., several storage management components can be represented
by one storage management component.

3. For each interface between the machine and a biddable or display domain
a user interface component should be used. If the same CSPF contains dif-
ferent interfaces between the machine and a biddable or display domain,
user interface components represented by GNCs must be kept separate from
user interface components represented by GSCs. For example, a generic non-
security user interface component to edit some text should be kept separate
from a generic security user interface component to enter a password.

4. For each interface from the machine to a lexical domain, a storage manage-
ment component should be used. Symbolic phenomena correspond to return
values of operations or to getter/setter operations.

5. For each interface of the machine domain with a causal domain, a driver com-
ponent should be used. Causal phenomena correspond to operations provided
by driver components.

6. GSCs adequate to realize the concretized security requirement should be
used, such as components for symmetric / asymmetric encryption / decryp-
tion, cryptographic key handling, hash calculation, etc.

We enrich GSCs with UMLsec4UML2 language elements to express security
properties based on the CSPFs the GSCs are related to. Since each CSPF con-
siders at least one asset to be protected against the malicious environment, these

372 H. Schmidt and J. Jürjens

«component, critical»

SymmetricEncryptorDecryptor

«interface»

SEncDecIf

 + encrypt(pt, ck): Data
 + decrypt(ct, ck): Data

«dataType»

Data
«dataType»

CryptographicKey «critical»
 secrecy = pt

«critical»

SymmetricEncryptorDecryptor

 : SymmetricEncryptorDecryptor

SEncDecIf

 «critical»
 secrecy = pt

Fig. 1. Structural View of GSC SymmetricEncryptorDecryptor

assets should be considered by the GSCs associated to the CSPF. Consequently,
we equip the GSCs dealing with the assets with the stereotype
critical�,
and we assign values (e.g., in terms of attributes, parameters, return values, etc.)
to the tags of this stereotype accordingly. In case of an asset to be kept confi-
dential, we assign this asset to the {secrecy} tag, and in case of preserving the
integrity of an asset, we assign this asset to the {integrity} tag.

According to the described procedure, we have developed catalogs (see [14,
pp. 150 ff.] for details) of GSCs and GNCs for each available CSPF. For instance,
there exist GSCs for keyed and non-keyed hash processing, calculation of random
numbers, digital signature processing, etc. In the following, we present the GSC
SymmetricEncryptorDecryptor as an example.

GSC SymmetricEncryptorDecryptor. The SymmetricEncryptorDecryptor is a
conceptual pattern for a component that provides symmetric encryption and
decryption services (see [12, pp. 59 ff.] for details). Concrete implementations of
symmetric encryption and decryption algorithms are, e.g., the javax.crypto.Cipher
class provided by SUN’s Java 6 Standard Edition7, the encryption.pbe.Standard-
PBEStringEncryptor class provided by Jasypt8, and the crypto.engines class
provided by Bouncycastle9.

Figure 1 shows the structural view of this GSC using a class diagram and
a composite structure diagram. The first diagram defines the type of the port
used in the second diagram. Moreover, the first diagram explicates the provided
interface of the GSC. For reasons of simplicity, we do not present the GSC’s
behavioral view here.

The GSC SymmetricEncryptorDecryptor abstracts from algorithm-specific de-
tails such as cryptographic key lengths, the stream and block modes of the
algorithms, and so on. Instead, the SymmetricEncryptorDecryptor component is de-
signed to represent the essence of symmetric encryption and decryption services,
i.e., the usage of the same cryptographic key for encryption and decryption.
The SymmetricEncryptorDecryptor provides the interface SEncDecIf, which contains
an operation encrypt() to symmetrically encrypt a plaintext pt using a crypto-
graphic key ck. The result is a ciphertext ct. Additionally, it provides an inverse

7 http://java.sun.com/javase/6/docs/api/
8 http://www.jasypt.org/
9 http://www.bouncycastle.org/

http://java.sun.com/javase/6/docs/api/
http://www.jasypt.org/
http://www.bouncycastle.org/

Connecting Security Requirements Analysis and Secure Design 373

operation decrypt() that calculates the plaintext pt given the ciphertext ct and the
cryptographic key ck, which has to be equal to the cryptographic key used for the
encryption process. This relation between the encryption and decryption func-
tions can be formally expressed as follows: ∀ pt : Data; ck : CryptographicKey |
decrypt(encrypt(pt , ck), ck) = pt . We equip the GSC SymmetricEncryptorDecryp-

tor with the stereotype
critical�, and we assign the plaintext pt to the tag
{secrecy}, since the goal of this GSC is to keep the plaintext confidential.

In the next section, we explain how different GSCs and GNCs are combined
to obtain patterns for secure software architectures related to CSPFs.

3.3 Generic Security Architectures

We combine the GSCs and GNCs constructed or selected for a given CSPF to
obtain generic security architectures (GSA). Such a GSA represents the struc-
ture of the machine domain of the CSPF. Since GSCs and GNCs are platform-
independent, so are GSAs. Based on the connection of CSPFs and GSAs, trace-
ability links are introduced. Hence, our approach allows to understand which
security requirements are realized by the different parts of a software architec-
ture. This improves the maintainability of the software. Similar to GSCs and
GNCs, we specify GSAs based on structural views using UML2.3 composite
structure diagrams, and control and data flow views using UML2.3 sequence
diagrams. The structural as well as the behavioral views of GSAs comprise the
composed views of the GSCs and GNCs they consist of. We construct GSAs
according to the following procedure:

1. An adequate basic software architecture to connect the GSCs and GNCs has
to be selected. The GSA presented in the following and the ones introduced
in [14, pp. 160 ff.] organize the components in a layered architecture. For
this purpose, each of the GSAs contains an application component, which
coordinates the behavior of all other components and provides a simplified
interface (compared to directly using the interfaces of the components it
connects) to the environment.

2. If components can be connected directly, one connects these components.
3. If components cannot be connected directly (e.g., because a component pro-

duces incompatible output for another component), additional adapter com-
ponents to connect them must be introduced.

4. Interfaces between the machine and its environment must be designed in the
GSA according to the interfaces of the machine domain of the corresponding
CSPF.

We enrich GSAs with UMLsec4UML2 language elements to express security
properties based on the CSPFs the GSAs are related to. We apply the stereotype

secure dependency� to the specification of the structural views of GSAs
according to the following procedure:

1. The structural view of a GSA should be organized in a package stereotyped

secure dependency�, which contains a class diagram to define port types

374 H. Schmidt and J. Jürjens

for the composite structure diagram that is also contained in this package.
Connections between components contained in the composite structure dia-
gram are expressed using either simple connectors or lollipop notation.

2. As described in Sect. 3.2, GSCs refer to assets, and they are already equipped
with the
critical� stereotype and corresponding tagged values. GSCs
connected in the structural view’s composite structure diagram with other
GSCs or / and GNCs might allow the transmission of assets to these com-
ponents. According to the
secure dependency� stereotype, these GSCs
or / and GNCs should be stereotyped
critical�, too. Moreover, the
tagged values of these components should be equal to the tagged values of
GSCs that are connected to them.

3.
use� dependencies between components stereotyped
critical� in
the structural view’s composite structure diagram should be stereotyped ac-
cording to the tagged values of the
critical� stereotype. That is, if the
tag {secrecy} is assigned a value, then the corresponding
use� depen-
dency between the components should be stereotyped
secrecy�, and if
the tag {integrity} is assigned a value, then the corresponding
use�
dependency between the components should be stereotyped
integrity�.
The dependencies stereotyped
use� between components and interfaces
of components labeled
critical� in the structural view’s class diagram
should be stereotyped analogously.

Moreover, the behavioral views of GSAs are equipped with the
data se-
curity� stereotype. Given a package stereotyped
data security� contain-
ing a structure and a behavior diagram, the requirements defined in the structure
diagram using the
critical� stereotype should be fulfilled with respect to
the behavior diagram and environment description (especially the malicious envi-
ronment and the value of the tag {adversary}). We apply the stereotype
data
security� to the specification of the behavioral views of GSAs according to
the following procedure:

1. The behavioral view should be organized in a package stereotyped
data
security�.

2. The structural view previously discussed should be reused by importing the
corresponding package into the one of the behavioral view.

3. A specification in terms of a set of sequence diagrams should be included
in the behavioral view to describe the collaboration between the different
GSCs and GNCs contained in the GSA at hand.

4. The attacker model, i.e., especially the {adversary} tag, is not assigned
a value on the level of patterns. Instead, the attacker model is fixed when
instantiating GSAs (see Sect. 3.4 for details).

According to the described procedures, we have developed a catalog of GSAs
(see [14, pp. 160 ff.] for details) for each available CSPF.

GSA for CSPF Confidential Data Transmission Using Cryptographic
Key-Based Symmetric Encryption. In the following, we present as an

Connecting Security Requirements Analysis and Secure Design 375

Fig. 2. Structural View of GSA for “CSPF Confidential Data Transmission Using
Cryptographic Key-Based Symmetric Encryption”

Fig. 3. Behavioral View Complementing Fig. 2

example a GSA for the machine domain of the CSPF confidential data trans-
mission using cryptographic key-based symmetric encryption. Figure 2 shows
the structural view of the GSA using a composite structure diagram. The Sender

machine domain loads the Sent data and Cryptographic key1 domains from a storage
device. Hence, we introduce the GNC StorageManager to access a storage device.
The Sent data domain is encrypted using the Cryptographic key1 domain. For this
reason, we introduce the GSC SymmetricEncryptorDecryptor presented in Sect. 3.2.
Furthermore, the Sender machine domain sends the encrypted data to the Com-

munication medium domain. Hence, we introduce the GNC CommunicationManager

to access a network.
According to the CSPF this GSA is related to, the plaintext pt represented in

the CSPF as lexical domain Sent data should be kept confidential. Hence, the GSC
SymmetricEncryptorDecryptor and the GNC Application that makes use of this GSC

376 H. Schmidt and J. Jürjens

are stereotyped
critical�. Furthermore, the {secrecy} tag is assigned the
plaintext pt, and the
use� dependency between the GSC SymmetricEncryptor-

Decryptor and the GNC Application is stereotyped
secrecy�.
The overall behavior of the GSA is depicted in Fig. 3. Initially, the locations

of the plaintext pt (that corresponds to the Sent data domain) and the crypto-
graphic key ck (that corresponds to the Cryptographic key1 domain) are known,
and they are retrieved from a storage device using the GNC StorageManager.
Then, the ciphertext is constructed by the GSC SymmetricEncryptorDecryptor. Fi-
nally, the GNC CommunicationManager sends the ciphertext to a network. Both
the structural as well as the behavioral views are contained in a package (not
explicitly depicted in this paper) stereotyped
data security�.

In the next section, we discuss the instantiation of GSAs.

3.4 Instantiation of GSAs

GSAs are instantiated based on the corresponding CSPF instances. The selec-
tion process for GSAs is heavily intertwined with the (security) requirements
engineering phase and described in detail in [6]. An application layer compo-
nent should have a name that equals the name of the machine domain of the
corresponding CSPF instance. Moreover, the interfaces between a GSA and the
environment should be named after the domains of the corresponding CSPF
instance. The names of shared phenomena of the CSPFs should be re-used for
the instantiation of the messages contained in the sequence diagrams of the be-
havioral views of the corresponding GSAs. Thus, each component contained in
a GSA is instantiated, too.

The CSPF instance that constitutes the basis for a GSA instance includes
an environment description in terms of problem domains, interfaces in between,
and domain knowledge. This information is used to construct an attacker model
based on the UMLsec4UML2-stereotype
secure links�. Given a package
stereotyped
secure links� with the tagged value {adversary=default}
containing a deployment diagram with a dependency stereotyped
secrecy�
(or / and
integrity� or / and
high�) between two nodes, these nodes
should be either connected via a communication path stereotyped
LAN� or

encrypted� or
wire� (but not
Internet�) or labeled
LAN�. We
now explain how we use the
secure links� stereotype to construct an at-
tacker model based on the instantiated CSPFs:

1. An environment description in terms of a deployment diagram should be
included in a package stereotyped
secure links�. The diagram should
represent the state of the environment before the envisaged software system
is in operation. Hence, the constraint associated to the
secure links�
stereotype is not fulfilled.

2. Each machine domain, lexical domain, and causal domain should be modeled
as a node (3-D box) in the deployment diagram.

3. The physical connections between nodes should be modeled as communica-
tion paths (solid line between two nodes) in the deployment diagram, and

Connecting Security Requirements Analysis and Secure Design 377

each path should be stereotyped according to its type as either
LAN� or

encrypted� or
wire� or
Internet�.

4. The tag {adversary} of the
secure links� stereotype should be as-
signed a value according to domain knowledge collected during requirements
analysis. For example, if shared phenomena exist indicating that data items
of a connection can be deleted, read, and inserted arbitrarily, then the

Internet� should be applied, and the tag {adversary} should be as-
signed the value default (see [8] for details).

5. The tag {adversary} of the
data security� stereotype of the behav-
ioral views of the instantiated GSAs should be assigned the same value as
the value of the equally named tag of the
secure links� stereotype.

In the next section, we show how different GSA instances are combined yielding
global secure software architectures.

3.5 Composition of Different GSA Instances

Composing different GSA instances means that one must decide whether the
components contained in more than one GSA instance should appear only once
in the global architecture, i.e., whether they can be merged. Basically, three
different categories of components must be considered: application layer compo-
nents, GNC instances, and GSC instances.

Choppy et al. [2] developed for a set of functional subproblem classes a cor-
responding set of subarchitectures that solve these subproblems. Moreover, the
subarchitectures are composed based on dependencies between the subproblems
such as parallel, sequential, and alternative dependencies. We adopt the prin-
ciples by Choppy et al. [2] to merge application layer components and GNC
instances.

We now discuss the composition of GSA instances to obtain a global secure
software architecture that still fulfills the security requirements realized by the
corresponding GSA instances. Especially confidentiality requirements must be
treated carefully, since the composition of incompatible components can lead to
non-fulfillment of confidentiality requirements.

If two GSA instances contain GSC instances that serve the same purpose, then
these components cannot be merged in general. The question to be answered is
if the two GSC instances can use the same algorithm-specific configuration, e.g.,
a specific algorithm, key lengths, salt lengths, etc., to fulfill the different secu-
rity requirements. For example, a specific encryption algorithm and specific key
lengths might be sufficient to solve one security subproblem, while the same con-
figuration would lead to a vulnerable system if applied to another subproblem.
The level of abstraction of GSC instances might not allow to decide whether
they can be merged or if they have to be kept separately. Then, it is necessary
to refine the GSC instances to platform-specific security components to come to
this decision. An approach to deal with the composition of GSC instances before
their refinement to platform-specific security components is to merge GSC in-
stances of the same type into one configurable GSC instance of this type. Here,

378 H. Schmidt and J. Jürjens

configurable means that we equip such a component with a variable mode, i.e.,
the algorithm a component realizes as well as the used cryptographic key can be
changed at runtime.

Choppy et al.[2] considered only the structural composition of subarchitec-
tures. Since our GSA instances are additionally equipped with behavioral views,
we also consider the composition of these descriptions. The resulting behav-
ioral specification of the global secure architecture represents the life-cycle of
the software to be constructed and its components. The behavior of GSA in-
stances is given as a set of sequence diagrams, which should be composed based
on the subproblem dependencies determined for the structural composition of
the application layer components: in case of a sequential dependency, the se-
quence diagrams should be composed according to the order defined by this
dependency. In case of a parallel dependency, the sequence diagrams should be
composed in such a way that the effects and output realized by the different GSA
instances are fulfilled jointly. If GSC instances are merged into one configurable
GSC instance, then its re-configuration should be included in the corresponding
sequence diagrams. The result is a platform-independent global secure software
architecture described by structural and behavioral views.

We briefly discuss an approach to analyze global secure software architecture,
i.e, to verify the constraints associated with UMLsec4UML2 stereotypes that are
contained in such architectures.

3.6 Verification of Global Secure Software Architectures

We use the UMLsec4UML2-profile and the UMLsec tool suite to show that the
GSC and GNC instances in a global secure software architecture work together
in such a way that they fulfill the security requirements corresponding to the
different subproblems. Based on the
secure dependency� stereotype and
the OCL constraints contained in the UMLsec4UML2-profile, it is possible to
check whether critical data items might be leaked ({secrecy} and {high}) or
changed ({integrity}). These checks can be executed directly within compat-
ible UML editing tools such as Papyrus UML and MagicDraw UML. Based on
the stereotypes
data security� and
secure links� and the OCL con-
straints contained in the UMLsec4UML2-profile, it is possible to check whether
behavior introduced by a GSA might compromise confidentiality ({secrecy}
and {high}) or integrity ({integrity}). Such checks can be executed based on
the UMLsec tool suite, which makes use of the SPASS theorem prover10 for the
verification of properties of behavioral models.

We now illustrate the previously presented approach in the next section.

4 Validation

We tested the approach presented in the previous sections using two case stud-
ies: a secure text editor and an Internet-based password manager. We performed
10 http://www.spass-prover.org/

http://www.spass-prover.org/

Connecting Security Requirements Analysis and Secure Design 379

Fig. 4. Structural View of Password Manager Client

the complete development life-cycle for both case studies, i.e., from requirements
engineering to architectural and fine-grained design to the implementation and
testing of the programs. Moreover, we created all development artifacts as advo-
cated by SEPP. While we present in this paper only a small part of the password
manager case study, the complete results are contained in [14] and partly in a
technical report about UMLsec4UML2 [15].

Security requirements analysis of the password manager following SEPP as
outlined in Sect. 2 leads to the elicitation and analysis of 13 different security
requirements, e.g., about the confidentiality and integrity of the different user-
names and passwords. Due to partly overlapping security requirements, only 11
different CSPF instances are developed. Consequently, 11 different GSAs are in-
stantiated and combined yielding a global secure software architecture. Figure 4
partly shows the structural view of global secure software architecture of the
password manager client expressed using a composite structure diagram. There,
instances of GSCs for encryption/ decryption, keyed hash processing, digital sig-
nature processing, generation of random numbers, as well as instances of GNCs
for the user interface and network communication work together, coordinated
by the application layer GNC instance, in order to ensure secure communi-
cation between the password manager client and server over the Internet. The
global architecture consisting of instances of GSCs and GNCs significantly helped
us to proceed with the development phases to follow. We identified adequate
frameworks, off-the-shelf components, and API modules based on the generated
artifacts, i.e., the components, the explicit interface descriptions, the protocol
descriptions, and the UMLsec4UML2 security annotations. Consequently, the
programming phase had to cover creating the glue code to connect the exist-
ing components and modules only. In summary, the case studies show that using
patterns to bridge the gap between security requirements analysis and secure ar-
chitectural design constitutes a feasible and promising contribution to the field
of secure software engineering.

380 H. Schmidt and J. Jürjens

We also evaluated our approach with respect to ISO/IEC 15408:2005 aka
Common Criteria (CC) certifications. The usage of the architectural artifacts
generated following our approach for a CC certification is possible based on
the TOE (Target Of Evaluation) Design Specification (TDS) of the class ADV
Development. For instance, EAL (Evaluation Assurance Level) 5 requires a semi-
formal modular design, i.e., a representation of the TOE’s structure in terms of
subsystems and a description of the parts the subsystem consists of in terms of
modules. In addition to the TDS requirements for EAL 4, it is necessary to also
describe those modules that represent SFR (Security Functional Requirement)-
supporting modules in detail, i.e., by describing its SFR-related interfaces, return
values from those interfaces, and called interfaces to other modules. These TDS
requirements are met by the artifacts that describe the realizations of GSC and
GNC instances. Moreover, a semiformal notation for the SFR-enforcing mod-
ules should be used. Since our approach makes use of UML2.3 diagrams, this
requirement is fulfilled right away. The tool suite developed for the original
version of UMLsec and checking the OCL constraints of the UMLsec4UML2-
profile supports creating TDS documents. For instance, the stereotype
secure
dependency� allows to track the occurence of assets in the complex TDS doc-
uments. Using an UML editing tool such as Papyrus UML the OCL constraints
representing this stereotype can be verified to ensure that we covered all relevant
occurences of an asset.

5 Related Work

Recently, an approach [10] to connect the security requirements analysis method
Secure Tropos by Mouratidis et al. [3] and UMLsec [8] is published. Bryl et al.
[1] extended the Secure Tropos variant by Massacci et al. [9] by an approach
to automatically select design alternatives based on results from security re-
quirements analysis. Compared to our work, these approaches are not based on
patterns, and they rather focus on the transition to finer-grained secure design.

Choppy et al. [2] present architectural patterns for Jackson’s basic problem
frames [7]. The patterns constitute layered architectures described by UML com-
posite structure diagrams. Similar to other approaches considering the connec-
tion between problem frames and software architectures such as [13, 4], the work
by Choppy et al. does not consider security requirements, behavioral interface
descriptions, and operation semantics. Furthermore, only a vague general proce-
dure to derive components for a specific frame diagram is given in [2].

The vast body of patterns for secure software engineering (see [5] for an
overview) can be used during the phase that follows the phase presented in
this paper, i.e., these patterns are applied in fine-grained design of secure soft-
ware. Hence, the existing security design patterns and our approach complement
each other to such an extent that the existing patterns can be expressed in a
unifying way based on SPFs, CSPFs, and GSAs.

Connecting Security Requirements Analysis and Secure Design 381

6 Conclusions and Future Work

We presented in this paper a novel pattern-oriented and tool-supported approach
to bridge the gap between security requirements analysis and secure architectural
design. Its main benefit is that the construction of global secure software archi-
tectures based on results from security requirements engineering becomes more
feasible, systematic, less error-prone, and a more routine engineering activity.

In the future, we plan to develop new UMLsec4UML2 stereotypes to specify
assumptions and facts about the operational environment of the software. More-
over, we intend to develop patterns that support the systematic composition of
different GSA instances thereby preserving the associated security requirements.

References

[1] Bryl, V., Massacci, F., Mylopoulos, J., Zannone, N.: Designing security require-
ments models through planning. In: Martinez, F.H., Pohl, K. (eds.) CAiSE 2006.
LNCS, vol. 4001, pp. 33–47. Springer, Heidelberg (2006)

[2] Choppy, C., Hatebur, D., Heisel, M.: Component composition through architec-
tural patterns for problem frames. In: Proceedings of the Asia Pacific Software
Engineering Conference (APSEC), pp. 27–34. IEEE Computer Society, Washing-
ton, DC, USA (2006)

[3] Giorgini, P., Mouratidis, H.: Secure tropos: A security-oriented extension of the
tropos methodology. International Journal of Software Engineering and Knowl-
edge Engineering 17(2), 285–309 (2007)

[4] Hall, J.G., Jackson, M., Laney, R.C., Nuseibeh, B., Rapanotti, L.: Relating soft-
ware requirements and architectures using problem frames. In: Proceedings of
the IEEE International Requirements Engineering Conference (RE), pp. 137–144.
IEEE Computer Society, Los Alamitos (2002)

[5] Heyman, T., Yskout, K., Scandariato, R., Joosen, W.: An analysis of the security
patterns landscape. In: Proceedings of the International Workshop on Software
Engineering for Secure Systems (SESS), pp. 3–10. IEEE Computer Society, Los
Alamitos (2007)

[6] Heyman, T., Yskout, K., Scandariato, R., Schmidt, H., Yu, Y.: The security twin
peaks. In: Erlingsson, Ú., Wieringa, R., Zannone, N. (eds.) ESSoS 2011. LNCS,
vol. 6542, pp. 167–180. Springer, Heidelberg (2011)

[7] Jackson, M.: Problem Frames. In: Analyzing and structuring software develop-
ment problems. Addison-Wesley, Reading (2001)

[8] Jürjens, J.: Principles for Secure Systems Design. PhD thesis, University of Oxford
(2002)

[9] Massacci, F., Mylopoulos, J., Zannone, N.: An Ontology for Secure Socio-
Technical Systems. Information Science Reference. In: Ontologies for Business
Interaction, pp. 188–207 (2007)

[10] Mouratidis, H., Jürjens, J.: From goal-driven security requirements engineering
to secure design. International Journal of Intelligent Systems – Special issue on
Goal-Driven Requirements Engineering 25(8), 813–840 (2010)

[11] Pérez-Mart́ınez, J.E., Sierra-Alonso, A.: UML 1.4 versus UML 2.0 as languages
to describe software architectures. In: Oquendo, F., Warboys, B.C., Morrison, R.
(eds.) EWSA 2004. LNCS, vol. 3047, pp. 88–102. Springer, Heidelberg (2004)

382 H. Schmidt and J. Jürjens

[12] Pfleeger, C.P., Pfleeger, S.L.: Security In Computing, 3rd edn. Prentice Hall PTR,
Englewood Cliffs (2003)

[13] Rapanotti, L., Hall, J.G., Jackson, M., Nuseibeh, B.: Architecture-driven problem
decomposition. In: Proceedings of the IEEE International Requirements Engineer-
ing Conference (RE), pp. 80–89. IEEE Computer Society, Los Alamitos (2004)

[14] Schmidt, H.: A Pattern- and Component-Based Method to Develop Secure Soft-
ware. Deutscher Wissenschafts-Verlag (DWV) Baden-Baden (April 2010)

[15] Schmidt, H., Jürjens, J.: UMLsec4UML2 - adopting UMLsec to support UML2.
Technical Report 838, Technical University of Dortmund (February 2011),
http://hdl.handle.net/2003/27602

[16] Shaw, M., Garlan, D.: Software Architecture. Perspectives on an Emerging Dis-
cipline. Prentice Hall PTR, Englewood Cliffs (1996)

http://hdl.handle.net/2003/27602

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 383–390, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Transforming Enterprise Architecture Models:
An Artificial Ontology View

Sandeep Purao1, Richard Martin2, and Edward Robertson3

1 College of Information Sciences & Technology, Pennsylvania State University, PA 16802
spurao@ist.psu.edu

2 Tinwisle Corp., Bloomington Indiana
richardm@tinwisle.com

3 Indiana University and Persistent Systems Inc.
edrbtsn@indiana.edu

Abstract. Enterprise Architecture (EA) is, by definition, an artificial construct.
It includes conceptual objects and attributes created for human purposes.
EA models, therefore, require an ontological foundation that goes beyond the
‘furniture of the world’ metaphor. We develop an argument that supports this
premise, and demonstrate how the perspective can help us understand opera-
tions on EA models. The paper demonstrates these operations with an example
and briefly points to formalization efforts detailed elsewhere. The paper
concludes with implications for research and practice.

Keywords: Enterprise Architecture, Artificial Ontology, Operations.

1 Introduction

Enterprise Architecture (EA) is the logic underlying a business (Ross et al. 2006).
An EA outlines how the different technological, human and organizational elements
within the business are structured, describes how they can be coordinated, and makes
plain possibilities for manipulation for business improvements. Accurate yet mutable
representations are, therefore, important for the practice of EA. These representations
must also include not only the furniture of the world (Bunge 1977) but also concep-
tual constructs created for satisfying human goals (March and Allen 2007). Decision-
makers can use these representations to chart the course for an enterprise; managers
can use these to communicate with stakeholders (Schekkerman 2008).

A number of meta-models, frameworks and standards have been suggested for
EA representations (e.g. Zachman 1987, DoD 2010, ISO Standards 42010, 15704).
The manner in which practitioners use these meta-models and frameworks, however,
remains unclear. Their use of these meta-models and frameworks cannot be the
same as that for conventional software engineering where the designers’ aim is to
move from models to executable software. In contrast, EA efforts often include an
archaeological expedition with the intention of charting a new course of action for the
enterprise and facilitating stakeholder buy-in.

The research reported in this paper is presented against the above backdrop. We
explore an alternative ontological basis for EA models and identify transformations

384 S. Purao, R. Martin, and E. Robertson

that capture how EA models are designed and used. The question we address is, there-
fore, the following: What are the operations on EA models following an artificial
ontology view? The key contribution of our work is the development of these opera-
tions building on the ontology of the artificial (March and Allen 2007).

2 Conceptual Models and Modeling for Enterprise Architecture

Received wisdom for conceptual modeling for information systems (Wand and Weber
1990) builds on Bunge’s (1977) ontology. It posits that conceptual models must show
fidelity against the real-world they represent (Wand and Weber 2002). In contrast, EA
practitioners use models for different purposes. Table 1 below summarizes the differ-
ences and Figure 1 outlines how EA models are used.

Table 1. Conceptual Models for Enterprise Architecture vs. Software

Concern Enterprise Architecture Software Applications
What The underlying logic of a business Structure and functionality of software
When Often post-facto, after a business

model is in place in the organization
Typically prior to the (detailed) design
and implementation of software

How A reflection of the architecture as it
exists, and a vision of a desired state

Often based on the intended software
implementation

Who Provides a decision vehicle and
what-if model for decision-makers

Translates user requirements into
designs for software developers

Use A communication mechanism to
effect change

Produce a functional software that meets
the requirements

Life cycle Moving from extension to intension,
effecting change in both

Moving from intension to extension in
spite of round-trip engineering

Abstraction Explicit use and instantiation from
frameworks with multiple models

Implicit re-use of the ontology or
domain models during design

Concerns:
• Discovery of

concepts
• Ongoing

stakeholder
communication

• Appropriate use
of constructs

• Ongoing
refinement

Intended Outcome:
• Towards greater

stakeholder
consensus and
commitment to
change

Overarching Goal:
• Making

architecture visible
and effecting
organizational
change

Slice of Reality and
Human inventions as

part of a techno-
organizational system

Conceptual
Model(s)

Fig. 1. Conceptual models and modeling for Enterprise Architecture

 Transforming Enterprise Architecture Models: An Artificial Ontology View 385

These differences provide inspiration for the work we present in this paper. We
start by proposing an alternative to Bunge’s ontology.

3 An Ontology of the Artificial

An ontology of the artificial begins with the premise that although business enter-
prises “use concrete objects such as people, machines, and buildings to accomplish
their goals; they are concerned primarily with the meaning and purpose ascribed to
concrete and conceptual objects and with invented rules …” (March and Allen 2007).
As a result, it “accommodate[s] occurrences of conceptual events that form the basis
of social phenomena” (March and Allen 2007).

3.1 Fundamental Constructs

The constructs underlying the ontology of the artificial extend those suggested by
Wand and Weber (1990). Table 2 outlines these (March and Allen 2007).

Table 2. Constructs in the Ontology

Construct Elaboration
Objects:
Concrete

Exist physically

Objects:
Conceptual

Exist by human invention and social agreement (new)

Attributes:
Substantial

Ascribed to concrete objects to represent human understanding of natural
phenomena

Attributes:
Invented

Ascribed to concrete and conceptual objects to enable social discourse
(new). Can be used for individuation.

Types
(classes)

Object grouped into Types based on ascription of one or more common
attributes

Status (of an
Object)

Is the set of values of its attributes at a point in time; the history of an
object is the chronology of its status.

Events:
Concrete

Effect changes to substantial properties of concrete objects; follow
immutable, natural, discoverable laws.

Event:
Conceptual

Effect changes to invented attributes of concrete or conceptual objects, and
follow rules (designed by human agreement), which are mutable. (new)

Relationship Objects affected by the same event are in a relationship with the event and
hence, in relationship to each other through the event.

Decomposition Objects as well as Events may compose and decompose to form other
Objects or Events respectively.

March and Allen’s (2007) proposal contains three new constructs. The conceptual

objects and invented attributes allow addition of new objects and attributes as EA
models are refined. The conceptual events allow negotiation of new modes of changes
to objects and attributes, including a change in the stakeholders. Together, they allow
possibilities for EA models. We use these to conceptualize operations on EA models.

386 S. Purao, R. Martin, and E. Robertson

4 Operations of EA Models

We identify six operations on EA models: Projection, Instantiation, Specialization,
Refinement, Derivation, and Linking. Table 3 summarizes the operations.

Table 3. Operations on EA Models*

Operation Description
Projection Transforming a (set of) objects by selecting a subset of attributes
Instantiation Creating a (set of) objects/events based on a construct in the meta-model
Refinement Elaboration of a (set of) conceptual objects/events by addition of invented

attributes; Decomposition of a (set of) conceptual objects/events by
identifying component objects

Specialization Adding variations to a (set of) objects by adding invented attributes
Derivation Manipulation of attributes of a (set of) objects to derive values for related

objects; Transformation of objects into other objects
Linking Establishing a connection between a (set of) objects/events

 * Note: The description uses constructs from the ontology (see Table 2), shown in italics.

4.1 Projection

Projection (P) refers to the transforming of an object into a form that consists only
of those properties that a stakeholder requires. It is analogous to the existential quanti-
fication operation in predicate logic. The essential characteristic of Projection is
discarding some information as a surjective and unary operation while preserving
‘type’. Consider, for example, a shipping container manufacturer who uses a corrugat-
ing machine to produce a range of cardboard stock that must be cut, printed, folded,
and glued on many machines to meet particular customer specifications. A Projection
may involve extracting information related to machine capacities to structure a con-
veyance system that accumulates and forwards the stock to the appropriate printer and
box machines.

4.2 Instantiation

Instantiation (I) is a constructive step. It adds the detail necessary for constructing a
reification of a concept. For concrete entities, this can lead to tangible things in the
world. For conceptual entities, instantiation can require assigning values to invented
attributes. During the EA cycle, instantiation may first occur for the purpose of
constructing an EA model from the framework or standard. A second level of instan-
tiation may occur during the mapping and use of the EA model against specific
instances of an Activity or Node. Instantiation of the first kind takes place during the
design phase, whereas the second kind takes place during use of the EA models.

4.3 Refinement

Refinement (R) is an information adding operation. The essential characteristic of
Refinement is the preservation of boundary. During an EA life cycle, Refinement is
critical because it allows addition of information beyond the original creation of an

 Transforming Enterprise Architecture Models: An Artificial Ontology View 387

object. It acknowledges that it is not feasible to fully specify the structure of an object
upon its creation because of inputs needed from multiple stakeholders, and because of
the artificial nature of the object itself. Refinement can occur via decomposition or
elaboration. For example, one can refine the understanding of an automobile engine in
two ways: adding facts about engine features, e.g. the displacement or horsepower
(refinement); or exposing sub-components, e.g. block, head, and pistons (decomposi-
tion). Elaboration may require addition of Invented Attributes enhancing commitment
from stakeholders; decomposition may result in addition of Conceptual Objects or
Events providing a way to scale down commitment.

4.4 Specialization

Specialization (S) is the construction of variations on the basis of Concrete or Con-
ceptual objects. It corresponds to the idea of creating sub-classes. It is qualitatively
different from Elaboration in that Specialization involves spawning new objects that
are still within the boundaries specified by the source object. Consider, for example, a
global producer of manufactured products with customers in different countries. Each
may have different trade rules regarding import tariffs. Here, Specialization may be
applied to the object Country to distinguish between non-tariff countries and tariff
countries by identifying and including different attributes that are part of each
new object. During the EA life cycle, Specialization can help different stakeholders
negotiate their spheres of responsibility.

4.5 Derivation

Derivation (D) refers to the changing of the form of one or more elements without
changing its content. It is a critical operation during the EA life cycle because it goes
beyond Specialization or Refinement. Unlike these two, Derivation allows manipula-
tion of specific attributes, including attributes from multiple objects without the need
to generate a new Object or a permanent elaboration of an Object. It allows stake-
holders to combine attributes from a number of related Objects in response to their
information needs. As an example, consider the derivation of elements necessary for
an ISO 19439 (ISO 2006) model description from a Zachman Framework description.
Derivation may also involve computation of aggregates based on values of attributes
from component objects or attributes from other related objects.

4.6 Linking

Linking (L) is the idea that elements – Concrete and Conceptual Objects, Concrete
and Conceptual Events – may be connected via arbitrary associations. The need for
links arises because EA models can contain representations at different levels of ab-
straction. Consider, for example, the creation of a link within a meta-level or across
meta-levels or between components in a part hierarchy. The transformations resulting
from links are often implicit or unstated. The link between a process and the role that
is going to be responsible for completion of that process transforms the process into a
managed activity. The linking may also be the result of a business rule applied during
a refinement in the architecture model.

388 S. Purao, R. Martin, and E. Robertson

The operations have been formalized. Further details of the formalization are avail-
able elsewhere (Martin et al. 2011).

5 Application

This section demonstrates their application to a case (adapted from Sessions 2007).
The case describes an organization, MedAMore, that owns a regional chain of drug-
stores with a software package, MedAManage, consisting of three modules: M/Store,
to run at the drug store; M/Warehouse, to run in a regional warehouse; and M/Home,
to run at the home office. As the result of acquiring three regional chains, the software
package has become an obstacle. M/Store now requires specializations such as re-
gional insurance plans; M/Warehouse must reflect practices at regional warehouses;
and the information-sharing approach cannot scale to the now 200 drugstores and
regional offices. Upgrading is difficult because each module is large. The technical
problems have created internal conflicts. The business side wants to acquire two more
chains while IT was struggling to bring existing acquisitions online. EA is now being
considered as a possible mechanism to build stronger partnerships across IT and busi-
ness groups. Table 4 illustrates the operations on EA models that can help achieve
these potentially stronger partnerships with the above case description.

Table 4. Illustrating operations with MedAMore

Operation Described in the MedAMore Case
Projection • Making intended consequences of IT investment decisions visible to the

business stakeholders; making financial implications of IT investments
visible to the Finance function.

Instantiation • Constructing instances of elements in the framework, e.g. creating
instances such as activity and object; and instantiating these, e.g. creating
instances of Activity such as ‘Data cleansing for pharmacy orders.’

Refinement • Elaboration and Decomposition by adding new attributes to track the
impact of IT investment decisions: investigation of financial impact and
impact on IT infrastructure.

Specialization • Generating regional or store-specific specialization for practices and
modules. Distinguishing these based on criteria such as insurance plans
or region resulting in changes to modules and reporting structure.

Derivation • Transforming models specified by stakeholders into detailed
requirements. Deriving information from these models about the impacts
of IT investments for affects on different portions of the IT infrastructure.

Linking • Linking operational views of business processes to design decisions, to
organizational structure decisions, and IT investment decisions. Links
traversed to understand impact of IT investments on business operations.

The example demonstrates how the operations can help understand design and use

of EA models. We acknowledge that this does not constitute validation. We use the
example as a demonstration, similar to the suggestion by Hevner et al (2004).

 Transforming Enterprise Architecture Models: An Artificial Ontology View 389

6 Discussion

Much prior research shows that EA models are realized through a series of actions
by stakeholders, who not only design the models but also use them to transform the
enterprise. The operations described in the paper emphasize this dual nature by
capturing the evolutionary aspects of EA models. They build on the ontology of the
artificial as a foundation, and allow explicit acknowledgement of the progression of
EA models in practice (see, e.g. Grossman 2003; Ross et al 2006). Table 5 reconnects
the arguments so far to the unique aspects of EA models.

Table 5. The Use of Operations for Conceptual Models of EA (see Table 1)

Dimension Enterprise Architecture Use of Operations
What The underlying logic of a

business
Difficult to specify up-front, must evolve;
also stakeholders can have different
views: Refinement and Specialization

When Often post-facto, after a business
model is in place in the
organization

Refinement and Linking allows multiple
stakeholders to take part in the definition
and evolution of EA models

How A reflection of the architecture
as it currently exists, and with a
vision of a desired state

Decomposition and Specialization
allows fixing responsibility and allowing
stakeholders to participate in modeling

Who Provides a decision vehicle and
what-if model for the
decision-makers

Decomposition and Derivation can be
useful to communicate with different
stakeholders

Use Used as a communication
mechanism to effect change
among stakeholders

Projection allows stakeholders to use and
vary the different views of EA models
and use Linking to ensure consistency

Life cycle Moving from extension to
intension, effecting change in
both via iterations

Multiple levels of Instantiation including
their reversal allows stakeholders to
refine EA models

Abstraction Explicit use and instantiation
from frameworks with multiple
models; for ensuring compliance

Use of frameworks along with
Instantiation and Derivation allows
consistency across EA models

We do not argue that the operations are complete. Arguing completeness will re-

quire greater scrutiny, and understanding of how the operations are carried out in
practice. Our intent is to distinguish the different modes of action by stakeholders
across the EA life cycle (see, e.g. Smolander et al. 2008).

This paper has argued for appropriateness of an ontology of the artificial for EA
modeling. To the best of our knowledge, no prior work has unpacked the space of
transformations that represent these changes in EA models. Our intent in describing
these operations is not to provide a formal basis for their automation. Instead, we seek
to identify these operations as a way to better understand the decisions and actions
of stakeholders involved in the design and use of EA models. We hope that the opera-
tions we have identified can provide a foundation for further studies such as the
locality of impact, traversing abstractions or construction of macros (e.g. Martin and
Robertson 2008) and identification of evolution patterns, backed by empirical studies.

390 S. Purao, R. Martin, and E. Robertson

References

[1] Bunge, M.: Ontology: the furniture of the world. Springer, Heidelberg (1977)
[2] DoD Deputy Chief Information Officer (2010), DODAF Overview and Supporting

Materials, http://cio-nii.defense.gov/sites/dodaf20/index.html
(retrieved May 3, 2010)

[3] Grossman, I., Application of the NOAA Federated IT Enterprise Architecture Process.
Government Enterprise Architecture Conference, June 2003.

[4] Hevner, A., et al.: Design Science Research in Information Systems. MIS Quar-
terly 28(1), 75–105 (2004)

[5] ISO 2000. International Organization for Standardization: Industrial Automation Systems
- Requirements for Enterprise–Reference Architecture and Methodologies, ISO
15704:2000 (2000), http://www.iso.ch

[6] ISO 2006. International Organization for Standardization: Enterprise integration – frame-
work for enterprise modeling, ISO 19439:2006 (2006), http://www.iso.ch

[7] ISO 2010 International Organization for Standardization: Systems and Software Engi-
neering - Architecture Description (ISO/IEC CD1 42010) (2010),
http://www.iso.ch (draft version of January 2010)

[8] March, S., Allen, G.: Challenges in Requirements Engineering: A Research Agenda for
Conceptual Modeling. In: Design Requirements Workshop, Cleveland, OH, USA, June 3-
6 (2007)

[9] Martin, R., Robertson, E.: Meta-matters. In: International Conference on Information
Resources Management, Niagara Falls, Ontario (2008)

[10] Martin, R., Robertson, E., Purao, S.: Tracking Transformations in Enterprise Architecture
Development. Working Paper (2011)

[11] McGann, T., Lyytinen, K.: How Information Systems Evolve by and for Use, Case West-
ern Reserve University, USA. Sprouts: Working Papers on Information Systems 5(15)
(2005), http://sprouts.aisnet.org/5-15

[12] Ross, J., Weill, P., Robertson, D.: Enterprise Architecture as Strategy. Harvard Business
Press, Boston (2006)

[13] Schekkerman, J.: Enterprise Architecture Good Practices Guide: How to Manage the
Enterprise Architecture Practice. Trafford Publishing (2008)

[14] Sessions, R., A comparison of top four enterprise integration methodologies (2007),
http://msdn.microsoft.com/en-us/library/bb466232.aspx (retrieved
3 May 3, 2010)

[15] Smolander, K., Rossi, M., Purao, S.: Software architectures: Blueprint, literature,
language or decision? European Journal of Information Systems, 114 (2008)

[16] Wand, Y., Weber, R.: An ontological model of an information system. IEEE Transactions
on Software Engineering 16(11), 1282–1292 (1990)

[17] Wand, Y., Weber, R.: Research Commentary: Information Systems and Conceptual
Modeling – A Research Agenda. Information Systems Research 13(4), 363–376 (2002)

[18] Zachman, J.: A framework for information systems architecture. IBM Systems
Journal 26(3) (1987)

Handling Concept Drift in Process Mining

R.P. Jagadeesh Chandra Bose1,2, Wil M.P. van der Aalst1, Indrė Žliobaitė1,
and Mykola Pechenizkiy1

1 Department of Mathematics and Computer Science, University of Technology,
Eindhoven, The Netherlands

2 Philips Healthcare, Veenpluis 5–6, Best, The Netherlands
{j.c.b.rantham.prabhakara,w.m.p.v.d.aalst,m.pechenizkiy}@tue.nl,

zliobaite@gmail.com

Abstract. Operational processes need to change to adapt to changing
circumstances, e.g., new legislation, extreme variations in supply and de-
mand, seasonal effects, etc. While the topic of flexibility is well-researched
in the BPM domain, contemporary process mining approaches assume
the process to be in steady state. When discovering a process model
from event logs, it is assumed that the process at the beginning of the
recorded period is the same as the process at the end of the recorded pe-
riod. Obviously, this is often not the case due to the phenomenon known
as concept drift. While cases are being handled, the process itself may be
changing. This paper presents an approach to analyze such second-order
dynamics. The approach has been implemented in ProM1 and evaluated
by analyzing an evolving process.

Keywords: process mining, concept drift, flexibility, change patterns.

1 Introduction

In order to retain their competitive advantage in today’s dynamic marketplace,
it is increasingly necessary for enterprises to streamline their processes so as to
reduce costs and to improve performance. Moreover, today’s customers expect
organizations to be flexible and adapt to changing circumstances. New legisla-
tion is also forcing organizations to change their processes. It is clear that the
economic success of an organization is highly dependent on its ability to react
to changes in its operating environment. Therefore, flexibility and change have
been studied in-depth in the context of Business Process Management (BPM).
For example, process-aware information systems have been extended to be able
to flexibly adapt to changes in the process. State-of-the-art Workflow Manage-
ment (WFM) and BPM systems provide flexibility. Moreover, in processes not
driven by WFM/BPM systems there is even more flexibility as processes are
controlled by people.

Although flexibility and change have been studied in-depth in the context of
WFM and BPM systems, existing process mining techniques assume processes
1 ProM is an extensible framework that provides a comprehensive set of

tools/plugins for the discovery and analysis of process models from event logs. See
http://www.processmining.org for more information and to download ProM.

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 391–405, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.processmining.org

392 R.P.J.C. Bose et al.

to be in steady state. Starting point for process mining is an event log contain-
ing a sequence of business events recorded by one or more information systems.
Based on such an event log, processes can be discovered. Today’s process dis-
covery techniques are able to extract meaningful process models from event logs
not containing any explicit process information. Using ProM, we have analyzed
processes in more than 100 organizations. These practical experiences show that
it is very unrealistic to assume that the process being studied is in steady state:
while analyzing the process, changes can take place. For example, governmen-
tal and insurance organizations reduce the fraction of cases being checked when
there is too much work in the pipeline. In case of a disaster, hospitals and banks
change their operating procedures etc. Such changes are indirectly reflected in
the event log. Moreover, analyzing such changes is of the utmost importance
when supporting or improving operational processes.

In the data mining and machine learning communities, such second-order dy-
namics are referred to as concept drift, and has been studied in both supervised
and unsupervised settings. Concept drift has been shown to be important in
many applications and several successful stories have been reported in the liter-
ature [1,2,3]. However, existing work tends to focus on simple structures such as
changing variables rather than changes to complex artifacts such as process mod-
els describing concurrency, choices, loops, cancelation, etc. In handling concept
drifts in process mining, the following three main problems can be identified:

1. Change (Point) Detection: The first and most fundamental problem is to
detect concept drift in processes, i.e., detect that a process change has taken
place. If so, the next step is to identify the time periods at which changes
have taken place.

2. Change Localization and Characterization: Once a point of change has been
identified, the next step is to characterize the nature of change, and identify
the region(s) of change (localization) in a process. Uncovering the nature
of change is a challenging problem that involves both the identification of
change perspective (for example, control-flow, data, resource, sudden, grad-
ual etc.) and the exact change in itself.

3. Unravel Process Evolution: Having identified, localized and characterized the
changes, it is necessary to put all of these in perspective. There is a need
for techniques/tools that exploit and relate these discoveries. Unraveling the
evolution of a process should result in the discovery of the change process
(describing the second order dynamics).

In this paper, we focus on the first two problems. We propose features and
techniques to detect changes (drifts), change points, and change localization
in event logs from a control-flow perspective. The techniques proposed in this
paper show significant promise in handling concept drifts. We further provide
an outlook on some of the topics in concept drift and believe that this niche
area, with its broad scope and relevance, evokes lots of interest in the research
community.

The remainder of this paper is structured as follows. Related work is presented
in Section 2. Section 3 describes the various aspects and nature of change. Section
4 introduces various features and techniques for detecting drifts in event logs.
Section 5 describes the effectiveness of the features and techniques proposed in

Handling Concept Drift in Process Mining 393

this paper in discovering change points and localization of changes through a
case study. In Section 6, we project an outlook on some of the open research
questions and directions in this area. The paper ends with some conclusions in
Section 7.

2 Related Work

Over the last two decades many researchers have been working on process flex-
ibility, e.g., making workflow systems adaptive. In [4,5] collections of typical
change patterns are described. In [6,7] extensive taxonomies of the various flexi-
bility approaches and mechanisms are provided. Ploesser et al. [8] have classified
business process changes into three broad categories viz., sudden, anticipatory
and evolutionary. This classification is used in this paper, but now in the context
of event logs.

Despite that many publications on flexibility, most process mining techniques
assume a steady state process. A notable exception is the approach by Günther
et al. [9]. This approach uses process mining to provide an aggregated overview
of all changes happened so far. However, this approach assumes that change
logs are available, i.e., modifications of the workflow model are recorded. At this
point in time very few information systems provide change logs. Therefore, this
paper focuses on concept drift in process mining assuming only an event log as
input. Concept drift refers to changes in the target variable(s)/concept induced
by contextual shifts over time [10]. While the topic is well-studied in various
branches of the data mining and machine learning community, the problem of
concept drift has not been studied in the process mining community. While
experiences from data mining and machine learning can be used to investigate
concept drift in process mining, existing techniques cannot be used due to the
complexity of process models and the nature of process change.

3 Aspects and Nature of Change in Business Processes

Three important perspectives in the context of business processes are the control-
flow, data and resource perspective. One or more of these perspectives may be
subjected to a change.

– Control-flow/Behavioral Perspective: This class of changes deals with the
behavioral and structural changes in a process model. Just like the design
patterns in software engineering, there exist change patterns capturing the
common control-flow changes [4]. Control-flow changes can be classified into
operations such as insertion, deletion, substitution and reordering of process
fragments. For example, an organization which used to collect the fee after
the processing and acceptance of an application can now change their process
to enforce the payment of fee before the processing of an application. Here
the reordering change pattern had been applied on the payment and applica-
tion processing process fragments. As another example, with the addition of
new product offerings, a choice construct is inserted into the product devel-
opment process of an organization. In the context of PAIS, various control-
flow change patterns have been proposed in [4,5]. Most of these control-flow

394 R.P.J.C. Bose et al.

change patterns are applicable to traditional information/workflow systems
as well.
Sometimes, the control-flow structure of a process model can remain intact
but the behavioral aspects of a model could have been changed. For exam-
ple, consider an insurance agency that classifies claims as “high” or “low”
depending on the amount claimed. An insurance claim of e1000 which would
have been classified as high last year is categorized as a low insurance claim
this year due to the organization’s decision to increase the claim limit. The
structure of the process remains intact but the routing of cases changes.

– Data Perspective: This class of changes refer to the changes in the require-
ment, usage, and generation of data in a process. Tasks may produce or
require information/data. An example of change in a data perspective is
enabling the execution of a task without the requirement of an otherwise
needed data element d.

– Resource Perspective: This class deals with the changes in resources, their
roles, and organizational structure, and their influence on the execution of
a process. For example, there could have been a change pertaining to who
executes an activity in what roles in a process. As another example, certain
execution paths in a process could be enabled (disabled) upon the availabil-
ity (non-availability) of resources. Furthermore, resources tend to work in
a particular manner and this bias may change over time. For example, a
resource can have a bias of executing a set of parallel activities in a spe-
cific sequential order. Such biases could be more prominent when a limited
number of resources are available; the addition of new resources can remove
this bias.

Based on the duration for which a change is active, one can classify changes into
momentary and permanent. Momentary changes are short-lived and affect only
a very few cases while permanent changes are persistent and stay for a while
[6]. In this paper, we consider only permanent changes. Changes are perceived
to induce a drift in the concept (process behavior). We identify four classes of
drifts as depicted in Fig. 1 based on how they manifest.

– Sudden Drift: This corresponds to a substitution of an existing process M1

with a new process M2 as depicted in Fig. 1(a). M1 ceases to exist from
the moment of substitution. In other words, all cases (process instances)
from the instant of substitution emanate from M2. This class of drifts are
typically seen in scenarios such as emergency response planning. As an ex-
ample, airlines and airports changing their security processes due to a new
regulation.

– Recurring Drift: This corresponds to the scenario where a set of processes
reappear after some time (substituted back and forth) as depicted in Fig. 1(b).
It is quite natural to see such a phenomenon with processes having a seasonal
influence. For example, a travel agency might deploy a different process to
attract customers during Christmas period. The recurrence of processes may
be periodic or non-periodic. An example of a non-periodic recurrence is a
deployment of a process subject to market conditions. The point of deploy-
ment and duration of deployment are both dependent on external factors
(here, the market conditions).

Handling Concept Drift in Process Mining 395

– Gradual Drift: This refers to the scenario as depicted in Fig. 1(c) where
a current process M1 is replaced with a new process M2. Unlike the sud-
den drift, here both processes coexist for some time with M1 discontinued
gradually. For example, a supply chain organization might introduce a new
delivery process. However, this process is applicable only for orders taken
henceforth. All previous orders still have to follow the older delivery process.

– Incremental Drift: This refers to the scenario where a substitution of pro-
cess M1 with MN is done via smaller incremental changes as depicted in
Fig. 1(d). This class of drifts is more pronounced in organizations adopting
agile business process management methodology.

M1

M2

t
M1

M2

t
M1

M2

t
M1

M2

M3

:

Mn

t

..
..

(a) (b) (c) (d)

Fig. 1. Different types of drifts. (a) sudden drift (b) recurring drift (c) gradual drift
and (d) incremental drift. X-axis indicate time and Y-axis indicate process variants.
Shaded rectangles depict process instances.

4 Approaches to Detecting Drifts in Event Logs

We propose approaches to detect potential control-flow changes in a process
manifested as sudden drifts over a period of time by analyzing its event log.
Detecting drifts in data and resource perspectives and in the contexts of gradual,
recurring and incremental drifts is beyond the scope of this paper.

4.1 Causal Footprints

Event logs are characterized by the relationships between activities. Dependen-
cies between activities in an event log can be captured and expressed using
the follows (or precedes) relationship. For any pair of activities, a and b ∈ Σ,
one can determine whether they exhibit either always, never, or sometimes fol-
lows/precedes relationship. If b follows a in all the traces in an event log, then
we say that b always follows a; if b follows a only in some subset of the traces
or in none of the traces, then we say that b sometimes follows a, and b never
follows a respectively. Consider an event log L = {acaebfh, ahijebd, aeghijk}
containing three traces defined over Σ ={a, b, c, d, e, f, g, h, i, j, k}. The fol-
lowing relations hold in L: e always follows a, e never follows b, and b sometimes
follows a. The variants of precedes relation can be defined on similar lines. The
follows/precedes relationship is rich enough to reveal many control flow changes
in a process. In the next section, we exploit this relationship and define various
features for change detection.

396 R.P.J.C. Bose et al.

4.2 Features Capturing the Manifestation of Activity Relationships

We distinguish between two classes of features (i) global features and (ii) local
features. Global features are defined over an event log while local features can
be defined at a trace level. Based on the follows (precedes) relation, we propose
two global features viz., Relation Type Count and Relation Entropy, and two
local features viz., Window Count and J-measure. These features are defined as
follows:

– Relation Type Count (RC): The relation type count with respect to follows
(precedes) relation is a function fRC : Σ → N3

0 defined over the set of
activities. fRC of an activity, b ∈ Σ with respect to follows (precedes) relation
over an event log L is a triple 〈ca, cs, cn〉 where ca, cs, and cn are the number
of activities in Σ that always, sometimes, and never follow (precede) b in L
respectively. For the event log L mentioned above, fRC(a) = 〈2, 9, 0〉 since
e and h always follows a while all other activities in Σ \ {e, h} sometimes
follows a. fRC(i) = 〈1, 4, 6〉 since only j always follows i; b, d, e, and k
sometimes follows i while a, c, f, g, h and i never follows i.
For an event log containing |Σ| activities, this results in a feature vector
of dimension 3|Σ| (if either follows or precedes relation is considered) or
2× 3|Σ| (if both follows and precedes relation are considered).

– Relation Entropy (RE): The relation entropy with respect to follows
(precedes) relation is a function fRE : Σ → R+ defined over the set of
activities. fRE of an activity, b ∈ Σ with respect to follows (precedes)
relation is the entropy of the relation type count metric. In other words,
fRE(b) = −pa log pa − ps log ps − pn log pn where pa = ca/|Σ|, ps = cs/|Σ|,
and pn = cn/|Σ|.
For the above example event log L, fRE(a) = 0.68 (corresponding to fRC(a) =
〈2, 9, 0〉) and fRE(i) = 1.32 (corresponding to fRC(i) = 〈1, 4, 6〉). For an
event log containing |Σ| activities, this results in a feature vector of dimen-
sion |Σ| or 2× |Σ| depending on whether either or both of follows/precedes
relation is considered.

– Window Count (WC): The window count with respect to follows (precedes)
relation is a function fWC : Σ×Σ → N0 defined over the set of activity pairs.
Given a trace t and a window of size l, let Sl be the set of all subsequences
t(i, i + l− 1), such that t(i) = a and there exists a j such that i < j < i + l
and t(j) = b. The window count of the relation b follows a is defined as
the number of sequences of length l in which b follows a. In other words,
fWC(a, b) = |Sl|.
For the above example event log L, using a window of size l = 4, fWC(a, b) =
1 for trace acaebfh and 0 for traces ahijebd and aeghijk.

– J-Measure: Smyth and Goodman [11] have proposed a metric called J-
measure based on [12] to quantify the information content (goodness) of
a rule. We adopt this metric as a feature to characterize the significance of
relationship between activities. The basis lies in the fact that one can con-
sider the relation b follows a as a rule: “if activity a occurs, then activity
b will probably occur”. The J-measure with respect to follows (precedes)
relation is a function fJ : Σ×Σ → R+ defined over the set of activity pairs.
Let p(a) and p(b) denote the probability of occurrence of activities a and b
respectively in a trace t. Let pl(aFb) denote the probability that b follows

Handling Concept Drift in Process Mining 397

a within a window of size l. Then the J-measure is defined as fJ(a, b) =
p(a)CEl(aFb) where CEl(aFb) denotes the cross-entropy of a and b (b fol-
lows a within a window of size l) and is defined as

CEl(aFb) = pl(aFb) log
(

pl(aFb)
p(b)

)
+ (1 − pl(aFb)) log

(
1− pl(aFb)

1− p(b)

)

The J-measure of b follows a for trace acaebfh using a window of size l = 4
is fJ(a, b) = 0.147.

Though local features are defined at a trace level, it is easy to lift them to the
level of an entire event log.

4.3 Statistical Hypothesis Tests to Detect Drifts

One can consider an event log L as a time series of traces (traces ordered on
their arrival time). Fig. 2 depicts such a perspective on an event log along with
change points. An event log can be split into sub-logs of s traces each. We can
consider either overlapping or non-overlapping windows when creating such sub-
logs. Fig. 2 depicts the scenario where two subsequent sub-logs do not overlap.
In this case, we have k = �n

s � sub-logs for n traces. One can estimate the
feature values for each trace separately (local features) or cumulatively over a
subset of traces (local and global features) and generate a dataset defined by a
matrix/vector of feature values over a sub-log/trace. For example, the relation
count feature type will generate a dataset D of size k × 3|Σ| when either the
follows/precedes relation counts of all activities are considered over L. Instead,
if the follows/precedes relation count of an individual activity is considered in
isolation, it generates a dataset of size k × 3 for L. The J-measure generates a
scalar value for each trace (sub-log) when an activity pair is considered thereby
generating a vector of size n× 1 or k × 1 (depending on whether it is measured
over traces or sub-logs) over L. If all activity pairs are considered, then a dataset
of size n× |Σ|2 or k × |Σ|2 is generated.

t1 t2 . . . ts ts+1 . . . t2s tn

L1 L2
. Lk

change

points
s

Fig. 2. An event log and change points

We believe that there should be a characteristic difference in the manifesta-
tion of feature values in the traces (sub-logs) before and after the change points
with the difference being more pronounced at the boundaries. The goal of con-
cept drift in process mining is then to detect the change points and the nature
of changes given an event log. We propose the use of statistical hypothesis test-
ing to discover these change points. Hypothesis testing is a procedure in which

398 R.P.J.C. Bose et al.

a hypothesis is evaluated on a sample data. One can distinguish between two
classes of hypothesis tests (i) tests on a single population (single-sample tests)
and (ii) tests on two populations (two-sample tests). Another classification of
hypothesis tests is concerned with the dimensionality of each data element in
a sample. Tests dealing with scalar data elements are called as univariate tests
while those dealing with vector data elements are called as multi-variate tests.
For our problem, two-sample univariate and multi-variate tests are appropriate.
The dataset D of feature values can be considered as a time series as depicted
in Fig. 3. Each di ∈ D corresponds to a feature value for a trace (or sub-log)
and can be a scalar or a vector. The basic idea is to consider a series of suc-
cessive populations of values (of size w) and investigate if there is a significant
difference between the two populations. The premise is that differences are ex-
pected to be perceived at change points provided appropriate characteristics
of the change are captured as features. A moving window of size w is used
to generate the populations. Fig. 3 depicts a scenario where two populations
P1 = 〈d1,d2, . . . ,dw〉 and P2 = 〈dw+1,dw+2, . . . ,d2w〉 of size w are considered.
In the next iteration, the populations correspond to P1 = 〈d2,d3, . . . ,dw+1〉
and P2 = 〈dw+2,dw+3, . . . ,d2w+1〉. Given a dataset of m values, the number of
population pairs will be m− 2w + 1.

d1 d2 dw dw+1 dw+2 . . . d2w d2w+1 dm

Iteration1 P1 P2

Iteration2

Fig. 3. Dataset of feature values considered as a time series for hypothesis tests. P1

and P2 are two populations of size w

We will use the univariate two sample Kolmogorov-Smirnov test (KS test) and
Mann-Whitney U test (MW test) as hypothesis tests for univariate data, and
the two sample Hotelling T 2 test for multivariate data. The KS test evaluates
the hypothesis “Do the two independent samples (populations P1 and P2) rep-
resent two different cumulative frequency distributions?” while the MW test
evaluates the hypothesis “Do the two independent samples have different dis-
tributions with respect to the rank-ordering of the values?”. The multi-variate
Hotelling T 2 test is a generalization of the t-test and evaluates the hypothesis
“Do the two samples have the same mean pattern?”. All of these tests yield a
significance probability assessing the validity of the hypothesis on the samples.
We refer the reader to [13] for a classic introduction to various hypothesis tests.

5 Case Study and Discussion

We illustrate the concepts presented in this paper with an example process. The
process corresponds to the handling of health insurance claims in a travel agency.
Upon registration of a claim, a general questionnaire is sent to the claimant. In
parallel, a registered claim is classified into a high or low claim. For low claims,

Handling Concept Drift in Process Mining 399

two independent tasks, viz., check insurance and check medical history need
to be executed. For high claims, three tasks need to be executed viz., check
insurance, check medical history, and contact doctor/hospital for verification. If
one of the checks shows that the claim is not valid, then the claim is rejected;
otherwise, it is accepted. An insurance grant and acceptance decision letter is
prepared in cases where a claim is accepted while a rejection decision letter is
created for rejected claims. In both cases, a notification is sent to the claimant.
Three modes of notification are supported viz., by email, by telephone (fax) and
by postal mail. The case should be archived upon notifying the claimant. This
can be done with or without the response for the questionnaire. However, the
decision of ignoring the questionnaire can only be made after a notification is
sent. The case is closed upon completion of archiving task.

Fig. 4 depicts five variants of this process represented in YAWL [14] notation.
The dashed rectangles indicate regions where a change has been done in the pro-
cess model with respect to its previous variant. The changes can have various
reasons. For example, in Fig. 4(a), the different checks for high insurance claims
are modeled using a parallel construct. However, a claim could be rejected if
any one of the checks fail. In such cases, the time and resources spent on other
checks go waste. To optimize this process, the agency can decide to enforce an
order on these checks and proceed on checks only if the previous check results
are positive. In other words, the process is modified with a knockout strategy
adopted for high insurance checks as depicted in Fig. 4(b). As another exam-
ple, the OR-construct pertaining to the sending of notification to claimants in
Fig. 4(c) has been modified to an exclusive-or (XOR) construct in Fig. 4(d).
The organization could have taken a decision to reduce their workforce as a
cost-cutting measure. Due to availability of limited resources, they would like to
minimize the redundancy of sending the notification through different modes of
communication and restrict it to only one of the modes.

Let us denote these process variants as M1, M2, M3, M4 and M5. We have
modeled each of these process variants in CPN tools [15] and simulated 1200
traces for each model. We created an event log L of 6000 traces by juxtaposing
each set of the 1200 traces. The event log contains 15 activities or event classes
(i.e., |Σ| = 15) and 58953 events. Given this event log L, our first objective is to
detect the four change points pertaining to these five process variants as depicted
in Fig. 5.

The ideas presented in this paper have been implemented as the concept drift
plugin in ProM. We have considered global features (at sub-log level) and local
features (both at trace and sub-log level) for our analysis. To facilitate this,
we have split the log into 120 sub-logs using a split size of 50 traces. We have
computed the relation type count (RC) of all 15 activities thereby generating a
multi-variate vector of 45 features for each sub-log. We have applied the Hotelling
T 2 hypothesis test on this multi-variate dataset using a moving window of size,
w = 8. For this hypothesis test, we have randomly chosen 6 of the 45 features
with a 10-fold cross validation. Fig. 6a depicts the average significance probability
of the Hotelling T 2 test for the 10 folds on this feature set. The troughs in the
plot signify that there is a change in the distribution of the feature values in
the log. In other words, they indicate that there is drift (change) in the concept,
which here corresponds to the process. It is interesting to see that the troughs

400 R.P.J.C. Bose et al.

a. Model, M1

b. Model, M2

c. Model, M3

d. Model, M4

e. Model, M5

Fig. 4. Five variants of an insurance claim process of a travel agency represented in
YAWL notation. The dashed rectangles indicate the regions of change from its previous
model.

Handling Concept Drift in Process Mining 401

1 1200 2400 3600 4800 6000

M1 M2 M3 M4 M5

change
points

Fig. 5. Event log with traces from each of the five models juxtaposed. Also indicated
are change points between models.

are observed around indices 24, 72 and 96 which are indeed the points of change
(remember that we have split the log into 120 sub-logs with the change points at
indices 24, 48, 72 and 96). The change at index 48 corresponding to the transition
from M2 to M3 could not be uncovered using this feature set due to the fact
that the relation type counts would be alike for logs generated from these two
process variants.

a b

Fig. 6. (a) Significance probability of Hotelling T 2 test on relation counts (b) Average
significance probability (over all activity pairs) of KS -test on J-measure. The event
log is split into sub-logs of 50 traces each. X-axis represents the sub-log index. Y -axis
represents the significance probability of the test. Troughs signify change points.

We have computed the J-measure for each sub-log and for every pair of ac-
tivities, a, b in Σ (aFb, b follows a within a window of size 10). The univariate
Kolmogorov-Smirnov test using a window size of w = 10 is applied on the J-
measure of each activity pair. Fig. 6b depicts the average significance probabil-
ity of KS -test on all activity pairs. It could be seen that significant troughs are
formed at indices 24, 48, 72 and 96 which correspond to the actual change points.
Unlike the relation type count feature, the J-measure feature is able to capture
all the four changes in the models. This can be attributed to the fact that the
J-measure uses the probability of occurrence of activities and their relations. In
M2, there could be cases where all the modes of notification are skipped (XOR
construct). However in M3 at least one of the modes need to be executed (OR
construct). This results in a difference in the distribution of activity probabilities
and their relationship probabilities which is elegantly captured in the J-measure.

We have considered the J-measure for each trace separately instead of at
the sub-log level. Each activity pair generates a vector of dimension 6000 cor-
responding to the J-measure of that activity pair in each trace. The univariate

402 R.P.J.C. Bose et al.

Kolmogorov-Smirnov test using a window size of w = 400 is applied to the
vector corresponding to each activity pair in Σ × Σ. Fig. 7 depicts the aver-
age significance probability of KS -test on all activity pairs. It could be seen
that significant troughs are formed at indices 1200, 2400, 3600 and 4800. These
are indeed the points where the models have been changed. Thus the features
and approach proposed in this paper are shown to have significant promise in
accurately identifying the points of change.

Fig. 7. Average significance probability (over all activity pairs) of KS -test on J-
measure estimated for each trace. X-axis represents the trace index. Y -axis represents
the significance probability of the test. Troughs signify change points.

The second objective in handling concept drift is that of change localization.
In order to localize the changes (identify the regions of change), we need to con-
sider each activity pair individually or a subset of activity pairs. For example,
the change from M1 to M2 is localized in the region pertaining to high insur-
ance claim checks. We expect characteristic changes in features pertaining to
these activities and other activities related to these activities. For example, in
M1, the activities ‘High Medical History Check’ and ‘Contact Hospital’ always
follow the activity ‘Register’ whenever a claim is classified as high. In contrast,
in M2, these activities need not always follow ‘Register’ due to the fact that
both these activities are skipped if ‘High Insurance Check’ fails while ‘Contact
Hospital’ is skipped if ‘High Medical History Check’ fails. During simulation, we
have set the probability of success of a check to 90%. We have considered the
window count (WC) feature for the activity relation ‘Contact Hospital’ follows
‘Register’ on a window size of 10 in each trace separately. Fig. 8a depicts the
significance probability of the univariate KS -test using a window size of w = 200
on this feature. It could be seen that one dominant trough is formed at index
1200 indicating that there exists a change in the region between ‘Register’ and
‘Contact Hospital’. No subsequent changes with respect to this activity pair is
noticed which is indeed the case in the models.

As another example, we have considered the activity ‘Prepare Notification’
along with all the three ‘Send Notification’ activities. There exists a change
pertaining to these activities between models M2 and M3, M3 and M4, and
M4 and M5. More specifically, we have considered the window count feature on
the activity relations ‘Send Notification By Phone’ follows ‘Prepare Notification’,
‘Send Notification By email’ follows ‘Prepare Notification’ and ‘Send Notification

Handling Concept Drift in Process Mining 403

a b

Fig. 8. (a) Significance probability of KS -test on WC feature estimated for the relation,
‘Contact Hospital’ follows ‘Register’. Trough indicate change point w.r.t this feature.
(b) Average significance probability (over activity pairs) of KS -test on WC feature
estimated for the various modes of ‘Send Notification’ follows ‘Prepare Notification’
relation. Troughs indicate change point w.r.t these activities. X-axis represents the
trace index. Y -axis represents the significance probability of the test.

By Post’ follows ‘Prepare Notification’. Fig. 8b depicts the average significance
probability of the univariate KS -tests using a window size of w = 200 on the WC
feature of these three activity pairs. We see three dominant troughs at around
indices 2400, 3600 and 4800 signifying the changes in the models. Certain false
alarms (minor troughs) can also be noticed in this plot. One means of alleviating
this is to consider only those alarms with a significance probability less than a
threshold, δ. In this fashion, by considering activities (and/or activity pairs) of
interest, one can localize the regions of change. Furthermore, one can also get
answers to diagnostic questions such as “Is there a change with respect to activity
a in the process at time period t”?

6 Outlook

Dealing with concept drifts raises a number of scientific and practical challenges.
In this section, we highlight some of these challenges.

– Change-Pattern Specific Features: In this paper, we presented very generic
features (based on follows/precedes relation). These features are neither com-
plete nor sufficient to detect all classes of changes. An important direction of
research would be to define features catering to different classes of changes
and investigate their effectiveness. A taxonomy/classification of change pat-
terns and the appropriate features for detecting changes with respect to those
patterns is needed. For example, if we would like to detect changes pertain-
ing to a loop construct (insertion/removal/modification of loops as changes
in process variants), tandem arrays [16] would be an appropriate feature to
consider.

– Feature Selection: The feature sets presented in this paper result in a large
number of features. For example, the activity relation count feature type
generates 3|Σ| features whereas the window count and J-measure generate
|Σ|2 features (corresponding to all activity pairs). On the one hand, such high

404 R.P.J.C. Bose et al.

dimensionality makes the computational complexity intractable for most real
life logs. On the other hand, changes being typically concentrated in a small
region of a process makes it unnecessary to consider all features. There is a
need for dimensionality reduction techniques that can efficiently select the
most appropriate features.

– Holistic Approaches: In this paper, we discussed ideas on change detection
and localization in the context of sudden drifts and owing to the control-
flow perspective of a process. However, as mentioned in Section 3, data
and resource perspectives are also equally important. So are the contexts of
gradual, recurring and incremental drifts. Features and techniques that can
enable the detection of changes in these other perspectives need to be discov-
ered. Furthermore, there could be instances where more than one perspective
(e.g., both control and resource) change simultaneously. Hybrid approaches
considering all aspects of change holistically need to be developed.

– Techniques for Drift Detection: In this paper, we explored just the Hotelling
T 2 test to deal with multi-variate data. In addition, we have dealt with
multiple features by considering univariate hypothesis tests on each feature
separately and averaging the test results over all features. Further investiga-
tion needs to be done on hypothesis tests devised naturally for multi-variate
data. Also, determining an appropriate size of the window for hypothesis
tests is nontrivial; this mandates further study on understanding the influ-
ence of window size on the results. Alternatives to hypothesis testing that
can uncover drifts and diagnose the changes are a welcome addition to the
repertoire of techniques for handing concept drifts in process mining.

– Sample Complexity: Sample complexity refers to the number of traces (size
of the event log) needed to detect, localize, and characterize changes within
acceptable error bounds. This should be sensitive to the nature of changes,
their influence and manifestation in traces, and the feature space and al-
gorithms used for detecting drifts. On a broader note, the topic of sample
complexity is relevant to all facets of process mining and is hardly addressed.
For example, it would be interesting to know the lower bound on the number
of traces required to discover a process model with a desired fitness.

7 Conclusions

This paper introduced the topic of concept drift in process mining, i.e., analyzing
process changes based on event logs. We proposed feature sets and techniques
to effectively detect the changes in event logs and identify the regions of change
in a process. The approach has been implemented in ProM and evaluated using
synthetic data. This is a first step in the direction of dealing with changes in
any process monitoring and analysis efforts. We considered changes only with
respect to the control-flow perspective manifested as sudden drifts. However,
there is much to be done on various other perspectives mentioned in this paper.
Moreover, to further validate the approach we plan to conduct extensive case
studies based on real-life event logs.

Acknowledgments. R.P.J.C. Bose and W.M.P. van der Aalst are grateful to
Philips Healthcare for funding the research in process mining.

Handling Concept Drift in Process Mining 405

References

1. Žliobaitė, I.: Learning under Concept Drift: an Overview. Technical report, Faculty
of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania (2009)

2. Pechenizkiy, M., Bakker, J., Žliobaitė, I., Ivannikov, A., Kärkkäinen, T.: Online
Mass Flow Prediction in CFB Boilers with Explicit Detection of Sudden Concept
Drift. SIGKDD Explorations 11(2), 109–116 (2009)

3. Tsymbal, A., Pechenizkiy, M., Cunningham, P., Puuronen, S.: Handling Local
Concept Drift with Dynamic Integration of Classifiers: Domain of Antibiotic Re-
sistance in Nosocomial Infections. In: CBMS, pp. 679–684 (2006)

4. Weber, B., Rinderle, S., Reichert, M.: Change Patterns and Change Support Fea-
tures in Process-Aware Information Systems. In: Krogstie, J., Opdahl, A.L., Sin-
dre, G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 574–588. Springer,
Heidelberg (2007)

5. Mulyar, N.: Patterns for Process-Aware Information Systems: An Approach Based
on Colored Petri Nets. PhD thesis, University of Technology, Eindhoven (2009)

6. Schonenberg, H., Mans, R., Russell, N., Mulyar, N., van der Aalst, W.M.P.: Process
Flexibility: A Survey of Contemporary Approaches. In: Dietz, J., Albani, A., Barjis,
J. (eds.) Advances in Enterprise Engineering I. LNBIP, vol. 10, pp. 16–30. Springer,
Berlin (2008)

7. Regev, G., Soffer, P., Schmidt, R.: Taxonomy of Flexibility in Business Processes.
In: Proceedings of the 7th Workshop on Business Process Modelling, Development
and Support, BPMDS, Citeseer (2006)

8. Ploesser, K., Recker, J.C., Rosemann, M.: Towards a Classification and Lifecycle
of Business Process Change. In: Proceedings of BPMDS, vol. 8 (2008)

9. Günther, C.W., Rinderle-Ma, S., Reichert, M., van der Aalst, W.M.P.: Using Pro-
cess Mining to Learn from Process Changes in Evolutionary Systems. International
Journal of Business Process Integration and Management 3(1), 61–78 (2008)

10. Widmer, G., Kubat, M.: Learning in the Presence of Concept Drift and Hidden
Contexts. Machine learning 23(1), 69–101 (1996)

11. Smyth, P., Goodman, R.M.: Rule Induction Using Information Theory. In: Knowl-
edge Discovery in Databases, pp. 159–176. AAAI Press, Menlo Park (1991)

12. Blachman, N.M.: The Amount of Information that y Gives About X. IEEE Trans-
actions on Information Theory IT-14(1), 27–31 (1968)

13. Sheskin, D.: Handbook of Parametric and Nonparametric Statistical Procedures.
Chapman & Hall/CRC (2004)

14. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow
Language. Information Systems 30(4), 245–275 (2005)

15. Vinter Ratzer, A., Wells, L., Lassen, H.M., Laursen, M., Qvortrup, J.F., Stissing,
M.S., Westergaard, M., Christensen, S., Jensen, K.: CPN Tools for Editing, Sim-
ulating, and Analysing Coloured Petri Nets. In: van der Aalst, W.M.P., Best, E.
(eds.) ICATPN 2003. LNCS, vol. 2679, pp. 450–462. Springer, Heidelberg (2003)

16. Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Abstractions in Process
Mining: A Taxonomy of Patterns. In: Dayal, U., Eder, J., Koehler, J., Reijers,
H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 159–175. Springer, Heidelberg (2009)

An Iterative Approach for Business Process Template
Synthesis from Compliance Rules

Ahmed Awad1, Rajeev Goré2, James Thomson2, and Matthias Weidlich1

1 Hasso Plattner Institute, University of Potsdam, Germany
{ahmed.awad,matthias.weidlich}@hpi.uni-potsdam.de

2 School of Computer Science, The Australian National University, Australia
{Rajeev.Gore,jimmy.thomson}@anu.edu.au

Abstract. Companies have to adhere to compliance requirements. Typically, both,
business experts and compliance experts, are involved in compliance analysis of
business operations. Hence, these experts need a common understanding of the
business processes for effective compliance management. In this paper, we argue
that process templates generated out of compliance requirements can be used as
a basis for negotiation among business and compliance experts. We introduce
a semi automated approach to synthesize process templates out of compliance
requirements expressed in Linear Temporal Logic (LTL). As part of that, we
show how general constraints related to business process execution are incorpo-
rated. Building upon existing work on process mining algorithms, our approach to
synthesize process templates considers not only control-flow, but also data-flow
dependencies. Finally, we elaborate on the application of the derived process tem-
plates and present an implementation of our approach.

Keywords: Process synthesis, Analysis of business process compliance speci-
fication, Process mining.

1 Introduction

Recently, there has been a growing interest in compliance checking of business op-
erations. Financial scandals in large companies led to legislative initiatives, such as
SOX [1]. The purpose of these initiatives is to enforce controls on the business opera-
tions. Such controls relate to the execution order of business activities, the absence of
activity execution in a dedicated data context, or restrictions on role resolution to realize
separation of duty.

Driven by these trends, numerous approaches have been presented to address com-
pliance management of business processes. In general, we can distinguish two types of
approaches. First, compliance rules can guide the design of a business process [12,13].
These approaches ensure compliance by design by identifying compliance violations
in the course of process model creation. Second, existing process models are verified
against compliance rules [10,6]. Given compliance requirements and a process model
as input, these approaches identify violations on the process model level.

Evidently, addressing compliance during the design of business operations has many
advantages. Non-compliant processing is prevented at an early stage of process im-
plementation and costly post-implementation compliance verification along with root

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 406–421, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

An Iterative Approach for Business Process Template Synthesis 407

cause analysis of non-compliance is not needed. In most cases, process models that are
synthesized from compliance rules cannot be directly used for implementing a business
process. Instead, they should be seen as a blueprint that is used as a basis for negotiation
between business and compliance experts. Hence, we refer to these process models as
process templates in order to emphasize that further refinements are needed to actually
implement the business process. While this approach has been advocated by other au-
thors, e.g., [12,11,25], existing approaches are limited when it comes to data-dependent
compliance requirements.

In this paper, we present an approach to the synthesis of compliant process templates
that avoids some of the pitfalls of existing approaches. We start with a set of compli-
ance rules specified in LTL. Hence, we do not require the definition of explicit points in
time as in [12,11], but focus on relative execution order dependencies. Further, we also
consider data flow dependencies between activity executions, which is neglected in [25].
These rules are then enriched with general constraints related to business process execu-
tion to avoid phenomena such as vacuous satisfiability. Subsequently, a process template
is generated automatically if the compliance requirements are satisfiable. We also illus-
trate how generated templates are applied during process design and how the template
generation may identify inconsistencies and open questions. Hence, the template guides
further refinements of the process model and the compliance requirements. To evaluate
the applicability of our approach, we present a prototypical implementation. Our contri-
bution is a complete approach to process design grounded in compliance rules.

Against this background, the remainder of this paper is structured as follows. The
next section introduces preliminaries for our work, such as the applied formalism. Sec-
tion 3 introduces our approach of synthesizing process templates from a given set of
compliance rules. We also elaborate on how to use these templates as a basis for pro-
cess design. A prototypical implementation of our approach is presented in Section 4.
Finally, we discuss related work in Section 5 and conclude in Section 6.

2 Preliminaries

This section gives preliminaries for our work. Section 2.1 clarifies our notion of exe-
cution semantics. Section 2.2 presents LTL as the logic used in this paper. Section 2.3
summarizes existing work on generating a behavioral model from a given LTL formula.

2.1 Process Runs as Linear Sequences

In this paper, we rely on trace semantics for process models. An execution sequence σ
of a process model is referred to as a process run or trace – a finite linear sequence of
states σ : s0, s1, . . . , sn with a start state s0 and an end state sn. Evidently, a process
model as well as a set of compliance requirements allow for many conforming traces.
Each state of a trace is labeled with propositions that refer to actions and results. Actions
are the driving force of a trace and refer to the execution of business activities. This, in
turn, may effect or be constrained by results, which relate to data values of the business
process. As an example, think of an activity ‘risk analysis’ (ra) and a data object ‘risk’.
The action that represents the execution of this activity may have the result of setting
the state of the data object to ‘high’ or ‘low’. The execution of another activity, i.e.,

408 A. Awad et al.

another action, may be allowed to happen solely if a certain result, e.g., the object
has been set to ‘high’, occurred. Both, actions and results, are represented by Boolean
propositions at each state. For instance, proposition ra being ‘true’ at a state si means
that the action, i.e., execution of activity ‘risk analysis’, has happened at state si. In
contrast, proposition ra being ‘false’ at state si means that the action did not happen at
state si. Given a trace σ : s0, s1, . . . , sn, we write p ∈ si to indicate that proposition p
is true in state si, for 0 ≤ i ≤ n and p ∈ σ if there is a state si in σ where p ∈ si, for
some 0 ≤ i ≤ n.

We represent an execution sequence as a linear sequence of states where states are
labelled with both actions and results, and (unlabelled) edges between states represent
the temporal ordering in the sequence. Hence, we rely on Linear Temporal Logic (LTL)
in order to formulate statements about traces.

2.2 Linear Temporal Logic

Linear Temporal Logic (LTL) [20] is a logic specifically designed for expressing and
reasoning about properties of linear sequences of states. The formulae of LTL are built
from atomic propositions using the connectives of ∨ (or), ∧ (and), ¬ (not) and ⇒ (im-
plication), and the following temporal connectives: X (next), F (eventually), G
(always), U (until) and B (before). The latter are interpreted as follows:

X ϕ: in the neXt state, ϕ holds
F ϕ: there is some state either now or in the Future where ϕ holds
G ϕ: in every state Globally from now on, ϕ holds
ϕ U ψ: there is some state, either now or in the future, where ψ holds, and ϕ holds in

every state from now Until that state
ϕ B ψ: Before ψ holds, if it ever does, ϕ must hold.

We apply LTL to encode compliance requirements. Hence, we obtain a set of formulae
Γ expressing the constraints to which compliant traces have to conform.

2.3 Finding All LTL-Models of a Given LTL Formula

Given a collection of compliance requirements expressed as a set Γ of LTL-formulae,
we seek to find a behavioral model that captures all formula-models, i.e., traces in our
setting, which satisfy Γ . That is, such a model describes all linear sequences of states
s0, s1, . . . , sn such that Γ is true at s0. Since Γ may contain eventualities, such as X ϕ
or ψ1 U ψ2, ensuring that Γ is true at s0 may require us to ensure that ϕ is true at s1 or
ψ2 is true eventually at some state si with 0 ≤ i ≤ n. In contrast to model checking [7]
we are not given a single trace, but construct all traces satisfying the given constraints.

The first step is to determine whether the constraints are satisfiable. If not, the spec-
ification is erroneous since no trace can conform to the given constraints. The second
step is the creation of the behavioral model that describes all traces.

For both steps, we use a tableaux-based method introduced in [24,23]. In essence,
this approach works as follows. We start by creating a root node containing Γ and
proceed in two phases. First, a finite (cyclic) graph of tableau nodes is created by ap-
plying tableau-expansion rules that capture the semantics of LTL and by pruning nodes
containing local contradictions [24]. Second, once the graph is complete a reachability

An Iterative Approach for Business Process Template Synthesis 409

algorithm is used to determine which nodes do not satisfy their eventualities. These
nodes are removed and the reachability algorithm is reapplied until no nodes may be
removed. The set of formulae Γ is satisfiable, if and only if the root node has not been
removed [24]. Further, the graph created by the tableau algorithm, referred to as the
pseudomodel, describes all possible formula-models, i.e., possible traces [24]. We use
this pseudomodel to extract possible traces during our synthesis approach.

3 Synthesis of Process Templates from Compliance Rules

In this section, we describe our approach to the synthesis of process models from a set
of compliance rules expressed in temporal logic. First, Section 3.1 gives an overview
of the approach and introduces an example set of compliance rules used to illustrate all
subsequent steps. Section 3.2 describes the LTL encoding of the compliance rules and
additional domain knowledge. Section 3.3 elaborates on the extraction of traces from a
behavioral model, while Section 3.4 focuses on consistency of these traces. Synthesis
of a process template from these traces is discussed in Section 3.5. Finally, we elaborate
on the evaluation of synthesized templates in Section 3.6.

3.1 Overview

The process model in Fig. 1 visualizes the steps to synthesize a process template out
of a set of compliance rules. First, a set of compliance rules is collected. In order to
identify whether these requirements are consistent and thus a process template can be
synthesized, related domain-specific knowledge is identified. In Section 3.2 we give
details on the LTL encoding of both compliance rules and domain knowledge.

For the conjunction of these LTL formulae, we verify satisfiability as it has been
summarized in Section 2.3. If the set is not satisfiable then no trace can be constructed
to satisfy the given LTL formulae so the inconsistency is reported to the user. If the
set is satisfiable then the satisfiability checker automatically returns the pseudomodel
which is a behavioral model of all traces that obey the given constraints.

As a next step, finite traces are extracted from the pseudomodel by following all
choice points and stopping when a trace becomes cyclic. We focus on this step in Sec-
tion 3.3. Having a finite set of traces that satisfy the compliance rules, we check it for

Collect related
compliance
rules in LTL

Add extra
domain

knowledge in
LTL

Check LTL
satisfiability;

generate
pseudomodel

Is there a
pseudomodel?

Rules are
inconsistent

No

Extract traces Generate
process model

Yes

No

Analyze
generated

model

Are there any
descrepencies?

Yes

Refine
compliance

rules or domain
knowledge

Analyze traces

Is it possible to
generate a
process model?

Yes

No

Fig. 1. Process Synthesis Approach

410 A. Awad et al.

consistency. This check guarantees that a template can be generated. Inconsistent traces
hint at issues in the specification, so that a new iteration of the synthesis may be started
with refined compliance rules or adapted domain knowledge. We focus on the analysis
of traces in Section 3.4. If the traces are consistent, we apply a process synthesis algo-
rithm to extract a process template. Details on this step are given in Section 3.5. The
synthesized template is then analyzed to identify discrepancies that stem, e.g., from un-
derspecification. Depending on the result of this analysis, again, a new iteration of the
synthesis may be started. We discuss the evaluation of process templates in Section 3.6.

Example. We illustrate our approach with an example from the financial domain. Anti
money laundering guidelines [8] address financial institutes, e.g., banks, and define a
set of checks to prevent money transfers with the purpose of financing criminal actions.
We focus on the following guidelines for opening new bank accounts:

R1: A risk assessment has to be conducted for each ‘open account’ request.
R2: A due diligence evaluation has to be conducted for each ‘open account’ request.
R3: Before opening an account the risk associated with that account must be low. Oth-

erwise, the account is not opened.
R4: If due diligence evaluation fails, the client has to be added to the bank’s black list.

3.2 LTL Encoding

Once the compliance rules have been collected, a behavioral model that represents all
traces conforming to these rules is created. In order to arrive at such a model, we need to
collect extra domain-specific rules. Much of the domain-specific rules can be generated
automatically from a higher level description. Such a description needs to be defined by
a human expert in the first place and comprises the following information.

Actions and Goals. The set of all actions is denoted by A. The set of goal actions
G ⊂ A comprises activities that indicate the completion of a trace. Moreover, we
capture contradicting actions that are not allowed to occur together in one trace in
a relation CA : A× 2A.

Results and Initial Values. The set of all results is denoted by R. The initial values
of data objects are defined by a set IV ⊂ R. Further, we define the set of negated
results as R = {¬r|r ∈ R}. Similar to contradicting actions, we capture contra-
dicting results in a relation CR : R × 2R.

Relation between Actions and Results. The mapping from actions to sets of results is
given as a relation AM : A×2R∪R. Mutually exclusive sets of results are captured
in a relation RE = {S : ∃a ∈ A.(a, S) ∈ AM ∧ S 	= ∅}.

Based on this information and two additional actions start and end that represent
the initial and final states of a trace (independent of any goal states), we derive LTL
rules to represent the domain knowledge according to Table 1. Common process de-
scription languages, e.g., BPMN or EPCs, assume interleaving semantics, which is
enforced by formula interleaving and progress. The information on exclusiveness
constraints and on contradicting actions and results yields the formulae mutex and
contra. The formula causality guarantees correct implementation of dependencies be-
tween actions and results. Finally, the formulae once, final , goals, and initial ensure

An Iterative Approach for Business Process Template Synthesis 411

Table 1. The formulae making up the domain knowledge

Constraint Description Formalization

To realize interleaving semantics, the formula
interleave ensures that at most one action can be
true, i.e., one activity can be executed, at any state.

interleave(a) = a ⇒ (
∧

b∈A\{a} ¬b))

interleave =
∧

a∈A interleave(a)

The formula progress guarantees that at least one
action occurs at each state.

progress =
∨

a∈A a

The mutual exclusion constraints given in RE are
enforced by the formula mutex, i.e., exclusive
results cannot be true at the same time.

mutex(S) =
∧

a,b∈S, a �=b ¬(a ∧ b)

mutex =
∧

S∈RE mutex(S)

Knowledge on contradicting actions or results is
taken into account by the formulae, con and
conRes.

con(a) = a ⇒ G
∧

b∈CA(a) ¬b

conRes(r) = a ⇒ G
∧

s∈CR(r) ¬s

contra =
∧

a∈A∪R con(a) ∧ conRes(a)

To implement the relation between actions and
results, formula cau1 states that for every entry
(a,S) ∈ AM the action a must cause at least one
of the results in S. Formula cau2 states that for
every result r, that result can only be changed by
one of the actions which can cause it.

cau1(a, S) = a ⇒ ∨
r∈S r

cau2(r) =
r ⇒ (X

∨
(a,S)∈AM, {r,¬r}∩S �=∅ a) B ¬r

causality =∧
(a,S)∈AM cau1(a, S) ∧ ∧

r∈R∪R cau2(r)

The formula once enforces that all actions other
than end occur at most once, in order to avoid
infinite behavior. The formula final enforces that
end persists forever to represent the process end.

once(a) = a ⇒ X G ¬a
once =

∧
a∈A\{end} once(a)

final = end ⇒ G end

The formula goals is used to require that
eventually the outcome of the process is
determined, while inital ensures correct initial
values for all objects.

goals =
∨

g∈G g

initial = start ⇒ ∧
v∈IV v

correct initialization and successful termination of any trace. The combination of all
these formulae yields the formula domain, which represents the domain knowledge.

domain =start ∧G initial ∧ F goals ∧ F end ∧G interleave ∧G progress

∧G mutex ∧G causality ∧G once ∧G contra ∧G final

Example. For our example, an expert first identifies the following actions and results.

Actions = {ra, edd, og, od, bl} Results = {ri, rh, rl, ei, ef , ep}
ra: conduct a risk assessment ri: risk assessment is initial

edd: evaluate due-diligence rh: risk was assessed as high

og: grant a request to open an account rl: risk was assessed as low

od: deny a request to open an account ei: due-diligence evaluation is initial

bl: blacklist a client. ef : due-diligence evaluation failed

ep: due-diligence evaluation passed.

412 A. Awad et al.

Note that the results are all descriptive statements, while the actions refer to activities.
Moreover, we introduce positive representations for the states ‘high’ and ‘low’ of the
risk object, even though both states are opposed. That is due to the three possible states
of the risk object: high, low, or initial. The same holds true for the the due-diligence
object.

Based on these actions and results, the compliance rules are encoded in LTL. As
a process to open a bank account is considered, the process is assumed to start by
receiving such a request. Therefore, rules 1 and 2 are interpreted as “A risk assessment
has to be conducted” and “A due diligence evaluation has to be conducted”, respectively.
The third rule is interpreted to mean that the risk associated with opening an account
must be low at the time the request is granted, rather than at some point in the past.
Similarly is the case when denying the open request, the risk has to be high.

R1: A risk assessment has to be conducted.
F ra “Eventually ra must hold”

R2: A due diligence evaluation has to be conducted.
F edd “Eventually edd must hold”

R3: The risk associated with opening an account must be low when the request is
granted.
G (og ⇒ rl) ∧G (od ⇒ rh) “Always, og only if rl, and always, od only if rh”

R4: If due diligence evaluation fails, the client has to be added to the bank’s black list.
G (edd ∧ ef ⇒ F bl) “Always, edd and ef imply eventually bl”

As a next step, the domain knowledge is defined in more detail. For instance, the action
mapping defines ra �→ {rh, rl} and ra �→ {¬ri}. The former says that action ra
causes the risk object to take a concrete value of ‘high’ or ‘low’. The latter means that
ra causes the risk to stop being ‘initial’ by forcing ri to not hold. Excluding results
are defined, e.g., {ri, rl, rh} states that at most one of the propositions ri, rh, rl can
hold at a time. The goal of the process is defined as {og, od} and the set of initial
values {ri, ei} signifies that initially, both risk and due-diligence objects, are put to
an initial, unknown, value. There are also contradicting actions, {og �→ {od}, od �→
{og}}, ensuring that we cannot grant and deny a request within the same trace. Based
on Table 1, this specification is converted into LTL. For example, this yields the formula
progress = ra∨ edd∨ og∨ od∨ bl∨ start∨ end. The final set of LTL formulae is the
union of the domain formula with all four formulae representing the compliance rules.

3.3 Extracting Traces

Given a set of LTL formulae, we apply the technique summarized in Section 2.3 to
determine whether the constraints are satisfiable. If so, we obtain a pseudomodel that
describes all traces that conform to the set of formulae. To create a process template,
these traces are extracted. Any sequence σ = s0, . . . , sn of states, starting at the root
node of the pseudomodel can be extended into a trace. As we are modeling finite se-
quences with an end state, we consider a trace to be complete if end ∈ sn. Because of
the once constraint introduced in the previous section, there will be no loops in the pseu-
domodel between the start and the end. Hence, the finite set of paths in the pseudomodel
between the root state and a state labeled with end is the set of correct traces.

An Iterative Approach for Business Process Template Synthesis 413

Table 2. Excerpt of the extracted traces

σ1 : start ∧ ei ∧ ri, edd ∧ ep ∧ ri, ra ∧ ep ∧ rh, bl ∧ ep ∧ rh, od ∧ ep ∧ rh, end ∧ ep ∧ rh
σ2 : start ∧ ei ∧ ri, edd ∧ ep ∧ ri, ra ∧ ep ∧ rh, od ∧ ep ∧ rh, end ∧ ep ∧ rh
· · ·
σ37 : start ∧ ei ∧ ri, bl ∧ ei ∧ ri, edd ∧ ep ∧ ri, ra ∧ ep ∧ rh, od ∧ ep ∧ rh, end ∧ ep ∧ rh
· · ·
σ42 : start ∧ ei ∧ ri, bl ∧ ei ∧ ri, ra ∧ rl ∧ ei, og ∧ rl ∧ ei, edd ∧ ep ∧ rl, end ∧ ep ∧ rl

Note that it is possible to extract traces that take repetition of activities into account
by omitting the once constraint in the domain knowledge. Still, for our purpose, this
does not seem to be appropriate. Compliance rules rarely forbid the repetition of activity
execution, so that modeling all potential loops blurs up the structure of a generated
process template. As this hinders discussions between business and compliance experts,
we neglect potential repetition for our synthesis approach.
Example. Some of the traces extracted from the pseudomodel of our running example
are illustrated in Table 2. Here, the states of a trace are characterized by the conjunction
of propositions that hold true in the respective state.

3.4 Analysis of Extracted Traces

As stated earlier, the goal of synthesizing a process template out of compliance rules
is to support experts in getting a better understanding of the compliance aspects and to
discover missing or under-specified requirements. However, it is possible to detect such
under-specification by analysis of extracted traces before proceeding to synthesizing a
process template. Yet, not every semantical error in the specification can be detected,
so that a human expert has to validate the synthesized process template. We address
the issue of under-specified LTL specification by correctness criteria for the extracted
traces.

Let P be a set of traces derived from a pseudomodel, cf., Section 3.3. We leverage
the information whether an action a ∈ A is optional for completing the process.

Definition 1 (Optional Actions). Given a set of actions A and a set of traces P , the
set AO of optional actions is defined as AO = {a ∈ A : ∃ σ ∈ P .a 	∈ σ}.

We argue that correctness of a specification where some activity is optional implies the
existence of a specific data condition under which the optional activity is executed. For
the traces in Table 2, for instance, og and od are optional activities. The condition under
which og executes is (rl ∧ ef) ∨ (rl ∧ ep) ∨ (rl ∧ ei), i.e., the risk object assumes
the state ‘low’. Action og is executed independently from the state of the due diligence
evaluation object. For action od the condition is (rh∧ef)∨(rh∧ep)∨(rh∧ei), i.e., the
risk is ‘high’. In contrast, action bl is executed under the condition (ei∧ri)∨(ei∧rh)∨
(ei∧ rl)∨ (ef ∧ ri)∨ (ef ∧ rh)∨ (ef ∧ rl)∨ (ep∧ rh)∨ (ep∧ rl)∨ (ep∧ ri). Hence,
none of the objects influences the decision of executing bl, since bl appears with all
combinations of data values. Yet, bl is optional. This indicates an under-specified LTL
specification as conditions for executing optional activities are not stated explicitly.

414 A. Awad et al.

Definition 2 (Optional Action Execution Condition). Let AO be the set of optional
actions, P a set of traces, and RE the set of mutually exclusive results. For an action
a ∈ AO , the execution condition is defined as:
conda = {{x1, . . . , xn} : ∃ σ ∈ P .∃ s ∈ σ.a ∈ s ∧ x1 ∈ s ∧ x1 ∈ S1 ∧ S1 ∈
RE ∧ · · · ∧ xn ∈ s ∧ xn ∈ Sn ∧ Sn ∈ RE ∧ n = |RE|}.
This definition describes the conditions under which an action executes by investigating
for each observation of the action a the data effects that are true in the same state
as a. If an optional activity a has an execution condition, which is a proper subset
of the combination of non-exclusive results, then this indicates a well specified set of
compliance rules. We formalize this trace correctness criterion as follows.

Definition 3 (Proper Execution of Optional Actions). Let AO be the set of optional
actions with respect to a set of traces P and RE the set of mutually exclusive results.
We define the set of all possible results interactions as RI = {{x1, . . . , xn} : x1 ∈
S1 ∧ S1 ∈ RE ∧ · · · ∧ xn ∈ Sn ∧ Sn ∈ RE ∧ n = |RE|}. An action a ∈ AO has a
proper execution iff conda ⊂ RI .

The proper execution of actions is the first correctness criterion to be investigated on
traces before synthesizing a template. Referring to the set of traces in Table 2, we find
that this criterion is not met for activity bl. This problem is reported to the user so that
the compliance rules are refined and a new set of traces is extracted.

Another correctness criterion for a set of traces is data-completeness. A set of traces
P is data-complete if for every possible combination of results resulting from the
mandatory activities, there is a trace in which this combination occurs.

Definition 4 (Traces Data-Completeness). Let P be a set of traces, AM be the set
of action mappings, AM = A \ AO be the set of mandatory actions and REM =
{S : ∃a ∈ AM .(a, S) ∈ AM ∧ S 	= ∅} be the set of mutually exclusive results
of mandatory actions. We define the set CO = {{x1, . . . , xn} : x1 ∈ S1 ∧ S1 ∈
REM ∧ · · · ∧ xn ∈ Sn ∧ Sn ∈ REM ∧ n = |REM |}. The set of traces P is data-
complete iff ∀ C ∈ CO ∃ σ ∈ P ∃ si ∈ σ : ∀ x ∈ C x ∈ si where i > 0.

Even if data incompleteness is detected for a set of traces, a process template may be
generated. Nevertheless, the template would suffer from deadlocks as for some com-
binations of results, continuation of processing is not defined. Therefore, we proceed
solely in case the set of traces shows data completeness.
Example. For our running example, we find that the set of traces lacks the proper exe-
cution condition for activity bl. To address this issue, a compliance expert might add an
explicit condition to black list a client only if the evaluation fails. This is represented by
an additional constraint G (bl ⇒ ef). Repeating all steps from satisfiability checking
to extracting traces yields a set of traces that satisfies the two correctness criteria above.

3.5 Generating Process Templates

Given a set of traces within which activities have proper execution conditions, process
mining [4] is applied to generate a process template. Most mining algorithms neglect
the difference between control flow dependencies and data flow dependencies when

An Iterative Approach for Business Process Template Synthesis 415

generating a process model. Therefore, we cannot apply an existing algorithm directly.
Instead, we use the α-algorithm [4] and incorporate the respective data aspects.

Order of actions. As a first step, we extract the precedence of actions. To this end, we
employ an adapted version of the order relations known from the α-algorithm [4].

Definition 5 (Order Relations). Let P be a set of traces and A the sets of actions. We
define the following order relations for two actions a1, a2 ∈A with Ra2 =

⋃
(a1,S)∈AM S

as the set of results of a2.

a1 > a2: iff either
Ra2 = ∅ (i.e. a2 has no results), and there is atrace σ : s0, . . . , sn ∈ P , such that

a1 ∈ si ∧ a2 ∈ si+1 for some 0 ≤ i < n, or
Ra2 	= ∅ (i.e. a2 has results), and ∀ r ∈ Ra2 there is a trace σ : s0, . . . , sn ∈ P ,

such that a1 ∈ si ∧ a2 ∈ si+1 ∧ r ∈ si+1 for some 0 ≤ i < n.
a1 � a2: iff a1 > a2 and a2 	> a1

a1 → a2: iff a1 � a2 and � a3 ∈ A : a1 �+ a3∧a3 � a2 with �+ as the transitive
closure of �

For two actions ordered by >, we know that the first action appears immediately before
the second action. This notion of order is stronger than the one originally used in the
α-algorithm [4]. If a1 > a2 and a2 	> a1, then we conclude that a1 precedes a2, i.e.,
a1 � a2. However, it might be the case that a1 � a2, a2 � a3 and a1 � a3. In this
case, we drop the dependency a1 � a3 as it unnecessarily complicates the template
synthesis. Thus, we use the more strict precedence relation→.

In contrast to common order relations known in process mining, the precedence de-
pendencies in our approach may be guarded by conditions, captured as follows.

Definition 6 (Precedence Condition). Let P be a set of traces, A the sets of actions,
AM the mapping from actions to results, and a1, a2 ∈ A two actions in precedence,
a1 → a2. Let E = {r|r ∈ ⋃

(a1,S)∈AM S∧ (∃ σ = s0, . . . , si, si+1, . . . , sn ∈ P : a1 ∈
si ∧ r ∈ si ∧ a2 ∈ si+1)} be the set of results of a1 under which a2 is observed. Then,
we define the precedence condition cond(a1, a2) as follows.

cond(a1, a2) =

{∨
r∈E iff E ⊂ ⋃

(a1,S)∈AM S ∧ E 	= ∅.
true otherwise.

According to this definition, we distinguish two types of precedence conditions. First,
precedence holds for a proper subset of the results of the first action. Then, the prece-
dence condition is the disjunction of results that can be caused by the first action. The
second case captures unconditioned precedence, i.e., the precedence holds independent
of any results. For our running example, we observe ra → og. This precedence is
guarded, as we observe this dependency solely in case of the result rl. In other words,
only if action ra yields the result rl, we observe the action og subsequently.

Synthesis of process model. Based on the precedence among activities, the precedence
conditions, along with the knowledge on optionality of activities, we proceed to build
a process template. First, the overall structure of a process model is derived from the

416 A. Awad et al.

precedence relation. This step yields a graph with all nodes representing actions, while
the precedence relation defines directed edges between them. Second, control nodes
(split and join nodes) that realize the behavior routing in the process model have to be
introduced whenever a node has more than one predecessor or successor.

Starting with split nodes, our approach inserts nodes that implement either AND-,
XOR-, or OR-logic. The routing semantics depends on the precedence conditions for
the edges to succeeding nodes. If all precedences originating at an action are uncondi-
tioned, an AND-split node is inserted. If all precedences are conditioned and those con-
ditions do not overlap, an XOR-split node is inserted and each outgoing edge inherits
the respective precedence condition. Similarly, an OR-split is applied if the conditions
are overlapping.

The case of join nodes, nodes with multiple predecessors, is not straightforward. We
distinguish the following cases.

– All precedences of an action a are conditioned, we use an AND-join to synchronize
these conditions.

– Only a proper subset of precedences of an action a is conditioned, we use an OR-
join to synchronize any subset of these conditions.

– All precedences of an action a are unconditioned. If a is mandatory, we apply either
an OR-join or an AND-join. The former is used if at least one of the preceding
actions is optional; the latter is used in all other cases. If a is optional, we proceed
as follows. An AND-join is applied to synchronize all precedences. Moreover, for
all combinations of results of preceding actions of a, we check for a state in which
the execution of a is observed as well. In other words, we identify all combinations
of results of preceding actions under which a can occur. The disjunction of these
result combinations is then used as a precedence condition for the edge between
the AND-join and action a.

Applying these steps yields a process template. Still, our approach to model synthesis
is rather naive and may create OR-joins for which the synchronization behavior could
be implemented using solely AND- and XOR-joins. However, existing methods for
restructuring a process model are used to replace these OR-joins with a semantically
corresponding structure of AND- and XOR-joins, see [22].

og

bl

ra

edd

ef

ep

od

rl

rh

Fig. 2. Precedence among actions

Example. After we adapted the set of constraints
for our running example as discussed above, we
derive the basic graph structure for the template
based on the precedence relation. Fig. 2 visual-
izes this structure in a BPMN-like notation. Here,
the start and end actions are represented by start
and end events. Activities depicted with a dashed
border are optional. After inserting control nodes
(aka gateways in BPMN) into the graph, the com-
plete process template is derived. The first ver-
sion of the generated process template is shown in Fig. 3a. Application of the restruc-
turing according to [22] yields the process template shown in Fig. 3b.

An Iterative Approach for Business Process Template Synthesis 417

og

bl

ra

edd ef

ep

od

rl

rh

(a)

og

bl

ra

edd ef

ep

od

rl

rh

(b)

Fig. 3. (a) The process template for our example. (b) The restructured process template.

3.6 Evaluation of the Synthesized Process Template

Process templates aim at supporting experts in getting a better understanding of the com-
pliance aspects and to discover missing or under-specified requirements. Such under-
specification is manifested in the process template in terms of semantical problems.
Those problems can only be detected by human experts. In this section, we will fur-
ther elaborate on the running example to illustrate such problems. Using the process
template in Fig. 3a as a basis of the discussion between compliance expert and busi-
ness expert, they identify that the template allows for executing both black listing the
client and granting to open the account in the same instance. This is an example of the
aforementioned semantical problems caused by under-specified compliance rules. The
compliance expert refines the set of constraints by indicating that black listing and grant-
ing open the account are contradicting, cf. the CA relation in Section 3.2, formalized
as G (og ⇒ G (¬bl)) and G (bl ⇒ G (¬og)). Repeating the steps of our approach
reveals that the adapted set of compliance rules yields a set of traces that is data incom-
plete. This is explained based on the two added constraints as follows. By forcing bl
and og to be exclusive, we implicitly require bl to be executed only with the condition
ef ∧ rh, while og is executed only with the condition ep ∧ rl. Other combinations of
results are not considered. There is no trace that addresses the situation where ef ∧ rl
holds in some state. This contradicts with our requirement to execute either og or od in
each run. Since the condition ef ∧ rl enables neither of them, it is not observed in any
of the generated traces.

og

bl

ra

edd ef

od

rl

ep

(ep & rh) |
(ef & rh) |
(ef & rl)

Fig. 4. A compliant process template where bl and
og are exclusive and conditions adjusted

As a consequence, another adap-
tation of our set of compliance
requirements is needed. The missing
interaction ef ∧ rl has to be handled.
One solution is to update the condi-
tions under which og and od are ex-
ecuted, i.e., G (og ⇒ ep ∧ rl) and
G (od ⇒ (ef ∨ rh)). With these
updated constraints, another iteration
of behavior synthesis is started. This
time, the generated set of traces shows
data completeness. The final gener-
ated process template is visualized in Fig. 4.

418 A. Awad et al.

4 Implementation

We created a prototypical implementation to validate our approach. Fig. 5 shows a snap-
shot of it. It relies on a specification of domain knowledge, such as activity results and
contradicting activities, which has to be defined once by a human expert. Given a set of
compliance rules, our implementation adds extra rules to control the behavior synthesis
and to enforce domain knowledge automatically. The satisfiability checking is done by
an implementation of Wolper’s method for checking LTL satisfiability [24] developed
by the authors at the School of Computer Science of the Australian National Univer-
sity1. If the rules are satisfiable, the checker generates the pseudomodel of all possible
traces. Next, our implementation extracts finite traces, analyzes them and synthesizes
the process template, if the extracted traces pass quality tests, cf. Section 3.4. At that
point, the resulting template is visualized using GraphViz [9]. In case that traces do not
pass checks, the found problems are reported on the “Analysis result” tab.

There is the potential for a state space explosion, especially since the additional
constraints of the process are unrestricted logical formulae. Even without pathological
constraints, if there is a lot of freedom or non-local conditions then the satisfiability
checking phase can take a considerable amount of time. The once constraint helps limit
this, and too much freedom can often be a sign that other conditions have been omitted.
We aim evaluating these issues in further case studies.

Fig. 5. A snapshot of the process synthesis tool

1 Source code available at
http://users.cecs.anu.edu.au/˜rpg/PLTLProvers/pltlmultipass.tar

http://users.cecs.anu.edu.au/~rpg/PLTLProvers/pltlmultipass.tar

An Iterative Approach for Business Process Template Synthesis 419

5 Related Work

Compliance checking of business process models with a focus on execution order con-
straints has been approached from two angles: namely compliance by design and com-
pliance checking of existing models. The latter has been tackled using model checking
techniques [6,10,14]. Our work follows a compliance by design approach that has also
been advocated in [11,12,13,15,16,25]. Close to our work, the authors of [12,11] em-
ploy temporal deontic assignments to specify what can or must be done at a certain
point in time and synthesize a process template from these assignments. In contrast to
our work, however, the approach is limited to temporal dependencies between activity
executions and the underlying logic requires an encoding of these dependencies via
explicit points in time. Another approach to synthesize compliant processes was intro-
duced in [25]. The authors employ a set of compliance patterns expressed in Linear
Temporal Logic (LTL). For each pattern a finite state automaton (FSA) is defined. To
synthesize a process, the FSAs of the involved patterns are composed. Next, the user
is required to select for each composition an execution path in order to synthesize the
process. That approach is able to generate processes with sequence and choice only.
Moreover, it does not consider data flow aspects in the synthesized process.

Related to our approach to process model synthesis is work on process mining, which
aims at automatic construction of a process model from a set of logs [5,4,3]. We adapted
the α-algorithm [4], a standard mining approach, for our purposes. Besides the com-
monalities, there are some important differences between process mining and process
template synthesis. We consider control flow routing based on data values. This aspect
is often neglect in process mining algorithms. Only recently, time information and data
context have been considered when predicting the continuation of a trace based on its
current state [21,2]. Further, process mining approaches have to be robust against incor-
rect data (log noise). As we derive a model from artificially generated traces, this is not
an issue for our approach.

Work on declarative business process modeling is also related to our work. The au-
thors of [17,19] propose to model processes by specifying a set of execution ordering
constraints on a set of activities. These constraints are mapped onto LTL formulas;
which are used to generate an automaton that is used to both guide the execution and
monitor it. That is similar to our approach of generating a pseudomodel. Recently, the
authors also showed how finite traces that respect interleaving semantics can be ex-
tracted from a set of LTL constraints [18]. The major difference from our work is
that [18] does not model data constraints as we do. They also change the semantics
of LTL rather than by using standard LTL as we do. Finally, we initially tried the ap-
proach of extracting Büchi automata from our LTL specifications for our example, but
found that the automata approach required hours to return the automata whereas our
LTL satisfiability checker returns a pseudomodel in less than a second.

6 Conclusion

In this paper, we introduced an approach to synthesize business process templates out of
a set of compliance rules expressed in LTL. We also showed that extra domain-specific

420 A. Awad et al.

knowledge is required to decide about consistency of such requirements and introduced
an LTL encoding for compliance rules and domain knowledge. This was used to gener-
ated traces, which are analyzed for inconsistencies. Finally, we proposed an approach
to the synthesis of process templates that goes beyond existing work on process mining
by focusing on data dependencies of activity execution. We also discussed the analysis
of generated templates with respect to semantical errors.

In our approach, we addressed control- and data-flow aspects of compliance rules, in
contrast to similar approaches that focus on control-flow aspects only. The considera-
tion of data-flow aspects comes with new challenges which we addressed in this paper
by introducing correctness criteria for the set of generated traces. We illustrate that data
dependencies may show rather interactions that are hard to handle at the first place. As
a consequence, our approach is iterative – the required knowledge is built incremen-
tally each time constraints are under-specified. In future work, we want to consider
constraints on role resolution for generating process templates.

References

1. Sarbanes-Oxley Act of 2002. US Public Law 107–204 (2002)
2. van der Aalst, W.M.P., Pesic, M., Song, M.: Beyond process mining: From the past to present

and future. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 38–52. Springer, Heidel-
berg (2010)

3. van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F., de Medeiros,
A.K.A., Song, M., Verbeek, H.M.W.E.: Business process mining: An industrial application.
Inf. Syst. 32(5), 713–732 (2007)

4. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process
models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

5. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In:
Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–
483. Springer, Heidelberg (1998)

6. Awad, A., Weidlich, M., Weske, M.: Visually specifying compliance rules and explaining
their violations for business processes. J. Vis. Lang. Comput. 22(1), 30–55 (2011)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)
8. Commission, F.S.: Guidelines on anti-money laundering & counter-financing of terrorism

(2007)
9. Ellson, J., Gansner, E.R., Koutsofios, E., North, S.C., Woodhull, G.: Graphviz - open source

graph drawing tools. In: Graph Drawing, pp. 483–484 (2001)
10. Förster, A., Engels, G., Schattkowsky, T., Van Der Straeten, R.: Verification of Business

Process Quality Constraints Based on VisualProcess Patterns. In: TASE, pp. 197–208. IEEE
Computer Society Press, Los Alamitos (2007)

11. Goedertier, S., Vanthienen, J.: Compliant and Flexible Business Processes with Business
Rules. In: BPMDS. CEUR Workshop Proceedings. CEUR-WS.org, vol. 236 (2006)

12. Goedertier, S., Vanthienen, J.: Designing Compliant Business Processes with Obligations
and Permissions. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp.
5–14. Springer, Heidelberg (2006)

13. Lu, R., Sadiq, S.K., Governatori, G.: Compliance Aware Business Process Design. In:
ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS,
vol. 4928, pp. 120–131. Springer, Heidelberg (2008)

An Iterative Approach for Business Process Template Synthesis 421

14. Lui, Y., Müller, S., Xu, K.: A Static Compliance-checking Framework for Business Process
Models. IBM Systems Journal 46(2), 335–362 (2007)

15. Milosevic, Z., Sadiq, S., Orlowska, M.: Translating Business Contract into Compliant Busi-
ness Processes. In: EDOC, pp. 211–220. IEEE Computer Society, Los Alamitos (2006)

16. Namiri, K., Stojanovic, N.: Pattern-Based Design and Validation of Business Process Com-
pliance. In: Chung, S. (ed.) OTM 2007, Part I. LNCS, vol. 4803, pp. 59–76. Springer, Hei-
delberg (2007)

17. Pesic, M., van der Aalst, W.M.P.: A Declarative Approach for Flexible Business Processes
Management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp.
169–180. Springer, Heidelberg (2006)

18. Pesic, M., Bosnacki, D., van der Aalst, W.M.P.: Enacting declarative languages using ltl:
Avoiding errors and improving performance. In: SPIN 2010. LNCS, vol. 6349, pp. 146–161.
Springer (2010)

19. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: Full Support for Loosely-
Structured Processes. In: EDOC, pp. 287–300. IEEE Computer Society, Los Alamitos (2007)

20. Pnueli, A.: The temporal logic of programs. In: SFCS, pp. 46–57. IEEE Computer Society,
Washington, DC, USA (1977)

21. Schonenberg, H., Jian, J., Sidorova, N., van der Aalst, W.M.P.: Business trend analysis by
simulation. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 515–529. Springer, Hei-
delberg (2010)

22. Vanhatalo, J., Völzer, H., Leymann, F., Moser, S.: Automatic workflow graph refactoring
and completion. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS,
vol. 5364, pp. 100–115. Springer, Heidelberg (2008)

23. Wolper, P.: Temporal logic can be more expressive. Information and Control 56, 72–99
(1983)

24. Wolper, P.: The tableau method for temporal logic: an overview. Logique et Analyse 110-111,
119–136 (1985)

25. Yu, J., Han, Y., Han, J., Jin, Y., Falcarin, P., Morisio, M.: Synthesizing service composition
models on the basis of temporal business rules. J. Comput. Sci. Technol. 23(6), 885–894
(2008)

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 422–435, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Design of Business-Technology Alignment Consulting
Framework

Kecheng Liu¹, Lily Sun², Dian Jambari², Vaughan Michell¹, and Sam Chong³

1 Informatics Research Centre, University of Reading, PO Box 241, Whiteknights,
Reading, RG6 6WB, UK

k.liu@henley.reading.ac.uk, v.a.michell@reading.ac.uk
2 School of Systems Engineering, University of Reading, Whiteknights, Reading, Berkshire,

RG6 6AY, UK
{lily.sun,j.dianindrayani}@reading.ac.uk

3 CTO Emerging Solution Group, Cisco APAC, Capital Tower,
168 Robinson Rd #26-01 to #29-01 Singapore

sachong@cisco.com

Abstract. Current work on applying scientific methods to capture the cultural
values as requirements for business-IT alignment has been scarce, even though
organisations acknowledge its significant impact. This paper introduces a Busi-
ness-Technology Alignment Consulting Framework that adopts an Organisa-
tional Semiotics approach to capture cultural values from both formal norms
and informal hidden social norms that can significantly impact the actual vs
perceived alignment. A set of techniques in the framework are described for its
use in conducting consulting analysis. Business Service Analysis is the core
analysis that provides the holistic structure of the business services. Business
Service Valuation calculates the service cultural values to complement the Busi-
ness Service Analysis. Business Service Norms Analysis captures the business
norms that govern the business service. A case study example is used to illustrate
the analysis templates to holistically represent the business services. The signifi-
cance of the consulting framework and future work are also discussed.

Keywords: business-technology alignment, consulting framework, socio-
technical approach, consulting requirements analysis, norm analysis.

1 Introduction

Organisations have acknowledged the importance of a well aligned business and IT to
ensure competitiveness. However, achieving alignment is difficult due to challenges
such as poor shared knowledge management [1], rigid alignment strategy constricting
the ability to adapt to changes [2] and miscommunication due to “language” differ-
ences between the business and IT domain [3]. The failure to capture and account for
social views and influences can affect alignment problems [4]. IT spending is an or-
ganisation’s major investments. Increasingly complex and expensive IT deliveries
[5],[6]directly impacts an organisation’s business performance and has reigned as one
of their top concerns [7]. The alignment quality is measured by 1) the value added by

 A Design of Business-Technology Alignment Consulting Framework 423

the business services to the enterprise to achieve their business goals, 2) the optimum
“performance versus cost” of the IT capabilities to complement the value added busi-
ness services. Therefore, a sensible alignment strategy between business and IT is
essential to help organisations improve their financial efficiency particularly towards
their IT investments. Organisations require a mechanism that can provide the map-
ping of the current business service with the “best fit” IT capabilities. They also need
to be able to provide recommendations for the future IT strategy to assist in decision
making for their IT investments, which inevitably improve the business service and IT
applications alignment. However, before any alignment activities can be performed, a
set of comprehensive and accurate requirements are needed to form a solid foundation
to ensure well aligned business and IT. Business and technology consultants are
facing challenges in articulating what IT applications are currently used for adding
business value in an organisation. It is also difficult for consultants to recommend
the future of those IT applications in relation to effective computing resources in the
organisation. There are a number of factors contributing to these difficulties, 1) busi-
ness environments have become complex and IT applications are deeply integrated
with the business operations; 2) various IT applications serve different users for dif-
ferent purposes in their work; and 3) The socio-technical phenomenon impacts on
business behavior towards IT applications. IT applications also add different benefits
to the business performance and these benefits or values are normally perceived dif-
ferently from a cultural perspective [8],[9]. Such multiple dimensional aspects can be
described by complex business-IT alignment requirements which need to be captured
by consultants. Well gathered and represented requirements enable the production of
better analysis results for the current state of the business and IT alignment. It also
helps the organisation in setting the future direction of the organisation to achieve
their ultimate aims and objectives. Therefore, having the right requirements will
ensure that the organisation will have the correct knowledge to establish a better
alignment between their business and IT aspects [10],[11].

The Business-Technology Alignment Consulting Framework, therefore, has been
developed to facilitate the analysis of business-IT alignment requirements in organisa-
tions. This framework enables consultants to establish a holistic view of the business
situation and the IT applications supporting the business. The framework first defines
whether a business operation is a core or supporting service. It then identifies and pri-
oritises the future of the IT applications based on their support of these services and
recommends, depending on the business service that the IT supports, if an IT applica-
tion should be developed/upgraded with new functions to adequately serve a wider
range of business operations, or be outsourced to reduce unnecessary incurred cost to
the business. The framework techniques are developed and implemented in a consult-
ing CASE tool. The paper is structured as follows; Section 2 discusses the issues of
business and IT alignment vs. socio-technical aspects of Information Systems. This
section also discusses the complexity of eliciting informal requirements to establish the
business and IT alignment. Section 3 describes the adoption of an Organisational
Semiotics approach in the consulting framework design to support this. Section 4 de-
scribes the Business-Technology Alignment Consulting Framework and three of its
techniques, Business Service Analysis, Business Norms and Business Service Valua-
tion for modeling the business landscape through articulating the cultural aspects in an
organisation into an explicit form that reflects the business and IT alignment require-
ments and level. Section 5 draws conclusions and suggests future work.

424 K. Liu et al.

2 Business and IT Alignment from a Socio-technical Viewpoint

The relationship between business and IT in organisations has a socio-technical aspect
that can be viewed via socio-technical theory. Socio-technical theory is a set of ex-
plicit concepts that considers the complex interaction of the social aspects, which
influence the usability and functionality of technology capabilities [12],[13],[14].The
social aspects such as the behavioural patterns of the stakeholders involved are one of
the important factors that impact the effectiveness of the technology that supports the
business in an organisation [15]. However, the associated mapping and representation
of the socio-technical aspects of the organisation is difficult in practice [16],[17],
particularly to achieve business and IT alignment.

One approach to achieve business and IT alignment is through enterprise architec-
ture frameworks (EAF) [18],[19] often using service oriented architecture (SOA). The
Open Group Architecture Framework (TOGAF), aims to establish a proper alignment
between the organisation’s business strategy and IT capabilities in a well-structured,
comprehensive and systematic manner [20]. Work done in [21] highlights how TO-
GAF can assist an enterprise to develop a new alignment between business and IT, or
improve the existing alignment through the Architecture Development Model (ADM)
life cycle. The emergence of SOA concepts has influenced a paradigm shift in busi-
ness thinking where business components can be viewed as services [22],[23],[24].
Subsequently, these services can be assessed regarding the value they add to the prof-
itability and sustainability of the business. The adoption of SOA in business architec-
ture is beneficial as SOA concepts remove redundancies and align IT infrastructures
[25]. The ability to deconstruct business components and organisational structures
into sets of services behaving in a service-oriented manner, supports the enhancement
of EAF [26]. Yet, the integration of EAF and the SOA concept is not simple as SOA
is still considered as an immature technology with no specific foundational theory,
and this indirectly complicates the process of defining granular and reusable business
and IT services [22]. Work presented in [27],[28], illustrates the integration of EAF
and SOA concepts by establishing the linkage of the business services with IT
capabilities. However, these approaches focus more on business services than on IT
services performance. The availability of information on the IT services performance
is crucial to analyse the linkage between business and IT services.

The complexity of alignment is also raised by the fact that the business includes the
organisation of people, which cultivates social and cultural informalities. However,
accurate inclusion of the socio-cultural factors contributes to the success of the align-
ment as highlighted in [29],[16],[3],[17]. Work presented in [30] also recognizes the
importance to missing non explicit stakeholder social information(s) in modeling
enterprise architecture. Lagerstrom et al. [4] address such factors by focusing on
stakeholders and their behaviour. However, there is no specific analysis for 1) how
stakeholders gain value from their involvement in the business activities and 2) their
important views of the value added, or otherwise, by various business services.
Cultural aspects have been recognised to fill the informal requirements gap in the
business and IT alignment. A study has shown that 30% of companies have failed in
their attempt to achieve business and IT alignment [2]. The main problem highlighted
is the miscommunication between business and IT caused by unclear specification
of the organisation’s business and IT requirements. Business and IT should have a

 A Design of Business-Technology Alignment Consulting Framework 425

well-defined understanding of their own domain within the organisation before proper
alignment between them can be successfully achieved. It is often the case that the
poor understanding between the business and IT requirements can critically affect the
quality of the alignment [31]. Eliciting and representing the business requirements is
important for accurate mapping of IT capabilities to obtain the optimal alignment
between business service and IT capabilities [32]. Incomplete requirements were also
found to be the top reason for failures in the Information System (IS) projects,
whereas user involvement was found to have high influence on the IS project success
factor [33]. The notion of "completeness" in requirements definition is problematic as
there is no specific standard or easy procedure to determine the validity of the re-
quirements information that is important and required by the consultant provided by
the users (in our interest, the organisations) [34]. The missing requirements are found
to arise from intangible information within the informal (e.g. socio-cultural) factors in
the organisation that are difficult to elicit and represent [8],[35]. Incorporating the
cultural aspects in the informal requirements is therefore important to fill in gaps in
the requirements that forms the foundation for the business [36].

Techniques such as use case development, user centered design. structured inter-
views and informal modeling, which are among some of the widely practiced
approaches by the IT consultant (acting as requirement engineers) [37], are available
for eliciting requirements from stakeholders. However, very little attention is given to
documentations providing clear understanding and management of the requirements.
Well-recorded requirements ensure the identification of any incomplete requirements
and enable the realisation of potential reuse of the requirements [38]. One problem
identified in the requirement elicitation is the lack of ability to express and record the
stakeholders’ requirements in an understandable form, for not only the consultants to
build the alignment, but also for the non-technical people in the organisation being
analysed [39].

3 Articulation of Complex Business and IT Alignment
Requirements

In an organisation context, business functions are performed within a social system,
where people behave in a coordinated manner that corresponds to certain specified
norms [40]. Organisational Semiotics (OS) [41],[8] provides a set of elaboration tech-
niques for stakeholder identification and analysis. Treating any technology change, e.g.
the introduction of a new IT system, as a course of action, the Stakeholder Identifica-
tion method aids the analysis by placing the change as the focus of the analysis, which
is surrounded by potential stakeholders. The roles, responsibilities and impact of the
stakeholders in relation to each course of action can be articulated in a structured man-
ner by careful application of semiotic based stakeholder theory. The application of OS
concepts in modeling organisations is supported through a set of tools called Method
for Eliciting, Analysing and Specifying Users’ Requirements (MEASUR) [42], e.g.
problem articulation method (PAM) and norm analysis method (NAM).

PAM provides a set of mechanisms to identify the main issues related to the organi-
sation context, which enables an establishment of understanding of a complex problem
situation faced by the business. Valuation Framing serves as a feedback in PAM to

426 K. Liu et al.

measure the satisfaction level of the user’s needs to the target technical system and is
performed iteratively to refine the requirements [41]. The diversity of cultural values
among the users influences their perception of the business and IT being measured.
Valuation Framing adapted from Hall’s [43] ten cultural aspects can provide a basis
for capturing and measuring these cultural values. The valuation framing process
integrates Hall’s metrics with traditional metrics covering quality, performance and
providing the organisation with robust information (with added values from cultural
aspects) to assist in their decision making process. An Organisational Onion technique
facilitates a representation of the stakeholder’s relationship to the business function and
level of influence in the organisation. Through the definition of the formal, informal
and technical factors within the Organisational Onion it addresses the relationships
among the stakeholders. It supports the “notion of viewing an organisation as a social
system where the people involved internally and externally behaves in a structured
patterns that are govern by a certain system of norms” [8].

The norm analysis enables an organisation to study holistically the behaviours of
their members and the active interactions between the members that are driven by
norms [40]. The norms define the knowledge of the business processes in the structure
of <context>followed by the conditions applied in <state> to the associated stake-
holders affected or responsible <agent> and to the categorisation of the type of action
<deontic operator>, and the <action> needed. According to Organisational Semiotics,
norms can be categorised into formal and informal. Formal norms are a set of
statements, such as business rules governing the business process, which define the
expected or intended behavior of the business in an organisation. However, in practice,
the stakeholders that are directly involved within the business may develop their own
interpretation of the formal norms through adaptation from their cultural background.
These informal norms may not be explicitly defined as the behavior of the business and
they should not overwrite the formally defined norms. However, these informal norms
provide knowledge of the actual social practices that relate to the formal norms of
business. Using such knowledge, the organisation will have the capability to imple-
ment their strategy and ensure business processes that best fit the working culture,
which will eventually improve business performance and productivity.

4 The Design of the Business-Technology Alignment Consulting
Framework

The consulting framework, as it is developed in collaboration with Capgemini [44], is
devised to aid a business and IT alignment. The methods in this framework are under-
pinned by SOA, TOGAF, PAM, and NAM. The framework consists of a require-
ments stage; valuation stage; and strategy formulation stage (see Fig. 1). In the first
stage, the requirement elicitation for the overall business operations establishes a
holistic view of the core and supporting business services. In the second stage, the
requirements are analysed to assess the value of the IT applications that support the
business services by applying the Valuation Framing techniques [41]. This assessment
incorporates an assessment of the financial aspects, (in the IT Financial Analysis
component), that influence the value of the IT applications towards the business ser-
vices. The valuation phase outputs provide information on the state or performance of

 A Design of Business-Technology Alignment Consulting Framework 427

the IT applications in relation to the business services and enables recommendations
to optimise the IS/IT performance in the third stage. The consulting framework guides
the enterprise to formulate a strategic and flexible IT strategy for improving the busi-
ness-IT alignment.

The verification of the design was obtained from a group of consultants in the
Capgemini consulting team who worked on the actual client case studies. The design
of the consulting methods with the techniques has been iteratively refined during the
consulting activities.

4.1 Conceptual Model of the Consulting Framework

The consulting framework facilitates the analysis of business and IT alignment by a
set of techniques as shown in Fig. 1 [44].

Business Domain Analysis analyses the organisations’ high level background con-
text, which includes the organisations’ business goals and strategy, market and com-
petitive conditions, internal structure, core business services, internal and external
main stakeholders and finance flow. The component segments the enterprise’s back-
ground information into five sections: organisation aspects, business structure,
services, external stakeholders and finance. The segmentation is based on Osterwal-
der’s business model [45].

Business Service is where details of the business service including the business
processes, the association (if any) of the business services to other business services
and the list of the IT applications assigned to support the business services are

Fig. 1. The Business-Technology Consulting Framework

428 K. Liu et al.

extracted. This Analysis captures the informal aspects through the Business Service
Norms Analysis, eliciting the organisation’s business norms within the business proc-
esses that support the business services. To complement the analysis in achieving the
holistic view of the business service, its cultural value is evaluated in Business Service
Valuation. The analysis will be presented and discussed in detail in the following
section.

Business Process Analysis provides detailed descriptions of processes/sub-
processes and activities involved in the business services. The business processes are
influenced by, and are tightly integrated with, business norms. The business service
norms analysis captures the behaviour patterns as requirements enabling us to derive
the business rules from both the business and customer focused perspective. It also
identifies the informal factors involved in the business service, such as strategies,
cultures, unwritten conventions and common practices supporting the business capa-
bility. The analysis extends the details of the business rules and procedures with
knowledge of any pre-conditions and post-condition from the Business Process
Analysis.

Stakeholder Analysis is the component where the detailed analysis and elicitation
of requirements of the associated stakeholders of the business service is performed.
Stakeholder Analysis enables the identification and evaluation of highly influential
stakeholders and their influence on business services in the enterprise, refining the
stakeholder information identified in the business service analysis. Stakeholders per-
ceive different values for the business services according to their perspectives. The
stakeholder valuation of the business service is one of the important factors in the
Business Service Analysis.

IT Inventory is the IT applications requirements analysis, where detailed informa-
tion concerning the IT applications assigned to support the business services are elic-
ited. The IT Application Inventory analyses all the IT applications in the enterprise to
provide a foundation for further valuation assessment. The inventory component is
divided into: 1) current IT applications (as-is state); and 2) recommendation for future
changes to IT applications (to-be state). In the as-is state, each IT application avail-
able within the enterprise is recorded and described in detail: its capabilities, financial
cost and technical value. The IT application value is evaluated in a separate compo-
nent in the second stage, IT Application Valuation whereas, in the to-be state, the
inventory includes recommendations for decisions to be made for the status of each IT
applications (e.g. to be outsource, upgrade to improve performance, merge with other
applications etc). The comprehensive requirements from both the business processes
and services and IT applications form the basis for the components in the next stage,
the Strategy Formulation to formulate future IT strategy that improves the business-IT
alignment.

4.2 The Application of Business Services Analysis

Fig. 2 presents a case study to illustrate the framework. Techniotics™ is an advanced
systems development company operating in three markets: advanced intelligent sys-
tems, defence electronics and robotics, alternative energy systems. It has global pres-
ence and market capitalisation and the following core competences: 1) highly skilled
and rewarded, networked and virtual workforce; 2) patented processes for advanced

 A Design of Business-Technology Alignment Consulting Framework 429

electronics and autonomous systems manufacture; 3) extensive range of patents and
intellectual property in the three sectors; 4) rapid design to manufacture virtual proc-
esses; and 5) innovative knowledge focused on new product development processes.

In the analysis process, we focus on a Techniotics™ example core competency: the
innovative knowledge focused new product development processes. This is provided
by Techniotics™’s unique range of engineers and scientists and marketing staff that
form the core product concept teams, supported by global part-time problem solving
consultants connected as virtual team members to the company and the extensive
supporting IT systems. The key service is Product Conceptualisation. This internal
service delivers an output: to identify three product concepts using the marketing
departments’ concept market specification that has been developed from an external
client request for a new product/service. Product Conceptualisation is part of their
New Product Development service that comprises several sub-services. The service
operates according to a set of business rules or norms and is subject to constraints
from business strategy, marketing and compliance. The set of business norms also
have related social implications and social norms. For example a business norm speci-
fies the internal company teams’ tasks. This satisfies business norms that ensure for
example, satisfaction with the task and support of the social contract that the key
stakeholder value.

Fig. 2. Overview of Techniotics™ example business processes, services and IT applications

4.3 Business Service Analysis for the Alignment

Business Service Analysis in Fig. 3 assesses each business service which is defined
by Business Domain Analysis with regard to their capabilities, stakeholder’s partici-
pation in the business process, and IT applications support. In the business service

430 K. Liu et al.

analysis, a number of further techniques (see the shaded elements in Fig. 3), e.g. busi-
ness cultural valuation, stakeholders analysis, definition of service norms, and busi-
ness process modeling, IT Inventory, IT Application Valuation are applied and the
corresponding outcomes recorded in this document.

Fig. 3. The analysis of business service requirements

The business service of Product Conceptualisation is a core service, which identi-
fies new product concepts based on ideas from the clients. This business service can
be described with service name, ID, description, date, and list of associated stake-
holders, which are further analysed in detail by using the Stakeholder Analysis. The
business behavior is described in P47 in conjunction with the service norms. Product
Conceptualisation carries out its function in relation to other business services, e.g. it
jointly produces the outcomes with Service-Product Feasibility Study & Selection.

Product Conceptualisation is supported by a list of IT applications, i.e. SOSUS,
CONNECT, and REGULUS, each of which is detailed in the IT Inventory. Its value
to this business service is calculated in the example as 73% by the IT Application
Valuation. This value implies that the IT applications that the organisation has in-
vested in, gives a good ROI in terms of its support of the functions in the business
service. The requirements documented in this structure are used as the input for the
subsequent analysis in the consulting process.

4.4 Norms for Governing the Business Behaviour

A norm is considered as a control mechanism for the business to deliver its value to
customers through the business services. These business services are performed by
the stakeholders whose behavior impacts on the business output. The consulting
framework identifies two types of norms, i.e. service norms and social norms, which

 A Design of Business-Technology Alignment Consulting Framework 431

may govern the business services. Service norms as formal norms define a business
context (i.e. business service) where the activities are conducted by the stakeholders
through the business processes. Fig. 4 presents the service norms which govern the
business behavior of Product Conceptualisation. Each norm focuses on the specific
expected behavior of Product Conceptualisation. For example, PCIdentify1002 de-
fines that the proposed new product concepts can only be accepted by the MD if they
satisfy the business strategy.

Social norms as informal norms are implicit and not formally codified. These
norms are used by individuals and groups to execute the actual behavior (vs the codi-
fied behaviour). Social norms need to be identified to appreciate the stakeholders’
rights and interest in the business activities and the related technology. It is important
to take these factors into consideration as stakeholders are the influential aspects in
determining the value of the business activities and IT support. In the consulting
framework, the social norms are derived from the Hall’s ten cultural aspects which
characterise some quantified measurements. The social norms in the consulting analy-
sis are applied to evaluate business cultural value in a Business Service.

4.5 Evaluate the Cultural Values of Business Services

During the Product Conceptualisation analysis, the business cultural value needs to
be assessed. Such cultural values should be taken into account in the business service
analysis as this can provide a more truthful view of any lack of alignment, or forced
perceived alignment due to political/social pressure affecting an individual’s value
judgment. In conducting a valuation, the Business Service Valuation is used in Fig. 5.

In the valuation matrix, the relevant stakeholders and criteria are also weighted ac-
cordingly to its degree of significance on the business service. The weighting schema
or values for both are not fixed and can be adjusted to suit the objective of the consul-
tancy exercise, provided the total weighting of all involved stakeholders in the busi-
ness service and the overall criteria sums to 1 respectively. The stakeholders then
rate each of the criteria based on the value range -3 to +3. In the valuation of Product
Conceptualisation, six stakeholders have been identified and weighted. These stake-
holders rated the business services and first, the overall value of the business service
cultural value per stakeholder is calculated by VSi. Then, the value is recalculated

Fig. 4. Description of the business norms that govern the business processes

432 K. Liu et al.

Fig. 5. The culture values perceived by the relevant stakeholders

with consideration of the stakeholders weight to provide the values according to the
strength of their influences on the business service in V. The final value of 72% is
then calculated by Sum(V)/3 which provides a percentage value of the business
cultural value according to the overall perceptions of the stakeholders involved. This
cultural value indicates the positive perception of Product Conceptualisation by the
stakeholders.

The business service analysis needs to be conducted on all business services in
Techniotics™ to establish a holistic view of the business. As the framework requires a
full spectrum of quantitative and qualitative analysis supporting alignment, the tech-
nical aspects (i.e. IT) in the organisation need to be thoroughly analysed by using
Portfolio Value analysis which analyses the financial aspects and risk management.
The outcomes of this analysis assists the formulation of IT strategies for Techniot-
ics™, i.e. what IT applications should be invested in the future, what IT applications
should be considered for outsourcing etc. A socially informed IT strategy can help
organisations make the right decisions for IT applications based on the business and
IT alignment.

 A Design of Business-Technology Alignment Consulting Framework 433

5 Conclusion

The design of the consulting methodology has been discussed, focusing on the Busi-
ness Service Analysis component and its close relationship with the Business Service
Norms Analysis which provides a structured approach to elicit the social (cultural)
aspect values embedded in the business. The articulation of the social values helps to
provide a more complete and holistic representation of the business services in the
organisation. We have, using the example, shown how to identify the business norms
provided by the analysis methods and techniques. We have also addressed the need to
include the cultural aspects that impact the business and IT alignment. Although the
social aspect is considered as implicit knowledge, it can have a significant influence
on the business service values and IT applications that support the business services.

The holistic representation from the business service analysis is complemented by
the Business Service Valuation in the Portfolio Valuation where the emphasis is on
determining the cultural values of the business service. The analysis is performed by
capturing the organisation stakeholders’ perception of the business services and IT
applications. The outcome of the complete valuation phase enhances the holistic view
of their business-IT alignment presented in the Business Service Analysis and con-
tributes to the other analysis components, specifically the Strategy Formulation com-
ponent, where a future IT strategy and a roadmap for an improved alignment can be
developed for the organisation.

Future work will focus on the development of a complete consulting methodology.
This will include a validation of the architecture using actual organisations. This is
critical to test the framework against real business issues to ensure the validity of the
methodology for practical use. Further development to complete the consulting meth-
odology toolset is also under construction.

References

1. Chan, Y.E., Reich, B.H.: IT alignment: what have we learned? Journal of Information
Technology 22, 297–315 (2007)

2. Tallon, P.: The Alignment Paradox. CIO Insight (2003),
http://www.cioinsight.com/c/a/Past-News/Paul-Tallon-The-
Alignment-Paradox/

3. Campbell, B.: Alignment: Resolving ambiguity within bounded choices. In: Pacific Asia
Conference on Information Systems, Bangkok, Thailand (2005)

4. Lagerström, R., et al.: Enterprise Meta Modelling Methods - Combining a Stakeholder-
Oriented and A Causality-Based Approach. In: 13th International Workshop on Exploring
Modelling Methods in Systems Analysis and Design 2009, Amsterdam, The Netherlands
(2009)

5. Gartner: Gartner Says Worldwide IT Spending On Pace to Surpass $3.4 Trillion in 2008
(2008), http://www.gartner.com/it/page.jsp?id=742913

6. Gartner: Gartner Says Worldwide IT Spending to Grow 5.3 Percent in 2010 (2010),
http://www.gartner.com/it/page.jsp?id=1339013

7. Luftman, J., Kempaiah, R., Rigoni, E.H.: Key Issues for IT Executives 2008. MIS Quar-
terly Executive 8(3), 151–159 (2008)

434 K. Liu et al.

8. Liu, K.: Semiotics in Information Systems Engineering. Cambridge University Press,
Cambridge (2000)

9. Ulrich, W., McWhorter, N.: Defining Requirements for a Business Architecture Standard,
B.A.S.I.G. Technical Report, The OMG (2010)

10. Versteeg, G., Bouwman, H.: Business architecture: A new paradigm to relate business
strategy to ICT. Information Systems Frontiers 8(2), 91–102 (2006)

11. Luftman, J., Brier, T.: Achieving and Sustaining Business-IT Alignment. California Man-
agement Review 42(1), 109–122 (1999)

12. Trist, E.L., Bamforth, K.W.: Some Social and Psychological Consequences of the Long-
wall Method of Coal-Getting. Human Relations 4(1), 3–38 (1951)

13. Baxter, G., Sommerville, I.: Socio-technical systems: From design methods to systems en-
gineering. Interacting with Computers, Corrected Proof (2008) (in press, Corrected Proof)

14. Walker, G.H., et al.: A review of sociotechnical systems theory: a classic concept for new
command and control paradigms. Theoretical Issues in Ergonomics Science 9(6), 479–499
(2008)

15. Mumford, E.: A Socio-Technical Approach to Systems Design. Requirements Engineer-
ing 5(2), 125–133 (2000)

16. Chan, Y.E.: Why Haven’t We Mastered Alignment? The Importance of the Informal Or-
ganization Structure. MIS Quarterly Executive 1(2), 97–112 (2002)

17. Zacarias, M., et al.: Adding a Human Perspective to Enterprise Architectures. In: Wagner,
R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 840–844. Springer,
Heidelberg (2007)

18. Zachman, J.: A framework for information systems architecture. IBM Systems Jour-
nal 26(3), 276–292 (1987)

19. Jonkers, H., et al.: Concepts for Modeling Enterprise Architectures. International Journal
of Cooperative Information Systems 13(3), 257–287 (2004)

20. TOGAF: TOGAF version 9 Enterprise Edition. The Open Group Architecture Framework,
TOGAF (2009)

21. Buckl, S., et al.: Using Enterprise Architecture Management Patterns to Complement TO-
GAF. In: IEEE International on Enterprise Distributed Object Computing Conference,
EDOC (2009)

22. Brahe, S.: BPM on Top of SOA: Experiences from the Financial Industry. Business Proc-
ess Management 96–111 (2007)

23. Hagel Iii, J., Singer, M.: Unbundling the Corporation. Harvard Business Review 77(2),
133–141 (1999)

24. Iansiti, M., Levien, R.: The Keystone Advantage. Harvard Business School Press, Boston
(2004)

25. Erl, T.: SOA: Principles of Service Design. The Prentice Hall Service-Oriented Computing
Series from Thomas Erl. Prentice Hall/PearsonPTR (2008)

26. Bieberstein, et al.: Impact of service-oriented architecture on enterprise systems, organiza-
tional structures, and individuals. International Business Machines 44(18) (2005)

27. Orriens, B., Yang, J., Papazoglou, M.P.: A Rule Driven Approach for Developing Adap-
tive Service Oriented Business Collaboration. In: Benatallah, B., Casati, F., Traverso, P.
(eds.) ICSOC 2005. LNCS, vol. 3826, pp. 61–72. Springer, Heidelberg (2005)

28. Cherbakov, L., et al.: Impact of service orientation at the business level. IBM Syst.
J. 44(4), 653–668 (2005)

29. Reich, B.H., Benbasat, I.: Factors that Influence the Social Dimension of Alignment be-
tween Business and Information Technology Objectives. MIS Quarterly 24(1), 81–113
(2000)

 A Design of Business-Technology Alignment Consulting Framework 435

30. Kilpeläinen, T.: From Genre-based Ontologies to Business Information Architecture De-
scriptions. In: 17th Australasian Conference on Information Systems, Adelaide, Australia
(2006)

31. Luftman, J., Papp, R., Brier, T.: Enablers and inhibitors of business-IT alignment. Com-
mun. AIS, 1(3es) (1999)

32. Grant, K., Hackney, R., Edgar, D.: Strategic Information Systems Management. Thomas
Rennie (2010)

33. Hull, E., Jackson, K., Dick, J.: Requirements Engineering. Springer, Heidelberg (2005)
34. Kotonya, G., Sommerville, I.: Viewpoints for requirements definition. Software Engineer-

ing Journal 7(6), 375–387 (1992)
35. Liu, K., Sun, L., Tan, S.: Modelling complex systems for project planning: a semiotics mo-

tivated method. International Journal of General Systems 35(3), 313–327 (2006)
36. Coughlan, J., Macredie, R.D.: Effective Communication in Requirements Elicitation: A

Comparison of Methodologies. Requirements Engineering 7(2), 47–60 (2002)
37. Neill, C.J., Laplante, P.A.: Requirements engineering: the state of the practice. IEEE Soft-

ware 20(6), 40–45 (2003)
38. Samuel, R., et al.: A pattern-based method for building requirements documents in call-

for-tender processes. Technical Report. Technomathematics Research Foundation (2009)
39. Toro, A.D., et al.: A Requirements Elicitation Approach Based in Templates and Patterns.

In: WER 1999, pp. 17–29 (1999)
40. Stamper, R., et al.: Understanding the Roles of Signs and Norms in Organisations. Journal

of Behaviour and Information Technology 19(1), 15–27 (2000)
41. Stamper, R.K.: Knowledge as action: a loci of social norms and individual affordances.

Social Action and Artificial Intelligence (1985)
42. Stamper, R., et al.: Signs plus norms - one paradigm for organisation semiotics. In: The

First International Workshop on Computational Semiotics, Paris, France (1997)
43. Hall, E.T.: The Silent Language. Doubleday and Company, New York (1959)
44. CEAR: Business Aligned IT Strategy (BAITS) - Methodology and User Guide. Capgemini

Enterprise Architecture Research (2009)
45. Osterwalder, A.: The Business Model Ontology - a proposition in a design science ap-

proach. In: Institu d’Informatique et Organisation. University of Lausanne, Lausanne
(2004)

ONTECTAS: Bridging the Gap between

Collaborative Tagging Systems and Structured
Data

Ali Moosavi, Tianyu Li, Laks V.S. Lakshmanan, and Rachel Pottinger

University of British Columbia, Vancouver, BC, Canada
{amoosavi,lty419,laks,rap}@cs.ubc.ca

Abstract. Ontologies define a set of terms and the relationships (e.g.,
is-a and has-a) between them; they are the building block of the emerg-
ing semantic web. An ontology relating the tags in a collaborative tag-
ging system (CTS) makes the CTS easier to understand. We propose an
algorithm to automatically construct an ontology from CTS data and
conduct a detailed empirical comparison with previous related work on
four real data sets – Del.icio.us, LibraryThing, CiteULike, and IMDb.
We also verify the effectiveness of our algorithm in detecting is-a and
has-a relationships.

Keywords: ontology, taxonomy, tag, collaborative tagging systems.

1 Introduction

Ontologies organize information in content management systems and are the
core building blocks of the emerging Semantic Web. Substantial work has been
done in extracting ontologies automatically from large repositories like text cor-
pora, databases, and the web. This paper focuses on collaborative social tagging
systems (CTSs) such as Del.icio.us (for tagging bookmarks), Flickr (for tagging
photos), IMDb (for tagging movies), LibraryThing (for tagging books) and Ci-
teULike (for tagging publications). These systems permit users to tag and share
resources (documents, photos, videos, etc.). Our goal is to create a generic on-
tology of the tags from a CTS. By ontology, we mean a set of concepts from a
domain, represented by the tags, and their (is-a and has-a) relationships.

Learning an ontology from a CTS can help make the CTS more useful. For
example, browsing an ontology of tags from a CTS can help users better refine
their queries, either to find more items by using a more general term or to find
fewer items by using a more specific term. This is especially important in a
CTS since the resources are typically labeled by a small, sparse, set of tags —
so discovering content in CTSs by simple keyword search is much harder than
in document and web search. Another application of domain specific ontology
builders is to enhance search engines with ontologies. E.g., the prototype Clever
Search system [15] merges words and their word senses in the general ontology,
WordNet1, and returns more relevant result items to the user.
1 http://wordnet.princeton.edu

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 436–451, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

ONTECTAS: Bridging the Gap between CTSs and Structured Data 437

In principle, we could use a general purpose ontology such as WordNet to
browse a CTS; there are two disadvantages. First, tags in CTSs are not based on
a fixed vocabulary but constantly evolve. Thus, one cannot expect WordNet (or
similar systems) to capture the vocabulary in a dynamic CTS, e.g., “Mac OS X”.
Secondly, as we demonstrate in Section 7, even when terms corresponding to tags
in a CTS are present in WordNet, in many cases, valid is-a relationships between
them that are found by our algorithm are missing in WordNet. This mirrors a
similar finding for the ontology extracted from Wikipedia using YAGO [25]; using
a combination of WordNet and Wikipedia found significantly more ontological
relationships (including is-a) that were absent in WordNet.

This paper studies the following problem: given a collaborative tagging system
consisting of users, resources (also called items), and tags assigned by users to
items, extract an ontology consisting of tags in the CTS and is-a and has-a rela-
tionships between the tags. We consider has-a relationships in addition to is-a:
indeed, is-a and has-a relationships are among those most used in ontologies
with rich relationships, such as WordNet.

Our algorithm for ontology extraction from CTSs is predicated on the hy-
pothesis that tags assigned to a resource by a group of users tend to contain
both child and parent tags. We have conducted experiments to validate this
assumption in the full version of our paper[20]. A possible explanation for this
phenomenon is that different users may use tags at different levels of abstraction
(from an underlying ontology in their mind); thus tags for the same item may
include more abstract or more specific terms as an aggregation effect of various
tagging behaviors. We leverage this hypothesis using association rules [1] and
lexico-syntactic patterns to find relationships between tags. Our approach ac-
counts for bi-grams (which can affect the precision of detected relationships),
multi-word tags, and also infer non-trivial is-a relationships from detected ones.
We make the following contributions:

– We propose (Sections 4 through 6) an algorithm for ontology extraction from
a CTS, called ONTECTAS (for ONTology Extraction from Collaborative
TAgging Systems). The highlights of the algorithm include:

• Candidate is-a relationships are mined using association rules, making
use of both forward and reverse confidence (Section 4.1).

• Invalid tuples are pruned based on discovering bi-grams (Section 4.3).
• Headword detection is leveraged for discovering relationships between

multi-word tags (Section 4.4).
• Lexico-syntactic patterns are used for detecting is-a and has-a rela-

tionships. To our knowledge, we are the first to explicitly extract has-a
relationships from CTSs (Section 5).

• Based on items in the ontology having a common (is-a) child, additional
is-a relationships are inferred (Section 6).

– We demonstrate via a comprehensive set of experiments on four real datasets
that our algorithm outperforms previous algorithms w.r.t. quality and rich-
ness of the extracted ontology (Section 7).

438 A. Moosavi et al.

Section 2 discusses related work. Section 3 formalizes the problem studied in this
paper. Section 8 concludes and discusses future work.

2 Related Work

Some other works have studied extracting ontologies from CTSs. Some ap-
proaches [16,18,2] match CTS tags to concepts in general purpose ontologies
such as WordNet, resulting in a graph of tags. However, because CTSs are ad-
hoc and use terms dynamically, general purpose ontologies miss many terms
as well as edges (i.e., relationships). For example, our experiments show that
WordNet misses more than 25% of correct edges between concepts extracted
from Del.icio.us, even when both parent and child concepts are in WordNet.

Schmitz [23] constructs weighted graphs based on conditional probabilities
between pairs of tags. His algorithm cannot identify the exact relationship (e.g.,
is-a and has-a) between terms — it simply says they are related, not how. By
contrast, our algorithm pinpoints is-a and has-a relationships between terms.

Heymann and Garcia-Molina [10] create an ontology by vectorizing the tags
and finding the cosine similarity between tags. However, their method puts every
tag from the similarity matrix into the taxonomy which causes many erroneous
edges. Their work lacks an evaluation.

Schmitz et al. [22] use association rule mining to build a tree of related tags
from a CTS; however, they do not explain how the edges are built or what types
of relationships they model. We explain this in depth and also use lexico-syntactic
patterns and a search engine to detect accurate is-a and has-a relationships.
[24] extends [22] and [10] by considering the tag’s context. Barla and Bieliková [3]
consider tag context similarly to [24].

The DAG algorithm [5] distinguishes between subjective and objective tags.
After calculating feature vectors for each objective tag, DAG places tags with
higher entropy in higher levels of abstraction. Like many other previous works,
DAG does not determine the type of relationship between concepts.

Lin et al. [19] build a subsumption graph from the folksonomy and use a
random walk to sort tags by generality ranking. They put tags in the taxonomy
based on support and confidence between candidate nodes from the graph. They
only consider a single sense for each tag, which leads to missed relationships. The
authors claim building transactions for tags associated to items by specific users
will lead to the best taxonomy because it preserves most of the information. In
contrast, we found that user information does not improve taxonomy quality.

Körner et al. [14] categorize users by the kind of tags they use. They show that
excluding some users can reduce noise and improve precision. This improvement
is orthogonal to the contribution we make in this paper and is applicable in our
context as well. We leave adapting ONTECTAS to this as future work.

Hearst [9] defines a set of patterns that indicate is-a relationships between
words in text documents. [4,6] find patterns for detecting has-a relationships
from text corpora. To our knowledge, our work is the first to extend the lexico-
syntactic patterns to find relationships of any type between tags in CTSs.

ONTECTAS: Bridging the Gap between CTSs and Structured Data 439

In sum, in contrast to previous works on ontology extraction from CTSs, our
method is capable of detecting both has-a and is-a relationships and explicitly
identifying each. Our multi-stage algorithm also extracts high quality relation-
ships between multi-word tags.

3 Problem Statement

A collaborative tagging system [22] is a 4-tuple C = (U, T, I, Y) where U is a set
of users, T is the set of tags used by the users, I is the set of items (resources) to
which tags are assigned by users, and Y , the set of tag assignments, is a ternary
relation on tags, users, and items, i.e., Y ⊆ U × T × I.

Specific CTSs may vary in detail from our definition above, e.g., IMDb does
not have user information. We can model such CTSs by dropping U and defin-
ing Y ⊆ T × I as a binary relation. CTSs such as [11] allow users to declare
their own is-a relationships. User-supplied is-a relationships can augment those
automatically extracted but cannot supplant them because of the scale.

This paper studies how to efficiently extract is-a and has-a relationships
between tags in a given CTS. The output ontology consists 〈tag1, tag2, label〉
tuples where tag1 is the super class and label is either is-a or has-a.2 E.g., the
tuple 〈OS, Windows, is-a〉 indicates that Windows a kind of OS.

4 Ontology Extraction from Collaborative TAgging
Systems (ONTECTAS) Algorithm

Algorithm 1. ONTECTAS
Input: (D) A set of 〈item, tag〉 2-tuples or 〈user, item, tag〉 3-tuples
Output: (O) Ontology of tags with is-a and has-a relationships
1: D′ ← Preprocess D. /*D′ is a set of 〈item, tag〉 tuples*/
2: 〈Tbasic, F 〉 ← Association Rule Tuple Detection(D′) /*Algorithm 2*/
3: Tpruned ← Bigram Filtering(Tbasic) /*Algorithm 3*/
4: 〈Theadword, O〉 ← Headword Detection(Tpruned) /*Algorithm 4*/
5: O ← O ∪ is-a Relationship Detection(Theadword, is-a-patterns,

is-a − threshold) /*Algorithm 5*/
6: O ← O ∪ has-a Relationship Detection(Theadword, has-a-patterns,

has-a − threshold)
7: Tco parent ← Co Parent Pruning(Theadword, F) /*Algorithm 6*/
8: Return O ∪ is-a Relationship Detection(Tco parent, is-a − patterns,

is-a − threshold) /*Algorithm 5*/

Our ONTECTAS algorithm for ontology extraction (Algorithm 1) consists of six
phases. First, data is preprocessed and cleaned. Next, we extract candidate tag
tuples via association rule mining using forward and reverse confidence. We then
2 In both relationships tag2 is-a tag1 and tag1 has-a tag2, we refer to tag1 as the

super class label or the parent label for convenience, by abusing terminology.

440 A. Moosavi et al.

remove tuples corresponding to bigrams. Next, we detect headwords of multi-
word tags and use this to infer additional is-a relationships. We then use lexico-
syntactic patterns to extract additional is-a and has-a relationships. Finally,
we leverage pairs of tags sharing a common child in the extracted ontology to
infer additional is-a relationships. The next three sections describe the phases.

4.1 Preprocessing

The preprocessing step is primarily a cleaning step. It takes as input a CTS and
performs the following tasks: (1) Any user information is projected away; we
found looking at transactions at the level of group of users was most effective in
ontology extraction. (2) Words with non-English characters are removed from
the input data using the same method as in [5]. This adequately removed non-
English words from all of our datasets. (3) Basic stemming: singular nouns are
substituted for their plural forms. (4) Since tags occurring very infrequently are
not statistically reliable, we removed tags or items that occurred fewer than 5
times. This threshold was determined empirically. (5) Verbs and verb phrases
are removed by applying the Stanford parser3 to each tag. This prunes tags that
are used for organizing but convey no meaning about the item being tagged [7].

4.2. Detecting Potential Relationships Using Association Rules

Adapting tagged data to market basket analysis requires defining how to build
transactions from tags, which in turn requires defining “co-occurrence”. We ex-
plored three different definitions of co-occurrence. Empirically, we determined
that the most effective co-occurrence definition is the following: Tags t and t′

co-occur if both were used to tag the same item (by possibly different users). The
frequency of {t, t′} equals the number of distinct items which were assigned both
tags t and t′. Our careful study of the best definition of co-occurrence [20] allows
us to more optimally use association rules than previous approaches, e.g., [23].

We use the FP-tree association rule mining algorithm [8] to extract frequent
tag sets4 and interesting rules from the set of transactions. The support of a tag
set X is the proportion of transactions containing tag set X and the confidence
of a rule is defined as confidence(X ⇒ Y) = support(X ∪ Y)/support(X) — i.e.,
the proportion of transactions in which X and Y occur together among those in
which X appears. In this paper, we refer to the well-known definition of confidence
as forward confidence (FC). We also introduce a new notion, reverse confidence
(RC) as follows: reverse confidence(X ⇒ Y) := support(X ∪ Y)/support(Y).

We assume tags assigned by users tend to contain both a term in the ontology
and another term that has relationship with it. Therefore, if two keywords co-
occur frequently, they are likely to be related. We use support to filter sets of tags
with a cardinality of two. However, popular unrelated terms may occur together
frequently, so we use confidence to remove tuples containing unrelated tags.
Because terms which co-occur with high confidence are sometimes synonyms

3 http://nlp.stanford.edu/software/lex-parser.shtml
4 Tag sets correspond to itemsets in the context of frequent itemset mining.

ONTECTAS: Bridging the Gap between CTSs and Structured Data 441

Algorithm 2. Association Rule Tuple Detection
Input: (D) A set of 2-tuples in form of 〈item, tag〉
Output: (T) Preliminary tag tuples, (F) Set of frequent itemsets
1: Group D by item. /*create: 〈item, {tag1, ..., tagk}〉*/
2: S ← Union of tags associated with each item (i.e., S is set of transactions)
3: F ← Frequent itemsets of size two from S where support > min support

/*FCi and RCi are forward and reverse confidence respectively*/
4: for all Fi ∈ F do
5: if ((FCi ≥ min conf.) and (RCi ≤ 1 − min conf.)) OR ((RCi ≥ min conf.)

and (FCi ≤ 1 − min conf.)) then
6: Add Fi to T
7: end if
8: end for
9: Return 〈T, F 〉

(e.g., “os” and “operating system”), we use confidence in the reverse direction to
ensure that terms are related with is-a or has-a relationships. Different values
for min support and min conf. can drastically change the size of the ontology;
in our experiments these values were chosen empirically. At the end of this step,
we have not yet classified the relationships into is-a and has-a.

4.3 Pruning Edges between Bi-gram Elements

In this phase, bi-gram tuples which are common phrases are automatically
pruned using a search engine. Usually bi-grams are compound nouns in the
form of “adjective + noun” (e.g., free software) or “noun + noun” (e.g., web
browser). Bi-grams do not contain is-a or has-a relationships but sometimes
are incorrectly detected as edges of an ontology since they co-occur frequently.

Finding bigrams by using a search engine [26,12,17] has not previously been
applied to extracting relationships between CTS tags. ONTECTAS sends two
keyword queries to a search engine for each relationship tuple (Algorithm 3).
The queries are the quoted permutations of the terms in the tuple. If the ratio of
the number of results returned for the two queries is larger than a threshold, the
terms in the relationship tuple are regarded as bi-grams. E.g., if the relationship
tuple is 〈software, free〉, the queries are “free software” and “software free”.
Since the ratio is higher than the threshold for this tuple, it is detected as a
bi-gram and pruned. We experimentally found that the optimal threshold for
detecting bi-grams is between 50 and 100. Because words in text documents
have Zipfian distribution, [12] suggests using a logarithmic transformation of
returned result counts. We found that the logarithmic transformation is also
more accurate in detecting bi-grams.

4.4 Detecting Headwords in Multi-word Tags

Since many CTS tags are multi-word tags in form of compound phrases such as
“science-fiction” and “object-oriented-data-model”, we use headword detection

442 A. Moosavi et al.

Algorithm 3. Bi-gram Filtering
Input: (T) A set of 2-tuples of the form 〈tag1, tag2〉
Output: (T ′) A reduced set of 2-tuples
1: T ′ ← T
2: for all T ′

i ∈ T ′ do
3: ratio1 ← # of hits of querying “tag1 tag2” as a phrase
4: ratio2 ← # of hits of querying “tag2 tag1” as a phrase
5: ratio ← log(max(ratio1,ratio2))

log(min(ratio1,ratio2))

6: if ratio ≥ bi − gram threshold then
7: remove T ′

i from T ′

8: end if
9: end for

10: Return T ′

to extract additional is-a relationships (Algorithm 4). First, the Stanford parser
detects the headwords for each phrase. A headword is a phrase’s grammatically
most important word; it determines the phrase’s syntactic type. We then extract
an is-a relationship for each multi-word tag by putting the headword as the
parent of the whole phrase. E.g., we can infer “object-oriented data model” is-a
“model”. In this phase, more candidate tuples are produced by using either whole
phrases or their headwords as the tags in tuples.

Algorithm 4. Headword Detection
Input: (T) A set of 2-tuples of the form 〈tag1, tag2〉
Output: (T ′) A set of enhanced 2-tuples, (O) Ontology with is-a relationships
1: T ′ ← T
2: for all Ti ∈ T do
3: if Ti contains multi-tags then
4: head1 ←headword in tag1
5: head2 ←headword in tag2
6: O ← O ∪{〈head1, tag1, is-a〉}
7: O ← O ∪{〈head2, tag2, is-a〉}
8: T ′ ← T ′ ∪ {〈head1, tag2〉, 〈head2, tag1〉, 〈head1, head2〉}
9: end if

10: end for
11: Return 〈T ′, O〉

5 Using Lexico-Syntactic Patterns

Finally, we analyze occurrences of lexico-syntactic patterns to detecting is-a and
has-a relationships. Due to data sparsity, lexico-syntactic patterns do not occur
frequently enough to accurately detect relationships between terms [21]. Hence,
we build on [13] and query the web for more occurrences of the patterns.

The core of our lexico-syntactic search is shown in lines 3-6 of Algorithm 5:
given two tags and a pattern, we generate two keyword queries by considering

ONTECTAS: Bridging the Gap between CTSs and Structured Data 443

Algorithm 5. is-a Relationship Detection
Input: (T , P , threshold) Where T is a set of 〈tag1, tag2〉 tuples , P is a set of patterns
Output: (I) A set of 2-tuples in form of 〈parent tag, child tag〉
1: for all ti ∈ T do
2: for all pj ∈ P do
3: hits1 ← # of hits of querying “ti.tag1 pj ti.tag2” as a phrase
4: hits2 ← # of hits of querying “ti.tag2 pj ti.tag1” as a phrase
5: ratioj .F ← hits1

hits2

6: ratioj .R ← hits2
hits1

7: end for
8: maximumF ← max(ratioj .F) over all j
9: maximumR ← max(ratioj .R) over all j

10: maximum ← max(maximumF , maximumR)
11: if ((maximum = maximumF) and (maximumF ≥ threshold)) then
12: I ← I ∪{〈tag1, tag2, is-a〉}
13: else
14: if ((maximum = maximumR) and (maximumR ≥ threshold)) then
15: I ← I ∪{〈tag2, tag1, is-a〉}
16: end if
17: end if
18: end for
19: Return I

the two possible permutations of the tags in the pattern. E.g., given (“human”,
“body”, “’s”), the two generated queries will be “human’s body” and “body’s
human”. Then, the ratios for both forward and reverse occurrences direction are
calculated. It is clear that given any set of patterns for any relationship, this
algorithm can be applied. We use the following patterns from [9] to identify is-a
relationships: (1) Pattern 1: NP1 such as NP2; (2) Pattern 2: NP1 including
NP2; (3) Pattern 3: NP1 especially NP2.

Our has-a relationships are supersets of meronymy (part-of relationships),
and are not limited to the physical perspective. We consider two noun phrases
NP1 and NP2 to have a has-a relationship (with NP1 as the parent) if one
of the following statements is true: (1) NP2 is a part of NP1. E.g., “body” is
a part of “human”; or (2) NP1 has/have NP2. E.g., “human” has “mind” and
“google” has “googleMaps”; or (3) NP1 may have NP2. E.g., “human” may have
“disease”.

From the existing lexico-syntactic patterns mentioned in the literature such
as [4,6], we use three following patterns to detect has-a relationships:(1) Pattern
1: NP1’s NP2; (2) Pattern 2: NP2 of the NP1; (3) Pattern 3: NP2 of NP1.

While patterns 1 and 2 are among the most common English patterns [6],
pattern 3 is not. However, pattern 3 can be used to detect has-a relationship
between tags such as the tuple 〈Coffee, Caffeine〉.

All patterns for a relationship are fed into a search engine. If the largest ratio
of a pattern is above a threshold, that tuple is labeled with the corresponding
relationship and added to the ontology. Algorithm 5 shows the is-a detection

444 A. Moosavi et al.

algorithm. The has-a algorithm is similar, but requires that pattern 1 and
one of patterns 2 and 3 are above the threshold. Both thresholds were found
experimentally. In our experiments, the is-a threshold was 7 and has-a threshold
ranged from 20 to 50.

6 Exploiting Co-parents to Find More is-a Relationships

Examining the ontology built thus far reveals an interesting property when pairs
of tags share the same child. Consider the following example: the ontology may
contain “fiction → urban-fantasy” and “fantasy → urban-fantasy”, where “fic-
tion” and “fantasy” are both parents for “urban-fantasy” w.r.t. the is-a rela-
tionship.5 However, the is-a relationship between “fiction” and “fantasy” may
be missing. One possible reason for this is that people tend to use the more spe-
cific tags leading to “fiction → urban-fantasy” and “fantasy → urban-fantasy”,
so that “fiction → fantasy” does not occur above the relatively high threshold
needed to avoid noise.

Hence we have the following hypothesis: in a co-parent structure it is more
likely than usual that the two parents are in an is-a relationship. Hence, we
include the following additional step (Algorithm 6) to ONTECTAS: for such co-
parent pairs, we re-examine the pair’s confidences under a lower threshold and
extract candidate tuples for an is-a relationship.

Algorithm 6. Co Parent Pruning
Input: (T) A set of tuples with is-a relationships in form 〈parentTag, childTag〉; (F)

A set of frequent itemsets
Output: (T ′) An enhanced set of tuples with is-a relationships
1: T ′ ← T
2: G ← A graph where each tuple in T corresponds to an edge from parentTag to

childTag.
3: S ← All tuples of tags 〈parent1, parent2, child〉

s.t. (1) edge(parent1 → child) ∈ G and (2) edge(parent2 → child) ∈ G and
(3) edge(parent1 → parent2) /∈ G and (4) edge(parent2 → parent1) /∈ G.

4: for all 〈parent1, parent2, child〉 ∈ S do
5: if {parent1, parent2} is frequent and if it satisfies lower forward and reverse

confidence thresholds then
6: Add 〈parent1, parent2〉 to T ′ with the more frequent tag as the parent.
7: end if
8: end for
9: Return T ′

As a final step of the ONTECTAS algorithm, following standard practice in
ontology extraction algorithms, if the graph of relationships is disconnected, we
add a generic “Entity” root node and make it the parent of all orphan nodes.

5 Here, —fiction” → “urban-fantasy” means “urban-fantasy” is-a “fiction”.

ONTECTAS: Bridging the Gap between CTSs and Structured Data 445

7 Experiments

7.1 Datasets and Assumptions

Our experiments used four real datasets: Del.icio.us (a social bookmarking web
service), IMDb (the Internet Movie Database), LibraryThing (for tagging books)
and CiteULike (a service for storing, organizing, and sharing scholarly papers).
Table 1 shows the characteristics of the datasets. User information is not avail-
able in the IMDb dataset, so competing algorithms were unable to create on-
tologies from it.

Table 1. Corpus Details in Some Collaborative Tagging Systems

Del.icio.us CiteULike IMDb LibraryThing

(Dec. 2007) (Jan. 2010) (Nov. 2009) (corpus from Delft∗)
Number of Tags 6,933,179 431,160 2,593,747 10,469

Number of Items 54,401,067 2,081,799 356,162 37,232

Number of Users 978,979 60,220 N/A 7,279

Number of Tag Assignments 450,113,886 7,922,454 2,625,237 2,415,517

∗ http://homepage.tudelft.nl/5q88p/LT

To show that general purpose ontologies are insufficient, we validated that
WordNet misses many relationships between terms even when it contains both
terms. To show this, we evaluated a sample ontology (from Del.icio.us) both
manually and by using all parent-child senses (meanings) in WordNet. We lim-
ited our experiments to relationships where both parent and child term exist in
WordNet. This gives WordNet an advantage since many tags do not appear in
WordNet at all. In this case, we found WordNet is missing 26.9% of manually
validated relationships discovered by ONTECTAS. For example, WordNet con-
tains 3 senses for “python”, but none of these senses is related to programming;
as a result, “programming → python” is missing in WordNet.

Since our approach is successful, it is clear that our hypothesis that a group
of users tend to tag items with both parent and child tags is validated. The
full version of this paper [20] shows detailed experiments which validate this
empirically. We discuss our results, beginning with has-a relationship detection.

7.2 Evaluation of ONTECTAS in Detecting has-a Relationships

Table 2 shows the precision of ONTECTAS in detecting has-a relationships.
None of the other competing algorithms address has-a relationships from CTSs.
Table 2 only reports precision for ONTECTAS, the first algorithm to detect
has-a from CTS data.

One challenge in detecting has-a relationships was that pattern-based search
engine queries such as “human’s middle” and “middle of human” are frequently
part of phrases such as “human’s middle finger” and “middle of human history”.
Clearly, there is room for improvement in ONTECTAS’ precision in has-a de-
tection, which we plan to address in future work.

446 A. Moosavi et al.

Table 2. Precision in detecting has-a relationships

Del.icio.us CiteULike LibraryThing IMDb

Precision 51.6% 61.9% 55.5% 33.3%

7.3 Evaluation of ONTECTAS in Detecting is-a Relationships

In the following, we focus on is-a relationships. All competing algorithms do not
distinguish between is-a and other relationships such as synonyms, whereas we
clearly isolate is-a relationships. We lump all other relationships into any and
compare the performance of ONTECTAS on is-a with that of other algorithms
on is-a and any, giving them an advantage, since in this evaluation, we do
not give credit to ONTECTAS for correctly finding has-a relationships. We use
the following standard performance measures: (1) Precision: We consider the
precision of ONTECTAS on is-a with that of other algorithms on is-a+ any.
Precision for both is the number of correct edges over the number of all edges. (2)
Maximum depth and average depth of the is-a taxonomy. (3) Average number
of children. A higher value of the last two measures implies richer ontology is
extracted. In addition, following [19], we compare all algorithms with a gold
standard to see how they fare in trying to recreate manually-curated ontologies.

For depth and breadth metrics, we calculate these metrics on an ontology
with only correct relationships to ensure algorithms cannot earn an artificially
and unfairly high score on these by finding many incorrect relationships!

Absolute recall for ontology extraction from a large CTS is very hard to
measure. Instead, we propose a new metric: relative recall. Relative recall for
an algorithm is the number of valid is-a relationships found by the algorithm
divided by the total number of valid is-a relationships found by all algorithms.

7.4 Comparing ONTECTAS to Other Algorithms

We compare ONTECTAS with the four algorithms from Section 2: 1) the algo-
rithm from [19] (abbreviated “LFZ”) 2) the DAG algorithm [5] (“DAG-ALG”) 3)
Schmitz’s algorithm [23] (“Schmitz”), and 4) Barla and Bieliková’s algorithm [3]
(“BB”). Since these algorithms cannot process the IMDb dataset due to the
lack of user information, we only compare them on Del.icio.us, LibraryThing,
and CiteULike.

To have a fair comparison, we implemented the above algorithms as closely
as possible to the way their authors had implemented them; we used the param-
eters that were described in the papers and contacted the authors for additional
information about how to make their algorithms as competitive as possible.

Validating the edges manually required that each algorithm output a small
number of edges. To do so, we put another threshold on the number of times a
tag, an item, or a user must occur in order to be considered. To be fair, we used
the same threshold to ensure that each algorithm output fewer than 150 edges.

ONTECTAS: Bridging the Gap between CTSs and Structured Data 447

0 3

0.4

0.5

0.6

0.7

0.8

0.9
Pr
ec
isi
on

ONTECTAS BB Schmitz LFZ DAG

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Del.icio.us CiteULike LibraryThing

Pr
ec
isi
on

ONTECTAS BB Schmitz LFZ DAG

(a) Precision

0.2

0.25

0.3

0.35

0.4

0.45

Re
la
tiv
e
Re

ca
ll

ONTECTAS BB Schmitz LFZ DAG

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Re
la
tiv
e
Re

ca
ll

ONTECTAS BB Schmitz LFZ DAG

Del.icio.us CiteULike LibraryThing

(b) Relative Recall — is-a

1

1.5

2

2.5

Av
er
ag
e
De

pt
h

ONTECTAS BB Schmitz LFZ DAG

0

0.5

1

1.5

2

2.5

Del.icio.us CiteULike LibraryThing

Av
er
ag
e
De

pt
h

ONTECTAS BB Schmitz LFZ DAG

(c) Average Depth

3

4

5

6

7

M
ax
im

um
De

pt
h

ONTECTAS BB Schmitz LFZ DAG

0

1

2

3

4

5

6

7

Del.icio.us CiteULike LibraryThing

M
ax
im

um
De

pt
h

ONTECTAS BB Schmitz LFZ DAG

(d) Maximum Depth

Fig. 1. Comparison of ONTECTAS to other algorithms for different metrics. Lower
bars show is-arelationships and higher bars show “any” relationships.

Figure 1(a) shows the algorithms’ precision for both is-a relationships (the
lower bars) and any relationships (the higher bars); for is-a relationships, the
precision of ONTECTAS is 0.50 for Del.icio.us, 0.48 for LibraryThing and 0.29
for CiteULike. ONTECTAS outperforms the precision of all other algorithms on
all datasets. We also compare our precision on is-a with that on is-a+ any for
the other algoritms since they do not distinguish is-a from non-is-a. Even then
ONTECTAS outperforms the other algorithms in del.icio.us and CiteULike. On
LibraryThing, the performance is close to the winner.

Figure 1(b) compares the algorithms’ relative recall for is-a relationships.
ONTECTAS is the best performer for all three datasets. One reason for DAG-
ALG’s bad relative recall is that it detected many popular tags such as “web”
and “software” as subjective tags, and pruned them before discovering the edges.
BB had relatively low precision and recall in CiteULike because it detected
many relationships with the tag “no-tag”, which is a popular tag rather than
an ontological tag. ONTECTAS performs the best for relative recall for any
relationships [20].

448 A. Moosavi et al.

Figures 1(c) and 1(d) measure the depth of the validated ontology detected by
each algorithm for both is-a (lower bars) and any relationships (higher bars).
These measures quantify the richness of the ontology. If there are multiple paths
from the root to a node n, the depth is the longest path. Because the other
algorithms find just any relationship between elements in an ontology, rather
determining the types of relationships, like ONTECTAS does, we measure both
the is-a relationships and any relationships found. We do not consider has-a
since no other algorithms detect it. Notice that this gives an advantage to the
competing algorithms. For the depth metrics, other algorithms usually find a
long chain with combination of synonyms and is-a relationships. Since ONTEC-
TAS detects mostly is-a or has-a (and not synonyms), maximum depth for
any relationship in ONTECTAS is close to maximum depth of is-a relationship
because in general of chains containing is-a and has-a are rare.

For is-a relationships, ONTECTAS has the highest maximum depth for two
out of three datasets. In the full version of the paper [20], we show that the
average number of children is similar to the average depth. For the average
number of children, ONTECTAS has the best performance for CiteULike, is
roughly tied for Library thing, and is second best for Del.icio.us.

Even when competing algorithms are given credit for any relationships and
ONTECTAS only for finding is-a, ONTECTAS performs fairly well. This is
because there are so many is-a relationships detected as compared to the other
relationship types.

For all of the depth/children metrics, we note that all algorithms perform
markedly better using our preprocessing step of removing verb phrases. This step
helped a lot in removing non-ontological tags such as “to-read” in the Del.icio.us
dataset. By applying this to all algorithms, we have improved all algorithms’
performance, not just ONTECTAS’s. Figure 1 also shows that most of the
algorithms performed better on most measures for the Deli.icio.us and Library-
Thing datasets than on CiteULike. This validates the fact that the tags in these
datasets are of better quality than the ones in CiteULike. This shows that we
can compare different CTSs on the quality of tagging actions, using an ontology
creation algorithm.

In summary, ONTECTAS outperforms the four other algorithms on precision
and relative recall for is-a relationships, and does well on the structural metrics
of maximum depth, average depth and average number of children.

7.5 Comparing with a Gold Standard

Following [19], we compared how the algorithms extracted is-a relationships
against a “gold standard” ontology — the concept hierarchy from the Open
Directory Project (ODP) 6. To judge precision, recall, and F-measure, we use
the lexical and taxonomic metrics from [19]. The lexical metrics measure how well
the algorithms did in recreating the concepts , and the taxonomic metrics show
how well the algorithms did in recreating the structure. Notice that comparing
with a static ontology considered as gold standard has its problems since it
6 http://dmoz.org

ONTECTAS: Bridging the Gap between CTSs and Structured Data 449

Table 3. Gold standard based lexical and taxonomic comparison

Lexical Taxonomic
ONT LFZ BB DAG Schmitz ONT LFZ BB DAG Schmitz

Precision 0.261 0.743 0.183 0.745 0.128 0.480 0.077 0.434 0.123 0.329
Recall 0.240 0.006 0.244 0.025 0.007 0.723 0.023 0.711 0.783 0.256

F-Measure 0.044 0.011 0.043 0.049 0.014 0.577 0.035 0.539 0.212 0.288

may miss important concepts and relationships and a good algorithm that finds
concepts and relationships manually verified to be correct may get penalized
unfairly. We will return to this point. The full version of this paper [20] shows
the formal definitions of the measures and the detailed results. Due to space
limitations, we only cover the highlights in this paper.

We looked at the 25 highest-level concepts common across the five algorithms.
Table 3 shows the results. Bolded entries represent the best performance.

ONTECTAS has the second highest overall lexical recall and f-measure, which
shows that it did well at finding the desired concepts. While DAG had the highest
lexical precision and f-measure, and BB had the highest lexical recall, they both
did very poorly on taxonomic precision, leading to a low taxonomic f-measure.

LFZ had a very good lexical precision; however, this is achieved by reporting a
very small number of correct concepts. ONTECTAS is superior to LFZ in terms
of all three taxonomic measures.

Because the 25 highest level common concepts were very uneven in size, we
performed an analysis of the 6 largest subtrees — otherwise algorithms would
be testing against subtrees that were only one or two concepts large. When we
considered only the 6 largest subtrees, ONTECTAS had the best lexical and
taxonomic f-measure.

Comparing to a gold standard shows how well algorithms do against a man-
ually created ontology. But since a gold standard ontology is static, this metric
may unfairly penalize algorithms that genuinely find correct concepts and rela-
tionships. E.g., “dialect” and “software is-a technology” is incorrect according
to this standard. Thus, comparing algorithms should take into account other
components discussed above as well.

8 Conclusion and Future Work

We proposed an algorithm (ONTECTAS) for building ontologies of keywords
from collaborative tagging systems. ONTECTAS uses association rule mining,
bi-gram pruning, exploiting pairs of tags with the same child, and lexico-syntactic
patterns to detect relationships between tags. We also provided a thorough anal-
ysis of ONTECTAS and how it compares to other algorithms. Some of the
important open problems include detecting spam users, improving accuracy of
ontology extraction via supervised learning and by means of incorporation of
part-of-speech detection. Our ongoing work addresses some of these.

450 A. Moosavi et al.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: VLDB, pp. 487–499 (1994)

2. An, Y.J., Geller, J., Wu, Y.-T., Chun, S.A.: Automatic generation of ontology from
the deep web. In: Database and Expert Systems Applications (2007)

3. Barla, M., Bieliková, M.: On deriving tagsonomies: Keyword relations coming from
crowd. In: Conference on Computational Collective Intelligence (2009)

4. Berland, M., Charniak, E.: Finding parts in very large corpora. In: Annual Meeting
of the Association for Computational Linguistics, pp. 57–64 (1999)

5. Eda, T., Yoshikawa, M., Uchiyama, T.: The effectiveness of latent semantic anal-
ysis for building up a bottom-up taxonomy from folksonomy tags. World Wide
Web 12(4), 421–440 (2009)

6. Girju, R., Badulescu, A., Moldovan, D.: Automatic discovery of part-whole rela-
tions. Comput. Linguist. 32(1), 83–135 (2006)

7. Golder, S., Huberman, B.A.: The structure of collaborative tagging systems. Jour-
nal of Information Science 32(2), 198–208 (2005)

8. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data Mining and Knowledge Dis-
covery 8(1), 53–87 (2004)

9. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In:
Conference on Computational linguistics, pp. 539–545 (1992)

10. Heymann, Garcia-Molina.: Collaborative creation of communal hierarchical tax-
onomies in social tagging systems. Technical Report 2006-10, Stanford (2006)

11. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: BibSonomy: A social bookmark
and publication sharing system. In: Conceptual Structures Tool Interoperability
Workshop at the International Conference on Conceptual Structures (2006)

12. Keller, F., Lapata, M.: Using the web to obtain frequencies for unseen bigrams.
Computational Linguistics 29(3), 459–484 (2003)

13. Keller, F., Lapata, M., Ourioupina, O.: Using the web to overcome data sparseness.
In: ACL Conference on Empirical Methods in NLP, pp. 230–237 (2002)

14. Körner, C., Benz, D., Hotho, A., Strohmaier, M., Stumme, G.: Stop thinking, start
tagging: tag semantics emerge from collaborative verbosity. In: WWW (2010)

15. Kruse, P.M., Naujoks, A., Rsner, D., Kunze, M.: Clever search: A wordnet based
wrapper for internet search engines. In: Proceedings of the 2nd GermaNet Work-
shop (2005)

16. Laniado, D., Eynard, D., Colombetti, M.: Using wordnet to turn a folksonomy into
a hierarchy of concepts. In: Semantic Web Application and Perspectives - Fourth
Italian Semantic Web Workshop, pp. 192–201 (December 2007)

17. Lapata, M., Keller, F.: Web-based models for natural language processing. ACM
Transactions on Speech and Language Processing 2, 1–31 (2005)

18. Lin, H., Davis, J., Zhou, Y.: An integrated approach to extracting ontological
structures from folksonomies. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano,
P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.)
ESWC 2009. LNCS, vol. 5554, pp. 654–668. Springer, Heidelberg (2009)

19. Liu, K., Fang, B., Zhang, W.: Ontology emergence from folksonomies. In: CIKM,
pp. 1109–1118 (2010)

20. Moosavi, A., Li, T., Lakshmanan, L.V., Pottinger, R.: ONTECTAS: Bridging
the gap between collaborative tagging systems and structured data (full version),
http://www.cs.ubc.ca/~rap/ontectas.pdf

http://www.cs.ubc.ca/~rap/ontectas.pdf

ONTECTAS: Bridging the Gap between CTSs and Structured Data 451

21. Sánchez, D., Moreno, A.: Learning non-taxonomic relationships from web docu-
ments for domain ontology construction. DKE 64(3), 600–623 (2008)

22. Schmitz, C., Hotho, A., Jäschke, R., Stumme, G.: Mining association rules in folk-
sonomies. In: Classification, Data Analysis, and Knowledge Organization (2006)

23. Schmitz, P.: Inducing ontology from flickr tags. In: Collaborative Web Tagging
Workshop at WWW (2006)

24. Schwarzkopf, E., Heckmann, D., Dengler, D., Kroner, E.: Mining the structure of
tag spaces for user modeling. In: Wkshp. on Data Mining for User Model. (2007)

25. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In:
WWW, pp. 697–706 (2007)

26. Zhu, X., Rosenfeld, R.: Improving trigram language modeling with the world wide
web. In: Acoustics, Speech, and Signal Processing, pp. 533–536 (2001)

Cognitive Complexity in Business Process

Modeling

Kathrin Figl1 and Ralf Laue2

1 Vienna University of Economics and Business Administration, Austria
kathrin.figl@wu.ac.at

2 Computer Science Faculty, University of Leipzig, Germany
laue@ebus.informatik.uni-leipzig.de

Abstract. Although (business) process models are frequently used to
promote human understanding of processes, practice shows that under-
standing complex models soon reach cognitive limits. The aim of this
paper is to investigate the cognitive difficulty of understanding differ-
ent relations between model elements. To allow for empirical assessment
of this research question we systematically constructed model sets and
comprehension questions. The results of an empirical study with 199
students tend to suggest that comprehension questions on order and
concurrency are easier to answer than on repetition and exclusiveness.
Additionally, results lend support to the hypothesis that interactivity of
model elements influences cognitive difficulty. While our findings shed
light on human comprehension of process models, they also contribute
to the question on how to assure understandability of models in practice.

Keywords: Business Process Models, Understandability, Cognitive
Complexity.

1 Introduction

Business process models (BPM) serve as a basis for communication between
domain experts, business process analysts and software developers. To fulfill
this purpose, such models have to be easy to understand and easy to maintain.
Comprehension of process models is relevant for all tasks in which users interact
with models, as for example in business process redesign or implementation of
process-aware systems.

Many researchers have recently turned to investigate comprehensibility of pro-
cess models and investigated various influence factors as modularity [1], domain
knowledge [2] and notational aspects [3]. In addition, various complexity metrics
have been proposed for BPM in the past years (see [4,5] for the discussion of rel-
evant concepts and [6] for a comprehensive survey on related work). It has been
shown that some of these metrics are significantly correlated with the number
of control-flow errors in a BPM [5] and with the understandability of a BPM,
measured in terms of correctly answered questions about the model [7,8]. [2] and
[7] discuss how global measures (like the number of split nodes in a BPM) affect
the understandability of a BPM.

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 452–466, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Cognitive Complexity in Business Process Modeling 453

However, the scope of existing studies is limited, because the metrics used in
these studies assign single (global) values to a BPM to describe its complexity.
Ananda et al. [9] state: “Although studying the overall comprehensibility of
a model is important, from a language evolution perspective it is even more
relevant to discover which elements of a notation work well and which do not.”
With this paper, we want to give some first answers on the question which
relations between model elements in a BPM are difficult to understand.

Despite increasing consciousness about the need to consider comprehensibility
of process models, little research has been undertaken in order to improve and
understand the relationships between modeling elements and comprehensibility.
In this paper, we want to explore comprehensibility as a local property. This
means that we measure the comprehensibility of a specific part of a BPM instead
of the model as a whole. This way, we seek to investigate, which relations between
elements in a graphical BPM are difficult to understand. In the research area of
software complexity metrics, similar research has been published by Yang et al.
[10]. Research results suggest that local complexity metrics could be a promising
predictor for understandability. Therefore, we address the question as to when
or under what circumstances similar relationships with local metrics will emerge
in the context of BPM.

Our motivation is to complement the existing stream of work on improving
the comprehensibility of BPM by examining local comprehensibility. In contrast
to existing research such as [7,8] we assign own metrics to each comprehension
question in our study, not to the models as a whole.

The remainder of this paper proceeds as follows: First, comprehensibility of
process model elements and their relationships is placed in context with a review
of relevant theoretical perspectives. Next, we articulate a research model. Then,
we discuss design and findings of an empirical study. The final section discusses
the limitations of our work and presents the implications of our research.

2 Measuring the Cognitive Load of Process Models

2.1 Comprehensibility and Cognitive Load Theory

For defining the term comprehensibility, we adapt the definition for understand-
ing of computer programs given by Biggerstaff [11] by relating it to the modeling
context and replacing the word “program” by “BPM”:

“A person understands a BPM when they are able to explain the BPM, its
structure, its behavior, its effects on its operational context, and its relationships
to its application domain in terms that are qualitatively different from the tokens
used to construct the BPM in a modeling language.”

Further popular explanations of the term comprehensibility such as “the ease
with which the . . . model can be understood” [12] suggest that cognitive effort
is an important factor determining model comprehensibility and should be as
low as possible. Based on the complex relationships and control flow logic of
organizational processes in practice, understanding of BPM is a task likely to
demand high cognitive effort.

454 K. Figl and R. Laue

For conceptualizing model comprehensibility in greater detail we draw on
the notion that understanding of a fact in a BPM becomes more difficult if
the number of model elements that need to be attended to increases. This is
backed by the work on Cognitive Load Theory. Cognitive Load Theory builds
on the fact that the capacity of the working memory at a given point of time is
limited [13]. If the amount of information to be processed exceeds this capacity,
comprehension is affected negatively. It has been shown that an instructional
design that avoids an overload of the working memory makes understanding of
the instructional material easier [14]. Prior research on various visual languages
like entity-relationship models [15] or UML class diagrams [16] suggests that
reducing the cognitive load improves the understandability of visual models.

2.2 Influence Factors for Model Comprehensibility

To determine the relevant factors for the cognitive load involved in understanding
elements and their relations in a model, we draw on work on BPM metrics.

Relations between Elements. Based on the similarity between structures
in software code and process models, research results on code comprehensibil-
ity can serve as a profound basis for analyzing BPM comprehensibility. A large
body of research exists on the cognitive complexity of different programming
elements. Different control structures demand e.g. different levels of effort for
understanding [17]. Little research has been undertaken to investigate the cog-
nitive difficulty of different understanding tasks in process models. First efforts
have been made by Melcher et al. [18]. In an experiment with 42 students reading
a rather small BPM (containing 12 activities) they found that understandability
values for questions on the four aspects order, concurrency, repetition and exclu-
siveness are different. As this is the only study in this context, further empirical
research still needs to be done. Additionally, there is another strand of research
stemming from the area of cognitive psychology, relating control flow elements
and cognitive effort. Research on deductive reasoning has shown that systematic
fallacies (so called ‘illusory inferences’) can occur when individuals construct
or interpret mental models on premises concerning modeling-level connectives
(like conjunctions or disjunctions) [19]. This situation may also be present for
externalized visual BPM and may lead to higher error rates for understanding
specific control flow elements. The current body of literature on error analysis
of process models suggests for instance the existence of systematic reasoning
fallacies concerning routing elements as inclusive OR gateways [20].

Element Interactivity. The cognitive load that a task imposes on a person is
represented by the number of elements that have to be attended to. This num-
ber is determined by the level of interactivity between the elements. Elements
interact if they are interrelated such that it is necessary to assimilate them si-
multaneously [21]. High interactivity leads to high cognitive load because each
element has to be processed with references to other elements. On the other
hand, cognitive load is low if the elements can be processed serially without
referring to other elements.

Cognitive Complexity in Business Process Modeling 455

1

4

2

3

5

6

7

9

8

10

11

12

13

14

15 16

19

18

17

21

20

A

B
C

D

E

F

G H

I

LK

M

N

= AND

= exclusive OR

Fig. 1. Business process model, structured into regions

Fig. 2. PST for the model shown in Fig. 1

In order to define a measure for the cognitive load resulting from the effort
to understand the relation between two elements in a BPM, we follow the idea
of Vanhatalo et al. [22] to decompose the BPM into canonical fragments with
a single entry and a single exit. These fragments can be arranged in a process-
structure tree (PST) such that there is exactly one PST for each BPM. For
details we refer to [22], but we introduce the concept of a PST by an example.
Fig. 1 shows a BPM (similar to the ones used in our experiment) and its canonical
fragments that form the PST. Additionally to the fragments that are marked
with dotted boxes, all single activities and the model as a whole are canonical
fragments in the PST. From the example, it can be seen that canonical fragments
can be nested. For example, the fragments D and E are within a larger fragment
C. The depth of the nesting shows how many routing constructs in the BPM
have to be understood in order to reason about the execution of an activity. The
PST of the model is shown in Fig. 2. For a better readability, the control nodes
(called gateways in BPMN) are omitted in this graph.

We argue that the distance between two elements in the PST can serve as a
measure for the interactivity between those elements. Each region in the PST
represents one concept (for example the concept of an exclusive choice or the
concept of parallel branching) that the reader of the model has to understand.
If elements are located in deeply nested control-flow blocks, the reader has to
understand a large number of concepts before being able to answer a question
on the relation between those elements. In this case, the path between the two

456 K. Figl and R. Laue

elements in the PST contains many arcs. On the other hand, if both elements are
located into the same control block without additional nesting, they will also be
in the same region of the PST, i.e. there are exactly two arcs in the PST between
the elements. The assumption that the PST-distance can be an indicator of the
difficulty to reason about a relation between two model elements is in line with
the conceptual model of cognitive complexity by Cant et al. [23] that has been
developed with respect to understanding software. Cant et al. discuss nesting
within a a piece of software and argue that “the number of ‘steps’ [groups of
control-flow statements; note from the authors] involved indicates the number
of chunks which need to be considered” [23].

Formally, we define the PST-distance between two elements A and B of a BPM
as the number of arcs between A and B in the PST minus one. This means that
elements in a sequence or in the same control block have a PST-distance of 1.
For example, in Fig. 1 the activities 17 and 18 which are executed in parallel
inside the same control block have a PST-distance of 1 while the activities 16
and 17 (the latter is inside the fragments M and N) have a PST-distance of 3.

Element Separateness: Cut-Vertices. A second aspect we take into account
when discussing the interactivity between elements A and B in a BPM is the
special case where a single arc in the BPM separates the BPM into two disjoint
parts P1 and P2 such that A ∈ P1 and B ∈ P2.

In terms of graph theory this means that the connected graph G that forms
the BPM has a so-called cut-vertex on a path from A to B, i.e. a vertex that
when removed causes that the remaining graph is not connected anymore. If
such a cut-vertex between A and B exists, the mental model of the relationships
between A and B becomes much easier, because A is located “before” and B
is located “after” an easy-to-spot reference point (the cut-vertex). For example,
in Fig. 1 it is easy to see that activity 7 cannot be executed after activity 17.
Because of the cut-vertices before and after activity 16, this can be concluded
without analyzing the control structures in which the activities 7 and 17 are
embedded. The assumption that the presence of a cut-vertex makes it easier to
understand a model is backed by results by Mendling and Strembeck [2] who
found that a large number of cut-vertices in a model has a positive effect on its
understandability.

3 Research Model

Having laid out the relevant theoretical factors related to local understandability
of process models, we will now draw several propositions to suggest how these
factors will influence cognitive difficulty in comprehension tasks. Prior research
on process model comprehension has almost exclusively focused on global model
understanding, a focus of study that we extend in this paper by looking at the
understandability of relations between elements in a process model.

Fig. 3 shows our research model. The model proposes that the cognitive dif-
ficulty of understanding the relation between model elements is influenced by

Cognitive Complexity in Business Process Modeling 457

Model Elements
F: Relations between

Elements
O: Item Type Cognitive Difficulty
• Order
• Concurrency
• Exclusiveness

F: Objective Cognitive
Difficulty

O: Item Difficulty
• Repetition

O: Item Difficulty

F: Subjective Cognitive
F: Element Interactivity F: Subjective Cognitive

Difficulty
O: Subjective Rating of

Cognitive Load

O: Process-Structure-
Tree Distance

g
F: Element

Separateness
O: Cut-Vertex

KEYKEY
F: Theoretical Factor O: Operationalisation of Factor

Fig. 3. Research Model

three factors: the type of relation between elements that has to be understood,
the interactivity and the separateness of elements.

Following the research model, we now discuss three expected effects. As we
anticipate similar effects on both objective as well as subjective side of the de-
pendent variable ’cognitive difficulty’, we formulate hypotheses for cognitive dif-
ficulty in general. First, we turn to different relations between elements. We
state:

H1. The type of relation between elements that has to be understood (or-
der, concurrency, repetition, exclusiveness) will have an influence on cognitive
difficulty of understanding.

Second, we turn to the interactivity between elements. We expect that it
is more difficult to understand relations between elements with a large PST-
distance between them. Therefore, we have:

H 2. The interactivity between elements (high PST-distance) will be posi-
tively associated with the cognitive difficulty of understanding the relation be-
tween them.

Additionally we hypothesize if separateness of elements is low, understanding
their relation gets easier:

H 3. High separateness between elements (existence of a cut-vertex between
those elements) will be negatively associated with the cognitive difficulty of
understanding the relations between them.

458 K. Figl and R. Laue

4 Research Method

4.1 Design and Measures

To test our hypotheses, we conducted an experiment in which the participants
had to answer questions on a BPM. Model understandability (in terms of cor-
rectly answered questions) and perceived subjective difficulty were measured
at each of the four levels order, concurrency, repetition and exclusiveness of the
factor “type of comprehension question”. To manipulate the main factor we con-
structed comprehension questions targeting the four different relations between
activities.

Comprehension Questions. When selecting the questions, we took into con-
sideration the work of Melcher et al. [18]. However, in comparison to [18] we for-
mulated questions consistently, so that participants always had to consider two
model elements (two activities) and their relationship for answering a question.
Additionally we tried to use every-day-language in the questions. We used two
different wordings to ask for the four relations between activities. To demon-
strate the type of questions we refer to two activities with alphabetic names,
although A and B were replaced with activity labels in the test material:

– Concurrency:
• “A and B can be executed at the same point of time.”
• “A and B can be executed in parallel.”

– Exclusiveness:
• “In one process instance, A as well as B can be executed.”
• “The activities A and B are mutually exclusive.”

– Order:
• “If A as well as B are executed in a process instance, then A has to be

finalized, before B can start.”
• “If A as well as B are executed in a process instance, then A is executed

before B.”
– Repetition:

• “A can be executed more often than B.”
• “In each process instance A is executed exactly as often as B.”

We took care that the wording in the questions is understandable, and we ran
a pre-test in order to make sure that the participants understood the questions
[24]. The comprehension questions, to which participants had to give a response
of “right”, “wrong” or “I don’t know”, were selected so that each activity was
addressed approximately once in each diagram. The response option “I don’t
know” was included to lower guessing probability.

Questionnaire Construction. For each model in the questionnaire we posed
the same eight types of comprehension questions. Despite the use of the same
wording, it is obvious that there is a large number of possibilities how to ask these
questions, because any two activities can be targeted with the same question. We
identified two basic variations: 1) the statement given in the question is correct

Cognitive Complexity in Business Process Modeling 459

Version A Version B

Concurrency 1: L and M can be executed at
the same point of time. (correct, close)

Concurrency 1: D and P can be executed
at the same point of time. (wrong, distant)

Concurrency 2: G and S can be executed in
parallel. (wrong, distant)

Concurrency 2: G and H can be
executed in parallel. (wrong, close)

Exclusiveness 1: In one process instance E as
well as F can be executed. (correct, close)

Exclusiveness 1: In one process instance
K as well as S can be executed. (correct,
distant)

Exclusiveness 2: The process steps C and R
are mutually exclusive. (wrong, distant)

Exclusiveness 2: The process steps E and
F are mutually exclusive. (wrong, close)

Sequence 1: If T as well as J are executed in
a process instance, then T has to be finalized,
before J can start. (wrong, distant)

Sequence 1: If A as well as C are
executed in a process instance, then A has
to be finalized, before C can start.(correct,
close)

Sequence 2: If B as well as A are executed in
a process instance, then B is executed before
A. (wrong, close)

Sequence 2: If B as well as T are
executed in a process instance, then B is
executed before T. (correct, distant)

Repetition 1: U can be executed more often
than D. (correct, distant)

Repetition 1: L can be executed more
often than M. (wrong, close)

Repetition 2: In each process instance Q is
executed exactly as often as P. (correct, close)

Repetition 2: In each process instance O
is executed exactly as often as I. (correct,
distant)

A

B DC

E F
G I

H J

K

L M N

O

P

SRQ

U
T

Fig. 4. Example of Asking Model Comprehensability Questions

or wrong and 2) the location of the chosen activities. For varying the location
of activities consistently, we decided to use pairs of activities, which are either
close (≤ 1 activity between them) or distant (> 1 activity between them). As a
consequence, we constructed the test material, such that each question was used
once in each of four constellations (correct-close, correct-distant, wrong-close,
wrong-distant), leading to 32 different question instances.

To ensure reliability of measurement we used a replication of the study design
(questionnaire version A and B). In the replication, exactly the same models and
comprehension questions were used, but the questions were asked for different
activities in another constellation. Fig. 4 demonstrates how questions were asked
for a specific process model.

Measured Variables. The outcome of our main dependent variable compre-
hension is cognitive per se, i.e. it is created in the viewer’s cognition and not
directly observable. Therefore, it can only be measured indirectly or via com-
prehension questions. According to Aranda et al. [9] there are four variables
that can measure comprehensibility: correctness (did the participant give the
right answer?), confidence (certainty of the participant in his answers), perceived
difficulty (to answer the question, as subjective judgment by the participant)
and time (required to give an answer). In our experiment, we chose to use the
main objective and subjective measure of cognitive difficulty, viz. the percentage
of correct answers (correctness) as objective measure and the user’s rating of
cognitive load as subjective measure (perceived difficulty). To measure the per-
ceived difficulty, we asked the users to rate it on a 7-point Likert-scale (with the
labels “very difficult”, “difficult”, “rather difficult”, “neither difficult nor easy”,
“rather easy”, “easy” and “very easy”).

460 K. Figl and R. Laue

4.2 Materials

Questionnaire Parts. We used a pencil-and-paper questionnaire including
three different sections in the experiment. The first section comprised items
to obtain information about participants’ demographic data, academic quali-
fications and modeling experience. Participants were asked about the number
of years they had worked in the IT sector and the extent to which they had
previously been involved with modeling in the context of education and work.
After the first section, the questionnaire included a tutorial on process modeling,
which covered all aspects the participants would need to know to perform the
comprehension tasks. The third section included four different models with eight
corresponding comprehension tasks per model. The amount of models used was
determined by the selection of the comprehension questions during the experi-
ment, as we wanted to ask 32 different instances of comprehension questions. To
avoid order effects due to decreasing motivation or concentration of participants,
we used two different scramblings. Models as well as comprehension questions
were presented in different order, respectively.

Model Domain. The four models were selected from different domains such
that we could expect that they are understandable for an average student with
no special domain knowledge.

Model Language. Because it has been shown that the graphic style of a model-
ing language can influence the understandability of the model [25], we presented
BPM modeled using different graphic styles. The models were modeled in differ-
ent modeling directions and with three different routing symbol designs (UML
Activity Diagrams, BPMN and Event-Driven Process Chains). These variations
were included for allowing to generalize findings beyond specific layout and de-
sign restrictions. Additionally, they served as an experimental control to prevent
a possible bias due to choosing only one modeling direction and routing symbols
from a specific modeling language for all diagrams.

Model Layout. We took into account that a change in the graphical layout of a
BPM can influence its comprehensibility [9]. For this reason, we took care that the
graphical layout of the models did not impose additional challenges to the reader.

Model Size. Each of the four models used contained 21 activities. The model
size was held constant for all models, because this variable is likely to have an
influence on cognitive load of answering understandability questions.

4.3 Participants

A total of 199 business students participated in this study (125 males, 74 fe-
males), aged 23.5 years on average. Of all respondents, 36% were undergraduate
students, 60% were master’s level students and 4% had already completed their
master’s degrees. 67% had received training in modeling at university with 1.6
credit hours on average. About half of participants were familiar with Event-
Driven Process Chains (60%) and UML Activity Diagrams (50%). 27% had
work experience in the IT industry and 10% had already worked with BPMs.

Cognitive Complexity in Business Process Modeling 461

5 Results

We first screened the data for its conformance with the assumptions of our sta-
tistical test. One assumption behind the use of ANCOVAs is that the variables
are normally distributed. Kolmogorov-Smirnov tests confirmed that the depen-
dent variables “percentage of correct answers” and “perceived difficulty” met
this criterion (p = 0.105 and p = 0.722).

For each dependent variable, we ran a univariate ANCOVA with “relations
between elements” and “element separateness” as independent factors and “el-
ement interactivity” as a covariate. According to the respective hypothesis, the
percentage of correct answers and the perceived difficulty were the dependent
variables. The ANCOVAs allow us to test the influence of the three predictor
variables (two independent variables and a covariate) on the dependent variables
as well as possible interaction effects. We use “element interactivity” as a co-
variate, because it is a continuous variable, which co-varies with the dependent
variables percentage of correct answers (r = −0.37, p = 0.002) and perceived
difficulty (r = −0.61, p < 0.001). Therefore, the covariate accounts for variance
in the dependent variables and the inclusion of the covariate can increase the
statistical power of the procedure.

5.1 Results for Hypothesis 1

ANCOVA results indicate that there is a effect of different types of relations
between model elements (order, concurrency, repetition and exclusiveness) on
cognitive difficulty of understanding their relation (H1). While there is only a
trend for the percentage of correct answers (F3,55 = 2.65, p = 0.058), the effect
on perceived difficulty is significant (F3,55 = 4.20, p = 0.010). According to our
results, Hypothesis 1 is supported concerning subjective (perceived) difficulty,
but only tentatively concerning objective difficulty (correct answers). Table 1
gives the percentage of correct answers and perceived difficulty for each type of
relation. Order was the easiest relation (80% correct answers) with the lowest
subjective difficulty (3.08), followed by concurrency (83%, 3.20). Exlusiveness
was most the most difficult relation concerning correct answers (70%, 3.19) and
repetition was rated as the most difficult by participants (71%, 3.58).

Table 1. Results for Hypothesis 1 (influence of types of relations between model ele-
ments), scale for perceived difficulty from 1=”very easy” to 7=”very difficult”)

type of relation percentage of correct answers perceived difficulty

Mean SD Mean SD

order 85% 6.16 3.08 0.35

concurrency 83% 10.09 3.20 0.28

repetition 71% 11.40 3.58 0.33

exclusiveness 70% 23.73 3.19 0.43

462 K. Figl and R. Laue

Table 2. Results for Hypothesis 2 (Influence of PST-Distance)

PST-distance cases percentage of correct answers perceived difficulty

Mean SD Mean SD

1 19 80.2% 20.62 2.89 0.31

2 13 79.5% 10.35 3.30 0.26

3 15 76.9% 15.06 3.42 0.27

4 5 76.4% 76.38 3.47 0.54

5 6 64.9% 64.85 3.55 0.29

6 4 74.8% 74.80 3.47 0.36

7 2 79.6% 79.64 3.54 0.28

5.2 Results for Hypothesis 2

As expected, the covariate PST-distance (element interactivity) has an influence
on the percentage of correct answers (F1,55 = 4.32, p = 0.042). Additionally
there is a highly significant effect on perceived difficulty (F1,55 = 22.04, p <
0.001). Table 2 shows the average percentages of correct answers and the average
perceived difficulties across different PST-distances. Hypothesis 2 predicted that
PST-distance will be positively associated with cognitive difficulty. Therefore,
Hypothesis 2 is supported.

5.3 Results for Hypothesis 3

79.9% of the questions about two activities with a cut-vertex between them
have been answered correctly, compared to 75.8% of the questions about two
activities without a cut-vertex. Although the difference between means shows in
the expected direction, the results of the ANCOVA indicate that this difference
is not statistically significant and that there is also no significant influence on
perceived difficulty. Moreover, there are also no interaction effects of “element
separateness” (cut vertex) with “relations between elements”.

Therefore, there is not enough evidence to support Hypothesis 3, which ex-
pected that the presence of a cut-vertex makes it easier to answer a question.

6 Discussion

This study provides empirical results on the influence of different relation types
of elements, their interactivity and their separateness on cognitive difficulty of
understanding the relation between elements.

In line with our predictions in Hypothesis 1, we found that different control
structures in a BPM (like order or concurrency) differ according to their difficulty
to be understood. Our results are in line with [18]. However, results are not
directly comparable, as we used different wordings of possible understandability
questions based on possible issues concerning ambiguousness (see [24] for details)
and consistently addressed two model elements in the questions.

Cognitive Complexity in Business Process Modeling 463

We further found that users perceive the relation between elements with a
larger PST-distance as more difficult to understand. This effect has not been
researched so far but is comparable to the discussion whether the nesting level
in a BPM has an influence on its understandability. Mendling et al. [7,8] did not
found a significant relationship between the nesting level and the understand-
ability of a model. However, while Mendling et al. regarded the nesting level as
a global attribute of a BPM, we related the PST-distance to the model elements
we asked about.

While our results on Hypothesis 2 support the theory that the PST-distance
is correlated with the difficulty of a task, the results are still not yet conclusive.

In particular, in our experiment there were too few cases with a PST-distance
greater than 3 to come to reliable results about deeply nested model elements.
Furthermore, in the models we used for our experiment, the presence of a cut-
vertex was more likely between elements with a large PST-distance (like the
activities 10 and 20 in Fig. 1). This can explain the fact that understanding for
the elements with PST-distance 6 and 7 was better than for those elements with
PST-distance 5 (see Tab. 2). Future research on this question will be necessary.

An interesting observation was that in some cases, a small PST-distance can
even mislead to a wrong conclusion. For the model shown in Fig. 1, we asked
the question whether both activity 5 as activity 6 can occur in the same process
instance. Because of the exclusive OR-gateway before those activities, 76% of
the participants answered “no”. We assume that they did not bother to look at
the parts of the model outside fragment E. Therefore they did not realize that
this fragment is inside a loop and can be executed more than once.1

Our results did not confirm an influence of the existence of a cut vertex on the
cognitive difficulty of an understanding task (H3). This relationship has also been
discussed by other authors [7,8,2]. In contrast to our results, a similar experiment
by Mendling and Strembeck [2] provided support for the hypothesis that a BPM
with more cut-vertices is easier to be understood. Further studies [7,8] yielded
inconsistent results on this topic, so further research will be necessary.

From a more general perspective, our findings highlight that reducing the cog-
nitive load improves the understandability of process models as already demon-
strated for other visual models [15,16]. Additionally our results provide support
for the contention that the cognitive process for understanding a model depends
on the actual task being carried out. This has already been substantiated in the
research area of software comprehension by the work of Gilmore and Green [26].

7 Limitations

As with all studies, the research results presented here are subject to a number
of limitations.

Model Size. We acknowledge that our models might not be representative for
all kinds of BPM. Models from real projects are often much larger than the

1 A very similar observation has been reported in [7].

464 K. Figl and R. Laue

ones used in our experiment. On the other hand, selecting rather simple models
allowed us to keep the number of activities constant for all models and to avoid
models that cannot be understood without the knowledge of a particular domain.

Questions. Right/wrong questions can introduce a measurement error, because
on average 50% of the questions will be answered by guessing alone. For this rea-
son, we left the possibility of checking “I don’t know”. Additionally, we acknowl-
edge that for some questions users might have guessed the expected answer based
on domain knowledge. Future research should collect similar data sets based on
models with meaningless activity labels like “activity XY” as suggested in [27].
While we did not find understanding problems during the pre-test, in the analysis
we realized that the statement “The activities A and B are mutually exclusive.”
gives room for misunderstandings (“A and B can not be processed either at the
same time vs. both in the same process instance”). However, as those questions
did not lead to more wrong answers as the alternative questions (see Sect. 4.1),
we refrained from excluding these questions from our data.

Participants. The participants of our study were students who were familiar
with the modeling languages, although they were not experts in this area. The
results might differ if the experiment is replicated with experts in business pro-
cess modeling [28]. We tried to select participants for the experiment so that
there was a variation of little to medium experience with conceptual model-
ing, resembling potential users in practice. However, the results might not be
generalizable to the entire population of BPM users.

Selection of Influence Factors. The factors for BPM understanding we have
analyzed are not exhaustive. For example, we did not take into account the effect
of the type of control structures (for example alternative or parallel branching)
that are nested in the PST-tree. As related papers on this subject suggest that
this factor should be considered as well [23], future research could examine this
topic in detail.

8 Implications and Conclusion

This study is one of the first to investigate understandability as a local property
in a model and denotes an important extension to the literature on influence fac-
tors for BPM understandability. Our main contribution is a first analysis of the
cognitive difficulty of different relations between elements (order, concurrency,
repetition, exclusiveness) in process models. Prior research has predominantly
looked at global understandability of models and differences between models that
influence understandability, in contrast we investigated local understandability
of different items in a model.

Our results have implications for business process modeling practice and re-
search. In terms of research, the results have an implication on the design of
future experiments that measure understandability aspects of BPM. Our results
demonstrate that several aspects of question selection (as the selection of the
model elements and the type of the question) have an influence on cognitive

Cognitive Complexity in Business Process Modeling 465

difficulty. Implications of these results for researchers include exercising caution
when aggregating answering rates of randomly chosen comprehension questions
to total comprehension measures for models. As the choice of questions might
significantly influence comprehension scores, balanced selection and construction
of questions is highly relevant.

In addition, our work provides further evidence that high interactivity of
elements may heighten cognitive load and lower comprehensibility of BPM. If
possible, deep nesting of control-flow blocks should be avoided in order to make
understanding easier and – in the end – to improve the quality of BPM and
reduce modeling errors. Research on modularity of BPM [1] suggests that de-
composing complex models into smaller submodels can improve model compre-
hensibility. Additionally syntax highlighting [29] can be used to heighten com-
prehensibility of deeply nested blocks.

Future research is needed to determine valid and reliable values for the cogni-
tive difficulty of understanding specific relations between model elements. These
values could make it possible to finally estimate understandability of models
without the need of a user evaluation. Looking ahead, exact comprehension val-
ues could then be used to guide modeling tool developers to provide feedback on
cognitive difficulty of models to users or to give hints on possible understand-
ability problems in models.

References

1. Reijers, H., Mendling, J.: Modularity in process models: Review and effects. In:
Proc. of the 6th Int. Conf. on Business Process Management, pp. 20–35. Springer,
Heidelberg (2008)

2. Mendling, J., Strembeck, M.: Influence factors of understanding business process
models. In: Schlender, B., Frielinghaus, W. (eds.) Business Information Systems.
LNBIP, vol. 7, pp. 142–153. Springer, Heidelberg (1974)

3. Genon, N., Heymans, P., Moody, D., Amyot, D.: Improving the cognitive effective-
ness of the bpmn 2.0 visual syntax (2010)

4. Gruhn, V., Laue, R.: Complexity metrics for business process models. In: 9th Inter-
national Conference on Business Information, pp. 1–12. Springer, Heidelberg (2006)

5. Mendling, J.:Metrics for Process Models: Empirical Foundations of Verification,
Error Prediction, and Guidelines for Correctness. LNBIP, vol. 6. Springer, Heidel-
berg (1974)

6. González, L.S., Rubio, F.G., González, F.R., Velthuis, M.P.: Measurement in busi-
ness processes: a systematic review. Business Process Management Journal 16,
114–134 (2010)

7. Mendling, J., Reijers, H.A., Cardoso, J.: What makes process models understand-
able? In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714,
pp. 48–63. Springer, Heidelberg (2007)

8. Reijers, H., Mendling, J.: A study into the factors that influence the understand-
ability of business process models. IEEE Transactions on Systems, Man, and
Cybernetics, Part A (2010)

9. Aranda, J., Ernst, N., Horkoff, J., Easterbrook, S.: A framework for empirical eval-
uation of model comprehensibility. In: MISE 2007: Proceedings of the International
Workshop on Modeling in Software Engineering (2007)

466 K. Figl and R. Laue

10. Yang, J., Hendrix, T.D., Chang, K.H., Umphress, D.: An empirical validation of
complexity profile graph. In: Proceedings of the 43rd Annual Southeast Regional
Conference. ACM-SE 43, vol. 1, pp. 143–149. ACM, New York (2005)

11. Biggerstaff, T.J., Mitbander, B.G., Webster, D.: The concept assignment problem
in program understanding. In: ICSE 1993: Proceedings of the 15th International
Conference on Software Engineering, pp. 482–498 (1993)

12. Moody, D.L.: Metrics for evaluating the quality of entity relationship models. In:
Ling, T.-W., Ram, S., Li Lee, M. (eds.) ER 1998. LNCS, vol. 1507, pp. 211–225.
Springer, Heidelberg (1998)

13. Kirschner, P.A.: Cognitive load theory: implications of cognitive load theory on the
design of learning. Learning and Instruction 12, 1–10 (2002)

14. Sweller, J.: Cognitive load during problem solving: Effects on learning. Cognitive
Science 12, 257–285 (1988)

15. Moody, D.L.: Cognitive load effects on end user understanding of conceptual mod-
els: An experimental analysis. In: Benczúr, A.A., Demetrovics, J., Gottlob, G.
(eds.) ADBIS 2004. LNCS, vol. 3255, pp. 129–143. Springer, Heidelberg (2004)

16. Genero, M., Manso, E., Visaggio, A., Canfora, G., Piattini, M.: Building measure-
based prediction models for UML class diagram maintainability. Empirical Soft-
ware Engineering 12, 517–549 (2007)

17. Cant, S.N., Jeffery, D.R.: A conceptual model of cognitive complexity of elements
of the programming process. Information and Software Tech. 37, 351–362 (1995)

18. Melcher, J., Mendling, J., Reijers, H.A., Seese, D.: On measuring the understand-
ability of process models. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM
2009. Lecture Notes in Business Information Processing, vol. 43, pp. 465–476.
Springer, Heidelberg (2010)

19. Khemlani, S., Johnson-Laird, P.N.: Disjunctive illusory inferences and how to elim-
inate them. Memory & Cognition 37, 615–623 (2009)

20. Mendling, J., Neumann, G., van der Aalst, W.M.P.: Understanding the occurrence
of errors in process models based on metrics. In: Chung, S. (ed.) OTM 2007, Part
I. LNCS, vol. 4803, pp. 113–130. Springer, Heidelberg (2007)

21. Sweller, J.: Cognitive load theory, learning difficulty, and instructional design.
Learning and Instruction 4, 295–312 (1994)

22. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data &
Knowledge Engineering 68, 793–818 (2009)

23. Cant, S., Jeffery, D., Henderson-Sellers, B.: A conceptual model of cognitive com-
plexity of elements of the programming process. Information and Software Tech. 37,
351–362 (1995)

24. Laue, R., Gaddatsch, A.: Measuring the understandability of business process mod-
els - are we asking the right questions? In: 6th International Workshop on Business
Process Design (2010)

25. Nordbotten, J.C., Crosby, M.E.: The effect of graphic style on data model inter-
pretation. Inf. Syst. J. 9, 139–156 (1999)

26. Gilmore, D.J., Green, T.R.G.: Comprehension and recall of miniature programs.
International Journal of Man-Machine Studies 21, 31–48 (1984)

27. Parsons, J., Cole, L.: What do the pictures mean?: guidelines for experimental
evaluation of representation fidelity in diagrammatical conceptual modeling tech-
niques. Data Knowl. Eng. 55, 327–342 (2005)

28. Petre, M.: Why looking isn’t always seeing: readership skills and graphical pro-
gramming. Commun. ACM 38, 33–44 (1995)

29. Reijers, H., Freytag, T., Mendling, J., Eckleder, A.: Syntax highlighting in business
process models. Decision Support Systems (2011) (to appear)

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 467–481, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Human-Centered Process Engineering Based on Content
Analysis and Process View Aggregation

Sonja Kabicher and Stefanie Rinderle-Ma

University of Vienna, Faculty of Computer Science
Vienna, Austria

{sonja.kabicher,stefanie.rinderle-ma}@univie.ac.at

Abstract. In the context of business process modeling, the transformation of
process information elicited from process participants into process models often
remains a black box. This paper presents a method that supports the designer
to extract a formal business process model from natural language captured in
written form in a transparent and traceable way. To-do’s of process participants
are examined by means of the qualitative content analysis in order to identify
essential process elements and to handle different levels of abstraction and la-
bels used for describing operations. Results of the analysis serve as the basis for
shaping process view logs which can be aggregated and merged into entire
process models. The conduction of the method is described in a case study.

Keywords: Process design, Process views, Qualitative Content Analysis.

1 Introduction

Business process modeling is a widely used and accepted technique for capturing,
understanding, and analyzing business processes in organizations. One main goal of
business process modeling is to visualize processes (1) how they are actually
performed (lived process), and (2) how they should be performed (intended process
model). To strengthen organizations’ effectiveness (doing the right things) and effi-
ciency (doing things right), internal transparency and awareness of the organizations’
business processes is needed. From the workflow perspective, business process
modeling plays a key role in the phases design and diagnosis.

In the design phase, designers usually elicit information about the business process
e.g., during workshops and interviews with selected employees (e.g. employees as-
signed to particular roles, middle and top management) [1]. At this stage, the
processes are known and lived in the organization and often exist, at least process
fragments if at all, simply as mental models in the heads of the member staff. The
process designers face the challenge to transform implicit processes into explicit
process models. In the diagnosis phase, which takes place some time after the enact-
ment of the (new or improved) workflow system, the task of the designers is to find
out how performers of the process work with the new system, as well as where and
why they diverge from the intended process [2]. Common practices are, e.g., inter-
views, observations and process mining of event logs. Results are used to understand

468 S. Kabicher and S. Rinderle-Ma

work practice and to refine the process definition, or in other words, to improve the
workflow system’s support of employees in performing their business.

In this work, we present a technique of identifying lived business processes by
means of To-do’s of the performers in a process. Coming from a human-centric per-
spective of business processes and workflows, we argue that a bottom-up approach of
capturing and documenting actually performed business processes leads to a more
faithful process model to reality than a top-down approach. In a bottom-up approach,
performed activities and tasks are collected from the performers of the process and are
mapped to the process model. Thus, the process model is implicitly modeled by all
process participants, whereas in a top-down approach the process model is mainly
defined considering the knowledge about the company’s processes available at vari-
ous management levels, e.g. top-level, middle-, and lower management (depending on
the company’s organizational structure) and the collected data is optionally comple-
mented with process information elicited from samples of further process participants.
The top-down approach seems to be often used in practice when business processes
need to be, e.g. defined and redesigned, as it is a question of time and costs to which
extend all participants of the process are actively involved in the process elicitation
phase.

We assume that personal To-do’s implicate information about process fragments
that are very close to reality and which include information about activities, tasks,
roles, agents, decisions, delegations, time, data, and tools. By personal To-do’s we
understand activities and tasks listed by an individual organizational member in order
to organize his or her work. These lists include activities and tasks (complemented
with additional data if available) sorted in treated chronological order. We consider
To-do lists as a resource of the individual used to perform a particular work task. We
use the terms activity and task according to the definition of BPMN [3].

We use the qualitative content analysis as a technique to capture data of the To-do
lists in a transparent, structured, uniform and comprehensive way. The content analy-
sis supports the process designer to deal with (1) systematic identification of process
elements, (2) homogenization of labels, and (3) granularity of activities. We show
how the output of the analysis can be used to model or mine views of individual proc-
ess participants and to aggregate and merge process fragments resulting from To-do’s
into an entire business process. By the term “process view” we understand a part of a
process (process fragment) that is performed by a single organizational member. The
method presented in the paper is evaluated in a case study.

The work is structured as described in the following. The next section presents the
Business Process Model Extraction (BPME) Method that allows a transparent and
traceable transformation of process information communicated in natural language to
a formal process model. In Section 3 the qualitative content analysis and its potential
to deal with challenges particularly arising in the context of business process model-
ing (level of abstraction, labeling and identification of essential process elements) are
discussed. Section 4 focuses on the preparation of process view logs based on the
output of the qualitative content analysis and the mining of the logs into one entire
process model. The case study which was conducted for the teaching process in a
real-world setting is presented in section 5. In Section 6 related work is reflected and
Section 7 concludes our work.

 Human-Centered Process Engineering 469

2 Challenges and Overall Methodology

The elaboration of business process models is usually performed according to a com-
mon practice. In general, interviews and workshops are conducted in order to ascer-
tain process information which is than interpreted by the designer by means of, e.g.
visual and textual illustrations of the process [4]. So far, the step between information
gathering and the presentation of the process models is handled like a black box. In
this step, the designer’s task is to transform mainly textual descriptions into natural
language of process participants (humans) into a formal process model.

Our work concentrated on the analytical and designing step between data collection
and the visualization of the process model. Our main research question was how to
translate various process elements captured in To-do lists of individuals into a process
model in a structured and traceable way. The following challenges are:

• How to extract process elements, like activities, tasks, roles, agents, time, data,
tools, and decisions, from To-do lists of single organizational members in a struc-
tured and traceable way?

• How to handle different labeling of To-do’s?
• How to deal with different granularity of To-do’s?
• How to find reference points between the process views (connection, participation

and delegation)?
• How to deal with special cases identified in To-do’s?

Our approach included the following research instruments and techniques:

• Personal face-to-face interviews to elicit To-do lists from process participants.
• Qualitative content analysis to examine gathered To-do lists in order to identify key

process elements and terms, and to transform the To-do’s into process view logs.
• Mining of process view logs and the process model.

We propose a reusable semi-structured method that supports the designer to extract
process models from text material (e.g. interviews, workshop protocols) in a traceable
way. Traceability is supported by the use of the qualitative content analysis to code
and categorize the gathered textual information and thus to identify and tag essential
process elements. Results of the qualitative content analysis serve as the basis for the
development of the process model which can be created by modeling or by transform-
ing the data into process view logs.

Collection
of To-Do’s

Log
Preparation

Process
Mining

Elicitation
(Step 1)

Analysis
(Step 2)

Mining
(Path A Step 4)

Content
Analysis

To-Do
Lists

Process
Elements
& Terms

Log Preparation
(Path A Step 3)

Process
Modeling

Process
Model

Modeling (Path B Step 3)

Process
View
Logs

Fig. 1. Business Process Model Extraction (BPME) Method

470 S. Kabicher and S. Rinderle-Ma

Fig. 1 illustrates the steps of our method. In a first step, lived processes are elicit
from process participants. Second, collected information is analyzed and prepared for
further processing. There are two alternative ways of continuing: path A includes the
capturing of collected process data in fictive logs (Step 3) which were then mined
(Step 4). Choosing path B, the designer continues with manually designing process
models. In this work we focus on the analysis (Step 2) and the steps of path A (log
preparation and mining). In the following we describe the different steps at an ab-
straction level. In the Sections 3 and 4 the steps will be discussed in more detail.

Elicitation. The elicitation of process information is an important step as it deter-
mines the quality of the gathered material. In our view, an organizational member
knows best what activities he or she actually performs in his or her job and how and
when this work is done. To-do lists can be used to capture all the things that need to
get done in a logical and also chronological order. To-do lists might also represent
practical processes of work of single persons. For example, particularly new employ-
ees may notice their To-do’s for particular scenarios (e.g. “What is usually to do?”,
and “What is to do in a special case?”) during job instruction. Experienced employees
often have their To-do lists in a particular context of work in their heads. There are
several task management tools that support the organization of To-do’s. If used by
employees, such tools can be considered as a source of information.

Analysis. The To-do lists are examined with the qualitative content analysis. The
method supports the designers to identify key process elements (e.g. activities, tasks,
roles, agents, time, data, and tools) and terms (e.g. pre- and post conditions).

Log preparation. The process views are then transformed into process view logs.
The logs illustrate personalized views of the process. Different views on the process
can be generated by subsuming To-do’s of process members with particular character-
istics e.g. acting in the same roles, but also members of the whole process.

Mining. In contributions related to process mining, processes are commonly con-
sidered to be already performed. The resulting process model is automatically derived
from generated logs. These logs include the IDs of each process instance and each
event within the process instances. In a human-centric approach of identifying the
business process model, as described in this work, processes must not be performed at
the time of process mining. The process model is constructed on the basis of To-do
lists of roles (humans) that are involved in the process.

3 Qualitative Content Analysis

In this section the qualitative content analysis and its potential in the context of busi-
ness processes are described. Challenges of analyzing To-do’s of process members
are discussed, like unique labeling and the level of abstraction of To-do’s.

3.1 Qualitative Content Analysis in General

The qualitative content analysis is a rule-guided technique to systematically analyze
text [5]. Typically, the content analysis includes the steps: unitization, categorization,
and coding [6]. Unitization means to divide the textual material into units of analysis
(e.g. sections, thematic units, or syntactical units) [7]. In the categorization step a
category scheme is created. The coding step includes the assignment of each unit of

 Human-Centered Process Engineering 471

analysis to a category. Ideally, more than one coder performs the content analysis in
order to assure inter-coder reliability of findings. There are tools that support the
qualitative analysis of text material, e.g. the QDA Miner [8]. Such tools offer func-
tionalities like coding retrieval, coding frequency, and coding co-occurrences. Exist-
ing experiments support automation of the analysis in order to reduce the high manual
coding effort of large text material [9].

3.2 Qualitative Content Analysis in the Context of Business Processes

In the context of business process modeling, the qualitative context analysis offers a
possibility to analyze textual material, e.g. interviews and workshop protocols col-
lected during the phase of eliciting process information, in a structural and traceable
way. Traceability is supported by coding text material, for example process views of
individuals, or “process stories”, and thus to identify, tag, and cluster essential process
elements. Some questions that can be answered with the qualitative content analysis
particularly in the context of business processes are:

• What are the tasks and activities of a particular process view?
• What tasks and activities can be subsumed according to their meaning?
• What persons and roles are involved in particular tasks and activities?
• What tools are used to perform particular tasks and activities?
• What kind of data is transferred, where, why and how?
• Are there decisions in the process view?
• Are there activities performed by several persons and roles?
• Are there activities in the process view that are delegated?

Results of the qualitative content analysis can be interpreted in several ways, but the
final output of our method is always a business process model. The results may be
manually modeled (resulting in process models, or process scenarios [1]), or further
translated into logs. The latter alternative is described in more detail in Section 4.

3.3 Challenges of Qualitatively Analyzing To-Do’s

In this section we address challenges the designers face when they examine To-do’s
of individual process members that belong to a particular process under investigation.
We propose the elicitation of process information by means of To-do lists of individ-
ual process members. Several preconditions need to be considered when a qualitative
content analysis of To-do’s of individual process members is conducted.

Precondition 1: Clearly define the process under investigation.
Precondition 2: Identify at least one process member.
Precondition 3: Collect information: Ask process participants in individual exchange to list their To-do’s in

the process of investigation. Ask for the usual case and for special cases.
Precondition 4: Capture information. If necessary transform information into text.

The procedure of examining To-do’s of individual process members based on the
content analysis is described in the following. We discuss the steps specifically im-
portant for extracting business process models in more detail in Sections 3.4-3.6.

472 S. Kabicher and S. Rinderle-Ma

Step 1: Consider each To-do list of a process member as a case. For analysis use the entire text material.
Step 2: If the roles of the process members are known, group the To-do lists of the same roles and analyze

the cases considering their group affiliation. Cases of the same group are analyzed in sequence.
Considering the roles during the analysis supports a faster identification of possibly identical To-
do’s and similar labeling. The designer develops a particular understanding of the context of
work. If the roles are not known, the designer may identify other hints towards a particular order-
ing in analyzing the cases, e.g. data transfer or delegation to other persons mentioned in the To-do
lists which allows a sequential analysis of the process flow views.

Step 3: Define the unit of analysis. The unit of analysis may be, e.g. a set of semantically related To-do’s,
one To-do (thematic unit) or a sentence. To face the challenge of a uniform level of granularity of
the To-do’s, compare with Section 3.5.

Step 4: Paraphrase the units of analysis. Reduce text to the key essence of the unit of analysis. In this
phase, the identification of process elements takes place (compare with section 3.6).

Step 5: Label or code To-do’s. There are mainly two alternatives to perform labeling (compare with
section 3.4): inductive or deductive labeling.

Step 6: Evaluate results. For example, list all units of analysis with the same code, analyze the codes’
frequency, the number of cases in which the codes were found, etc.

3.4 Homogeneity of Activity Labels

The labeling of activities as recorded by process members might vary. Synonyms and
homonyms need to be handled in order to design an understandable process model
[10]. The content analysis supports two ways of determining unique labels [5]: the
inductive and the deductive elaboration of labels.

Inductive elaboration of labels. Performing the inductive elaboration of labels
means to derive labels from the text material. The labels are elaborated in a process of
generalization. This procedure is used to attain a close reflection of the language and
terms used in the material. Labels should reflect the content of the text material as
good as possible. The inductive elaboration of labels can be complemented by the
frequency measure of terms used in the material [11]. A visual representation of the
terms’ frequency offer word clouds. When the frequency measure is used to label
operations misinterpretation may arise due to technical terms used by persons work-
ing in different roles and unequally long text segments. Therefore, designers always
need to be aware of the content of the text material.

Deductive determination of labels .The deductive determination of labels implies
that the labels are defined a priori. This means that the labels are specified before the
text material is analyzed. In this case, terms are considered that are, e.g., commonly
used in practice, in a particular sector or in a company. Formulations actually used by
process members are not explicitly considered in the phase of labeling process steps.

3.5 Dealing with Different Granularity

The descriptions of the To-do’s listed by the process members might vary in their
granularity. Summarization is a technique that supports the structured and meaningful
aggregation of activities according to their semantic relation [5].

The goal of the summarization is to reduce material towards a particular level of
abstraction and thus supports the designer to find related tasks and activities in the
text material. The technique includes a stepwise generalization of the text material.
In a first step, the text segments are paraphrased which includes the omission of
decorating text passages, the translation into a consistent level of language and the

 Human-Centered Process Engineering 473

transformation of the text segments into a short form. The second step includes the
generalization of the paraphrases towards a specified level of abstraction (aggregation
of tasks). A second generalization can be done in order to subsume related activities
to process fragments (aggregation of activities).

3.6 Identification of Process Specifications

The identification of process elements is appropriate in the paraphrasing step. In this
step the unit of analysis is reduced to its key essence. The key essence of a To-do is
the performed task or activity, and is captured in the code by a meaningful noun and a
verb [12]. The labels serve as labels of the tasks and activities in the process model.
Reference points important for process view aggregation are listed in the following.
We suggest adding reference points as variables to the cases. Variables specify the
properties associated with the case.

• Hints to data transfer (data_input and data_output) or events (e.g. eMail, Mail,
PhoneCall) between two or more process participants (connection). E.g. To-do of
the AdministrativeCooperator: “Mail lecturing contract to lecturer”. To-do of a
Lecturer: “Receipt of the lecturing contract in my post office box”.

• Hints to group tasks and activities (participation). E.g. To-do of the Lecturers and
the TeachingCoordinators: “Participation in coordination meeting”.

• Hints to decisions. E.g. To-do of a Lecturer: “Either I contact the Administrative-
Cooperator if I want to book the lecture hall X or I contact the Secretary if I want
to book the lab.”

• Hints to delegation. It can be assumed that the To-do’s are performed by the proc-
ess member who listed the To-do’s. Otherwise a hint to another person is given.
E.g. To-do of a ModuleCoordinator: “A lecturer of our lecturer team books a lec-
ture hall for all of us”.

• Hints to tools used. It might be the case that process participants rather mention the
particular tool name (e.g. Fronter) than the general term (e.g. learning platform).
E.g. To-do of a Lecturer: “Then I enter the grades of the students into iswi.”

• Hints to reoccurring activities. E.g. To-do of a Lecturer: “Reoccurring task: con-
duction of the units”.

• Time notes. We assume that To-do list already reflect a sequential order of the To-
do’s. The first To-do mentioned in the list is the first To-do that is performed by the
person in the process under investigation. Explicitly mentioned time notes may be
vague but support the designer to sequentially order tasks and activities when sub-
suming all tasks and activities of the various process members. E.g. To-do of a Lec-
turer: “At the day of the unit I print the attendance list.”, or “Before the semester
starts I plan the course”.

• Name of the agent. The name of the process member is captured as well.

Furthermore, process members may mention comments that refer to activities per-
formed by other process members or to the general process. E.g. Mentioned by a
Lecturer: “The AdministrativeCooperator books the lecture hall in the system”.
Such information might be important for the designer when he or she composes the

474 S. Kabicher and S. Rinderle-Ma

logs. We suggest to label such statements as comments to recall the data if necessary.
In order to be able to transform results of the qualitative content analysis into process
view logs, post conditions of the analysis are listed in the following.

Post condition 1: Each To-do of each person is considered as a case. A case is the unit of analysis.
Post condition 2: Each case is labeled. The labels reflect the key essence of the To-do. The labels illus-

trate the labels of tasks and activities in the process model.
Post condition 3: A precise coding guideline is elaborated that support comprehensibility and traceabil-

ity.
Post condition 4: Each case is complemented by variables. Variables necessary for process modeling or

log preparation are: Agent (name of the process member), Agent Position (role of the
process member), Tool (tool name), DataInput (data name), DataOutput (data name),
OrganizationOfWork (if delegation name of process member, else (direct work) no en-
try), Connection (person name or role label), Participation (person name or role label),
Decision (String), Recurrence (Boolean), Event (event type), TimeNote (String). Further
variables might be, e.g. Granularity (GranularityLevel), FirstGeneralizationLabel
(String), SecondGeneralizationLabel (String).

Post condition 5: The beginning and the end of the entire process are identified (e.g. from time notes or
from the semantic context).

According to the BPME method, the designer can choose two alternative paths after
analyzing the data. The process view models and the entire process model can be
modeled either (1) manually, (2) using a tool that supports scenario-based process
modeling like GRETA [1], or (3) the designer transforms the captured process view
information into process view logs and entire process logs. In the following we focus
on the latter. We argue that the extraction of the business process model out of
process view logs offers a structured and traceable way of illustrating the identified
process model. We present guidelines for preparing logs based on results of the quali-
tative content analysis of process member To-do’s in the next section.

4 Preparation of Logs and Process Mining

We want to know how the processes of the individual process members as well as the
whole process look like. In order to capture all possible variants of performing proc-
ess paths, process view logs for each process participant are prepared for mining. The
preparation of the logs is based on the results of the qualitative content analysis of
To-do lists of process members. We suggest the designer to choose the level of ab-
straction that is included in the original To-do lists (results of the paraphrasing in the
qualitative content analysis), as the To-do’s reflect the “mental process steps” of each
process participant. For each To-do list a process view log is elaborated. One output
of the log preparation step are logs that reflect To-do’s of a process member in a par-
ticular thematic process (e.g. sale process of a particular organization). The process
view logs reflect process fragment scenarios. The most challenging task for the de-
signer is now to transform reference points (e.g. operations that are connected to a
message event between process participants (send and receive), operations that are
performed by several process participants at the same time, like meetings, and time
notes) into concrete (artificial) start- and end date and time stamps. The procedure of
considering reference points in the process view logs is described in the following.

 Human-Centered Process Engineering 475

Step 1: Highlight reference points that are bounded to time. Such reference points are the variables Con-
nection, Participation, DataInput, DataOutput, Event, Recurrence, Tool and TimeNote.
Connection and Participation: It may be the case that there are links identified to persons or roles
whose To-do lists were not gathered in the elicitation phase (compare with Fig.2). This is an indi-
cation for the designer that not all process participants were considered in the ascertainment of
the process.

DataInput, DataOutput and Events: A question that need to be answered by the designer is if
events, such as “send document x to person B” and “receive document x from person A” are con-
sidered in the process models as operations. The overall question to be answered in the first step is
for what purpose is the process model designed. If it is designed to illustrate the actual process as
perceived by the process members, than events as illustrated in the example may be integrated as
operations (particularly if the event of person B “receive document x from person A” triggers the
process of person B). If the process model is designed as a basis for the implementation of a work-
flow system, then such events may not be considered in the process model, as in a workflow
systems all data material is available for process participants.

Step 2: Aggregation of tasks. If the level of abstraction considered by the designer is identical to the ab-

straction level of the original To-do’s, then there might be detailed operations across process
views (e.g.”Writing on PhD thesis”, ”Exchange with mentor”, “Enrolling in creative writing
workshop”) less detailed operations probably implicitly subsuming the detailed operations (e.g.
“Elaboration of PhD thesis”). In such a case the designer has to decide if, e.g. such creative tasks
should all be considered in the process model. An option for the designer is use by default the
higher level task and to additionally consider these detailed operations that were (n/2+1)-times
mentioned across process views (n=number of process participants).

Step 3: Set order of execution. Transfer explicit time notes mentioned in the To-do list and transform them

into concrete date and time. Estimate the duration of the operation. If there is no explicit time note
mentioned for a particular To-do, then first check time notes of reference points in To-do lists of
other process members. Choose these time notes as support to set a concrete date and time and
consider at the same time already set time specifications of other To-do’s in the list. The sequential
ordering of the To-do’s in the list should be reflected in the time stamps. If necessary, the designer
may also consider Comments for specifying time and date of operations, or directly contact the re-
spective process member.

Connection and participation: Adjust time stamps according to connection and participation hints.
A connection considers work- or data transfer to another process member. Participation considers
operations that are collectively performed (e.g. meetings).

Recurrence of tasks. If there are hints that a tasks is executed several times (loop) then the de-
signer has to decide if the loop is considered in the log as loop or if each execution of the opera-
tion is captured as a particular step in the process model.

Step 4: Check the agent of the task. If there are indications that an operation is delegated to another

process participant, than the operations are still considered as operations of the delegator. In the
field “Agent” the name of the delegatee is entered. The tasks of the delegatee remain as tasks of
the process member in his or her process view log.

Step 5: Set number of process instances (cases). The number of process instances in a process view is

determined by the number of the decision paths. If there are > 1 decisions, the product of the deci-
sion paths determines the maximum number of process instances. So, if there is decision n includ-
ing m paths and decision d including e paths considered in one process view, than the designer
needs to build a maximum of m x e process instances.

Step 6: Explicate conditions and rules. Particular decision paths must not or cannot be considered in the

same process instance. Therefore, rules for joining decision paths (if decision ≥ 1) need to be
defined. The designer keeps overview when the operations are organized into operations that are
always executed and operations that are only executed if a particular condition occurs. Thus, the
designer obtains “operation blocks” that can be merged into one process instance by considering
merging rules and condition.

476 S. Kabicher and S. Rinderle-Ma

Step 7: Assemble logs. Illustrate common and alternative process paths as process view instances. Con-
sider thereby the entire process view (from start to the end) as one process instance. If there are
decisions included, then transform the common and alternative process paths into different
instances.

The next task is to prepare the log instances of the entire process including all

process views. The output is a process model of the entire process that captures possi-
ble variations of process paths by considering the allowed decision combinations. For
preparing such logs, the following preconditions need to be considered.

Precondition 1: The process that is analyzed is clearly defined and has a common thread (e.g. in a sales

process, the common thread is the order on which the process participants work on
throughout the whole process).

Precondition 2: The process views are already transformed into process view logs. The process view logs
reflect common and alternative process paths.

The steps necessary to merge process view logs in such way that they reflect the

whole process with its alternative paths are presented in the following. In addition to
the mentioned steps below, exchange with the process participants during workshops
might support the analyst to get an immediate “big picture” of the whole process and
to reduce errors and misinterpretations in the whole process model.

Step 1: Determine the number of process instances (cases). The process instances illustrate possible entire

process path. Elaborate per process instance which decision path of what process member is con-
sidered. Consider rules and conditions when assembling the process view instances.

Step 2: Bring the process fragment scenarios together and sort the operations according to the time
stamps.

In this work our intension is not to present a new mining algorithm for process view

mining. Our goal is rather to discuss the purpose and benefits of mining prepared logs.
Mining of the process view logs and the entire process supports the designer in
constructing and visualizing process models from data analyzed and prepared in a
structured and traceable way. The mining of each single log of the individual process

PV Case 3:

START(A)
END(A)
START(B)
START(C)
END(C)
END(B)

PV Case 2:

START(A)
END(A)
START(B)
START(C)
END(C)
END(B)

Process View (PV)
Case 1:
START(A)
END(A)
START(B)
START(C)
END(C)
END(B)
…

Process Mining: Process View Mining:

Person 1:
START(A)
END(A)
START(B)
END(B)
START(D)
END(D)

Event Logs

Person 2:
START(A)
END(A)
START(C)
START(D)
END(C)
END(D)

Person 3:
START(E)
START(F)
START(G)
END(E)
END(F)
END(G)

A

C

B

D E

A

B

D

A

C D E GF

To Do‘s

Organizational
Information

View Person 1 View Person 2 View Person 3

Aggregated
Process Model:

Process (View) Models

PROCESS VIEW AGGREGATION
Merged PVs
(Path1 of the
entire process):

Case 1:
START(A)
END (A)
START (B)
END(B)
START (D)
…

A

B

D

Merged Process
(View) Models

E

Case 3:
START(A)
END(A)
START(B)
START(C)
END(C)
END(B)

Case 2:
START(A)
END(A)
START(B)
START(C)
END(C)
END(B)

Case 1:
START(A)
END(A)
START(B)
END(B)
START (D)
…

Event Logs

A

C

B

D E

Merged Process
Model:

PROCESS VIEW MERGING

Fig. 2. Process view aggregation vs. merging

 Human-Centered Process Engineering 477

participants offers for each process participant a personalized process view. The de-
signer obtains manageable process views. The process views can be aggregated or
merged into one process model. Aggregation of process views means to consider each
process view as an instance of the entire process in the logs, whereas merging of proc-
ess views means to consider each process view as a part of an instance of the entire
process in the logs (compare with Fig. 2).

5 Case Study

In this section we present a case study in which we applied the BPME method to
extract the process model of teaching from To-do’s of selected process participants at
the Faculty of Computer Science, University of Vienna. For our investigation we
considered both the administrative and creative process of teaching. A bottom-up
approach was pursued to find out what activities the participants of the process per-
form to enable and support teaching at the faculty.

5.1 Collection of To-Do’s in the Teaching Process

In face-to-face interviews selected persons working in key positions of the teaching
process were asked to list their activities in the process under investigation similar to
a scheduled To-do list. The interviews were conducted at the Faculty of Computer
Science at the University of Vienna in October 2010. 12 persons participated in the
survey. The selected persons were directly asked to participate in the study. The par-
ticipation in the survey was voluntary. A question of the semi-structured interview
was to specify the own role in the process of teaching. Some interviewees acted in
several roles, e.g. the role of the module coordinator and the lecturer. The interviewer
asked for the To-do’s of each role successively and recorded the To-do list per role in
separate protocols. Altogether, the activities appropriate to the following roles in the
teaching process were collected (the cases illustrate persons): administrative coopera-
tor (case 1), director of study program (case 2), lecturers (cases 3, 4, 5, 6, 7, 8, and
16), lecturer team coordinator (case 9), module coordinators (cases 10, 11), secretary
(case 12), teaching coordinators (cases 13, 14), and technical staff (case 15).

5.2 Content Analysis of To-Do’s, Log Preparation, and Mining

The protocols of the interviews were examined with the content analysis. Most of the
activities were described in full sentences rather than by means of cues that are more
common in personal To-do lists [13, p. 736]. The text material comprised 16 proto-
cols and a total of 7,814 words. A case comprised between 65 and 1077 words. We
conducted the content analysis with the demo version of the QDA Miner [8]. Analyz-
ing functionalities, like coding frequency allow recognizing reference points among
process participants. Fig. 3 illustrates an extract of the coding frequency analysis.
“Inquire date and lecture hall”, “Book date and lecture hall”, and “Check scheduling
conflict” are aggregations of more detailed tasks mentioned as To-do’s. These aggre-
gated tasks were subsumed to “reservation of lecture hall”. “Inquire date and
lecture hall” includes two reference points (connections) among process participants.

478 S. Kabicher and S. Rinderle-Ma

2nd Generalization

1st Generalization

Reference points

Fig. 3. Reference points among operations

Whereas the lecturers, module coordinators and lecturer team coordinators request for
lecture halls, the administrative cooperator and the secretary receive the requests and
book the halls.

Afterwards, each single To-do of the 399 To-do’s was coded at the lowest possible
level of abstraction already included in the To-do by paraphrasing. 195 labels reflect-
ing the key essence of the To-do’s were inductively derived. 77 hints to connections
among process participants, 39 hints to operations with participation of several proc-
ess participants (e.g. meetings), 49 hints to decisions (each operation of the alternative
path was marked as a decision hint), 40 hints to events (e.g. eMail, phone calls, or
messages), 12 hints to delegation, and 43 time notes could be identified. 8 tools could
be extracted out of the To-do’s as well as 30 different data material (e.g. “teaching
scheduling sheet”, “numbers of exams of the last semester”, documented course
schedule”) could be identified.

In a next step we elaborated the process view logs per process participant (per
role). The main challenges were (a) to define the artificial time stamps and (b) the
inclusion of all possible combinations of process paths as these issues were the critical
points for the quality of the mining result. Based on the number and conditions of the
decisions we elaborated possible process paths per role and captured each possible
path as a case (process instance) of each process view. The alpha mining algorithm
was used for the transformation of the individual process view logs into process view
models. We elaborated process logs in which each case illustrates an entire path of the
entire process, and considered the course (with unique course ID) as the “common
thread” throughout the process. To organize all the possible paths of the process per
case the selected paths of the process views were documented. Log segments were
compound to a possible way of the process. The heuristics mining algorithm was used
to analyze the entire process logs. Fig. 4 illustrates a comparison of the result of ap-
plying the heuristic mining algorithm in ProM [18] of the collected, analyzed, and
merged To-do’s to a process model (left and middle part) and a manually modeled
process segment in which BPMN notation was used (right part). The BPMN model
segment was designed by the process-aware designer before the To-do’s of the proc-
ess participants were analyzed and mined. Both segment models gather the same
activities (prepare, conduct, and post process unit).

 Human-Centered Process Engineering 479

Entire process Process segment

Conduct preliminary unit

Subscribe participants Unsubscribe participants

Prepare unit1

Send content of unit1

Conduct unit1

Modeled process segment
Post process unit1

University

Prepare
units of the

course

Prepare for
course units

Conduct/
Participate in
course unit

(Optional)
Collect/Provide

continuous
feedback

StudentsLector

Fig. 4. Comparison of the merged process logs analyzed with the heuristics miner and a manu-
ally designed BPMN process model

Whereas the BPMN model provides more details about the participating roles due
to its notation, the process segment of the mined To-do’s offers information about
how often the operations were considered in the logs (and thus in the To-do’s of the
process participants) and provides a more precise insight into the actual operations
(e.g. several process participants explicitly mentioned the conduction of the prelimi-
nary unit, operations that were performed to fix the participants of the course, and
operations among lecturers before a course unit was conducted).

6 Related Work

Process design is one of the main phases of the business process life cycle. There are
basically two different approaches of process design that can be distinguished. First,
business process (re-)engineering refers to the systematic process exploration based
on methods such as interviews and the subsequent modeling of as-is processes, fol-
lowed by an optimization of these processes (to-be processes). Much work has been
spent on questions such as process modeling notations [17]. Only few approaches
tackle process redesign [4]. Although there are known common practices to elicit
process models, like questionnaires and workshops, no systematic approach for
process exploration and design based on activities and tasks representing practical
processes of work of single persons sorted in treated chronological order (To-Do’s)
has been presented yet. We utilize existing process mining algorithms [18] for our
work not only to mine instances of the whole process but also operations that are
performed by a single agent of the process (process view logs).

480 S. Kabicher and S. Rinderle-Ma

Commonly, the challenge of finding an appropriate level of abstraction is faced
with elimination and aggregation [14] [15]. A technique considering the semantic
relation between activities is presented in [16]. The meronymy-based aggregation
uses business process domain ontologies for abstraction. To enable aggregation, proc-
ess model activities are matched to an ontology. The technique offer transparency and
traceability in determining a particular abstraction level. However, preconditions of
this aggregation are a predefined ontology and the use of domain specific labels.

[1] proposes a scenario-based modeling paradigm which considers a process model
as a set of scenarios. While [1] considers all process views and divide them into proc-
ess fragments, we consider each process view of each process participant.

7 Conclusion

As so far the procedure of process models extraction from process information elic-
ited from process participants was handled like a black box, our main research interest
of this work was to find out how to translate various process elements captured in To-
do lists of individuals into a process model in a structured and traceable way. We
proposed the Business Process Model Extraction (BPME) method that supports a
transparent way of transforming process information in natural language into formal
process models. We discussed the potential of the qualitative content analysis in deal-
ing with differing levels of abstraction, heterogeneous labeling and the identification
of essential process elements. We presented guidelines for using the qualitative con-
tent analysis as a designer’s tool to extract process information from To-do lists of
process participants in a structured, documented and traceable way. In order to sup-
port transparency and traceability up to the final process model, we presented guide-
lines to transform results of the content analysis into view process logs and discussed
two opportunities that lead to an entire process model by mining: the aggregation and
the merging of process views. In the case study we showed that the BPME method
could be successfully performed. The main challenges faced were the determination
of artificial time stamps in the process view logs that were crucial for process mining
and the elaboration of the possible process paths based on the decision paths in each
process view. The use of the BPME method offered the following outputs: (a) a
documented and traceable procedure of transforming To-do lists into the process
model, (b) illustrative personalized process view models, and (c) an illustrative proc-
ess model reflecting the To-do’s of the process participants. In future work we will
extend our work on process view mining. Furthermore, we will offer more details
about the challenges of the elicitation step of the BPME method, and the validation of
the resulting models that should support our approach.

References

1. Fahland, D., Weidlich, M.: Scenario-based process modeling with Greta. In: La Rosa, M.
(ed.) Proceedings of BPM Demonstration Track. CEUR-WS.org, Hoboken, vol. 615
(2010)

2. Hammori, M., Herbst, J., Kleiner, N.: Interactive workflow mining - requirements, con-
cepts and implementation. Data & Knowledge Engineering 56, 41–63 (2006)

 Human-Centered Process Engineering 481

3. OMG: Business Process Model and Notation (BPMN) Version 2.0 (2010)
4. Reijers, H.A.: Process Design and Redesign. In: Dumas, M., van der Aalst, W., ter

Hofstede, A.H.M. (eds.) Process Aware Information Systems: Bridging People and Soft-
ware Through Process Technology. Wiley-Interscience, Hoboken (2005)

5. Mayring, P.: Qualitative Inhaltsanalyse. Beltz, Weinheim (2003)
6. Srnka, K., Koeszegi, S.: From Words to Numbers: How to Transform Qualitative Data into

Meaningful Quantitative Results. Schmalenbach Business Review 59, 29–57 (2007)
7. Strijbos, J.-W., Martens, R.L., Prins, F.J., Jochems, W.M.G.: Content analysis: What are

they talking about? Computers & Education 46(1), 29–48 (2006)
8. Provalis Research, http://www.provalisresearch.com/
9. Nastase, V., Koeszegi, S., Szpakowicz, S.: Content Analysis Through the Machine Learn-

ing Mill. Group Decision and Negotiation 16, 335–346 (2007)
10. Rinderle-Ma, S., Reichert, M., Jurisch, M.: Equivalence of Web Services in Process-

Aware Services. In: IEEE 7th International Conference on Web Services, pp. 501–508.
IEEE, Los Angeles (2009)

11. Derntl, M., Neumann, S., Griffiths, D., Oberhuemer, P.: ISURE - Report on usage and rec-
ommendations of specification for instructional model, ICOPER Deliverable D3.2 (2010)

12. Mendling, J., Recker, J., Reijers, H.A.: On the Usage of Labels and Icons in Business
Process Modeling. International Journal of Information System Modeling and Design 1,
40–58 (2009)

13. Bellotti, V., Dalal, B., Good, N., Flynn, P., Bobrow, D.G., Ducheneaut, N.: What a To-Do:
Studies of Task Management Towards the Design of a Personal Task List Manager. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp.
735–742. ACM, New York (2004)

14. Polyvyanyy, A., Smirnov, S., Weske, M.: The Triconnected Abstraction of Process Mod-
els. In: Proceedings of the 7th International Conference on Business Process Management,
pp. 229–244. Springer, Ulm (2009)

15. Bobrik, R., Reichert, M., Bauer, T.: View-based process visualization. In: Proceedings of
the 5th International Conference on Business Process Management, pp. 88–95. Springer,
Brisbane (2007)

16. Smirnov, S., Dijkman, R., Mendling, J., Weske, M.: Meronymy-Based Aggregation of Ac-
tivities in Business Process Models. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand,
Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 1–14. Springer, Heidelberg (2010)

17. van der Aalst, W., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow pat-
terns. Distributed and Parallel Databases 14, 5–51 (2003)

18. van der Aalst, W., Reijers, H.A., Weijters, A., Dongen, B.F., Alves de Medeiros, A.K.,
Song, M., Verbeek, H.M.W.: Business process mining: An industrial application. Informa-
tion Systems 32, 713–732 (2007)

Process Model Generation from

Natural Language Text

Fabian Friedrich1, Jan Mendling2, and Frank Puhlmann1

1 inubit AG, Schöneberger Ufer 89-91, 10785 Berlin, Germany
{Fabian.Friedrich,Frank.Puhlmann}@inubit.com

2 Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
jan.mendling@wiwi.hu-berlin.de

Abstract. Business process modeling has become an important tool for
managing organizational change and for capturing requirements of soft-
ware. A central problem in this area is the fact that the acquisition of as-is
models consumes up to 60% of the time spent on process management
projects. This is paradox as there are often extensive documentations
available in companies, but not in a ready-to-use format. In this pa-
per, we tackle this problem based on an automatic approach to generate
BPMN models from natural language text. We combine existing tools
from natural language processing in an innovative way and augmented
them with a suitable anaphora resolution mechanism. The evaluation of
our technique shows that for a set of 47 text-model pairs from industry
and textbooks, we are able to generate on average 77% of the models
correctly.

1 Introduction

Business process management is a discipline which seeks to increase the effi-
ciency and effectiveness of companies by holistically analyzing and improving
business processes across departmental boundaries. In order to be able to ana-
lyze a process, a thorough understanding of it is required first. The necessary
level of insight can be obtained by creating a formal model for a given business
process.

The required knowledge for constructing process models has to be made ex-
plicit by actors participating in the process [1]. However, these actors are usually
not qualified to create formal models themselves [2]. For this reason, modeling
experts are employed to iteratively formalize and validate process models in col-
laboration with the domain experts. This traditional procedure of extracting
process models involves interviews, meetings, or workshops [3]. It entails con-
siderable time and costs due to ambiguities or misunderstandings between the
involved participants [4]. Therefore, the initial elicitation of conceptual models
is considered to be a knowledge acquisition bottleneck [5]. According to Herbst
[1] the acquisition of the as-is model in a workflow project requires 60% of the
total time spent. Accordingly, substantial savings are possible by providing ap-
propriate tool support to speed up the acquisition phase.

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 482–496, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Process Model Generation from Natural Language Text 483

In this context, it is a paradox that acquisition is costly although detailed
information about processes is often already available in the form of informal
textual specifications. Such textual documents can be policies, reports, forms,
manuals, content of knowledge management systems, and e-mail messages. Con-
tent management professionals estimated that 85% of the information in com-
panies is stored in such an unstructured format [6]. Moreover, the amount of
unstructured text is growing at a much faster rate than structured data [7]. It
seems reasonable to assume that these texts are relevant sources of information
for the construction of conceptual models.

In this paper, we develop an approach to directly extract business process
models from textual descriptions. Our contribution is a corresponding technique
that does not make any assumptions about the structure of the provided text. We
combine an extensive set of tools from natural language processing (NLP) in an
innovative way and augment it with an anaphora resolution mechanism, which
was particularly developed for our approach. The evaluation of our technique
with a set of 47 text-model pairs from industry and textbooks reveals that on
average 77% of the model is correctly generated. We furthermore discuss current
limitations and directions of improvement.

The paper is structured as follows. Section 2 introduces the foundations of
our approach, namely BPMN process models and natural language processing
techniques. Section 3 identifies a set of language processing requirements, and
illustrates how they are tackled in the various steps of our generation approach.
Section 4 presents our evaluation results based on a sample of text-model pairs.
Section 5 discusses related work before Section 6 concludes the paper.

2 Background

Generating models builds on understanding the essential concepts of BPMN
process models and of state-of-the-art techniques for natural language processing.
In this section, we introduce BPMN and then natural language processing tools.

The Business Process Model and Notation (BPMN) is a standard for process
modeling that has been recently published in its version 2.0 [8]. It includes four
categories of elements, namely Flow Objects (Activities, Events and Gateways),
Swimlanes (Pools and Lanes), Artifacts (e.g. Data Objects, Text Annotations
or Groups), and Connecting Objects (Sequence Flows, Message Flows and Asso-
ciations). The first three are nodes, the latter ones are edges. Figure 1 shows a
BPMN example of a claims handling process provided by QUT. The process is
subdivided into three pools (one with two lanes) capturing the actors of the pro-
cess. Activities are depicted as rounded boxes. Different events (round elements
with icons) for sending and receiving messages affect the execution of the process.
The diamond-shaped elements define specific routing behavior as gateways.

A BPMN process model is typically the result of analyzing textual descrip-
tions of a process. A claims handling process provided by QUT is described as
follows: “The process starts when a customer submits a claim by sending in
relevant documentation. The Notification department at the car insurer checks

484 F. Friedrich, J. Mendling, and F. Puhlmann

Fig. 1. Example of a claims handling process in BPMN

the documents upon completeness and registers the claim. Then, the Handling
department picks up the claim and checks the insurance. Then, an assessment
is performed. If the assessment is positive, a garage is phoned to authorise the
repairs and the payment is scheduled (in this order). Otherwise, the claim is re-
jected. In any case (whether the outcome is positive or negative), a letter is sent
to the customer and the process is considered to be complete.” Such information
is usually provided by people working in the process and then formalized as a
model by system analysts [2].

For our model generation approach, we will employ methods from compu-
tational linguistics and natural language processing. This branch of artificial
intelligence deals with analyzing and extracting useful information from natural
language texts or speech. For our approach, three concepts are of vital impor-
tance: syntax parsing, which is the determination of a syntax tree and the gram-
matical relations between the parts of the sentence; semantic analysis, which
is the extraction of the meaning of words or phrases; and anaphora resolution,
which involves the identification of the concepts which are references using pro-
nouns (“we”,“he”,“it”) and certain articles (“this”, “that”). For syntax parsing
and semantic analysis, there are standard tools available.

The Stanford Parser is a syntax parsing tool for determining a syntax tree.
This tree shows the dependencies between the words of the sentence through the
tree structure [10]. Additionally, each word and phrase is labeled with an appro-
priate part-of-speech and phrase tag. The tags of the Stanford Parser are the
same which can be found in the Penn Tree Bank [11]. The Stanford Parser also
produces 55 different Stanford Dependencies [12]. These dependencies reflect the
grammatical relationships between the words. Such grammatical relations pro-
vide an abstraction layer to the pure syntax tree. They also contain information
about the syntactic role of all elements.

Process Model Generation from Natural Language Text 485

There are also tools available for semantic analysis. They provide semantic
relations on different levels of detail. We use FrameNet [13] and the lexical
database WordNet[14]. WordNet provides various links to synonyms, homonyms,
and hypernyms for a particular class of meaning associated with a synonym-set.
FrameNet defines semantic relations that are expected for specific words. These
relations are useful, e.g., to recognize that a verb “send” would usually go with
a particular object being sent. Syntax parsers and semantic analysis are used in
our transformation approach, augmented with anaphora resolution.

3 Transformation Approach

The most important issue we are facing when trying to build a system for gener-
ating models is the complexity of natural language. We collected issues related
to the structure of natural language texts from the scientific literature and an-
alyzed the test data, which is described in section 4. Thereby, we were able to
identify four broad categories of issues which we have to solve in order to ana-
lyze natural language process descriptions successfully (see Table 1). Syntactic
Leeway relates to the fact that there is a mismatch between the semantic and
syntactic layer of a text. Atomicity deals with the question of how to construct
a proper phrase-activity mapping. Relevance has to check whether parts of the
text might be irrelevant for the generated process model. Finally, Referencing
addresses the question of how to resolve relative references between words and
between sentences.

Table 1. References in the literature to the analyzed issues

Issue Refs. Issue Refs.

1 Syntactic Leeway 3 Relevance
1.1 Active-Passive [15] 3.1 Relative Clause Importance [16]
1.2 Rewording/Order [17,18] 3.2 Example Sentences [19]
1.3 Implicit Conditions [20,21] 3.3 Meta-Sentences [16]

2 Atomicity 4 Referencing
2.1 Complex Sentences [16,18] 4.1 Anaphora [22,23]
2.2 Action Split over Sentences [22] 4.2 Textual Links [24]
2.3 Relative Clauses [16] 4.3 End-of-block Recognition [19,16]

Different solution strategies were applied in the works listed in Table 1 to
overcome the stated problems, e.g. by constricting the format of the textual input
[17], but no study considers all mentioned problems and offers a comprehensive
solution strategy. Another interesting fact is that none of the works using a
shallow parser shows how they deal with passive voice [15,22,23,17]. We solved
this problem by using the grammatical relations of the Stanford Parser.

To obtain a structured representation of the knowledge we extract from the
text, we decided to store it in a World Model, as opposed to a direct straight

486 F. Friedrich, J. Mendling, and F. Puhlmann

through model generation. This approach was also taken by most of the other
works which built a similar system [17,22,18,23]. The data structure used by the
approach of the University of Rio de Janeiro [23] was taken from the CREWS
project [15]. The authors argue that it is suited well for this task as a scenario
description corresponds to the description of a process model. Therefore, we also
use the CREWS scenario metamodel as starting point. However, we modified
several parts as, e.g., we explicitly represent connections between the elements
using the class “Flow”. Additionally, we explicitly considered traceability as a
requirement. Thus, attributes relating an object to a sentence or a word are
added to the World Model. The four main elements of our World Model are
Actor, Resource, Action, and Flow. This World Model will be used throughout
all phases of our transformation procedure to capture syntactic and semantic
analysis results. Each phase is allowed to access, modify and add data.

The rest of this section is dedicated to analyzing and discussing the issues
collected in Table 1. We will then seize the developed suggestions and reference
these issues during the description of our transformation approach. Section 3.1
discusses sentence level analysis for finding actions. Section 3.2 investigates text
level analysis for enriching the data stored in the world model. Finally, Sec-
tion 3.3 describes the generation of a BPMN model. While we focus on the
general procedure here, we documented details of all algorithms in [25].

3.1 Sentence Level Analysis

The first step of our transformation procedure is a sentence level analysis. The
extraction procedure consists of the steps that are outlined as a BPMN model
in Figure 2. This overview also shows the different components upon which our
transformation procedure builds and their usage of Data Sources.

The text is processed in several stages. First, a tokenization splits up the text
into individual sentences. The challenge here is to distinguish a period used for
an abbreviation (e.g. M.Sc.) from a period marking the end of a sentence.

Fig. 2. Structural overview of the steps of the Sentence Level Analysis

Process Model Generation from Natural Language Text 487

Afterwards, each sentence is parsed by the Stanford Parser using the factored
model for English [11]. We utilize the factored model and not the pure proba-
bilistic context free grammar, because it provides better results in determining
the dependencies between markers as “if” or “then”, which are important for
the process model generation. Next, complex sentences are split into individual
phrases. This is accomplished by scanning for sentence tags on the top level of
the Parse Tree and within nested prepositional, adverbial, and noun phrases.

Once the sentence is broken down into individual constituent phrases, actions
can be extracted. First, we determine whether the parsedSentence is in active
or passive voice by searching for the appropriate grammatical relations (Issue
1.1). Then, all Actors and Actions are extracted by analyzing the grammatical
relations. To overcome the problem of example sentences mentioned earlier (Issue
3.2) the actions are also filtered. This filtering method simply checks whether the
sentence contains a word of a stop word list called example indicators. Then, we
extract all objects from the phrase and each Action is combined with each Object.
The same is done with all Actors. This procedure is necessary as an Action
is supposed to be atomic according to the BPMN specification [8] and Issue
2.1. Therefore, a new Action has to be created for each piece of information as
illustrated in the following example sentences. In each sentence the conjunction
relation which causes the extraction of several Actors, Actions or Resources is
highlighted. As a last step, all extracted Actions are added to the World Model.

◦ “Likewise the old supplier creates and sends the final billing to the cus-
tomer.” (Action)

◦ “It is given either by a sales representative or by a pre-sales employee
in case of a more technical presentation.” (Actor)

◦ “At this point, the Assistant Registry Manager puts the receipt and
copied documents into an envelope and posts it to the party.” (Resource)

3.2 Text Level Analysis

This section describes the text level analysis. It analyzes the sentences taking
their relationships into account. The structural overview of this phase is shown
in Figure 3. We use the Stanford Parser and WordNet here, and also an anaphora
resolution algorithm. During each of the five steps, the Actions previously added
to the World Model are augmented with additional information.

An important part of the algorithm presented here is the determination heuris-
tic for resolving relative references within the text (Issue 4.1). Existing libraries
are not seamlessly integrateable with the output provided by the Stanford Parser.
Therefore, we implemented a simple anaphora resolution technique for the reso-
lution of determiner and pronouns. This procedure is described in detail in [25].
An experimental evaluation using our test data set showed that this approach
achieved a good accuracy of 63.06%.

The second step in our analysis is the detection of conditional markers. These
markers can either be a single word like “if”, “then”, “meanwhile” or “other-
wise”, or a short phrase like “in the meantime” or “in parallel”. All of these

488 F. Friedrich, J. Mendling, and F. Puhlmann

Fig. 3. Structural overview of the steps of the Text Level Analysis

markers have specific characteristics and can be mapped to different BPMN
constructions. In order to capture this semantic information we compiled four
lists, namely ConditionIndicators (exclusive gateway), ParallelIndicators (paral-
lel gateway), ExceptionIndicators (for Error Intermediate Events), and Sequen-
ceIndicators (for the continuation of a branch of a gateway). These lists do not
claim completeness and can be extended by the user, if necessary.

We can use the information gathered so far to combine the information con-
tained in two different Actions. This procedure tackles the problem of Actions
which are split up over several sentences (Issue 2.2). To consider two Actions as
a candidate for a merger, a reference had to be established between them during
the anaphora resolution phase. This reference can either directly point from the
Actor or from the Object of this Action. But, for the case that the Object points
to another Actor or Resource we also consider the Action which contains it as
a possible candidate. Next, it is checked whether the objects can be merged by
checking various characteristics of both Actions. If the actions truly complement
each other, they can be merged and form one single action. When both Actions
complement each other except for the negation modifier we can still enhance the
information content of one action by copying information, as the initiating Actor,
the Object, and/or the copula attribute. An example for such a case are these
sentences: “Of course, asking the customer whether he is generally interested is
also important.” and “If this is not the case, we leave him alone, [...]”

For Issue 4.2, we defined three types of textual references: forward, backward,
and jump references. In order to identify those links in the text automatically,
we start by comparing all actions within our World Model to one another. It
is then determined whether the selected actions can be linked or not. Within
this method, we compare the following characteristics of both Actions: Copula
Specifier, Negation Status, the initiating Actor (ActorFrom), the Object, the
open clausal complement, and the Prepositional Specifiers, whose head word is
“to” or “about”. The elements are compared using their root form provided by
WordNet. If the elements differ or an element is defined for one Action, but
not for the other, the Actions cannot be merged. Otherwise, the Actions are
considered equal and a link relationship can be established. Additionally, the
type of the link relationship is determined and saved along with the link.

Process Model Generation from Natural Language Text 489

The last step of the text level analysis is the generation of Flows. A flow
describes how activities are interacting with each other. Therefore, during the
process model generation such Flows can be translated to BPMN connecting
objects. When creating the Flows we build upon the assumption that a process
is described sequentially and upon the information gathered in the previous steps.
The word, which connected the items is important to determine how to proceed
and what type of gateway we have to create. So far we support a distinction
between “or”, “and/or”, and “and”. Other conjunctions are skipped.

3.3 Process Model Generation

In the last phase of our approach the information contained in the World Model
is transformed into its BPMN representation. We follow a nine step procedure, as
depicted in Figure 3.3. The first 4 steps: creation of nodes, building of Sequence
Flows, removal of dummy elements, the finishing of open ends, and the processing
of meta activities are used to create an initial and complete model. Optionally,
the model can be augmented by creating Black Box Pools and Data Objects.
Finally, the model is laid out to achieve a human-readable representation.

Fig. 4. Structural overview of the steps of the Process Model Generation phase

The first step required for the model creation is the construction of all nodes
of the model. After the Flow Object was generated, we create a Lane Element
representing the Actor initiating the Action. If no Lane was determined for an
Action, it is added to the last Lane which was created successfully as we assume
that the process is described in a sequential manner. The second step required
during the model creation is the construction of all edges. Due to the defini-
tion of Flows within our World Model, this transformation is straight-forward.
Whenever a Flow which is not of the type “Sequence” is encountered, a Gate-
way appropriate for the type of the flow is created. An exception to that is the

490 F. Friedrich, J. Mendling, and F. Puhlmann

type “Exception”. If the World Model contains a flow of this type, an exception
intermediate event is attached to the task which serves as a source and this In-
termediate Event is connected to the target instead of the node itself. We then
skip dummy actions, which were inserted between gateways directly following
each other.

Step four is concerned with open ends. So far, no Start and End Events
were created. This is accomplished in this step. The procedure is also straight
forward. We create a preceding Start event to all Tasks which do not have any
predecessors (in-flow = 0) and succeeding End Events to all Tasks which do
not have any successors (out-flow = 0). Additionally, Gateways whose in- and
out-flow is one receive an additional branch ending in an End Event.

The last step in the model creation phase handles Meta-Activities (Issue 3.3).
We search and remove redundant nodes directly adjacent to Start or End Events.
This is required as several texts contain sentences like “[...] the process flow at
the customer also ends.” or “The process of “winning” a new customer ends
here.” If such sentences are not filtered, we might find tasks labeled “process
ends” right in front of an end event or “start workflow” following a start event.
We remove nodes whose verb is contained in the hypernym tree of “end” or
“start” in WordNet if they are adjacent to a Start or End Event.

The execution of these five steps yields a full BPMN model. As the elements of
this model do not contain any position information yet, our generation procedure
concludes with an automated layout algorithm. We utilize a simple grid layout
approach similar to [26], enhanced with standard layout graph layout algorithms
as Sugiyama [27] and the topology-shape-metric approach [28]. For the example
text of the claims handling process from Section 2 we generated the model given
in Figure 5. The question of how far this result can be considered to be accurate
is discussed in the following section.

4 Evaluation of Generated Process Models

For the validation of our approach, we collected a test data set consisting of
47 of those text-model pairs, each including a textual process description and
a corresponding BPMN models created by a human modeler. Different sources
from research and practice were incorporated into our test data set: Academic
(15 models), Industry (9 models), Textbook (9 models), and Public Sector (14
models), see Table 2. While the academic pairs were provided by our university
partners, the industry models are taken from two main sources. First, we gath-
ered four models from the websites of three BPM tool vendors, namely Active
VOS, Oracle, and BizAgi. Four models stem from training material of inubit
AG, another one from a German BPM practitioner, and further ones from two
BPMN textbooks [29,9]. Finally, we included the definition of switch processes
of the Federal Network Agency of Germany in its semi-structured tabular format
and the corresponding model.

To avoid unintended effects while parsing, minor corrections were applied
to the texts. Some models were translated, some were converted from other

Process Model Generation from Natural Language Text 491

Fig. 5. The claims handling model as generated by our system

modeling languages to BPMN in order to compare them. Table 2 lists character-
istics of the texts and models of our data set. The table captures the following
data: a unique ID, the number of models (M), the number of sentences (n), the
average length of sentences (∅l), the size of the models in terms of nodes (|N |),
gateways (|G|), and edges (|E|). All our material is published in [25].

The evaluation results are based on the similarity (sim) between the manually
and automatically created models. We employ the metric of Graph Edit Distance.
To compute the Graph Edit Distance, the graph representation of the process
models is analyzed. The labels, attributes, the structural context, and behavior
are compared [32]. Afterwards a greedy graph matching heuristic [33] is employed

Table 2. Characteristics of the test data set by source (average values)

ID Source M Type n ∅l |N | |G| |E|
1 HU Berlin 4 academic 10.00 18.14 25.75 6.00 24.50
2 TU Berlin [30] 2 academic 34.00 21.17 71.00 9.50 79.50
3 QUT 8 academic 6.13 18.26 14.88 1.88 16.00
4 TU Eindhoven [31] 1 academic 40.00 18.45 38.00 8.00 37.00
5 Vendor Tutorials 4 industry 9.00 18.20 14.00 2.25 11.50
6 inubit AG 4 industry 11.50 18.38 24.00 4.25 21.25
7 BPM Practicioners 1 industry 7.00 9.71 13.00 1.00 9.00
8 BPMN Prac. Handbook [9] 3 textbook 4.67 17.03 13.00 1.33 14.67
9 BPMN M&R Guide [29] 6 textbook 7.00 20.77 23.83 3.00 23.67
10 FNA - Metrology Processes 14 public sector 6.43 13.95 24.43 3.14 25.93

Total 47 9.19 17.16 23.21 3.38 23.64

492 F. Friedrich, J. Mendling, and F. Puhlmann

to create pairs of nodes and edges. We use the greedy heuristic as it showed the
best performance without considerable accuracy trade-offs. After the mapping
is created, a Graph Edit Distance value can be calculated given:

◦ Ni - set of nodes in model i
◦ Ei - set of edges of model i
◦ Ni - the set of nodes in model i which were not mapped
◦ Ei - the set of edges in model i which were not mapped
◦ M - The mapping between the nodes of model 1 and 2

An indicator for the difference between the models can be calculated as:

m∗ =

{∑|M|
i=1 1− sim(Mi) if|M | > 0

1.0 otherwise
(1)

As a last step weights for the importance of the differences (wmap), the un-
mapped Nodes (wuN), and the unmapped Edges (wuE) have to be defined. For
our experiments we gave the difference a slightly higher importance and assigned
wmap = 0.4 and wuN = wuE = 0.3. The overall graph edit distance then becomes:

sim(m1, m2) = 1− (wmap ∗ m∗

|M | + wuN ∗ |N1|+ |N2|
|N1|+ |N2| + wuE ∗ |E1|+ |E2|

|E1|+ |E2|) (2)

This value ranges between 0 and 1. For the case that all nodes could be mapped
with a similarity of 1.0 the terms will also become 1.0. If the mapping is not
optimal, the term in parenthesis will grow steadily and the similarity decreases.
If no nodes are mapped at all, the similarity will be 0.

For our evaluation, we generated the model for each text and calculated the
similarity metric between it and the original BPMN model. The results are
shown in Table 3. Columns 2-4 show that the concepts of meta sentences, relative
references, and textual jumps are important for almost all elements within our
test data. The following six columns show the average values of nodes, gateways,

Table 3. Result of the application of the evaluation metrics to the test data set

ID m r j |Ngen| Δ|Ngen| |Ggen| Δ|Ggen| |Egen| Δ|Egen| sim

1 3 5,25 0 30,25 14,88% 5,50 -9,09% 28,75 14,78% 77,94%
2 7,50 7,50 2,50 91,50 22,40% 13,00 26,92% 94,00 15,43% 70,79%
3 0,50 1,38 0,00 20,25 26,54% 2,63 28,57% 20,13 20,50% 78,78%
4 8,00 4,00 1,00 63,00 39,68% 1,00 -700,00% 52,00 28,85% 41,54%
5 1,25 1,75 1,75 24,75 43,43% 4,25 47,06% 23,00 50,00% 63,63%
6 2,25 8,00 0,50 29,75 19,33% 2,75 -54,55% 25,25 15,84% 60,93%
7 0,00 5,00 0,00 14,00 7,14% 2,00 50,00% 11,00 18,18% 74,35%
8 0,00 5,00 0,33 13,33 2,50% 1,00 -33,33% 10,33 -41,94% 77,49%
9 0,83 1,50 0,33 22,33 -6,72% 3,33 10,00% 20,83 -13,60% 71,77%
10 0,00 0,21 0,36 25,29 3,39% 3,71 15,38% 27,29 4,97% 89,81%

Total 1,23 2,60 0,49 27,43 15,36% 3,72 9,14% 26,77 11,69% 76,98%

Process Model Generation from Natural Language Text 493

and edges within the generated models. We can see that the transformation
procedure tends to produce models which are on average 9-15% larger in size
then what a human would create. This can be partially explained by noise and
meta sentences which were not filtered appropriately. On the other hand, humans
tend to abstract during the process of modeling. Therefore, we often find more
detail of the text also in the generated model. The results are highly encouraging
as our approach is able to correctly recreate 77% of the model in average. On
a model level up to 96% of similarity can be reached, which means that only
minor corrections by a human modeler are required.

During the detailed analysis we determined different sources of failure, which
resulted in a decreased metric value. These are noise, different levels of abstrac-
tions, and processing problems within our system. Noise includes sentences or
phrases that are not part of the process description, as for instance “This ob-
ject consists of data elements such as the customers name and address and the
assigned power gauge.” While such information can be important for the under-
standing of a process, it leads to unwanted Activities within the generated model.
To tackle this problem, further filtering mechanisms are required. Low similarity
also results from difference in the level of granularity. To solve this problem, we
could apply automated abstraction techniques like [34] on the generated model.
Finally, the employed natural language processing components failed during the
analysis. At stages, the Stanford Parser failed at correctly classifying verbs. For
instance, the parser classified “the second activity checks and configures” as a
noun phrase, such that the verbs “check” and “configure” cannot be extracted
into Actions. Furthermore, important verbs related to business processes are
not contained in FrameNet, as “report”. Therefore, no message flow is created
between report activities and a Black Box Pool. We expect this problem to
be solved in the future as the FrameNet database grows. With WordNet, for
instance, there is a problem with times like “2:00 pm”, where pm as an abbre-
viation for “Prime Minister” is classified as an Actor. To solve this problem a
reliable sense disambiguation has to be conducted. Nevertheless, overall good
results were achieved by using WordNet as a general purpose Ontology.

5 Related Work

Recently, there is an increasing interest in the derivation of conceptual models
from text. This research is mainly conducted by six different groups.

Two approaches generate UML models. The Klagenfurt Conceptual Pre-design
Model and a corresponding tool are used to parse German text and fill instances
of a generic meta-model [35]. The stored information can be transformed to UML
activity diagrams and class diagrams [18]. The transformation from text to the
meta-model requires the user to make decisions about the relevant parts of a
sentence. In contrast to that, the approach described in [36] is fully automated.
It uses use-case descriptions in a format called RUCM to generate activity di-
agrams and class diagrams [17]. Yet, the system is not able to parse free-text.
The RUCM input is required to be in a restricted format allowing only 26 types

494 F. Friedrich, J. Mendling, and F. Puhlmann

of sentence structures, which rely on keywords like “VALIDATES THAT” or
“MEANWHILE”. Therefore, it can hardly be used in the initial process defini-
tion phase as it would require rewriting of process-relevant documents.

The University of Rio de Janeiro focuses on the derivation of BPMN models
from group stories provided in Portuguese [23]. The approach was tested with
a course enrollment process modeled by students. The examples in their paper
show that process models can be created successfully, but a couple of their ex-
hibits show that syntactical problems can occur, e.g. implicit conditions, which
we explicitly tackle with our approach. The R-BPD toolkit from the Univer-
sity of Wollongong uses a syntax parser to identify verb-object phrases [21]. It
also identifies textual patterns like “If <condition/event>, [then] <action>” [20].
The result are rather BPMN snippets than fully connected models. Nevertheless,
this toolkit is able to take existing models into account for cross validation.

A fifth approach is the one of Policy-Driven Process Mapping [37]. First, a
procedure was developed which creates a BPMN diagram, given that data items,
tasks, resources (actors), and constraints are identified in an input text document.
Although the approach does not require a process description to be sequential,
it does not support Pools, Data Objects, and Gateways other than an exclusive
split. Furthermore, user-interaction is required at several stages.

The approach by Sinha et al. builds on a linguistic analysis pipeline [22,38].
First, text is preprocessed with a part-of-speech tagger. Next, words are anno-
tated with dictionary concepts, which classify verbs using a domain ontology.
Then, an anaphora resolution algorithm and a context annotator are applied.
The resulting information is then transferred to a Use Case Description meta-
model and later into a BPMN process model. The dictionary concepts, which
are a vital part of their approach, rely on a domain ontology which has to be
hand-crafted. This imposes a manual effort when transferring the system to other
types of texts or languages. Instead, our approach builds on the free WordNet
and FrameNet lexical databases, which are available for different languages.

6 Conclusion

In this paper, we presented an automatic approach to generate BPMN mod-
els from natural language text. We have combined existing tools from natural
language processing in an innovative way and augmented them with a suitable
anaphora resolution mechanism. The evaluation of our technique shows that for
a set of 47 text-model pairs from industry and textbooks, we are able to generate
on average 77% of the models correctly.

Despite these encouraging results, we still require empirical user studies. Such
studies should investigate whether humans find the generated models useful and
easy to adapt towards a fully accurate model. Furthermore, our system is able to
read process descriptions consisting of full sentences. Furthermore, we assumed
the description to be sequential and to contain no questions and little process-
irrelevant information. Another prerequisite is that the text is grammatically
correct and constituent. Thus, the parsing of structured input, like tables or

Process Model Generation from Natural Language Text 495

texts making use of indentions, or texts which are of low quality is not possible
at the moment and presents opportunities for further research.

While the evaluation conducted in this thesis evinced encouraging results
different lines of research could be pursued in order to enhance the quality or
scope of our process model generation procedure. As shown the occurrence of
meta-sentences or noise in general is one of the severest problems affecting the
generation results. Therefore, we could improve the quality of our results by
adding further rules and heuristics to identify such noise. Another major source
of problems was the syntax parser we employed. As an alternative, semantic
parsers like [39] could be investigated.

References

1. Herbst, J., Karagiannis, D.: An inductive approach to the acquisition and adapta-
tion of workflow models. In: Proceedings of the IJCAI, pp. 52–57 (1999)

2. Frederiks, P., Van der Weide, T.: Information modeling: the process and the
required competencies of its participants. Data & Knowledge Engineering 58(1),
4–20 (2006)

3. Scheer, A.: ARIS-business process modeling. Springer, Heidelberg (2000)
4. Reijers, H., Limam, S., Van Der Aalst, W.: Product-based workflow design. Journal

of Management Information Systems 20(1), 229–262 (2003)
5. Gruber, T.: Automated knowledge acquisition for strategic knowledge. Machine

Learning 4(3), 293–336 (1989)
6. Blumberg, R., Atre, S.: The problem with unstructured data. DM Review 13, 42–49

(2003)
7. White, M.: Information overlook. EContent(26:7) (2003)
8. OMG, eds.: Business Process Model and Notation (BPMN) Version 2.0 (June 2010)
9. Freund, J., Rücker, B., Henninger, T.: Praxishandbuch BPMN. Hanser (2010)

10. Melčuk, I.: Dependency syntax: theory and practice, New York (1988)
11. Marcus, M., Marcinkiewicz, M., Santorini, B.: Building a large annotated corpus

of English: The Penn Treebank. Computational Linguistics 19(2), 330 (1993)
12. de Marneffe, M., Manning, C.: The Stanford typed dependencies representation.

In: Workshop on Cross-Framework and Cross-Domain Parser Evaluation, pp. 1–8
(2008)

13. Baker, C., Fillmore, C., Lowe, J.: The berkeley framenet project. In: 17th Int. Conf.
on Computational Linguistics, pp. 86–90 (1998)

14. Miller, G.A.: Wordnet: A lexical database for english. CACM 38(11), 39–41 (1995)
15. Achour, C.B.: Guiding scenario authoring. In: 8th European-Japanese Conference

on Information Modelling and Knowledge Bases, pp. 152–171. IOS Press, Amster-
dam (1998)

16. Li, J., Wang, H., Zhang, Z., Zhao, J.: A policy-based process mining framework:
mining business policy texts for discovering process models. ISEB 8(2), 169–188

17. Yue, T., Briand, L., Labiche, Y.: An Automated Approach to Transform Use Cases
into Activity Diagrams. Modelling Foundations and Appl., 337–353 (2010)

18. Fliedl, G., Kop, C., Mayr, H., Salbrechter, A., Vöhringer, J., Weber, G., Winkler,
C.: Deriving static and dynamic concepts from software requirements using sophis-
ticated tagging. Data & Knowledge Engineering 61(3), 433–448 (2007)

19. Kop, C., Mayr, H.: Conceptual predesign–bridging the gap between requirements
and conceptual design. In: 3rd Int. Conf. on Requirements Eng. p. 90 (1998)

496 F. Friedrich, J. Mendling, and F. Puhlmann

20. Ghose, A., Koliadis, G., Chueng, A.: Process Discovery from Model and Text Arte-
facts. In: 2007 IEEE Congress on Services, pp. 167–174 (2007)

21. Ghose, A.K., Koliadis, G., Chueng, A.: Rapid business process discovery (R-BPD).
In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS,
vol. 4801, pp. 391–406. Springer, Heidelberg (2007)

22. Sinha, A., Paradkar, A., Kumanan, P., Boguraev, B.: An Analysis Engine for
Dependable Elicitation on Natural Language Use Case Description and its Ap-
plication to Industrial Use Cases. Technical report, IBM (2008)

23. de AR Gonçalves, J.C., Santoro, F.M., Baião, F.A.: A case study on designing pro-
cesses based on collaborative and mining approaches. In: Int. Conf. on Computer
Supported Cooperative Work in Design, Shanghai, China (2010)

24. Fliedl, G., Kop, C., Mayr, H.: From textual scenarios to a conceptual schema. Data
& Knowledge Engineering 55(1), 20–37 (2005)

25. Friedrich, F.: Automated generation of business process models from natural
language input. Master’s thesis, Humboldt-Universität zu Berlin (November 2010)

26. Kitzmann, I., Konig, C., Lubke, D., Singer, L.: A Simple Algorithm for Automatic
Layout of BPMN Processes. In: IEEE Conf. CEC, pp. 391–398 (2009)

27. Seemann, J.: Extending the sugiyama algorithm for drawing UML class diagrams:
Towards automatic layout of object-oriented software diagrams. In: Graph Drawing,
pp. 415–424. Springer, Heidelberg (1997)

28. Eiglsperger, M., Kaufmann, M., Siebenhaller, M.: A topology-shape-metrics
approach for the automatic layout of UML class diagrams. In: Proceedings of the
2003 ACM Symposium on Software Visualization, p. 189. ACM, New York (2003)

29. White, S., Miers, D.: BPMN Modeling and Reference Guide: Understanding and
Using BPMN. Future Strategies Inc. (2008)

30. Holschke, O.: Impact of granularity on adjustment behavior in adaptive reuse of
business process models. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS,
vol. 6336, pp. 112–127. Springer, Heidelberg (2010)

31. Reijers, H.: Design and control of workflow processes: business process management
for the service industry. Eindhoven University Press (2003)

32. Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of
business process models: Metrics and evaluation. Inf. Sys. 36, 498–516 (2010)

33. Dijkman, R., Dumas, M., Garcıa-Banuelos, L., Käärik, R.: Graph Matching
Algorithms for Business Process Model Similarity Search. In: Dayal, U., Eder, J.,
Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer,
Heidelberg (2009)

34. Polyvyanyy, A., Smirnov, S., Weske, M.: On application of structural decomposi-
tion for process model abstraction. In: 2nd Int. Conf. BPSC, pp. 110–122 (March
2009)

35. Kop, C., Vöhringer, J., Hölbling, M., Horn, T., Irrasch, C., Mayr, H.: Tool Sup-
ported Extraction of Behavior Models. In: Proc. 4th Int. Conf. ISTA (2005)

36. Yue, T., Briand, L., Labiche, Y.: Automatically Deriving a UML Analysis Model
from a Use Case Model. Technical report, Carleton University (2009)

37. Wang, H.J., Zhao, J.L., Zhang, L.J.: Policy-Driven Process Mapping (PDPM):
Discovering process models from business policies. DSS 48(1), 267–281 (2009)

38. Sinha, A., Paradkar, A.: Use Cases to Process Specifications in Business Process
Modeling Notation. In: 2010 IEEE Int. Conf. on Web Services, pp. 473–480 (2010)

39. Shi, L., Mihalcea, R.: Putting Pieces Together: Combining FrameNet, VerbNet and
WordNet for Robust Semantic Parsing. In: Proceedings of the 6th Int. Conf. on
Computational Linguistics and Intelligent Text Processing, p. 100 (2005)

A Semantic Approach for Business Process

Model Abstraction

Sergey Smirnov1, Hajo A. Reijers2, and Mathias Weske1

1 Hasso Plattner Institute, University of Potsdam, Germany
{sergey.smirnov,mathias.weske}@hpi.uni-potsdam.de
2 Eindhoven University of Technology, The Netherlands

h.a.reijers@tue.nl

Abstract. Models of business processes can easily become large and
difficult to understand. Abstraction has proven to be an effective means
to present a readable, high-level view of a business process model, by
showing aggregated activities and leaving out irrelevant details. Yet, it is
an open question how to combine activities into high-level tasks in a way
that corresponds to such actions by experienced modelers. In this paper,
an approach is presented that exploits semantic information within a
process model, beyond structural information, to decide on which activ-
ities belong to one another. In an experimental validation, we used an
industrial process model repository to compare this approach with ac-
tual modeling decisions, showing a strong correlation between the two.
As such, this paper contributes to the development of modeling support
for the application of effective process model abstraction, easing the use
of business process models in practice.

Keywords: business process modeling, model management, business
process model abstraction, activity clustering.

1 Introduction

Business process models are used within a range of organizational initiatives [19].
However, human readers are limited in their cognitive capabilities to make sense
of large and complex business process models [2,33]. One well-known way to ad-
dress this issue is by applying abstraction, the act of retaining essential properties
of a process model on a particular level of analysis while hiding insignificant pro-
cess details. Indeed, in a recent empirical investigation into the need for business
process model abstraction [32], we found that its most prominent use case is the
need for gaining a quick overview of the process. In such a situation, the user
wants to familiarize herself with a business process but has only a large process
model of many detailed activities at her disposal. To deal with such a demand,
the process model can then be displayed as a partially ordered set of coarse-
grained activities, each of which aggregates a number of lower-level activities.
As an example, an abstraction of a process model that captures the creation of
a forecasting report is shown in Fig. 1. In this figure, m is the initial model and
ma is the abstract model of the same process.

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 497–511, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

498 S. Smirnov, H.A. Reijers, and M. Weske

Collect
data

Prepare data for
full analysis

Perform
analysis

Perform
simulation

Perform quick
data analysis

Consolidate
results

Prepare data for
quick analysis

Fo
re

ca
st

 c
om

pa
ny

Raw
data

Raw
data

FA
data

QA
data

C
le

rk
S

en
io

r a
na

ly
st

Generate
forecast report

Receive forecast
request

Send
report

A
na

ly
st

Handle forecast
request

Perform full
analysis

Perform quick
analysis

Fo
re

ca
st

 c
om

pa
ny

C
le

rk
S

en
io

r
an

al
ys

t

Issue report

A
na

ly
st

abstract model, ma

initial model, m

Fig. 1. Motivating example: initial model and its abstract counterpart

While it has been empirically shown that abstraction can significantly improve
the sense-making of large process models [25], a limited insight exists into the
criteria that experienced modelers use to decide on which activities to aggregate
into new ones. A number of techniques has been proposed that exploit structural
properties of a process model to arrive at abstract models [5,24]. It seems likely
that experienced process modelers take a wider range of properties into account
rather than just a model’s control flow. For example, the fact that two activities
use the same document and are executed by the same role may be used as
relevant inputs in deciding to cluster these two into an aggregated activity. This
situation applies, for example, to the activities Prepare data for quick analysis
and Perform quick data analysis in Fig. 1.

In this paper, we complement the existing streams of work with respect to pro-
cess model abstraction by proposing an abstraction technique that incorporates
semantic aspects contained within a process model. We rely on the observation
that industrial process models are often enriched with non-control flow model ele-
ments. Examples are: data that is being processed within an activity, IT systems
invoked within particular activities, and roles assigned to activities. The central
idea in this paper is that activities associated with the same non-control flow

A Semantic Approach for Business Process Model Abstraction 499

elements are semantically related and, therefore, more appropriate candidates to
be aggregated into the same activity than activities without shared elements.

A number of recent contributions exist that consider semantic aspects for
aggregation, e.g., [8,31]. However, their assumptions, e.g., the existence of an ac-
tivity ontology [31], are too strict for generic use. Our approach is based on the
application of the vector space model, an algebraic model popular in information
retrieval [28]. As we will discuss in this paper, the use of vector spaces allows
to determine the degree of similarity between activities according to several in-
formation types available in process models. We have validated the proposed
technique applying it to a process model repository that is in use by a large
European telecommunication organization. The repository incorporates hierar-
chical relations between high-level activities and the activities that they aggre-
gate. Also, the process models contain various types of semantic information.
The validation suggests that our approach closely approximates the decisions of
the involved modelers to cluster activities.

The main contribution of this paper is a technique that may assist novice
process modelers in the abstraction of complex process models by mimicking
the abstraction decisions of more experienced modelers, as discovered from ex-
isting models. In this way, the technique allows to reuse activity aggregation
principles for future aggregation decisions. Since the lack of experienced process
modelers is a noted issue in many large modeling projects [26], this is a valuable
asset to improve the process model quality. Meanwhile, the designed technique
can also support experienced modelers enabling process model abstraction in
conformance to their specific abstraction style. Hence, experts can accelerate
their modeling routine configuring this technique, while staying in control over
the modeling outcome. Finally, the technique can also be used to safeguard a
particular “fingerprint” of a process model collection with respect to abstraction
choices.

The paper is structured accordingly. We continue in Section 2 explaining the
proposed algorithm, along with providing the required background knowledge.
Section 3 empirically validates the proposed approach, using an industrial set of
process models from the telecommunication sector. Finally, Section 4 contrasts
our contribution with the related research, while Section 5 concludes the paper.

2 Activity Aggregation

This section elaborates on the proposed activity aggregation algorithm. After
the introduction of the main concepts, we argue how activity aggregation can be
interpreted as a clustering problem. We discuss a suitable clustering algorithm
and alternative activity distance measures. The section focuses on one specific
measure that enables the tuning of an activity aggregation. We explain how the
aggregation setup is realized and show how the setup information can be mined
from an existing process model collection.

500 S. Smirnov, H.A. Reijers, and M. Weske

2.1 Foundations

The designed aggregation algorithm inspects an activity environment, i.e., pro-
cess model elements that are related to activities in a process model. Examples
of such elements are data objects accessed by activities and roles supporting ac-
tivity execution, e.g., see model in Fig. 1. The list of such model element types
varies depending on the process modeling language, the tool at hand, modeling
procedures taken into account, and the modeler’s style. Each of the model ele-
ment types can be considered as an activity property that has a specific value.
Definition 1 formalizes the activity property concept.

Definition 1 (Activity Property Value and Activity Property Type).
Let P be a finite nonempty set of activity property values. Alongside, T is a

finite nonempty set of activity property types. Mapping type : P → T assigns a
type to each value.

The process model in Fig. 1 illustrates Definition 1. Raw data, FA data, and
Analyst are examples of activity property values. The process model presents
two activity property types: Role and Data object. For instance, type(Raw data)
= Data object, type(FA data) = Data object, and type(Analyst) = Role. Further,
we define a process model as follows.

Definition 2 (Process Model). A tuple mi = (Ai, Gi, Fi, Pi, propsi) is a
process model, where:
– Ai is a finite nonempty set of activities;
– Gi is a finite set of gateways;
– Ni = Ai∪̇Gi is the set of nodes, where ∪̇ denotes a disjoint union of sets;
– Fi ⊆ Ni ×Ni is the flow relation;
– Pi ⊆ P is a set of activity property values;
– propsi : Ai → 2Pi is a mapping that assigns property values to an activity.

Definition 2 does not make a distinction between different gateway types, since
the future discussion does not make use of them. Mapping propsi assigns activity
property values to model activities. Referring to model m in the motivating
example of Fig. 1, mapping propsi can be illustrated as propsi(Collect data)
= {Clerk, Raw data}. Notice that Definitions 1 and 2 allow to manage the
considered activity property types in a flexible fashion: it is enough to introduce
a new activity property type to set T , the values to P , and respectively update
mapping type. Thereafter, new activity properties can be easily considered within
the activity aggregation. Finally, we postulate the concept of a process model
collection.

Definition 3 (Process Model Collection). A tuple c = (M, A, P, σ) is a
process model collection, where:
– M is a nonempty finite set of n process models with elements

mi = (Ai, Gi, Fi, Pi, propsi), where i = 1, 2, . . . , n;
– A = ∪̇i=1,2,...,nAi is a set of collection activities;
– P = ∪i=1,2,...,nPi is a set of collection activity property values;

A Semantic Approach for Business Process Model Abstraction 501

– σ ⊆ M ×M is a subprocess relation refining a process model with subpro-
cess models, such that ∀mi, mj ∈ M , where j = 1, 2, . . . , n and i 	= j, if
(mi, mj) ∈ σ then (mj , mi) /∈ σ+, where σ+ is a transitive reflexive closure
of σ.

Definition 3 explicitly enumerates the model collection activities and property
value types. The relation σ formalizes the subprocess relation that exists between
models. Note that according to the definition, σ enables only a process model
hierarchy without loops. Without loss of generality in the remainder of this
paper we discuss abstraction of process models within a process model collection.
Indeed, a process model mi can be seen as a trivial process model collection
c = ({mi}, Ai, Pi, ∅).

2.2 Activity Aggregation as Cluster Analysis Problem

In this paper we interpret activity aggregation as a problem of cluster analysis.
Consider process model mi = (Ai, Gi, Fi, Pi, propsi) from process model collec-
tion c = (M, A, P, σ). The set of objects to be clustered is the set of activities
Ai. The objects are clustered according to a distance measure: objects that are
“close” to each other according to this measure are put together. The distance
between objects is evaluated through analysis of activity property values P . The
cluster analysis outcome, activity clusters, correspond to coarse-grained activi-
ties of the abstract process model. While cluster analysis provides a large variety
of algorithms, e.g., see [29], we focus on one algorithm that suits the business
process model abstraction use case in focus.

In the considered scenario, the user demands control over the number of activ-
ities in the abstract process model. For example, a popular practical guideline is
that five to seven activities are displayed on each level in the process model [30].
Provided a fixed number, e.g. 6, the clustering algorithm has to assure that the
number of clusters equals the request by the user. We turn to the use of k-means
clustering algorithm, as it is simple to implement and typically exhibits good
performance [16]. K-means clustering partitions an activity set into k clusters.
The algorithm assigns an activity to the cluster, which centroid is the closest
to this activity. To evaluate an activity distance, we analyze activity property
values P . We foresee a number of alternative activity distance measures and
elaborate on them in the next section.

2.3 Activity Distance Measures

To introduce the distance measure among activities we represent activities as vec-
tors in a vector space. Such an approach is inspired by the vector space model, an
algebraic model widely used in information retrieval [28]. The space dimensions
correspond to activity property values P and the vector space can be captured
as vector (p1, . . . , p|P |), where pj ∈ P for j = 1, . . . , |P |. Consider an example set
of property values P ′ = {FA data, QA data, Raw data} and the corresponding
vector space presented in Fig. 2. A vector va representing an activity a ∈ Ai in
process model mi = (Ai, Gi, Fi, Pi, propsi) is constructed as follows. If activity a

502 S. Smirnov, H.A. Reijers, and M. Weske

Raw
data

QA
data

FA
data

Prepare data

for full analysis

Prep
are

 da
ta

for

qu
ick

 an
aly

sis

Fig. 2. Example of a vector space formed by dimensions FA data, QA data, Raw data

is associated with a property value pj ∈ Pi, the corresponding vector dimension
πj(va) has value 1; otherwise, the dimension πj(va) has value 0:

πj(va) =

{
1, if pj ∈ propsi(a);
0, otherwise.

For process model m in Fig. 1, activities Prepare data for quick analysis and
Prepare data for full analysis correspond, respectively, to vectors v1 = (0, 1, 1)
and v2 = (1, 0, 1) in the vector space with dimensions FA data, QA data, Raw
data, see Fig. 2.

Similarity of two vectors in the space is defined by the angle between these
vectors: the larger the angle, the more distant the activities are. Typically, the
cosine of the angle between two vectors is used as a vector similarity measure:

sim(a1, a2) = cos(va1 , va2) =
va1 · va2

‖va1‖ ‖va2‖
(1)

Then, the distance between two activities is:

dist(a1, a2) = 1− sim(a1, a2) (2)

By construction the vector dimension values are non-negative. Hence, the activity
similarity and activity distance measures vary within the interval [0, 1].

For a process model collection c = (M, A, P, σ) we distinguish two types of
vector spaces. On the one hand, a vector space can be formed by the dimen-
sions corresponding to the activity property values disregard their type, i.e., all
elements of P . We reference such spaces as heterogeneous vector spaces. An exam-
ple of a heterogeneous vector space is a space with 6 dimensions Analyst, Clerk,
FA data, QA data, Raw data, and Senior analyst. On the other hand, a vector
space can be formed by the dimensions corresponding to the activity property
values of a particular type. Given an activity property type t, such a space is
formally defined by the set Pt = {∀p ∈ P : type(p) = t}. We refer to such spaces
as homogeneous vector spaces. Fig. 2 provides an example of a homogeneous
vector space formed by activity properties of type Data object. We denote the

A Semantic Approach for Business Process Model Abstraction 503

activity distance in a heterogeneous space with disth(a1, a2) and in a homoge-
neous vector space with distt(a1, a2), where t is the respective activity property
type. Both distance measures can be employed for activity aggregation. If the
user wants to make use of one activity property type t only, the distance is de-
fined by distt. To cluster activities according to several activity property types,
disth can be employed. In addition, we introduce an alternative distance measure
distagg that aggregates multiple homogeneous distance measures distt:

distagg(a1, a2) =
1
|T |

∑
∀t∈T

wt · distt(a1, a2) (3)

In Equation 3, the set T corresponds to the activity property types that appear
in process model collection c. Then, function distagg is the weighted average
value of distance measures in the vector spaces corresponding to the available
activity property types. Coefficient wt is the weight of distt indicating the impact
of the activity distance according to property type t. We reference all the weights
in Equation 3 as W = (wt1 , . . . , wtn), where n = |T |. In the remainder of this
section we will explain the role of vector W .

2.4 Process Model Collection Abstraction Fingerprint

The application of different abstraction operations to one process model leads to
various abstract representations of the modeled business process. The differences
between abstraction operations are explained by their pragmatics, i.e., various
abstraction purposes. If the abstraction is realized by a human, the modeling
habits of the designer are reflected in the abstraction operation as well. Hence,
abstraction pragmatics and modeling habits of the designer are inherent proper-
ties of the abstraction operation and together form an abstraction style. We use
vector W in Equation 3 to model an abstraction style.

From the user perspective vector W is the tool to express the desired abstrac-
tion style. We foresee two scenarios how vector W can be obtained. In the first
scenario, the user explicitly specifies W . This approach is useful if the user wants
to introduce a new abstraction style. However, coming up with an appropriate
value for W may be challenging. Hence, the second scenario implies that vector
W is mined from a process model collection enriched with subprocess relation
(formalized with σ in Definition 3). The discovered vector is a “fingerprint” of
the process model collection with respect to the used abstraction style. We will
now describe an approach how vector W can be discovered from such a process
model collection.

The discovery process of a model collection’s abstraction fingerprint is driven
by the following argumentation. Activities of a process model collection are ag-
gregated into aggregated activities, i.e. subprocess placeholders, by the model
designer. We aim to achieve an activity clustering algorithm that approximates
this aggregation behavior of a human. This is possible if an activity distance mea-
sure employed by the algorithm resembles the criteria that a human designer uses
to aggregate activities into a subprocess. The exact criteria are unknown. Yet,

504 S. Smirnov, H.A. Reijers, and M. Weske

for each pair of activities we can observe the outcome: Either the activities be-
long to different subprocesses or to the same one. For a process model collection
c = (M, A, P, σ) function diff formalizes this observation:

diff(ak, al) =

{
0, if ak, al ∈ Ai;
1, otherwise.

(4)

To mine the process model collection fingerprint W we select its value in such a
way that the behavior of function distagg approximates the behavior of diff. The
discovery of vector W is realized by means of linear regression. In our setting,
the values distt are considered independent variables and the value of function
diff the the dependent variable. Components of vector W are the regression
coefficients. The standardized coefficients indicate the impact of each activity
property type on the abstraction style. Hence, it is possible to reveal criteria em-
ployed by the human designer during abstraction. Furthermore, the regression’s
coefficient of determination R2 allows to judge how well the obtained statisti-
cal model explains the observed behavior. For our purposes, R2 suggests if the
discovered statistical model can be used for business process model abstraction.

3 Empirical Validation

The proposed activity aggregation mechanism calls for validation. The goal of
the validation is to learn how well the proposed operation approximates the
abstraction style of human modelers. We performed an empirical validation of
the approach by conducting an experiment with a real world business process
model collection. This section provides a detailed discussion of the validation; it
describes in detail the explored process model collection, explains the experiment
design, and discusses the validation results.

3.1 Validation Setup

As a research object we choose a set of business process models from a large
telecommunication service provider. This organization is currently in the process
of setting up a repository with high-quality process models, which are brought
together for the purpose of consultation and re-use by business users. The model
set includes 30 elaborate models, enriched with activity properties of the follow-
ing types: roles, responsible roles, IT systems, and data objects. It is noticeable
that a special type of roles, i.e., responsible roles, is also distinguished in these
models. In addition to these non-control flow types of information, we also study
the impact that activity labels and activity neighboring control flow elements
have on the decision to aggregate activities into the same subprocess. To com-
pare activities with respect to their labels, the corresponding vector space is
formed by the words that appear in the labels. Against this background, finding
the distance between activities becomes an information retrieval task as labels
can be treated as documents in information retrieval. The comparison of activi-
ties with respect to their neighbors shows whether the neighborhoods of the two

A Semantic Approach for Business Process Model Abstraction 505

Table 1. Properties of business process models used in the validation

Nodes Activities Role Responsible role IT system Data object

Average 15.5 6.3 2.1 0.76 1.5 0.76
Minimum 5 1 0 0 0 0
Maximum 48 20 5 2 7 17

activities intersect, i.e., contain the same flow elements. Table 1 outlines the rel-
evant properties of the process models. In the existing repository, the models are
hierarchically organized using a subprocess relation. Within the model set, we
have identified 8 subprocess hierarchies. Each hierarchy contains a root process
model refined with subprocesses, allowing for several levels of refinement.

To formally validate how good the designed activity aggregation approximates
the behavior of modelers clustering a set of activities into the same subprocess,
we selected the following approach. For each pair of activities that belong to
the same process hierarchy, we have evaluated two values in the process model
collection: diff and dist. Here, diff describes the human abstraction style, which
indicates whether the activities have been decided to be placed in the same sub-
process or not. The value of dist represents the vector space distance between
the two activities in accordance with our approach. To discover if the two ap-
proaches yield similar results, we study the correlation between the two variables.
A strong correlation of two variables implies that dist is a good distance measure
in the clustering algorithm. In this case, the inclusion of two activities within
the same subprocess is mirrored by a close positioning of the corresponding vec-
tors in the vector space. Given the nature of the observed variables, we employ
Spearman’s rank correlation coefficient.

In the following, we first investigate the human abstraction style in the model
collection as a whole. Then, we verify the results organizing a K-fold cross valida-
tion. We partition the model sample into 4 subsamples, i.e., k = 4 and perform
four tests. In each test, three subsamples are used to discover vector W , while
the fourth subsample is used to evaluate the correlation values between the diff
and dist measures in different vector spaces. In this way, a more reliable in-
sight is developed into the question whether the human abstraction style can be
mimicked in contrast to using the whole process model collection for both the
discovery and the evaluation of this correlation.

3.2 Validation Results

Table 2 outlines the validation’s results. The columns in the table correspond
to distance measures. While the first 6 columns correspond to distances in ho-
mogeneous spaces, the last three columns reflect the distance measure taking
into account multiple activity properties. All three distance measures make use
of the activity property types in columns 1–6. The distance disth is measured
in heterogeneous vector space, where dimensions are activity property values of
types listed in columns 1–6. The distance measure distavg is the average value of

506 S. Smirnov, H.A. Reijers, and M. Weske

Table 2. Correlation values observed in the K-fold cross validation

Experiment ρ(distt, diff) ρ(disth, diff) ρ(distavg, diff) ρ(distagg, diff)

R
o
le

R
es

p
o
n
si
b
le

ro
le

IT
sy

st
em

D
a
ta

o
b
je

ct

L
a
b
el

N
ei

g
h
b
o
r

All models 0.70 0.61 0.60 — 0.34 0.58 0.74 0.65 0.77
Test1 0.79 0.76 0.75 — 0.42 0.60 0.79 0.69 0.79
Test2 0.64 0.56 0.56 — 0.43 0.62 0.68 0.70 0.70
Test3 0.68 0.58 0.58 — 0.53 0.64 0.68 0.72 0.71
Test4 0.61 0.47 0.45 — 0.20 0.48 0.70 0.56 0.52
Average1−4 0.68 0.59 0.58 — 0.39 0.59 0.71 0.67 0.68

distances in columns 1–6. The distance measure distagg is evaluated according
to Equation 3. Vector W used in distagg is obtained using linear regression as
described in the previous section. Rows of Table 2 correspond to experiments.
The first row describes the study of the whole model collection. Rows 2–5 de-
scribe the results of 4 tests along the K-fold cross validation we explained earlier,
while the last row provides the average correlations observed in the 4 separate
tests.

The correlation values that are presented in Table 2 are all significant using
a confidence level of 99%, i.e., all p values are lower than 0.01. However, no
statistically significant results were obtained for the distance in the homogeneous
vector space that corresponds to Data objects. Overall, the presented correlation
values range around 0.7. This level is generally considered to indicate a strong
correlation [11,12], particularly in situations where human decision making is
involved. Therefore, we can speak of a strong relation between the dist and diff
measures.

Among the distance measures in homogeneous spaces, one can point out the
distance in the Role space that overall displays the highest correlation values for
the different studies (0.61–0.79). In contrast, correlation values for Label are the
lowest (0.20–0.53). Another observation is that distances taking into account
multiple activity property types tend to have higher correlations. From these,
distagg outperforms all other distance measures with a value arriving at 0.77
when all models are considered. For the average values of the K-fold cross vali-
dations, however, disth, distavg, and distagg demonstrate a similar performance,
with correlation values of 0.71, 0.67, and 0.68 respectively. This observation
can be explained by the fact that distagg is parameterized by vector W—the
abstraction fingerprint of a particular model set. Thus, the distance measure
distagg “trained” on one model set may never excel distavg, once the set of mod-
els is changed. Tests 1–4 support this argumentation. Note that this result does
not restrict the applicability of the approach: in a real world setting, the goal
is to transfer the abstraction style from one model set to another. The average

A Semantic Approach for Business Process Model Abstraction 507

values in the lower row should, therefore, be seen as most important from the
ones displayed.

A careful inspection of the linear regression results associated with parame-
terizing vector W provides additional insights. In particular, we are interested
in the observed R2 values and the beta coefficients (also known as “standardized
coefficients”). The R2 for the whole model set, as well as the average value for
the K-fold cross validation is 0.52. This value shows the explained level of vari-
ation in abstraction style as explained by the various distance measures under
consideration and can be considered as moderately strong. The beta coefficients
of the distance measures in various spaces reveal their impact on the activity ag-
gregation. The beta coefficients for activity property types Role and Responsible
role have average values of 0.55 and 0.37, respectively. At the same time, the
standardized coefficients of Neighbor and Label property types fluctuate around
0. The average value for IT systems is in between, with a beta coefficient of
0.19. The provided numbers illustrate that the activity property types Role and
Responsible role have a big impact on the abstraction style of the considered pro-
cess model collection. IT systems also contributes to the activity aggregation,
but the influence of activity labels and activity neighborhood is insignificant.
Clearly, such insights may differ from one process model to the other.

The validation indicates that the suggested distance measures can be used
in a close approximation of the abstraction style of human modelers. Among
the introduced measures, distagg is of great interest, as it takes into account
the abstraction style of a particular process model collection. Furthermore, the
validation revealed activity property types, Role and Responsible role, that have
the highest impact on the abstraction style for this particular collection.

4 Related Work

The topic of business process model abstraction can be related to several research
streams. We identify these streams looking both from the perspective of the
disciplines of software engineering and business process management.

Model properties and relations are thoroughly investigated in the software
engineering area. For instance, in [21,22] Kühne elaborates on the concepts of
model, metamodel, model types, and model relations. These works systematically
describe and organize relations, e.g., generalization and classification, which are
seminal for the problem of model abstraction. Closely related are also the studies
that cover model granularity. In [17], the authors investigate model and meta-
model granularity. The authors compare several metamodels and come up with
best practices with respect to granularity. One can observe that the relation be-
tween a coarse-grained activity in an abstract model and its counterparts in the
initial model is the meronymy, or part-of, relation. Meronymy has been studied
in depth in the software engineering domain [3,13]. Although the referenced pa-
pers do not provide concrete techniques for the implementation of abstraction
within process models, they facilitate a better problem understanding and help
to identify the main concepts in this domain.

508 S. Smirnov, H.A. Reijers, and M. Weske

Business process management is the discipline concerned with using methods,
techniques, and software to design, enact, control, and analyze operational pro-
cesses. A large body of knowledge corresponds to process model analysis based
on model transformations. Model transformations can be reused in the context
of the abstraction problem. An example of such a transformation consists of re-
duction rule sets for Petri nets, e.g., see [4,23,27]. Each reduction rule explicitly
defines a structural fragment to be discovered in the model and a method of
this fragment transformation. Hence, reduction rule sets enable process model
abstraction through iterative rule application. As the transformed process frag-
ments are explicitly defined, each reduction rule set handles only a particular
model class. Thereby, each reduction rule set requires an argument about the
model class reducible with the given rules. The model class limits the application
of abstraction approaches based on reduction rules [5,10]. Process model decom-
position approaches are free of this limitation: they seek for process fragments
with particular properties. An example of such a decomposition is presented
in [34], where single entry single exit fragments are discovered. The result of
process model decomposition is the hierarchy of process fragments according to
the containment relation, i.e., the process structure tree. Such a tree can be
used for abstraction in process models [24]. Finally, one can distinguish model
transformations that preserve process behavior properties. In [1], van der Aalst
and Basten introduce three notions of behavioral inheritance for WF-nets and
study inheritance properties. The paper suggests model transformations, such
that the resulting model inherits the behavior of the initial model. An approach
for process model abstraction can exploit such transformations as basic opera-
tions. While the outlined model transformations can support solving the general
problem of process model abstraction, they all focus on structural and behav-
ioral aspects of models and model transformations, leaving the semantic aspect
out of scope.

Many tasks in the management of large process model collections can be traced
back to the problem of activity matching, which is closely related to the problem
of business process model abstraction. Examples of such management tasks are:
the search for a particular process model over a process model set or ensuring the
consistency of models capturing one and the same process from different perspec-
tives. Activity matching is realized through analysis of activity properties: activ-
ity labels, referenced data objects and neighboring activities. In [9,35] the authors
suggest activity matching algorithms and evaluate them. While the named works
explore the existing process models and do not directly address the problem of pro-
cess model abstraction, their results have a potential of being applied in business
process model abstraction. Semantic aggregation of activities relates to research
on semantic business process management. Notice that process models enriched
with semantic information facilitate many process analysis tasks, see [18]. Along
this line of research, several authors argue how to use activity ontologies to realize
activity aggregation [6,7]. It should be noticed, however, that such works imply the
existence of a semantic description for model elements and their relations, which
is a restriction that rarely holds in real world settings.

A Semantic Approach for Business Process Model Abstraction 509

Establishing an activity’s granularity level is also a recurrent challenge in
process mining, where logs contain records that are often very fine-granular. As
such, the process models directly mined from the logs can be overloaded with
information making them hard to comprehend. Activity clustering is an efficient
means to raise the abstraction level for the mined models. In [14,15] Günther
and van der Aalst propose activity aggregation mechanisms based on clustering
algorithms. The mechanisms extensively use information present in process logs,
but which are less common for process models, i.e., timestamps of activity starts
and stops, activity frequencies, and transition probabilities. Thus, in contrast
to the activity aggregation approach proposed in this paper, process mining
considers other activity property types for clustering and utilize other clustering
algorithms.

5 Conclusions and Future Work

Despite business process model abstraction has been addressed in a number of
research endeavors, this paper proposes a novel approach in this area. Specifically,
it exploits semantic aspects—beyond the control-flow perspective—to determine
a similarity between different activities for the purpose of simplifying process
model abstraction. Relevant levels of similarity can be determined on the basis
of existing process models in which abstraction was already applied.

Our main contribution is a method to discover sets of related activities, where
each set corresponds to a coarse-grained activity of an abstract process model.
As a second contribution, we propose an approach to discover an abstraction
style inherent to a given process model collection, which is reusable for ab-
straction of new process models. Both contributions are of practical interest,
as they addresses model management issues recurrently appearing in process
model projects. The experimental validation provides strong support for the
applicability and effectiveness of the presented ideas.

Our approach is characterized by a number of limitations and assumptions.
First of all, it builds on the assumption that all kinds of semantic information,
such as data objects, roles, and resources, can be observed within the descrip-
tions of process models in industrial collections. The process model collection
we obtained through our cooperation with a large telecommunication company
clearly confirms this idea, but this also applies to other industrial repositories,
such as the SAP Reference Model [20]. Secondly, in our validation we have merely
focused on the appearance or not of two activities being within the same sub-
process or process model, although it can be imagined that a more fine-grained
correspondence measure could yield even more useful results.

These and other limitations guide our future research plans. The direct next
step for us is the use of advanced vector space models reflecting the relations
between different activity property values. Such models enable activity cluster-
ing algorithms to consider the structure of organigrams and data object rela-
tions. Meanwhile, it can also be beneficial to consider other clustering algorithms
and compare the outcome with the solution introduced in this paper. From a

510 S. Smirnov, H.A. Reijers, and M. Weske

practical perspective, it is important to suggest names for coarse-grained activi-
ties that are products of activity aggregation. Finally, we would like to improve
the validation method for activity aggregation. On the one hand, this implies re-
placing correlation with an alternative metric for activity aggregation quality. On
the other hand, the validation will require an empirical study involving human
modelers and stakeholders, who can evaluate the proposed activity aggregation.

References

1. van der Aalst, W.M.P., Basten, T.: Life-Cycle Inheritance: A Petri-Net-Based
Approach. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp.
62–81. Springer, Heidelberg (1997)

2. Aguilar, E.R., Ruiz, F., Garćıa, F., Piattini, M.: Evaluation Measures for Business
Process Models. In: SAC 2006, pp. 1567–1568. ACM, New York (2006)

3. Barbier, F., Henderson-Sellers, B., Le Parc-Lacayrelle, A., Bruel, J.-M.: Formal-
ization of the Whole-Part Relationship in the Unified Modeling Language. IEEE
TSE 29(5), 459–470 (2003)

4. Berthelot, G.: Transformations and Decompositions of Nets. In: Rozenberg, G. (ed.)
APN 1987. LNCS, vol. 266, pp. 359–376. Springer, Heidelberg (1987)

5. Bobrik, R., Reichert, M., Bauer, T.: View-Based Process Visualization. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 88–95.
Springer, Heidelberg (2007)

6. Casati, F., Shan, M.-C.: Semantic Analysis of Business Process Executions. In:
EDBT 2002, pp. 287–296. Springer, Heidelberg (2002)

7. Alves de Medeiros, A.K., van der Aalst, W.M.P., Pedrinaci, C.: Semantic Process
Mining Tools: Core Building Blocks. In: ECIS 2008, Galway, Ireland, pp. 1953–1964
(2008)

8. Di Francescomarino, C., Marchetto, A., Tonella, P.: Cluster-based Modularization
of Processes Recovered from Web Applications. Journal of Software Maintenance
and Evolution: Research and Practice (2010)

9. Dijkman, R., Dumas, M., Garćıa-Bañuelos, L.: Graph Matching Algorithms for
Business Process Model Similarity Search. In: Dayal, U., Eder, J., Koehler, J.,
Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg
(2009)

10. Eshuis, R., Grefen, P.: Constructing Customized Process Views. Data Knowl.
Eng. 64(2), 419–438 (2008)

11. Franzblau, A.N.: A Primer of Statistics for Non-statisticians. Harcourt, Brace &
World, New York (1958)

12. Gerstman, B.B.: StatPrimer – Version 6.4. Technical report, San Jose State Uni-
versity (2010), http://www.sjsu.edu/faculty/gerstman/StatPrimer/

13. Guizzardi, G.: Modal Aspects of Object Types and Part-Whole Relations and the
de re/de dicto Distinction. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE
2007 and WES 2007. LNCS, vol. 4495, pp. 5–20. Springer, Heidelberg (2007)

14. Günther, C.W., van der Aalst, W.M.P.: Mining Activity Clusters from Low-Level
Event Logs. BETA Working Paper Series, WP, vol. 165 (2006)

15. Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining – Adaptive Process Simplifi-
cation Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)

16. Hartigan, J.: Clustering Algorithms. John Wiley and Sons, New York (1975)

http://www.sjsu.edu/faculty/gerstman/StatPrimer/

A Semantic Approach for Business Process Model Abstraction 511

17. Henderson-Sellers, B., Gonzalez-Perez, C.: Granularity in Conceptual Modelling:
Application to Metamodels. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand,
Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 219–232. Springer, Heidelberg (2010)

18. Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic Business
Process Management: A Vision Towards Using Semantic Web Services for Busi-
ness Process Management. In: ICEBE, pp. 535–540. IEEE Computer Society, Los
Alamitos (2005)

19. Indulska, M., Recker, J., Rosemann, M., Green, P.: Business Process Modeling:
Current Issues and Future Challenges. In: van Eck, P., Gordijn, J., Wieringa, R.
(eds.) CAiSE 2009. LNCS, vol. 5565, pp. 501–514. Springer, Heidelberg (2009)

20. Keller, G., Teufel, T.: SAP R/3 Process Oriented Implementation. Addison-Wesley
Longman Publishing Co., Inc., Boston (1998)

21. Kühne, T.: Matters of (Meta-) Modeling. Software and Systems Modeling 5(4),
369–385 (2006)

22. Kühne, T.: Contrasting Classification with Generalisation. In: APCCM 2009.
CRPIT, vol. 96 (January 2009)

23. Mendling, J., Verbeek, H., van Dongen, B., van der Aalst, W.M.P., Neumann, G.:
Detection and Prediction of Errors in EPCs of the SAP Reference Model. Data
Knowl. Eng. 64(1), 312–329 (2008)

24. Polyvyanyy, A., Smirnov, S., Weske, M.: The Triconnected Abstraction of Process
Models. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS,
vol. 5701, pp. 229–244. Springer, Heidelberg (2009)

25. Reijers, H.A., Mendling, J.: Modularity in Process Models: Review and Effects.
In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp.
20–35. Springer, Heidelberg (2008)

26. Rosemann, M.: Potential Pitfalls of Process Modeling: Part A. Business Process
Management Journal 12(2), 249 (2006)

27. Sadiq, W., Orlowska, M.E.: Analyzing Process Models Using Graph Reduction
Techniques. Information Systems 25(2), 117–134 (2000)

28. Salton, G., Wong, A., Yang, C.S.: A Vector Space Model for Automatic Indexing.
Communications of the ACM 18(11), 613–620 (1975)

29. Schaeffer, S.E.: Graph Clustering. Computer Science Review 1(1), 27–64 (2007)
30. Sharp, A., McDermott, P.: Workflow Modeling: Tools for Process Improvement

and Applications Development. Artech House Publishers, Boston (2008)
31. Smirnov, S., Dijkman, R., Mendling, J., Weske, M.: Meronymy-Based Aggregation

of Activities in Business Process Models. In: Parsons, J., Saeki, M., Shoval, P., Woo,
C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 1–14. Springer, Heidelberg (2010)

32. Smirnov, S., Reijers, H.A., Nugteren, T., Weske, M.: Business Process
Model Abstraction: Theory and Practice. Technical Report 35, Hasso Plattner
Institute (2010), http://bpt.hpi.uni-potsdam.de/pub/Public/SergeySmirnov/

abstractionUseCases.pdf

33. Vanderfeesten, I.T.P., Reijers, H.A., Mendling, J., van der Aalst, W.M.P., Car-
doso, J.: On a Quest for Good Process Models: The Cross-Connectivity Metric.
In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 480–494.
Springer, Heidelberg (2008)

34. Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. In:
Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp.
100–115. Springer, Heidelberg (2008)

35. Weidlich, M., Dijkman, R.M., Mendling, J.: The ICoP Framework: Identification of
Correspondences between Process Models. In: Pernici, B. (ed.) CAiSE 2010. LNCS,
vol. 6051, pp. 483–498. Springer, Heidelberg (2010)

http://bpt.hpi.uni-potsdam.de/pub/Public/SergeySmirnov/abstractionUseCases.pdf
http://bpt.hpi.uni-potsdam.de/pub/Public/SergeySmirnov/abstractionUseCases.pdf

On the Automatic Labeling of Process Models

Henrik Leopold1, Jan Mendling1, and Hajo A. Reijers2

1 Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
{henrik.leopold,jan.mendling}@wiwi.hu-berlin.de

2 Eindhoven University of Technology
PO Box 513, 5600 MB Eindhoven, The Netherlands

h.a.reijers@tue.nl

Abstract. Process models are essential tools for managing, understand-
ing and changing business processes. Yet, from a user perspective they
can quickly become too complex to deal with. Abstraction – aggregat-
ing detailed fragments into more coarse-grained ones – has proven to be
a valuable technique to simplify the view on a process model. Various
techniques that automate the decision of which model fragments to ag-
gregate have been defined and validated by recent research, but their
application is hampered by the lack of abilities to generate meaningful
names for such aggregated parts. In this paper, we address this problem
by investigating naming strategies for individual model fragments and
process models as a whole. Our contribution is an automatic naming
approach that builds on the linguistic analysis of process models from
industry.

1 Introduction

Business process management is a concept for enabling companies to cope with
the increasing dynamics and challenges in a competitive business environment.
A key element of process management is to map business processes to mod-
els in order to leverage understanding, analysis and improvement of processes.
Today, many larger enterprises possess an extensive documentation of their busi-
ness process in terms of several thousand models, often at a significant level of
detail [1]. In order to make large and detailed models easier to understand, re-
cent research has developed automatic abstraction techniques to generate coarse-
grained model parts from more detailed ones [2,3].

The essential idea of abstraction is to identify fragments of a model that
can be aggregated into a single activity. While this is valuable to reduce the
structural complexity of a large model, existing techniques do not address how a
suitable name for an aggregated part can be established. When using abstraction
to render a high-level view of a process model for a human reader, which is the
most popular use case for abstraction [4], this is troublesome. In this paper, we
address the naming problem of aggregated model parts from the perspective of
naming a whole process model. A complete process model is as much a collection
of activities with mutual control-flow dependencies as an aggregated process

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 512–520, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Automatic Labeling of Process Models 513

model part is, although it is evidently not part of any higher-level model. Since
in many industrial settings entire process models themselves carry names that
convey indications of the business procedure that they capture, the underlying
process model naming conventions are a valuable source of inspiration on how
to name model parts. Our contribution is an automatic approach for generating
name suggestions for a process model based on its events and activities, which is
applicable to process model fragments as well. From a practical point of view, this
approach paves the way to an integrated and automated abstraction of process
models, in pursuit of the communication advantages associated with skilfully
decomposed process models [5].

Against this background, the paper is structured as follows. Section 2 discusses
the problem of assigning a meaningful name to a process and identifies a list
of naming strategies in models from practice. Section 3 describes the different
phases of our approach to generate process model names. Section 4 discusses
our contribution in the light of related work. Finally, Section 5 summarizes the
findings and provides an outlook on future research.

2 Naming of Process Models in Practice

Before considering an automatic approach for generating process model names,
we have to understand how modelers assign names to process models. Guidelines
exist on how activity names should be composed, e.g. [6] suggest a verb-object
style putting the action first followed by the corresponding business object. While
such guidelines advocate a certain grammatical structure of naming, they do
not deal with its content by refraining to mention how to choose a particular
verb or business object in the name of the model. In Section 2.1, we introduce
Event-Driven Process Chains (EPCs), the process modeling language that we
consider in this paper, and discuss directions for choosing a name for a model.
In Section 2.2, we inspect three sets of process models from practice in order to
identify strategies of naming. These strategies provide us with the foundation to
automatically generate names for a fragment or the whole EPC.

2.1 Event-Driven Process Chains

An EPC is a graph-structured process model, which consists of different types
of nodes: functions, events, and connectors. Functions define the business activ-
ities that have to be executed while events define the pre-conditions and post-
conditions for starting a function. Figure 1 shows an example EPC from the SAP
reference model with two functions (rounded boxes) and four events (hexagons).
Functions and events are connected via control flow arcs in an alternating way.
Complex routing is defined using connectors (circles). In the example, we observe
an OR-split connector (symbol ∨) creating two end events. An EPC has at least
one start event (no incoming arc) and at least one end event (no outgoing arc).

To illustrate the naming problem addressed in this paper, we re-consider the
example EPC from Figure 1. One approach for naming the entire process would
be to consider the different activities of the model. The two functions relate

514 H. Leopold, J. Mendling, and H.A. Reijers

Change in
Material Price

Batch input
has been

created for
price change

Material price
has been
changed

Revaluation
Document
has been
created

V

Activate Future
Material Price

Future
Material Price

must be
activated

Dominating Element
Material Price

Main Activity
Change Material Price

End Event
Change Material Price

End Event
Create Revaluation

Document

Start Event
Activate Future
Material Price

Conjunction
Activate and Change

Material Price

Fig. 1. Potential sources of process names for model Change in Material Price

to the business object material price, in respective connection with the actions
activate and change, which therefore could be used as central elements of the
overall name. Another option would be to look at the names of the end events
since they refer to what is actually accomplished by executing the process. Hence,
the creation of the revaluation document may represent another naming option.
This discussion aims to emphasize that there are many options, and they are
difficult to rank without prior domain knowledge. In the following part, we aim
to systematically identify different strategies for choosing a name for a process.

2.2 Classification of Naming Strategies

We collected an extensive set of process models from practice in order to iden-
tify naming strategies. We used three different model collections, aiming in this
respect for broad diversity in the underlying domains. First, we had access to
the SAP Reference Model [7, pp. 145-164], a collection containing 604 EPCs
organized in 29 functional branches of an enterprise such as sales, accounting
and other areas, with a total number of 2,433 activity labels. Second, we have
used a model collection from a European utility vehicle manufacturer consisting
of one main procurement process with nine sub-processes and altogether 115
activity labels. Third, we inspected a model collection containing the incident
management process from an international IT service provider. The process is
captured as an EPC on three abstraction layers, containing 88 sub-processes and
293 activity labels.

We analyzed the names in the model sets by first identifying action and business
objects in the name of the process model. Then, we used a self-developed tool that
identified linguistic relations between the name parts and the activity and event

Automatic Labeling of Process Models 515

labels. As a final step, we inspected each model manually. Based on this proce-
dure, we were able to develop a classification of naming strategies. Five different
approaches were observed including Dominating Element, Main Activity, Start or
End Events, Conjunction of Activities, and Semantic Naming. Figure 1 illustrates
some of these strategies, which we now aim to describe.

1. Dominating Element: If one particular business object or action is men-
tioned more often in activity labels than any other business object or action,
this element is considered to be a dominating element. In the analyzed pro-
cess model collections dominating elements were often used for naming the
process model if such a dominating element existed. The example in Figure 1
has Material Price as such a dominating element.

2. Main Activity: Some of the analyzed processes contain one particular ac-
tivity that is of central importance. The remaining activities have the char-
acter of side activities supporting, preparing or evaluating the result of this
activity. Figure 1 is a good example since Change in Material Price has such
characteristics. The process also contains an activity which is concerned with
activating the future material price. However, from the choice of the mod-
eler we can assume that this activity only plays a subordinate role, while the
focus is on the activity of changing the material price.

3. Start or End Events: Especially when the state at the beginning or at the
end of process define the overall goal of the process, the name of the whole
model may be closely related to them. In Figure 1 this is visible in the start
event Future Material Price must be activated and the end event Material
price has been changed.

4. Conjunction of Activities: If the same action is performed on different
business objects or different actions are applied on the same business object,
these activities can be easily described in terms of a conjunction. Even whole
activity labels may be connected if the resulting name is not too complex.
For Figure 1, this would yield Activate and Change Material Price.

5. Semantic Naming: The previously introduced concepts always explicitly
refer to the textual description of at least one element in the process model.
By contrast, the concept of semantic naming does not refer to one or more
model elements, but uses the broader context of the activities for naming
the process model. This can be appropriate if there is a part-of relationship
between the activities and the name of the process [8]. Hence, the process
name, which is itself representing an activity, subsumes the given activities
in the model. As an example, consider the SAP Process Shipping. It consists
of five events and the two activities Delivery for Returns and Goods Receipt
Processing for Returns. Apparently, the action shipping is not mentioned
in any of the process elements. Nevertheless, shipping can be considered
as a more general concept in semantic terms, which implies delivery and
goods receipt. Clearly, the derivation of semantic names requires external
knowledge, e.g. in terms of an ontology, and cannot be directly derived from
the activity names.

516 H. Leopold, J. Mendling, and H.A. Reijers

3 An Automatic Approach to Generate Process Names

In this section we present an automatic approach for the generation of process
model names, which builds on the strategies identified in the previous section.
The main idea of the approach is to derive a set of potentially useful names for a
given process model based on its activities and events. Subsequently, a modeler
can select the most suitable name.

We organize our approach in three steps. Phase 1 serves as preparation for
the main information extraction. In this phase all activities, start events and end
events of the given process model are annotated with their respective action and
business object. For this step, we use an algorithm for automatically identifying
action and business objects from activity labels as presented in [9], and extended
it with a capability to analyze different start and end event structures as defined
in [10]. In Phase 3, the name candidates are transformed automatically to the
verb-object style based on the techniques defined in [9]. In the following subsec-
tions, we introduce the specific techniques to generate the different proposals in
Phase 2, as well as their interdependence. All of these assume that annotations
of actions and business objects are available from Phase 1. The reader may wish
to refer to [11] for the pseudo algorithms that abstract from our implementation
in Java.

The Dominating Element Extraction technique investigates whether the given
process model includes a dominating action and dominating business object.
Therefore, for each element type, i.e. action or business object, the occurrence
of the elements among all activities of the model is checked. If there exists an
element that has a higher occurrence than all other elements among this type,
it is saved as dominating element. If a dominating element has been identified,
it can be used as input for the Subordinate Element Extraction technique. In
case no dominating element could be detected, the further steps are limited to
executing the Event Extraction and the Main Activity Extraction techniques,
which do not require the input of a dominating element.

If one type of dominant element was detected, the Subordinate Element Ex-
traction technique identifies those actions or business objects with which the
dominant element is connected in the given process model. Therefore, all ac-
tivities containing the dominating element are scanned and the complementing
element is both extracted and saved to a list of subordinate elements. If, for in-
stance, the dominating action analyze was derived from the two activities Order
Analysis and Program Analysis, the subordinate elements are given by the busi-
ness objects order and program. Hence, all activities containing the dominating
element are selected and the subordinate elements are derived.

We introduce two techniques for constructing a process name based on the set
of subordinate elements and the dominating element: Lexical Conjunction and
Logical Conjunction. In case of the Lexical Conjunction the subordinate actions
or business objects are replaced with a newly introduced element. In partic-
ular, the lexical database WordNet is consulted to detect common holonyms
and hypernyms of the subordinate elements. If a proper holonym – a word
that is more generic than a given word – or a hypernym is found – a word

Automatic Labeling of Process Models 517

that is more specific than a given word – a name proposal is constructed using
the dominating element and the according holonym or hypernym. In case of the
Logical Conjunction, the subordinate elements are simply connected using the
logical operators and or or.

Another technique that builds on the identified dominating elements is Label
Repository. This technique uses the activities of other process models to build up
a label repository. If a dominating element was identified with the Dominating
Element Extraction technique, such a label repository can be consulted to find
a corresponding element which is likely to be connected with the dominating
element. As an example, consider the SAP process model Capacity Planning
containing the dominating business object Capacity. As this business object in
isolation is not a very comprehensive process name, the repository can be con-
sulted. By browsing the repository for labels containing Capacity, we obtain,
amongst others, the process name Capacity Planning which perfectly matches
the original process name.

The Event Extraction technique derives potentially useful names from start
and end events. Therefore, start and end events are inspected on their merit
to provide information about the model content. That decision is based on the
usage of particular signal terms given in the event label. For instance, it is not
very probable that the term was in the start event Asset was found indicates
what is to be performed in the process; rather, it represents a state that was
required for triggering the first activity. By contrast, the term is to be in the
start event Asset is to be created captures the necessity for the execution of a
subsequent action within the process of consideration. Hence, (1) the identified
start events are reduced to those where the signal term indicates that the event
actually contains information about what is going to happen and (2) the end
events are restricted to those that signal what has happened in the process.
Based on an extensive classification of these terms from the investigated process
model collections, this decision can be made in an automated fashion.

Referring to the main activity approach as briefly mentioned in Section 2.2,
we further introduce the Main Activity Extraction technique. The objective of
this technique is to automatically decide whether a considered activity repre-
sents a main activity for the given process model or not. In order to be able
to make this decision for an individual activity, it is necessary to automatically
derive the context of the process and subsequently decide about the role of the
activity. This approach utilizes the insight of our analysis that approximately
85% of the main activities are found either at the beginning or at the end of the
process. Accordingly, the main activity extraction presumes the existence of a
main activity in the first or last position and selects the according activity labels
as process name proposals.

In order to obtain an all-encompassing approach, we combined all techniques.
To some extent the order of executing the techniques is fixed as some depend
on the on the input of other, like the Lexical Conjunction. However, techniques
such as Main Activity Extraction can be executed independently from other
techniques and can be executed at any time.

518 H. Leopold, J. Mendling, and H.A. Reijers

4 Related Work

Several approaches have been proposed for process model abstraction. The work
by Polyvyanyy et al. builds on an algorithm for aggregating activities based on
a slider and specific abstraction criteria [3]. Abstraction criteria are discussed
in [12,13]. A recent paper presents an abstraction approach based on behavioral
profiles [14]. For a set of activities, this approach generates the control flow of
the aggregated model. Both approaches do not generate names for aggregated
activities, such that our work is complementary. A different approach based
on meronymy relations is presented in [15]. This approach inspects meronymy
relations between activity labels to find aggregation candidates. It integrates the
problems of finding aggregation candidates and aggregation names. Our work is
more general in that sense that it is able to derive names for arbitrary process
model fragments, even if they do not share a meronymy relation.

The linguistic analysis of activity labels is also an import task in process model
matching and similarity calculation [16,17,18]. Different approaches of matching
process models are integrated in [19]. This area is also related to research on
semantic annotation of business process models [20]. Recent research has also
started using natural language processing techniques for generating process mod-
els from text. Gonçalves et al. generate process models from group stories [21].
The approach by the University of Klagenfurt combines linguistic analysis with
user feedback [22]. The Rapid Business Process Discovery (R-BPD) framework
uses natural language techniques for constructing BPMN models from corporate
documentations or web-content [23]. Anaphora resolution is tackled in a recent
approach to generate BPMN models [24].

5 Conclusion

In this paper, we have addressed the problem of automatically generating names
for process models. Our work is motivated by the fact that existing works on
process model abstraction require telling names for structurally aggregated pro-
cess fragments. Our overall contribution is an automatic naming approach that
builds on the linguistic analysis of the elements of process models from industry.
The work presented in this paper has significant implications for research and
practice. The automatic generation provides the basis not only for proposing
names of whole processes, but also for process fragments. In this regard, our ap-
proach can be used for instance to dynamically generate abstractions of different
granularity as the user is interacting with the modeling tool.

The main task for future research is the validation of the presented approach.
This may include the comparison of the given with the generated names but also
an applicability assessment by humans. In addition, we aim to further investigate
the usability of different naming strategies. Currently, if a single name for an ab-
stracted fragment is needed, a system can only make a random suggestion from
the set of name proposals. We expect that the strategy itself, but also the length
of the suggested name has a significant impact on the perceived usefulness. Based
on such insight, we will be able to select the best name from a set of suggestions.

Automatic Labeling of Process Models 519

References

1. Rosemann, M.: Potential pitfalls of process modeling: part a. Business Process
Management Journal 12(2), 249–254 (2006)

2. Eshuis, R., Grefen, P.: Constructing customized process views. Data Knowl.
Eng. 64(2), 419–438 (2008)

3. Polyvyanyy, A., Smirnov, S., Weske, M.: Process model abstraction: A slider ap-
proach. In: Proceedings of EDOC (2008)

4. Smirnov, S., Reijers, H.A., Nugteren, T., Weske, M.: Business Process Model Ab-
straction: Theory and Practice. Technical Report 35 (2010)

5. Reijers, H.A., Mendling, J.: Modularity in process models: Review and effects. In:
Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp.
20–35. Springer, Heidelberg (2008)

6. Mendling, J., Reijers, H.A., Recker, J.: Activity labeling in process modeling: Em-
pirical insights and recommendations. Inf. Syst. 35(4), 467–482 (2010)

7. Keller, G., Teufel, T.: Sap R/3 Process Oriented Implementation. Addison-Wesley
Longman Publishing Co., Inc., Boston (1998)

8. Reijers, H., Limam, S., van der Aalst, W.: Product-based workflow design. Journal
of Management Information Systems 20(1), 229–262 (2003)

9. Leopold, H., Smirnov, S., Mendling, J.: Refactoring of process model activity labels.
In: Hopfe, C.J., Rezgui, Y., Métais, E., Preece, A., Li, H. (eds.) NLDB 2010. LNCS,
vol. 6177, pp. 268–276. Springer, Heidelberg (2010)

10. Decker, G., Mendling, J.: Process instantiation. Data Knowl. Eng. 68(9), 777–792
(2009)

11. Leopold, H.: Modularization of business process models using natural language
techniques. Master’s thesis, Humboldt-Universität zu Berlin (2010)

12. Eshuis, R., Grefen, P.: Constructing Customized Process Views. Data Knowl.
Eng. 64(2), 419–438 (2008)

13. Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining – Adaptive Process Simplifi-
cation Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)

14. Smirnov, S., Weidlich, M., Mendling, J.: Business process model abstraction based
on behavioral profiles. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.)
ICSOC 2010. LNCS, vol. 6470, pp. 1–16. Springer, Heidelberg (2010)

15. Smirnov, S., Dijkman, R., Mendling, J., Weske, M.: Meronymy-based aggregation
of activities in business process models. In: Parsons, J., Saeki, M., Shoval, P., Woo,
C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 1–14. Springer, Heidelberg
(2010)

16. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic
business process models. In: Proceedings of APCCM, pp. 71–80 (2007)

17. van Dongen, B.F., Dijkman, R., Mendling, J.: Measuring similarity between busi-
ness process models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 450–464. Springer, Heidelberg (2008)

18. Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of
business process models: Metrics and evaluation. Inf. Systems 36, 498–516 (2010)

19. Weidlich, M., Dijkman, R., Mendling, J.: The iCoP framework: Identification of
correspondences between process models. In: Pernici, B. (ed.) CAiSE 2010. LNCS,
vol. 6051, pp. 483–498. Springer, Heidelberg (2010)

20. Lin, Y., Ding, H.: Ontology-based semantic annotation for semantic interoperability
of process models. In: Proc. of CIMCA/IAWTIC, pp. 162–167 (2005)

520 H. Leopold, J. Mendling, and H.A. Reijers

21. de AR Gonçalves, J.C., Santoro, F.M., Baiao, F.A.: A case study on designing
processes based on collaborative and mining approaches. In: Int. Conf. CSCWD
(2010)

22. Kop, C., Vöhringer, J., Hölbling, M., Horn, T., Mayr, H.C., Irrasch, C.: Tool sup-
ported extraction of behavior models. In: ISTA, pp. 114–123 (2005)

23. Ghose, A.K., Koliadis, G., Chueng, A.: Rapid business process discovery (R-BPD).
In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS,
vol. 4801, pp. 391–406. Springer, Heidelberg (2007)

24. Friedich, F., Mendling, J., Puhlmann, F.: Process model generation from natural
language text. In: Proc. of CAISE. LNCS (2011)

Pattern-Based Modeling and Formalizing of Business
Process Quality Constraints

Lial Khaluf, Christian Gerth, and Gregor Engels

Department of Computer Science
University of Paderborn

Paderborn, Germany
lial.khaluf@googlemail.com,

{gerth,engels}@uni-paderborn.de

Abstract. The quality of business processes can be checked by verifying their
compliance with specific quality constraints. These constraints represent a set of
required temporal and logical relationships between different steps of business
processes. Quality constraints are usually formulated as informal texts, which
makes them difficult to be verified, when business processes become complex.
One way to solve this problem is by automating the verification of quality con-
straints on business processes by applying model checking. To apply model check-
ing, both business processes and quality constraints have to be formalized. In this
paper, we define a new visual language for modeling quality constraints and we
provide a pattern-based translation for quality constraint models into Computa-
tion Tree Logic formulas.

Keywords: business process, quality constraint, visual pattern, CTL-formula.

1 Introduction

One of the most important factors of the success and reputation of any business is
the quality of products and services it provides. For this reason, quality management
has become an important competitive factor that must be considered on all levels in-
cluding business processes. In this context, many standards were developed for total
quality management, aiming at fulfilling the requirements of customers and improv-
ing the quality of products, as e.g. ISO 9001 regulations and constraints [1], which
can be applied to any business. Quality constraints may be defined by producers or by
customers. No matter who defines quality constraints, there must be a way to ensure
that business processes satisfy them. However, since standard or user-defined quality
constraints are usually documented as informal texts, it becomes difficult to prove their
correctness, especially when business processes are complex. One solution for this
problem is automating the verification of quality constraints on business processes by
using the technique of model checking. To apply this technique, both business processes
and quality constraints have to be formalized. To achieve this goal, many approaches
were developed, where each one depends on a different temporal logic to formalize
quality constraints, in order to enhance and increase their expressiveness. However,
the major problem is still that no approach allows to formalize user-defined quality

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 521–535, 2011.
© Springer-Verlag Berlin Heidelberg 2011

522 L. Khaluf, C. Gerth, and G. Engels

constraints, which include a non-deterministic future, as e.g. formalizing a quality con-
straint or a part of it which must not hold for all control flows in a business process, but
for at least one control flow.
Our goal in this paper is to overcome the expressiveness limitations concerning the
branching logic, by allowing to formalize non-deterministic user-defined quality con-
straints, and to make this formalization intuitively understandable for business process
users. For this reason, we have investigated the formalization approaches, which are
based on UML Activity Diagrams [3], since these diagrams are a widely used standard
and are familiar to business process users. One of these approaches is developed in [2].
It models business processes as UML 2.0 Activity Diagrams, and quality constraints as
business process patterns using the Process Pattern Specification Language (PPSL) [4],
which is a light weight extension of UML Activity Diagrams. Both business processes
and business process patterns are then written in a formal way by transforming UML
2.0 Activity Diagrams into labeled transition systems, and translating business pro-
cess patterns into LTL-formulas [5]. This enables the automated verification of quality
constraints on business processes by using a model checker to verify LTL formulas on
labeled transition systems. However, the Linear Temporal Logic (LTL) does not support
the non-deterministic future. To support this kind of future, we replace LTL by the Com-
putation Tree Logic (CTL) [6]. To achieve that, we extend PPSL to a new visual model-
ing language, Extended Process Pattern Specification Language (EPPSL), which has a
formally defined semantics given by a translation into CTL-formulas. EPPSL is a heavy
weight extension of UML Activity Diagrams. In other words, EPPSL uses the elements
of UML Activity Diagrams, which semantics can serve to model quality constraints. It
also defines new classes of elements to cover the semantics of quality constraints which
are not defined by UML Activity Diagrams. We also provide a pattern-based translation
for EPPSL models into CTL-formulas. In the following section, we give an overview
of the related work. In Section 3, we provide a scenario for verifying business process
quality constraints. In Section 4, we describe the modeling elements of EPPSL and how
to use them for composing EPPSL models. In Section 5, we explain how to translate
EPPSL models into CTL-formulas. In Section 6, we provide a conclusion and outlook
for our approach.

2 Related Work

Modeling and formalizing business process constraints in order to verify their correct-
ness are considered in several approaches. For example, PPSL is introduced in [4] and
translated in [2] into LTL formulas. In [7], the graphical Business Property Specifica-
tion Language is used to capture business process compliance rules, which are trans-
lated into LTL. In [8], DecSerFlow is mapped on LTL. DECLARE is defined in [9] and
[10]. DECLARE models are also translated into LTL. BPMN-Q is developed in [11]
to model requested compliance rules on business processes as queries. These queries
are translated in [12] into PLTL [13][14] formulas. BPMN is used in [15] to check the
semantic correctness of business process models by mapping them to Petri nets. In [16],
the Object Constraint Language [17] expressions are used to refer to an integrated meta-
model for different process models. In [18], process-independent compliance rules are

Pattern-Based Modeling and Formalizing of Business Process Quality Constraints 523

specified using graph structures and formalized in terms of FOL [19]. All the previous
approaches are not sufficient to express constraints, which contain a non-deterministic
future and which have the degree of complexity required by users. But, in our approach,
we define EPPSL which allows the users to build high complex shapes of quality con-
straints and we support the non-deterministic future by formalizing quality constraints
as CTL-formulas. In [20], a lightweight, analyst-mediated approach introduces com-
pliance patterns in terms of CTL as a heuristic basis for resolving the non compliance
of process models, but it does not provide a way to map informal user-defined compli-
ance rules into CTL-formulas. Additionally, expressing the non-deterministic future is
limited to a set of structural and semantic patterns, which have a predefined shape of
rules, but in our approach, we define EPPSL to enable modeling and formalizing quality
constraints which can reach the complexity of CTL expressions.

3 Scenario

We assume that a company wants to hire new employees. The company has developed
a business process to model the activities that must be carried out to accept or refuse
applications. Fig. 1 shows the business process modeled as a UML Activity Diagram.
To ensure the quality of this business process, some quality constraints may have to be
checked on it, e.g. if a business analyst wants to know whether the lack of employees
could result in accepting the application, then the correctness of QC1 must be checked
(We use an abbreviation QC to refer to a quality constraint).

QC1: "It is always the case, that when the number of required employees has not yet
been reached, then there exists a possibility to accept the application".

By looking at the business process model, we see that it satisfies QC1, since whenever
we encounter the Guard "the number of required employees has not yet been reached",
there exists at least one control flow, on which this Guard is followed by the Action
"accept the application" where in between other Actions may occur and other Guards
maybe be satisfied. However, verifying a textual quality constraint by looking at the
business process model is prone to errors, especially when business processes become
complex. In order to be able to verify QC1 automatically on the business process model
in Fig. 1 , we have to model QC1 using specific patterns, which have a formally defined
semantics given by a translation into temporal logic formulas.

The expression "there exists a possibility" in QC1 states that the lack of employees
enables the possibility of accepting the application, but does not enforce it. In other
words, QC1 states that accepting the application could be a non-deterministic future for
the lack of employees. In order to have the ability to express this kind of future, it is not
enough that we model QC1 using specific patterns, which have a formally defined se-
mantics given by a translation into temporal logic formulas, but also the temporal logic
formulas should have the ability to express a non-deterministic future.
In this paper, we define a new modeling language EPPSL, which provides the patterns
required by the previous scenario, since these patterns have a formally defined seman-
tics given by a translation into CTL-formulas. We specify EPPSL by a meta model
which we provide in [21]. In the following section, we introduce how to model quality
constraints with EPPSL.

524 L. Khaluf, C. Gerth, and G. Engels

Fig. 1. Example of a business process model

4 Modeling Quality Constraints with EPPSL

We model a quality constraint by modeling its basic blocks and its temporal and logical
relationships. The basic blocks could be actions, guards, anonymous steps, and partial
quality constraints. The temporal and logical relationships are based on the semantics of
the temporal and logical relationships of CTL [6] to provide the ability to express both
deterministic and non-deterministic futures. In the following, we explain the semantics
of both basic blocks and relationships and how to model them.

4.1 Modeling Basic Blocks

A quality constraint may include a mixture of the following basic blocks:

Actions: An action is an activity which is carried out by the system, the customer or any
other entity in the business process. For example, QC1 consists of the action "accept the
application". The start of a business process and the end of a control flow in a business
process are also considered to be actions. EPPSL uses the modeling elements "Action"
(Fig. 2.a), "InitialNode" (Fig. 2.b), and "ActivityFinalNode" (Fig. 2.c) to model actions,
the start of a business process, and the end of a control flow in a business process,
respectively.

Guards: A guard is a condition which can be false or true. For example, QC1 consists
of the Guard "the number of required employees has not yet been reached". EPPSL uses
the modeling element "Guard" (Fig. 2.d) to model guards.

Pattern-Based Modeling and Formalizing of Business Process Quality Constraints 525

Anonymous steps: A quality constraint may refer to an anonymous step which could
be an unknown action or an unknown guard. For example, a quality constraint might be
dedicated to ensure that the business process model in Fig. 1 includes a possibility to
accept the application after 6 steps from starting the process without any need to know
to which actions or guards these steps are referring. Quality constraints which counts
anonymous steps are useful if the number of steps refers e.g. to the time consumed or the
money paid to perform these steps, or if it plays a role in the satisfaction of the customer.
For this reason, we introduce in EPPSL a modeling element called "AnonymousStep"
(Fig. 2.e).

Partial quality constraints: A partial quality constraint is a quality constraint which is
linked to other partial quality constraint(s) with a logical relationship to build another
quality constraint. We use the concept of the partial quality constraint, since we need
sometimes to model a quality constraint which consists of several quality constraints
that are logically related, but temporally not related. For example, a quality constraint
might be dedicated to ensure that if the business process model in Fig. 1 includes a
possibility to make an interview, then it includes no possibility to accept the application
online. The first possibility is not temporally related to the second one. However, they
are logically related, since the first possibility implies the negation of the second one.
We model partial quality constraints as separated units. For this reason, we provide in
EPPSL a modeling element called "ConstraintContainer" (Fig. 2.f) which is dedicated
to contain a partial quality constraint model separating it temporally from other partial
quality constraint models.

The elements in Fig. 2.a, Fig. 2.b, Fig. 2.c, and Fig. 2.d are the same elements used
by UML 2.0 Activity Diagrams to model Actions, InitialNodes, ActivityFinalNodes,
and Guards. The elements in Fig. 2.e and Fig. 2.f are new classes defined by EPPSL.

Fig. 2. EPPSL modeling elements for the basic blocks

EPPSL models for quality constraints provide the ability to link the modeling ele-
ments of the basic blocks with temporal and logical relationships. In the following, we
introduce how EPPSL can model these relationships.

4.2 Modeling Temporal Relationships

A temporal relationship determines the order of actions, guards, and anonymous steps.
For example, QC2, which we want to verify on the business process model in Fig. 1,
consists of a temporal relationship "After":

526 L. Khaluf, C. Gerth, and G. Engels

QC2: "After checking the application data, the qualifications of the applicant are
considered to be either sufficient or not sufficient".

The temporal relationship in QC2 states that the action "check the application data"
must be followed by one of the guards "qualifications are not sufficient", or "qualifica-
tions are sufficient".

EPPSL provides a set of modeling elements to express temporal relationships. Since
EPPSL considers deterministic and non-deterministic futures, it provides for each tem-
poral relationship two modeling elements. The first one represents the relationship when
it holds for all control flows of a business process (deterministic). The second one repre-
sents the relationship when it holds for at least one control flow (non-deterministic). Fig.
3 shows the notation of EPPSL modeling elements for temporal relationships. These el-
ements are new classes defined by EPPSL.

Fig. 3. EPPSL modeling elements for temporal relationships

Deterministic Temporal Relationships: The deterministic temporal relationships are
"Next", "After", "Until", and "All". "Next" and "After" may link two basic blocks,
which could be "Actions", "Guards" or "AnonymousSteps". "Next" states that the first
block must be followed next by the second block on all control flows of a business
process. "After" states that the first block must be followed by the second block on all
control flows of the business process, no matter if other blocks occur between the first
and the second block. "Until" connects two basic blocks, which could be two "Actions",
or an "Action" and a "Guard". "Until" states that an action must be repeated on all con-
trol flows of a business process until another action takes place or a guard is satisfied.
"All" refers to all instances of an action on all control flows of a business process. "All"
is usually used to confirm that a quality constraint which includes an action, to which
the temporal relationship "All" is applied, must hold for all instances of that action on
all control flows of a business process.

For example, we want to verify QC3 on a business process model for using a bank
card to withdraw money.

QC3: "The pin number must always be entered repeatedly until the pin number is
correct".

The EPPSL model in Fig. 4 models QC3. It states that all instances of the action
"enter the pin number" must be repeated on all control flows of the business process
until the guard "pin number is correct" is satisfied. In this model, we have applied

Pattern-Based Modeling and Formalizing of Business Process Quality Constraints 527

Fig. 4. EPPSL quality constraint model

an "All" temporal relationship on the action "enter the pin number", since the word
"always" in QC3 states that the temporal relationship "Until" must hold for all instances
of the action "enter the pin number".

Non-Deterministic Temporal Relationships: The non-deterministic temporal rela-
tionships are "PossiblyNext", "PossiblyAfter", "PossiblyUntil", and "PossiblyAll".
These relationships have the same semantics of "Next", "After", "Until", and "All" re-
spectively with one different aspect that they must not hold for all control flows of a
business process, but for at least one control flow. For example, we want to verify QC4

on the business process model in Fig. 1.
QC4: "There exists a possibility after starting the process to check the application

data which is possibly followed by making an interview".
The EPPSL model in Fig. 5 models QC4. It states that there exists at least one control

flow on which starting the process is followed by checking the application data which
is followed on at least one control flow by making an interview.

Fig. 5. EPPSL quality constraint model

4.3 Modeling Logical Relationships

A logical relationship may link actions, guards, and partial quality constraints. For ex-
ample, QC2 consists of a logical relationship "Or" which combines two guards and
states that either the first guard "qualifications are sufficient" or the second one "quali-
fications are not sufficient" must follow the action "check the application data".
EPPSL provides the following set of modeling elements to express logical relationships,
which may link Actions, Guards, and ConstraintContainers:

– Join/ForkNode: is used to model the logical relationship "And". "Join/ForkNodes"
can be used to link Actions, Guards, and ConstraintContainers. We refer to Join/Fork
Nodes as control nodes.

– Decision/MergeNode: is used to model the logical relationship "Or". "Decision/
MergeNodes" can be used to link Actions, Guards, and ConstraintContainers. We
refer to Decision/MergeNodes as control nodes.

– Not: is used to model the "Not" logical operator. "Not" can be applied to Actions,
ConstraintContainers, and all EPPSL temporal relationship modeling elements.

– Connector: is used to model the "Imply" logical relationship. Connectors can link
between two ConstraintContainers, or between ConstraintContainers and control
nodes.

528 L. Khaluf, C. Gerth, and G. Engels

Fig. 6. EPPSL modeling elements for logical relationships

Fig. 6 shows the notation of the EPPSL modeling elements for logical relationships.
The "Join/ForkNodes" and "Decision/MergeNodes" are the same control nodes used
by UML 2.0 Activity Diagrams. The "Not" and "Connector" elements are new classes
defined by EPPSL.

To give an example for using the logical relationships modeling elements, we assume
that we want to verify QC5 on the business process model in Fig. 1.

QC5: "If there exists a possibility to make an interview, then there exists no possibility
to accept the application online".

The EPPSL model in Fig. 7 models QC5. It includes two EPPSL models for two par-
tial quality constraints, which are temporally not related. This means that each one of
them must be checked separately on the business process. For this reason, we separate
each one in a ConstraintContainer. The first model states that there exists a possibility
to make an interview after starting the process. The second model states that there exists
no possibility to accept the application online after starting the process. The Constraint-
Containers are linked with a Connector, which means that the partial quality constraint
represented by the first model must imply the partial quality constraint represented by
the second model.

Fig. 7. EPPSL quality constraint model

5 Translation of EPPSL Models into CTL-Formulas

The Computation Tree Logic (CTL) [6] views the time as a tree. It considers all different
paths, allowing the future to be non-deterministic. CTL-formulas are based on a set
of atomic propositions (statements which truth value may change over time), logical
connectives (¬, ∧, ∨, ⇒), temporal operators (X: Next, F: Eventually, U: Until, G:
Globally), and path quantifiers (A: On all paths, E: On at least one path). Whenever
there is a temporal operator in a CTL-formula, a path quantifier must precede it. For
example, if ψ is an atomic proposition, then AXψ is a CTL-formula, which states that,
On all paths, ψ holds next.

Pattern-Based Modeling and Formalizing of Business Process Quality Constraints 529

In order to formalize quality constraints, we translate their EPPSL models into CTL-
formulas. Here, we differentiate between two kinds of models depending on the number
of control nodes they contain. Models which contain at most one control node are sim-
ple models. Models which contain more than one control node are complex models.

When we translate a simple or a complex model into a CTL-formula, we translate
the basic blocks: Actions, Guards, InitialNodes, and ActivityFinalNodes into the atomic
propositions: Actions labels, Guards texts, "Start", and "End" respectively. However,
the strategy for constructing the CTL-formula for a simple model differs from the strat-
egy for constructing it for a complex model. In the following, we explain the different
strategies.

5.1 The Translation Strategy for Simple Models

The translation of simple models depends on analyzing them to specific EPPSL pat-
terns, for which we provide a translation into CTL-formulas [21]. These patterns enable
all required combinations of EPPSL modeling elements, in order to cover all possible
semantics of quality constraints when the model contains at most one control node. For
example, we want to formalize QC6 which has to be verified on the business process
model in Fig. 1:

QC6: "It is always true that checking the application data might be followed by re-
fusing the application, which is followed next by removing the application data from the
system".

First, we model QC6 with EPPSL (see Fig. 8), then we translate the model into a
CTL-formula by comparing it to the EPPSL patterns given by the translation tables,
which we provide in [21].

Fig. 8. EPPSL quality constraint model

Due to lack of space, we show in Fig. 9 only a part of the translation tables ded-
icated for simple models, where S represents an EPPSL pattern, which is attached to
the element preceding S, and S∗ refers to the CTL-formula, to which S is translated.
C represents a partial quality constraint model, and C∗ refers to the CTL-formula, to
which C is translated. M represents an EPPSL modeling element, and M∗ refers to the
CTL-formula, to which M is translated.

We can translate simple models from right to left or left to right. Here e.g., we trans-
late the model of QC6 from right to left as explained by Fig. 10. In Step 1, we translate
the Action "remove the application data from the system" to an atomic proposition rep-
resented by the Action label. In Steps 2, 3, 4, and 5, we divide the model into EPPSL
patterns provided by the translation table in Fig. 9. This enables us to translate each
pattern separately, until we reach the CTL-formula, which represents the whole model
in Step 5.

530 L. Khaluf, C. Gerth, and G. Engels

AG (B → (AF(A1) V .. V
AF(An)))

(C*)

(C1*) Λ .. Λ (Cn*)

(C1*) V .. V (Cn*) ¬M*

Action → S*

EF (S*)

AX (S*)

AG (Action
→ S*)

Fig. 9. Translation of EPPSL patterns into CTL-formulas

S4* :

S3* :

S2* :

S1* :

S* :

Fig. 10. Example of the translation strategy for a simple EPPSL model into a CTL-formula

Pattern-Based Modeling and Formalizing of Business Process Quality Constraints 531

5.2 The Translation Strategies for Complex Models

Logical relationships may link actions and guards, or may link partial quality constraints
with respect to the basic assumptions defined in [21]. For this purpose, we define two
different translation strategies for complex models. The first one is used when more than
one control node link Actions and Guards (e.g. the model in Fig. 11), and the second
one is used when more than one control node link ConstraintContainers (e.g. the model
in Fig. 13).

Strategy 1: Given an EPPSL complex model, e.g. the complex model of QC7 in Fig.
11, which we want to verify on the business process model in Fig. 1:

QC7: "Receiving an application is always followed by making an interview or refus-
ing the application and remove the application data from the system".

L
e
v
e
l 1

L
e
v
e
l 2

L
e
v
e
l 3

L
e
v
e
l 4

Fig. 11. Example of a complex model

We translate the model in Fig. 11 by applying the following steps:

1. We divide the model into levels numbering them in the opposite direction of the
temporal relationships. In Fig. 11, we have 4 levels.

2. We assign a variable name to each temporal relationship followed and preceded
directly by a control node. In Fig. 11, we have one variable X.

3. When a control node is preceded directly only by a variable with no assigned value
and followed directly by temporal relationships attached only to Actions or Guards,
then the node has to be translated according to the translation table dedicated for
control nodes preceded by variables [21] (due to lack of space, we present only
a part of it in Fig. 12) and the resulting CTL-formula is assigned to the variable.
According to the table in Fig. 12, we translate the ForkNode on Level 2 in Fig. 11,
and we assign its formula to X:
X: (AF(refuse the application)∧ AF(remove the application data from the system))

4. When a control node is followed directly only by a variable with no assigned value
and preceded directly by temporal relationships attached only to Actions or Guards,
then the node has to be translated according to the translation table of control nodes
followed by variables [21], and the resulting CTL-formula is assigned to the vari-
able. Fig. 11 does not encounter this case.

532 L. Khaluf, C. Gerth, and G. Engels

Fig. 12. Example of translating control nodes preceded by a variable into CTL-formulas

5. We translate the control nodes of the model if they are yet not translated starting
at the second level (the first level always includes Actions or Guards which are
translated into atomic propositions). The variables which are yet not assigned a
CTL-formula and followed directly by control nodes, which are in turn directly
followed by Actions, Guards or variables already assigned a CTL-formula in terms
of Actions or Guards, are assigned the CTL-formula to which the control node is
translated according to the translation table of control nodes preceded by variables
[21]. Fig. 11 does not encounter this case.

If we reach a control node, which all incoming and outgoing temporal rela-
tionships are attached to Actions, Guards, or variables with assigned values, we
translate it according to the translation tables of control nodes dedicated for simple
models [21]. For example, we translate the DecisionNode on Level 3 in Fig. 11
depending on the first EPPSL Pattern in Fig. 9:
AG(receive application→ (AF(X) ∨ AF(make an interview)))
We substitute X by its value:
AG(receive application → (AF((AF(refuse the application) ∧ AF(remove the ap-
plication data from the system))) ∨ AF(make an interview)))
The previous CTL-formula represents the whole complex model in Fig. 11.

Strategy 2: Given an EPPSL complex model, e.g. the complex model of QC8 in Fig. 13,
which we want to verify on the business process model in Fig. 1:

QC8: "If there exists a possibility to make an interview, then there exists no possibility
to accept the application online and there exists a possibility to make an interview per
phone or there exists a possibility to make an interview per Internet".

We translate the model in Fig. 13 by applying the following steps:

1. Each control node may have either multiple incoming connectors or multiple out-
going connectors. In both cases, we combine the control node with its multiple
connectors and their attached ConstraintContainers in one ConstraintContainer. For
example, in Fig. 13, we apply this rule on the DecisionNode and the ForkNode re-
sulting in two new ConstraintContainers as shown in Fig. 14.

2. We start to translate the partial quality constraint models which do not include
ConstraintContainers. For example, in Fig. 14, we translate (1), (2), (3), and (4)
depending on the EPPSL patterns in Fig. 9:
(1): Start→ EF(make an interview)
(2): Start→ ¬ EF(accept the application online)

Pattern-Based Modeling and Formalizing of Business Process Quality Constraints 533

Fig. 13. Example of a complex model

Fig. 14. Translation strategy of complex models, where control nodes link ConstraintContainers

(3): Start→ EF(make an interview per phone)
(4): Start→ EF(make an interview per Internet)

3. We translate the partial quality constraint models which contain ConstraintContain-
ers, which in turn include partial quality constraint models already translated into
CTL-formulas. For example, since (3) and (4) in Fig. 14 are already translated, we
translate (5) depending on the EPPSL patterns in Fig. 9:
(5): (Start→ EF(make an interview per phone))∨ (Start→ EF(make an interview
per Internet))
Then we translate (6) since (2) and (5) are already translated, depending on the
EPPSL patterns in Fig. 9:
(6): (Start→ ¬ EF(accept the application online)) ∧ ((Start→ EF(make an inter-
view per phone)) ∨ (Start→ EF(make an interview per Internet)))

4. We always reach a state, where we have two ConstraintContainers, including two
translated partial quality constraint models, and a connector, which connects the
first to the second one. We translate this state depending on the EPPSL patterns
for simple models [21] by stating that the CTL-formula representing the first Con-
straintContainer implies the CTL-formula representing the second one. In Fig. 14,
we reach a state where (1) implies (6). We translate it depending on the EPPSL
patterns in Fig. 9:

534 L. Khaluf, C. Gerth, and G. Engels

(Start → EF(make an interview)) → ((Start → ¬ EF(accept the application on-
line)) ∧ ((Start → EF(make an interview per phone)) ∨ (Start → EF(make an
interview per Internet))))
The previous CTL-formula represents the whole complex model in Fig. 13.

6 Conclusion and Outlook

In this paper, we have introduced a new approach for modeling and formalizing busi-
ness process quality constraints aiming at providing the users with more flexibility by
allowing them to construct constraints with either deterministic or non-deterministic
future and by that to enhance the expressiveness ability. Our approach introduces the
Extended Process Pattern Specification Language (EPPSL), which is a heavy weight
extension of UML Activity Diagrams, and could be easily transformed to be based
on any other business process modeling language. EPPSL provides a set of intuitively
understandable modeling elements to model quality constraints in terms of branching
temporal logic. We also provide a pattern-based translation for EPPSL models into
CTL-formulas to achieve the formalization of quality constraints. In our approach, the
basic blocks of quality constraints are based only on actions and guards, since these
blocks could be actions, guards, anonymous steps (refer to unknown actions or un-
known guards), and partial quality constraints (based on the previous three blocks).
Later, other basic blocks could be considered, e.g. data objects. In our approach, we
only consider future temporal relationships. Past temporal relationships and real-time
relationships are open for future work. In our approach, we do not consider the iden-
tification of conflicting constraints, which may contain contradicting semantics. Later,
this aspect could be considered.

References

1. ISO 9001:2000:Quality Management Systems - Requirements. ISO International Organiza-
tion for Standardization (2000)

2. Förster, A., Engels, G., Schattkowsky, T., Van Der Straeten, R.: Verification of Business
Process Quality Constraints Based on Visual Process Patterns. In: The First Joint IEEE/IFIP
Symposium on Theoretical Aspects of Software Engineering (TASE 2007), pp. 197–208.
IEEE Computer Society, Shanghai (2007)

3. Object Management Group:UML 2.0 Superstructure. Version 2.0 (2005),
http://www.omg.org/spec/UML/2.0/Superstructure/PDF/ (last visited 2.12.2010)

4. Förster, A., Engels, G., Schattkowsky, T.: Activity Diagram Patterns for Modeling Qual-
ity Constraints in Business Processes. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005.
LNCS, vol. 3713, pp. 2–16. Springer, Heidelberg (2005)

5. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium
on Foundations of Computer Science (FOCS 1977), pp. 46–57 (1977)

6. Emerson, E.A.: Temporal and Modal Logic. In: van Leeuwen, J. (ed.) Handbook of Theoret-
ical Computer Science, vol. B, pp. 955–1072. MIT Press, Cambridge (1990)

7. Liu, Y., Müller, S., Xu, K.: A Static Compliance-Checking Framework for Business Process
Models. IBM Systems Journal 46, 335–361 (2007)

http://www.omg.org/spec/UML/2.0/Superstructure/PDF/

Pattern-Based Modeling and Formalizing of Business Process Quality Constraints 535

8. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service Flow
Language. In: Bravetti, M., Núñez, M., Tennenholtz, M. (eds.) WS-FM 2006. LNCS,
vol. 4184, pp. 1–23. Springer, Heidelberg (2006)

9. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: Full Support for Loosely-
Structured Processes. In: 11th IEEE International Enterprise Distributed Object Computing
Conference (EDOC 2007), Annapolis, Maryland, USA, pp. 287–300 (October 2007)

10. Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Control to Users. Dis-
sertation. TU Eindhoven (2008)

11. Awad, A.:BPMN-Q: A Language to Query Business Processes. In: EMISA 2007. LNI, vol.
P-119, pp.115-128. GI (2007)

12. Awad, A., Decker, G., Weske, M.: Efficient Compliance Checking Using BPMN-Q and Tem-
poral Logic. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240,
pp. 326–341. Springer, Heidelberg (2008)

13. Laroussinie, F., Schnoebelen, P.: A Hierarchy of Temporal Logics with Past. Theoretical
Computer Science 148, 303–324 (1995)

14. Zuck, L.: Past Temporal Logic. PhD thesis. Weizmann Intitute, Rehovet, Israel (1986)
15. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models

in BPMN. Information and Software Technology 50, 1281–1294 (2008)
16. Wörzberger, R., Kurpick, T., Heer, T.: Checking Correctness and Compliance of Integrated

Process Models. In: Proceedings of the 10th International Symposium on Symbolic and Nu-
meric Algorithms for Scientific Computing (SYNASC 2008), pp. 576–583. IEEE Computer
Society, Los Alamitos (2008)

17. Object Management Group: Object Constraint Language (OCL) Specification - Version
2.0 (May 2006), http://www.omg.org/cgi-bin/doc?formal/2006-05-01 (last visited
2.12.2010)

18. Ly, L.T., Rinderle-Ma, S., Dadam, P.: Design and Verification of Instantiable Compliance
Rule Graphs in Process-Aware Information Systems. In: Pernici, B. (ed.) CAiSE 2010.
LNCS, vol. 6051, pp. 9–23. Springer, Heidelberg (2010)

19. Hodges, W.: Classical Logic I: First Order Logic. In: Goble, L. (ed.) The Blackwell Guide to
Philosophical Logic. Blackwell, Malden (2001)

20. Ghose, A.K., Koliadis, G.: Auditing Business Process Compliance. In: Krämer, B.J., Lin, K.-
J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 169–180. Springer, Heidelberg
(2007)

21. Khaluf, L.: Business Process Quality Assurance. Master thesis. University of Paderborn,
Paderborn, Germany (May 2010)

http://www.omg.org/cgi-bin/doc?formal/2006-05-01

Quality Evaluation and Improvement Framework
for Database Schemas - Using Defect Taxonomies

Jonathan Lemaitre and Jean-Luc Hainaut

Laboratory of Database Application Engineering - PReCISE research Center
Faculty of Computer Science, University of Namur
Rue Grandgagnage 21 - B-5000 Namur, Belgium

{jle,jlh}@info.fundp.ac.be
http://www.fundp.ac.be/precise

Abstract. Just like any software artefact, database schemas can (or
should) be evaluated against quality criteria such as understandability,
expressiveness, maintainability and evolvability. Most quality evaluation
approaches rely on global metrics counting simple pattern instances in
schemas. Recently, we have developed a new approach based on the iden-
tification of semantic classes of definite patterns. The members of a class
are proved to be semantically equivalent (through the use of semantics
preserving transformations) but are assigned different quality scores ac-
cording to each criteria. In this paper, we explore in more detail the
concept of bad pattern by proposing an intuitive taxonomy of defective
patterns together with, for each of them, a better alternative. We iden-
tify four main classes of defects, namely complex constructs, redundant
constructs, foreign constructs and irregular constructs. For each of them,
we develop some representative examples and we discuss ways of im-
provement against three quality criteria: simplicity, expressiveness and
evolvability. This taxonomy makes it possible to apply the framework to
quality assessment and improvement in a simple and intuitive way.

Keywords: Conceptual data schema, quality, schema improvement,
schema evaluation, schema transformation.

1 Introduction

Modern engineering approaches to system development lead to methods in which
modeling activities have become prominent, notably through the so-called model
driven engineering (MDE) initiative. According to these methods, the design of
a complex software system appears as a hierarchy of models, starting from the
goal model down to the source code of the concrete artifacts. Models derive
from each other through transformations that preserve some of their intrinsic
properties, such as correctness, information capacity or performance. In addition,
most models use components of other models. Through these derivation and
use dependencies, a defect in a source model potentially propagates to many
dependent models. In such an interconnected model network, the quality of the
whole system critically depends on the quality of each of its models.

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 536–550, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Quality Evaluation and Improvement Framework 537

Entity-RelationshipEntity-Relationship UMLUML

RelationalRelational

Oracle 8Oracle 8 MySQLMySQL

Conceptual

Logical

Physical

Abstraction
Levels

Paradigms

...

...

...

Object-RelationalObject-Relational XMLXML

Oracle 11GOracle 11G XML SchemaXML Schema

Fig. 1. A representation of the schema abstraction levels and some paradigms

When dealing with the quality of information systems, one has to pay partic-
ular attention to the database component because of the significant role of this
component in the whole system. Typically, a database can be the data provider
of thousands of programs. Any flaw in the schema of this database may cause
data inconsistencies, program malfunction or, at best, program code complexity
to compensate for this defect. The total cost to pay will be even higher: database
and program evolution will prove to be more complex and risky since both sane,
compensating and flawed components will need to evolve.

Although the MDE is often seen as a new approach in the software engi-
neering community, it has been the standard way of developing databases since
the seventies, where the three-level methodologies were designed and progres-
sively applied. They are based on a hierarchy of schemas (the database name
for models1), namely the conceptual, logical, physical schemas, the latter being
translated into DDL code. Those three levels are called abstraction levels. In
addition, a schema is expressed in a specification language, based on a definite
paradigm (figure 1). Since logical and physical schemas mostly derive from the
conceptual schema through semantics preserving transformations, ensuring the
highest quality of conceptual schemas is particularly important.

In [1], we proposed a database quality evaluation and improvement frame-
work based on transformation techniques. Instead of computing global metrics
for the whole schema, it first tries to identify semantically significant constructs
that represent possible defects in schemas. Let us call construct an instance of a
definite pattern comprising data structures and constraints2. An n-ary relation-
ship type, an entity type without attributes, a series of attributes with similar
names are all examples of constructs. A defect is a construct that is considered
sub-optimal to translate the intention of the modeler. A relationship entity type
(an entity type whose instances are used to connect instances of two other entity

1 From this point, we will use the database terminology, i.e. a schema is the represen-
tation of the application domain and is expressed in a specification language called
model (e.g. entity-relationship model, relational model).

2 In the following discussion, for simplicity reason and where no ambiguity may arise,
we will sometimes use the name construct to denote such a pattern as well as one of
its instances.

538 J. Lemaitre and J.-L. Hainaut

types) may be, in some circumstances, considered a defect since a mere many-
to-many relationship type would better express the intention of the designer.
Considering a set of about 20 basic conceptual patterns, we have defined as
many equivalence classes, each of them gathering all the patterns that express
the same semantics. For example, the relationship entity type and many-to-many
relationship type patterns appear in the same equivalence class. In each class,
we can identify its representative member, that is, the pattern that best ex-
presses the common intention of the members of this class (and for this, called
best practice). For example, the semantic pattern many-to-many association will
be described by a class that includes, among a dozen equivalent patterns, the
many-to-many relationship type, the relationship entity type, the multi-valued
foreign key, the multi-valued embedded component. Clearly, the first pattern
will be the representative member of this class. We will see in the section 3, that
the best practice of an equivalence class depends on the quality criteria for the
evaluation of which this class is used.

The qualification defective of a construct is not absolute3 but depends on three
factors, namely the abstraction level, the modeling paradigm and the quality
criterion. For example, at the logical level, the foreign key, as the expression
of a many-to-one relationship type, is optimal in a class of logical constructs
but sub-optimal in a class of conceptual constructs. It is optimal in the SQL
paradigm but not in the ADO Microsoft interface, based on a simple Entity-
relationship model. It may be considered sub-optimal in an XML schema where
element embedding may be preferred for performance reason.

In this paper, we will deepen the framework by exploring the space of concep-
tual defects and by attempting to classify them into an ontology of natural defect
types. These reference defect types contribute to a better understanding of the
third factor mentioned above: quality criterion. This classification will be used to
improve our quality evaluation framework, but it has also been used in database
design education [2] in the perspective of building high quality schemas.

Since most, if not all, database schemas include a certain amount of defects
and considering that database design mainly is a creative task, we can expect the
catalog of schema defect types being very large. In the following sections, we will
concentrate on defects that degrade otherwise correct schemas. For example, a
relational table that is not in 3NF is not intrinsically incorrect but it leads, among
others, to expressiveness (two fact types are represented in the same table) and
performance (space and update time) problems. The process of identifying these
defects and improving their structural quality is generally known as Conceptual
normalization.

The paper will be structured as follows. Section 2 presents a short state of the
art in the role of defects in database schema quality. We recall the main concepts
of the framework in section 3. Section 4 describes the bases of quality analysis
for conceptual schemas. In section 5, we present a taxonomy of conceptual data
schema defects and discuss their improvement. The use of the framework extended
by this taxonomy is presented in section 6. Section 7 concludes the paper.

3 For this reason, we have avoided the term anti-pattern.

Quality Evaluation and Improvement Framework 539

2 State of the Art

Transformations are usually related to the functional requirements aspects of
database schemas. Transforming a source schema must (should) preserve its
information capacity4 in such a way that the eventual DDL code completely
translates the semantics of the conceptual schema. The use of transformations in
the context of schema quality mainly concerns non-functional requirements, and,
in this context, it has been rather limited. However, a few authors have already
considered processes in which a local set of objects in a schema is replaced by
another one in a way that improves some quality properties of the schema.

A first major (historical) proposal is the relational schema normalization pro-
cess [4], based on functional dependencies mainly in order to remove redundan-
cies at the data level. Though the term transformation was not used at that
time, normalization decomposition actually makes use of semantics-preserving
transformations5. These transformations can also be used to influence the perfor-
mance of the database. Leaving the semantics of data unaltered but improving
its redundancy or performance state, relational normalization clearly contribute
to make the schema meet non-functional requirements. In [5], the authors stud-
ied the impact of relationships types attributes on the clarity of ER schemas. In
a similar way in [6], Gemino and Wand have analysed the difference between the
use of the mandatory and optional properties, also in ER schemas. Though these
papers naturally called for substitution techniques to improve the readability of
schemas, the authors did not push their analysis to this point.

Only a few authors have explicitly used semantics-preserving transformations
for improving the schema quality. Among them, we can underline the framework
of Assenova and Johanesson [7] for dealing with understandability of conceptual
schemas. They assign qualitative quality scores to a set of transformations and
propose to use them in order to improve schema quality. Rauh and Stickel [8] also
use transformations in the context of conceptual schemas in order to normalize
them and therefore to improve their quality.

The framework we propose is close to the work of Assenova and Johanesson [7].
Yet, we paid particular attention to genericity, referring to the possibility to use
the framework on different abstraction levels, different paradigms and consider-
ing different quality criteria. Also, we did not associate quality preferences to
the transformations themselves but to the structures.

3 Framework Reminder

In section 1, we introduced the main principles of our framework. In this section,
we present some detail of the framework, based on reference [1], where the reader
can find an extended description.
4 A discussion on semantics preserving transformation and information capacity can

be found in [3].
5 The concept of semantics preservation is a bit more complex in this context since

data preservation and functional dependency preservation may conflict.

540 J. Lemaitre and J.-L. Hainaut

The framework is based on the use of semantics-preserving transformations
and on the identification of specific structures in schemas. It relies on the fact
that there are generally different ways to express a set of facts of the application
domain, and that some of them are better than others according to definite
criteria. In order to make it generic enough to deal with different data model,
we use the GER model [9], a wide spectrum model that encompasses the main
data models (ER, EER, Relational, UML, etc.) and allows to use object types
that belong to different abstraction levels and paradigms in a single schema. The
framework relies on four concepts: the equivalence classes, the contexts, the
ratings, the quality methods.

An equivalence class ECi is a set of constructs, i.e., ECi = {Ci1, . . . , Cin},
that all represent the same modeling intention. Moreover for any couple of dis-
tinct constructs Cij , Cik of ECi, there exists a transformation sequence T com-
posed of semantics preserving transformations such that T (Cij) = Cik. An equiv-
alence class represents a common modeling intention which refers to a specific
type of facts of the application domain. Similar constructs are defined as in-
stances of a generic pattern, so that equivalence classes can be reduced to about
20 useful classes made up of patterns.

We illustrate the non-functional6 binary association equivalence class in fig-
ure 2. It collects popular generic data structures intended to represent many-to-
many associations between the members of two object classes. (a) is a many-
to-many relationship type. (b) is a relationship entity type accompanied by two
one-to-many relationship types. (c) and (d) represent associations through mul-
tivalued (c) and single-valued (d) foreign keys. Finally, (e) and (f) use two-way
and one-way object references, borrowed from the object oriented data model.

0-N

1-1 R1_B

0-N

1-1R1_A
R1

id: R1_A.A
R1_B.B

B

IdB
AttsB
id: IdB

A

IdA
AttsA
id: IdA

0-N

1-1 R1_B

0-N

1-1R1_A
R1

id: R1_A.A
R1_B.B

B

IdB
AttsB
id: IdB

A

IdA
AttsA
id: IdA

R1
IdB
IdA
id: IdA

IdB
ref: IdA
ref: IdB

B
IdB
AttsB
id: IdB

A
IdA
AttsA
id: IdA

R1
IdB
IdA
id: IdA

IdB
ref: IdA
ref: IdB

B
IdB
AttsB
id: IdB

A
IdA
AttsA
id: IdA

B
IdB
AttsB
id: IdB

A
IdA
AttsA
IdB[0-N]
id: IdA
ref: IdB[*]

B
IdB
AttsB
id: IdB

A
IdA
AttsA
IdB[0-N]
id: IdA
ref: IdB[*]

B
IdB
AttsB
A[0-N]: *A
id: IdB
inv: A[*]

A
IdA
AttsA
B[0-N]: *B
id: IdA
inv: B[*]

B
IdB
AttsB
A[0-N]: *A
id: IdB
inv: A[*]

A
IdA
AttsA
B[0-N]: *B
id: IdA
inv: B[*]

0-N 0-NR1

B

IdB
AttsB
id: IdB

A

IdA
AttsA
id: IdA

0-N 0-NR1

B

IdB
AttsB
id: IdB

A

IdA
AttsA
id: IdA

(e)

(c)

(d)

(b)

(a)

B

IdB
AttsB
A[0-N]: *A
id: IdB

A
IdA
AttsA
id: IdA

B

IdB
AttsB
A[0-N]: *A
id: IdB

A
IdA
AttsA
id: IdA

(f)

Fig. 2. Non-functional association equivalence class

6 In the sense that it supports no functional dependencies.

Quality Evaluation and Improvement Framework 541

A context describes the requirements against which the schema is evaluated.
It is defined by a triple (A,P,D), where A is an abstraction level, P is a data
modeling paradigm and D is a set of quality requirements. The abstraction
level A and the paradigm P define the use of a specific model, e.g., UML class
diagrams at the logical level. According to level A, some constructs of P will
become undesired. For example, a conceptual ER-like schema should not include
constructs that explicitly or implicitly define a foreign key.

A rating is an ordering of the members of an equivalence class for a specific
context. It states the extent to which each member meets the quality criteria
D of the context. Different methods have been proposed to define these scores.
Collecting expert estimation is the preferred technique since it requires less effort
than standard empirical studies based on schema global evaluation. Ratings can
be used in several ways, notably (1) to compute metrics for the schema under
investigation and (2) to suggest schema improvement. A rating also allows to
identify in the equivalence class a best practice as the construct that has the
highest score for the context of the rating.

A quality method comprises analysis, evaluation and improvement methods.
An evaluation method provides global and detailed quality scores for the schema.
An improvement method is based on the replacement of constructs with a low
rating for a context by a better construct in its equivalence class, for instance
the best practice of the context.

4 Quality Requirements

Quality has become a major research field in software engineering, though its
scope, its objectives and its evaluation techniques have not gained sufficient
consensus so far to consider it a mature domain. For example, similar but still
significantly different definitions of the very basic concept of understandability
can be found in [10], [11], [12] and [13]. Definitions have evolved with time
and standards have been proposed such as the ISO quality standard [12,14].
Unfortunately definitions available in a standard often appear too general and
not intuitive enough when addressing the quality of a specific software product.
This lack of precision also makes it uneasy to develop convincing operational
methodologies and to build supporting tools.

In this paper, we consider three essential qualities of conceptual schema con-
structs, namely simplicity, expressiveness and evolvability. In the following, we
provide definitions and interpretations of these non-functional requirements.

– Simplicity: Simplicity is a sub-characteristic of the understandability qual-
ity requirement in the ISO/IEC 9126 standard [12]. In [15], a schema is said
to be simple if it is constructed upon simple concepts. The notion of sim-
ple concept relies on a measure of the complexity, which is itself related to
the number of some specific elements, such as relationship types. Instead
we define the simplicity as the property of types of facts of the application
domain being represented as simply as possible. This definition encompasses
the notion of minimality and low complexity. A practical definition could

542 J. Lemaitre and J.-L. Hainaut

be based on the number of objects and the nature of objects. A construct
has a better minimality score than another one if it uses fewer objects to
express the same fact type. We also consider the structural and cognitive
complexity of the objects. For example, to represent a definite fact type, an
elementary attribute is clearly less complex than a compound attribute or
an entity type.

– Expressiveness: Like simplicity, expressiveness has a high impact on under-
standability in the ISO standard [12]. An early definition of expressiveness
was suggested by Batini et al. in [16], where the authors defined it as the
richness of a schema. In this paper, we follow the definition given in [15]
inspired from the previous early definition, and more specifically the sub-
concepts of concept expressiveness, that measures whether the concept [the
constructs] of the schema are expressive enough to capture the main aspects
of the reality. We relate the expressiveness to the fact that a type of facts
of the application domain is represented by a construct that naturally and
clearly refers to its nature. For instance, the fact that domestic appliances
form a variety of products should be represented by a subtype/supertype
relation, provided the data model includes this type of constructs.

– Evolvability: We define evolvability as the ability of a construct to support
possible changes in the application domain and to trigger as little impact
as possible on the system artefacts that include (e.g., the schemas) and use
(e.g., programs and HCI) this construct. While previous quality requirements
address the understandability of the conceptual schema, this definition is
adapted from the changeability definition of the ISO Quality standard [12].
Being able to adapt the schemas following new application domain changes
is important, especially in the context of the MDE methods.

These three qualities synthesize some of the most important requirements for a
database schema. In addition, they can be formally defined through our frame-
work, in which they form the D component of a context. We will apply them
to evaluate and illustrate the taxonomy of section 5. Besides, these qualities are
not independent: a construct that increases the simplicity of a schema may lower
its expressiveness. They can be considered separately or combined in order to
reach a trade-off.

5 Defect Taxonomy

Teaching, modeling experience and schema analysis eventually allow to come up
with a set of good modeling practices. The latter are the structures an experi-
enced designer would most probably use to represent specific fact types of the
application domain. We observe that many designers make other, sometimes un-
fortunate, choices, so that design flaws may often be found in database schemas.
In addition, the fact that a definite construct should be used is obviously context-
dependent. Besides, a sound construct may not always meet all the requirements
stated for some databases.

Quality Evaluation and Improvement Framework 543

Based on experience and schema study, we progressively elaborated a set of
constructs that appear to be poor design choices or defects in most situations.
Among them, some can be replaced without altering the information capacity of
the schema, that is, through the use of semantics preserving transformations. In
such cases, there is a strong bond between the taxonomy and the framework since
each couple of constructs (the good and the bad) belong to the same equivalence
class. We gather these defective constructs into four categories, namely complex,
redundant, foreign and irregular constructs.

We also analyse the impact of these defects on the three quality requirements
defined in section 4 by comparing defects with the recommended alternative.
Due to space limit, we discuss some defects only but we mention other popular
constructs in each of the four categories. Additional description of defects can
be found in chapter 17 of [2].

5.1 Complex Constructs

We qualify a construct complex when it is not the most straighforward way to
represent the fact type of the application domain under consideration. So far,
we have identified about a dozen complex construct classes. We detail three of
them:

– Attribute entity type The construct represents a property of a concept
of the application domain. It is made up of an entity type E1 with one
attribute A and that plays a [1-1] or [1-N] role in a binary relationship type
R. The identifier of E1 includes this attribute. It appears that the only goal
of E1 is to define a property of the concept represented by the other entity
type in R. We call it E0. E0 and E1 correspond respectively to the entity
types BOOK and KEYWORD in figure 3 (1.a). This goal would have been
better achieved by a mere attribute. The suggested improvement would be
to migrate A from E1 to E0 as illustrated in the figure 3 (1.b). Considering
the quality requirements we have defined, this transformation increases the
simplicity and the expressiveness of the schema. Indeed, the new construct
contains fewer objects and is closer to the application domain structure. On
the contrary, the original construct favours evolvability. Indeed, should E1

represent an important concept in the future, it could receive new attributes
and play new roles without painful restructuring.

– N-ary relationship type with a [0− 1] or [1− 1] role As an identifier of
the relationship type, this role is the functional determinant of each of the
other roles. Therefore, the relationship type is decomposable into two binary
functional relationship types as illustrated in figure 3 (2). N-ary relationship
types are intrinsically more complex and less intuitive than binary ones7. In
general, the decomposed pattern is simpler, more expressive and easier to
evolve than the source construct.

7 As testified by the endless discussions on the semantics of N-ary associations in UML
class diagrams!

544 J. Lemaitre and J.-L. Hainaut

(b)
(a)

0-1

0-N0-N

sign

VEHICLECUSTOMER

CONTRACT

0-1

0-N

sign

0-1

0-N

cover

VEHICLECUSTOMER

CONTRACT

coex: sign.CUSTOMER
cover.VEHICLE(b)

(a)

0-1

0-N0-N

sign

VEHICLECUSTOMER

CONTRACT

0-1

0-N0-N

sign

VEHICLECUSTOMER

CONTRACT

0-1

0-N

sign

0-1

0-N

cover

VEHICLECUSTOMER

CONTRACT

coex: sign.CUSTOMER
cover.VEHICLE

0-1

0-N

sign

0-1

0-N

cover

VEHICLECUSTOMER

CONTRACT

coex: sign.CUSTOMER
cover.VEHICLE

1-11-1 of

STUDENT

#
Name
Class
id: #

ID_DET
ParentAddress
Phone
SpecDiet

STUDENT

#
Name
Class
ParentAddress
Phone
SpecDiet
id: #

(a)

(b)

1-11-1 of

STUDENT

#
Name
Class
id: #

ID_DET
ParentAddress
Phone
SpecDiet

1-11-1 of

STUDENT

#
Name
Class
id: #

ID_DET
ParentAddress
Phone
SpecDiet

STUDENT

#
Name
Class
ParentAddress
Phone
SpecDiet
id: #

STUDENT

#
Name
Class
ParentAddress
Phone
SpecDiet
id: #

(a)

(b)

1

3

2

Attribute entity type

N-ary relationship type with a [x-1] role

One-to-one relationship type with mandatory roles

(a) (b)

1-10-10 of

KEYWORD
Keyword
id: of.BOOK

Keyword

BOOK
ISBN
Title
Editor
id: ISBN

BOOK
ISBN
Title
Editor
Keyword[0-10]
id: ISBN(a) (b)

1-10-10 of

KEYWORD
Keyword
id: of.BOOK

Keyword

BOOK
ISBN
Title
Editor
id: ISBN

1-10-10 of

KEYWORD
Keyword
id: of.BOOK

Keyword

BOOK
ISBN
Title
Editor
id: ISBN

BOOK
ISBN
Title
Editor
Keyword[0-10]
id: ISBN

BOOK
ISBN
Title
Editor
Keyword[0-10]
id: ISBN

Fig. 3. Three complex constructs and their suggested alternatives.

– One-to-one relationship type with mandatory roles This pattern ex-
presses a strong link between two concepts (no instance of a concept exists
independently of an instance of the other one) (figure 3 (3.a)). In most situa-
tions, the latter just represent two aspects, or two complementary fragments,
of the same concept. A better alternative (figure 3 3.b) can be to merge the
entity types into a single entity type. This improves the simplicity and the
expressiveness of the schema. Normally, evolvability should stay unchanged
though, in some cases, it may decrease, depending on the semantics of each
fragment.

The other complex constructs are classified in table 1, with the qualitative score
difference when they are replaced by the alternative construct we suggest.

5.2 Redundant Contructs

A construct A is redundant with construct B when, in any database state, the
instances of one of them can be computed from the instances of the other one.
More complex situations may occcur (for instance where A and B are mutually
dependent), but they will be ignored in the framework inasmuch as their solving
requires expert knowledge. The correction of such defects consists in removing

Quality Evaluation and Improvement Framework 545

Table 1. Complex constructs: qualitative evaluation

S
im

p
li
ci
ty

E
xp

re
ss
iv
en

es
s

E
vo

lv
ab

il
it
y

Entity type

ET with a weakly specified subtype → supertype attribute + - -

ET with an empty subtype → supertype attribute + + ≈

Relationship entity types → relationship type ? + ≈+

Implicit Is-A rel.: materialization → explicit is-a + + ≈+

Implicit Is-A rel.: upward inheritance → explicit is-a - + ≈+

Implicit Is-A rel.: downward inheritance → explicit is-a ≈ + +

Relationship type

Inter-attribute functional dependencies → decomposition - + +

Attribute

Complex attributes → entity type - + +

One-component compound attribute → desagregation + + ?

Inter-ET functional dependencies → decomposition - + +

Constraint

Decomposed existence constraints → merging + ≈ +

Legend: (-) Quality decrease (+) Quality improvement
(≈) Equivalent quality (?) Indeterminate quality change
(≈+) Nearly equivalent quality with slight improvenent

one of the source constructs (normally the lowest quality construct according to
its ranking in its equivalence class), which is (trivially) a semantics-preserving
transformation.

We classify the redundant constructs in two categories. The first category in-
cludes patterns in which some fact types of the application domain are expressed
more than once. The relationship/foreign key redundancy (figure 4 (a))
pattern is an example of this category. This pattern comprises an attribute that
references entities of another type (therefore acting as a foreign key) while a re-
lationship type already expresses such relationships explicitly. These constructs
are redundant and one of them must be removed. Since the foreign key suffers
from another problem (it appears as a foreign construct at the conceptual level
- see below), we remove it from the schema. A second example, not illustrated,
is that of attribute Amount of entity type ORDER, the values of which can
be computed from the values of attributes OrderedQuantity of DETAIL and
UnitPrice of PRODUCT . The derived objects should be removed from the
schema in order to increase its simplicity and evolvability. The evaluation of
expressiveness is somehow less intuitive. As we removed the less expressive ob-
jects, we consider that the expressiveness of the whole construct has increased
too.

The second category includes constraints that can be formally inferred from
other constructs on the schema. We describe two examples.

546 J. Lemaitre and J.-L. Hainaut

(a)

∀ o ∈ ORDER, o.Cust# = o.make.CUSTOMER.Cust#

1-10-N make

ORDER

Order#
Date
Cust#
id: Order#

CUSTOMER

Cust#
Name
Address
id: Cust#

∀ o ∈ ORDER, o.Cust# = o.make.CUSTOMER.Cust#

1-10-N make

ORDER

Order#
Date
Cust#
id: Order#

CUSTOMER

Cust#
Name
Address
id: Cust#

(b)

D

CB

A

D

CB

A (c) LESSON
Code
Teacher
Subject
Phone
id: Code

Teacher
Subject

id': Code

LESSON
Code
Teacher
Subject
Phone
id: Code

Teacher
Subject

id': Code

Fig. 4. Examples of redundant constructs

– Transitive is-a relation (figure 4 (b)). Based on the set-theoretic inclusion
relation, is-a relations are transitive: if entity type D is a subtype of B,
which itself is a subtype of A, then D is also a subtype of A. Specifying the
latter property in the schema is needless. Removing it improves simplicity,
expressiveness and evolvability.

– Non-minimal identifiers (figure 4 (c)). Non-minimal identifier I includes
components that can be discarded without I loosing its uniqueness property.
This pattern can be detected if the minimal subset of I has been declared an
identifier of the entity type, as shown in the figure. According to the Armstrong
inference rules, the largest identifier can be derived from the smaller one, and
therefore can be discarded, which will improve the three quality requirements.

5.3 Foreign Constructs

Foreign constructs are groups of objects that technically comply with the model
but that are highly influenced by the modeling practices of another model. Such
constructs may appear due to cultural habits of the database designer, to mis-
sunderstanding of the philosophy (way to perceive the world) of the model or as
left-over of a too straightforward migration process. Because of the large variety
of models practically used, many different foreign constructs can be found. Let
us mention two classical cases:

– Referencing attribute. Such attribute expresses relationships between
concepts of the application domain. The attribute is accompanied by an
informal constraint describing its intention. Such pattern is illustrated in
figure 4 (a). In order to improve the schema quality, one transforms the at-
tribute into a many-to-one binary relationship type (unless it is, in addition,
redundant). This substitution increases the expressiveness of the schema
without having a major impact on the other requirements.

– IMS style. As shown in figure 5 (a), a many-to-many relationship type is
expressed in the the legacy IMS style, using three intermediate entity types
following the hierarchical database modeling practices [17]. Such construct
has obviously a harmful impact on the schema quality. Through semantics-
preserving transformations, the source flawed pattern can be replaced by a
many-to-many relationship type (figure 5 (b)) which significantly increases
the three quality requirements.

Quality Evaluation and Improvement Framework 547

(a)

(b)1-1

0-N

Rb

1-1

1-1

Rb'

1-1

0-N

Ra

1-1

1-1

Ra'

PRODUCT
Prod#
Name
Price
id: Prod#

ORD_DET

ORDER
OrdNum
Date
id: OrdNum

DET_PRO

DETAIL
Quantity

1-1

0-N

Rb

1-1

1-1

Rb'

1-1

0-N

Ra

1-1

1-1

Ra'

PRODUCT
Prod#
Name
Price
id: Prod#

ORD_DET

ORDER
OrdNum
Date
id: OrdNum

DET_PRO

DETAIL
Quantity

0-N0-N
detail

Quantity

PRODUCT
Prod#
Name
Price
id: Prod#

ORDER

OrdNum
Date
id: OrdNum

0-N0-N
detail

Quantity

PRODUCT
Prod#
Name
Price
id: Prod#

ORDER

OrdNum
Date
id: OrdNum

Fig. 5. Example of IMS style construct and its best practice alternative

5.4 Irregular Constructs

The last category of defects we identified are irregular constructs. They appear
in large schemas when similar types of facts are expressed by different types of
constructs. This anomaly does not affect individual constructs but the schema as
a whole, which appears inconsistent. If these constructs are correct, they belong
to the same equivalence class, so that each non-optimal construct can be replaced
by a better one from this class. This substitution do not decrease the quality
requirements but strengthen the evolvability of the schema.

6 Framework Application

In the previous section, we defined a taxonomy of constructs that can easily be
related to the equivalence classes of the framework. This taxonomy suggests a
way of using and applying the framework as it gives defect detection criteria and
it provides a method for the evaluation and the improvement of schemas. Indeed,
the taxonomy (1) brings a well-focused study of defects, (2) is developed in a
specific context and (3) provides examples that suggest improvement techniques.
In this section, we will discuss the integration of the taxonomy in our framework.

An equivalence class theoretically comprises all the constructs that can be used
for representing a specific type of facts, independently of the context. Given a
definite context, each construct of a class will receive a score, that defines its level
of quality. The taxonomy allows to identify more precisely the constructs that
are considered as defects and therefore to specialize the framework to quality
evaluation and improvement in a particular situation.

An important aspect of the framework is the development of ratings, i.e.,
the definition of quality scales and the application of these scales to the scoring
of the constructs. Obviously the definition of ratings for all constructs of each
equivalence class, for all possible contexts should be a huge task. Again, the tax-
onomy can be used to specialize the framework. Simple ratings can be produced
using the quality differences between the elements of each couple (problem, so-
lution) of the complex and the foreign construct categories (the irregular and
redundant construct categories will not be used here as they do not provide such
evaluations). Example of ratings and a deeper discussion about the evaluation
of schema quality using the framework can be found in [1].

548 J. Lemaitre and J.-L. Hainaut

The quality difference in a couple is an indicator on the relative scores of these
constructs. Obviously a coarse evaluation such as the one provided in the previ-
ous section will not allow us to define a fine-grained scale. However, it provides
a primitive but usable scale with 2 values [0,1]. Through a Condorcet-like voting
technique, it is possible to designate the best practice as the construct that has
been the most preferred in all the defect fixing suggestions. Then, the 1 score is
assigned to the best practice and the 0 score to the other constructs of the class.

Because of the limited information (constructs and quality indicators) avail-
able in the taxonomy, the production of more precise ratings should require more
investigation. Other scales are discussed in [1], in which we propose for example
to use an ordinal scale based on five grades (e.g., very bad, bad, neutral, good,
very good).

Improving the schema following a single quality requirements (e.g., simplicity,
expressiveness or evolvability) becomes an easy task. However in practice, quality
requirements are often combined and may lead to conflicting suggestions. When
combining criteria, two situations appear. In the first one, all the criteria come to
the same conclusion, i.e., there exists one best alternative construct that improves
all the requirements. In the other situation, there are conflicts between different
possibilities and we have to rely on trade-off techniques. For example, we can as-
sign a weight to the requirements and compute an average score if the rating are
properly defined (their scale is composed of a sufficient number of values).

7 Conclusion

The principle of taxonomy of defective constructs presented in this paper allows
us to refine the quality evaluation and improvement framework proposed in [1],
notably since it contributes to populating the equivalence classes. The taxonomy
is semi-empirical. It derives from good practices published in the litterature and
from modeling experience. The identified defects are probably representative of
the common practical defects of this last decade. It also provides designers with
guidelines to identify potential problems in database schemas and to apply
solutions according to quality criteria such as simplicity, expressiveness and evolv-
ability. It is important to note that this approach, based on the evaluation of se-
mantically significant constructs, does not oppose classical metrics approaches
counting atomic objects in the target schema. On the contrary, once defects violat-
ing definite quality criteria have been identified, they can be counted and weighted
(according to their severity) in order to produce detailed and global metrics.

Though the illustrations (taxonomy and example schemas) of this paper con-
cern the conceptual abstraction level only, the principles we have developed are
valid for all abstraction levels and all data modeling paradigms. A demand exists
for relational schema evaluation, inasmuch as software quality evaluation mainly
addresses software metrics at the code level (high level model evaluation still is
emerging). At this level, the quality criteria and the taxonomy are specific. For
example, time and space performance as well as DDL portability criteria may

Quality Evaluation and Improvement Framework 549

become important. On the taxonomy side, such defects as implicit foreign key,
concatenated columns and missing primary key will appear.

At the present time, we have defined about 20 equivalence classes with their
rankings, as well as an extended taxonomy of conceptual defects for Entity-
relationship schemas. We are also developing a suite of tools to identify instances
of schema patterns (based on a declarative pattern description language), to
compute various metrics of these instances and to apply improvement transfor-
mations.

The future work will address (1) the validation of the framework8 and of
the tools with the collaboration of experts in database engineering and (2) the
extension of the framework to relational database evaluation and improvement.

References

1. Lemaitre, J., Hainaut, J.L.: Transformation-based framework for the evaluation
and improvement of database schemas. In: Pernici, B. (ed.) CAiSE 2010. LNCS,
vol. 6051, pp. 317–331. Springer, Heidelberg (2010)

2. Hainaut, J.L.: Bases de données: Concepts, utilisation et développement. Dunod
(2009)

3. McBrien, P., Poulovassilis, A.: A formal framework for er schema transformation.
In: Embley, D.W. (ed.) ER 1997. LNCS, vol. 1331, pp. 408–421. Springer, Heidel-
berg (1997)

4. Codd, E.F.: Normalized data structure: A brief tutorial. In: SIGFIDET Workshop,
pp. 1–17. ACM, New York (1971)

5. Burton-Jones, A., Weber, R.: Understanding relationships with attributes in entity-
relationship diagrams. In: ICIS 1999: Proc. of the 20th International Conference
on Information Systems, Atlanta, GA, USA. Association for Information Systems,
pp. 214–228 (1999)

6. Gemino, A., Wand, Y.: Complexity and clarity in conceptual modeling: comparison
of mandatory and optional properties. Data Knowl. Eng. 55(3), 301–326 (2005)

7. Assenova, P., Johannesson, P.: Improving quality in conceptual modelling by the
use of schema transformations. In: Thalheim, B. (ed.) ER 1996. LNCS, vol. 1157,
pp. 277–291. Springer, Heidelberg (1996)

8. Rauh, O., Stickel, E.: Standard transformations for the normalization of er
schemata. In: CAiSE, pp. 313–326. Springer, Heidelberg (1995)

9. Hainaut, J.L.: The transformational approach to database engineering. In: Läm-
mel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 95–143.
Springer, Heidelberg (2006)

10. Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid,
G., Ledeboer, G., Reynolds, P., Sitaram, P., Ta, A., Theofanos, M.: Identifying and
measuring quality in a software requirements specification. In: Proceedings of the
First International Software Metrics Symposium, pp. 141–152 (1993)

11. Moody, D.L., Shanks, G.G.: Improving the quality of data models: empirical vali-
dation of a quality management framework. Inf. Syst. 28(6), 619–650 (2003)

12. ISO/IEC: ISO 9126-1:2001, Software engineering - Product quality, Part 1: Quality
model. ISO/IEC (2001)

8 As suggested by a reviewer, the use of social network could help in the scoring of
constructs.

550 J. Lemaitre and J.-L. Hainaut

13. Bansiya, J., Davis, C.G.: A hierarchical model for object-oriented design quality
assessment. IEEE Trans. Software Eng. 28(1), 4–17 (2002)

14. ISO/IEC: Software Engineering – Software product Quality Requirements and
Evaluation (SQuaRE) – Guide to SQuaRE. ISO/IEC (2005)

15. Si-Said Cherfi, S., Akoka, J., Comyn-Wattiau, I.: Perceived vs. measured quality
of conceptual schemas: An experimental comparison. In: ER (Tutorials, Posters,
Panels & Industrial Contributions), Australian Computer Society, pp. 185–190
(2007)

16. Batini, C., Ceri, S., Navathe, S.B.: Conceptual database design: An Entity-
relationship approach. Benjamin-Cummings Publishing Co., Inc., Redwood City
(1992)

17. Hainaut, J.-L.: Hierarchical data model. In: Encyclopedia of Database Systems,
pp. 1294–1300 (2009)

Validation of Families of Business Processes

Gerd Gröner1, Christian Wende2, Marko Bošković3, Fernando Silva Parreiras1,
Tobias Walter1, Florian Heidenreich2, Dragan Gašević3, and Steffen Staab1

1 WeST Institute, University of Koblenz-Landau, Germany
{groener,parreiras,walter,staab}@uni-koblenz.de

2 Technische Universität Dresden, Germany
{c.wende,florian.heidenreich}@tu-dresden.de

3 Athabasca University, Canada
{marko.boskovic,dragang}@athabascau.ca

Abstract. A Software Product Line (SPL) is a set of programs that
are developed as a whole and share a set of common features. Product
line’s variability is typically specified using problem space models (i.e.,
feature models), solution space models that specify the realization of
functionality and mapping models that link problem and solution space
artifacts. In this paper, we consider this concept in the scope of families
of business processes, whose specificity is that the solution space is de-
fined with business process models. Solution space models are typically
specified as model templates, and thus in the rest of the paper we will
refer to business process model templates. While the previous research
tackled the concepts of families of business processes, there have been
very limited research on their validation.

Keywords: business process families, well-formedness constraints,
validation, process model variability, configuration.

1 Introduction

The increasing number of software systems with similar required functionality
has led software engineers to move from development of single software systems
to the development of Software Product Lines (SPLs). A SPL is a set of software
systems that share most of the features [1]. Because of the shared commonalities,
development of families improves reusability and is more cost effective [2].

A SPL1 is typically specified with three kinds of models: problem space mod-
els, solution space models and mapping models [3]. Problem space models define
available features of the members of the SPL, as well as their interdependen-
cies. They are typically used by stakeholders for selection of desired features of
the product. The set of selected features is called configuration. Solution space
models are comprehensive models that specify the realization of complete SPLs.
In this paper, we focus on business process families, i.e., families whose solu-
tion space models are business process model templates. Business process model
1 In this paper, we will use product line and software family interchangeably, even

though one can easily argue that they can not be considered synonymous.

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 551–565, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

552 G. Gröner et al.

templates are specified by business process modeling languages and composed of
business process patterns. From solution space models, a particular product, i.e.,
a business process model is derived by removing or adding parts of it. Finally,
mapping models define mapping relations between problem space and solution
space models. They regulate which parts might be removed from the business
process model according to the selected features from the problem space model.

Given such a representation of business process families, we have to guaran-
tee that each process model, that is built according to a feature configuration,
does not violate any well-formedness constraints of the business process model
template. Due to the size of contemporary business process families, it is time
consuming, costly and error-prone to manually validate that each configuration
has a well-formed corresponding business process model. For these reasons, an
automated approach for the constraint validation is necessary.

To address this problem, in this paper, we propose a classification of interre-
lationships between elements of business process models and demonstrate how
this classification can be used for the validation. The classification is based on
an analysis of basic workflow patterns, a set of conceptual basis for process lan-
guages. This classification is specified in Description Logics (DL), which we use
as means of validating business process templates.

2 Application Context of Business Process Families

A typical SPL consists of three kinds of artifacts, representing its problem space,
solution space and mappings between the problem and solution space [3]. We
introduce one such SPL, a part of the Electronic Store (e-store) SPL [4].

Fig. 1 depicts a snippet of the business process family of the e-store case
study. The representation contains a feature model to represent commonality
and variability of the business process family, a business process model template,
specified in the Business Process Modeling Notation (BPMN) and mappings
between features and elements of the business process model template.

Interdependencies in the feature model are specified with mandatory and op-
tional parent-child relationships and alternative and or feature groups. A manda-
tory parent-child relationship specifies that if a parent feature is selected in a
certain configuration, its mandatory child feature has to be too (e.g., E-Shop
and StoreFront). An optional parent-child relationship specifies a possibility of
the selection, e.g., StoreFront and WishList. An alternative feature group, or xor
feature group, (e.g., Basic and Advanced), specifies that when their parent feature
is selected, exactly one of the members of the group can be selected. Finally, an
or group (e.g., Emails, ProductFlagging and AssignmentToPageTypesForDisplay)
defines a set of features from which at least one has to be selected.

Feature models also contain interdependencies between features that are not
captured by the tree structure of feature diagrams, called cross-tree constraints,
namely includes and excludes. Includes means that if an including feature is in
a configuration, the included feature has to be as well (e.g., EmailWishList and
Registration). Excludes is the opposite to includes.

Validation of Families of Business Processes 553

Fig. 1. A Part of the E-Store [4] Software Product Line

Business process model templates are specified in a business process modeling
language. In Fig. 1, we use BPMN to specify a business process model tem-
plate. Such a template typically consists of process patterns like subprocesses
(WishList), activities (e.g., WishListNameEntry), gateways (diamonds), condi-
tional sequence flows and data objects (WishListName). These process patterns
impose well-formedness constraints like grouping of activities.

Finally, mappings connect the features with elements of the solution space
model that implement the business logic of particular configurations. For ex-
ample, every configuration that contains the Registration feature, contains the
WishListName data object. On the contrary, every configuration that does not
contain the feature MultipleWishList leads to a business process model where the
corresponding mapped activity WishListNameEntry is missing. All elements of
the business process model template that are not mapped to any feature are
contained in every business process model.

The problem in this context is given by the constraints of both modeling
spaces in combination with mappings between the feature model and the business
process model template. Given a particular feature configuration and a mapping,
we have to ensure, that the corresponding business process model satisfies the
well-formedness constraints of the template.

3 Solution Space Model Dependencies and Validation

In this paper, Description Logic (DL) [5] is used to formalize the constraints of
interests in models of interests and enable validation services. We could have
used some other formalism, but we opted for DL as it is precise and expressive
enough to serve our purpose - formalize constraints that need to hold between our

554 G. Gröner et al.

models of interest. Discussions of expansiveness of DL over some other options,
although an important research topic, is outside of the scope of this paper.

3.1 Modeling with Description Logics

DL is a decidable subset of first-order logic (FOL). A DL-based knowledge base is
established by a set of terminological axioms (TBox) and assertions (ABox). The
TBox is used to specify classes, which denote sets of individuals and properties
defining binary relations between individuals. The main syntactic constructs are
depicted in Table 1, supplemented by the corresponding (FOL) expressions.

Table 1. Constructs and Notations in DL and FOL Syntax

Construct Name DL Syntax FOL Syntax

atomic class, atomic object property C, R C(x), R(x, y)
subclass relation C � D ∀x.C(x) → D(x)
union class expression C1 � . . . � Cn C1(x) ∨ . . . ∨ Cn(x)
intersection class expression C1 � . . . � Cn C1(x) ∧ . . . ∧ Cn(x)
complement class expression ¬C ¬C(x)
universal quantification ∀P.C ∀y.(P (x, y) → C(y))
existential quantification ∃P.C ∃y.(P (x, y) ∧ C(y))
object subproperty R � S ∀x, y.R(x, y) → S(x, y)

3.2 Representing Models of Business Process Families

In this section, we provide formal definitions of the three considered modeling
spaces: (i) problem space, (ii) solution space and (iii) mapping space that com-
bines features from the problem space with entities in the solution space.

Definition 1. A Feature Model Φ = 〈F ,FP ,FM ,FIOR,FXOR,Fcr〉 is a tree
structure that consists of features F . Fp ⊂ F × F is a set of parent and child
feature pairs, FM ⊂ F is a set of mandatory features with their parents. All
other features are optional. FIOR ⊂ P(F)×F and FXOR ⊂ P(F)×F are sets
of pairs of child features and its common parent feature. The child features are
either inclusive or exclusive features. Finally, Fcr ⊂ F ×F is a set of cross-tree
constrained feature pairs that are either in an includes or excludes relation.

E − Shop ≡ ∃ hasFeature.StoreFront � ∃hasFeature.BusinessManagement (1)

StoreFront � ∃ parent.E − Shop (2)

Searching ≡ (∃ hasFeature.Basic ∃ hasFeature.Advanced) �
¬(∃ hasFeature.Basic � ∃ hasFeature.Advanced) (3)

EmailWishList � ∃includes.Registration (4)

Axiom 1 defines StoreFront and BusinessManagement as mandatory child fea-
tures of E-Shop. There is no such axiom for optional child features. Except of the
root feature, each feature has a parent feature. Axiom 2 defines E-Shop as the

Validation of Families of Business Processes 555

parent feature of StoreFront. For inclusive and exclusive child features, a class
union is used. For instance, Axiom 3 defines Basic and Advanced as exclusive
child features of the parent feature Searching. The axiom ensures that only one
feature is selected (cf. [6]). Axiom 4 depicts a cross-tree constraint where the
feature EmailWishList includes Registration.

The solution space is defined by a business process model template. In Def. 2,
we give generic definitions for solution space models. We focus on elements that
are mapped to features, i.e., these elements realize a certain feature. Obviously,
the granularity of mapping solution space models (e.g., classes, attributes) de-
pends on the applications. In the reset of this paper, all elements that are sub-
classes of the BPMN class Element can be mapped to features.

Definition 2. A Solution Space Model Ω = 〈S, T 〉 consists of entities S that
could be mapped to features and entities that are not mapped and do not directly
realize features (T). The sets S and T are disjoint.

Concrete process models found in the solution space are automatically trans-
formed to a knowledge base ΣΩ. The transformation creates classes for con-
structs of the BPMN metamodel, like the classes Activity and SequenceEdge, in-
dependently of the concrete BPMN model template. All elements of the BPMN
model template are modeled as subclasses of Element (i.e., elements of S).

V ertex, Activity, SequenceEdge � Element (5)

RequestWishList � Activity (6)

E1 � SequenceEdge (7)

RequestWishList � ∃outgoingEdge.E1 (8)

Vertex, Activity and SequenceEdge are subclasses of Element (Axiom 5).
RequestWishList is a concrete activity, defined by a subclass axiom too (Ax-
iom 6). Likewise, an edge E1 in the process model is represented by a subclass
axiom (Axiom 7). The relations from activities to edges are described using
existential restrictions on the object property outgoingEdge (Axiom 8).

Mappings (Def. 3) connect features F and the elements S of the solution space
model Ω. A feature can be mapped to multiple elements and likewise an element
in the solution space might realize multiple features.

Definition 3. For a feature model Φ = 〈F ,FP ,FM ,FIOR,FXOR,Fcr〉 and a
solution space model Ω = 〈S, T 〉, a Mapping Model M is a relation M ⊆ F×S,
that is defined as F × S := {(f, s) : f ∈ F ∧ s ∈ S}.
Finally, we transform the mapping models into a TBox ΣM . For each mapped
element E ∈ S in Ω, we introduce a class MapE that is a subclass of Map.
The object property feature is used to describe the mappings from elements to
features. A mapping from an element E to a feature F is represented by an axiom
MapE � ∃feature.F (Axiom 9). The mapping classes MapE are introduced
to separate the feature mapping from the solution space. In order to ease the
validation later on, we define the property hasFeature as a subproperty of the
property feature form the mapping model (Axiom 10).

556 G. Gröner et al.

MapRequestW ishList � ∃ feature . SavedAfterSession (9)

hasFeature � feature (10)

3.3 Well-Formedness in the Business Process Model Templates

Besides solution space models, we have to represent syntactic and structural well-
formedness constraints of the process models. They are imposed by the BPMN
language and by basic workflow patterns, as described in [7].

We focus in our work on structural well-formedness for two reasons. Firstly,
for the class of structural models, structural constraints coincide with behavioral
constraints (see the work on behavioral profiles that are derived from process
structure trees [8]). Secondly, there are techniques to derive structured models
for a broad class of unstructured models [9].

Elements of the business process model template that are not mapped to any
feature occur in each process model. In contrast, the appearance of a mapped
element in a process model depends on the feature configuration. For the sake of
a more compact representation, we introduce auxiliary constructs. In Axiom 11,
each element with at least one mapping to a mapping class is defined by the
class MappedElement. Axioms 12, 13 and 14 define (composite) properties.

MappedElement � Element � ∃mapped.Map (11)

incomingEdge ◦ source � predecessor (12)

outgoingEdge ◦ target � successor (13)

successor ◦ predecessor � sibling (14)

We identify three types of constraints. (i) An element might require another
element. (ii) An element always appear in conjunction with another element.
(iii) Elements of a process model might exclude each other. There is no influence
on elements in inclusive or-branches by feature mappings, since well-formedness
violations only occur due to missing elements in the process model.

We introduce three classes Required, Conjunct and Exclude to capture ele-
ments according to the different constraints. For instance, if element E is classi-
fied as a required element, we expect that E is subsumed by the (super-) class
Required. Additionally, a property isRequired is introduced to get for an el-
ement its required element. The corresponding element E′ that requires E is
obtained by a derivable axiom like E � ∃isRequired.E′. Likewise, we can use
the property sibling (Axiom 14) to get the sibling activities.

Sequence. A sequence describes a series of activities that are connected by
sequence edges. In a BPMN model, there are no dangling edges allowed, i.e.,
if there is a mapping to an activity, a violation might occur, if the activity is
missing. Let us consider the mapping of the optional feature MultipleWishList
to the activity WishListNameEntry. In this case, we have to guarantee that
sequence edges require their corresponding source and target vertex. Axiom 15
defines each mapped activity with an incoming or outgoing sequence edge as
required. The corresponding properties incomingEdge and outgoingEdge are
defined as subproperties of the introduced property isRequired (Axiom 16).

Validation of Families of Business Processes 557

MappedElement � (∃ incomingEdge.SequenceEdge

 ∃ outgoingEdge.SequenceEdge) � Required (15)

incomingEdge, outgoingEdge � isRequired (16)

Container Element. BPMN models facilitate grouping and decomposition of
activities. Axiom 17 describes that container elements such as groups and sub-
processes are supposed to be required by their elements. Groups in a BPMN
model use the property activities to define which activities are members of this
group, while subprocesses use the properties vertices and sequenceEdges. These
properties are defined as subproperties of isRequired in order to have a connec-
tion to the element’s counterparts (Axiom 18).

MappedElement � (∃ activites.Element ∃ vertices.Element

 ∃ sequenceEdges.Element) � Required (17)

activities, vertices, sequenceEdges � isRequired (18)

Conditional Flow. Activities with outgoing conditional sequence edges impose
the existence of at least one unconditional outgoing sequence edge. This con-
straint might be violated in the case an unconditional sequence edge is mapped
and could be possibly removed in a certain configuration. For instance, consider
the mapping of the optional feature MultipleWishList to the conditional out-
going edges of the activity RequestWishList in Fig. 1. In this case, a feature
configuration could result in a process model without any outgoing uncondi-
tional edge. In order to avoid this, we describe in Axiom 19 that a mapped
unconditional edge which is the only outgoing edge is required.

MappedElement � UnConditionalEdge � ∃ source. (Activity �
∃≤1outgoingEdge.UnConditionalEdge) � Required (19)

source ◦ outgoingEdge � isRequired (20)

Opening Gateway. An opening gateway is used to express the divergence of a
control flow. While the number of outgoing branches is arbitrary in general, it
is required that there are at least two outgoing sequence edges. Otherwise the
gateway does not represent any divergence. Axiom 21 defines a mapped sequence
edge that is one of at most two outgoing edges as a required element. Axiom 22
defines the property composition of source and outgoingEdge as subproperty of
isRequired in order to find the counterparts.

MappedElement � SequenceEdge � ∃source.(OpeningGateway

�∃≤2outgoingEdge.SequenceEdge) � Required (21)

source ◦ outgoingEdge � isRequired (22)

Closing Gateway. The convergence of a control flow in a process is described
by closing gateways. Like for opening gateways, a closing gateway needs at least
two incoming sequence edges. Axioms 23 and 24 are similar to the previous
Axioms just for closing gateway.

558 G. Gröner et al.

MappedElement � SequenceEdge � ∃target.(ClosingGateway

�∃≤2incomingEdge.SequenceEdge) � Required (23)

target ◦ incomingEdge � isRequired (24)

Exclusive Branching. Activities that appear in exclusive branches are sup-
posed to be exclusive, i.e., it is not allowed to execute activities from alternative
branches in a process execution. Axiom 25 defines each mapped element between
XOR-gateways as a subclass of Exclude.

MappedElement � ∃successor.XORgateway � ∃predecessor.XORgateway � Exclude (25)

Parallel Branching. If activities occur in parallel branches, they have to be
executed commonly, i.e., if an activity of the first branch is executed, then also
the activity of the second branch is executed. In Axiom 26, we define elements
between AND-gateways as subclasses of the class Conjunct.

MappedElement � ∃successor.ANDgateway � ∃predecessor.ANDgateway � Conjunct (26)

4 Validation Using Description Logics

Our aim is to ensure that the well-formedness constraints are satisfied in all
process models that can be derived from a process model template. The con-
straints are represented by logical formulas, DL expressions in our case. We use
the expression fΦ to represent a constraint on features and fΩ to represent a
constraint on elements of the business process. From a logical point of view,
checking whether the constraint given by fΦ ensures that the constraints repre-
sented by fΩ hold, can be realized by checking whether the implication fΦ ⇒ fΩ

holds for each interpretation, i.e., fΦ ⇒ fΩ is a tautology.
In order to test the implication fΦ ⇒ fΩ for all mapped elements, we have

to tackle the following problems. (i) While the constraints in the problem space
are directly represented by the axioms, the constraints of the process model
template are implicitly given by the element’s dependencies (cf. Sect. 3). Hence,
we have to classify and derive constraints of the mapped elements. (ii) We have
to guarantee that the same vocabulary and the same expression structure is used
in fΦ and fΩ. This is realized by building constraint expressions. (iii) Finally, we
have to check in DL whether the implication holds.

In Sect. 3.3, we specify implicit constraints of business processes and define
axioms in order to allow a dynamic classification of mapped and constrained
elements. These elements are categorized as subclasses of the classes Required,
Conjunct and Exclude. Defined properties (sibling and isRequired) as well as their
inverse properties help to get their counterparts. E.g., for the conjunct element
E, the counterpart (E′) can be found by using the subsumption E � ∃sibling.E′.

Building Constraint Expressions. For the mapped elements, we build class
expressions fΦ and fΩ. To check the implication (subsumption in DL (fΦ � fΩ)),

Validation of Families of Business Processes 559

we describe fΦ and fΩ by complex class expressions in DL. Additionally, we
introduce a class expression fΨ which will be used in the next step (Def. 4).

Depending on the constraint type (Conjunct, Required or Exclude) of the el-
ement E, the expression fΩ is built either as intersection, implication or exclusive
class expression. However, instead of the element E, we use the corresponding
mapping class MapE (cf. Axiom 9) of the mapping model and the property
feature that is a superproperty of hasFeature (cf. Axiom 10). This guarantees
the alignment of classes and properties between ΣΦ and ΣΩ.

For the feature model, fΦ is the intersection of parents and cross-tree con-
straints of all mapped features (F) of E. The absence of optional child features
in the parent definition of the feature model (Axioms 1-3) directly meets the need
of the feature representation in fΦ, since for an optional mapped feature, we can
not guarantee the appearance of the corresponding element in each business
process model. The set F of mapped features F is obtained from the mapping
knowledge base ΣM by axioms like MapE � ∃feature.F . Cross-tree constraints
are captured by the expression cr(F). To allow a subsumption checking of the
expressions in cr(F), we define the properties includes and excludes as sub-
properties of feature. The functions elements and element are abbreviations.
The element(s) is/are either the element that require another element or sibling
elements, they can be found by using the introduced properties isRequired and
sibling.

Definition 4. The final knowledge base Σ is constructed from the problem, so-
lution and mapping space knowledge bases, i.e., Σ := ΣΦ ∪ΣΩ ∪ΣM . Moreover,
for each mapped and constrained element, an axiom fΨ ≡ ¬fΦ � fΩ is added to
Σ, where fΦ and fΩ are defined as follows:

– for each element E � Conjunct and S := elements(sibling, E):
fΩ ≡

�
E′∈S MapE′ and fΦ ≡

�
F∈F Parent(F) � cr(F)

– for each element E � Required and E′ := element(isRequired, E) :
fΩ ≡ ¬MapE′ �MapE and fΦ ≡

�
F∈F Parent(F) � cr(F)

– for each element E � Exclude and S := elements(sibling, E):
fΩ ≡

⊔
E′∈S MapE′ �¬⊔

(MapE′′ �MapE′′′) for (E′′, E′′′ ∈ S)
and fΦ ≡

�
F∈F Parent(F) � cr(F)

Implication Checking. We reduce subsumption checking fΦ � fΩ to a clas-
sification problem by introducing fΨ . According to Def. 4, we add for each sub-
sumption checking problem the corresponding axiom fΨ ≡ ¬fΦ � fΩ. Finally,
we check for each class expression fΨ whether it is equivalent with the top class
(fΨ ≡ �). In this case, the solution space constraints (fΩ) are satisfied, otherwise
there is a violation. Moreover, fΩ is a subclass of the corresponding mapping
class MapE. This directly indicates the element that violates the constraint.

The validation effort is determined by the number of mappings and the num-
ber of elements that are involved in one of the constraints (Required, Conjunct
and Exclusive). There are two steps where reasoning is applied. (i) We classify
the knowledge base in order to find the constrained elements. To build the class

560 G. Gröner et al.

expressions fΩ (for each mapping one expression), we use class subsumption
to get the counterparts. For this purpose, we have to iterate over each element
that is a subclass of Required, Conjunct and Exclusive, but without any further
classification. (ii) The second step is a further knowledge base classification, in
order to find those expressions fΨ that are not equivalent to the top class �.
Class subsumption and classification are both standard reasoning services that
are quite tractable in practice. The DL expressivity is SHOIN .

5 Correctness of the Validation

This section demonstrates the correct capturing of the constraints in DL by the
implication fΦ ⇒ fΩ. We start with an consideration of the constraint coverage
by these expressions. Afterwards, we show that well-formedness of the business
process model template can be concluded from the implication checking.

Constraint Coverage. In our case, we know that both models are correct
on its own. Hence, a violation of the well-formedness constraints can only be
caused by the mappings. Our aim is to guarantee the well-formedness of each
process model from the business process model template, for each valid feature
configuration. We consider different cases how an element E might be involved
in a feature mapping. In case the element is not mapped, there might be no
violation, since the constraint types only contains mapped elements. E remains
in each process model and is not involved in any constraint with another element.

If E is mapped to at least one feature F , it depends whether E is involved in
a well-formedness constraint. In case E is not involved, there cannot be any vio-
lation of a well-formedness constraint, due to the same reasons as for unmapped
elements. More difficult is the case when E is involved in one of the constraints.
The constraint expression fΩ (Def. 4) encodes the corresponding constraint of
E with its counterpart elements, e.g., sibling elements. The intention of fΩ is,
that the encoded constraint has to be satisfied in all business process models.
Hence, we have to check whether fΩ holds for each feature configuration.

Again, we know that without any mapping there is no violation in the business
process model template. Therefore, we know that only the constraints of the
mapped feature F might lead to a violation of fΩ. The expression fΦ captures
these constraints of all mapped features F of E. We build fΦ as a conjunction
on all these features (cf. Def. 4) to capture the case that there are multiple
mappings of one element E. The constraints of the features are directly given
by the definition of the parent features and the cross-tree constraints of F .

The alignment is solved by a design decision of the mapping model
(cf. Sect. 3.3). The property feature maps an element E to a feature F , by an
axiom MapE � ∃feature.F . The property hasFeature is defined as a subprop-
erty of feature from the mapping space (Axiom 10). Hence, all class expressions
from the problem space using the property hasFeature are subsumed by expres-
sions where this property is replaced by its superproperty feature. In Def. 4, we
use MapE instead of elements E in the expression fΩ. Hence, fΦ and also fΩ

Validation of Families of Business Processes 561

only contain classes of the feature model and hasFeature and feature are in
a subproperty relation. The expression fΩ is composed of the mapped elements
(MapE of ΣM) according to the logical meaning of their constraint classification
(Required, Conjunct or Exclude).

Formula Representation in DL. In the validation, we check whether fΨ

(fΨ ≡ ¬fΦ�fΩ) is equivalent with �, which means to test whether the subsump-
tion fΦ � fΩ holds for each interpretation (tautology). Due to the alignment,
we can compare fΦ and fΩ by DL reasoning. Finally, we have to demonstrate
that this subsumption ensures that the solution space constraints are satisfied
for each allowed feature configuration (Lemma 1).

Lemma 1 (Correctness of the Validation). For mappings from an element
E to a set of features F , fΦ are the constraints of F and fΩ the constraints of
E. If fΦ is subsumed by fΩ then the well-formedness constraints of all elements
E hold.

Proof. Looking to the different types of constraints in both spaces, we basically
deal with implication, and, or and xor. Hence, we have to consider all possible
combinations in both spaces and check whether fΦ ⇒ fΩ is a tautology. This
kind of logical problem is in the nature of propositional logic. Hence in Def. 4, we
define the DL expressions fΦ and fΩ in a propositional style. The term connec-
tors are the DL counterparts, e.g., the intersection (�) for an and (∧). Instead of
propositional variables, there are class expressions like ∃hasFeature.F contain-
ing features and the properties feature and hasFeature from ΣΦ and ΣM . It is
easy to see in Def. 4 that fΩ is built as a DL expression representing either a con-
junctive, exclusive or implicative combination. In fΦ, we conjunctively connect
the parent features and the cross-tree constraints that are already represented
in this modeling style.

6 Proof-of-Concept and Discussion

The evaluation of our approach has been conducted by providing a proof-of-
concept which has been developed by integrating the FeatureMapper [10] and
the transformation of the control flow parts of BPMN to DL, as described in [11].

Setting. We applied the validation to the case study that was introduced in
Sect. 2 and is part of the e-store SPL [4]. The feature model consists of 287 fea-
tures, 2 top features, 192 of the features are leaf features and all others are parent
features. There are 21 cross-tree references, including mandatory and optional
as well as OR-grouped features. The process model contains 84 activities.

In the settings, we validated feature models with 154 features and with the
entire feature model (287 features). In both cases, we build either 22 or 48
mappings. The average validation time using the Pellet reasoner is 2970 ms for
154 features with 22 mappings and 4430 ms for 287 features with 48 mappings.
The time for the transformation to DL is less that the validation time. This is
based on the fact that we use the DL-oriented feature model of [6] and we only
transform the relevant control flow informations of BPMN to DL.

562 G. Gröner et al.

Validation Exemplified. We demonstrate the validation of one map-
ping for an easy example from the case study excerpt of Fig. 1. We as-
sume a mapping from the subprocess WishList to the mandatory feature
BusinessManagement. The mapping is represented in Σ by an axiom
MapWishList � ∃feature.BusinessManagement. We expect no con-
straint violations since the feature BusinessManagement is mandatory.
Concerning the validation, fΦ is build using the parent definition, i.e.,
fΦ ≡ ∃hasFeature.StoreFront � ∃hasFeature.BusinessManagement.
The expression fΩ is build using the class MapWishList from the mapping
model (fΩ ≡ ∃feature.BusinessManagement). For the subsumption checking
of fΦ by fΩ, we can replace the property feature by hasFeature. It is easy
to see that due to the negation of fΦ, fΨ is equivalent to the top class �:
fΨ ≡ ∀hasFeature.¬StoreFront � ∀hasFeature.¬BusinessManagement �
∃hasFeature.BusinessManagement. In case a particular mapping causes a
violation, the user finds the corresponding constraint expression fΨ classified as
not equal to the top class (�).

Lessons Learned. In Sect. 3.3, we already distinguished the focus of our work
on well-formedness constraints to the work on behavioral profiles of [12]. After a
deeper comparison of both formalisms, we find two interesting aspects that di-
rectly impose further research challenges. Firstly, behavioral profiles are efficient
to compare process behavior and behavior consistency. It might be a promis-
ing step to extend our well-formedness constraint validation towards a behavior
constraint validation, while we still offer the same feature-oriented configuration
view in combination with the mappings. Secondly, in this context, we see poten-
tial on using DL for the validation. The main challenge from the DL modeling
perspective is to handle the possibility of concurrent executions of activities.
This problem seems to be in line with the descriptive modeling style of DL to
capture this kind of execution potentiality.

7 Related Work

Due to the increasing need of business processes customization, several ap-
proaches for the development of families of business processes have been in-
troduced like Schnieders et al. [13], Boffoli et al. [14], La Rosa et al. [15] and
van der Aalst et al. [16]. Schnieders et al. [13] model families of business process
models as a variant-rich business process model. A configuration of such a fam-
ily is performed by directly selecting business process elements of variant-rich
processes. In order to support such an approach, Schnieders et al. extend BPMN
with concepts for modeling variation. However, in order to perform it, such an
approach requires from a customer knowledge of business process modeling.

Boffoli et al. [14] and La Rosa et al. [15] also distinguish between business
process models and problem space models. Boffoli et al. model problem space as
variability table, while La Rosa et al. provide variability by questionnaires. They
provide guidance to derive valid configurations, while our aim is to guarantee

Validation of Families of Business Processes 563

that for each possible and valid feature configuration there is a corresponding
valid process model that satisfies the well-formedness constraints.

More similar to our objective is the approach for process configuration from
van der Aalst et al. [16]. Their framework ensures correctness-preserving config-
uration of (reference) process models. In contrast to our work, they capture the
variability directly in the workflow net by variation points of transitions. Ac-
cordingly, a configuration is built by assigning a value to the transitions, while
our approach uses feature selections.

Weidlich et al. [8,12] derive behavior profiles to describe the essential be-
havior in terms of activity relations like exclusivity, interleaving and ordering
of activities. Weber et al. [17] extend process models by semantic annotations
and use them for the validation of process behavior correctness that captures
control-flow interaction and behavior of activities. In contrast to our work, their
focus is on behavioral constraints, while we consider structural well-formedness
constraints. Moreover, our particular emphasis is on the feature-oriented process
family representation.

In the context of SPLs several approaches have been introduced, in order to
ensure the well-formedness of solution space models. Czarnecki et al. [18] specify
constraints on solution space model configurations using OCL constraints. Prob-
lem space models, solution space models with OCL constraints, and mappings
between them are transformed to Binary-Decision Diagrams.

Thaker et al. [19] introduce an approach for the verification of type safety, i.e.,
the absence of references to undefined classes, methods, and variables, in solu-
tion space models w.r.t. all possible problem space configurations. They specify
the models and their relations as propositional formulas and use SAT solvers to
detect inconsistencies. Janota et al. [20] and van der Storm [21] introduce ap-
proaches to validate the correctness of mappings between feature and component
models. They use propositional logics too.

8 Conclusion

As shown in the related work section, our contribution is primarily related to the
validation of families of business processes. While the concept of business process
families was previously introduced and even covered in our own work [22], there
have been very limited (if any) attempts to propose a validation of such families.

Our proposal validates business process models w.r.t. their well-formedness
constraints; mappings to problem space models; and dependencies in the prob-
lem space models. Hence, unlike other approaches on validation of (model-driven)
software product lines, our approach also considers the very nature of business
process models through the set of business process practices encoded in con-
trol flow patterns. Even though, in this paper, we used BPMN for defining the
solution space of business process families, our approach is easily generalizable
to other types of business process modeling languages. This can be deduced
from control flow patterns used in this paper and control flow support analyzes
presented in the relevant literature [23].

564 G. Gröner et al.

We evaluated our work with the largest publicly-available case study, for which
we were able to find all the three types of models. While this case study has a
realistic size, we would like to have a benchmarking framework which will allow
for simulating larger solution space and mapping models. This is similar to what
has been already proposed for feature models [24], but now to be enriched for
the generation of business process model templates of different characteristics.
We plan to organize a user study where the proposed approach will be evaluated
by asking software modelers to complete some tasks by applying our tooling. A
further plan is to extend our validation formalism towards behavioral constraints
in the business process model template.

Acknowledgements. This work has been supported by the EU Project MOST
(ICT-FP7-2008 216691).

References

1. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, Heidelberg (2005)

2. McGregor, J., Muthig, D., Yoshimura, K., Jensen, P.: Successful Software Product
Line Practices. IEEE Software 27(3), 16–21 (2010)

3. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. ACM Press, New York (2000)

4. Lau, S.Q.: Domain Analysis of E-Commerce Systems Using Feature-Based Model
Templates. Master’s thesis, University of Waterloo, Waterloo (2006)

5. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook. Cambridge University Press, Cambridge (2007)

6. Wang, H., Li, Y., Sun, J., Zhang, H., Pan, J.: Verifying Feature Models using OWL.
J. of Web Semantics 5(2), 117–129 (2007)

7. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow Pat-
terns. In: Distributed and Parallel Databases (2003)

8. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Efficient Computation
of Causal Behavioural Profiles Using Structural Decomposition. In: Lilius, J.,
Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 63–83. Springer,
Heidelberg (2010)

9. Polyvyanyy, A., Garćıa-Bañuelos, L., Dumas, M.: Structuring Acyclic Process
Models. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336,
pp. 276–293. Springer, Heidelberg (2010)

10. Heidenreich, F., Kopcsek, J., Wende, C.: FeatureMapper: Mapping Features to
Models. In: ICSE 2008 Companion, pp. 943–944. ACM, New York (2008)

11. Ren, Y., Gröner, G., Lemcke, J., Rahmani, T., Friesen, A., Zhao, Y., Pan, J.Z.,
Staab, S.: Validating Process Refinement with Ontologies. In: Description Logics.
CEUR Workshop Proceedings, CEUR-WS.org, vol. 477 (2009)

12. Weidlich, M., Mendling, J., Weske, M.: Efficient Consistency Measurement Based
on Behavioural Profiles of Process Models. IEEE Transactions on Software Engi-
neering 99 (2010)

13. Schnieders, A., Puhlmann, F.: Variability Mechanisms in E-Business Process Fam-
ilies. In: BIS 2006: 9th Int Conf. on Business Information Systems, pp. 583–601
(2006)

Validation of Families of Business Processes 565

14. Boffoli, N., Cimitile, M., Maggi, F.M.: Managing Business Process Flexibility and
Reuse through Business Process Lines. In: Cordeiro, J., Ranchordas, A., Shishkov,
B. (eds.) ICSOFT 2009. Communications in Computer and Information Science,
vol. 50, pp. 61–68. Springer, Heidelberg (2011)

15. Rosa, M.L., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.:
Questionnaire-based Variability Modeling for System Configuration. SoSyM 8(2),
251–274 (2009)

16. van der Aalst, W.M.P., Dumas, M., Gottschalk, F., ter Hofstede, A.H.M., Rosa,
M.L., Mendling, J.: Preserving Correctness during Business Process Model Con-
figuration. Formal Asp. Comput. 22(3-4), 459–482 (2010)

17. Weber, I., Hoffmann, J., Mendling, J.: Beyond Soundness: On the Verification of
Semantic Business Process Models. Distributed and Parallel Databases 27(3), 271–
343 (2010)

18. Czarnecki, K., Pietroszek, K.: Verifying Feature-Based Model Templates Against
Well-Formedness OCL Constraints. In: GPCE 2006, pp. 211–220. ACM, New York
(2006)

19. Thaker, S., Batory, D., Kitchin, D., Cook, W.: Safe Composition of Product Lines.
In: GPCE 2007, pp. 95–104. ACM, New York (2007)

20. Janota, M., Botterweck, G.: Formal Approach to Integrating Feature and Archi-
tecture Models. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961,
pp. 31–45. Springer, Heidelberg (2008)

21. van der Storm, T.: Generic Feature-Based Software Composition. In: Lumpe, M.,
Vanderperren, W. (eds.) SC 2007. LNCS, vol. 4829, pp. 66–80. Springer, Heidelberg
(2007)

22. Mohabbati, B., Hatala, M., Gašević, D., Asadi, M., Bošković, M.: Development
and Configuration of Service-Oriented Systems Families. In: Proceedings of the
26th ACM Symposium on Applied Computing (2011)

23. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M., Russell, N.:
On the suitability of BPMN for business process modelling. In: Dustdar, S., Fi-
adeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 161–176. Springer,
Heidelberg (2006)

24. White, J., Schmidt, D., Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated
Diagnosis of Product-Line Configuration Errors in Feature Models. In: SPLC 2008,
pp. 225–234. IEEE Computer Society, Los Alamitos (2008)

Using SOA Governance Design Methodologies to

Augment Enterprise Service Descriptions

Marcus Roy1,2, Basem Suleiman1, Dennis Schmidt1,
Ingo Weber2, and Boualem Benatallah2

1 SAP Research, Sydney NSW 2060, Australia
2 School of Computer Science and Engineering, UNSW, Sydney NSW 2052, Australia

{m.roy,basem.suleiman,dennis.schmidt}@sap.com,

{m.roy,ingo.weber,boualem}@cse.unsw.edu.au

Abstract. In large-scale SOA development projects, organizations uti-
lize Enterprise Services to implement new composite applications. Such
Enterprise Services are commonly developed based on service design
methodologies of a SOA Governance process to feasibly deal with a large
set of Enterprise Services. However, this usually reduces their under-
standability and affects the discovery by potential service consumers. In
this paper, we first present a way to derive concepts and their relation-
ships from such a service design methodology. Second, we automatically
annotate Enterprise Services with these concepts that can be used to
facilitate the discovery of Enterprise Services. Based on our prototypical
implementation, we evaluated the approach on a set of real Enterprise
Service operations provided by SAP. Our evaluation shows a high degree
of annotation completeness, accuracy and correctness.

Keywords: SOA Governance, Enterprise Services, Annotation.

1 Introduction

Service-oriented Architectures (SOA) allow developers to create flexible and agile
composite applications by reusing existing and loosely coupled Web services [5].
Such Web services can be roughly grouped into two categories: public and cor-
porate Web services. On the one hand, there is a large body of public Web
services currently available on the Web (cf. seekda1). These Web services are
typically scattered across various domains (e.g. finance, weather etc.) with het-
erogeneous service definitions solely based on the service provider’s preferences.
On the other hand, modern Enterprise Applications, e.g. Enterprise Resource
Planing (ERP), are often based on the SOA paradigm enabling organizations
using these applications to expose internal data and functionality as (mainly
proprietary) Web Services. In this context, Web services are referred to as En-
terprise Service (ES) [11]. In contrast to public Web services, Enterprise Services
are mostly offered through internal2 and centralized UDDI-like repositories, e.g.,

1 http://webservices.seekda.com (28.579 Web Services 11/2010).
2 Some ESs may also be exposed publicly; both categories are not necessarily mutually

exclusive.

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 566–581, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://webservices.seekda.com

Using SOA Governance Design for Enterprise Service Annotation 567

SAP’s Enterprise Service Repository3. Their service design process is typically
standardized and aligned to some kind of business modeling [21], endorsing a
close cooperation and coordination of an organization’s business and IT depart-
ments [27]. In order to manage a great number of ESs, which can easily be
in the thousands for real-world enterprise applications [13], some application
providers apply governance processes to manage their SOA – summarized un-
der SOA Governance – to cover various area of service design, implementation,
and provisioning. We herein focus on the design aspect, where SOA Governance
often defines best practices to foster high reuse and avoid duplication of Enter-
prise Services. This includes guidelines to unambiguous naming of interfaces and
operations for an increasing number of Enterprise Services. However, the gains
in manageability for organizations developing services comes at the price of de-
creased understandability for service consumers. To demonstrate this point, we
refer the reader to the examples of Enterprise Service operation names as shown
in Table 1. These have been returned as part of a keyword search for ESs related
to “Sales Order” on SAP’s ESR. From the perspective of less professional and
non SAP-educated developers, these examples of Enterprise Services interfaces
may be perceived as (i) long, (ii) technical and (iii) similar sounding. The au-
thors in [3] demonstrated that these characteristics – among others – impose
additional difficulties to cognitively understand and locate Enterprise Services.

Table 1. Examples of Enterprise Services taken from SAP’s ESR

Enterprise Services

1 SalesOrderItemScheduleLineChangeRequestConfirmation In

2 SalesOrderERPCreditManagementApproveRequestConfirmation In

3 SalesOrderERPItemConditionPropertyByIDQueryResponse In

In order to facilitate techniques, e.g. discovery, that can be built on top of
Enterprise Services, it is beneficial to augment the description of Enterprise
Services as described hereinafter. In most cases, Enterprise Services are defined
in terms of a standardized description language, e.g. WSDL4, that defines what
operations can be invoked using which parameters. Description languages like
WSDL are, however, not well suited to sufficiently and formally describe the
meaning of Enterprise Services. In such cases, semantic languages, e.g. RDF5,
allow to add and relate semantic concepts (e.g. defined by means of ontologies)
to parts of the service description. Although semantic approaches have been
shown to effectively improve e.g. service discovery and composition, they still
require mostly manual effort to create required ontologies and generate related
annotations.
3 ESR: http://www.sdn.sap.com/irj/sdn/nw-esr (>4000 Enterprise Services

11/2010).
4 Web Service Description Language (WSDL) 1.1: http://www.w3.org/TR/wsdl
5 Resource Description Framework:
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

http://www.sdn.sap.com/irj/sdn/nw-esr
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

568 M. Roy et al.

In this work, we address the latter point by utilizing service design method-
ologies from a SOA Governance process to automatically annotate Enterprise
Service descriptions. Our approach can be regarded as deriving semantic anno-
tations from ESs to make their discovery easier. We therefore propose a solution
to automatically augment the description of Enterprise Services with concepts
stemming from such a design methodology. Using the example of an SAP ser-
vice design process, we first identified this service design methodology as well
as naming conventions used as part of a SOA Governance process (cf. Figure 1
- Conceptual Layer). Second, we used RDF/S6 to describe and represent this

Non-deterministic AutomatonKnowledge Base

SOA Governance Conceptual Level

Enterprise Services Signatures

abstract

Logical Level

Physical Level

annotate

To
p-

D
ow

n
A

pp
ro

ac
h

transduce

NFA-

Service
Development
Methodology

Naming
Conventions

Factual
Concepts

Terminological
Concepts

RDF/S

SalesOrderItemScheduleLineChangeRequestConfirmation_In
SalesOrderERP CreditManagementApproveRequestConfirmation_In
SalesOrderERPItemConditionPropertyByIDQueryResponse_In

input
(alphabet)

Object

Change

Read

Query

q0 q1

q2

q3 Request

q4

q5

Fig. 1. Architectural overview of our approach to utilize SOA governance

service development methodology, abstractly. We formally defined this represen-
tational schema as a hierarchy of terminological and factual concepts, referred to
as service knowledge base (cf. Figure 1 - Logical Layer). Concepts in that knowl-
edge base – among others – are used to define signatures of Enterprise Services.
We then use non-deterministic automata to formally define a language of Enter-
prise Service signatures derived from available naming conventions (cf. Figure 1
- Logical Layer). We refer to the knowledge base and automaton as service an-
notation framework. Third, we applied our framework to the example of SAP
to automatically annotate Enterprise Services (cf. Figure 1 - Physical Layer).
That is, an Enterprise Service signature that is accepted by the automaton is a
valid concatenation of words (i.e. factual concepts) that relate to terminological

6 RDF Schema: http://www.w3.org/TR/rdf-schema

http://www.w3.org/TR/rdf-schema

Using SOA Governance Design for Enterprise Service Annotation 569

concepts in the service knowledge base. The set of detected concepts is then
used to annotate the respective Enterprise Service. The corresponding steps are
illustrated as dashed lines in Figure 1. Our prototypical implementation shows
that a majority of available Enterprise Services can be annotated automatically.
An evaluation of generated annotations in fact demonstrates a high degree of
completeness, accuracy and correctness.

In the remainder, we explain an example of SOA Governance in Section 2.
We then describe the service annotation framework in Section 3. In Section 4,
we present a solution and evaluate generated annotations in Section 5. Finally,
we refer to related work in Section 6 and provide a conclusion in Section 7.

2 SOA Governance

Organizations use SOA Governance to better manage their SOA development.
This has been ascertained by [16], predicting a considerably high risk of failures
for midsize to large SOA projects of more than 50 Web Services without any
applied SOA governance mechanism. Large companies such as SAP, IBM and
Oracle employ SOA Governance mechanisms to ensure a consistent, effective
and business aligned development of SOA-based applications. We refer to SOA
Governance as policies to make consistent decisions on how to build usable and
long-living services. SOA Governance, similar to IT Governance, typically covers
multiple phases of a service life-cycle, e.g. service planning, design, definition,
implementation etc. [10]. In terms of service design, developers are guided in
their task to create interfaces of future Enterprise Services. Governance applied
during the design phase typically encompasses guidelines and best practices to
effectively create services that are (ideally) mutually exclusive and exhaustive
regarding coverage of functionality. It also creates a common agreement and se-
mantic alignment of concepts used during the service development. For instance
”Sales Order” is a business entity defining a contractual order that is commonly
understood by developers, customers and partners across corporate boundaries.

2.1 SOA Governance - A Service Design Example

As a motivating example, we describe one possible way to abstract and utilize
information used as part of SAP’s service development methodology for creating
Enterprise Services. Specifically the definition of Enterprise Service signatures
can be quite versatile, encompassing the use of multiple (i) concepts arranged by
some kind of (ii) naming convention [2,21]. We herein refer to concepts as ter-
minological concepts and to its instance data as factual concepts. The schema in
Figure 2 shows an example of such concepts as part of our definition of a knowl-
edge base. Particularly, the schema illustrates – but is not restricted to – the
application of two main terminological concepts: a domain-specific data model
and service development pattern. We used RDF/S to describe the hierarchy of
both types of concepts in a single schema focusing only on a minimal example
of terminological concepts, i.e. data model and pattern, and naming conventions
used to describe Enterprise Services. We refer to the Enterprise Service (S1) as an
end-to-end example to illustrate used design principles as well as our approach:

570 M. Roy et al.

t:Representational_Model

t:DataModelt:Pattern
t:Access
Pattern

t:Communication
Pattern

t:Direction
Pattern

t:Interface
Pattern

t:Operation
Pattern

t:Software
Component

t:Business
Object

t:Business
ObjectNode

t:Deployment
Unit

t:Process
Component

rdf:type

p:belongsTo

Relationship Concepts

t:Terminology
Concept

f:Information

f:QueryResponsef:Notification

f:RequestConfirmation

f:Action

f:Query

f:Manage

f:Change

f:Find

f:Approve

f:In f:Out

f:Item

f:SalesOrder

f:SalesOrder
Processing

f:SalesOrder
Processing w/o HCM

f:ERP
f:Factual
Concepts

Fig. 2. RDF Schema of the knowledge base showing terminological and factual concepts

SalesOrderItemScheduleLineChangeRequestConfirmation In (S1)

Signature (S1) defines an incoming request operation (invoked by a seller) to
change the schedule line of an item contained in an existing sales order of a spe-
cific customer. From this signature, we can recognize factual concepts that have
been modeled as part of our schema. On the one hand, the terms ”Sales Order”,
”Item” and ”Schedule Line” refer to factual concepts belonging to terminologi-
cal concepts listed under data model (cf. Fig. 2). On the other hand, the terms
”Change”, ”Request” and ”In” represent factual concepts of a particular service
development pattern, also a terminological concept. In a final step, these terms
are arranged according to a specific order that is defined by a set of naming
conventions. Next, we explain terminological concepts of the data model and
pattern and show how they are utilized to create Enterprise Service signatures
using naming conventions.

A domain-specific data model. Typically, Enterprise Services are built on
key entities of a domain-specific data model. For instance, signature (S1) is
specified according to the factual concept ”Sales Order”, ”Item” and ”Schedule
Line” as inferred from the data model defined as part of the knowledge base
(cf. Fig. 2). This model represents an abstract and trimmed-down version of
an existing information model used by SAP. Such an information model de-
scribes, in more detail, the relationship of business-related entities used by an
organization to realize internal operations. Each terminological concepts has fac-
tual concepts associated with it. Applying this to our example, the terminolog-
ical concept ”Business Object Node” (BO Node) belongs to ”Business Object”
(BO), which implies that the factual concept ”Item” belongs to ”Sales Order”:
SalesOrderItemScheduleLineChangeRequestConfirmation In

Service development patterns. Apart from the data model, the service
knowledge base also describes development patterns recurrently used by de-
velopers to uniformly define Enterprise Services. These patterns can further be

Using SOA Governance Design for Enterprise Service Annotation 571

separated into access, communication and direction pattern (cf. Fig. 2). Firstly,
the access pattern specifies predefined ways on how to access objects in the
data model, e.g. ”create” or ”change”. Secondly, the communication pattern
describes the type of interaction to be e.g. ”request-confirmation” to define a
request operation that causes some action and a confirmation message being
returned. Thirdly, the direction pattern describes a service operation to be ei-
ther ”inbound” (e.g. incoming request to create a sales order) or ”outbound”
(e.g. outgoing credit card authorization request). We derived these patterns di-
rectly from available SOA Governance information. Referring to (S1), the sig-
nature employs factual concepts ”change”, ”request-confirmation” and ”in” be-
longing to terminological concepts access, communication and direction pattern
respectively: SalesOrderItemScheduleLineChangeRequestConfirmation In

Naming Conventions. The examples (N1)-(N3) below illustrate that naming
conventions already come in a pre-structured way (cf. [21]) and are used to guide
the creation of Enterprise Service signatures. The showcased syntax is defined
on the basis of non-terminal symbols, i.e. terminological concepts, and terminal
symbols, i.e. factual concepts.

NC1 = <BO>(<BO Node>)∗ (N1)
NC2 = ("Change"|"Create"|"Cancel"|"Read") (N2)
NC3 = <CommunicationPattern> (N3)

In terms of signature definition, (N1) for instance describes that any factual
concept related to a BO Node has to be positioned after the factual concept of a
particular BO. Finally, to receive a single (possibly incomplete) building rule, we
consolidated naming conventions (N1), (N2) and (N3) based on documentation
that outlines how to combine them. We further substituted the access pattern
for the terminal words in (N2). As a result, the building rule (B1) represents one
possible way of (partially) describing our Enterprise Service signature (S1):

BR = <BO><BO Node><AccessPattern><CommunicationPattern>

= SalesOrderItemScheduleLineChangeRequestConfirmation In (B1)

3 Automated Annotation Framework

In this section, we formally describe the two components used in our framework
to automatically annotate Enterprise Services, i.e. the service knowledge base
and the non-deterministic automaton. These components are based on our mod-
eling of SOA Governance as described in the previous Section. Therefore, we first
define the service knowledge base as an abstract model and data that represents
a given service design methodology (cf. data model and pattern in Section 2.1).
Second, we define a non-deterministic automaton describing a formal language
of Enterprise Service signatures. To illustrate this procedure, we will use the
naming conventions from Section 2.1.

572 M. Roy et al.

3.1 Service Knowledge Base

In the following, we formally define the service knowledge base as KB = 〈D, F 〉.
We refer to D as a set of terminological concepts describing an abstract repre-
sentation of a service development methodology. With F , we describe a set of
factual concepts that are mapped to related terminological concepts in D.

Definition 1 (Methodology Representation D). We define the abstract
representation D as a directed graph D = (T, R, E) with T representing a set
of terminological concepts T = {t1, . . . , tn}, R denoting a set of relationships
R = {r1, . . . , rm} and E a set of directed edges between two terminological
concepts belonging to a specific relationship such that E = {e1, . . . , ek} with
ei = (to, ry, tp), 0 ≤ i ≤ k, 0 ≤ o, p ≤ n, 0 ≤ y ≤ m.

Example 1 (Methodology Representation D). We use the example of termino-
logical concepts as described in Section 2.1 to define the conceptual part D =
(T, R, E) of the service knowledge base KB = 〈D, F 〉. As such, the representa-
tion D describes a child-relationship of the concept ”Business Object Node” to
the concept ”Business Object”.

T := {t1, t2} = {Business Object, Business Object Node},
R := {r1} = {containsBON}, E := {e1} with
e1 := (t1, r1, t2) = (Business Object, containsBON, Business Object Node)

Definition 2 (Factual Concepts F). We define F as a set of factual concepts
F = {f1, f2, . . . , fm}. We further define a mapping Φ : F → T , Φ(f) = t for
f ∈ F, t ∈ T , such that ∀f ∈ F : ∃t ∈ T : Φ(f) = t. Furthermore, for each t ∈ T
we denote the (possibly empty) subset Ft ⊂ F such that ∀f ∈ Ft : Φ(f) = t.
Obviously these subsets are distinct for different t, i.e. ∀ti, tj ∈ T : ti 	= tj →
Fti ∩ Ftj = ∅
Example 2 (Factual Concepts F). Referring to the examples of factual concepts
as shown in Section 2.1, we use F to represent a set of factual concepts, i.e. ”Sales
Order”, ”Purchase Order” and ”Item”. We further have distinct subsets Ft1 and
Ft2 of F , whereas ”Sales Order” and ”Purchase Order” represent Ft1 and ”Item”
forms Ft2 . The mapping Φ describes the relationship of factual concepts in Ft1

and Ft2 to T , which practically relates ”Sales Order” and ”Purchase Order” to
”Business Object” and ”Item” to ”Business Object Node”.

F := {f1, f2, f3} = {Sales Order, Purchase Order, Item},
Φ(f1) := t1 → Φ(Sales Order) = Business Object
Φ(f2) := t1 → Φ(Purchase Order) = Business Object
Φ(f3) := t2 → Φ(Item) = Business Object Node
Ft1 := {f1, f2} = {Sales Order, Purchase Order}, Ft2 := {f3} = {Item}

3.2 Service Signature Automaton

In this section, we use the notation of a non-deterministic finite automaton
(NFA) with ε-moves to formally define a language of accepted Enterprise Services

Using SOA Governance Design for Enterprise Service Annotation 573

signatures. We use previously defined terminological concepts T (Def. 1) as the
set of input symbols (i.e. alphabet) to initiate state changes. A path through
this automaton, i.e. a finite sequence of connected states, ending in a final state
represents a concatenation of terminological concepts that defines a language of
Enterprise Service signatures.

Furthermore, we decided for an NFA-ε and against a DFA (deterministic
finite automaton) for the following reason. Although we expect SOA governance-
compliant Enterprise Services to correctly employ naming conventions, we can-
not assume them to be exhaustive to completely describe any Enterprise Services
signature. This means that the automaton should be able to ignore parts of the
signature that are unknown, i.e. not defined by a naming rule or where concepts
are not recognized. For this, we included empty-word transitions (ε-moves).

Definition 3 (Automaton A). We define the NFA-ε as A = (Q, T, M, q0, Z)
with Q denoting a finite set of states, T used as input symbols, M : Q × (T ∪
{ε})→ P (Q) as the transition function (including ε-moves) to a powerset of Q,
q0 ∈ Q representing the start state and Z ⊆ Q denoting a (possibly empty) set of
final states. We further define the powerset of a particular state P ({q}), q ∈ Q
as the set of states that can be reached from q with input t ∈ T and ε such that
P ({q}) = {p ∈ Q : q

t,ε−→ p} (ε-closure). The powerset of all states is defined as
a union P (Q) =

⋃
q∈Q P ({q}).

Example 3 (NFA-ε). In Figure 3, we depicted an example of an automaton
consisting of nine states Q = {q0, . . . , q8}, an alphabet of nine symbols T =
{t1, . . . , t8, ε}, two accepting states Z = {q7, q8} and a set of transitions M rep-
resented as edges in Figure 3. We further refer to the following examples of
Enterprise Service signatures (S1) and (S2) that are accepted by this automaton
using the set of transitions MS1 and MS2. Moreover, Enterprise Service signature
(S2) illustrates the need for ε-moves.

(S1) SalesOrderItemScheduleLineChangeRequestConfirmation In

MS1 = {q0
Φ(Sales Order)−−−−−−−−−→ q1, q1

Φ(Item)−−−−−→ q2, q2
Φ(Schedule Line)−−−−−−−−−−−→ q2,

q2
Φ(Change)−−−−−−→ q3, q3

Φ(Request Confirmation)−−−−−−−−−−−−−−−→ q5, q5
Φ(In)−−−→ q7}

t1:Business
Object

t2:Business
Object Node

t3:Change

t4:Read

t4:Read /

t5:Request
Confirmation

t8:Out

t7:In

t8:Out

t7:In

t3:Change /

q1 q2

q3

q4

q5

q6t6:Query
Response

t2:Business
Object Node

q7

q0

q8

Fig. 3. Example of a NFA-ε accepting e.g. Enterprise Service signature (S1) and (S2)

574 M. Roy et al.

(S2) SalesOrderCRMItemSimpleByIDQueryResponse In

MS2 = {q0
Φ(Sales Order)−−−−−−−−−→ q1, q1

ε−→ q4, q4
Φ(Query Response)−−−−−−−−−−−→ q6, q6

Φ(In)−−−→ q7}

4 Automated Annotation Solution

In this section, we briefly describe the construction of automata and an accepting
algorithm used to detect concepts for the service annotation.

4.1 Automaton Construction

Automata, as defined in the previous section (cf. Def. 3), are generated from
a set of rules that represent naming conventions. As referred to in Section 2.1,
these rules consist of the following two parts. Firstly, there are non-terminal and
terminal elements, e.g., <BO> and SalesOrder respectively, representing condi-
tions for automata transitions as shown in (N1) - (N3) in Section 2.1. Each rule
is transformed into a regular expression, which is abstractly defined using termi-
nological terms t ∈ T , e.g. /<BO>/. Subsequently we replace the terminological
concepts with the respective set of factual concepts f ∈ F from the knowledge
base – for instance /<BO>/→ /(SalesOrder|PurchaseOrder|...)/.

Secondly, concatenation instructions define the automaton’s structure as
shown in (B1) in Section 2.1. These instructions specify the actual states. For
each of these states, we assign potential input transitions, from the just created
transition set, that need to be satisfied to enter this state. Furthermore, these
rules define the states that are subsequently reachable.

Based on these constructed automata, Enterprise Service signatures are re-
ceived as input to start the annotation procedure as described hereinafter.

4.2 Annotation Procedure
The actual annotation of Enterprise Services is realized by Algorithm 1, which
accepts Enterprise Service signatures by detecting used concept. This accept-
ing algorithm works recursively, starting with state q0. Each state checks its
incoming state transition, i.e. compares its own regular expression against the
input provided. If the input transition is satisfied (line 1), i.e. a valid concept was
found, the matched part is stored (line 2) and removed from the beginning of the
input and passed on to its subsequent states (line 5). In case of an empty-word
transition, obviously the same input is passed on to its subsequent states. When
the base case has been reached in form of an accepting state (line 3), it returns
its matched concept to its predecessors (line 13). For each of its preceding states,
a set of matched concepts, i.e. their own plus previously matched concepts (line
10), is returned to their predecessors and so forth. The choice on what match
results are returned depends on the quality of matched concepts. Therefore, the
result with the largest number of different concepts covering most of the input is
chosen (line 6 and 7). Eventually, the recursive algorithm terminates, detecting
a maximum number of concepts used to annotate Enterprise Services.

We implemented this algorithm in Java with roughly 2000 lines of code.
The knowledge base and generated annotations are stored as RDF triples. The

Using SOA Governance Design for Enterprise Service Annotation 575

Algorithm 1. Annotate Enterprise Service: annotate(q, i)
Input: q ∈ Q; i ∈ F ∗

Output: A ⊆ TF ; TF = {(t, f)}, t ∈ T, f ∈ F

1: if ∃w, w′, q′ : i = ww′ ∧ w, w′ ∈ (F ∪ {ε})∗ ∧ q
Φ(w)−−−→ P ({q}) ∧ q′ ∈ P ({q}) then

2: A ← {(Φ(w), w)}
3: if q′ /∈ Z then
4: for p ∈ P ({q}) do
5: S′ ← annotate(p,w′)
6: if |S′| > |S| or S is undefined then {choose only the best path}
7: S ← S′

8: end if
9: end for

10: A ← A ∪ S {S undefined → A undefined}
11: end if
12: end if
13: return A {undefined A indicates a failed path}
Call: annotate(q 0, SalesOrderItemScheduleLineChangeRequestConfirmation In)

Sesame framework in version 2.3.27 has been used for RDF storage, querying,
and inferencing.

5 Automated Annotation Evaluation

In this section, we evaluate our automated annotation approach using our pro-
totypical implementation (cf. Section 4) based on a set of Enterprise Services.
We then analyze the annotation results in terms of completeness, accuracy and
correctness, which we define throughout the section. These criteria allow a di-
rect evaluation of our annotation approach; a more exhaustive user study will
be conducted once we devised a fully-fledged search.

5.1 Evaluation Environment

We conducted our evaluation using 1654 Enterprise Service signatures taken from
SAP’s ARIS Designer from various SAP applications, such as ERP, CRM, etc.
These services are from the group of so-called A2X (Application-to-Unknown)
ESs, as they have a coherent naming scheme. Based on our representational
model, i.e. terminological concepts and their relationships, we automatically ex-
tracted the corresponding instance data, i.e. the factual concepts, from semi-
structured sources to populate the service knowledge base. Examples of these
sources are Web pages from SAP’s Enterprise Service Workplace that provide
documentation for each Enterprise Service as well as internal documents (Excel
sheets and the like) exported from SAP’s ARIS platform. To extract and store
this information as RDF triples, we developed extractors for each source of infor-
mation (i.e. HTML/XML/Excel extractor). As a next step, we used documents

7 http://www.openrdf.org/

576 M. Roy et al.

describing naming conventions [21] to define the corresponding automaton as
described in Definition 3. Finally, we used the 1654 Enterprise Services as the
input to the algorithm as described in the previous section. The resulting set of
detected concepts has been stored as annotations in form of RDF triples refer-
encing the original Enterprise Service. This is the basis of the analysis below.

5.2 Annotation Completeness

The annotation completeness represents the number of Enterprise Services that
have been partially or fully annotated. For this, we calculated the expected
maximal number of annotations for each Enterprise Service operation by taking
advantage of their Camel Case notation. We refer to the annotation accuracy as
the ratio of actual number of generated annotations compared to the expected
number of annotations. To determine the annotation completeness, we only con-
sidered Enterprise Services with an accuracy greater than null. As a result, we
achieved an overall annotation completeness of 1583 out of 1654 Enterprise Ser-
vices, which is equivalent to 95.7%. The missing 4.3% stem from Enterprise
Service signatures that did not comply with existing naming conventions.

5.3 Annotation Accuracy

In this part of the evaluation, we only considered the 1583 fully or partially anno-
tated Enterprise Services from above. To determine the accuracy of annotations,
we grouped them into categories of 100% to 40% annotation accuracy (using a
10% scale). In terms of annotation accuracy, we refer to the ratio of actual vs.
expected annotations from the previous section. We set the lower margin to 40%
based on the lowest accuracy of all 1583 annotated Enterprise Services. For that
level of accuracy, we only found four Enterprise Services. In fact, less than 1%
of Enterprise Services have been annotated with less than 50% accuracy. On the
other hand, the majority of Enterprise Services, i.e. 73.0%, have been fully anno-
tated as illustrated in Figure 4. For an annotation accuracy of 80% or more, the
percentage of annotated Enterprise Services increases to 91.4%. The whole pro-
cedure on the entire data set took less than 5 minutes on an Intel(R) Core(TM)2
Duo Processor T7300 machine @ 2GHz CPU and 3GB of RAM. These numbers
lead to two observations: (i) the naming conventions were largely followed in the
tested sample of ESs, and (ii) our approach delivered an effective annotation.

5.4 Annotation Correctness

To the best of our knowledge, there is no obvious solution to automatically
validate the correctness of any generated annotation; the baseline therefore is
manual verification. Therefore, we first selected a 10% sample of the completely
annotated Enterprise Services to evaluate their correctness. Half of these services
were strategically selected by a domain expert to cover various applications as
well as a variety of design concepts and naming conventions. The other half was
randomly selected to avoid any biased decision regarding the selection of con-
cepts. In a second step, an independent expert in SOA Governance has been

Using SOA Governance Design for Enterprise Service Annotation 577

4 ES
0.25%

6 ES
0.38% 47 ES

2.97%

80 ES
5.05%

168 ES
10.61%

122 ES
7.71%

1156 ES
73.03%

Distribution of
Annotation

Accuracy

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy
Categories

(40%-100%)

Fig. 4. Result Categories of the Annotation Accuracy Experiment

briefed on the workings of the service annotation approach. He then manually
performed the annotation based on the technical names of these 10% sample
Enterprise Services. In a final step, the expert’s manual annotations have been
analyzed and compared to the automatically generated annotations by one of
our developers. As a result, we confirmed that approximately 94% of automated
annotations match the manual annotations in terms of number of annotations
and annotated concepts. We further investigated the 6% range of annotation
mismatches, which we separated into two categories: governance violation and
missing record. The former category describes Enterprise Services that, for what-
ever reason, did not fully comply with the SOA Governance design methodology.
The latter denotes that the specific concept is missing in the service knowledge
base and has been wrongly annotated as a different concept. While mismatches
resulting from governance violations are out of our control, mismatches stem-
ming from missing records can be fixed by extending the knowledge base. Either
way, we believe that mismatches of less than 6% can be considered acceptable.

6 Related Work

Before we examine related work on proposed annotation techniques, we first
outline some fundamental approaches that have been proposed to add addi-
tional knowledge (metadata) to the technical description of services, e.g WSDL.
For instance, linguistic approaches using clustering techniques – as done in the
Woogle search engine [8] – aim to derive meaningful concepts from the techni-
cal description of Web Services using WSDL. Although it effectively improves
the search, the approach lacks certainty about generated concepts making an

578 M. Roy et al.

automatic solution less feasible. In contrast, semantic approaches [4,25,23,26,1,18]
are based on an explicit modeling of ontologies which capture a specific domain
knowledge in a generic way using concepts that are commonly agreed and under-
stood [9]. As a consequence, machines become more able to interpret data and
documents that are annotated with concepts from ontologies requiring less or no
human intervention. In general, research communities distinguish between two
types of metadata, i.e. ontological concepts and annotations encoding references
to concepts.

In terms of ontological concepts, we described what can be seen as a rather
closed ontology derived from a given methodology. Such an ontology can be
considered nearly complete with respect to the universe of discussion. However,
we did not focus on the semi-automatic creation of ontologies [15,6,12] such as
generating ontologies from natural language text or automatic reuse of existing
ontologies, e.g. based on the context of a document [22]. In fact, reusing public
ontologies, e.g. TAP [7] or others, are less applicable in context of our work
as design methodologies in an enterprise context rather describe proprietary
concepts (e.g. data model) that cannot be necessarily expressed with public or
community-contributed [24] ontologies.

In terms of annotations, existing approaches can be first categorized into
degrees of automation, i.e. fully-automated, semi-automated [9,15] or manual
[14,19]. Second, the annotation level of detail depends on the type of represen-
tation ranging from e.g. entire service descriptions, operation or input/ouptut
parameters, non-functional requirements etc. Third, annotations can be used for
different fields of applications, e.g. human or automatic service discovery [17],
invocation, composition [22] etc. In this work, we proposed a fully-automated
approach to annotate a large set of Enterprise Services based on their signa-
tures, i.e. interface and operation names. Ultimately, we currently see the main
purpose of the service annotation approach in improving the service discovery
specifically for business users and non-professional developers. In this context,
using automata can more precisely resolve disambiguities by determining correct
concepts based on their expected position within the respective signature. As a
result, we can increase the accuracy of generated annotations compared to other
approaches, e.g. using similarity functions [7] (SemTag), natural phrase process-
ing [9] (via SMES) or detecting association of concepts by confidence level [15].
Note, this is particularly feasible as we only focus on a small portion of explicitly
defined text, i.e. Enterprise Service signatures, rather than a large body of text,
i.e. Web pages.

For reasons of simplicity, we used RDF(/S) over OWL-S or WSMO to store
our ontology and annotations. We consider RDF(/S) sufficient for our purpose
to represent additional knowledge as we do not require sophisticated logical
reasoning. The results of the annotation could, e.g., be stored in SAWSDL [25,23]
format, where annotations are directly added to WSDL. However, at this point
we are not entitled to change Enterprise Service descriptions, and decided to
keep annotations independent from any specific Web Service standard.

Using SOA Governance Design for Enterprise Service Annotation 579

7 Conclusion and Future Work

In this paper we presented an approach for the automatic annotation of Enter-
prise Services, based on a SOA Governance design methodology. We described a
concrete methodology used at SAP, but presented a generic and formal model for
capturing the structure of SOA Governance design methodologies. The model
consists of terminological concepts and factual concepts, and automata for cap-
turing naming conventions built from these concepts. Naming rules are specified
using a (typically very small) set of terminological concepts; from those we con-
struct a consolidated automaton and populate it with the respective factual
concepts. Using the detailed automaton, we can automatically annotate service
names that (at least partially) adhere to the naming conventions.

We evaluated the work on a set of more than 1500 Enterprise Services from
SAP, and obtained highly encouraging results: more than 90% of the services
could be annotated with more than 80% correctness. This was largely verified in
a small experiment with an independent expert. We observed that some of the
mismatches came from ESs that did not adhere to naming conventions. As such,
our approach can also be used to check adherence to naming conventions, and
thus, improve the management of SOA Governance. In terms of the annotation
procedure, this is an one-off operation that only needs to be executed when the
concepts or the service names change. All the above services were annotated in
a matter of minutes. Hence, performance is unlikely to be a problem.

In an earlier instance of this work [20], we used a strongly simplified model,
yielding significantly lower accuracy: only parts of the data model and patterns
could be annotated. However, we there also showed how these annotations can
be used in discovery of Enterprise Services for business users and developers
who are unfamiliar with the set of services. As such, we can use our approach
to facilitate an effective search by further reaching out into areas of automatic
query extension and query suggestion.

Future work will build on the presented approach as follows. Firstly, we will
attempt to evaluate the applicability of the approach on services from other
sources; there is, however, a high risk that we might not be able to obtain detailed
access to naming rules. Secondly, we will investigate improved search algorithms
and other application scenarios making use of the produced annotations.

References

1. Akkiraju, R., Farell, J., Miller, J.A., Nagarajan, M., Sheth, A., Verma, K.: Web
service semantics – WSDL-S. In: W3C Workshop on Frameworks for Semantic in
Web Services (2005)

2. Artus, D.J.: SOA Realization: Service Design Principles (February 2006), http://
www.ibm.com/developerworks/webservices/library/ws-soa-design/

3. Beaton, J., Jeong, S.Y., Xie, Y., Stylos, J., Myers, B.A.: Usability Challenges for
Enterprise Service-oriented Architecture apis. In: VLHCC 2008: Proceedings of the
2008 IEEE Symposium on Visual Languages and Human-Centric Computing, pp.
193–196. IEEE Computer Society, Washington, DC, USA (2008)

http://www.ibm.com/developerworks/webservices/library/ws-soa-design/
http://www.ibm.com/developerworks/webservices/library/ws-soa-design/

580 M. Roy et al.

4. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific Ameri-
can 284(5), 34–43 (2001)

5. Curbera, F., Khalaf, R., Mukhi, N., Tai, S., Weerawarana, S.: The Next Step in
Web Services. Commun. ACM 46, 29–34 (2003)

6. De Silva, L., Jayaratne, L.: Wikionto: A System for Semi-automatic Extraction
and Modeling of Ontologies Using Wikipedia XML Corpus. In: IEEE International
Conference on Semantic Computing, ICSC 2009, pp. 571–576 (2009)

7. Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran, A., Kanungo, T.,
Mccurley, K.S., Rajagopalan, S., Tomkins, A., Tomlin, J.A., Zien, J.Y.: A Case for
Automated Large Scale Semantic Annotations. Journal of Web Semantics (2003)

8. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity Search for
Web Services. In: VLDB 2004: Proceedings of the Thirtieth international confer-
ence on Very large data bases. VLDB Endowment, pp. 372–383 (2004)

9. Erdmann, M., Maedche, A., Schnurr, H.-P., Staab, S.: From Manual to Semi-
automatic Semantic Annotation About Ontology-based Text Annotation Tools.
In: Proc. of the COLING 2000 Workshop on Semantic Annotation and Intelligent
Content, Luxembourg (August 2000)

10. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall Professional Technical Reference (2005)

11. Haentjes, V.: SOA Made Easy with SAP (February 2010),
http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/

903aa937-03f2-2c10-968e-8e7d649cd352

12. Harmelen, F.V., Fensel, D.: Practical Knowledge Representation for the Web. In:
In Proc. of the 2000 Description Logic Workshop DL 2000, pp. 89–97 (1999)

13. Hoffmann, J., Weber, I., Kraft, F.M.: SAP Speaks PDDL. In: AAAI (2010)
14. Kungas, P., Dumas, M.: Cost-Effective Semantic Annotation of XML Schemas and

Web Service interfaces. In: SCC 2009. IEEE International Conference on Services
Computing, pp. 372–379 (September 2009)

15. Maedche, A., Staab, S.: Semi-automatic Engineering of Ontologies from Text. In:
Proc. of 12th Int. Conf. on Software and Knowledge Eng., Chicago, IL (2000)

16. Malinverno, P.: Service-Oriented Architecture Craves Governance (October 2006),
http://www.gartner.com/DisplayDocument?id=488180

17. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of
web services capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS,
vol. 2342, p. 333. Springer, Heidelberg (2002)

18. Patil, A.A., Oundhakar, S.A., Sheth, A.P., Verma, K.: Meteor-S Web Service Anno-
tation Framework. In: Proceedings of the 13th International Conference on World
Wide Web, WWW 2004, pp. 553–562. ACM, New York (2004)

19. Rao, J., Dimitrov, D., Hofmann, P., Sadeh, N.: A Mixed Initiative Approach to Se-
mantic Web Service Discovery and Composition: SAP’s Guided Procedures Frame-
work. In: ICWS 2006: Proc. of the IEEE Int. Conf. on Web Services, pp. 401–410.
IEEE Computer Society, Washington, DC, USA (2006)

20. Roy, M., Suleiman, B., Weber, I.: Facilitating enterprise service discovery for non-
technical business users. In: Maximilien, E.M., Rossi, G., Yuan, S.-T., Ludwig,
H., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6568, pp. 100–110. Springer,
Heidelberg (2011)

21. SAP AG. Governance for Modeling and Implementing Enterprise Services at
SAP (April 2007), http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/
library/uuid/f0763dbc-abd3-2910-4686-ab7adfc8ed92

22. Segev, A., Toch, E.: Context-Based Matching and Ranking of Web Services for
Composition. IEEE Transactions on Services Computing (2009)

http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/903aa937-03f2-2c10-968e-8e7d649cd352
http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/903aa937-03f2-2c10-968e-8e7d649cd352
http://www.gartner.com/DisplayDocument?id=488180
http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/f0763dbc-abd3-2910-4686-ab7adfc8ed92
http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/f0763dbc-abd3-2910-4686-ab7adfc8ed92

Using SOA Governance Design for Enterprise Service Annotation 581

23. Sivashanmujgam, K., Verma, K., Sheth, A., Miller, J.: Adding Semantics to Web
Services Standards. In: Int. Conference on Web Services ICWS 2003 (June 2003)

24. Staab, S., Angele, J., Decker, S., Erdmann, M., Hotho, A., Maedche, A., Schnurr,
H.-P., Studer, R., Sure, Y.: Semantic Community Web Portals. In: Proc. of the
9th Int. WWW Conference on Computer Networks, pp. 473–491. North-Holland
Publishing Co., Amsterdam (2000)

25. Verma, K., Sheth, A.: Semantically Annotating a Web Service. IEEE Internet
Computing 11(2), 83–85 (2007)

26. Vitvar, T., Mocan, A., Kerrigan, M., Zaremba, M., Zaremba, M., Moran, M.,
Cimpian, E., Haselwanter, T., Fensel, D.: Semantically-enabled Service Oriented
Architecture: Concepts, Technology and Application. Service Oriented Computing
and Applications 1(2), 129–154 (2007)

27. Woolf, B.: Introduction to SOA Governance (July 2007),
http://www.ibm.com/developerworks/library/ar-servgov/

http://www.ibm.com/developerworks/library/ar-servgov/

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 582–596, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Management Services – A Framework for Design

Hans Weigand1, Paul Johannesson2, Birger Andersson2,
Jeewanie Jayasinghe Arachchige1, and Maria Bergholtz2

1 Tilburg University, P.O.Box 90153,
5000 LE Tilburg, The Netherlands

{H.Weigand,J.JayasingheArachchig}@uvt.nl
2 Royal Institute of Technology

Department of Computer and Systems Sciences, Sweden
{pajo,ba,maria}@dsv.su.se

Abstract. The Service-Oriented Architecture has rapidly become the de facto
standard for modern information systems. Although recently considerable re-
search attention has been paid to the management of services, several gaps can
still be observed. Service management as far as it is automated is either mixed up
with the operational service logic itself, or handled in a separate not service-
oriented system, such as a BAM platform. In addition, there is a growing busi-
ness demand for value-driven service management. In this paper, a general
framework for management service design is presented that covers both business
services and software services and is rooted in the business ontology REA, ex-
tended with a REA management ontology. The framework is applied to two dif-
ferent case studies, one in the Italian wine industry and one related to a robot
cleaner.

Keywords: service design, REA, autonomic computing, management control.

1 Introduction

The Service-Oriented Architecture (SOA) has rapidly become the de facto standard
for modern information systems. Having started with a focus on service description
and discovery, SOA research shifted its attention to service composition in the second
phase. The next phase, according to [13] in 2007, would focus on service manage-
ment defined as “the control and monitoring of SOA-based applications throughout
their lifecycle”. The most prominent functions of service management include SLA
management, auditing, monitoring and troubleshooting, dynamic resource provision-
ing, service lifecycle management (e.g. versioning) and scalability/extensibility.
However, although considerable work has been done on these topics in the last few
years, results so far are fragmented and limited. Early standards related to service
management (MUWS/MOWS; see oasis.org) have become obsolete.

Several research gaps can be observed. Service management as far as it is auto-
mated is often mixed up with the operational service logic itself, or it is handled in a
separate not service-oriented system, such as a BAM (Business Activity Monitoring)
platform. In addition, service management, including business process management,
is still mainly focused on execution correctness [1], whereas there is a growing

 Management Services – A Framework for Design 583

business demand for value-driven service management. This also requires a better
integration of software services and business services [10] – which still is the vision
of service science anyway.

Along with SOA, the last decade has witnessed increased research efforts on self-
adaptive or autonomic software. We refer to [20, 4] for recent overviews. Self-
adaptive software embodies a closed-loop control mechanism that includes sensors
and effectors, linked through processes of monitoring, detecting, deciding and acting.
Despite considerable progress in sub areas, there are also still many challenges, in-
cluding the question on how to integrate self-adaptation functionality in the SOA
architecture. Is it possible to provide Management as a Service?

The control loop is taken by Forrester analyst Bartels as the backbone for Smart
Computing [1]. Smart Computing is supposed to be the challenge of the coming dec-
ade and integrates the following technologies: Awareness (sensors, RFID chips, video
cameras), Analysis (business intelligence, process mining), Alternatives (rule engines,
workflow systems) and Actions (leveraging existing products), with Auditability as an
overall concern. The big business challenge lies in optimizing the value of and the
return on assets and minimizing the costs and risks from liabilities by far better real-
time awareness of their status. Assets include both physical resources such as build-
ings and trucks, but also intangible ones such as software, or brand.

The research objective of this paper is to develop a general framework for man-
agement service design that covers both business services (as in Smart Computing)
and software services (as in Autonomic Computing). The framework must be value-
driven and truly service-oriented. To arrive at rigorous and relevant research results,
we use Peffers’ design science phases [14]. The problem identification and motivation
is stated in section 1 and 2. Our solution objective is to develop an integrated frame-
work for value-driven service management. In section 3 we lay a formal foundation
by extending the REA business ontology with a REA management ontology and in-
troduce a general framework of services that is applied recursively to management
services (design and development). The framework is used in two case studies (dem-
onstration). The first case was developed in the context of the S-Cube project [17]
and concerns an Italian wine industry. The advantage of using this case study is the
comparison it allows with other approaches. To explore the applicability range of our
approach, the second case is about a robot cleaner.

2 Related Research

Given limited space, we can only present a brief overview of all the relevant fields.
The vision of Autonomic Computing was presented by Kephart and Chess in 2003

[7], and recently evaluated in [4]. The evaluation observes that the vision has been
broadened to “the application of advanced technology to the management of advanced
technology” and as such is still highly relevant. A notable omission in the original
vision was the communication component, and research has been devoted to develop-
ing a so-called knowledge plane. What is also still lacking is an understanding of the
broader software engineering aspects of autonomic system development. This
includes such basic questions as when a system can be said to be “correct” if its beha-
vior is expected to change over time. [4] also pleads for a comprehensive systems

584 H. Weigand et al.

theory for adaptive systems that allows to reason not only about the “what” of moni-
toring and adaptation but also about the “how”. Finally, it claims that current
solutions are too much focused on isolated problems, and that we need an integrated
autonomic systems engineering approach to avoid undesirable feature interaction.

Within the software engineering domain, runtime adaptation has become a highly
relevant research topic. In this context, Model-Driven development and Software
Product Lines modeling techniques are used and extended to Dynamic Software
Product Lines that include variability transformations [3, 26, 8]. This work confirms
the research gap identified by [4] that the “how” of the adaptation is no longer some-
thing that can be abstracted from.

Another line of research is considering modeling and monitoring requirements for
adaptive systems. Goal-based approaches, such as Tropos [2] have been applied to the
specification of requirements of self-adaptive systems. Goal-based models are well
suited to exploring high-level requirements and it is natural to use goal models to
represent alternative behaviors that are possible when the environment changes. Goal-
based models have a natural fit with agent-oriented implementation platforms [11].

In the management literature, system theory and control theory have been around
for a long time. In the standard management control textbook of Simons [19], four
types of “control systems” are distinguished: diagnostic control systems, interactive
control systems, belief systems and boundary systems. Diagnostic control systems
correspond to the traditional cybernetic approach and are aimed at controlling results
using a closed control cycle. This mode of control is important but it also has its limi-
tations, according to Simons. Belief systems express norms and core values in the
organization that are aimed at controlling (or influencing) the value systems of the
people involved. Boundary systems constrain the behavior of the organization in
the face of risks to be avoided. Interactive control is focused on handling uncertain-
ties and on “doing the right thing”, rather than doing the things right, as in diagnostic
control, and is typically realized in the form of interaction.

3 A Framework for Management Service Design

3.1 The REA Business Ontology

The Resource-Event-Agent (REA) ontology was first formulated in [9] and has been
developed further, e.g. in [21,5,6]. The following is a short overview of the core con-
cepts of the REA ontology based on [23].

A resource is any object that is under the control of an agent and regarded as valu-
able by some agent. This includes goods and services. Resources are modified or
exchanged in processes. A conversion process uses some input resources to produce
new or modify existing resources, like in manufacturing. An exchange process occurs
as two agents exchange (provide, receive) resources. To acquire a resource an agent
has to give up some other resource. An agent is an individual or organization capable
of having control over economic resources, and transferring or receiving the control to
or from other agents. The constituents of processes are called economic events. REA
recognizes two kinds of duality axioms between events: conversion duality and
exchange duality.

Fig. 1. REA leve

The event records give a
the question “what is plann
modeled at the policy level
as commitments. Although
commitments are given, exa
and integrity constraints in
REA that makes a distinctio
1). The controlling system
toring the facts at the oper
etc at the policy level. As e
tem of the enterprise, so it d

3.2 REA Management O

The business ontology of R
enterprise on an abstract ec
level have not been worked
(types, groups) on the one
basket “policy level” is not
how commitments are crea
clear business impact and c
distinction between control
what exactly is processed
analysis, etc. Therefore we
tology”) that we will use as

The lower left corner su
(at operational level) as we
We group them together
“referred” to in intentional
distinguished on the basis
directives and evaluatives.
curred, whereas a directive
defined as having a world
ments that were already in

Management Services – A Framework for Design

els of controlled enterprise system, derived from [22]

an answer to the question “what has happened?”, but no
ned or scheduled – what should happen?” In REA thi
l. This level allows talking about types and groups as w
h no specific details for the structure of these types
amples in [5] show how REA does handle schedules, pl

n this way. [22] gives an enterprise architecture based
on between controlled system and controlling system (F
interacts with both levels of the controlled system, mo
ational level and changing the plans, standards, schedu
explained by [22], the controlling system is also a subs
does also have an operational and policy level.

Ontology

REA is strong in formalizing the operational level of
conomic level. However, the later extensions on the pol
d out as thoroughly. The occurrence of general abstracti
e hand and commitments on the other hand in the sa
t really satisfactory. The dynamics of this policy level,
ated and resolved, are also not covered, although this ha
cannot be left out of scope. The work of [22] adds a use
led system and controlling system, but it does not spell
in the controlling system when it talks about deducti

e have developed an extension of REA (“management
 a basis for our design framework (Fig.2).

ummarizes the REA concepts of resource, event and ag
ell as types and groups (of resources, events and agen

under the category REA referent. REA referents
l resources. Three categories of intentional resources
of what Searle [18] has called direction-of-fit: assertiv
An (basic) assertive says that some REA event has

e says that some REA event should occur. Directives
-to-word fit and as such are a generalization of comm

n the REA business ontology, as part of the policy le

585

ot to
is is
well
and
lans

d on
Fig.
oni-
ules
sys-

the
licy
ions
ame
e.g.
as a
eful
out

ion,
on-

gent
nts).

are
are

ves,
oc-
are

mit-
vel.

586 H. Weigand et al.

However, unlike types and
like assertives, they have a
We have extended REA al
in terms of good, bad, satis
are produced using other in
direction-of-fit, like the exp

Fig. 2.

As any resources, intenti
tional events. For instance
decommit events [24]. Inte
nicative acts to be represent

In REA, commitments a
procal commitments (what
may contain additional term
concepts as well. According
principles and associated g
of an organization, to direc
have formalized them in an
ing the reciprocity principle
Constraints are what the a
trolled system) and goals a
fulfilled by monitored asse
assumptions in the form of

The definition of policy
which defines a policy enti
exchanges and conversions
are part of the policy, but
“apply” relationship is a spe

groups, commitments do not correspond to an abstracti
a propositional structure with references to REA refere
so with a value dimension. Values qualify REA refere

sfactory, fast etc. Evaluations are intentional resources t
ntentional resources and assign values; they do not hav
pressive in [18].

. REA management ontology (UML style)

ional resources are processed by events that we call int
e, commitments are created or removed by commit
entional events are typically realized by means of comm
ted on the process level.

are grouped together in contracts. A contract contains re
t the agent will give versus what he aims to receive)
ms. From a management perspective, policies are import
g to the BusinessDictionary.com, a policy is “a set of ba
guidelines, formulated and enforced by the governing b
ct and limit its actions in pursuit of long-term goals”.
alogy to contracts as a group of intentional resources ob
e: what the agent gives in versus what he aims to achie
gent gives in (directives that limit the actions of the c

are what the agent wants to gain in return (directives to
ertives or evaluations). In addition, the policy may cont
testable assertives.
can be seen as a generalization of the policy pattern in

ity as something that encapsulates constraints on econom
and that “applies” to a group. In our definition, constra

t always linked via the policy to goals. In our view,
ecial kind of “referring”.

ion;
ents.
ents,
that
ve a

ten-
and
mu-

eci-
and
tant
asic

body
We

bey-
eve.
con-
o be
tain

[6],
mic

aints
the

Policies can be defined o
is important, since it allow
boundaries. The way the ab
situation and on design cho
we will use the term “speci
the policy abstracts from th
case to the other.

A management process
sion events and exchange e
tives and some rule base (fo
assertives. Management dis
ing assertives (“subscribe”)

3.3 Generic Service Mod

Our generic service model
service adds value to som
other resources. Including
has been argued for indepe
vice system and decompo
service goal, whereas coord
the dependencies between –
the policy. We model subse
ontology, they are related to
Management services have
adds value to a service. Th
active role in the operatio
enforcing one or more servi

The service model is inte
such as a transport, or a ha
the transport case: the reso
trol and the driver’s labor

Management Services – A Framework for Design

on two levels, the “what” and the “how”. This abstract
ws for adaptation of the controlled system, within gi
bstract policy is enforced may depend on the (monitor

oices made by the controlling system [25]. In the followi
fication” for the enforced (and executable) policy. How

he specification is a design choice that will differ from

is like a REA economic process containing both conv
vents. For instance, an inference service uses certain as

formally, these are also assertive) in order to produce ot
scourse is based on an exchange duality balancing inco
) with outgoing ones (“publish”).

Fig. 3. Generic service model

del

l is based on [23] and illustrated informally in Fig. 3
me resource, called its goal, consuming or making use

the resources in the service model is in line with REA
endently by [16]. A service can be regarded as a small
sed into subservices. Core subservices contribute to
dination services are subservices that coordinate – man
– core subservices [24], using a specification derived fr
ervices with a part-of relationship, but in terms of the R
o the super service by a use relationship just like resourc

e been defined in [23] as a kind of enhancing services t
hey are not subservices of the service in question, with
onal process, but manipulate the (operational) service
ice policies.
ended to be generic. It can be applied to business servic

air-dressing, but also to a software service. Let us illustr
urces that are used or consumed include the lorry, the
hours, each of them having a certain value. The transp

587

tion
ven
red)
ing,

w far
one

ver-
ser-
ther
om-

3. A
e of
and
ser-
the

nage
rom

REA
ces.
that

h an
 by

ces,
rate
pe-

port

588 H. Weigand et al.

adds value to the transported goods. This value is reflected in the price that the
customer is willing to pay for the transport service. Transport management is an ex-
tensive task that includes capacity planning and scheduling as well as actual route
planning. The transport itself can be decomposed into subservices such as driving,
unloading and a coordination service for selecting a route. A policy may contain the
constraint that the lorry should select the cheapest route in terms of fuel consumption.

The software case can be illustrated as follows. The same transport company may
have a tracking & tracing service for customers. The resources used by this software
service are informational in nature: in particular, they include the GPS data about the
lorries. The service adds value to the transport (the transport service has a higher
value for the customer when he can track his cargo – a case of “information enrich-
ment” [12]). For its implementation this web service makes use of utility or infra-
structural services based on resources such as CPU time, data storage and the
network. Once the service is in place, there may be a management service to support
it. For instance, the management service may monitor and adapt the service interface
in order to maintain interoperability. Note that management services may be auto-
mated or semi-automated independently of the automation of the service itself.

The value of a service in a certain period of time is the difference between the total
value increase on the one side and the total decrease at the other side. In order to real-
ize value-based service management, it is therefore necessary that each resource is
valued. There is a long tradition of cost accounting that we can rely on to implement
this requirement, the details of which are not in the scope of this paper. What is im-
portant for keeping the valuation consistent is to integrate all services into the value
cycle of the company, denoted as “cash wheel” in [19]. As traditional audit theory
teaches, each company has a value cycle consisting of sales processes that generate
money, consuming resources, and purchasing processes that acquire resources spend-
ing money. Depending on the type of company – sales, manufacturing, etc. – the
value cycle can be drawn a bit more precise, but the structure is always the same. The
value of the value cycle is the profit that is generated over a certain period of time
minus the investments that have been added. Each service is directly or indirectly
included in the value cycle, akin to Porter’s distinction between primary and support
activities of the value chain [15]. Directly included are services such as manufactur-
ing, sales and purchasing. Indirectly included are for instance management services
that contribute to primary services or other enhancing services. At the end of the day,
the valuations of all services should be consistent, that is, the sum of these valuations
should be equal to the value of the value cycle (for a certain period). We regard this
principle not only important from an accounting point of view, but also as a useful
constraint for business modeling.

3.4 Management as a Service

We have conceptualized management as an enhancing service. In Software Engineer-
ing, the idea of separating operational and management concerns is not new. In the
field of self-adaptive software, an equivalent distinction is made between internal and
external adaptation [20]. Internal approaches intertwine application and adaptation
logic. This has certain drawbacks. External approaches use an external adaptation
engine or manager that contains the adaptation logic, the other part being called the

“adaptable software”. By
external approach. Note tha

We propose a fractal de
model is applied to manag
thing that uses resources. T
intentional resources. The m
toring service, and a manag
vice-oriented approach incr
that it makes the design c
This is in contrast to other
management services, or m

What does a managemen
of self-adaptive software fo
called MAPE cycle (Moni
deliberation cycle that is us
tions). Our approach is requ
the management control lite

Fig. 4. Diagnostic control cyc
indicate intentional resources,

Fig. 4 depicts the gener
nostic control cycle. On the
cycle: the customer sends a
perhaps iteratively, a certai
this result is returned to th
more than that. From a man
service specification. So t
service and operational ser
tional service. In the case o
form of a BPEL specificati
ment policy enforcement b
state (set of assertive – this
information is returned to th

Management Services – A Framework for Design

conceptualizing management as a service, we follow
at this is not a formal necessity but an architectural choic
esign approach in the sense that the same generic serv
gement services. So a management service is itself som
These include operational resources, e.g. labour hours,
management service may have subservices, such as a mo
gement subservice may have a manager service. This
reases reusability. The advantage of the fractal approac
completely service-oriented, not only its operational p

approaches that for instance conceptualise BDI agents
monolithic BAM software.

nt service actually do? Most current approaches in the fi
ollow classical control theory and posit a control loop, a
itor-Analyze-Plan-Execute). The same cycle underlies
ed in multi-agent systems (with Beliefs, Desires and Int
uired to be business-driven and service-oriented. Follow
erature ([19]) we call it the diagnostic control cycle.

cle together with the service interaction cycle. Dashed rectan
coloured boxes indicate services

ric service-oriented management architecture for the di
e right hand side, we see the traditional service interact
a request to the service provider. The execution produc
in state that corresponds to and so fulfills the request,
he customer for evaluation. However, the execution d
nagement perspective, the execution is the realization of
there is another interaction cycle, between managem
rvice: the manager enforces a service policy on the ope
of software services, the service specification may take
on, or a set of business rules (cf. [8, 26] for how to imp

based on such models). The execution produces a cert
reporting is also governed by policy constraints). The s

he manager, where it is typically aggregated by monitor

589

w an
ce.
vice
me-
and
oni-
ser-
h is

part.
s as

field
also
the

ten-
wing

gles

iag-
tion
ces,
and

does
f the
ment
era-
the

ple-
tain
tate
ring

590 H. Weigand et al.

services and then evaluated
policy goals), the service
conditional constraints tha
terms in a contract or a miti

It is possible that the op
is not the responsibility of
adaptation, a second manag
fractal design principle. In
is not fixed but itself the res

Three kinds of manage
service uses and produces
produces evaluatives. An en
possibly assertives and pro
sensor services, aggregatio
services as specific monitor

The flexibility within th
realized in several ways th
mention two options. The
the variability transformati
evaluation. Or the policy
evaluation. An example is
level is too low, the compa
too high, the company miss
adapt if when the circumsta
value by means of a stochas

According to [19], diagn
man manager to spend his
way Simons presents this it
cerns interactions with ser

d. If the evaluation is not satisfactory (does not match
specification is adapted. The policy will usually cont
t become effective in the case of contingencies, akin
igation plan.
erational service policy has to evolve itself. However,
f the management service. If we want this type of s
gement level has to be introduced, in accordance with
that case, the Management Service specification in Fig

sult of a Management Policy enforcement process.
ement subservices can be distinguished. A monitor
s assertives. An evaluation service uses assertives
nforcement service enforces policies, using evaluations
ducing directives. Further specializations are, for instan
on services, inference services and data transformat
ring services.
e service policy that enables varying enforcements can
hat go beyond the scope of this paper. We just want

policy may consist of a fixed set of alternatives, as
ions approach [3], that are selected on the basis of
contains a parameter whose value is dependent on
“credit level” in an order processing service. If the cre
any losses because of non-payments. If the credit leve
ses sales opportunities. To find an optimal credit level
ances change the manager can (re-)calculate the parame
stic optimization algorithm.

Fig. 5. Contract management cycle

nostic control is the “automated pilot” that allows the
time on other things, in particular interactive control. T
t is not a homogeneous group. An important subclass c
rvice stakeholders about the service requirements. Th

the
tain
n to

this
self-
our

g. 4

ring
and
and
nce,
tion

n be
t to
s in
the
the

edit
el is
and
eter

hu-
The
con-
hese

 Management Services – A Framework for Design 591

requirements can be diverse, but include requirements on future capacity. These re-
quirements are passed through the value chain in reverse direction, from customer
(market demands) to sales and further on to production and procurement. To account
for this kind of interactive control, we need another management cycle (Fig. 5).

The manager interacts with other managers in the value chain at customer and sup-
plier side. The customer manager’s requests do not concern a particular service
instance, but a certain state or quality of the service as such. For instance, that the
service has a certain capacity at a specified time. This leads to certain commitments
that are part of a REA contract. The synchronization of contracts is what is called
scheduling. The purpose of a schedule is to make sure that for all services the needed
resources are identified, as well as when they will be needed [6:108]. A schedule is a
collection of increment and decrement commitments, as well as mitigation plans. The
increment commitments indicate the availability of the service at some future time, or
the availability of the resource produced by the service. Decrement commitments
concern the resources (subservices or resources produced by subservices) needed to
fulfill the increment commitments. These decrement commitments must be gained
from the managers of the supplying subservices. In our conceptualization, the sche-
dule is not a separate entity but the combination of these contractual commitments.
Note that the scheduling usually runs independently from the operational service. It
only prevents the operational service to break down when the actual service requests
come. However, the scheduling may influence the operational service. For instance, if
the subservice providers are not able to commit to the required resource capacity, this
is forwarded as such via the contract monitoring, so that the service policy enforce-
ment can pro-actively find and bind other suppliers.

A second important subclass of interactive control distinguished by Simons is the
ongoing conversations on probing the assumptions underlying the diagnostic control
settings. One of the manager’s interactive control tasks is to adapt the service policy
when its assumptions do not hold anymore or to anticipate such a break-down. This
can be realized by a discourse between managers, akin to the above-mentioned know-
ledge plane [4].

As mentioned earlier, more control systems could be distinguished – boundary sys-
tems and belief systems. Whether these can be realized as special cases of the other
ones, or deserve to be identified independently, is a question for future research.

3.5 Design Method

Following the fractal approach, a comprehensive design method for management
services (we ignore other aspects here) looks roughly as follows:

Step 1 Identify core business services
Step 2 Identify coordination and management services per core service
Step 3 Identify management subservices per management service
Step 4 Identify software services that may support any core service,

coordination service, or management (sub) service
Step 5 Identify software services that manage the software services from
 Step 4 as well as subservices of these management services

The first step is general. To identify core business services, it is recommendable to
use the value cycle of the enterprise as a reference. In step 2, management services are

592 H. Weigand et al.

identified. Whether this is feasible for all services in the enterprise depends on their
maturity level. Some enterprises will require this maturity only for services that are of
strategic importance. For the selected management services, a decomposition step is
made in which subservices are modeled, related to the three different management
control types distinguished above. Step 4 is making the match between required ser-
vices and available IT support. This IT support can range from traditional MIS sup-
port software to business intelligence tools and to ubiquitous computing tools such as
smart sensors. Each of the tools must get a service interface. At this point, the method
can be complemented by existing industrial service engineering methods, as long as
the architectural distinction between operational and management service is main-
tained. In step 5, we repeat step 2-4 of determining management services, but now for
the software services. Some of these management services will be fully automated
(autonomic computing), other semi-automated.

4 Demonstration

4.1 BSRM Modeling Notation

We use a simple modeling notation to model the services called BSRM (Business
Service and Resource Modeling – not published yet). For the clear differentiation
between services and the other resources we use different symbols. As far as termi-
nology is concerned, we avoid adding the word “service” to each service name. A
summary of the modeling notation is as follows:

• Services are denoted as rounded rectangle
- exchange services are denoted as rounded rectangles with “exchange”

label
- conversion services are denoted as colored rounded rectangles

• Physical resources are denoted as rectangles
• Intentional resource are denoted as dashed rectangles
• PartOf relationship is denoted as a line with diamond end
• Management relationship is denoted as solid arrow with “+” label
• Stockflow relationship :

- Inflow : arrow pointing to the resource/service
- Outflow : arrow pointing from the resource/service

4.2 Italian Wine Producing

The proposed management service model has been evaluated in a real world case
study of wine production [17]. According to the case description, the goal of the Wine
Producer is to maximize his production in order to adapt the monitored market needs.
During the wine producing process quality assurance plays a major role. The Quality
Manager, the Agronomist who is an expert of a branch of agriculture which deals with
field-crop production and soil management, and the Oenologist who is an expert in
wine and wine production involved in this process. They have to observe the vineyard
parameters and to react to critical conditions that may happen during the cultivation

+

phase. The wine producti
harvesting, fermentation an

Following the managem
core business services at the

Fig. 6. BSRM mode

The core services of t
harvesting, harvest transp
exchange service which is
Vineyard cultivation is the
service and it uses resourc
next conversion service VY
rest of the core services use
wine which is an exchang
close the value cycle, the m
activities in the wine produ
did not include it here becau

Next, we take the step
cultivation core service (Fi
the three control cycles. Vi
is a contract management s
activity planning and labor
activity planning builds o
indirectly based on marke
service is a diagnostic con
VYQualityMgt, namely VY
number of intentional resou
recovery action list. Clima
policy assumptions. To acq
relies on a discourse (not
monitoring and the critical
It turns out that the three
framework to structure and

The BSRM model aims
services. For each manage
to be made in a next step
diagrams.

Management Services – A Framework for Design

on case has major phases namely vineyard cultivati
nd wine distribution and selling.
ment service modeling approach the first step is model
e operational level (Fig.6).

el for wine production (core services operational layer)

the wine production are vineyard cultivation, viney
orting, fermentation, and sales of wine. There is
sales of wine and all the others are conversion servic

first step of the wine production process. It is a convers
ces Grape plants and Vineyard and produces Grapes. T
YHarvesting uses the Grapes and produces Harvest. T
e and produce resources are as depicted in Fig. 6. Sales
e service generates money in return for selling wine.

money derived from the sales of wine is spent on differ
ucing process, for example to purchase grape plants, but
use of space limitations.

p 2 and 3 from 3.5 together, focusing on the viney
ig. 7). We look for management services corresponding
ineyard cultivation management service VYCultivationM
service responsible for the cultivation process and the
allocation are subservices to this management service.

on contracts set up between VYCultivation and Sa
et information. VY quality management (VYQualityM
ntrol service. It is possible to identify two subservices
Y activity monitoring and recovery management. It use
urces as input and produces a service policy in the form o
atic data is an example of assertives that are defined
quire these assertives, the management service presuma
included in the model). VY parameters are assertives
condition list represents values that support the evaluati
control cycles and their subservices provide a very go
integrate the VY management phenomena.
to provide a first graphical overview of the managem

ement subservice identified, a more precise definition
p. This may be done using data models and data fl

593

ion,

ling

yard
one
ces.
sion
The
The
s of
To

rent
t we

yard
g to
Mgt
VY
VY

ales,
Mgt.)

s to
es a
of a

d as
ably

for
ion.
ood

ment
n is
flow

594 H. Weigand et al.

Fig. 7. BSRM model for vineyard cultivation service (management layer)

4.3 Robot Vacuum Cleaner

The next illustration is a fully automated vacuum cleaner [11]. The main goal of this
vacuum cleaner is searching dust and keeping the room clean. To perform this task, it
has sensors to detect dust, mop, and broom and dust box. The dustbin and the battery
charging station are located in the building. Once the dust box is full the cleaner has
to move to dustbin to empty it and as s the strength of the battery is low, it has to
move to the battery station to recharge. Fig. 8a shows the core services of the vacuum
cleaner.

Cleaning the room is the central service and it has two subservices namely Move
and CollectDust – a service which collects dust by brushing and mopping. The
cleaning room service involves at least two resources: room and the motor. This
service converts the room into a cleaned room, so room is the service goal. The motor
is defined as a resource to the main service (CleaningRoom), ensuring that it inherits
to the subservices as well. There is another service related to the motor which is
power supply (with battery). Finally the resources broom, mop and dust box are used
by the CollectDust subservice.

CleaningRoom

Room

Move CollectDust

Broom Mop

Dustbox

CleaningRoom

Motor

Move CollectDust Dustbox

CleaningMgt.

Monitoring

DustBoxMgt. Emptying

DustBin

BatteryPowerSupply

PowerSupplyMgt.
Charging

Motor

Battery

PowerSupply

MonitoringPower

Room

Electricity

+

+

+

Fig. 8. (a) Core services (b) core + management services for automated vacuum cleaner

The next two steps are identifying management services. The service model for
these steps is depicted in Fig. 8b. Since the robot is supposed to work autonomously,
self-management is essential and only diagnostic control is relevant. It follows that
the cleaning service has a cleaning management service which controls the cleaning
process. Hence “monitoring” becomes a subservice of CleaningMgt. The next
important management service is dust box management which intends to empty the
dust box when it detects that dust box is full. Emptying works as a subservice.

 Management Services – A Framework for Design 595

PowerSupplyMgt monitors the supply of power to the battery and if it finds out that
the battery strength is not on the required level, charging is executed.

A comparison of our approach with [11] reveals interesting information to the
service designer. The modeling approach in [11] starts from an extended version of
the Tropos [2] goal model. Then independently, it identifies non-intentional entities:
external resources (room, dustbin and battery charger) and internal ones (dust box and
battery). Entities are then related to the goals via the concept of condition,
corresponding to the extended REA notion of policy constraint.

The management service modeling approach starts with the core services and
identifies internal and some external resources needed or influenced by them. It then
derives management services and management subservices. For example,
PowerSupplyMgt has Monitoring and Charging subservices. The services have
service policies. These include goals, but note that the goals are not defined globally,
as in the previous approach, but per service. In the end, the entities identified are the
same in both approaches, but the service-service and service-resource relationships in
our model are not considered in the [11] approach.

5 Conclusion

In this paper, we have developed a design framework for management services, based
on an established business ontology and applied to two case studies from the literature.
The evaluation suggests that the framework provides useful and specific modeling sup-
port and that it is widely applicable. The theoretical relevance of the paper consists in
the extended REA management ontology, as well as the three management control
cycles that we have distinguished and described in SOA terms and that go beyond cur-
rent work in adaptive systems considering a diagnostic control cycle only. The paper
may also have practical relevance to service engineers interested in aligning business
services and software services and to whom current service design methods do not give
much specific support when it comes to service management design.

Although a design framework is not easy to evaluate in practice, we intend to
strengthen the validation by applying it to real-world cases and extending the compar-
ison with related work in management information systems, software engineering,
multi-agent systems and the field of adaptive systems.

An interesting topic for future research is the design and development of generic
management service software, e.g. to deploy a diagnostic service on the basis of a
policy definition and a given environment (available services) only.

References

[1] Bartels, A.: Smart Computing Drives The New Era of IT Growth. Forrester (2009)
[2] Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: An Agent-

Oriented Software Development Methodology. Proc. AAMAS 8(3), 203–236 (2004)
[3] Cetina, C., Haugen, O., Zhang, X., Fleurey, F., Pelechano, V.: Strategies for Variability

Transformation at Run-time. In: Proc. 13th Int. Software Product Lines Conf., SPLC (2009)
[4] Dobson, S., Sterritt, R., Nixon, P., Hinchey, M.: Fulfilling the Vision of Autonomic

Computing. IEEE Computer 43, 35–41 (2010)

596 H. Weigand et al.

[5] Geerts, G., McCarthy, W.: Policy-Level Specifications in REA Enterprise Information
Systems. Journal of Information Systems 20(2), 37–63 (2006)

[6] Hruby, P.: Model-Driven Design of Software Applications with Business Patterns. Sprin-
ger, Heidelberg (2006)

[7] Kephart, J., Chess, D.: The Vision of Autonomic Computing. Computer, 41–50 (2003)
[8] Moscinat, A., Binder, W., Jazayeri, M.: Runtime Adaptability through Automated Model

Evolution. In: Proc. 14th IEEE Enterprise Distributed Object Computing Conference, pp.
217–226 (2010)

[9] McCarthy W.E., The REA Accounting Model: A Generalized Framework for Accounting
Systems in a Shared Data Environment. The Accounting Review, 544-577 (1982)

[10] Mueller, I., Han, J., Schneider, J.-G., Versteeg, S.: A Conceptual Framework for Unified
and Comprehensive SOA Management. In: Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC
2008. LNCS, vol. 5472, pp. 28–40. Springer, Heidelberg (2009)

[11] Morandini. M., Penserini. L., Perini. A.: Towards goal-oriented development of self-
adaptive systems. In: Proc. Int. Workshop on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS (2008)

[12] Mason-Jones, R., Towill, D.R.: Information enrichment: designing the supply chain for
competitive advantage. Supply Chain Management 2(4), 137–148 (1997)

[13] Papazoglou, M.P., van den Heuvel, W.J.: Service oriented architectures: approaches,
technologies and research issues. VLDB Journal 16(3), 389–415 (2007)

[14] Peffers, K., Tuunanen, T., Rothenberger, M., Chatterjee, S.: A Design Science Research
Methodology for Information Systems Research. Journal of Management Information
Systems 24(3), 45–77 (2008)

[15] Porter, M.: Competitive Advantage. Free Press, New York (1985)
[16] La Rosa, M., Dumas, M., ter Hofstede, A.H.M., Mendling, J., Gottschalk, F.: Beyond

Control-Flow: Extending Business Process Configuration to Roles and Objects. In: Li,
Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 199–215.
Springer, Heidelberg (2008)

[17] http://www.s-cube-network.eu/results/deliverables/wp-ia-
2.2/CD-IA-2.2.2_Collection_of_industrial
best_practices_scenarios_and_business_cases.pdf/view

[18] Searle, J.: A Classification of Illocutionary Acts. Language in Society 5, 1–24 (1976)
[19] Simons, R.: Performance Measurement and Control Systems for Implementing Strategy.

Prentice Hall, Englewood Cliffs (2000)
[20] Salehie, M., Tahvildari, L.: Self-adaptive Software: Landscape and Research Challenges.

ACM Transactions on Autonomous and Adaptive Systems 4(2), 1–42 (2009)
[21] UN/CEFACT Modelling Methodology (UMM) User Guide (2003),

http://www.unece.org/cefact/umm/UMM_userguide_220606.pdf
[22] Vymetal, D., Hunka, F., Hucka, M., Kasik, J.: Enterprise modeling: process and REA

value chain perspective (2010), http://mpra.ub.uni-muenchen.de/24617/
[23] Weigand, H., Johannesson, P., Andersson, B., Bergholtz, M.: Value-Based Service Mod-

eling and Design: Toward a Unified View of Services. In: van Eck, P., Gordijn, J., Wie-
ringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 410–424. Springer, Heidelberg (2009)

[24] Weigand, H., Johannesson, P., Andersson, B., Bergholtz, M., Jayasinghe Arachchige, J.:
Closing the User-Centric Coordination Cycle. In: Proc. CAiSE 2010 Forum. LNBIP,
vol. 72, pp. 267–282. Springer, Heidelberg (2010)

[25] Weigand, H., Heuvel, W.J., van den Hiel, M.: Business Policy Compliance in Service-
Oriented Systems. Information Systems 36, 791–807 (2011)

[26] Yu, J., Sheng, Q.Z., Swee, J.K.Y.: Model-Driven Development of Adaptive Service-
Based Systems with Aspects and Rules. In: Chen, L., Triantafillou, P., Suel, T. (eds.)
WISE 2010. LNCS, vol. 6488, pp. 548–563. Springer, Heidelberg (2010)

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 597–611, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Bottom-Up Fault Management
in Composite Web Services

Brahim Medjahed1 and Zaki Malik2

1 Department of Computer and Information Science,
University of Michigan – Dearborn,

brahim@umich.edu
2 Department of Computer Science,

Wayne State University
zaki@wayne.edu

Abstract. We propose an approach for managing bottom-up faults in composite
Web services. We define bottom-up faults as abnormal conditions/defects or
changes in component services that may lead to run-time failures in composite
services. The proposed approach uses soft-state signaling to propagate faults
from components to composite services. Soft-state denotes a class of protocols
where state (e.g., whether a service is alive) is constantly refreshed by periodic
messages. Its advantages include implicit error recovery and easier fault man-
agement, resulting in high availability. We introduce a bottom-up fault model
for composite services. Then, we propose a soft-state protocol for bottom-up
fault propagation in composite services. Finally, we present experiments to
assess the performance of our approach.

Keywords: Service Composition – Fault Management – Bottom-up Fault -
Soft-State – Fault Coordinator.

1 Introduction

Service-oriented architecture (SOA) has recently emerged as a promising approach
for application integration [1,14]. It utilizes services (commonly Web services) as the
building blocks for developing software systems distributed within and across organi-
zations. The primary value of SOA is the ability to (1) reuse pre-developed, autono-
mous, and independently provided resources (e.g., legacy applications, sensors, data-
bases, storage devices, COTS products) as Web services and (2) combine pre-existing
services, called participants, into higher level services, called composite services,
which perform more complex functions [9,15].

Because of the dynamic and volatile nature of SOAs, Web services are subject to
unavoidable faults during their lifetime. The relationship between a fault and failure
is given in ISO/CD 10303-226 document, where a fault is defined as an abnormal
condition or defect at the component, equipment, or sub-system level which may lead
to a failure. In their seminal work, Avizienis et al. [2] state that faults cycle between
dormant and active states, and a failure occurs when a fault becomes active. In this

598 B. Medjahed and Z. Malik

paper, we focus on faults that propagate from participants to composite services. We
refer to these faults as bottom-up. Two examples of bottom-up faults are (1) a shut-
down scheduled by a participant’s provider for maintenance; and (2) an update to a
participant’s policy (e.g., new message parameters added to a WSDL specification)
that may affect the way that participant is consumed. Hence, composite services must
rapidly detect and handle faults in their participants to avoid run-time failures and
maintain consistency.

Web services generally use HTTP as the underlying message transport. Hence,
they are either guaranteed message delivery or notified if a message was not delivered
(e.g., because of a server unavailability). In the latter case, composite services be-
come aware of a fault only at the time they interact with their participants not at the
time that fault occurred. This may decrease the availability of composite services.
Besides, users’ requests are pending as long as the composite service did not recover
from the fault (e.g., by replacing the faulty participant with an equivalent one). This
calls for a framework in which composite services are able to detect and handle bot-
tom-up faults as soon as those faults occur in their participants.

In this paper, we introduce a framework for managing bottom-up faults in com-
posite services. The proposed framework uses soft-state signaling to propagate faults
from participants to composite services. Soft state denotes a type of protocols where
state (e.g., whether a server is alive) is constantly refreshed by periodic messages;
state which is not refreshed in time expires [8]. This is in contrast to hard-state where
installed state remains installed unless explicitly removed by the receipt of a state-
teardown message. Advantages of the soft-state approach include implicit error re-
covery and easier fault management, resulting in high availability [16]. Soft state was
introduced in the late 1980s and has been widely used in various Internet protocols
(e.g., RSVP). However, to the best of our knowledge, this work is the first to use
soft-state for fault management in composite services. The major contributions of this
paper are summarized below:

• We introduce a bottom-up fault model for composite services. The model in-
cludes a taxonomy of bottom-up faults, a definition of (composite) service, and
peer-peer topology for fault management.

• We propose a soft-state protocol for bottom-up fault propagation.
• We conduct experiments to assess the performance of the proposed framework.

The rest of this paper is organized as follows. In Section 2, we describe the bottom-
up fault model. In Section 3, we propose the soft-state protocol for bottom-up fault
propagation. In Section 4, we present experiments to assess the performance of the
proposed approach. In Section 5, we give a brief survey of related work. We finally
provide concluding remarks in Section 6.

2 Fault Model

In this section, we describe our model for bottom-up fault management. We first
provide a categorization of bottom-up faults. Then, we define the notion of partici-
pant’s state. Finally, we introduce a peer-to-peer topology for bottom-up fault
management.

 Bottom-Up Fault Management in Composite Web Services 599

2.1 Bottom-up Fault Taxonomy

A fault management approach must refer to a taxonomy that describes the different
types of faults that composite services are expected to be able to manage. We identify
two types of bottom-up faults: physical and logical (Fig. 1). Physical faults are re-
lated to the infrastructure that supports Web services. In this paper, the underlying
communication system is assumed to be failure-free: there is no creation, alteration,
loss, or duplication of messages. However, node faults are still possible. A node fault
occurs if the servers (e.g., application server, Web server) hosting a participant are out
of action. Logical faults are initiated by service providers; this is in contrast to physi-
cal faults which are out of service providers’ control. We categorize logical faults as
status change, participation refusal, and policy change.

Status change occurs if the service provider explicitly modifies the availability
status of its service. The status may be changed through freeze or stop. In the freeze
fault, providers shut down their services for limited time periods (e.g., for mainte-
nance, unavailability of a product in a supply chain’s provider). In the stop fault,
providers make their services permanently unavailable (e.g., a company going out-of-
business).

Fig. 1. Bottom-up Fault Taxonomy

Participation refusal occurs if a service is not willing to participate in a given
composition. The way participation decision is made varies from a Web service to
another. We give below four techniques on how such decisions could be made:

• A service load balancer may check that the server workload will not exceed
a given threshold if the service participates in a new composition. The
threshold could, for instance, be defined to maintain a minimum quality of
service.

• A policy compatibility checker may also verify the compliance of the
service policies (e.g. privacy policies) with the composite service policies.

• A service reputation manager may verify that the reputation (e.g., defined
by users’ ratings) of the composite service is higher than a threshold set by
the participant.

• A notification may be sent to the participant’s provider who will decide
whether the service should participate in the composition or not.

600 B. Medjahed and Z. Malik

In the rest, we assume the existence of a pre-defined function Agreed2Join() used by
services to decide whether they are willing to participate in compositions. Each ser-
vice may provide its own definition and implementation of the Agreed2Join() func-
tion. However, the way is Agreed2Join() defined is out of the scope of this paper.

Policy change occurs if the provider updates one of its service policies. We adopt
a broad definition of policy, encompassing all requirements under which a service
may be consumed. We adopt the categorization proposed in [11] considering policies
as either vertical or horizontal. The vertical category refers to application domain-
dependent policies (e.g., shipping policy in business-to-business e-commerce). The
horizontal category refers to policies that are applicable across domains. It is com-
posed of three sub-categories: functional, non-functional, and valued-added. Func-
tional category describes the operational features of a Web service (e.g., in WSDL
[1,14], OWL-S [10]). Non-functional category relates to Quality of Service metrics.
The value-added category brings "better" environments for Web service interactions.
It refers to a set of specifications for supporting optional (but important) requirements
for the service (e.g., security, privacy, negotiation, conversation). Changes in the
policies of a participant WSi may impact the way a composite service CSj interacts
with WSi. Hence, they should be considered as logical faults. For instance, CSj invo-
cations to WSi may lead to run-time failures if WSi provider changed the input mes-
sage required by WSi (e.g., new message parameters added, changes made to data
types).

2.2 State of a Service

Soft-state signaling enables the propagation of bottom-up faults from participants to
composite services. The main idea of this class of signaling is that the state of each
participant is periodically sent to the composite service. The composite service will
then use the received state to determine whether there was any physical or logical
fault in the participant. Several questions need to be tackled when designing a soft-
state protocol: what is the definition of a state? And how is the state computed? We
will give answers to these questions in the rest of this section and paper.

The proposed framework must deal with all types of faults depicted in Fig 2.
Physical faults and status changes are detected by composite services in an implicit
manner; if a node fault occurs or a participant is stopped/frozen, then the composite
service will not receive a state from that participant. The participation refusal fault is
explicitly communicated by participants if they are not willing to be part of a compo-
sition.

Policy change faults are transmitted as part of the participant’s state. To keep
track of policy changes, each participant WSi maintains a data structure called Statei
(Fig. 2). Statei is defined by two attributes: ChangeStatus and ChangeDetails.
ChangeStatus is equal to True if policy changes have been made to WSi. Several
changes may occur in WSi during a time period; details about these changes are stored
in the ChangeDetails set. Each element of this set represents a policy change; it is
defined by a couple (C,S) where C is the category of the policy and S is the scope of
the change. The initial values of ChangeStatus and ChangeDetails are False and ∅,
respectively. If a change (C,S) is detected on WSi, Statei.ChangeStatus is set to True
and (C,S) is added to Statei.ChangeDetails. The content of Statei is periodically

 Bottom-Up Fault Management in Composite Web Services 601

communicated to composite services. If a composite service does not receive Statei
after a certain period of time, then it assumes a physical fault or status change in WSi.
Otherwise, the composite service reads Statei to find out about the changes made to
WSi.

Fig 2. State of a Participant Service

A policy category refers to the type of requirements specified by a policy. As
mentioned in Section 2.1, it refers to functional, non-functional, value-added, or do-
main (i.e., vertical) categories. Policies are specified in XML-based Web service
languages/standards (e.g., WSDL [1], WS-Security [14]). The scope of a change
defines the subject to which that change was applied. It includes details about (i) the
location of the modified policy specification and (ii) the element that has been up-
dated within that specification. The specification location is given by the URI of the
XML file that stores the specification. The updated element is identified by the XPath
query of that element within the specification. For instance, let us consider the fol-
lowing WSDL file located in “http://www.ws.com/sq.wsdl”:

<definitions>
 <types> <!-- XML Schema --> </types>
 <message name=“getQuote_In”> ….
 <message name=“getQuote_Out”> …
 <portType name=“StockQuoteServiceInterface”>
 <operation name=“getQuote”>
 <input message=“getQuote_In” />
 <output message=“getQuote_Out” />
 </operation>
 </portType>
...

Let us assume that the name of the operation "getQuote" has been modified in the
WSDL document. The category and scope of the change are defined as follows:

• Category = (Functional,WSDL).
• Scope = (URL,Q) where:

• URL = “http://www.ws.com/stockquote.wsdl”
• Q = “definitions/portType/operation/@name”

The following definition summarizes the properties of Statei maintained by a par-
ticipant WSi.

602 B. Medjahed and Z. Malik

Definition: The state, denoted Statei, of a participant WSi is defined by (ChangeS-
tatus,ChangeDetails) where:

• ChangeStatus = True ⇔ changes have been made to WSi.
• ChangeDetails = {(C,S) / C and S are the category and scope of a change in

WSi}.
• Initially do: Statei.ChangeStatus = False and Statei.ChangeDetails = ∅.
• At the occurrence of a change (C,S) in WSi do: Statei.ChangeStatus = True,

Statei.ChangeDetails = Statei.ChangeDetails ∪ {(C,S)}.

2.3 Fault Coordinators

In the proposed framework, fault management is a collaborative process between
architectural modules called fault coordinators. Each Web service (participant or
composite) has a coordinator associated to it. This peer-to-peer topology distributes
control and externalizes fault management, hence creating a clear separation between
the business logic of the services and fault management tasks.

Fig. 3. Fault Coordinators

We define two types of coordinators (Fig. 3): soft-state senders (SS-S) and soft-
state receivers (SS-R). Each participant (resp., composite service) has a sender (resp.,
receiver) attached to it. A sender SS-Si maintains the Statei data structure. To keep
track of its receivers, SS-Si maintains a Receivers(SS-Si) data structure. If WSi (at-
tached to SS-Si) participates in CSj (attached to SS-Rj) then SS-Rj ∈ Receivers(SS-Si).
SS-Si periodically sends Statei to its receivers via Refresh() messages. The refresh
period is determined by the τSSS timer maintained by SS-Si. A receiver SS-Rj main-
tains two data structures: Senders(SS-Rj) and τSSR. Senders(SS-Rj) is the set of send-
ers from which SS-Rj expects to receive Refresh(). If WSi participates in CSj then

 Bottom-Up Fault Management in Composite Web Services 603

SS-Si ∈ Senders(SS-Rj). τSSR is a timer used by SS-Rj to process Refresh() messages
received from its senders.

Bottom-up fault management involves three major tasks: fault detection, fault
propagation, and fault reaction. The sequence diagram in Fig. 4 depicts the relation-
ship between these tasks:

Fig. 4. Sequence Diagram for Bottom-up Fault Management

• Fault detection: SS-Si first detects faults that occurred in the attached WSi. SS-Si
does not need to detect physical and status change faults in WSi as these are im-
plicitly propagated to receivers if the latter do not receive Refresh() messages
from faulty senders. Participation refusal faults are communicated to SS-Si using
one of the techniques mentioned in Section 2.1. Policy changes in WSi may be
detected by SS-Si using various techniques. For instance, SS-Si may use XML
version control algorithms to detect changes in WSi policy specifications; another
solution is to provide an interface in SS-Si through which WSi provider submits
all policy changes; a third solution is to use the publish/subscribe model [3]
where SS-Si subscribes with WSi on policy changes. Due to space limitations,
details about the detection of participation refusals and policy changes are out of
the scope of this paper.

• Fault propagation: SS-Si then propagates the fault detected in the previous phase
to SS-Rj. We propose a soft-state protocol for fault propagation. Details about
this protocol are given in Section 3.

• Fault Reaction: Finally, SS-Rj and/or CSj execute appropriate measures to react to
the fault. The techniques proposed in [12,7] can be extended for that purpose. In
[12], we use ECA (Event Condition Actions) to react to changes: the event part of
an ECA rule refers to change notifications; the action part allows for the specifica-
tion of change control policies; the use of conditions allows the specialization of

604 B. Medjahed and Z. Malik

these policies depending on pre-defined parameters. In [7], we define a Petri Net
model for the specification of high-level recovery policies in composite services.
These recovery policies are generic directives that model exceptions at design time
together with a set of primitive operations used at run time to handle the occurrence
of exceptions. The proposed model identifies a set of recovery policies that are use-
ful and commonly needed in many practical situations. Details about the tech-
niques for fault reaction are out of the scope of this paper. We assume the exis-
tence of a procedure React (FT, SS) implemented by each composite service to re-
act to faults. The FT parameter is the fault type and takes one of the following val-
ues: “Refusal” to refer to a participation refusal fault, “No Refresh” to refer to the
non-reception of a Refresh() message (i.e., physical fault or status change), and
“policy” to refer to a policy change fault. The SS parameter refers to the sender of
faulty participant; the reaction mechanism may in fact vary from a participant to
another.

3 The Fault Propagation Protocol

In this section, we describe the algorithms executed by senders and receivers for
propagating bottom-up faults. We assume that WSi (with SS-Si as attached sender)
participates in CSj (with SS-Rj as attached receiver). As mentioned in Section 2.1, we
assume that there is no creation, alteration, loss, or duplication of messages. The
propagation protocol adapts the well-know soft-state signaling described in [8,16] to
service-oriented environments. It enables the propagation of participation refusal
 and policy changes faults to receivers. Physical faults and status changes are implic-
itly propagated to receivers if the latter do not get Refresh() messages from faulty
senders.

3.1 Soft-State Sender Algorithm

Table 1 gives the algorithm executed by SS-Si. SS-Si receives two types of messages
from SS-Rj: Join(SS-Rj) and Leave(). Join(SS-Rj) is the first message that SS-Si re-
ceives from SS-Rj; it invites WSi to participate in CSj (lines 1-10). SS-Si calls the
Agreed2Join() function to figure out whether WSi is willing to participate in CSj (see
Section 2.1). If Agree2Join(SS-Rj) returns False, SS-Si sends the Decision2Join(SS-
Si,False) message to SS-Rj. Otherwise, SS-Si adds SS-Rj to its receivers. If SS-Rj is
the first receiver of SS-Si, SS-Si initializes Statei and starts its τSSS timer. Finally, SS-
Si sends its decision to SS-Rj through the Decision2Join(SS-Si,True) message. At any
time, SS-Si may receive a Leave() message from SS-Rj (lines 11-13). This message
indicates that CSj is no longer using WSi as a participant. In this case, SS-Si removes
SS-Rj from its receivers.

At the detection of a policy change (with a category C and scope S) in WSi (lines
14-17), SS-Si sets Statei.ChangeStatus to True. SS-Si keeps track of that change by
inserting (C,S) in Statei.ChangeDetails. In this way, the state of SS-Si to be sent to
receivers at the end of τSSS cycle includes all changes that have occurred during that
cycle. At the end each period (denoted by τSSS timer), SS-Si sends a Refresh()

 Bottom-Up Fault Management in Composite Web Services 605

message to each one of its receivers (lines 18-23). This message includes Statei as a
parameter, hence notifying SS-Rj about all policy changes that occurred in WSi during
the last τSSS period. SS-Si then reinitializes Statei and restarts its τSSS timer.

Table 1. Sender’s Propagation Algorithm

 (01) At Reception of Join(SS-Rj) Do
(02) If Agreed2Join(SS-Rj) = True Then Receiversi = Receiversi ∪ {SS-Rj};
(03) If ⎜Receiversi⎜ = 1 Then Statei.ChangeStatus = False;
(04) Statei.ChangeDetails = ∅;
(05) Start τSSS timer of SS-Si;
(06) EndIf
(07) Send Decision2Join(SS-Si,True) to SS-Rj
(08) Else Send Decision2Join(SS-Si,False) to SS-Rj
(09) EndIf
(10) End

(11) At Reception of Leave(SS-Rj) Do
(12) Receiversi = Receiversi − {SS-Rj};
(13) End

(14) At the detection of Change(C,S) in WSi Do
(15) Statei.ChangeStatus = True;
(16) Statei.ChangeDetails = Statei.ChangeDetails ∪ {(C,S)};
(17) End

(18) At the end of τSSS timer of SS-Si Do
(19) For each SS-Rj / SS-Rj ∈ Receiversi Do Send Refresh(Statei) to SS-Rj; EndFor
(20) Statei.ChangeStatus = False;
(21) Statei.ChangeDetails = ∅;
(22) Re-start τSSS timer of SS-Si;
(23) End

3.2 Soft-State Receiver Algorithm

The aim of SS-Rj protocol is to detect faults in senders. For that purpose, SS-Rj main-
tains a local table called SR-Tablej. SR-Tablej allows SS-Rj to keep track of Refresh()
messages transmitted by senders. It contains an entry for each SS-Si that belongs to
Senders(SS-Rj). Each entry contains two columns:

− Refreshed: SR-Tablej[SS-Si,Refreshed] equals True iff SS-Rj received a Re-
fresh() from SS-Si in the current τSSR cycle.

− Retry: SR-Tablej[SS-Si,Retry] contains the number of consecutive cycles during
which SS-Rj did not receive Refresh() from SS-Si.

A temporary node failure in SS-Si may prevent SS-Si from sending Refresh() to SS-Rj
during a τSSR cycle. In this case, SS-Rj may want to give SS-Si a second chance for
sending Refresh() during the next τSSR cycle. For that purpose, SS-Rj maintains a
variable (positive integer) Max-Retryj. If SS-Rj does not receive Refresh() from SS-Si
during Max-Retryj consecutive τSSR cycles, it considers WSi as faulty. The value of
Max-Retryj is set by CSj composer and may vary from a composite service to another.
The smaller is Max-Retryj, the more pessimistic is CSj composer about the occurrence
of faults in participants.

606 B. Medjahed and Z. Malik

Table 2. Receiver’s Propagation Algorithm

(01) At addition of WSi to CSj Do
(02) Send Join(SS-Rj) to SS-Si;
(03) End

(04) At deletion of WSi from CSj Do
(05) Send Leave(SS-Rj) to SS-Si;
(06) Delete SS-Si entry from SR-Tablej;
(07) End

(08) At Reception of Decision2Join(SS-Si,decision) Do
(09) If decision = True Then Sendersj = Sendersj ∪ {SS-Si};
(10) Create an entry for SS-Si in SR-Tablej;
(11) SR-Tablei[SS-Si,Refreshed] = False;
(12) SR-Tablei[SS-Si,Retry] = 0;
(13) If ⎜Sendersj⎜ = 1 Then Start τSSR timer of SS-Rj EndIf
(14) Else React(“Refusal”,SS-Si);
(15) EndIf
(16) End

(17) At Reception of Refresh(Statei) From SS-Si Do
(18) SR-Tablei[SS-Si, Refreshed] = True;
(19) If Statei.ChangeStatus = True Then React(“policy”, SS-Si, Statei.ChangeDetails) EndIf
(20) End

(21) At the end of τSSR timer of SS-Rj Do
 (22) For each SS-Si / SS-Si ∈ Sendersj Do

(23) If SR-Tablej[SS-Si, Refreshed] = True Then SR-Tablej[SS-Si, Refreshed] = False;
(24) SR-Tablej[SS-Si, Retry] = 0;
(25) Else SR-Tablej[SS-Si, Retry]++
(26) If SR-Tablej[SS-Si,Retry] = Max-Retryj Then
(27) React(“No Refresh”, SS-Si);
(28) EndIf
(29) EndIf
(30) EndFor
(31) Re-start τSSR timer of SS-Rj;
(32) End

SS-Rj submits two types of messages to SS-Si: Join() and Leave(). It also receives

two types of messages from SS-Si: Decision2Join() and Refresh(). Table 2 gives the
algorithm executed by SS-Rj. Whenever a new participant WSi is added to CSj, SS-Rj
sends a Join(SS-Rj) message to SS-Si (lines 1-3). At the deletion of WSi from CSj,
SS-Rj sends a Leave(SS-Rj) message to SS-Si and removes SS-Si entry from SR-
Tablej (lines 4-7). At the reception of Decision2Join(SS-Si,True), SS-Rj adds SS-Si to
the list of senders (lines 8-16). It also creates a new entry for SS-Si in SR-Tablej and
initializes the Refreshed and Retry columns of that entry to False and 0, respectively.
If SS-Si is the first sender of SS-Rj, SS-Rj starts its τSSR timer. At the reception of
Decision2Join(SS-Si,False), SS-Rj calls the React() procedure to process the participa-
tion refusal fault issued by SS-Si (see Section 2.3).

At the reception of Refresh(Statei), SS-Rj sets SR-Tablej[SS-Si,Refreshed] to True
(lines 17-20). If Statei.ChangeStatus is True, SS-Rj calls the React() procedure to
process all changes that occurred in SS-Si during the last τSSR cycle. At the end of
τSSR timer (lines 21-32), SS-Rj checks if it received Refresh() from each of its senders.
If SS-Rj received Refresh() from SS-Si, it re-initializes the Refreshed and Retry

 Bottom-Up Fault Management in Composite Web Services 607

columns of SS-Si entry in SR-Tablej to False and 0, respectively. Otherwise, SS-Rj
increments SR-Tablej[SS-Rj,Retry] If SR-Tablej[SS-Si,Retry] equals Max-Retryj (i.e.,
SS-Rj did not receive Refresh() from SS-Si during Max-Retryj consecutive τSSR cy-
cles), SS-Rj assumes a physical (node) fault in SS-Si and hence, calls the React() pro-
cedure to process that fault. SS-Rj finally restarts its τSSR timer.

3.3 Example

Let us consider a Web service WS3 (with a soft-state sender SS-S3) that participates in
two composite services CS1 and CS2 (with soft-state receivers SS-R1 and SS-R2, re-
spectively). We assume that τSSR1 = τSSR2 = 2 × τSSS3. Fig 5 depicts the interactions
between SS-S3 and SS-R1/SS-R2.

Fig. 5. Example of Fault Propagation

At time t31, SS-S3 detects a change (with category C1 and scope S1) in WS3. SS-S3
assigns True to State3.ChangeStatus and inserts (C1,S1) in State3.ChangeDetails. At
time t2, SS-S3 sends Refresh(True,{(C1,S1)}) to SS-R1 and SS-R2, and reinitializes
State3. SS-R1 and SS-R2 process those changes by calling their React() procedure at
times t11 and t21, respectively. At t3, SS-R1 and SS-R2 note the reception of the Re-
fresh() sent by SS-S3. At this same time, SS-S3 sends Refresh() to both receivers with
the parameters (False,∅) since no changes have been detected in the second SS-S3
cycle. SS-S3 detects two changes (C2,S2) and (C3,S3) in WS3 at t32 and t33, respec-
tively. At t33, State3.ChangeStatus equals True and State3.ChangeDetails contains
{(C2,S2),(C3,S3)}. At t4, SS-S3 sends Refresh(True,{(C2,S2,),(C3,S3)}) to SS-R1 and
SS-R2. SS-R1 and SS-R2 process those changes at t12 and t22, respectively. At t5,
SS-R1 and SS-R2 note the reception of the Refresh() sent by SS-S3. At times t5 and t6,

608 B. Medjahed and Z. Malik

SS-S3 sends Refresh() to SS-R1 and SS-R2 with the parameters (False,∅) since no
changes have been detected in the corresponding SS-S3 cycle. At t7, SS-R1 and SS-R2
note the reception of the Refresh() sent by SS-S3. Let us now assume a server failure
in WS3 (and hence SS-S3) at t34. At t9, SS-R1 and SS-R2 find out that they did not
receive Refresh() from SS-S3 during the last SS-R2 cycle. If Max-Retry2 is equal to 1,
SS-R1 and SS-R2 conclude that SS-S3 failed and hence call the React() function.

4 Performance Evaluation

We conducted experiments to assess the different parameters that may impact the
performance of the proposed protocol. We used Microsoft Windows Server 2003
(operating system), Microsoft Visual Studio 8 (development kit), UDDI Server, IIS
Server, and SQL Server. We ran our experiments on Intel(R) processor (1500MHz)
and 512MB of RAM. Soft-state senders and receivers have been developed in C#.
We created twenty (20) receivers and fifty (50) senders, and registered them in UDDI.
Each receiver has ten (10) senders randomly selected among the existing senders. In
the rest of this section, we analyze the relationship between τSSR/τSSS values and the
following two parameters: fault propagation time and false faults.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

10 20 30 40 50 60 70 80 90 100

Fault Ratio (%)

P
ro

pa
ga

ti
on

 T
im

e
(M

ill
is

ec
on

ds
)

SS-R Timer=30s

SS-R Timer=60s

SS-R Timer=90s

SS-R Timer=120s

SS-R Timer=150s

SS-R Timer=180s

Fig. 6. Impact of τSSR on Fault Propagation Time

Fault propagation time is the first performance parameter we analyze in our study
(Fig. 6). Let us assume that a fault occurred in a sender at time t1 and has been de-
tected by a receiver at time t2. The fault propagation time is equal to t2-t1 (i.e., the
time it took to the receiver to detect a fault in its senders). Fig. 6 compares the aver-
age fault propagation time for various τSSR timer values. We consider different fault
ratios for each τSSR timer value. For instance, a fault ratio of 10 means that 10% (1
out of 10) of participants within a composite service failed. We focused on physical
node faults; these are created by physically stopping the services corresponding to

 Bottom-Up Fault Management in Composite Web Services 609

faulty senders (selected randomly). Fig. 6 shows that the τSSR timer value has an
impact on the fault propagation time. The smaller is τSSR, the shorter is the fault
propagation time.

False faults refer to the situation where receivers assume faults that did not occur
in their senders. Fig. 7 depicts the relationship between false faults and timer differ-
ence (i.e., τSSS-τSSR). We set τSSR to 20s and vary τSSS from 20s to 25s, 30s, 35s, 40s,
etc. Fig. 7 shows that false faults occur if τSSS-τSSR≥0 (i.e., τSSS≥τSSR). In addition, the
bigger is τSSS (compared to τSSR), the larger is the number of false faults. These faults
correspond to cases where Refresh() messages are sent after the end of the corre-
sponding τSSR cycles.

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50

Timer Difference

F
al

se
 F

au
lt

s
R

at
io

 (
%

)

Fig. 7. Relationship between τSSS and τSSR and impact on False Faults ratio

5 Related Work

Mechanisms that support fault management in software systems have been around for
a long time. Workflow has traditionally been used to deal with faults in business
processes. Faults in workflows have usually been modeled as exceptions. SOAs
consider faults as the rule, and any solution to fault management would need to treat
them as such. Traditional software engineering solutions for fault management (e.g.,
exceptions and run-time assertion checking) have hard-coded, internal, and applica-
tion-specific capabilities that limit their generalization and reuse. They disperse the
adaptation logic throughout the application, making it costly to modify and maintain
[4]. These factors have actuated research dealing with the concept of self-healing
systems. A comprehensive survey of major self-healing software engineering
approaches is presented in [5]. However, such approaches focus on “traditional”
applications not service-oriented. The peculiarity of faults, interaction models, and
architectural style in SOAs as well as the autonomy, distribution, and heterogeneity of
services make these approaches difficult to apply in SOAs.

Current techniques for coping with faults in SOAs allow developers to include
constructs in their service specifications (e.g., fault elements in SOAP and WSDL,
exception handling in BPEL). Such techniques are static, ad hoc, and make service

610 B. Medjahed and Z. Malik

design complex [13]. Efforts have recently been made to add self-healing capabilities
to SOAs (e.g., [6]). However, these efforts mostly focus on monitoring service level
agreements and quality of service.

6 Conclusion

In this paper, we proposed a soft-state approach for managing bottom-up faults in
composite services. The approach includes techniques for fault detection, propaga-
tion, and reaction. We then focused on describing a fault propagation protocol. The
protocol inherits the advantages of the soft-state concept: implicit error recovery and
easier fault management resulting in high availability. A future extension of our pro-
tocol is to combine soft-state with hard-state signaling. For instance, if WSi provider
is scheduling a shut-down, SS-Si sends an explicit Shutdown() message to SS-Rj; this
allows SS-Rj to differentiate between physical faults and status changes and hence,
detect status changes as soon as they occur. Another possible extension is to transmit
Refresh() reliably (e.g., via the use of ACK timers) and integrate a notification
mechanism through which receivers inform senders about their view (in terms of
failure) on those senders.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Architecture,
and Applications. Springer, Heidelberg (2003) ISBN: 3540440089

2. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy of
Dependable and Secure Computing. ACM Trans. on Dependable and Secure Comput-
ing 1(1), 11–33 (2004)

3. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The Many Faces of Pub-
lish/Subscribe. ACM Computing Surveys 35(2), 114–131 (2003)

4. Garlan, D., Schmerl, B.R.: Model-based Adaptation for Self-healing Systems. In: WOSS
Workshop (November 2002)

5. Ghosh, D., Sharman, R., Rao, H.R., Upadhyaya, S.: Self-Healing Systems - Survey and
Synthesis. Decision Support Systems 42 (2007)

6. Guinea, S.: Self-healing Web Service Compositions. In: ICSE Conference (May 2005)
7. Hamadi, R., Medjahed, B., Benatallah, B.: Self-Adapting Recovery Nets for Policy-Driven

Exception Handling in Business Processes. Distributed and Parallel Databases (DAPD),
An International Journal 22(1) (February 2008)

8. Ji, P., Ge, Z., Kurose, J., Towsley, D.: A Comparison of Hard-state and Soft-state Signal-
ing Protocols. In: SIGCOMM Conference (August 2003)

9. Khalaf, R., Keller, A., Leymann, F.: Business Processes for Web Services: Principles and
Applications. IBM Systems Journal 45(2) (2006)

10. Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness, D.,
Parsia, B., Payne, T., Sabou, M., Solanki, M., Srinivasan, N., Sycara, K.: Bringing Seman-
tics to Web Services: The OWL-S Approach. In: First International Workshop on Seman-
tic Web Services and Web Process Composition (July 2004)

11. Medjahed, B., Atif, Y.: Context-Based Matching for Web Service Composition. Distrib-
uted And Parallel Databases 21(1) (February 2007)

 Bottom-Up Fault Management in Composite Web Services 611

12. Medjahed, B., Benatallah, B., Bouguettaya, A., Elmagarmid, A.: WebBIS: An Infrastruc-
ture for Agile Integration of Web Services. International Journal on Cooperative Informa-
tion Systems (IJCIS) 13(2) (June 2004)

13. Verma, K., Sheth, A.P.: Autonomic Web Processes. In: ICSOC Conference (December
2005)

14. Papazoglou, M.P.: Web Services: Principles and Technology. Prentice Hall, Englewood
Cliffs (2007) ISBN: 9780321155559

15. Qi, Y., Liu, X., Bouguettaya, A., Medjahed, B.: Deploying Web Services on the Semantic
Web. VLDB Journal 17(3) (March 2008)

16. Raman, S., McCanne, S.: A Model, Analysis, and Protocol Framework for Soft State-
Based Communication. In: ACM SIGCOMM 1999 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication, pp. 15–25 (Septem-
ber 1999)

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 612–626, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Understanding the Diversity of Services Based on Users’
Identities

Junjun Sun1, Feng Liu1, He Zhang1, Lin Liu1,*, and Eric Yu2

Key Laboratory for Information System Security, Ministry of Education
Tsinghua National Laboratory for Information Science and Technology (TNList)

1School of Software, Tsinghua University, Beijing, China
linliu@tsinghua.edu.cn

2Faculty of Information, Toronto University, Toronto, Canada

Abstract. Internet services involve complex networks of relationships among
users and providers - human and automated - acting in many different capacities
under interconnected and dynamic contexts. Due to the vast amount of
information and services available, it is not easy for novice users to identify the
right services that fit his purposes and preferences best. At the same time, it is
not easy for service providers to build a service with a customizable set of
features that satisfies the most people. This paper proposes to further extend the
strategic actors modeling framework i* to analyze the diverse needs of users by
modeling explicitly the personal characteristics, organizational positions, and
service related roles. We assume that service users’ needs and preferences are
determined by their personal background, organizational roles, and the
immediate operational context in combination. In this way, the origin of the
diversity of service needs, quality preferences, and usage constraints, can be
ascribed and used as a basis to make rationale selection from currently available
types of services, and to reconfigure service interfaces and structures. Example
usage scenarios ofweb services are used to illustrate the proposed approach.

Keywords: Personalization, Context, Service adaptation, i* modeling.

1 Introduction

To provide better web services for large scale social events, such as the Olympic
Games, or the World Expo, it is important to understand the needs of all involved
parties better. User populations of today’s web services are becoming more
diversified, and it becomes difficult to identify a prototypical user. Diversity in this
sense refers to the variety in user needs which involves accommodating users with
different skills, knowledge, age, gender, disabilities, disabling conditions (mobility,
sunlight, noise), literacy, culture, income, and so on [12]. For example, designingweb
site interface needs to consider the users’computing skills and knowledge. Design of
search engines can include basic and advanced searches for different users. Web

* Corresponding Author.

 Understanding the Diversity of Services Based on Users’ Identities 613

pages can accommodate users from all over the world:e-commerce sitesprovide multi-
language product catalogue, and description tuned to regional requirements.
Cognitively impaired users with learning disabilities and poor memory can be
accommodated with modest changes in layout and controlled vocabulary. Expert and
frequent users could as well benefit fromcustomizations that speeds high-volume
users and macros to support repeated operations.

Literally, diversity can be defined as the characteristics that differentiate people as
individuals, as well as the characteristics which make them alike. It is considered to
indicate variety. In traditional product-oriented design, diversity assumes at least two
roles: build assurances of variety and choice into its processes and products, and it can
also be the source or catalyst for change. Most of the existing research in service
adaptation focuses on the physical aspect of the service's environmentand context,
e.g., time, location, as an origin of how users’ needs changes. However, in addition to
the physical settings, human factors also play an important role in the formation,
change and evolution of the users’ need.

In existing context-aware computing, context information is often pre-assumed to
include a limited number of variables, e.g., time, location, and run-time status of the
platform. Although a few context service frameworks [10] also consider the
preferences of users, there is a pressing need for frameworks and models to support
the analysis and design of complex social relationships and identities. We need to
understand where the diversities of users come from, how they determine user needs,
how they affect each other under different contexts, and how such information can be
used when making service selection, adaptation, and reconfiguration decisions.

In this paper, we propose an approach to further extend the strategic actors
modeling language i* to facilitate the analysis of user’s identity information and the
underlining social context for Internet Services. Using this modeling approach, we are
able to represent different types of identities, social dependencies between identity
users and owners, service users and providers, and third party mediators. A reasoning
process linking the steps of analyzing user’s identity, deriving service needs and
preferences, drilling down into service constraints, and making service selection and
adaptation is introduced. This modeling approach will help service vendors to provide
customizable solutions, user organizations to form integrated identity information
management solution, system operators and administrators to accommodate changes.
Typical scenarios of a map web service for users with diversified needs are used to
illustrate the proposed approach.

This paper is structured as follows. In Section 2, we extend the actor concept of the
i* modelling framework and introduce an i*-Context to explain the social and identity
origin of the users’ diverse needs in the internet service environment. In Section 3,
two scenarios are given to illustrate how the human factors of i*-Context will impact
the preference-based internet service selection and customization. Section 4
introduces our design for a web service selection and adaptation system. An Olympic
map service case study will also be presented to illustrate the reasoning process.
Finally, in Section 5 and 6, we review the related work, and conclude the paper with a
discussion of limitations and future directions.

2 Modeling User Diversity in Service Environment

There are many dimensions in human diversity that beyond obvious differences such
as race, gender, age, physical disabilities, and marital status. Less obvious dimensions

614 J. Sun et al.

include: education, lifestyle, nationality, religion, political affiliation, culture and
skills. To cope with these diversities, we need a comprehensive modeling framework
to capture and understand theseuser diversities and to predict users’ needs and
preferences accordingly.

Strategic actors modeling framework i* could be used to understand the user's
preferences towards certain kinds of web-services. However, current i* modeling
lacks of an explanation for the origin of the users' diverse needs and preferences.We
extend the actor concept in the i* modelling framework to express the user diversity
in the IT Service environment. i* will also be introduced to capture modeling these
services related user diversity.

2.1 Actors in Service Environment

In the strategic actor modeling framework, i*, system players are modeled on three
different abstraction levels, namely, role, position, and agent [16]. Putting the actor
concept into the web service environment, the meaning of three different levels of
actors in the i* modeling framework can be further clarified to model various service
users on different abstraction levels.

Fig. 1. Mapping service actors

• Service role: In the definition of i* modeling language, a role is defined as “an
abstract characterization of the behavior of a social actor within some specialized
context or domain of endeavor.” [16] Particularly, a role in the web service context
could be interpreted as the behavior of a specific group of users towards a certain
functionalities of service. For example:

Role[map serviceuser],Role[transportation serviceuser]

• Social Position: Normally, the term social position is used to represent the social
status of an individual. In the service setting, the concept of social position extends

 Understanding the Diversity of Services Based on Users’ Identities 615

the positionconcept in i*by referring to aggregations of social roles[7]. It covers
not only the organizational perspectives, but also other community-relatedsocial
roles and social relations among a group of people. For instance, in the Olympic
Games setting, there are:

Position[coach],Position[athlete]

One could have more than one social position at a time, and social positions all
come together with concrete background settings, such as affiliations, certain
events or related groups. Different social positions may lead to different user needs
and preferences. When there are conflicts between social positions, the actor could
compare to find the most important position along with its related events, and
select the services accordingly. The importance ofeach particular social
positioncould vary as physical context changes.

• Individual Agent: In the original i* modeling framework where agent is defined as
“an actor with concrete, physical manifestations, such as human individual.”
[16].In the service environment, individual agent emphasizes on users, as executers
and decision makers of pre-defined services.

Agent[Jim],Agent[John]

Agent Attributes: Agent Attributes represent Individual Agent’s personal
attributes, e.g. age, gender, religion, education level, etc. These agent attributes are
comparatively stable and do not change very often.Once the participation of an
agent in a social relation relinquishes, the obtained knowledge and history will be
transformed into individual attributes.

Attribute[Jim, age]= 20,Attribute[John, education]=PhD

We believeindividual agent’s preferences most likely depend on his agent
attributes.Although some of these relationships could be clearly defined, most of
the agent attribute-preference relationships still remain latent or unknown.

• Agent Class: We use Agent Class to represent an abstract group of people who has
the same value for a certain agent attribute which could lead to similar service
needs or preferences. Such as:

John INS Agent Class[vegetarian]: Attribute[John, eating habit] = vegetarian

For instance, John is an athlete attending the Paralympics, being a vegetarian, and
wants to use the map service to find a nearest restaurant. In this scenario, he is a user
of the map service(Role[user [map service]]); his social position is athlete
(Position[athlete]); as individual agent, his name is John (Agent[John]), who has a
group of concerned attributes: he is a vegetarian (belong to Agent Class[vegetarian]);
he is handicapped and uses a wheel chair (belong to Agent Class[wheel chair
user]).

616 J. Sun et al.

2.2 i*-Context for Web Service

Incorporating results from current context-aware system practices, where location,
identity, activity and time related information are used to capture the service
context[3]. We propose to extend the current i* concept by putting the position
occupation and role playing relation under context. In other words, the agent-position
and position-rolerelationship may vary according to physical context such as time,
location, etc. Thus, we use service user’s social positions and his agent classesas i*-
Context to capture and model the diversity of service settings.

Table 1. Categories of Social Positions and Agent Classes in i*-Context

 Category Examples
Occupation Position[athlete],

Position[coach]
Family Position[father]

Position[daughter]

Social Position

Hobby Position[golf club member]
Position[classic music fan]

Demographical Agent Class[male] Agent Class
 Agent Class[teenager]

 Cultural Agent Class[Buddhist]
 Physical Agent Class[wheel chair user]
 Education & Skill Agent Class[C++ expert]
 Habit Agent Class[vegetarian]

Table 1 shows some example categories of social positions and agent classes used
in i*-Context.As individual agent may occupy more than one social positions at a
time, the importance of each position under certain physical conditions is also
modeled in the i*-Context.

Back to our case Study, Table 2 shows the i*-Context of a Paralympics athlete,
John. Being an athlete and father of a six year old girl, Johnis also avegetarian,
Chinese, practicing Buddhism and using a wheel chair.This information brings John
the social positions of Position[Father], Position[Athlete], and also reveals the agent
classes John belongs to, such as Agent Class[vegetarian], Agent Class[Chinese],
Agent Class[Buddhist] and Agent Class[wheel chair user]. Along with these social
positions and agent classes, i*-Context also provides importance ratings for social
positions in various physical contexts. To keep the problem clear, we use a simplified
importance value to represent the importance of social positions.

Based on our observation, although individual agents may have more than one
social positions at a time, there is usually one position that surpasses all others in
importance, and decides what kind of action the agent should performina
givenphysical context. Hereby, we introduce the concept of “foreground position”.

• Foreground Position: Foreground position is the social position that overweighs
all other social positions in importance in a certain physical context for a particular
agent.DefinePositions(Agent[a], pc) asthe set of all social positions Agent[a] plays
in certain physical contextpc.

 Understanding the Diversity of Services Based on Users’ Identities 617

Foreground Position(Agent[a], pc):∃d∈ Positions(Agent[a], pc)|

Positions(Agent[a], pc), p≠ d ⇒Importance (Agent[a], Position[p], pc)
<= Importance (Agent[a], Position[d], pc)

Table 2. Paralympics Athlete John’s i*-Context

Category Value(s)
Social Positions Position[Athlete]

Position[Father]
Agent Class Agent Class[vegetarian]

Agent Class[wheel chair user]
Agent Class[Buddhist]
Agent Class[Chinese]

Position Importance Factor Physical Context(Time, Location)
Position[Athlete] 3 (Very Important) (+) Time: {9am~11am, Aug 30th, 2012}

&Location: at Venue
Position[Athlete] 2 (Important) Location: at Gym
Position[Athlete] 0 (Not Important) Time: {Aug 31st ~ Sept 4th, 2012}
Position[Father] 3 (Very Important) (*) Time: {June 30th }
Position[Father] 2 (Important) Location: at home
Position[Father] 1 (Less Important) Time: {Aug 25st ~ Sept 4th, 2012}
(+) John’s competition is scheduled on the morning of Aug 30th, 2012
(*)June 30th is the birthday of John’s daughter

Fig. 2. Foreground Social Positionof John

618 J. Sun et al.

For example, as shown in Fig. 2, the importance of John’s social position changes
according to time.Before 2012.6, John was with his daughter and had not started his
intensive Paralympicstraining yet. In this case, during that period of time,
Position[father] surpasses Position[athlete] to be the foreground position of John’s.
However, after 2012.6,John leaves home to take part in a national Paralympics
training camp in Beijing, and finally join the wheel fencingcompetition. During these
three months, John’s social position as Position[athlete] is more important, and
hereby it replaces Position[father]to become his foreground position.

3 Bridging User Diversity and Service Diversity

In this section, we will explore how the service diversity will comply with the user
diversity, and will propose a set ofi*-modeling scenarios to illustrate the propagation
of the users’ diverse needs under the web service environment. We are in the belief
that the users’ diverse requirements towards web services originate from the users’
social positions and their individual characters defined in its unique i*-Context. This
diversity will then propagate through the service selection and customization
processes, and will eventually lead to the variations in the choice of services and their
settings.

3.1 From User Diversity to Service Diversity

Fig. 3 shows how the user’s own diversity will affect the service selection and
customization process. User’s needs aremainly decided by the social positions that the
user occupies at the time, and it will then become the major concerns for service
selection; while the user’s preferences are mostly beingaffected by the user's agent
attributes, and will further be used to customize the alternative services.

In the following two parts, we will use two particular scenarios to explain how
the user’s social position will influence the service selection, and how the user’s agent
attributes will affect the service customization process.

Fig. 3. Propagation Path from User Diversity to Service Diversity

 Understanding the Diversity of Services Based on Users’ Identities 619

3.2 Social Position's Influence over Service Selection

In this scenario, we will explore how the service user’s social position can decide the
user’s needs and eventually influence over service selection. To make the relationship
between social position and services-selections clearer, we choose the same individual
agent occupying different positions in the same physical context.

Fig. 4. Social Position's Influence over Service Selection

As depicted in the Fig. 4, during London Olympics, John is aspectator as well as
anathlete.Service discovery follows a similar process as the i* goal-task iterative
refinementprocess. The top goals in the goal decomposition structure stands for the
high level abstract user needs. As these goals are refined into more detailed levels,
they will finally reach a level of abstraction that refers to concrete tasks which could
matchgiven web services.As shown in Fig. 4, even if the social position spectator and
athleteshare the same top goal “Transport to Venue”, they could also lead to different
service selections. This scenario shows, there are basically three possible results for
the same user to pursue the same top -level goal using different positions:

1. The derived services are exactly the same, such as the “weather service”, where
social positions make no difference.

2. The selected services are completely different, such as the “register service” and
“ticket service”, which implicates social position leads to completely different
procedures for achieving the same goal.

3. The selected services are basically the same type, but have different variations,
such as the “transportation planning service” has different entries for athletes or
spectators.

620 J. Sun et al.

As we can see throughthis analysis, it is important to capture as much information
about user’s social identity as possible to make rationale service decisions. At the
same time, users should be aware of the implications of his social identities when
requesting services.

3.3 Agent Attributes' Influence over Service Customization

In the second scenario physical context and the social position are the same, but there
are two different individual agents. Two individual agents Alan and Steve have the
same social position as the Position[athlete]. Their diverse service preferences could
be derived from theirindividual attributes respectively.

Fig. 5. Individual User Attributes' Influence over Service selection and Customization

In Fig.5, Alan and Steve’s agent attributes will propagate to their social position
athlete. In i* model, the user preferences deduced from the user’s Softgoals could be
derived from individual attributes. Now we will use the Softgoal to select and
configure web service.

 Understanding the Diversity of Services Based on Users’ Identities 621

Fig. 5 shows different individuals with the same social position and the same
physical context may lead to different web service choices. In the selection case, take
the example of contribution link from Service[Search BBQ Take-away Service] to
Softgoal[Vegetarian], a service may not be selected as it hurts the user’s softgoal. In
the configuration case, such as contribution link between Service[Search Restaurant
Service] to Softgoal[Vegetarian], the vegetarian setting should be add to the service
input of Service[Search Restaurant Service].

4 Web Service Selection and Customization using i*-Context

We have discussed how the user diversity captured by the i*-Context would
influence the serviceselection and customization. In this section, we propose a
systematic process to select and customize services according to the users’personal
needs and preferences.

4.1 Web Service Selection and Customization Process

Fig.6 shows the main process of our i*-Context based web service selection and
customization approach. This process consists of four different steps, namely:
Obtaining i*-Context; Creating Goal-Task Decomposition Tree; Generating Softgoal
Decomposition Structure; and Selecting and Customizing Services. In the following
part of this section, we will use a case study to illustrate this process.

Fig. 6. Service Selection and Customization Process

4.2 Case Study

In the previous sections, we have described how the users’ diverse needs propagate
through the web service selection and customization operations. In this section, we
will propose a systematic process to help the service users choose and personalize
web services according to their diverse needs. A case study as well as a demo system
will be given to illustrate this process.

In our case takesJohn as anexample, according to John’s i*-Context provided in
Table 2:John is a Chinese athlete in the 2012 Paralympics Games;heis also a father to
a six year old girl. As an individual agent, Johnis vegetarian, Chinese, using a wheel
chair andpracticing Buddhism.

622 J. Sun et al.

Fig.7. Service Selection and Customization Case Study

As shown in Fig. 7, with the process introduced in the previous part, services
selection and customization for our case study will be carried out in the following
four steps:

Step 1. Obtaining i*-Context:
In this step, i*-Context will be obtained from the user’s profile. Meanwhile, the user’s
foreground social position as well as hiscurrent top goal will also be derived or
collected.

 Understanding the Diversity of Services Based on Users’ Identities 623

In John’s case study, when John uses the system, the physical context is 10:00AM,
Sept 3rd, 2012, in the Olympic Village in London according to the sensors. Based on
John’s i*-Context (Table 2), his foreground social position is Position[Father]. This
is because he has already finished his race, and now doing something to
compensatefor being away from his little daughter. According to his to-do list as
Position[Father], buying a gift for his daughter is on the top of the list.

Step 2. Creating Goal-Task Decomposition Tree:
The second step of the process focuses on the user’s needs, and uses iterate
refinement technique to create a goal-task decomposition tree based on the top user’s
goal.

In John’s case study, Goal[Buy Gift for His Kid] could be satisfied either online or
at a gift shop. When we look into Task[Shop at Stores], the task could then be further
decomposed into three separate sub-goals, namely, Goal[Choose Stores], Goal[Find
Traffic Route] and Goal[Choose Gift]. After that, these sub-goals are being
operationalized by a set of different web services (modeled as the bottom-level yellow
hexagons). In this step, softgoals derived from goal and task decomposition will also
be modeled (see Softgoal[Gift to be Appropriate]).

Step 3. Generating Preference Softgoal Structure:
In the third step of the process, preference softgoals are being deduced from user’s
agent classes, his foreground position and the physical context.

As shown in Fig. 7, according to the pre-defined preference deduction rules, John’s
preference softgoal structure can be generated. For instance, Softgoal[Wheel Chair
Accessible] is introduced since hebelongs to Agent Class[wheel chair user]. While as
Softgoal[Gift to be Exotic] is derived from the existing Softgoal[Gift to be
Appropriate], because John is from China and he is currently in U.K. Two other
preference softgoals can be acquired in the same way.

Step 4. Selecting & Customizing Services:
In the last step of the process, the alternative services obtained from step 2 will be
further selected and customized to better comply with the user’s preference softgoals.

As the bottom-level service tasks and the preference softgoal being identified, the
relationships between these services and softgoals could be used for service selection
and customization. Assuming all the web services are stateless services, the
relationships can be represented with the existing conditions of the contribution links
in between. Take relationship number 3 as an example, Service[Public
Transportation Planning] could make the Softgoal[Wheel Chair Accessible] possible,
only if the information service provide a barrier-free access route. Thefinal service
selection and customization result after this process is shown in the lower left corner
of Fig. 7.

5 Related Work

We discuss related work in three areas: agent intentional modelling in requirements
engineering, context-aware web services research and preference-based service
selection and customization practices.

624 J. Sun et al.

In information systems and software engineering research, organizational modeling
has been of interest, often in connection with requirements engineering. Goal and
agent oriented approaches have been used in this context, and agents or actors are
often part of the modeling ontology [13][6]. However, thei*-Context approach is
distinctive in its treatment of agents/actors as being strategic and context-sensitive[5],
and thus readily adaptable to the service requirements adaptation based on identity
illustrated in this paper.

Context-aware system and web service are also a very important issue in recent
years. Regarding the definition of context for web services, OASIS’s WS-Context
Standard defines service context as the kind of information that explains “what an
activity is and what services it will require in order to perform that work, will depend
upon the execution environment and application in which it is used[10].”Dey and
Abowd surveyed the existing work in context-aware computing, and have defined
context to be any information that can be used to characterize thesituation of an entity.
Location, identity, time and activity are the four primary context types that they have
summarized.[3]. In Baldauf, Dustdar and Rosenberg’s survey, they summarized the
different design principles and context models for context-aware systems. According
to their survey, the context models used by existing context-aware systems involves
key-value models, markup scheme models, graphical models, object oriented
models, logic based models and ontology based models [2]. Comparing to the existing
context-awareweb service practices covered by these surveys, our approach
focuses more on exploring the origin of the users diverse needs and preferences
rather than summarizing the directly related context of some specific kinds of
services.

There are also a research and practiceson preference-based web service selection
and customization. By utilizing decision tree algorithm, Hong, Suh, Kim and Kim
have proposed an agent based framework for providing the personalized services
using context history [4]. While in Lamparteret. al.’s [14] and Medjahed et. al.’s [8]
research, ontology based modelling and reasoning approaches are being introduced to
configure the service and system according to user’s preferences.

Finally, there is a body of literature on personal and contextual requirements
engineering. Sutcliffeet. al. proposed a framework for requirements analysis that
accounts for individual and personal goals, and the effect of time and context on
personal requirements[1]. The implications of the framework on system architecture
are considered as three implementation pathways: functional specifications,
development of customizable features and automatic adaptation by the system.Salifuet.
al. presents a problem-orientedapproach to represent and reason about
contextualvariability and assess its impact on requirements[9]. Ali et. al. proposes a
goal-orientedRE modeling and reasoning framework for systems operatingin varying
contexts[11]. Liaskoset. al. proposes a variability intensive approach to goal
decomposition supporting requirements identification for highly customizable software
[15]. Contextualgoal models are introduced to relate goals and contexts;reasoning
techniques to derive requirements reflectingthe context and users priorities at runtime;
and finally,design time reasoning techniques to derive requirementsfor a system. While
these works are all along the same line with our approach, we emphasis on the user’s
social and personal identities to rationalize the diverse needs they may have when
using web services.

 Understanding the Diversity of Services Based on Users’ Identities 625

6 Conclusion and Discussion

We have outlined an approach for modeling and analyzing diversities of web service
users. The approach is based on social and intentional analysiscentered on actor’s
social and personal identities under different contexts.It allows us to go beyond
mechanistic behavior, to deal with the opportunistic and rationaledecision making of
strategic actors. Interdependencies among actors’ identitybring opportunities as well
as place constraints on their service privileges. Strategic actors seek to achieve goals
(hard and soft) by obtaining new identities from service providers, taking into account
the opportunities and disadvantages arising from various casual relationships, as
illustrated in the examples.

Our approach is complementary to existing frameworks and techniques in service
personalization and context-aware service provision. Weemphasizethat the systematic
analysis of relationships among social rolesand personal background for a given
individual actor may play an essential role in eliciting needs for service users. It
supports the exploration and management of service alternatives, based on a balanced
consideration of all competing requirements, thus complementing the various
solutions of recent service selection and adaptation techniques.

While this paper has outlined some basic modeling concepts, much remains to be
done.To evaluate the effectiveness of the proposed approach, we are currently
developing an application for integrating online banking information services based
on user’s uniquebackground and settings.

There are also several options to further extend our initial approach. Identity
management is increasingly connected with other activities in enterprise management.
The proposed diversity rationalization approach provides a way of linking identity
related analysis to serviceneeds analysis and technology configuration analysis. The
conceptual modeling approach can thus provide a unifying framework for service
broker systems, supporting decision making and the management of changes across
technical services development, business services model development, and identity
management.

Meanwhile, there is also much potential in the synergy between social position
modeling and the foundational principles in context modeling. For example, in
analyzing the implications of an identity, one would like to model the inter-
relatedness among their subject matters. The interaction between social concepts and
relationships (actors, goals, preferences) and physical ones (e.g., processes,
information assets, time, etc.) need to be detailed. Libraries of domain knowledge,
service design knowledge with regard to identity management and context
management would be very helpful during modeling and analysis. These are topics of
ongoing and future research.

References

1. Sutcliffe, A., Fickas, S., Sohlberg, M.M.: Personal and ContextualRequirements
Engineering. Proceedings. In: 13th IEEE International Conference on Requirements
Engineering, pp. 19–30 (2005)

2. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. International
Journal of Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007)

626 J. Sun et al.

3. Gregory, D., Abowd, A.K.: Towards a better understanding of context and context-
awareness. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307.
Springer, Heidelberg (1999)

4. Hong, J., Suh, E.-H., Kim, J., Kim, S.: Context-aware system for proactive personalized
service based on context history. Expert Systems with Applications 36(4), 7448–7457
(2009)

5. Keidl, M., Kemper, A.: Towards context-aware adaptable web services, p. 55. ACM Press,
New York (2004)

6. Khalid, H.: Embracing diversity in user needs for affective design. Applied Ergonomics
(2006)

7. Masolo, C., Vieu, L., Bottazzi, E.: Social roles and their descriptions. In: Proceedings of
Principles of Knowledge Representation and Reasoning (2004)

8. Medjahed, B., Atif, Y.: Context-based matching for Web service composition. Distributed
and Parallel Databases 21(1), 5–37 (2006)

9. Salifu, M., Yu, Y., Nuseibeh, B.: Specifying Monitoring and Switching Problems in
Context. In: RE 2007, 211–220 (2007)

10. OASIS, Web services context (WS-Context) Standard. OASIS Standards (2003)
11. Ali, R., Dalpiaz, F., Giorgini, P.: A goal-based framework for contextual requirements

modeling and analysis. Requir. Eng. 15(4), 439–458 (2010)
12. Schneiderman, B.: Universal usability. Commun. ACM 43(5), 85–91 (2000)
13. Shivakumar, N., Jannink, J., Widom, J.: Per-user profile replication in mobile

environments: Algorithms, analysis, and simulation results. Mobile Networks and
Applications 2 (1997)

14. Lamparter, S., Ankolekar, A., Studer, R., Grimm, S.: Preference-based selection of highly
configurable web services. In: Proceedings of the 16th International Conference on World
Wide Web - WWW 2007. ACM Press, New York (2007)

15. Liaskos, S., Lapouchnian, A., Yu, Y., Yu, E., Mylopoulos, J.: On Goal-based Variability
Acquisition and Analysis. In: Proceedings of the 14th IEEE International Conference on
Requirements Engineering (RE 2006), pp. 76–85 (2006)

16. Yu, E.: Modelling strategic relationships for process reengineering. PhD Thesis,
University of Toronto, Department of Computer Science (1995)

Request/Response Aspects for Web Services

Ernst Juhnke1, Dominik Seiler2, Ralph Ewerth1,
Matthew Smith3, and Bernd Freisleben1

1 Department of Mathematics & Computer Science, University of Marburg
Hans-Meerwein-Str. 3, D-35032 Marburg, Germany

{ejuhnke,ewerth,freisleb}@informatik.uni-marburg.de
2 Information Systems Institute, University of Siegen

Hölderlinstr. 3, D-57068 Siegen, Germany
d.seiler@fb5.uni-siegen.de

3 RRZN, University of Hannover
Schloßwender Straße 5, D-30159 Hannover, Germany

smith@rvs.uni-hannover.de

Abstract. Web services rely on standardized interface descriptions and
communication protocols to realize loosely-coupled distributed applica-
tions that are executed on several interconnected hosts. However, the
extension of a web service with non-functional requirements, such as effi-
cient data transfer or security, is a tedious task that also requires access to
the web service implementations. In this paper, we present request/re-
sponse aspects for web services to allow software developers to easily
and transparently change the data exchange between web services with-
out modifying their implementations or their interfaces. A framework
supporting request/response aspects for web services is presented, and
implementation issues are discussed. The usefulness of request/response
aspects is illustrated by three use cases.

Keywords: Aspect-oriented Programming, Web Service, Service-orien-
ted Architecture, SOAP.

1 Introduction

With the advent of service-oriented architectures (SOA) and web services as
their most widely used implementation technology, applications can be composed
of existing web services, promising higher reusability, faster development, and
consequently, reduced costs. Web services are identified by their interfaces that in
turn are defined using the Web Services Description Language (WSDL, [23]). A
WSDL document contains a set of operations and defines input/output messages,
faults and bindings for transport protocols. Typically, web services communicate
via SOAP [22], relying on a request/response message exchange pattern based
on XML documents. Given a set of web services, composition languages such
as the Business Process Execution Language for Web Services (BPEL, [2]) can
be used to compose them into a more complex service. The original services act
as the basic activities in the newly constructed service; hence, this paradigm is

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 627–641, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

628 E. Juhnke et al.

often referred to as “Programming in the Large”. The composite web service
orchestrates the control flow between the original web services, stating the order
in which their methods are called. To keep services decoupled, their interaction
is managed by a client (i.e., a composer service like a workflow engine), and the
services do not have any information about the service to be called next.

While powerful in terms of compositionality, the downside of the “Programm-
ing-in-the-Large” paradigm is that the control flow dictates its structure onto
data-flow related concerns, which may not always be appropriate for them. We
have experienced problems related to this dominance of the control flow structure
during the development of a large-scale service-oriented platform for content-
based search in image and video databases [10,11]. Following the service-oriented
paradigm enables us to reuse multimedia algorithms, encapsulated as services, in
different workflow configurations. However, it also forces data transfers between
two subsequent multimedia services in a workflow to travel via the composition
client in the middle, which is neither necessary nor desirable: The available
network bandwidth of the machine hosting the BPEL engine can very quickly
become a bottleneck and the runtime performance will decrease significantly.

One way to solve this issue is to avoid the transfer of huge data via the BPEL
engine by using the Flex-SwA framework [12]. Instead of huge binary data,
only a small reference is transferred from the data-producing service via the
composition client to the data-consuming service. The data consuming service
resolves the reference and gets the binary data. However, this technique requires
that the involved services have reference data types in their method signatures
and in their return values, respectively. Furthermore, modularity and decoupling
of web services would suffer from scattered code for data handling.

It is preferable to have a solution that allows efficient data transmission in
data-intensive service workflows without noticeable additional development ef-
forts and without losing modularity and decoupling of services. One would like
to be able to superimpose a structure over the service control flow such that the
data transfer cuts across the control flow. Aspect-oriented programming (AOP)
is a paradigm that is aimed at increasing the modularity of software [14]. Cross-
cutting concerns such as the efficient transmission of data can be modularized in
aspects. AOP enables a developer to integrate aspects into existing applications
via join points, i.e., particular points in the control flow that specify when such
modularized code (called “advice”) should be executed; the description of a set
of join points is called pointcut.

In this paper, we present request/response aspects for web services to address
this problem. The proposed request/response aspects allow to add non-functional
requirements at the web service communication level, and to execute aspect code
on a remote host where a web service is running. They are independent of a web
service’s implementation language and do not assume that a web service imple-
mentation itself provides related functionality. For example, in the multimedia
workflow mentioned above, the components for efficient data transmission can
be woven dynamically into the communication infrastructure on top of which
the web services run without changing their implementations or their interfaces.

Request/Response Aspects for Web Services 629

We have implemented three use cases concerned with data transmission, data
compression, and data encryption to demonstrate the feasibility of the proposed
request/response aspects.

The paper is organized as follows. Section 2 reviews related work. The design
of the proposed aspect framework for web services is presented in Section 3. In
Section 4, implementation issues are discussed. The three use cases are presented
in Section 5. Section 6 concludes the paper and outlines areas of future work.

2 Related Work

Several efforts have already been made to modularize cross-cutting concerns in a
web service environment. Related approaches can roughly be grouped into three
categories: (a) they operate on the composition of services; (b) they introduce
an intermediary layer that encapsulates services; or (c) they work at the remote
service, i.e. not a physically co-located service.

AO4BPEL [6] is an extension of BPEL to improve modularity and to support
dynamic adaptation of the composition logic. In this setting, every BPEL activity
is a possible candidate for a join point. AO4BPEL facilitates the modularization
at the level of the BPEL engine. Despite the fact that due to its similarity to
traditional programs this seems natural when weaving aspects into a service-
oriented architecture, it is not possible to realize a data transfer aspect like
the one described in our video analysis workflow, because an adaptation of the
service is necessary.

Courbis and Finkelstein [8] present an adaptable BPEL infrastructure that
is extensible both statically and dynamically. The extension is not limited to
the engine itself, but also includes a BPEL process. While this is an interesting
concept for developing a BPEL engine, this approach is – again – clearly limited
to the adaptation of the BPEL engine and the BPEL process.

Other approaches [7,13] have also identified the necessity of modularizing
crosscutting concerns in a service-oriented environment. To achieve this objec-
tive, they modularize scattered concerns at the composition level. This might be
sufficient, e.g., for expressing authentication against remote services. However,
the mentioned approaches cannot be used when crosscutting concerns affect the
functionality of a remote service.

The Web Services Management Layer (WSML, [21]) introduces an interme-
diate layer between client and web service. The layer is used for the just-in-time
integration of web services into a client. Thus, the scope of WSML is limited to
the client-side. The thereby induced scattered code (by using multiple services)
can be faced by utilizing Aspect Beans and Connectors of JAsCo [18]. JAsCO
can work with client requests, but not with the requests on the service side.

Binder et al. [5] have introduced Service Invocation Triggers, a lightweight in-
frastructure based on a proxy layer that routes messages and thereby optimizes
the data transfer when workflows are orchestrated. If the proxies are located on
the same host as the service the proxy communicates with, a comparable situ-
ation to Flex-SwA is achieved in terms of optimizing the data transfer. However,

630 E. Juhnke et al.

this is achieved at the expense of transferring the control flow to the proxy
architecture that in this way represents a hidden orchestration layer, whereas in
our approach it remains at the orchestration engine.

DJCutter [16] is a framework that provides remote pointcuts as a new lan-
guage construct for distributed aspect-oriented programming. While an aspect is
distributed to remote machines, it only notifies a central server when a pointcut
becomes active. In turn, this server executes the corresponding advice. Refer-
ring to the data transfer example again, the data must first be transferred to
the server that processes it and afterwards transferred back. This will certainly
undo the desired performance gain.

Baligand and Monfort [4] present a framework to separate crosscutting con-
cerns within the service implementation, but do not deal with crosscutting con-
cerns over multiple services or hosts. Their focus is on the weaving of aspects
into the (Java) byte code of the service implementation. Thus, they pin the
presented framework to web services implemented in Java, whereas request/re-
sponse aspects operate on the message level. This allows us to be independent
of the concrete implementation language of a service.

AWED [15] is an aspect-oriented programming language with explicit sup-
port for the distribution of aspects and advice. In contrast to request/response
aspects, it operates on Java. However, web services can be implemented in any
programming language, and only their XML-based SOAP-interface is known.
Again, it cannot be assumed that Java is the implementation language of web
services, such that AWED cannot be used in web service environments where
Java is not used as the implementation language.

3 Request/Response Aspects

In this section, the pointcut description for defining request/response aspects in
web service environments and a supporting framework are presented. The point-
cut description is independent of any implementation language, whereas the
framework itself is located at the web service middleware (i.e., a software stack
that provides support for SOAP communication, like Apache Axis [3]) and pro-
vides the capabilities of interpreting pointcuts and applying the corresponding
advice. The framework consists of: 1.) an extension of the web service middle-
ware that enables the weaving of aspects into web services without changing
their implementation or their interface, including an aspect configurator service,
a request/response aspect weaver, and a security manager; 2.) tools that operate
at the client side, in particular for the seamless integration in BPEL workflows.
This framework is an essential prerequisite for writing and weaving request/re-
sponse aspects. By remaining independent of the service implementation, the
framework respects the black-box idea of service-oriented architectures.

3.1 Framework for Request/Response Aspects

The execution of web services is typically performed by an installed middleware,
such as a web service container and a SOAP processor. The underlying idea of

Request/Response Aspects for Web Services 631

the proposed framework is to weave aspects into the SOAP message processing
chain. The weaving of aspects at this point enables us to be independent of
the concrete service implementation: the processing chain typically operates on
XML documents and weaving into it does not interfere with the service imple-
mentation. In advance, an aspect configurator enhances the existing middleware
by allowing to weave aspects and, e.g., to check whether it is allowed or pos-
sible to weave an aspect into a service based on the aspect definition and the
enforced security constraints. The framework is based on the following design
considerations:

Dynamic weaving: Since the implementation language of a web service is typ-
ically unknown, and the client’s and the service’s administrative domain differ,
aspect weaving must be performed dynamically. As mentioned before, the mid-
dleware container hosting web services should expose web service methods for
adding and removing aspects during runtime.

SOAP message chain: Due to the contract-first conception of web services,
aspects are not allowed to change the previously negotiated interface (i.e., the
WSDL description) of a service. Ideally, the aspects have to be placed in the
SOAP processing chain to circumvent a modification of the interface. They must
be able to deal with SOAP request and response messages such that a modifi-
cation of them does not change their syntactical representation.

Caller/callee interaction: On the client side, the framework must have the
ability to distinguish between different web service invocations and communica-
tion partners who are possibly affected by an aspect. An aspect affecting two
subsequent services can only be added to a service if the corresponding aspect
on the subsequent service can also be applied. On failure, the aspect has to be
removed. Consequently, an atomic behavior of aspect weaving must be ensured.
This includes the possibility for a caller to check whether an aspect is available
that can be enabled, and to determine which aspects are currently active for this
particular caller.

Scope: Aspects must have a certain scope [19]. A scope specifies whether the
aspect is only valid for the client that has woven the aspect or whether the aspect
is valid for all callers.

Security: A security manager must ensure that only authorized clients and
aspects make use of the framework. The security manager can enforce that only
aspects that meet security requirements can be used or deployed. Using estab-
lished authentication mechanisms (e.g., SSL/TLS with client verification [20]),
only authorized users are permitted to use the aspect configurator and to deploy
signed aspects.

State: Since web services are stateless, aspects and advice should not maintain
any internal state, besides the information stored in the external key value store
(see 3.2) and in the message itself, respectively.

In Figure 1, the general design of the proposed framework for request/response
aspects is shown. Our framework operates on the server side as well as on the
client side. At the server side, there is a configuration interface (to be called by
the client), a configuration manager and a component that performs the actual

632 E. Juhnke et al.

Fig. 1. Web service invocations with aspects

weaving of aspects. At the client side, mainly an API is provided that offers
methods for interacting with the server component.

The interaction between a client and the framework is as follows. First, the
client’s Aspect-API asks the aspect configurators at the web services S1 and S2

whether they support the needed aspect (Figure 1: steps a and b). If both sites
support the aspect and respond accordingly, then the aspect is added by the
client (steps c and d) into the response of S1 and the request of S2. When the
actual SOAP request is sent to Service S1 (step 1), it is answered by the response
message (step 2). Then, the client forwards the request (step 3) to Service S2

that due to the request aspect can process the request and eventually responds
(step 4). In our use case for data transfer, an aspect that supports direct and
efficient data transmission from Service S1 to Service S2 will be used. Due to
the use of request/response aspects, the response message of Service S1 does
not include the data D in this scenario, since the aspects enable the direct data
transmission of data D to Service S2.

3.2 Pointcut Description

A request/response aspect for web services is defined by the following tuple:

A = {P ,O,F ,M, I,K,D, C} .

P (porttype) defines the qualified name (QName) of the web service porttype
the aspect should be applied to. This element is required to cope with a wild-
card operator, meaning that all porttypes within a service are relevant for this
particular aspect. O (operation) specifies the name of the operation of the given
porttype. A support for a wildcard operator is also needed. F (field) determines
the actual WSDL message part the aspect should be applied to. Since XML
schema elements can be nested complex data types, this field is realized as an
XPath expression[24] , in case the aspect should be applied only to a particular
part of a complex type. The XPath language also allows the use of wildcard
operators and thus enables the application of the aspect to multiple elements or
to multiple parts of (multiple) elements. M (mode) is an element of the enu-
meration containing the values {request, response, both}. The first one means
that the aspect is applied to the request message, the same holds for response.
When the mode is set to both, the aspect is applied to the request as well as to

Request/Response Aspects for Web Services 633

the response message. I (ID) determines a reference to the actual advice that
has to be applied by providing an ID containing a reference to the advice.

The preceding elements are mandatory, whereas the following elements are
optional: K (key value store) provides configuration data in the form of key-value
pairs optionally needed by the aspect. D (depends) and C (conflicts) contain a
list of aspects that refer to woven aspects. The first one enforces the listed aspects
to be woven, whereas the latter one forbids them to be applied. This enables the
weaving operation to respect (in-)compatibilities between different aspects.

The pointcut description is represented by the XML schema type shown in
Listing 1.1. The first six elements of the tuple, namely P , O, F , M, I, K, are
mapped to the schema type. The fields C (conflicts) and D (depends) are not
present in the schema type, because they are expressed by the implementation
of the advice itself. Hence, they are omitted in the schema declaration.

� �

<complexType name="Aspect">

<sequence >

<element name="portType " type="xsd:QName " />

<element name=" operationName " type="xsd:string " />

<element name="field" type=" xsd:string " />

<element name="mode" type=" xsd:string " />

<element name=" aspectPlugIn " type="xsd:string " />

<element name=" aspectData " type="tns1:HashMap " />

</sequence >

</complexType >
� �

Listing 1.1. XML Schema type of an aspect

4 Implementation

Our Java-based, prototypical implementation1 of the aspect framework rests
upon Apache Tomcat 6 as the application container in combination with Apache
Axis 1.4 as the SOAP processing engine and web service execution environment.
On the caller’s side, the Axis client libraries are used. The orchestration engine
for composing web services is ActiveBPEL [1], an open-source implementation
of the BPEL standard.

Adding and removing of request/response aspects and listing of available ad-
vice are performed by a single web service that offers the corresponding meth-
ods. Further methods provided by this aspect configuration service are (1) a
method to check whether an advice of an aspect is supported, and (2) a method
to determine whether an aspect is woven into a service. These two methods
allow the client-side component to ensure the atomic behavior of the overall
framework.

1 The source code is available on request.

634 E. Juhnke et al.

4.1 Advice Interface

An advice of a request/response aspect is referenced by its ID (element I of the
pointcut description). In our implementation, this ID represents the base name
of the Java class that actually implements the advice. A class representing an
advice has to implement a specific Java interface. Its methods are called by the
aspect framework when a join point shadow becomes a join point (i.e, a defined
join point is triggered) for the specific advice. The argument passed to these
two methods is resolved by the expression in the field element F (see pointcut
description) of the aspect. Their return values substitute the original value. If
a wildcard operator is in the field element F , multiple attributes match this
expression. Multiple attributes represent multiple fields in a complex data type.
The corresponding advice is applied iteratively to each of these attributes.

The concrete value of the scope of an aspect is either local or global with
respect to communication. The value local means that the join point of the
aspect respects the client, meaning that it is only active for the client that has
woven it in, whereas global indicates that an aspect is active for all clients.
The global scope implicates that no other service is affected by this aspect,
because the affection depends on the actual client in order to determine the
succeeding service. Since web services are loosely-coupled, such a succeeding
service cannot be identified in general. Advice must furthermore define whether
there is a subsequent service that is affected by this advice and to which an
aspect has to be applied. Furthermore, this value (none, direct, dataflow, or
controlflow) controls how such a service is detected. For example, an aspect for
profiling the communication returns none, because there is no other partner. The
value direct might be used for reliable messaging since it affects both partners
that are communicating directly.

4.2 Aspect Configurator

The aspect configurator is responsible for validating and weaving aspects and is
realized as a dedicated web service. To decouple the aspect framework from the
conventional web services, the aspect configurator is implemented as a distinct
service, i.e. a remote interface for weaving aspects. It operates on a registry that
contains all necessary information about woven request/response aspects. Since
it is realized as a hashtable, the number of deployed aspects has only a marginal
impact on the overall aspect-weaving runtime.

4.3 Aspect Provider

The activation of (web service) join points is realized as an AspectJ aspect, the
Aspect Provider. It is woven into the global handler chain of Apache Axis. If
a web service is called or sends its response, the around advice is executed. It
checks the registry to find out whether a request/response aspect has been woven
into this concrete web service. If yes, the scope and the caller are identified, and
in case of a complete match, the advice of the request/response aspect gets
executed. For this purpose, the pointcut of the AspectJ aspect matches the

Request/Response Aspects for Web Services 635

invokeMethod() method of the RPCHandler of Apache Axis, which in turn is
in charge of invoking the concrete implementation of the web service. In Listing
1.2, the pointcut (line 1 – 5) and the advice (line 7 – 13) of the AspectProvider
is shown. The AspectProvider is integrated into the handler chain of Apache
Axis. Request/response aspects are applied in the order in which they were
woven. A more sophisticated management strategy is subject to future work.
The implementation as an AspectJ aspect circumvents the modification of the
configuration of Axis (e.g., deploying a specific aspect deployment handler into
each service) and potentially allows us to use this code within other middlewares
supporting web services, such as JBoss or Spring.

� �

pointcut invokeMethod (MessageContext msgC ,Method method ,

2 Object obj ,Object[] args) : call(

protected Object RPCProvider .invokeMethod (

4 MessageContext ,Method ,Object ,Object []) throws Exception)

&& args(msgContext , method , obj , argValues);

6

Object around(MessageContext msgC ,Method method ,Object obj ,

8 Object[] args) throws Exception :

invokeMethod (msgC ,method ,obj ,args) {

10 handleRequest (argValues ,method ,msgC);

Object response = (method.invoke(obj , args));

12 return handleResponse (response ,method ,msgC);

}
� �

Listing 1.2. AspectProvider

4.4 Security Manager

The security manager mentioned in Section 3.1 uses a public key infrastructure
based on the X.509[9] standard in order to authenticate users who call the aspect
configurator. If an authorized user tries to deploy an aspect, the signature of the
aspect is validated, and it is only deployed into the system if the validation is
successful. Otherwise, the call fails and no aspect is deployed.

4.5 Aspect Invocation Handler

To facilitate the use of request/response aspects during service orchestration,
a custom invocation handler of the ActiveBPEL engine is called each time a
web service is called within a BPEL process. The weaving of aspects is initi-
ated by the Aspect-InvokeHandler (AIH). The AIH includes all the client-side
functionality described in Section 3 and is called every time the workflow en-
gine performs a web service invocation. In order to register and use the AIH,
an extension mechanism provided by the workflow engine itself is utilized. Thus,
a modification of the implementation of the workflow engine is not necessary.
When the AIH is called, it checks whether the actual web service should use an

636 E. Juhnke et al.

aspect. This information is provided by the workflow developer during the de-
sign of the workflow. If this is the case, the AIH deploys the aspect to the actual
web service and – depending on the defined relevance of the (request/response)
advice – deploys it also to subsequent web services.

5 Evaluation

In this section, the realization of three use cases for request/response aspects
is discussed. First, the use case of efficient data transmission described above
is considered. The goal is to realize efficient data transmission between web
services without additional implementation efforts (except for developing the
aspects themselves once), without changing the web services, and without losing
modularity and decoupling of web services. The second use case is also motivated
by the multimedia workflow and realizes data compression. The third use case
provides a cryptographic data transfer via request/response aspects. This use
case is motivated by a workflow that performs medical analysis.

5.1 Use Case 1: Data Transfer

For the first use case, consider the general design shown in Figure 1 – before the
request of Service S2 can be handled by an aspect, the response of Service S1

must have been handled by an aspect, too. In this way, the aspect woven into
Service S1 implements the IResponseAdvice. This implementation first takes
the binary data returned by the service and then creates a new Flex-SwA ref-
erence that points to the data. This reference is encoded into the response to
fit syntactically into the data structure the service returns. After this (response)
message has been passed to Service S2, the aspect woven into this service imple-
ments the IRequestAdvice. This implementation expects a Flex-SwA reference
encoded in the data structure the service receives. Then, the encoded reference
is resolved, and the data is transferred.

To test the Flex-SwA advice on a broader variety of data types, three different
service implementations were investigated. The first echo service implementation
works on a byte array, the second service on strings, and the third service uses
SOAP with Attachments. The performance is evaluated using these three web
services and the Flex-SwA advice mentioned before. This specific advice handles
the request as well as the response message of the services and also deals with
their (different) message formats. A client that utilizes the presented framework
only needs to call the aspect configurator service with an aspect (see Listing 1.3)
as an argument. This is all a client has to do in order to perform the weaving of
the aspect for efficient data transmission.

Obviously, it can be expected that the weaving of the Flex-SwA aspect im-
proves the workflow runtime significantly. The tests were performed on three
machines running Fedora Linux. Each machine has the same hardware, namely
an Intel Core 2 Duo E8600, 4 GB of RAM and a 100 MBit/s Ethernet network.
One of these machines operated as the client, whereas the other two hosted the
echo services. Different transmission types and different files sizes were used, but

Request/Response Aspects for Web Services 637

not all tested transmission types support arbitrary data sizes. Due to the XML
encoding – especially of arrays – the test of a byte array was limited by the
available heap space for the Java virtual machine. The heap space was set to 2
GB and the Java Garbage Collector was allowed to run concurrently. Only with
this setup we were able to test the transmission of byte arrays containing up to
800, 000 single byte values.

� �

Aspect serviceaAspect = new Aspect(

new QName("http :// fb12.de/ AosStringTestService ",

"AosStringTestService "), " echoStringA ", "/data",

Aspect.AOP_RESPONSE_MODE , "FlexSwAPlugIn ")
� �

Listing 1.3. Java bean constructor of an aspect

We have compared the workflow execution times for the three different echo
service scenarios (each measurement was repeated 100 times) to show their rel-
ative speedups. The less effective the data transfer mechanism is, the higher the
(relative) runtime improvement is, if request/response aspects are used. In case
of the byte array, a large improvement of up to 50% could be achieved, i.e.,
the transmission of a byte array in the size of 800 kbytes took about 95824 sec
using plain SOAP communication and about 50190 sec using request/response
aspects in combination with Flex-SwA. The runtime improvement of up to 50 %
can be explained as follows: As indicated in Figure 1, each SOAP transmission
first requires a serialization, then the actual transmission over a network and
finally a deserialization – repeated in each step 1 – 4. Thus, the overall runtime
time can be determined as TSOAP = 4 ∗ t(n) + ε, where t(n) is the network
transmission time, including the serialization and deserialization time, and n is
the amount of transmitted data (ε represents negligible processing times). In
case of the Flex-SwA request/response aspect, step 2 and step 3 now transport
the woven reference instead of the actual payload. Since the size of a reference
is independent of the referenced amount of data, the runtime can be expressed
as TR/R = 2 ∗ t(n) + 2 ∗ t′ + tD(n) + ε, where t′ is the corresponding time for
transferring a reference and tD(n) is the time needed to transfer the payload
via Flex-SwA. For large n, we obtain t′
 t(n), tD(n) ≤ t(n) and thus we get
T n→∞

R/R = 2 ∗ t(n) + tD(n). The comparison of TSOAP and T n→∞
R/R indicates that

the theoretical runtime improvement is (slightly) below 50 %. Our measurements
show that the proposed framework can come close to this theoretical limit. On
the other hand, the overhead introduced by the request/response aspect is no-
ticeable for the small data sizes when using strings or SOAP with Attachments
(cf., Figure 2), but for larger data sizes (> 40 KBytes) the achieved runtime
improvement outweighs this overhead.

It is worth mentioning that not only the execution time of such a workflow
can be accelerated by a significant factor, but also the development time is
shortened considerably. This reduction in development time results from the fact
that simple data types can be used for the development of the services and that

638 E. Juhnke et al.

Fig. 2. SOAP with Attachments (SwA) – relative runtime improvement using Flex-
SwA aspects

the more complex reference component for data transfer can be introduced using
the proposed aspect framework. While the measurements only show the benefits
for synthetical echo services, applying it to the concrete multimedia workflow
also leads to a significant speedup. The plain workflow execution times without
aspects are about 4422 seconds (where the SOAP communication requires 94% of
the execution time). After weaving aspects into the services, the overall runtime
only takes about 245 seconds (where now only 8% of this execution time is
needed for communication). The overhead for the aspect handling (i.e., the time
needed for executing the AspectProvider) is about 11 seconds.

5.2 Use Case 2: Data Compression

Text detection in videos is another workflow of our motivating multimedia anal-
ysis scenario: here, large text documents might be generated, depending on a
given input video. These documents can be transported by Flex-SwA again, but
it is also desirable to compress the text data. We implemented an advice to com-
press data and encode it afterwards with BASE64 in order to embed it again
in an XML document. This aspect can reduce the message size to 60% of the
original size. Another possibility would be to use the message-based compression
offered by the web service container. Aspect-based compression allows us to use
field-specific compression algorithms for different parts of the message, which is
possible by the field operator of the pointcut description. This is reasonable since
different types of data (text, images, videos etc.) may require different compres-
sion techniques. If a better compression algorithm becomes available, it is much
easier to replace the applied compression using the proposed aspect-oriented so-
lution. Otherwise, a new compression approach would have to be realized in all
related web services’ implementations.

This example indicates that the incorporation of new non-functional require-
ments via an advice is straightforward, since it effectively represents a filter

Request/Response Aspects for Web Services 639

operation applied to basic data types. Such advice only need to be applied to
the primitive data types to be employed by the proposed framework.

5.3 Use Case 3: Data Encryption

Secure messaging is another crosscutting concern that can also be handled by re-
quest/response aspects. The secure messaging problem is illustrated by a work-
flow that we have developed during a cooperation with medical researchers.
When performing patient studies, it is important that personal data of patients
is kept private by either making it anonymous or by encrypting it. For this rea-
son, we have developed an advice that performs an encryption at the data source,
such that all subsequent services are not able to read sensitive data. Eventually,
the decryption aspect is located at the service that merges the results into a
patient’s record. By using such an aspect, services can be encrypted without
changing the service implementation or configuring the middleware.

The workflow that motivates this use case originates from the area of sleep
research and basically performs an ECG (electrocardiogram) analysis and, based
on the obtained results, conducts apnoea detection. The implementation uses
the Physio Toolkit [17], a common set of open source tools in the biomedical
sciences. Since the data format of the recorded vital signs is different from the
format required by the Physio Toolkit, a data conversion is needed. Afterwards,
the ECG records are processed to detect medically relevant peaks in the signal.
The results are passed to an annotation reader service that in turn decodes the
input and passes the results to a beat detection service that detects particular
waves within the signal. In parallel, the output is passed to the apnoea detection
service that analyzes the signal and detects respiration dropouts to diagnose the
sleep apnoea syndrome.

The data exchanged by the services contain the actual ECG measurements
and also some identification attributes. To prevent the misuse of these attributes,
we have developed a privacy advice that uses public key cryptography. The sup-
port of the wildcard operator allows us to encrypt (and decrypt) all of the patient
related data. These data are encrypted when they are initially retrieved from a
database. During the processing by the mentioned services, the personal infor-
mation is encrypted (while the ECG data remain unencrypted). Finally, when
the analysis is finished and the result is stored in the database, the corresponding
advice decrypts the personal data.

6 Conclusions

In this paper, we have proposed request/response aspects for web services that al-
low developers of service-oriented applications to easily enrich web services with
additional non-functional requirements, such as efficient data transmission, data
compression, or other crosscutting concerns. They can be woven dynamically
into remote web services without changing their implementations or their inter-
faces. The presented framework supporting request/response aspects includes a
pointcut description for SOAP-based web service environments.

640 E. Juhnke et al.

Request/response aspects offer several advantages: They allow adding non-
functional requirements at the web service communication level to offer the pos-
sibility of executing aspect code on the remote host where a called web service
is running. Furthermore, they are independent of a web service’s implementa-
tion language and do not assume that the web service implementation provides
related functionality. By using the aspect framework, the development of web
services is simplified. This is demonstrated by adding the non-functional require-
ment of efficiently transmitting large amounts of data in a web service workflow
and thus circumventing the bottleneck at the client or workflow engine, respec-
tively. Runtime measurements for a multimedia application that requires effi-
cient transmission of large amounts of data have been presented. Two further
use cases for data compression and encryption have demonstrated the benefits
of the proposed approach.

There are several areas for future work. For example, instead of transferring
the aspect-ID (I), the whole aspect could be copied either as (Java) binary
code or as an interpretable description to the remote service. Ideas like sequence
pointcuts (sophisticated management of multiple advice for the same pointcut)
and shared states between aspects executed on different hosts [15] are other in-
teresting enhancements of our approach. Finally, to prevent a congestion of a
service with aspects over time, investigations for sophisticated life cycle manage-
ment (e.g., according to wall-clock time or communication patterns) are areas
of further research.

Acknowledgements

This work is supported by the German Ministry of Education and Research
(BMBF, D-Grid) and by the German Research Foundation (DFG, PAK 509).

References

1. ActiveEndpoints: ActiveBPEL Business Process Execution Engine,
http://www.activebpel.org

2. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business
Process Execution Language for Web Services Version 1.1. Microsoft, IBM, Siebel,
BEA und SAP, 1.1 edn. (May 2003)

3. Apache Foundation: Apache Axis., http://ws.apache.org/axis/
4. Baligand, F., Monfort, V.: A Concrete Solution for Web Services Adaptability

Using Policies and Aspects. In: Proc. of the 2nd Intl. Conf. on Service Oriented
Computing, pp. 134–142. ACM, New York (2004)

5. Binder, W., Constantinescu, I., Faltings, B.: Service Invocation Triggers: A
Lightweight Routing Infrastructure for Decentralized Workflow Orchestration. In:
Intl. Conf. on Advanced Information Networking and Applications, vol. 2, pp. 917–
921 (2006)

6. Charfi, A., Mezini, M.: Aspect-oriented Web Service Composition with AO4BPEL.
In: Proc. of the European Conf. on Web Services, pp. 168–182. Springer, Heidelberg
(2004)

http://www.activebpel.org
http://ws.apache.org/axis/

Request/Response Aspects for Web Services 641

7. Cibrán, M., Verheecke, B.: Dynamic Business Rules for Web Service Composition.
In: 2nd Dynamic Aspects Workshop (DAW 2005), pp. 13–18 (2005)

8. Courbis, C., Finkelstein, A.: Towards an Aspect Weaving BPEL Engine. In: The
Third AOSD Workshop on Aspects, Components, and Patterns for Infrastructure
Software (ACP4IS), Lancaster, UK, pp. 1–5 (2004)

9. Cooper, D., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet X.509 Pub-
lic Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,
http://tools.ietf.org/html/rfc5280

10. Ewerth, R., Freisleben, B.: Semi-Supervised Learning for Semantic Video Retrieval.
In: Proc. of the 6th ACM Intl. Conf. on Image and Video Retrieval, pp. 154–161.
ACM, New York (2007)

11. Ewerth, R., Mühling, M., Freisleben, B.: Self-Supervised Learning of Face Appear-
ances in TV Casts and Movies. In: Proc. of the Eighth IEEE Intl. Symposium on
Multimedia, pp. 78–85. IEEE Computer Society, Los Alamitos (2006)

12. Heinzl, S., Mathes, M., Friese, T., Smith, M., Freisleben, B.: Flex-SwA: Flexible
Exchange of Binary Data Based on SOAP Messages with Attachments (2006)

13. Joncheere, N., Deridder, D., Straeten, R., Jonckers, V.: A Framework for Advanced
Modularization and Data Flow in Workflow Systems. In: Proc. of the 6th Intl. Conf.
on Service-Oriented Computing, pp. 592–598. Springer, Heidelberg (2008)

14. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An
Overview of AspectJ. In: Proc. of the 15th European Conf. on Object-Oriented
Programming, pp. 327–353 (2001)

15. Navarro, L., Südholt, M., Vanderperren, W., De Fraine, B., Suvée, D.: Explicitly
Distributed AOP using AWED. In: Proc. of the 5th Intl. Conf. on Aspect-Oriented
Software Development, pp. 51–62. ACM, New York (2006)

16. Nishizawa, M., Chiba, S., Tatsubori, M.: Remote Pointcut: A Language Construct
for Distributed AOP. In: Proc. of the 3rd Intl. Conf. on Aspect-Oriented Software
Development, pp. 7–15. ACM, New York (2004)

17. PhysioNet: PhysioToolkit, http://www.physionet.org/physiotools/
18. Suvee, D., Vanderperren, W., Jonckers, V.: JAsCo: An Aspect-Oriented Approach

Tailored for Component Based Software Development. In: Proc. of the 2nd Intl.
Conf. on Aspect-Oriented Software Development, pp. 21–29. ACM, New York
(2003)

19. Tanter, É.: Expressive Scoping of Dynamically-Deployed Aspects. In: Proc. of the
7th Intl. Conf. on Aspect-Oriented Software Development, pp. 168–179. ACM, New
York (2008)

20. Transport Layer Security, http://datatracker.ietf.org/wg/tls/charter/
21. Verheecke, B., Cibran, M., Vanderperren, W., Suvee, D., Jonckers, V.: AOP for

Dynamic Configuration and Management of Web Services. Intl. Journal of Web
Services Research 1(3), 25–41 (2004)

22. World Wide Web Consortium (W3C): W3C SOAP Specification,
http://www.w3.org/TR/soap/

23. World Wide Web Consortium (W3C): Web Services Definition Language (WSDL)
1.1, http://www.w3.org/TR/wsdl

24. World Wide Web Consortium (W3C): XML Path Language (XPath), Version 1.0,
http://www.w3.org/TR/xpath, http://www.w3.org/TR/xpath

http://tools.ietf.org/html/rfc5280
http://www.physionet.org/physiotools/
http://datatracker.ietf.org/wg/tls/charter/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

Using Graph Aggregation for Service Interaction

Message Correlation

Adnene Guabtni1,2, Hamid Reza Motahari-Nezhad3, and Boualem Benatallah1

1 The University of New South Wales, Sydney, Australia
{aguabtni, boualem}@cse.unsw.edu.au

2 National ICT Australia (NICTA), Sydney, Australia
aguabtni@nicta.com.au

3 HP Labs, Palo Alto, CA, USA
hamid.motahari@hp.com

Abstract. Discovering the behavior of services and their interactions in
an enterprise requires the ability to correlate service interaction messages
into process instances. The service interaction logic (or process model)
is then discovered from the set of process instances that are the result
of a given way of correlating messages. However, sometimes, the Cor-
relation Conditions (CC) allowing to identify correlations of messages
from a service interaction log are not known. In such cases, and with
a large number of message’s correlator attributes, we are facing a large
space of possible ways messages may be correlated which makes identi-
fying process instances difficult. In this paper, we propose an approach
based on message indexation and aggregation to generate a size-efficient
Aggregated Correlation Graph (ACG) that exhibits all the ways mes-
sages correlate in a service interaction log not only for disparate pairs
of messages but also for sequences of messages corresponding to process
instances. Adapted filtering techniques based on user defined heuristics
are then applied on such a graph to help the analysts efficiently identify
the most frequently executed processes from their sequences of CCs. The
approach has been implemented and experiments show its effectiveness
to identify relevant sequences of CCs from large service interaction logs.

Keywords: SOA, Process mining, Correlation, Aggregation.

1 Introduction

As the number of services in organizations are growing and service interactions
are getting more dynamic, there is a significant interest in understanding the re-
lationships and behavior of services in the enterprise. Approaches for discovering
the behavior of systems and services (also known as process or workflow discovery
[10, 4]) take process instances as input. A process instance is a sequence of service
messages corresponding to one execution of a process model. In the context of
services, a process instance consists of a sequence of messages that are exchanged
by services. However, identifying process instances, i.e. correlating messages so
that we know which service messages belong to the same process instance, is not

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 642–656, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Using Graph Aggregation for Service Interaction Message Correlation 643

always straightforward. This is because information about correlator attributes
may not be known to a monitoring service which overseas and captures service
interactions in a log. Although each service internally knows how it correlates
its messages with those of its immediate interacting partners, this information
may not be well documented, or may be buried in the code of the service which
is sometimes outsourced or the documentation may become obsolete. Therefore,
it is often necessary to perform an automated message correlation in order to
identify process instances.

We consider two messages in a service interaction log as correlated if a Cor-
relation Condition (CC) is verified. A typical CC may be the equality of two
messages’ attributes [8]. When messages generated by the same process instance
are correlated, the sequence of their CCs can be considered as the ”fingerprint”
of such process instance. Therefore, discovering sequences of CCs allows to step
ahead towards the identification of process instances.

Motivated by the goal of providing a light-weight approach that can help an
analyst to quickly identify relevant sequences of CCs, we propose in this paper an
approach using message indexation and aggregations to generate an Aggregated
Correlation Graph (ACG) that exhibits all the sequences of CCs identified in a
service interaction log. In an ACG graph, each node corresponds to an aggrega-
tion of messages, and each edge represents a CC between all pairs of messages
in the two nodes. Therefore, the ACG graph represents all correlations of mes-
sages in an aggregated representation allowing to quickly identify, using weighted
nodes and edges, the most frequent sequences of CCs revealing frequent process
executions. The approach has been implemented and we offer an interactive fil-
tering/browsing of the ACG graph helpful for analysts to better understand the
way messages are correlated and the potential process models those correlations
may reveal. In particular, we make the following contributions:

(1) We propose an approach for service interaction message aggregation based
on their CCs. The resulting ACG graph is size-efficient and exhibits all the
sequences of CCs identified in the log.
(2) We provide a method, based on graph filtering techniques and user-defined
criteria, to efficiently identify relevant sequences of CCs and visually browse
them using an interactive ACG graph visualization tool.
(3) We have implemented the approach in a tool available online, and performed
experiments on a number of service interaction logs. The experiments show that
the generated ACG has a stable size regardless of the size of the log being
processed. Furthermore, the interactive ACG visualizer allows analysts to quickly
find relevant sequences of CCs and identify process instances.

The rest of the paper is organized as follows: In section 2, assumptions and
notations used in this paper are presented. We present the service interaction
message log format, and define the notations used in this paper. In section 3, we
propose our approach and discuss its strengths and limitations. In section 4, we
describe the implementation and discuss its results and applications. In section
5, we discuss related work. Finally, in section 6, we summarize the contribution
of this paper and present future work.

644 A. Guabtni, H.R. Motahari-Nezhad, and B. Benatallah

2 Assumptions and Notations

2.1 Event Log Format and Sample

Process discovery techniques usually assume that service interaction logs have
certain format that is useful for analysis. The most common format consists
of mono-valued attributes describing service interaction messages. A message
is generated by a service and represents an explicit or implicit transition in a
process execution. Each message has a set of attributes and their associated
values. We consider the set of attributes in a log as A = {a1, a2, ..., ai} and
the set of messages in a log as M = {m1, m2, ..., mj}. While it is difficult to
ensure a global clock with infinite precision to have a total or partial order for
messages generated by disparate services, we propose to consider the order that
the messages have been inserted in the event log. Therefore, we assume in this
work that one centralized log file is used, having exclusive write access to insure
that we will always have messages inserted one by one as they are captured.
Thus, we define a total order function ≺ for messages which corresponds to the
order they have been inserted into the event log. The following notations are
also used in this paper:

– ∀ m ∈ M , A(m) ⊂ A is the set of attributes represented in the message m.
– ∀a ∈ A(m), V (a, m) is the value of the attribute a in the message m.
– V = {v1, ..., vm} is the set of values assigned to attributes of messages in M .

2.2 Message Correlation

Two messages mi, mj ∈ M are considered as correlated if a Correlation Condition
(CC) is verified. We follow our previous work [4] for the definition of a CC. We
consider a CC as a relation between attribute’s values of messages based on
a correlation function cf : V �−→ V such that V (ai, mi) = cf (V (aj , mj)). For
simplicity reasons, we assume in this paper that cf(x) = x.

The correlation of two messages mi and mj ∈ M is denoted mi ≪ mj , in which
≪ is the correlation relation, iff mi ≺ mj and ∃ ak ∈ A(mi) and al ∈ A(mj) having
V (ak, mi) = V (al, mj).

The Correlation Condition (CC) of two correlated messages can be atomic
or composite depending on the number of couples of attributes of the two mes-
sages having equal values. The representation of an atomic CC is denoted as the
equality of two attributes: ai = aj and we note ACC the set of all possible unique
atomic CCs for a given set of attributes. A composite CC is a set of atomic CCs
verified for the same couple of correlated messages. We note a composite CC as
the conjunction of atomic correlation conditions: ai = aj ∧ ak = al ∧ ... For
both atomic and composite correlation conditions, we generalize the definition
of a correlation condition as follows:

Definition 1 (Correlation Condition). We note the CC of two correlated
messages as a function CCond : (M , M) �−→ P (ACC) such that ∀mi, mj ∈
M / mi ≪ mj , CCond(mi, mj) is the set of all atomic correlation conditions
verified by the correlated events mi and mj.

Using Graph Aggregation for Service Interaction Message Correlation 645

Fig. 1. Example of a real world service interaction log with correlated messages

The example of figure 1 illustrates the message correlations and their corre-
sponding correlation conditions in a small portion of a real world service inter-
action log related to the Retailer services, respectively ”Catalogue”, ”Quoting”,
”Ordering”, ”Invoice”, ”Payment” and ”Shipping” services. For example, the
two messages ”0001” and ”0002” describing respectively the invocation of the
catalog and the quoting services, are correlated with the CC CUSTID=CUSTID.

3 Proposed Approach

3.1 Philosophy, Definitions and Properties

Correlation Conditions (CCs) are meant to describe the correlation of two mes-
sages. Having a set of correlated messages, it is possible to build a graph in which
nodes are messages and edges are correlations. We call such a graph ’Correlation
Graph’. Each edge is described using the CC correlating its source and desti-
nation nodes. Building such a graph for the entire event log generated a large

646 A. Guabtni, H.R. Motahari-Nezhad, and B. Benatallah

graph when large event logs are considered as the number of nodes is equal to
the number of messages in the log. Moreover, processing such a graph for process
discovery can be computationally expensive.

We propose in this paper a novel approach to efficiently discover and evalu-
ate all CCs from large event logs by using message indexation and aggregation
and build an Aggregated Correlation Graph (ACG). The objective is that the
ACG graph aggregates and exhibits all the sequences of message correlations
(described using their corresponding CCs) identified in a service interaction log
using a size-efficient single graph. We define such ACG as follows:

Definition 2 (Aggregated Correlation Graph (ACG)). We define the
ACG graph as a weighted and oriented graph in which nodes and edges have
the following properties and notations:

– Nodes properties: Every node is associated with a set of messages. The
set of nodes of the ACG is noted N (ACG).

– Edges properties: Every edge is associated with a set of message correla-
tions. The set of edges of the ACG is noted Ed (ACG). An edge is oriented
and links two nodes. Two nodes can be linked with at most one edge. If two
nodes n1, n2 ∈ N (ACG) are linked with an edge e ∈ Ed (ACG), we note
ed (n1, n2) = n1 � n2 and we say n1 is correlated to n2. The weight W (e) of
an edge e ∈ Ed (ACG) is equal to the number of event correlations associated
to it.

– Constraints on message-node association: Every message in the log is
associated with one single node in the ACG. Two correlated messages cannot
be associated with the same node in the ACG.

– Constraints on message correlation-edge association: All message
correlations associated to the same edge share the same correlation condition.
Such a correlation condition is noted CCond (ed) for an edge ed ∈ Ed (ACG).
Every correlation of two messages is associated with one single edge in the
ACG.

– Root node: The ACG contains necessary one default node called root node
where any message mi is placed if � mj ≺ mi / mj ≪ mi .

In the Aggregated Correlation Graph, each node corresponds to a set of messages
and each edge represents correlations between all pairs of messages in the two
sets of messages1. The edge’s weight represents the number of pairs of correlated
messages in the two sets of messages contained in its source and destination
nodes. The edge’s type corresponds to their CC, ensuring that all correlations
represented by the same edge have the same CC.

The correlations of messages are represented in the ACG graph using oriented
edges mainly for two reasons. Firstly, time is important in correlation discovery
as if a message m1 is correlated with a message m2 and m1 ≺ m2, the edge
representing such a correlation would be oriented in consequence (from the node
containing m1 to the node containing m2). The second reason is that the ACG

1 Only binary correlations are represented (correlations of pairs of messages).

Using Graph Aggregation for Service Interaction Message Correlation 647

graph is the result of an aggregation of messages into sets of messages (nodes of
the ACG) and an edge in the ACG represents correlations between all pairs of
messages in the two sets of messages. Without oriented edges, we won’t be able to
decide which messages would be aggregated. For example, let assume m1 ≪ m2

are correlated with a CC c1 and m3 ≪ m4 are correlated with the same CC
c1. Should we aggregate m1 with m3 and m2 with m4 or should we aggregate
m1 with m4 and m2 with m3? The orientation of the edges makes the decision
easier as the sources of edges are aggregated together and the destinations of
edges are aggregated also together.

Role of the Root Node in ACG. When processing each message sequen-
tially, some messages may not be correlated to messages previously placed into
the ACG. Such messages are associated by default with the root node which
corresponds to all non correlated messages (singles) and all messages being the
starting messages of process instances (starters). Without using such a root node,
we would create a separate node for every message not correlated to previous
messages which can be very frequent and thus can lead to a larger ACG. By
aggregating those events in the root node, we do not loose any information and
we reduce drastically the number of nodes in ACG.

Additionally, the weight of an edge corresponds to the number of couples of
messages associated with, on one hand its source node and on the other hand
its destination node, being correlated with the CC of the edge. Therefore, the
more a CC is verified for couples of messages, the bigger is the weight of the
corresponding edge(s)2.

3.2 Step By Step Scenario of Building the ACG

In this section we describe a step by step scenario of building the ACG from
a real world service interaction log as illustrated in figure 2. The ACG is built
gradually by processing every message sequentially. At each step, an overview of
the messages being processed as well as the resulting ACG under construction.
Each node of the ACG is labeled using the service operation of its members
(messages). The root node has an additional label corresponding to the service
operation of its source message (within the root node).

Let’s start with the first message in the service interaction log. In the example
below, message 0001 is placed in the root node as this is the default node for
any message that is not correlated with previously placed messages. As this is
the first message to place in the ACG, it is obviously placed in the root node.

A second message, 0002, is correlated with message 0001 with a CC ”cur-
tomerid=customerid”. However, there is no node in the ACG linked to the root
node with correlation condition ”curtomerid=customerid”. The message 0002
is then placed in a newly created node and that node is linked to the root
node using an edge labeled with the CC ”curtomerid=customerid”. The new

2 Many edges within the ACG could have the same CC. This is made possible if such
CC is involved in many different processes.

648 A. Guabtni, H.R. Motahari-Nezhad, and B. Benatallah

Fig. 2. Step by step scenario of building the ACG

node is labeled with the service operation generating message 0002, which is
”RFquote”. A similar scenario concerns the next messages 0003 and 0004 as
described in the illustration below. Message 0005 is not correlated to any previous
message. Therefore, it is placed in the root node. Then, messages 0006 to 0009
are placed in newly created nodes for each of them. Each time a message is
placed in an existing node, its size is incremented and its inner and outer edges
have their weight incremented. The heavier the edges are, the more frequent are
their associated correlations.

3.3 Algorithm for Building the ACG

Building the ACG requires a method to aggregate the correlated messages and
generate the expected graph without necessary generating the correlation graph

Using Graph Aggregation for Service Interaction Message Correlation 649

(”non aggregated”). Assuming that the ACG is built by processing messages one
by one, sorted by their total order from a service interaction log, the proposed
approach follows some rules when processing a message m:

– If m is correlated to previous messages m1, m2, ..., mp which are necessary
already associated with existing nodes n1, n2, ..., nq in the ACG then two
cases are possible:

• CASE 1: Every message in {m1, m2, ..., mp} is associated to a distinct
node in {n1, n2, ..., np}. In that case, m is associated with a node n such
that ∀1 < i < p, CCond (ed (ni, n)) = CCond(mi, m) and the label of n
is the name of the service generating m. If such a node does not exist in
the ACG, then it is inserted and its correlations to the adequate other
nodes are also added.

• CASE 2: ∃ ni ∈ {n1, n2, ..., nq} such that two or more messages from
{m1, m2, ..., mp} are associated with it. If those messages are correlated
to m using the same CC and ni has the service generating m as label, the
first case applies. If those messages are correlated to m using different
CCs, each of them is then moved from its existing node to a new node
inheriting all incoming edges of the original node. This is done for every
node verified until the first case can be applied.

– If m is not correlated to any of the previous messages then it is associated
with a predefined node in the ACG called root node.

Following those rules, it is possible to gradually build the ACG graph by pro-
cessing the service interaction log message by message. At any stage of the ACG
construction, each message to be processed is matched with the nodes of the
ACG (sets of messages) to apply the above rules.

The algorithm described below associates messages with their corresponding
nodes using a single parsing of the event log. Additional notations concerning
the relation between a message and nodes sharing some of its attribute’s values
are used as follows:

∀m ∈ M , if ∃m
′ ∈ M associated with n such that m

′ ≪ m, we
note n ≪ m as an order relation between a node and a message
meaning that the node has to be correlated to the node associated
with the message. In that case, we also note CCond(n, m) =
CCond(m

′
, m) the correlation condition between the node n and

the node associated to a message m.

For each message m in the message log, the proposed algorithm allows to
identify an existing node n in the ACG or add a new node to the ACG which
can be associated to m with respect to the ACG properties previously defined in
section 3.1 of this paper.

650 A. Guabtni, H.R. Motahari-Nezhad, and B. Benatallah

Algorithm 1. Building the ACG graph

Require: M as the event stream sorted by time
Ensure: Building the Aggregated Correlation Graph of all messages in M
1: for all m ∈ M do
2: if ∃n ∈ N (ACG) such that

∀ n
′ ∈ N (ACG) / ∃ed ∈ Ed (ACG), ed = n

′
� n,

n
′ ≪ m and CCond(ed) = CCond(n

′
, m)

and
∀ n

′ ∈ N (ACG) / n
′ ≪ m,

∃ed ∈ Ed (ACG) / ed = n
′

� n and CCond(n
′
, m) = CCond(ed) then

3: m is associated with n
4: for all n

′ ∈ N (ACG) / n
′ ≪ m do

5: W (n
′

� n)) + + {The weight of the edge between the two nodes is increased as a new
correlation has been associated to it.}

6: end for
7: else if ∃cn ∈ N (ACG) / cn ≪ m then
8: Create a new node n in N (ACG)

9: for all n
′ ∈ N (ACG) / n

′ ≪ m do

10: Add a new edge n
′

� n to Ed (ACG)

11: Initialize the weight of n
′

� n to 1 {This is because only one correlation is associated
to it so far.}

12: end for
13: else
14: m is associated with root which is the root node of the ACG. {The event is not correlated

to any existing node}
15: end if

16: end for

3.4 Using Inverted Indexes for Efficient Message-Node Association

Inverted indexes are widely used in database systems to efficiently locate in-
formation [12]. For example, an inverted index for a collection of documents is
a data structure that stores, for each term (word) occurring in the collection,
information about the locations where it occurs. Such inverted indexes allow to
make the location of items more efficient. In the following, we justify the need
and we describe the use of inverted indexes in the proposed approach to ensure
an efficient identification of nodes associated to a given message.

Correlating messages is based on the equality of their attribute’s values.
Therefore, creating an inverted index of attribute’s values of all messages in
the log is an obvious solution to make correlation identification more efficient.
Having such an inverted index of values, every value refers to all its couples of
message/attribute having the same value. The inverted index can be formalized
as a function InvInd mapping values to couples of attributes and messages:

InvInd : V �−→ P (A, M)
such that ∀v ∈ V , ∀mi ∈ M , ∀aj ∈ A, if V (aj , mi) = v , then (aj , mi) ⊂ InvInd (v).

However, building the inverted index InvInd concerns all couples of messages
and attributes of the log and makes parsing/updating the index inefficient when
large logs are used. Moreover, such an inverted index is helpful to build a corre-
lation graph of the entire event log instead of an aggregated correlation graph.

Using Graph Aggregation for Service Interaction Message Correlation 651

We propose in this section an inverted index handling correlation of message
aggregations (nodes in the ACG) instead of the original messages themselves.
We formalize such an index as a function AggInvInd mapping values to couples
of attributes and ACG nodes:

AggInvInd : V �−→ P (A, N (ACG))
such that ∀v ∈ V , ∀n ∈ N (ACG), ∀a ∈ A, if ∃m ∈ M (n) and V (a, m) = v , then

(a, n) ⊂ SumInvInd (v).

The proposed algorithm is building the SCG and while processing each mes-
sage sequentially, the index AggInvInd is incrementally populated and used. For
every message m ∈ M , its attribute’s values are used to access the inverted index
AggInvInd , identify nodes correlated to the event and check if an existing node
in the ACG is suitable to be associated with the message.

3.5 Using the ACG for Identifying Process Instances

In this section we discuss how the ACG can be used for identifying process
instances and the proper use of graph filtering.

Starting from the root node, the ACG is read as different branches, each of
them corresponding to a different sequence of correlation conditions revealing a
bunch of similarly correlated process instances. The following example of ACG,
illustrated in figure 3 (left) corresponds to an ACG generated from a log of 4000
messages. Such graph contains all sorts of correlations discovered from the log
and is not easy to read as many of those correlations are non frequent (small
node sizes). When the ACG contains a high number of nodes and edges, we
propose to apply filtering techniques allowing to reduce the number of edges
and nodes and make it clearer to read and easier to interpret.

Assuming that the relevance of a correlation condition depends on the weight
of its associated edges in the ACG, applying graph filtering techniques to the
ACG allows to discover relevant correlation conditions. Graph filtering tech-
niques can consist of removing low weighted edges, and consequently the poten-
tial resulting orphan nodes, those removed edges are non frequent cases. After
applying the filtering, it is then possible to read the filtered ACG and clearly
identify relevant correlations.

The relevance of a correlation conditions depends on the number of process in-
stances actually verifying that correlation condition in the log. Therefore, graph
filtering can play an important role in highlighting potentially relevant corre-
lation conditions from the ACG. An example of filtered ACG compared to an
unfiltered ACG is illustrated in figure 3. The size of a node in the graph corre-
sponds to the number of messages associated to it in the ACG. The thickness of
an edge corresponds to its weight in the ACG.

3.6 Discussion

In some cases, correlator attributes in the log could have the same value for a
large number of messages. This has a major consequence on the resulting ACG

652 A. Guabtni, H.R. Motahari-Nezhad, and B. Benatallah

Fig. 3. Example of unfiltered ACG (left side) and filtered ACG (right side)

as two correlated messages cannot be associated with the same node in the ACG
and therefore, if a large number of messages are correlated with each others, the
ACG would have a large number of nodes and that makes its size inefficient.
The relevance of an attribute depends on the diversity of its values within the
service interaction log. A threshold is set to ignore attributes having low diversity
meaning that most of the messages have the same value for the same attribute.

In some other cases, messages of iterative service calls (loops in a process)
can occur in the log. The sequences of correlation conditions referring to a same
process model may have various lengths as each execution introduces a variable
number of loops, and thus includes a variable number of repetitive subsequences
in the ACG graph. Therefore, such sequences are not aggregated together and
lead to the identification of several processes.

Also, the approach works well if the log contains correlator attributes and
every two consecutive messages belonging to a same process instance are actually
correlated using some of those correlator attributes. Therefore, if the process
is larger, it is more likely to have broken correlation chains. This is the case
when two consecutive messages belonging to a same process instance are not
correlated using any pair of correlator attributes. In such cases, a large process
will be fragmented in the ACG as multiple smaller processes.

Finally, noise in service logs affects the result of correlation discovery as widely
observed [5] [6]. Real-world logs are imperfect, i.e., they are incomplete (corre-
spond to a subset of possible execution) and noisy (e.g., do not record some
messages). A known approach to deal with noise in logs is to use a frequency
threshold to filter noisy data [11]. In previous work [5], we have presented a
quantitative approach for estimating a noise threshold used to filter noise from
service logs. In this paper, we assume that the log is free of noise, or has been
cleaned from noise in a pre-processing step.

Using Graph Aggregation for Service Interaction Message Correlation 653

4 Implementations and Experiments

A prototype has been developed to implement the proposed approach and offers
4 user driven steps:
Step 1 - Uploading Event Log Data
The format considered in this paper to represent service interaction log files is
the Comma Separated Values (CSV). The user can upload a CSV file using a
Web interface. For our experiments, we used a CSV log file generated using HP
SOA Manager (SOAM) which is a monitoring tool for Web services. SOAM cap-
tures all the messages that are exchanged to/from the set of registered services.
The resulting log represents a scenario generated based on WS-I (Web Service
Interoperability Organization) for a set of services in the supply chain (Retailer
services). Figure 1 illustrates a short sample of data generated by SOAM.
Step 2 - Indexing Messages and Selection of Correlator Attributes
This step allows to build indexes for each attribute in the service interaction
log. Such indexes allow to speedup the algorithm for building the ACG. We use
information about the size of each index to suggest which attributes are to be
considered as relevant for message correlation.
Step 3 - Aggregating Messages to Build the ACG Graph
This step allows to build the ACG by executing algorithm 1. The inverted in-
dex described in section 3.4 is also built incrementally during this step. Once
the ACG and the inverted index are created, they are stored on the back-end
database.
Step 4 - Filtering and Visualizing the ACG Graph
This is the final step and it allows, optionally, the filtering of the ACG, and the
visualization of the ACG graph highlighting the relevant sequences of correlation
conditions.

An evaluation of the tool has been conducted using service interaction logs
of various sizes, based on the Retailer services. Four logs containing respectively
1000, 2000, 3000 and 4000 messages have been processed to generate their asso-
ciated ACG. A first analysis concerns the impact of the number of messages in
the log on the size of the filtered ACG as illustrated in figure 4 (a). It shows the
number of nodes in the resulting filtered ACG (with 50% threshold) for service
interaction logs of various sizes. This experiment shows that the size of the fil-
tered ACG is relatively the same regardless of the size of the service interaction
log. This is due to the fact that filtered ACG shows the most frequent processes
and therefore do not include all the ways messages are correlated.

A second analysis concerns the impact of the number of messages in the log on
the size of the ACG (unfiltered) as illustrated in figure 4 (b). It shows the number
of nodes in the resulting unfiltered ACG for service interaction logs of various
sizes. The number of nodes in the unfiltered ACG starts stabilizing to a certain
level at around 3000 messages in the log. This is due to the fact that process
instances are usually repetitive in the log and the proposed algorithm aggregates
similar sequences of correlation conditions. Therefore, when a large number of
messages are placed in the ACG, most of the sequences of correlation conditions

654 A. Guabtni, H.R. Motahari-Nezhad, and B. Benatallah

Fig. 4. Impact of log size on filtered ACG size (a), on unfiltered ACG size (b), and on
processing time for generating the ACG (c)

become represented in the ACG. Thus, processing more messages would lead to
increasing the size of existing nodes and the weight of existing edges but not
increasing the number of nodes or edges. The stability in the number of nodes
of the ACG makes the proposed approach effective in generating a useful ACG
regardless of the size of the message interaction log.

The third and last analysis concerns the processing time needed to generate
the ACG. Figure 4 (c) shows the time needed to build the ACG from service
interaction logs of various sizes. Although the size of the ACG is stabilized over a
certain number of messages, it is required to process all available messages from
the log, just in case additional unexpected sequences of correlation conditions
may occur. Therefore, it takes longer to process a larger log as illustrated in
figure 4 (c).

5 Related Work

The need for automated approaches to message correlation in Web services has
first been reported in [4] where a real situation on how to correlate service
messages is presented. A categorization of various correlation methods in Web
service workflows are presented in [1]. However, no automated support for mes-
sage correlation is reported. The need for automated approaches for correlation
of service messages in composite business applications is also raised in IBM
Websphere platform [9]. This work presents an approach for the discovery of
correlation identifiers in messages from the log of service interactions. This ap-
proach identifies the correlation between message types (e.g., PurchaseOrder and
Invoice message types). This approach only considers atomic conditions, while
we also consider composite correlation conditions. Also, this approach only con-
cerns correlations between pairs of message types which does not allow to reason
at the process instance level.

In related work also Web usage mining investigates the problem of session
reconstruction [10]. A session represents all the activities of a user on a Web site
during a single visit. Identification of users is usually achieved using cookies and
IP addresses, if available, or through heuristics on the duration and behavior of
the user. By contrast, when correlating messages, we assume that the correlation

Using Graph Aggregation for Service Interaction Message Correlation 655

information is in the content of events (their attributes), and the problem is
that of discovering which attributes or combination thereof are correlators. In
contrast, in time-based session reconstruction, the issue of how to decide on the
boundaries of the session is often related to the specification of the time delays
between user activities.

In [2], an approach for constructing process instances from sender-receiver
information has been proposed in the context of Web services. However, the
used correlation criteria does not look at the content of exchanged messages for
understanding the correlation between messages.

As a complementary work to our paper, a probabilistic approach based on
iterative model convergence is used in [3] for discovering process models from
unlabeled event logs. In our approach, we consider the message payload for the
purpose of correlation and building the set of process instances.

Finally, in our previous work [8,7] various types of CCs are identified and used
to discover interesting CCs and build process instances. The interestingness of
CCs are defined based on heuristic-based criteria and user input. The aim of
that approach is to prune the space of all possible CCs to only visit the relevant
ones by reducing the number of considered CCs depending on their evaluated
interestingness. Such approach is favoring the exploration of space of possible
CCs. However, the notion of interestingness of CCs is based on heuristics and
assumptions leading to ignoring many non-interesting correlations. However, in-
terestingness of correlations is subjective. For example, one can aim to discover
rare or exceptional correlations for identifying how a process in an organization
executes in exceptional circumstances. Heuristics may be adapted to do so, how-
ever, it implies re-executing CC’s interestingness evaluation according to every
new heuristic. In contrast, our approach allows to try heuristic-based filtering
on the ACG without the need to re-generate it.

6 Conclusion and Perspectives

In this paper, we proposed an efficient approach that quickly discovers poten-
tially relevant sequences of correlation conditions from large service interaction
logs. The approach reads a service interaction log, and builds an Aggregated
Correlation Graph (ACG), which is size-efficient and exhibits all the sequences
of correlation conditions identified in the log in a single graph. Such ACG is vi-
sualized and refined by the user through filtering parameters to identify relevant
sequences of correlation conditions which reveal process instances.

Existing process discovery algorithms require as input the list of all process
instances. An important step in future work would be the discovery of process
models directly from the ACG, taking advantage of its efficient size and proper-
ties. This step is currently under experiments and is based on a mapping between
the ACG and a BPMN representation of the process model. The major challenge
here is to identify control flow operators (AND join, AND split, etc.). Another
future work would be to offer an open interface for process-aware information
systems to log in real-time messages directly into the proposed system for imme-
diate inclusion in the ACG. Finally, further experiments with much larger service

656 A. Guabtni, H.R. Motahari-Nezhad, and B. Benatallah

interaction logs would unveil the need of taking advantage of the inverted index
compression techniques to further enhance the performance.

References

1. Barros, A., Decker, G., Dumas, M., Weber, F.: Correlation patterns in service-
oriented architectures. In: Proceedings of FASE Conference, pp. 245–259. Springer,
Heidelberg (2007)

2. De Pauw, W., Lei, M., Pring, E., Villard, L., Arnold, M., Morar, J.F.: Web services
navigator: visualizing the execution of web services. IBM Syst. J. 44, 821–845
(2005)

3. Ferreira, D.R., Gillblad, D.: Discovering Process Models from Unlabelled Event
Logs. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS,
vol. 5701, pp. 143–158. Springer, Heidelberg (2009)

4. Motahari, H.R., Benatallah, B., Saint-Paul, R.: Protocol discovery from imperfect
service interaction data. In: Proceedings of VLDB Ph.D. Workshop (2006)

5. Motahari-Nezhad, H.R., Saint-Paul, R., Benatallah, B., Casati, F.: Deriving proto-
col models from imperfect service conversation logs. TKDE 20, 1683–1698 (2008)

6. Măruşter, L., Weijters, A.J., Aalst, W.M., Bosch, A.: A rule-based approach for
process discovery: Dealing with noise and imbalance in process logs. Data Min.
Knowl. Discov. 13(1), 67–87 (2006)

7. Motahari Nezhad, H.R., Benatallah, B., Saint-Paul, R., Casati, F., Andritsos, P.:
Peocess spaceship: Discovering process views in process spaces. Technical Report
UNSW-CSE-TR-0721. The University of New South Wales, Australia (2007)

8. Nezhad, H.R.M., Benatallah, B., Saint-Paul, R., Casati, F., Andritsos, P.: Process
spaceship: discovering and exploring process views from event logs in data spaces.
PVLDB 1(2), 1412–1415 (2008)

9. Pauw, W.D., Hoch, R., Huang, Y.: Discovering conversations in web services using
semantic correlation analysis. In: Proceedings of ICWS Conference, 639–646 (2007)

10. Spiliopoulou, M., Mobasher, B., Berendt, B., Nakagawa, M.: A framework for the
evaluation of session reconstruction heuristics in web-usage analysis. Informs J. on
Computing 15(2), 171–190 (2003)

11. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow mining: a survey of issues and approaches. Data
Knowl. Eng. 47(2), 237–267 (2003)

12. Zhang, J., Long, X., Suel, T.: Performance of compressed inverted list caching in
search engines. In: Proceeding of WWW Conference, pp. 387–396. ACM, New York
(2008)

Supporting Dynamic, People-Driven Processes

through Self-learning of Message Flows

Christoph Dorn1,2 and Schahram Dustdar2

1 Institute for Software Research, University of California, Irvine, CA 92697-3455
cdorn@uci.edu

2 Distributed Systems Group, Vienna University of Technology, 1040 Vienna, Austria
lastname@infosys.tuwien.ac.at

Abstract. Flexibility and automatic learning are key aspects to sup-
port users in dynamic business environments such as value chains across
SMEs or when organizing a large event. Process centric information sys-
tems need to adapt to changing environmental constraints as reflected
in the user’s behavior in order to provide suitable activity recommen-
dations. This paper addresses the problem of automatically detecting
and managing message flows in evolving people-driven processes. We in-
troduce a probabilistic process model and message state model to learn
message-activity dependencies, predict message occurrence, and keep the
process model in line with real world user behavior. Our probabilistic pro-
cess engine demonstrates rapid learning of message flow evolution while
maintaining the quality of activity recommendations.

Keywords: message prediction, process log mining, people-driven
processes, process evolution, message activity dependencies.

1 Introduction

Modern information systems need to enable flexibility and automatic adaptation
capabilities in order to cope with continuously evolving environments where a-
priori fixed requirements are rarely applicable. Organization of multi-national
events such as the Olympic Games or management of value chains across a large
set of Small and Medium-sized Enterprises (SMEs) are just two examples where
exact work practices cannot be precisely defined and executed. In such environ-
ments, users engage in knowledge and coordination intensive workflows that are
subject to continuous change. Processes evolve as participants tune their work
practice to increase efficiency and effectiveness. Thus, users want to focus on their
tasks rather than managing and updating their workflow. Instead the involved
information systems should learn from and adapt to the users automatically.

In this paper, we address the case of people-driven dynamic processes. There
exists a process model that describes the activities carried out by humans repre-
senting their expertise. Users are, however, completely free to deviate from the
underlying model which cannot foresee all possible situations. These processes
heavily rely on exchanging unstructured or semi-structured messages such as

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 657–671, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

658 C. Dorn and S. Dustdar

emails. When organizing a large event, these messages are the main artifacts
to coordinate between participants. While the necessary activities are relatively
clear, the type of messages, their occurrence, and evolution will remain dynamic.
We address three major problems (i) learning of message-activity dependencies,
(ii) prediction of which messages will arrive, and (iii) automatically reflecting
work evolution in the process model. The subsequent challenges are then to
distinguish between accidental one-time deviations and desired process improve-
ments, managing the interleaving of messages, and the inability to observe the
complete set of user actions.

Our contributions in this paper are (i) a probabilistic process model and exe-
cution engine that does not rely on a precise occurrence or absence of messages;
(ii) a self-learning (thus unsupervised) message flow algorithm to detect message-
activity dependencies and updates thereof; and (iii) a message recommendation
mechanism to support the analysis of unstructured and semi-structured mes-
sages. The main applied approaches are log sequence mining, and providing —
respectively extracting — message-activity correlation information.

Our contributions bring benefit to both process designers and process users.
Process designers need not capture all possible deviations nor the exact mapping
of input and output messages to activities as this is automatically learned from
process users. These in turn see the immediate effect of their applied expertise
in form of process model changes without having to include a dedicated process
designer.

The remainder of this paper is structured as follows: A motivating scenario
sets the scene for our self-learning message flow algorithm (Section 1.1). We
discuss related work in Section 2. Section 3 introduces our approach, followed by
the probabilistic models in Section 4. Section 5 describes the recommendation
and learning mechanism, which we evaluate in Section 6. We provide a short
conclusion and outlook on future work in Section 7.

1.1 Motivating Scenario

The example in Figure 1 depicts a flexible people-driven order process. The
individual work steps describe a general order of user activities to successfully
complete a process instance. The outlined flow, however, does not enforce the
exact order of activities, which is up to the user, and covers no exceptions or
process adaptations that might arise due to specific customer request, incomplete
information, or user specific expertise. Consequently, the listed document types
that characterize the exchanged messages specify merely an initial set of expected
documents. The process visualization in Figure 1 does not apply any particular
process modeling language but rather presents an intuitive view on the involved
documents that represent input and output of activities. In this scenario, we
encounter various forms of message flow evolution:

Missing Documents : When the Replenish step (C) is updated to make use
of an automatic restocking system, only user confirmation is required and
the Quote message (3) no longer occurs.

Supporting Dynamic, People-Driven Processes 659

[F]
Prepare

Shipment

[G]
Billing +
Invoicing

[H]
Regular
Dispatch

V V

[J]
Priority

Dispatch

XOR

(1) Order

(2) Offer

[A]
Confirm
Order

[B]
Check

Inventory

[E]
Send

Acceptance

[C]
Replenish

[D]
Credit
Check

V V

(8)
Delivery

Note

(5a)
Agreement(3) Quote

(7) Invoice
(5b) Job

Description

(6) AuthOf
Invoice

(4)
CreditNote

Fig. 1. Generic order process and associated document types

Delayed Documents : A company potentially decides to delay the Agreement
(5a) message until the PrepareShipment (F) activity signals the completion
of the production and packaging sub process. Such a company might depend
on just-in-time delivery of subcontracted parts and thus cannot guarantee
order completion any earlier.

Premature Documents : For premium customers, shipping becomes indepen-
dent of billing thus the DeliveryNote message (8) potentially occurs before
Invoice (7).

Shifted Documents : To guarantee that the Invoice (7) always exactly reflects
the packaged goods, the ERP system no longer issues the Authenticationof
Invoice message (6). Instead the PrepareShipment (F) step triggers this
message.

2 Related Work

In the last decades considerable research effort was spent on systems for sup-
porting flexible processes. In dynamic environments where business requirements
continuously change, processes need to be able to adapt to fluctuating con-
straints. Processes cannot remain rigidly structured but need to support ad-hoc
human control and evolve along alternative execution paths. Depending on the
supported level of flexibility, we can distinguish between roughly three types of
processes (including some example works):

Ad-hoc processes provide no constraints on the order of process activities and
provide the user complete freedom of choice [9,6,20,3].

Semi-structured processes (or case-based processes [17]) contain some struc-
ture and capture best practices (e.g., from previous process instances) but
are still too complex to be fully specified for automatic execution [18,2,15,19].

Well-structured processes are rigidly configured and determine for each con-
dition the exact flow of control, data, and the involved resources and actors.
User involvement is limited to human tasks (if at all) while process manage-
ment and execution control is fully automated [16,1,14].

660 C. Dorn and S. Dustdar

On the one hand, our approach incorporates aspects of all three process types.
Our notion of people-driven process allows users to determine ad-hoc the process
execution order. There exists, however, a well structured process model as a
baseline guidance. Recommendations and learning is similar to semi-structured
systems as we apply past execution traces to dynamically update the process
model.

On the other hand, our approach deviates in several aspects from existing flex-
ible process recommendation systems. We relax the assumption of complete ob-
servability of user actions and instead rely on a combination of observed messages
and actions. The primary focus in this paper, however, lies on the self-adaptation
of message flows, leaving a reordering and adjustment of process activities aside.
We addressed this aspect of automatic people-driven process adaptation in our
previous work [5]. In addition, we expect the message structure and thus the
recognized types to change over time. Subsequently, we determine a dependency
between message types and activities dynamically through analysis of execution
traces. In a similar effort, Lakshmanan et al. [12] describe how an ant colony
optimization algorithm learns dependencies of document contents (e.g., the im-
pact of certain values within a message) to predict the flow and outcome of a
process. They also apply exponential aging to keep the decision probabilities up
to date. The underlying process model, however, remains unchanged.

Related work that explicitly applies autonomic computing principles [10] for
adaptive workflow and process support systems react to system internal events
such as workload fluctuations [8], goal changes [7], or service replacements [21]
when executing well-structured processes. These approaches, however, target
only system elements and offer no support for having the user dynamically adapt
the process. In contrast we aim to apply those autonomic principles primarily
for achieving unsupervised learning and user recommendation.

3 Approach

Successful activity recommendations in people-driven processes (i.e., the user
actually carries out the proposed activity) depend on correct classification of
incoming and outgoing messages and their associated activities. Supporting users
in dynamically evolving processes consists of two aspects: (i) run-time tracing of
process progress including probabilistic message prediction, and (ii) automatic
refinement of process model and message probabilities upon process termination.

The main phases of the run-time recommendation support is depicted in Fig-
ure 2. The core of the Probabilistic Process Engine consists of the process model
that describes the general structure and current interdependencies of steps and
messages (see Sec. 4.1). The Message State Model captures the likelihood for a
message to occur in that process on time, early, late, or repeatedly (see Sec. 4.2).

For each intercepted message and observed user action, the process engine
extracts the correlation of messages and activities to determine which activity
produced a particular message, and which message served as input to a given ac-
tivity (1). Next, the engine analyzes whether the observed messages and actions

Supporting Dynamic, People-Driven Processes 661

Message & Activity
Recommendation

Message
State
Update

Msg &
Action
Correlation

Msg &
Activity

RankingSequence
Analysis

Process Model
Adaptation

Message State
Model Tuning

S
el

f-l
ea

rn
in

g
M

es
sa

ge
 F

lo
w

s

Process
Progress

Update

Process Model
& Msg State

Model

Messages & User
Actions

Probabilistic Process Engine

1

2 3

4
5

6

7

Fig. 2. Supporting message prediction and activity recommendation through self-
learning message flows

advance the progress of the process (2). Any completed activity potentially re-
sults in an update of one or more messages, respectively their expectation states:
messages are activated, become missing, or should no longer occur (3). Finally,
the engine ranks messages according to their probability to occur, and activities
to be carried out next (4). Activity recommendations support the user in car-
rying out his/her work. Message recommendations support the classification of
unstructured and semi-structured messages that are exchanged between process
participants.

After successful completion of a process instance, the mechanism we present in
the following sections analyzes the sequence and timing of activities and messages
(5) to update the process model (6) and message state model (7) to accurately
reflect the changes in the real world.

Our approach specifically targets dynamic business environments that mostly
rely on unstructured or semi-structured messaging to communicate and co-
ordinate processes. SMEs and event organization usually coordinate and col-
laborate via email. Our approach relies on an infrastructure for intercepting
those messages, extracting relevant information, and mapping those messages
to document types. In our case, the EU FP7 Project Commius provides the
necessary framework to extract information from emails and conduct a basic,
process-unaware email content analysis. Details on the actual process orches-
tration as well as message interception, extraction, analysis, and user inter-
faces are outside the scope of this paper. The interested reader is referred to
previous project-related publications [4,13,11]. Our prototype implements the
algorithms and techniques introduced in this paper to support the email con-
tent analysis by determining the expected document types. The activity rec-
ommendations allow the annotation of emails with process-relevant information
(as defined in the activity description) before forwarding them to the actual
recipient.

662 C. Dorn and S. Dustdar

4 Models

4.1 Probabilistic Process Model

In an environment where most communication happens via unstructured and
semi-structured messages such as email, we cannot expect to have an integrated
IT infrastructure (such as traditional process engines require) that allows a uni-
fied observation of all user actions. Likewise, we cannot assume a tight coupling
of process activities and corresponding message types.

Our process model (see also Figure 3 left side) consists of ActivityNodes and
Connectors which link multiple activities together via FlowDirection arcs. Ac-
tivity nodes, connectors, and arcs form a directed acyclical graph where activity
nodes always exhibit exactly one incoming and one outgoing arc. Only connec-
tors potentially have in- and out-degree above 1. The FlowData annotations
of the FlowDirection arcs describe the corresponding activity input and output
messages. The Occurence attribute describes in the interval [0, 1] the likelihood
a message of the stated type will arrive. A connector describes how multiple
activities are interlinked applying the traditional flow constructs of AND, OR,
XOR splits, respectively joins. An activity consists of one or more Actions the
user needs to carry out in order to consider that activity as completed. Alterna-
tively, we consider an activity successfully performed when all specified output
Messages have been transmitted.

tFlow
«attribute» ProcessId : anyURI
«attribute» ProcessTypeId : anyURI [0..1]

tConnector
«attribute» InFlowType : tConnectorType [0..1]
«attribute» OutFlowType : tConnectorType [0..1]

Connector
1..*

tActivityNode
«attribute» ProcessNodeId : anyURI
«attribute» ActivityTypeRefURI : anyURI
«attribute» State : tNodeState [0..1] = OFF

Nodes
0..*

tFlowDirection
«attribute» ProcessNodeId : anyURI
«attribute» State : tArcState [0..1] = OFF

InFlow
0..*

OutFlow
0..*

tFlowData
«attribute» DataRef : anyURI [0..1]
«attribute» DataTypeRef : anyURI
«attribute» Occurrence : decimal [0..1] = 1

FlowData
0..*

tMessage
ReferencesMessages : anyURI [0..*]
«attribute» MessageURI : anyURI
«attribute» MessageTypeRefURI : anyURI [0..1]
«attribute» MessageClassificationAccuracy : decimal [0..1]
«attribute» ResponseToMessageURI : anyURI [0..1]
«attribute» Timestamp : dateTime [0..1]

tAction
InvokedByClient : anyURI [0..*]
ExecutedOnBehalfOfUser : anyURI [0..*]
InvolvedMessage : anyURI [0..*]
«attribute» ActionURI : anyURI [0..1]
«attribute» ActivityRefURI : anyURI [0..1]
«attribute» Timestamp : dateTime [0..1]

tService
OperationId : string [0..1]
«attribute» ServiceURI : anyURI

AppliedResource
0..*

Fig. 3. Flow Model supporting the annotation of transitions with probabilistic mes-
sage types; Action model and Message meta data model for correlating messages and
activities

NodeStates (Off , Active, Completed, Skipped) and ArcStates (Off , Active,
Selected) track the process progress and determine which subsequent arcs and
nodes describe upcoming messages to expect and activities to carry out. The flow
model describes the involved messages types and their probability to occur on a
particular place in the process. The overall probability that a message will arrive
at a given point in time, however, is hard to establish. We, therefore, pair the flow
model with a Probabilistic Message State Model for each involved message type.

Supporting Dynamic, People-Driven Processes 663

4.2 Probabilistic Message State Model

The message state model describes the possible message states (such as sched-
uled, expected, arrived) and the likelihood for transitions between those states
during the process. We track only messages that are defined in the process model,
each in a separate state model instance that is valid only for that particular pro-
cess type and message type.

The state model is defined as a directed graph GState(V, E) where states are
represented by vertices (v ∈ V) and labeled edges (e ∈ E) represent transitions.
A labeled transition between neighboring states describes the probability that
this transition will occur (w(vi, vj) = [0, 1]). The sum of outgoing transition
probabilities is always 1. The state model can be interpreted as a Markov chain
that describes the probability of reaching a particular state when a transition
occurs. We neglect self-transitions as the duration a message type remains in a
certain state is irrelevant for our purpose. We are only interested in the proba-
bilities of reaching each of the subsequent states.

State transitions from Start to Scheduled, Expected, Missing, and
NotExpected are driven by the process progress. Transitions to any Received
state and to Repeated are message driven. The process termination finally trig-
gers the transition to Occurred and NotOccurred. The initial transition prob-
abilities (depicted in Figure 4) are optimistic: we assume a message to occur
exactly once when its Expected or Missing, and when Not Expected to remain
absent.

Scheduled. Initially every message is scheduled to take place at some time
during the process lifetime.

Expected. A message becomes expected once it is needed to activate an activity
or an activity is activated and is expected to produce the message as output.

Missing. Whenever an activity is completed without the required input, we
mark its input message as missing. Likewise, we also mark any expected
output message of an active preceding activity as missing.

Not Expected. When a user explicitly skips an activity, or an alternative XOR
branch is completed — thereby skipping the involved activities — any mes-
sage type to or from such activity is no longer expected.

Received Early. A message arriving while in state Scheduled indicates a po-
tential change in the process model or just a one-time deviation.

Received On Time. A message arrives on time according to the process model.
Received Late. The arrival of a missing message indicates a potential change

in the process model or just a one-time deviation.
Received Unexpected. Indicates that a skipped activity needed to be carried

out anyway or a parallel branch is incorrectly specified as XOR.
Repeated. A message is received multiple times.
Occurred. The message has been sent or received at process end.
Never Occurred. The message did not occur for whatever reasons.

664 C. Dorn and S. Dustdar

Super-State: ArrivedSuper-State: Waiting

Scheduled

Expected Received
On Time

Repeated

Missing

Received
Early

Received
Late

Occurred

Never
Occurred

Not
Expected

Received
Unexpected

1

0

0
01

0

0

0

0

0

0

0

1
0

Start
0

1

1

0

1

Fig. 4. State Transition model for a single message type. Each model instance provides
for a message type and process model the specific transition probabilities

5 Prediction and Self-adjusting Mechanisms

5.1 Probabilistic Process Management

Messages in form of FlowData annotations play a central role in the progress
tracking and process step activation (and ultimately recommendation). Messages
often define the trigger condition for an activity. For example in the scenario:
Quote (3) is required to continue with Replenish (C) but does not arrive for
whatever reasons (unobservable communication channel, delayed arrival, or sim-
ply no longer necessary) it will halt the process progress. The recommendation
mechanism would not continue to suggest to execute inactive process step (C).
We, therefore, need a mechanism to decide when the process engine should wait
for a message to arrive, and when to continue with analyzing and activating the
subsequent FlowDirection arcs and process steps.

Whenever the probabilistic flow engine checks a FlowDirection arc for activa-
tion, it compiles a list of available Ma and missing Mm messages for that arc.
For all messages, we calculate the sum of probabilities ptotal =

∑
poccur(msg ∈

Mm∨Ma) and additionally the likelihood pmiss =
∑

poccur(msg ∈ Mm) that at
least one of the missing messages will arrive. We then apply following rules to
determine whether the message conditions on an arc can be considered satisfied
(GO) or not (NOGO):

1. NOGO if ptotal == 1
∨ |Ma| < 1: the first condition describes a set of

alternative messages and if non of those have yet arrive (second condition)
we continue to wait.

2. NOGO if at least one missing message (msg ∈ Mm) always arrives
(poccur(msg) == 1) we continue to wait.

3. GO if |Mm| == ∅: no message is missing.
4. GO if ptotal == |Ma|: its sufficient when the arrived messages cover the

probability of all documents.
5. GO if Random(0, 1) > pmiss else NOGO: if the set of messages neither

constitute XOR alternatives, nor a compulsory AND set, but one (or sev-
eral) out of many we apply a random value from the interval [0, 1]. If that
random value is larger than the probability that any missing message will

Supporting Dynamic, People-Driven Processes 665

arrive pmiss, then we consider the FlowData as satisfied and activate the
corresponding arc.

Let is consider the incoming arc of Billing and Invoicing [G] from the scenario:
messages (5b) and (6) always occur thus their probability is 1. Assume (5b)
arrives then rule 2 applies, as we are still waiting for (6). Once message (6)
arrives, rule 3 would consider the arc conditions satisfied and subsequently enable
activity [G].

When the observed messages suffice to activate the underlying arc, we it-
erate through all non-observed alternative messages (that still reside in state
Scheduled, Expected, or Missing) and switch them to NotExpected as we no
longer require their appearance.

5.2 Message Prediction

Message prediction is purely based on the transition labels between message
states. In any of the Waiting states the probability is determined based on the
transition to the respective received state. From any of the Arrived states the
probability is determined by the transition weight to the Repeated state.

After any change to any of the messages’ state model, the messages are ranked
according to their probability to occur in their current state. The top ranked
message(s) constitute the prediction and are applied during the classification
of newly intercepted messages. Suppose we have two messages and their corre-
sponding message state models depicted in Figure 5(a) and (b): the first one
currently in state Expected, the second in state Missing. Hence, we would pre-
dict the occurrence of message (b) with poccur(b) = 0.9 rather than message (a)
with poccur(a) = 0.7. We are thus able to address and manage messages that
over multiple process instances no longer adhere to the process model but have
become delayed.

Scheduled

Expected Received
On Time

Repeated

Missing

Received
Early

Received
Late

Not
Expected

Received
Unexpected

1

0.7

0.9

1

0.3

1

OccurredNever Occurred

0.1

Scheduled

Expected Received
On Time

Repeated

Missing

Received
Early

Received
Late

Not
Expected

Received
Unexpected

1

0.2

1

1

0.1

0.8

OccurredNever Occurred

0.9

Scheduled

Expected Received
On Time

Repeated

Missing

Received
Early

Received
Late

Not
Expected

Received
Unexpected

1

0.14

1

1

0.37

0.86

OccurredNever Occurred

0.63

(a) (b) (c)

Fig. 5. Examples of message state model instances: only non-zero transitions are in-
cluded for sake of clarity. Subfigure (a) displays a message that when expected occurs
with 70% probability and is repeated in 10% of process cases. Subfigure (b) describes a
message that occurs only 20% on time, but still arrives in 90% of all cases when miss-
ing. The effect on the transition probabilities of that message never occurring (thick
lines and labels) in a single process instance is depicted in subfigure (c).

666 C. Dorn and S. Dustdar

5.3 Message State Adjustment

After successful process termination, the message state model of each message in
the scope of that process is adjusted. During the process execution, each model
stores the sequence of message state transition (SeqST). All transition leaving
any state listed in the sequence set are processed so their transition weights
reflect the latest process instance. We apply an exponentially weighted moving
average (EWMA) to update the transition probabilities.

wt+1(vi, vj) =

{
1 ∗ α + (1− α) ∗ wt(vi, vj) if vi, vj ∈ SeqST ,
0 ∗ α + (1− α) ∗ wt(vi, vj) if vi, vj 	∈ SeqST .

With EWMA, old process sequences have exponentially lower impact on the
new probability value than more recent sequences. The coefficient α determines
the significance of older values. With α close to 0, new values have next to no
impact on the new probability and vice versa for α close to 1. As the updated
probability depends only on the previous probability and the current state se-
quences, little memory is required to store the transition labels. Figure 5 (c)
display the transition update result for the underlying message state after the
state sequences in subfigure (b) are evaluated.

5.4 Self-learning Message Flows

After each process, we analyze the order in which activities and messages have
occurred and compare it to the underlying process model (PM). Any message de-
viation needs to become reflected in the process model, e.g., a new message type
emerged, an activity did not produce the expected message, a message did not
serve as input as expected. During process execution, we captured the sequence
of all message-activity dependency tuples (tup(msg, act) ∈ SeqMA) by extract-
ing message references from user actions, and activity references from messages.
Algorithm 1 describes the technique for updating a process model’s FlowData.
For each tuple, we step through the process model in breadth-first style (lines
4-7, 20-21) and locate the corresponding FlowDirection arc and FlowData anno-
tation (lines 8-11, 19). Once found, we increase the FlowData occurrence value
(occ(fd, mt)) using exponentially weighted moving average (EWMA) (lines 12-
15). At the end, FlowData annotations that are not covered by sequence tuples
(tup(msg, act)) receive a lower occurrence value (lines 22-23):

occt+1(fd, mt) =

⎧⎪⎨
⎪⎩

1 ∗ β + (1 − β) ∗ occt(fd, mt) if ∃tup(msg,act) ≡ tup(fd,mt)

: tup(msg,act) ∈ SeqMA,

0 ∗ β + (1 − β) ∗ occt(fd, mt) otherwise

where the tuple tup(fd, mt) describes a FlowDirection fd with a FlowData
annotation referencing message type mt. Coefficient β determines again how
quickly a new message emerges or disappears on an arc.

Message types that show up for the first time, or messages types that ar-
rive early result in a new FlowData annotation (lines 16-18). In the latter case,
we reduce the original annotation occurrence value in addition. Message types

Supporting Dynamic, People-Driven Processes 667

that take place at a later stage of the process than specified receive the same
treatment. We reduce their initial annotation value, and create a new FlowData
annotation where we actually observed the message. When we have not observed
a message type at all, we reduce all instances of the respective FlowData anno-
tation. At the end, we clean the process model from rarely used FlowData anno-
tations that would otherwise interfere with the message state model as message
would be activated too early or remain expected too long (line 24). Experiments
have identified a suitable cutoff value of 0.1. Arcs, however, that are inactive
at the end of the process (due to explicit user skipping or non executed XOR
branches) need no refreshing and are ignored. We insure this in Algorithm 1 by
providing only the set of active FlowDirections in FDactive in the first place.

Algorithm1 Self-learning Dependencies Algorithm A(PM, SeqAM , FDactive).
1: for all tup(msg, act) ∈ SeqAM do � For each activity-message tuple.
2: N ← PM.startNode � List of nodes that we haven’t checked yet
3: found ← false
4: while !found ∨ !N.empty do � While not found and not at the process end
5: for i = N.size → 0 do
6: Node n ← Ni

7: N ← N − n
8: for all FlowDirection df ∈ n.outF low() do
9: if fd.getActivity == act then

10: actOk ← true � Found the correct activity

11: FlowData data == fd.get(msg)
12: if data �= null ∨ actOk ∨ fd.dir == tup(msg, act).dir then
13: increaseByEWMA(data)
14: FDactive ← FDactive − data
15: msgOk ← true

16: if actOk ∨ !msgOk ∨ fd.dir == tup(msg, act).dir then
17: fd ← fd+FlowData(msg) � Add a new FlowData to the arc
18: msgOk ← true

19: found ← actOk ∨ msgOk

20: if !found then � Adding the next set of nodes to the search list
21: N ← n.getSuccessorNodes()

22: for all FlowDatadata ∈ FDactive do
23: reduceByEWMA(data)

24: removeF lowData(cutoffV alue) � remove rarely occurring FlowData.

.

6 Evaluation

We evaluate our approach based on the motivating scenario in Section 1.1. Specif-
ically, we are interested in the time it takes to learn an evolved message flow
given a fixed process model. In addition, we observe how the updated message
states and FlowData annotation affect activity recommendations. We simulate

668 C. Dorn and S. Dustdar

user behavior though prepared log sequences that consist of activities and mes-
sages. The sequences serve as input to the Probabilistic Process Engine which is
initiated with the original scenario process.

6.1 Experiment Setup and Success Metrics

Two quality metrics measure the success of our learning and adaptation mech-
anism. The Message Classification Error (MCE in range [0, 1]) determines for
each incoming unknown message during the experiments how close our message
prediction algorithm gets. MCE = 0 when the actual message type and highest
ranked predicted message type are identical, otherwise we extract the matching
message type from the ranking list and take the inverse of its expected occur-
rence probability 1−poccur) (i.e., the lower its probability, the higher the MCE).
Suppose for an incoming message the algorithm produces following ranking re-
sult [(7) : 0.5], [(8) : 0.4], [(2) : 0.1]: MCE would yield 0.6 when the message is
actually of type (8). For measuring the effect towards the user, we apply the
Activity Recommendation Error (ARE in range [0, 1]) which is analogue to the
MCE: when the next element in the log sequence is an activity, we retrieve an
activity recommendation and locate the matching activity. We keep the activ-
ity recommendation mechanism intentionally simple to focus only on the effect
of the message state model and probabilistic flow model. Active activities are
ranked based on their time since activation, thus the longer an activity remains
unfinished, the higher it will score.

Two activity message log sequences describe an evolution of the initial process
model. The Quote (3) message is no longer used, the Agreement (5a) message
is delayed until completion of the PrepareShipment (F) activity which also trig-
gers the Authorization Of Invoice message (6). The Invoice (7) is produced when
executing Priority Dispatch (J). The Delivery Note (8) only applies to Regular
Dispatch (H). During all experiments, we set EWMA coefficients α = 0.3 and
β = 0.4 which is a trade-off between rapid uptake of novel user behavior and ro-
bustness against one-time deviations. We set β > α as the arcs need to learn and
forget message changes quicker than the state model (which tracks the message
probabilities across the whole process and not just a single, local arc occurrence).
Log Sequence A: 1, A, 2, B, C, D, 4, E, 5b, F, 6, 5a, G, J, 7
Log Sequence B: 1, A, 2, D, 4, B, C, E, 5b, F, 6, 5a, G, H, 8

6.2 Results

In experiment 1 (Figure 6 a and c), we play each of the log sequences 30 times
against the scenario process (dotted lines, green +, and blue x) — as well as
alternating each sequence (full lines, red circles) — and determine overall MCEp

and AREp (sum of all recommendation errors within one process instance).
MCEp rapidly drops to zero within a few iterations for individual log se-

quences A and B. The interleaving sequences take longer to produce a stable
process model as sequences A and B display an opposing user behavior (to the

Supporting Dynamic, People-Driven Processes 669

extend allowed by the process model). AREp shows similar behavior and set-
tles to normal error rates once the probabilistic message states and flow model
updates have settled. The consistent error rates above zero are due to the sim-
ple activity recommendation algorithm. Activities at branching points receive
almost equal probabilities, and the log sequences happen to prefer the second
highest choice.

In experiment 2 (Figure 6 b and d), we apply the same sequences but take an
empty process model i.e., all FlowData annotations are on the first arc towards
activity (A). As expected, MCEp and AREp are high during the first few iter-
ations, but quickly decrease to low error rates and then settle to the same rates
as the evolved process model in experiment 1.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Iterations

M
es

sa
ge

 C
la

ss
ifi

ca
tio

n
E

rr
or

Log Sequence A
Log Sequence B
Log Sequence A+B

0 5 10 15 20 25 30
0

1

2

3

4

5

6

Iterations

M
es

sa
ge

 C
la

ss
ifi

ca
tio

n
E

rr
or

Log Sequence A
Log Sequence B
Log Sequence A+B

(a) (b)

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Interations

A
ct

iv
ity

 R
ec

om
m

en
da

tio
n

E
rr

or

Log Sequence A
Log Sequence B
Log Sequence A+B

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Iterations

A
ct

iv
ity

 R
ec

om
m

en
da

tio
n

E
rr

or

Log Sequence A
Log Sequence B
Log Sequence A+B

(c) (d)

Fig. 6. Overall Message Classification Error MCEp (a,b) and Activity Classification
Error AREp (c,d) over 30 process iterations for fixed and alternating log sequences; for
existing (a,c) and empty process model (b,d)

6.3 Discussion

Two important characteristics describe our self-learning approach. First, the
process model and state management model allow a quick stabilization which
reflects in the low prediction and recommendation error rates. As a positive
side-effect, the user is hardly affected by incorrect activity recommendation.
Second, the described techniques apply not only to cases of process evolution
but also efficiently support a grass-roots approach to processes learning. We
observe similarly swift adaptation when no message-activity dependencies are a-
priori known. The applied 30 iterations are sufficient to demonstrate the learning
behavior as our algorithm considers all changes simultaneously. The presented

670 C. Dorn and S. Dustdar

results are still valid for larger processes where individual segments undergo
evolution one at a time. In that case our results describe the behavior for a
single segment.

7 Conclusion

Users in collaboration and coordination intensive people-driven processes re-
quire self-learning mechanisms to reflect the evolution of message types in the
underlying process model. In this paper we presented an approach based on a
probabilistic process model and message state model to predict when and which
messages will arrive to ultimately give suitable activity recommendations. Anal-
ysis of sequence logs containing both messages and activities allows updating the
process model automatically. Evaluation based on a motivating scenario demon-
strated successfully that our mechanisms work correctly and efficiently.

Future work consists of two main tasks: on the one hand we aim at improv-
ing the message prediction algorithm by extracting message patterns such as
request-reply from interaction logs, including temporal aspects, and integrating
the process learning techniques introduced in our previous work. Pairing the
probabilistic algorithms with semantic message analysis is expected to further
improve the classification success rate. On the other hand, we plan to conduct
additional user studies based on a larger process and log sequences set.

Acknowledgment. This work has been partially supported by the EU STREP
project Commius (FP7-213876) and Austrian Science Fund (FWF) J3068-N23.

References

1. Adams, M., Edmond, D., ter Hofstede, A.H.M.: The application of activity the-
ory to dynamic workflow adaptation issues. In: 7th Pacific Asia Conference on
Information Systems, pp. 1836–1852 (2003)

2. Adams, M., Hofstede, A., Edmond, D., van der Aalst, W.: Facilitating flexibility
and dynamic exception handling in workflows through worklets. In: Proceedings of
the CAiSE 2005 Forum, FEUP, pp. 45–50 (2005)

3. Burkhart, T., Loos, P.: Flexible business processes - evaluation of current
approaches. Proceedings Multikonferenz Wirtschaftsinformatik, MKWI-2010
(February 2010)

4. Burkhart, T., Werth, D., Loos, P.: Commius – An Email Based Interoperability
Solution Tailored For SMEs. Journal Of Digital Information Management 6 (2008)

5. Dorn, C., Burkhart, T., Werth, D., Dustdar, S.: Self-adjusting recommendations
for people-driven ad-hoc processes. In: Proceedings of International Conference on
Business Process Modelling. Springer, Heidelberg (September 2010)

6. Dustdar, S.: Caramba Process-Aware Collaboration System Supporting Ad hoc and
Collaborative Processes in Virtual Teams. Distributed Parallel Databases 15(1),
45–66 (2004)

7. Greenwood, D., Rimassa, G.: Autonomic goal-oriented business process manage-
ment. In: ICAS 2007: Proceedings of the Third International Conference on Au-
tonomic and Autonomous Systems, p. 43. IEEE Computer Society, Washington,
DC, USA (2007)

Supporting Dynamic, People-Driven Processes 671

8. Heinis, T., Pautasso, C., Alonso, G.: Design and evaluation of an autonomic work-
flow engine. In: Proceedings of the Second International Conference on Automatic
Computing, pp. 27–38. IEEE Computer Society, Washington, DC, USA (2005),
http://portal.acm.org/citation.cfm?id=1078027.1078524

9. Huth, C., Erdmann, I., Nastansky, L.: Groupprocess: Using process knowledge from
the participative design and practical operation of ad hoc processes for the design
of structured workflows. In: HICSS (2001)

10. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003), http://dx.doi.org/10.1109/MC.2003.1160055

11. Laclavik, M., Dlugolinsky, S., Seleng, M., Kvassay, M., Gatial, E., Balogh, Z.,
Hluchy, L.: Email analysis and information extraction for enterprise benefit. Com-
puting and Informatics Journal, Special Issue on Business Collaboration Support
for Micro, Small, and Medium-Sized Enterprises 30(1), 57–78 (2011)

12. Lakshmanan, G.T., Duan, S., Keyser, P.T., Khalaf, R., Curbera, F.: A heuris-
tic approach for making predictions for semi- structured case oriented business
processes. In: Proceedings of First Workshop on Traceability and Compliance of
Semi-Structured Processes @BPM 2010. Springer, Heidelberg (2010)

13. Maŕın, C.A., Stalker, I.D., Mehandjiev, N.: Engineering business ecosystems using
environment-mediated interactions. In: Weyns, D., Brueckner, S.A., Demazeau, Y.
(eds.) EEMMAS 2007. LNCS (LNAI), vol. 5049, pp. 240–258. Springer, Heidelberg
(2008)

14. Müller, R., Greiner, U., Rahm, E.: Agentwork: a workflow system supporting rule-
based workflow adaptation. Data Knowl. Eng. 51(2), 223–256 (2004)

15. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business
processes management. In: Business Process Management Workshops, pp. 169–180
(2006)

16. Reichert, M., Rinderle, S., Dadam, P.: Adept workflow management system: flexi-
ble support for enterprise-wide business processes. In: van der Aalst, W.M.P., ter
Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 370–379.
Springer, Heidelberg (2003)

17. Reijers, H., Rigter, J., Aalst, W.V.D.: The case handling case. International Journal
of Cooperative Information Systems 12, 365–391 (2003)

18. Sadiq, S., Sadiq, W., Orlowska, M.: Pockets of flexibility in workflow specifications.
In: Proc. ER 2001 Conf., pp. 513–526 (2001)

19. Schonenberg, H., Weber, B., van Dongen, B., van der Aalst, W.: Supporting flexible
processes through recommendations based on history. In: Dumas, M., Reichert, M.,
Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 51–66. Springer, Heidelberg
(2008)

20. Stoitsev, T., Scheidl, S., Spahn, M.: A framework for light-weight composition and
management of ad-hoc business processes. In: Winckler, M., Johnson, H. (eds.)
TAMODIA 2007. LNCS, vol. 4849, pp. 213–226. Springer, Heidelberg (2007)

21. Yu, T., Lin, K.J.: Adaptive algorithms for finding replacement services in auto-
nomic distributed business processes. In: Proceedings of the Autonomous Decen-
tralized Systems, ISADS 2005, pp. 427–434 (April 2005)

http://portal.acm.org/citation.cfm?id=1078027.1078524
http://dx.doi.org/10.1109/MC.2003.1160055

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 672–680, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Business Process Service Oriented Methodology

(BPSOM) with Service Generation in SoaML

Andrea Delgado1, Francisco Ruiz2, Ignacio García-Rodríguez de Guzmán2,
and Mario Piattini2

1 Computer Science Institute, Faculty of Engineering, University of the Republica
Julio Herrera y Reissig 565

CP 11300, Montevideo, Uruguay
2 Alarcos Research Group, Information Tech & Systems Dep., University of

Castilla-La Mancha
Paseo de la Universidad No.4

CP 13071, Ciudad Real, España
adelgado@fing.edu.uy,

{francisco.ruizg,ignacio.grodriguez,mario.piattini}@uclm.es

Abstract. Carrying out business processes by means of software services helps
to close the business–systems gap, by introducing an intermediate layer be-
tween business process definition and software systems, thus permitting not
only better independence, but also more traceability between them. Despite the
fact that technologies have matured to support this new reality, there is a lack of
methodologies and notations, although some have been proposed to guide ser-
vice development with different visions of service design and implementation.
Service modeling is the basis for, among other things, the automation of several
development steps by means of the model-driven development paradigm. The
SoaML standard is a major step towards service modeling in UML. In this pa-
per we extend our Business Process Service Oriented Methodology (BPSOM)
for service development from business processes by integrating two main as-
pects: service modeling using SoaML and QVT transformations to obtain
SoaML service models from BPMN BP models.

Keywords: Business Process Management (BPSOM), Service Oriented Com-
puting (SOC), Model Driven Development (MDD), BPMN, SoaML.

1 Introduction

The modeling of business process as the means to show explicitly how organizations
carry out their business has gained importance in recent years. Although the business
area has several mature techniques with which to manage its business processes,
based on the Business Process Management (BPM) [1][2] paradigm, the software area
has recently been integrating this vision into software development, supported by the
Service Oriented Computing (SOC) [3] paradigm. Carrying out business processes by
means of software services based on a Service Oriented Architecture (SOA) [4][5]
style, helps to close the business-system gap which has come about as a result of the
differences between business and software area visions of the organization. The

 Business Process Service Oriented Methodology (BPSOM) 673

Model Driven Development (MDD) [6] paradigm, along with Model Driven Archi-
tecture (MDA) [7] have an important role to play. They allow correspondences be-
tween models to be defined, since they are key development artifacts, permitting the
generation of code in different technologies. Although technologies have matured to
support this new reality, few methodologies have been proposed to guide the service
development process. The Service Oriented Architecture Modeling Language (So-
aML) [8], recently defined by OMG, is a major step towards the modeling of services
using UML and specific service stereotypes.

The standardized framework MINERVA [9] we have defined aims to support the
Business Process (BP) lifecycle [1] by applying service-oriented and model-driven
paradigms to business processes; it can be viewed on-line in [10]. The Business Proc-
ess Service Oriented Methodology (BPSOM) [11] integrated in MINERVA provides
the methodological guide with which to develop services from business processes.
This paper extends the definition of BPSOM shown in [11] by integrating two new
key aspects: the use of the SoaML standard for service modeling, and transformations
using the Query/Views/ Transformations (QVT) [12] language, to generate SoaML
service models, when possible, from business process models in Business Process
Modeling Notation (BPMN) [13].

The remainder of the paper is organized as follows: BPSOM is presented in Sec-
tion 2, along with the use of BPMN for BP modeling and SoaML for service model-
ing. In Section 3 service generation from business process is presented, related work
is described in Section 4, and conclusions and future work are in Section 5.

2 BPSOM Definition

BPSOM has been defined for integration into the existing software development
process used in the organization, with the aim of reusing existing knowledge, by add-
ing only specific elements for service oriented development from business processes.
Fig. 1 shows the definition of BPSOM and its use within the base process.

Fig. 1. How BPSOM is added to the existing software development process

674 A. Delgado et al.

We have based our work on the broad idea of methodology as outlined in [14]: a
set of methods or techniques related, along with a process model and a set of deliver-
ables, metrics, tools and management guidelines (including roles and organization
team work). The definition of BPSOM began in 2005 and its disciplines, activities,
roles and artifacts are detailed in [11]. In this paper we focus on the extension of
BPSOM by adding service modeling in SoaML, along with the automatic generation
of SoaML service models from BPMN BP models through QVT transformations, first
described in [15]. The key aspect is to show where and how to use SoaML diagrams
in BPSOM, as the standard provides their description, but no guide for using them.
Transformations help obtaining some of the SoaML models automatically, providing
support to activities, although human intervention is needed.

2.1 BPMN Use in the BPSOM Business Modeling Discipline

There is a great variety of notations for business process modeling [16], although in
recent years, BPMN has emerged as the one preferred. Business people can use it to
model business processes by themselves and then pass it to the software area.

BM1 – Assess the target organization. This activity aims to involve the project team
in the organization for which the development is being carried out. The participating
roles in this activity are the Business Analyst (from the business area), the Analyst
and the Architect (from the software project team). The OMG Business Motivation
Model (BMM) [17] can also be used for modeling goals and information which can
be linked to SoaML services.

BM2 – Identify Business Processes. This is one of the key activities in the
development of services from BP, since it is the main input needed to understand and
describe BP in the organization. We use BPMN to specify them, which provides
elements such as swimlanes (pool, lane), flow objects (activities, gateways),
connecting objects (sequence, message) and artifacts (group, data) to model BP. Fig.
2 shows the “Patient Admission and Registration for Major Ambulatory Surgery
(MAS)” BP from the Ciudad Real General Hospital project on which we are working,
adapted to be used as example.

Fig. 2. “Patient Admission and Registration for MAS” Business Process in BPMN

 Business Process Service Oriented Methodology (BPSOM) 675

2.2 SoaML Use in BPSOM Design Discipline

There is also a wide choice of notations for service modeling [16], UML being the
one preferred. The SoaML profile extends UML by adding specific elements for ser-
vice modeling, and will therefore soon be adopted by the community. It provides
several stereotypes with which to specify services (contract, interfaces, operations,
parameters) and the service architecture for the business process.

D1 – Identify and categorize services. This activity aims to identify the services
needed to perform the business process under development and it is a key one in our
approach. One of the main inputs of this activity is the BP model specified previously.
The use of SoaML implies defining the Service Architecture (SA) which specifies the
participants, contracts for the services and the roles they play as provider or
consumer. Fig. 3 shows the SoaML SA for the example.

Fig. 3. SoaML ServicesArchitecture diagram for business process in Fig. 2

Services that the organization needs to provide to other parties and services that the
organization has to consume from other parties are identified, based on the messages
exchanged, each party being defined by a pool. To identify the services to support the
business process, we look at each message exchanged between the pools (partici-
pants), setting the activity type to “ServiceTask” when we define it as a service. The
ones that present incoming messages will be providers and those with outgoing

Fig. 4. Service and Request Ports for Participants

676 A. Delgado et al.

messages to a service task will be consumers. Services will be assigned to the partici-
pant corresponding to the pool containing each activity, and the associated Service
Contract will hold all service information. Fig. 4 displays some Service and Request
Ports (formerly Points) for the services defined, showing the bidirectional and unidi-
rectional pattern of communication that can be defined.

D2 – Specify services. The specification of services corresponds to the definition of
all the information needed, including the associated Service Contract with interfaces,
operations, input and output parameters, among others. The information related to the
in and out messages must be specified, indicating the parameters and data to be
exchanged between the parties. The choreography defined by the Service Contract
must also be specified, based on the interaction between participants. Once all this
information has been considered, the most important parts of the ServiceContract can
be generated and this can then be completed by the Architect or developers, who will
also have to give the implementation details. Fig. 5 presents the ServiceContract
definition and its choreography for the “ReceiveAppointmentRequest” service.

Fig. 5. ServiceContract and Choreography for the “ReceiveAppointmentRequest” service

D3 – Investigate existing services. The principal goal of this activity is to reuse the
organization’s existing services, as far as possible. To do so, a central Service Cata-
logue is defined, which has to be searched in each service development project. In the
SoaML component diagram an adapter or wrapper has to be defined to relate the
design service to its existing implementation, linking them in activity D4.

D4 – Assign components to services. The components that will implement the ser-
vices generated must be defined and shown in the components diagram. For each
service, a component with which to implement it has to be defined. SoaML provides
the participant component with which to define the implementation of participants
and services, defining new components to be generated and, if one exists, defining
adapters or wrappers to use it.

 Business Process Service Oriented Methodology (BPSOM) 677

D5 – Define services interaction. Service interaction can be defined as the orchestra-
tion or choreography of services, [4][5], as is done for business processes. This
insight is provided by a sequence diagram showing all the services, or by various
diagrams showing subsets of services for different sub-processes in the BP. That ac-
tivity has no corresponding diagram in SoaML, so it is shown by a UML sequence
diagram.

3 From BPMN Models to SoaML Models and Beyond

The BPSOM methodological and automated guide is used to derive and generate
services from BP models, thus constituting the basis for its implementation. BPSOM
defines how to derive services from BP in a conceptual manner. It identifies the par-
ticipants involved and the services they provide and request, along with the associated
contracts and interfaces, parameters, and the messages exchanged, using the SoaML
standard. The automation in BPSOM focuses on the generation of services from BP
by means of QVT transformations defined between the SoaML and the BPMN meta-
models. We follow the MDA approach based completely on the use of OMG stan-
dards. The BPMN BP model constitutes the CIM, and the SoaML service model the
PIM, which can then be used to generate code, using MDA engines. The QVT trans-
formations are based on a defined ontology [18] which relates BP models to service
models, conceptualizing their elements and relationships. Fig. 6 shows an overview of
the relationship between the BP in Fig. 2 and ServicesArchitecture in Fig. 3. The
QVT transformations code itself is not shown here, as it can be seen in [15].

Fig. 6. BPMN to SoaML QVT transformations definitions for the example

678 A. Delgado et al.

We use the Eclipse environment in MINERVA, integrating several plug-ins to
support BPSOM definitions, including MediniQVT as the QVT engine. The BPMN
BP model is created by business and software people in a BPMN modeler which
exports the model. It is then loaded into Eclipse and marked by the Architect with
information to apply the QVT transformations, obtaining participants and its ports. To
generate the code, the MDA engine needs all the SoaML diagrams, completed later by
developers. For the example, we have integrated the MagicDraw Cameo SOA+ and
ModelPro Eclipse plug-ins, which can be downloaded from [19] with the BPMN BP
and SoaML services models, QVT transformations and input and output XMI files.

6 Related Work

We carried out a systematic review regarding the application of SOC and MDD para-
digms to BP, presented in [16]. To the best of our knowledge, there is no other work
that relates BPMN models directly to SoaML models the way we do. Regarding the
methodological approach, BPSOM has been defined over the same period as other
proposals shown in [11][16]. Nevertheless, it is worth mentioning [20], which defines
a methodology for service development focusing on WS, the survey of methodologies
presented in [21], as well as a consolidated methodology for defining business and
software services, the SOMA plug-in for the RUP [22], which, as ours does, adds
activities, but to RUP, and Shape [23] ,which also uses SoaML, but with different
guides and no generation. For the model driven approach it is worth mentioning [24],
which defines guidelines and transformations from one model to other, [25] proposing
a method for service composition with a process to model generation, metamodels
and artifacts to be obtained, adding in [26] a value model for deriving services using
ATL [27].This is also used in [28], in which models, metamodels and transformations
are defined, moving from collaborative BP to a SOA model, generating BPEL. Our
proposal differs from these in several ways: firstly, BPSOM can be added to any ex-
isting base software development process, thus promoting reuse and making it easier
to adopt. Secondly, QVT transformations are integrated in the development environ-
ment, obtaining the models from which to generate code. Thirdly, the conceptual and
automatic guide is fully integrated in BPSOM. Finally, MINERVA framework inte-
grates existing standards, promoting standardization of development.

7 Conclusions and Future Work

BPSOM has been defined to guide service development from business processes,
integrated into MINERVA framework for continuous BP improvement. Its contribu-
tions are as follows: it allows the reuse of existing knowledge in the developing or-
ganization, by using the base software development process, adding specific elements
for service development. The use of the SoaML standard to model services supports
the definition of meaningful elements in specifying services from BP, in both a con-
ceptual and an automatic way. Finally, we have defined QVT transformations from
the BPMN metamodel to the SoaML metamodel that can be executed in the Eclipse
environment, obtaining an initial definition of service models. These QVT transfor-
mations were defined for previous versions of BPMN and SoaML, so we are updating

 Business Process Service Oriented Methodology (BPSOM) 679

and completing them using the BPMN 2.0 and SoaML beta2 standards recently re-
leased by OMG. There are few implementations of SoaML, so we are developing our
own to show the service models graphically. From these diagrams, code can be gener-
ated using existing MDA engines. We are working on case studies at the Ciudad Real
General Hospital to validate the proposal.

Acknowledgments. This work has been partially funded by the Agencia Nacional de
Investigación e Innovación (ANII,Uruguay), ALTAMIRA project (Junta de Comuni-
dades de Castilla-La Mancha, Spain, F. Soc. Europeo, PII2I09-0106-2463),
PEGASO/MAGO project (Ministerio Ciencia e Innovacion MICINN, Spain, FEDER,
TIN2009-13718-C02-01) and INGENIOSO project (Junta de Comunidades de Castilla-
La Mancha, Spain, PEII11-0025-9533).

References

1. Weske, M.: BPM Concepts, Languages, Architectures. Springer, Heidelberg (2007)
2. Smith, H., Fingar, P.: Business Process Management:The third wave. Meghan-Kieffer,

Tampa (2003)
3. Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing:

State of the Art and Research Challenge. IEEE Computer Society, Los Alamitos (2003)
4. Krafzig, D., Banke, K., Slama, D.: Enterprise, SOA, Best Practices. Prentice-Hall, Engle-

wood Cliffs (2005)
5. Erl, T.: SOA: Concepts, Technology, and Design. Prentice-Hall, Englewood Cliffs (2005)
6. Mellor, S., Clark, A., Futagami, T.: Model Driven Development. IEEE Comp.Society, Los

Alamitos (2003)
7. Object Management Group (OMG), Model Driven Architecture, MDA (2003)
8. Object Management Group (OMG), SOA Modeling Language, SoaML (2009)
9. Delgado, A., Ruiz, F., García-Rodríguez de Guzmán, I., Piattini, M.: MINERVA: Model

drIveN and sErvice oRiented framework for the continuous business process improVement
and relAted tools. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009.
LNCS, vol. 6275, pp. 456–466. Springer, Heidelberg (2010)

10. Delgado, A.: MINERVA framework (2010), http://alarcos.esi.uclm.es/MINERVA/
11. Delgado, A., Ruiz, F., García - Rodríguez de Guzmán, I., and Piattini, M.: Towards a Ser-

vice-Oriented and Model-Driven framework with business processes as first-class citizens.
In: 2nd International Conference on BP and Services Computing, BPSC 2009 (2009)

12. Object Management Group (OMG), Query/Views/Transformations, QVT (2008)
13. Object Management Group (OMG), Business Process Modeling Notation, BPMN (2009)
14. Graham, I., Henderson-Sellers, B., Younessi, H.: The OPEN Process Specification. ACM

Press, Addison-Wesley(1997)
15. Delgado, A., García - Rodríguez de Guzmán, I., Ruiz, F., Piattini, M.: From BPMN busi-

ness process models to SoaML service models: a transformation-driven approach. In: 2nd
Int.Conf. on Software Tech. and Engineering (ICSTE 2010), San Juan de Puerto Rico
(October 2010)

16. Delgado, A., Ruiz, F., García-Rodríguez de Guzmán, I., Piattini, M.: Application of
service-oriented computing and model-driven development paradigms to BP: a systematic
review. In: 5th Int. Conf. on SW and Data Technologies (ICSOFT 2010), Athens (2010)

17. Object Management Group (OMG), Business Motivation Model, BMM (2010)
18. Delgado, A., Ruiz, F., García-Rodríguez de Guzmán, I., Piattini, M.: Towards an ontology

for SO modeling supporting BP. In: 4th. Int. Conf. on Research Challenges IS, RCIS 2010
(2010)

680 A. Delgado et al.

19. Delgado, A.: BPSOM methodology example (2010),
http://alarcos.esi.uclm.es/MINERVA/BPSOM/BPSOMexample.zip

20. Papazoglou, M., van den Heuvel, W.: Service-oriented design and development methodol-
ogy. Int. J. Web Engineering and Technology 2(4), 412–462 (2006)

21. Kohlborn, T., Korthaus, A., Chan, T., Rosemann, M.: Identification and Analysis of Busi-
ness and SE Services- A Consolidated Approach. IEEE Transactions on Services Comp.
(2009)

22. IBM-SOMA, http://www.ibm.com/developerworks/rational/
downloads/06/rmc_soma/

23. Stollberg, M., et al.: A Customizable Methodology for the MDE of Service-based System
Landscapes. In: 4th Workshop on Modeling, Design, and Analysis for the Service Cloud
(MDA4ServiceCloud 2010), with ECMFA 2010, Paris (June 2010)

24. Herold, S., Rausch, A., Bosl, A., Ebell, J., Linsmeier, C., Peters, D.: A Seamless Modeling
Approach for service-oriented IS. In: 5th Int. Conf. on IT:New Generations, ITNG 2008
(2008)

25. de Castro, V., Marcos, E., López Sanz, M.: A model driven method for service composi-
tion modelling: a case study. Int. J. Web Engineering and Technology 2(4) (2006)

26. de Castro, V., Vara Mesa, J.M., Herrmann, E., Marcos, E.: A Model Driven Approach for
the Alignment of Business and Information Systems Models (2008)

27. Jouault, F., Kurtev, I.: Transforming models with ATL (ATLAS Transformation
Language). In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer,
Heidelberg (2006)

28. Touzi, J., Benaben, F., Pingaud, H., Lorré, J.P.: A model-driven approach for collaborative
service-oriented architecture design. Int. Journal of Prod. Economics 121(1) (2009)

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, p. 681, 2011.

Panel on Green and Sustainable IS

Barbara Pernici

Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy
barbara.pernici@polimi.it

Abstract. The panel on Green and Sustainable Information Systems has the goal
of providing a forum for discussing research issues on this topic within the
Information Systems Engineering research community. Information systems, for
their pervasive nature in most of human activities that have an IT support, can
give a contribution to improve the environmental impact of IT in two main
directions: on one side, information systems can provide a support to improve
awareness and to control energy efficiency in a variety of areas, such as for
instance smart cities and smart buildings, traffic control, and utility management,
on the other hand, information systems themselves use computing resources and
related facilities in data center and offices, and therefore they have an impact on
the environment. While a great emphasis has been given to produce hardware
equipment that is energy efficient, only recently the theme of considering energy
efficiency in connection to information systems and their design has emerged.
The panel will discuss the different types of green and sustainable information
systems and will discuss emerging research topics and possible future research
developments and goals.

Author Index

Abrahão, Silvia 108
Ahlemann, Frederik 314
Andersson, Birger 582
Asnar, Yudistira 169
Auer, Lukas 329
Awad, Ahmed 352, 406

Barn, Balbir S. 229
Beis, Dimitrios A. 2
Belov, Eugene 329
Benatallah, Boualem 566, 642
Bergholtz, Maria 582
Bider, Ilia 299
Biffl, Stefan 3
Bose, R.P. Jagadeesh Chandra 391
Bošković, Marko 551
Braccini, Alessio Maria 252

Cabanillas, Cristina 352
Cares, Carlos 337
Chong, Sam 422
Clark, Tony 229
Comuzzi, Marco 154

Delgado, Andrea 672
de Spindler, Alexandre 214
Dı́az, Oscar 237
Dorn, Christoph 657
Dustdar, Schahram 657

Engels, Gregor 521
Ewerth, Ralph 627

Fernandez, Adrian 108
Figl, Kathrin 452
Finkelstein, Anthony 1
Franch, Xavier 337
Freisleben, Bernd 627
Friedrich, Fabian 482

Garćıa-Rodŕıguez de Guzmán,
Ignacio 672

Gašević, Dragan 551
Geel, Matthias 214

Gerth, Christian 521
Goré, Rajeev 406
Gröner, Gerd 551
Guabtni, Adnene 642
Guizzardi, Giancarlo 138

Hainaut, Jean-Luc 184, 536
Heidenreich, Florian 551
Heindl, Matthias 3
Hofreiter, Birgit 252
Huemer, Christian 252

Insfran, Emilio 108

Jambari, Dian 422
Jayasinghe Arachchige, Jeewanie 582
Johannesson, Paul 299, 582
Juhnke, Ernst 627
Jungblut, Marina Daoud 77
Jureta, Ivan J. 33
Jürjens, Jan 367

Kabicher, Sonja 467
Khaluf, Lial 521
Kof, Leonid 93
Kryvinska, Natalia 329

Lakshmanan, Laks V.S. 436
Laue, Ralf 452
Lemaitre, Jonathan 536
Leone, Stefania 214
Leopold, Henrik 512
Li, Tianyu 436
Liaskos, Sotirios 77
Litoiu, Marin 77
Liu, Feng 612
Liu, Kecheng 422
Liu, Lin 612
Luebbe, Alexander 283

Maiden, Neil 18
Malik, Zaki 597
Martin, Richard 383
Massacci, Fabio 62
Maté, Alejandro 123

684 Author Index

Mayrhofer, Dieter 252
Medjahed, Brahim 597
Mendling, Jan 267, 482, 512
Michell, Vaughan 422
Mira da Silva, Miguel 199
Mohan, Kunal 314
Moosavi, Ali 436
Moser, Thomas 3
Motahari-Nezhad, Hamid Reza 642
Mylopoulos, John 77, 169

Nebeling, Michael 214
Nöbauer, Markus 18
Norrie, Moira C. 214

Paja, Elda 169
Pechenizkiy, Mykola 391
Penzenstadler, Birgit 93
Perini, Anna 33
Pernici, Barbara 48, 681
Piattini, Mario 672
Pottinger, Rachel 436
Puente, Gorka 237
Puhlmann, Frank 482
Purao, Sandeep 383

Qureshi, Nauman A. 33

Ramdoyal, Ravi 184
Reijers, Hajo A. 497, 512
Resinas, Manuel 352
Rinderle-Ma, Stefanie 467
Robertson, Edward 383
Roy, Marcus 566
Ruiz, Francisco 672
Ruiz-Cortés, Antonio 352

Schmidt, Dennis 566
Schmidt, Holger 367
Schmidt, Rainer 299
Seiler, Dominik 627
Seyff, Norbert 18
Siadat, Seyed Hossein 48
Silva Parreiras, Fernando 551
Smirnov, Sergey 497
Smith, Matthew 627
Sonnenberg, Christian 252
Staab, Steffen 551
Strauss, Christine 329
Suleiman, Basem 566
Sun, Junjun 612
Sun, Lily 422

Thomson, James 406
Tran, Le Minh Sang 62
Trujillo, Juan 123

van der Aalst, Wil M.P. 391
Vanderfeesten, Irene T.P. 154
Vicente, Pedro 199

Walter, Tobias 551
Weber, Ingo 566
Weidlich, Matthias 267, 406
Weigand, Hans 582
Wende, Christian 551
Weske, Mathias 267, 283, 497
Winkler, Dietmar 3

Yu, Eric 612

Zachos, Konstantinos 18
Zhang, He 612
Žliobaitė, Indrė 391

	Title
	Preface
	Organization
	Table of Contents
	Keynotes
	Ten Open Challenges at the Boundaries of Software Engineering and Information Systems
	Total Integration: The Case of Information Systems for Olympic Games

	Session 1: Requirements
	Requirements Management with Semantic Technology: An Empirical Study on Automated Requirements Categorization and Conflict Analysis
	Introduction
	Related Work
	Requirement Conflicts Detection and Requirements Tracing
	Natural Language Processing

	Ontology-Based Reporting
	Semantic Requirements Categorization
	Semantic Conflict Analysis
	Research Issues

	Case Study Description
	Results
	Requirements Categorization
	Requirements Conflict Analysis
	Threats to Validity

	Discussion and Conclusion
	References

	S^{3}C: Using Service Discovery to Support Requirements Elicitation in the ERP Domain
	Introduction
	Requirements Elicitation Based on Sure Step and Its Limitations
	Semantic Service Search and Composition (S^{3}C)
	Identifying the Needs of Business Consultants
	Identifying Research Informing S^{3}C
	The S^{3}C Approach
	The S^{3}C Tool Environment

	Initial Evaluation of the S^{3}C Solution Explorer
	S^{3}C Solution Explorer Initial Utility and Usability Evaluation at Terna
	S^{3}C Solution Explorer Utility Evaluation at InsideAx
	Threats to Validity

	Lessons Learned
	Conclusions and Further Work
	References

	Requirements Engineering for Self-Adaptive Systems: Core Ontology and Problem Statement
	Introduction
	Preliminaries
	General Requirements Problem
	Adaptive Requirements and Continuous Adaptive RE (CARE) Framework

	Runtime Requirements Adaptation Problem
	RE for SAS and Its Core Ontology
	Runtime Requirements Adaptation Problem Illustration

	Related Work
	Discussion
	Conclusions and Future Work
	References

	Session 2: Adaptation and Evolution
	A Fuzzy Service Adaptation Based on QoS Satisfaction
	Introduction
	Related Work
	Fuzzy Parameters for QoS Property Description
	Specifying Satisfaction Function
	Decision Making for Adaptation and Evolution
	Experiments and Implementation
	Conclusions and Future Work
	References

	Dealing with Known Unknowns: Towards a Game-Theoretic Foundation for Software Requirement Evolution
	Introduction
	The Contributions of This Paper

	Case Study
	Modeling Requirement Evolution
	Evolution on Requirement Model: Controllable and Observable
	Game-Theoretic Account for Probability

	Making Decision: What Are the Best Things to Implement
	Handling Complex Evolution
	Limitation
	Related Works
	Conclusion
	References

	Goal-Based Behavioral Customization of Information Systems
	Introduction
	Goal Models
	Enabling Goal-Driven Customization
	Connecting Goal Models with Code
	Adding Customization Constraints
	Identifying Admissible Plans
	Constructing and Using the Policy Tree
	Conditioning and Instrumenting the Source Code
	In Action

	Applying Goal-Based Customization
	Related Work
	Conclusions
	References

	Session 3: Model Transformation 1
	From Requirements to Models: Feedback Generation as a Result of Formalization
	Requirements Documents Suffer from Missing Information
	From Text to Models: Our Existing Approaches
	From Scenarios to Message Sequence Charts
	From Automata Descriptions to Automata

	Feedback Generation Instead of Inference Assumptions
	Feedback Generation for MSCs
	Feedback Generation for Automata

	Evaluation
	Experiment Setting
	Experiment Results
	Lessons Learned

	Related Work
	Text-Based Modeling
	Natural Language Processing in Requirements Engineering

	Summary
	References

	A Web Usability Evaluation Process for Model-Driven Web Development
	Introduction
	Related Work
	Web Usability Evaluation Process
	Establishment of Evaluation Requirements
	Specification of the Evaluation
	Design of the Evaluation
	Execution of the Evaluation
	Analysis of Changes

	Case Study
	Design of the Case Study
	Preparation of the Case Study
	Collection of the Data
	Analysis of Data

	Conclusions and Further Work
	References

	A Trace Metamodel Proposal Based on the Model Driven Architecture Framework for the Traceability of User Requirements in Data Warehouses
	Introduction
	Related Work
	A Traceability Approach and a Trace Metamodel for Data Warehouses
	Model Driven Architecture Metamodels for Traceability
	Proposed Metamodel

	Automatic Derivation of Traceability Models in Data Warehouses
	Example of Application
	Conclusions and Future Work
	References

	Session 4: Conceptual Design 1
	Ontological Foundations for Conceptual Part-Whole Relations: The Case of Collectives and Their Parts
	Introduction
	A Review of Formal Part-Whole Theories
	What are Collectives?
	Parthood Relations Involving Collectives
	The Member-Collection Relation
	The Subcollective-Collective Relation
	Towards a UML Profile for Modeling Collectives and Their Parts

	Final Considerations
	References

	Product-Based Workflow Design for Monitoring of Collaborative Business Processes
	Introduction
	Related Work
	Using PBWD for Collaborative Process Monitoring
	The Product Data Model
	Optimal Path in the PDM
	Derivation of Process Models

	Implementing the Methodology
	Conclusions
	References

	Modeling Design Patterns with Description Logics: A Case Study
	Introduction
	Baseline
	Case Study
	Formalizing Patterns
	Formalizing SI* Primitives
	Understanding and Formalizing a Pattern as a Query
	Enriching DL T-Box with Implicit Knowledge
	Representing the Problem in the ABox
	System Architecture

	Experimental Results
	Related Work
	Final Remarks
	References

	Session 5: Conceptual Design 2
	Interactively Eliciting Database Constraints and Dependencies
	Introduction
	Research Context
	The RAINBOW Approach
	Constraints and Dependencies in Conceptual Schemas

	State of the Art in Constraints and Functional Dependencies Mining
	An Interactive Process to Elicit Constraints and Functional Dependencies
	Overview
	Initialisation
	Analysing New Data Samples to Suggest Constraints and Dependencies
	Acquiring Constraints and Dependencies

	Evaluation
	Conclusion
	References

	A Conceptual Model for Integrated Governance, Risk and Compliance
	Introduction
	Methodology
	Conceptual Model
	Governance
	Risk Management
	Compliance
	Integrated GRC Conceptual Model

	Evaluation
	OCEG Capability Model
	Conceptual Model Quality

	Conclusion
	References

	Using Synchronised Tag Clouds for Browsing Data Collections
	Introduction
	Background
	Approach
	Model and Specification
	Framework
	Implementation
	Discussion
	Conclusions
	References

	Revisiting Naur’s Programming as Theory Building for Enterprise Architecture Modelling
	Introduction
	Programming as Theory Building
	Programs as Models
	On Methods and Theory Building
	Theory Building and Testing as a Conversation Process
	Conversation Theory
	Argumentation Theory

	Implications for Enterprise Architecture
	References

	Session 6: Domain Specific Languages
	A DSL for Corporate Wiki Initialization
	Introduction
	WSLAnalysis
	WSLDesign
	WSL Realization
	WSL Example
	WSL Concrete Syntax

	Verification of WSL Maps
	EnactmentofWSLMaps
	Discussion through Related Work
	Conclusions
	References

	The REA-DSL: A Domain Specific Modeling Language for Business Models
	Introduction
	Resource - Event - Agent (REA)
	The REA Ontology
	REA Ontology Example
	Limitations of the REA Ontology

	The REA Domain Specific Language
	The Duality Model
	The Value Chain
	REA DSL Example

	REA DSL Tool Support
	Summary and Future Work
	References

	A Foundational Approach for Managing Process Variability
	Introduction
	Background
	Challenges for Managing Decoupled Process Variants
	Formal Model
	Behavioural Profiles

	A Set Algebra for Behavioural Profiles
	Strictness of Behavioural Relations
	Set-Theoretic Relations
	Set-Theoretic Operations

	Managing Process Variability
	Case Study
	Related Work
	Conclusion
	References

	Session 7: Case Studies and Experiences
	Tangible Media in Process Modeling – A Controlled Experiment
	Introduction
	Related Work
	Experiment Planning
	Goal and Hypotheses
	Experiment Setup and Sampling Strategy
	Experimental Material
	Participant Selection
	Operationalized Hypotheses
	Variables
	Analysis Procedures

	Experiment Execution and Data Collection
	Data Analysis
	Descriptive Statistics
	Data Set Preparation
	Measurement Reliability and Validity
	Hypothesis Testing
	Testing Potentially Influential Factors

	Interpretation of Results
	Validity Threats
	Generalizability of Findings
	Lessons Learned

	Conclusion
	References

	Experiences of Using Different Communication Styles in Business Process Support Systems with the Shared Spaces Architecture
	Introduction
	A Role of Shared Spaces in BPS Systems
	A System with Collaborative Planning
	Description
	Experience of Use

	A System with Specialized Structure of Shared Spaces
	Description
	Experience of Use

	A System with Communication Based on Status Changes
	Description
	Experience of Use

	Identifying Communication Styles
	Related Works
	Discussion and Future Plans
	References

	What Methodology Attributes Are Critical for Potential Users? Understanding the Effect of Human Needs
	Introduction
	Theoretical Foundations
	Conceptual Model and Research Hypotheses
	Attributes of a Methodology
	Personal Characteristics

	Discussion and Implications
	Future Research
	References

	Exploratory Case Study Research on SOA Investment Decision Processes in Austria
	Introduction
	Research Design
	Case Analysis
	Research Results Analysis
	Conclusions and Further Research
	References

	Session 8: Model Transformation 2
	A Metamodelling Approach for i* Model Translations
	Introduction
	The i* Framework: Evolution and Existent Variations
	A Metamodel View of i* Model Translation
	Wachsmuth’s Proposal on Metamodel Adaptation
	Wachsmuth’s Proposal: Relationships and Semantic Preservation
	Wachsmuth’s Proposal: A Framework for i* Interoperability

	A Supermetamodel for i*
	Implementing i* Variants Translation
	Conclusions and Future Work
	References

	Automatic Generation of a Data-Centered View of Business Processes
	Introduction
	Use Case
	BP2OLC Procedure
	Step 1. From BPMN Model to Petri Net
	Step 2. Reachability Graph from Petri Net
	Step 3. Object Life Cycle from Reachability Graph

	Detecting and Showing Data Anomalies
	Related Work
	Conclusions and Future Work
	References

	Connecting Security Requirements Analysis and Secure Design Using Patterns and UMLsec
	Introduction
	Pattern-Oriented Security Requirements Analysis
	Pattern-Oriented Transition to Secure Architectural Design
	UMLsec4UML2
	Generic Security Components
	Generic Security Architectures
	Instantiation of GSAs
	Composition of Different GSA Instances
	Verification of Global Secure Software Architectures

	Validation
	Related Work
	Conclusions and Future Work
	References

	Transforming Enterprise Architecture Models: An Artificial Ontology View
	Introduction
	Conceptual Models and Modeling for Enterprise Architecture
	An Ontology of the Artificial
	Fundamental Constructs

	Operations of EA Models
	Projection
	Instantiation
	Refinement
	Specialization
	Derivation
	Linking

	Application
	Discussion
	References

	Session 9: Mining and Matching
	Handling Concept Drift in Process Mining
	Introduction
	Related Work
	Aspects and Nature of Change in Business Processes
	Approaches to Detecting Drifts in Event Logs
	Causal Footprints
	Features Capturing the Manifestation of Activity Relationships
	Statistical Hypothesis Tests to Detect Drifts

	Case Study and Discussion
	Outlook
	Conclusions
	References

	An Iterative Approach for Business Process Template Synthesis from Compliance Rules
	Introduction
	Preliminaries
	Process Runs as Linear Sequences
	Linear Temporal Logic
	Finding All LTL-Models of a Given LTL Formula

	Synthesis of Process Templates from Compliance Rules
	Overview
	LTL Encoding
	Extracting Traces
	Analysis of Extracted Traces
	Generating Process Templates
	Evaluation of the Synthesized Process Template

	Implementation
	Related Work
	Conclusion
	References

	A Design of Business-Technology Alignment Consulting Framework
	Introduction
	Business and IT Alignment from a Socio-technical Viewpoint
	Articulation of Complex Business and IT Alignment Requirements
	The Design of the Business-Technology Alignment Consulting Framework
	Conceptual Model of the Consulting Framework
	The Application of Business Services Analysis
	Business Service Analysis for the Alignment
	Norms for Governing the Business Behaviour
	Evaluate the Cultural Values of Business Services

	Conclusion
	References

	ONTECTAS: Bridging the Gap between Collaborative Tagging Systems and Structured Data
	Introduction
	Related Work
	Problem Statement
	Ontology Extraction from Collaborative TAgging Systems (ONTECTAS) Algorithm
	Preprocessing
	Detecting Potential Relationships Using Association Rules
	Pruning Edges between Bi-gram Elements
	Detecting Headwords in Multi-word Tags

	Using Lexico-Syntactic Patterns
	Exploiting Co-parents to Find More is-a Relationships
	Experiments
	Datasets and Assumptions
	Evaluation of ONTECTAS in Detecting HAS-A Relationships
	Evaluation of ONTECTAS in Detecting IS-A Relationships
	Comparing ONTECTAS to Other Algorithms
	Comparing with a Gold Standard

	Conclusion and Future Work
	References

	Session 10: Business Process Modelling
	Cognitive Complexity in Business Process Modeling
	Introduction
	Measuring the Cognitive Load of Process Models
	Comprehensibility and Cognitive Load Theory
	Influence Factors for Model Comprehensibility

	Research Model
	Research Method
	Design and Measures
	Materials
	Participants

	Results
	Results for Hypothesis 1
	Results for Hypothesis 2
	Results for Hypothesis 3

	Discussion
	Limitations
	Implications and Conclusion
	References

	Human-Centered Process Engineering Based on Content Analysis and Process View Aggregation
	Introduction
	Challenges and Overall Methodology
	Qualitative Content Analysis
	Qualitative Content Analysis in General
	Qualitative Content Analysis in the Context of Business Processes
	Challenges of Qualitatively Analyzing To-Do’s
	Homogeneity of Activity Labels
	Dealing with Different Granularity
	Identification of Process Specifications

	Preparation of Logs and Process Mining
	Case Study
	Collection of To-Do’s in the Teaching Process
	Content Analysis of To-Do’s, Log Preparation, and Mining

	Related Work
	Conclusion
	References

	Process Model Generation from Natural Language Text
	Introduction
	Background
	Transformation Approach
	Sentence Level Analysis
	Text Level Analysis
	Process Model Generation

	Evaluation of Generated Process Models
	Related Work
	Conclusion
	References

	A Semantic Approach for Business Process Model Abstraction
	Introduction
	Activity Aggregation
	Foundations
	Activity Aggregation as Cluster Analysis Problem
	Activity Distance Measures
	Process Model Collection Abstraction Fingerprint

	Empirical Validation
	Validation Setup
	Validation Results

	Related Work
	Conclusions and Future Work
	References

	On the Automatic Labeling of Process Models
	Introduction
	Naming of Process Models in Practice
	Event-Driven Process Chains
	Classification of Naming Strategies

	An Automatic Approach to Generate Process Names
	Related Work
	Conclusion
	References

	Session 11: Validation and Quality
	Pattern-Based Modeling and Formalizing of Business Process Quality Constraints
	Introduction
	Related Work
	Scenario
	Modeling Quality Constraints with EPPSL
	Modeling Basic Blocks
	Modeling Temporal Relationships
	Modeling Logical Relationships

	Translation of EPPSL Models into CTL-Formulas
	The Translation Strategy for Simple Models
	The Translation Strategies for Complex Models

	Conclusion and Outlook
	References

	Quality Evaluation and Improvement Framework for Database Schemas - Using Defect Taxonomies
	Introduction
	State of the Art
	Framework Reminder
	Quality Requirements
	Defect Taxonomy
	Complex Constructs
	Redundant Contructs
	Foreign Constructs
	Irregular Constructs

	Framework Application
	Conclusion
	References

	Validation of Families of Business Processes
	Introduction
	Application Context of Business Process Families
	Solution Space Model Dependencies and Validation
	Modeling with Description Logics
	Representing Models of Business Process Families
	Well-Formedness in the Business Process Model Templates

	Validation Using Description Logics
	Correctness of the Validation
	Proof-of-Concept and Discussion
	Related Work
	Conclusion
	References

	Session 12: Service and Management 1
	Using SOA Governance Design Methodologies to Augment Enterprise Service Descriptions
	Introduction
	SOA Governance
	SOA Governance - A Service Design Example

	Automated Annotation Framework
	Service Knowledge Base
	Service Signature Automaton

	Automated Annotation Solution
	Automaton Construction
	Annotation Procedure

	Automated Annotation Evaluation
	Evaluation Environment
	Annotation Completeness
	Annotation Accuracy
	Annotation Correctness

	Related Work
	Conclusion and Future Work
	References

	Management Services – A Framework for Design
	Introduction
	Related Research
	A Framework for Management Service Design
	The REA Business Ontology
	REA Management Ontology
	Generic Service Model
	Management as a Service
	Design Method

	Demonstration
	BSRM Modeling Notation
	Italian Wine Producing
	Robot Vacuum Cleaner

	Conclusion
	References

	Bottom-Up Fault Management in Composite Web Services
	Introduction
	Fault Model
	Bottom-up Fault Taxonomy
	State of a Service
	Fault Coordinators

	The Fault Propagation Protocol
	Soft-State Sender Algorithm
	Soft-State Receiver Algorithm
	Example

	Performance Evaluation
	Related Work
	Conclusion
	References

	Understanding the Diversity of Services Based on Users’ Identities
	Introduction
	Modeling User Diversity in Service Environment
	Actors in Service Environment
	i*-Context for Web Service

	Bridging User Diversity and Service Diversity
	From User Diversity to Service Diversity
	Social Position's Influence over Service Selection
	Agent Attributes' Influence over Service Customization

	Web Service Selection and Customization using i*-Context
	Web Service Selection and Customization Process
	Case Study

	Related Work
	Conclusion and Discussion
	References

	Session 13: Service and Management 2
	Request/Response Aspects for Web Services
	Introduction
	Related Work
	Request/Response Aspects
	Framework for Request/Response Aspects
	Pointcut Description

	Implementation
	Advice Interface
	Aspect Configurator
	Aspect Provider
	Security Manager
	Aspect Invocation Handler

	Evaluation
	Use Case 1: Data Transfer
	Use Case 2: Data Compression
	Use Case 3: Data Encryption

	Conclusions
	References

	Using Graph Aggregation for Service Interaction Message Correlation
	Introduction
	Assumptions and Notations
	Event Log Format and Sample
	Message Correlation

	Proposed Approach
	Philosophy, Definitions and Properties
	Step By Step Scenario of Building the ACG
	Algorithm for Building the ACG
	Using Inverted Indexes for Efficient Message-Node Association
	Using the ACG for Identifying Process Instances
	Discussion

	Implementations and Experiments
	Related Work
	Conclusion and Perspectives
	References

	Supporting Dynamic, People-Driven Processes through Self-learning of Message Flows
	Introduction
	Motivating Scenario

	Related Work
	Approach
	Models
	Probabilistic Process Model
	Probabilistic Message State Model

	Prediction and Self-adjusting Mechanisms
	Probabilistic Process Management
	Message Prediction
	Message State Adjustment
	Self-learning Message Flows

	Evaluation
	Experiment Setup and Success Metrics
	Results
	Discussion

	Conclusion
	References

	Business Process Service Oriented Methodology (BPSOM) with Service Generation in SoaML
	Introduction
	BPSOM Definition
	BPMN Use in the BPSOM Business Modeling Discipline
	SoaML Use in BPSOM Design Discipline

	From BPMN Models to SoaML Models and Beyond
	Related Work
	Conclusions and Future Work
	References

	Session 14
	Panel on Green and Sustainable IS

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

