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Foreword

Nuclear magnetic resonance (NMR) is a physical phenomenon with many
applications in medicine, science, and engineering. As the electronics and computer
technology advances, the NMR instrumentation benefits, and along with it, the
NMR methods for acquiring information expand as well as the areas of application.
Originally physicists aimed at determining the gyro-magnetic ratio. As the magnetic
fields could be made more homogeneous, line splittings were observed and found
to be useful for determining molecular structures. The advent of computers led to
a dramatic sensitivity gain by measuring in the time domain and computing the
spectra by Fourier transformation of the measured data. This subsequently evolved
into multidimensional NMR and NMR imaging, where the demands on computing
power and advanced electronics are even more stringent. Superconducting magnets
are being engineered at ever-increasing field strength to improve the detection
sensitivity and information content in NMR spectra. Molecular biology and
medicine were revolutionized by the advent of multidimensional NMR spectroscopy
and NMR imaging.

Apart from chemical analysis and medical diagnostics, NMR turns out to be
a great tool for studying soft matter, porous media, and similar objects. With
the appropriate methods, spectra can be measured at high resolution, images be
obtained with an abundance of contrast features, and relaxation signals be exploited
to study fluid-filled porous media and devices. With NMR being so well established
in chemistry and medicine, one may ask which is the next most important use
of NMR. Probably this is in the oil industry for logging oil wells with portable
devices that are lowered into the borehole to inspect the borehole walls. This is a
genuine engineering application based on relaxation and diffusion measurements
with instruments that use the low magnetic fields of permanent magnets instead of
the high fields of superconducting magnets used elsewhere. Are there other uses of
NMR in engineering? Clearly, there are a few groups worldwide that do research
in this area. But it is difficult to convey the use and advantages of NMR to the
engineering community. First of all, NMR is a complicated business. There are
standard experiments only for some routine chemical analysis and medical imaging
applications. Engineering applications require an in-depth understanding of the
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vi Foreword

NMR machine and, moreover, even modifications to address the particular needs
of an emerging new community of users. Second, the types of applications where
NMR is needed to advance the understanding of technical phenomena are by no
means simple to identify.

This book addresses both issues. NMR methods and hardware explain the depth
necessary to tackle engineering applications. These applications are in a way more
demanding than chemical analysis and medical imaging as they are rather diverse.
All three major methodical branches of NMR are needed. They are relaxometry,
imaging, and spectroscopy. And imaging is not just about getting pictures but also
about quantifying motion and transport phenomena. Also the hardware demands
differ; measurements should be conducted at the site of the object outside the
laboratory, where desktop instruments with permanent come in handy. But what
are the applications? This book provides a convincing answer with descriptions of
ten selected applications of technical relevance.

I find this book most useful to graduate students and scientists working in the
chemical and engineering sciences. It is written with great insight into both the
NMR methodology and the demands from the engineering community. I hope that
it finds many readers and good use in advancing science and technology.

Aachen Bernhard Blümich



Preface

This book originates from activities in connection with a research unit at the
Department of Chemical and Process Engineering of the Universität Karlsruhe
(TH), now Karlsruhe Institute of Technology (KIT), applying nuclear magnetic
resonance (NMR) in engineering sciences.1 The actual research was accompanied
by frequent seminars and scientific events. A lecture intended mainly for the
Ph.D. students involved in the projects was implemented.2 The presented NMR
fundamentals are an extension of this lecture. Frequent tasks of quantitative image
analysis are summarized later. In the experimental part, also specific hardware
developments are described. The presented applications equally originate from this
research unit.

The text is mainly intended for readers with engineering background applying
NMR methods or considering to do so. Quantum mechanics are avoided in favor
of a classical description. However, the relevant equations are worked out. Simple
problems with solutions allow to check whether the fundamentals are understood.

Many persons from Karlsruhe contributed to this book. Prof. Buggisch initiated
the research unit and led it with exceptional competence. He also thoroughly scru-
tinized the German version of this text. Prof. Nirschl suggested the idea of this
book. Prof. Reimert organized the continuation of the research unit after the DFG
funding as well as Prof. Kasper, Prof. Kind, Prof. Nirschl, and Prof. Elsner. Prof.
Nirschl, Prof. Kind, Prof. Wilhelm, and Prof. Elsner contributed in the establishment
of the shared research group confided to Dr. Guthausen, extending in particular
research involving low-field NMR. I especially owe thanks to Mr. Mertens for
his engaged and successful work on the rheometry project with Dr. Hochstein.
Fortunately, it could be further developed into combined rheo-TD-NMR, thanks
to Dr. Nestle and Dr. Wassmer from BASF SE, Ludwigshafen, and Ms. Herold.
Technical assistance from Mr. Oliver and the workshops is gratefully acknowledged.

1Forschergruppe 338 der Deutschen Forschungsgemeinschaft (DFG) “Anwendungen der Magneti-
schen Resonanz zur Aufklärung von Stofftransportprozessen in dispersen Systemen,” 1999–2005.
2Magnetic Resonance Imaging: Fundamentals and Applications in Engineering Sciences.
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PFG Pulsed-field-gradient
PGSE Pulsed-gradient spin echo
PGSTE Pulsed-gradient stimulated echo
PMMA Polymethylmethacrylate
PSF Point spread function
PTFE Polytetrafluoroethylene
PVC Polyvinylchloride
PVP Polyvinylpyrrolidone
ppm Parts per million
RARE Rapid acquisition with relaxation enhancement
rf Radio frequency
SE Spin echo
SmCo Magnet material consisting of samarium and cobalt
SNR Signal-to-noise ratio
SPI Single-point imaging
STE Stimulated echo
TR Temperature recording
VPDF Velocity probability-density function
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Symbols and Constants

List of Latin symbols. Vectors are set in boldface

Symbol Unit Meaning

ac m Coil radius
.a/nm p. u. Distance matrix in pixel units
Nak p. u. Vector with average distances
B T Total magnetic flux density
B0 T Magnetic flux density of the polarizing field
B1 T Magnetic flux density of the transverse rf field
Bdc

1 T Field of reception coil supplied with dc current
Bc S Coil susceptance
bc m Coil length
Cm F Series trimmer capacitor
Cp F Parallel capacitor
Cs F Series capacitor
Ct F Parallel trimmer capacitor
c p. u. Minimum pore-center distance
D m2 s�1 Translational self-diffusion coefficient
df m Average window diameter (sponge)
dls – Parameter in the assignment liquid ! solid
dsl – Parameter in the assignment solid ! liquid
e – Distribution of rf field within sample
.Oe/nmo – Distortion by B1 inhomogeneity
Em J Energy in state with eigenvalue m

e˛ – Unit vector in ˛ direction
ey;�;' – Line with direction .�; '/ passing through y

F – Noise figure of preamplifier
G T/m Gradient of z component of the magnetic flux density
G m T/m Gradient mismatch
G r T/m Read gradient
G p T/m Phase gradient (imaging) or permanent gradient (imperfections)
G s T/m Slice gradient
Gc S Coil conductance

(continued)
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xvi Symbols and Constants

List of Symbols (continued)

Symbol Unit Meaning

H A/m Magnetic field, in vacuum B D �0HOH0 J Hamilton operator for Zeeman splitting
hi p. u. Distance level
I – Nuclear spin quantum number
I Js Angular momentum
OI Js Nuclear spin vector operator
I dc A Direct current
J – Number of local maximums with minimum distance
K – Number of local maximums without minimum distance
k rad/m Wave vector in reciprocal distance space
k˛ inc rad/m Increment of wave vector in ˛ direction
Lc H Coil inductivity
.L/kl – Low-pass matrix
L˛ m Length of FOV in ˛ direction
l p. u. Edge length in pixel units
lc m Conductor length
M Am�1 Macroscopic magnetization of observed nucleus
M – Row length, number of columns
m – Magnetic quantum number
MC – Nondimensionalized transverse complex magnetization
M

eq
z Am�1 Magnetization in thermal equilibrium

N – Column length, number of rows
n a. u. Noise
nc – Number of coil turns
N˛ – Number of discretization points in ˛ direction
NA – Number of averages
NS – Number of nuclear spins
O – Set of indexes (first index) or number of slices
P – Set of indexes (second index)
Pm – Population probability for state m

PN(arg) 1/[arg] Normal distribution
PRa(arg) 1/[arg] Rayleigh distribution
PRi(arg) 1/[arg] Rice distribution
q rad/m Wave vector in reciprocal displacement space
Q m3s�1 Flow rate
R m Displacement vector
R m Sphere radius
Rc ˝ Coil resistance
r m Position vector
rc m Conductor radius
r˛ inc m Increment of position vector in ˛ direction
s [arg] Parameter of distribution density P(arg)
Qs2 – Variance of ideal discrete spin density
Os2 – Variance of discrete image with artifacts
s2

e – Variance contribution by B1 inhomogeneity
(continued)
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List of Symbols (continued)

Symbol Unit Meaning

s2
n – Variance contribution by noise

SC m2 Surface by Crofton formula
SD m2 Surface by triangulation
SV 1/m Specific surface
T K Temperature
Tc K Coil temperature
T1 s Longitudinal, spin-lattice relaxation time
T2 s Transverse relaxation time
T �

2 s Effective transverse relaxation time
T

C

2 s Relaxation time for inhomogeneous broadening
t s Time
tE s Time of spin echo
texpt s Experimental time
tGE s Time of gradient echo
tR s Duration with relaxation
tS m Strut diameter
U V Induced voltage
Un V Noise voltage
U C – Nondimensionalized signal
v m/s Velocity vector
u; v; w m/s Components of velocity vector
V m3 Volume
X – Solid phase
Yc S Coil admittance (complex conductance)
y – Point in plane perpendicular to ey;�;'

Z ˝ Impedance
Z0 ˝ System impedance
Zc ˝ Coil impedance
.z/nm – Matrix with assignment to segmented regions

List of Greek symbols. Vectors are set in boldface

Symbol Unit Meaning

˛ – Packing density
� – One-dimensional Euler number
� s Gradient pulses separation
ı(arg) 1/[arg] Dirac function (distribution)
ı s Gradient duration
ıs m Skin depth
" – Porosity
� – Binary matrix with neighborhood positions
� [arg] Parameter of distribution density P(arg)

(continued)



xviii Symbols and Constants

List of Greek symbols (continued)

Symbol Unit Meaning

� Am2 Magnetic dipole moment (classical)
O� Am2 Nuclear magnetic dipole moment (vector operator)
�r – Relative permeability
h�zi Am2 Average z component of nuclear magnetic dipole moment
˝ rad/s Spectroscopic frequency shift
! rad/s Angular velocity
!0 rad/s Angular velocity of Larmor precession
!1 rad/s Angular velocity of Rabi nutation
!rf rad/s Angular velocity of rf field
' rad Azimuth angle
� rad Phase of complex transverse magnetization
�1 rad Phase of rf field
� m�3 Spin density
. Q�/nm – Discrete spin density
. O�/nm – Discrete spin density with artifacts
�c – Constant spin density
�s – Threshold for spin density
. Q�0/nm – Binary filtered Matrix . Q�/nm

. Q�00/nm – Filtered Matrix . Q�0/nm

. Q�f /nm – Discrete spin density-Matrix with low-pass filter
	 – Isotropic magnetic shielding
	c ˝�1m�1 Conductance

 s Duration of rf pulse or pulse separation
� – Binary matrix with assigned positions
� rad Polar angle
� – Bitshift vector for binary matrix
� [args] NMR-relevant parameter vector for spin density

Constants
Constant Value Meaning

„ 1:055 � 10�34 J s Planck constant
k 1:381 � 10�23 J=K Boltzmann constant
NA 6:022 � 1023 mol�1 Avogadro constant

 2:675 � 108 rad s�1 T�1 Gyromagnetic ratio of the proton (1H)

.13C/ 0:673 � 108 rad s�1 T�1 Gyromagnetic ratio of 13C

.19F/ 2:516 � 108 rad s�1 T�1 Gyromagnetic ratio of 19F

.31P/ 1:084 � 108 rad s�1 T�1 Gyromagnetic ratio of 31P
�0 4� � 10�7 H=m Magnetic constant



Chapter 1
Introduction

This book deals with the application of nuclear magnetic resonance (NMR [1]) in
engineering sciences. Special emphasis is put on methods including spatial resolu-
tion (magnetic resonance imaging, MRI). The use of permanent-magnet systems is
also treated.

The engineering competence was brought in by numerous colleagues that are
acknowledged in the preface. In the common publications [1–23, 25] referred to in
the following, details on the engineering background and investigations with other
methods are reported.

First, fundamentals of the NMR methods and pertinent data analysis are sum-
marized in Chap. 2. Concepts from quantum mechanics are not essential for
the understanding of the methods used and are only briefly mentioned at the
beginning. However, where helpful for the understanding, the relevant equations
are worked out.

Obtaining quantitative results is a key issue. Qualitative evidence, that can
already be valuable in medical applications, often represent no progress in engineer-
ing sciences. Thus the quantitative relation between the data obtained by discrete
inverse Fourier transform of raw data and the continuous function of interest is
formulated. The influence of gradient imperfections on velocity measurements is
assessed. This is of particular importance for experiments using simpler permanent-
magnet systems. Application of a post processing taking corresponding shifts in
Fourier space into account is presented. For relaxation measurements on flowing
samples, a data analysis including effects of inhomogeneous fields for polarization,
excitation, and detection is elaborated.

In the domain of volume-image analysis an efficient implementation of a seg-
mentation algorithm is presented. In the cases studied, the procedure gives better
results than the standard watershed transformation. For the quantitative analysis
of the uniformity of mixtures, the influence of artifacts on the signal variance is
calculated. Finally, a method for automatic nonlinear phase correction of volume
images is presented. For measurements with low signal-to-noise ratio (SNR), phase
correction markedly improves the quantitative analysis.

E.H. Hardy, NMR Methods for the Investigation of Structure and Transport,
DOI 10.1007/978-3-642-21628-2 1, © Springer-Verlag Berlin Heidelberg 2012
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2 1 Introduction

Experimental aspects of NMR measurements are collected in Chap. 3. Empha-
sis is put on specifically designed hardware. Magnets, probes, and gradient coils
are treated. Concerning probes, impedance matching is explained in detail. The
design of an actively shielded gradient system for transverse field geometry using
the target-field method is described.

The presentation of applications in Chap. 4 is based on the preceding chapters.
Rather specific theoretical or experimental aspects are treated in the context of
the respective application. They stem from the domains of mechanical process
engineering (gas filtration, solid–liquid separation, powder mixing, rheometry),
chemical process engineering (hydration reaction in a trickle-bed reactor, structure
of ceramic sponges), bio process engineering (flow and growth in a biofilm reactor),
and food process engineering (temperature mapping during microwave drying,
droplet-size distribution in emulsions).

Exemplary implementations in MATLAB R� are listed in Chap. 6. Further chapters
present a new line-shape model for the “indirect hard modeling” of NMR spectra,
diverse calculations on gradient echoes as well as an analytical expression for
imaging in an inhomogeneous gradient field with realistic shape.

This book is not a complete description of NMR applications in chemical and
process engineering, for this the reader is referred to the actual book edited by
Stapf and Han [24]. However, it aims to provide tools required for the successful
implementation of new applications. In the complex field of engineering, standard
NMR methods and hardware are often not available and solid fundamentals are
required to make best use of the technique.
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Chapter 2
Fundamentals

2.1 NMR Methods

Nuclear magnetic resonance (NMR) designates the resonant interaction of nuclear
magnetic dipole moments1 � in an external magnetic field2 B0 with an electromag-
netic field B1.

Resonant means that only an electromagnetic field of a certain frequency is
able to interact with the nuclear dipole. Underlying new concepts from quantum
mechanics are briefly mentioned in Sect. 2.1.1. The basic relations for the presented
NMR methods are summarized in Sect. 2.1.2. In Sect. 2.1.3 the technique used to
achieve spatial resolution is outlined. For NMR methods with spatial resolution, the
term MRI is employed. Different quantities that can be measured by various NMR
methods are presented in Sect. 2.1.4 and the following. More details can be found
e.g. in the textbooks [1, 9, 10, 13, 14, 16, 22, 28, 34, 41, 49, 58, 67].

2.1.1 Notes on Quantum Mechanics

2.1.1.1 Energy Levels of a Nuclear Magnetic Dipole in an External Field

In classical magnetostatics the energy E of a magnetic dipole � in an external
magnetic field B0 is given by the scalar product

E D ��B0: (2.1)

1Vectors are set in bold italic face.
2As common in NMR literature, the B-field is designated as magnetic field. Alternative names are
magnetic flux density or magnetic induction. In vacuum the magnetic H -field is proportional to
the magnetic induction with the induction constant �0: B D �0H .

E.H. Hardy, NMR Methods for the Investigation of Structure and Transport,
DOI 10.1007/978-3-642-21628-2 2, © Springer-Verlag Berlin Heidelberg 2012
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6 2 Fundamentals

In quantum-mechanical description, see e.g. [56], the dipole vector is replaced by
the corresponding vector operator O� and the energy by the Hamilton operator:

OH0 D � O�B0: (2.2)

The magnetic-dipole vector operator is proportional to the nuclear spin operator OI :

O� D 
 OI ; (2.3)

where 
 is designated as gyromagnetic ratio.3 Thus the energy quantization follows
from the quantization of the nuclear spin. The corresponding spin quantum number
I is integer or half-integer. Both I and 
 are ground-state properties of the nucleus,
as rest mass and charge. For an isolated nuclear spin in an external magnetic field,
the quantization axis is given by the direction of the latter. It is usually chosen as z
direction, i.e., B0 D B0ez. The scalar product in (2.2) can thus be written as

OH0 D �
 OIzB0: (2.4)

The eigenvalues of the z component of a quantum mechanical angular momentum
are m„ with the Planck constant „ and the magnetic quantum number m D � I ,
�I C 1; : : : ; I . It follows for the eigenvalues Em of the Hamilton operator:

Em D �
m„B0: (2.5)

Here only the selection rule �m D ˙1 is considered. Accordingly, the magnitude
of the energy difference for a transition amounts to

j�Ej D 
„B0: (2.6)

2.1.1.2 Notes on Photons and First Derivation of the NMR Master Equation

The Planck–Einstein equation
�E D „! (2.7)

states that electromagnetic waves with angular frequency ! can behave as particles
called photons with energy „! that can be absorbed or emitted in transitions with
corresponding energy, see Fig. 2.1. For the moment the common assumption is made
that this concept is also applicable for the excitation and detection of the NMR
signal. Combination of the resonance condition (2.7) and the energy difference (2.6)
yields the NMR master equation from quantum mechanical energy considerations:

3Sometimes more appropriate as magnetogyric ratio.
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m = ½

m = -½

h ω v= ΔE = h γB0

0 ΔE

up

downEm Bo

Fig. 2.1 Common representation of signal excitation and detection in NMR as resonant interaction
of a photon with energy „! and a nuclear magnetic dipole in the field B0, here for spin quantum
number I D 1=2. In the “up” state with magnetic quantum number m D 1=2 the z component
of the dipole is parallel to the field. This is energetically more favorable than the “down” state
(m D �1=2) with anti parallel orientation. The scalar form of the NMR master equation (2.8)
follows from the energy difference (2.6) and the Planck–Einstein equation (2.7). Although this
interpretation is widely held it leads to paradoxes concerning the detected signal [35, 36]. A
detailed theoretical framework relying on the concept of virtual-photon exchange was presented
recently [21]

! D �
B0: (2.8)

Here the resonance frequency ! is obtained as a scalar. In the following Sect. 2.1.2
the master equation will be derived from the classical equation of motion. The
angular resonance frequency appears as angular velocity and the choice of the sign
gets explained.

Whereas this description is well suited in the far-field limit it does not hold
for the excitation and detection of NMR signals where near-field contributions
dominate [35,36]. Recently a detailed theoretical framework relying on the concepts
of quantum electrodynamics (QED [23]) was presented [21]. It is concluded that
during excitation both asymptotically free photons as well as virtual photons appear
whereas detection can be characterized by virtual-photon exchange only. In this
context it was verified experimentally that the classical description of NMR signal as
near-field Faraday induction produces correct results[35]. This classical framework
used in the following also comprises the reciprocity theorem, see Sects. 2.1.9
and 2.3.4.

2.1.2 Nuclear Magnetic Resonance

2.1.2.1 Macroscopic Magnetization

The population probability Pm of energy state Em is given in thermal equilibrium
by the Boltzmann distribution:

Pm D expf�Em=kT g
PI

mD�I expf�Em=kT g : (2.9)
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For the small energy differences in NMR the high-temperature approximation
is used, meaning that the linear approximation of the exponential func-
tion is employed. Inserting expression (2.5) for the energy yields for the population
probability:

Pm � 1 C 
m„B0=kT
PI

mD�I 1 C 
m„B0=kT
: (2.10)

The equilibrium magnetization for NS spins of a given kind in volume V is obtained
from the sum of z components of nuclear magnetization in states m weighted
with Pm. Given the eigenvalue 
m„ for the nuclear z magnetization the equilibrium
magnetization M

eq
z amounts to:

M eq
z D NS

V

IX

mD�I

1 C 
m„B0=kT
PI

m0D�I 1 C 
m0„B0=kT

m„

D NS

V


2I.I C 1/„2

3kT
B0: (2.11)

This relation is known as Curie’s law, see also problem 2.2 on p. 46.

2.1.2.2 Classical Equation of Motion and Bloch Equations

According to classical magnetostatics the magnetic dipole moment � in the external
field B experiences a torque � � B. This results in a change of angular momentum
dI=dt . Applying the proportionality (2.3) between the magnetic dipole moment
and the nuclear spin to the macroscopic magnetization M the classical equation
of motion is obtained:

dM

d t
D 
M � B: (2.12)

Application to the magnetization (dipole density) means summation over all dipoles
and division by the volume V . It is assumed that B is homogeneous in V .

For a field B constant in space and time the solution of (2.12) is a precession of
the magnetization around B with the angular frequency

!0 D �
B0: (2.13)

This is a second derivation of the NMR master equation. Here, the angular velocity
of the so-called Larmor precession is a vector.

In the phenomenological Bloch equations [6]

dMx

d t
D 
.M � B/x � Mx

T2

(2.14)

dMy

d t
D 
.M � B/y � My

T2

(2.15)
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dMz

d t
D 
.M � B/z � Mz � M

eq
z

T1

(2.16)

the classical equation of motion is extended by an exponential relaxation toward
thermal equilibrium. In favorable cases the transverse relaxation time T2 equals the
longitudinal relaxation time T1. Frequently, the decay of transverse magnetization
is significantly faster than the return of longitudinal magnetization toward thermal
equilibrium.4

2.1.2.3 Rotating Frame of Reference

The classical equation of motion is sufficient to describe the presented results.
It is usually transformed into a frame of reference rotating around z in order to
simplify the solution. Further down a circular polarized transverse radio-frequency
field (rf field) B1 with angular frequency !rf � !0 will be introduced.5 It is
made time-independent in the rotating frame by transformation with the angular
frequency !rf.6 The transformation can be carried out using different formalisms.
In [22] the explicit representations of the vectors and their time derivatives in both
coordinate systems are calculated with the rotation matrix. Here, the more abstract
and concise transformation from [1] is chosen. The macroscopic magnetization M

is considered as object that is identical in both coordinate systems.7 However, the
motion of the object is observed differently in the rotating frame compared to the
laboratory frame of reference. In the rotating frame, index “R,” additional terms are
obtained upon time derivation due to the time-dependence of the unit vectors. Using
the product rule for the derivation and the fact that the time derivative of the unit
vector is the cross product of !rf with this vector it follows

dM

d t

ˇ
ˇ
ˇ
ˇ
L

D dM

d t

ˇ
ˇ
ˇ
ˇ
R

C !rf � M : (2.17)

4The relation T2 � T1 is obtained in theoretical calculations for several relaxation mechanisms
[8]. The condition that the magnitude of the magnetization cannot exceed the magnitude of the
equilibrium magnetization through relaxation leads to the weaker condition T2 � 2T1.
5Usually a linear polarized field is irradiated. It can be decomposed into two counter rotating
circular polarized fields. For B1 � B0 the component rotating with the magnetization acts as
described in (2.23). The counter rotating component leads to the Bloch–Siegert Shift, see [7] and
Fig. 2.2. Advanced NMR systems allow to generate only the required circular polarized component
[18, 27].
6Experimentally, this corresponds to the signal being mixed with the rf frequency and subsequent
low-pass filtering.
7In contrast to the representation in the form of coordinates in a column vector, denoted as “matrix
representation,” that differs between coordinate systems.
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The left-hand side of (2.17) signifies the time derivation in the laboratory frame,
index “L.” Here, no additional terms arise. Insertion of the right-hand side of (2.17)
in (2.12) yields

dM

d t

ˇ
ˇ
ˇ
ˇ
R

D 
M �
�

B C 1



!rf

�

: (2.18)

Distributivity and anti commutativity of the cross product has been used. The Bloch
equations in the rotating frame are obtained by addition of the relaxation terms, in
coordinates

dMx

d t
D 


�
My.Bz C !rf=
/ � MzBy

� � Mx

T2

(2.19)

dMy

d t
D 
 ŒMzBx � Mx.Bz C !rf=
/� � My

T2

(2.20)

dMz

d t
D 


�
MxBy � MyBx

� � Mz � M
eq
z

T1

: (2.21)

The objects in the right-hand side of (2.18) do not depend on the coordinate system.
However, (2.19)–(2.21) contain components of the matrix representation that have
to be expressed in the rotating frame.

2.1.2.4 Generation of Transverse Magnetization

If !rf and !0 are identical, the influence of B0 on the motion of M disappears in the
rotating frame, see (2.13). At first, one additional field is considered, B D B0 C B1

with

B1 D B1Œcos.!rft C �1/ex C sin.!rft C �1/ey �

D B1Œcos.�1/ex
0 C sin.�1/ey

0�: (2.22)

Primed unit vectors refer to the rotating frame of reference. Neglecting relaxation
the equation of motion in the rotating frame of reference reads:

dM

d t
D 
M � B1: (2.23)

The solution is denoted as Rabi nutation around B1. The angular velocity amounts to

!1 D �
B1: (2.24)

Accordingly the equilibrium magnetization can be rotated e.g. on the x0 axis of
the rotating frame by application of a resonant B1-field with constant amplitude
along the negative y0 axis, i.e., �1 D ��=2. The duration 
 of such a “90 degree”
rf pulse is related to its amplitude by !1
 D �=2, see also Fig. 2.2. The following
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ey
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ez´
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Fig. 2.2 (a), (c) numerical solution of the equation of motion (2.12) in the laboratory frame of
reference. (b), (d) solution of the equation in the rotating frame (2.18). Initial magnetization is
parallel to the static field B0ez. The resonant circular polarized B1-field, see (2.22) allows to
generate transverse magnetization. For the sake of clearness, B0 D 16B1 was chosen in (a).
Typically, the ratio is about three powers of ten. In the experiment frequently a linear polarized
field of twice the amplitude is used. The perturbance of the contained counter rotating circular
polarized component is visible in the laboratory frame (c) and clearer in the rotating frame (d). For
B1 � B0 the perturbance is marginal

precession of magnetization with !0 induces a weak voltage in the receiver coil,8

see also Sect. 2.3.4. This situation is the starting point for the classical description
of Fourier imaging in Sect. 2.1.3.

8Usually the coil transmitting B1 and the receiver coil are identical. Between transmit and receive
mode a dead time of some microseconds has to be waited. For the distinction of x and y component
of transverse magnetization pairs of data points can be digitized with a delay corresponding to a
precession by �=2. This procedure is denoted as “sequential quadrature detection.”
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Finally the case of !rf ¤ !0 with a remaining field Bz D B0 C !rf=
 is
mentioned. Here the nutation in the rotating frame occurs around the effective field

B1eff D B1Œcos.�1/ex
0 C sin.�1/ey

0� C .B0 C !rf=
/ez: (2.25)

2.1.3 Fourier Imaging

2.1.3.1 Basic Principle

Fourier imaging relies on a position-to-frequency transformation. In addition to the
homogeneous fields B0 and B1.t/ required for NMR a field with homogeneous
gradient is necessary. The basic principle is readily formulated using the classical
equation of motion in the rotating frame [31].

As stated at the end of Sect. 2.1.2 the magnetization in the observable volume
V having the x direction of the rotating frame is the starting point. Furthermore
!rf and !0 are supposed to be identical, relaxation is neglected. Without additional
fields the right-hand side of (2.18) is zero, the magnetization appears to be static.

Additional coils allow to superimpose the polarizing B0-field by fields with
linear variation of the z component along the directions of the laboratory frame
of reference:

Bz D B0 C @Bz

@x
x � B0 C Gxx or (2.26)

Bz D B0 C @Bz

@y
y � B0 C Gyy or (2.27)

Bz D B0 C @Bz

@z
z � B0 C Gzz; in general Bz D B0 C Gr: (2.28)

Due to the inhomogeneous field Eqs. (2.12)ff have to be applied locally for “macro-
scopic magnetization” M .r/ in the volume element dV . The volume element has
to be small enough to consider B.r/ as homogeneous within it. “Macroscopic”
signifies that the number dNS of observed spins is large enough for a meaningful
averaging according to the Boltzmann distribution in (2.11). As example a cubical
water sample with a volume V of one milliliter and a mass of one gram is
considered. Given the molar mass of 18 g/mol this corresponds to 0.056 mol water
molecules and 0.111 mol hydrogen nuclei, respectively. Even if the cube is divided
into 109 volume elements dV with 10 micrometer length of side, each volume
element still contains dNS D 6:7 � 1013 1H nuclei, with NA D 6:022 � 1023 mol�1

for the Avogadro number. Introducing the local spin density

�.r/ D dNS.r/=dV (2.29)
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and the z component of the Boltzmann-averaged nuclear magnetic dipole

h�zi D 
2I.I C 1/„2

3kT
B0: (2.30)

Curie’s law can be formulated locally as9

M eq
z .r/ D �.r/h�zi: (2.31)

The solution of (2.18) with the initial condition

M .r/ D �.r/h�ziex
0 (2.32)

at t D 0 and the additional field .Gr/ ez is a precession with the space- and possibly
time-dependent angular velocity

!.r ; t/ D �
.Gr/ ez (2.33)

around the z axis. The time-dependence applies for gradients G .t/ that are a
function of time. Motion of the nuclear spins that contribute to the spin density
�.r/ will be treated in Sects. 2.1.7 and 2.1.8. The angle of precession is denoted as
phase. It is obtained by integrating (2.33) to

�.r; t/ D �


Z t

0

G .t 0/r dt 0 (2.34)

� �kr: (2.35)

In (2.35) the definition of the wave vector

k D 


Z t

0

G .t 0/ dt 0 (2.36)

has been introduced.10 The measuring system samples the integrated transverse
magnetization in the observable volume V , see Sect. 2.3.4. Division by V yields
for the average magnetization

NM .t/ D h�zi
V

ZZZ

V

�.r/
�
cos.�.r; t//ex

0 C sin.�.r; t//ey
0� dxdydz: (2.37)

9A spatial variation of h�zi due to the superposition of B0 with Gr can be neglected. On the one
hand the additional gradient fields are typically at least three orders of magnitude weaker than B0.
On the other hand the gradient fields are usually switched on as pulses with a duration that is short
compared to the longitudinal relaxation time T1.
10A more general definition with the effective gradient will be given in Sects. 2.1.7 and 2.1.8. The
concept of effective gradients includes the effect of rf pulses with !1
 D � .
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Nondimensionalization with h�zi=V and identification of the transverse plane of the
rotating frame of reference with the complex plane leads to the concise expression

MC.k/ D
ZZZ

V

�.r/ exp.�ikr/dxdydz (2.38)

with Re.MC/ D NMxV=h�zi and Im.MC/ D NMyV=h�zi. According to this the
average transverse magnetization MC.k/ is the Fourier transform of the spin density
at point k in reciprocal position space.11 Thus the sought-after spin density can be
determined approximately by inverse Fourier transform if MC.k/ can be suitably
sampled in reciprocal position space.

With the exception of research described in Sects. 4.5 and 4.10, all applications
presented in Chap. 4 use the principle of Fourier imaging. The effect of small
deviations from linear field variations are treated analytically for a special case in
Chap. 9.

2.1.3.2 Pair of Continuous and Discrete Fourier Transform

If it were possible to sample reciprocal position space continuously and completely,
the spin density could be calculated by inverse Fourier transform:

�.r/ D 1

.2�/3

ZZZ

MC.k/ exp.ikr/dkxdkydkz: (2.39)

This can be seen quite simply by inserting (2.38) in (2.39), which leads to the Fourier
representation of the Dirac or delta function. Experimentally, neither a continuous
nor an infinitely expanded sampling is possible. Usually reciprocal space is sampled
on a regular Cartesian grid. In one dimension, the expression for the discrete inverse
Fourier transform then reads

Q�n D 1

N

NX

kD1

MC
k expŒi2�.k � 1/.n � 1/=N �; 1 � n � N: (2.40)

For multidimensional data the procedure (2.40) has to be applied sequentially for all
dimensions. In the expressions Q�n and MC

k the naturals n and k signify the index
of the result and measured data vectors, respectively. The latter results from the
discretization of e.g. kx in (2.38). For the sake of completeness, the discrete Fourier
transform is also indicated. Assuming a discrete spin density Q�n, the expression of
the measured signal would be

11See also problems 2.5 and 2.6.
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QMC
k D

NX

nD1

Q�n expŒ�i2�.k � 1/.n � 1/=N �; 1 � k � N: (2.41)

For the hypothetical discrete pair it is also rather simple to see that insertion of QMC
k

from (2.41) instead of MC
k into (2.40) leads to the identity. The Kronecker delta

occurs in place of the delta function.
Here it is necessary to examine the less simple question what the discrete inverse

Fourier transform (2.40) of the measured continuous Fourier transform (2.38)
signifies. To this end the discrete k values have to be expressed as a function of the
index k and inserted into (2.38). Only one dimension is considered, the extension
to higher dimensions gives corresponding results. In order to achieve the highest
resolution with a given number of discretization points, the length L of the field
of view (FOV) is chosen to just contain the sample. According to the sampling or
Nyquist theorem the increment in reciprocal space is then calculated from12

kinc D 2�=L: (2.42)

For the fast Fourier transform (FFT) the number N of points sampled is a power of
two. They are chosen as

2�

L
.k � 1 � N=2/; 1 � k � N: (2.43)

Now (2.38) can be expressed as a function of index k and inserted into (2.40):

Q�n D 1

N

NX

kD1

Z L=2

�L=2

�.r/ expŒ�i.2�=L/.k � 1 � N=2/r�dr

� expŒi2�.k � 1/.n � 1/=N �; 1 � n � N: (2.44)

The integration limits are reduced assuming that no spin density is observed outside
the FOV. Interchanging summation and integration as well as collection of the
exponential functions lead to

Q�n D 1

N

Z L=2

�L=2

dr �.r/

NX

kD1

exp

�

i2�

�

� r

L

�

k � 1 � N

2

�

C .k � 1/.n � 1/

N

�	

; 1 � n � N: (2.45)

12This corresponds to the claim of unambiguous phase increments kincr for all positions within the
FOV. For magnetization outside the FOV the phase increment between two discretization points
calculated from (2.35) and (2.42) is outside the interval Œ�� ��. This violation of the sampling
theorem leads to a folding of spin density in the calculated image.
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Rearranging finally yields:

Q�n D exp fi.n � 1/�g
N

Z L=2

�L=2

dr �.r/

NX

kD1

exp

�

�i2�

�

k � 1 � N

2

��
r

L
� n � 1

N

�	

;

1 � n � N: (2.46)

The first exponential is one for odd index n and minus one for even index. This
corresponds to a first-order phase error, analogous to the shift theorem of the Fourier
transformation. In two dimensions a checkerboard pattern is obtained. This effect
can be removed by a simple phase correction. The correction of non trivial phase
errors will be treated in Sect. 2.3.5. The sum in (2.46) is a superposition of sine and
cosine functions. The common origin depends on the index n of the result vector,
the scaling of the argument on index k of the measured data in reciprocal space.
As the sum is finite, it only represents an approximation of the delta function. The
position of the origin and the degree of approximation shall be illustrated for four
cases in Fig. 2.3.

For n D 1 the origin is at zero, i.e., Q�1 is an approximation of �.0/. In Fig. 2.3a the
sum is represented for a coarse discretization of N D 16. Obviously not only �.0/

contributes to the real part of Q�1, but predominantly the weighted integral of �.r/ in
an interval of width 2L=N around r D 0. Additionally on each side alternately N=4

integrals with decreasing negative weight and N=4 � 1 integrals with decreasing
positive weight in intervals of width L=N contribute. Although �.r/ is real, the
oscillating imaginary part of the sum in general leads to a small imaginary part of Q�n.
The maximum of the real part of the sum is N times higher than the amplitude of
the oscillating imaginary part.

For n D 2 the origin is at L=N , i.e., Q�2 � �.L=N /. Apart from that there is a
cyclic shift of the function. All N points are equidistant with the “digital resolution”

rinc D L=N D 2�=.N kinc/: (2.47)

For n D N=2 the origin is such that Q�N=2 is dominated by �.r/ in the vicinity of
the right boundary of the FOV. Still for a rather coarse discretization of N D 32 the
corresponding sum is shown in Fig. 2.3b.

The first point of the result vector with n D N=2 C 1 samples the left and right
ends of the FOV in equal measure. This is demonstrated in Fig. 2.3c for N D 64,
which depending on the application is already a suitable discretization.

Due to the cyclic shift the following points of the result vector with N=2 C 2 �
n � N sample the spin density predominantly at negative positions. This is shown
in Fig. 2.3d for N D 128 and n D 96. To obtain the correct image, the halves of Q�
calculated by (2.46) are shifted.
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Fig. 2.3 Representation of the sum in (2.46). Real part: solid line, imaginary part: dotted line.
Results for varying discretization N of the discrete Fourier transform and varying index n of the
result vector are shown. (a) N D 16, n D 1; (b) N D 32, n D N=2 D 16; (c) N D 64,
n D N=2 C 1 D 33; (d) N D 128, n D 96 > N=2 C 1

In summary the first point of the shifted result vector is related to both boundaries
of the FOV. It is followed by N=2 � 1 points corresponding to negative r .
The point of origin is at index n D N=2 C 1. Positive r are represented by the
last N=2 � 1 points. If the sampled spin density �.r/ shows only minor variation
on the length scale of the oscillations of the sum, contribution from side lobes with
alternating polarity cancel and Q� is a faithful approximation. For steep jumps in the
spin density it is comprehensible from the preceding that artifacts such as the Gibbs
effect can result from discrete sampling and Fourier transformation. An example for
the investigation of artifacts by discrete sampling is given in Sect. 4.9.
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2.1.3.3 Simple Pulse Sequence, Resolution

There are two common methods to conduct the transverse magnetization MC.k/ to
the required sampling points in k space.

In the method called frequency encoding the gradient in (2.36) is kept constant
and is denoted as read gradient G r. Data acquisition is performed with a dwell
time (DW) calculated such that the chosen k˛ inc is obtained, where ˛ designates
the gradient direction. Usually ˛ is x, y, or z but other directions can be realized
by simultaneous switching of gradients. In order to conduct the first point to
�.N˛=2/k˛ inc a gradient with opposite polarity and corresponding time integral
is applied before data acquisition, see Fig. 2.4. This gradient is denoted as read
dephase gradient. Its magnitude can be higher than that of the read gradient in order
to reduce its duration, the read dephase time. For k D 0 the magnetization phase is
independent of position and the signal is at its maximum. The maximum is denoted
as gradient echo and the corresponding time as tGE .

In order to sample the remaining dimensions frequency encoding can be
supplemented by a method denoted as phase encoding. The phase gradient G p

perpendicular to the read gradient is switched on after generation of transverse

B1

Gr

S 

Ny NA

tGE

Gp

kx / kx inc

ky / ky inc

a b

Fig. 2.4 Simple experimental scheme for the sampling of reciprocal position space. (a) Syn-
chronization of excitation with B1 , phase encoding with Gp, frequency encoding with Gr, and
data acquisition. (b) Corresponding path in k space. Just after excitation the magnetization state
corresponds to the origin of k space. The simultaneous action of the phase gradient and read
dephase gradient produces the straight lines to sampling points at the left border of k space. During
acquisition of the signal S the read gradient leads the magnetization along horizontal lines. In the
example the read gradient has x direction and the phase gradient y direction. The depicted signal
is a sketch of the real part of the total observable magnetization for Gp D 0. It exhibits a maximum
at time tGE of the gradient echo. The imaginary part, corresponding to the y component of the
magnetization, is not shown. After a relaxation delay a loop is executed until the signal is acquired
for all values of the phase gradient. If necessary, each acquisition can be repeated NA times to
improve SNR and reduce artifacts. [31] c� Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced
with permission
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magnetization and off before data acquisition, see Fig. 2.4. As rotations due to both
gradients occur around the z axis the phase gradient can be applied simultaneously to
the read dephase gradient. The procedure is repeated with varying amplitude of G p

so that for the dimension of the phase gradient the values calculated by (2.36) and
(2.43) are obtained. The remaining third dimension can be sampled by an additional
phase encoding gradient.

The achievable spatial resolution and the experimental time required depend on
several factors. According to (2.47) the distance between discretization points in
real space equals � divided by the maximum value of the wave vector. As can
be seen from (2.36) a technical limit for the resolution is thus imposed by the
maximum gradient time integral that can be realized by the gradient system, see
Sect. 3.1. As discussed in [13] the spatial resolution can be limited by the SNR
that decreases with increasing digital resolution. Further limitations to the spatial
resolution by transverse T2 relaxation, translational self diffusion, and susceptibility
artifacts are also treated in [13]. Let N˛ be the number of frequency-encoding steps
and Nˇ, N
 the number of encoding steps in the two phase-encoded dimensions of
the simple experiment described above. The duration of each frequency encoding
is of the order of milliseconds and is neglected. If after each frequency encoding
step the relaxation of magnetization toward thermal equilibrium is awaited, about
four times the longest longitudinal relaxation time T1 is required. In this case the
experimental time amounts to

texpt D NˇN
 4T1NA; (2.48)

where NA designates the number of averages used to improve SNR and reduce
artifacts. In favorable cases the experimental time can be drastically reduced, see
e.g. [9] or [31] and Fig. 2.7.

2.1.3.4 Slice Selection

Abandoning sampling of the third dimension by phase encoding reduces the
experimental time in (2.48) by the factor N
 . Let z be the direction that is
not sampled. For Gz � 0 and thus kz � 0 the spin density integrated along
z is obtained according to (2.38). Alternatively a slice of thickness �z perpendicular
to the z direction can be selected and a two-dimensional (2D) image of the slice
produced. Slice selection by selective excitation is described in the following first
in a linear approximation and then on the basis of the classical equation of motion.

According to (2.8) nuclear spins are excited by a resonant electromagnetic field
if !rf D 
B0 is fulfilled. If during excitation a slice gradient G s is applied along z
the energy difference in (2.6) depends on z:

�E D 
„.B0 C Gsz/: (2.49)
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In this case and for a continuous electromagnetic wave of angular frequency
!rf D 
B0 the resonance condition would only be fulfilled at z D 0, producing
hardly any signal. Excitation by a pulsed electromagnetic field generates not only a
single frequency but also a frequency distribution around the carrier frequency. The
form of the spectrum around the carrier frequency is given by the Fourier transform
of the pulse shape. For a block pulse with rectangular shape a sinc spectrum is
obtained, with sinc.x/ D sin.x/=x. The pulse bandwidth �! can be defined e.g.
as frequency difference between the first zeros of the spectrum on both sides of the
maximum. It is inversely proportional to the duration of the pulse. Using (2.8) the
approximate thickness �z of the slice in which the resonance condition is fulfilled
is calculated as:

�! D 
Gs �z: (2.50)

A slice with sharper profile is obtained for a rf pulse with sinc amplitude shape as
its frequency spectrum is rectangular. A sinc pulse truncated at the third zero of
the shape on both sides of the maximum is shown in Fig. 2.5a. The corresponding
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Fig. 2.5 Simulation of slice selection. (a) Amplitude shape of a narrow-banded sinc rf pulse. (b)
Fourier transform of the pulse shape. (c) Slice gradient Gs followed by a slice-refocusing gradient.
(d) Numerical calculation of resulting magnetization-vector components in the rotating frame of
reference as a function of position perpendicular to the slice, here z. Solid line: x component.
Dotted line: y component. Dashed line: z component. [31] c� Wiley-VCH Verlag GmbH & Co.
KGaA. Reproduced with permission
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frequency spectrum is depicted in 2.5b. Deviations from a rectangular spectrum are
due to the necessary truncation and represent a compromise. A description in the
framework of linear systems is given in [9].

The process of slice selection can be studied accurately by numerical solution of
the equation of motion (2.18). For !rf D !0 and including the rf as well as gradient
field it reads:

dM

d t
D 
M � �B1.t/.ex

0 cos �1 C ey
0 sin �1/ C .G sr/ ez

�
: (2.51)

The result of a simple piecewise constant integration with 20,000 equal time steps,
see Sect. 6.4,is shown in Fig. 2.5d. A typical duration of 
 D 1 ms was chosen for
the sinc pulse. The amplitude of the rf field is calculated considering the center of
the slice where the slice gradient produces no additional field. The integral of the
Rabi nutation is set to the required pulse angle, here 90 degrees:

� 


Z 


0

B1.t/ dt D �=2: (2.52)

As starting point 128 points along the slice direction between �5 mm and 5 mm with
constant equilibrium magnetization were chosen. The desired slice thickness was
set to �z D 4 mm. For an infinite sinc pulse with (1/6) ms between the maximum
and first zero amplitude the bandwidth amounts to �!=.2�/ D 6 kHz. With the
slice thickness and bandwidth the slice gradient Gs is calculated by (2.50). Ideal
slice selection means z component zero and e.g. maximum x component within
the slice. Outside the slice the situation is inverse. The remaining y component is
zero at all positions. Integration up to the pulse length 
 yields for the z component
approximately the desired result as shown in Fig. 2.5d. Deviations from ideal slice
selection exhibit features already visible in the linear approximation, see Fig. 2.5b.
The transverse components however oscillate along the slice direction. Application
of the slice refocusing gradient after the rf pulse, see Fig. 2.5c, produces the profiles
of x and y magnetization depicted in Fig. 2.5d. The area of the optimal simulated
slice refocusing gradient is �0.52 times the integral of the slice gradient. For
higher flip angles such as � in Fig. 2.9 the simulation reveals larger deviations
of the obtained slice thickness compared to the result of linear approximation in
(2.50). Such simulations are used in the optimization of parametrized pulse shapes
with respect to given properties such as sharp slice boarders without oscillation of
transverse components [25].

If all rf pulses in an experiment are slice selective a pseudo 3D image can be
obtained in the experimental time of a 2D image. Waiting about 4T1 between two
phase encoding steps for each slice usually leaves enough time for the measurement
of further slices. However, the achievable spatial resolution in slice direction in multi
slice imaging is about one order of magnitude inferior to that of full 3D sampling of
reciprocal space, e.g., 1 mm versus 100 � m. Again, the directions of G r, G p, G s

can be chosen arbitrarily through rotation, i.e., linear combinations of G x , G y , G z.
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2.1.4 Contrast

2.1.4.1 Additional Dimensions

According to (2.38) the complex signal in Fourier imaging is determined by the
spin density �.r/. In fact, constituting the strength of NMR, a multitude of addi-
tional parameters influence the measured NMR response. In the following Sects.
frequently employed parameters are briefly reviewed. Instead of the simple 3D spin
density, generally a distribution density with high dimensionality is considered:

M C
B .t/ D

Z

�

�.�/ expfi�B.t; �/g d� (2.53)

with
� D .r; ˝; T1; T2; D; v; : : :/: (2.54)

In (2.54) ˝ designates a frequency shift in the sense of NMR spectroscopy. It is
due to the magnetic shielding 	 .13 T1 and T2 are the relaxation times introduced in
(2.14)–(2.16). D is the translational self-diffusion coefficient.14 The velocity in case
of coherent displacement is denoted by v. The phase �B.t; �/ in (2.53) is a function
of time and parameters � as well as a functional of the experimentally chosen
B.r; t/. For a real-valued phase as in (2.38) the integral transform is a Fourier
transform. Relaxation corresponds to an imaginary phase and a Laplace transform.

Even a coarse resolution of the above distribution in ten dimensions is prohibited
by the required experimental time and the amount of data. Hence the experiments
integrate the distribution totally or partially over variables (r and ˝) or the influence
of parameters in the form of a weighting is avoided, used, or accepted (T1, T2, D,
and v). Further notes on distribution densities are given in Sect. 2.1.8 on p. 32ff.

As example, consider the pair of variables position and spectroscopic frequency.
Common experiments are:

• Spectroscopic resolution and total integration of position space
• Spectroscopic resolution for a small selected volume
• Spectroscopic resolution and 2D spatial resolution within a slice
• Spectroscopic and full 3D spatial resolution
• 2D or 3D spatial resolution and total integration of the spectroscopic dimension
• 2D or 3D spatial resolution and integration of the spectroscopic dimension in a

range of chemical shifts

In all combinations the influence of longitudinal relaxation can be avoided by
waiting about five times the longest T1 of the sample between two scans. Weighting

13More precisely the isotropic magnetic shielding, i.e., one-third of the trace of the shielding tensor,
see also Sect. 2.1.5.
14To be replaced by the corresponding tensor in case of anisotropic diffusion, see also Sect. 2.1.7.



2.1 NMR Methods 23

by transverse T2 relaxation is reduced by minimizing the time between excitation
and detection of magnetization. Signal attenuation due to translational self diffusion
is avoided if no or only moderate gradients of the magnetic field are present. If
convection can be suppressed the signal is not influenced by v.

Another example is the variable pair transverse relaxation and translational self
diffusion. If inhomogeneities of the polarizing field or the sample do not allow for
spectroscopic resolution, 2D T2-D spectra are increasingly used as valuable source
of information. Without space encoding the signal is integrated over the spatial
dimensions. However, the experimental setup can be designed to possess a detection
volume of suitable size and shape. Spatial resolution is then possible by moving the
sensor relative to the sample. For the remaining parameters the considerations given
above are still valid.

In the following all distribution densities are denoted by the same symbol “�,”
even if the considered distribution results from an integration over some parameters.
To be mathematically correct, a new symbol would have to be introduced in each
case.

2.1.5 Spectroscopy

The surrounding electron density causes a shielding of the polarizing field at the
positions of the nuclei. For different chemical groups this chemical shielding has
slightly different values.15 In the simplest case NMR spectroscopy consists of a
pulse excitation followed by a free induction decay (FID). The broad-banded rf
pulse rotates the nuclear magnetization of the observed kind (e.g. 1H or 13C) in the
transverse plane, see (2.24). The pulse response is sampled and a frequency analysis
performed by Fourier transformation. During the FID the magnetic field in (2.18)
amounts to .1 � 	/B0 for a given magnetic shielding 	 . Consequently a residual
precession with angular velocity ˝ D �	!0 remains in the rotating frame, similar
to the situation in (2.33). Integrating over the observed sample, i.e., the occurring
residual frequencies, the nondimensionalized magnetization reads

MC.t/ D
Z 1

�1
�.˝/ exp.i˝t/d˝ (2.55)

similar to the expression in (2.38). Here, the total transverse magnetization MC.t/

and the spectrum �.˝/ form a Fourier pair.16 According to (2.55) the magnetization
at time t D 0 reflects the integral of the observed spectrum. This still holds if the
signal decays by transverse relaxation to be discussed in Sect. 2.1.6. Signal decay

15In the range of 10 ppm (parts per million) for hydrogen nuclei, 200 ppm for the NMR-observable
carbon isotope 13C.
16The angular frequency has been used as variable. In spectroscopy it is common to use the
chemical shift ı relative to a reference: ı D 106.	ref � 	/=.1 � 	ref/ � 106.	ref � 	/.
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by relaxation results in a peak height-reduction and broadening in the measured
spectrum. Nevertheless, following from the Fourier relation, the integral of the
measured spectrum is directly related to the magnetization at t D 0 and hence the
number of spins. By linearity of the Fourier transform the direct relation between
the peak integral and the number of spins of the corresponding chemical group holds
for the spectrum of superposed lines with chemical shift.17 In favorable cases this
experiment is sufficient to analyze which chemical groups are present and in which
number. The fine structure by through-bond coupling is not to be discussed here.
It should simply be mentioned that this additional information is used to determine
the primary structure. The secondary structure e.g. in solution can be assessed by
measurement of dipolar through-space coupling. By this, NMR is one of the most
important analysis tools in chemistry and biochemistry.

Broadening, overlap and artifacts hamper the inference from the measured
spectrum on the true spectrum. One strategy in the analysis of spectra is a
fit of the weighted superposition of parametrized lines to the measured spectrum.
Ideally the parametrized line shape should be physically motivated. In spectroscopy
the symmetric Voigt profile is popular. It is the convolution of a Lorentzian line
resulting from monoexponential relaxation and a Gaussian line accounting for a
statistical broadening. Analysis with a pseudo Voigt function18 have been conducted
on severely distorted spectra with a largely automated program [43]. In order to
account for the frequently asymmetric line shape, a new physically motivated line-
shape function was derived, see Chap. 7.

An application exploiting the temperature dependence of chemical shielding
in water is presented in Sect. 4.9. In the diffusion measurements described in
Sect. 4.10, spectroscopic resolution is used to differentiate between the phases of
an emulsion.

2.1.6 Relaxometry

In the following the three variables spectroscopic frequency !, transverse relaxation
time T2, and longitudinal relaxation time T1 are jointly considered. Including these
parameters the rotating frame equations (2.19)–(2.21) read:

dMx

d t
D �˝My � Mx

T �
2

(2.56)

dMy

d t
D ˝Mx � My

T �
2

(2.57)

dMz

d t
D �Mz � M

eq
z

T1

: (2.58)

17In contrast e.g. to infrared spectroscopy, where band integrals are influenced by further
parameters.
18There is no closed analytical expression for the convolution.
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After the excitation pulse again a FID is obtained, i.e., no rf or gradient fields are
applied. It is assumed that !rf D !0 D �
B0 holds. As in (2.55) ˝ designates
the product 
B0	 . The effective transverse relaxation time is denoted by T �

2 . It is
shorter than the natural relaxation time T2 if inhomogeneities of the polarizing field
lead to a dephasing of magnetization. Using the symbol T C

2 for this relaxation time
due to inhomogeneous broadening, the relation

1

T �
2

D 1

T2

C 1

T C
2

(2.59)

holds for additive relaxation rates [22].
Without rf fields (2.58) is decoupled from (2.56) and (2.57). However, the time

evolution of Mz influences the initial condition of transverse magnetization if the
time tR between two excitations is insufficient for return to thermal equilibrium.
Here it is assumed that each excitation totally converts longitudinal to transverse
x magnetization that decays to zero before the next excitation. Longitudinal
magnetization builds up during the time interval tR. Starting the time axis after the
excitation the solution of (2.56) and (2.57) reads

MC.t; tR/ D M eq
z .1 � exp.�tR=T1// exp.i˝t/ exp.�t=T �

2 /: (2.60)

With the spatially integrated density �.˝; T1; T �
2 / (2.55) is extended to

MC.t; tR/ D
Z 1

�1
d˝

Z 1

0

dT1

Z 1

0

dT �
2 �.˝; T1; T �

2 /

� .1 � exp.�tR=T1// exp.i˝t/ exp.�t=T �
2 /: (2.61)

First the common case of spectroscopy with relaxation is further discussed. Let
individual chemical groups with frequency shift ˝k and relaxation times T1;k; T �

2;k

contribute with fraction �k . The spin density is then expressed as

�.˝; T1; T �
2 / D

X

k

�kı.˝ � ˝k/ı.T1 � T1;k/ı.T �
2 � T �

2;k/: (2.62)

Insertion of (2.62) in (2.61) yields for the complex signal a superposition of damped
oscillations as in (2.60) for a single group. Fourier transformation with respect to t

can be calculated quite simply leading to the experimental spectrum

1

2�

Z 1

�1
MC.t; tR/e�i˝t dt

D 1

2�

X

k

�k.1 � exp.�tR=T1;k//

 
1=T �

2;k

.1=T �
2;k/2 C .˝k � ˝/2

C i
˝k � ˝

.1=T �
2;k/2 C .˝k � ˝/2

!

: (2.63)
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Fig. 2.6 Inversion recovery pulse sequence with CPMG detection for the determination of
T1–T2 distributions. The first rf pulse with flip angle � prepares the magnetization. It is inverted
to the �z axis. During the evolution period tR longitudinal relaxation occurs. The following
�=2 rf pulse transforms the longitudinal magnetization into precessing, i.e., detectable transverse
magnetization. It decays by T �

2 relaxation which can be fast due to dephasing magnetization.
Dephasing is refocused repeatedly by the train of � pulses generating a series of echoes as
in the CPMG sequence (Carr-Purcell-Meiboom-Gill). The first dimension of the experiment is
the recovery time tR. This dimension is sampled by incrementing tR for different passes of the
sequence. The second dimension is the time tE at which the echoes occur. Several thousand echoes
can be observed. The third dimension is the time axis for each individual echo. Frequently, this
dimension is not sampled and only the center of each spin echo is detected

In the integration it has to be regarded that the above expression for the signal
only holds for t > 0 and zero has to be inserted for t < 0. This asymmetry
leads to the imaginary dispersion line in the spectrum. As already mentioned on
p. 24 the real part for each group is a Lorentzian line centered around ˝k. The full
line width at half maximum (FWHM) amounts to 2=T �

2;k .19 Thus experimentally a
superposition of Lorentzian distributions instead of delta distributions assumed in
(2.62) is obtained. The direct relation between the line integral and the fraction of
associated spins mentioned on p. 24 is expressed in the prefactor �k in (2.63). The
additional T1 weighting can be avoided allowing for a sufficiently long tR.

A second case of increasing interest is the determination of a continuous
distribution of longitudinal T1 and transverse natural T2 relaxation times [59].
For this purpose the pulse sequence shown in Fig. 2.6 can be used. Each time it
starts with fully relaxed magnetization, e.g., between two repetitions about four
times the longest longitudinal relaxation time is waited. The first inversion pulse
produces a flip angle of � . For this initial condition the solution of (2.58) which
contains 1 � 2 exp.�tR=T1/ has an additional factor 2 compared to (2.61). The
second pulse with nutation angle �=2 rotates the magnetization to the transverse
plane. It dephases by natural T2 relaxation, differences in chemical shielding and
inhomogeneities of the polarizing field. The following train of � pulses inverts
repeatedly the sign of magnetization phase if the rotation axis is x. This generates

19The prefactor of a normalized Lorentzian distribution is 1=� and not 1=.2�/ as in (2.63). The
factor 1/2 is a consequence of the missing signal for negative times. If the distribution is expressed
with the linear frequency instead of angular frequency the full width at half maximum amounts to
1=.�T �

2;k/.
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at echo times tE between the pulses refocused magnetization denoted as spin echo.
The envelope of the spin echo series only20 decays by the occurring natural T2 times
as contributions by chemical shielding and field inhomogeneities are refocused. The
echo maximums are therefore given by

MC.tE; tR/ D
Z 1

0

dT1

Z 1

0

dT2 �.T1; T2/

� .1 � 2 exp.�tR=T1// exp.�tE=T2/: (2.64)

In this case the relation between the measured signal and the distribution �.T1; T2/

is a 2D Laplace transformation and not a Fourier transformation.21 The difficulty in
the analysis of T1-, T2 consists in the performance of a robust 2D inverse Laplace
transformation. Recently progress has been achieved by the methods described
in [59].

Finally a pulse sequence for the investigation of transverse relaxation in a slice
with spatial resolution is presented, see Fig. 2.7. It combines read and phase
encoding, see Fig. 2.4 with slice selection, see Fig. 2.5 and CPMG (Carr-Purcell-
Meiboom-Gill) detection, see Fig. 2.6. After every spin echo with frequency
encoding the effect of the phase gradient is revoked by a gradient of opposite
polarity. The position in k space thus corresponds to the position before the slice
selective � pulse. Starting with a further � pulse the trajectory in k space can be
cycled through repeatedly. If r echoes are acquired for each of the Ny phase encod-
ing steps r slice images with incremented echo time are obtained. Transverse relax-
ation can be analyzed for each point in the slice. Alternatively, the phase gradient can
be incremented for each echo. Only Ny=r repetitions of the sequence are required,
reducing drastically the experimental time. The fast spin echo imaging is denoted
as turbo spin echo or RARE (rapid acquisition with relaxation enhancement). In
favorable cases r D Ny can be chosen for a “single shot” image acquisition.

One application is shown in Sect. 4.2, p. 110f. A tracer is used to generate
relaxation contrast. Relaxation measurements on flowing samples are discussed in
Sect. 2.1.9 with results presented in Sect. 4.5. For a relaxation measurement with
3D spatial resolution, see Sect. 4.6, p. 133f.

2.1.7 Diffusometry

In the following three Sects. the consequence of displacements of the spin carrying
nuclei on the detected transverse magnetization is considered. A basic experiment

20Neglecting translational self diffusion and experimental artifacts.
21Fourier transformation can be treated as special case of Laplace transformation. The latter is a
special case of Fredholm integral equation of the first kind, i.e., a linear integral equation with
constant integral limits and the unknown function occurring only in the integral. This general case
is treated in [59].
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Fig. 2.7 Slice image with CPMG detection: (a) Pulse sequence. (b) Corresponding path and
sampling points in k space. After excitation with B1 and Gs the magnetization state in the selected
slice corresponds to the origin of reciprocal position space. The read-dephase gradient Gr (1) leads
to the point .Nxkx inc=2; 0/. In order to reduce the echo time, the slice refocusing gradient can
be applied simultaneously. The following multi echo part is executed r times. The refocusing �

pulses act selectively on the excited slice and produce a reflection with respect to the origin (2). The
� pulses are self refocusing, no slice refocusing gradient is required. Prior to data acquisition the
phase gradient Gp takes the magnetization to the beginning of a line in k space (3). After frequency
encoding (4) the action of the phase gradient is revoked by a second gradient of opposite polarity
(5). After Ny passes with NA averages r slice images with incremented echo time are obtained.
Alternatively, the phase gradient can be incremented for each of the r echoes. Only Ny=r instead
of Ny repetitions are necessary, considerably speeding up data acquisition (“turbo spin echo” or
“rapid acquisition with relaxation enhancement, RARE”). As all rf pulses are slice selective, the
sequence can be applied to Ns further sliced during relaxation of one slice (“multi slice”). For 3D
spatial resolution a second phase encoding is applied instead of slice selection. [31] c� Wiley-VCH
Verlag GmbH & Co. KGaA. Reproduced with permission

for the characterization of displacements is shown in Fig. 2.8. Transverse magne-
tization with phase zero is created by the first rf pulse with nutation angle �=2.
Neglecting chemical shielding, relaxation, and displacement during the gradient-
pulse width ı, integration of (2.33) results in the magnetization phase �
Gqr ı

at position r after the first gradient pulse, where Gq designates the amplitude and
direction of the gradient pulse. As already described on p. 26 the following rf pulse
with nutation angle � inverts the sign of the magnetization phase. Further integration
of (2.33) until the end of the second gradient pulse yields

�.R.�/; tE/ D 
Gqr ı � 
Gq.r C R.�// ı

� �qR.�/; (2.65)
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Fig. 2.8 Pulsed-Gradient Spin-Echo Sequence (PGSE). Transverse magnetization with phase zero
is generated by the initial �=2 rf pulse (B1). The first gradient pulse with amplitude Gq and duration
ı creates a linear dependence of the phase to the position in direction of the gradient. A � rf pulse
inverts the sign of the magnetization phase. After the observation time � the first gradient pulse
if followed by a second pulse with identical amplitude and duration. Without displacements the
magnetization helix created by the first pulse is unwound by the second pulse and a spin echo
occurs at tE. In the presence of displacements the amplitude of the spin echo is damped. A phase
shift of the echo indicates coherent displacements. The displacement probability density function
is usually sampled incrementing the gradient amplitude in Nq steps. NA: number of averages. [31]
c� Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission

where R.�/ denotes the displacement during the observation time �. In (2.65) the
definition of the reciprocal displacement vector

q D 
Gqı (2.66)

has been introduced. Equations (2.65) and (2.66) correspond to (2.35) and (2.36),
respectively, the position being replaced by the displacement. As in (2.38), the result
for a distribution of displacements is expressed as

MC.q; �/ D
ZZZ

�.R.�// exp.�iqR/dRxdRydRz: (2.67)

The nondimensionalized transverse magnetization is the Fourier transform of the
displacement probability density function at position q in reciprocal displacement
space. As in this simple experiment the starting point for the displacement is not
resolved, �.R.�// is also designated as average propagator P.R; �/. It can be
determined approximately by inverse Fourier transform if reciprocal displacement
space is suitably sampled. Concerning sampling the considerations on p. 14ff also
apply for the measurement of displacements.

For unrestricted translational self diffusion the average propagator is determined
by the self-diffusion coefficient D:

�.R.�// D .4�D�/�3=2 exp.�R2=.4D�//: (2.68)
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Inserting this propagator in (2.67) for only one gradient direction yields for the
signal

MC.q; �/ D M eq
z exp.�q2D�/; (2.69)

see e.g. [13].
The assumption in (2.65) and (2.67) that displacements during the gradient

pulses can be neglected (“narrow-pulse approximation”) can be inaccurate. For self
diffusion the Bloch equations (2.14)–(2.16) have been extended by Torrey [65]. In
[40] the solution without relaxation is given:

ln.MC.t/=M eq
z / D �D
2

Z t

0

 Z t 0

0

QGq.t 00/dt 00
!2

dt 0: (2.70)

The effective gradient QGq in (2.70) accounts for the influence of � rf pulses by
inversion of the sign of the preceding gradient pulses. For the basic pulse sequence
shown in Fig. 2.8 integration yields the equation of Stejskal and Tanner [60, 61]:

MC.Gq; ı; �/ D M eq
z exp.�
2G2

qı2D.� � ı=3//: (2.71)

Further solutions for pulse sequences applied in case of short T2 or background
gradients are given by Cotts et al. [19].

For unrestricted diffusion the self-diffusion coefficient D is usually determined
by a fit of (2.71) to experimental data with varying Gq and constant ı, �. No tracer
is required. Uncertainties are in the range of percent. An application with restricted
diffusion is presented in Sect. 4.10. Dependence of the measured diffusion on the
observation time in a tortuous porous medium as well as in a spherical confinement
is treated.

Including magnetic shielding and the three introduced relaxation times the basic
experiment shown in Fig. 2.8 already leads to rather complex results. As simple case
the distribution in (2.62) is extended by a contribution from natural relaxation times
(ı.T2 � T2;k/) and diffusion (ı.D � Dk/) per chemical group. Monoexponential
relaxation and unrestricted diffusion are assumed. In order to study diffusion for
different components of a multi-component system spectroscopic resolution can be
used. To sample the diffusion dimension, the experiment is repeated with varying
gradient amplitude. Each time the second half of the echo is digitized. The time
axis t starts at tE. Background gradients contributing to T �

2 are assumed to be
insignificant for diffusion encoding. Natural T2 relaxation is neglected compared
to T �

2 relaxation during data acquisition.22 After Fourier transform with respect to t

the real part of the result then reads:

Re

�Z 1

�1
MC.t; tE; tR; Gq; ı; �/e�i˝t dt

�

22Condition for symmetric echoes.
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D
X

k

�k.1 � exp.�tR=T1;k// exp.�tE=T2;k/

1=T �
2;k

.1=T �
2;k/2 C .˝k � ˝/2

exp.�
2G2
qı2Dk.� � ı=3//: (2.72)

Before diffusion coefficients can be determined by a fit of the gradient dependence
a deconvolution of the spectra can be necessary.

The case of continuous distribution of diffusion coefficients and longitudinal
relaxation in analogy to (2.64) is treated e.g. in [38].

2.1.8 Velocimetry

In Sect. 2.1.7 first the measurement of displacements with the pulsed-gradient
spin-echo experiment (PGSE) sequence in the “narrow-pulse approximation” was
presented, see (2.67). For unrestricted self diffusion without coherent displacement
the expression for the signal without this approximation was then formulated in
(2.71). Here the case of coherent displacement is treated. Integration of (2.33)
without the narrow-pulse approximation yields for the magnetization phase

�.t/ D �


Z t

0

QG .t 0/r.t 0/dt 0; (2.73)

where QG denotes the effective gradient introduced in (2.70). Expansion of r.t 0/ to
the linear term leads to the expression of the magnetization phase for displacements
with velocity v D .u; v; w/

�.t/ D �


�

r.0/

Z t

0

QG .t 0/dt 0 C v
Z t

0

QG .t 0/t 0dt

	

D �
 Qm0.t/r.0/ � 
 Qm1.t/v; (2.74)

where Qm0 and Qm1 denote the zeroth and the first moment of the effective gradient,
respectively. With the relation

k D 
 Qm0.t/ (2.75)

the signal without relaxation, diffusion, and chemical shielding reads

MC.t/ D
ZZZ ZZZ

�.r; v/ exp.�ikr.0// exp.�i
 Qm1.t/v/ dxdydz dudvdw:

(2.76)
Thus the spin density �.r; v/ with respect to the parameters position and velocity can
in principle be determined by inverse Fourier transformation of the measured signal
if the 6D reciprocal space is suitably sampled. In the following measurements of
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velocity without and with spatial resolution are presented. Finally the influence of
gradient imperfections is discussed.

2.1.8.1 Velocity Probability Density Function

As simplest case the experiment shown in Fig. 2.8 is treated for the case of perfect
gradients and time-independent velocity field. During data acquisition the reciprocal
position vector k calculated with the effective gradient is zero. With the definition
of the velocity probability density function (VPDF)

f .v/ D
ZZZ

�.r ; v/dxdydz (2.77)

equation (2.76) reduces to

MC.tE; qv/ D
ZZZ

f .v/ exp.�iqvv/ dudvdw; (2.78)

where the reciprocal velocity vector qv D 
 Qm1.tE/ has been introduced.
The time point tE for data acquisition in (2.78) refers to the situation where an
echo is observed due to field inhomogeneities or chemical shielding. For the PGSE
experiment the calculation of the first moment of the effective gradient yields for the
reciprocal velocity vector qv D 
Gqı�. It is related to the reciprocal displacement
vector in the narrow-pulse approximation (2.66) by qv D q�. The VPDF is obtained
by discrete inverse Fourier transform of the data sampled by a variation of Gq .

In terms of probabilities �.r; v/ can be denoted as joint probability with �.r \ v/

as alternative symbol. Probability density is insofar incorrect as the integral e.g. in
(2.76) is not unity but the total number of observed spins NS. The function f .v/ in
(2.77) is a 3D marginal probability obtained by integration over x, y, and z. In the
following also the cases “conditional probability” and “independent probabilities”
occur. Distribution here denotes the distribution density per infinitesimal interval.
The integral or sum in the discrete case up to a given value of the variable is denoted
as cumulative distribution.

An application of VPDF measurement in symmetric capillary flow to rheometry
is presented in Sect. 4.4 on p. 115ff.

2.1.8.2 Position and Velocity Distribution

A simple pulse sequence for sampling of position and velocity space is shown in
Fig. 2.9, see also [52]. The first rf pulse generates transverse magnetization with
phase zero in the entire coil. As in Fig. 2.8 the first gradient pulse of the pair
for velocity encoding follows. The subsequent � rf pulse is slice selective, see
p. 19. It refocuses evolution due to field inhomogeneities and chemical shielding.
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Fig. 2.9 Simple pulse
sequence for the
measurement of the velocity
component perpendicular to
an imaged slice, see also [52]
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Note that the slice selective � rf pulse requires no slice-refocusing gradient as the
excitation pulse in Fig. 2.5. Gradients for velocity encoding and slice selection
have the same direction so the velocity component perpendicular to the observed
slice is sampled. The result is integrated over the remaining velocity components.
The second velocity-encoding gradient acts as described for the PGSE experiment
within the observed slice. Outside the slice both gradients of the PGSE pair cause
rotations in the same sense and the magnetization is spoiled. Simultaneously to the
second velocity-encoding gradient a phase gradient Gp and read-dephase gradient
Gr are applied as in Fig. 2.4a. Finally the total transverse magnetization is sampled
under the action of a read gradient. The experiment is designed to allow for a short
echo time tE. This is advantageous if the velocity of a spin is not constant in time.
In addition it allows the measurement on systems with relatively short transverse
relaxation time T2. An example is given in [52] where the velocity of SF6 gas was
measured. The 19F nuclei were observed. This is possible with reasonable SNR,
especially if SF6 is used under pressure. Drawbacks of the pulse sequence are that
only the velocity component perpendicular to the slice can be measured and that no
“flow compensation” of space encoding is present. This means that the first moment
of the slice, phase, and read gradient are not zero during data acquisition. Thus,
depending on velocity, deviations from the sampling of reciprocal position space
represented in Fig. 2.4b occur. On the other hand, deviations are minimized by the
application of these gradients immediately before data acquisition.

One of the first pulse sequences for velocity imaging is described in [50]. It
consists of only one rf pulse and is able to detect all three velocity components.
In [9] an experiment with flow compensated slice and phase gradient is explained.
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The read gradient is also flow compensated at time tE, of course not for the entire
acquisition time. Further methods for the phase encoding of velocity are presented
in [13]. Selection of the best pulse sequence for the system under investigation
requires a deeper understanding of the NMR methods.

The experimental time can be reduced drastically if the spatial resolution is
assumed to be sufficiently high so that at each point in position space only one
velocity is present. Following [41] the marginal spin density in position space is
denoted as �.r/ and p.vjr/ denotes the conditional probability that spins at position
r have velocity v. The above assumption signifies

�.r ; v/ D �.r/p.vjr/

D �.r/ı.v � v.r//: (2.79)

Insertion into (2.76) results in

MC.t/ D
ZZZ

�.r/ exp.�ikr.0// exp.�iqvv.r// dxdydz: (2.80)

Fourier transformation with respect to position space yields �.r/ exp.�iqvv.r//.
The magnitude of this complex image is the marginal spin density in position space.
If the product qvv.r/ is within the range Œ�� �Œ velocity is unequivocally related
to image phase. Instead of sampling reciprocal velocity space, first a reference
image without velocity encoding is acquired. For each velocity component, a single
image with encoding in the respective direction is sufficient for the calculation of
the velocity field from the phase difference. Due to imperfections, a phase difference
can occur experimentally even for velocity zero. In this case the image with velocity
encoding without flow can be used as phase-reference image [52]. An application
of this method is shown in Fig. 4.27, p. 139.

2.1.8.3 Influence of Gradient Imperfections

Up to here ideal gradient pulses and a homogeneous static field have been assumed.
This is a good approximation for the presented measurements conducted in the high
field tomograph. The static field is homogenized by superconducting and adjustable
resistive coils to the ppm range and better. Gradient coils are also sophisticated
and actively shielded. Transient effects by eddy currents are minimized. Persisting
effects after gradient pulses are not observed.

However, for measurements in permanent-magnet systems as described in
Sect. 4.4, p. 115ff, important effects occur. Calculations for static samples are
presented in Chap. 8. Here the influence on the VPDF measurement is treated. As
explained in Chap. 8.1 it is assumed that the dominant effects can be represented by
background gradients.23

23That is unintended gradients by eddy currents or remanent changes of the permanent-magnet
system that act in the “background.”
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A fully developed laminar, isothermal, and macroscopically homogeneous flow
through a cylindrical tube is considered. Choosing the tube axis as z axis only the
radially varying w component of velocity is non-zero. To measure the VPDF of w
only gradients in z direction are required. Thus the moments in (2.74) are scalar
functions. For the sake of simplicity the direction z is not written as index. Equation
(2.76) simplifies to

MC.t/ D
ZZZ ZZZ

�.r; v/ exp.�i
 Qm0.t/z.0//

exp.�i
 Qm1.t/w/ dxdydz dudvdw: (2.81)

Integration over x, y, u, and v leads to the 2D marginal probability �.z; w/. A
dependence of the observed spin density on z results from the axial distribution
of the rf field. Again only one symbol � is used and variables over which the
distribution is not integrated are listed as arguments. The argument of z.0/ is not
written. As velocity in the tube flow depends on x and y but not on z it holds

�.z; w/ D �.z/p.wjz/
D �.z/p.w/

� �.z/f .w/: (2.82)

In (2.77) f .v/ is normalized to the total number of observed spins. If in the above
equation �.z/ is normalized to the total number of observed spins, f .w/ � p.w/ is
normalized to one. Given the independence of the distributions �.z/ and f .w/ the
integral in (2.81) can be simplified to the product

M C.t/ D
Z

dz�.z/ exp.�i
 Qm0.t/z/
Z

dwf .w/ exp.�i
 Qm1.t/w/: (2.83)

In contrast to (2.78) it is not assumed that the zeroth moment vanishes as for the ideal
sequence in Fig. 2.8. If permanent and transient effects as described in Sect. 8.4.1
are not compensated as explained in Sect. 8.4.2, the effects can be studied using a
simple model for the gradient imperfections, the spatial spin density, and VPDF.

Regarding the permanent effects a constant gradient Gp acting in the background
from excitation to detection is assumed. A permanent gradient is a remanent gradient
that persists after a switched gradient pulse until it possibly gets altered by a subse-
quent switched gradient pulse. The existence of a permanent gradient is obvious if
imaging by frequency encoding is possible without switched gradient. Concerning
the dependence of the permanent-gradient amplitude on the amplitude of the
previously switched gradients a marked hysteresis was observed. In general for
different steps of displacement encoding different permanent gradients act. A repro-
ducible situation can be achieved by steady-state methods, see Figs. 4.11 and 8.2.
Transient effects are described as an additional amplitude contribution Gm for the
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second gradient pulse, see Sect. 8.4.3. The direction of the permanent and transient
gradients is the same as that of the switched gradients, here z.

The spin density detected by an ideal coil is a constant � within the length of
the coil from z D �a=2 to z D a=2 and zero outside the coil. This corresponds
to a rectangular rf profile. For the VPDF a parabolic velocity profile is assumed.
This also corresponds to a constant value 1=wm from velocity zero to the maximum
velocity wm. Inserting these assumptions concerning the distributions and gradient
imperfections into (2.83) the expression

M C.t/ D a� sinc



 Qm0

a

2

� �

sinc.
 Qm1wm/ C i.cos.
 Qm1wm/ � 1/


 Qm1wm

�

(2.84)

with
Qm0.t/ D Gp.t � tE/ C Gmı (2.85)

and

Qm1.t/ D 1

2



Gp.t2 � t2

E=2/ C Gmı.ı C tE/ C OGıtE

�
(2.86)

is obtained for the signal. In (2.84) “sinc” denotes the sine function divided by its
argument. The amplitude of the ideal gradient pulse is denoted in (2.86) as OG. In
(2.86) it has been assumed that the gradient pulses immediately follow the rf pulses
what usually is the case in the experiment.

The influence of gradient imperfections on the magnetization dynamics
described in (2.84)–(2.86) is shown in Fig. 2.10 for typical experimental parameters.
In Fig. 2.11 the resulting distortion of the VPDF is depicted. The length of the
rectangular rf profile was set to a D 40 mm and � D 1=a. A maximum velocity
of wm D 10 mm=s was chosen. An echo time of tE D 28 ms and gradient-pulse
duration of ı D 3 ms was used. Four times the maximum velocity was taken as
field of flow. For 128 flow-encoding steps the resulting maximum amplitude of the
pulsed gradient is 0:9 T=m.

Figure 2.10 shows the real part of the signal for four situations. The ideal situation
without permanent and transient effects is depicted in Fig. 2.10a. It is approximately
realized in a high-field tomograph or in the permanent-magnet system using the
compensated pulse sequence of Fig. 8.2. The calculated signal for the permanent-
magnet system without any compensation is shown in Fig. 2.10b. Transient effects
resulting in a gradient mismatch prevent the formation of a complete echo. In
Fig. 2.10c only this effect is included. As transient effects increase with increasing
amplitude of the pulsed gradient this corresponds to a low-pass filter in the sampling
of the VPDF, see also Fig. 2.11c. The permanent gradient additionally included
in Fig. 2.10b can cause the formation of an echo which however is shifted with
respect to the spin-echo (SE) time. The width of the echo decreases with increasing
magnitude of the permanent gradient. Values for the permanent gradient were
obtained from a measured hysteresis curve. The transient effect was calculated from
a function fitted to experimental results:
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Fig. 2.10 Real part of PGSE signal for a rectangular rf profile and a Newton fluid calculated using
(2.84)–(2.86) and typical experimental parameters. The four cases with and without permanent
gradient Gp and gradient mismatch Gm are shown, respectively. (a) Gp D Gm D 0. ( b) Gp ¤ 0

and Gm ¤ 0. (c) Gp D 0 and Gm ¤ 0. (d) Gp ¤ 0 and Gm D 0

Gm D sign. OG/

"

1 � exp

 

� j OGj
0:0136 T=m

!#

1:14 � 10�4 T=m C 4:91 � 10�4 OG:

(2.87)
In (2.87) the sign function is plus or minus one in accordance with the sign of its
argument. Figure 2.10d shows the calculated signal in the presence of the permanent
gradient from the hysteresis curve without transient effects. This corresponds to the
situation achieved with the steady-state sequences, See Fig. 4.11. Without gradient
mismatch Gm the signal maximum occurs at the spin-echo time tE. The width of the
echo varying with the permanent gradient does not influence the velocity encoding
at the echo time. However, according to (2.86) the first moments of the sampling
points at tE are shifted with respect to the ideal values by Gp.tE=2/2.

Figure 2.11 shows the VPDF calculated from the signal at time tE for the data
represented in Fig. 2.10. A low-pass Hamming filter was applied prior to the discrete
inverse Fourier transform. It effectively reduces Gibbs artifacts without important
broadening. This is evident for the ideal case shown in Fig. 2.11a. The calculated
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Fig. 2.11 VPDF calculated using the signals shown in Fig.2.10 at tE . The solid line corresponds to
the rectangular VPDF of a Newton fluid with the given maximum velocity. A Hamming filter was
applied prior to the discrete inverse Fourier transform to reduce Gibbs artifacts. (a) Gp D Gm D 0.
(b) Gp ¤ 0 and Gm ¤ 0. (c) Gp D 0 and Gm ¤ 0. (d) Gp ¤ 0 and Gm D 0

points represented by circles are in good agreement with the input VPDF plotted
as solid line. In Figs. 2.11b and 2.11c the low-pass filtering by transient effects is
obvious. The VPDF is significantly broadened. A difference between Fig. 2.11b
with permanent gradients and Fig. 2.11c without is hardly noticeable. However, in
the absence of transient effects the influence of sampling-point shifts by permanent
gradients is evident in Fig. 2.11d. Besides the bending of the VPDF with a peak at
the highest velocity a broadening of the high-velocity edge of the VPDF is obtained.
This calculated result closely resembles the experimental result shown in Fig. 2.12
for a Newton fluid and the pulse sequence of Fig. 4.11. If the values of sampling-
point shifts by permanent gradients are known, their effect can be treated by a post
processing described further on.

One method for measurements in presence of gradient imperfections is presented
in [12]. However, it is only suited for the study of diffusion, not of velocities.
Experimentally, the generation of permanent gradients can be avoided by actively
shielded gradient systems as described in Sect. 3.3.1.
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2.1.8.4 Post Processing

In the inverse discrete Fourier transform it is assumed that data points are sampled
on a grid of equidistant sampling points, see p. 14ff. The N ideal sampling points in
reciprocal velocity space are denoted as qv n D nqv inc with n D �N=2; : : : ; N=2�1.
The irregular grid resulting from a permanent-gradient hysteresis is designated
by qv G . Regriding aims to infer the signal M C.qv n/ on the ideal grid from the
measured M C.qv G/. The inverse transform is then applied to the regrided data. This
problem is also known in MRI, where in some methods reciprocal position space
is deliberately sampled on an irregular grid [51, 54]. For a 1D VPDF the number
of data points is manageable. Thus the direct method of “uniform resampling”
was implemented. Its explanation in [51] starts with the inverse problem. First the
data points M C.qv n/ on the ideal grid are assumed to be known and the result
M C.qv G/ for the irregular grid to be wanted. According to the Whittaker–Shannon
interpolation formula the solution is

M C.qv G/ D
X

n

K.qv G � qv n/M C.qv n/ (2.88)

with the ideal sinc interpolation kernel

K.q/ D sin.�q=qv inc/

�q=qv inc
: (2.89)

The interpolation formula assumes that the function M C is bandlimited. The inverse
Fourier transform or spectrum of M C is the VPDF. As the spectrum is limited
by zero and the maximum velocity wmax this condition is fulfilled. It is further
assumed that the sampling interval is smaller than the inverse Nyquist rate, i.e.,
qv inc < �=wmax has to be ensured in the experiment.24 The sum in (2.88) extends
from �1 to 1. Therefore it has to be finally assumed that the contribution of points
outside the N points sampled in the center of qv space can be neglected. Collecting
M calculated results on an irregular grid in a vector b and the N sampled points
on a regular grid in a vector x, the M equations (2.88) can be represented in matrix
notation:

b D Ax with AGn D K.qv G � qv n/: (2.90)

The situation in the experimental problem is inverse, i.e., b is known and x is
wanted. For M > N x is overdetermined. It can be optimally determined in the
least-squares sense by multiplication of (2.90) with the N � M Moore-Penrose
pseudo inverse of A. From the singular-value decomposition (SVD) USV 0 of A it
is calculated to VS�1U 0.

24The magnetization phase angle is given by � D qvw. Thus wmax corresponds to an angular
frequency.
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Fig. 2.12 Rectification by post processing of the VPDF measured with sampling-point shifts.
Crosses represent the result of inverse Fourier transformation of data measured with the sequence
shown in Fig. 4.11. Regriding of the experimental data to equidistant sampling points prior
to inverse transformation leads to the improved result displayed as points. Knowledge of the
permanent-gradient hysteresis in the experiment is required for regriding

Regriding requires the permanent-gradient hysteresis to be known to calculate the
sampling-point positions according to (2.86). In order to obtain a stable inversion
of 2.90 the number of sampled points was chosen as twice the number of calculated
points for the inverse transform [51]. Thus the experimental time is doubled.
The considerable improvement achieved by regriding is obvious in Fig. 2.12
showing experimental results for a Newton fluid with and without post processing,
respectively.

2.1.8.5 Alternative NMR Methods

As alternative to phase encoding velocities can be measured by NMR time of flight
methods. One method is to generate a line pattern of saturated magnetization that is
imaged after a time which is insufficient for complete longitudinal relaxation [41].
An early method used two distinct coils for saturation and detection [30]. Another
possibility is to monitor the signal decay due to outflow of excited spins from the
detection volume. In contrast, a signal enhancement is obtained for unsaturated spins
flowing into the observed slice (inflow) if the repetition time of an imaging sequence
is short compared to the longitudinal relaxation time. An application is presented in
Sect. 4.8. Phase encoding is considered to be the most accurate method of NMR
velocimetry [15]. However, it has to be assured that inflow and outflow effects do
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not lead to errors. In the context of inhomogeneous fields this is discussed in the
following Sect. 2.1.9.

2.1.9 Relaxation for Flowing Liquids

Also relaxometry experiments without magnetic-field gradients are influenced if
the sample flows through the NMR system. Early applications used the effects to
monitor blood flow [57]. Considerations in the context of HPLC-NMR hyphenation
can be found e.g. in [4]. However, frequently plug flow is assumed [63] and
inhomogeneities of the magnetic fields are neglected or drastically simplified [66].
On the other hand, very general statements are formulated by Stepisnik [62]. In the
following, expressions for quantitative description in the case of laminar pipe flow
presented in Sect. 4.5 are derived. The aim is to correct the relaxometry experiment
for the flow-induced effects.

The standard CPMG sequence is considered, see detection part after tR in
Fig. 2.6. It is assumed that:

1. The sample is macroscopically homogeneous
2. Diffusion and thus Taylor dispersion can be neglected
3. The signal is not attenuated by B0 inhomogeneities, i.e., homogeneous B0 or

effective refocusing pulses

Due to the timing, echoes from signal excited by imperfect refocusing pulses occur
at the time of subsequent refocusing pulses. First the simple case of signal decay
by outflow of excited spins is treated using further assumptions. This is followed by
calculations including inhomogeneous B0 and B1.

2.1.9.1 Simplest Model: Outflow of Excited Spins

In the simplest model additionally a rectangular B1 profile and homogeneously
polarized spins are assumed. Immediately after ideal excitation transverse magneti-
zation is maximum within a cylindrical pipe section of length L and zero outside.
For a flow rate Q, the fraction of excited spins in the section of volume V initially
decreases linearly by .1�Qt=V /. The fraction decreases less than linear when also
non excited spins flow out of the pipe section. With the maximum velocity wmax this
occurs at times larger than t D L=wmax. This is illustrated in Fig. 2.13.

Considering outflow as well as transverse relaxation with rate R2 the signal is
described by

M C.t/ D
Z 1

0

Z L=t

0

�w;R2 .w; R2/.1 � wt=L/ exp.�R2t/ dw dR2: (2.91)
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Fig. 2.13 Outflow of excited spins from a cylindrical pipe section of length L. Left: Excitation at
time t D 0. Middle: reduction of the volume of excited spins in the pipe section linear in time for
t � L=wmax. Right: Reduction less than linear in time for t > L=wmax

The velocity integral only extends to L=t . For higher velocities all excited spins
have left the pipe section. If velocity and relaxation are not independent, the relation
has to be determined for further evaluation. If however relaxation and velocity or
shear rate are independent the joint distribution can be factorized into the marginal
distributions and the integral into

M C.t/ D
Z L=t

0

�w.w/.1 � wt=L/ dw
Z 1

0

�R2 .R2/ exp.�R2t/ dR2: (2.92)

The second integral is the Laplace transform of the relaxation-rate distribution.
For velocities exceeding the maximum velocity the first integral yields one for

the velocity distribution and the average velocity for its first moment:

M C.t < L=wmax/ D .1 � hwit=L/

Z 1

0

�R2 .R2/ exp.�R2t/ dR2: (2.93)

The slope of the initial decrease of the signal ratio with and without flow is
determined by the mean residence time L=hwi. Calculations for times t > L=wmax

require knowledge of the velocity probability-density function (VPDF). For the
special case of a Newton fluid with �w.w/ D 1=wmax the integral for later times
yields a hyperbolic decrease of the ratio:

M C.t > L=wmax/ D L

2wmax

1

t

Z 1

0

�R2.R2/ exp.�R2t/ dR2: (2.94)

Expanding the exponential in (2.93) for the case of a single relaxation rate R2

leads to

M C.t < L=wmax/ D 1 �
� hwi

L
C R2

�

t C : : : : (2.95)

Thus a monoexponential decay with the sum of the relaxation rate and the
inverse mean residence time can be approximated for short times. This common
approximation [4, 57]

�

1 � hwi
L

t

�

exp.�R2t/ � exp

�

�
�

R2 C hwi
L

�

t

�

(2.96)
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Fig. 2.14 Schematic representation of B0 and B1 profile and relevant z coordinates

can be transformed into .1 � hwit=L/ exp.hwit=L/ � 1 to evaluate its validity. The
deviation amounts e.g. to -10% for t D 0:4 L=hwi.

2.1.9.2 Calculations Including Inhomogeneous Magnetic Fields

Experimental results show that the initial decay of signal ratio is slower than
predicted by (2.93). Indeed the assumption of a rectangular B1 profile in Fig. 2.13
is a crude approximation. In the following signal calculation, the more realistic
assumption is that the spatial distribution of the B1 amplitude only depends on the z
coordinate in direction of the tube axis.

According to the reciprocity theorem, see p. 68 the signal contribution of spins
at coordinate z is proportional to the rf amplitude B1.z/. If t is the time after
excitation, spins with velocity w.r/ that are located at coordinate z at time t have
been excited at coordinate z � w.r/t . Thus, in the calculation of the corresponding
excited transverse magnetization, the rf field B1.z � w.r/t/ has to be inserted into
the expression for the nutation frequency in (2.24). Besides on the nutation angle,
the excited transverse magnetization depends on the polarization of the spins at
coordinate z � w.r/t . It is obtained by integration of (2.16) with the right-hand
side consisting only of the second term. However, the equilibrium magnetization
depends on B0.z/ according to (2.11). In general, the relaxation time T1 also depends
on the polarizing field. As simplification it is assumed that the polarizing field
has a rectangular profile from �L0=2 to L0=2, see schematic representation in
Fig. 2.14. The duration of polarization with constant relaxation rate R1 then amounts
to .z � w.r/t C L0=2/=w.r/.25 This results in the following equation for the signal:

25For the case of spins with velocity w and arbitrary profiles of relaxation rate and equilibrium mag-
netization, the solution of the differential equation PMz D w.@Mz=@y/ D �R1.y/.Mz � M

eq
z .y//

is Mz.y/ D .1=w/
R y

�1

R1.y0/M
eq
z .y0/ expf�.1=w/

R y

y0

R1.y
00/dy00gdy0. This is obtained by

solution of the homogeneous differential equation by separation of the variables and variation
of the constant for the particular integral. For a constant relaxation rate R0 and piecewise constant
equilibrium magnetization, the integrals yield Mz.y/ D expf�R0y=wgŒ

Pn
iD1 Mi .expfR0yi =wg
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M C.t/ D
Z 1

0

Z 1

0

Z 1

�1

Z 2�

0

Z 1

0

�r;�;z;R1;R2 .r; �; z; R1; R2/

.1 � exp.�R1.z � w.r/t C L0=2/=w.r///
„ ƒ‚ …

polarization

sin.�
B1.z � w.r/t/
/
„ ƒ‚ …

Nutation

exp.�R2t/„ ƒ‚ …
relaxation

B1.z/=B1.0/
„ ƒ‚ …

detection

rdr d� dz dR1 dR2: (2.97)

The pulse duration is denoted as 
 . It is assumed that the repetition time is suffi-
ciently long to avoid saturation effects. If as in (2.92) it is assumed that transverse
relaxation is independent of velocity and the remaining variables and that this also
holds for longitudinal relaxation, the signal after integration over � reads

M C.t/ D
Z 1

0

�R1 .R1/

Z 1

�1

Z 1

0

�r;z.r; z/

.1 � exp.�R1.z � w.r/t C L0=2/=w.r/// sin.�
B1.z � w.r/t/
/

B1.z/=B1.0/ 2� rdr dz dR1

Z 1

0

�R2 exp.�R2t/ dR2: (2.98)

As velocity is independent of z the distribution �r;z.r; z/ can also be factorized. The
integration over r can be replaced by the corresponding integral over the VPDF. For
a constant spin density 1=L0 in z direction the expression

M C.t/ D
Z 1

0

�R1 .R1/

Z wmax

0

�w.w/

Z L0=2

�L0=2

1=L0

.1 � exp.�R1.z � wt C L0=2/=w// sin.�
B1.z � wt/
/

B1.z/=B1.0/ dz dw dR1

Z 1

0

�R2 exp.�R2t/ dR2: (2.99)

is obtained. In the case of complete polarization, R1.z � wt C L0=2/=w � 1, the z
integral simplifies to the cross-correlation integral of sin.�
B1.z/
/ and B1.z/ with
the shift �wt :

M C.t/ D
Z wmax

0

�w.w/
1

L0B1.0/

Z L0=2

�L0=2

sin.�
B1.z � wt/
/ B1.z/ dz dw

Z 1

0

�R2 .R2/ exp.�R2t/ dR2: (2.100)

�expfR0yi�1=wg/CMnC1.expfR0y=wg�expfR0yn=wg/�. With a relaxation profile, numerical
integration by simple time slicing yields good results.
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Fig. 2.15 CPMG signal with flow relative to the signal without flow for a Newton fluid according
to (2.100). Dashed line: result for rectangular B1 profile with a linear and a hyperbolic part. Solid
line: Calculation with experimentally determined B1 profile. L denotes the length of the rectangular
profile and a characteristic length of the experimental profile, respectively. The CPMG signal
measured with flow can be corrected by this function prior to further analysis. For non-Newtonian
flow, the corresponding correction function has to be calculated with (2.100) using the actual
VPDF, to be determined as described in Sect. 2.1.8

The cross-correlation integral can be calculated numerically if the B1 profile
is determined experimentally. For different velocities, the results as a function of
time differ by a scaling of the abscissa. In order to perform the velocity integral
numerically, the different results are interpolated to a common discretization of the
time axis. For a rectangular B1 profile triangles are obtained for the cross-correlation
integral. For short times the superposition of triangles yields the previous result of
(2.93). Of course also the long-time behavior of (2.94) is obtained if the constant
VPDF of a Newton fluid is used in the integration. This can be seen in Fig. 2.15
where the signal calculated numerically according to (2.100) is shown for a Newton
fluid and a rectangular B1 profile. The result with an experimentally determined
B1 profile is plotted in comparison. As observed experimentally, a slower initial
signal decay is obtained. This can be understood by the fact that the excitation
profile with the sine function is broader than the detection profile. Thus the integrand
of the cross correlation stays almost constant for small shifts. The B1 profile was
determined using frequency encoding with 128 discretization points, see discussion
in Sect. 4.5. For the VPDF 64 grid points were used.

Without complete polarization the z integral in (2.99) still is a cross-correlation
integral. However, the first function has the additional factor .1 � exp.�R1
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.z C L0=2/=w//. In this case the cross correlation not only depends on a property
of the NMR system, namely the B1 profile, but also on the longitudinal relaxation
properties of the sample and the B0 profile. If the distribution �R2 .R2/ for transverse
relaxation is to be measured, it is likely that the distribution �R1 .R1/ is also
unknown. Thus if possible complete polarization should be realized. For this
purpose only a moderately homogeneous magnetic field is required. Alternatively a
sufficient residence time of the flowing liquid in the NMR system before entry in
the probe head can be realized. First experimental results are described in Sect. 4.5
on p. 125ff.

2.2 Problems

2.1. NMR Master Equation
For a magnet generating a field of B0 D 4:7 T, the proton resonance frequency is
indicated as � D 200:13 MHz. Calculate the gyromagnetic ratio of the proton.

2.2. Curie’s Law
Show the validity of the evaluation of the sums in (2.11).

2.3. NMR Master Equation in the Context of Precession
Show that the precession with angular frequency !0 D �
B0 in (2.13) solves the
equation of motion dM=d t D 
M � B in (2.12) for a constant field B0 in z
direction.

2.4. Rabi Nutation
For a micro-imaging probe connected to a 100 W RF amplifier, a realistic duration
of the �/2 pulse is 12.5 �s. Calculate the Rabi frequency of nutation around B1 and
the magnitude of B1.

2.5. Fourier Imaging: Example of k-Space Point for Discrete Sample
A sample is composed of twelve small water droplets at positions (x, y) = (�25, 0),
(�25, 25), (0, �25), (0, 0), (0, 25), (0, 50), (25, �25), (25, 0), (25, 25), (25, 50), (50,
0), and (50, 25). Coordinates are given in mm. The four droplets in the center of the
sample have twice the volume of the surrounding eight ones.

(a) Sketch the arrangement of the droplets with their initial magnetization as
considered in Sect. 2.1.3, i.e., all magnetization along the x axis of the rotating
frame.

(b) A gradient along x with 
Gx D 3:142 � 106 rad s�1m�1 is switched on for
10 microseconds. Sketch the new rotating-frame magnetization for each droplet
after this time period.

(c) Calculate the total transverse magnetization for both situations (a) and (b) in
units of the small-droplet magnetization.

2.6. Fourier Imaging: Analytical Expression for a Simple Sample
Consider a cubic sample with edge length a and homogeneous spin density �0.
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Calculate the ideal Fourier-imaging signal according to (2.38) for the centered
sample with its edges parallel to the gradient-system axes.

2.7. Slice Selection

(a) A slice of 1 mm thickness is to be selected. As in Fig. 2.5, a soft rf pulse with
sinc3 amplitude shape and 1 ms duration is used. Calculate the required gradient
amplitude according to the linear-response relation (2.50) using the bandwidth
of the infinite sinc pulse.

(b) A parallel slice with equal thickness and a gap of 1 mm is to be selected.
Calculate the corresponding shift in the rf-pulse carrier frequency if the same
gradient amplitude is used.

(c) Estimate the maximum value of the B1 amplitude for a nutation angle of �=2.
How to perform the numerically exact calculation according to (2.52)?

2.8. Diffusometry vs. Velocimetry
The root-mean-square displacement by diffusion amounts to

p
2D� in any direc-

tion.

(a) Which result is obtained for water at ambient temperature and an observation
time of � D 10 ms?

(b) How does this compare to the displacement during the same time in the absence
of diffusion given a velocity of 1 mm/s?

2.3 Image Analysis

NMR measurements often yield huge mounds of data. Reducing this data to rele-
vant, quantitative information can be challenging. As example, consider simple 3D
spin-density imaging without sampling of further contrast dimensions. Sampling of
256 points in each dimension of reciprocal position space produces a comparatively
high resolution. Discrete inverse Fourier transformation approximately yields the
spin density for 2563 grid points in real space, see (2.46). The volume element
around each grid point is called voxel, in analogy to picture elements or pixels
in the 2D case. If the signal magnitude at each point is mapped to 16 bits, the
16 megavoxels require 32 megabytes of memory.26 The same amount of data is
obtained for 64 points for each direction of 3D position space and 64 echoes for
sampling of transverse relaxation.

In some applications the sample consists of areas with constant observable spin
density and areas where no signal is observed. Nevertheless, a more or less broad

26The raw data before transformation requires more memory, as it consists of a real and an imag-
inary part. The spectrometer used always saves raw data with 32 bits, resulting in 128 megabytes
in the present example.
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signal-intensity distribution is observed also in these cases. One source for the
distribution is signal noise. Another cause is the inhomogeneity of the B1 field,
increasing toward the boarders of the FOV. However, depending on the number
of points sampled in reciprocal space, a substantial contribution to the intensity
distribution results from artifacts of the discrete inverse Fourier transform, see
Sect. 2.1.3, p. 14ff. In the ideal NMR image generated numerically in Fig. 2.16b
only the last contribution is present. In the following, first the reduction to a binary
image is discussed along with the resulting porosity as one elementary information.

2.3.1 Thresholds, Porosity, Filters

2.3.1.1 Threshold

Figure 2.16a shows a quasi continuous binary spin density �.x; y/. Insertion into
(2.38) allows to calculate the ideal NMR signal MC.kx; ky/ numerically. The
resulting complex matrix is denoted as .MC/kl :

27 Finally, the ideal NMR image
. Q�/nm is calculated according to (2.40). As usual in experiments, Fig. 2.16b
represents the magnitude of the complex image matrix. Concerning the benefits and
challenges of phase correction, see Sect. 2.3.5. The absolute-intensity frequency
distribution is obviously asymmetric around zero, see Fig. 2.16c, in contrast to the
situation for a phase-corrected real-part image.

In this example without noise or experimental artifacts the spatial resolution is
relatively high, about ten grid points per disc diameter. Accordingly, the frequency
peaks at low and high intensities are well separated. Choosing a threshold �s

between the peaks, a binary image with the attributes “signal” or “no signal” is
derived according to

Q�0
nm D

�
1 W j Q�nmj 	 �s

0 W j Q�nmj < �s

: (2.101)

2.3.1.2 Porosity and Threshold

If “signal” signifies pore space filled with some liquid and “no signal” solid with
fast signal relaxation compared to the echo time, the porosity is calculated from the
binary N � M matrix Q�0

nm as

".�s/ D
 
X

n

X

m

Q�0
nm

!

.NM /�1: (2.102)

27There are several common notations for matrices. Here the notation .a/nm is used, see
e.g., http://mathworld.wolfram.com/Matrix.html. More detailed notations are .anm/nm as well as
anD1:::N;mD1:::M . Introduction of a new symbol, such as A or a is avoided.
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Fig. 2.16 (a) Two-dimensional porous structure �.x; y/ with surface porosity " D 0:41. Pore
space is represented by white, solid as black. (b) Numerically calculated ideal NMR image .j Q�j/nm.
(c) Frequency distribution of signal magnitude, normalized to one. (d) Porosity as function of
threshold. Points show the discrete second derivative. The two outer broken vertical lines comprise
half the intensity range, centered around the threshold corresponding to the input porosity (broken
line in between). Binary images obtained with this three values as threshold are shown in (e)
(" D 0:47) to (g) (" D 0:34)

This function of the threshold is shown in Fig. 2.16d for the numerically calculated
ideal NMR image. Due to transformation artifacts, intensity values between the
peaks occur in the intensity frequency distribution and there is no porosity plateau
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between the peak intensities. If the actual porosity is known, e.g., by gravimetry,
the threshold can be set such that this value is obtained. In Fig. 2.16d the surface
porosity of the input structure is indicated as horizontal line and the corresponding
threshold as central broken line. The binary image derived with this threshold is
shown in Fig. 2.16f. However, Fig. 2.16e, g demonstrate that plausible images are
also obtained with a significantly smaller respectively higher threshold, as intensities
between the peaks correspond to grid points at the disc boarders. The porosities
obtained are 0.47 and 0.34, respectively. One strategy for the determination of the
threshold without previous knowledge is to detect the inflection point in the middle
of the porosity function �.�s/. The discrete second derivative is shown in Fig. 2.16d
as points. Obviously, the strategy yields no sharp criterion in this particular example.

Applications requiring thresholds are presented in Sects. 4.6, 4.7, and 4.8. In the
special case of fiber filters, see Sect. 4.1, an alternative method was adopted.

2.3.1.3 Noise

In the experiment, noise is always present in addition to transformation artifacts.
Accordingly, normally distributed noise was added to the real and imaginary part of
the calculated ideal NMR signal before transformation (the origin of noise and its
relation to the signal is discussed in Sect. 2.3.4). Figure 2.17a shows the magnitude
image for the noisy data. The impact on the signal frequency distribution can be
seen in Fig. 2.17c.

As Fourier transformation is linear and white noise was added, the real and
imaginary part of the transformed image also have normally distributed noise
superimposed:

Re. Q�nm/ ! Re. Q�nm/ C ni;nm

Im. Q�nm/ ! Im. Q�nm/ C nq;nm: (2.103)

The normal distribution

PN.n/ D 1

s
p

2�
exp

�

� .n � �/2

2s2

�

(2.104)

of noise has average � D 0 and a variance s2. Index i for the real-part stands
for “in-phase noise” and q for the imaginary part stands for “quadrature noise.”
In the following it is assumed that the signal distribution due to transformation
artifacts can be neglected compared to the distribution caused by noise. In this case

the signal magnitude
q

.�c C ni;nm/2 C n2
q;nm in areas with constant spin density �c

is distributed according to the Rice distribution,28

28Named after Stephen O. Rice.
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Fig. 2.17 (a) NMR image .j Q�j/nm for signal with superimposed noise. (b) NMR image .j Q�f j/nm

with low-pass filter, see (2.112). (c) Frequency distribution density for image (a) and fit of (2.107)
resulting in " D 0:40. (d) Frequency distribution density for image (b) and fit of (2.107) resulting
in " D 0:42. (e) Binary image derived from (b) with input porosity (0.41). (f) Application of filters
(2.108) and (2.109) to image (e). (g) Binary image derived from (b) with input porosity (0.41)

PRi. Q�/ D Q�
s2

exp

�

� Q�2 C �2
c

2s2

�

I0

� Q��c

s2

�

; (2.105)
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with the modified Bessel function of the first kind and order zero I0. In areas without
observable spin density there is only statistically independent normally distributed
noise in the real and imaginary part. In this case the magnitude is distributed
according to the Rayleigh distribution

PRa. Q�/ D Q�
s2

exp

�

� Q�2

2s2

�

(2.106)

as special case of the Rice distribution. Thus in the simple case of a binary spin den-
sity and neglecting transformation artifacts, the total magnitude-signal distribution
is the weighted sum of a Rayleigh and Rice distribution with the porosity as weight:

Pges. Q�/ D "PRi. Q�; s; �c/ C .1 � "/PRa. Q�; s/: (2.107)

Under these assumptions (2.107) can be fitted to the signal-magnitude distribution
to obtain the porosity without prior knowledge.29 The result is shown in Fig. 2.17c
as solid line. The agreement for the peak at low intensity is good. Larger deviations
are observed for the peak at high intensity, showing the influence of transformation
artifacts. The porosity value " D 0:40 obtained is in close agreement with the input
value of 0:41.

2.3.1.4 Filter

Due to transformation artifacts and noise, assignments according to 2.101 can be
incorrect, i.e., grid points in the pore space are set to zero instead of one and
conversely grid points in the solid are set to one instead of zero. Both kinds of
errors are observed in the binary image in Fig. 2.17e derived from Fig. 2.17a. If
both errors compensate each other, the porosity can be correct. In Fig. 2.17e the
threshold is chosen in the way that the input porosity is obtained. However, the
specific surface, to be treated in Sect. 2.3.2, is heavily exaggerated for the image
with erroneous spots. Likewise pore-space characteristics such as the pore-volume
distribution discussed in Sect. 2.3.3 are grossly falsified.

With some prior knowledge of the imaged structures, erroneous assignments
can be corrected by inspection of the surrounding grid points. If the imaged
structures are known to consist of at least some connected grid points, more or less
isolated grid points can be converted to the value of the surrounding grid points.
Corresponding rules for a corrected copy Q�00

nm of the original image, to be applied

29Note that for the Rice or Rayleigh distribution the parameter s2 is not the variance of the
distribution.
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for each grid point, are30

Q�00
nm D 0 if Q�0

nm D 1 and
1X

kD�1

1X

lD�1

Q�0
nCk;mCl � dls; (2.108)

Q�00
nm D 1 if Q�0

nm D 0 and
1X

kD�1

1X

lD�1

Q�0
nCk;mCl 	 dsl : (2.109)

In the 2D case the double sum considers the 8-neighborhood of each grid point,
in the concept of pixels the four pixels with a common edge and the four pixels
with just a common vertex. The filter (2.108) converts isolated liquid pixels (i.e.,
pore space pixels) to solid pixels if less than dls neighbors are liquid pixels. Strictly
isolated liquid pixels correspond to dls D 1 as the considered pixel is included in
the sum. For the filtered image shown in Fig. 2.17f dls D 2 was chosen. Conversely
(2.109) converts isolated solid pixels to the liquid pixels if more than dsl neighbors
are liquid pixels. Strictly isolated solid corresponds to dsl D 8. For the image in
Fig. 2.17f dsl D 5 was applied. The parameters are chosen by visual inspection of
the result.

In the 3D case the corresponding triple sum considers the 26-neighborhood of
each grid point, in the concept of voxels six neighbors at faces, twelve neighbors
at edges and eight at vertices. Thus totally isolated solid corresponds to dsl D 26

whereas for totally isolated liquid dls D 1 still holds. Applications of these filter are
described in Sects. 4.6 and 4.7 on p. 132f and 135ff, respectively.

Another possibility is to reduce noise by application of a low-pass filter. The price
is a blurring of fine structures. As example the cosine square filter is chosen. For a
quadratic matrix with N D M the components at highest frequencies in reciprocal
k space are set to zero with the filter definition

Lkl D cos2 �
p

.k � 1 � N=2/2 C .l � 1 � N=2/2

N
p

2
; (2.110)

MC
kl ! MC

kl Lkl : (2.111)

The effect of this filter on the numerically calculated data with noise is shown in
Fig. 2.17b. As the resolution is quite high and the structures are well resolved, the
blurring is not very pronounced. The binary image derived with (2.101) and the
threshold giving the input porosity is shown in Fig. 2.17g. Erroneous assignments
are avoided, but contacts of the actually separated discs are more frequent than with
the filter pair (2.108) and (2.109), see Fig. 2.17f. The signal-magnitude distribution

30If the original image is corrected grid point by grid point, it gets modified during the process
of correction and the rules would apply to the modified image. Thus it is necessary to apply the
corrections to a copy by inspection of the original image.
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with low-pass filter is narrower at the peaks compared to the distribution without
filter but more intensities are present between the peaks. The fit of (2.107) in
Fig. 2.17d for the low-pass filtered image is less adequate. However, the obtained
porosity of � D 0:42 still agrees well with the input value of 0.41.

A low-pass filter can also be characterized by its point spread function (PSF). The
filtered image . Q�f /nm is the convolution of the unfiltered image . Q�/nm with the PSF:

. Q�f /nm D . Q�/nm ˝ PSF: (2.112)

According to the convolution theorem this corresponds to a multiplication in Fourier
space, in the discrete case

F f. Q�f /nmgkl D MC
klLkl ; (2.113)

with F f. Q�f /nmgkl being the k; l component of the discrete Fourier transform of the
filtered image. Thus the PSF is the Fourier transform of the filter:

PSF D F f.L/kl g: (2.114)

The PSF of the rather broad filter in (2.110) is correspondingly narrow. An example
with a Gauß filter can be seen in Fig. 4.25 on p. 136.

The choice of filter or combination of filters depends on the image characteristics,
the SNR and the application. For images with outliers, a moving median filter can
be appropriate. The influence of experimental artifacts and the case of varying spin
density will be discussed in Sect. 2.3.4.

2.3.2 Specific Surface

Besides the porosity, the specific surface is an important information in many appli-
cations, see e.g., Sect. 4.7, p. 135ff. In the following, two methods of obtaining the
surface from a volume image . Q�/nmo on a rectangular grid [29] are briefly described.

2.3.2.1 Reconstruction of the Surface

Surface reconstruction is a common procedure, also used to visualize a volume
image. The isosurface for a chosen isovalue is meshed, e.g., by triangulation. It
is the 3D analog of a contour or isoline of a 2D data set. The isovalue can equal
the threshold used to generate the binary image. In Figs. 2.18a–d results for simple
structures are shown. The spin density . Q�/nmo is set to one for the grid points in
an inner cube of edge length l in units of the lattice spacing. Surface meshing by
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triangulation was performed with a commercial program MATLAB R�.31 The total
area of the triangles SD was calculated from the obtained mesh with the program
listed in Sect. 6.2. The mesh is returned as a list of coordinates r i of vertices and
a list of point triples forming each face. If points .r1; r2; r3/ form a triangle with
vectors .r12 D r2 � r1; r13 D r3 � r1/ along two edges, the surface Sk of this
triangle amounts to

Sk D 1

2
jr12 � r13j: (2.115)

With SD.X/ as total surface of phase X in the total volume V , the specific surface
is calculated as

SV;D D SD.X/=V D 1

V

X

k

Sk: (2.116)

2.3.2.2 Indirect Evaluation

An efficient evaluation of the surface without reconstruction is described in [48].
Here first a binary image . Q�0/nmo has to be generated from the volume image using
a suitable threshold. The method of computation is based on one of the Crofton
formulas for the calculation of the surface:

SC.X/ D 1

�

Z

sin �d�

Z

d'

ZZ

dy �.X \ ey;�;' /: (2.117)

In (2.117) ey;�;' designates the line with direction (�; ') (polar and azimuth angle)
through point y in a plane perpendicular to ey;�;' . The 1D Euler number �.X \
ey;�;' / specifies how often the line intersects with X . The inner integral

RR
dy thus

yields the weighted shadow area for a light source at infinite distance above the
considered plane. The weight at point y is the number of object parts above this
point that would cast a shadow independently. For the simple case in Fig. 2.19a the
weight is 2. The inner integral is also denoted as “area of the total projection” or
“rose of intersections.” In this context (2.117) is also denoted as Cauchy formula.
For the simple case of a sphere it is easily verified that the integration over the unit
sphere and division by � yields the correct value for the sphere surface.

In the case of discrete grid points in three dimensions the evaluation of the
Crofton formula (2.117) in [48] is based on the 8-neighborhood of each grid point.
As indicated in Fig. 2.19b it can be encoded with eight bits or one byte. The grid
point whose neighborhood is to be encoded is associated with the least significant
bit 20, the neighboring grid points with 21 to 27. A bit is set only if it belongs to
the phase X . If grid points plotted in black in Fig. 2.19b belong to X encoding
yields 10101001 as binary number or 1 C 8 C 32 C 128 D 169 as decimal number.
For the evaluation of the surface only the histogram of these numbers is required,

31The MathWorksTM, Inc.
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Fig. 2.19 Quantities used in the Crofton formula (a) and encoding of the 8-neighborhood of a grid
point in the discrete case (b)

not the eight-bit gray-tone image itself. In [48] a program written in language
“C” is presented that performs encoding using bit-shift operations and compiles
the histogram very efficiently in a single triple loop.32 A literal translation of the
required C programs presented in [48] into MATLAB R� language can be found in
Sect. 6.1. The integration in 2.117 is replaced by a double sum over all 256 possible
configurations with the gray-tone histogram as weight and over the 13 directions
occurring in the 8-neighborhood (three edge directions, 3 � 2 D 6 face diagonals,
four body diagonals). The Euler number is obtained very compactly and efficiently
as sum of two products of results from logical comparisons involving “bit-wise
OR” and “bitwise AND” operations, see Sect. 6.1. In the sum over directions in
space weights accounting for the associated solid angle occur. Note that the figures
appearing in [48] and Sect. 6.1 only hold for the common case of isotropic spatial
resolution.

2.3.2.3 Comparison of the Methods

First the surfaces calculated with both methods are compared for the simple cubic
geometries shown in Fig. 2.18. The smallest cube shown in Fig. 2.18a consists of
a single grid point and has edge length l D 0. Triangulation yields an octahedron
with edge length 1=

p
2 in units of the lattice spacing. Its surface SD, indicated in

the following in units of the squared lattice distance, amounts to
p

3. According
to (2.46) Q�nmo approximates in each direction the integral of the spin density in

32A free download as file ghist.c is available at http://www.materialography.net/.

http://www.materialography.net/
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the range of one lattice spacing. A sphere with the lattice spacing as diameter has
surface �=6. A cube with the lattice spacing as edge length (cubical voxel) has
surface 6. Computation according to [48] yields SC D 3. In this simplest case the
considered results increase in the order 6l2 < �=6 < SD < SC < 6.l C 1/2. In
Fig. 2.18e the surfaces for the limiting cases “inner” and “outer” cube as well as
SD and SC are plotted for the four cubes depicted above. For the cube consisting of
eight grid points with l D 1 SD and SC yield almost the same surface. For larger
cubes (verified up to 1,000 points and l D 10) the order changes to SC < SD. In
the case of l D 10 the mesh consists of 1,448 triangles with total surface 686, the
inner cube has surface 600, the outer 726, and the calculation based on the Crofton
formula [48] yields a surface of 638. Thus the results obtained with both methods
are in line with the limiting cases.

For large data sets the computing time can be relevant, especially if several vol-
ume images are to be processed. Both methods were applied to ten data sets of
varying size for bead packings and one data set for a ceramic sponge [29], see Sect.
4.7. At first the implementation of both methods in MATLAB R�, see Sects. 6.1 and
6.2, were tested with respect to computing time on one computer. As described in
[48] the time required for SC scales with the number of data points. It is about half
of the computation time required for SD, in which the latter obviously depends on
the details of the structure under investigation. In addition the literal translation of
the optimized C program in [48] into MATLAB R� was compared with the original
version. For 60 million data points the implementation in MATLAB R� ran for 15
min on a PC with P4 processor, 3.2 GHz clock frequency, 1 GB RAM and a
XP SP3 operating system. On a Linux PC with P4 processor and only 2.4 GHz
clock frequency, 512 MB RAM, the program compiled with the free gcc compiler
processed the same data set in only 15 s. This impressively demonstrates the
efficiency of the optimized C code compared to the obviously non optimal literal
translation in Sect. 6.1.

2.3.2.4 Remarks

Figure 2.18e shows that both methods yield reasonable results for simple test data.
However, it is difficult to evaluate the uncertainty for images of complex structures
with experimental artifacts.

Moreover the specific surface depends more or less on the observed length scale.
Beads of packed bed can appear smooth on a coarse length scale and coarse on
a fine length scale. On a molecular length scale the observed specific surface can
increase drastically as, e.g., for zeolites. A dependence of the specific surface on the
length scale in the accessible range of length scales can be studied by variation of
the spatial resolution.

For structures with various relevant length scales obtaining a statistically mean-
ingful volume image is difficult. The data set should contain enough representative
coarse structures. The spatial resolution cannot be made arbitrarily small compared
to the total image size, for experimental reasons or simply because of the maximum



2.3 Image Analysis 59

amount of manageable data. Thus fine structures might not be sufficiently resolved.
For coarse structures, edge effects at the borders of the volume image become
noticeable.

As already discussed in Sect. 2.3 the choice of the isovalue or threshold also
influences the specific surface. Erroneous assignments of grid points are absolutely
to be avoided.

To study the inner specific surface NMR measurements of diffusion within the
porous structure can be used, see e.g., [3, 44] and also Sect. 4.10.

2.3.3 Segmentation and Frequency Distributions

The porosity and specific surface is clearly defined for a porous system, apart
from the length-scale problem. For an open porous system it can be interesting
to segment the pore space into virtual individual pores with windows at the necks
between connected pores. If this is accomplished, e.g., pore-size distributions can
be constructed also for open pore structures like ceramic sponges. In favorable
cases segmentation can be performed using existing methods. However, for the
volume images studied the results obtained using MATLAB R� and MAVI33 were
not satisfying. A method was thus worked out and implemented that allowed a
successful segmentation. It is partially described in [26, 55]. However, the program
used in these papers is not available from the authors. In the following the
commercially available watershed transformation is briefly described. The new
method is presented in more detail. Both methods for 3D segmentation are compared
using again artificially generated 2D images.

2.3.3.1 Watershed Transformation

Both methods require a binary image . Q�0/nm. In Fig. 2.20 black areas signify discs
in a loose packing. The regular structure in Fig. 2.20a has porosity � D 0:55, the
irregular structure in Fig. 2.20b has a slightly lower porosity � D 0:53. Both meth-
ods start with a distance transformation, see Fig. 2.20c. Each grid point in the pore
space is encoded with the closest distance to a solid grid point. In MATLAB R� the
Euclidean distance is used by default. A slightly different definition of the distance
is obtained using a kind of “morphological thinning.” It was used in [26] and was
also implemented for the analysis presented in [24]. Here, the Euclidean distance
provided by MATLAB R� was used for both methods for the sake of comparability:

anm D min
op

p
.o � n/2 C .p � m/2 with Q�0

nm D 1 and Q�0
op D 0: (2.118)

33MAVI – Modular Algorithms for Volume Images, Copyright c� 2006 Fraunhofer Institut für
Techno- und Wirtschaftsmathematik.
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Fig. 2.20 Simple 2D geometries used to test pore-space segmentation. (a) Regular structure. (b)
Irregular structure. (c) Distance transformation (2.118) for the cut-out indicated in (b). (d) Local
maxima for the irregular structure (b). The average in the neighborhood of local maxima (2.121)
is superimposed on the structure

For the watershed transformation, the “distance hills” .a/nm are inverted to the
“valleys” .�a/nm. Infinite depth is assigned to the solid phase. This matrix is
segmented by the watershed transformation [68],34 in analogy with the catchment
basins in hydrology. In Fig. 2.21a the successful segmentation of the regular
structure is shown. Each disc is surrounded by six regions in the pore space
(catchment basins) that are identified as individual pores. The pixel line separating
the basins is labeled separately by the program. In the 3D case, the separation
surface is the window in the neck between two pores. At low resolution, a significant
portion of grid points is assigned to the separation and not to pores, which is

34Concerning the algorithm, MATLAB R� refers to [46], where several watershed algorithms are
described.
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Fig. 2.21 Segmentation of the 2D structures shown in Fig. 2.20. (a, b) Results obtained with
the commercial program. (c, d) Results obtained with the developed program. (a) Successful
segmentation by watershed transformation for the regular structure. (b) Over-segmentation by
watershed transformation for the irregular structure. (c) Successful segmentation by stratus
transformation for the regular structure. (d) Successful segmentation by stratus transformation for
the irregular structure

problematic. Discs are also segmented. However, the area associated with a disc can
be larger than the disc itself. In Fig. 2.21a the grid points of the discs are plotted
in black. Colored spots on the disc borders indicate this artifact. In addition, grid
points at the border of discs are again not counted as part of an individual pore.

For the irregular structure in Fig. 2.21b the standard watershed transformation
leads to an over segmentation, i.e., some discs are surrounded by many small areas
identified as individual pores. Modified versions allow to solve this problem by user
intervention, e.g., setting of starting points or collection of areas. However, user
intervention introduces a subjective component and is impracticable for large 3D
data sets. The problem can also be tackled by preflooding.
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2.3.3.2 “Stratus” Transformation

For the procedure partially described in [26, 55]35 the distance matrix .a/nm is
not inverted. In the 2D case this matrix can be represented as hilly landscape.
The procedure is analog for the 3D case, although more difficult to visualize.
Segmentation of the pore space amounts to the assignment of grid points to
individual hilltops. The gradual process can be compared to the spectacle that can
be seen from a hilltop in the situation of meteorological inversion. The observer can
enjoy the sunshine, while everything only some meters below is covered by above-
ground fog, an even stratus cloud.36 Hilltops are the pore centers. As the stratus
gradually descends, more and more grid points become visible and are associated
with the adjacent hill. Eventually grid points on a saddle border on two hills. The
saddle is the virtual boundary between the pores. The stratus is gradually lowered
until all grid points are assigned to hills representing pores.

For the search of hilltops or local maxima, first the pairs of indices .n; m/

fulfilling
anm D max

.o;p/ 2 O�P
aop (2.119)

are determined. Here O � P is a moving product set of natural numbers around
.n; m/. It covers a quadratic (3D: cubic) range with edge length 2l and 2l C1 points
along the edges:

O D fa j a 2 N and n � l � a � n C lg
P D fa j a 2 N and m � l � a � m C lg: (2.120)

Hereby a first list of length K with index pairs of local maxima rk D .nk; mk/ is
obtained. Additionally a list of the associated averages

Nak D 1

.2l C 1/2

nkClX

oDnk�l

mkClX

pDmk�l

aop (2.121)

is established. Grid points in the border area of the image matrix are to be treated
separately. Alternatively points at the border can be excluded as potential pore
centers, as it was done in the presented analysis. The value of l should be

35Generation of the distance matrix by a kind of “morphological thinning” is explained in detail,
the following steps are only mentioned. However, a straight-forward search for local maxima in the
next step leads to an over segmentation. Also in the subsequent association of adjacent grid points
to the maxima, care must be taken to avoid distorted pores. Therefore details of the developed
procedure are described and in Sect. 6.3 the implementation in MATLAB R� is listed.
36In Zrich, a tablet on the tramway bearing the inscription “Uetliberg hell” (Uetliberg bright)
indicates this situation.
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smaller than the smallest considered distance between two pore centers. For the
segmentation shown in Fig. 2.21c, d, l D 4 was chosen.

As the indices are natural numbers only discrete values are obtained as distances
by (2.118). Thus it can occur for an irregular structure as shown in Fig. 2.20b that
a ridge or small plateau is obtained instead of a crest, see Fig. 2.20d. Each point
of the line contributes to the list rk . In the following association of grid points this
would lead to an over-segmentation. Therefore a second parameter c is introduced
as minimum distance between two pore centers. In the decision which point rk is
to be retained form a set of local maxima with distances smaller than c the averages
Nak are compared. For a grid point at the end of a ridge the average is smaller than
for a point in the middle of the ridge. Thus, starting with the first local maximum
in the list, each local maximum is tested against the following ones with respect to
their distance. If the inequality

jrk � rkCl j < c with l 2 fa j a 2 N and k C l � Kg (2.122)

is false for a rk and all l this local maximum is incorporated in the final list of local
maxima .r/j . As soon as the inequality (2.122) is fulfilled for one l the comparison
is stopped for this k. If the following local maximum has a higher average, i.e., if

Nak < NakCl (2.123)

is fulfilled, rk is discarded. If this is not the case, NakCl and rkCl are replaced by Nak

and rk , respectively. Thus the decision if the local maximum is to incorporated in
the final list is postponed to following tests. In the example of the regular structure
shown in Fig. 2.21c the final list has the same length J as the original list, namely
K D 60. For the irregular structure of Fig. 2.21d however K D 81 and J D 60.
The minimum distance was chosen as c D 6.

In the gradual association of grid points in the pore space to bordering points
already assigned to pore centers two points have to be considered. For large data
sets the implementation has to be numerically efficient and all grid points in the pore
space have to be covered. Furthermore it has to be avoided that pores get distorted by
an unsuitable systematic procedure (e.g., growth of pores into neighboring pores).
First “gradually” has to be defined. Distances calculated by (2.118) extend from one
to several lattice spacings. For the structure shown in Fig. 2.21d, e.g., the maximum
distance amounts to

p
72 C 1 and for the structure in Fig. 2.21c 5 is obtained (with

two possibilities:
p

52 and
p

32 C 42). In the first step the lattice points with a
distance between the rounded off maximum distance h1 and the maximum distance
are considered. These grid points fulfill the inequality

anm > h1 with h1 D amax � .amax mod 1/ and amax D max
j

a.rj /: (2.124)

Grid points already assigned have to be excluded. These are collected in the matrix
.z/nm of the segmented image and are set to the value j of the corresponding pore
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center. Initially the segmented image is only non-zero at the local maxima:

znm D
�

j W .n; m/ D rj

0 W else
: (2.125)

When all grid points above the highest level are assigned new points are considered
applying (2.124) with a lower level hi reduced, e.g., by one.37 Both conditions for
the points to be considered can be combined in a compact matrix notation and are
thus efficiently evaluated in MATLAB R� :

.�/nm D ..a/nm > hi / ^ .:.z/nm/: (2.126)

The negation is implemented such that :znm D 0 for znm ¤ 0. The matrix notation
in (2.126) signifies for the components

�nm D
�

1 W anm > hi and znm D 0

0 W else
: (2.127)

Thus (2.126) is a binary matrix with ones at the positions of grid points to be
considered and zeros elsewhere. The neighborhood of points under consideration
to points already assigned is established by comparison of .�/nm with a cyclical
shifted version of matrix .z/nm. In the 2D case a shift by one is executed either to
the left, to the right, to the bottom, or to the top. For the indices the shift is either the
addition or subtraction of one in either the first or the second index:

.n; m/ ! .n; m/ C � with � 2 f.�1; 0/; .1; 0/; .0; �1/; .0; 1/g: (2.128)

As .�/nm is a binary matrix the shift amounts to a bit-shift operation. For n > 0 a
shift by n bits to the left or to the top is denoted by << n. A shift to the right or
bottom is denoted by >> n. For n < 0 directions are inverted. Thus the matrix-
oriented logical operation

.�/nm D .�/nm ^ ..z/nm << �/ (2.129)

yields the binary matrix .�/nm with ones at the positions of points under con-
sideration that are adjacent with already assigned points in direction � and zeros
elsewhere. At the positions where .�/nm contains ones the matrix .z/nm should be
assigned with the value of the neighboring assigned point. This can be done again
very efficiently by indexing of the matrix .z/nm with the binary matrix .�/nm and

37The distance matrix generated in [26, 55] contains only natural numbers so that a reduction of
the levels by less than one is not meaningful in this case.
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with the version cyclical shifted in the opposite direction, respectively38:

.z/� D .z/�>>�: (2.130)

Indexing with the (shifted) matrix signifies for the components

znm D
�

zop W �nm D 1 with .o; p/ D .n; m/ � �

znm W else
: (2.131)

Thus the gradual assignment can be described as follows:

1. Determine the grid points to be assigned at a given level and state of assignment
using (2.126).

2. Generate a random permutation of the shift-vectors � in the set given in (2.128).
3. Determine consecutively for the four (3D: six) permuted shifts the neighboring

pixel (3D: voxels) according to (2.129) and assign those grid points according to
(2.130).

4. Repeat steps 1 to 3 until all grid points above the actual level are assigned.
5. Lower the level and repeat steps 1 to 4 until level zero is reached and all grid

points are assigned to individual pores.

The implementation in a computer program is listed in Sect. 6.3. Without random
permutations the oblique borders between pores seen in Fig. 2.21c, d are not
obtained. If the random element is not desired a list of suitable permutations can be
fixed, leading to an exactly reproducible segmentation. Without the gradual lowering
of levels small pores grow into large pores.

2.3.3.3 Comparison of Methods and Example of Analysis

Figure 2.21c, d shows that the implemented stratus transformation produces mean-
ingful results not only for the regular but also for the irregular structure. All
grid points in the pore space are associated to separate pores. Only one point at
.x; y/ � .120; 90/ remains. However, it is surrounded by discs and is not part of the
open pore space. At variance with the commercial method areas at the border of the
data set are not assigned to new pores as on the left, bottom, and right border of
Fig. 2.21a. Indeed the distance matrix has local maxima at the borders, but borders
were not included in the search for local maxima using (2.119). If pore centers at
the border are to be allowed, these regions have to be treated separately.

Examples of geometrical characteristics whose distribution can be analyzed are
the pore volume, pore surface, coordination number (i.e., number of pores directly

38Equivalent and more intuitive is the assignment of new values with the equation .z/� D
.z << �/� . Due to the syntax of MATLAB R� this version requires an additional step as the
cyclical shifted matrix cannot be indexed with a matrix in the same expression.
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Fig. 2.22 Cumulative pore-surface distribution for both structures and methods shown in
Fig. 2.21. The distributions are not normalized in order to emphasize the differences for the two
methods. (a) Cumulative distribution by number or frequency Q0. (b) Cumulative distribution by
surface Q2. Crosses correspond to Fig. 2.21a, points to Fig. 2.21b, the broken line to Fig. 2.21c,
and the solid line to Fig. 2.21d

connected to one pore) or the cross-section area of the windows between pores. The
total number of pores J is obtained immediately. Whereas the stratus transformation
yields 60 pores for both examples, watershed transformation results in 121 pores
for the regular structure in Fig. 2.21a and 147 for irregular structure in Fig. 2.21b.
For the regular structure the difference is mainly due to pores assigned to the discs
that are larger than the discs. The rest is due to 19 additional pores at the left,
bottom, and right border. For the irregular structure the number is increased by over-
segmentation.

As example the cumulative pore-surface distribution for both structures and
methods is shown in Fig. 2.22, see figure caption. Cumulative distribution signifies
that at an abscissa value for the considered kind of quantity the total amount
of parts with quantity less or equal to that value are given as ordinate value. In
Fig. 2.22a the number of parts was chosen as amount, the corresponding cumulative
distribution is denoted as Q0. In Fig. 2.22b the surface of the parts was chosen as
amount, corresponding to Q2. The parts are the virtually separated pores. In the 3D
case Q2 can also be used. More common is the volume or mass as amount with the
corresponding symbol Q3. The kind of quantity is the pore size, here as pore surface
in units of the pixel numbers. In order to emphasize the differences between both
methods the distributions are not normalized as usual to the total amount. A discrete
derivative to a distribution density is noisy due to the small number of pores.

The total number of pores is given in Fig. 2.22a at the end points of the curves.
Due to the reasons discussed above it is significantly higher for the watershed
transformation. Some over-segmented pores for the irregular structure do not
contribute as part of the border was excluded from the analysis for both structures
and methods. Endpoints in Fig. 2.22b indicate the total pore surface. As discussed
above it is markedly smaller for the watershed transformation as grid points of
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the watershed line are counted separately and not as part of the pore space. Both
methods reproduce the slightly higher porosity of the regular structure.

Due to the difficulties of the watershed transformation the resulting distributions
are not very significant. At least the 60 correctly assigned pores of the regular
structure have a narrow surface distribution. With the surface as amount, small over-
segmented areas or isolated grid points around the discs contribute less than in the
frequency distribution.

The surface distribution for the regular structure is somewhat less narrow using
the stratus transformation. At higher surfaces this is due to the larger pores at the left,
bottom, and right border. For the irregular structure the median of the distribution by
frequency Q0 amounts to 115 grid points, for the distribution by surface Q2 to 133.
For the regular structure the median of the distribution by frequency and by surface
amounts to 111 grid points.

A different application of the stratus transformation to the segmentation of a
poorly resolved 3D structure can be found in [24] and Sect. 4.6, p. 132.

2.3.4 Signal, Noise, and Variance

In the preceding it has been assumed that the sample solely consists of areas with
constant observable spin density and areas that give no signal. In this section the
general case of a continuously distributed observable spin density is considered.
In some applications the variance of the spin density is of interest, such as in the
characterization of the uniformity of mixtures, see Sect. 4.3, p. 111ff and [32].
Therefore the influence of artifacts on the signal amplitude and variance in the
measured NMR image is analyzed.

According to (2.38) the nondimensionalized total transverse magnetization MC
in ideal Fourier imaging is the Fourier transform of the spin density �. In Sect. 2.3.1
it was shown in an example how already artifacts due to the inverse transform (2.40)
lead to a distortion of the amplitude in the result . Q�/nmo. In the following this artifact
is neglected compared to artifacts resulting from the inhomogeneity of the rf field B1

and noise. First the generation of the signal and the consequence of rf inhomogeneity
is treated in some detail. Then the origin of noise and its impact on the magnitude
image is discussed on p. 70f. The influence of inhomogeneities and noise on the
observed signal variance is finally treated on p. 71f.

2.3.4.1 Signal Amplitude

To begin with the spatial variation of B1 leads to a spatial dependence of the
angular velocity of the Rabi nutation (2.24). For !1
 D �
B1.r/
 ¤ �=2 the
local transverse magnetization is scaled with sin.!1
/ < 1. Frequently a second �

rf pulse is used for refocusing, see e.g., Fig. 2.8. Due to the deviance 2!1
 ¤ �

in average a total scaling with sin3.!1
/ is obtained [27]. For !1
 � �=2 this
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second-order attenuation of the signal is neglected against the linear dependence of
the signal on B1 discussed in the following.

In [37] the voltage U induced in the reception coil is derived using the reciprocity
theorem [39]. It relates this voltage to the field Bdc

1 generated by the coil when driven
with the direct current I dc:

U D �
ZZZ

V

d

dt

1

I dc
Bdc

1 .r/M .r ; t/ dxdydz: (2.132)

The relation of this voltage to the measured spin-density image is derived with con-
sideration of an inhomogeneous Bdc

1 .r/ field. To this the transverse magnetization
expressed in (2.32) and (2.37) in the rotating frame of reference has to be expressed
in the laboratory frame:

M .r ; t/ D �.r/h�zi
�
cos.!0t � kr/ ex C sin.!0t � kr/ ey

�
: (2.133)

Insertion into (2.132) and execution of the time derivative yields

U D �h�zi
I dc

ZZZ

V

�.r/

Œ� sin.!0t � kr/ Bdc
1;x.r/ C cos.!0t � kr/ Bdc

1;y.r/�

.!0 � 
Gr/ dxdydz: (2.134)

In the time derivative of the phase kr due to gradients definition (2.36) was used.
However, the contribution j
Grj 
 j!0j on the signal amplitude is neglected. It
is assumed that Bdc

1;x.r/ D 0, i.e., �1 D ��=2 in (2.22). Denoting the remaining
transverse component as Bdc

1;y.r/ D �Bdc
1 .r/ the induced voltage is expressed as

U D h�zi
I dc

!0

ZZZ

V

�.r/ cos.!0t � kr/ Bdc
1 .r/ dxdydz: (2.135)

Before digitization the induced high-frequency voltage in the megahertz range is
mixed with the resonance frequency, assumed to be equal to the rf frequency. This
corresponds to the transformation in the rotating frame, see (2.18). As for the
excitation here the common case is considered that a linear polarized field is
detected. To obtain the circular polarized average magnetization the voltage is
mixed in quadrature detection with two reference signals phase-shifted by �=2.
Multiplication of the time-dependent term with cos.!0t/ respectively sin.�!0t/

yields

cos.!0t � kr/ cos.!0t/ D 1

2
Œcos.2!0t � kr/ C cos.�kr/�

cos.!0t � kr/ sin.�!0t/ D 1

2
Œ� sin.2!0t � kr/ C sin.�kr/�: (2.136)
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The high-frequency component at about twice the resonance frequency is eliminated
by a low-pass filter. The field averaged over the sample is denoted as hBdc

1 i and
relative errors compared to a homogeneous field as e.r/. The result of mixing and
filtering then reads

U cos.!0t/!h�zihBdc
1 i

2I dc
!0

ZZZ

V

�.r/e.r/ cos.�kr/ dxdydz

U sin.�!0t/!h�zihBdc
1 i

2I dc
!0

ZZZ

V

�.r/e.r/ sin.�kr/ dxdydz: (2.137)

In analogy to (2.38) the second contribution is multiplied by i and added to the first
contribution. Nondimensionalization with h�zihBdc

1 i!0=.2I dc/ yields as final result

U C.k/ D
ZZZ

V

�.r/e.r/ exp.�ikr/ dxdydz: (2.138)

Thus the nondimensionalized complex voltage is the Fourier transform of the spin
density weighted with relative errors of the rf-field amplitude. Whereas this
weighting can already be recognized in (2.132) the factor used above for nondi-
mensionalization shows the dependencies of the signal amplitude:

U / h�zi hBdc
1 i

I dc
!0 D 
I.I C 1/„2

3kT

hBdc
1 i

I dc
!2

0 ; (2.139)

In the expression of the Boltzmann averaged z component of the observed nuclear
magnetic dipoles, see (2.30), 
B0 was replaced by the resonance frequency !0. The
signal is thus proportional to the square of the resonance frequency. This motivates
the efforts to generate the highest possible homogeneous field, as in many NMR
applications the SNR is critical. The signal is further proportional to the B1 field
per current in the sample volume. Optimization of this factor along with other
characteristics of the rf probe is the object of continuous research. The factors
I and 
 are properties of the kind of nucleus under investigation. Although the
signal increases with the spin quantum number, nuclei with I > 1=2 are used
less frequently. They possess an electric quadrupole moment. In the presence of
fluctuating gradients of the electric field this leads to a very rapid signal decay.
Isotopes with high magnetogyric ratio 
 , spin 1/2, and large natural abundance are
1H and 19F. Hydrogen nuclei are studied most frequently. The sample temperature T

is usually predetermined by the application. However, when measuring at different
temperatures, the inverse proportionality of the signal amplitude on the temperature
has to be included in a quantitative analysis.
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2.3.4.2 Noise

Perturbation of the signal by noise was already introduced as additive contribution
in (2.103). It has to be minimized in order to increase SNR. The noise voltage Un is
expressed in [37] as

Un D .F 4kTc �f Rc/1=2: (2.140)

Whereas T in (2.139) denotes the sample temperature Tc signifies the temperature
of the conductors in the rf coil. In order to reduce noise, cryogenic rf probes
are established in sophisticated NMR systems. This is also beneficial for the coil
resistance Rc . The noise figure of the preamplifier and the spectral width are denoted
by F and �f , respectively. Due to the skin effect the coil resistance is frequency
dependent. For a wire of length lc and radius rc 
 lc it is given by

Rc D lc

2�rc

r
�r�0!0

2	c.Tc/
; (2.141)

s. also (3.4). The temperature-dependent electrical conductivity is denoted as 	c

and the relative permeability as �r . From (2.139) to (2.141) it follows that SNR
scales with !

7=4
0 . In [20] a noise contribution due to losses in the sample which is

quadratic in the frequency is considered. In this case SNR is only proportional to !0

respectively B0. The effectively attainable SNR depends on many factors, see e.g.,
[1, 13, 20, 22, 37].

As a result of the measurement the discrete inverse Fourier transform of (2.138)
including B1 inhomogeneities with additional in-phase and quadrature-phase noise
is considered. In the common case of magnitude images it is expressed as

O�nmo D
q

ŒRe. Q�nmo/ Oenmo C ni;nmo�2 C ŒIm. Q�nmo/ Oenmo C nq;nmo�2

� Q�nmo Oenmo C ni;nmo: (2.142)

For the discrete inverse Fourier transform of the ideal measurement the notation
. Q�/nmo was already used to indicate the presence of transformation artifacts. In
analogy the outcome of an ideal measurement of e.r/, i.e., with constant � in (2.138)
would be denoted as . Qe/nmo. However, the multiplicative relation between � and e

in (2.138) does not strictly transform into a multiplicative relation between . Q�/nmo

and . Qe/nmo, as can be seen by inspection of (2.46). In fact transformation artifacts
depend on the details of the new product function. Nevertheless the notation . Q�/nmo

is used in (2.142). Deviations from the multiplicative relation, which are small for
a smoothly varying e are accounted for by introduction of the new symbol Oe. The
simplification in (2.142) assumes that the imaginary part of the measurement can
be neglected against the real part (without phase errors, see Sect. 2.3.5) and that the
real part including in-phase noise is always positive. This is the case of high SNR.
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2.3.4.3 Variance

The variance of the measured spin density is calculated as

Os2 D 1

NMO � 1

NX

nD1

MX

mD1

OX

oD1

. O�nmo � h O�i/2: (2.143)

Accepting the simplified expression in (2.142) the relation to the variance Qs2 of the
ideally measured spin density . Q�/nmo and the variances of the inhomogeneity . Oe/nmo

and noise .ni /nmo can be approximated as [32, 42]:

Os2 � Qs2 C h Q�i2s2
e C 1

NA

s2
n: (2.144)

The variance of the ideally measured spin density has a factor of h Oei2 which is
neglected as by definition hei D 1. The variance of the inhomogeneity is denoted
by s2

e . Its contribution scales with the square of the average spin density. In the last
term s2

n signifies the noise variance for one scan or average, NA D 1. In (2.144) it is
assumed that there is no covariance between the ideally measured spin density, the
inhomogeneity of the rf field and noise. The relation is formulated for the case that
the accumulated nondimensionalized voltage is divided by the number of averages.
Otherwise the variance of the ideally measured signal would increase with N 2

A.
Therefore the scaled noise variance decreases with the inverse of NA as factor.

If the contributions of artifacts can be determined, (2.144) can be used to
correct the variance calculated from the experimental data by subtraction of these
contributions. To this end measurements on a sample of same size and similar, but
homogeneous spin density can be performed. For the usual case of 1H such a sample
can be realized by a mixture of normal and heavy water (D2O). For a homogeneous
sample the variance of the ideally measured spin density is assumed to be zero. The
two remaining contributions can be separated by measuring with variable number
of scans and fitting of (2.144) to the results, see Fig. 2.23.

2.3.5 Phase Correction

Deviations of the measured spin density . Q�/nmo from the true spin density �.r/ due
to transformation and discretization artifacts have been treated in Sect. 2.1.3, p. 14ff.
The impact of noise on the signal and magnitude image as well as the application
of filters were discussed on p. 50ff in Sect. 2.3.1. Systematic errors originating from
inhomogeneities of the B1 field were considered in Sect. 2.3.4. In the following the
influence of nonlinear phase errors on the measured spin density and their correction
will be presented.
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Fig. 2.23 Experimental determination of contributions to the variance by artifacts. (a) Slice of
a 3D image of a homogeneous sample (i.e., Qs2 D 0) with analyzed areas of different size. (b)
Variance of the measured spin density (in the units used h Q�i D 0:41) for the different areas
as a function of the number of averages. Solid lines show fits of (2.144) to the data, allowing
to separate the contributions. For white noise s2

n shows no systematic dependence on the area
analyzed. For decreasing size, 0:0017, 0:0017, and 0:0012 are obtained, respectively. As expected,
the contribution by inhomogeneities s2

e decreases with size: 0:0041, 0:0018, and 0:0010. Reprinted
from [32] c� 2007, with permission from Elsevier

2.3.5.1 Influence of Phase Errors

The influence of phase errors increases with decreasing SNR. Therefore noise is
considered in the complex image. For the sake of simplicity, inhomogeneities of
the B1 field are neglected. In addition it is assumed that the imaginary part of the
transformed spin density can be neglected, Q�nmo D Re. Q�nmo/. Experimentally, a
phase error .�e/nmo is observed, so that the measured spin density is expressed as

O�nmo D . Q�nmo C ni;nmo C i nq;nmo/ exp.i �e;nmo/: (2.145)

Phase errors originate e.g. from off-resonance effects, pulse-phase errors, relaxation,
transformation artifacts, or effects of electronic signal processing. If the experimen-
tal image is expressed as a magnitude image and a phase image, the relation to the
unknown quantities in (2.145) is

j O�nmoj D
q

. Q�nmo C ni;nmo/2 C n2
q;nmo (2.146)

�nmo D �n;nmo C �e;nmo: (2.147)

The noise contribution to the image phase is the four-quadrant inverse tangent

�n;nmo D tan�1.nq;nmo=. Q�nmo C ni;nmo//: (2.148)



2.3 Image Analysis 73

For uncorrelated noise the average of �n;nmo is zero. The standard deviation of
the phase resulting from noise is approximately sn= Q�nmo, the inverse of SNR [42].
According to (2.146) noise in the imaginary part also contributes to the magnitude
image. In addition, normal distribution of noise leads to a Rice respectively Rayleigh
distribution in the magnitude image, see (2.105) and (2.106). This does not only
decrease SNR but also leads to a systematic, signal-dependent bias of signal
amplitude.

2.3.5.2 Intention and Method of Phase Correction

The intention of phase correction is to determine the phase error .�e/nmo, to correct
the complex image for the phase error and to use the real part of the result [2, 5, 11,
17, 45, 47, 53, 64]:

Ref O�nmo exp.�i �e;nmo/g D Q�nmo C ni;nmo (2.149)

D j O�nmoj cos.�n;nmo/: (2.150)

The experimental phase consists of the more or less smooth phase error with addi-
tional noise. It can be attempted to fit a parametrized function .�o/nmo to the
experimental phase .�/nmo. This requires that the phase image can be first corrected
for 2� jumps, as the experimental phase is contained in an interval of width 2� .
However, this procedure called phase unwrapping fails if the image consists of
several unconnected regions with low SNR. Another method circumvents the
ambiguity of the phase. The procedure is to minimize the magnitude or square of
the imaginary part, e.g.,

min
ko

X

nmo

j O�nmoj2 sin.�nmo � �o;nmo/2 (2.151)

with the parameter vector ko of the phase fit function. The index o signifies order
if the fit function represents a series expansion. Differences between the fitted
and experimental phase of multiples of 2� have no influence on the sine function
producing the imaginary part. For unconnected regions in the image it was observed
that this method can lead to areas with positive as well as areas with negative signal
(with superimposed in-phase noise). In the areas with negative signal a phase error
of � remains. In order to solve also this problem, a new method was developed [33].
It consists of the maximization of the real-part sum:

max
ko

X

nmo

j O�nmoj cos.�nmo � �o;nmo/: (2.152)

Taylor expansion of the cosine to second order shows that in this approximation
and without 2� jumps the procedure corresponds to a least-square fit of the phase
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function with the signal magnitude as weight. Fitting without weight yields similar
results. Using the squared signal magnitude as weight leads to a chi-square fit, as
the standard deviation of the phase is inversely proportional to the signal intensity. A
fundamentally different method uses the phase of a filtered image as approximation
for phase correction, see [47] and Fig. 4.4.

2.3.5.3 Implementation

The implementation of the new method is shown schematically in Fig. 2.24. A third-
order 3D polynomial is used as fit function, corresponding to 20 fit parameters.
The magnitude and phase images are read by the program. Only points with
intensities above a chosen threshold are retained so that the fit is not loaded by points
containing only noise. If the remaining number still exceeds a chosen limit points
are discarded from the list at regular intervals. Typically 105 points are used for
the fit, corresponding to over 45 points per direction in space. Identification of the
global first-order optimum turned out to be essential for successful phase correction.
To this end the starting points for the first-order fits in the parameter vectors k1 are
first taken from a suitable lattice. For the constant term only a 2� interval has to
be considered, values of �1.5, 0, 1.5, and 3 rad are chosen, respectively. The linear
component for each spatial direction is chosen such that the change in phase along
the image extension amounts to 0, ˙1, ˙2, or ˙4 rad, respectively. The 4D lattice
vectors are sorted by increasing magnitude and used one by one in this order. For
each starting point the maximum obtained according to expression (2.152) is saved
along with the parameter vector. Optimizations starting from lattice points is aborted
if the attained real-part sum exceeds a chosen fraction of the magnitude sum. If
this criterion is not fulfilled for all of the 1,372 lattice points, a chosen number of
optimizations with random starting points from a larger domain are executed and
the parameter vector resulting from the most successful optimization is retained. If
desired second- and third-order fits are executed with parameters from the lower-
order fit as starting point. The new parameters are randomly chosen for each of
the optimizations. Typically, two second-order and one third-order optimization is
added. A lattice with six dimensions for the additional second-order terms or even
ten dimensions for the additional third-order terms would be very large. Addition of
the second- and third-order was observed to lead to a comparatively small increase
of the sum in expression (2.152).

Optimization was performed in MATLAB R� R2007a with a quasi-Newton
method. It yielded better results in shorter times than a simplex method. For the first-
order optimization the analytical gradients were provided. The computation time on
a simple personal computer (Intel P4 3.2 GHz processors, 1 GB RAM, Microsoft
Windows XP Pro SP2 operating system) is of the order of minutes. In order to
investigate computation times results for several runs on a more efficient multi-core
computer were averaged (Intel Xeon CPU 5130@2.00 GHz processor, 14 GB RAM,
XP Pro x64 Edition SP2 operating system). The computation time as a function
of number of points included and order is compiled in Table 2.1 (all first-order
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Fig. 2.24 Procedure of phase correction. Reprinted from [33] c� 2009, with permission from
Elsevier
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Table 2.1 Computation time for phase correction in seconds

Number of points 13,351 26,922 53,836 107,263 214,514

Second order 4 8 16 40 121
Third order 39 78 157 377 1,005

calculations took less than 2 s). For the first three numbers of points computation
time scales with the number of points, then the increase is over proportional. At a
given number of points third-order optimization takes about ten times longer than
the second-order optimization. Including all fourth-order terms would probably lead
to hardly acceptable computation times. Concerning the number of points included,
satisfactory results were already obtained with the lowest value corresponding to
about 23 points per spatial dimension.

2.3.5.4 Application of the Method to Test Cases

The method was developed to investigate the deposition of small particle masses in
fibrous filters in situ, see Sect. 4.1. Here it is first examined and discussed for several
test cases.

First it was investigated if the polynomial series is suitable and sufficiently
flexible to map phase errors that occur experimentally. A 3D gradient-echo was used
as test image. Here inhomogeneities of the static field are not refocused as it is the
case for a SE image. A sample tube was filled with an aqueous Gadovist solution
(relaxation agent, 2.5 mmol/l). The entire available sample volume was filled in
order to assess the performance of the method in the border areas. Within the sample
SNR is so high that according to (2.146) or (2.148) and (2.150) the magnitude
and phase-corrected real-part image should be nearly identical. Deviations indicate
an insufficient phase correction. Outside the sample there should be only noise.
Figure 2.25 shows four out of 64 horizontal slices through the sample in four
columns. In the first three rows the difference of the magnitude image shown in
the last row and the corrected real-part image is represented for a first, second,
and third-order polynomial, respectively. Black represents full correction, white a
difference of 10% of the maximum intensity in the magnitude image. The first row
shows that for slices near the center already the first-order polynomial leads to a
high degree of correction. For slices near the border, however, errors of up to 10%
remain. These errors are markedly reduced in second order, see second row, and no
longer observable in third order in the third row. The presence of pattern outside
the sample indicates experimental artifacts. In general a bright border at the rim of
the sample shows that at the interface phase errors occur that are not described by a
smooth function. Apart from this, correction with the new method is successful for
this data set and a third-order polynomial is suitable and sufficiently flexible.

Next the ability of the method to correct the phase in the case of low SNR
and isolated regions was investigated. To this end known masses of oil-filled
microcapsules with different spatial distributions were imaged with a fast SE
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Fig. 2.25 Convergence of phase correction with order of polynomial (1–3) for two slices close
to the border of the sample (5 and 60) as well as two slices in the middle (25 and 40). The first
three rows show the difference of the magnitude and real-part image. For this data set with high
SNR the difference should approach zero (black). Last row: magnitude image. Reprinted from [33]
c� 2009, with permission from Elsevier

sequence. The total signal with and without phase correction is plotted against
the total mass in Fig. 2.26. The linear relation for the phase-corrected data in the
double-logarithmic plot shows the expected proportionality (note that a linear
dependence with positive ordinate intersection does not appear linear in a double-
logarithmic plot). For the magnitude data the calibration curve deviates at low
masses toward the plateau of the sum of magnitude noise.

The applicability of the method to large data sets was tested for the image
of a fibrous filter immersed in an aqueous Gadovist solution with tenside. The
data set acquired with a fast SE sequence comprises 2563 points. Phase correction
was successful. However, marked intensity distortions occur in the phase-corrected
real-part image in the vicinity of small air bubbles which remain in the sample in
spite of thorough degassing. In the magnitude image, air bubbles are not easily
distinguished for fibers and lead to errors in the determination of fiber structure.
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Fig. 2.26 Signal calibration
with (filled symbols) and
without (open symbols) phase
correction. Reprinted from
[33] c� 2009, with
permission from Elsevier

Phase correction could thus be useful also for images with high SNR in the
automatic detection of air bubbles or interfaces between different susceptibilities
in general.

The method was also applied successfully to a series of volume images with
increasing signal decay by transverse relaxation. For early high SNR images noise
has almost the same influence in the magnitude and phase-corrected real-part image.
However, magnitude images with strong decay and low SNR approach the limit of
magnitude noise. This leads to errors, e.g., in the fit of the transverse relaxation
time T2.

Finally it is noted that the method can also be used for data in which the spin
density can appear with negative sign, e.g., images with inversion-recovery or fat-
water filter. To this end the complex image is squared and the fit function is used to
approximate the double of the phase error. This was shown for simulated data.
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Chapter 3
Hardware

3.1 Micro-Imaging System

All high-field experiments were conducted in a micro-imaging system provided by
Bruker, Rheinstetten, Germany.

The super-wide-bore (SWB) magnet, see Fig. 3.1a, has a continuous vertical
room-temperature bore with 150 mm diameter. A superconducting coil at 4.2 K
generates a static field B0 of 4.7 T. This value represents a suitable compromise
between sufficient polarization of the sample and avoiding of susceptibility artifacts
which both increase with magnetic field. For hydrogen nuclei, the resulting reso-
nance frequency according to (2.13) amounts to 200 MHz.

A set of resistive coils denoted as shim system is mounted in the room-
temperature bore. Adjusting the current in these coils allows to reduce the inhomo-
geneity of B0 across the individual sample to values that are typically significantly
below 1 ppm (parts per million).

Within the shim system the three-axis (xyz) gradient system used for spatial
resolution and displacement encoding is mounted. For the largest sample diameter
the mini0.36 gradient system shown on the left in Fig. 3.1b is used. The sensitivity in
each spatial direction amounts to 3.6 mT m�1A�1. A stronger gradient for smaller
sample diameters can be generated with the micro2.5 gradient system depicted on
the right in Fig. 3.1b. Its sensitivity amounts to 25 mT m�1A�1. The gradient
amplifier used (BAFPA 40) supplies a maximum current of 40 A, resulting in
maximum gradients G of 0.144 and 1 T/m, respectively.

Finally, the probe head is mounted into the gradient system. The setup with the
largest continuous inner diameter of 64 mm is shown in Fig. 3.2a. An electrical
resonator formed by capacitors and vertical legs, denoted as birdcage resonator
generates the transverse rf field. To achieve this, the current distribution on the legs
approximates the surface current density on a cylinder according to a sine function.
The same probe head is shown on the left in Fig. 3.2b with the resonator separated
from the corresponding holder. On the right further holders and resonators to be used
with the smaller gradient system are shown. In order to generate hard, i.e., short and

E.H. Hardy, NMR Methods for the Investigation of Structure and Transport,
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Fig. 3.1 Magnet and gradient systems of the micro-imaging system: (a) shows the superconduct-
ing super-wide-bore (SWB) magnet. In the vertical room-temperature bore with 150 mm diameter
a magnetic field of 4.7 T is generated. The height of the magnet from the floor to the upper end of
the bore amounts to 1.95 m. (b) shows on the left the mini0.36 gradient system with a maximum
gradient of 0.144 T/m, used for larger samples. For smaller samples, the micro2.5 gradient system
shown on the right generates a maximum gradient of 1 T/m

Fig. 3.2 High field probe
heads: (a) shows the probe
head with a continuous inner
diameter of 64 mm; (b)
shows further probe heads
with varying inner diameter

intense rf pulses, the resonators are fed with a rf power of about 30 W (BLARH 100
amplifier at 0 dB). The resulting amplitude of the usable circular polarized magnetic
field component B1 decreases with the inner diameter of the resonator. For 64 mm,
about 50 �T are achieved, for 15 mm about 280 �T. For protons this corresponds
according to (2.24) to a Rabi nutation frequency of 2 and 12 kHz, respectively.

The set of electronic components is denoted as “Avance DRX console.” In
Fig. 3.3 the three bays are shown with open doors. The three gradient amplifiers
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Fig. 3.3 High-field console with open doors. Left: Imaging bay with preemphasis unit and three
gradient amplifiers; Middle: Module with predominantly digital boards, frequency synthesizer,
and magnet- and shim-control module; Right: Module with boards for signal processing and rf
amplifiers

are located in the bay on the left. On top of the bay is a preemphasis unit (BGU II),
used to compensate eddy-current effects. The bay in the middle contains, from top
to bottom, the module with predominantly digital boards (AQX), the frequency
synthesizer (PTS), and the module for magnet and shim control (BSMS/2). In the
right bay, from top to bottom, the module containing the boards for signal processing
(AQR), the 100-W 200-MHz amplifier for protons (BLARH 100), and the 300-W
broadband amplifier for other nuclei (BLAX 300RS) are located. The preamplifier
module (HPPR) is placed close to the probehead and can be seen left to the magnet
base in Fig. 3.1a.

A schematic representation of a micro-imaging system as well as further
explanations and figures can be found, e.g., in [7] or [1].

If possible pulse and gradient programs provided by Bruker in the software
package ParaVision 3 were used. This allows to set high-level parameters such
as FOV or slice thickness and position. The corresponding low-level parameters
such as gradient amplitudes, pulse duration, and frequency offset are calculated by
the software. Only in special cases programing of customized pulse- and gradient
programs in XWinNMR (stand-alone part of ParaVision) was necessary (see Sect.
4.2 and 4.6).
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Fig. 3.4 Compact and mobile low-field system for the NMR-based capillary rheometer. The
height of the magnet box on the left of the table amounts to 0.32 m without the aluminum parts
at the ends of the flow loop, see Sect. 3.4. In the middle of the table the electronic box can be
seen. A cryostat used for thermostatting of the flow loop is placed on the right. The 60-A gradient
amplifier and the electronics for pressure-difference and temperature recording are located on the
lower board

3.2 Low-Field System

A low-field NMR system was provided by Bruker, Rheinstetten, Germany, see
Fig. 3.4. It was used for the development of a compact and mobile NMR-based
capillary rheometer, see Sect. 4.4. The AlNiCo permanent magnets are mounted on
a yoke and generate a static field B0 of 0.23 T between the pole faces with 125 mm
diameter, separated by 50 mm. According to (2.13), this corresponds to a resonance
frequency of 10 MHz for protons.
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The instrument is based on the mq10 benchtop analyzer. It was additionally
equipped by Bruker with a one-axis gradient system in flow direction. Its sensitivity
amounts to 50 mT m�1A�1. Driven by a modified GREAT 1/60 amplifier with 60 A
maximum current gradients G of up to 3 T/m can be applied. In contrast to the three-
axis gradient system for the high-field tomograph, there is no active shielding. As
marked artifacts resulting from interactions of pulsed gradients with the permanent-
magnet system were observed, an actively shielded gradient system was developed,
see Sect. 3.3.1.

The probe head with a solenoid coil has an inner diameter of 10 mm. With an
attenuation of 20 dB of the 300 W amplifier, the rf field B1 has an amplitude of
735 �T. For protons this results in a nutation frequency of 31 kHz according to
(2.24).

All pulse and gradient programs were written with the ExSpel software provided
by Bruker.

3.2.1 Properties of Magnet Materials

Several parameters of the magnet material are of relevance for the application in
NMR experiments. The Curie temperature (complete loss of magnetization) or
rather maximum operating temperature (irreversible loss of magnetization) have
to be higher than the working temperature. A reversible linear dependence of
magnetization on temperature is described by the temperature coefficient, which
should be as small as possible. The coercive field strength (opposing field required
for demagnetization) indicates if the material is magnetically hard or soft. A high
remanence (residual induction after magnetization) and energy product (density of
energy) are desired to produce high fields. Also the mechanical workability and
resistance against corrosion as well as the price are of interest.

Exact values of the parameters depend on details of the material and production.
In the following, typical values for commercially available magnets are indicated.
A high maximum operating temperature (700 K) and low temperature coefficient
(�0.02%/K) can be obtained using AlNiCo. The remanence is also high (1.1
T), however the energy product (40 kJ/m3) and coercivity (250 kA/m) are low.
A favorable compromise of parameters is given for SmCo. At a somewhat lower
remanence (0.9 T) the energy product (above 150 kJ/m3) and coercivity (630
kA/m) are considerably higher. The maximum operating temperature (550 K) is
not as high as for AlNiCo and the temperature coefficient is doubled (�0.04%/K).
However, the price for SmCo is significantly higher than for AlNiCo or also NdFeB.
The highest energy product, remanence, and coercivity is achieved with NdFeB
(above 300 kJ/m3, 1.2 T, and 900 kA/m respectively). On the other hand, the
maximum operating temperature and temperature coefficient (400 K and �0.1%/K,
respectively) are disadvantageous.

The inside-out setup shown in Fig. 3.8 requires compact and strong magnets.
As temperature can vary and the price of the magnet material is not decisive,
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SmCo magnets are used. For the simple, compact, and efficient NMR magnet
shown in Fig. 3.9, temperature variations are not critical and NdFeB magnets are
employed. Ongoing developments are expected to yield magnet materials with
further improved properties.

Due to inhomogeneities of the permanent-magnet material, a homogeneity of the
static B0 field below 10 ppm can be hardly achieved by mechanical adjustments
only. Commercial systems usually cannot be provided with resistive shim coils,
so chemical resolution is not achieved for proton NMR. Standard applications are
restricted to relaxometry and diffusometry. However, a number of compact systems
based on permanent magnets capable of chemical resolution for protons have been
developed by now, see e.g., [4,8,9,19,24]. Medium resolution NMR with compact,
maintenance free, and cost-efficient devices certainly is an emerging field.

3.3 Design of Specific NMR Parts

3.3.1 Actively Screened Gradient Coils

The low-field system described in Sect. 3.2 has a gradient system generating the
desired field profile in flow direction between two parallel plates. However, without
active shielding a magnetic field is also generated outside the plates inside the
permanent-magnet system. Application of gradient pulses leads to transient as well
as remanent effects. Both effects can be described approximately as transient and
remanent gradients with an amplitude of the order of one per mill of the amplitude
of the switched gradient. Depending on the experiment, such gradient imperfections
can exclude the use of standard pulse and gradient sequences, see also p. 34ff. As
remedy, an actively shielded gradient system fitting in the available magnet gap was
developed.

Common permanent magnet systems as the one shown in Fig. 3.4 as well as
more recent yokeless setups as the Halbach array shown in Fig. 3.9 have their main
field direction transverse to the sample axis. This is at variance with the situation
in superconducting magnets, see Fig. 3.1 with main field direction parallel to the
sample axis. Thus gradient systems developed for the prevailing superconducting
magnets cannot be used. However, permanent magnet setups have the transverse
field orientation in common with electromagnets that were used for NMR before
the propagation of superconducting magnets. Bowtell and Mansfield published
a method for the design of actively shielded gradient coils for transverse field
geometry. It was used for fast chemical shift imaging in an electromagnet with
0.7 T and 127 mm pole gap [6]. The method allows the calculation of surface
current densities on two coaxial cylinders such that no field is produced outside
the outer cylinder. Defining an appropriate target field on a fictitious coaxial cylinder
inside the inner cylinder, the current densities are determined. In practice, the current
densities are approximated by discrete conducting paths. The inner coil with radius
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Fig. 3.5 Parameters of the
actively shielded gradient
system
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a and N turns is denoted as primary coil, the outer coil with radius b and NS turns
as screen coil, respectively. The target field on a cylinder with radius c has one
parameter d :

Bz D Gyy=.1 C .y=d/6/: (3.1)

As usual the z axis is in direction of the polarizing field which is horizontal. The y

axis is pointing upward in direction of flow. A sketch with the parameters and the
target field according to (3.1) can be seen in Fig. 3.5. The radius b of the screen coil
is determined by the pole gap. As the current density is approximated by discrete
conducting paths, a distance of the order of the typical path separation should be
left between the screen coil and the pole faces. Reducing the radius a of the primary
coil increases the gradient sensitivity. However, the rf coil and rf shield have to
fit into the primary coil, requiring a compromise. The parameters c (radius of the
target field cylinder) and d (length of region with homogeneous gradient) can be
varied in order to optimize the gradient characteristics. As constraint, the inequality
cCd=2 > a has to be fulfilled. Increasing the number of turns increases the gradient
sensitivity, however also the inductance. This can result in gradient rise times which
are too long. In addition, the number of turns is limited by the minimum separation
of the calculated current paths and the width of the conducting elements. The overall
length of the cylinders is limited by constructive considerations so that some current
paths might have to be compressed.

In a preliminary study the parameters are varied and the resulting current paths
are saved. Using Biot–Savart calculations, field maps are determined for the planes
z D 0, z D zPol, and x D 0. The screening efficiency is given by the field in the
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Fig. 3.6 Conductive path for the gradient in flow direction. The upper and lower halves of each
coil are identical. Only the lower half of the screen coil and the upper half of the primary coil are
shown, respectively. (a) 3D representation of the conductive paths without connections as used for
the Biot–Savart calculations. The surface current density was previously calculated up to fifth order
of the Fourier–Bessel expansion. A grid with 128 points for the polar angle and 256 points for the
z axis was used. (b) Inner layers with connections as used for the production of the conducting
paths. They are connected in series with a similar outer layer. In total three double-sided layers
were connected in parallel for the primary and screen coil, respectively, reducing the resistance to
one-third. In order to maximize the sensitivity the connections could be done in series

plane z D zPol. In the planes at z D 0 and x D 0 the deviation from a homogeneous
gradient G is evaluated. Finally the parameters a D 15 mm, b D 22:5 mm,
c D 2 mm, d D 35 mm, N D 9, and NS D 11 were chosen. The total length of the
cylinders is 150 mm. A representation of the current paths without connections is
given in Fig. 3.6a. In the construction double-sided layers were used and connected
in series, see Fig. 3.6b. Thus the sensitivity per double-sided layer is twice the
value obtained for the paths represented in Fig. 3.6a. The sensitivity was determined
experimentally to 23 mT/m/A, in good agreement with the theoretical calculation.
Per coil three double-sided layers were superimposed and connected in parallel.
A serial connection would triple not only the sensitivity but also the dissipated
power. The required current ratio between the screen coil and the primary coil was
calculated to 0.39. For DC this is realized by connecting the primary coil in series to
the screen coil which has a resistance in parallel. An alternative circuit and provision
for the frequency dependence are explained in [6].

The conductive paths consist of copper layers with 70 �m thickness. For the
width 0.6 mm was chosen. This results in a cross section of 0; 08 mm2. For a given
current I the dissipated power depends on the cross section A of the conductor
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with length l according to P D RI 2 D �e.l=A/I 2. The electrical resistivity
(or specific electrical resistance) is denoted as �e. Assuming adiabatic heating, the
temperature increase �T of the conductor during time t also depends on the cross
section according to P t D cm�T D c�mAl�T . The mass density is denoted as
�m and the specific heat capacity as c. A realistic assumption is that the maximum
current I D 60 A is switched on for at maximum t D 10 ms. The condition that the
maximum temperature increase amounts to �T D 50 K leads to a minimum cross
section of

A � I

s
�et

c�m�T

D 0:065 mm2 :

After heating the conductor cools down by radiation, heat conduction, and con-
vection. For the mass density of copper 8:9 103 kg m�3 was used, for the specific
resistance 0:017 .1 C 0:0039.T � 293 K// � mm2=m with T D 343 K, and for the
specific heat capacity 380 J=.kg K/. The temperature dependence of these parame-
ters was not included in the calculation of the temperature increase. According to
this evaluation each double-sided layer has a sufficient cross section to carry the
maximum current. However, the duty cycle (total gradient-pulse duration relative to
the total experimental time) and the efficiency of cooling have to be considered. As
in the presented setup three double-sided layers were connected in parallel and as
no high duty cycles were used, a gradient cooling by air or liquid was not required.

The rf part of the probe head as well as the fabrication of the three double-sided
layers was realized by Bruker, Karlsruhe. Construction of the mechanical part was
carried out by E. Oliver, Karlsruhe.

Two additional radial gradients are needed to measure directly the flow profile
in a slice or to perform 3D imaging experiments. The case of a radial gradient
was also treated using the method developed by Bowtell and Mansfield [6]. In
Fig. 3.7 a primary coil with five turns and a screen coil with seven turns for the
same dimensions as for the flow gradient are shown. For a double-sided layer the
sensitivity was calculated to 52 mT/m/A.

3.3.2 Magnet Setup and Probes

3.3.2.1 Inside-Out NMR

One of the early engineering applications of NMR which is still applied and further
developed is well logging in oil industries. Mobile NMR devices are lowered in the
borehole to inspect the properties of the surrounding wall. An axially symmetric
inside-out NMR setup is realized by the opposing-dipole configuration of Jackson
et al. [14]. The static field is pushed radially outward the narrow gap between
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Fig. 3.7 Conductive paths
for a gradient in radial
direction. The gradient for the
perpendicular radial gradient
is obtained by a rotation of
the paths by �=2 around the
cylinder axis
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Fig. 3.8 Schematic representation of a miniaturized inside-out NMR device as suggested by
Jackson et al. [14], e.g., for well logging. The two SmCo permanent-magnet discs have a diameter
of 25 mm and magnetization in opposing directions. Between the magnets a coil with 28 mm
diameter is located outside the rf shield and inside the protecting GRP tube. The sensitive volume
for 8.4 MHz proton resonance frequency is a toroidal region close to the tube surface

magnetic disks mounted in a tube. A perpendicular rf field is generated by a
single-turn coil or a solenoid with few turns which is located between the magnets.
This results in a toroidal sensitive volume close to the tube surface where the
resonance condition is fulfilled. Such a miniaturized NMR sensor was developed
at the institute for mechanical process engineering and mechanics by D. Mertens,
see Fig. 3.8. A possible application is presented in Sect. 4.3 on p. 115. An alternative
configuration and further applications are described, e.g., in [5].

Single-sided NMR is a special case of inside-out NMR where a sensor producing
a more or less thin and flat sensitive volume is placed on the surface of the object
under investigation. In a basic configuration the static field can be generated by a
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u-shaped magnet or a bar magnet [2, 3]. For the former the field lines leaving the
magnet close parallel to the surface of the magnet. As perpendicular rf field the
stray field of a solenoid located inside the u-shaped magnet can be used [3]. For a
bar magnet, the field lines leaving the middle of the surface are perpendicular to the
surface. A perpendicular rf field can be produced by a double-D coil [2]. For other
configurations, see e.g., [17,18]. Although generation of homogeneous static and rf
fields in single-sided NMR is challenging, spectroscopic and spatial resolution have
been achieved [22, 23].

3.3.2.2 Simple, Compact, and Efficient NMR Magnet

As already mentioned in Sect. 3.2 on p. 88 important progress has also been
achieved in the development of permanent-magnet systems surrounding the sample
as in conventional NMR, see e.g., [4,8,9,19,24]. Frequently the concept of yokeless
dipolar Halbach arrays realized by identical bar magnets is employed. In the
simplest case with four adjacent bar magnets a strong and relatively homogeneous
field is obtained [24]. However, the magnet volume is four times the volume inside
the magnet, resulting in a large volume and mass of magnet material. Increasing
the distance between the magnets reduces the relative magnet volume and offers
additional access to the sample [13]. However, field strength and homogeneity
are drastically reduced. Optimized arrays with multiple magnets can yield good
field strength and homogeneity. Due to the strong forces and inhomogeneity of the
magnetic material, mechanical construction and precise positioning are challenging.
A very simple Halbach array has been derived from the Halbach with four adjacent
magnets by removal of the outside half of each magnet. In practice each rectangular
magnet is realized by two identical bar magnets, see Fig. 3.9a. The relatively small
NdFeB-52 magnets (10�10�25 mm) can still be handled with due care (protective
glasses and gloves) without tools. They are placed between two sections of off-the-
shelf square aluminum pipes in a plug-and-play fashion. A screw driver is needed
only to fix the end plates (brass) to the aluminum bars in the corners. Distance pieces
can be used to slightly shift the positions of the magnet. Two-dimensional finite-
element calculations (free software: FEMM 4.2, David Meeker, Foster-Miller, Inc.,
Waltham, MA.) predict that for optimized small in-plane displacements the field
homogeneity is even improved compared to the arrangement with four adjacent
identical bar magnets. With 4/9th of the footprint and half of the magnet mass, 70%
of the field strength is retained. For the first prototype two sets of 4 � 2 magnets
are stacked in order to improve the axial homogeneity. Screws allow to move each
magnet individually in axial direction. Accordingly 70 mm was chosen as length of
the square pipes instead of the 50 mm required for contiguous sets. Four slots were
cut in the middle of the outer pipe faces (and if applicable in the distance pieces) to
enable a visual inspection of the magnet positions, see Fig. 3.9b.

The 16 magnets of the prototype have a total volume and mass of 40 ml and 300 g,
respectively. The proton resonance frequency is 22 MHz, which is already relatively
high for a yokeless permanent-magnet system. A six-turn solenoid of silver plated
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Fig. 3.9 Simple, compact, and efficient NMR magnet. Its design is derived from the dipolar
Halbach array with four identical magnets by omission of the outer half of each magnet. In practice
a “half magnet” is realized by two bar magnets (a). The eight magnets (NdFeB-52 10�10�25 mm)
of a set can be mounted in a plug and play manner (with due care) between sections of off-the-shelf
square aluminum pipe. The outer pipe has 45 mm outside edge length in the cross section, the inner
pipe 20 mm. Slight in-plane shifts can be realized by distance pieces. The prototype shown in (b)
has two sets in order to improve axial homogeneity and screws to adjust the axial magnet positions
individually. Four magnets are seen through a slot in the pipe. In NMR experiments, contiguous
sets were used resulting in a field of 0.52 T. The coil is wound on a 10 mm NMR tube, samples
with 9 mm diameter can be studied

AWG 18 copper wire with PTFE insulation is wound on a 10-mm NMR tube.
Alternatively, a circular pipe could be used as coil carrier. The connection to the
impedance matching network outside the magnet is realized by a short parallel-wire
transmission line. Without damping a dead time of 15 �s is required.

A single-shot spin echo for an aqueous Gadovist solution (Schering, Berlin),
1 mmol/l in a 7.5-mm NMR tube is shown in 3.10a. The pulse lengths were 3 and
6 �s, respectively. For the phase-corrected real-part signal a SNR of 228 is obtained
(286 if the magnitude data is evaluated). A minispec instrument was used.

A CPMG measurement for the same sample is shown in Fig. 3.10b. The echo
time is 246 �s. Individual echoes were sampled with 1 �s DW and 7 points at the
echo top are averaged. With eight scans, the intensity of the first point divided by
the standard deviation of fit residuals (SNR) amounts to 750. These results were
obtained without distance between the two sets of 4 � 2 magnets. A significant
improvement of the results could not be observed for shifts of the magnets in axial
direction.

The magnet is suited for online relaxometry measurements, provided a setup
of sufficient length for complete polarization is assembled. For the purpose of
prepolarization individual elements with one set and the end plates formed as
thin flanges were built. Pipes with up to 10 elements are used. Given the simple
construction and low cost, the setup could also be used for applications requiring
disposable magnets. The magnet can also be used for educational purposes.
Students in a practical course could even assemble the magnet before executing
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Fig. 3.10 NMR measurements executed in the magnet shown in Fig. 3.9. (a) Single-scan spin
echo of an aqueous solution in a 7.5-mm NMR tube. (b) CPMG of the same sample with eight
scans. Noise or deviations for the monoexponential fit are hardly discernible on the scale of the
plot

and analyzing NMR relaxometry experiments. In principle the design can be scaled
up to accommodate larger samples and coils for spatial resolution and shimming.
However, more sophisticated designs are probably preferable for such applications.

3.3.2.3 Probe-Impedance Matching

Several probes were constructed for various applications at high field and low field.
As the voltage induced by the precessing nuclear magnetization is very small,
usually electrical resonators with suitable bandwidth are used as probes. Probes
can be designed to create a homogeneous rf field, like a Helmholtz coil, or a
heterogeneous field, as a surface coil. Depending on the design, the field is in
direction of the symmetry axis, as for solenoids, or transverse to the symmetry axis,
as for birdcage resonators. These types of probes and the issues of, e.g., electrical
balancing, quadrature driving, or multiple frequency tuning are treated in [21]. At
low NMR frequencies, the probe can usually be treated as lumped circuit. For
permanent-magnet systems, frequently solenoids are used as receiving elements.
An example of solenoid probe is presented in [10]. In superconducting magnets,
birdcage resonators are widely used, see Fig. 3.2. An analysis of these electrical
resonators can be found in [15]. In the following, the task of probe-impedance
matching will be treated in an intuitive representation used in electrical engineering.

The spectrometer operates with a system impedance of Z0 D 50 �. In order
to avoid reflection, the probe is matched to the spectrometer by transformation of
the impedance Zc of the receiving element to the value Z0 at the NMR frequency.
A solenoid coil of length bc with radius ac and nc turns mainly presents an inductive
reactance i!Lc that is proportional to frequency. If length and radius are inserted in
centimeters, the inductance Lc in microhenry can be approximated by
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Lc � a2
c n2

c=.23ac C 25bc/ ; (3.2)

see [10]. However, the presence of a rf shield can considerably reduce the inductance
of the receiving element. If available, a network analyzer should be used to
determine the impedance of the receiving element mounted inside the grounded rf
shield.1 The resistance of the wire Rc is considered as a small contribution in series.
A frequency dependence of Rc follows from the frequency dependence of the skin
depth:

ıs D
s

2

	c�0�r!
: (3.3)

Instead of the cross-sectional area of the wire with radius rc only the area of the
outer ring of width ıs is inserted in the calculation of the wire resistance. Estimating
the wire length from the solenoid radius and the number of turns finally yields

Rc D 2�acnc

�.r2
c � .rc � ıs/2//	c

: (3.4)

If the skin depth is small compared to the wire radius its quadratic contribution
can be neglected in (3.4). Insertion of (3.3) then leads to (2.141). As the coil
impedance Zc D Rc C i!Lc has a resistance as well as a reactance it can be
transformed to any impedance by a suitable parallel and series connection with two
reactances. In the design of NMR probes frequently two fixed capacitors and two
variable capacitors are used. A common circuit is shown in Fig. 3.11. In electrical
engineering the transformation is intuitively represented by a resistance diagram in
the impedance plane. The resistance is represented on the positive horizontal axis
and the reactance on the vertical axis. Series connection of an inductive reactance
moves the impedance vertically upward, with a capacitive reactance vertically
downward. Parallel connection of an inductive reactance moves the impedance on a
circle in positive sense, i.e., counterclockwise, of a capacitive reactance in negative
sense, i.e., clockwise. This circle with constant conductance has its origin on the
resistance axis and passes through the origin. The position of the origin and the
radius have the value 1=.2Gc/ with the conductance Gc , defined by Yc D 1=Zc D
Gc C iBc .

As example matching of a solenoid for 10 MHz with the circuit of Fig. 3.11 is
represented in Fig. 3.12. The solenoid has a length of bc D 2 cm and nc D 10

turns with a radius of ac D 0:6 cm. According to (3.2) the inductance amounts to
Lc D 0:52 �H. For a brass wire with a radius rc D 0:43 mm and a conductivity of
	c D 14:3 � 106 ��1m�1 (3.3) and (3.4) result in a skin depth of ıs D 0:042 mm

1A network analyzer capable of measuring the S11 parameter including phase is sufficient. The
impedance of the device under test is conveniently represented in a Smith chart. A cable must be
used to connect the analyzer to the receiving element. Its influence on the measured impedance can
be corrected automatically if the analyzer has an “extended port” option.
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Fig. 3.11 Tank circuit and transformation circuit for the matching of the coil impedance Zc D
Rc C i!Lc to the system impedance Z0 D 50 �
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Fig. 3.12 Transformation of the probe impedance for the circuit shown in Fig. 3.11 as resistance
diagram in the impedance plane

and a resistance of Rc D 0:24 ˝ . As the reactance of the coil impedance

Zc D 0:24 ˝ C i32:6 ˝

is much larger than the resistance a large radius of 2:3 k� is obtained for the
circle with constant Gc . A first increase of the resistance toward Z0 is achieved
by parallel connection of the fixed capacitor with capacitance Cp and reactance
1=.i!Cp/. The resulting additional increase of reactance is partially compensated
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Table 3.1 Capacitances and reactances of the capacitors in the transformation circuit represented
in Figs. 3.11 and 3.12

Capacitor Cp Cs Ct Cm

Capacitance / pF 440 200 20 44
Reactance / ˝ �36 �80 �796 �362

by series connection of a fixed capacitor with capacitance Cs . With the values given
in Table 3.1 the resulting circle with constant (partly transformed) conductance
has a smaller radius of 1:3 k�. Moving on this circle by parallel connection of
a variable capacitor with conductance Ct the resistance can be adjusted to 50 �.
The resulting reactance can be finally compensated by a variable capacitor with
conductance Cm. Non-magnetic variable capacitors with small size and high quality
factor are available for different ranges of capacitance. A typical range is 1.5–55 pF
(NMAT55HVE, Voltronics, Denville, NJ, USA). In Fig. 3.12 the discrete values
represented for Ct range from 5 to 25 pF and for Cm from 35 bis 55 pF in steps of
2 pF, respectively.

Already for one solenoid and four capacitors the analytical calculation for
the impedance transformation is quite complex. The representation as resistance
diagram makes it comprehensible and easier to plan. It becomes clear how the
impedance changes if, e.g., the coil impedance gets closer to the reactance axis if
a different wire material is used (aluminum: 	c D 36:0 � 106 ��1m�1, copper:
	c D 56:2 � 106 ��1m�1, silver: 	c D 62:5 � 106 ��1m�1). The analytical
calculation of the transformed impedance Z can be used to calculate the frequency
dependence of the coefficient j.Z � Z0/=.Z C Z0/j2 that determines the ratio of
the reflected and incident power. Important characteristics are the magnetic field per
unit current and the spatial distribution of the field. They can be estimated by Biot–
Savart calculations. Further relevant parameters are the dead time and the degree of
probe detuning due to varying sample properties. Besides capacitive coupling of the
receiving element, inductive coupling is used, see e.g., [16].

Finally an interesting possibility is mentioned. The homogeneous polarizing field
and imaging capabilities of a high-field tomographic NMR instrument can be used
to develop low-field probes. Thus a magnet for 200 MHz proton frequency can
be used to test a probe at 30.7 MHz using a sample of heavy water, as deuterium
has a correspondingly smaller gyromagnetic ratio, see (2.8). Note that not only the
precession but also the nutation frequency is reduced by the same factor.

3.4 Flow Loop

Online measurements are estimated to be an important future application of low-
field NMR, e.g., in the context of process analytics. For the NMR-based capillary
rheometer presented in Sect. 4.4 on p. 115ff the low-field instrument shown in
Fig. 3.4 was equipped with the flow loop represented schematically in Fig. 3.13
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Fig. 3.13 Schematic representation of the flow loop for NMR-based capillary rheometry. The
sample is pumped through a heat exchanger into the inner capillary. A temperature-control liquid is
pumped through a coaxial outer tube. The tubes are surrounded by the rf coil, the gradient system,
and the permanent magnet. Above and below the magnet system the temperatures (TR1/TR2) and
the pressure difference (PDR) are measured and recorded

[11, 12, 20]. In order to use the highest filling factor the outer diameter of the flow
loop should just fit inside the receiving element and the ratio of the outer and inner
diameter should be as close to one as possible. Thus connection of tubes by a flange
or threaded ends is disadvantageous. Instead tubes are fixed in turned parts with
o-ring sealings at the top and bottom of the magnet system. Two coaxial tubes are
used. The inner has an outer diameter of 7 mm. Its inner diameter is either 4.7 mm
for a PMMA tube or 4 mm for a glass capillary with 1.5 mm wall thickness. The
outer PVC tube has an inner diameter of 9 mm and 0.5 mm wall thickness. In the
annular gap a liquid is circulated for temperature control. In this application initially
only the velocity measured by an echo experiment was evaluated. In this case water
with sufficient relaxation agent (e.g., Gadovist, Schering, Berlin, Germany) can be
used so that the water signal does not contribute to the echo. In extension the NMR
relaxation behavior of the sample was also measured, see Sect. 2.1.9, p. 41ff and
Sect. 4.5, p. 125ff. In order to avoid superposition of signal from the temperature
control liquid a perfluorinated liquid was used (Galden, Solvay Solexis, Bruxelles).
The turned parts also contain the connections for the temperature-control liquid and
the access points for temperature and pressure measurement. A version for elevated
pressure and temperature has an outer tube with 18 mm outer and 14.4 mm inner
diameter and an inner tube with 12 mm outer and 7.6 mm inner diameter.
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For rheological applications or online measurements of NMR relaxation a
constant and low-pulsation flow of the sample has to be realized. Further requests
concerning the pump can be that the sample viscosity is elevated, that particles are
suspended, or that the sample is altered by high shear rates. As suitable device a
rotor-stator pump with special geometry was identified (ViscoTec, Töging a. Inn).
For viscosities up to a few Pa s a syringe pump (KD Scientific, Holliston, MA,
USA) with disposable syringes (100 ml) can be used. The pressure and temperature
measurements should have only negligible influence on the flow field. Miniaturized
pressure transducers with temperature compensation for the required pressure range
are available with a diameter of 3 mm (FGP sensors, Les Clayes-sous-Bois, France).
Alternatively small radial boreholes (2 mm diameter) in the turned parts can allow
the sample to enter into horizontal PTFE tubings that are connected further away
with a pressure-difference sensor. While this method is simpler to realize, it can
yield erroneous results if the sample exhibits a yield stress.

References
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Chapter 4
Applications

4.1 Gas Filtration

4.1.1 Introduction

Filtration is a wide spread method for the removal of particles from gas streams.
For low particle concentrations deep-bed filters consisting of natural or synthetic
fibers with high porosity are used [90]. Relevant parameters are the particle caption
efficiency and the pressure drop. As a consequence of particle deposition these
parameters change during filtration until the filter is clogged and has to be replaced.
An accurate prediction of the filtration process during filter service life is desired
in order to optimize filters and their application. It is observed that theoretical
calculations with a homogeneous porosity do not accurately reproduce experimental
results. Some filters are already designed with a porosity gradient in direction of
mean flow. Even for a homogeneous initial porosity, particle deposition can lead to
a markedly heterogeneous porosity. A cell-based filter model was developed in order
to improve the theoretical description of the filtration process [91]. The challenge for
an experimental method is the non-invasive determination of initial fiber distribution
as well as the in line monitoring of particle deposition during filtration. In the
following it is summarized how this can be achieved using MRI [37, 45, 63, 64].

4.1.2 Results and Discussion

4.1.2.1 Filter Structure

The cell-based filter model requires the average packing density per cell as input.
Attempts to measure the packing density directly with sufficient resolution and SNR
were not successful. Instead the inverse filter structure was imaged. The filter was
immersed in a suitable liquid, here water with relaxation agent (Gadovist, Schering,

E.H. Hardy, NMR Methods for the Investigation of Structure and Transport,
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Fig. 4.1 Initial structure of a deep-bed filter. (a) Intensity-distribution function. (b) Procedure for
the assignment of packing density to intensity. (c) Measured intensities for a cut-out of a slice
through the 3D data set. (d) Calculated packing density in the same cut-out. Data were acquired
using a 3D RARE, see Fig. 2.7. An echo time of 4.6 ms was used. The RARE factor was r D 8,
the repetition time 225 ms, and the number of averages NA D 8. This results in an experimental
time of 8 h. [45] c� Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission

Berlin, Germany). A vacuum was applied to remove gas bubbles. Addition of a
surfactant can help to avoid gas bubbles.

The investigated sample should be large compared to the length scales of the
structure to represent the filter and minimize edge effects. A filter holder with 12 mm
inner diameter was constructed and the FOV was set to .15 mm/3. With 2563 grid
points the isotropic resolution amounts to 59 �m. The fiber diameter is of the same
order of magnitude, even for the investigated rather coarse filter. Consequently the
situation is different from that described in Sect. 2.3.1, where a disc diameter is
sampled by several grid points. Therefore the signal-intensity distribution shown
in Fig. 4.1a is also characterized by partially filled voxels, not only by noise and
transformation artifacts. Instead of a single threshold, a linear relation between
signal intensity and packing density was established. First a bimodal distribution
is fitted to the signal-intensity distribution, here a sum of two normal distributions.
The intensity of the peak at lower intensity is denoted as P1, at high signal intensity
as P2. Packing density 1 is assigned to grid points with intensity P1 or lower. The
packing density assigned to grid points with higher intensity decreases linearly with
slope �1=.P2 � P1/. However, above a threshold T the packing density is set to
zero:
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Fig. 4.2 Surface reconstruction (cut-out) of a deep-bed filter imaged at a high isotropic resolution
of 29 �m

˛MRI;nmo D
8
<

:

1 W Q�nmo � P1

.P2 � Q�nmo/=.P2 � P1/ W P1 < Q�nmo < T

0 W Q�nmo 	 T

: (4.1)

The threshold is chosen such that the averaged packing density equals the gravimet-
ric packing density:

˛MRI D ˛grav: (4.2)

The procedure and the result for one slice is illustrated in Fig. 4.1.
At cut-out of a data set with 256 � 512 � 512 grid points and 29 �m isotropic

resolution is shown in Fig. 4.2. Attaining a usable SNR at this high resolution
requires an accurate optimization of experimental parameters.

4.1.2.2 Particle Deposition

After characterization of the filter structure the filter is dried in the tomograph and
the deposition of particles during filtration is monitored in situ. Using oil-filled
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Fig. 4.3 Oil-filled melamine microcapsules imaged with a scanning electron microscope. In the
right image some capsules are sliced open. Reprinted from [36] c� 2007, with permission from
Elsevier

melamine microcapsules (Schubert International, Utting, Germany), see Fig. 4.3,
the deposited particles can be imaged directly. The mass related median diameter
of the used particles amounts to 6 �m. Their size distribution is similar to that of a
common test dust (ISO-12103-1, A1, ultra fine).

Particle deposition was imaged with 643 grid points, corresponding to an
isotropic resolution of 234 �m. During the MRI experiment the filtration process
was interrupted. Results for 2 h and 8.5 h are shown on the left and right of Fig. 4.4,
respectively. Already after 2 h of filtration a heterogeneous particle deposition is
observed. The deposited mass increases behind the leading edge and reaches a
maximum close to the edge. It subsequently decreases smoothly toward the end
of the filter. Particle deposition reduces porosity which increases gas-flow velocity.
This promotes inertia deposition. In addition, the particle concentration within the
filter decreases along flow direction as particles are deposited. However, the slice
perpendicular to the mean flow direction after 8.5 h also reveals a considerable
heterogeneity within this slice. At this time, the filter is largely clogged.

In the case of particle-deposition profiles as shown in Fig. 4.4 the improved
quantifiability using the phase-correction method described in Sect. 2.3.5 [37] is
obvious.

4.1.3 Conclusion

The presented work represents the first 3D determination of fiber packing density in
a filter with subsequent 3D in situ monitoring of particle deposition during filtration.
Distinct heterogeneities are observed for the deposited mass, in direction of mean
flow as well as in perpendicular slices. This successful experimental investigation
of filtration kinetics can support the development of improved filtration models.
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a b

Fig. 4.4 MRI images of the in situ deposition of dust particles in a filter. Left: after 2 h of filtration.
Right: after 8.5 h of filtration. The large images show the deposition profiles along the direction
of mean flow (arrow). The embedded small images show the deposited mass in slice 20 with
maximum deposition. Slice number 14 is the leading edge of the filter that ends in slice 45.
Obviously the phase-correction method presented in Sect. 2.3.5 (“present work,” [37]) improves
the quantifiability compared to the usual magnitude reconstruction. In addition, results obtained
with an alternative phase-correction method are shown (“homodyne,” [76]). A 3D RARE was
employed, see Fig. 2.7, with 3.2 ms echo time, a RARE factor of r D 4, a repetition time of 1.6
ms and NA D 8 averages. This results in an experimental time of 3.6 h. Reprinted from [37] c�
2009, with permission from Elsevier

Examinations with smaller fiber diameters and lower average packing density
are expected to be challenging. Here high-resolution X-ray tomography (�-CT) is
an alternative. The oil-filled melamine microcapsules can be used also for other
types for MRI experiments, see, e.g., Sect. 4.3.

4.2 Solid–Liquid Separation

4.2.1 Introduction

Removal of particles from a suspension is a common operation, e.g., in the
production of pigments or ceramics, in the processing of food, or in the treatment
of waste water. Possible solid–liquid separation mechanisms are filtration and
sedimentation in the gravitational or centrifugal field. In order to achieve short
processing times models describing separation as a function of product properties
and process parameters are in demand. Detailed experimental investigations by
means of MRI can guide modeling and validate predictions of models. Volume
images with high resolution revealed a fine ramified network of drainage channels
for a sediment produced in a bowl centrifuge. Modeling in such detail is challenging.
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Primarily a 1D porosity gradient is observed and included in models. Already
20 years ago NMR measurements have been used in this context [49]. In the
following the application of fast profile measurements for the validation of a
filtration model for sub micron particles is presented [23]. Also mentioned are
investigations on thin-layer filtration [42] and on separation in a tubular centrifuge
[95].

4.2.2 Results and Discussion

4.2.2.1 Surface Filtration

The setup for in situ MRI investigation of filtration of a suspension is shown
in Fig. 4.5. In the presented measurements alumina particles with a mean par-
ticle diameter of 0:6 �m were used (CT 3000 SG, Alcoa, now Almatis GmbH,
Ludwigshafen, Germany). The microporous membrane filter had a pore diameter
of 0:2 �m (Pall Corporation, Port Washington, NY, USA). As filtration processes
can be quite fast, depending on experimental parameters, a high temporal resolution
was desired. A SE sequence with frequency encoding without slice selection and
the shortest possible echo time was implemented. At each single shot measurement
of less than three milliseconds the signal profile was acquired with a spatial
resolution of 230 �m. Distortions due, e.g., to the inhomogeneity of the B1 field
were accounted for by normalization to a measurement with the filter cell filled
with water. As the signal for the suspension and filter cake is weighted by
transverse relaxation, the relation between the signal and porosity was established
by preliminary measurements on samples with known homogeneous porosity.

1

2

3

4 8

7
6

5 PIR

WIR

a b

Fig. 4.5 Setup for in situ filtration. (a) Filter cell with 25 mm outer diameter. (1) inlet for
pressurized gas, (2) screw cap, (3) PMMA cylinder with suspension, (4) filter medium, (5)
supporting mesh, (6) drainage system (PVC), (7) drain outlet, (8) piston (PTFE, optional). (b)
Overall setup. (1) NMR tomograph, (2) filter cell, (3) probe head, (4) balance, (5) manometer,
(6) pressure valve, (7) inlet for pressurized gas, (8) data acquisition. [23] c� Wiley-VCH Verlag
GmbH & Co. KGaA. Reproduced with permission
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Fig. 4.6 Measurement and simulation of filtration. (a) Measurement of the solid volume fraction
as a function of distance from the filter medium and time. (b) Simulation using the model of Bürger
et al. [12]. A good agreement between experiment and simulation is observed. [23] c� Wiley-VCH
Verlag GmbH & Co. KGaA. Reproduced with permission

In Fig. 4.6a an example of measured solid volume fraction as a function of
distance from the filter medium and time is represented as isolines. The initial height
of the suspension with a solid volume fraction of 0.095 is about 20 mm. As the
signal is projected on the symmetry axis of the filter cell which is in direction of
gravity, the meniscus of the suspension leads to a signal gradient at the interface. The
decreasing signal at the meniscus is transformed by the calibration into an increase
in solid volume fraction. While this artifact is not problematic, the method requires
that the filter cake is horizontal on the length scale of the spatial resolution. This can
be verified by volume images if filtration is stopped. The filter cake builds up during
filtration and the height of the suspension decreases. As can be seen in the presented
example the filter cake can exhibit a strong porosity gradient. For longer filtration
times, the suspension level can reach the filter cake which can be consolidated
to a constant porosity. The results of a simulation based on the model of Bürger
et al. is shown in Fig. 4.6b [12]. For the investigated systems, a close agreement
of experiment and simulation was observed. In the presented example the pH was
adjusted to 8.6 by addition of NaOH. This corresponds to zeta potential 0, measured
using an Acoustosizer II (Colloidal Dynamics, North Attleboro, MA, USA). At the
isoelectric point attractive forces between the particles prevail. Particles aggregate
and form a porous and permeable network. Experiments at a pH of 4, realized by
addition of HCl, occur at � D 62 mV. In spite of a higher pressure difference (PDR)
of 111 kPa the filter cake builds up markedly slower. Repulsive interactions prevail
and lead to a more regular and dense filter cake buildup.

In [42] filtration of particles with smaller size was investigated. Alumina particles
with volume-related mean diameter of 100 nm were used (Disperal 20, Sasol,
Hamburg, Germany), in which an increase of the measured particle diameter with
pH was observed. As the resistance during filtration is high, only thin filter cakes
with 0.5–3 mm thickness were generated. In these systems determination of the
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porosity from the signal intensity was not accurate. Instead a strong correlation of
porosity and transverse relaxation time T2 was observed and used for an accurate
determination of porosity. In order to achieve a high spatial resolution of 65 �m,
slice images were acquired with the sequence shown in Fig. 2.7. In the inner part of
the filter, the signal of pixels with equal distance to the filter medium was averaged.
Acquisition of several signal averages was performed to increase SNR, resulting
in an experimental time of 40 min. Accordingly, the filtration process had to be
interrupted during the MRI measurement. Experiments under varying conditions
generate a consistent image of the course of filtration in these systems.

4.2.2.2 Centrifugation

Investigations of solid–liquid separation in a tubular centrifuge by means of MRI
are presented in [95]. The profile of sediment build-up during centrifugation was
determined. As the steel tube of the centrifuge was not appropriate for MRI
measurements, a GRP tube was fitted into the steel tube. It could be removed
after centrifuging and inserted into the tomograph. In order to mark the surface
of the sediment at different times of centrifugation, tracers were injected into the
suspension at the desired times. The sediment consists of titania particles (Rutil
Sachtleben R 611, Sachtleben Chemie GmbH, Duisburg, Germany) with an average
particle diameter of 0:61 �m. Carbon black was added as tracer. Due to a T2 contrast,
see Sect. 2.1.6, the sediment with carbon black produces a stronger signal than the
sediment with titan dioxide. As the sediment in the tube was longer than the height
of the maximum FOV, the GRP tube was moved stepwise through the tomograph
and the overall view was assembled from five slice images with 256�200 pixels. The
isotropic spatial resolution was 200 �m and the experimental time per slice 25 min.
In another experiment the centrifuging of cells was investigated with carbon black
as tracer, too. Again the signal from the sediment with tracer was stronger, in this
case due to a T1 contrast.

4.2.3 Conclusion

The presented results demonstrate that MRI allows a nondestructive and quantitative
investigation of solid–liquid separation with spatial and temporal resolution. In
the case of in situ filtration the porosity was either derived from signal intensity
or transverse relaxation time. In the case of centrifuging tracers were employed
for a subsequent MRI experiment. Such measurement can assist the modeling and
optimization of solid–liquid separation processes. A study of the separation of small
amounts of particles using paramagnetic iron(III) oxide is presented in [20].
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4.3 Powder Mixing

4.3.1 Introduction

As reversal of separation with examples treated in Sects. 4.1 and 4.2, mixing
is a further unit operation in mechanical process engineering [93]. Typically,
a uniform mixture is to be attained quickly and with low energy input. For example
pharmaceutical tablets formed from a mixture should all contain the same amount
of active agent. In this case one tablet is the natural sample size. The variance of the
amount of the considered component from sample to sample is a common measure
for the uniformity of the mixture. Extreme cases are total segregation and the ideal
random mixture. Consider N samples containing the same number of particles.
Particles are either of type A or type B. The composition can be defined by the
number fraction p of particles A. Let hpi be the average fraction of particles A
over all samples. In case of total segregation hpiN samples have composition 1
and .1 � hpi/N samples have composition 0. Calculation of the variance of the
composition in this case yields

s2
p D �hpiN.1 � hpi/2 C .1 � hpi/N.0 � hpi/2

�
=N

D hpi .1 � hpi/ : (4.3)

In the calculation of the variance N was used as denominator and not N � 1 as
the average composition hpi is known. For the ideal random mixture it is assumed
that samples consist of M particles that are drawn at random. In the urn model the
number of particles A in a sample exhibits a binomial distribution1 with variance
M hpi .1 � hpi/. This results for the variance of the number-fraction distribution in

s2
p D Œhpi.1 � hpi/� =M: (4.4)

Thus the variance of the ideal random mixture (4.4) equals the variance in the
case of total segregation (4.3) divided by the number of particles in the sample.
Both variances are symmetric with respect to the average composition hpi D 0:5.
More complex expressions are obtained if, e.g., mass fractions are used instead of
number fractions. Potentially already the mass of particles of type A can exhibit a
distribution instead of a single value, further complicating the situation.

Several investigations of mixing or demixing of granular mixtures have been
performed using MRI, see e.g., [43, 72, 84, 85]. In the presented work the mixing
of two powders was analyzed for the first time [36]. First stepwise mixing in a
simple mixing device is studied. Then mixtures with varying average composition

1The binomial distribution applies to the basic urn model where particles are returned after being
drawn. Without replacement a hypergeometric distribution is obtained. If K is the total number of
particles the variances differ by the factor .K � M /=.K � 1/ which is close to one for K 	 M .
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are produced and the uniformity of the mixtures is compared with the limiting cases
discussed above.

4.3.2 Results and Discussion

4.3.2.1 Stepwise Mixing in a Simple Device

In a MRI volume image the mixture is represented by a number of grid points. The
intensity at a grid point originates mainly from spins inside the volume element
around the grid point.2 Thus voxels are the samples in an MRI investigation of
a mixture. As the entire mixture is imaged, errors originating form the analysis
of a limited number of samples are absent. The fraction of one component is
derived from the MRI signal in the voxel. In the simplest case one component
produces a signal in the chosen experiment and the other component is invisible.
Experimentally more demanding is the differentiation of components based on
their NMR spectrum or relaxation properties. In the presented measurements the
oil-filled melamine microcapsules introduced in Sect. 4.1 (Schubert International,
Utting) were used as component producing a signal. As second component with
similar properties but without signal contribution solid melamine spheres were used.
The density and volume averaged diameter of the microcapsules are 1:08 g=cm3

and 6 �m, respectively. For the solid spheres, 1:44 g=cm3 and 9 �m are obtained,
respectively. The MRI signal indicates the volume fraction of capsules in the voxel
volume. It should be noted that already for a powder consisting only of capsules
and an ideal measurement the signal would exhibit a variance due to the variance of
packing density [36]. Contributions to the measured variance by noise and artifacts
were treated as described in Sect. 2.3.4, p. 71ff.

The simple mixing device represented schematically in Fig. 4.7 consists of a
cylinder with symmetry axis in direction of gravity. The cylinder can be rotated
around an axis perpendicular to the symmetry axis. Rotations were performed
slowly and stepwise so that mixing occurs as the content of the partially filled
cylinder falls from one end to the other. The volume of the mixture was 1 cm3. With
a FOV of .15 mm/3 and 643 grid points the voxel edge length is 235 �m. Images
for increasing the number of mixing steps reveal the formation of fine structures.
The initial variance before mixing is slightly below the value of 0.24 for hpi D 0:6

and total segregation. An explanation for this is the presence of voxels including
the interface between capsules and spheres. Upon mixing, the variance decreases
roughly exponentially with the number of turns, see Fig. 4.8. The last point is still
slightly above the variance contribution by noise and experimental artifacts.

2Concerning the significance of a voxel, see Sect. 2.1.3, p. 14ff.
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Fig. 4.7 Investigation of powder mixing by MRI. Left: schematic representation of the simple
mixing device. Right: in each row three mutually perpendicular slices through the 3D images of
the mixture. Oil-filled microcapsules appear white, solid spheres black. The first row shows the
initial superposition of capsules and spheres. Following rows represent the mixture after increasing
the number of mixing steps. A 3D RARE was used, see Fig. 2.7. The echo time was 3.2 ms, the
RARE factor r D 4, and the repetition time 1.6 s. In order to improve SNR NA D 8 averages
were acquired. With 643 grid points, the experimental time per volume image was 3 h and 38 min.
Reprinted from [36] c� 2007, with permission from Elsevier

4.3.2.2 Influence of Average Composition

As further application the same measurements were repeated with mixtures of
varying composition. In order to achieve comparable mixtures with a high degree
of uniformity the powders were mixed outside the tomograph by repeated passage
through a sample divider (Retsch, PT100 with DR100). As the samples were
mixed outside the tomograph in a device different from the cylinder used for the
measurement, the analyzed region was limited to the smallest volume indicated in
Fig. 2.23a. This reduces the contribution by experimental artifacts that increases
toward the border of the FOV. At the low variance of the reasonably uniform
mixtures the influence of corrections of contributions by noise and experimental
artifacts according to (2.144) is noticeable, see Fig. 4.9 left. In the semilogarithmic
plot on the right hand side of Fig. 4.9 the variances for the limiting cases of an
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Fig. 4.8 Variance of composition as function of mixing steps for the steps shown in Fig. 4.7. The
solid line shows an exponential fit, the broken line the value corresponding to total segregation. On
this scale the variances with and without correction of contributions from noise and experimental
artifacts cannot be distinguished, in contrast to the case in Fig. 4.9. Reprinted from [36] c� 2007,
with permission from Elsevier

Fig. 4.9 Variance for mixtures of varying composition with (s2
x) and without (s2

p ) corrections
of contributions from the measuring method, respectively. Left: linear plot. The broken line
indicates the noise contribution, the solid line with increasing slope indicates the contribution by
experimental artifacts. Right: semilogarithmic plot including the limiting cases of total segregation
(upper parabola) and ideal random mixture (lower parabola). Reprinted from [36] c� 2007, with
permission from Elsevier

ideal random mixture (4.4) and total segregation (4.3) are also added. Due to the
huge number of particles in a voxel the variance for the ideal random mixture
is about two orders of magnitude smaller than the contributions by noise and
experimental artifacts. For voxel edge length of 235 �m, a particle diameter of 6 �m,
and a packing density of 0.5 about 6 � 104 particles are contained in a voxel. The
uncorrected variances are significantly above the contributions of the experimental
method. Only for the case of pure capsules hpi D 1 the result is even slightly
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smaller than these contributions. The corrected variance for all compositions is
about 50 times smaller than the value for total segregation. On the one hand these
results allow to appraise the mixture uniformity achieved with the used device and
procedure. On the other hand they point out that experimental contributions can
limit the applicability of the method to highly uniform mixtures of fine powders.

4.3.3 Conclusion

The presented results demonstrate the ability of MRI methods to analyze mixture
uniformity. Statistical uncertainties due to a limited number of samples are absent.
The entire mixture volume is analyzed with over 104 samples. Investigations with
the simple mixing device revealed that only a few mixing steps are required
to achieve a good uniformity. In the study of highly uniform mixtures variance
contributions due to the experimental method were shown to be significant and were
corrected. The contribution by artifacts depends on the composition of the mixture.
Special oil-filled microcapsules were used in order to realize ideal conditions for
the MRI experiment. Systems of practical relevance can be treated as long as a
MRI contrast between the components can be observed. However, the variance
contributions by noise and systematic errors in the system have to be evaluated and
must be smaller than the variance of the composition. In solid systems achieving
images with high resolution and SNR by MRI is challenging. Here �-CT can be
an alternative. In the preceding the uniformity of the entire mixture was analyzed.
With the high number of samples, it is possible to determine, e.g., the profile of
uniformity per slice [36].

For bulky mixtures, as in stationary concrete mixers, uniformity analysis using
a mobile inside-out NMR device is conceivable. The principle challenge is to
realize a setup with sufficient SNR. An example is the miniaturized and rugged
construction shown in Fig. 3.8 which is based on the principle presented in [52].
Encouraging results were obtained with this apparatus developed by D. Mertens and
E. Oliver at the Institut fr Mechanische Verfahrenstechnik und Mechanik. However,
for demanding mixtures of practical relevance, the SNR has to be further improved.

4.4 Rheometry

4.4.1 Introduction

The application of NMR in the domain of rheometry is another example from the
field of mechanical process engineering. Here the capability of NMR to measure
displacements is exploited. An experimentally demanding procedure is to combine
velocity imaging in a slice by MRI with rotational rheometry, e.g., to observe
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the occurrence of shear banding [13, 14]. The principle of capillary rheometry is
suited for online applications. A drawback of standard capillary rheometry is that
measurements at several flow rates and iterative corrections have to be performed to
determine the flow function for non Newtonian fluids. However, if it is possible to
determine the flow profile in addition to the pressure gradient the flow function
can be determined for all shear rates occurring at a constant flow rate without
corrections. One possibility to measure flow profiles is to evaluate the Doppler shift
and echo time of back scattered ultrasound pulses [7, 10, 41, 60, 70, 79, 80, 101].
Also velocity imaging by MRI in superconducting magnets has been applied by
several groups to perform capillary rheometry at only one flow rate, see e.g.,
[2, 3, 18, 26–28, 97]. However, superconducting magnets are difficult to use in an
industrial environment. Therefore the NMR-based capillary rheometer described
in the following was developed [38, 39, 68]. It uses the permanent-magnet system
presented in Sect. 3.2. This required not only the construction of the adapted flow
loop described in Sect. 3.4 but also the elucidation, quantification, and compensation
of the effects occurring if unshielded pulsed gradients are used for velocity
measurements in a permanent-magnet system. The measurement of pulsed-gradient
effects is described in Chap. 8. Influences on velocity measurements are treated in
Sect. 2.1.8 on p. 34ff. The results demonstrate that precise and reliable results can be
obtained using a standard low-field magnet. For the measurement of flow profiles in
pipes adapted magnet systems based on Halbach arrays are promising, see [9] and
p. 93ff. Even single-sided devices can be used [16, 83].

4.4.2 Results and Discussion

4.4.2.1 Velocity Probability Density Function and Velocity Profile

In the presented work the velocity profile v.r/ was not measured directly.3 Instead
the velocity profile is derived from the measured VPDF f .v/, see Sect. 2.1.8, p. 32
[104]. Experimentally this is a simplification as only one gradient system, amplifier,
and control is required for the direction of flow. In addition, the VPDF is measured
for the entire capillary instead of the profile in a thin slice, which is beneficial with
respect to SNR.

For the relation between the VPDF and the inverse flow profile r.v/ a simple
derivation considering the cumulative probability density function F.v/ was found.
A fully developed laminar isothermal capillary flow and a macroscopically homoge-
neous fluid is assumed. In this case velocity v is a monotonous function of radius r .
Consequently the cumulative VPDF for velocities up to v.r/ equals the surface

3As usual in standard low-field systems, the y axis is chosen vertically (the z axis is in direction of
the polarizing field, i.e., horizontal). Accordingly the velocity component of interest is denoted by
v in this section instead of w.
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Fig. 4.10 Capillary flow and rheometry. Fully developed laminar isothermal capillary flow of a
homogeneous fluid is assumed. Then fluid with velocity between zero and v.r/ is located in a
hollow cylinder with inner radius r.v/ and the capillary radius R as outer radius. This allows to
establish the relation between the velocity probability density function and the velocity or shear-
rate profile. The shear-stress profile follows from the balance of forces acting on the inner cylinder
with radius r.v/

fraction of the ring shown in Fig. 4.10 in relation to the total cross section of the
capillary �R2:

F.v/ D
Z v

0

f .v0/ dv0 D �R2 � �r.v/2

�R2
: (4.5)

This equation can be solved for the inverse profile:

r.v/ D R
p

1 � F.v/: (4.6)

Differentiation finally yields the shear-rate profile:

�.v/ D � dv

dr
D 2

p
1 � F.v/

R f .v/
: (4.7)

For the VPDF measurements shown in Figs. 4.12–4.14 the sequence depicted in
Fig. 4.11 and described in Sect. 2.1.8 on p. 34ff was used. Velocity encoding was
performed with NG D 128 increments of gradient pulses of duration ı D 3 ms
and time separation � D 14 ms. This results in an echo time of tSE D 28 ms. In
order to achieve a steady state for the transient and remanent permanent gradient
effects (see App. 8) Nd D 10 prepulses were applied. Magnitude data of the
Fourier transformed echo amplitudes are shown without further data processing.
As exception olive-oil data represented in Fig. 4.12 were measured with NG D 256

encoding steps and “uniform resampling” to 128 steps, see p. 39f. In addition here
a Hamming filter and a linear outflow correction by at maximum 2.7% was applied,
see Sect. 2.1.9, p. 41f.

The starch powder was heated in water to 358 K with a mass fraction of 0.60. It
was kept at this temperature while stirring for 10 min. All other food samples were
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Fig. 4.11 Steady-state pulsed-gradient spin-echo (PGSE) sequence. The upper row represents the
sequence of rf pulses in the SE experiment. In the lower row the timing of Nd C2 gradient pulses of
amplitude G and duration ı is shown. The simple PGSE experiment has only the two last gradient
pulses. In order to achieve a steady state the time separation � of all pulses must be equal. For a
sufficiently big number Nd the required equality tGE D tSE is fulfilled. The remanent permanent
gradient Gp exhibits a marked hysteresis with respect to G
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Fig. 4.12 VPDF and flow profile (small embedded plot) for olive oil at 298 K (5) and mayonnaise
at 303 K (diamond), respectively. For olive oil the capillary diameter was 5 mm, the flow rate 0.3
ml/s, the first gradient amplitude �0.47 T/m, and the repetition time 1 s. Eight averages and 256
encoding steps for uniform resampling were used, resulting in an experimental time of 40 min.
For mayonnaise the capillary diameter was 4.7 mm, the flow rate 0.6 ml/s, the first gradient
amplitude �0.21 T/m, and the repetition time 1.4 s. With eight averages and 128 encoding steps
an experimental time of 30 min is obtained
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Fig. 4.13 VPDF and flow profile (small embedded plot) for cake batter (circle) and starch gel
(square), respectively. Measurements were performed at 303 K in a capillary with 4.7 mm diameter.
For cake batter the flow rate was 0.075 ml/s, the first gradient amplitude �1.65 T/m, and the
repetition time 1 s. With eight averages an experimental time of 22 min is obtained. For starch gel
the flow rate was 0.038 ml/s, the first gradient amplitude �2.20 T/m, and the repetition time 8 s.
Only four averages were used, still leading to an experimental time of 70 min
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Fig. 4.14 VPDF and flow profile (small embedded plot) for a technical PVP solution (plus) and
a polymer dispersion (times), respectively. Measurements were performed at 298 K in a capillary
with 5 mm diameter. For the PVP solution the flow rate was 0.3 ml/s, the first gradient amplitude
�0.47 T/m, and the repetition time 3.5 s. With four averages this results in an experimental time of
33 min. For the polymer dispersion the flow rate was 0.6 ml/s, the first gradient amplitude �0.233
T/m, and the repetition time 1.5 s. Sixteen averages were accumulated, leading to an experimental
time of 1 h

measured without preparation. This also holds for the technical PVP solution and
the polymer dispersion.

For olive oil a neat rectangular VPDF is obtained. It corresponds to the expected
Newtonian flow behavior. This can be seen by comparison of the expression v.r/ D
vmax.1 � r2=R2/ for the parabolic flow profile of a Newton fluid with maximum
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velocity vmax with the general expression (4.5) for the cumulative VPDF. It shows
that the cumulative VPDF of a Newton fluid is F.v/ D v.r/=vmax. It follows that
the VPDF, i.e., the derivative with respect to velocity is constant: f .v/ D 1=vmax.
Mayonnaise exhibits a pronounced shear-thinning behavior. For the VPDF this
results in a peak at the maximum velocity. The flow profile is flattened compared to
the parabolic profile. For velocities close to zero only a small frequency is observed,
indicating a zone of slippage at the capillary wall.

The VPDF obtained for cake batter appears like a superposition of a Newtonian
and a shear-thinning VPDF. For starch gel the VPDF resembles a normal distribution
centered around the average velocity. Possibly the assumption of a macroscopically
homogeneous fluid was not good for this sample. At such low velocities Taylor
dispersion can be significant. The influence of experimental artifacts can be
increased for the high gradients used. Determination of the cumulative VPDF by
integration beyond the maximum (up to approx. 4 mm/s), leads in (4.6) to a velocity
profile with an inflection point. As shown below, this also leads to questionable
results for the viscosity function. The profile depicted in Fig. 4.13 was derived by
integrating only to the VPDF maximum.

The VPDF of the technical PVP solution is approximately rectangular with a
slight increase toward high velocities. Later measurements revealed that the first
measurement of longitudinal relaxation underestimated the relevant relaxation times
and the 3.5 s of repetition time lead to partial saturation for low velocities. Thus the
increase of the VPDF probably results rather from an inflow effect than from shear-
thinning behavior. For the polymer dispersion the VPDF of a shear-thinning fluid is
obtained. Due to the high content of polymer with fast transverse relaxation, SNR
is lower than for mayonnaise.

4.4.2.2 Viscosity Function

Frequently the flow curve or flow function 
.�/ is used to characterize the flow
behavior of a fluid. It is defined as the shear stress 
 as function of the shear rate
� for simple stationary shear. In practice users often prefer the viscosity function
�.�/, i.e., the ratio of shear stress to shear rate under steady shear:

�.�/ D 
=�: (4.8)

This is the secant slope of the flow function. Further definitions are the differential
viscosity as slope of the flow function or the kinematic viscosity as ratio of viscosity
to density. Calculation of the inverse velocity profile and thereby of the shear-rate
profile from the VPDF was derived in (4.5)–(4.7). As is well-known the shear-stress
profile is determined by the pressure gradient p0:


 .r.v// D p0r.v/=2: (4.9)
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Fig. 4.15 Viscosity function
for food stuff, calculated from
the VPDF represented in
Figs. 4.12 and 4.13 and the
measured pressure gradients.
For mayonnaise (diamond)
and olive oil (5) solid lines
show reference measurements
with rotational rheometry.
Starch gel: square. Cake
batter: circle

100 10210–2

10–1

100

101

102

h 
/ 
P
as

 / s–1

Fig. 4.16 Viscosity functions
calculated from the VPDF
represented in Fig. 4.14 and
the measured pressure
gradients. Technical PVP
solution: (plus). Polymer
dispersion: (times)
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This can be shown by equating the pressure forces on the face surfaces of an
imaginary fluid cylinder (see Fig. 4.10) with the shear force on the lateral surface.

In the presented indirect measurement the shear rate (4.7) and shear stress (4.9)
are obtained for equally spaced grid points on the velocity axis. If the velocity profile
is measured directly by NMR using three gradient axis, the shear rate is obtained
with a regular spacing on the radius axis. For both methods, in general the shear-rate
grid points in the flow function are not equidistant.

Viscosity functions for food stuff calculated using the above equations are
represented in Fig. 4.15 and for samples with polymer in Fig. 4.16, respectively. The
integral in (4.5) was calculated with the trapezoidal rule. As already noticeable in the
VPDF the measured viscosity for olive oil is shear-rate independent, corresponding
to a Newtonian fluid. Reference measurements in a rotational rheometer performed
for olive oil as well as mayonnaise are in excellent agreement with the results
obtained by low-field NMR-based capillary rheometry. Only at low shear rates,
i.e., high velocities in the pipe center deviations are obvious. These result from
a broadening of the VPDF noticeably predominantly at the high-velocity edge.
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Broadening is due to transformation artifacts and imperfections, e.g., remanent
permanent gradients, see Fig. 2.12, p. 40. Apart from this the viscosity function for
mayonnaise is well described by a power law. As stated above the viscosity function
for starch gel was obtained by integrating the VPDF only up to its maximum and
is therefore questionable. Integration beyond the maximum leads to an inflexion
point in the velocity profile and as a consequence to more than one shear stress
(proportional to the radius) associated with one shear rate. Possible causes for the
unexpected VPDF shape are given above. Cake batter also shows a decrease in
viscosity with increasing shear rate. A power law is less suited to represent the
viscosity function, compared to the case of mayonnaise.

The observed slight decrease of the viscosity function for the PVP solution can be
an artifact resulting from an insufficient relaxation delay as discussed in the context
of the corresponding VPDF. For the polymer dispersion, at the constant flow rate
shear-thinning behavior over two decades of viscosity can be measured.

4.4.3 Conclusion

NMR-based capillary rheometry allows the determination of the viscosity function
at constant flow rate for the range of occurring shear rates. Slippage or yield stress
can be observed in the velocity profile, depending on the resolution. With the
adaptation of the method for a compact and mobile low-field system with permanent
magnets applications in industrial environment are possible.

Depending on the application, the use of the VPDF to derive the shear-rate
profile is unfavorable due to the rather long experimental times. The presented
measurements were conducted acquiring several averages to increase SNR and 128
velocity-encoding steps in order to achieve good velocity resolution. If less precision
is required the number of averages or encoding steps can be reduced. In the latter
case however not only velocity resolution is decreased but also the influence of
transformation artifacts is increased. To circumvent this problem, e.g., a power-
law behavior could be assumed for the viscosity function and the correspondingly
parametrized velocity profile calculated. Its representation in reciprocal space could
be fitted to the measured data without Fourier transformation.

Whereas low-field NMR measurements usually require the presence of mobile
hydrogen nuclei investigations with ultrasound are only possible if there is sufficient
transparency for ultrasound as well as back-scattering amplitude. In general the
velocities typically measured by ultrasound experiments are one to two orders of
magnitude higher compared to the ones measured in NMR experiments. However,
shear rates are comparable, as larger tube diameters are employed. Time resolution
is in the range of seconds to minutes.

If NMR methods that measure the velocity profile directly are used, experimental
times are also reduced to some seconds, see Fig. 4.17. Another advantage is
that radial heterogeneities of the spin density or other influencing parameters are
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Fig. 4.17 Preliminary experiments with a direct measurement of the velocity profile. (a) Pulse
sequence, here without slice selection. As an audio amplifier with coupling capacitor was used
for frequency encoding (no DC output) a pair of bipolar gradients (Gr ) was applied after the rf
refocusing pulse. Of the 13.5 V output voltage 11 V were dissipated in a 2.2 ˝ resistor in series
to the gradient coil. The corresponding current of 5 A generates a gradient of about 0.1 T/m. At a
spectral width of 64 kHz this results in a FOV of 16 mm. With 128 digitized points this yields a
spatial resolution (here in z direction) of 125 �m. The half echo time tE=2 and the gradient-pulse
separation � were 7.5 ms, the duration of the flow-encoding gradient ı 1 ms. A GREAT 1/60
amplifier was used to generate the unipolar gradient pulses for flow encoding, in which the second
gradient Gq was chosen slightly higher than the first in order to obtain complete refocusing (25.0
and 25.3 mT/m). (b) Results for olive oil in a capillary with 2 mm radius. Average velocities
were ˙16 and ˙32 mm=s. The reference measurement was performed without flow. With 32
averages and a repetition time of 1 s the experimental time for one profile measurement with flow
encoding amounts to 32 s. The influence of missing slice selection is discussed in the text. Bruker,
Rheinstetten, is gratefully acknowledged for providing a three-axis gradient system

detected, macroscopical homogeneity is no longer required as in the evaluation
of the VPDF. However additional hardware components are required for radial
frequency encoding of position as well as slice selection. Selection of a thin slice
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containing a radius and the direction of flow reduces SNR. Possible interactions of
additional gradient pulses with the permanent-magnet system have to be considered.

Higher shear rates can be realized at a given flow rate if the capillary radius is
reduced. In order to maintain a high filling factor at a given coil radius bundles of
capillaries can be used. In this case the VPDF method is adapted. As also the sign
of the velocity is obtained in the VPDF, capillaries can form loops that enter the
magnet from both sides. At higher velocities more care has to be taken in order to
avoid artifacts by outflow or incomplete thermal polarization. This applies also if
the magnet and coil size are reduced.

Already NMR-based capillary rheometry is an interesting method for the purpose
of process analytics. The information content can be significantly increased if it is
combined with online NMR relaxation measurements. As worked out in Sect. 2.1.9
on p. 41ff complex effects occur in relaxation measurements on fluids flowing
through inhomogeneous polarizing and rf fields. Correction of these effects requires
knowledge of the VPDF. A first simple example is presented in Sect. 4.5.

Finally the properties of the measurement without slice selection shown in
Fig. 4.17 are discussed. For a 2D spatial resolution perpendicular to the flow
direction (y) and a Newtonian fluid, the velocity at .x; z/ D .0; 0/ should be
twice the average velocity. In Fig. 4.17 a lower velocity is obtained at z D 0

as the projection along x contains velocities between 0 and vmax that contribute
to the local magnetization phase �.x; 0/ D �qvv.x; 0/. The cumulative VPDF
restricted to the plane z D 0 can be generally expressed as F.v/ D 1 � x=R,
with a similar argumentation as for (4.5). For a Newton fluid with flow profile
v.x/ D vmax.1 � x2=R2/ in this plane the profile can be solved for x. Insertion
into F and performing the derivative to obtain the VPDF yields

f .v/ D 1

2vmax

p
1 � v=vmax

: (4.10)

The average velocity hvi at z D 0, i.e.,
R

f .v/vdv, amounts to 2vmax=3. However,
it is important to note the phase of the projected magnetization in general is not
�qvhvi. Instead the phase has to be calculated from

M C D
Z vmax

0

f .v/ exp.�iqvv/ dv D
Z vmax

0

exp.�iqvv/

2vmax

p
1 � v=vmax

dv: (4.11)

Again the last expression applies to the case of a Newtonian fluid. For the
experiment shown in Fig. 4.17 with qv D 50:2 s=m and vmax D 64 mm=s the
integral was calculated numerically.4 Division of the resulting magnetization phase
by qv leads to 45.1 mm/s, in good agreement with the result shown in Fig. 4.17b.
In comparison, the average velocity hvi D 42:N6 mm=s is lower. Instead of applying
slice selection with negative effect on SNR, the radial symmetry of the flow profile

4With http://integrals.wolfram.com.
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and spin density can be used in the data evaluation. For a radially symmetric sample
the projection on one axis is the Abel transform. As the Abel transformed complex
magnetization is only sampled on a discrete number of grid points, the challenge is
to perform a reliable discrete inverse Abel transform (DIAT) [26,35,47,51,65,100]
respectively a discrete Hankel transform [1, 2].

4.5 Relaxometry for a Flowing Liquid

4.5.1 Introduction

Low-field NMR devices with permanent magnets are frequently used to perform
NMR relaxometry. In quality control this allows, e.g., to monitor the fractions of
different phases. A typical example is the determination of solid fat content. The
progress of a polymerization reaction influences strongly the NMR signal decay.
In most applications a sample is extracted from the process for the NMR analysis.
This requires an intervention and a time interval during which the sample properties
can change. The results obviously only have a statistical meaning and usually the
samples have to be discarded. For these reasons it is desirable to perform inline
measurements of the product or at least online analysis of a bypass. In addition to
the NMR-based capillary rheometry presented in Sect. 4.4 online relaxometry is
a valuable method for process analytics. As discussed in Sect. 2.1.9 on p. 41ff in
general determination of the VPDF is a prerequisite for the analysis of relaxometry
measurements on a flowing liquid. It is therefore natural to combine both methods
and the expression rheo-TD-NMR is suggested.5

In the following first results for a simple system are presented. Longitudinal
relaxation was enhanced so that even at the highest velocity the assumption of
complete thermal polarization is reasonable. A Newton fluid with parabolic flow
profile was used. Transverse relaxation is monoexponential. A direct influence of
shear on NMR relaxation is not expected.

4.5.2 Results and Discussion

For the experiments represented in Fig. 4.18 the low-field NMR setup presented
in Sect. 3.2 operating at 10 MHz was used with the probe head described in
Sect. 3.3.1. The echo time was 0.5 ms, reference measurements with 2 ms showed
similar results. With 64 averages and a repetition time of 1.6 s the duration of one
measurement is less than 2 min.

5E. H. Hardy, D. Mertens, K. H. Wassmer, N. Nestle, Low-field integrated rheo-TD-NMR on
industrial media – experiences and challenges, poster presented on the ICMRM 10 in Montana.



126 4 Applications

0 0.5 1 1.5

−0.5

0

0.5

1

1.5

t /s 

lo
g 1

0(
I /

 1
%

)

64 mm/s
48 mm/s
32 mm/s
16 mm/s
0 mm/s

0 0.5 1 1.5 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t <w> / L 
I fl

ow
  /

 I s
ta

t 

 

 
64 mm/s
48 mm/s
32 mm/s
16 mm/s
ideal B1
real B1

a b

Fig. 4.18 Relaxometry experiment using the CPMG sequence for the fully developed laminar pipe
flow of an aqueous Gadovist solution (0.33 mmol/l, T1 D 0:39 s) at 303 K. The capillary radius
was 2 mm. With the flow rates set on the syringe pump this results in the average flow velocities
indicated in the legend. (a) Without flow the signal decay is monoexponential. With increasing
flow rate the decay of the observed signal is increased in a non-exponential manner. (b) Ratio
of the decay curves with flow to the decay curve for the stationary liquid. The solid lines show
the theoretical result calculated by (2.100) using the measured B1 profile and an ideal rectangular
profile, respectively (see also Fig. 2.15)

As can be seen from Fig. 4.18a the measured signal decays by more than
two orders of magnitude. Accordingly, SNR is low for long decay times. In
order to obtain smooth curves for the signal ratios, three additional kinds of
averaging were employed. By experimental artifacts odd and even echoes scatter
systematically around the relaxation curve. This is effectively reduced by averaging
each neighboring pair of odd and even echo. At each flow rate measurements were
conducted with flow velocity parallel and antiparallel to gravity. As expected, no
systematic difference was observed, so results for both flow orientations were also
averaged. Finally it is noted that intensity changes at higher rate for the first points
and at low rate toward long decay times. Therefore several methods were tested
that average over an increasing number of points with increasing decay time. In
Fig. 4.18 results for a simple procedure are shown. It conserves the shape of the
decay curve and reduces effectively noise for long decay times. The first data point
is accepted without modification (apart from the averaging steps explained above).
Next the average of the two following points is used. Then the following three points
are averaged and so on. Thus the nth filtered data point is obtained by averaging the
original points .n � 1/n=2 C 1 to n.n C 1/=2. In the experiment initially 4,096
data points were acquired and 2,600 were retained for further analysis. Averaging
over odd and even echoes reduces data to 1,300 points separated by 1 ms. Applying
the last kind of variable averaging described above, the averaged 1,300 data points
for both flow directions are reduced to 50 values. This is the integer part of
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.
p

1 C 8 � 1;300 � 1/=2, i.e., the positive root for n when the last original point
for n is set to 1,300.

In order to determine the B1 profile for the analysis according to (2.100) a reliable
experimental method is to measure the Rabi nutation frequency as a function of
position of a small sample. As this is time consuming, frequently the maximum
time-domain intensity (FID or echo) profile is recorded for a small sample instead.
While this is a valid characterization of the probe head, the result is qualitatively
and more or less quantitatively different from the B1 profile. According to (2.100)
the intensity profile is related to the B1 profile by

M C.B1.z/; 
/ / sin.�
B1.z/
/ B1.z/: (4.12)

Obviously the intensity profile also depends on the pulse length 
 . The B1 profile
can be approximately inferred from the intensity profile if small flip angles are used.
Expansion of the sine then yields

M C.z/ / B2
1 .z/; j
B1.z/
 j 
 1 for all B1.z/: (4.13)

The proportionality constant can be determined if the nutation frequency is mea-
sured at one sample position. For the presented results the B1 profile was obtained
approximately from the intensity profile of a homogeneous sample measured by
frequency encoding with small flip angle. This is the fastest method as no variation
of sample position is required. However, it is additionally assumed that the read
gradient is homogeneous in the region with non-zero B1 profile and that the
bandwidth of the receiving chain is larger than the bandwidth of the signal. An
additional advantage of the 1D projection by frequency encoding is that the B1

profile can be determined for each sample in situ.
As predicted by (2.100) nondimensionalization with average velocity hwi and a

characteristic length L results in a master curve for the signal ratios, see Fig. 4.18b.
If the average length of the rf field is chosen as characteristic length the ratio
L=hwi corresponds to the mean residence time. Usually its inverse is used to
correct the apparent relaxation rates, see Sect. 2.1.9. The data shown in Fig. 4.18a
were analyzed with three different procedures, summarized in Fig. 4.19. Without
corrections a monoexponential fit yields apparent relaxation times that decrease
with increasing flow rate. Correction by the inverse mean residence time results
in a better agreement with the relaxation rate for the static sample. The quality of
this correction depends on the extent to which the decay is analyzed and on the
chosen length L. Division of the decay curves by the scaled theoretical master
curve (2.100) prior to a monoexponential fit results in the best agreement with
the reference relaxation rate of the static sample. However, deviations beyond the
estimated uncertainties remain. Further experimental investigations and possibly
an extension of the effects considered in the theory are required. Correction of
CPMG relaxation data with a theoretically predicted intensity ratio is also applicable
to multi-exponential relaxation that occurs in mixtures. In this case the usual
subtraction of the inverse mean residence time cannot be applied.
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Fig. 4.19 Analysis of the CPMG data shown in Fig. 4.18a in order to obtain relaxation rates
respectively times. Direct monoexponential fit without correction: square. Correction of the rates
by the inverse mean residence time: diamond. Monoexponential fit after correction of the decay
curves based on (2.100): circle

4.5.3 Conclusion

First experimental results on a simple sample agree with the physical model pre-
sented in Sect. 2.1.9. Extensive investigations on samples of practical relevance are
planned. In general the simplifications of complete thermal polarization, parabolic
flow profile, or monoexponential relaxation will not be applicable. Relaxometry
then has to be combined with VPDF measurement. As for NMR-based capillary
rheometry other magnet geometries can be of interest for rheo-TD NMR [9]. It is
conceivable that for complex fluids, not only viscosity but also NMR relaxation
shows a shear-rate dependence. Whereas rheology characterizes the macroscopic
flow behavior NMR relaxation is governed by microscopic structure and dynamics
[8]. Also for such investigations an additional gradient axis is advantageous.

4.6 Trickle-Bed Reactor

4.6.1 Introduction

A further example of MRI application in chemical engineering are investigations
of fixed-bed reactors, see e.g., [29, 59, 89]. Without MRI integral quantities such
as porosity of the bed, residence-time distribution, or chemical conversion can be
measured. However, simple models considering only integral parameters cannot
be expected to allow a reliable upscale from bench scale to large scale reactors.
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Models with spatial resolution are desired in order to provide more accurate
predictions in the process of upscaling. Again, MRI can provide input data for such
models and validate the results. In the simplest case the structure of the solid phase is
characterized, e.g., by a radial porosity distribution or the specific surface. Obtaining
the liquid distribution in two-phase flow can be more demanding, depending on the
details of the system under investigation. Quantification of velocity or concentration
fields under reaction conditions is challenging. In this section studies in the context
of hydration reactions are presented [25, 74, 75]. Finally, it is shown that in a
mixture of catalyst and support particles, individual particles can be identified and
differentiated into catalyst and support by MRI.

4.6.2 Results and Discussion

4.6.2.1 Setup for In Situ Investigations

A sketch of the experimental setup for in situ investigations on fixed-bed reactors is
shown in Fig. 4.20. Gas, hydrogen or nitrogen, is obtained from a gas cylinder.
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Fig. 4.20 Setup with fixed-bed reactor for in situ investigations by means of MRI. The reactor has
an inner diameter of 19 mm. Reprinted from [74] c� 2005, with permission from Elsevier
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Liquid hydrocarbons are fed by a pump and the mixture is electrically heated
before entering the tomograph. Within the tomograph temperature control is realized
using the hydrogen-free liquid that was also used in the NMR-based capillary
rheometer, see p. 99. The temperature-control jacket is thermally decoupled from the
tomograph by an annular gap with air circulation. Suitable non-metallic materials
have to be used inside the measuring zone that resist simultaneously elevated
temperature and pressure (473 K and 2 MPa). Either plastics or glass were
employed. After passage of the fixed bed in the tomograph the mixture is fed in
a high-pressure separator.

4.6.2.2 Structure of the Solid Phase

Wall effects cause a porosity heterogeneity in the reactor. Due to the small contact
area between the reactor wall and the particles the porosity is high at the wall.
Evaluation of the MRI data reveals how far the ordering effect of the wall reaches
inside the reactor. In Fig. 4.21 the radial porosity distributions for spherical glass
beads and trilobe support particles in a cylindrical reactor are shown, respectively.
For the glass beads the distance to the wall is nondimensionalized with the sphere
diameter. For the trilobe particles, the equivalent diameter of a sphere with identical
volume was used. The glass beads were chosen such that both diameters are
identical so that both porosity-distribution function extend over the same range of
reduced wall distance. If the radial porosity distribution is calculated for one slice by
averaging over the circumference, in general an irregular pattern is observed. The
smooth distributions shown in Fig. 4.21e are only obtained after averaging over
the bed height. For the spheres with narrow diameter distribution five decaying
oscillations are clearly discerned. The wavelength is somewhat smaller than the
sphere diameter. A fit of the model by Martin [66] is shown as solid line. The
high porosity at the wall is also present for trilobe support particles. However,
systematic variations of the porosity extend only to one equivalent particle diameter
from the wall. The decaying porosity function was fitted with a monoexponential
decay. Although the shape of both types of particles is quite different, a similar
average porosity is obtained. The porosity depends however noticeably on the filling
procedure of the reactor. Instructions exist, e.g., regarding the number of steps in
which a bench-scale reactor has to be filled and how the bed has to be agitated after
each filling steps.

4.6.2.3 Distribution of the Liquid Phase

Distribution of the liquid phase has an important impact on chemical conversion.
It depends on the volume flow rates and the viscosity of the gas and liquid,
respectively, the surface tension as well as on the structure of the solid phase.
Characteristic properties of the liquid phase are the saturation, i.e., the volume
fraction with respect to the pore volume and the wetting efficiency. In Fig. 4.22 top
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Fig. 4.21 Radial porosity distribution for glass beads with narrow size distribution and for trilobe
support particles. (a) Surface reconstruction of the volume image for glass beads. (c) Slice through
the volume image. Filled symbols in (e) radial porosity gradient averaged over the circumference
and height. (b), (d), and open symbols in (e) corresponding results for trilobe support particles.
[75] c� Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission
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Fig. 4.22 Liquid saturation. Top: slice from a volume image. As obtained form the application of
thresholds and the combination of images, solid is represented in black, liquid in white, and gas in
gray. The gas and liquid flow rate is unchanged. Bottom: correlation of liquid saturation obtained
from the images with kinematic viscosity of the liquid. [75] c� Wiley-VCH Verlag GmbH & Co.
KGaA. Reproduced with permission

the influence of temperature on liquid distribution is represented for one slice of the
volume image and three temperatures. In Fig. 4.22 bottom the kinematic viscosity
of the liquid, here diesel is used as abscissa instead of temperature.

4.6.2.4 Segmentation of the Solid Phase

On the left of Fig. 4.23 the surface reconstruction of a volume image of a bed
consisting of catalyst and support particles is shown. Due to the coarse spatial
resolution the particles are not separated at the contact area and appear as a
continuous volume. In order to characterize the bed structure, e.g., by the distri-
butions of particle volume, particle surface, or number of contacts, the continuous
volume has to be separated into individual particles. This was achieved using the
method described in Sect. 2.3.3 on p. 62ff that was initially developed for the
segmentation of a continuous pore space. In the presented application, segmentation
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Fig. 4.23 Segmentation of a connected solid. Left: Surface reconstruction. Due to the coarse
spatial resolution solid particles are not separated in the volume image. Right: Set of arbitrarily
chosen and colored particles after successful segmentation. Reprinted from [25] c� 2007, with
permission from Elsevier

into individual particles was a prerequisite for the differentiation of catalyst and
support particles by T2 imaging. In order to simplify the differentiation described
below, catalyst and support particles were superimposed and separated by a PTFE
sheet. Its position can be discerned in Fig. 4.23 left as there the separation of the
particles is increased. The bed was immersed with n-heptane that fills also the pore
space in the particles. Therefore the signal-intensity distribution has three peaks.
The peak at low intensities results from noise in the areas outside the sample, in the
PTFE sheet, and in gas bubbles. Liquid inside the particles contributes to a peak at
medium signal intensity. High intensities result from liquid in the outer pore space
between the particles. Thus the binary image of the solid phase was gained from the
application of two thresholds. The thresholds were determined for a volume image
averaged suitably over several echoes, see below. In addition the filter described in
Sect. 2.3.1, p. 52f was applied in order to correct for erroneous assignments of grid
points to solid or void. For the entire volume image the success of segmentation was
verified. Successively, groups of some particles are picked arbitrarily from the bed
and colored, so that particles can be identified by their color. An example is shown
in Fig. 4.23 on the right. With only a few exceptions, separation into individual
particles was successful, i.e., neither under segmentation, over segmentation, or
distortion of contact areas was observed.

4.6.2.5 Differentiation of Catalyst and Support Particles

In some experiments beds with catalyst are diluted with support particles. This
allows to reduce the reaction rate, e.g., of strongly exothermic reactions or to reduce
the costs for expensive catalysts without changing the geometric properties. In this
case, the detailed interpretation of investigations with spatial resolution requires the
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Fig. 4.24 Relaxation of n-heptane in catalyst and support particles. Left: signal decay and
monoexponential fit for two voxels in catalyst and two voxels in support particles, respectively.
Right: histogram of relaxation rates for the individual catalyst and support particles, respectively.
Reprinted from [25] c� 2007, with permission from Elsevier

ability to differentiate between catalyst and support particles. It is already known
that metal deposition on the support particles can lead to a modified relaxation
behavior of the liquid inside to porous catalyst, see e.g., [59]. In order to assess
the applicability of relaxation imaging a 4D measurement with echo time as fourth
dimension was applied to the bed described above, see Sect. 2.1.6, p. 28, Fig. 2.7.
Plots of the signal decay for two points in the catalyst and two points in the
support particles, respectively, in Fig. 4.24 on the left show also a clear influence of
metal deposition on transverse relaxation in this system. For each of the segmented
particles the signal intensity as a function of echo time was averaged over all voxels
of the particle. After a monoexponential fit a transverse relaxation time was assigned
to each particle. Due to the superposition of catalyst and support particles the kind of
particle can be inferred from the vertical coordinate. Thus relaxation-rate histograms
can be established for catalyst and support particles separately. As some degree of
overlap exists, a differentiation based on transverse relaxation leaves an uncertainty.
However, if the threshold for differentiation is set to 0.05 / ms, the assignment of
particles is correct to 95%.

4.6.3 Conclusion

The presented results show possible applications of MRI in the field of fixed bed
reactors. A further application is the determination of the velocity field for single-
phase liquid flow, see also Fig. 4.27. For two-phase gas–liquid flow no results
could be obtained with the required accuracy. If liquid is flowing in a thin film
only, low SNR and effects by partially filled voxels limit accuracy. In addition,
large susceptibility gradients interfere with phase encoding of velocity. Attempts to
measure the flow field using inflow or outflow effects also did not yield an accuracy
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in the lower percent range. Comprehensive investigations on model systems could
clarify the applicability of various methods in such a system. Possibly accurate
measurements of the VPDF with a coarse axial resolution can be performed.
A question of relevance for the application is if the liquid-phase flow is evenly
distributed over the cross section. The presence of stagnant liquid as well as areas
with preferential flow is disadvantageous. As alternative method, positron-emission
tomography (PET) can yield velocity information with tomographic resolution.
However, it requires radioactive tracers and is not commonly employed.

The spatially resolved determination of chemical conversion from NMR spectra
under two-phase flow could equally not been achieved with sufficient accuracy for
various methods. Inhomogeneities of the magnetic field lead to distorted spectra
with broad lines. This hampers spectra analysis by direct integration. Gradient
imperfections also influence the measured spectra. As alternative method for spectra
analysis “Indirect Hard Modeling” was employed [61], see also Sect. 2.1.5, p. 23f
and App. 7. Finally multivariate statistical or chemometric data analysis was
applied, namely “Principal Component Regression” and “Partial Least Squares
Regression.” As for the case of velocity fields in two-phase flow, comprehensive
investigations on model systems are required to evaluate the applicability of differ-
ent NMR methods to determine chemical composition in such complex systems.

Another quantity of interest is the gas–liquid mass transfer. Investigations by
MRI using isotopically labeled substances can be conceived. However, this would
be rather expensive if large quantities are required.

In this section stationary trickle flow in a fixed-bed reactor was treated. Fast MRI
methods allow to study the onset of pulsating flow. However, most of the presented
methods cannot be applied in the regime of pulsating flow. An application similar
to the one presented above is the investigation of droplet separation in a fixed bed
filter, see [74].

4.7 Ceramic Sponges

4.7.1 Introduction

The applicability of ceramic sponges in chemical and process engineering is studied
by a research group at Karlsruhe Institute of Technology (KIT) (DFG FOR 583).
Compared to fixed beds ceramic sponges possess a significantly higher porosity
from about 0.7 to 0.95. Besides porosity the specific surface is of relevance.
However, determination of the specific surface is more challenging. Different types
of alumina sponges have been imaged by MRI. Various image-analysis methods
were applied to investigate the influence of the method on the result obtained [31].
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4.7.2 Results and Discussion

In Sect. 2.3.2 on p. 54ff two methods for the determination of the specific surface
from binary volume images have been presented. Results were compared for model
systems. In the presented study also different methods of preliminary data treatment
were applied to obtain the binary image. At KIT the equations derived in Chap. 2
were used. Alternative methods were applied by a partner within a collaboration
[99]. For one slice the different steps of the two preliminary data-treatment methods
are compared in Fig. 4.25 a–d and e–h, respectively. The removal of isolated solid
voxels in Fig. 4.25g was performed according to (2.108) with consideration of the
face neighbors only and dls D 2. On p. 53f the application of the equations to the
removal of isolated liquid voxels was described, but here the matrix was inverted
as it was done by the partner. Filling of the inner void space, see Fig. 4.25h was
achieved by application of (2.109) with dsl D 14 and three iterations.

Besides two methods of preliminary data treatment and of specific-surface
evaluation results for two different types of sponges are presented. Of one type

Fig. 4.25 Ceramic sponge, sample 2. (a) Cut-out of a slice from the volume image. The intensity
is inverted. (b) Application of a Gauss filter, see (2.112)–(2.114). (c) Binary image after automatic
slice-wise application of a threshold. (d) Removal of isolated solid voxels and morphological filling
of inner void spaces. (e) Cut-out of a slice from the volume image. (f) Inverted binary image after
application of a global threshold, chosen as minimum in the histogram, see (2.101). (g) Removal
of isolated solid voxels according to (2.108). (h) Filling of inner void space according to (2.109).
[31] c� Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission
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two samples are chosen. Finally in one case the number of averages was varied.
According to the producer all samples had a porosity of 0.8. For samples 1 and
2 the pore density was indicated as 20 ppi (pores per inch), for sample 3 45 ppi.
In order to analyze a similar number of pores the FOV for samples 1 and 2 was
set to 22 mm in each dimension and for sample 3 the FOV was set to 12.8 mm.
Accordingly the adapted probe heads with 25 and 15 mm inner diameter were used,
respectively, see Fig. 3.2b. In all cases a data matrix with 2563 grid points was
chosen. This results in an isotropic resolution of 86 and 50 �m, respectively. The
strut diameters are about 350 and 130 �m and the average face diameter 1.2 and
0.75 mm, respectively. Consequently the resolution is sufficiently high to image the
structures on these length scales. A resolution of surface roughness is not possible
and is also not considered in the specific surface here. The representations of the
reconstructed surface in Fig. 4.26 allow to appraise the range of details resolved.
For sample 2 NA D 2 as well as 8 averages were acquired. As it turned out that
SNR did not have a decisive influence on the determined specific surface all other
measurements were performed with two averages. For a RARE sequence with a
RARE factor of r D 16 and a repetition time of 1.2 s the resulting experimental
time per image is 2 h and 45 min. In order to avoid saturation at this repetition
time the demineralized water was doped with 1 g/l copper sulfate. The samples
were immersed in the solution and a vacuum was applied to remove air bubbles.
As experimental results show, the solution enters also in inner void space inside the
struts, see Fig. 4.25.

Some results are summarized in Table 4.1. Even without filling of the void
space inside the struts (line with � total) the porosity obtained is significantly
below the value of 0.8 indicated by the producer. Possibly the number refers to
the total porosity including the inner porosity of the solid alumina material that

Fig. 4.26 Determination of specific surface by surface reconstruction for ceramic-sponge
sample 1. (a) Overview with smoothed surface and simulated light effects. (b) Small cut-out
with representation of the individual triangles. [31] c� Wiley-VCH Verlag GmbH & Co. KGaA.
Reproduced with permission
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Table 4.1 Porosity including and excluding inner void space as well as specific surface. The
indications “a–d” and “e–h” refer to Fig. 4.25. Details are explained in the text. [31] c� Wiley-
VCH Verlag GmbH & Co. KGaA. Reproduced with permission

Sample 1 Sample 2 Sample 2 Sample 3
NA D 2 NA D 8

Pore density / ppi 20 20 20 45
� (total, a–d) 0.741 0.721 0.750 0.730
� (total, e–h) 0.781 0.775 0.768 0.781
� (outer, a–d) 0.736 0.718 0.737 0.727
� (outer, e–h) 0.757 0.745 0.747 0.760
SV (2.115f, a–d) / m�1 1,244 1,268 1,430 1,982
SV (2.117, a–d) / m�1 1,229 1,247 1,389 1,974
SV (2.117, e–h) / m�1 1,187 1,213 1,204 1,917
SV (4.14) / m�1 1,458 1,362 1,362 2,119

is not resolved in the binary NMR image. The preliminary data treatment applied
by the partner results in a porosity for NA D 2 that is about 5% lower than the
one determined with the methods presented above. This can be a consequence
of broadened solid structures due to the applied Gauss filter and the threshold
applied. For the measurement with NA D 8 no Gauss filter was applied and the
difference between the two porosities is smaller. Filling of void space inside the
struts decreases the porosity by about 3%.

Also for the specific surface the largest values are obtained with the preliminary
data treatment used by the partner and the method of surface reconstruction, see
(2.115) and (2.116). Application of the Crofton formula (2.117) to the matrix
resulting from pre-processing by the partner reduces the specific surface slightly by
about 1%. With the preliminary data-treatment described in this book the Crofton
formula leads to results lower by about 3%. Only for the measurement with high
SNR the difference is larger (9%). The influence of different pre-processing on
specific surface is consistent with the influence on porosity. In the range of high
porosity a reduction of porosity due to an increase of strut thickness results in an
increase of surface. Only in the low-porosity range with thick struts porosity and
surface decrease together.

Rather than a detailed tomographic analysis of each kind of ceramic sponge
ultimately a model correlating, e.g., the specific surface with easily measurable
quantities is desired. The applicability of the relation

SV D 4:82
1

df C tS

p
1 � � (4.14)

for a dense packing of tetrakaidecahedra is discussed in [11]. As the pore diameter
is not easily accessible by optical methods, the average face diameter df and the
strut diameter tS are utilized. The specific surface calculated using this model is
also listed in Table 4.1. It is somewhat higher than the one derived from MRI data.
A dependence of the absolute difference on the pore density is not observed. For
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some samples an overall heterogeneity of the structure was observed, probably due
to the fabrication process. Thus, the experimental results depend on which part of
the sponge is analyzed.

4.7.3 Conclusion

For structures with length scales in the range of millimeters MRI measurements
and suitable methods for data analysis allow to determine the specific surface. If
the solid material itself is porous, smaller values are obtained compared, e.g., to
BET, as the inner surface is not resolved by MRI. Which surface is of relevance
for which process depends on the application. As alternative method, �-CT can
be used if porosity and specific surface only are required. With suitable hardware,
higher resolution can be obtained in less experimental time. The advantage of MRI

Fig. 4.27 Flow through a ceramic sponge. A slice of the measured 3D vector field is shown. The
solid phase is represented in white. Arrows correspond to the two velocity components within the
slice. Colors represent the magnitude of the velocity and the colorbar is labeled with velocities in
mm/s. For the sake of clarity, only one arrow with average velocity is plotted for four voxels
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is that a multitude of additional parameters can be measured. As example, Fig. 4.27
shows results for single-phase liquid flow through a ceramic sponge, see Sect. 2.1.8,
p. 32ff. As pores are larger compared to the situation in the fixed bed presented
in Sect. 4.6 accurate experiments with chemical and spatial resolution should be
possible, at least for single-phase liquid flow.

4.8 Biofilm

4.8.1 Introduction

In this section studies on another fixed bed by MRI are presented, here in the context
of bio process engineering. In the bead-packed reactor, biofilm grows on glass
beads. Bioreactors are applied, e.g., in waste-water treatment or for the monitoring
of waste-water toxicity. The efficiency and service life of a reactor depends on its
structure and the resulting transport properties that evolve with time. The aim of the
presented work was to image biofilm growth and flow with appropriate resolution in
space and time without the addition of contrast agents. Taking advantage of inflow
contrast, this could be achieved, at least qualitatively [69].

4.8.2 Results and Discussion

Before the MRI measurement the biofilm reactor was operated outside the tomo-
graph for a first time until approximately half of the pore space was occupied
by biofilm. In this state preliminary MRI experiments were performed in order
to optimize parameters of the measurement. For the longitudinal relaxation time
T1 1.8 s were obtained. No indications were found that longitudinal relaxation is
enhanced inside the biofilm.

Transverse relaxation was described adequately as biexponential decay. The fast
relaxing component with T2 D 0:1 s and a weight of 66% was assigned to water
inside the biofilm. For the 34% assigned to bulk water in the remaining pore space
a longer relaxation time of T2 D 0:44 s was measured. These results agree with
previously published ones [50], namely 0.05–0.11 s for water inside the biofilm and
0.12–0.40 s for bulk water inside the remaining pore space. In [50] and also in the
presented work it was concluded that this difference in T2 is not well suited for the
monitoring of biofilm growth in a porous system.

In the diffusion experiment also two components were observed. The major
component has a translational self-diffusion coefficient D D 1:9 � 10�9 m2=s close
to that of bulk water at the same temperature. Indeed, a noticeable restriction by the
biofilm matrix is not expected. Additionally, a small contribution with less than 5%
exhibits a markedly slower diffusion with about D D 2�10�10 m2=s. It is attributed
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to hydrogen atoms in the biofilm and to water closely associated with the biofilm.
The latter contribution is too small for observation of biofilm growth in diffusion-
weighted images with high spatial and temporal resolution.

As contrast by relaxation and diffusion are not well suited for the observation
of the chosen biofilm inflow contrast was used in a second experiment with the
reactor operating inside the tomograph from the beginning. At a comparatively short
repetition time of 1 s static spins are markedly saturated. The effective echo time
of the RARE sequence was 21 ms. Given the range of flow velocities present and
the slice thickness of 1 mm outflow contrast is neglected. During one repetition
time four slices perpendicular to the reactor axis were observed. The distance of
6 mm between centers of neighboring slices was sufficient to avoid interference of
measurements between slices at the occurring flow velocities. Given the isotropic
FOV of 25.6 mm and the matrix size of 1282 the isotropic resolution was 200 �m.
The experimental time for the measurement of four slices amounted to 512 s. During
18 h one set of four images was acquired every 30 min.

The polycarbonate reactor had an inner diameter of 22 mm and a length of
500 mm. A random packing of glass beads with 3 mm diameter was used. Feed
medium was pumped with a peristaltic pump at a flow rate of 880 ml/h against
gravity. At the end of the investigations by MRI the biomass was determined
additionally by gravimetry.

Results for slice 3 without flow and for three later times with flow are shown in
Fig. 4.28. In Fig. 4.28a without flow all spins are equally saturated. Apart from noise
and artifacts, intensity differences result only from beads that occupy only partially
voxels in the slice. In the following images acquired under flow areas with high flow
velocity are recognized at a high intensity. It is obvious that the area with high flow
velocity decreases as biofilm grows with time.

A binary version of each image with distinction between glass beads and pore
space was generated. Volume elements for which the assignment changed during
the investigation were excluded from the analysis. The fraction of these voxels in

Fig. 4.28 Parameter-weighted spin-density image of slice 3. (a) First image without flow.
A spatially homogeneous weighting results from partial saturation of magnetization due to a
short relaxation delay. The following images are acquired with flow. Weighting by inflow contrast
increases the image intensities with increasing flow velocity. (b) After additional growth for a time
t D 0.5 h. (c) t D 9 h. (d) t D 18 h. Glass beads are represented in black. The arrow indicates a
bead that moved during the measurement. With kind permission from Springer ScienceCBusiness
Media c� 2006 [69]
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Table 4.2 Porosity for different slices in the biofilm reactor, mean value, and total porosity as
obtained from the gravimetric measurement. Standard deviation from the mean is indicated in
parentheses in units of the last digit. With kind permission from Springer ScienceCBusiness Media
c� 2006 [69]

Slice 1 2 3 4 Average Gravimetry

� 0.41 0.45 0.41 0.34 0.40(4) 0.40

Fig. 4.29 Frequency of relative image intensity under flow referred to the intensity in the image
without flow for slice 3 shown in Fig. 4.28 and the growth times represented in this figure.
Normalization of voxel intensity by the intensity in the static case removes the contribution of
varying spin density. (a) Histogram and fit of two normal distributions for the three growth times.
With increasing growth of biofilm the fraction of volume elements with high flow rate and image
intensities decreases. In the analysis, a binary distinction into areas without or with slow flow and
areas with high velocities was preformed. In this, the threshold was set to 1.5. (b) Representation of
the procedure for the slice shown in Fig. 4.28b. Glass beads are represented in black. Stagnant areas
are shown in dark gray. Voxels with high flow velocity appear in light gray. White indicates grid
points that are excluded from the analysis. With kind permission from Springer ScienceCBusiness
Media c� 2006 [69]

the four slices amounts to 1.4%. Inside the reactor, the binary images directly yield
the porosity. The results are listed in Table 4.2.

Partial volume effects visible in Fig. 4.28a were corrected in the images acquired
under flow by division of the intensities with flow by the intensities in the static
case. The histograms of relative image intensity shown in Fig. 4.29a are markedly
bimodal. This is interpreted as a distinction into stagnant and flowing areas in the
pore space. In the analysis, a threshold of 1.5 was chosen to assign voxels to the
stagnant or flowing case. The result for the raw image shown in Fig. 4.28b is
represented in Fig. 4.29b.

The decay of area with fast flow Aff was used as indicator for biofilm growth. It
is represented as fraction of total porous area Ap in Fig. 4.30. Experimental data are
well described with an exponential fit. However, it has to be noted that stagnant or
slow-flow area Asf is also observed in the bead packing without biofilm. Thus the
increase of slow-flow area cannot be simply set equal to the area ABf occupied by
biofilm. In order to enable a quantitative analysis, it was assumed that the growing
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Fig. 4.30 Impact of biofilm
growth on flow field. For the
four slices the decaying
fraction of area with fast flow
or equivalently the increasing
fraction of voxels with slow
flow is shown. The latter
increase is well described by
an exponential growth. With
kind permission from
Springer ScienceCBusiness
Media c� 2006 [69]

biofilm does not change the initial ratio of slow-flow area Asf to fast-flow area Aff

observed in the reactor without biofilm:

Ap D Aff.t/ C Aff.t/
Asf.0/

Aff.0/
C ABf.t/: (4.15)

Inserting the values for the initial ratio, obtained form the data shown in Fig. 4.30
extrapolated to t D 0 the following equation is obtained for the fraction of biofilm
with respect to the total porous area:

ABf.t/

Ap
D 1 � Aff.t/

Ap
.1 C 0:70/: (4.16)

Thus also the extreme case of unit biofilm fraction for no flow is correctly
reproduced by the assumption. After 18 h evaluation of the data shown in Fig. 4.30
with (4.16) yields a biofilm fraction of 53%. This is significantly lower than the
result of 64% obtained by gravimetry. Simply setting the biofilm area equal to the
increase in slow-flow area yields an even lower value. Also unit biofilm faction
cannot be obtained in this case. Larger fractions are obtained if instead of the initial
value used in (4.15) a time-dependent ratio Asf=Aff is inserted that decreases as
biofilm grows. This is consistent with the picture that due to the various processes
occurring during operation flow predominantly occurs in a few rather straight
channels.

4.8.3 Conclusion

The results presented above were obtained in situ and without addition of a contrast
agent that could interfere with the microbial metabolism. Using inflow contrast



144 4 Applications

allows high spatial and temporal resolution. However, velocity is obtained rather
qualitatively than quantitatively. Formation of flow channels as observed at later
times is unfavorable for the efficiency of the reactor. The presented methods can be
applied to study if a fixed bed with differently shaped particles or solid structures
as presented in Sect. 4.7 exhibit improved flow properties. For MRI investigations
on the deposition of paramagnetic metal ions in a biofilm, see [78]. Flow inside a
capillary biofilm reactor as studied by MRI is described in [92].

4.9 Microwave Heating

4.9.1 Introduction

The two final application examples stem from the domain of food process engi-
neering. In this section in situ measurements of temperature fields by MRI during
microwave heating are presented. They were performed in the context of studies
on microwave-assisted drying of food [58]. Similar methods are used in medical
applications in the context of therapeutic hyperthermia [62, 82, 102].

Advantages of microwave heating are that heating occurs directly inside the
product and that heating can be switched on and off immediately. As drawback,
heating by microwaves is rather inhomogeneous. The distribution of deposited
power does not only depend on material properties but also on the shape of the
object. Inhomogeneous heating can affect the quality of the product. Worse, safety
can be compromised if minimum temperatures are locally not reached for the
required time. In preliminary investigations, water distribution during microwave
drying of food was monitored by MRI. Additional temperature mapping by MRI
as described here is possible as chemical shift of hydrogen in water depends on
temperature. Experimental results were compared to simulations that are intended to
replace measurements in future applications. If the spatial and temporal dependence
of microwave absorption and heat transport properties are included a close agree-
ment between experiment and simulation is obtained. In the following it is explained
by which MRI method a good spatial and temporal resolution can be achieved for
in situ investigations and the impact of artifacts due to the fast measurement is
discussed.

4.9.2 Results and Discussion

4.9.2.1 Setup for In Situ Investigations

The setup for in situ investigations of microwave heating by MRI is depicted in
Fig. 4.31. In cooperation with GIGATHERM AG (Grub, Switzerland) a microwave
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Fig. 4.31 Setup with a microwave device that transmits microwaves to the food sample through
wave guides for in situ investigations by MRI. Reprinted from [58] c� 2009, with permission from
Elsevier

device was developed that transmits microwaves through wave guides directly into
the shielded birdcage resonator enclosing the food sample. Below the sample a water
load absorbs the power that is not absorbed by the sample.6

The model food had a height of 32 mm and a diameter of 33 mm.7 In order
to verify the accuracy of the MRI measurements at least locally a fiber-optic
thermometer was inserted into the model-food cylinder. Besides cylindrical samples
also spherical samples and real food samples were investigated.

4.9.2.2 MRI Method and Numerical Investigation

Thermography by MRI is based on the fact that the chemical shift, see Sect. 2.1.5
p. 23f of hydrogen atoms in hydrogen bonds depends on temperature. For water
in the temperature range of interest a linear relation with slope ˛T D 0:01 ppm=K
can be used [44, 77]. In preliminary investigations it was verified that this relation
is also valid for water in the environment of model food. The small difference in

6In the first experiment no water load was present. Although only low power was applied for short
time damaging of the birdcage resonator by local overheating was impressive. Fortunately care
was taken to build a resonator especially for the tests.
7For measurements on larger samples a third variable capacitor was added to the birdcage
resonator. At high salt content matching to the system impedance is not possible with the standard
capacitances.
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Fig. 4.32 Pulse sequence for
thermography. The sequence
is repeated for Ny D 64

phase-encoding steps and up
to Ns D 50 slices. Reprinted
from [58] c� 2009, with
permission from Elsevier
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chemical shift can be measured with suitable imaging methods in which it leads to
a measurable change in the magnetization phase during the echo time tE, see [77].

The pulse sequence is represented in Fig. 4.32 with time intervals approximately
at the same scale. In order to allow selection of a 1-mm thin slice using the less
sensitive mini036 gradient system a longer HF pulse with 2 ms duration and a
bandwidth of 3 kHz was used (see Sect. 2.1.3, p. 19ff). The duration ı for slice
refocusing, phase encoding, and the read-dephase gradient was set to 1 ms. Data
acquisition with 64 points and a spectral width of 101 kHz requires only 640 �s.
The echo time between the maximum of the excitation pulse and the maximum
of the gradient echo amounts to tE D 2:7 ms, the total duration for one pass of
the sequence is less than 4 ms. During the repetition time of 200 ms up to 50
contiguous slices could be measured. With 64 phase-encoding steps and without
averaging the total experimental time for one pseudo 3D measurement of spin
density and magnetization phase is 12.8 s. At an isotropic resolution of 1 mm
and the highest duty cycle the temperature measured in the water-cooled gradient
system increased to 323 K. This is still below the temperature of automatic gradient-
amplifier shutdown for protection of the gradient coils.

In the gradient-echo-fast-imaging (GEFI) sequence shown in Fig. 4.32 the phase
evolution due to inhomogeneities of the magnetic field and chemical shift are not
refocused at the echo time as no rf refocusing pulse is applied. Including phase-
encoding for spatial resolution according to [1] the expression for the signal in (2.55)
is replaced by

M C.kx; ky; t/ D
Z Z

�.x; y/ exp.i.˝i.x; y/ C ˝T .x; y//t/

exp.�ikxx/ exp.�ikyy/ dx dy: (4.17)
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Compared to (2.55) the situation is similar to the one in (2.79) where at each point
in position space only one velocity is considered. A local distribution of chemical
shifts is not included. The expression in (4.17) appears as Fourier transform of the
spin density with a complex phase factor resulting from the spatially varying angular
frequency due to inhomogeneities of the magnetic field ˝i.x; y/ and chemical shift
resulting from temperature variation ˝T .x; y/ in the rotating frame of reference.
Concerning the phase-encoding dimension, here y, this is correct. However, in the
frequency-encoding dimension, here x, the wave vector kx depends on time as well
as the additional phase factor, see (2.36) for the case of constant gradient amplitude
and varying time. The interference of frequency encoding of position and chemical
shift in the GEFI experiment results, after simple inverse Fourier transformation, in
distortions of image geometry and intensity. In [1] this is treated theoretically and a
possible post processing for correction of distortions is discussed. Here, instead the
validity of the approximate result

F�1fM C.kx; ky; t/g � �.x; y/ exp.i.˝i.x; y/ C ˝T .x; y//tE/ (4.18)

is assumed and the magnitude of resulting artifacts is calculated numerically for
typical experimental conditions. This procedure also includes the influence of
usual transformation artifacts that cannot be neglected at the rather coarse spatial
resolution of 642 points, see Sect. 2.1.3, p. 14ff. If spatial resolution for both
directions within the slice is achieved by phase encoding the interference with
inhomogeneities of the magnetic field and chemical shift (due to temperature
variations) is absent. This chemical-shift-imaging (CSI) experiment contains the
transformation artifacts only. However, as the experimental time is increased by the
number of phase-encoding steps, here 64, it was not used in the experiment requiring
high temporal resolution. In the numerical calculation it is included for comparison.

Assuming the validity of (4.18), first a reference image at known homogeneous
temperature is acquired. At reference temperature, the temperature-dependent
chemical shift is zero, i.e., the spectrometer is set “on resonance” in the experiment.
Further images are acquired with unknown temperature distribution. The tempera-
ture shift is then calculated from the difference of the phase image and the reference
phase image to

�T .x; y/ D �˝T .x; y/=.
B0 ˛T /; (4.19)

see p. 23. The angular frequency ˝T is obtained by division of the phase difference
by the echo time tE. In (4.19) it is assumed that a temperature dependence of the
magnetic-field inhomogeneities can be neglected.

For the numerical calculation of the signal according to (4.17), on the one hand
the discrete wave-vectors and times used in the experiment are needed. They can
be calculated for the sequence shown in Fig. 4.32 from the times and the spatial
resolution indicated above. On the other hand realistic distributions for the spin
density and the frequency contributions by inhomogeneities of the magnetic field
and temperature variations are required. For the spin density simply a constant value
inside a circular region is assumed, corresponding to a cross section through the
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Fig. 4.33 Numerical calculation of artifacts in NMR thermography. (a) Homogeneous spin
density in a circular area. (b) Field inhomogeneity in the considered area, expressed in Hz. (c)
Input temperature map, expressed in Hz. (d) Calculated phase image at reference temperature. (e)
Calculated phase image including temperature distribution. (f) Phase-difference image. (g) Output
temperature map, expressed in Hz. (h) Temperature-difference image. (i) Histogram of temperature
differences. Reprinted from [58] c� 2009, with permission from Elsevier

model-food cylinder, see Fig. 4.33a. In the calculation the double integral in (4.17)
is replaced by a double sum assuming piecewise constant functions. Thus the spin
density is defined on a N by N matrix. The integration converges for high values
of N . This numerical discretization of real space is not to be confused with the
necessary discretization of reciprocal k space, here 64 by 64. The latter is also
the discretization of the spin density in real space as obtained by inverse Fourier
transformation of the calculated signal. According to (4.18), the phase image at
reference temperature yields the frequency contribution by inhomogeneities. As also
transformation artifacts are included in the phase image, a phase image at reference
temperature with homogeneous magnetic field was calculated and subtracted to
obtain the corrected inhomogeneity map on the experimental 64 by 64 grid. A linear
interpolation was applied to define the inhomogeneity map on the numerical N

by N grid, see Fig. 4.33b. Also for the temperature map a typical experimental
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result on the 64 by 64 grid was interpolated on the numerical grid and used as true
temperature distribution ˝ in

T .x; y/, see Fig. 4.33c. Concerning the proportionality
between temperature shift and frequency at the experimental B0 field the value of
2 Hz/K was used. As can be seen in Fig. 4.33 the contribution by inhomogeneities
extends over about 300 Hz whereas the contribution by temperature shift is only in
the range of 50 Hz for temperature shifts in the range of 25 K (note the different
scaling of the color bars indicated above the figures).

Having defined the input spin density, inhomogeneity, and temperature map the
signal can be calculated. After inverse Fourier transformation, the output can be
compared to the input. The accuracy of the artifacts determined by this procedure
depends on the numerical discretization with N 2 grid points. For a homogeneous
field at reference temperature, i.e., transformation artifacts only, no artifacts at all are
observed in the special case of identical grids for the numerical calculation and the
result of the experiment. In this situation merely a pair of discrete Fourier transforms
is performed numerically, verifying the analytical treatment indicated on p. 14ff.
Obviously the convergence of the calculation for increasing N has to be checked.
Besides the number of numerical grid points N also the number of experimental grid
points Nx and Ny was varied. Implemented in MATLAB R� R2008a (Mathworks,
Natick, MA, USA) under Windows XP SP3 on a Pentium 4 processor with 3.2 GHz
clock frequency and 1 GB RAM runs for a single experiment took between some
seconds and some hours.

Fourier transformation of the calculation at reference temperature yields a first
phase image �out

i .x; y/, see Fig. 4.33d. Index i indicates “inhomogeneity.” The
checkerboard pattern results from the interpretation of the echo in the discrete
Fourier transform and is explained by the shift theorem, see also (2.46). The oval
superstructures result from the field inhomogeneity. Including the temperature-shift
map the phase image �out

i;T .x; y/ is similar, with a shift of the superstructures,
see Fig. 4.33e. The phase resulting from the temperature map with artifacts from
transformation and interference of frequency encoding and frequency shifts is
contained in the phase-difference image �out

i;T � �out
i . It is shown in Fig. 4.33e

after automatic correction of phase jumps by 2� . In the last row of Fig. 4.33
this final result of the calculated experiments is represented as frequency map, as
temperature-difference map with respect to the input temperature, and as histogram
of temperature differences. The latter reveals an unimodal distribution which is
approximately symmetric with respect to zero, corresponding to no error. In the
temperature-difference map Fig. 4.33h no clear patterns are present.

The calculated artifacts and their convergence with N are summarized in
Table 4.3 as mean of the absolute error. It increases with increasing N . The only
exception is the case where the experimental discretization is smaller than the one
in the experiment. For each equal step in N the change decreases. It is assumed that
the results do converge and are close to convergence for N D 1;000. Numbers in
parentheses are the calculated results for the CSI experiment with otherwise equal
parameters reflecting the transformation artifacts only. For the experimental case of
Nx D Ny D 64 the mean absolute error with artifacts by transformation as well as
interfering frequency encoding and frequency shifts is only slightly above the CSI
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Table 4.3 Mean absolute error of the temperature map for the calculated GEFI experiment with
respect to the input temperature map in millikelvin, hj�T ji=mK. Results are assumed to converge
with increasing numerical discretization N . Increasing the experimental resolution Nx; Ny reduces
transformation and discretization artifacts. Numbers in parentheses show the mean absolute error
for the CSI experiment where artifacts resulting form interfering frequency encoding of position
and frequency shift are absent. Reprinted from [58] c� 2009, with permission from Elsevier

Nx; Ny N D 200 N D 400 N D 600 N D 800 N D 1;000

16 916 (936) 949 (973) 956 (980) 962 (986) 967 (990)
32 581 (556) 627 (604) 642 (620) 649 (627) 654 (632)
64 430 (390) 531 (499) 557 (526) 576 (546) 587 (558)

128 222 (113) 275 (197) 296 (225) 306 (239) 313 (245)
256 214 (67) 212 (58) 222 (90) 229 (107) 234 (117)

Fig. 4.34 Comparison of NMR thermometry and fiber-optic temperature measurement. In the
left image the position of the fiber-optic sensor is indicated. Reprinted from [58] c� 2009, with
permission from Elsevier

result. Thus in the studied situation artifacts due to the fast imaging method can be
neglected compared to transformation artifacts. At a rather high spatial resolution
of Nx D Ny D 256 the error calculated for CSI is exactly half the GEFI result
which is already reduced by more than a factor of two compared to the experimental
resolution. For a very coarse resolution of Nx D Ny D 16 the order is even inverted,
but measurements at such a resolution are probably useless.

4.9.2.3 Comparison with Fiber-Optic Thermometer

In order to test the accuracy of the MRI temperature measurement a fiber-optic
thermometer was placed inside the sample within the FOV. Temperature was
measured by both methods during microwave heating and were compared for the
position of the sensor. The sample was heated using 19 W microwave power during
8 min. Subsequently cooling without microwave heating was observed. In Fig. 4.34a
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the 3D temperature field measured by MRI after 130 s is shown. The position of the
fiber-optic sensor is indicated by the black line with a circle for the position of
the sensitive spot. Results from both methods at this spot are plotted in Fig. 4.34b
as function of time. During heating a good agreement of the values is observed.
However, during the cooling period MRI temperatures are higher by 2 K than the
results of the fiber-optic measurement.

4.9.3 Conclusion

The presented MRI thermography produces results with an uncertainty of about
one K with good spatial and temporal resolution during in situ microwave heating.
Numerical calculations show that artifacts resulting from the fast imaging method
can be neglected compared to the transformation artifacts at this resolution.
An impact of the simultaneous microwave irradiation on the MRI temperature
measurement was not observed.

No other experimental method offers a comparable space, time, and temperature
resolution. Thermocouples allow fast and accurate local measurements at low cost.
However, they distort the microwave field significantly. Distortion of the microwave
field by fiber-optic thermometers is feeble. However, the price is rather high.
Infrared thermography is only applicable for the surface temperature and installation
inside a microwave oven is not straightforward. Also microwave radiometry yields
results only for areas close to the surface. The surface temperature distribution can
also be measured with thermo paper or liquid-crystal foils with coarse temperature
resolution. Finally, model substances can be employed that indicate temperature by
a color change.

The advantages of MRI thermography were also used in the in situ investigation
of convective drying [88]. As further application of MRI in food process engineer-
ing, structure and transport properties in porous products were studied [87]. Volume
images acquired by MRI as well as 2D images obtained by simple scanning of dyed
samples were analyzed. In particular, segmentation as described in Sect. 2.3.3 on
p. 59ff was performed.

4.10 Emulsions

4.10.1 Introduction

Nuclear magnetic resonance with pulsed field gradients (PFG NMR) is a standard
method for the determination of droplet-size distributions in food emulsions such
as mayonnaise (oil in water, O/W) or margarine (water in oil, W/O), see e.g.,
[32, 46–48, 54, 81, 96] for recent developments. As measurable effect the restriction
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of translational self-diffusion inside the confining droplets is exploited. In contrast
to light-scattering methods dilution of the sample is not required. In the following
investigations on double emulsions of type W/O/W are presented [103]. Water
droplets in the phase W1 reside inside larger oil droplets forming phase O that
is surrounded by the outer water phase W2. The situation is much more complex
than in a simple emulsion and standard methods cannot be used for data analysis.
Routine measurements are performed in low-field instruments. Here the high-field
tomograph was chosen for the first measurements. The higher field improves SNR
and the better field homogeneity allows for spectral separation of water and oil,
see Sect. 2.1.5, p. 23f. In the large room-temperature bore a sensitive and actively
shielded one-axis gradient system can be used (Bruker diff30, 300 mT/m/A and up
to 12 T/m using the 40 A gradient amplifier).

4.10.2 Results and Discussion

As raw data the decaying signal for increasing diffusion encoding in a PFG experi-
ment is acquired. Generally diffusion encoding can be varied via the gradient-pulse
amplitude Gq , duration ı, or the time separation of the rising (or falling) gradient
edges �. For large droplet sizes long observation times � are required. In the
standard PGSE the observation time equals half the echo time. The latter is limited
by the shortest relevant transverse relaxation time T2. Frequently longitudinal
relaxation times are significantly longer than transverse relaxation times. In order
to increase the maximum observation time to the order of the shortest relevant T1

the PGSTE can be employed, see Fig. 4.35. It is the simplest PFG variant of the
stimulated echo (STE) experiment that is explained in the following.

B1

S

Nq NA

Δ

Gq

τ

tR
δ

τ

Fig. 4.35 PGSTE pulse sequence. In the storage time between the second and third �=2 � B1

pulse a spoiler gradient is included. It additionally dephases transverse magnetization
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In the standard SE experiment the decay of transverse magnetization due to
dephasing in an inhomogeneous field is totally refocused by a rf pulse with nutation
angle � . The echo time amounts to twice the separation of the rf pulses. In
the stimulated-echo pulse sequence three rf pulses with nutation angle �=2 are
employed. The separation of the first two rf pulses is denoted as 
 . Magnetization
components perpendicular to B1 are rotated on the z axis by the second �=2

pulse. Components parallel to B1 remain unchanged by the second rf pulse. Simple
classical calculations of the magnetization dynamics show that in an inhomogeneous
field and in the absence of gradient pulses the first two rf pulses lead to a first
echo at time 2
 . The echo amplitude is half that of the spin echo with a � pulse
for refocusing. Magnetization components that are “stored” on the z axis do not
decay by T2 processes or by dephasing in an inhomogeneous field. Longitudinal
magnetization relaxes by T1 processes only. Before the third �=2 pulse a spoiler
gradient can be applied to dephase transverse components that might not have
decayed. The third rf pulse rotates the longitudinal components again in the
transverse plane. As the classical calculations show a so-called STE is formed at
time 
 after the last rf pulse. Again, the echo amplitude is half that of the spin echo.
As in the PGSE experiment, gradient pulses can be included between the first two rf
pulses and after the last rf pulse in order to obtain displacement encoding. After the
last gradient pulse, a stabilization time has to be provided before acquisition of the
SE. Otherwise spectroscopic resolution is compromised by field fluctuations due to
eddy currents.

For the PGSE sequence and unrestricted diffusion the signal as function of Gq ,
ı and � is given in (2.71) on p. 30. If only one diffusion coefficient D is present
and for fixed ı and � a monoexponential decay is obtained as function of G2

q . For
restricted diffusion in a spherical geometry with radius R the signal is expressed in
[71] as

ln.MC=MC
0 / D �2.
Gq/2

D

1X

mD1

˛�4
m

.˛mR/2 � 2
Sm (4.20)

with

Sm D 2ı � 1

˛2
mD

Œ2 C exp.�˛2
mD.� � ı// � 2 exp.�˛2

mDı/

�2 exp.�˛2
mD�/ C exp.�˛2

mD.� C ı//�: (4.21)

In (4.20) the ratio MC=MC
0 is the ratio of the echo maximum with non-zero gradient

to the echo maximum without gradient. It is frequently abbreviated as E. The ˛m

are the mth roots of the equation

1

˛R
J3=2.˛R/ D J5=2.˛R/ (4.22)

with the Bessel functions of the first kind J . The required number of roots was
determined to the desired accuracy in MATLAB R� by a simple nested-intervals
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search. It also holds for the rather complex expressions in (4.20) and (4.21) that
for only one diffusion coefficient D and fixed ı and � as well as monodisperse
droplets a monoexponential decay as function of G2

q is obtained. Deviations from
the monoexponential decay observed in experiments on emulsions are not assigned
to a different dependency on Gq , ı, and � but to a distribution of droplet sizes.
Usually a log-normal distribution is assumed:

P.R/ D 1p
2�R	

exp

�

� .ln.2R=d50;3//
2

2	2

	

: (4.23)

The two parameters of the distribution are the standard deviation 	 of the associated
normal distribution and in the above formulation the volume-related mean droplet
diameter d50;3.

The log-normal distribution (4.23) and the expressions in (4.20) and (4.21) were
implemented in MATLAB R� for a discrete R axis. Thus the signal decay can be
calculated for the experimental Gq , ı, and � as well as the known unrestricted
diffusion coefficient D for water at the experimental temperature as a function of the
parameters 	 and d50;3 by weighting of (4.20) and (4.21) with (4.23). The parameters
	 and d50;3 of the inner water droplets of the investigated emulsion were obtained by
a fit of the calculated signal to the experimental signal using the curve-fitting tools
provided by MATLAB R�.

In principle the signal decay with diffusion encoding can result not only from
restricted diffusion within the droplets but also from a contribution of the overall
diffusion of the entire droplet in the outer phase. This contribution was estimated
using the Stokes–Einstein equation:

D D kT

6��Rd

: (4.24)

Given a typical droplets radius Rd and the viscosity � of the surrounding oil phase
the signal decay due to diffusion of the entire droplet can be neglected. Taking the
droplets volume fraction � into account, e.g., by a factor 1 � 2� further reduces the
contribution of overall droplet diffusion.

For a double emulsion with large volume fraction of the outer droplets and long
observation times restriction of diffusion in the outside phase can be noticeable.
A treatment of restricted diffusion in a packing of spheres can be found, e.g., in
[4]. In the presented measurements it is assumed that the tortuosity limit is already
attained. In this case an effective diffusion coefficient is predicted that amounts to
55% of the value for unrestricted diffusion. Experimentally this has been verified
for an O/W emulsion and 65% were obtained.

Indications regarding the composition of the components of the double emulsion
as well as their unrestricted diffusion coefficients and relaxation times are collected
in Table 4.4. Further details, in particular concerning the production of the double
emulsions, can be found in [103]. For the duration of each gradient pulse ı D 4 ms
was chosen. Six different observation times were employed, namely � D 50, 100,
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Table 4.4 NMR measurements on the separate components of the emulsion before the double
emulsion is produced. Measurements were performed at 290 K. For the oil phase the most intense
peak was evaluated. Water diffusion in the W2 phase is comparable to pure water. [103] c� Wiley-
VCH Verlag GmbH & Co. KGaA. Reproduced with permission

Component T1 / ms T2 / ms D = m2s�1

Vegetable oil (O phase) 510 50 7:94 � 10�12

Water with 0.6 wt-% NaCl and 5 wt-% gelatin (W1 phase) 2,280 890 1:68 � 10�9

Water with 2 wt-% Tween 20 (W2 phase) 2,450 1,620 1:88 � 10�9

Fig. 4.36 Investigation of diffusion in a W/O emulsion using a PGSTE measurement with spectral
resolution. The content of the inner phase with composition of W1 (see Table 4.4) was 10 wt-%
and the observation time 150 ms. Although unrestricted diffusion in phase W1 is much faster than
in oil, the W1 water signal at 4.6 ppm decays significantly less with diffusion encoding than the
remaining signal from the surrounding vegetable oil. [103] c� Wiley-VCH Verlag GmbH & Co.
KGaA. Reproduced with permission

150, 200, 300, and 500 ms. Results for 150 ms gradient-pulse separation are shown
in Fig. 4.36. Further parameters of the pulse sequence represented in Fig. 4.35 are

 D 6 ms, tR D 8 s, Nq D 32 (linear steps from 3.5 mT/m to 6 T/m), and NA D 2.
Before each measurement two “dummy scans” were performed in order to establish
a steady state. The spoiler gradient with 200 mT/m had a duration of 5 ms.

Spectra with diffusion encoding in a PGSTE sequence for a simple W/O
emulsion are shown in Fig. 4.36. The effect of restriction in a spherical droplet
is obvious from the strongly reduced water-signal decay with increasing diffusion
encoding. Note that the water content cannot be directly deduced from the peak
integrals in the first spectrum as the oil signals decay faster during 
 due to the
shorter T2 time and also during the gradient-pulse separation due to the shorter T1

time.
For the separated components, the W1/O simple emulsion, and the W1/O/W2

double emulsion experimental results for water are shown in Fig. 4.37a and for oil
in Fig. 4.37b, respectively. In the case of the separated components signal decay
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Fig. 4.37 Investigation of diffusion using PGSTE measurements with an observation time of 150
ms at a temperature of 299 K. The ratio of the peak amplitude with diffusion encoding to the
amplitude without gradient is denoted as S=S0. As usual the abbreviation q D 
Gqı is used.
(a) Results for the water phase. (b) Results for the oil phase. Filled circles are used to represent
experiments on the separated components (W1 resp. O). Filled triangles reflect the results of
the measurement on the simple emulsion shown in Fig. 4.36. Filled squares correspond to the
signal ratios in the double emulsion. For the separated components the expression for unrestricted
diffusion (2.71) was fitted (solid lines). For the inner phase W1 in the simple emulsion (4.20)
and (4.21) with (4.23) could be fitted to the data. This was not the case for the double emulsion.
The solid line represents the fit of an exchange model. Fit curves plotted for the oil signal in
emulsions do not correspond to a particular model. [103] c� Wiley-VCH Verlag GmbH & Co.
KGaA. Reproduced with permission

is well described by expression (2.71) for unrestricted diffusion. The water signal
in the W1/O simple emulsion is a typical case for the description using (4.20) and
(4.21) with (4.23). As a result of the fit to the represented data d50;3 D 3:60.3/ �m
and 	 D 0:47.2/ were obtained. Investigations by light scattering yielded a smaller
value of d50;3 D 2:28.24/ �m. However, such a discrepancy is not unusual if
droplet-size distributions are studied by different methods.

For the W1/O/W2 double emulsion with mass fractions of 6%/54%/40% the W1
water signal is not well described by (4.20), (4.21), and (4.23). Several observations
indicate that some exchange between the inner and outer water phase occurs during
the observation time, see discussion in [103]. In the double emulsion, oil diffusion
is restricted to within the oil droplet as well as by the presence of inner W1 droplets.
The signal decay in this situation was not modeled.

4.10.3 Conclusion

Although further research is required, PFG-NMR is a promising tool for the
characterization of multiple emulsions. Light scattering is not well suited as at
least the inner phases cannot be diluted and data analysis is difficult for the case
of multiple scattering. Investigation by microscopy methods cover only parts of the
sample. The resolution of optical microscopy is limited and performing electron
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microscopy without modification of the properties of the multiple emulsion is
difficult.

As multiple emulsions are of major interest, e.g., in food science or for the
encapsulation of active agents suitable PFG-NMR methods would be valuable.
For a wide-spread application, implementation on low-field instruments would be
advantageous.

4.11 Concluding Remarks

The presented results summarize various applications of NMR and MRI in the
field of chemical and process engineering at the KIT. Suitable methods assist
the formulation of improved models, provide input data for modeling, and are
used to validate the models. Measurements on realistic systems frequently require
adaptation and development of the experimental method and data analysis. Although
the technique is complex and experimentally demanding, especially as tomographic
method, a continued increase of research activities in this area is expected. In many
opaque systems, no other non-invasive method can provide comparable results with
3D spatial resolution.

In the domain of low-field NMR, further activities concerning the development
and application of online methods are expected, especially in the context of process
analytics [55]. Also here, valuable results can be obtained that are complementary
to information typically obtained by optical methods.

The vast field of NMR in microporous media is equally of relevance in
engineering sciences and was briefly discussed in the context of emulsions, see
Sect. 4.10. Methods for the characterization of rocks or investigations using NMR
cryoporosimetry and diffusometry can be found, e.g., in [94], [56], and [98],
respectively.

Building materials are a special case of porous media in the domain of construc-
tion engineering. Numerous investigations using superconducting NMR instruments
have been reported, see e.g., [5, 17, 34] for the measurement of longitudinal
relaxation and [30] for transverse relaxation . Subjects studied cover, e.g., hydration
with [24] and without [30] additives, specific surface[34], the influence of low [86]
and high temperatures [19, 40], aging [17], moisture transport [5, 6, 19], as well as
molecular structure and proton exchange [21].

As susceptibility artifacts are less pronounced at low field, measurements on
building materials are also frequently performed in permanent-magnet systems. For
studies of transverse relaxation, see e.g., [24, 33, 53, 73]. As in high-field NMR,
hydration with [24,73] and without [15,33,53] additives is investigated. Of interest
are, e.g., the pore-size distribution[33, 53, 67] and the effect of low temperatures
[53].

In heterogeneous building materials with high specific surface and paramagnetic
components decay of transverse magnetization is usually very fast. Unless special
materials such as white cement with low iron content are used imaging sequences
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Fig. 4.38 Pulse sequence for
1D single-point imaging
(SPI) of solids with
acquisition of multiple data
points at each phase-encoding
gradient. As phase-encoding
time increases from point to
point, images with increasing
relaxation weighting and
spatial resolution are obtained δ0

with long encoding times cannot be applied or produce results with strong relaxation
weighting. In order to obtain reliable results imaging methods for solids such as
single point imaging (SPI) [22] can be employed.

As outlook first measurements showing the applicability of SPI at low field
on samples of ordinary gray portland cement paste8 in the permanent-magnet
instrument described in Sect. 3.2 are presented. The pulse sequence is depicted in
Fig. 4.38. Space encoding is performed by pure phase encoding. The phase gradient
Gp is switched on before the rf pulse so that no delay for gradient stabilization has to
be provided after excitation. Consequently a broad-banded rf pulse has to be used,
otherwise sample excitation is restricted by slice selection.

Instead of acquiring a single phase-encoded data point per gradient amplitude,
several points sampling the decaying signal were recorded. For each encoding time a
relaxation weighted spin-density profile is obtained. With increasing encoding time
relaxation weighting as well as spatial resolution increase. As example, results for a
geometry test sample are shown in Fig. 4.39. It consisted of two water saturated9

cement-paste cylinders separated by a PTFE spacer. At each of the 128 phase-
encoding steps 16 data points were acquired. Using a rather long excitation pulse
of 10:5 �s slice selection at the highest gradients was accepted to some extent
(jGp;maxj D 342 mT=m). In order to improve SNR 64 scans were averaged with
a repetition delay of 500 ms. The result of inverse Fourier transform in phase-
encoding direction is represented in Fig. 4.39a as function of grid point number.
In Fig. 4.39b the abscissa is converted into the space axis by multiplication with
the spatial resolution depending on the gradient-amplitude increment as well as
phase-encoding time. In addition the signal intensity is corrected by the spatial
resolution as the signal is distributed over more grid points at higher resolution. The
position of the spacer from about 0 mm to 1 mm is clearly observed. Signal decay
toward the edges of the FOV results from the rf profile. Already at the shortest
encoding time ı0 D 100 �s the signal originates predominantly from evaporable

8CEM I 42,5 HS samples were kindly prepared and provided by Z. Djuric and M. Haist, KIT, CS,
IMB.
9Saturated at 150 bar after evacuation and stored in water for 20 days.
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Fig. 4.39 Relaxation weighted spin-density profiles of two water saturated cement-paste cylinders
separated by a PTFE spacer. Ordinary gray portland cement was used. Blue points: phase-encoding
time ı0 D 100 �s, resulting in a spatial resolution of zinc D 344 �m; red points: ı D 250 �s
resulting in zinc D 138 �m. (a) Result after inverse Fourier transform in phase-encoding direction.
With increasing resolution the spin density is distributed on an increasing number of grid points.
This effect leads to an additional decrease of the obtained signal intensity. (b) Results represented
over the individual spatial grid points after correction of the effect of resolution on signal intensity

water. The dead time of the probe is 50 �s. In order to investigate also, e.g., crystal
water or hydroxyl protons of portlandite a dead time of about 10 �s is required. Here
further developments and investigations are planned.
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89. Ren X, Stapf S, Blümich B (2005) NMR velocimetry of flow in model fixed-bed reactors of
low aspect ratio. AICHE J 51(2):392–405

90. Schmidt E (2008) Dust separation. In: Ullmann’s Encyclopedia of industrial chemistry.
Wiley-VCH, Weinheim, pp 1–37.

91. Schweers E, Loffler F (1994) Realistic modeling of the behavior of fibrous filters through
consideration of filter structure. Powder Technol 80(3):191–206

92. Seymour J, Codd S, Gjersing E, Stewart P (2004) Magnetic resonance microscopy of biofilm
structure and impact on transport in a capillary bioreactor. J Magn Reson 167(2):322–327.
DOI 10.1016/j.jmr.2004.01.009

93. Sommer K (2008) Mixing of solids. In: Ullmann’s Encyclopedia of industrial chemistry.
Wiley-VCH, Weinheim, pp 1–17.

94. Song Y, Ryu S, Sen P (2000) Determining multiple length scales in rocks. Nature
406(6792):178–181

95. Stahl S, Spelter LE, Nirschl H (2008) Investigations on the separation efficiency of tubular
bowl centrifuges. Chem Eng Technol 31(11):1577–1583. DOI 10.1002/ceat.200800300

96. Topgaard D, Malmborg C, Soderman O (2002) Restricted self-diffusion of water in a highly
concentrated W/O emulsion studied using modulated gradient spin-echo NMR. J Magn Reson
156(2):195–201. DOI 10.1006/jmre.2002.2556

97. Uludag Y, Powell RL, McCarthy MJ (2004) Effects of periodic flow fluctuations on magnetic
resonance flow images. AICHE J 50(8):1662–1671. DOI 10.1002/aic.10152

98. Valiullin R, Kaerger J, Glaeser R (2009) Correlating phase behaviour and diffusion in
mesopores: perspectives revealed by pulsed field gradient NMR. Phys Chem Chem Phys
11(16):2833–2853. DOI 10.1039/b822939b

99. Vicente J, Topin F, Daurelle JV (2006) Open celled material structural properties measure-
ment: From morphology to transport properties. Mater Trans 47(9):2195–2202. DOI 10.
2320/matertrans.47.2195

100. Vicharelli P, Lapatovich W (1987) Iterative method for computing the inverse Abel transform.
Appl Phys Lett 50(10):557–559

101. Wiklund J, Shahram I, Stading M (2007) Methodology for in-line rheology by ultrasound
Doppler velocity profiling and pressure difference techniques. Chem Eng Sci 62(16):4277–
4293. DOI 10.1016/j.ces.2007.05.007

102. Wlodarczyk W, Boroschewski R, Hentschel M, Wust P, Monich G, Felix R (1998) Three-
dimensional monitoring of small temperature changes for therapeutic hyperthermia using
MR. J Magn Reson Imaging 8(1):165–174

103. Wolf F, Hecht L, Schuchmann HP, Hardy EH, Guthausen G (2009) Preparation of W-1/O/W-
2 emulsions and droplet size distribution measurements by pulsed-field gradient nuclear
magnetic resonance (PFG-NMR) technique. Eur J Lipid Sci Tech 111(7):730–742. DOI
10.1002/ejlt.200800272

104. Wu DH, Chen A, Johnson CS (1995) Flow imaging by means of 1D pulsed-field-gradient
NMR with application to electroosmotic flow. J Magn Reson Ser A 115(1):123–126



Chapter 5
Solutions

5.1 Problems of Chapter 2

2.1 NMR Master Equation
To apply (2.8) the linear frequency has to be transformed into angular frequency:


 D 2��

B0

D 2� 200:13 � 106 Hz

4:7 T
D 2:675 � 108 rad s�1 T�1:

For other nuclei see list of constants on p. xviii.

2.2 Curie’s law
Rather obviously

PI
mD�I 1 D .2I C 1/ and

PI
mD�I m D 0. The relation

IX

mD�I

m2 D I.I C 1/.2I C 1/=3

can be proved by mathematical induction.

2.3 NMR Master Equation in the Context of Precession
Precession of magnetization around B with angular velocity �
B0 is expressed as

0

@
Mx

My

Mz

1

A D
0

@
Mxy cos.�0 � 
B0t/

Mxy sin.�0 � 
B0t/

Mz0

1

A:

Insertion into (2.12) shows that this is a solution.
It can also be seen from the geometric representation e.g. for the case of magne-

tization in the transverse plane:
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B
dM

M

df

x

y

The increment of length dM D 
MB dt is perpendicular to B and M . Thus M

reorients by an angle d� which for infinitesimal increment equals dM=M D 
B dt .
This results in the angular velocity with magnitude !0 D d�=dt D 
B .

2.4 Rabi Nutation
The period of nutation is 4 � 12:5 �s D 50 �s and thus the Rabi frequency 20 kHz.
The magnitude of B1 can be calculated from (2.24). As the nutation frequency is
10�4 times the precession frequency in problem 2.1 the magnitude of B1 amounts
to 4:7 10�4 T. This situation is not suited for a graphical representation as in Fig. 2.2.

2.5 Fourier Imaging: Example of k-Space Point for Discrete Sample
Sketch of the magnetization of the droplets in the rotating frame before (a) and after
(b) the application of a gradient along x:

x

y

a)

b)

The angle of precession is calculated according to (2.34).
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Before the gradient-pulse application the total magnetization only has a non-zero
x component. In units of the small-droplet magnetization M0 it amounts to

Mx D .8 C 4 � 2/M0 D 16 M0 :

After the gradient pulse the x component of the total magnetization reduces to

Mx D
�

2
1

2

p
2 C 6 C 6

1

2

p
2

�

M0 D .6 C 4
p

2/M0 :

The y components of the magnetization only partially cancel, leaving

My D
�

�4
1

2

p
2 � 2

�

M0 D �.2 C 2
p

2/M0 :

2.6 Fourier Imaging: Analytical Expression for a Simple Sample
In this special case the integral of the signal (2.38) simplifies to the product of three
integrals:

MC.k/ D �0

Z a=2

�a=2

exp.�ikxx/dx

Z a=2

�a=2

exp.�ikyy/dy

Z a=2

�a=2

exp.�ikzz/dz :

As example the first integral is solved:
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:

The expression for the ideal signal thus reads

MC.k/ D �0a
3sinc



kx

a

2

�
sinc



ky

a

2

�
sinc



kz

a

2

�
:

In this special case the signal is real. Obviously the signal at the center of k-space
reflects the total number of spins, i.e., the spin density multiplied by the volume.1

The first positive node of the signal in x direction occurs for kx
a
2

D � . Larger
samples correspond to narrower signals in reciprocal space.

1sinc(0) = 1 as can be seen from l’Hospital’s rule.
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2.7 Slice Selection

(a) The bandwidth of an infinite sinc pulse with (1/6) ms between the maximum
and the first zero crossing is 6 kHz, see also solution 2.6. Thus the gradient
amplitude amounts to

Gs D 2� 6 kHz


 1 mm
D 141 mT :

(b) The shift of the carrier frequency is calculated according to (2.50) with �! for
the shift in angular frequency instead of the bandwidth and �z for the distance
from slice center to slice center instead of the slice thickness. Given the slice
thickness of 1 mm and the gap of 1 mm, the distance of slice centers amounts
to 2 mm. With the same gradient as in (a) this corresponds to a shift in carrier
frequency of 12 kHz.

(c) In the center of the slice (no additional field due to the gradient) magnetization
nutates around the B1 field. Changes in sign of B1 amplitude signify a change
in the direction of nutation. The major part of magnetization dynamics occurs
around the center of the rf pulse. As estimate, the central part is replaced
by a block pulse with the maximum amplitude and other contributions are
neglected. Assuming an equivalent duration of the block pulse of somewhat
less than (1/6) ms, e.g., 150 �s, the rf amplitude is calculated to 39 �T from
�
B1
 D �=2. For the exact value of the maximum amplitude OB1 the integral
of the normalized amplitude shape has to be calculated. For the sinc3 pulse the
relation (2.52) leads to

�
 OB1

Z 


0

sincf6�.t � 
=2/=
g dt D �=2 :

Denoting the average of the normalized amplitude shape by Nb1 this can also be
expressed as

�
 OB1
Nb1
 D �=2 :

As can be seen in Fig. 2.5a the exact calculation leads to a slightly smaller value
for the maximum value than the above estimation.

2.8 Diffusometry vs. Velocimetry

(a) The diffusion coefficient for water at ambient temperature amounts to D D
2:3 � 10�9 m2=s. During an observation time of � D 10 ms this results in a
root-mean-square displacement of 6:8 �m.

(b) At a velocity of v D 1 mm=s without diffusion, the displacement during the
same time amounts to l D 10 �m. The Peclet number for mass diffusion
Pe D lv=D calculated with this length is Pe D .v�/2=.D�/ D 4:3. In such a
situation with rather small velocity and large diffusion coefficient, the signal in
NMR velocimetry will be markedly attenuated by diffusion.



Chapter 6
Source Code

6.1 specSurfOM

% specSurfOM calculates the specific surface as in
% Ohser, J. and Muecklich, F., Statistical Analysis of
% Microstructures in Materials Science,
% Wiley & Sons, Chichester, England (2000).
% Input: binary image as matrix and grid spacing as vector
%==============================================================
%
% Name: specSurfOM.m
%
% Author: EH
% Date: 2006/12/06
%
% Modifications on 2006/00/00 by EH:
%
% Bugs, suggestions, remarks:
% Runs under MatLab 6.5, not under 7.0
%
%==============================================================
function [vf sp surfaceAbs]=specSurfOM(bin_image,Delta)
n = size(bin_image);
h = ghist(n, bin_image);
vf = volfrac(h);
[sp surfaceAbs]=specsurf(h,Delta);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Subroutines
%--------------------------------------------------------------
function h = ghist(n, bin_image)
% Orginal by Ohser and Mcklich in C:
% #include<math.h>
% #include<malloc.h>
% long int *ghist(int *n, int ***bin_image)
% /* given a 3-dimensional binary image bin_image of size
% n[0..2], the image is convolved with a filter mask F and
% the gray-tone histogram h[0..255] of the convolved image

E.H. Hardy, NMR Methods for the Investigation of Structure and Transport,
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% is returned
% */
% { int i, j, k;
% int l;
% long int *h;
% h=(long *)malloc(256*sizeof(long));
% for(l=0;l<256;l++) h[l]=0L;
% for(i=0;i<n[0]-1;i++)
% for(j=0;j<n[1]-1;j++)
% { l=bin_image[i][j][0]+(bin_image[i+1][j][0]<<1)
% +(bin_image[i][j+1][0]<<2)

+(bin_image[i+1][j+1][0]<<3);
% for(k=0;k<n[2]-1;k++)
% { l+=(bin_image[i][j][k+1]<<4)

+(bin_image[i+1][j][k+1]<<5)
% +(bin_image[i][j+1][k+1]<<6)

+(bin_image[i+1][j+1][k+1]<<7);
% h[l]++; l>>=4;
% }
% }
% return h;
% }
% Translation into Matlab:
h=zeros(256,1);
for i=0+1:n(0+1)-1

for j=0+1:n(1+1)-1
l=bin_image(i,j,0+1)

+ bitshift(bin_image(i+1,j,0+1),1) ...
+ bitshift(bin_image(i,j+1,0+1),2) ...
+ bitshift(bin_image(i+1,j+1,0+1),3);

for k=0+1:n(2+1)-1
l=l+ bitshift(bin_image(i,j,k+1),4)...

+bitshift(bin_image(i+1,j,k+1),5)...
+bitshift(bin_image(i,j+1,k+1),6)...
+bitshift(bin_image(i+1,j+1,k+1),7);

h(l+1)=h(l+1)+1; l=bitshift(l,-4);
end

end
end
%--------------------------------------------------------------
function vf = volfrac(h) %double volfrac(long int *h)
% Orginal by Ohser and Mcklich in C:
% double volfrac(long int *h)
% /* returns an estimate of the volume fraction V_V from the
% vector h[0..255] of absolute frequencies of neighborhood
% configurations of a binary image
% */
% { int l;
% long int iVol=0L, iVol1=0L;
% for(l=0;l<256;l++)
% { iVol+=h[l];
% if(l==(l|1)) iVol1+=h[l];
% }
% return (double)iVol1/(double)iVol;
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% }
% Translation into Matlab:
iVol=0;iVol1=0;
for l=0+1:256

iVol=iVol+h(l);
if (l-1)==bitor((l-1),1); iVol1=iVol1+h(l); end

end
vf=iVol1/iVol;
%--------------------------------------------------------------
function [sp surfaceAbs]=specsurf(h,Delta)
%double specsurf(long int *h, double *Delta)
% Orginal by Ohser and Mcklich in C:
% #include<math.h>
% double specsurf(long int *h, double *Delta)
% /* returns the specific surface area S_V from the gray-tone
% histogram h[0..255], the grid spacing Delta[0..2] is input
% */
% { int kl[13][2]= {{1,2}, {1,4}, {1,16}, {1,8}, {2,4},
% {1,32}, {2,16},{1,64}, {4,16}, {1,128}, {2,64},
% {4,32}, {8,16}};
% double c[13]={0.045778, 0.045778, 0.045778, 0.036981,
% 0.036981, 0.036981, 0.036981, 0.036981, 0.036981,
% 0.035196, 0.035196, 0.035196, 0.035196};
% double S_V=0.0;
% int l, ny;
% long iVol=0L;
% double r[13];
% r[0]=Delta[0]; r[1]=Delta[1]; r[2]=Delta[2];
% r[3]=r[4]=sqrt(Delta[0]*Delta[0]+Delta[1]*Delta[1]);
% r[5]=r[6]=sqrt(Delta[0]*Delta[0]+Delta[2]*Delta[2]);
% r[7]=r[8]=sqrt(Delta[1]*Delta[1]+Delta[2]*Delta[2]);
% r[9]=r[10]=r[11]=r[12]=sqrt(Delta[0]*Delta[0]
% +Delta[1]*Delta[1]+Delta[2]*Delta[2]);
% for(l=0; l<256; l++)
% { iVol+=h[l];
% for(ny=0; ny<13; ny++)
% S_V+=h[l]*c[ny]/r[ny]
% *((l==(l|kl[ny][0]))*(0==(l&kl[ny][1]))
% +(l==(l|kl[ny][1]))*(0==(l&kl[ny][0])));
% }
% return 4.0*S_V/(double)iVol;
% }
% Translation into Matlab:
kl= [[1,2]; [1,4]; [1,16]; [1,8]; [2,4]; [1,32]; [2,16]; ...

[1,64]; [4,16]; [1,128]; [2,64]; [4,32]; [8,16]];
c=[0.045778, 0.045778, 0.045778, 0.036981, 0.036981, ...

0.036981, 0.036981, 0.036981, 0.036981, 0.035196, ...
0.035196, 0.035196, 0.035196];

S_V=0;
iVol=0;
r(0+1)=Delta(0+1); r(1+1)=Delta(1+1); r(2+1)=Delta(2+1);
r(3+1)=sqrt(Delta(0+1)ˆ2+Delta(1+1)ˆ2);
r(4+1)=r(3+1);
r(5+1)=sqrt(Delta(0+1)ˆ2+Delta(2+1)ˆ2);
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r(6+1)=r(5+1);
r(7+1)=sqrt(Delta(1+1)ˆ2+Delta(2+1)ˆ2);
r(8+1)=r(7+1);
r(9+1)=sqrt(Delta(0+1)ˆ2+Delta(1+1)ˆ2+Delta(2+1)ˆ2);
r(10+1)=r(9+1);
r(11+1)=r(9+1);
r(12+1)=r(9+1);
for l=1:256

iVol=iVol+h(l);
for ny=1:13

S_V=S_V+h(l)*c(ny)/r(ny)...

*(((l-1)==bitor((l-1),kl(ny,0+1)))...

*(0==bitand((l-1),kl(ny,1+1))) ...
+((l-1)==bitor((l-1),kl(ny,1+1)))...

*(0==bitand((l-1),kl(ny,0+1))));
end

end
sp=4.0*S_V/iVol;
surfaceAbs=4.0*S_V*prod(Delta);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6.2 specSurfRec

% specSurfRec
% calculates the specific surface reconstructed by isosurface
%==============================================================
%
% Name: specSurfRec.m
%
% Author: EH
% Date: 2006/12/08
%
% Modifications on 2006/00/00 by EH:
%
% Bugs, suggestions, remarks:
%
%==============================================================
function [vf sp solidSurface]=specSurfRec(bin_image,isoRes)
N=numel(bin_image);
%get surface as triangles
fv=isosurface(bin_image);
%extract vertices and "faces" from struct
ecken=fv.vertices; %vertices of faces

%first index is number of point (length n)
%second index is for x, y, z (length 3)

gruppen=fv.faces; %List of groups of 3 vertices that form
%faces. First index is number of face (length m)
%second index for involved points (length 3)

%get number of faces
tmp=size(gruppen,1); %result = m
solidSurface=0;
for iFace=1:faceMTX

eckenX=[ecken(gruppen(iFace,1),1) ...
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ecken(gruppen(iFace,2),1) ecken(gruppen(iFace,3),1)];
eckenY=[ecken(gruppen(iFace,1),2) ...

ecken(gruppen(iFace,2),2) ecken(gruppen(iFace,3),2)];
eckenZ=[ecken(gruppen(iFace,1),3) ...

ecken(gruppen(iFace,2),3) ecken(gruppen(iFace,3),3)];
vec1=[eckenX(2)-eckenX(1) eckenY(2)-eckenY(1)...

eckenZ(2)-eckenZ(1)]; %one face vector
vec2=[eckenX(3)-eckenX(1) eckenY(3)-eckenY(1)...

eckenZ(3)-eckenZ(1)]; %other face vector
vecProd=cross(vec1,vec2); %vector product
faceSurf=1/2*norm(vecProd);
solidSurface=solidSurface+faceSurf;

end
disp([’surface of the solid / m**2 = ’...

num2str(solidSurface*isoResˆ2)])
vf=sum(sum(sum(bin_image)))/N;
sp=solidSurface/N/isoRes;

6.3 Pore-Space Segmentation

%--------------------------------------------------------------
% generate list of local maxima with average height
%--------------------------------------------------------------
% d: result of distance transform, size MTX**2, 0 for solid
% discRad: disc radius in pixel units
% ms: search range +/- for local maximum in pixel units
% minDist: minimum Euclidean distance between maxima in p. u.
maxMat=zeros(MTX); %matrix with local maxima,

%used for visualization only
nMaxEst=round((MTX/discRad)ˆ2);
%estimation of upper limit for number of local maxima
nMaxCount=0; %counter for local maxima found
maxList=zeros(nMaxEst,3); %list with average height and coordinates
for i1=1+mS:MTX-mS

for i2=1+mS:MTX-mS
if d(i1,i2)>0 %if within pore space

%(otherwise discs (0) contribute)
if d(i1,i2)==max(max(d(i1-mS:i1+mS,i2-mS:i2+mS)))

maxMat(i1,i2)=mean(mean(d(i1-mS:i1+mS,...
i2-mS:i2+mS)));

nMaxCount=nMaxCount+1;
maxList(nMaxCount,:)=[maxMat(i1,i2),i1,i2];

end
end

end
end
maxList=maxList(1:nMaxCount,:); %truncate list to eff. number
%%% If inter-max distance to small, select highest-av. max %%%
maxListNew=zeros(nMaxCount,3);
toSmall=0;
newCount=0;
for iMax=1:nMaxCount %go through list from beginning
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for iMaxRest=iMax+1:nMaxCount %compare with rest
if norm(maxList(iMax,2:3)-maxList(iMaxRest,2:3))...

<minDist
%if distance to small

toSmall=1;
if maxList(iMax,1)>=maxList(iMaxRest,1)
%if actual value higher

maxList(iMaxRest,:)=maxList(iMax,:);
%shift for later tests

end
break %stop comparison with iMax

end
end
if ˜toSmall

newCount=newCount+1;
maxListNew(newCount,:)=maxList(iMax,:);
%retain local maximum

else
toSmall=0; %reset test variable and proceed

end
end
maxListNew=maxListNew(1:newCount,:); %truncate to eff. number
clear maxList %no longer used and modified anyway
%--------------------------------------------------------------
% assign pore space to pore center, descending sucessively in
% height
%--------------------------------------------------------------
shiftMat=[1 0; -1 0; 0 1; 0 -1]; %matrix with possible shifts
% parallel to axis
nShifts=size(shiftMat,1);
assigned=zeros(MTX);
for iMax=1:newCount %assign a number to each local maximum

assigned(maxListNew(iMax,2),maxListNew(iMax,3))=iMax;
end
iMaxAv=min(find(maxListNew(:,1)==max(maxListNew(:,1))));
%(first) index with maximum average
level=floor(d(maxListNew(iMaxAv,2),maxListNew(iMaxAv,3)));
%integer part of highest level
daumen=1;
overlappFound=pi*daumen; %set some value > 0

%for first while test
%set region not searched for max to zero (otherwise artifacts)
d(1:mS,:)=0;d(:,1:mS)=0;
d(:,MTX-mS+1:MTX)=0;d(MTX-mS+1:MTX,:)=0;
while level>=0 %for all levels

while overlappFound>0
%continue if some assignement done in previous pass
%at given level

overlappFound=0;
randShiftVec=randperm(nShifts); %random shift-index

%permutation
for iShift=1:nShifts %for all shift directions

shiftDirInd=randShiftVec(iShift);
%shift-direction index
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toDo=(d>level)&(˜assigned);
%mask with actual locations to be assigned at
%given level
identified=toDo...

&circshift(assigned,shiftMat(shiftDirInd,:));
%shift assigned over toDo: overlapp?
nIdPerShift=sum(sum(identified)); %numver of

%overlapps
if nIdPerShift>0
%set region with overlapp to corresponding
%assigned value

assigned(identified)=...
assigned(circshift(...
identified,-shiftMat(shiftDirInd,:)));

overlappFound=overlappFound+nIdPerShift;
end

end
end
level=level-1;
%if no more assignments at given level,
%decrease level and continue
overlappFound=pi*daumen;
%for this, set some value > 0 for first while test

end
assigned(˜dens)=-1;
assigned(1:mS,:)=0;
assigned(:,1:mS)=0;
assigned(:,MTX-mS+1:MTX)=0;
assigned(MTX-mS+1:MTX,:)=0;

6.4 Slice Selection

% program for the simmulation of slice selection through
% integration of Bloch equations in the rotating frame:
% dM/dt=gamma MxB with
% B = (0,-B1(t),G*z), i.e., nutation around y toward x
% in the center of the slice (no field by the gradient)

%
% Usage: slice_sim_sinc_n
%

%==============================================================
%
% Name: slice_sim_sinc_n.m
%
% Author: Dirk Mertens and Edme H. Hardy
% Date: 2003
%
% Modifications 2004 by DM: Translation from PV-Wave to MatLab
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%
% Bugs, suggestions, remarks:
%
%==============================================================

function slice_sim_sinc_n
%%% Parameters for image-file output
bilder=1; %1 for generation of output
figH=5; %figure height in cm
figW=7.5;%figure width in cm
imForm=’-deps2’; %output format is eps
imPath=’../bilder/’;

%%% Experimental parameters
lZ=1E-2; %sample length in m
dSlice=4E-3; %slice thickness in m
refRel=0.52; %relative duration of refocusing gradient,

%e. g. 0.5 or 0.52
gyrmag=2.6752E8; %gyromagnetic ratio for 1H in rad/s/T
phiP=pi/2; %pulse angle in center of slice
tau=0.001; %pulse duration in s
n=3; %number of sinc roots on each side of the maximum
bw=1/(tau/(2*n)); %bandwidth in Hz
gZ=2*pi*bw/dSlice/gyrmag; %calculate gradient amplitude

%%% Simulation parameters
tStepsInt=20000; %number of time steps for the integration
tStepsFft=1024; %number of time steps for FFT
zMTX=128; %number of grid points in position space
tIncInt=tau/tStepsInt; %time increment in integration
tIncFft=10*tau/tStepsFft; %time increment in FFT
zInc=lZ/zMTX; %separation of space points
tAxPulse=tIncInt*(-tStepsInt/2:tStepsInt/2-1); %time axis for

%pulse shape
tAxPlot=tIncInt*(0:tStepsInt-1); %time axis for plot
tAxFft=tIncFft*(-tStepsFft/2:tStepsFft/2-1); %time axis for FFT
zAx=zInc*(-zMTX/2:zMTX/2-1); %z axis

%%% Definition of B1(t) for the sinc pulse
sincArg=n*pi*tAxPulse/(tau/2); %argument of the sinc pulse
b1=sin(sincArg)./sincArg;
b1(isnan(b1))=1; %set function value for argument 0
sincArgFft=n*pi*tAxFft/(tau/2); %argument of sinc pulse for FFT
b1Fft=sin(sincArgFft)./sincArgFft;
b1Fft(isnan(b1Fft))=1; %set function value for argument 0
iL=find(abs(tAxFft-(-tau/2))==min(abs(tAxFft-(-tau/2))));

%index of time -tau/2
iR=find(abs(tAxFft-tau/2)==min(abs(tAxFft-tau/2)));

%index of time tau/2
b1Fft(1:iL)=0; %truncation of sinc before -tau/2
b1Fft(iR:end)=0; %truncation of sinc after tau/2
b1Spec=fftshift(fft(fftshift(b1Fft))); %Fourier transform
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%of the pulse shape
b1AvIst=mean(b1); %actual average pulse amplitude
b1AvSoll=phiP/(gyrmag*tau); %required average pulse amplitude
b1=-b1*b1AvSoll/b1AvIst; %correction of B1 amplitude

%%%% Pulse representation in time and frequency domain
figure(1)
plot (1e3*[tAxPlot tau 1.52*tau],1e6*[b1 0 0],’k’,...

’LineWidth’, 1.5)
grid
xlim([0 1.6e3*tau])
xlabel(’t / ms’)
ylabel(’B_1 / \mu T’)
if bilder == 1

set(1,’PaperPosition’,[0.63 6.3 figW figH])
print(imForm, [imPath ’sliceSim1’])

end
figure(2)
plot (1e3*[tAxPlot(1) tau tau (1+refRel)...

*tau (1+refRel)*tau],...
1e3*[gZ gZ -gZ -gZ 0],’k’,’LineWidth’, 1.5)

grid
xlim([0 1.6e3*tau])
xlabel(’t / ms’)
ylabel(’G_s / (mT/m)’)
if bilder == 1

set(2,’PaperPosition’,[0.63 6.3 figW figH])
print(imForm, [imPath ’sliceSim2’])

end
figure(3)
fAx=(1/tIncFft/tStepsFft)*(-tStepsFft/2:tStepsFft/2-1);

%frequency axis
fU=-lZ/2*gZ*gyrmag/2/pi; %lowest frequency in the sample

%with slice gradient
fO=-fU; %highest frequency in the sample with slice gradient
iU=find(abs(fAx-fU)==min(abs(fAx-fU))); %corresponding index

%on the frequency axis
iO=find(abs(fAx-fO)==min(abs(fAx-fO))); %corresponding index

%on the frequency axis
plot(fAx(iU:iO)/1e3,real(b1Spec(iU:iO))/max(abs(b1Spec)),...

’k’,’LineWidth’, 1.5)
axis tight
grid
xlabel(’Frequency / kHz’)
ylabel(’Spectrum / a.u.’)
if bilder == 1

set(3,’PaperPosition’,[0.63 6.3 figW figH])
print(imForm, [imPath ’sliceSim3’])

end

%%% Integration of the Bloch equations
wZ=gyrmag*gZ*zAx; %-angular precession frequency due to gradient
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w1=b1*gyrmag; %-angular nutation frequency due to B1
mMat=zeros(3,zMTX); %magnetic field (Mx,My,Mz for zMTX points)
mMat(3,:)=1; %equilibrium magnetization (Mz = 1)
for k=1:tStepsInt

mMatAlt=mMat; %save magnetization of previous time step
mMat(1,:)=mMatAlt(1,:)+(mMatAlt(2,:).*wZ-mMatAlt(3,:)...

*w1(k))*tIncInt;
mMat(2,:)=mMatAlt(2,:)+(0-mMatAlt(1,:).*wZ)*tIncInt;
mMat(3,:)=mMatAlt(3,:)+(mMatAlt(1,:)*w1(k)-0)*tIncInt;

end

%%% Refocusing
ref_phase=-wZ*refRel*tau; % phase after refocusing for

% the defined duration. Precession with -omega Z and
% omegaZ=-wZ

mMatAlt=mMat;
% rotation in the (x,y) plane using the rotation matrix
% ((cosP -sinP)(sinP cosP))
mMat(1,:)=mMatAlt(1,:).*cos(ref_phase)-mMatAlt(2,:)...

.*sin(ref_phase);
mMat(2,:)=mMatAlt(1,:).*sin(ref_phase)+mMatAlt(2,:)...

.*cos(ref_phase);
% visualization of refocusing
figure(4)
plot (1e3*zAx,mMat(3,:),’k--’,’LineWidth’, 1.5), hold on
plot (1e3*zAx,mMat(1,:),’k-’,’LineWidth’, 1.5)
plot (1e3*zAx,mMat(2,:),’k.’,’MarkerSize’, 3), hold off
axis ([-1e3*lZ/2 1e3*lZ/2 -.4 1.2]), grid on
xlabel (’z / mm’)
ylabel (’M_\alpha / M_0’)
if bilder == 1

set(4,’PaperPosition’,[0.63 6.3 figW figH])
print(imForm, [imPath ’sliceSim4’])

end



Chapter 7
NMR Line Shape Parametrization

Due to field inhomogeneities NMR line shapes are frequently asymmetric. This
indicates higher order contributions to the inhomogeneity that are more difficult
to correct by shimming than the first-order contributions. In view of line shape
modeling, a parametrized analytical asymmetric line shape involving a second-order
component is derived.

7.1 Assumptions

It is assumed that

1. The signal decay for the considered line in a homogeneous field is monoexpo-
nential, corresponding to a Lorentz line shape after Fourier transformation.

2. The actual field has a quadratic dependence along the symmetry axis of the
sample, leading to a resonance-frequency distribution (“spectrum”) that has to
be calculated.

3. The spectral contributions of 1 are broadened by the distribution of 2 or vice
versa, corresponding to a convolution, see below.

7.2 Lorentz Line Shape

The Lorentz distribution L centered around frequency � D 0 is given by (7.1). It
has a single parameter 
 that equals the full width at half height. The distribution is
normalized to one:

L.�/ D 


�.�2 C 
2/
: (7.1)
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7.3 Field Distribution

A quadratic spatial dependence of the field inhomogeneity results in a quadratic
spatial dependence of the NMR resonance-frequency shift with respect to a homo-
geneous field. Thus the resonance frequency � in the rotating frame as function of
the z coordinate in direction of the symmetry axis of the sample is expressed with
constant second derivative �zz as

� D 1

2
�zzz

2 : (7.2)

Next the frequency probability density f .�/ or “spectrum” has to be calculated for
this assumed spatial distribution.1 The relation is derived considering the cumulative
probability density function F.�/.

It is assumed that frequency is a monotonous function of position along the
considered coordinate. This is the case for the spatial dependence of (7.2) if the
sample is located on the positive z axis or also if the sample is symmetric around
z D 0 and the halves are considered separately. Likewise a monotonous function is
obtained for a linear, cubic, etc. dependence.

If the sample is homogeneous and has constant cross section the number of
observed spins from the coordinate origin to height z is proportional to z. Accord-
ingly the cumulative frequency distribution F.�/ for resonance-frequency shifts up
to � can be expressed by the corresponding coordinate z.�/ as:

F.�/ D z.�/

ztot
: (7.3)

Division by the total sample extent ztot along the considered coordinate has the effect
that the cumulative frequency distribution is normalized to one. Thus it holds for an
infinitesimal change in F

dF.�/ D dz.�/

ztot
D 1

ztot

dz

d�
d� : (7.4)

The probability density f to be calculated is the derivative dF

d�
of the cumulative

distribution, yielding

f .�/ D 1

ztot

dz

d�
: (7.5)

To proceed (7.2) is solved for the coordinate,

1Usually the situation is opposite, i.e., the spectrum is observed in the experiment and the spatial
distribution is unknown, resulting in a rather empirical shimming process.
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z D
s

2�

�zz
; (7.6)

and the derivative is calculated:

dz

d�
D 1p

2��zz
: (7.7)

Denoting the frequency at ztot as �max, (7.5)–(7.7) finally yield

f .�/ D 1

2
p

�max�
: (7.8)

The frequency density f is normalized to one if it is integrated from zero to �max

although it diverges at z D 0. It has only the maximum frequency as parameter. The
first moment of the distribution is not zero. This corresponds to the experimental
observation that second-order shims produce a frequency shift of the line.

7.4 Convolution

At each frequency Q� the Lorentz distribution has a contribution with weight L. Q�/.
Thus in an inhomogeneous field as considered above distributions of type (7.8)
shifted by Q�, f .� � Q�/ are superimposed with these weights. The total spectrum
S.�/ is obtained by integration over the Lorentz distribution:

S.�/ D
Z 1

�1
L. Q�/f .� � Q�/d Q� : (7.9)

As expressed by (7.9) the total signal is the convolution of the spectrum originating
from the sample with the frequency distribution resulting from the instrument.
Insertion of (7.1) and (7.8) yields

S.�/ D
Z �

���max




�. Q�2 C 
2/

1

2

1
p

�max.� � Q�/
d Q� : (7.10)

In the integration limits it has been used that the spectrum due to the inhomogeneous
field is zero for frequencies below zero and above �max.

As convolution is commutative, it can be expressed alternatively as

S.�/ D
Z 1

�1
f . Q�/L.� � Q�/d Q� : (7.11)
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This reflects the point of view that at each frequency Q� resulting from the
inhomogeneous field the Lorentz distribution L.� � Q�/ from the sample shifted by Q�
contributes with weight f . Q�/. Limiting the integration to the interval with f . Q�/ ¤ 0

yields

S.�/ D
Z �max

0

1

2
p

�max Q�



�..� � Q�/2 C 
2/
d Q� (7.12)

D 


2�
p

�max

Z �max

0

1pQ�
1

Q�2 � 2� Q� C �2 C 
2
d Q� : (7.13)

The integral is simplified by the transformation y D pQ�:

I.�/ D 2

Z p
�max

0

dy

y4 � 2�y2 C �2 C 
2
: (7.14)

It can be solved analytically.2 Insertion of the limits and simplification leads to the
final result

S.�/ D 1

2�i
p

�max

0

B
@

arctan
q

�max���
ip�� � 
i
�

arctan
q

�max��C
ip�� C 
i

1

C
A : (7.15)

Although (7.15) contains the complex unit i the function S.�/ for the total
spectrum is real valued as it should be. The integral is normalized to one and the
first moment is not zero. The distribution has two parameters, 
 and �max, as it is
the case for the Voigt function with 
 and 	 . In contrast to the Voigt distribution,
where the convolution cannot be calculated analytically, no approximation of the
convolution is necessary. It is suggested to denote the NMR line shape as Lorentz-
z2 profile.

7.5 Examples

Profiles with different values for 
 and �max are shown in Fig. 7.1. Besides the total
width the asymmetry varies considerably.

2Here using the online program at http://integrals.wolfram.com.
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Fig. 7.1 Lorentz-z2 profiles. The four combinations of 5 Hz and 15 Hz Lorentz broadening 
 with
maximum field shift �max of 100 Hz (a) and 50 Hz (b) are shown

7.6 Conclusion

A new parametrized analytical expression for an asymmetric line shape was derived.
It is based on physical considerations as it is the case for the Voigt profile. The
new type of line shape can be extended to other spatial field dependencies (cubic
etc.). If necessary, several Lorentz-zn lines can be superimposed for an accurate line
modeling.



Chapter 8
Gradient Echoes

8.1 Influence of Inhomogeneities on Echo Shifts

The pulse sequence depicted in Fig. 8.1 with gradients (a) represents the situation
of a spin–spin echo sequence in which a switched gradient G.t/ still rises between
excitation (�=2) and refocusing (�). From refocusing till data acquisition a constant
gradient is assumed. As a result, the integral of the corresponding effective gradient
QG.t/ has its zero crossing already before the SE time tSE. Calculation of the time tGE

at which an echo occurs is of interest in different applications.1 In a simple situation
where only a permanent gradient Gp in the same direction as G.t/ is present
derivation of t0

GE is straightforward. Here first the more general and complex case
is treated that additionally a random spatial distribution Bi.r/ of the z component
of the magnetic field around the average value B0 is present. In this section the
applied gradient is considered to be switched on at the time of excitation, i.e., 
 D 0.
The gradient direction is chosen to be y as in the low-field instrument presented in
Sect. 3.2. Thus the angular velocity of Larmor precession is expressed in the rotating
frame of reference as

!.r ; t/ D �
Œ.Gp C G.t//y C Bi.r/�: (8.1)

The gradient echo is the maximum of the complex transverse magnetization

MC.t/ D
ZZZ

V

�.r/ exp.i�.r; t//d3r (8.2)

after the refocusing pulse. Taking into account the change in sign resulting from the
refocusing pulse the time and space dependent phase reads

1The presented calculations were performed in the context of the DFG project “Entwicklung eines
NMR-gestützten Kapillarrheometers” with D. Mertens. Further details and experimental results
are to be published.

E.H. Hardy, NMR Methods for the Investigation of Structure and Transport,
DOI 10.1007/978-3-642-21628-2 8, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 8.1 “EDDI” sequence. Without application of a gradient G.t/ as in (a) or (b) the �=2 and �

rf pulses produce a spin echo at the echo time tSE. Here it is investigated at which time tGE an echo
occurs if a gradient G.t/ is switched and if constant gradients as well as other inhomogeneities of
the magnetic field are present

�.r; t/ D �
Z tSE=2

0

!.r ; t/dt C
Z t

tSE=2

!.r/dt 0: (8.3)

The integrand after the refocusing pulse is time independent as G.t/ is assumed to
have reached a constant value OG at this time. A dimensionless function g.t/ is used
to describe the time dependence before refocusing, i.e.,

G.t/ D OGg.t/: (8.4)

With the further definition of the average quantity

Ng D 2

tSE

Z tSE=2

0

g.t/dt (8.5)

the phase is expressed as

�.r; t/ D 
Œ.Gp C OG Ng/y C Bi.r/�.tSE=2 � 0/

�
Œ.Gp C OG/y C Bi.r/�.t � tSE=2/

D 


��

Gp C OG 1 C Ng
2

�

y C Bi.r/

�

tSE

�
Œ.Gp C OG/y C Bi.r/� t: (8.6)

Without inhomogeneity Bi.r/ an echo with full amplitude
RRR

V �.r/d3r (neglecting
natural T2 relaxation) is obtained if phase is zero for all y, i.e., for

t D t0
GE D tSE

Gp C OG 1C Ng
2

Gp C OG : (8.7)
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As 1 C Ng < 2 the gradient echo without permanent gradient Gp occurs indeed
before tSE. This is also the case in presence of Gp unless both gradients are of
different polarity and if the permanent gradient dominates.

With the field inhomogeneity the time with phase zero depends on position:

t0.r/ D tSE
.Gp C OG 1C Ng

2
/y C Bi.r/

.Gp C OG/y C Bi.r/
: (8.8)

In order to determine the time of the gradient echo for the integrated signal it is
first assumed that the imaginary part of the total signal (8.2) is small enough to be
neglected. The maximum is then searched for by taking the time derivative of the
real part:

@

@t
Re.MC.t// D �

ZZZ

V

�.r/ sin.�.r; t//
@

@t
�.r; t/d3r: (8.9)

It is zero at tGE. Inserting the phase (8.6) and expanding the sine to first order leads to

0 D
ZZZ

V

�.r/


���

Gp C OG 1 C Ng
2

�

y C Bi.r/

�

tSE

�..Gp C OG/y C Bi.r// tGE

i



h


Gp C OG
�

y C Bi.r/
i

d3r: (8.10)

Separation of the gradient- and SE time yields

ZZZ

V

�.r/Œ.Gp C OG/y C Bi.r/�2d3r tGE

D
ZZZ

V

�.r/

��

Gp C OG 1 C Ng
2

�

y C Bi.r/

�

h
.Gp C OG/y C Bi.r/

i
d3r tSE: (8.11)

Assuming that integrals with mixed products yBi.r/ can be neglected due to the
random nature of Bi.r/ integrals involving the homogeneous gradient and the field
inhomogeneity can be separated:

tGE D tSE

(
Gp C OG 1C Ng

2

Gp C OG
Y

Y C I
C I

Y C I

)

: (8.12)
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For the integrals over squared fields the abbreviations

I D
ZZZ

V

�.r/Bi.r/2d3r (8.13)

and

Y D
ZZZ

V

�.r/Œ.Gp C OG/y�2d3r D .Gp C OG/2

ZZZ

V

�.r/y2d3r (8.14)

have been introduced.
In the limit of vanishing inhomogeneity (I D 0) the simple relation (8.7) is

recovered from (8.12). For I ¤ 0 the additional fields lead to a difference between
tSE and tGE that is smaller than it is for t0

GE. The magnitude of the effect is estimated
for the low-field system shown in Fig. 3.4 on p. 86. It is assumed that the spin density
� is constant. The integral in (8.13) is expressed using the probability density pi (or
spectrum) of the field:

I D �V

Z 1

�1
pi.Bi/B

2
i dBi D �V	2

i : (8.15)

For a rather high value of 440 Hz for the standard deviation of the frequency
distribution in the spectrum the corresponding value for the field is

	2
i D .2�440=
/2 D 10�10 T2 ; (8.16)

where 
 denotes the gyromagnetic ratio of the proton. For a sample with constant
spin density, cross section A, and length ly positioned in the middle of the gradient
system, (8.14) yields

Y D �A.Gp C OG/2

Z ly=2

�ly=2

y2dy D �V
1

12
.Gp C OG/2 l2

y: (8.17)

The observed length of the sample is about 3 cm. With typical values of 1 mT/m
and 10 mT/m for Gp and OG, respectively, their contribution amounts to

1

12
.Gp C OG/2 l2

y D 10�8 T2: (8.18)

Inserting 10 ms for tSE and 0.95 for .1C Ng/=2 into (8.7) yields �500 �s for the echo
shift in the absence of further inhomogeneities, i.e., also Gp D 0. Including the
above permanent gradient reduces the shift to �455 �s. According to (8.12) this
shift is further reduced to �450 �s in the presence of field inhomogeneities. The
difference of 5 �s can be detected using a short DW of 1 �s. However, it is
neglected against larger effects and the simpler expression (8.7) is applied. In the
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case of more pronounced inhomogeneities and weaker gradients the validity of this
approximation has to be reconsidered.

8.2 Permanent Gradient and Rising Properties

Here and in the following it is assumed that further inhomogeneities as discussed in
Sect. 8.1 can be neglected against switched and permanent or remanent gradients.
The gradients are assumed to be in y direction. In this case the expression for the
magnetization phase (8.3) reduces to

�.y; t/ D �
y

(

�
Z tSE=2

0

ŒGp C G.t/�dt C
Z t

tSE=2

ŒGp C G.t 0/�dt 0
)

D �
y Qm0.t/: (8.19)

In (8.19) and in the following the definition of the zeroth moment of the effective
gradient after the refocusing pulse

Qm0.t/ D �
Z tSE=2

0

ŒGp C G.t/�dt C
Z t

tSE=2

ŒGp C G.t 0/�dt 0 (8.20)

is used.
If gradient G is switched on before excitation as depicted in Fig. 8.1a the function

g in (8.4) is replaced by g.t � .�
//. Assuming again that the asymptotic gradient
amplitude OG is already reached at the refocusing pulse the effective moment is
expressed as

Qm0.t/ D �Gp
tSE

2
� OG

Z tSE=2

0

g.t C 
/dt C .Gp C OG/

�

t � tSE

2

�

: (8.21)

With the transformation t 0 D t C 
 the condition Qm0.tGE/ D 0 reads

� Gp
tSE

2
� OG

Z tSE=2C





g.t 0/dt 0 C .Gp C OG/

�

tGE � tSE

2

�

D 0: (8.22)

The part of the integral with g.t > tSE=2/ D 1 can be solved. Interchanging the
limits of the remaining integral leads to

OG
Z 


tSE=2

g.t 0/dt 0 D OG
 � OG
�

tGE � tSE

2

�

� Gp.tGE � tSE/ : (8.23)
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Differentiation with respect to 
 and insertion of definition (8.4) finally yields

G.
/ D OG
�

1 � @tGE

@


�

� Gp
@tGE

@

: (8.24)

One application of (8.24) is the determination of the rising properties of the
switched gradient. The second term on the right-hand side can be omitted if Gp

is compensated by a shim gradient.2 If the permanent gradient is known, e.g., from
an imaging experiment with frequency encoding on a sample with defined geometry,
the asymptotic amplitude OG of G.
/ can be derived from (8.24) with 
 D 0:

OG D Gp
@tGE

@


ˇ
ˇ
ˇ
ˇ

D0

�

1 � @tGE

@


ˇ
ˇ
ˇ
ˇ

D0

��1

: (8.25)

It was used that G.0/ D 0.
Another application is the determination of the permanent gradient Gp if OG is

known. Choosing 
 D 0 in (8.22) yields

Gp.tSE � tGE/ C OG
Z tSE=2

0

g.t 0/dt 0 � OG
�

tGE � tSE

2

�

D 0: (8.26)

A preliminary measurement with compensated permanent gradient allows the
measurement of the gradient echo time tGE;0 yielding for the integral

Z tSE=2

0

g.t 0/dt 0 D tGE;0 � tSE

2
: (8.27)

Insertion into (8.26) leads to the final result

Gp D OG tGE � tGE;0

tSE � tGE
: (8.28)

8.3 Determination of Decay Properties

If the gradient is switched off before excitation of transverse magnetization as
depicted in Fig. 8.1b the decay properties can be investigated. The decaying gradient
after excitation, denoted as D.t/ spoils the transverse magnetization. In order to
obtain a gradient echo a known permanent gradient is applied, denoted here as read
gradient Gr. Assuming this time that the switched gradient has completely decayed
at the refocusing pulse, the relation corresponding to (8.22) reads

2This can be performed automatically by minimization of the spectral line width.
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Gr.tSE � tGE/ C
Z tSE=2C





D.t 0/dt 0 D 0: (8.29)

By assumption the integral is zero after tSE=2. Interchanging the integral limits and
derivation with respect to 
 yields, in analogy to (8.24),

D.
/ D �Gr
@tGE

@

: (8.30)

8.4 Combined Effect of Transient and Permanent Gradients

8.4.1 Determination of the Effects

In Sects. 8.2, 8.3, and 8.5 it is shown how permanent and transient effects caused by
a single pulsed gradient can be studied. Here the combined effect of transient and
permanent gradients resulting from a pair of pulsed gradients is studied, see Fig. 8.2.
Pairs of pulsed gradients are employed in the measurement of diffusion or flow. In
the following, a model for Qm0.t/ in the cases of gradient-pulse sequences depicted
in Fig. 8.2a, b is presented.

In both cases care is taken to prepare a reproducible state of the effects. For the
remanent permanent gradient as function of the pulsed-gradient amplitude a strong
hysteresis was observed. Therefore at each new pulsed-gradient amplitude first a
gradient-pulse train with decreasing amplitude and alternating polarity is applied.
This minimizes the remanent permanent gradient. Then Nd dummy repetitions of
the sequence with the pair of pulsed gradients is executed without data acquisition.

Fig. 8.2 Permanent-gradient
and mismatch compensation
(PGMC) sequence.
Gradient-pulse scheme (a) is
applied to measure the
effects. They are
subsequently compensated
using scheme (b)
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As a result, a reproducible remanent permanent gradient Gp depending on the
pulsed-gradient amplitude is observed.

In gradient-pulse scheme (a) an incremented read gradient Gr is superimposed to
the permanent gradient. The pulsed gradients Gy before and after the rf refocusing
pulse have the same asymptotic amplitude OG, duration ı, and time separation �. The
first dimension of the experiment is the acquisition time, the second dimension the
read-gradient variation, and the third dimension, as in diffusometry or velocimetry,
the variation of OG. Due to transient effects such as eddy currents and other
experimental effects the gradients experienced by the sample deviate from the ideal
rectangular shape represented in Fig. 8.2. The time dependence of the experienced
gradient is described using a dimensionless function as in (8.4), denoted as g�.t/

for the first gradient and as gC.t/ for the second. Thus the zeroth moment of the
effective gradient after time tSE=2 of the rf refocusing pulse is expressed as

Qm0.t/ D .Gp C Gr/.t � tSE/ � OG
Z tSE=2

0

g�.t/dt

C OG
Z t

tSE=2

Œg�.t 0/ C gC.t 0/�dt 0 : (8.31)

In the following it is assumed that both functions for the time dependence differ
only by the time shift � and that a simple superposition of the gradient fields is
applicable. For the sake of simplicity � D tSE=2 is chosen, as it is usually the case
in the experiment. Insertion of gC.t/ D g�.t � tSE=2/ into (8.31) and omission of
the index “-” yields

Qm0.t/ D .Gp C Gr/.t � tSE/

� OG
"Z tSE=2

0

g.t/dt �
Z t

tSE=2

Œg.t 0/ C g.t 0 � tSE=2/�dt 0
#

D .Gp C Gr/.t � tSE/

� OG
"Z tSE=2

0

g.t/dt �
Z t

tSE=2

g.t 0/dt 0 �
Z t�tSE=2

0

g.t 0/dt 0
#

D .Gp C Gr/.t � tSE/

C OG
"Z t�tSE=2

tSE=2

g.t 0/dt 0 C
Z t

tSE=2

g.t 0/dt 0
#

: (8.32)

In order to allow for an analytical solution of the integrals an exponential decay is
assumed after the gradient is switched off at time ı:

g.t > ı/ D g0 exp

�

� t � ı

td

�

: (8.33)
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Insertion into (8.32) for times t > tSE=2 C ı leads to

Qm0.t/ D .Gp C Gr/.t � tSE/

C OGg0 exp.ı=td/td

�

2 exp

�

� tSE=2

td

�

� exp

�

� t � tSE=2

td

�

� exp

�

� t

td

��

: (8.34)

Here the condition for the gradient echo Qm0.tGE/ D 0 leads to a transcendental
equation:

.Gp C Gr/.tGE � tSE/ C OGg0 exp.ı=td/td

�

2 exp

�

� tSE=2

td

�

� exp

�

� tGE � tSE=2

td

�

� exp

�

� tGE

td

��

D 0: (8.35)

In order to compensate the permanent and transient effects the unknown permanent
gradient Gp as well as the fraction g0 and the time constant td for the transient effect
have to be determined for each amplitude of the pulsed gradient OG. Possibly these
quantities also depend on the time separation tSE=2 and the gradient duration ı.
For each amplitude of the pulsed gradient the gradient-echo times tGE;j can be
extracted precisely from the echoes measured with varied read gradient Gr;j . Thus
the unknown values can be obtained by a numerical minimization3 of the left-hand
side of (8.35)

min
Gp;g0;td

X

j

Œ Qm0.tGE;j ; Gr;j ; OG; tSE; ıI Gp; g0; td/�2: (8.36)

The gradient separation and duration are chosen as in the experiment to be executed
with compensation. For a reliable minimization a sufficient number of read gradients
around the expected value of the permanent gradient should be chosen. As initial
guess for the permanent gradient Gp a fraction of the respective pulsed-gradient
amplitude OG is set, e.g., 10�3. Likewise for the initial value of the exponentially
decaying function g0 a small number of e.g., 10�3 is chosen. The time constant td is
in the range of milliseconds.

Alternatively the unknown quantities can be determined for each pulsed-gradient
amplitude using a single read-gradient amplitude if the expression for the entire
echo signal

3As (8.35) cannot be solved for tGE a minimization has to be used instead of a fit. This was
performed using the “lsqnonlin” function of MATLAB R�. Fitting is a special case of minimization.
For the signal fit described below the dedicated function “lsqcurvefit” was used.



194 8 Gradient Echoes

MC.t/ D
Z

�.y/ exp.�i
 Qm0.t/y/dy (8.37)

with Qm0.t/ given by (8.34) is fitted to the measured signal. The spin-density profile
�.y/ detected by the rf coil can be determined experimentally. If it is approximated
by a combination of cosine sections and linear parts the integral can be solved
analytically, simplifying the fitting procedure. The cosine sections yield for the
signal

fC.t/ D
Z y2

y1

cos.ky/ exp.�i
 Qm0.t/y/dy

D
�

exp.�i
 Qm0.t/y/
i
 Qm0.t/ cos.ky/ � k sin.ky/

.
 Qm0.t//2 � k2

�y2

y1

: (8.38)

In the fit the real parts of the measured and calculated signal normalized to
maximum one were used. Here the results of the minimization (8.36) were chosen
as initial guesses. For a symmetrically detected spin density with y1 D �y2 the
integral can be significantly simplified.

8.4.2 Compensation of the Effects

Compensation of the permanent and transient effects at the time of the echo
signifies:

1. Qm0.tSE/ D 0, i.e., tGE D tSE and
2. no gradient experienced at tSE.

Condition 1 cannot be satisfied by the application of a time-independent read
gradient. Instead the asymptotic amplitude OGC of the pulsed gradient after the rf
refocusing pulse is modified with respect to the amplitude of the first gradient OG�,
see Fig. 8.2 with gradient-pulse scheme (b). Insertion of condition 1 in (8.31) with
the assumption of a simple time shift for the dimensionless function yields

� OG�
Z tSE=2

0

g.t/dt C OG�
Z tSE

tSE=2

g.t/dt C OGC
Z tSE=2

0

g.t/dt D 0: (8.39)

Solving this equation for the corrected second asymptotic amplitude shows that the
relative correction amounts to the ratio of the integral in the second half of the pulse
sequence to the integral in the first half. The first integral is largely dominated by
the ideal value

R ı

0
1dt D ı. Approximating the first integral by this result yields

OGC D OG�
�

1 � 1

ı

Z tSE

tSE=2

g.t/dt

�

: (8.40)
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If the exponential decay (8.33) is assumed solving of the integral leads to

OGC D OG�
�

1 � g0 exp.ı=td/
td

ı

�

exp

�

� tSE=2

td

�

� exp

�

� tSE

td

���

(8.41)

for condition 1.
Condition 2 requires that at time tSE the superposition of all gradients equals

zero. Assuming again a common time function shifted by the gradient separation
condition 2 reads

Gp C Gr C OG�g.tSE/ C OGCg.tSE=2/ D 0: (8.42)

In the exponential approximation condition 2 is fulfilled by application of the read
gradient

Gr D �Gp � g0 exp.ı=td/

�
OG� exp

�

� tSE

td

�

C OGC exp

�

� tSE=2

td

��

(8.43)

with OGC given by (8.41).

8.4.3 Simplified Model

The transcendental equation (8.35) can be solved approximately if the gradient-
echo time is close to the SE time, tGE � tSE. First the third exponential in the
parenthesis is neglected as its negative argument is then approximately twice that of
the other two exponentials. It has to be assumed in addition that the SE time tSE is
much larger than the decay time td. Writing the second exponential as exp.�.tGE �
tSE/=td/ exp.�tSE=.2td// and factorization yields

.Gp C Gr/.tGE � tSE/ C OGg0td exp

�
ı � tSE=2

td

��

2 � exp

�

� tGE � tSE

td

��

D 0:

(8.44)

The remaining exponential with tGE is replaced by the linear approximation for the
case that .tGE � tSE/=td is close to one:

.Gp C Gr/.tGE � tSE/ C OGg0td exp

�
ı � tSE=2

td

��

1 C tGE � tSE

td

�

D 0: (8.45)

Collection of the terms linear in tGE and factorization of the gradient-pulse duration
ı in the term independent of tGE leads to
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�

Gp C Gr C OGg0 exp

�
ı � tSE=2

td

��

.tGE � tSE/ C OGg0

td

ı
exp

�
ı � tSE=2

td

�

ı D 0:

(8.46)
The simplified model (8.46) corresponds to the case in which a modified permanent
gradient

G0
p D Gp C OGg0 exp

�
ı � tSE=2

td

�

(8.47)

exists and in which the second gradient pulse of duration ı has an apparent
amplitude mismatch with respect to the first amplitude of

Gm D OGg0

td

ı
exp

�
ı � tSE=2

td

�

: (8.48)

Consistently, neglecting the first exponential in (8.41) corresponds to the subtraction
of Gm from the amplitude of the second gradient-pulse amplitude. Likewise this
approximation corresponds in (8.43) to the compensation of G0

p. The simplified
equation (8.46) can be solved for tGE or tSE � tGE leading to a hyperbola:

tSE � tGE D ı
Gm

G0
p C Gr

: (8.49)

For each amplitude of the pulsed gradient the unknown quantities Gm and G0
p can

be determined by a fit of (8.49) to experimentally observed echo-time shifts as a
function of read-gradient amplitude.

8.4.4 Comparison of Both Models

The simplified model expressed in the hyperbola (8.49) is phenomenological
if no explanation is provided for the modified permanent gradient G0

p or the
mismatch of the gradient amplitudes Gm. A similar model is already presented
in [1]. The description leading to (8.34) is a physical model in the sense that the
observed effects are explained by the linear superposition of an exponential decay
following each pulsed gradient, the two functions differing only by the time shift of
the gradient pulses.

In the conducted experiments corrections with the results G0
p and Gm of the

simple model (8.49) were sufficient to remove the effects on the echo position
and shape. As to be expected from the assumption tGE � tSE in the derivation the
hyperbola is not a good model for large echo-time shifts, but these are left out from
the fit. Experimental shifts for three different values of the pules-gradient amplitude
are plotted as crosses .C/ in Fig. 8.3. The dashed line represents the fitted hyperbola.
The more complex model (8.35) can be provided with Gp; g0; td obtained from the
minimization. Then the gradient-echo time in this model can be determined by a
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Fig. 8.3 Echo-time shift in the PGMC sequence as a function of read-gradient amplitude. Crosses
(C): experimental results. Dashed line: fit of the simplified model. Solid line: time shift obtained
from the minimization of the more complex model, leading to a close agreement. (a) OG = �0.95
T/m. (b) OG = �0.25 T/m. (c) OG = 0.25 T/m

numerical search for the root in the vicinity of the measured gradient-echo time.4

The agreement of the experimental echo-time shifts with the ones from the more
complex model represented as solid lines in Fig. 8.3 is significantly better than for
the simple model (8.49). However, it has to be noted that the more complex model
is more flexible, having three instead of two parameters.

As corrections using the simple model were sufficient in the studied cases the
questions arise if the more complex model really describes the effects more
accurately and if this model has practical advantages.

Two indications were found that the more complex model provides indeed a
more accurate description. Independent measurements of the permanent gradient
as the ones presented above and below result in a significantly lower value than
the one obtained by the simple model. This is to be expected from (8.47) as the
modified permanent gradient is augmented by contributions of the transient effects.
In addition to the considerations involving only the gradient-echo time the entire
signal predicted by the two models can be compared to the experimental signal.
After determination of the detected spin density the signal is computed using (8.37)
with the effective zeroth moment either from the more complex model (8.34) or
using the modified permanent gradient and apparent gradient-amplitude mismatch
obtained from the simple model. As can be seen from Fig. 8.4 the agreement of
the experimental signal (dots) with the results of the more complex model (solid
line) is better than with the signal computed using the simple model (dashed line).
In particular, the more complex model is capable of reproducing experimentally
observed features such as two gradient echoes, see Fig. 8.4g.

Depending on the accuracy of the more complex model two practical advantages
are given. As the included transient effects are time dependent the three parameters
can be obtained from a single fit to an experimental signal. No variation of the
read gradient Gr is required. In addition the two parameters of the simple model,
i.e., modified permanent gradient and apparent mismatch are valid for a specific

4Here using the “fzero” function of MATLAB R�.
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Fig. 8.4 Signal in the PGMC sequence for different amplitudes of the pulsed gradient and read
gradient. Dots: experimental results. Dashed line: signal calculated with the effective zeroth
moment corresponding to the simplified model. Solid line: fit of the more complex model.
Calculations require the detected spin-density profile as input. Left column: OG = �0.95 T/m.
Central column: OG = �0.25 T/m. Right column: OG = 0.25 T/m. First Row ((a) to (c)): Gr = �3.0
mT/m. Second Row ((d) to (f)): Gr = 0.6 mT/m. Third Row ((g) to (i)): Gr = 2.3 mT/m. Fourth
Row ((j) to (l)): Gr = 4.1 mT/m

combination of tSE and ı. The dependence on these experimental parameters is
included in the expressions (8.41) and (8.43) that determine the compensation in the
more complex model. However, it has to be verified that the parameters Gp; g0; td
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obtained from the minimization or signal fit do not depend on the gradient duration
or separation. If this is not the case assuming a multiexponential decay could provide
a sufficiently accurate description.

8.5 Sequence with Storing Period

A pulse sequence with storing period for the NMR measurement of pulsed gradients
is shown in Fig. 8.5. The rf part starts with a stimulated echo, see also Fig. 4.35, p.
152. It is followed by a SE detection of the stimulated echo. The pulsed gradient G

to be studied acts on the phase of transverse magnetization created by the excitation
pulse during time ı. Half of the magnetization is stored on the z axis by the second rf
pulse which has also nutation angle �=2. It only relaxes by longitudinal relaxation
that can be significantly slower than transverse relaxation. Neither the decay of the
pulsed gradient nor the rising of gradients switched on for the detection period
affect longitudinal magnetization. During the detection period with SE time tSE

constant gradients are used. In the rf part three time scales can be suitably chosen:
the duration of preparation ı, the storing period 	 , and the echo time. In addition,
the amplitude of the constant gradient during detection can be set to an appropriate
value for a precise characterization of the pulsed gradient. The relevant equations of
this method are derived in the following.

For an excitation pulse with B1 in �y direction the initial phase of transverse
magnetization is zero. If the average gradient during the preparation period ı is
denoted as NG the phase before the second rf pulse amounts to

�.y; ı�/ D �
y NGı: (8.50)

The second rf pulse with B1 in y direction rotates the x component of transverse
magnetization back to the z axis. Consequently the longitudinal magnetization after
the second rf pulse has a y dependence due to the preparation with gradient NG and

Fig. 8.5 “EGBERT” sequence. The rf part is a spin-echo (SE) detected stimulated echo (STE).
The pulsed gradient G to be characterized acts on the magnetization phase during time ı between
excitation and storage. This is investigated using a weaker constant gradient in the SE detection
period
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in general due to the y dependence of spin density �.y/:

Mz.y; ıC/ D �.y/ cos.�.y; ı�//: (8.51)

During the storing period 	 inhomogeneities of the magnetic field do not influence
longitudinal magnetization and longitudinal relaxation is neglected. It is assumed
that the remaining transverse magnetization is spoiled during the storing period by
T �

2 relaxation. The detection period in the form of a spin echo starts with the third
�=2 pulse which is chosen as origin of the detection time axis t . With a constant
gradient Gd during detection the magnetization phase after the refocusing � pulse
at tSE=2 reads

�.y; t/ D �
yGd.t � tSE/: (8.52)

In the calculation of the signal according to e.g., (8.37) the spin density with the
modulation given by (8.51) has to be inserted:

MC.t/ D
Z

�.y/ cos.�.y; ı�// exp.i�.y; t// dy: (8.53)

The argument of the cosine is abbreviated by �ı and the argument of the exponential
by i�t . Application of the Euler formula and transformation of the products into
sums yields

MC.t/ D
Z

�.y/

�
1

2
Œcos.�ı C �t / C cos.�ı � �t /�

C i

2
Œsin.�ı C �t/ � sin.�ı � �t/�

	

dy: (8.54)

Insertion of (8.50) and (8.52) produces for the arguments of the trigonometric
functions

�ı ˙ �t D �
yŒ NGı ˙ Gd.t � tSE/�: (8.55)

For a sample with constant spin density � which is symmetric with respect to the
origin y D 0 of the gradient system the integral of the sine functions is zero for
all times. The integral of the cosine functions is maximal if the argument is zero
for all coordinates y. Accordingly two echoes with half height are obtained at the
gradient-echo times

tSE � tGE1 D ı
NG

Gd
(8.56)

and

tSE � tGE2 D �ı
NG

Gd
: (8.57)

The gradient echoes are symmetric with respect to a spin echo. The latter can be
observed as longitudinal magnetization without phase encoding is generated by
longitudinal relaxation during the storage period. Subtracting (8.56) and (8.57) leads
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to the final expression for the gradient-echo time difference which can be determined
accurately in the experiment:

tGE2 � tGE1

2
D ı

NG
Gd

: (8.58)

8.5.1 Determination of Permanent Gradients

The sequence shown in Fig. 8.5 can be used to measure remanent permanent
gradients Gp, as the sequences presented in Sects. 8.2 and 8.4. For this pur-
pose a constant gradient Gc is applied during the entire duration of the exper-
iment, see below. In addition a read gradient Gr is superimposed during the
detection period. It is switched on at the beginning of the storing period 	

so that it has settled when transverse magnetization is generated. Insertion of
NG D Gp C Gc and Gd D Gp C Gc C Gr in (8.58) and solving for Gp

yields

Gp D �ı Gc � .Gc C Gr/.tGE2 � tGE1/=2

ı � .tGE2 � tGE1/=2
: (8.59)

It is assumed that the applied gradients Gc and Gr are known. However, for
the determination of Gp from the above equation the sign of tGE2 � tGE1

has to be known, whereas the experiment yields only the absolute value of
the time difference. According to (8.58) the sign is equal to the sign of
the fraction .Gp C Gc/=.Gp C Gc C Gr/. Thus it can be arranged, e.g.,
by the choice Gc > 0, Gr > 0, and Gc > jGpj that tGE2 � tGE1 is
positive.

8.5.2 Determination of Pulsed Gradients

A further application of the sequence represented in Fig. 8.5 is the characterization
of pulsed gradients with high amplitude. In the simplest case no additional per-
manent gradient is present (or it is compensated by a constant gradient). Then in
the preparation period only the gradient to be studied is active and in the detection
period only the read gradient Gr. If the first gradient G is switched on with a delay

 before the first rf pulse and is expressed as in (8.4) using a dimensionless function
(8.58) results in

NG.
/ D OG 1

ı

Z 
Cı




g.t/dt D tGE2 � tGE1

2ı
Gr: (8.60)
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In order to achieve a good time resolution the preparation time ı should be kept
short, e.g., 25 � s. This is also necessary as otherwise the time shifts according to
(8.58) can become too long to be measured for NG � Gr. In addition short rf pulses
are required to avoid slice selection.

Reference

1. Hrovat MI, Wade CG (1981) NMR pulsed-gradient diffusion measurements.1. Spin-echo
stability and gradient calibration. J Magn Reson 44(1):62–75



Chapter 9
Imaging with an Inhomogeneous Gradient

Usually in imaging experiments it is assumed that the superimposed magnetic field
has a homogeneous gradient, i.e., a linear dependence on the respective spatial coor-
dinate. Deviations from linearity lead to distortions of image intensity and geometry
[1]. In the following it is shown that these distortions can be calculated analytically
for a realistic spatial dependence of the superimposed field.

An inhomogeneous gradient in x direction is considered. The ideal expression
Bz D B0 C Gxx for the superimposed field in (2.26) is replaced by a more realistic
function exhibiting a close to linear dependence in the center and approaching a
constant value outside the central region:

Bz.x/ D B0 C Gxa tan�1.x=a/: (9.1)

The derivative of (9.1) or gradient has the value Gx at x D 0 and fades off to zero
for large jxj. At x D ˙a the gradient has decayed to half of its value in the center,
Gx=2. For the magnetization phase the expression

�.x; t/ D �


Z t

0

Gx.t 0/a tan�1.x=a/ dt 0 (9.2)

D �kxa tan�1.x=a/ (9.3)

is obtained instead of (2.35) and the experimental signal is calculated by

MC.kx/ D
Z

�.x/ expŒ�ikxa tan�1.x=a/�dx (9.4)

instead of (2.38). The integral transform in (9.4) is no longer a Fourier transform
with conjugated variables kx and x. Consequently the inverse Fourier transform
according to (2.39) does not yield the spin density. However, the result of the inverse
Fourier transform can be calculated if (9.4) is expressed as Fourier transform by a
substitution of variable. The new variable is the counterpart of kx in the phase factor.

E.H. Hardy, NMR Methods for the Investigation of Structure and Transport,
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Thus the inner function of the variable transformation is given by

Qx D �.x/ D a tan�1.x=a/: (9.5)

For the chosen function the required derivative

d Qx=dx D �0.x/ D 1

1 C .x=a/2
(9.6)

as well as the inverse function

x D ��1. Qx/ D a tan. Qx=a/ (9.7)

can be calculated analytically. Insertion into (9.4) yields

MC.kx/ D
Z

�.a tan. Qx=a// expŒ�ikx Qx�f1 C tan2. Qx=a/gd Qx: (9.8)

Accordingly inverse Fourier transformation of the measured signal produces
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Fig. 9.1 Result of imaging with an inhomogeneous gradient according to (9.1). For the observed
spin density the common case of a homogeneous spin density in a cylinder with radius R projected
on a direction perpendicular to the tube axis is chosen. Points: ideal gradient. Dashed line: a D 2R.
Dash-dotted line: a D 1:25R
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�.a tan. Qx=a//f1 C tan2. Qx=a/g: (9.9)

The spin density as function of Qx appears compressed as for Qx 2 Œ�a�=2 a�=2� the
argument of the spin density covers the entire interval Œ�1 1�. Additionally the
apparent spin density is increasingly exaggerated outside the center.

Examples of distortions for a simple spin density and different values of a are
shown in Fig. 9.1. The observed spin density corresponds to the common case of a
homogeneous spin density in a circular tube with radius R projected on a direction
perpendicular to the tube axis:

�.x/ D c
p

R2 � x2 : (9.10)

The constant c is the value of the spin density in the 2D case. Imaging with the
assumed inhomogeneous gradient produces the result

Q�. Qx/ D c

q
R2 � a2 tan2. Qx=a/f1 C tan2. Qx=a/g: (9.11)

Reference
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delberg, New York
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