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Preface

This is one of two volumes that contain papers accepted for ICIAR 2011, the In-
ternational Conference on Image Analysis and Recognition, held at Simon Fraser
University, Burnaby, BC, Canada, June 22–24, 2011. This was the eighth edition
in the ICIAR series of annual conferences alternating between Europe and North
America. The idea of organizing these conferences was to foster collaboration and
exchange between researchers and scientists in the broad fields of image analysis
and pattern recognition, addressing recent advances in theory, methodology and
applications. ICIAR was organized at the same time with AIS 2011, the Inter-
national Conference on Autonomous and Intelligent Systems. Both conferences
were organized by AIMI – Association for Image and Machine Intelligence—a
not-for-profit organization registered in Ontario, Canada.

For ICIAR 2011, we received a total of 147 full papers from 37 countries.
The review process was carried out by members of the Program Committee and
other reviewers; all are experts in various image analysis and pattern recognition
areas. Each paper was reviewed by at least two reviewers and checked by the
Conference Chairs. A total of 84 papers were finally accepted and appear in the
two volumes of these proceedings. The high quality of the papers is attributed
first to the authors, and second to the quality of the reviews provided by the
experts. We would like to sincerely thank the authors for responding to our call,
and to thank the reviewers for their careful evaluation and feedback provided
to the authors. It is this collective effort that resulted in the strong conference
program and high-quality proceedings.

This year ICIAR had a competition on “Hand Geometric Points Detection,”
which attracted the attention of participants.

We were very pleased to be able to include in the conference program keynote
talks by well-known experts: Toshio Fukuda, Nagoya University, Japan; William
A. Gruver, Simon Fraser University, Canada; Ze-Nian Li, Simon Fraser Univer-
sity, Canada; Andrew Sixsmith, Simon Fraser University, Canada; and Patrick
Wang, Northeastern University Boston, USA. We would like to express our sin-
cere gratitude to the keynote speakers for accepting our invitation to share their
vision and recent advances in their specialized areas.

Special thanks are also due to Jie Liang, Chair of the local Organizing Com-
mittee, and members of the committee for their advice and help. We are thankful
for the support and facilities provided by Simon Fraser University. We are also
grateful to Springer’s editorial staff for supporting this publication in the LNCS
series.

We would like to thank Khaled Hammouda, the webmaster of the conference,
for maintaining the Web pages, interacting with the authors and preparing the
proceedings.



VI Preface

Finally, we were very pleased to welcome all the participants to ICIAR 2011.
For those who did not attend, we hope this publication provides a good view of
the research presented at the conference, and we look forward to meeting you at
the next ICIAR conference.

June 2011 Mohamed Kamel
Aurélio Campilho
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F. Guibault École Polytechnique de Montréal, Canada
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Abstract. Video denoising is highly desirable in many real world ap-
plications. It can enhance the perceived quality of video signals, and can
also help improve the performance of subsequent processes such as com-
pression, segmentation, and object recognition. In this paper, we propose
a method to enhance existing video denoising algorithms by denoising a
video signal from multiple views (front-, top-, and side-views). A fusion
scheme is then proposed to optimally combine the denoised videos from
multiple views into one. We show that such a conceptually simple and
easy-to-use strategy, which we call multiple view fusion (MVF), leads
to a computationally efficient algorithm that can significantly improve
video denoising results upon state-of-the-art algorithms. The effect is es-
pecially strong at high noise levels, where the gain over the best video
denoising results reported in the literature, can be as high as 2-3 dB
in PSNR. Significant visual quality enhancement is also observed and
evidenced by improvement in terms of SSIM evaluations.

Keywords: video denoising, image quality enhancement, image fusion,
multiple views.

1 Introduction

Digital video or image sequence has become ubiquitous in our everyday lives. It
is critically important to maintain the quality of video at an acceptable level
in various application environments such as network visual communications.
However, video signals are subject to noise contaminations during acquisition
and transmission. Effective video denoising algorithms that can remove or reduce
the noise is often desired. They not only supply video signals that have better
perceptual quality, but also help improve the performance of the subsequent
processes such as compression, segmentation, resizing, de-interlacing, and object
detection, recognition, and tracking [1].

Existing video denoising algorithms may be roughly classified into three cat-
egories. In the first category, the video signal is denoised on a frame-by-frame
basis, where all that is needed is a 2D still image denoising algorithm applied to
each frame of the video sequence independently. Well-known and state-of-the-art
still image denoising algorithms include the Matlab Wiener2D function, Bayes

M. Kamel and A. Campilho (Eds.): ICIAR 2011, Part I, LNCS 6753, pp. 1–10, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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least square estimation based on Gaussian scale mixture model (BLS-GSM) [2],
nonlocal means denoising (NLM) [3], K-SVD method [4], Stein’s unbiased risk
estimator-linear expansion of threshold algorithm(SURE-LET) [5], and block
matching and 3D transform shrinkage method (BM3D) [6]. For the purpose of
video denoising, the major advantage of these approaches is memory efficiency,
as no storage of previous frames are necessary in order to denoise the current
frame. However, since the correlation between neighboring frames is completely
ignored, the denoising process does not make use of all available information and
thus cannot achieve the best denoising performance.

In natural video signals, there exists strong correlation between adjacent
frames. The second category of video denoising approaches exploited such cor-
relation by incorporating both intra- and inter-frame information. It was found
that motion estimation and compensation could further enhance inter-frame cor-
relation [7,8,9]. In [7], a motion estimation algorithm was employed for recursive
temporal denoising along estimated motion trajectory. Motion compensation
processes had also been incorporated into BLS-GSM and SURE-LET meth-
ods, leading to the ST-GSM [8] and video SURE-LET algorithms [9]. In [10],
it was claimed that finding single motion trajectory may not be the best choice
for video denoising. Instead, multiple similar patches in neighboring frames are
found that may not reside along a single trajectory. This is followed by transform
and shrinkage based denoising procedures. Perhaps one of the most successful
video denoising methods in recent years is the extension of BM3D method for
video, namely VBM3D [11], which searches similar patches in both intra- and
inter-frames and uses 3D bilateral filtering for noise removal after aggregating
the similar patches together.

The third category of denoising algorithms treat video sequences as 3D vol-
umes. The algorithms can operate in the space-time domain by adaptive weighted
local averaging [12], 3D order-statistic filtering [13], 3D Kalman filtering [14], or
3D Markov model based filtering [15]. They may also be applied in 3D transform
domain, where soft/hard thresholding or Bayesian estimation are employed to
eliminate noise, followed by an inverse 3D transform that brings the signal back
to the space-time domain. The method in [16] is one such example, where 3D
dual-tree complex wavelet transform was employed that demonstrates some in-
teresting and desired properties. Recently, several authors investigated 3D-patch
based methods and achieved highly competitive denoising performance [17, 18].

Ideally, to make the best use of all available information, the best video denois-
ing algorithms would need to operate in 3D (Category 3). However, when there
exists significant motion in the video, direct space-time 3D filtering or 3D trans-
form based approaches are difficult to effectively cover all motion-related video
content within local region. Meanwhile, 3D-patch based methods are expensive
in finding similar 3D-patches in the 3D volume. By contrast, 2D denoising algo-
rithms that use intra- and/or inter-frame information (Categories 1 and 2) can
be made much more efficient, but their performance is restricted by not fully
making use of the neighboring pixels in all three dimensions simultaneously.
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(a) (c)(b)

Fig. 1. A video signal observed from (a) front view; (b) side view; and (c) top view

In this paper, we propose a simple strategy, called multiple view fusion (MVF),
that provides a useful compromise between 2D (Categories 1 and 2) and 3D (Cat-
egory 3) approaches. In particular, we denoise the same video volume data with
2D approaches but from three different views, i.e., front view, top view, and side
view. An optimal fusion scheme is then employed to combine the three denoised
versions of the video. By doing so, the advantage of 2D denoising methods is
utilized. Meanwhile, each pixel is denoised by its neighboring pixels from all
three dimensions. We show that this simple strategy leads to significant gain of
video denoising performance over different base denoising algorithms, especially
at high noise levels.

2 Proposed Method

A video signal can be expressed as a 3D function f(u, v, t), where u and v are
the horizontal and vertical spatial indices and t is the time index, respectively.
A video is typically played along the time axis. At any time instance t = t0,
the video is displayed as a 2D front-view image g(t0)

FV (u, v) = f(u, v, t0) and the
image changes over time t. If we think of a video signal as 3D volume data, then
it can also be viewed from the side or the top. This gives two other ways to
play the same video − a sequence of 2D top-view images g(u0)

TV (v, t) = f(u0, v, t)
for different values of u0 and a sequence of 2D side-view images g(v0)

SV (u, t) =
f(u, v0, t) for different values of v0. An example is given in Fig. 1, where the rarely
observed side- and top-view images demonstrate some interesting regularized
spatiotemporal structures.

Let x be an original noise-free video signal, which is contaminated by additive
noise n, resulting in a noisy signal

y = x+ n . (1)

A video denoising operator D takes the noisy observation y and maps it to an
estimator of x:

x̂ = D(y) , (2)

such that the difference between x and x̂ is as small as possible. How to quantify
the difference between x and x̂ is another subject of study. The most typically
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used ones are the mean squared error (MSE) and equivalently the peak-signal-
to-noise ratio (PSNR). However, recent studies showed that the structural simi-
larity index (SSIM) [19] may be a better measure in predicting perceived image
distortion.

The proposed MVF method relies on a base video denoising algorithm (which
could be as simple as frame-by-frame Winer2D, or as complicated as VBM3D
[11]). The base denoiser is applied to the same noisy signal y multiple times but
from different views, which gives multiple versions of denoised signal

z1 = D1(y) ,
z2 = D2(y) ,
...... ,

zN = DN(y) . (3)

In this paper N = 3, as we have three different views, but in principle the general
approach also applies to the cases of less or more views, or multiple denoising
algorithms. Let z = [z1, z2, ..., zN ]T be a vector that contains all denoised results,
then the final denoised signal x̂ is given by applying a fusion operator F to z:

x̂ = D(y) = F (z) = F (D1(y), D2(y), ..., DN (y)) . (4)

In the case that the base denoisers are predetermined, all the remaining task is
to define the fusion rule F , which would be desired to achieve certain optimality.
Here we employ a weighted average fusion method given by

x̂ = wT (z− μz) + μx , (5)

where μx = E(x) (we use E to denote the expectation operator), μz is a column
vector of expected values [E(z1),E(z2), ...,E(zN )]T , and w is a column vector
[w1, w2, ...wN ]T that defines the weight assigned to each denoised signal. To find
the optimal weights w in the least-square sense, we define the following error
energy function

E = E[(x − x̂)2] + λ‖w− 1
N

1‖2 , (6)

where 1 is a length-N column vector with all entries equaling 1. The second term
is to regularize the weighting vector towards all equal weights, and the parameter
λ is used to control the strength of regularization. Taking the derivative of E
with respect to w and setting it zero, we obtain

(Cz + λI)w = b +
λ

N
1 , (7)

where I denotes the N ×N identity matrix, Cz is the covariance matrix

Cz = E[(z − μz)(z − μz)
T ] , (8)

and b is a column vector given by

b = E[(x − μx)(z− μz)] . (9)
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We can then solve for optimal w, which gives

wopt = (Cz + λI)−1

(
b +

λ

N
1
)
. (10)

Here the λI term plays an important role in stabilizing the solution, especially
when Cz is close to singular. The computation of b requires the original signal
x, which is not available. But by assuming n to be zero-mean and independent
of z, we have

b = E[(y − n− μx)(z − μz)] = E[(y − μy)(z− μz)] . (11)

When applying the above approach to real signals, the expectation operators
would need to be replaced by sample means. In our implementation, we apply
the weight calculation to individual non-overlapping 8×8×8 blocks, resulting in
block-wise space-time adaptive weights in the 3D volume. Eq. (5) is then applied
to each block to obtain the final denoised signal.

3 Experimental Result

We use publicly available video sequences to test the proposed algorithm, which
include “Akiyo”, “Carphone”, “Forman”, “Miss America”, “News”, and “Sales-
man”. The size of all sequences is 144× 176× 144. Independent white Gaussian
noise was added to the original video sequences, where the noise standard devi-
ation, σ, covers a wide range between 10 and 100. All sequences are in YCrCb
4:2:0 format, but only the denoising results of the luma channel was reported here
to validate the algorithm. Two objective criteria, namely PSNR and SSIM [19],
were employed to evaluate the quality of denoised video quantitatively. PSNR
is the most widely used method in the literature, but SSIM has been recognized
as a much better measure to predict subjective quality measurement.

Many state-of-the-art denoising algorithms are publicly available that facil-
itate direct comparisons. Due to space limit, here we report our comparison
results for 5 noise levels (σ equals 10, 15, 20, 50, and 100, respectively) using
three base denoising methods with and without using our MVF approach. The
base algorithms are Matlab Wiener2D, BLS-GSM [2] and VBM3D [11]. We have
also applied our MVF approach to a list of other highly competitive algorithms,
including NLM [10], K-SVD [4], and SURE-LET [9]. Similar results were ob-
tained but are not reported here.

Table 1 shows the comparison results using PSNR and SSIM measures, which
were computed frame-by-frame and then averaged over all frames. It can be seen
that the proposed MVF approach consistently leads to performance gain over
all base denoising algorithms, for all test video sequences, and at all noise levels.
The gain is especially significant at high noise levels, where the improvement can
be as high as 2-3 dB in terms of PSNR over state-of-the-art algorithms such as
VBM3D, which is among the best algorithms ever reported in the literature. To
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Table 1. PSNR and SSIM comparisons for three video denoising algorithms with and
without MVF

Video Sequence Akiyo Carphone

Noise std (σ) 10 15 20 50 100 10 15 20 50 100

PSNR Results (dB)

Wiener-2D 33.22 30.38 28.33 21.58 15.94 32.66 29.84 27.86 21.35 15.86
with MVF 34.69 31.91 29.89 23.15 17.52 33.90 31.20 29.29 22.87 17.42

BLG-GSM 36.12 33.73 32.09 27.32 24.36 35.34 33.00 31.40 26.47 23.15
with MVF 39.95 37.58 35.88 30.78 27.43 37.01 34.92 33.50 29.02 25.81

VBM3D 42.01 39.76 37.91 30.79 24.39 38.50 36.64 35.35 29.82 23.30
with MVF 42.33 40.08 38.36 32.64 26.93 38.50 36.71 35.46 30.97 25.76

SSIM Results

Wiener-2D 0.876 0.788 0.700 0.364 0.164 0.885 0.803 0.722 0.408 0.205
with MVF 0.906 0.833 0.757 0.432 0.213 0.909 0.840 0.771 0.472 0.255

BLG-GSM 0.952 0.924 0.898 0.765 0.636 0.951 0.927 0.902 0.773 0.627
with MVF 0.977 0.964 0.949 0.866 0.749 0.964 0.947 0.930 0.839 0.718

VBM3D 0.983 0.976 0.965 0.874 0.616 0.972 0.961 0.951 0.874 0.628
with MVF 0.986 0.978 0.967 0.903 0.684 0.972 0.961 0.952 0.892 0.691

Video Sequence Foreman Miss America

PSNR Results (dB)

Wiener-2D 32.22 29.49 27.55 21.17 15.77 34.36 31.35 29.17 21.91 16.07
with MVF 33.11 30.53 28.70 22.59 17.30 35.74 32.80 30.67 23.47 17.65

BLG-GSM 34.22 31.92 30.32 25.44 22.21 38.69 36.54 35.09 30.61 27.52
with MVF 35.83 33.65 32.12 27.36 24.05 41.03 38.99 37.59 33.16 30.02

VBM3D 37.37 35.50 34.12 28.47 22.46 41.93 40.19 38.81 33.55 26.57
with MVF 37.68 35.80 34.44 29.28 24.14 42.34 40.57 39.24 34.69 28.93

SSIM Results

Wiener-2D 0.887 0.812 0.738 0.432 0.220 0.848 0.737 0.633 0.275 0.107
with MVF 0.906 0.843 0.778 0.488 0.267 0.879 0.785 0.692 0.331 0.138

BLG-GSM 0.938 0.910 0.884 0.746 0.591 0.958 0.939 0.922 0.841 0.751
with MVF 0.952 0.930 0.908 0.792 0.646 0.972 0.960 0.948 0.884 0.791

VBM3D 0.961 0.947 0.933 0.844 0.601 0.976 0.968 0.959 0.901 0.669
with MVF 0.962 0.948 0.934 0.857 0.643 0.978 0.970 0.962 0.915 0.685

Video Sequence News Salesman

PSNR Results (dB)

Wiener-2D 31.95 29.11 27.14 20.83 15.65 31.48 28.97 27.23 21.28 15.90
with MVF 33.34 30.58 28.66 22.44 17.26 33.07 30.65 28.94 22.92 17.50

BLG-GSM 34.34 31.86 30.11 24.90 21.42 33.16 30.89 29.37 25.35 23.01
with MVF 37.72 35.30 33.57 28.22 24.58 36.82 34.43 32.82 28.34 25.71

VBM3D 39.76 37.47 35.73 28.50 21.69 38.93 36.49 34.57 27.92 23.18
with MVF 40.04 37.73 36.06 30.18 24.67 39.27 36.84 35.06 29.58 25.52

SSIM Results

Wiener-2D 0.887 0.807 0.731 0.431 0.231 0.876 0.798 0.724 0.415 0.194
with MVF 0.915 0.851 0.787 0.503 0.292 0.912 0.854 0.796 0.511 0.265

BLG-GSM 0.950 0.923 0.894 0.737 0.564 0.908 0.854 0.804 0.613 0.478
with MVF 0.973 0.958 0.942 0.844 0.712 0.958 0.930 0.902 0.769 0.643

VBM3D 0.981 0.971 0.960 0.860 0.581 0.975 0.956 0.929 0.739 0.488
with MVF 0.982 0.973 0.963 0.895 0.684 0.976 0.958 0.936 0.803 0.618
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demonstrate the performance improvement for individual video frames, Fig. 2
depicts PSNR and SSIM comparisons as functions of frame number for “Fore-
man” sequence. Again, consistent improvement is observed for almost all frames,
indicating the robustness of the proposed MVF approach.

Figure 3 provides visual comparisons of the denosing results of one frame
extracted from the “Salesman” sequence. For each denoised frame, the SSIM
quality map is also given, where brighter pixels indicate higher SSIM values
and thus better quality. Visual quality improvement by the proposed MVF ap-
proach can be perceived in various locations in the denoised frames, for example,
the bookshelf region. Such improvement is also clearly indicated by the SSIM
maps.

0 10 20 30 40 50 60 70 80 90 100 110 120130 140 15027.5

28

28.5

29

29.5

30

30.5

31

Index of Frames

PS
N

R

 

 

VBM3D
MV-VBM3D

0 10 20 30 40 50 60 70 80 90 100 110 120130 140 15024.5

25

25.5

26

26.5

27

27.5

28

28.5

29

Index of Frames

PS
N

R

 

 
BLS-GSM
MV-BLS-GSM

0 10 20 30 40 50 60 70 80 90 100 110 120130 140 1500.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

Index of Frames

SS
IM

 

 

VBM3D
MV-VBM3D

0 10 20 30 40 50 60 70 80 90 100 110 120130 140 1500.72

0.74

0.76

0.78

0.8

0.82

0.84

Index of Frames

SS
IM

 

 
BLS-GSM
MV-BLS-GSM

0 10 20 30 40 50 60 70 80 90 100 110 120130 140 15020.5

21

21.5

22

22.5

23

23.5

24

24.5

25

Index of Frames

PS
N

R

 

 

Wiener-2D
MV-Wiener-2D

0 10 20 30 40 50 60 70 80 90 100 110 120130 140 150

0.4

0.45

0.5

0.55

Index of Frames

SS
IM

 

 

Wiener-2D
MV-Wiener-2DWith MVFWith MVF

With MVF With MVF

With MVFWith MVF

Fig. 2. PSNR and SSIM comparisons as functions of frame number for “Foreman”
sequence. Noise level σ = 50



8 K. Zeng and Z. Wang

(b)(a)

(e3)

(e4)

(c3)

(c4)

(e1)

(e2)

(c1)

(c2)

(d1)

(d2)

(d3)

Fig. 3. (a): One frame extracted from original “Salesman” sequence; (b): Correspond-
ing noisy frame with σ = 50; (c1) to (e1): Wiener2D, BLS-GSM, and VBM3D denoised
frames; (c2) to (e2): Wiener2D, BLS-GSM, and VBM3D denoised frames with optimal
MVF; (c3) to (e3): SSIM quality maps for (c1) to (e1); (c4) to (e4): SSIM quality maps
for (c2) to (e2)
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4 Conclusion

We propose an MVF approach that can improve video denoising performance
of existing algorithms by fusing the denoising results from multiple views. Our
experimental results demonstrate consistent improvement over some of the best
video denoising algorithms in the literature. The proposed method is concep-
tually simple, easy-to-use, and computationally efficient. The complexity of the
whole algorithm mainly depends on that of the base denoising method, but not
the MVF procedure. In principle, the MVF strategy could be applied to any
existing video denoising algorithm, but our major intension here is to apply it
to 2D approaches (Categories 1 and 2 described in Section 1). The reason is
that the denoising results obtained by applying 2D approaches from different
views tend to be complementary to each other. By contrast, 3D approaches
(Category 3) such as those using 3D patches have already considered the depen-
dencies between neighboring pixels from all directions, and thus applying them
from different views may lead to similar results that would not complement each
other to a significant extent.

The video denoising performance may be further improved by adopting better
base denoising algorithms or by improving the fusion method. One could also
attempt to fuse the denoising results not only from multiple views but also
by multiple algorithms. It is also interesting to look into novel algorithms for
denoising from side- and top-views, where we have observed special regularities
(that are quite different from what has been observed from front-view) that are
worth deeper investigations.
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Abstract. Example-based super-resolution has become increasingly
popular over the last few years for its ability to overcome the limita-
tions of classical multi-frame approach. In this paper we present a new
example-based method that uses the input low-resolution image itself
as a search space for high-resolution patches by exploiting self-similarity
across different resolution scales. Found examples are combined in a high-
resolution image by the means of Markov Random Field modelling that
forces their global agreement. Additionally, we apply back-projection and
steering kernel regression as post-processing techniques. In this way, we
are able to produce sharp and artefact-free results that are comparable or
better than standard interpolation and state-of-the-art super-resolution
techniques.

Keywords: Super-resolution, self-similarities, Markov Random Field,
kernel regression.

1 Introduction

Super-resolution (SR) plays an important role in image processing applications
nowadays due to the huge amount of low resolution video and image mate-
rial. Low resolution is a consequence of using low-cost imaging sensors for im-
age/video acquisition, such as webcams, cell phones and surveillance cameras.
Furthermore, the increasing popularity of HDTV makes the SR methods neces-
sary for resolution enhancement of NTSC and PAL recordings.

The task of SR is to infer a high-resolution image from one or more low res-
olution images. Among many SR techniques, two approaches can be identified:
classical and example-based approach. Classical SR methods attempt to recon-
struct a high-resolution (HR) image from a sequence of degraded low-resolution
(LR) images taken from the same scene at sub-pixel shifts [1,2]. Each output
pixel is related to one or more input pixels by the acquisition or degradation
model. If there is an insufficient number of LR images, prior knowledge can be
used as an additional source of information. Classical SR in practice, however,
is limited to the the magnification factor smaller than two [4]. Example-based
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SR is able to overcome this limitation. The goal of the example-based approach
[3,4] is to fill in the missing high frequencies by searching for highly similar
patches in the external database that also contains high-resolution information.
The method actually consists of two steps: a learning and a reconstruction step.
The former involves searching for k nearest neighbours in the database for each
LR patch of the input image, while the latter combines the corresponding HR
patches of those nearest neighbours to form the HR image.

A problem with example-based methods is that they involve storing and
searching large databases. Searching the database can be avoided by using it
only to learn the interpolation functions [5,6], but still this external database
is necessary. Additionally, it is not guaranteed that the database contains the
true high-resolution details which may cause the so called “hallucination” effect.
Furthermore, this database needs to be large enough to provide good results
which makes learning or searching computationally more demanding.

A solution to the previously mentioned problems is to use the LR input image
itself as a search space in the learning phase, as implied originally in [3]. Based
on this idea, several single image super-resolution techniques have been devel-
oped [7,8]. In [8], all examples are obtained by searching for nearest neighbours
within the Gaussian pyramid of the input LR image. This example-based part
is combined with the classical SR approach to yield an HR image with an arbi-
trary magnification factor. The use of a single image is justified by the level of
patch redundancy within the same scale and across different levels of Gaussian
pyramid. Following this reasoning, we have also developed a single-image super-
resolution algorithm that, in addition to these non-local similarities within and
across scales, uses sparsity constraints to perform image super-resolution [9].

In this paper we propose a novel single image example-based super-resolution
algorithm which combines the learning phase of [8] by searching for examples
within the Gaussian pyramid of the input image itself and the reconstruction
phase of [3], which uses the Markov Random Field (MRF) model to reconstruct
the HR image. The main benefit of such learning approach is that no external
database is required which results in faster search and absence of “hallucination”
effect (when compared with [3]). On the other hand, using MRF in the recon-
struction enables us to stay in the example-based domain without combining it
with classical SR as in [8]. There are a few advantages to this in comparison
with [8]. First of all, we can use only one level of the pyramid as the search
space whose sub-sampling factor corresponds to the magnification factor instead
of multiple levels with non-integer sub-sampling factor and, thus, again decrease
the computation time. Second, we reconstruct only the HR image of the de-
sired resolution rather than employing course-to-fine reconstruction of images
at intermediate resolutions. Finally, we avoid sub-pixel registration which often
causes inaccurate results.

Another contribution of this paper is that we show that a simpler and faster
method can be used for inference in MRF instead of belief propagation used
originally in [3]. We use our method from [10] called neighbourhood-consensus
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Fig. 1. The proposed single-image example-based super-resolution method

message passing. Our results of the complete algorithm on different test im-
ages demonstrate a comparable or better performance than state-of-the-art SR
techniques.

This paper is organized as follows. Sec. 2 describes our method for single
image example-based SR, where Sec. 2.1 explains in more details the learning
phase and Sec. 2.2 the reconstruction phase. Finally, we present and discuss the
experimental results in Sec. 3 and we give our conclusion in Sec. 4.

2 Proposed Single Image Example-Based Method

We propose a single-image example-based super-resolution method which uses
MRF to model the HR image as a collection of overlapping HR patches whose
possible candidates are obtained from the input LR image itself. The algo-
rithm can be divided into three main phases: learning, reconstruction and post-
processing (see Fig. 1). In the learning phase, we find candidate patches of
each unknown HR patch by first searching for k nearest neighbours of its corre-
sponding known LR patch from the input image. This search exploits the patch
redundancy across different scales of the Gaussian pyramid. We then extract
the HR pairs of the found neighbours (called “parent” patches) from the input
image and we use them as candidate patches for corresponding locations in the
HR image, because we assume that the LR and HR patches are related in the
same way across different scales. What follows is the reconstruction phase, which
models the HR image as a MRF and performs inference on this model. MRF
model has a great advantage over the simpler alternative, i.e. choosing the best
match at each location, as we will demonstrate shortly.

Finally, we apply post-processing techniques to eliminate remaining artefacts.
We use back-projection [1] to ensure the consistency of the HR result with the
input LR image. In case of a small input image and high magnification factor,
the search space may become too small for good matches to be found. This
will result in visible artefacts so we also use steering kernel regression [11] that
produces a smooth and artefact-free image while still preserving edges, ridges
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Fig. 2. An illustration of the process of learning candidate patches

and blobs. Post-processing together with MRF modelling allows us to obtain
competitive SR result even with only having LR image as the algorithm’s input.

In the remaining of this section we will describe in details the learning and
reconstruction phase.

2.1 Learning Candidate Patches

In this section we will explain how to use the single input image to obtain
candidate patches. We use the example-based part of the algorithm from [8] in
the sense that we search for similar patches within the Gaussian pyramid and
use their “parent” HR patches for further reconstruction. However, our approach
differs in the reconstruction step which enables us to perform simplified and
faster search. Specifically, we search in only one level of the Gaussian pyramid
whose sub-sampling factor is equal to the magnification factor for the reasons
that will be explained shortly.

We start from the LR input image I0 which is then blurred and sub-sampled
with the integer factor s to yield the lower level of the Gaussian pyramid I−s. The
final goal is to reconstruct the image with a resolution that is s times higher than
the original resolution. We will denote this HR image with H = Is. The image
I−s will serve as a search space for matches of each patch from the image I0. In
details, the search and matching process has the following course, as illustrated
in Fig. 2. For each pixel p ∈ I0, where p = (x, y) actually represents coordinates
of the pixel in the image grid, we take its surrounding patch op (denoted by L on
Fig. 2) and search for its k nearest neighbours (kNNs) in the image I−s. Those
neighbours are the patches that have the lowest sum of squared differences with
op. Once kNNs yn

p , n = 1, .., k, are found, their “parent” patches xn
p , n = 1, .., k,

(denoted by P on Fig. 2) are extracted from the given image I0.
The “parent” patch represents a HR component of the HR-LR pair, where

LR component is the LR patch. If the location of the central pixel of the LR
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Fig. 3. MRF model: xp are unknown HR patches and yp measured LR patches

patch yn
p (found kNN) is p̃ ∈ I−s, then the location of the central pixel of the

“parent” patch xn
p is sp̃ ∈ I0 and its size is s times the size of the LR patch.

These parent patches can now serve as candidate patches for each location sp
in the HR image H which corresponds to the starting location p in the input
LR image I0. This is the reason for the same value s of the magnification and
sub-sampling factor.

2.2 High-Resolution Image Reconstruction

After the algorithm described in the previous subsection, we have k candidate
patches xn

p , n = 1, .., k, for each location sp ∈ H . These locations correspond
to starting locations p ∈ I0 so we will refer to them with the index p. They
are s pixels apart from each other in each direction in the HR grid. The naive
approach would be to choose the best match, i.e. the nearest neighbour, at each
location. Since the neighbouring patches will normally overlap, we can simply
take the average in the overlap region. Although this solution could speed up the
search process (because we only search for one nearest neighbour), the resulting
image will have visible artefacts (Fig. 4).

Instead of just choosing the HR patch based on its agreement with the avail-
able data (the input image), we can take into account the relationship that
inevitably exists between neighbouring locations in H in the sense that neigh-
bouring patches should agree in the overlap region. This means that the sum of
squared differences in the overlap region is minimal. Furthermore, we would like
to observe the image as a whole rather than a collection of local assumptions.
In this respect, we can formulate the choice of patches as a global optimization
problem over the whole HR image by using the MRF framework [12]. For this
purpose, we adopt the concept of [3] with a few major differences. First of all,
our candidate patches are obtained from the input image itself, without using
an external database. Moreover, they consist of raw pixel values instead of high
frequency details so there is no need for preprocessing of the search space. Fi-
nally, we use our inference method for optimization which is simpler and faster
than loopy belief propagation (LBP) [13] which was originally used.

Specifically, we model H as an undirected graph (Fig. 3) whose hidden nodes,
indexed by p, represent the overlapping HR patches in the HR image that can
take one of the values from the set {xp}. Each hidden node is connected to the
observed node (measured data) which is the LR patch op around pixel p ∈ I0 .
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To completely define MRF model we still have to define compatibility func-
tions between observed and hidden nodes (so called local evidence) and neigh-
bouring hidden nodes. The former determines how much the unknown data
agrees with measured data and the latter encodes prior information on the dis-
tribution of the unknown image. Local evidence is taken to be the Gaussian
function of the matching error, i.e. sum of squared differences, between starting
LR patch op and found k nearest neighbours yn

p :

φp(yn
p , op) = exp(−‖yn

p − op‖2/2σ2
R), (1)

Compatibility between neighbouring hidden nodes is the Gaussian function
of the matching error in the region of overlap ROV of two neighbouring HR
patches:

ψp,q(xn
p , x

m
q ) = exp(−‖ROVn

q,p − ROVm
p,q‖2/2σ2

N ). (2)

σR and σN are the noise covariances which represent the difference between
some “ideal” training samples and our image and training samples, respectively.
Now, we have to choose one patch from the candidate set at each node that best
fits the above constraints over the whole graph. This can be achieved by finding
maximum a posteriori (MAP) estimates:

Ĥ = x̂ = arg max
x

P (x|I0) (3)

P (x|I0) ∝
∏
p,q

ψp,q(xn
p , x

m
q )

∏
p

φp(yn
p , op), (4)

where φp is defined in equation 1 and ψp,q in equation 2. This is generally
a difficult problem to be solved exactly, but there is a number of approximate
inference algorithms that can yield an approximate solution. We use our inference
method called neighbourhood-consensus message passing (NCMP) [10] which is
simpler and and faster than LBP while the results are qualitatively very similar.
Comparison of different approaches for HR image reconstruction is shown in

Fig. 4. Cropped version of zebra image 2x magnification. From left to right: best match
result, MRF result with LBP as inference method, MRF result with NCMP as inference
method.
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Fig. 4. On the left we see the result of the best match approach which has a lot
of artefacts due to its greedy nature. Using a MRF model produces much better
result even if we use a simple inference method like NCMP (right image).

3 Experimental Results

We tested our method on several images and compared it to the standard in-
terpolation technique, like bi-cubic interpolation, and state-of-the-art SR tech-
niques from [8], which is another single-image SR method, and [14], which uses
a parametric learned edge model. In all experiments the LR patch size was 3x3
and HR patch size 3sx3s, while parameters of MRF compatibility functions σR

and σN slightly varied over different images. The number of nearest neighbours
was k = 10.

In the first experiment, we demonstrate the effectiveness of our technique for
sufficiently large search space. Fig. 5 shows the castle image and the results of our
super-resolution algorithm with the magnification s = 2. It can be seen that the

Fig. 5. Cropped castle image 2x magnification. From left to right and top to bottom: bi-
cubic interpolation, MRF result, MRF with back-projection, MRF with back-projection
and kernel regression.
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Fig. 6. Cropped version of man image 2x magnification. From left to right: bi-cubic
result, result of [14], result of the proposed method.

output of the MRF, without any post-processing, gives already reasonably good
results. For example, all edges are sharp without “jaggy” artefacts which are
visible in the result of bi-cubic interpolation. Back-projection further improves
the result by eliminating artefacts and enhancing textures (e.g. texture on the
roof). Finally, kernel regression only slightly smooths the image and can even
be left out as a post-processing step in this case.

Table 1. RMSE and SSIM comparison of our method and bi-cubic interpolation result

norm. RMSE SSIM

Image Our Bi-cubic Our Bi-cubic

Zebras 0.3589 0.3948 0.9097 0.9043

Skyscraper 0.2573 0.2789 0.9275 0.9163

Butterfly 0.1371 0.1484 0.9572 0.9564

We also compare our result with two state-of-the-art methods from [8] and
[14]. In Fig. 6 we can see that the proposed method eliminates “jaggies” along
the lines present in the results of reference methods, e.g. lines on the collar of
the sweater. Our method also outperforms reference methods for higher mag-
nification factor, as shown in Fig. 7. It manages to produce the sharpest lines
without “jaggy” or “ghosting” artefacts that are present in the results of [8] and
[14], while keeping the result visually pleasing. Both results were obtained with
the input LR image of the small size. We believe that the difference would be
even more significant for bigger input images.

In Table 1 we give quantitative results of a few images from Berkeley seg-
mentation database1. We calculated the root mean square error (RMSE) and
structure similarity index (SSIM) [15] between our super-resolution/bi-cubic in-
terpolation result and ground truth. Our method produces smaller error and
1 eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench
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Fig. 7. Cropped version of chip image 4x magnification. Top-left: bi-cubic result. Top-
right: result of [14]. Bottom-left: result of [8]. Bottom-right: result of the proposed
method.

higher structure similarity score than bi-cubic interpolation. The quantitative
improvement is, however, limited since the improvement is concentrated in edge
regions, which represent small portion of the whole image.

4 Conclusion

In this paper we have presented a novel single-image super-resolution method
based on MRF modelling. Unknown high-resolution image is modelled as a MRF
whose nodes are overlapping high-resolution patches. Possible candidates for
these nodes are found within only one level of the Gaussian pyramid of the in-
put low-resolution image. To choose the best candidate in maximum a posteriori
sense, we used our previously developed inference method called neighbourhood-
consensus message passing, which makes this step fast and simple. Addition-
ally, we performed back-projection and steering kernel regression to further
improve the results. Results show that our method greatly outperforms stan-
dard techniques, while being visually better or comparable with state-of-the-art
techniques.
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Eigenbackground Model
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Abstract. The Eigenbackground model is often stated to perform
better than pixel-based methods when illumination variations occur.
However, it has originally one demerit, that foreground objects must
be small. This paper presents an original improvement of the Eigenback-
ground model, dealing with large and fast moving foreground objects.
The method generates background images using the Nelder-Mead Sim-
plex algorithm and a dynamic masking procedure. Experiments show
that the proposed method performs as well as the state-of-the-art Eigen-
background improvements in the case of slowly moving objects, and
achieves better results for quickly moving objects.

Keywords: Background subtraction, Eigenbackground model, Nelder-
Mead Simplex algorithm.

1 Introduction

Thanks to the price decrease of the computing hardware, automatic video surveil-
lance and monitoring applications are now widespread. Nevertheless, it is still
necessary to analyse videos in the case of continuous surveillance applications,
which requires time and expertise. Moreover, some applications induce unusual
conditions that make difficult to run standard algorithms. For instance, the Tai-
wanese Ecogrid project [1] implements video monitoring of coral reef fishes. Since
scenes are unconstrained, the size of foreground objects is unpredictable, as well
as their speed.

Amongst statistical background models, subspace-learning models are stated
to be designed for scenes illumination changes [2, 3], which include time-of-
day and light-switching problems. The principle of subspace-learning methods
is to compute a model of background images by reducing the dimensionality of
the data. The Eigenbackground is one of the Reconstructive Subspace Learning
(RSL) techniques [2]. It has two merits: background models are computed in
an unsupervised way, and incremental subspace updating is possible (real-time
applications). On the contrary, it presents two drawbacks: the size of foreground
objects has to be small, and the model is not robust to outliers during the update
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procedure. Numerous improvements have been proposed for solving the robust-
ness problem [2], while only two methods deal with large foreground objects.

This paper focuses on monitoring applications that are similar to the Ecogrid
Project. Even if the Eigenbackground algorithm is quite appropriate to such
applications, it remains to improve the original method so that it deals with
large and fast moving foreground objects.

The paper is structured as follows. Section 2 reviews the Eigenbackground
model as well as the state-of-the-art improvements that deal with large fore-
ground objects, and presents the shortcoming of the methods. Section 3 de-
scribes the method proposed to improve the generation of background images
when large foreground objects are visible. Section 4 contains the experimental re-
sults. Lastly, Sect.5 is a discussion on the possible improvements of the proposed
approach.

2 Related Works

The Eigenbackground algorithm [4] (EB) represents a background as the
weighted sum of a mean background and p eigenvectors computed by applying
Principal Component Analysis (PCA) on a training set of images. A training
phase is first required to learn background variations. Then, during the running
phase, the model is used to generate background images that are subtracted to
incoming frames. Despite this paper does not deal with the model computation,
it briefly explains this one in the following paragraph.

Let N background image vectors form a data set, B = {b0, b1, · · · , bN}. It is
required to compute the mean background of the data set, bμ and the N × N
covariance matrix Cb to conduct PCA. The covariance matrix is diagonalized
using an eigenvalue decomposition: Cb = ΦBΛbΦ

−1
B , where ΦB is the eigenvec-

tor matrix and Λb the corresponding diagonal eigenvalues matrix. In order to
keep significant background information and remove noise, only the eigenvectors
corresponding to the p largest eigenvalues are kept [4], p ≤ N . These eigenvec-
tors (sometimes referred to as variation modes or modes in this paper) form the
matrix Φb.

Thus, background image vectors are represented in a low dimensional space
spanned by p eigenvectors (EB space), and can be reconstructed from this space
using (1), with λ the parameter that controls background generation.

b = bμ + Φb · λ (1)

Once the Eigenbackground model has been trained, it is possible to generate
background images given the following procedure.

Let Ft be the input frame at time t. Ft is filtered by applying the projection
step (2) onto the EB space, and the reconstruction step (1) from the subspace,
which leads to the function defined by (3), with bt the background computed
from Ft.

λFt = Φ−1
b · (Ft − bμ) (2)
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bt = bμ + Φb · Φ−1
b · (Ft − bμ) (3)

Eventually, the foreground image is computed by thresholding the absolute
difference between Ft and bt.

The EB model suffers from large foreground objects, as the projection onto the
subspace depends on the amount of noise present in the frames. Two approaches
have been proposed to overpass this limitation [2].

Zhifei et al. [5] introduced an algorithm that recursively improves the gener-
ation of background images in the case of large foreground object. This process
iteratively detects foreground objects using the standard eigenbackground algo-
rithm and replaces the pixels of the foreground objects with pixels of the mean
background. Although this method provides better results than the original EB
algorithm in the case of medium-sized foreground objects, it requires a plausible
initial approximation of the background, which is not the case with very large
foreground objects. It is referred to as REC (Recursive Error Compensation) in
this paper.

Kawabata et al. [6] proposed a method that detects anomalous regions from
dynamic scenes. At time t, the input frame Ft is combined with the previously
computed background image: Et = σ.Ft + (I − σ).bt−1, where σ is defined given
the result of the previous frame background subtraction and I the identify. Then
the background image bt is computed using a trained EB {bμ, Φb} and Et instead
of Ft. The method performs well if objects are moving slowly, because the mask
σ depends on the previous frame. It is referred to as AOD (Anomalous Objects
Detection) in this paper.

The main limitation of the state-of-the-art methods stands in the projection
of input images onto the EB space. On that basis, the novelty of this paper
is to replace the filtering of input images Ft with a direct background images
estimation, associated to a dynamic mask computation.

3 Proposed Method

The generation of background images from a trained EB {bμ, Φb} is based on the
minimization of the objective function defined by (4), where λ is the vector that
controls background generation, σ andK are scalars that control respectively the
luminosity and the contrast of the generated images, and Σ is an occlusion mask
defined as a grid of N ×M regions corresponding to blocks of pixels on images.
When the group of pixels (l, k) of the input image is occluded, Σ(l, k) = 0.
Otherwise, Σ(l, k) = 1.

f(λ, σ,K) = ‖Σ · [Ft − (K · (σ + bμ + Φb · λ)] ‖2 (4)

The direct search Nelder-Mead simplex algorithm [7] stands as the basis of the
proposed method, as it is stated to be particularly efficient in the first iterations
[8]. Furthermore, it has already been proposed for Active Appearance Models
fitting [9], which is related to the topic of this study. Nevertheless, the lack of
convergence theory is a cause of concern.
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At iteration i, the local euclidean distance εi(l, k) between Ft and the gen-
erated background is first computed for blocks (l, k) if Σ(l, k) = 1. Then the
global euclidean distance Ei is computed from the local errors. During the min-
imization of (4), local errors εi(l, k) do not converge if the corresponding block
of pixels (l, k) on Ft is a part of a foreground object. Such property is used to
generate the occlusion mask after a few Nelder-Mead simplex iterations.

The generation of the background image bt associated to Ft can be summa-
rized as follows.

1. ∀(l, k), Σ(l, k) = 1
2. For iterations i from 1 to r, (4) is optimized and cumulated local errors
εiC(l, k) are computed

3. At iteration r, if εrC(l, k) > Th then Σ(l, k) = 0 where Th is a threshold and
(l, k) designates regions of pixels.

4. For iterations r+1 to r+q, (4) is optimized, r+q representing the maximum
number of iterations

The quality of generated background images mainly depends on the initial-
ization of the Nelder-Mead simplex algorithm, but also on the threshold Th used
to generate the occlusion mask Σ. The benefit of this approach is that Σ only
depends on the input frame Ft, contrarily to the AOD method.

4 Experiments

In order to evaluate the performance of the proposed method, the experiments
are conducted on two data sets. The first data set (DS1) focuses on standard
surveillance applications, ı.e human tracking. The foreground objects of this data
set are relatively small. On the other hand, the second data set (DS2) focuses
on fish monitoring applications showing comparatively large and fast moving
foreground objects.

DS1 is built from videos of the Wallflower data set, the IBM data set, and the
PETS2001 database. The four videos of DS2 come from the Ecogrid project [1].

(a) Total FP/FN rates on the DS1
Wallflower images

(b) Mean FP/FN rates on DS2 videos
(total of 366 images) in percentage

Fig. 1. False Positive (FP) and False Negative (FN) rates on images of DS1 and DS2
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Table 1. Qualitative results on the DS1 images

Original image Ground truth EB REC AOD Proposed

Image resolution is 320 × 240 pixels for all videos except the wallflower data
set, that is 160 × 120. All the experiments follow the same conditions. The EB
is trained with the first 200 images of video sequences. The dimensionality of the
EB space is 10. The threshold for background subtraction is set to 50. Regarding
the parameters of the REC method (defined in [5]), α = 1.2, and ε = 5.0e−3. As
for the proposed method, the cumulated error threshold Th, defined in Sect.3,
is set to 50 for DS1, and to 15 for DS2. The maximum number of Nelder-Mead
simplex algorithm is set to 20, and r=6. The size of the occlusion mask is 10 ×
10, ı.e the size of each pixels region is 32×24 pixels, or 16×12. The choice of the
parameters’ value is discussed in Sect.5.

Table 1 shows the results of background subtraction on images of DS1. As the
EB method is stated to perform poorly on the Moved Object and the Bootstrap-
ping videos [3], these are removed from DS1. The segmentation results produced
by REC, AOD and the proposed method are similar, with a small advantage
to REC. To further evaluate the method qualitatively using DS1, a short video
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Table 2. Short sequence of the Wallflower data set Light Switch case video (Frames
796 to 806)

Original image EB REC AOD Proposed
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Table 3. Qualitative results on some DS2 images. The first two rows correspond to
images of a video presenting a fish swimming from the left to the right (images 974
and 1008). The next rows present images 1184, 1238, 1243, 1248 and 1264 of another
video.

Original image Ground truth EB REC AOD Proposed

sequence is extracted from the Light Switch case of the wallflower data base,
as illustrated in table 2. On this test sequence, the REC method performs well,
because the foreground object is relatively small (lower than 50%). The pro-
posed method yields results similar to REC, while the AOD algorithm’s False
Positive (FP) rate is the highest one (the foreground object is moving quickly).
Some qualitative results on DS2 are presented in table 3. In general, the AOD
method performs well, while the REC results show small improvements over EB
results (because of the large size of the foreground object). On the other hand,
the proposed method regularly outperforms both AOD and REC.

Regarding the quantitative evaluation of the method, Fig.1 exhibits the FP
and False Negative (FN) rates for both DS1 and DS2. Results presented in Fig.1a
are computed over only four images, but confirm the qualitative results. Figure
1b illustrates the mean FP rate computed over the four DS2 videos. In that case,
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(a) (b)

Fig. 2. Variation of the False Positive (FP) rate on two videos of DS2. The X-axis
of the upper and the lower graphics represent the frames’ number. The Y-axis of the
upper and the lower graphics represent FP rates and the size of foreground objects in
frame percentage, respectively.

the proposed method yields the lowest FN and FP rates. Figure 2a illustrates
the variation of the FP rate over 39 frames of one video of DS2. The results are
globally the same for AOD, REC and the proposed method. As expected, the
standard EB algorithm performs poorly if the foreground object occupies more
than 25% of the frame. Up to 60% of background occlusion by the foreground
object, REC yields comparable results to AOD and the proposed method. From
60% to 100% (Fig.2b), AOD and the proposed method perform roughly the
same. Nevertheless, when the size of the foreground object decreases suddenly
(frame 35 and onwards, Fig.2b), the proposed method drastically outperforms
the state-of-the-art techniques.

5 Discussion

This section briefly describes the influence of the parameters on the subtraction
results. It mentions, as well, drawbacks of the proposed method.

In general, the parameters used for the evaluations of Sect. 4 are chosen exper-
imentally, in order to produce qualitatively good results for both DS1 and DS2.

Although the number of variation modes p is usually set to keep between 95%
and 98% of the training data set variance, p is arbitrarily set to 10 for all the
experiments, which yields correct qualitative results. The choice of the threshold
for background subtraction follows the same principle (results on the Wallflower
data set images are qualitatively similar to related works’ results).

Regarding the occlusion mask generation, a low r value may lead to the occlu-
sion of parts of background, ı.e wrong background image generation, whereas a
high r value makes the proposed method perform the same as the EB algorithm.
It is experimentally set to 6. The value of Th depends on the value of r and the
type of Nelder-Mead simplex algorithm initialization. As DS1 includes the light
switch case video, the variation of parameter K (Eq.4) during initialization is
larger than for DS2, which increases Th value (respectively 50 and 15).
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Finally, as the presence of a foreground object on the frame Ft makes the op-
timization algorithm converge towards a local minimum, the number of Nelder-
Mead simplex algorithm iterations after the occlusion mask generation has to
be greater than r, ı.e. , r + q ≥ 2.r.

The proposed method presents two major demerits. Firstly, it is based on an
optimization algorithm, and the local minima problem becomes serious with the
size of foreground objects. Secondly, despite the Nelder-Mead simplex algorithm
is reportedly faster than other direct search algorithms, the proposed method
is still slower than state-of-the-art techniques. In C language, one background
image generation takes 0.817ms using openCV 2.0 on Core2Quad @ 2.4GHz for
320 × 240 pixels grey-level images. Dynamic down-sampling of images during
optimization is a possible way of reducing the computational cost, and will be
evaluated in a future work.

6 Conclusion

This paper presents anoriginalmethod that replaces theprojection/reconstruction
step of the standard Eigenbackground algorithm with a direct background image
generation. The experiments conducted on the two data sets DS1 and DS2 proved
that the proposed method performs better than state-of-the-art approaches for
large and fast moving objects. Otherwise, its performance is equivalent to such ap-
proaches on standard data sets. The future work is to focus on speeding-up the
proposed technique, and to evaluate the method on a larger data set.
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Abstract. Rain is a complex dynamic noise that hampers feature detection and 
extraction from videos. The presence of rain streaks in a particular frame of 
video is completely random and cannot be predicted accurately. In this paper, a 
method based on phase congruency is proposed to remove rain from videos. 
This method makes use of the spatial, temporal and chromatic properties of the 
rain streaks in order to detect and remove them. The basic idea is that any pixel 
will not be covered by rain at all instances. Also, the presence of rain causes 
sharp changes in intensity at a particular pixel. The directional property of rain 
streaks also helps in the proper detection of rain affected pixels. The method 
provides good results in comparison with the existing methods for rain removal.  

Keywords: Phase congruency, rain removal, alpha blending. 

1   Introduction 

Nowadays, video surveillance is an integral part of security applications. Outdoor 
video surveillance has helped in tackling serious law and order situations. It is only 
natural that with the increasing popularity of video surveillance equipment, the need 
for algorithms that improve video quality has also increased. One of the major 
challenges in video quality improvement when we consider outdoor vision systems is 
the effect of bad weather conditions on video.  

Conditions that impede video quality include presence of haze, snow, fog, smoke, 
rain, hail, etc. Haze, smoke and fog can be considered as steady weather conditions 
and they fall in a different category of video enhancement. Rain and snow can be 
considered as dynamic weather conditions that change with every frame in the video. 
While rain is highly directional snow particles fall in completely random directions. 
This paper deals with the removal of rain from video.  

The classification of weather into steady (haze, mist and fog) and dynamic (rain, 
snow and hail) weather was done by Garg and Nayar [1]. They developed models 
based on the physical and photometric properties of rain drops. They used these 
models to detect rain and to remove them from videos. The main assumption in that 
case was the uniform size of rain drops and the equal velocity of rain drops. The 
variation in depth was not taken into consideration. This became a problem while 
trying to remove rain from videos that contained heavy rain. Brewer and Liu also used 
the physical properties of rain drops to detect and remove rain from videos [2]. 
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Garg and Nayar [3] also introduced an idea of changing camera parameters in order 
to reduce the effect of rain on the video. This method involved changing the camera 
parameters like F-number and exposure time individually or in tandem to reduce the 
effect of rain. The parameters were changed according to the nature of the scene. This 
method cannot be used in outdoor surveillance systems since manual adjustment of 
the camera parameters is not possible according to the weather conditions.  

Park and Lee [5] came up with the idea of using a Kalman filter for the detection 
and removal of rain from videos. This method requires a periodic reset and cannot be 
adopted for videos taken from a moving camera. Barnum et al. [5] did a frequency 
space analysis of rain and snow affected videos. They modeled rain and snow in the 
frequency space based on the statistical properties of rain and snow streaks. Each rain 
streak was assumed to be a blurred Gaussian. The number of desired cycles to remove 
rain increases the number of frames to be used in the process.  

Zhang et al. [6] used the spatio-temporal and chromatic properties of rain to 
remove rain from videos. Their idea was based on the fact that a pixel will not be 
covered by rain in every frame. They used an intensity histogram for each pixel 
constructed from all the frames in the video and used K-means clustering to 
differentiate between background pixels and rain affected pixels. This method works 
well except for the fact that all the frames in the video are used to construct the 
histogram.  

The method proposed in this paper is along the lines of the idea used by Zhang et 
al. The proposed method uses phase congruency to detect candidate rain pixels. Since 
phase congruency is used, it is easier to incorporate the directionality property into the 
algorithm. The main advantage of this method in comparison to the method proposed 
by Zhang et al. is the fact that the number of frames used for detection and removal of 
rain affected pixels is minimal. Only the frames in the neighborhood are considered in 
this process. 

The second section of this paper deals with the properties of rain streaks that 
appear on a video. This study has helped in the formulation of the algorithm. The 
third section explains in detail the steps involved in the algorithm and the feature 
extraction methods that have aided in rain detection and removal. Results and related 
discussion are included in the fourth section. A comparison with the existing methods 
is also provided in this section. The fifth section summarizes the findings in this paper 
and also discusses about the future work possible in this area. 

2   Properties of Rain Streaks in Video 

Most of the spatial, temporal and chromatic properties have been studied in detail by 
Zhang et al. These properties are utilized in this paper as well and are described 
briefly in this section.  

2.1   Temporal Property  

The human eye is able to see through rain mainly because all parts of the scene are 
not occluded by rain at all instances. As the depth of view increases, it becomes 
harder to distinguish between drops and the layer of rain appears as haze or mist [1]. 
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This property holds true for occlusions due to rain in videos too. In this paper, we 
consider the removal of rain drops that can be distinguished separately in each frame. 
As the depth of view increases, the rain drops are not visible separately and the image 
enhancement problem becomes equivalent to haze removal. A close study of the 
intensity variation will show that the pixel intensity varies sharply when rain occludes 
a scene. This is illustrated in Fig. 1. 

 

 

Fig. 1. Intensity variation for a pixel throughout a segment of the video containing heavy rain 

The intensity variations plotted in Fig. 1 is for a video that contains heavy rain. It can 
be seen that the intensity tends to remain high if the density of rain is higher and 
therefore more frames will be required to compensate for the rain affected pixels. This 
is the case where considering one frame before and after the current frame becomes 
insufficient for rain removal.  

2.2   Chromatic Property  

While Garg and Nayar [1] showed that a rain drop refracts a wide range of light 
causing an increase in intensity at a particular pixel, Zhang et al. went ahead and 
showed that the change in levels for the individual color components of the pixel due 
to rain is proportional to its original intensity level. They showed that the standard 
deviation in each color component due to the presence of rain is almost the same.  

2.3   Directional Property  

Another observation that has been utilized by Garg and Nayar [1] is the directional 
property of rain in videos. If rain is present in a frame, all the rain streaks will be 
oriented in a single direction. They computed the correlation between neighboring 
pixels to detect rain affected pixels. This property is used in our proposed method 
while calculating phase congruency in a particular orientation.  
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3   Algorithm for Rain Detection and Removal 

The proposed algorithm can be condensed into four steps as shown in Fig. 2. 
 

Difference image calculation for 
individual color components

Phase congruency calculation on 
difference images to find the 

candidate rain pixels 

For the candidate rain pixels, select 
the pixel value with lowest intensity 
from the neighboring frames as the 

replacement pixel value

Replace the rain affected pixel with 
the pixel value from replacement 

pixel using alpha blending

Fig. 2. Algorithm for rain detection and removal 

3.1   Difference Image Calculation  

The temporal property of rain described in the previous section indicates that there 
will be a positive change in intensity of a rain affected pixel. The chromatic property 
suggests that the standard deviation in all the three components will be the same when 
there is rain occluding a pixel. In this step, we compute the difference image of the 
current frame with respect to its neighbors. The difference image is computed for all 
the three color components separately. The neighboring frame is subtracted from the 
current frame. If the resultant value at a pixel is negative, it is clamped to zero. The 
presence of rain causes an increase in intensity. Therefore, only positive differences 
will be considered. For any pixel, if the standard deviation of the individual color 
components is different from each other, the pixel cannot be considered as rain-
affected.  

When differences of images are computed, the main criterion is the number of 
neighboring frames to be considered. As mentioned in section 2.1, if heavy rain is 
present, the number of frames to be considered will be more. In our case, we have 
used eight neighboring frames for the computation. This has resulted in good results 
with most of the rain removed from the video.  

3.2   Applying Phase Congruency on the Difference Images  

Phase information in the difference images are used to identify rain streaks in a 
particular frame. Phase congruency feature mapping gives an accurate measure of the 
variation in edges of rain streaks and is used in this paper. 

3.2.1   Phase Congruency Features  
The importance of phase information of an image is illustrated in Gonzalez and 
Woods [7]. The phase information in an image contains the essential details. When an 
image containing rain is considered, the rain streaks can be assumed to be the finer 
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details in the image. These fine details will be reflected in the phase changes of the 
image. This basic idea is the reason behind the inclusion of phase congruency feature 
detection as part of rain streak detection algorithm.  

The principal reason that humans are able to visually recognize individual rain 
streaks in a particular frame is because there is a step change in intensity along the 
edge of the rain streak. Phase congruency (PC) is a feature detection mechanism that 
recognizes those edges and is invariant to illumination and contrast. The key 
observation that led to the development of phase congruency algorithm is that the 
Fourier components of an image are maximal in phase where there are edges or lines. 
Features are identified according the extent to which the Fourier components are in 
phase. 

The PC computation method adopted in this paper was proposed by Peter Kovesi 
[8]. His method was based on the local energy model developed by Morrone and 
Owens [9]. They observed that the point of strong phase congruency corresponds to a 
point of maximum energy. Let  be an input periodic signal defined in , . 

 is the signal ( ) with no DC component and  is the Hilbert Transform of 
 which is a 90˚ phase shifted version of . The local energy,  can then be 

computed from  and its Hilbert Transform as in (1). 
 

                                            (1) 
 

It has been shown in earlier research [10] that the energy is equal to the product of 
phase congruency and the sum of Fourier amplitudes as in (2).  

 ∑                                                (2) 
 

Therefore the peaks in phase congruency correspond to the peaks in the energy 
function. Equation (2) also shows that the phase congruency measure is independent 
of the overall magnitude of the signal, thus making the feature invariant to changes in 
illumination and contrast. The components,  and  are computed by the 
convolution of the signal with a quadrature pair of filters. Logarithmic Gabor filters 
are used in this case. Consider  as an input signal and  and  are the even 
symmetric and odd symmetric components of the log Gabor function at a particular 
scale, n. Then the amplitude and phase for the input signal in the transformed domain 
is obtained as in (3) and (4) where  and  are the responses for each 
quadrature pair of filters as given in (5). 
 

                                               (3) 
 

                              ⁄                                             (4) 
 

                                , ,                                (5) 
 

The values for  and  can be computed as shown in (6) and (7). 
 

     ∑                                                   (6) 
 

    ∑                                           (7) 
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When the Fourier components are very small, the problem of computing phase 
congruency becomes ill-conditioned. This problem is solved by adding a small 
constant to the sum of Fourier components as shown in (8). 
 ∑                                                          (8) 
 

Equation (8) is the final equation for solving phase congruency. This equation can be 
applied to a two dimensional signal like an image for various orientations. In this 
paper, the analysis is to be done on an image. 

For an image, the first step is to convolve the image with a bank of two 
dimensional log Gabor filters.  The filter has a transfer function as shown in (9). 

 

                                             / / /                                (9) 
 

where  is the filter’s center frequency and /  is kept constant for various .  
The cross-section of the transfer function of the filter can be represented as in (10). 
  

                                                                                          (10) 
 

where  represents the orientation of the filter and  is the standard deviation of the 
Gaussian spreading function in the angular direction. As in equation (5) the even 
symmetric and odd symmetric components at a particular scale and orientation can be 
computed as shown in (11).  

 

                              , , , , , ,               (11) 
 
The amplitude of the response at a particular scale and orientation can be computed as 
in (12), and the calculation of phase congruency for an image is as shown in (13).  
 

       , ,                                           (12) 
 , ∑ ∑ , ∑ ,∑ ∑ ,                                (13) 
 

In this paper, all the orientations are not considered when phase congruency 
features are computed. This is because of the directional property of rain streaks. The 
rain drops always fall towards the ground and the variation in orientation is minimal. 
This fact helps in discarding most of the orientations. The calculation of difference 
images and phase congruency features are illustrated in Fig. 3. 

3.3   Background Pixel Search  

After applying phase congruency, only the candidate pixels (rain affected pixels) with 
intensity variations in neighboring frames remain in the processed image. The next 
step is to eliminate the false positives which may have occurred due to the presence of 
external noises. If a pixel is detected as a candidate rain pixel in all the phase 
congruency images of the difference images, it is very likely that it happened due to 
noise. These pixels are eliminated from the group of candidate rain pixels. 
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Fig. 3. The computation of difference image and the image with phase congruency features for 
R, G and B components 

The next step is to find out the background intensity levels of the rain affected 
pixels. A search is performed on the neighboring frames. The pixel value that has the 
lowest intensity levels within the neighbors is selected as the background intensity of 
the rain affected pixel. 

3.4   Compensate for Rain Affected Pixels 

Garg and Nayar [1] used the average of the pixel intensities in neighboring two 
frames to compute the intensity value for the pixel to be replaced. This method fails 
when the pixel is affected by rain continuously. The method by Zhang et al. gave 
better results. They used alpha-blending to calculate the intensity value for the rain 
affected pixel as shown in (14). 

 

           1        (14) 
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Fig. 5. This figure compares the result between our method and the method by Zhang et al. [6]. 
(a) The original frame; (b) Rain removed by the method in [6]. (c) Rain removed by our 
method.  

 

Fig. 6. The image on left is a video frame from which rain was removed using six neighboring 
frames and the image on the right utilized twelve neighboring frames. The presence of extra 
streaks in image shown on the left are highlighted.  

frames were used for the second trial. It was observed that the addition of more 
frames for compensation reduced the number of blurred streaks in every frame. 

5   Conclusion 

A new method based on phase congruency features was used to detect and remove 
rain from videos. The method was formulated based on the temporal, spatial and 

(a)           (b)     (c) 
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chromatic properties of rain streaks in video. In comparison with the method of Zhang 
et al., it has been found that our method provides results of the same quality with 
lesser number of frames. It was also observed that the slight movements of objects in 
the video are captured better in our method.  

This paper dealt with removal of rain from videos that did not have any camera 
movement. One way to deal with such a scenario is to stabilize the video [11] before 
applying the algorithm for rain removal as done by Zhang et al. Another area for 
future improvement is to tackle the problem of moving objects in the foreground of 
the rain as well as in the rain. In such cases, the aim will be to estimate the rain 
component in video from lesser number of frames.  
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Abstract. Local phase coherence (LPC) is a recently discovered prop-
erty that reveals the phase relationship in the vicinity of distinctive fea-
tures between neighboring complex filter coefficients in the scale-space. It
has demonstrated good potentials in a number of image processing and
computer vision applications, including image registration, fusion and
sharpness evaluation. Existing LPC computation method is restricted to
be applied to three coefficients spread in three scales in dyadic scale-
space. Here we propose a flexible framework that allows for LPC compu-
tation with arbitrary selections in the number of coefficients, scales, as
well as the scale ratios between them. In particular, we formulate local
phase prediction as an optimization problem, where the object function
computes the closeness between true local phase and the predicted phase
by LPC. The proposed method not only facilitates flexible and reliable
computation of LPC, but also demonstrates strong robustness in the
presence of noise. The groundwork laid here broadens the potentials of
LPC in future applications.

Keywords: local phase coherence, scale-space, complex wavelet coeffi-
cients, feature detection.

1 Introduction

Phase information plays a crucial role in preserving important structural features
in various types of signals, including 1D (e.g., speech), 2D (e.g., still images) and
3D (e.g., video or volume data) signals. For example, if the Fourier transform
domain amplitude and phase spectra of two images are interchanged, the result-
ing hybrid image is recognized from which the phase spectrum is taken [1]. In
understanding the structures of natural images, however, global Fourier phase
may not be the best option, because natural images tend to be non-stationary,
with different sizes and shapes of smooth or periodic regions, and distinctive fea-
tures (such as edges and lines) between them. Furthermore, physiological studies
suggest that many neurons located in the visual cortex are best models as filters
localized in space, frequency and orientation. As a result, local phase is a more
plausible quantity in cortical encoding and processing. In terms of image pro-
cessing and understanding, it is also a better tool in describing the structures of
natural images.
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In the pioneering work in studying the relation between congruence of local
phases [2,3], a local energy model was introduced which postulates that in a
waveform which have unique perceptual significance as “lines” and “edges”, the
Fourier components come into phase with each other at these feature points.
Based on this observation, it was suggested that the visual system could locate
features of interest by searching for maxima of local energy points, and iden-
tify the feature type by evaluating the value of arrival or local phase at that
point [2,3]. Almost all work thereafter concentrated on finding points of max-
imal phase congruency by looking for maxima in local energy. In [4], a direct
measure of phase congruency was proposed, where a phase congruency measure
is computed as a dimensionless quantity that is invariant to changes in image
brightness or contrast and thus provides an absolute measure of the significance
of feature points. Through the use of wavelets, an extension from 1D to 2D phase
congruency calculation is also developed [4]. Local phase based method has also
been employed in a number of computer vision and image processing problems,
including estimation of image disparity [5] and motion [6][7], description of im-
age texture [8], recognition of persons using iris patterns [9], and video quality
assessment [10].

In [11], the local phase structures at distinctive features were examined in
more depth. The local phase coherence (LPC) relationship was first discovered,
which not only predicts the alignment of phases across scales at the location of
features (as found in earlier work), but also describes the full structure of local
phase pattern in scale-space in the vicinity of feature location. It was suggested
in [11] that the LPC relation could lead to a new theory in the perception of blur,
and may have deeper implications on how the visual system could “see beyond
the Nyquist rate”. Since the introduction of LPC, it has been found to be useful
in a number of applications, including image registration [12], fusion [13] and
sharpness evaluation [14]. One common limitation in all existing applications is
that the LPC can only be computed with 3 coefficients spread in 3 scales in
dyadic scale-space. This restricts its application, especially when one would like
to have a closer examination of LPC relationship in the scale-space where smaller
(and fractional) scale ratios are desired. The purpose of the current study is to
develop a flexible methodology in computing LPC and thus extends its potentials
in real applications.

2 Local Phase Coherence and Computation

2.1 Local Phase Coherence

The concept of LPC is built upon complex wavelet analysis tools that provide
localized magnitude and phase information in multi-scales. Given a signal f(x)
localized near the position x0, where f(x) = f0(x − x0), a general complex
wavelet transform may be written as:

F (s, p) =
∫ ∞

−∞
f(x)w∗

s,p(x)dx =
[
f(x) ∗ 1√

s
g
(x
s

)
ejωcx/s

]
x=p

, (1)



42 R. Hassen, Z. Wang, and M. Salama

Fig. 1. (a) Local phase coherence structure near localized feature. (b) An example of
1D sampling grid in scale-space.

where s ∈ R+ is the scale factor, p ∈ R is the translation factor, and the family
of wavelets are derived from the mother wavelet w(x) = g(x)ejωcx by

ws,p(x) =
1√
s
w

(
x− p
s

)
=

1√
s
g

(
x− p
s

)
ejωc(x−p)/s , (2)

where ωc is the center frequency of the modulated band-pass filter, and g(x) is
a slowly varying and symmetric envelop function. Here the wavelet is considered
general because we do not specify g(x), which has many different options but
the theory derived here applies to all.

Using the convolution theorem, and the shifting and scaling properties of the
Fourier transform, we can derive:

F (s, p) =
1

2π
√
s

∫ ∞

−∞
F0

(ω
s

)
G(ω − ωc) ejω(p−x0)/sdω , (3)

where F (ω), F0(ω) and G(ω) are the Fourier transforms of f(x), f0(x) and g(x),
respectively. The phase of F (s, p) depends on the nature of F0(ω). If F0(ω)
is scale invariant, meaning that F0(ω/s) = K(s)F0(ω), where K(s) is a real
function of only s, but independent of ω, then it is not hard to find that:

F (s, p) =
K(s)√
s
F (1, x0 +

p− x0

s
) . (4)

Since both K(s) and s are real, we obtain the following phase relationship of
F (s, p):

Φ(F (s, p)) = Φ(F (1, x0 +
p− x0

s
)) . (5)

This result indicates that there is a strong phase coherence relationship across
scale and space, where equal phase contours in the (s, p) plane form straight lines
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that converge exactly at the location of the feature x0, as illustrated in Fig. 1(a).
These straight lines are defined by x0 + (p− x0)/s = C, where C is a constant.
Note that this result is based on the assumption that f0 is a scale invariant
signal, which turns out to be true for distinctive features (such as an impulse or
a step edge in a 1D signal, or an edge or line in a 2D image). Therefore, LPC
measurement can be used to detect distinctive features in a signal.

2.2 Computation of Local Phase Coherence

If the LPC relationship is satisfied at a spatial location, then the phase of a
wavelet coefficient may be predicted by the phases of its neighboring coefficients
in the scale-space. Conversely, the prediction accuracy could be used as a measure
of the strength of LPC. This approach was first employed in [11]. An example
in shown in Fig. 1(b), where the finest scale coefficients ci for i = 1, 2, 3, 4 can
be predicted from their coarser scale neighbors a, b1 and b2. For example,

Φ̂(c1) = −2Φ(a) + 3Φ(b1) . (6)

Although such prediction can lead to useful measures of the strength of LPC
and has been successfully used in several applications [11,12,13,14], it is limited
to grouping three coefficients at a time that are separated into three scales with
fixed scale ratio of 2 between successive scales, as exemplified in Fig. 1(b). Here
we propose a novel framework that allows for more flexibility in the computation
of LPC. Let us consider a group of N coefficients ai for i = 1, ..., N , each of which
is a sample of F (s, p) at (si, pi), i.e., ai = F (si, pi). If the LPC relationship is
satisfied, then we should be able to best predict the phases of these coefficients,
i.e., the error between the predicted and true phases should be minimized. The
simplest form of an error function is the mean squared error

E1 =
1
N

N∑
i=1

(
Φ(ai)− Φ̂(ai)

)2

. (7)

Note that for distinctive features such as a line or a step edge, the phase pattern
in the scale-space can be approximated using a functional form. For example, in
the case of a step edge f0(x) = K[u(x)− 1

2 ], we have:

Φ̂(F (s, p)) ≈ wc(p− x0)
s

− π

2
+ n1π , (8)

where the constant term (−π
2 here) depends on feature type, for another ex-

ample, in the case f0(x) = Kδ(x), the constant is 0. Assuming that a set of
coefficients are aligned at the same position p but across consecutive scales
si = 1, r, r2, ....rN−1, where r is the scale ratio between successive scales that
may be any fractional number greater than 1. Further, we simplify the phase
prediction expression by denoting Qp = wc(p−x0). Then the problem of solving
for best phase prediction is converted to

Q(opt)
p = argmin

Qp

E1 . (9)
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This can be solved by setting ∂E1/∂Qp = 0 and solve for Qp, which leads to the
following closed-form solution

Q(opt)
p =

∑N
i=1 r

(n−i)
(
Φ(ai) + π

2

)∑N
i=1 r

2(i−1)
. (10)

In the case that the coefficients in scale-space are located at more than one
position, say M , then we can solve for a series of Qp values Qp1 , Qp2 , ...., QpM

using similar approaches. After computing all Qp values, we will be able to
calculate the predicted phases for all coefficients. We can then define an LPC
measure as

PC1 =
�
{∏

i aie
−jΦ̂(ai)

}
∏

i |ai|+ C1
=
�
{∏

i |ai|ej[Φ(ai)−Φ̂(ai)]
}

∏
i |ai|+ C1

, (11)

where the numerator is the real part of the phase prediction error in the com-
plex plane weighted by the coefficient magnitude, so that the coefficients with
higher magnitudes are given more importance. The result is normalized by the
magnitude of the coefficients. C1 is a small positive constant in order to stabilize
the measurement when the signal is close to flat, in which case the coefficients
have near zero magnitudes. This measurement states that if the predicted phases
are very close to the actual phases and the signal is significant (such that their
magnitude is significantly larger than the constant C1), then we achieve good
LPC with a PC1 value close to 1. At the other extreme, if the predicted phases
are perpendicular to the true phases, then the value of PC1 will be close to 0.

Although the above method and solution is elegant in the sense that it offers
closed-form analytical solution, it does not give us satisfactory results in our
experiments. This may be partially due to the 2π wrap-around effect of angular
variables (for which direct least square error function is deemed not appropriate).
It may also be because the constant terms in the phase prediction form (e.g.,
Eq. (8)) varies for different types of features. For example, the −π

2 term in
Eq. (8) would be +π

2 for a step edge f0(x) = K[12 − u(x)] and 0 for an impulse
f0(x) = Kδ(x).

To overcome the above problems, we define a new error energy function be-
tween the true and predicted phases as follows

E2 =

[
1− 1

N

N∑
i=1

cos
(
4Φ(ai)− 4Φ̂(ai)

)]2

. (12)

The trick here is to multiply the angles by a factor of 4. This eliminates the am-
biguities between the types of features because all the feature-dependent phase
constants (such as the −π

2 term in Eq. (8)) are raised to a multiplier of 2π. In
addition, the use of the cosine function in Eq. (12) avoids the 2π wrap-around
effect of angular variables. Notice that when the phase prediction is in effect, the
difference 4Φ(ai)−4Φ̂(ai) will be either close to 0 or a multiplier of 2π, and thus
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Fig. 2. An example of the search space of E2 against Qp

Fig. 3. (a) Original signal; (b) calculated LPC using Eq. (13)

the cosine of it will be close to 1. Consequently, the total error energy function
E2 will be close to 0.

Although the definition of E2 has many good properties, it is a difficult
function to optimize. For example, finding Qp using a closed-form solution like
Eq. (10) is difficult. Indeed, E2 could be a fairly complicated function. An exam-
ple is shown in Fig. 2, where the function of E2 with respect to Qp is smooth but
has many local minima. In our implementation, we use an iterative numerical
method to minimize the function, where the full search range is divided into
8 equally spaced segments, each associated with a different initial point at the
center of the segment as the initial guess in the iteration. This results in multiple
local minima, and then the global minimum is obtained by picking the lowest
local minima. Finally, the LPC is computed by

PC2 =
�
{∏

i(ai)4e−j4Φ̂(ai)
}

∏
i |(aj)4|+ C2

=
�
{∏

i |(ai)|4ej4(Φ(ai)−Φ̂(ai))
}

∏
i |(aj)|4 + C2

. (13)

Similar to Eq. (11), C2 is a positive stabilizing constant, and this is an energy
weighted phase consistency measure, where the maximal value is achieved if all



46 R. Hassen, Z. Wang, and M. Salama

phase predictions are perfect. Fig. 3(a) shows a simulated signal with ideal step
edges, and Fig. 3(b) gives the LPC computation result using Eq. (13). It can be
seen high PC2 values are achieved (high peaks) at the step edges.

3 Simulations

In this section we will present several experiments meant to gauge the perfor-
mance and robustness of the proposed technique for LPC computation. Although
the experiments were carried out in 1D (which helps us better visualize the per-
formance of the algorithm), similar techniques can also be applied to 2D or
higher dimensional signals.

(a) (b) (c)

Fig. 4. LPC computation by grouping local coefficients in three different ways

The first experiment aims to demonstrate the flexibility of our framework in
picking arbitrary group of neighboring coefficients in LPC computation. The
upper figures in Fig. 4 show three different selections of complex wavelet coeffi-
cients in the scale-space, where the coefficients spread in three scales and up to
five spatial locations. The scale ratios between successive scales are fixed at 2.
The lower figures show the LPC measure PC2 computed as a function of space
for the signal in Fig. 3(a). Despite the quite different coefficient grouping, it can
be observed that the resulting phase coherence functions are approximately the
same. This result suggests that in practice, LPC can be computed in the complex
wavelet transform domain with any coefficient setup, and may also be useful in
the applications where only partial information of the local phase measurement
is available.

The second experiment demonstrates the flexibility in picking scale ratios
between successive scales. Most existing wavelet transforms were designed in
dyadic scale-space, i. e., the scale ratio between successive scales is fixed at 2.
From the derivations in the last section, this should not be a necessary condition
in the computation of LPC. The scale ratio can be any other fractional number
greater than 1. Even further, the scale ratio does not have to be the same between
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(a) r = 1.223 (b) r = 1.414 (c) r = 1, 1.4, 1.2

Fig. 5. LPC computation for a signal by using fractional scale ratios between coeffi-
cients. (a) Fixed scale ratio of r = 1.223 between 3 consecutive scales; (b) Fixed scale
ratio of r = 1.414 between 3 consecutive scales; (c) Varying scale ratio r = 1.4 between
the first 2 scales and r = 1.2 between the second and third scales.

Scales 1 to 2 and Scales 2 to 3. Figure 5 shows the resulted phase coherence
using different setup of scale ratios. In the first two example, the scale ratios are
fixed across three scales but are fractional numbers of r = 1.223 and r = 1.414,
respectively. In the third example, the scale ratio is varying between the first two
scales r = 1.4 and the last two scales r = 1.2. In all three cases, the resulting
PC2 functions are almost the same when applied to the same signal. This is a
useful feature in practical applications because real world signals often contain
mixtures of many distinctive features, and thus local measurement up to coarse
scales often suffers from interference from nearby features. If the scale ratios can
be fractional (preferably less than 2), then we will be able to carry out closer
scale-space analysis of local features and avoid interference from nearby features.

(a) σn = 0.01 (b) σn = 0.05 (c) σn = 0.1

Fig. 6. LPC computation in the presence of additive white Gaussian noise, with noise
standard deviation equaling (a) σn = 0.01, (b) σn = 0.5, and (c) σn = 0.1

The last experiment is concerned about the impact of noise on our LPC compu-
tation. Figure 6 shows the PC2 function computed for a signal contaminated with
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additive white Gaussian noise at three noise levels. It can be seen that the LPC
computation successfully detects the distinctive features (edges and impulse) in
all three cases, showing its strong robustness to noise (though the heights of LPC
values may be moderately affected by heavy noise). This is another useful feature
in practical applications, where many other techniques (e.g., derivative or gradient
based edge detectors) are often sensitive to noise contaminations.

4 Conclusion

The purpose of this work is to extend the theory and methodology of local phase
coherence, so that it can be converted to more practical techniques that can be
applied to various signal processing applications for the analysis of signals and
the detection of features. The major contribution of the current work as opposed
to existing LPC computation is to formulate the problem using an optimization
framework. Several technical issues have been studied in order to overcome a
series of problems encountered in formulating the optimization problem and
in finding the optimal solutions. The resulting LPC computation exhibits sig-
nificantly broadened flexibilities such that it can be computed with arbitrary
grouping of neighboring complex wavelet coefficients spread at any fractional
scale ratios between successive scales. It also demonstrates strong robustness to
noise. These flexibilities make our approach desirable in many potential applica-
tions, especially in the cases when multiple features exist and are close to each
other, when only partial information of local phases is available, and/or when
significant noise exists in the signal. Our future work is to apply the methodol-
ogy developed in this work to practical signal and image applications, such as
those in [12,13,14], so as to better exploit the advantages of LPC.
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Abstract. In this paper the sliding wedgelet algorithm is presented to-
gether with its application to edge detection. The proposed method com-
bines two theories: image filtering and geometrical edge detection. The
algorithm works in the way that an image is filtered by a sliding win-
dow of different scales. Within the window the wedgelet is computed by
the use of the fast moments-based method. Depending on the difference
between two wedgelet parameters the edge is drawn. In effect, edges are
detected geometrically and multiscale. The computational complexity of
the sliding wedgelet algorithm is O(N2) for an image of size N ×N pix-
els. The experiments confirmed the effectiveness of the proposed method,
also in the application to noisy images.

Keywords: sliding wedgelets, edge detection, moments, multiresolution.

1 Introduction

Efficient edge detection is useful in many image processing tasks, like image
segmentation, object recognition, etc. There is a wide spectrum of edge detection
methods [1], [2], [3], [8], [12], [13], [14]. They can be classified into two groups
— pointwise ones and geometrical ones. The methods from the first group are
very fast and quite efficient. However, usually they are not noise resistant and
cannot be used in some advanced image processing applications. So, in such
issues like object recognition often the geometrical methods of edge detection
are used. In such a case edges are represented by a set of line segments instead
of a set of points. There are a few geometrical edge detection methods, the
ones based on: the Radon transform [1], the wedgelet transform [13] or moments
computation [12].

The use of geometrical multiscale methods in image processing has gained
much attention recently. It follows from the fact that this approach reflects the
way in which the human eye-brain system works. Indeed, the human eye can
catch changes of location, scale and orientation [4], [7]. Many recently developed
techniques of image processing are based on multiscale geometrical methods [5],
[8], [9], [10], [11], [14], [15]. Especially, in the paper [13] the method of edge
detection based on the wedgelet transform was proposed. However, the method
is not fast, what excludes its use in real time applications.

M. Kamel and A. Campilho (Eds.): ICIAR 2011, Part I, LNCS 6753, pp. 50–57, 2011.
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In this paper the new multiscale geometrical edge detection method is pro-
posed. The method inherits advantages of the pointwise and geometrical ap-
proaches to edge detection. It is based on image filtering on one hand and on a
sliding wedgelet computation on the other hand. The notion of a sliding wedgelet,
proposed in this paper, denotes that instead of computing wedgelets according
to the image quadtree partition, like in the wedgelet transform, a wedgelet lying
freely within the image is computed. The sliding wedgelet is used then in the
definition of an image filter. So, because the algorithm is based on image filtering
it is quite fast. Thanks to that it can be used in many advanced image processing
or recognition methods.

2 Edge Detection Methods

There is a wide variety of edge detection methods. It is pointless to point out all of
them. So, in this chapter the only methods which are helpful in the understanding
of the proposed algorithm are presented. The pointwise methods are described
in general, whereas the geometrical methods are represented by the wedgelet
transform, since the proposed algorithm is based on it.

Image Filtering

Image filtering allows for image enhancement like edge detection, smoothing,
etc. The filtered image is computed as a convolution of the original image F :
[0, 1]× [0, 1]→ N with a mask function M : D ⊂ [0, 1]× [0, 1]→ N. The typical
size of the mask function is 3 × 3 or 5 × 5 pixels. The most commonly used
filters are based on first or second derivatives like, for example, Sobel, Prewitt,
Roberts or Canny filters [2], [3]. However, the more sophisticated results are
obtained when the mask function M is nonlinear. In fact, the use of linear or
nonlinear filter is determined by the application.

Wedgelet Transform

There are at least three geometrical methods of edge detection. The one based
on the Radon transform [1], the second one based on moments computation [12]
and the last one based on the wedgelet transform [13]. Since the latter one is
multiscale it seems to be the most efficient one [13].

Consider an image F : [0, 1] × [0, 1] → N. Consider then any square D ⊆
[0, 1]× [0, 1]. Let us set the resolution of [0, 1]× [0, 1] as N × N . It means that
[0, 1]× [0, 1] can be represented by a matrix of N ×N pixels of size 1/N × 1/N .
It is not necessary to consider a squared domain but it simplifies the further
considerations. Any straight line which connects two border pixels (not lying at
the same side) is called a beamlet [8]. Then the characteristic function of the
domain, bounded by the borders and the beamlet b, is given by the formula

W (x, y) = 1y≤b(x), (x, y) ∈ [0, 1]× [0, 1] (1)

and is called a wedgelet [6].
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The definition of the wedgelet transform is based on a dictionary of wedgelets
and an image quadtree partition. In more details, the dictionary of wedgelets is
build of wedgelets of different positions, scales and orientations. For each tree
node of the image quadtree partition the optimal wedgelet in Mean Square Error
(MSE) sense is found. By applying the bottom-up tree pruning algorithm the
wedgelet approximation is determined [6]. By using moments the computational
complexity of the wedgelet transform can be O(N2 log2N) for an image of size
N ×N pixels [16].

The edge detection method based on the wedgelet transform is defined as
follows. First, the wedgelet image approximation is found. Second, the beamlets
of that approximation are drawn instead of wedgelets. But, to avoid false edges,
the only beamlets are drawn for which the difference between two wedgelet colors
is larger than the fixed threshold. More details of the described method can be
found in [13].

3 Sliding Wedgelets

Wedgelet filtering combines two theories — image filtering and the wedgelet
transform. The aim of this paper is to release wedgelets from their fixed locations
following from the wedgelet transform. In fact, the wedgelet transform is related
to image quadtree partition. It causes that, for a fixed wedgelet’s size, the only
nonoverlapping correlations between a wedgelet and an image are determined.
Additionally, the locations of appropriate wedgelets are fixed. From the edge
detection point of view it is very inconvenient situation. In Fig. 1 (a) the image
with denoted two wedgelets of size 64 × 64 pixels from the wedgelet transform
(so, their locations are fixed) representing the edge defined by the bird’s wing is
presented. As one can see the edge is not represented properly. In Fig. 1 (b) the
same image with denoted one sliding wedgelet of the same size is presented. One
can easily see that the sliding wedgelet can represent the edge more efficiently
than the ones from the wedgelet transform. It follows from the fact that its
position may be chosen freely.

The algorithm of edge detection by sliding wedgelets is defined as follows.

Algorithm 1. Edge detection by sliding wedgelets

1. Input image F;
2. fix: size, shift, T;
3. for (i=0;i+size<=ImageSize;i+=shift)
4. for (j=0;j+size<=ImageSize;j+=shift)
5. compute wedgelet(F,i,j,size);
6. if abs(c1-c2)>T
7. draw beamlet(i,j,size);

The algorithm is quite simple in construction. However, some instructions of
the presented code should be explained. Parameters size, shift and T denote a
wedgelet size, a shift of sliding and a threshold for removing false edges, respec-
tively. They are fixed by a user. The wedgelet in line 5 is computed with the
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(a) (b)

Fig. 1. (a) The edge represented by two wedgelets from the wedgelet transform, (b)
the edge represented by one sliding wedgelet

help of the fast method proposed in [16], based on moments. Parameters c1, c2
are the colors intensities of the wedgelet computed in line 5. The if statement in
line 6 is necessary in order to avoid false edges drawing. In Fig. 2 the examples
of detected edges for different sets of parameters are presented.

(a) (b) (c)

Fig. 2. The edges for a block of size: (a) 4 × 4 pixels, shift = 2, T = 20; (b) 8 × 8
pixels, shift = 4, T = 20; (c) 4 × 4 combined with 8 × 8 pixels, shift = 2 for both
scales, T = 20 and T = 40, respectively

The computational complexity of the proposed method is linear. It follows
from the use of a sliding window and the use of the fast wedgelet computation.
From the sliding window construction follows that in the worst case (shift=1)
the wedgelet parameters can be computed at most N2 times for an image of size
N × N pixels. From the definition of the fast wedgelet transform proposed in
[16] follows that the wedgelet parameters (c1, c2 and the beamlet end points)
can be computed using O(size2) operations. So, the computational complexity
of the proposed algorithm is O(size2N2). However, since size is bounded by
32 in practical applications, the final computational complexity for the sliding
wedgelet algorithm is O(N2).
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In practice, the computations take less than 0.5 sec. for an image of size
256× 256 pixels on a Pentium IV 3GHz processor.

4 Experimental Results

In this section some examples of edge detection by sliding wedgelets are pre-
sented. For comparison purposes also the results of Canny edge detector (from
the Matlab toolbox) and the wedgelet transform-based edge detector (imple-
mented by the author) are presented. The parameters in all three methods were
chosen in the way to obtain the best possible results of edge detection. In Fig. 3
the standard benchmark images used in the experiments are presented.

Fig. 3. The standard set of benchmark images

In Fig. 4 the results of all three mentioned methods are presented. By analyz-
ing the results one can conclude that the edges detected by the sliding wedgelets
algorithm seems to be the most pleasant. The use of Canny edge detector leads
to many false edges, omitting the fact that it is not any geometrical detector. In
the case of edges detected with the help of the wedgelet transform one obtains
usually not continuous edges. The edges produced from the proposed method
are of different thickness. In some applications it can be good, since edges are
usually of different thickness within an image. But in some other applications it
can be cumbersome when one is looking for a single line representing an edge.
Anyway, the proposed method detected the most of the details in comparison to
the related methods.

In order to test the noise resistance of the proposed method, in Fig. 5 the
results of edge detection of images contaminated by Gaussian noise with mean
M = 0 and variance V = 0.005 are presented. The noise was added artificially



Edge Detection by Sliding Wedgelets 55

(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

(a4) (b4) (c4)

Fig. 4. Examples of edge detection: (a) Canny, (b) wedgelet transform, (c) sliding
wedgelets
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(a1) (b1) (c1)

(a2) (b2) (c2)

Fig. 5. Examples of edge detection from images contaminated by Gaussian noise with
M = 0 and V = 0.005: (a) Canny, (b) wedgelet transform, (c) sliding wedgelets

with the use of the Matlab image processing toolbox. As one can expect the
Canny detector is not noise resistant, so the results are not satisfactory. The
proposed method copes quite well with the noise. However, some false edges
appeared in the result images. The wedgelet transform-based method seems to
give slightly lesser number of false edges. But, on the other hand, the real edges
are more pleasant visually in the sliding wedgelet algorithm.

5 Summary

In the paper the new method of image filtering has been presented with the
application to edge detection. The method combines two different theories of edge
detection — image filtering and geometrical edge detection. From all that follows
that the proposed method is fast and detects edges in multiscale geometrical
way.

It is important to note that one of the advantages of the proposed algo-
rithm, the low computational complexity, follows from the theory of moments.
By applying moments theory to the wedgelet transform computation one can
significantly reduce its computational complexity [16]. Without this approach
the algorithm proposed in this paper could not be fast.
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Abstract. Traditional diffusivity based denoising models detect edges by the 
gradients of intensities, and thus are easily affected by noise. In this paper, we 
develop a nonlinear diffusion denoising method which adapts to the local 
context and thus preserves edges and diffuses more in the smooth regions. In 
the proposed diffusion model, the modulus of gradient in a diffusivity function 
is substituted by the modulus of a wavelet detail coefficient and the diffusion of 
wavelet coefficients is performed based on the local context. The local context 
is derived directly by analyzing the energy of transform across the scales and 
thus it performs efficiently in the real-time. The redundant representation of the 
stationary wavelet transform (SWT) and its shift-invariance lend themselves to 
edge detection and denoising applications. The proposed stationary wavelet 
context-based diffusivity (SWCD) model produces a better quality image 
compared to that attained by two high performance diffusion models, i.e. higher  
Peak Signal-to-Noise Ratio on average and lesser artifacts and blur are observed 
in a number of images representing texture, strong edges and smooth 
backgrounds.  

Keywords: Stationary Wavelet Transform; Non-linear Diffusion; Context-
based Denoising. 

1   Introduction 

The need for efficient image restoration methods has grown with the massive 
production of digital images and acquisition systems of all kinds. Among denoising 
methods the non-linear diffusion represents a simple yet efficient approach. The basic 
idea behind nonlinear diffusion filtering is to obtain a family u(x, t) of filtered 
versions of the signal f(x) as a solution of a suitable diffusion process 
 

                                   ut = (g(|ux|) ux)x                                                                                        (1) 
 

with f (.) as an initial condition: 
 

                                      u(x, 0) = f(x)                                                          (2) 
 

Here subscripts denote partial derivatives, and the diffusion time t is a 
simplification parameter with larger values corresponding to stronger filtering. The 
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diffusivity g(|ux|) is a nonnegative function that controls the amount of diffusion. 
Usually it is decreasing in |ux|. This ensures that strong edges are less blurred by the 
diffusion filter than the noise and low-contrast details. Depending on the choice of the 
diffusivity function, equation (1) covers a variety of filters. Some of the nonlinear 
anisotropic diffusion techniques are Perona–Malik filter [1], Weickert filter [2,3], 
Vogel-Omans’s [4] and Rudin-Osher-Fatemi’s [5] total variation diffusion. These 
techniques rely on the diffusion flux to iteratively eliminate small variations due to 
noise or texture, and to preserve large variations due to edges. For the multiplicative 
noisy image, however, the general signal/noise relationship no longer exists, since the 
variations due to noise may be larger than those due to signal. This limits the 
application of nonlinear diffusion methods for image processing. Nonlinear diffusion 
techniques rely on the gradient operator to distinguish signal from noise. Such a 
method often cannot achieve a precise separation of signal and noise. Image denoising 
problems are better solved if a powerful signal/noise separating tool such as for 
example, wavelet analysis is incorporated in the diffusion process. 

Recent work [6-13] has shown that nonlinear anisotropic diffusion can be 
employed within the framework of the dyadic wavelet transform (DWT). We refer to 
the integration of nonlinear diffusion and wavelet shrinkage as wavelet diffusion. This 
approach has more favorable denoising properties than nonlinear diffusion in the 
intensity domain. It is also distinguished from wavelet-based denoising methods such 
as wavelet shrinkage by its improved edge-enhancement and iterative noise reduction 
features. 

In [6,] a nonlinear multiscale wavelet diffusion method for the ultrasound speckle 
suppression and edge enhancement is presented. The edges are detected using 
normalized wavelet modulus and speckle is suppressed by employing the iterative 
multiscale diffusion of wavelet coefficients. The diffusion threshold is estimated from 
the normalized modulus in the homogenous speckle regions, in order to adapt to the 
noise variation with iteration. The automatic identification of homogenous regions is 
implemented using two-stage classification. Although the method could reduce the 
speckle and preserve edges, the low-contrast edges are blurred significantly. 

In [7], Bruni proposed another wavelet and partial differential equation (PDE) 
model for image denoising. Wavelet coefficients are modeled as waves that grow 
while expanding along scales. The model establishes a precise link between 
corresponding modulus maxima in the wavelet domain and then allows predicting 
wavelet coefficients at each scale from the first one from waves obeying a precise 
partial differential equation. This property combined with theoretical results about the 
characterization of singularities in the wavelet domain enables to discard noise. A 
drawback of this model are artifacts and the computational cost. 

Shih and Liao [8] addressed a single step nonlinear diffusion that can be 
considered equivalent to a single shrinkage iteration of coefficients of Mallat’s Zhong 
dyadic wavelet transform (MZ-DWT) [9]. Nonlinear diffusion begins with a gradient 
operator, which may be badly influenced by the noise present in the image. The 
characteristics of wavelet transform to obtain an edge estimate makes it less sensitive 
to noise i.e. to correctly separate the high frequency components from the low 
frequency ones and to retain the values of the high-frequency components that  
 



60 A.K. Mandava and E.E. Regentova 

corresponds to those having larger magnitudes and on the other hand to suppress 
those having smaller magnitudes. However, the method does not consider a context 
information and as a result is not free from artifacts. 

Bao and Krim [10] addressed the problem of texture losses in diffusion process in 
scale spaces by incorporating ideas from wavelet analysis. They showed that using 
wavelet frames of higher order than Haar’s is as good as to accounting for longer term 
correlation structure, while preserving the local focus on equally important features 
and illustrated the advantages of removing noise while preserving features. 

Mrazek and Weickert [11] have analyzed correspondences between explicit one-
dimensional schemes for nonlinear diffusion and discrete translation-invariant Haar 
wavelet shrinkage. Weickert et al. [11, 12] describe connections between discrete 
diffusion filtering and Haar wavelet shrinkage, including a locally analytic four-pixel 
scheme, but focused on the 1-D or the isotropic 2-D case with a scalar-valued 
diffusivity. This method enhances the edge but doesn’t preserve the object shape.  

In [13], Chen developed three denoising schemes by combining PDE with 
wavelets. In the first proposed model, the diffusion is a function of the Rudin-Osher-
Fatemi’s total variation model and  used amount of advection to diffuse differently in 
various directions and the largest amount of advection occurs in the normal direction 
and the smallest in the tangent direction. The model could preserve edges better and 
displayed strong noise resistance.  

It the above discussed methods no information about the local context is taken into 
account and no differentiation is made between texture and extended objects edges. In 
this paper, we combine in a single framework the advantages of non-linear diffusion 
and multiresolution decomposition and explore the context information to control the 
diffusion. The diffusivity function is used as a weighting function to the wavelet 
coefficients of a stationary wavelet transform (SWT) which provides both scale 
invariance and context information. The latter is derived from the transform energy 
observed locally spatially and across the scales. We compare the performance of the 
proposed method to the Weickert’s diffusivity and the method in [8]. Section 2 
provides a theoretical background and introduces the new local context based 
diffusion in the stationary wavelet domain (SWCD). Section 3 shows the 
experimental results. 

2   Local Context Based Diffusion in Stationary Wavelet Domain 
(SWCD) 

In a decimated discrete wavelet transform (DWT) after high and low pass filtering, 
coefficients are down sampled. Although this prevents redundancy and allows for 
using a same pair of filters in different levels, this decimated transform lacks shift 
invariance. Thus, small shifts in the input signal can cause major variations in the 
distribution of energy of coefficients at deferent levels. Even with periodic signal 
extension, the DWT of a translated version of a signal X is not, in general, the 
translated version of the DWT of X. To restore the translation invariance one can 
average a slightly different DWT, called ε-decimated DWT, to define the stationary 
wavelet transform (SWT) [14]. SWT algorithm is simple; the decimated DWT for a  
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given signal can be obtained by convolving the signal with the appropriate filters as in 
the DWT case but without down-sampling. The two-dimensional SWT leads to a 
decomposition of approximation coefficients at level j to four components: the 
approximation at level  j+1, and the details in three orientations, i.e., horizontal, 
vertical, and diagonal).Considering the multi-sampling filter banks, SWT 
decomposition is shown in Eq.3.  
 , ,  2 2 , ,  

, ,  2 2 , ,  

, ,  2 2 , ,  

, ,  ∑ ∑ 2 2 , ,           (3) 

Where ,  denote the (2j -1) zeros padded between h0 and h1, respectively. The 
inverse transform of SWT follows Eq.4. 

, ,  ∑ ∑ ∑ 2 2 , ,    

      + ∑ ∑ 2 2 , ,  

    +∑ ∑ 2 2 , ,  
                          +∑ ∑ 2 2 , , }                  (4) 

where A and D are approximation and detail coefficients, respectively. 
From the above two equations, we can verify that SWT includes redundant 

information and shift- invariance suitable for structure analyses and denoising. 
Smooth regions in image are represented mainly by approximation coefficients. Level 
1 and Level 2 detail subbands convey noise and the fine-grain texture information. 
The higher scales carry the information of edges of extended objects. To perform 
diffusion selectively and adaptively the local structure is to be observed from the 
distribution of energy of transform as it carries important information about the local 
context. Consider two-level Haar SWT of the noisy image with Haar wavelet. The 
energy of transform in respective subbands is defined as follows: 
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where m x n is a window at scale s, and k  indicates the subband, i.e., V- vertical,  D –
diagonal and  H-horizontal. 
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Fig.1 shows examples per context. The ratio in the figure is calculated in sliding 
windows of size of 9x9 pixels based on cumulative energies in three subbands; it is 
normalized and plotted versus different noise levels, i.e. σ = 10, 20, 30, 40 of 
Gaussian white noise. This ratio characterizes the local context for controlling the 
diffusion equation. Specifically, smooth regions affected by noise can be identified 
and let undergoing larger diffusion; edges of texture and extended objects exhibit 
ratio values different from that of smooth regions and thus can be lesser/slower 
diffused.  

Thus, the ratio of energies can be applied as an additional factor controlling the 
diffusion. 

 

Fig. 1. Distribution of E2/E1 for different contexts vs Gaussian white noise σ= 10, 20, 30, 40 

 

Fig. 2. Stability graph for modified Weickert’s diffusivity function 
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As in Shih’s method [8], we perform diffusion at level 1 and make related to the 
ratio of E2/E1. In Weickert’s diffusivity function we introduce a coefficient R which 
is a ratio of energies in the wavelet subbands. This forms a modified diffusivity 
function as in Eq 6. 

   | | 1 exp .| |
ƛ

                                               (6) 

Where  = E2/E1, and if E1 = 0, then it is replaced with ϵ = 0.001. 
Fig. 2 illustrates the bounded diffusivity for above modified Weickert’s diffusivity 

equation. 
In the diffusivity function,| , |is the edge estimate at pixel (x,y), given by | , |  , , where i = {1,2,3} and k = {v,h,d}. Diffusion is performed 

as = * | |  . .  | |  = 1- | |  and the image is reconstructed. 

3   Experiment 

To study the performance of SWCD we choose Gaussian white noise with standard 
deviation σ = 10, 20, 30, 40. The evaluation is performed based on PSNR according 
to Eq.7, where MSE- is a mean square error: 

                                 PSNR =  10log                                                      (7) 

For comparison we select  Weickert’s and Shih’s [8] diffusivities with the latter 
using Weickert’s diffusivity function applied directly to the first level of horizontal 
and vertical subbands of DWT with Haar wavelet function. 

In Fig.3 we show the original Lena image with an area chosen in a relatively 
smooth part of the image and enlarged marked area with the Gaussian white noise of 
σ = 10), and results of diffusion for various iterations (iter = 5, 10 and 15) and  ƛ = 10. 
We notice that the method as in [8] produces artifacts which are not seen in the results 
of the proposed approach. In Fig.4 we show the original texture image and results of 
diffusion in a certain area. We notice that the Weickert’s diffusivity and method as in 
[8] produce artifacts and blur edges in a greater extent but the proposed approach 
preserves edges of both texture regions and extended objects. In Cameraman image 
on Fig. 5 we see that the cameraman’s face and camera’s small details are vivid after 
diffusion by the proposed technique, and the background is smoother. In Fig. 6 that is 
in Pepper image, smooth pepper surface and the pepper contour are better preserved 
by the proposed technique. Fig.7 show PSNR for different noise levels (Gaussian, σ = 
10, 20, 30, 40) for six test images, Weickert’s diffusivity with  ƛ = 10 and 10 
iterations, method as in [8] with  ƛ = 10 and 10 iterations, and the herein proposed 
SWCD method with  ƛ = 100 and single iteration. From the results it can be observed 
that SWCD performs better in terms of both subjective quality and objective measures 
compared to other two counterpart techniques. 
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4   Conclusion 

The paper presented an adaptive image denoising method based on non-linear 
diffusion in the wavelet domain. The wavelet transform is stationary, i.e. redundant 
shift invariant shown to be effective for denoising. The magnitude of diffusion is 
controlled adaptively by the local context measured by the ratio of transform energies 
at scales 2 and 1. Unlike other context-based denoising models, here neither 
segmentation nor edge detection is performed prior to denoising; and thus method can 
be implemented in the real time. Based on the evaluation results, the SWCD shows a 
higher on average PSNR and perceptual quality compared to those of two reference 
methods.  
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Abstract. Wavelet domain blur invariants, which were proposed for the
first time in [10] by the authors, are modified in order to suit a wider
range of applications. With the modified blur invariants, it is possible
to address the applications in which the blur systems are not necessar-
ily energy-preserving. Also, for a simpler implementation of the wavelet
decomposition for discrete signals, we use a method which preserves an
important property of the invariants: shift invariance. The modified in-
variants are utilized in two different experiments in order to evaluate
their performance.

Keywords: Blur Moment Invariants, Direct Analysis, Feature Extrac-
tion, Shift Invariant Wavelet Transform.

1 Introduction

Perfection is nearly impossible when it comes to signal acquisition. Different
sources of degradation cause the acquired signal to not be exactly identical to
the original one. The effect of some of these degradation sources is considerably
high, which can vastly affect expected outcomes.

Blur is one of the degradations that could effectively reduce the discrimination
power. It could be introduced to signals due to the movement of the subject or
the data acquisition instrument. Also, the environment that the signal travels
in could blur the signal to some extent. Blur can be modeled as a linear shift
invariant system

y[n] = b ∗ x[n] (1)

where x and y are the original and blurred signals, respectively, and b is the blur
system.

In most of the cases, the blur system is unknown or only partial information is
available. The approaches in the literature that deal with removing the blur effect
are mainly two different types: blind restoration and direct analysis. In blind
restoration, the main purpose is to estimate the blur system and the original
signal with partial information about the acquisition system. There are numerous
proposed methods in literature for this type of approaches [8]. However, the main
problems with them are that they usually require high computational effort, and
the problem is usually ill-posed.
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c© Springer-Verlag Berlin Heidelberg 2011



70 I. Makaremi, K. Leboeuf, and M. Ahmadi

The direct analysis approaches, on the other hand, try to find characteristics
of the original signal without going through estimating the blur system. Flusser
et. al. [5][6] proposed the first direct analysis method based on the geometric
moments. In order to simplify the problem, they made two assumptions: the
blur system is centrally symmetric and energy-preserving. These assumptions
are generally used in developing any other kind of blur invariant descriptors as
well. Subsequently, they modified their method in order to make it invariant
to translation, scaling, and change of contrast as well [4], and generalized it
for N -dimensional signals [3]. Zhang et al. [15] employed Legendre moments for
extraction of blur invariant descriptors in the spatial domain.

Along with the blur invariant descriptors proposed in the spatial domain,
there are some other methods that are developed in the Fourier domain. The
first invariants in this domain were proposed by Flusser and Suk [5]. They showed
that the tangent of the Fourier transform phase is blur invariant. Ojansivu and
Heikkil [13] also proposed their blur invariant features in this domain based on
phase-only bispectrum.

Wavelet domain invariants were first proposed by the authors [10] with ap-
plication in analyzing EEG, ECG, speech signals, and signals acquired in single
point ultrasound measurements. Defining blur invariants in the wavelet domain
provides the advantage of analyzing signals at different scales with different
bases. It has been shown that Flusser’s spatial domain blur invariants [5] are a
special case of the wavelet domain blur invariants, and their limitation in spatial
domain is not an issue in the wavelet domain [10]. Also in a comprehensive ex-
periment, it was shown that the wavelet domain invariants are performing better
than the conventional blur invariants.

In this paper, those invariants are made available for discrete wavelet decom-
position, while preserving the shift invariance. Also, the invariants are modified in
order to remove a restriction on the blur system: the energy-preserving property.
In the next section, some of the basic definitions are reviewed and complimen-
tary ones are proposed. In section 3, the discrete wavelet transform is reviewed,
its limitation is discussed, and alternative approaches are explained. Section 4 is
devoted to moments in the wavelet domain and how blur represents itself in this
domain. Also, the modified blur invariants are proposed in this section. In sec-
tion 5, the performance of the invariants are evaluated through two experiments.
The paper is concluded in section 6.

2 Basic Definitions and Notation

In this section, some basic terms are defined and explained.

Definition 1. The pth order ordinary geometric moment of discrete signal x in
the spatial domain is defined by

mx
p =

∑
n

npx[n]. (2)
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Definition 2. The centroid of signal x is

cx =
mx

1

mx
0

(3)

Definition 3. The pth order central moment of discrete signal x in the spatial
domain is defined by

μx
p =

∑
n

(n− cx)p
x[n]. (4)

For (3) to hold, and for definition 3 to be valid, x is required to have a nonzero
mx

0 . In the case that the moments of x are zero up to a certain order, the following
definitions are proposed.

Definition 4. If the moments of signal x are zero up to order M−1, its centroid
is defined as

ςx =
mx

M+1

(M + 1)mx
M

(5)

Definition 5. If the moments of discrete signal x are zero up to order M − 1,
its pth order central moment (p ≥M) in the spatial domain is defined by

μx
p =

∑
n∈N

(n− ςx)p
x[n]. (6)

Definitions 2 and 3 are special cases of definitions 4 and 5 respectively in which
M = 0.

3 Shift Invariant Discrete Wavelet Transform

The use of wavelet transform as a powerful signal processing tool has several out-
standing advantages over other signal processing techniques. Employing wavelet
transform yields the opportunity to analyze signals at different times and fre-
quencies simultaneously. There are also a large number of bases available for
performing the transform which provides access to information that may not be
extractable by other techniques.

Discrete wavelet transform (DWT) is introduced for analyzing discrete signals.
However, it suffers from a major drawback: it is not shift invariant, and this is
due to the dyadic sub-sampling [7]. In order to make the moments invariant to
shift, it is necessary to have a shift invariant wavelet transform.

There have been several different techniques developed to produce shift invari-
ant wavelet transforms. Continuous Wavelet Transform (CWT) does not suffer
from the same drawback as its counterpart in the discrete domain [12]. There-
fore, it is typically utilized when the wavelet transform is only required at a
few specific scales. Mallat proposed a scheme [11] that is an approximation of
CWT, which was later proved that is invariant to shift [14]. À trous algorithm
[12] is the simplest and yet an effective technique that is proposed to make DWT
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invariant to shift. In this technique, the sub-sampling operator is removed, and
the filters are instead up-sampled at each level by inserting zeros between every
two coefficients [12]. Shift invariance has been also achieved by calculating the
wavelet transform of all shifts [9].

In this paper, we use the à trous algorithm which complies with our expec-
tations the best. In this algorithm, scaling and wavelet filters at scale j + 1 are
defined as

hj+1[k] = hj [k]↑2 =
{
hj [k

2 ], k even
0, k odd

(7)

gj+1[k] = gj[k]↑2 =
{
gj [k

2 ], k even
0, k odd

(8)

where h0[k] = h[k] and g0[k] = g[k]. The wavelet coefficients of signal x are
calculated with a cascade of discrete convolutions.

aj+1[n] = h̄j ∗ aj [n], (9)

d1
j+1[n] = ḡj ∗ aj [n], (10)

where a0 = x, j = 0, · · · , J − 1.
In this paper, the wavelet coefficients (either approximation or detail) of signal

x at level L are called
ψL

Wx, which is related to x as

ψL

Wx[n] = ψ̄L ∗ x[n], (11)

where
ψL[n] = f0 ∗ · · · ∗ fL−1[n], (12)

and f is either h or g.
Wavelet functions have a property that interferes with extracting moment

invariants in the corresponding domain: their moments are zero up to a certain
order which depends on the function, and are called vanishing moments.

Definition 6. The wavelet function ψ ∈L2(Z) has Mψ vanishing moments if∫ +∞

−∞
tpψ (t) dt = 0, for p ≤Mψ. (13)

The number of vanishing moments of ψ is equal to the number of zeros of ψ̂ (w)
at w = 0 [12]. Mψ depends on the number of zeros of ĝ (w) at w = 0, Mg, and
its repetition in obtaining ψ, N . Since the scaling filter is designed such that
ĥ (0) =

√
2, it can be derived that Mψ = NMg. Therefore, if ψL ∈ L2 (Z), and

it consists of N wavelet filters, then it has MψL = NMg vanishing moments.
In the next section, the effect of vanishing moments and the way that it is

dealt with is explained.
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4 Blur Invariants

Having chosen the proper wavelet transform, the representation of blur and
moments in the wavelet domain will be extracted.

4.1 Blur in the Wavelet Domain

The wavelet transform of a blurred signal with wavelet function ψL is

ψL

Wy[n] = ψ̄L ∗ y[n]. (14)

Substituting y with its equivalent in (1) gives

ψL

Wy[n] = ψ̄L ∗ b ∗ x[n]

= b ∗ ψ̄L ∗ x[n] = b ∗
ψL

Wx[n]. (15)

Eq.(15) implies that the wavelet transform of blurred signal y is the convolution
of blur system b with the wavelet transform of original signal x.

4.2 Moments in the Wavelet Domain

The ordinary moment of order p of
ψL

Wx is

m
ψL
Wx
p =

∑
n

np
ψL

Wx[n]

=
∑

n

∑
l

npx[l]ψL[l − n] =
∑

l

∑
k

(l − k)p
x[l]ψL[k]

=
p∑

i=0

∑
l

∑
k

(
p

i

)
(−1)i lp−ix[l]kiψL[k] =

p∑
i=0

(
p

i

)
(−1)i mx

p−im
ψL

i , (16)

where l − n is substituted with k. If ψL has MψL vanishing moments, mψL

i in

(16) will be zero for i <MψL . This forces the moments of
ψL

Wx to also be zero
for p < MψL . Considering this, (6) should be employed in order to calculate
the central moments of the wavelet transform of signals. Therefore, the central

moment of order p of
ψL

Wy is

μ
ψL
Wy
p =

∑
n

(
n− ς

ψL
Wy

)p
ψL

Wy[n] =
∑

n

∑
l

(
n− ς

ψL
Wy

)p
ψL

Wx[l]b[n− l]

=
∑

l

∑
k

((
l − ς

ψL
Wx

)
+

(
k−cb))p

ψL

Wx[l]b[k]
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=
p∑

i=0

∑
l

∑
k

(
p

i

)(
l − ς

ψL
Wx

)i
ψL

Wx[l]
(
k−cb)p−i

b[k]

=
p∑

i=0

(
p

i

)
μ

ψL
Wx
i μb

p−i, (17)

where l−n is substituted with k. Also, it is trivial to show that ς
ψL
Wy = ς

ψL
Wx + cb.

Since μ
ψL
Wx
i is zero for i < MψL , p should be equal to or greater than MψL .

Therefore, by defining q + MψL = p, μ́q = μp, and
(
a
b

)
M

=
(
a+M
b+M

)
, (17) is

modified to

μ́
ψL
Wy
q =

q∑
i=0

(
q

i

)
MψL

μ́
ψL
Wx
i μb

q−i. (18)

4.3 Blur Invariants in the Wavelet Domain

It is clear from (18) that the central moments of a blurred signal are related to
those of the original signal and the blur system. To have wavelet domain blur
invariants based on these moments, it is required to find a combination of them
such that the moments of the blur system are not present any longer.

Theorem 1. For
ψL

Wx, which is the wavelet transform of x with wavelet function

ψL, C
ψL
Wx
q is invariant to symmetric and energy-preserving blur systems [10].

C
ψL
Wx
q =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ́

ψL
Wx
q − 1

μ́
ψL
Wx
0

q−1
2∑

l=0

(
q

q−2l

)
MψL(

2l
0

)
MψL

C
ψL
Wx
q−2l μ́

ψL
Wx
2l , l is odd

0, l is even.

(19)

Proof. Refer to [10] for the proof. ��
Theorem 1 is applicable when the blur system is energy-preserving. However,
such systems are not always realistic. The next theorem eliminates this restric-
tion.

Theorem 2. For
ψL

Wx, which is the wavelet transform of x with wavelet function

ψL, D
ψL
Wx
q is invariant to symmetric blur systems.

D
ψL
Wx
q =

⎧⎪⎪⎨⎪⎪⎩
ν́

ψL
Wx
q −

q−1
2∑

l=0

(
q

q−2l

)
MψL(

2l
0

)
MψL

D
ψL
Wx
q−2l ν́

ψL
Wx
2l , l is odd

0, l is even,

(20)

where ν́x
q = μ́x

q/μ́
x
0 .
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Fig. 1. The two EEG signals that are used in experiment 1

Proof. Assume b̃ is a non-energy-preserving system. Such systems could be rep-
resented as

b̃ = cb, (21)

where c and b are a constant and an energy-preserving system, respectively. It
is trivial to show that μb̃

q = cμb
q, and from here c can be found as the zero order

moment of the non-energy-preserving system, μb̃
0. Remember that the zero order

moment of an energy-preserving system is equal to 1.
Assuming that y and z are both blurred versions of x by blur systems b̃ and

b, respectively, it can trivially be shown that ν́
ψL
Wy = ν́

ψL
Wz .

Without loss of generality, ν can be replaced in (19) to achieve blur invariants
with no restriction on the energy of the system, given in (20). It should also be

mention that since ν
ψL
Wx
0 becomes 1 for all signals, the term before the summation

in (19) does not appear in (20) anymore. ��

5 Experimental Results

In this section, the modified invariants are evaluated in two different experiments:
1- EEG signals, 2- barcodes. To run the experiments, three well known wavelet
filters are exploited: Coiflet of order 1, Daubechies of order 2, and Symlet of
order 3 [2], which have 2, 2, and 3 vanishing moments, respectively. Alsom every
experiment is carried out at different levels, which is indicated by mentioning
the sequence of filters that are utilized. For example, hg means that the wavelet
transform of signals are obtained by applying the lowpass filter followed by the
highpass filter.

5.1 Experiment 1

Fig. 1 shows the two EEG signals that are used for this experiment. They are
chosen from the database generated by Andrzejak et al. [1]. The signals are
blurred by averaging on N neighborhoods, where N is 11 and 21, and energies
of 0.7 and 0.4, respectively. Their wavelet transforms are obtained with wavelet
filter Daubechies of order 2 at level ghh.
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Table 1. Invariants of the EEG signals degraded with different blur systems. The
wavelet filter is Daubechies of order two at level ghh. O.M. stands for the order of
magnitude of the blur invariants. N is the number of neighborhoods in averaging.
N = 0 refers to the original signal. The invariants of different orders do not change
much by the variation of blur intensity and system energy, and they are sufficient to
distinguish between the two signals.

q/O.M.
5/7 7/13 9/19 11/25

N/mb̃
0

S
ig

.
1 0 56.49 130.22 617.55 4317.66

11/0.7 56.48 130.18 617.25 4314.94
21/0.4 56.53 130.44 618.98 4330.91

S
ig

.
2 0 -0.41 0.21 -0.16 0.19

11/0.7 -0.41 0.20 -0.16 0.19
21/0.4 -0.40 0.20 -0.16 0.18

Table 1 represents the invariants of order 5 to 11 of the original signals and
their blurred ones. It is clear that blur intensity and system energy changes
do not affect the invariants significantly. Also, the two different signals can be
perfectly distinguished from each other using the invariants.

5.2 Experiment 2

As a more challenging task, barcodes are used to evaluate the performance of
the wavelet based blur invariants. In this experiment, the barcodes of two books
are captured with a digital camera at different focuses, distances, and lighting
conditions (Fig. 2). The first two factors introduce blur to the acquired signals,
while the third one causes a change in the energy. The degradation level is so high
in some of the images that it makes it impossible to distinguish between different
bars with bare eyes. The images are then made of an equal width, changed from

Fig. 2. Two barcodes at different focuses, scales, and lighting conditions
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Table 2. Invariants of the central rows of the barcodes (the left half). The wavelet
filter is Coiflet of order 1 at level gg. O.M. stands for the order of magnitude of the blur
invariants. The invariants do not change drastically, although the images are degraded
significantly by changes in focus, scaling, and lighting condition.

q/O.M.
5/5 7/10 9/15 11/20

Barcode

1-a -17.61 18.47 -30.80 73.97
1-b -19.64 19.96 -32.08 74.23
1-c -17.67 17.08 -26.60 59.82
1-d -13.25 14.09 -23.24 55.02

2-a -12.67 12.40 -19.51 44.36
2-b -15.53 16.00 -25.63 59.30
2-c -14.57 14.63 -23.07 52.67
2-d -16.73 19.97 -35.41 89.53

Table 3. Invariants of the central rows of the barcodes (the right half). The wavelet
filter is Symlet of order 3 at level gh. O.M. stands for the order of magnitude of the
blur invariants. The variation within the invariants of similar barcodes is small, while
there is a good difference between the invariants of the barcodes.

q/O.M.
5/5 7/10 9/15 11/20

Barcode

1-a 2.16 -1.45 1.41 -1.98
1-b 1.75 -1.61 1.70 -2.47
1-c 2.13 -1.43 1.39 -1.94
1-d 2.75 -1.79 1.73 -2.42

2-a -1.41 1.20 -1.35 2.13
2-b -2.19 1.71 -1.87 2.89
2-c -2.87 2.07 -2.22 3.44
2-d -3.24 2.27 -2.43 3.74

RGB to greyscale, and their central rows are selected for comparison. As it can
be seen in Fig. 2, the first 6 digits of these two barcodes are identical, however
they are different on the second half. Therefore, the test is carried out on each
half separately.

Tables 2 and 3 show the results of tests on the left and right sides, respectively.
For the left side, the wavelet transforms are calculated with Coiflet of order 1
at level gg, and for the right side they are carried out with Symlet of order 3
at level gh. As it was expected, the results of the left half are very similar, and
the two barcodes are easily distinguishable based on the results of the right half.
Considering the different involved degrading factors, which are blur due to focus
and scaling, lighting, and noise, the discrepancy among similar barcodes is not
significant.
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6 Conclusion

The wavelet blur invariants have been modified in this paper in order to make
them available for applications where the blur system is not energy-preserving.
Since most of the signals that are dealt with are discrete, the proper wavelet de-
composition method is also chosen in order to keep the shift invariance property
as well.

Two different experiments were chosen to evaluate the performance of the
modified invariants. In the first experiment, EEG signals were blurred with
blur systems of different intensities and energy levels, and in the second exper-
iment, images of barcodes were acquired for a more challenging test. In both
experiments, the invariants performed well showing very little variation due
to changes in blur system effect and discriminating properly between different
signals.
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Abstract. This paper introduces a Super Resolution Hough Transform
(SRHT) scheme to address the vote spreading, peak splitting and reso-
lution limitation problems associated with the Hough Transform (HT).
The theory underlying the generation of multiple HT data frames and
the registration of cells obtained from multiple frames are discussed. Ex-
periments show that the SRHT avoids peak splitting and successfully
alleviates vote spreading and resolution limitations.

1 Introduction

The Hough Transform (HT) [1] is one of the most cited techniques for detecting
straight lines and curves in gray level images. The basic idea of the HT is that a
feature point (pixel) belonging to a straight line in the image space corresponds
to a sinusoidal curve in the parameter space. The sinusoidal curves of all feature
points on a straight line have a common intersection (i.e. the peak of accumulator
matrix) which is used to detect the line in the parameter space. Different methods
to improve the accuracy and resolution of HT, such as [2-13], were reported. Most
of these focus on modifying the HT voting framework to increase accumulators
to obtain higher accuracy and resolution. However, the discrete nature of the
voting process causes peak generation problems in the HT space. It might split
a peak into several peaks lying close to each other. It also spreads the peak to
several cells around its ‘true’ position, causing the peak not to be distinct and
hence limiting the accuracy of the HT, especially when disturbances and noise
are present in the image space. An extreme case is that when the resolution is
set so high that the peak will be too flat to be accurately detected.

In this paper a hybrid method, utilizing Super-Resolution (SR), is proposed
to solve these problems. Multiple low-resolution (LR) HT data frames are gen-
erated to obtain new information and reconstruct a High Resolution (HR) HT
data frame. To the authors’ knowledge, SR techniques have never before been
used in this manner to improve the HT. SR image reconstructing refers to the
process where a sequence of LR images is used to produce an HR image. Each LR

M. Kamel and A. Campilho (Eds.): ICIAR 2011, Part I, LNCS 6753, pp. 80–89, 2011.
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image must contain new information. The LR images in normal optical imaging
are obtained via sub-pixel shifting of the camera. The main challenge related to
this work is that the nature of the HT is such that traditional optical methods
are not suitable for LR HT data frame generation and pixel (cell) registration.
Furthermore, in many applications only one image is provided for object recog-
nition. Multiple data frame generation and pixel (cell) registration related to
the HT are discussed in this paper. Interpolation is used to reconstruct a HT
data frame. The proposed Super Resolution Hough Transform (SRHT) scheme
overcomes the vote spreading, peak splitting and resolution limitation problems
associated with the Hough Transform (HT).

2 Hough Transform Problems

As shown in Fig. 1 the standard Hough Transform uses the following steps:
Step 1: Discretize the parameter space (HT space) into cells;
Step 2: Each feature point (x, y) contributes 1 vote to each cell on the sine

curve
ρ = x cos θ + y sin θ, (1)

i.e. feature points lying on the same straight line will vote to a common cell
representing the straight in the HT space resulting in a peak in the accumulator
matrix;

Step 3: The biggest peak (the cell getting the most votes) represents the most
prominent straight line.

2.1 Peak Splitting

Shapiro[5] demonstrated the HT peak splitting problem via an example shown
in Fig. 2, where the mapped image in the HT space of the longer straight line

 

(a) Feature points in image space

 

(b) Voting in HT space

Fig. 1. Feature points vote to the cells lying on their sin curves
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lies between two conjoint cells and hence are split into two peaks due to the
rounding operation (shown in Fig. 2(b)), i.e. some feature points vote to one
cell and the others vote to another cell. This causes the longer line to obtain
a lower peak than the shorter one. It is obvious that this situation makes the
detection process problematic. However, after the lines are moved by 0.5 pixel,
the HT data becomes reasonable again as shown in Fig. 2(c), implying that
the HT is not robust to small image shifts. Similar examples are not difficult

 

(a) Lines in image

 

(b) Peak of a straight line is split
 

(c) HT is sensitive to shifting

Fig. 2. Peak splitting in HT[5]

to construct. In fact, most cells share votes with conjoint cells because of the
discretization and rounding operation during the voting process. In general the
vote splitting/spreading problem cannot be avoided. It should be noted that not
only the peaks might be split, the votes to each cell might also be unequally
split.

2.2 Resolution Limitation

For the same image shown in Fig. 3, if the ρ-resolution is very high, the conjoint
cells and the “true” cell get the same number of votes, implying that the HT
cannot correctly locate straight lines in this situation. Vote spreading flattens
the peaks when a very high resolution is required. Even peaks that are not
flattened significantly will still affect detection accuracy and reliability. This
paper proposes a solution to the open problem of how to obtain a reliable high
resolution HT.

3 Using Super Resolution to Improve the HT

For the sake of simplicity, the idea of SR is demonstrated in Fig.4 using a one
dimensional case. Multiple LR images are generated by different imagers (or an
imager using different viewpoints) to ensure new information exist in these LR
images, i.e. no LR image can be obtained via other LR images. Then, according to
the aliases of these LR images, their pixels are registered to a position in reference
image. A HR image is then reconstructed by integrating the information of these
LR images. By using the sensitivity of the HT to a shift in the images, multiple
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Fig. 3. Resolution Limitation in HT[5]

Fig. 4. The idea of SR[16]

 

Fig. 5. The structure of SR-HT

LR HT data frames containing new information can be obtained via shifting.
The resulting LR HT data frames are then used to construct a HR data frame
using SR technologies.

The structure of the proposed SRHT method is demonstrated in Fig. 5. A
given image is used to generate multiple LR HT data frames. These LR frames
are then registered to a reference frame to reconstruct a HR frame.
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3.1 Multiple HT Data Frame Generation

SR is based on the assumption that new information exists in the LR frames.
Because of the information lost due to the rounding operation in optical imaging
sensors, sub-pixel shifting ensures that each new LR frame contains new infor-
mation. So, for normal optical images, cameras need to be aliased by fractional
pixels as shown in Fig.6.

 

Fig. 6. Obtain multiple LR images via shifting camera by subpixel alias[15]

For this research, we assume that only one image is given, and present a
method to generate multiple HT frames from this single image.

As previously mentioned, sub-pixel aliasing between frames are usually needed
to generate images containing new information when dealing with digital optical
images. The following will show what will happen in the HT space if the image
is moved:
For feature point (x, y) we have

ρ = x cos θ + y sin θ. (2)

After moving vertically by Δy we have

ρ′ = x′ cos θ′ + y′ sin θ′ (3)

where

x′ = x
y′ = y −Δy
θ′ = θ

(4)

i.e.

ρ′ = x cos θ + (y −Δy) sin θ
= x cos θ + y sin θ −Δy sin θ
= ρ−Δy sin θ.

(5)
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If Δy sin θ is not just equal to nΔρ, i.e. new splitting ratios for point (x, y)
appear around cell (θ, ρ), then new information is generated during the shift.
Similar results can be obtained if shifting horizontally or both vertically and
horizontally. In fact, it is impossible for Δy sin θ to simultaneously equal to nΔρ
for all cells (θ, ρ) lying on the sine curve represented by eq. 2. Multiple HT data
frames containing new information can therefore be obtained via shifting the
image.

3.2 Pixel/Cell Registration

In digital optical images most pixels retain relatively strong neighbor relations
between frames. The difference between frames are block based as shown in
Fig.7. Most macro blocks can find their corresponding blocks in other LR images.
Motion estimation is a popular technique used in SR to register pixels in the
reference frame. However, in HT data frames the difference between frames are

  

Fig. 7. Block based motion in optical images[14]

column-wise (shown in Fig.8). Conjoint pixels (cells) in different columns will not
be conjoint in other HT frames, i.e. relativity is broken, and the alias depends
on both image shift and the position of the cell in the HT space. It is obvious
that techniques like motion estimation is of no use in this situation.

  

Fig. 8. Column based difference between HT data frames

We will now show how to register cells to the interpolating plane, i.e. calculate
the alias of each cell in the reference frame, when multiple HT data frames
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are available. As shown in eq. (5), the HT frame is aliased column-wisely after
vertically shifting the given image. For the column corresponding to θ the alias is
−Δy sin θ. So for a cell (θ′, ρ′) in the vertically shifted HT frame, its sub-sampling
point in the reference frame is (θ′, ρ′ +Δy sin θ′).

Similar to eq. (5), after horizontally moving the given image by Δx we have

ρ′ = x′ cos θ′ + y′ sin θ′ (6)

where
x′ = x−Δx
y′ = y
θ′ = θ

(7)

i.e.
ρ′ = (x−Δx) cos θ + y sin θ

= x cos θ + y sin θ −Δx cos θ
= ρ−Δx cos θ.

(8)

So for a cell (θ′, ρ′) in the horizontally shifted HT frame, its sub-sampling point
in the reference frame is (θ′, ρ′ +Δx cos θ′).

3.3 HR Reconstruction Using LR HT Frames

After registration, HR reconstruction is responsible for calculating the value of
samples on the HR sampling points. The reconstruction methods for HT data are
similar to those used for normal optical images. an interpolation method is used
in this paper. Firstly a surface of the form h = f(θ, ρ) is fitted to the registered
data in the non-uniformly spaced vectors (θ, ρ, h) where h represents the value
of accumulators. Then this surface is interpolated at the points specified by HR
(θHR, ρHR) to produce hHR.

4 Experiments

The image shown in Fig. 9(a) illustrates the proposed method:

4.1 The Improvement of Peak Splitting

After shifting the given image vertically and horizontally, multiple LR HT data
frames are obtained as shown in Figs. 9(b),9(c), and 9(d). In Fig. 9(d) the left
peak is split into two. Furthermore, the LR HT data frames verified that the HT
is very sensitive to a shift of the image. When the image is slightly shifted by
only 1 or 2 pixels, their HT data frames have great differences in the value and
width of peaks. This is because of the HT voting splitting/spreading problem,
however, it provides new information in different frames and hence SR principles
can be used to improve the HT performance. Fig. 9(e) shows the HT data frame
obtained by SRHT where peak splitting is avoided and the width of peaks are
also decreased, implying that the peaks are more distinct than the ones in LR HT
data frames. HT-based image analysis methods will clearly benefit from these
distinct peaks.
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(a) Lines to be detected (b) Shift 1 pixel vertically (c) Shift 2 pixel vertically

(d) Shift 1 pixel horizon-
tally

 

(e) SRHT alleviates the
peak splitting

Fig. 9. Peak splitting and its solution by SRHT

 

(a) Δρ = 0.5, Δθ = 0.5
 

(b) Δρ = 0.33, Δθ = 0.33
 

(c) Δρ = 0.25, Δθ = 0.25

 
(d) Δρ = 0.125, Δθ = 0.125

 

(e) Δρ = 0.125, Δθ = 0.125

Fig. 10. The resolution limitation of HT and the improvement made by SR-HT
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4.2 Improving the Resolution Limitation

When a very high resolution in the HT space is required, vote spreading becomes
very prominent, i.e. the height of peaks becomes very low and the width of peaks
become very wide as shown in Fig. 10(a)–10(d). This causes the HT to become
unreliable and is the reason why high HT resolutions are normally avoided.
Based on low resolution HT data frames obtained in Section 4.1, we obtain a
high resolution HT data frame as shown in Fig. 10(e), where the peaks are very
instinct even though the resolution is very high. As shown in Fig. 10(d) and
Fig. 10(e), the HT data frames have the same resolutions, but the peaks of
the latter are much more distinct than the former. The height of the peaks in
Fig. 10(e) are almost as distinct as the ones obtained in the low resolution HT
data frames shown in Section 4.1. This clearly demonstrates the ability of the
proposed method to improve HT resolution limitations.

5 Conclusion

In this paper, SR technology was employed to improve the vote spreading, peak
splitting and resolution limitation problems associated with the Hough Trans-
form (HT). The theory underlying the generation of multiple HT data frames
and the registration of cells obtained from multiple frames were discussed and a
hybrid method, the Super Resolution Hough Transform (SRHT), was proposed.
Experiments showed that the SRHT avoids peak splitting and successfully alle-
viates vote spreading and resolution limitations.
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Abstract. In order to solve the problems that the image fusion method based on 
separable discrete wavelet transform is lower in spatial resolution and there is 
block effect in fused image, a new multispectral image fusion method based on 
non-separable wavelets with compactly support, symmetry, orthogonality, and 
dilation matrix [2,0;0,2] is proposed. A construction method of four channels 
6 × 6 filter banks is presented. Using the low-pass filter constructed, 
multispectral images are fused. Three fusion methods called NAWS, 
NAWRGB and NAWL are proposed in the fusion of multispectral image and 
panchromatic image. Every fusion method presented outperforms the 
corresponding fusion method of the AWS, the AWRGB and the AWL in 
preserving high spatial resolution information respectively, and the higher 
spatial resolution fused image can be obtained. Of all fusion methods, the non-
separable additive wavelet substitution (NAWS) method has the best 
performance in preserving higher spatial resolution information.  

Keywords: Image fusion; Non-separable wavelets; Multispectral image; 
Panchromatic image. 

1   Introduction 

The fusion of multispectral image integrates the images which have higher spectral 
quality but lower spatial resolution and the panchromatic images with higher spatial 
resolution. It creates a new image which has better spectral information and higher 
spatial resolution. It is the hot technology of remote sensing image fusion, and has 
been widely used [1] [2] [3] [4] [5]. 

A number of approaches to pixel-level fusion have been proposed for merging 
multispectral image and panchromatic image [6] [7] [8] [9] [10]. The common 
procedures are intensity-hue-saturation mergers (IHS mergers or LHS mergers) [11], 
principal component analysis mergers (PCA mergers) [12], separable discrete wavelet 
transform (DWT mergers) [13]. All of these methods have their insufficiencies. The 
method of LHS transform can get high spatial resolution image, but the fused image 
may seriously lose the spectral information of the original MS image. The method of 
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PCA is adequate for the fusion of all wave bands multispectral images, and it can 
enhance the spatial resolution of the fused image, but it also reduces the spectral 
resolution and has a large amount of fusion computation. A fused image with good 
spectral information can be created by the separable discrete wavelet transform, but it 
is low in spatial resolution and there is block effect in the fused image. 

In pixel-level image fusion using wavelets, reconstruction is a necessary step, so 
we deservedly have to construct the wavelets which have perfectly reconstruction 
performance. However, most wavelets applied in image processing in recently years 
are separable discrete wavelets generated from Daubechies one-dimensional wavelets 
via tensor product. Daubechies wavelets are not symmetric except Haar wavelet [14]. 
It is well known that a real value function has linear phase only when it is symmetric 
[15]. If a wavelet has not linear phase, then it will not have the properties of perfectly 
reconstruction. That is to say, in the separable discrete wavelets which have compact 
support and orthogonality, only the Haar wavelet has perfectly reconstruction 
performance, but Haar wavelet is too simple to keep good performance in lots of 
applications. So, how to construct the symmetrical wavelets that have good fusion 
performance is a key problem of wavelet application in image fusion. Biorthogonal 
wavelets are symmetrical, but it has not orthogonality, and when it is applied to image 
processing, information redundancy will be produced. Non-separable wavelets with 
symmetry will be constructed and applied to the field of image fusion in this paper. 

Jorge Núñez proposed an additive wavelet “á trous” algorithm to fuse 
multispectral images and panchromatic images [16]. Its low-pass filter was generated 
from the one-dimensional B3 spline wavelet filters via tensor product. The proposed 
fusion method has better fusion effect in preserving spectral information. For 
extracting higher spatial resolution information from source panchromatic image, no 
quantitative analysis was made in the paper.  

Non-separable wavelet is a new kind of wavelet developed in recently years [17] 
[18]. Compared to the separable wavelet, it has many good characteristics and can 
extract higher resolution information [19] [20]. Our group has studied the fusion 
methods of multispectral image and panchromatic image based on two channels non-
separable wavelets [21] [22]. These methods have good fusion effect. Less 
computation amount is spent when images are decomposed and reconstructed. 
However, less information is obtained because only the diagonal line elements of the 
two channel filters are non-zero. The image information of the pixels whose positions 
are not in the diagonal line was lost. 

This paper will spread the fusion method of multispectral image and panchromatic 
image which is based on separable additive wavelets to non-separable additive 
wavelets and explore its fusion performance. 

2   Non-separable Orthogonal Wavelets with Compact Support and 
Filter Banks 

When the sampling matrix is equal to [2, 0; 0, 2], its determinant has an absolute 
value of 4. According to the theory of general two-dimensional wavelet transform, 
there are one scale function and three wavelet functions. Accordingly, there are four 
filters—a low-pass filter and three high-pass filters. Suppose 

0H  and ( 1, 2,3)iH i =  
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are the low-pass filter and the high-pass filters of the decomposition respectively. *
0H  

and *( 1, 2,3)iH i = are the low-pass filter and the high-pass filters of the reconstruction 

respectively. The key problem of constructing non-separable wavelets is to construct 
the non-separable wavelet low-pass filter and high-pass filters.  

Suppose the dilation matrix of wavelet transform is[2,0;0, 2] . According to the 

general constructing method of high dimensional wavelets with compactly support 
and orthogonality [23], we can construct the two-dimensional 2P×2P filter bank with 
compactly support, symmetry and orthogonality as formula (1). 

2 2
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We can validate that: ( 1,2)jU j = are center-symmetric orthonormal matrices, 

/ 2V is an orthonormal matrix. Consequently, the filer bank 
0 1 2 3, , ,H H H H  which 

has compactly support, symmetry and orthonormality can be constructed. We have 
designed several groups of wavelet filter banks like this. From the experiments, we 
select

1 2 1 2/ 4, / 4, / 3, / 3α π α π β π β π= = = = − , the low-pass filter of space domain 

form as formula (2) will be selected to fuse the images in the next section. 

0
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(2) 
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We can also validate that it is an orthonormal filter bank. Apparently 
0H is center-

symmetric, 
1 2 3, ,H H H  are all center-symmetric filters, so this filter bank is a 

perfectly reconstructed filter bank with linear phase. 

3   Fusion Algorithm 

The algorithm steps are similar to “á trous” algorithm proposed in literature [16].  
Firstly, decompose images using the two-dimensional non-separable low-pass filter 

as formula (2). Suppose 0p is the source image, then 

0 1 1( ) , , ( 1,2, )i i i i iH p p w p p i− −= = − = L  (3) 

Where ( 1, 2, )iw i = L are wavelet planes, ( 0,1, 2, )ip i = L are wavelet approximate 

components. Its reconstruction process is as formula (4). 

0
1

n

i r
i

p w p
=

= +∑  (4) 

Where rp is the remnant image. 

Secondly, three fusion modes were proposed similar to the literature [16] using the 
non-separable low-pass filter to replace the separable low-pass filter. In literature 
[16], three fusion modes were adopted to fuse multispectral and panchromatic images: 
(1) “Substitution method”: some of the wavelet planes of the multispectral image 
were substituted by the planes corresponding to the panchromatic image; (2) “Adding 
to the RGB Components”: adding the wavelet planes of the panchromatic image to R, 
G, and B directly; (3) “Adding to the Intensity Component”: adding the wavelet 
planes of the panchromatic decomposition to the intensity component of multispectral 
image. We call them as additive wavelet substitution (AWS), additive wavelet RGB 
(AWRGB) and additive wavelet L (AWL) respectively. Corresponding to the three 
fusion modes proposed in literature [16], the three fusion modes based on non-
separable wavelet are used as follows: (1) non-separable additive wavelet substitution 
(NAWS); (2) non-separable additive wavelet RGB (NAWRGB); (3) non-separable 
additive wavelet L (NAWL). 

4   Experimental Results Evaluation and Analysis 

4.1   Experimental Results 

In order to study the fusion performance of this kind of low-pass filters, we have 
designed a number of filter banks, and applied them to the fusion of multispectral and 
panchromatic images. We will show two experimental results at this time. 

For the fusion of Quickbird satellite images, we select the panchromatic image 
whose spatial resolution is 0.61m. Figure 1(a) is the multi-band image whose spatial 
resolution is 2.44m. The three bands are the green band, the red band and the near  
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(a) 

   

(b)                 (c)                             (d) 

   

(e)                                 (f)                              (g) 

      
(h)                                         (i)                                      (j) 

        
(k)                                                (l) 

Fig. 1. Fusion of Quickbird MS image and PAN image. (a) Multispectral image;(b) Sub-image 
of MS image; (c) LHS fused sub-image; (d) DWT fused sub-image;(e) NAWS fused sub-
image; (f) NAWRGB fused sub-image; (g) NAWL fused sub-image;(h) AWS fused sub-image; 
(i) AWRGB fused sub-image;(j) AWL fused sub-image;(k) Small image cut down from figure 
1(e); (l) Small image cut down from figure 1(h). 
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infrared band. The bilinear interpolation method is used to re-sampling the 
multispectral image, and makes the pixel size of the sampling multispectral image be 
0.61m×0.61m to accord with the resolution of the panchromatic image, and performs 
registration on panchromatic image and multispectral image. Because the image is too 
large, the sub-images have been cut out from the whole fused image to display the 
fusion effect clearly. Figure 1(b) is the sub-image of the source multispectral image. 

Figure 1(e)-figure 1(g) are the fused sub-images of the proposed fusion method. In 
order to see the fusion effect clearly, we compare this method with the fusion methods 
based on LHS transform [11], DWT [13] and the separable additive wavelet á trous 
algorithm [16]. Figure 1(c) and figure 1(d) are the fused images of LHS method and 
DWT method respectively. Figure 1(h)-1(j) are the fused images of the AWS, 
AWRGB, AWL methods respectively. The wavelet function used in DWT is the db2 
which is the second one of Daubechies series wavelets, and it has the same length 
as

0H . The decomposition layers of the methods based on DWT, AWS, AWRGB, 

AWL and the proposed methods are 3, and the experiment is realized in the 
programming environment of MATLAB 7.5. In order to separate the low frequency 
and high frequency well, the filter of formula (2) was filtered by the 4 4×  average 
value filter. 

From the fusion effect of the proposed fusion methods, the spatial resolution and 
the spectral information of the MS images have been enhanced. That is, the results of 
the fusion contain structural details of the Pan image’s higher spatial resolution and 
rich spectral information from the source multispectral images. The fused images of 
NAWS, NAWRGB and NAWL are clearer than the corresponding fused images of 
AWS, AWRGB and AWL, and all of them are clearer than the fused image by DWT 
method. From the visual effects, figure 1(e) has the highest spatial resolution. Figure 
1(k) and figure 1(l) are the small images cut down from figure 1(e) and figure 1(h) 
respectively, figure 1(k) is clearer than figure 1(l) apparently.  The fused image by 
LHS method has higher spatial resolution but its spectral information has degenerated 
seriously. The fused image based on DWT method preserves the spectral information 
of the multispectral image well, but it is vague and has lower spatial resolution.  

Since NWAS has the best visual effect, we give another experiment to study the 
high-resolution performance of NWAS. For the fusion of LISS-3 images taken from 
IRS-P6 satellite, figure 2(a) and figure 2(b) are source images. Figure 2(a) is the 
LISS-3 panchromatic image which spatial resolution is 5.8m.  Figure 2(b) is the LISS-
3 multi-band images which spatial resolution is 23.5m. The three bands are the B2 
band (green), the B3 band (red) and the B4 band (near infrared). This is a fire scene. 
Flame is burning on the upper right corner of the scene. The flame has been 
extinguished on lower-left corner of the scene. From color, the trace of burning and 
the flame could be seen. 

Figure 2(f) is the fused image of NAWS. In order to see the fusion effects clearly, 
we also compare this method with the fusion methods based on IHS transform [11], 
DWT [13] and AWS [16]. Figure 2(c), figure 2(d) and figure 2(e) are the fused 
images of these three fusion methods respectively.  

Comparing the visual effect of figure 2(f) with the fusion effects of figure 2(c), 
figure 2(d) and figure 2(e), the fused image of the proposed fusion method (NAWS) 
can preserve good spectral information and higher spatial resolution. The flame color  
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(a)                   (b)                                (c) 

   
(d)                               (e)                                 (f) 

Fig. 2. Fusion of LISS-3 MS image and PAN image. (a) Original PAN image; (b) Original MS 
image; (c) IHS fused image; (d) DWT fused image; (e) AWS fused image; (f) NAWS fused 
image. 

and the traces of burning of the scene are natural. It has no blocking artifact in the 
fused image. The fused images based on IHS fusion method (figure 2(c) has higher 
spatial resolution, but the spectral information distorted badly. The color of fused 
image is deep. The fused image based on DWT has also good spectral information, 
but there are marked block effects in the ridge and other places. From the visual 
effects, figure 2(f) has the highest spatial resolution. 

4.2   Performance Analysis of the Fused Result Images 

The information entropy (IE) [10] [19] [20], the spatial frequency (SF) [24] and a 
kind of correlation coefficients (sCC) [3] [10] are used to measure the high spatial 
information the fused images preserve. The greater the entropy is, more information is 
contained. The entropy values of the Quickbird images fusion are listed in table 1. In 
literature [24], spatial frequency contains row frequency and column frequency as 
well as main diagonal frequency. The frequency in the spatial domain indicates the 
overall activity level in an image. The greater spatial frequency is, the clearer the 
images are, more spatial resolution information is contained. The spatial frequency of 
the different fusion method is presented in table 2. The high correlation coefficients 
between the fused filtered image and the Pan filtered image indicate that most of the 
spatial information of the Pan image was incorporated during the fusion process. 
These kinds of correlation coefficients of the fusion method proposed in this paper are 
presented in table 3.  
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Table 1. Entropy of the Quickbird fused images 

Fusion methods R G B 
Initial MS Image 7.43 7.24 7.08 

AWS 7.50 7.34 7.20 
AWRGB 7.56 7.40 7.28 Additive Wavelet 

AWL 7.49 7.31 7.17 
NAWS 7.52 7.37 7.26 

NAWRGB 7.64 7.51 7.40 
Non-separable 

Additive Wavelet 
NAWL 7.54 7.38 7.24 

LHS 6.81 6.54 6.35 
Separable wavelet 7.48 7.29 7.15 

Table 2. Spatial frequency of the Quickbird fused images 

Fusion methods R G B 
Initial MS Image 6.30 5.89 5.58 

AWS 14.75 14.64 14.54 
AWRGB 15.41 15.24 15.13 

Additive Wavelet 

AWL 10.44 10.17 10.01 
NAWS 15.45 15.37 15.30 

NAWRGB 16.51 16.35 16.23 
Non-separable Additive Wavelet 

NAWL 11.14 10.88 10.70 
LHS 12.58 12.37 12.25 

Separable wavelet 9.40 9.29 9.21 

Table 3. Correlation coefficients between fused images and PAN images of Quickbird 

Fusion methods R G B 
AWS 0.988 0.988 0.988 

AWRGB 0.970 0.972 0.971 
Additive Wavelet 

AWL 0.915 0.919 0.917 
NAWS 0.996 0.997 0.996 

NAWRGB 0.976 0.978 0.977 
Non-separable 

Additive Wavelet 
NAWL 0.921 0.925 0.924 

LHS 0.996 0.997 0.996 
Separable wavelet 0.524 0.529 0.529 

 
The results of table 1, table 2 and table 3 show that the fusion method based on 

non-separable additive wavelet performs better than the corresponding fusion method 
based on separable additive wavelet mentioned in literature [16] in preserving good 
spatial resolution information from the PAN image. NAWS has the highest spatial 
resolution in all the methods researched. 

Table 4 lists the performance indices of NAWS fusion method for the LISS-3 
fused images. 
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Table 4. Performance indices of the different fusion method for the LISS-3 fused images 

LHS method DWT method AWS method NAWS method 

R       G       B R       G       B R     G     B R       G       B 

IE 5.95   6.79   6.01 7.004 7.506  7.129 7.12   7.44   7.14 7.23   7.52   7.21 

SF 10.31  10.80  10.71 15.35 14.80  15.14 17.22 17.23  17.35 18.19 17.83  18.03 

sCC 0.934 0.972  0.986 0.937 0.976  0.968 0.977 0.986  0.987 0.994 0.993  0.996 
 

Table 4 shows that NAWS fusion method has the highest spatial resolution. 

5   Conclusion 

This paper has presented a construction method of symmetric two-dimensional non-
separable wavelet whose dilation matrix is [2, 0; 0, 2], and has constructed non-
separable wavelet low-pass filter, and has applied it in the fusion of multispectral 
image and panchromatic image. The proposed method has good fusion vision effect. 
From the objective performance indices, the fusion methods proposed outperforms the 
corresponding fusion method based on additive wavelet and the fusion method based 
on DWT in preserving the spatial resolution information, and the higher spatial 
resolution image can be obtained. Between the different non-separable additive 
wavelet based methods studied, the non-separable additive wavelet substitution 
(NAWS) method performs better in preserving higher spatial resolution information. 

When using the methods proposed in this paper to fuse the SPOT-XS image and 
the SPOT-PAN image, the ETM+30m spatial resolution image and the ETM+PAN 
image, the SPOT high spatial resolution image and TM multispectral image, the same 
conclusion can be obtained.  
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Abstract. We derive mathematically a class of metrics for signals and
images, considered as elements of RN , that are based upon the structural
similarity (SSIM) index. The important feature of our construction is
that we consider the two terms of the SSIM index, which are normally
multiplied together to produce a scalar, as components of an ordered
pair. Each of these terms is then used to produce a normalized metric,
one of which operates on the means of the signals and the other of which
operates on their zero-mean components. We then show that a suitable
norm of an ordered pair of metrics defines a metric in RN .

Keywords: structural similarity index, normalized metrics, extended
metrics, image quality assessment.

1 Introduction

Image quality assessment consists in modeling the perceptual fidelity between
an original (ideal) image and a distorted version of it. The goal is not only
to evaluate or compare the performance of image processing algorithms, but
also to design an objective function to be optimized in order to develop better
algorithms [1]. Traditionally, mean squared error (MSE) is used for this task,
due to its simplicity and its many nice mathematical properties [1]. However, it
is well known [1] that L2-based measures, e.g., mean squared error (MSE), are
not necessarily good measures of visual quality.

Several image quality measures have been proposed in the literature as candi-
dates to replace MSE [2]. While they generally outperform MSE in psycho-visual
experiments, they are not known to share the mathematical properties of the
MSE, making optimization very difficult to achieve. One concern is that these
quality measures are not metrics in the strict mathematical sense since they do
not satisfy the triangle inequality. As such, they are not amenable to standard
procedures of mathematical analysis that may establish important properties,
e.g., convergence, contractivity of operators.

An example of an application where these properties are important is collec-
tive sensing as described by Li in [3]. The main idea is to model an image as the
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fixed point of a non-local operator, such as non-local means [4], BM3D [5] or a
simplified version of non-local total variation [6]. One of the ideas of Li in [3] is
to use an image representation that, contrary to cosine transforms and wavelets,
is not based on a Hilbert space structure, but only on a metric space. Still, in his
examples it was assumed implicitly that the metric used is the one associated
with the L2-norm (i.e., MSE), which in fact is an inner product norm.

The structural similarity (SSIM) index [7] is an example of an image quality
measure designed to provide better assessments of visual distortions between
two images. The original formulation of the SSIM measure S(x,y) between two
signals or images, x,y ∈ RN

+ , involves a product of three terms, each of which
measures a particular aspect of two images or image patches being compared,
namely (i) the similarity of their mean values, (ii) the similarity between their
contrasts and (iii) their correlation. The final two terms, however, can be col-
lapsed into a single term. The resulting SSIM measure represents a combination
of two pieces of information to produce a single number that characterizes the
visual similarity of two image blocks. Such a procedure is known as scalariza-
tion. The question arises, however, whether it might be desirable to keep the two
components, S1(x,y) and S2(x,y), of the SSIM separate, i.e., to treat the SSIM
measure as a vector, an ordered pair, as opposed to a scalar. In this way, for
example, their contributions could be weighted.

We show in this paper an example of a class of metrics for images derived
from the SSIM index for which are associated neither norms nor inner products.
This is done by first decomposing a signal x into two orthogonal components,
a one-dimensional space, RN

1 , which involves only x̄, the mean of x, and an
(N − 1)-dimensional space, RN

2 , containing the zero-mean component of x. We
then show that if d1 and d2 are any two metrics on the spaces RN

1 and RN
2 ,

respectively, then the Lp norm of the ordered pair d = (d1, d2) is a metric on
RN . Finally, we employ SSIM-based metrics for d1 and d2 in order to obtained
our desired class of image metrics.

2 The Structural Similarity (SSIM) Quality Measure

In what follows, we let RN
+ denote the space of non-negative N -dimensional

signal/image blocks, i.e., x ∈ RN
+ implies that x = (x1, x2, · · · , xN ), with xk ≥ 0,

1 ≤ k ≤ N . We also consider the L2 distance between two such signals x,y ∈ RN
+

to be the usual root mean squared error (RMSE), denoted as follows,

‖x− y‖2 =

[
1
N

N∑
k=1

(xk − yk)2
]1/2

. (1)

The original definition of the SSIM measure between x and y is as follows,

S(x,y) =
[

2x̄ȳ + ε1
x̄2 + ȳ2 + ε1

] [
2sxsy + ε2
s2x + s2y + ε2

] [
sxy + ε3
sxsy + ε3

]
. (2)
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where

x̄ =
1
N

N∑
i=1

xi , ȳ =
1
N

N∑
i=1

yi ,

s2x =
1

N − 1

N∑
i=1

(xi − x̄)2 , s2y =
1

N − 1

N∑
i=1

(yi − ȳ)2 , (3)

sxy =
1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ) .

The small positive constants ε1, ε2 � 1 are added for numerical stability along
with an effort to accomodate the perception of the human visual system.

In the special case that ε3 = ε2/2, the above formula simplifies to the following
product of two terms,

S(x,y) = S1(x,y)S2(x,y) =
[

2x̄ȳ + ε1
x̄2 + ȳ2 + ε1

] [
2sxy + ε2
s2x + s2y + ε2

]
, (4)

It is this form of SSIM, which is frequently used in applications, that will be
examined in this paper. The extension to the three-term formulation in (2), if
desired, is straightforward.

The component S1 in (4) measures the similarity of the mean values, x̄ and
ȳ of, respectively, x and y. Its functional form was originally chosen in an effort
to accomodate Weber’s law of perception [7]. The component S2 in (4) is a
combination of the correlation and a measure of contrast distortion (similarity
between the variances) between x and y. Its functional form follows the idea of
divisive normalization [8].

Since we are working with signals in x,y ∈ RN
+ , it follows that 0 ≤ S1 ≤ 1

and S1(x,y) = 1 if and only if x̄ = ȳ. Note also that −1 ≤ S2(x,y) ≤ 1 and
S2 = 1 if and only if x− x̄ = y − ȳ. It implies that −1 ≤ S(x,y) ≤ 1 and that,
for non-negative signals, S(x,y) = 1 if and only if x = y. (A negative value of
S(x,y) implies that x and y are negatively correlated.) This suggests that the
function,

T (x,y) = 1− S(x,y) , (5)

could act as some kind of distance function, since x = y implies that T (x,y) = 0.
Note also that 0 ≤ T (x,y) ≤ 2.

We now examine the components, S1 and S2 in (4), in this way. For S1,

1− S1(x,y) = 1− 2x̄ȳ + ε1
x̄2 + ȳ2 + ε1

=
|x̄− ȳ|2

x̄2 + ȳ2 + ε1
. (6)

The RHS of (6) may be viewed as a normalized squared L2 distance between the
mean values x̄ and ȳ. For S2,

1− S2(x,y) = 1− 2sxy + ε2
s2x + s2y + ε2
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=
s2x + s2y − 2sxy

s2x + s2y + ε2
. (7)

In the special case x̄ = ȳ = 0,

1− S2(x,y) =
‖x− y‖2

‖x‖2 + ‖y‖2 + N−1
N ε2

, (8)

which is also a normalized squared L2 distance between x and y. Equations (6)
and (8) suggest that it is natural to consider SSIM-based metrics which operate
on a decomposition of signals into their means and zero-mean components. This
will be done in the next section.

3 A Class of SSIM-Based Metrics

3.1 Orthogonal Decomposition of the Signal/Image Space

Here, we shall work in the space RN of N -dimensional signals/image blocks. We
also let RN

2 ⊂ RN denote the (N − 1)-dimensional subspace (hyperplane) of
zero-mean signals, i.e.,

x = (x1, x2, · · · , xN ) ∈ RN
2 ⇒ x̄ = 0 or

N∑
k=1

xk = 0 . (9)

Finally, define the one-dimensional subspace RN
1 = span{(1, 1, · · · , 1)}, i.e.,

RN
1 = {y = (y1, y2, · · · , yn) | y = c (1, 1, · · · , 1) for some c ∈ R} . (10)

RN
1 and RN

2 are orthogonal complements of each other since x ∈ RN
2 and

y ∈ RN
1 implies that

〈x,y〉 =
N∑

k=1

xkyk = 0 . (11)

Moreover,
RN = RN

1 ⊕RN
2 . (12)

We shall denote the orthogonal decomposition of an element x ∈ RN in terms
of these two subspaces as follows,

x = x1 + x2, x1 ∈ RN
1 , x2 ∈ RN

2 . (13)

The component x1 is the projection of x onto the subspace RN
1 , i.e.,

x1 = 〈x, ê1〉 ê1, where ê1 =
1√
N

(1, 1, · · · , 1) . (14)

Therefore,
x1 = (x̄, x̄, · · · , x̄) = x̄ (1, 1, · · · , 1) . (15)

where x̄ is the mean of x defined in (3). It follows that the zero-mean component,
x2, of x in RN

2 is given by
x2 = x− x1 . (16)
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3.2 A Class of Two-Dimensional Metrics

The next step is to consider metrics on these orthogonal spaces. Let d1 be a
metric on R and d2 a metric on RN−1. Then for any two elements x,y ∈ RN ,
define the corresponding ordered pair,

d = (d1(x̄, ȳ), d2(x2,y2)) ∈ R2 . (17)

It is clear that x = y implies that d = 0. The following result shows that d can
be used to define a metric on RN .

Theorem 1. Let ‖ · ‖ be a norm in R2 that satisfies the following increasing
property in R2

+: For any a ∈ R2
+ and any positive ordered pair b = (b1, b2), with

b1, b2 > 0,
‖a + b‖ ≥ ‖a‖. (18)

Then for d defined in (17),
d(x,y) := ‖d‖ (19)

is a metric in RN .

Note 1. This theorem can be generalized for a combination of M metrics on
RN .

Before proving this theorem we state that for any p ≥ 1, the Lp norm in R2

satisfies the above increasing property. It also applies to the case p = ∞, i.e.,
the L∞ norm. This can be checked by using Taylor’s Theorem for multivariable
functions.

Proof. It is quite straightforward to show that d(x,y) in (19) satisfies following
necessary properties of a metric:

1. d(x,y) = d(y,x) (symmetry),
2. d(x,y) ≥ 0 (positivity),
3. d(x,y) = 0 if and only if x = y (strict positivity).

It remains to prove that d(x,y) satisfies the triangle inequality, i.e., for any
x,y, z ∈ RN ,

d(x,y) ≤ d(x, z) + d(z,y). (20)

This result follows from the assumptions that d1 and d2 are metrics and that
the ‖ · ‖ norm satisfies the increasing property:

d(x,y) = ‖(d1(x̄, ȳ), d2(x2,y2))‖
≤ ‖(d1(x̄, z̄) + d1(z̄, ȳ) , d2(x2, z2) + d2(z2,y2)‖
= ‖(d1(x̄, z̄), d2(x2, z2)) + (d1(z̄,y), d2(z2,y2))‖
≤ ‖(d1(x̄, z̄), d2(x2, z2))‖ + ‖(d1(z̄, ȳ), d2(z2,y2))‖
= d(x, z) + d(z,y). (21)

��
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Note 2. The increasing property in (18) also holds for suitably weighted Lp

norms, e.g.,

‖x‖ =

[
N∑

k=1

wk,p|xk|p
]1/p

, (22)

where wk,p > 0 for 1 ≤ k ≤ N . But (18) does not hold for all norms. That
being said, the validity for Lp and weighted norms is sufficient for most, if not
all, practical purposes.

3.3 The Normalized Metric Relevant to SSIM

We now return to the results of (6) and (8) in order to construct a SSIM-based
metric. The following result will be necessary.

Theorem 2. For M ≥ 1, let ‖ · ‖2 the L2 norm in RM . Then for ε ≥ 0,
d̄ : RM ×RM → R, given by

d̄(x,y) =

{ ‖x−y‖2√
‖x‖2

2+‖y‖2
2+ε

, (x,y) �= (0,0),

0, x = y = 0,
(23)

is a metric.

This theorem was proved for the case ε = 0 in [9]. The proof for the case ε > 0
will appear elsewhere [10].

Note 3. The metric d̄ is an example of a normalized metric. The range of values
assumed by d̄ is the bounded interval [0,

√
2]: d̄(x,y) = 0 when x = y and, for

ε = 0, d̄(x,y) =
√

2 when y = −x.

Note 4. For every ε ≥ 0, d̄(x,0) is not a norm, since d̄(αx,0) �= αd̄(x,0) for any
α > 0.

Note 5. The following is an interesting property of this metric: In the case ε = 0,

d̄(x,0) = 1 for all x ∈ RM . (24)

This implies that no sequences {xn} can converge to 0 in this metric: Even if
xn → 0 in the metric defined by the RM norm ‖ · ‖, i.e. limn→∞ ‖xn− 0‖ = 0, it
cannot converge to 0 in d̄ metric since limn→∞ d̄(xn, 0) = 1. This is not a major
problem since, in general, we are concerned only with non-zero signals.

Nevertheless, this nonconvergence of sequences to 0 in the d̄ metric disappears
when ε > 0. This parameter will, in fact, appear if we consider nonzero stability
constants in the SSIM function of (4).

Note 6. Once again in the case ε = 0, we have a scale invariance property: For
any α ∈ R, d̄(αx, αy) = d̄(x,y), which is consistent with (24).
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Unlike the L2 case (Euclidean metric), the level sets associated with this metric
are nonconcentric (hyper)spheres. To illustrate, we consider the simple R2 case
with ε = 0. Let a = (a1, a2) denote a reference point in R2. The C-level set of
the metric d̄ is the set of x = (x1, x2) for which d̄(x,a) = C, where C ∈ [0,

√
2],

i.e.,
‖x− a‖2√‖x‖22 + ‖a‖22

= C ⇒ ‖x− a‖22 = C2‖x‖22 + C2‖a‖22. (25)

After a little algebra, we found that the level sets may be classified into the
following cases:

Case 1: 0 ≤ C < 1. For each C-value, the corresponding C-level set is com-
posed of the points x = (x1, x2) that satisfy the equation,[

x1 − a1

1− C2

]2

+
[
x2 − a2

1− C2

]2

=
C2(2− C2)
(1− C2)2

(a2
1 + a2

2) . (26)

This is a circle centered at
1

1− C2
(a1, a2) with radius r =

C‖a‖2
1− C2

√
2− C2.

The centers of these circles lie on the line that extends from the origin 0 to
the point a. They start at a (C=0) and travel outward to infinity as C → 1−.

Case 2: C = 1. The level set is the line a1x1 + a2x2 which contains the origin
(0, 0). This line is perpendicular to the line that supports the centers of the
level sets in Case 1.

Case 3: 1 < C ≤ √2. For each C-value the corresponding C-level set is com-
posed of the points x = (x1, x2) that satisfy the equation,[

x1 +
a1

C2 − 1

]2

+
[
x2 +

a2

C2 − 1

]2

=
C2(2− C2)
(C2 − 1)2

(a2
1 + a2

2) . (27)

This is a circle centered at
1

C2 − 1
(−a1,−a2) with radius r =

C‖a‖2
C2 − 1

√
2− C2.

Their centers of these circles lie on the line that extends from the origin 0 to
the point −a. They are coming in from infinity (C =

√
2) and travel toward

−a as C → √
2. At C =

√
2, the level set is the single point −a.

In Fig. 1 are plotted some level sets associated with the point a = (1, 1).

3.4 Construction of the SSIM-Based Metric

We may now define the SSIM-based metric that results from the above construc-
tions. The normalized metric d̄ will be used in each of the subspaces RN

1 and
RN

2 defined in Sect. 3.1.
Given x,y ∈ RN , we now define the following vector of metrics,

d(x,y) = (d1(x̄, ȳ), d2(x2,y2)) ∈ R2 , (28)
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Fig. 1. Level sets d̄(x,a) = C about the reference point a = (1, 1) for C = 1
20

k,
1 ≤ k ≤ 28, over the region (x1, x2) ∈ [−1, 3] × [−1, 3]

where

d1(x̄, ȳ) = d̄(x̄, ȳ) =
|x̄− ȳ|√

x̄2 + ȳ2 + ε1

d2(x2,y2) = d̄(x2,y2) =
‖x2 − y2‖2√

‖x2‖22 + ‖y2‖22 + N−1
N ε2

, (29)

The components, x2 and y2 of, respectively, x and y were defined in Sect. 3.1.
In the particular case of two-dimensional signals, i.e., N = 2, which was

illustrated in Fig. 1, we may view the d1 metric as operating on the line x1−x2 =
0 and the d2 metric operator as operating on the orthogonal space x1 + x2 = 0
(zero-mean signals).

Now let ‖ ·‖ denote any norm in R2 satisfying the increasing property defined
in Theorem 1. From that theorem, we have the resulting metric on RN :

D(x,y) = ‖(d̄(x̄, ȳ), d̄(x2,y2))‖ . (30)

In the case that ‖ · ‖ = ‖ · ‖p, the weighted Lp norm on R2, with p ≥ 1, the
metric is given explicitly as

Dp(x,y) = ‖(d̄(x̄, ȳ), d̄(x2,y2))‖p

=
(
w1,p

[
d̄(x̄, ȳ)

]p + w2,p

[
d̄(x2,y2)

]p )1/p
. (31)

The cases p = 1 and p = 2 will probably be most relevant to standard image
processing procedures:

D1 = d̄(x̄, ȳ) + d̄(x2,y2) , (32)

D2 =
√
d̄2(x̄, ȳ) + d̄2(x2,y2) . (33)
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(a) Original: Boat (b) Distorted: JPEG +
mean shift ramp

(c) SSIM map

(d) S1 =
√

1 − d2
1 (e) S2 =

√
1 − d2

2 (f) D1

(g) D2 (h) weighted-D2: (1.5,0.5) (i) weighted-D2: (0.5,1.5)

Fig. 2. (a) Original Boat image. (b) JPEG-compressed Boat image (quality factor
10/100) + horizontal mean shift ramp (from −100/255 to +100/255) (c) SSIM quality
index map: Black=0, White=1. (d)-(e) S1 and S2, the two components of the SSIM
quality map (mean distortion and structural distortion) (f)-(i) SSIM-based metrics
computed from different norms of (d1, d2) = (

√
1 − S1,

√
1 − S2): (f) D1, the L1-norm.

(g) D2, the L2-norm. (h) Weighted L2-norm with w1 = 1.5 and w2 = 0.5. (i) Weighted
L2-norm with w1 = 0.5 and w2 = 1.5. For all maps, a down-sampling was first per-
formed and a sliding Gaussian window of STD = 1.5 pixels was used. The images (f)-(i)
were rescaled with the formula

√
max(0, 1 − D2) to look comparable to the SSIM map.
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Note that in the special case p = 2 with unit weights, the above metric becomes
the square root of the sum of the expressions in (6) and (7). Finally, the case
p =∞ may also be useful in some applications,

D∞(x,y) = max{d̄(x̄, ȳ), d̄(x2,y2)} . (34)

By comparing the equation for D2 with
√

1− SSIM we can understand their
relationship:

√
1− SSIM =

√
1− (1− d2

1)(1 − d2
2) =

√
d2
1 + d2

2 − d2
1d

2
2. (35)

D2 may be viewed as a low order approximation of the SSIM index. In fact,
most image distortions, e.g. JPEG and JPEG2000 compression, blur and zero-
mean noise, preserve the mean. It implies that d1 = d̄(x̄, ȳ) will be close to
zero. Thus, D2 is a very good approximation of SSIM for most of the distortions
encountered in image processing. In fact, when the means are exactly matched,
D2(x,y) =

√
1− SSIM(x,y).

Example 1. To offer some comparison between the new class of metrics and
SSIM – and to show some of their limitations – we present an example involving
a distortion of both the local structure and the local mean value. In Fig. 2 are
shown several quality maps which compare the test image Boat (top left) with
a JPEG compressed version (quality factor 10/100) to which was added a hori-
zontal mean shift ramp from −100/255 to +100/255 (top middle). We see that
all the different metrics detect the same error than the SSIM map, but none
of them give exactly the same weight than SSIM for luminance distortion and
structural distortion.

Psychovisual experiments will need to be performed to find the best parameters
p and wk,p associated with these metrics. One of these metrics could be then
used in image processing applications as optimization objective.

Acknowledgements. We gratefully acknowledge the generous support of this
research by the Natural Sciences and Engineering Research Council of Canada
(NSERC) in the forms of Discovery Grants (ERV, ZW), a Strategic Grant (ZW),
a collaborative research and development (CRD) grant (ERV, ZW) and a Post-
graduate Scholarship (DB). ZW would also like to acknowledge partial support
by the Province of Ontario Ministry of Research and Innovation in the form of
an Early Researcher Award.

References

1. Wang, Z., Bovik, A.C.: Mean squared error: Love it or leave it? A new look at
signal fidelity measures. IEEE Signal Processing Magazine 26(1), 98–117 (2009)

2. Wang, Z., Bovik, A.C.: Modern Image Quality Assessment. Morgan & Claypool
Publishers (2006)

3. Li, X.: Collective sensing: a fixed-point approach in the metric space. SPIE Conf.
on VCIP (July 2010)



110 D. Brunet, E.R. Vrscay, and Z. Wang

4. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a
new one. Multiscale Modelling and Simulation 4, 490–530 (2005)

5. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse
3-D transform-domain collaborative filtering. IEEE Trans. Image Processing 16,
2080–2095 (2007)

6. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing.
Multiscale Modeling and Simulation 7(3), 1005–1028 (2008)

7. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
From error visibility to structural similarity. IEEE Trans. Image Processing 13(4),
600–612 (2004)

8. Wainwright, M.J., Schwartz, O., Simoncelli, E.P.: Natural image statistics and
divisive normalization: Modeling nonlinearity and adaptation in cortical neurons.
In: Rao, R., et al. (eds.) Probabilistic Models of the Brain: Perception and Neural
Function, pp. 203–222. MIT Press, Cambridge (2002)

9. Klamkin, M.S., Meir, A.: Ptolemy’s inequality, chordal metric, multiplicative met-
ric. Pacific J. Math. 101(2), 389–392 (1982)

10. Brunet, D., Vrscay, E.R., Wang, Z.: On the mathematical properties of the struc-
tural similarity index (preprint). (March 2011),
http://www.math.uwaterloo.ca/~dbrunet/

http://www.math.uwaterloo.ca/~dbrunet/


Structural Fidelity vs. Naturalness - Objective

Assessment of Tone Mapped Images

Hojatollah Yeganeh and Zhou Wang

Department of Electrical and Computer Engineering, University of Waterloo,
Waterloo, Ontario, Canada N2L 3G1

hyeganeh@uwaterloo.ca, zhouwang@ieee.org

Abstract. There has been an increasing number of tone mapping algo-
rithms developed in recent years that can convert high dynamic range
(HDR) to low dynamic range (LDR) images, so that they can be visual-
ized on standard displays. Nevertheless, good quality evaluation criteria
of tone mapped images are still lacking, without which, different tone
mapping algorithms cannot be compared and there is no meaningful di-
rection for improvement. Although subjective assessment methods pro-
vide useful references, they are expensive and time-consuming, and are
difficult to be embedded into optimization frameworks. In this paper,
we propose a novel objective assessment method that combines a multi-
scale signal fidelity measure inspired by the structural similarity (SSIM)
index and a naturalness measure based on statistics on the brightness
of natural images. Validations using available subjective data show good
correlations between the proposed measure and subjective rankings of
LDR images created by existing tone mapping operators.

Keywords: image quality assessment, high dynamic range image, tone
mapping, structural similarity, naturalness of images.

1 Introduction

The real world scenes exhibit a wide range of luminance variations. The dy-
namic range could be on the order of 10,000 to 1 from highlights to shadows
[18]. High dynamic range (HDR) images allow us to capture greater luminance
levels between its brightest and darkest regions than standard or low dynamic
range (LDR) images. A common problem that is often encountered in practice is
concerned about the visualization of HDR images − most display devices avail-
able to us have been designed to accommodate standard LDR images and cannot
preserve all information contained in HDR images. In order to visualize HDR
images using standard displays, a number of tone mapping algorithms have been
proposed that convert HDR to LDR images, for example [15,11,8]. It should be
noted that due to the dynamic range reduction, tone mapping operators (TMOs)
unavoidably cause information loss. So the question is, having multiple TMOs a
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hand, which TMO faithfully maintains the information in the HDR image, and
which TMO produces the most natural-looking good quality LDR image?

Subjective evaluation is the most straightforward method to assess the per-
formance of TMOs. In [7], perceptual evaluations were carried out for six TMOs
with regard to similarity and preferences. Seven TMOs were compared in [22]
using two architectural interior scene and fourteen subjects were asked to rate
basic image attributes as well as naturalness of the LDR images. A more com-
prehensive subjective experiment was performed in [6], where ten observer were
asked to rate LDR images generated by 14 TMOs in terms of brightness, con-
trast, details and colors, and also to rank the overall quality of the images. These
subjective test data are useful references in studying tone mapping algorithms.
However, subjective experiments tend to be time-consuming and expensive. In
addition, the outcome from these experiments are difficult to be incorporated
into the design and optimization of tone mapping algorithms. Moreover, sub-
jective tests may not be able to provide a complete evaluation because subject
cannot see all details of HDR images, whose information may be missing from
the LDR images and the subjects may not be aware of the existence of the
missing details.

The progress on objective assessment of tone mapped images has been quite
limited. Typical objective image quality assessment approaches assume that the
reference and test images have the same dynamic range [18], and thus are not
applicable. A dynamic range independent approach was proposed in [3], where
the authors used a visibility model of the human visual system (HVS) to com-
pare pairs of HDR-LDR images and produce quality maps, which reflect the loss
of visible features, the amplification of invisible features, and reversal of contrast
polarity. These quality maps show good correlations with subjective classifica-
tions of image degradation types including blur, sharpening, contrast reversal,
and no distortion. However, this method does not provide a single quality score
for an entire image, making it impossible to be validated with subjective evalu-
ations of overall image quality.

In this work, we aims to develop an objective quality assessment model for
LDR images using their corresponding HDR images as references. Our model
is composed of two components − structural fidelity measurement and natural-
ness assessment. The structural fidelity measure is inspired by the success of the
structural similarity (SSIM) index [18], which has been shown to be well cor-
related with perceived image quality when tested using a number of large-scale
subject-rated independent databases [19]. Its performance can be further im-
proved when incorporated into a multi-scale framework [20]. However, SSIM or
multi-scale SSIM models cannot be directly applied to compare images with dif-
ferent dynamic ranges. Our method is built upon multi-scale SSIM but is adapted
to accommodate contrast comparisons across dynamic ranges. The naturalness
assessment component in our approach is based upon brightness statistics of
natural images. Although the model is simple, it appears to be useful and espe-
cially suited to the problem we are working with, where brightness mapping is
an inevitable issue in the design of tone mapping algorithms.



Objective Assessment of Tone Mapped Images 113

2 Proposed Method

The invisibility of HDR reference image casts big challenges to objective quality
assessment of tone mapped images. Because of the reduction of dynamic range,
TMOs are deemed not to be able to preserve all information in HDR images, and
human observers may not be aware of this. One of the most important factors
in assessing TMOs is that how much structural information is preserved after
tone mapping. In [21], we presented a novel approach to measure the structural
fidelity between HDR and its tone mapped LDR images based on the philosophy
of SSIM. However, this does not suffice to provide an overall quality evaluation
of tone mapped images because an LDR image that maintains the structural
information of the HDR image may not look natural, for example, in our study
we observed some LDR images that well maintain the structural information
in the HDR images look overly dark. Therefore, we would desire tone mapped
images that achieve the best balance between two (sometimes competing) factors
− structural fidelity preservation and high naturalness. Our quality assessment
model is thus built upon these ingredients.

2.1 Structural Fidelity

Local Structural Fidelity Assessment. Our approach is derived from the
philosophy behind the design of SSIM, which is based on the belief that
the main purpose of human vision is to extract structural information from
the visual scene, and thus perceived image distortion should be predictable by
a measure of structural information loss. The original local SSIM definition in-
cludes a luminance, a contrast and a structure comparison components. Since
the local luminance and contrast between HDR and LDR images are meant to
be different, it does not make good sense to directly compare local luminance
and contrast. Let x and y be two local image patches extracted from the HDR
and LDR images respectively. Our local similarity measure is defined as

Slocal(x, y) =
2σ′

xσ
′
y + C1

σ′
x
2 + σ′

y
2 + C1

· σxy + C2

σxσy + C2
. (1)

The second term is the structure comparison component as in SSIM, where σx,
σy and σxy are the local standard deviations and cross correlation between the
two patches in HDR and LDR images, respectively, and C1 and C2 are positive
stabilizing constants. The modified local contrast comparison method is given in
the first term, which is developed based on two considerations. First, the contrast
difference between HDR and LDR image patches should not be penalized as
long as their contrasts are both significant or both insignificant, as opposed
to comparing images with the same dynamic range, where SSIM penalizes any
change in contrast. Second, the algorithm should penalize the cases that the
contrast is significant in one of the image patches, but insignificant in the other.
The key issue here is to quantify the significance of local contrast. In order to do
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this, we pass the local standard deviation through a nonlinear mapping function
given by

σ′ =

⎧⎪⎨⎪⎩
0, σ < T1

1
2

{
1 + cos

[
π

T2−T1
(σ − T2)

]}
, T1 ≤ σ ≤ T2

1, T2 < σ ,
(2)

where T1 and T2 are two threshold values that define the ranges of insignificant
and significant contrasts, and a raised cosine function is employed to provide a
smooth transition between the two ranges. Note that when two image patches
are both significant (σ greater than T2) or both insignificant (σ smaller than T1),
the first term of Eq. (1) equals 1, and thus the Slocal measure is fully determined
by the structure comparison component in Eq. (1).

Multi-scale Assessment. The local Slocal measure described above is applied
to an entire image using a sliding window approach across the image space,
resulting in a quality map that indicates the quality variation across space.

L  2

S1

HDR
image L  2 L  2

L  2LDR
image L  2 L  2

S2 SL S

Fig. 1. Multi-scale framework of structural fidelity assessment method

The perceivability of image details also depends on the sampling density of the
image signal, the distance from the image to the observer, the display resolution,
and the perceptual capability of the observer’s visual system. In practice, the
subjective evaluation of a given image varies with these parameters. A single-
scale method as described in the previous section cannot capture such variations,
and a multi-scale method is a convenient way to incorporate HVS features and
image details at different resolutions. As in [20], we carry out signal fidelity
assessment using a multi-scale structure depicted in Fig. 1, where the images
are iteratively low-pass filtered and downsampled, creating an image pyramid
structure [4]. The local structural fidelity map is generated at each scale, and
the map is then averaged to provide a single score for the scale by

Sl =
1
Nl

Nl∑
i=1

Slocal(xi, yi) , (3)

where xi and yi are the i-th patches in the two images being compared, and
Nl is the number of patches in the l-th scale. Fig. 2 shows examples of quality
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maps computed using the proposed multi-scale approach. Finally, the structural
fidelity measures computed at each scale are combined to a multi-scale measure
of the overall structural fidelity:

S =
L∏

l=1

Sβl

l , (4)

where L is the total number of scales and βl is the weight assigned to the l-th
scale.

 

 

 

 

 

(a) S = 0.9288 (S1 = 0.9371; S2 = 0.9642; S3 = 0.9524; S4 = 0.9158; S5 = 0.8286)

  

 

 

 
 

(b) S = 0.7980 (S1 = 0.8419; S2 = 0.8573; S3 = 0.8330; S4 = 0.7795; S5 = 0.6361)

Fig. 2. LDR images and their fidelity maps and scores in five scales. The images were
created using Adobe Photoshop “Highlight compression” and “Exposure and Gamma”
methods (not optimized for quality), respectively. The structural details of the brightest
regions are missing in Image (b), but are more visible in Image (a). These are clearly
reflected in the quality maps.
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There are several parameters in the implementation of the multi-scale struc-
tural fidelity model. When computing Slocal, we set C1 = 0.01, C2 = 10, T 1 =
0.5, and T2 = 4, respectively. In our test, we find that the overall performance
of our quality model is insensitive to these parameters within an order of mag-
nitude, though fine tunings are yet to be performed through carefully designed
psychophysical experiment. To create the fidelity map at each scale, we employ
a Gaussian sliding window of size 11×11 with standard deviation 1.5. When
combining the measures across scales, we set L = 5 and {βl} = {0.0448, 0.2856,
0.3001, 0.2363, 0.1333}, which follows the psychophysical experiment results re-
ported in [20]. To assess the quality of color images we first convert them from
RGB color space to Yxy space and we apply the proposed structural fidelity
measurement on luminance component Y only.

2.2 Naturalness

Tone mapping operators should be designed in a way that not only preserves
structural information but also reproduces natural looking images. However,
naturalness in general is a very subjective quantity and has not been clearly de-
fined. A large literature has been dedicated to natural image statistics and their
connections to biological vision. An excellent review can be found in [16]. Nat-
uralness has also been studied in the context of subjective quality evaluation of
tone mapped images. In [5], a subjective experiment was carried out and average
correlation coefficients between image naturalness and different image attributes
such as brightness, contrast, color reproduction, visibility and reproduction of
details, are provided. The results show that among all attributes being tested,
brightness and contrast have more correlation with perceived naturalness by
subjects. This motivates us to build our naturalness model based on these two
attributes. This choice may be oversimplifying in defining the general concept of
image naturalness, but it captures the most important ingredients of naturalness
that are related to the tone mapping evaluation problem we are trying to solve,
where brightness mapping is an inevitable issue in all tone mapping operations.

Our method is built upon statistics of good-quality natural images. We gath-
ered almost 3000 8bits/pixel natural images taken from many different scenes.
These images are available at [1,2]. Figure 3 shows the histograms of the means
and standard deviations of these images, which are useful measures that reflect
the global luminance and contrast of images. We find that these histograms can
be well fitted using a Gaussian and a Beta probability density functions, re-
spectively, where the model parameters can be found by regression. The fitting
curves are also shown in Fig. 3. Since brightness and contrast can be considered
independent quantities in terms of both natural image statistics and biological
computation [13], their joint probability density function would be the product
of the two. Therefore, we define our naturalness measure as

N =
1
K
Pp Pc , (5)

where K is a normalization factor given by K = max{Pp Pc}, such that the
naturalness measure is bounded between 0 and 1.
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Fig. 3. Histograms of (a) means (fitted by Gaussian PDF) and (b) standard deviations
(fitted by Beta PDF) of natural images

2.3 Quality Assessment Model

Given a tone mapped LDR image, we now have two available measurements,
structural fidelity S and naturalness N , which are given by Eq. (4) and Eq. (5),
respectively. These two quantities can be used individually or jointly as a 2D
vector that characterizes different aspects of the quality of the LDR image. How-
ever, in most applications, users would prefer to have a single quality score of the
image. Therefore, an overall quality evaluation that combines both quantities is
desirable. In particular, we define the following 3-parameter function to combine
the two components

Q = aSα + (1− a)Nβ , (6)

where 0 ≤ a ≤ 1 determines the relative weights assigned to the two components,
and α and β defines the sensitivities of the two components, respectively. Since
both S and N are upper-bounded by 1, this overall quality measure is also
upper-bounded by 1. The parameters a, α and β, are left to be determined.
In our implementation, they are tuned to best reflect subjective evaluations by
utilizing machine learning techniques described next.

Machine Learning Process. The parameters in Eq. (6) can be learned from
subjective quality evaluation data of tone mapped images. We were provided
with subjectively ranked databases from the authors of [17], where the subjects
were instructed to look at two LDR images at a time (produced by two differ-
ent TMOs) and then choose the one with better quality. Two groups of studies
have been carried out with such paired comparison approach. The first group
of comparisons was conducted at Zhejiang University. 59 naive volunteers were
invited to make the paired comparisons and fill the preference matrix. The sec-
ond comparison was carried out by using Amazon Mechanical Turk, which is an
online service for subjective evaluations. Each comparison task was assigned to
150 anonymous subjects. The database includes 6 folders, each of which contains
images generated by 5 well-known TMOs, namely adaptive logarithmic mapping
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[8], bilateral operator [9], uniform rational quantization [10], photoreceptor phys-
iology [15] and exposure fusion [14]. The subjective ranking scores in each folder
can then be computed using the preference matrix.

Finding the best parameters in Eq. (6) using subjective data is essentially a
regression problem. The major difference from traditional regression problems is
that here we are provided with relative ranking data between images only, but
not quality scores associated with individual images. We developed an iterative
method to learn the parameters. At each iteration, one pair of images is randomly
selected from the database. If the model produce the correct order, then there
is no change to the model parameters; Otherwise, each parameter is updated
towards the direction of correcting the ranking error. To maintain the robustness
of our approach, we carried out a cross validation process, where we divided the
database into 6 folders and chose 5 as training set and the rest for testing. We
repeat the same process 6 times, each with a different division between training
and testing sets. Although each time ends up with a different set of parameters,
they are fairly close to each other and result in the same ranking results. In the
end, we fix a = 0.8037, α = 0.3958 and β = 0.8093 as our final model parameters.

3 Validation

We used two independent subject-rated databases to test the proposed algo-
rithm. The first is the database from [17] (which has also been used for training
the parameters in Eq. (6)). We used leave-one-out cross-validation method de-
scribed in the previous section to test our model. Table 1 shows the means and
standard deviations of Kendall and Spearman rank order correlation coefficients
between subjective rankings and our model predictions.

Table 1. Cross validation based on KRCC and SRCC using subjective data from [17]

KRCC SRCC

Mean 0.7333 0.8166
Std 0.2065 0.2136

The second database is from [6,12], where we utilized the overall quality rank-
ings by 10 naive subjects of 14 tone mapped images. KRCC and SRCC between
subjective rankings and our structural fidelity, naturalness and overall quality
scores are given in Table 2. Fig. 4 shows the scatter plots of the results, where
rank numbers 1 and 14 correspond to the best and worst quality images, respec-
tively. It can be observed that the overall quality score generally agrees quite
well with subjective rankings and is significantly better than using structural
fidelity or naturalness measures alone. It is worth mentioning that the KRCC
and SRCC values are even higher than those obtained in the training database,
implying good generalization ability.
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Table 2. KRCC and SRCC evaluations based on subjective data from [6,12]

KRCC SRCC

Structural Fidelity 0.6154 0.7967
Naturalness 0.4103 0.5606

Overall Quality 0.7692 0.8846
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Fig. 4. Comparisons of subjective ranking versus structural fidelity, naturalness and
overall quality scores using 14 tone mapped images from [6,12]

4 Conclusion

In this paper, we proposed an objective method to assess the quality of LDR
images created from HDR images by tone mapping algorithms. The proposed
approach is based on the combination of two measures, structural fidelity and
naturalness. The structural fidelity measure follows the framework of the multi-
scale SSIM approach to assess the structural information maintained after tone
mapping operations. The naturalness criterion is designed by comparing with
luminance statistics taken from natural scenes. Our experiments demonstrate
that the proposed measure correlates well with subjective rankings of overall
image quality. The proposed algorithm is computationally efficient and provides
not only an overall quality score, but also multi-scale fidelity maps that indicate
local structural variations across scale and space. As one of the initial attempts
in objective assessment of tone-mapped images, the proposed method is quite
promising and shows good potentials in the evaluation, design and optimization
of tone mapping algorithms.

Acknowledgment

We would like to express our gratitude to the authors of [17] for providing us with
their subjective test data at Zhejiang University and Amazon Mechanical Turk.



120 H. Yeganeh and Z. Wang

This research was supported in part by Natural Sciences and Engineering Re-
search Council of Canada in the forms of Discovery, Strategic and CRD Grants,
and by an Ontario Early Researcher Award, which are gratefully acknowledged.

References

1. http://www-2.cs.cmu.edu/afs/cs/project/cil/www/v-images.html

2. http://www-staff.lboro.ac.uk/~cogs/datasets/UCID/ucid.html

3. Aydm, T.O., Mantiuk, R., Myszkowski, K., Seidel, H.: Dynamic range indepen-
dent image quality assessment. In: SIGGRAPH 2008: International Conference on
Computer Graphics and Interactive Techniques, ACM SIGGRAPH (2008)

4. Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE
Trans. Communications 31, 532–540 (1983)
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Abstract. In this paper, we propose an efficient sparse feature on-line
learning approach for image classification. A large-margin formulation
solved by linear programming is adopted to learn sparse features on
the max-similarity based image representation. The margins between
the training images and the query images can be directly utilized for
classification by the Naive-Bayes or the K Nearest Neighbor category
classifier. Balancing between efficiency and classification accuracy is the
most attractive characteristic of our approach. Efficiency lies in its on-line
sparsity learning algorithm and direct usage of margins, while accuracy
depends on the discriminative power of selected sparse features with their
weights. We test our approach using much fewer features on Caltech-101
and Scene-15 datasets and our classification results are comparable to
the state-of-the-art.

Keywords: Sparse feature selection, On-line learning, Image classifica-
tion, Information retrieval.

1 Introduction

Efficiency in both training and classification phases is one of the most important
characters for a successful image classification system. In this paper, we intend
to design an on-line approach, where models are learned only using the data at
hand regardless of the new data in future, so that it can achieve a good balance
between efficiency and classification performance.

Imagine that you need to pick up a stranger at the airport and at hand
you only have one of his photos. A natural way to find your stranger is to
check everyone with the photo in eyes, nose, mouth, and/or other features. In
this scenario, a simple query-template matching process is accomplished, which
involves three different successive stages: 1. A template (e.g. the photo) needs to
be defined first; 2. Then the matching process is performed between the template
and the queries (e.g. all the people) based on some feature similarities (e.g. eyes,
nose, mouth); 3. Finally, a decision is made about whether they are the same.
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This simple template matching scheme has following attractive properties.
First, it may be closer to the human perception process, as stated in [1] that the
target category is defined by the similarities to the templates in the category
rather than the lists of features. Second, during the matching process, only a
small portion of characteristic features in the templates are needed. Third, it
allows each template to make a decision independently no matter how many
templates are at hand, which essentially can lead to an on-line learning and
classification algorithm. Finally, the decision values can be directly utilized for
classification purpose.

Fig. 1. Illustration of our approach, where yellow rectangles (i.e. bike) denote tem-
plates, blue ones (i.e. bikes, cars, faces) denotes training images, a “+”(or “-”) denotes
a max-similarity based feature vector generated by a template and a training image
with the same category (or different categories). All these features are used to learn
sparse features for the template based on a large-margin formulation, and selected fea-
tures are surrounded by the red circles. Finally, category classifiers, denoted by the
triangles, are generated based on the sparse features in the training images.

Considering this, we propose our sparse feature on-line learning approach for
image classification as illustrated in Fig. 1. We take each training image as a
template, and describe each image as a max-similarity based feature vector in
a new feature space defined by the template. Then, a large-margin classifier
is trained on-line using linear programming to select sparse features and learn
their weights automatically for each template. Eventually, Naive-Bayes (NB) or
K Nearest Neighbor (KNN) classifiers are employed to assign each query image
to the category with the largest score.

The main contribution of this paper is that our approach can achieve a good
balance between system efficiency and classification accuracy.

– Efficiency: Several factors improve the efficiency of our approach, i.e. on-
line learning of the large-margin classifiers, sparse features and direct usage
of margins in classification.

– Accuracy: The discriminative power of selected sparse features with their
weights has great impact on the classification accuracy of our approach.

The rest of the paper is organized as follows. In Section 2, related work is
reviewed. In Section 3, our sparse feature on-line learning algorithm is explained
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in detail, including the max-similarity image representation and the learning
of large-margin classifiers. In Section 3.3, Naive-Bayes and K Nearest Neighbor
category classifiers are described for categorization. In Section 4, our experi-
mental results are shown and compared with others in terms of efficiency and
classification accuracy, and finally Section 5 concludes the paper.

2 Related Work

In general, finding feature correspondences between images can be formulated
as graph matching problems, where each image is considered as a graph and
each feature point is considered as a vertex in the graph. Caetano et al. [2] uti-
lized graph learning algorithms to improve the feature correspondence accuracy
based on local structures of the graphs. Torresani et al. [3] proposed an energy
minimization function based on the feature vectors and their local spatial to
find a matching sequence. Chen et al. [4] defined feature correspondences based
on a max-margin formulation in a structured prediction setting to minimize the
classification loss. Zhang et al. [5] formulated the image matching as bipartition
graph matching. These approaches suffer from the high computational complex-
ity, which limits their applications in large-size real image datasets.

A simple way to find feature correspondences is to locate the nearest neighbor
for each feature in a template. Recently, several papers suggest that clever usage
of the nearest neighbor approaches can improve the classification and detection
performance [6, 7, 8, 9, 10]. For instance, Zhang et al. [6] proposed an SVM-
KNN classifier which first locates K nearest neighbors for a query sample in the
feature space and then trains a local multi-class SVM on the set of K neighbors
for classification. Boiman et al. [7] proposed a Naive-Bayes Nearest-Neighbor
(NBNN) classifiers to compute the “Image-to-Class” distances instead of the
commonly used “Image-to-Image” distances. Yuan et al. [8] utilized the nearest
neighbor approaches to accelerate the action detection process. In these works,
the nearest neighbors are defined by the distances, while in our approach, we
locate the nearest neighbor of each feature by the feature similarity measurement,
which allows us to learn the large-margin classifiers directly.

Local Binary Pattern (LBP) was originally introduced by Ojala et al. [11] to
reflect the intensity relationship between a pixel and its surroundings using 0 and
1. Torresani et al. [12] extended this idea to build Boolean features consisting
of disjunctions of conjunctions (“OR”s of “AND”s) for scalable image retrieval.
These papers demonstrate the discriminative power and efficient learning of bi-
nary features by comparing the data with “templates” (e.g. In LBP, the centers
of local patches will be the templates.). Our large-margin classifiers borrow the
similar idea, but return real numbers (margins) instead of binaries to show how
likely a query image is in the same category as the templates.

Most related work to ours is the local distance function learning approaches
proposed by Frome et al. [9,10]. In [9], a focal learning of local distance function
approach tended to maximize the margins amongst the image triplets, each of
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whom contains one template and two queries, to learn the non-negative weights
for features in the templates. However, it suffers from the following drawbacks: 1.
It costs huge amount of memory (or disk space); 2. The query-template distances
based on the learned weights cannot be used directly for classification purpose.
To overcome 2, in [10] the authors proposed another global learning approach
based on a new image triplet representation, where there are two templates and
one query, to make sure that the non-negative weight learning process for each
template is connected to all the other templates so that the classification can be
performed directly using the query-template distances. Notice that the training
phase of this approach is off-line.

In contrast, 1. our approach adopts image pairs rather than triplets to greatly
reduce the memory (or disk space) requirement; 2. our approach tends to learn
more sparse features; 3. the weights for sparse features are arbitrary values, which
makes our learning more flexible and efficient; 4. our large-margin classifiers can
be trained either on-line or off-line; 5. the image classification can be performed
directly based on the learned margins.

3 On-Line Learning of Sparse Features

Our approach takes each training image as a template and maps all the other
training images into a new feature space defined by the template to learn sparse
features. It is an on-line algorithm since the sparse feature learning process of a
template is independent of the new-coming training images. The on-line learning
property allows our approach to be trained more flexibly and efficiently (see our
experimental section) than many off-line learning approaches [10, 13, 14].

3.1 Max-Similarity Based Image Representation

Max-Similarity based image representation tries to capture the similarities be-
tween images by finding the feature correspondences between a query image and
the template. Each query image is described in a new feature space defined by
the template. Unlike [9, 10], the max-similarity based feature vector of each im-
age consists of the maximum similarities between each feature in the template
and the features in the query, rather than the minimum distances.

Given a template T = {t1, t2, · · · , tm} containing m features and a query im-
age Q = {q1, q2, · · · , qn} containing n features, the max-similarity based feature
vector of Q with respect to T , denoted fQ→T , is defined as follows.

fQ→Ti = max
j=1,··· ,n

K(qj , ti) i = 1, · · · ,m (1)

where fQ→Ti denotes the value at the ith dimension of fQ→T and K(·, ·) denotes
any similarity measurement function, e.g. the linear kernel, gaussian kernels, and
histogram intersection kernel [14].
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3.2 Sparse Feature Learning Algorithm

By selecting sparse discriminative features, our sparse feature learning algorithm
is to measure the likelihood of two images belonging to the same category. To
obtain sparsity, our algorithm assigns non-zero weights to only a small portion
of features in order to accelerate the classification speed while achieving a good
performance.

For sparsity learning, the large-margin criterion is quite useful for feature se-
lection, which tries to maximize the margin between the positive data and the
negative data. 1-norm Support Vector Machines (SVM) [15] and Linear Program-
ming Boosting (LPBoost) [16] are two efficient learning algorithm based on the
large-margin criterion, both of which can be solved using LP. One of their main
differences is that in 1-norm SVM the learned weights are real numbers, while
in LPBoost the learned weights are non-negative and their summation is equal
to 1. In our approach, we adopt 1-norm Support Vector Machines (SVM) [15]
because real-number weights give us more chances to learn better large-margin
classifiers for image classification.

Mathematically, a binary soft-margin 1-norm SVM can be formulated as fol-
lows.

min
w,ε,b

‖w‖1 + C

S∑
i=1

εi (2)

s.t. ∀i, yi(w
′
fi + b) ≥ 1− εi, εi ≥ 0

where ‖ · ‖1 and ′ denote the 1-norm and vector transpose operators, w and ε
denote the weight and error vectors, C is the regularization parameter, which
is a predefined non-negative constant, yi denotes the label of the max-similarity
based feature vector fi, S denotes the total number of feature vectors, and b
denotes the bias term. The value of yi is dependent on the category of the query
image and the template: yi = 1 if the query image is in the same category,
otherwise, yi = −1.

Eqn. 2 can be solved using LP based on its equivalent formulation shown in
Eqn. 3.

min
w,v,ε,b

1
′
v + C

S∑
i=1

εi (3)

s.t. ∀i, yi(w
′
fi + b) ≥ 1− εi

v � w � −v,v � 0, εi ≥ 0

where 1 denotes a vector of ones, v is a non-negative vector, and � is the
element-wise operator of ≥.

In order to reduce the computational complexity, we instead optimize the
following problem proposed by Fung and Mangasarian [17] in Eqn. 4 since it
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contains fewer constraints than Eqn. 3 and returns its upper bound.

min
w1,w2,ε,b

1
′
(w1 + w2) + C

S∑
i=1

εi (4)

s.t. ∀i, yi[(w1 −w2)
′
fi + b] ≥ 1− εi

w1 � 0,w2 � 0, εi ≥ 0

where w1 and w2 are two non-negative weight vectors and the weight vector w
for features is defined as w = w1 −w2.

In our experiments, we find that when the dimension of max-similarity based
feature vectors is large enough, say 500D, the solutions of Eqn. 4 are always
the same as those of the original 1-norm SVM, but much faster. Therefore, the
sparsity property of 1-norm SVM is still kept when solving Eqn. 4.

Using the learned weights w, the margin between template T and query Q,
FQ→T , is defined as follows. This indicates how likely T and Q belong to the
same category.

FQ→T = (w1 −w2)
′
fQ→T + b (5)

3.3 Image Classification

For each training image, the sparse feature learning algorithm is performed. Us-
ing Eqn. 4, we can learn sparse features from the training images, within the
same category, and calculate category scores directly for classification. However,
we do not advocate to do this because: it has much higher computational com-
plexity and the learning process tends to be more likely over-fitting due to the
much higher complexity of the model (much more features), which will lead to
poor classification accuracy. We employ a Naive-Bayes or K Nearest Neighbor
classifier to perform the classification based on the margins between the query
images and the training images.

Given a query image Q, L categories and Ml (l = 1, 2, · · · , L) training images
T = {T1, T2, · · · , TMl

} with their corresponding weights p(T, l), the score of a
Naive-Bayes category classifier (NBCC) for category l, denoted FQ→l, is defined
as follows.

FQ→l =
∑Ml

i=1 p(Ti, l)FQ→Ti∑Ml

i=1 p(Ti, l)
(6)

In our experiments, since we do not know any prior knowledge about the
training data, we adopt the uniform distribution for p(T, l). Therefore, Eqn. 6
can be simplified into Eqn. 7 and the category label of Q, lQ, will be assigned
according to Eqn. 8 based on the one-vs-rests criterion.

FQ→l =
1
Ml

Ml∑
i=1

FQ→Ti (7)

lQ = arg maxl=1,··· ,LFQ→l (8)
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For a K Nearest Neighbor category classifier (KNNCC), the category score
is defined as the number of the training images in the category among the K
nearest neighbors of a query. If there are more than one category assignment
with the same maximum number among all the categories, Eqn. 7 is able to
calculate refiner scores for the category assignments. Eventually the category
label of a query is still assigned based on Eqn. 8.

4 Experimental Results

We test our approach for object categorization on Caltech-101 dataset and scene
classification on Scene-15 dataset. Each query image is labeled using a one-vs-
rests strategy. All features from the images are normalized using l2-norm and
the max-similarity based feature representation uses the linear kernel due to its
computational efficiency. Parameter C in Eqn. 4 is fixed as 105 without tuning.
Our classification results are the average mean classification accuracy across
different categories after several runs. The computational time is calculated on
our unoptimized MATLAB implementation on a 2.33GHz Core 2 Duo CPU.

4.1 Caltech-101

Caltech-101 consists of over 9000 images in 101 object categories plus a back-
ground category. The numbers of randomly selected training images per category
are 1, 5, 10, 15, 20, 25, 30, and the rest are taken as the query images. Parameter
K in K Nearest Neighbor category classifiers is fixed as 2.5 times the number of
the training images per category. In our experiments, we adopt the Geometric
Blur (GB) [18] descriptors 1 at four scales (10, 20, 30, and 40 pixels) to show
the inherent property of combining different descriptors in our approach. Each
image is converted to gray-scale and resized so that its larger dimension is 300
pixels. Canny edge detector is then employed to detect the edges in images. Four
scales (10, 20, 30, and 40 pixels) are defined for GB descriptors so that at most
500 descriptors are generated each scale, totally no more than 2000 descriptors
for each image. Sparse feature learning is performed at each scale separately for
each training image.

Fig. 2 shows some examples of learned sparse features at scale 10 pixels using
10 training images and N = 5 negative samples per category. The green circles
denote the features with positive learned weights and the red circles denote the
features with negative learned weights. Due to the effect of sparsity learning, the
number of the selected features in each image are much fewer than the feature
candidates (usually 500). Meanwhile, it is easy to see that these sparse features
can capture the commonality within the categories and the difference between
the categories, e.g. the nose in a cougar face, the arms of a windsor chair. This
reflects the discriminative power of the learned sparse features.

1 We download the MATLAB code from
http://www.cs.berkeley.edu/~aberg/demos/gb_demo.tar.gz.

http://www.cs.berkeley.edu/~aberg/demos/gb_demo.tar.gz
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Fig. 2. Some examples of the learned sparse features

Fig. 3 (a) shows the average percentage of selected features using different
numbers of training images and Fig. 3 (b) and (c) show our classification accu-
racy using NBCC and KNNCC. Multi-GB descriptors achieves better classifi-
cation accuracy than any other GB descriptors. The improvements are about
7.8% for NBCC and 9.9% for KNNCC. Impressively, using 15 training im-
ages only for each category and the Multi-GB descriptors, our approach selects
212/1876=11.3% features on average and achieves 53.7% mean accuracy with
NBCC and 54.5% with KNNCC. In contrary, [9] achieved 60.3% by selecting
31% features. Using 30 training images per category, the classification accuracy
in [19] is 60.1%, while ours are 59.7% using NBCC and 60.4% using KNNCC.
We achieved the state-of-the-art on-line learning results on Caltech-101.

The classification speed of our category classifiers is highly dependent on
the number of training images and the numbers of their features. With the help

(a) (b) (c)

Fig. 3. Our feature selection percentage and mean classification accuracy on Caltech-
101. (a) Feature selection percentage, (b) Classification accuracy using NBCC, (c)
Classification accuracy using KNNCC.
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of sparse feature learning, our classification can be performed very fast. For
instance, using 15 training images per category, our approach takes only about 5
seconds to classify a query image using NBCC and almost all the computational
time is used to calculate max-similarity based feature vectors.

4.2 Scene-15

Scene-15 dataset consists of 4385 images in 15 scene categories and the image res-
olution is roughly about 250×250 pixels. We first generate 384D OpponentSIFT
(OS) descriptors [20] and 100 images are randomly selected as the training data
from each category. The number of negative samples per category is set to 30
and parameter K in KNNCC is fixed to 90. Using all features at different scales,
our approach selects 486/1731=28.1% features on average for each image and
achieves 74.4% using NBCC and 73.8% using KNNCC. We also compare our
results with other approaches listed in Table 1. Our classification accuracy is

Table 1. Comparison of classification accuracy for different approaches on Scene-15
dataset (%)

OS-10+NBCC 69.0 OS-10+KNNCC 68.6

OS-20+NBCC 70.5 OS-20+KNNCC 70.1

OS-30+NBCC 68.1 OS-30+KNNCC 68.0

Multi-OS+NBCC 74.4 Multi-OS+KNNCC 73.8

C4+pLSA+SVM [21] 72.6 Co-Clustering [22] 76.4

SPM [14] 74.8 Low-dimensional Feature [23] 72.2

again comparable to the state-of-the-art results.

5 Conclusion

In this paper, an efficient sparse feature on-line learning approach is proposed for
image classification. It solves a large-margin formulation using Linear Program-
ming on the max-similarity based image representation. The learned margins
indicate how likely the query images and the training images are in the same
category. They can be directly involved in a Naive-Bayes or K Nearest Neighbor
category classifier to perform the classification. A good balance between effi-
ciency and classification accuracy is the most important characteristic of our
approach. This has been demonstrated in our experiments on the Caltech-101
and Scene-15 datasets. Our approach learns a small portion of discriminative
features to achieve comparable classification accuracy with the state-of-the-art
results with efficient learning and classification algorithms, and it can be applied
automatically either on-line or off-line.
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Abstract. In this paper, we demonstrate the use of relational space to
classify microarray gene expression data. We also show that the trans-
formation of real valued data to binary data is able to produce better
class separation with fewer genes.
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1 Introduction

Microarray data has become widely used in classification or clustering of tissues
or genes based on gene expression profiles [1][2][3][4]. However, it is difficult to
analyze the data because they are massive. Therefore, computational tools have
become very important in analysing such data, especially in reducing the number
of features or genes [5][6]. Several methods can be used to select a subset of the
most important genes. Generally, in the process of selection, the genes are ranked
on the basis of scores, correlation coefficient, mutual information and sensitivity
analysis. Such analyses usually use real valued data. In this work, we focus on
the analysis of gene expression in the binary domain considering data pairs. We
first transform the real valued data into binary data and then classify the data in
a relational space. The microarray data used are for breast cancer [1]. However,
we demonstrate the use of relational spaces also for leukemia [2] and colon cancer
[3] data sets. In each case the problem is to separate the microarray data into
two classes.

2 Methodology

2.1 Gene Selection

Let n be the number of genes, mA be the number of patients in group A and mB

be the number of patients in group B. Let gi be the expression values of gene i
where i = 1, 2, .., n. Then the profile of gene i in group A is

GA
i =

{
gP1

i , gP2
i , gP3

i , ..., g
PmA

i

}
(1)
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where PmA is the last person which belongs to group A. Similarly, we define
GB

i as the profile of gene i in group B. To reduce the complexity of the gene
expression analysis, we binarise the data, so the positive values become 1 and
the negative 0.

A significant gene i is defined as a gene that has an average value for at least
one of the groups, that is as distinct as possible from μi, the average value over
both groups. We define for each gene:

Σ∗
i = max

{|μA
i − μi|, |μB

i − μi|
}

(2)

Based on this value, we can set a threshold that enables us to select the genes
that have the largest gap in their values from the rest.

2.2 Creation of Binary Codes

We can encode each sequence of genes with a binary number. For example, let
us consider patient PA,1 in group A who has

PA,1 = [100100]. (3)

Then, this patient can be represented by the binary number 100100, which in the
decimal system is equal to 36. With different order of the significant genes, we
can create different such numbers representing the same patient. The order of the
genes is not immunologically important [7]. This enables us to code the patient
in several ways. Note that each ordering of the genes is equivalent to giving
different weights to the different genes. We can create several combinations of
features based on different codes. We may try to find the best combination of
features that gives the minimum possible classification error. To do this, we
calculate the frequencies of occurrence of each of the selected genes across the
patients in each group and in all patients. The genes are ordered from the least
frequent (L.F.) to the most frequent (M.F.) in each row. Then we may choose
convenient permutations of the genes that allow us to distinguish groups A and
B. We call these permutation codes, and distinguish them with letters from the
Greek alphabet.

2.3 The Relational Space

The relational space [7] is a space where pairs of patients are represented as
opposed to individual patients. The relational space has two axes: along the first
one we measure the one code of one patient and along the other another code
of its paired patient, who is from the same group. Table 1 shows an example of
three patients in group A with their α and β codes. These numbers form two
sequences: the α − sequence and the β − sequence of group A. Both sequences
are then sorted in increasing order as shown in Table 2. From these two sorted
sequences, we form the pairs of patients (P2, P1), (P1, P3) and (P3, P2).

Therefore, using two different sequences, we can plot the pairs of the training
data in 2D spaces. Fig. 1 shows an example relational space from the breast
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Table 1. Representing the data in binary codes

Patient Binary data α − code β − code

P1 100100 (100100)2 = 3610 (000011)2 = 310

P2 100001 (0000101)2 = 510 (100010)2 = 3410

P3 010100 (110000)2 = 4810 (000100)2 = 510

Table 2. Sorted binary codes

Patient sorted α − sequence Patient sorted β − sequence

P α
2 (0000101)2 = 510 P β

1 (000011)2 = 310

P α
1 (100100)2 = 3610 P β

3 (000100)2 = 510

P α
3 (110000)2 = 4810 P β

2 (100010)2 = 3410
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Fig. 1. Relational space obtained with sorted α − code and sorted β − code of pairs of
patients

cancer data. With the pairwise structure, surprisingly, we can see clearly that
the two groups are separable. In order to show the significance of the pairs we
create, we plot randomly paired patients, and each patient paired with herself
in Fig. 2 and 3, respectively. We notice that when the order is ignored, the pairs
of the two groups are not separable. This suggests that the sorting part in the
process of pair creation plays an important role in the construction of a separable
relational space.

2.4 Classifier

Let us assume that we have to classify a new patient. We first compute the codes
of this patient. Then we add this patient to each group of training patients, in
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Fig. 2. Random pairing of patients in the relational space of α and β codes
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Fig. 3. Pairing each person with herself in the relational space of α and β codes

turn. As the new patient is added, the ordered sequence of codes of the patients is
disturbed. When we then pair the patients again, with the new patient included,
we shall have a certain number of new pairs created, while other pairs remain
identical, as they were before the insertion of the new patient. We may then try
to classify the new pairs created, using the k-nearest neighbour classifier in the
relational space, and check what fraction of the new pairs created are correctly
classified. We shall classify the new patient to the least disturbed group, i.e. the
group for which most of the new pairs are correctly classified.
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3 Implementation And Experimental Results

The implementation and results are described in detail for the breast cancer data
set while for leukemia and colon cancer data set, we only present the classification
results briefly.

3.1 Breast Cancer Data Set

The data have been produced by van’t Veer et al. [1] where 43 patients diagnosed
with breast cancer survived for more than 5 years (group A) and 33 patients died
within 5 years (group B). In their study, van’t Veer et al. identified 70 genes as
a powerful prognostic marker that can be used to classify the patients into the
two groups. We analyse these 70 genes here and examine whether we can reduce
the number of genes that can be used to classify the patients into the two groups
with as small as possible classification error. There are also data of 19 patients
as test data. We split the training data into two subsets: training and evaluation.
We keep 25 patients from each class as training and the remaining 26 patients
for evaluation. The training set will give us the reference points in relation to
which new points will be classified, using nearest neighbour classification. The
evaluation set will allow us to work out which threshold in the selection of
significant genes and which codes produce the best results. Then this threshold
and the corresponding codes will be adopted and used to classify the 19 test
data. We must note that changing the threshold changes the number of genes
selected to represent each patient. So, it is not possible to use the same codes
for the same thresholds. In any case, we use the same procedure we described
in section 2.2 to create codes for the different thresholds. To distinguish the
different codes created for different thresholds, we give a suffix to each Greek
letter that represents a code, the same as the threshold used. So, for example,
we have codes α0.22, α0.23 and α0.24 to represent codes for threshold 0.22, 0.23
and 0.24 respectively, retaining 9, 6 and 5 genes, respectively.

Table 3. Codes that are used in these experiments. Codes corresponding to different
thresholds used to identify the significant genes have different suffixes.

Code Genes used

α0.22 {39,15,6,42,1,69,7,27,65}
β0.22 {15,6,39,42,27,1,69,7,65}
γ0.22 {6,39,15,42,7,27,1,69,65}
α0.23 {6,39,15,65,42,27}
β0.23 {42,65,27,6,39,15}
γ0.23 {42,6,39,15,27,65}
δ0.23 {6,42,15,39,27,65}
ξ0.23 {39,6,15,27,42,65}
α0.24 {27,42,15,39,6}
β0.24 {42,27,6,15,39}
γ0.24 {6,42,27,39,15}
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Table 4. Classification result of the evaluation set in various relational spaces

Relational space Accuracy

(α0.22, β0.22) 76.92%
(α0.22, γ0.22) 88.46%
(β0.22, γ0.22) 92.31%
(α0.23, β0.23) 88.46%
(γ0.23, δ0.23) 88.46%
(γ0.23, ξ0.23) 88.46%
(α0.24, β0.24) 69.23%
(α0.24, γ0.24) 73.08%
(β0.24, γ0.24) 76.92%

Table 5. Confusion matrix of classifying the 19 testing data in relational space
(β0.22, γ0.22)

A B

True A 6 1
True B 2 10

Accuracy 84.21%

Table 3 lists the various codes that will be used in these experiments. Table 4
gives the classification results of the evaluation set obtained for various relational
spaces. We observe that the best classification rate was obtained for the relational
space (β0.22, γ0.22). Using this relational space we then classified the 19 test data.
The accuracy was 84.21%. Table 5 is the confusion matrix for this result.

In order to ensure that the use of relational space offers added value to the clas-
sification process, we also considered individual codes to create feature spaces.
So, we considered classifying the evaluation patients in 1D and 2D feature spaces,
where each patient is represented by a single or by 2 codes. We used the same
codes, or pairs of codes, we used to create the relational spaces. The results of
classifying the evaluation set using nearest neighbour classification are shown in
Table 6. We observe that the best results were obtained for β0.22 feature space.
We then used this feature space to classify the test data. The classification ac-
curacy was 68.42%. Table 7 is the confusion matrix for this result. As the best
relational space was the (β0.22, γ0.22), we also classified the test data using only
the 1D γ0.22 feature space and the 2D (β0.22, γ0.22) feature space. The accuracy
was 57.89% and 68.42%, respectively. The classification accuracy obtained for
the same patients and the same number of genes using the van’t Veer et al.
method was 78.95%.

3.2 Leukemia Data Set

The data consist of 72 samples of acute lymphoblastic leukemia (ALL) and
acute myeloid leukemia (AML) [2]. Each sample consists of expression values of
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Table 6. Classification results of the evaluation set in various feature spaces

Space Dimension Accuracy

α0.22 1 92.31%
β0.22 1 96.15%
γ0.22 1 80.77%

(α0.22, β0.22) 2 92.31%
(α0.22, γ0.22) 2 92.31%
(β0.22, γ0.22) 2 92.31%

α0.23 1 88.46%
β0.23 1 84.62%
γ0.23 1 88.46%
δ0.23 1 92.31%
ξ0.23 1 88.46%

(α0.23, β0.23) 2 84.62%
(γ0.23, δ0.23) 2 92.31%
(γ0.23, ξ0.23) 2 92.31%

α0.24 1 52.63%
β0.24 1 57.89%
γ0.24 1 47.37%

(α0.24, β0.24) 2 57.89%
(α0.24, γ0.24) 2 52.63%
(β0.24, γ0.24) 2 52.63%

Table 7. Confusion matrix of classifying the 19 testing data in feature space β0.22

A B

True A 6 1
True B 5 7

Accuracy 68.42%
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Fig. 4. The relational space for the leukemia data set with 8 selected genes
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7129 genes. Golub et al. identified 50 significant genes based on correlation of
class distinction. We use these genes in our experiments to examine whether a
relational space is able to classify the data. Figure 4 shows the best relational
space with 8 selected genes that produce classification accuracy of 91.67% using
the leave-one-out method.

3.3 Colon Cancer Data Set

These data were obtained from 22 normal and 40 tumor colon samples [3]. Each
sample consists of 2000 genes with the highest minimal intensity across the
samples. Each gene is normalized to have mean 0 across the samples and the
standard deviation is 1. Figure 5 shows a relational space with 6 selected genes.
The classification result using the relational space is 87.1% accuracy using the
leave-one-out method.
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Fig. 5. The relational space for the colon data set with 6 selected genes

4 Conclusions

In this paper, we demonstrated how the use of binary gene expression data
and a relational space may result in a representational space where the classes
are better separated. We showed that with a small number of genes we can
achieve much better performance in the relational space than in the feature
space, even when the same data representation can be used. These conclusions
were validated using three different data sets, from totally different medical
conditions.
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Abstract. Spatial pyramid matching (SPM) has been one of impor-
tant approaches to image categorization. Despite its effectiveness and
efficiency, SPM measures the similarity between sub-regions by apply-
ing the bag-of-features model, which is limited in its capacity to achieve
optimal matching between sets of unordered features. To overcome this
limitation, we propose a hierarchical spatial matching kernel (HSMK)
that uses a coarse-to-fine model for the sub-regions to obtain better op-
timal matching approximations. Our proposed kernel can robustly deal
with unordered feature sets as well as a variety of cardinalities. In ex-
periments, the results of HSMK outperformed those of SPM and led to
state-of-the-art performance on several well-known databases of bench-
marks in image categorization, even when using only a single type of
feature.

Keywords: kernel method, hierarchical spatial matching kernel, image
categorization, coarse-to-fine model.

1 Introduction

Image categorization is the task of classifying a given image into a suitable
semantic category. The semantic category can be defined as the depicting of a
whole image such as a forest, a mountain or a beach, or of the presence of an
interesting object such as an airplane, a chair or a strawberry. Among existing
methods for image categorization, the bag-of-features (BoF) model is one of the
most popular and efficient. It considers an image as a set of unordered features
extracted from local patches. The features are quantized into discrete visual
words, with sets of all visual words referred to as a dictionary. A histogram of
visual words is then computed to represent an image. One of the main weaknesses
in this model is that it discards the spatial information of local features in the
image. To overcome it, spatial pyramid matching (SPM) [9], an extension of
the BoF model, utilizes the aggregated statistics of the local features on fixed
sub-regions. It uses a sequence of grids at different scales to partition the image
into sub-regions, and then computes a BoF histogram for each sub-region. Thus,
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the representation of the whole image is the concatenation vector of all the
histograms.

Empirically, it is realized that to obtain good performances, the BoF model
and SPM have to be applied together with specific nonlinear Mercer kernels
such as the intersection kernel or χ2 kernel. This means that a kernel-based
discriminative classifier is trained by calculating the similarity between each pair
of sets of unordered features in the whole images or in the sub-regions. It is also
well known that numerous problems exist in image categorization such as the
presence of heavy clutter, occlusion, different viewpoints, and intra-class variety.
In addition, the sets of features have various cardinalities and are lacking in the
concept of spatial order. SPM embeds a part of the spatial information over
the whole image by partitioning an image into a sequence of sub-regions, but
in order to measure the optimal matching between corresponding sub-regions,
it still applies the BoF model, which is known to be confined when dealing with
sets of unordered features.

In this paper, we propose a new kernel function based on the coarse-to-
fine approach and we call it a hierarchical spatial matching kernel (HSMK).
HSMK allows not only capturing spatial order of local features, but also ac-
curately measuring the similarity between sets of unordered local features in
sub-regions. In HSMK, a coarse-to-fine model on sub-regions is realized by using
multi-resolutions, and thus our feature descriptors capture not only the local
details from fine resolution sub-regions, but also global information from coarse
resolution ones. In addition, matching based on our coarse-to-fine model involves
a hierarchical process. This indicates that a feature that does not find its corre-
spondence in a fine resolution still has a possibility of having its correspondence
in a coarse resolution. Accordingly, our proposed kernel can achieve a better
optimal matching approximation between sub-regions than SPM.

2 Related Work

Many recent methods have been proposed to improve the traditional BoF model.
Generative methods [1,2] model the co-occurrence of visual words while discrim-
inative visual words learnings [13,20] or sparse coding methods [11,19] improve
the dictionary in terms of discriminative ability or lower reconstruction error in-
stead of using the quantization by K-means clustering. On the other hand, SPM
captures the spatial layout of features ignored in the BoF model. Among these
improvements, SPM is particularly effective as well as being easy and simple to
construct. It is utilized as a major part in many state-of-the-art frameworks in
image categorization [3].

SPM is often applied with a nonlinear kernel such as the intersection kernel
or χ2 kernel. This requires high computation and large storage. Maji et al. [12]
proposed an approximation to improve efficiency in building the histogram in-
tersection kernel, but efficiency can be attained merely by using pre-computed
auxiliary tables which are considered as a type of pre-trained nonlinear support
vector machines (SVM). To give SPM the linearity needed to deal with large
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datasets, Yang [19] proposed a linear SPM with spare coding (ScSPM), in which
a linear kernel is chosen instead of a nonlinear kernel due to the more linearly
separable property of sparse features. Wang & Wang [18] proposed a multiple
scale learning (MSL) framework in which multiple kernel learning (MKL) is em-
ployed to learn the optimal weights instead of using predefined weights of SPM.

Our proposed kernel concentrates on improvement of the similarity measure-
ment between sub-regions by using a coarse-to-fine model instead of the BoF
model used in SPM. We consider the sub-regions on a sequence of different reso-
lutions as the pyramid matching kernel (PMK) [4]. Futhermore, instead of using
the pre-defined weight vector for basic intersection kernels to penalize across
different resolutions, we reformulate the problem into a uniform MKL to ob-
tain it more effectively. In addition, our proposed kernel can deal with different
cardinalities of sets of unordered features by applying the square root diagonal
normalization [17] for each intersection kernel, which is not considered in PMK.

3 Hierarchical Spatial Matching Kernel

In this section, we first describe the original formulation of SPM and then in-
troduce our proposed HSMK, which uses a coarse-to-fine model as a basic for
improving SPM.

3.1 Spatial Pyramid Matching

Each image is represented by a set of vectors in the D-dimensional feature space.
Features are quantized into discrete types called visual words by using K-means
clustering or sparse coding. The matching between features turns into a compar-
ison between discrete corresponding types. This means that they are matched if
they are in the same type and unmatched otherwise.

SPM constructs a sequence of different scales with l = 0, 1, 2, ..., L on an image.
In each scale, it partitions the image into 2l×2l sub-regions and applies the BoF
model to measure the similarity between sub-regions. Let X and Y be two sets
of vectors in the D-dimensional feature space. The similarity between two sets
at scale l is the sum of the similarity between all corresponding sub-regions:

Kl(X,Y ) =
22l∑
i=1

I(X l
i , Y

l
i ), (1)

where X l
i is the set of feature descriptors in the ith sub-region at scale l of the

image vector set X . The intersection kernel I between X l
i and Y l

i is formulated
as:

I(X l
i , Y

l
i ) =

V∑
j=1

min(HXl
i
(j),HY l

i
(j)), (2)

where V is the total number of visual words and Hα(j) is the number of oc-
curences of the jth visual word which is obtained by quantizing feature de-
scriptors in the set α. Finally, the SPM kernel (SPMK) is the sum of weighted
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similarity over the scale sequence:

K(X,Y ) =
1
2L
K0(X,Y ) +

L∑
l=1

1
2L−l+1

Kl(X,Y ). (3)

The weight 1
2L−l+1 associated with scale l is inversely proportional to the sub-

region width at that scale. This weight is utilized to penalize the matching since
it is easier to find the matches in the larger regions. We remark that all the
matches found at scale l are also included in a finer scale l− ζ with ζ > 0.

3.2 The Proposed Kernel: Hierarchical Spatial Matching Kernel

To improve efficiency in achieving the similarity measurement between sub-
regions, we utilize a coarse-to-fine model on sub-regions by mapping them into
a sequence of different resolutions 2−r × 2−r with r = 0, 1, 2, ..., R as in [4].
X l

i and Y l
i are the sets of feature descriptors in the ith sub-regions at scale

l of image vector sets X , Y respectively. At each resolution r, we apply the
normalized intersection kernel F r using the square root diagonal normalization
method to measure the similarity as follows:

F r(X l
i , Y

l
i ) =

I(X l
i(r), Y

l
i (r))√

I(X l
i(r), X

l
i(r))I(Y l

i (r), Y l
i (r))

, (4)

where X l
i(r), Y

l
i (r) are the sets X l

i , Y
l
i at the resolution r respectively. Note that

the histogram intersection between X and itself is equivalent with its cardinality.
Thus, letting NXl

i(r) and NY l
i (r) be the cardinality of sets X l

i(r) and Y l
i (r), the

equation (4) is rewritten as:

F r(X l
i , Y

l
i ) =

I(X l
i(r), Y

l
i (r))√

NXl
i(r)NY l

i (r)

. (5)

The square root diagonal normalization of the intersection kernel not only sat-
isfies Mercer’s conditions [17], but also penalizes the difference in cardinality
between sets as in equation (5).

To obtain the synthetic similarity measurement of the coarse-to-fine model,
we define the linear combination over a sequence of local kernels, each term of
which is calculated using equation (5) at each resolution. Accordingly, the kernel
function F between two sets X l

i and Y l
i in the coarse-to-fine model is formulated

as:

F (X l
i , Y

l
i ) =

R∑
r=0

θrF
r(X l

i , Y
l
i )

where
R∑

r=0

θr = 1, θr ≥ 0, ∀r = 0, 1, 2, ..., R.

(6)
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Fig. 1. An illustration for HSMK applied to images X and Y with L = 2 and R = 2 (a).
HSMK first partitions the images into 2l × 2l sub-regions with l = 0, 1, 2 as SPMK (b).
However, HSMK applies the coarse-to-fine model for each sub-region by considering it
on a sequence of different resolutions 2−r × 2−r with r = 0, 1, 2 (c). Equation (8) with
the weight vector achieved from the uniform MKL is applied to obtain better optimal
matching approximation between sub-regions instead of using the BoW model as in
SPMK.

Moreover, when the linear combination of local kernels is integrated with
SVM, it can be reformulated as a MKL problem where basic local kernels are
defined as equation (5) across the resolutions of the sub-region as:

min
wα,w0,ξ,θ

1
2
(

N∑
α=1

θα

∥∥wα

∥∥
2
)2 + C

N∑
i=1

ξi

s.t. yi(
N∑

α=1

θα〈wα, Φα(xi)〉+ w0) ≥ 1− ξi∑N
α=1 θα = 1,θ ≥ 0, ξ ≥ 0,

(7)

where xi is an image sample, yi is the category label for xi, N is the number
of training samples, (wα, w0, ξ) are parameters of SVM, C is a soft margin
parameter defined by users to penalize training errors in SVM, θ is a weight
vector for basic local kernels, N is the number of the basic local kernels of the
sub-region over the sequence of resolutions, θ ≥ 0 means that any entry of
vector θ is nonnegative, Φ(x) is the function that maps the vector x into the
reproducing Hilbert space and< ·, · > denotes the inner product. MKL solves the
parameters of SVM and the weight vector for basic local kernels simultaneously.

These basic local kernels are analogously defined across resolutions of the
sub-region. Therefore, the redundant information between them is high. The ex-
periments in Gehler and Nowozin [3] and especially Kloft et al. [7] have shown
that the uniform MKL, which is an approximation of MKL into traditional non-
linear kernel SVM, is the most efficient for this case in terms of both performance
and complexity. Thus, formula (6) with linear combination coefficients obtained
from the uniform MKL method becomes:

F (X l
i , Y

l
i ) =

1
R+ 1

R∑
r=0

F r(X l
i , Y

l
i ). (8)



146 T.T. Le et al.

Figure 1 illustrates an application of HSMK with L = 2 and R = 2. HSMK
also maps the sub-regions into a sequence of different resolutions for PMK to
obtain better measurement of similarity between them. However, the weight
vector is achieved from the uniform MKL. Thus, it is more efficient and theorical
than predefined one in PMK. Furthermore, applying the square root diagonal
normalization allows it to robustly deal with differences in cardinality that are
not considered in PMK. HSMK is formulated based on SPM in the coarse-to-fine
model, which is efficient with sets of unordered feature descriptors, even in the
presence of differences in cardinality. Mathematically, the formulation of HSMK
is as follows:

K(X,Y ) =
1
2L

F0(X,Y ) +
L∑

l=1

1
2L−l+1

Fl(X,Y )

with Fl(X,Y ) =
22l∑
i=1

F (X l
i , Y

l
i ) =

1
R+ 1

22l∑
i=1

R∑
r=0

F r(X l
i , Y

l
i ).

(9)

Briefly, HSMK utilizes the kd-tree algorithm to map each feature descriptor
into a discrete visual word, and then the normalized intersection kernel by the
square root diagonal method is applied to the histogram of V bins to measure
the similarity. We have N feature descriptors in the D-dimension space, and the
kd-tree algorithm costs O(log V ) steps to map feature descriptors. Therefore, the
complexity of HSMK is O(DM logV ) with M = max(NX ,NY ). We note that
the complexity of the optimal matching kernel [8] is O(DM3).

4 Experimental Results

Most recent approaches use local invariant features as an effective means of repre-
sentating images, because they can well describe and match instances of objects
or scenes under a wide variety of viewpoints, illuminations, or even background
clutter. Among them, SIFT [10] is one of the most robust and efficient features.
To achieve better discriminative ability, we utilize the dense SIFT by operating a
SIFT descriptor of 16×16 patches computed over each pixel of an image instead
of key points [10] or a grid of points [9]. In addition, to improve robustness, we
convert images into gray scale ones before computing the dense SIFT. Dense
features have the capability of capturing uniform regions such as sky, water or
grass where key points usually do not exist. Moreover, the combination of dense
features and the coarse-to-fine model allows images to be represented more ex-
actly since feature descriptors achieves more neighbor information across many
levels in resolution. We performed unsupervised K-means clustering on a ran-
dom subset of SIFT descriptors to build visual words. Typically, we used two
different dictionary sizes M in our experiment: M = 400 and M = 800.

We conducted experiments for two types of image categorization: object cat-
egorization and scene categorization. For object categorization, we used the Ox-
ford Flower dataset [14]. To show the efficiency and scalability of our proposed
kernel, we also used the large scale object datasets such as CALTECH-101 [2]
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and CALTECH-256 [5]. For scene categorization, we evaluated the proposed
kernel on the MIT scene [16] and UIUC scene [9] datasets.

4.1 Object Categorization

Oxford Flowers dataset: This dataset contains 17 classes of common flowers
in the United Kingdom, collected by Nilsback et al. [14]. Each class has 80 images
with large scale, pose and light variations. Moreover, intra-class flowers such as
irises, fritillaries and pansies are also widely diverse in their colors and shapes.
There are some cases of close similarity between flowers of different classes such
as that between dandelion and Colts’Foot. In our experiments, we followed the
set-up of Gehler and Nowozin [3], randomly choosing 40 samples from each class
for training and using the rest for testing. Note that we did not use a validation
set as in [14,15] for choosing the optimal parameters. Table 1 shows that our
proposed kernel achieved a state-of-the-art results when using a single feature.
It outperformed not only SIFT-Internal [15], the best feature for this dataset
computed on a segmented image, but also the same feature on SPMK with the
optimal weights by MSL [18]. In addition, Table 2 shows that the performance
of HSMK also outperformed that of SPMK.

Table 1. Classification rate (%) with a single feature comparision on Oxford Flower
dataset (with NN that denotes the nearest neighbour algorithm)

Method Accuracy (%)

HSV (NN) [15] 43.0
SIFT-Internal (NN) [15] 55.1
SIFT-Boundary (NN) [15] 32.0
HOG (NN) [15] 49.6

HSV (SVM) [3] 61.3
SIFT-Internal (SVM) [3] 70.6
SIFT-Boundary (SVM) [3] 59.4
HOG (SVM) [3] 58.5

SIFT (MSL) [18] 65.3

Dense SIFT (HSMK) 72.9

Table 2. Classification rate (%) comparision between SPMK and HSMK on Oxford
Flower dataset

Kernel M = 400 M = 800

SPMK 68.09% 69.12%
HSMK 71.76% 72.94%

Caltech datasets: To show the efficiency and robustness of HSMK, we also
evaluated its performance on large scale object datasets, i.e., the CALTECH-101
and CALTECH-256 datasets. These datasets feature high intra-class variability,
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Table 3. Classification rate (%) comparision on CALTECH-101 dataset

5
training

10
training

15
training

20
training

25
training

30
training

Grauman & Darrell [4] 34.8% 44% 50.0% 53.5% 55.5% 58.2%
Wang et al. [18] - - 61.4% - - -
Lazebnik et al. [9] - - 56.4% - - 64.6%
Yang et al. [19] - - 67.0% - - 73.2%
Boimann et al. [1] 56.9% - 72.8% - - 79.1%
Gehler & Nowozin (MKL) [3] 42.1% 55.1% 62.3% 67.1% 70.5% 73.7%
Gehler & Nowozin (LP-β) [3] 54.2% 65.0% 70.4% 73.6% 75.7% 77.8%
Gehler & Nowozin (LP-B) [3] 46.5% 59.7% 66.7% 71.1% 73.8% 77.2%

Our method (HSMK) 50.5% 62.2% 69.0% 72.3% 74.4% 77.3%

Table 4. Classification rate (%) comparision between SPMK and HSMK on
CALTECH-101 dataset

5
training

10
training

15
training

20
training

25
training

30
training

SPMK (M = 400) 48.18% 58.86% 65.34% 69.35% 71.95% 73.46%
HSMK(M=400) 50.68% 61.97% 67.91% 71.35% 73.92% 75.59%

SPMK (M = 800) 48.11% 59.70% 66.84% 69.98% 72.62% 75.13%
HSMK(M=800) 50.48% 62.17% 68.95% 72.32% 74.36% 77.33%

poses, and viewpoints. On CALTECH-101, we carried out experiments with 5,
10, 15, 20, 25, and 30 training samples for each class, including the background
class, and used up to 50 samples per class for testing. Table 3 compares the clas-
sification rate results of our approach with other ones. As shown, our approach
obtained the comparable result with that of state-of-the-art approaches even us-
ing only a single feature while others used many types of features and complex
learning algorithms such as MKL and linear programing boosting (LP-B) [3].
Table 4 shows that the result of HSMK outperformed that of SPMK in this case
as well. It should be noted that when the experiment was conducted without
the background class, our approach achieved a classification rate of 78.4% for
30 training samples. This shows that our approach is efficient in spite of its
simplicity.

On CALTECH-256, we performed experiments with HSMK using 15 and 30
training samples per class, including the clutter class, and 25 samples of each
class for testing. We also re-implemented SPMK [5] but used our dense SIFT
to enable a fair comparation of SPMK and HSMK. As shown in Table 5, the
HSMK classification rate was about 3 percent higher than that of SPMK.

4.2 Scene Categorization

We also performed experiments using HSMK on the MIT Scene (8 classes) and
UIUC Scene (15 classes) dataset. In these datasets, we set M = 400 as the
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Table 5. Classification rate (%) comparision on CALTECH-256 dataset

Kernel 15 training 30 training

Griffin et al. (SPMK) [5] 28.4% 34.2%
Yang et al. (ScSPM) [19] 27.7% 34.0%
Gehler & Nowozin (MKL) [3] 30.6% 35.6%

SPMK 25.3% 31.3%
Our method (HSMK) 27.2% 34.1%

dictionary size. On the MIT Scene dataset, we randomly chose 100 samples per
class for training and 100 other samples per class for testing. As shown in Table
6, the classification rate for HSMK was 2.5 percent higher than that of SPMK.
Our approach also outperformed other local feature approaches [6] as well as
local feature combinations [6] by more than 10 percent, and was better than the
global feature GIST [16], an efficient feature in scene categorization.

Table 6. Classification rate (%) comparision on MIT Scene (8 classes) dataset

Method Accuracy (%)

GIST [16] 83.7
Local features [6] 77.2

Dense SIFT (SPMK) 85.8
Dense SIFT (HSMK) 88.3

On the UIUC Scene dataset, we followed the experiment setup described in
[9]. We randomly chose 100 training samples per class and the rest were used for
testing. As shown in Table 7, the result of our proposed kernel also outperformed
that of SPMK [9] as well as SPM based on sparse coding [19] for this dataset.

Table 7. Classification rate (%) comparision on UIUC Scene (15 classes) dataset

Method Accuracy (%)

Lazebnik et al. (SPMK) [9] 81.4
Yang et al. (ScSPM) [19] 80.3

SPMK 79.9
Our method (HSMK) 82.2

5 Conclusion

In this paper, we proposed an efficient and robust kernel that we call the hi-
erarchical spatial matching kernel (HSMK). It uses a coarse-to-fine model for
sub-regions to improve spatial pyramid matching kernel (SPMK) and thus ob-
tains more neighbor information through a sequence of different resolutions. In
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addition, the kernel efficiently and robustly handles sets of unordered features as
SPMK and pyramid matching kernel as well as sets having different cardinalities.

Combining the proposed kernel with a dense feature approach was found to
be sufficiently effective and efficient. It enabled us to obtain at least comparable
results with those by existing methods for many kinds of datasets. Moreover, our
approach is simple since it is based on only a single feature with nonlinear sup-
port vector machines, in constrast to other more complicated recent approaches
based on multiple kernel learning or feature combinations.

In most well-known datasets of object and scene categorization, the proposed
kernel was also found to outperform SPMK which is an important component
such as a basic kernel in multiple kernel learning. This means that we can replace
SPMK with HSMK to improve the performance of frameworks based on basic
kernels.
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Abstract. We address the empirical feature selection for tracker-less
recognition of human actions. We rely on the appearance plus motion
model over several video frames to model the human movements. We
use the L2Boost algorithm, a versatile boosting algorithm which simpli-
fies the gradient search. We study the following options in the feature
computation and learning: (i) full model vs. component-wise model, (ii)
sampling strategy of the histogram cells and (iii) number of previous
frames to include, amongst others. We select the features’ parameters
that provide the best compromise between performance and computa-
tional efficiency and apply the features in a challenging problem, the
tracker-less and detection-less human activity recognition.

1 Introduction

Works on human activity recognition rely on detection and tracking algorithm
in order to discriminate the human patterns present in videos [9]. On one hand,
the detection algorithms are image-based approaches that segment the region of
interest for further processing [6]. On the other hand, tracking algorithms use
the detector output and data association techniques to segment video regions
where the activity patterns are learnt and matched (e.g. [1]).

The state-of-the-art approaches for people detection and tracking have at-
tained very good performances in challenging data sets (see [1,6]). However,
their application on more realistic scenarios does not provide good results yet
due to the following challenges: real-time video stream input, outdoor illumina-
tion variations, large amounts of clutter, motion blur, moving cameras, amongst
others. Since most of the human activity recognition approaches assume flaw-
less detectors and trackers, their application on more challenging scenarios is
even more difficult. Considering these constraints for the application of human
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activity recognition on real scenarios, we address the following questions in this
paper:

1. Is it possible to remove the tracking algorithm and find features for activity
recognition with good performance, assuming a flawless person detector?

2. If (1) is possible, would the found features work properly in a scenario with-
out detector? In other words, would be feasible to detect people and recognize
their activities?

In order to address the questions above, we rely on the state-of-the-art model
for human activity recognition: the combination of appearance and motion pat-
terns of each activity [9]. The appearance is encoded by the histogram of image
gradients and the motion is encoded by the histogram of the optic flow (dense).
In order to learn how to discriminate the patterns we use the popular boosting
algorithms, which are efficient, versatile and have shown similar recognition re-
sults to more elaborate techniques. Our choice is the L2Boost algorithm [3], which
has two main differences with common boosting methods (e.g. AdaBoost): i) the
data points do not have weights to adapt because they are basically included
in the gradient computation and ii) the weak learners do not have weighting
coefficients because L2boost uses a fixed step size equal to 1.

We choose the Weizmann dataset for the experiments, originally recorder by
[2], because it addresses an interesting multiclass problem that has been virtually
solved using the detector plus tracker assumption [7,11]. Thus, the common
training and testing steps of the previous works use the the location and size of
the people over time, provided by the groundtruth.

In order to address question (1) we use the location and size for each frame
separately, so the temporal data association is not considered. We build a spatio-
temporal cuboid for each detection independently, so the detected region of
interest is projected onto the previous frames. This means that the person may
not fully visible on the previous regions of interest. Then, the feature selection
procedure searches for the parameters of feature computation that provide very
good recognition results and low computational requirements.

In order to answer question (2), we use the features obtained in the previous
step and add the “background class” (i.e Nobody performing any activity) to the
multi-class problem. Thus, we are able to apply the sliding window method in
order to detect people and recognize their activities. In the case of video sequences,
the sliding window turns into the sliding cuboid for person and activity detection.
The results show that the tracker-less activity recognition is plausible, while the
tracker-less and detector-less activity recogntion is a very difficult problem.

2 Human Activity Model

The state-of-the-art action recognition approaches use a combination of appear-
ance and motion-based features in order to extract the activities’ patterns from
videos [11]. We follow this approach, using the image gradient and optical flow
(dense) as the raw features to extract the action patterns. Figure 1-A and 1-B



154 P. Moreno, P. Ribeiro, and J. Santos-Victor

show an example of the video volume (cuboid) for feature computation. Note
that the person’s bounding box at frame It maintain the same location over
the previous τ − 1 frames, so we do not consider the data association provided
by a tracking algorithm. Thus, we use only the person’s location at the cur-
rent frame, making the problem even more complicated, but allowing for an
easier development toward the use of moving cameras (for instance mounted on
moving robots). The most discriminative and efficient features based on gra-

Fig. 1. Feature computation (extracted from [10]): A) example of a volume of video
used to compute the features for the person detected in image It, B) the two types of
raw features used, gradient and flow vectors, computed inside the volume correspondent
to the person detected, C) polar sampling used to divide each window into subregions
and D) weighted histograms computed for each region, producing a 2D matrix coding
the evolution of each bin over a set of T frames

dients compute weighed histogram of the raw features, such as the histogram
of gradients (HOG) [4] and histogram of optic flow [5]. Given a gradient im-
age or optic flow image, the weighed histogram divides the image in subregions
(according to a sampling strategy, e.g. Cartesian, polar) and computes the his-
togram of the gradient (or flow) orientation weighed by its magnitude. Figure
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1-C shows the polar sampling strategy. In the case of polar sampling, the his-
togram features are parametrized by the number of subregions (cells) nR and
the number of bins nB for each subregion. The correspondent parameters of
Cartesian sampling, are the number of intervals the x direction nIx, the num-
ber of intervals in the y direction nIy and the number of bins nB, which defines
nIx×nIy subregions (cells). We denote the gradient histogram as the row vector
gt ∈ RnB·nR and gt ∈ RnIy ·nIx·nB for the polar and Cartesian histograms respec-
tively. Similarly, the flow histograms are denoted as the row vector ot ∈ RnB·nR

and ot ∈ RnIy ·nIx·nB, computed at frame t.
At frame It and its correspondent rectangular region of interestR(xc, yc, w, h)1,

the appearance and motion feature vector for each person detected is

ht,R = [gtot] ∈ R
2·nB·nR polar sampling (1)

ht,R = [gtot] ∈ R
2nIy ·nIx·nB cartesian sampling (2)

We consider two ways of modeling the human activity patterns in the spatio-
temporal cuboid: (i) the component-wise approach and the (ii) full representa-
tion. The component-wise stacks the vector component ht

j in the previous t+τ−1
frames, so the row feature vector is as follows:

Xj
i =

[
ht

j . . . h
t+τ−1
j

]
. (3)

The full representation stacks all the ht vectors in the previous τ − 1 frames,

Xi =
[
ht . . . ht+τ−1

]
, (4)

where i is the data sample index.

3 L2Boost with Temporal Models

The binary L2boost algorithm estimates the function F : Rd → R by minimizing
the expected cost E [C(y, F (X))] based on the data (yi, Xi), i = 1, ..., n. The cost
function is C(y, f) = (y − f)2/2 with y ∈ {−1, 1} and its respective population
minimizer is F (X) = E [y|X = x]. The overall optimization is achieved by means
of a sequential stagewise approximation along M rounds, optimizing a so called
weak learner in each round, m [3]. The weak learner is the linear combination of
the components of the feature vector Xi, so the weak learner of the component-
wise model of Eq (3) is fm(Xj

i ) = Xj
i β

m and for the full model of Eq. (4) is
fm(Xi) = Xiβ

m.
In order to use matrix notation, we stack all the yi values into the vector

Y ∈ R
N and all the Xi data points into the matrix X . In the case of the

component-wise model, at each round m, we optimize a temporal model β for
each possible feature j = 1, ..., D, choosing the one that achieve less error:

β̂ = arg min
β,j

(Y −Xjβ)T (Y −Xjβ). (5)

1 Centroid, width and height.
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The solution is β̂m = (XjmT
Xjm

)−1XjmT
Y , where jm is the component that

achieves less error. In the case of the full model of Eq. (4), the feature index j
is removed from Eq. (5), so β̂ = argminβ(Y −Xβ)T (Y −Xβ), whose solution
is β̂m = (XTX)−1XTY . The component-wise L2boosting algorithm with linear
temporal models of Eq. (3) is as follows:

1. Initialization. Chose M and set m=0. Given data (Y,X), fit the first weak
learner, F̂0 = Xj0

β̂0. β0 and j0 are computed from Eq. (5).
2. Projection of gradient to learner. Compute the negative gradient (in

this case are the residuals) um+1
i = yi − F̂m(Xi)(i = 1, ..., n). For simplicity,

stack all ui values into the vector U ∈ RN .
Use the residuals Um+1 to fit the learner f̂m+1 = Xjm+1

β̂m+1 changing Y
for U in Eq. (5).
Update F̃m+1 = F̂m + f̂m+1. Compute F̂m+1 = sign(F̃m+1)min(1, |F̃m+1|).

3. Iteration. If m+ 1 < M increase m by 1 and goto step2.
If m + 1 = M return Θj = {j0, ..., jm, ...}, and one set of models, Θβ =
{β0, ..., βm, ...}

The classification of a new point Xi is given by the sign of the strong classifier
result, sgn F̂M (Xi). Notice that the last computation of step 2 constraints the
strong classifier to be in [−1 1], so we apply the L2Boost with constraints [3],
which works better in the classification setup. The algorithm just presented is
very similar to the full model one, but removing the feature index j. The strong
classifier F (x) relates the class-conditional probabilities,

F (x) = 2p(y = 1|x)− 1, |F (x)| = |p(y = 1|x)− p(y = −1|x)|, (6)

and its module |F (Xi)| is the classification margin, that is the probability of
labeling the new data point given the models estimated. In order to extend the
L2Boost with linear-temporal models to multi-class problems we use the one vs.
all approach, which solves C binary problems to discriminate between C classes
where Y ∈ {1, . . . , C}. The multi-class version of L2 starts by computing F̂ (c)

M

on the basis of the binary response variables

Y
(c)
i =

{
1 if Yi = c

−1 if Yi �= c
i = 1, . . . , n (7)

and then builds the classifier as Ĉm(x) = argmaxc∈{1,...,C} F̂
(c)
M (x).

4 Feature Selection for Tracker-Less Recognition

We address this problem by comparing the recognition rate between differ-
ent types of features in the Weizmann dataset [2], which contains 9 subjects
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performing 9 actions: {1 - bending down, 2 - jumping jack, 3 - jumping, 4 -
jumping in place, 5 - running, 6 - galloping sideways, 7 - walking, 8 - waving
one hand, 9 - waving both hands}. We follow the evaluation protocol proposed
by [2] that performs a leave-one-out test with the 9 subjects, so each subject
belongs to one of the testing sets. Then, the confusion matrix is averaged over
all the leave-one-out test sets and the trace of the averaged matrix is used as the
measure of recognition performance.

We consider the following options to select the feature computation method:
(i) component-wise vs. full model , (ii) cartesian and polar cell sampling,
(iii)number of frames τ of the linear temporal model, (iv)optic flow algorithm, (v)
two options for the region of interest in the image (detected bounding box) and
(vi) cell overlapping. We observe in Table 1 that the component-wise L2Boost
performs better than the full model one, so in the rest of the experiments we
just consider the component-wise approach. In addition,we select the polar and
cartesian sampling that attain the top recognition result, nR = 16, nB = 16
for polar and nIx = 4, nIy = 8 for cartesian. The next step is to compare the
effect of the optic flow algorithm in the classification results. Table 2 shows that
Ogale’s et. al. [8] algorithm has a better performance than Werlberger’s one.
In this case our choice is the Werlberger’s algorithm because of the GP/GPU
implementation that allows to compute the optic flow (dense) in near real-time
for normal cameras. The reason behind this choice is the quicker evaluation of
our approach on other datasets (e.g. [10]), and the near real-time plausibility of

Table 1. Component-wise vs. full model results, using two sets of parameters for
each sampling approach. (τ = 10, no overlapping between cells and using groundtruth
detections), Ogale’s optic flow [8].

Average confusion matrix’s trace (%)

Feature type component-wise all features dims

polar nR = 8, nB = 16 91,29 89,76 256

polar nR = 16, nB = 16 95,42 93,2 512

cartesian nIx = 4, nIy = 8, nB = 16 95,42 93,2 512

cartesian nIx = 3, nIy = 6, nB = 16 95,46 92,79 576

Table 2. Effect of two optic flow approaches on the recognition rate (τ = 10, no
overlapping between cells and using groundtruth detections)

Average confusion matrix’s trace (%)

Feature type Ogale et. al. [8] Werlberger et. al. [12]

polar nR = 16, nB = 16 95,42 94,11

cartesian nIx = 4, nIy = 8, nB = 16 96,01 94,9
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[12], which facilitates future deployment of the system. The temporal support
used in the previous test (τ = 10) was motivated by Schindler et. al. [11]. Table
3 re-validates their choice τ = 10. In the following we compare the groundtruth
boxes against a manually set bounding box for all the detections. We define a
bounding box with constant width/height ratio in order to select the spatio-
temporal cuboids. The rationale of this fixed ratio bounding box is two-folded:
(i) facilitate the application of the sliding window method and (ii) allow the
search over multiple scales. Table 4 shows that the selected w/h is practically
equal to the groundtruth boxes, because the persons of the Weizmann dataset
have similar sizes. Finally, we apply the idea of overlapping between cells [4].
In the case of polar sampling, we add more cells to the previous ones in such
a way that each new cell overlaps with two of the original neighboring cells in
equal proportion. In the case of the cartesian sampling, each new cell overlaps
with four of the original neighboring cells in equal proportions. Table 5 shows
that cell overlapping and cartesian sampling brings better results, but at the ex-
pense of a larger computational load. Since we are interested in features having
a lower computational load and good performance, we choose the polar sampling
with no overlap. Summarizing, the feature selection options are: (i) component-
wise L2Boost, (ii) Welberger’s optic flow [12], (iii) τ = 10, (iv) fixed w/h ratio
bounding boxes and (v) no overlap polar sampling cells.

Table 3. Temporal support comparison. (no overlapping between cells and using
groundtruth detections).

τ 1 3 5 7 10 13 15

polar nR = 16, nB = 16 86,2 90,36 92,64 93,27 94,11 93,55 93,47

cartesian nIx = 4, nIy = 8, nB = 16 87,88 91,7 92,35 94,1 94,9 94,36 94,11

Table 4. Region of interest comparison. Groundtruth boxes vs. manually selected ones.
(no overlapping between cells).

Average confusion matrix’s trace (%)

Feature type groundtruth ROI [2]
Fixed size ROI

w = 60, w/h = 0.779

polar nR = 16, nB = 16 94,11 94,84

cartesian nIx = 4, nIy = 8, nB = 16 94,9 95,56

Table 5. Comparison between cells with and without overlap

Average confusion matrix’s trace % (dimensions)

Feature type half interval overlap no overlap

polar nR = 16, nB = 16 95,15 (1024) 94,84 (512)

cartesian nIx = 4, nIy = 8, nB = 16 95,68 (1696) 95,56 (1024)
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4.1 Tracker-Less and Detection-Less Scenario

The features found above attain very good recognition rates in a tracker-less
scenario. In this section we want to evaluate their performance on a tracker-less
and detector-less scenario. Thus, we need to add the background activity class
(i.e. spatio-temporal cuboids where no person is doing any action) to the activity
classes in order to both detect people and recognize their activities. We obtain
the background samples by the random selection of video segments in the Weiz-
mann dataset. Then, we compute the features selected in the previous section
and re-train the L2Boost algorithm with the 9 activities plus the “background”
activity.

The testing phase comprises the application of the volume-based version of the
sliding window algorithm. This image-based algorithm is applied on pedestrian
detection, by moving the region of interest (window) along the image grid. For
each grid point, the image features are computed inside the window, followed
by the binary classification (person or background). We perform the volumetric
version of the algorithm, by moving the region of interest (cuboid) along the
video (3D) grid. Then, we classify each cuboid as a particular human activity or
the “background” activity. We sample the video grid every 5 pixels in each image
direction and every 2 frames in the temporal direction. The trace of the confusion
matrix for the 10 classes is 94, 74%. This looks like a good result because of the
larger number of background samples compared to the human activity samples.
After removing the background samples the trace of the confusion matrix is
30, 04%. This result is explained by the absence of the perfectly aligned detection
results provided by the groundtruth. These misalignments of the cuboids in the
video were not learnt during training, so the L2Boost is not able to discriminate
between the human activities.

5 Conclusions

We address the feature selection for human activity recognition in a tracker-less
scenario. We construct features that encode appearance and motion by means
of the Histogram Of Gradients (HOG) [4] and the Histogram Of Flow (HOF) [5]
over several video frames. Our choice of learning approach, the L2Boost, it finds
the linear models for binary problems and we apply the one vs. all approach for
the final classification.

In this feature-classifier context, we select experimentally the parameters that:
(i) attain very good results and (ii) have low computational requirements. In
addition, we evaluate the selected features in a tracker-less and detector-less
scenario, a very challenging problem due to the large appearance variation in
the background and the reduced amount of motion information contained in it.
Future work must study the combination of features from both worlds: human
activity recognition and pedestrian detection in order to have features that do
not assume flawless person trackers and detectors.
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Abstract. We present a method to classify atomic density distributions
using CCD images obtained in a quantum optics experiment. The classi-
fication is based on the scale invariant detection and precise localization
of the central blob in the input image structure. The key idea is the
usage of an a priori known shape of the feature in the image scale space.
This approach results in higher localization accuracy and more robust-
ness against noise compared to the most accurate state of the art blob
region detectors.

The classification is done with a success rate of 90% for the experi-
mentally captured images. The results presented here are restricted to
special image structures occurring in the atom optics experiment, but
the presented methodology can lead to improved results for a wide class
of pattern recognition and blob localization problems.

1 Introduction

1.1 Atomic Density Distributions

Satyendranath Bose and Albert Einstein predicted in 1924 that a gas of atoms
with integer spin forms a so-called Bose-Einstein condensate (BEC) when it is
cooled to ultra cold temperature [1]. Below a certain temperature threshold, a
large fraction of atoms confined in an external trap occupy the physical ground
state. In 1995, two experimental groups achieved Bose-Einstein condensation of
trapped dilute atomic gases [2,3] after cooling it below a temperature of 1 μK. At
these temperatures, the velocity distribution is very narrow and due to Heisen-
berg’s uncertainty relation [4] the spatial distributions of those atoms is broad.
Typically, it extends to several tens of micrometers, making it possible to image
the ensemble with a CCD camera as shown in Fig. 1.

In the past years, BEC’s consisting of atoms with non-zero spin attracted
a lot of notice. These atoms behave like little magnets that may be oriented
perpendicular to an external magnetic field. Atomic collisions can now generate
pairs of atoms, with one spin pointing upwards and the other one downwards.
This process was identified to be a parametric amplifier for classical seed atoms
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c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Simplified sketch of the imaging system. The atomic cloud is illuminated by
collimated resonant laser light from an optical fibre. The shadow from the atoms is
imaged by a magnifying lens system onto a CCD-Camera. Subtraction from an image
without atoms leads to the atomic density distribution.

or vacuum fluctuations [5,6]. Depending on the magnetic field, those atoms can
be generated in different states with different characteristic probability distribu-
tions [7]. In the cylindrical trapping geometry used in the recent experiments,
the discrete physical states that may be populated have density distributions
n(r) which can be approximated with the following expression

nnl(r) ∝ J2
l (βnl

|r|
rtf

) (|r| < rtf), (1)

where Jl are the Bessel functions of the first kind and βnl is the nth zero of
Jl. The size is scaled by the radius rtf . Each distribution is identified by two
quantum numbers n and l for the radial excitation and the rotation of the cloud.

After preparing the clouds, the trap is switched off to allow for ballistic ex-
pansion, where the distribution is stretched but not perturbed [8]. During the
expansion, the three spin components are separated by an applied magnetic field
gradient and then irradiated with a resonant laser beam. The atomic clouds ab-
sorb light and the resulting shadow is imaged onto a CCD camera. From the
CCD data, the density distribution can be determined. The imaging technique
has three deficiencies: Interferences in the detection beam produce regular stripes
on the density distribution. The imaging setup can distort the image slightly.
The finite number of detected photons leads to shot noise on the images.

In general, we detect pictures with clouds in arbitrary combinations of quan-
tum numbers. Fig. 2 shows the three examples under investigation (I0, I1, and
I2) with the quantum numbers (n, l) = (1, 0), (2, 0), and (2, 1). For the interpre-
tation of the experimental results, an unambiguous classification of the quantum
numbers is of key interest. This classification should be independent of the total
position and the size of the clouds, since these parameters are quickly changed
by a variation of the experimental parameters and technical uncertainties. Ad-
ditionally, the classification should be robust with respect to the experimental
noise on the figures. In the following, we describe how the density distribution
can be classified automatically and the quantum numbers are inferred.
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I0 I1 I2

Fig. 2. Real atomic distribution shapes to be detected and classified. From left to right:
type I0, I1, and I2. Best viewed on a LCD.

1.2 Feature and Blob Detectors

The objective of this work is to classify the three different atomic distribution
shape types I0, I1, and I2 as shown in Fig. 2. For each distribution shape,
the underlying function is known from equation (1). The shapes I0 and I1 are
identical (proportional to J2

0 (.)), but differ by the radial excitation. The shape
of I2 is proportional to J2

1 (.). As the size of the blobs can vary, it is necessary
to perform a scale invariant classification. Due to the currently small available
data set, a training scheme for the classification is not applied and the proposed
approach concentrates on feature estimation. The contributions are:

– a new detector robust to noise for the localization of one unique feature of
known shape with high accuracy,

– the comparison of the detector to the most accurate state of the art blob
detectors using synthetic images, and

– the classification of atomic distribution shapes using the extracted shape
parameters in a unified feature detection framework.

The initial and most important task is the accurate localization of the central
blob in the images. Then, the classification can be done in two steps. First, the
type of extremum in the input image is determined to separate the types I0,
I1 from I2. Second, the ring surrounding the blob is localized and used for the
separation of type I0 (no ring visible) and I1 (ring is visible).

Due to noise and the imaging setup, the target structure might be slightly
slanted. Thus, the desired method for the detection task has to be an affine
invariant noise resistant blob region detector. In literature, extensive work has
been done on region detectors and their evaluation. An overview of most of
these detectors can be found in [9], in which the most accurate affine invari-
ant blob detectors are found to be the Hessian-Affine [10] and the MSER [11].
Their evaluations show excellent performance [9,12] regarding the Repeatability
rate, which is the most often used criterion for elliptical region localization accu-
racy. In [11], maximally stable extremal regions (MSER) are constructed using
a segmentation process. Then, an ellipse is fit to each of the detected regions.
Based on affine normalization, the Hessian-Affine detector determines the ellipti-
cal shape with the second moment matrix of the intensity gradient. The features
are detected as extrema in the scale space, which is introduced and described
by Lindeberg et al. [13,14]. The scale space representation is built by cascading
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Hessian-Affine MSER SIFT Proposed

Fig. 3. Localization results of state of the art blob detectors. From left to right: Hessian-
Affine, MSER, SIFT, and the proposed approach which aims to localize the first zeros
of the input feature. Best viewed on a LCD.

Gaussian filters of differing standard deviation σ. The scale space is also used by
the SIFT detector [15] as the basis for blob detection. In SIFT, the Difference of
Gaussians (DoG) pyramid is evaluated as an approximation of the scale space of
the input image. A scale space extremum is detected as a luminance value that
is bigger or smaller than its 26 neighbors in the DoG pyramid. Although the
SIFT detector is not affine invariant by design, it shows impressive performance
for features with moderate affine distortion. In [16], the localization accuracy of
SIFT is increased using a bivariate approximation of the image gradient signal.
This approach is adapted for the localization of the feature shapes occuring in
the atom optics experiment.

Results of the state of the art blob detectors for an example are shown in
Fig. 3. While the Hessian-Affine, MSER, and SIFT detectors lead to ambiguous
results, the desired method provides an unique and accurate detection of the
central blob, which is defined by the bounding zeros.

Our work demonstrates, that the elliptical shape of these features can be de-
termined with high accuracy by incorporating the knowledge of the underlying
functions. It is shown that all three input feature types (Fig. 2) approximately
depict the same shape in the dominant scale in the scale space, which leads to
a unified detection and localization procedure. Incorporating shape knowledge
of the input data, the ring area surrounding the center blob can be determined
and used for the classification. In the following Section 2, the approach of lo-
calization and classification of the distribution shapes is presented. Section 3
shows experimental results using synthetically constructed and real image data.
In Section 4, the paper is concluded.

2 Localization and Classification of Atomic Density
Distribution Shapes

A blob feature as shown in Fig. 3 is defined by image coordinates (x0, y0), and the

covariance matrix Σ =
(
a2 b
b c2

)
, which determines the elliptical shape. In order to

estimate these parameters of the input feature, it has to be detected and localized
in the scale space. Here, the Difference of Gaussians (DoG) representation is
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used, which is a good approximation as proved by the SIFT approach [15].
An experimental analysis using the SIFT scale selection technique (Section 2.1)
leads to the proposed function model which approximates the image signal in
the selected scale of the DoG. The function model used for the localization is
explained in Section 2.2. A robust technique for the detection and localization
is derived in Section 2.3. On basis of the extracted localization parameters, the
classification of the atomic distributions is done as explained in Section 2.4.

2.1 Feature Shape in the Scale Space

The feature selection scheme of the SIFT detector provides the best representa-
tion of a feature in the scale space. The scale is determined by the octave o and
the interval i [15]. In Fig. 4, the selected scales for the synthetic input features
Ĩ0, Ĩ1, and Ĩ2 (top row) are shown in the bottom row. The returned shapes of
the input features Ĩ0, Ĩ1, Ĩ2 are approximately sinc functions. This observation
leads to the assumption for the approximation of a feature in the scale space
as shown in the following Section 2.2. Note, that the central blob in the input
images lead to minimas in the scale space for all feature types Ĩ0, Ĩ1, Ĩ2.

2.2 Localization Using the SINC Function Model

Following the observation that the returned shapes in the Difference of Gaus-
sians pyramid are approximately sinc functions (Section 2.1), the input features
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Fig. 4. Resulting image signal DoG(o,i) of interval i in octave o using the scale selection

of SIFT. The synthetic test images are shown on top. Each of the input features Ĩ0, Ĩ1, Ĩ2

depict a sinc (r) = sin r
r

shape in the selected scale (bottom).
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Fig. 5. Proposed regression function fp(x) for the approximation of the scale space
shapes of the input blobs as shown in Fig. 4. Two examples with different covariance
matrix Σ are shown.

are localized using this function model. To allow elliptical feature shapes, the

covariance matrix Σ =
(
a2 b
b c2

)
is incorporated. For the following, the abbre-

viation Rx0,Σ(x) := (x − x0)
Σ−1(x − x0) is used. Rx0,Σ(x) is used to describe
the elliptical shape with the center coordinate x0 = (x0, y0). Together with a
peak value v, the parameter vector p = (x0, y0, a, b, c, v) determines a member
of the following proposed function model fp for the detection and localization
approach:

fp(x) =

⎧⎨⎩ v · sin
√

Rx0,Σ(x)√
Rx0,Σ(x)

, for Rx0,Σ(x) ≤ t0

0 , otherwise
(2)

with t0 = 2π. Note, that the peak value v has to be negative v < 0 to detect
the desired extremum (see Fig. 4). Scale space maxima are not considered for
the localization. Two examples for the function model fp are shown in Fig.
5. They are determined by the parameter vector p = (x0, y0, a, b, c, v) with six
components. The parameter vector p of an input feature is identified by means of
a regression analysis. Each fullpel position in each octave o and each interval i is
assumed as a possible initialization for the Levenberg-Marquardt optimization
algorithm. The covariance matrix is initialized with the unit matrix Σ = E,
which is equivalent to circular shape. As each scale is normalized in the DoG
pyramid, the initial value for v is −1. The Levenberg-Marquardt (LM) algorithm
minimizes the distance ep between the model function fp(x) and the image signal
DoG(o,i)(x) in the current scale (o, i) evaluating a squared neighborhood N :

ep =
∑
x∈N

(fp(x)−DoG(o,i)(x))2 (3)

The LM algorithm stops returning the optimal parameter vector popt and a
residuum value epopt which provides a quality measure of the obtained regression
function fpopt(x) for the initial starting position.

In contrast to the SIFT detector, our approach using a regression analysis is
capable of evaluating arbitrary neighborhood sizes. As can be seen in Fig. 4, a
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neighborhood N of at least 9× 9 pixels is needed to capture the characteristics
of the blob shape in the image pyramid. A large neighborhood also leads to
a localization which is less sensitive to noise. The SIFT detector uses a 3 × 3
neighborhood and the neighboring scales to determine the subpel and subscale
localization. To compensate for the computational expense of a larger neighbor-
hood, our approach omits to estimate a subscale parameter.

2.3 Feature and Scale Selection

The regression analysis described in Section 2.2 returns a residuum epopt for
the optimal parameter vector popt, which is a quality measure for the resulting
regression function fpopt(x). Hence, the best blob location is found by minimizing
the residuum for all possible positions. For the detection of the central blob, it is
crucial to favor a scale space minimum in smaller scales. Therefore, the function
to be minimized is weighted by the scale wscl = 2o+ i

k , where k is the number of
scales per octave [15] (usually k = 3):

wscl · epopt →MIN (4)

To ensure optimal solutions, a brute force search is performed within a search
range. The brute force search and the large neighborhood lead to a significant
increase in computational complexity. This is not critical for the presented clas-
sification application.

2.4 Classification of the Feature Shapes

The classification workflow is shown in Fig. 6. Two evaluations are done after
localizing the best feature blob. First, the feature type I2 is distinguished from
the others by determining the Curvature of the input image at the localized
position. This is done by evaluating the first scale of the DoG pyramid at the
ground plane position xG = x0 · 2o. To reduce the influence of noise, the median
Nmed in a 3 × 3 neighborhood N is used to classify between I0 ∪ I1 (concave
curvature) and I2 (convex curvature):

Nmed(DoG(0,0)(xG)) ≤ 0⇒ I0 ∪ I1 (5)
Nmed(DoG(0,0)(xG)) > 0⇒ I2 (6)

I0

I1

no

yes

I2

by Residuum

Select Best Feature

SINC Functions

Localization of

concave

convex

Classification

Feature Center ?

Curvature atI

popt

Unique Localization

I Ring Structure ?

Fig. 6. Workflow diagram of localization and classification of the input image I
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The classification between I0 and I1 is done by evaluating if there is a Ring
Structure around the center blob or not. The Ring S is localized as the region
between the first zeros z01 and the second zeros z02 of the Bessel function J0(.):

S = {x : z01 ≤
√
RxG,q·ΣG(x)
D(q · ΣG)

≤ z02} (7)

where ΣG = Σ · 2o is the covariance matrix of the feature in the image ground
plane and D(.) denotes the determinant. The zeros of J0(.) are known as z01 ≈
2.40 and z02 ≈ 5.52. The ellipse scaling factor q ≈ 1.59 maps the minima of the
Bessel function J0(.) to its first zeros and is calculated as the quotient of the
first minimum and the first zero z01 of J0(.). The region S is localized after the
central blob is accurately determined by popt.

An example of the elliptical ring S using relation (7) is shown in Fig. 9. Using
this area, the two feature types I0 and I1 can be distinguished by analyzing the
gray values inside S. Therefore, the energy ES of the image signal I(x) inside
the Ring S is calculated and a threshold classifier with threshold thr is applied.
The area AS of the Ring S is used for the normalization of ES to obtain scale
invariant energy values:

ES =
1
AS

∫
S

|I(x)|2dx (8)

If ES < thr, then the feature is of type I0, otherwise it is of type I1. The
threshold thr can be chosen between 10 and 25 which is valid for all the experi-
mental feature data in this paper as shown in Fig. 8.

3 Experimental Results

For the evaluation of our method, synthetic and real data is used. For the syn-
thetic data, the ground truth localization of each feature is known. The detection
accuracy of position xG = (xG, yG) and shape ΣG is shown using the Surface
Error measure [10]. The Surface Error is a percentage value that is minimal if
a detected ellipse area is exactly matching the ellipse determined by the ground
truth values. The evaluation for the three different types of synthetic input fea-
tures Ĩ0, Ĩ1, Ĩ2 with added Gaussian noise is shown in Section 3.1. The spatial
neighborhood N evaluated for the feature localization is set to 13 × 13 pixels.
For the real data, classification results of a set of images captured in the atom
optics experiment are shown in Section 3.2. The processing time for an image
(size 128 × 128) on common PC hardware is about 10 seconds, which is not
critical for an automatic evaluation.

3.1 Results of Synthetic Data

Synthetic test images of types Ĩ0, Ĩ1, and Ĩ2 as shown in Fig. 4 (top row) are
constructed using equation (1) and a cutoff at the first zeros for Ĩ0 and second
zeros for Ĩ1, Ĩ2, respectively. For the evaluation, the following variations of the
image signal are generated:
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– scale s : 2 ≤ s ≤ 9 (3 octaves) with step size 0.5
– subpel position x0: −0.5 ≤ x0 < 0.5 with step size 0.04
– noise variance σn: 0 dB ≤ σn ≤ 80dB with step size 20 dB

Each of the variations has an impact on the localization accuracy. The subpel
variation is to emphasize the signal approximation scheme used by the detec-
tors while the scale variation emphasizes the scale invariance. The noise scenario
demonstrates the robustness against image noise. For each synthetically con-
structed image, the feature is slightly slanted using a covariance Matrix Σ with
a
c = 1.2.

For the classification task, it is crucial to select one unique feature for further
evaluation, which is done by our method by design. The numbers of features
selected by the presented approaches are shown in Fig. 7, top row. For the
other detectors the numbers depend on the feature type and on the noise level.
The localization accuracy evaluation is shown in Fig. 7, bottom row. If multiple
features are detected by a method, the best of them is chosen for the evaluation.
The cases in which no feature is detected are discarded from this evaluation
(small scales for Hessian-Affine). To avoid the dependency on a global scale of
the features, a normalization is applied to the covariance matrix results.

Our approach provides an accurate and reliable localization for each feature
type compared to the best possible result of each of the other detectors. Due to
the good subpel localization estimation, the SIFT detector provides comparably
accurate results, but strongly increasing numbers of features with increasing
noise. Interestingly, the localization accuracy of each detector does not increase
significantly with increasing Gaussian noise. The detectors Hessian-Affine and
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Fig. 7. Comparison of the number of detected features (top row) and the mean Surface
Error (bottom row) for the three synthetic test features and the four region localization
methods. In case of ambiguous detection results, the best is chosen for the Surface
Error. From left to right: feature types I0, I1, and I2
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MSER result in highest Surface Errors. We can state that our results provide
high accuracy which is robust to synthetic Gaussian image noise.

3.2 Results of Atom Optics Experiment Image Data

The captured image data include the real atom distributions resulting from the
quantum optics experiment. To obtain equally distributed scales of features,
additional input images are generated by resizing the original data set. To verify
the thresholding approach explained in Section 2.4, the energy values ES in
equation (8) are shown in Fig. 8. Obviously, the types I0 and I1 are classified
reliably and independently from the detected scale.
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Fig. 8. Energy values ES for the real experiment data for the feature types I0 and I1

of different sizes. It is shown that a simple threshold value thr is sufficient to separate
the two classes. The classification is independent of the detected scale.

For the evaluation of the classification, 52 images of each type I0, I1, and I2 are
available. Examples are shown in Fig. 2. The classification rates for each input
feature type and the two classification stages are shown in Table 1. The results
for TPCurv and TPRing demonstrate that misclassifications are only resulting
from the curvature estimation in which only a small neighborhood is evaluated.
Thus, this evaluation is more sensitive to the strong noise, especially for the input
feature type I2. The Ring Structure detection and evaluation works perfect.

The overall correct classification rate is 90.4%. Classification failures are due
to strong noise covering the center shape. In this case, blobs of type I2 are

Table 1. Classification rate True Positives for the two stages Curvature TPCurv and
Ring Structure TPRing (see Section 2.4) and the resulting classification rate TPΣ

I0 I1 I2 Σ

TPCurv 96.2% 75.0% 85.6

TPRing 100% 100% − 100%

TPΣ 96.2% 100% 75.0% 90.4%
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very similar to the type I1 (see Fig. 2). Understanding and modeling the noise
structure, i.e. regular stripes from laser beam interferences, will improve the
classification and is left for future works. Examples of the detected Ring Structure
S which is used to classify the features types I0, I1 are shown in Fig. 9.

Input I0 S of I0 Input I1 S of I1

Fig. 9. Examples of the detected Ring Structure S (in blue) around the central blob
for two experimentally captured input images. Best viewed on a LCD.

4 Conclusion

The presented method consists of the detection, localization, and classification of
atomic distribution shapes resulting from three types of modes from a quantum
optics experiment. Therefore, a new feature detector is developed based on the
SIFT approach. The a priori known shapes of the input features are incorpo-
rated using a regression analysis with a derived function model for the gradient
signal. The determination of the function model parameters leads to a reliable
and accurate localization of the elliptical shape of a feature blob. The shape
parameters are used as input data for a simple two stage classifier.

The presented detector shows superior localization accuracy and noise ro-
bustness compared to the most accurate state of the art blob detectors. This is
demonstrated using synthetic images. The classification success rate is 90% for
the real data resulting from the atom optics experiment.

Our approach provides a useful application of scale invariant feature local-
ization in the field of quantum optics. Future works will incorporate the noise
structure for further classification improvements.

We acknowledge support from the Centre for Quantum Engineering and Space-
Time Research QUEST.
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Università di Salerno, Via Ponte Don Melillo, 1 I-84084 Fisciano (SA), Italy

{dconte,pfoggia,mvento}@unisa.it

Abstract. Re-identification, that is recognizing that an object appear-
ing in a scene is a reoccurrence of an object seen previously by the sys-
tem (by the same camera or possibly by a different one) is a challenging
problem in video surveillance. In this paper, the problem is addressed
using a structural, graph-based representation of the objects of inter-
est. A recently proposed graph kernel is adopted for extending to this
representation the Principal Component Analyisis (PCA) technique. An
experimental evaluation of the method has been performed on two video
sequences from the publicly available PETS2009 database.

1 Introduction

In the last years, research in the field of intelligent video surveillance has pro-
gressively shifted from low-level analysis tasks (such as object detection, shadow
removal, short term tracking etc.) to high-level event detection (including long
term tracking, multicamera tracking, behavior analysis etc.).

An important task required by many event detection methods is to establish
a suitable correspondence between observations of people who might appear and
reappear at different times and across different cameras. This kind of problematic
is commonly known as “people re-identification”.

Several applications using single camera setup may benefit from information
induced by people re-identification. One of the main appllications is loitering
detection. Loitering refers to prolonged presence of people in an area. This be-
haviour is interesting in order to detect, for example, beggars in street corners,
or drug dealers at bus stations, and so on. Beside this, information on these
re-occurrences is very important in multi-camera setups, such as the ones used
for wide area surveillance. Such surveillance systems create a novel problem of
discontinuous tracking of individuals across large sites, which aims to reacquire
a person of interest in different non-overlapping locations over different camera
views.

Re-identification problem has been studied for last five years approximately.
A first group [10,18,3,4] deals with this problem by defining a unique signature

M. Kamel and A. Campilho (Eds.): ICIAR 2011, Part I, LNCS 6753, pp. 173–182, 2011.
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which condenses a set of frames of a same individual; re-identification is then
performed using a similarity measure between signatures and a threshold to
assign old or new labels to successive scene entrances. In [10] a panoramic map
is used to encode the appearance of a person extracted from all cameras viewing
it. Such a method is hence restricted to multicamera systems. The signature
of a person in [18] is made by a combination of SIFT descriptors and color
features. The main drawback of this approach is that people to be added into
the database are manually provided by a human operator. In [3] two human
signatures, which use haar-like features and dominant color descriptor (DCD)
respectively, are proposed while in [4] the signature is based on three features,
one capturing global chromatic information and two analyzing the presence of
recurrent local patterns.

A second group ([26,5]) deals with re-identification of people by means of a
representation of a person in a single frame. Each representation corresponds
to a point in a feature space. Then a classification is performed by clustering
these points using a SVM ([26]) or a correlation module ([5]). Both [26,5] use the
so-called “color-position” histogram: the silhouette of a person is first vertically
divided into n equal parts and then some color features (RGB mean, or HSV
mean, etc.) are computed to characterize each part.

This paper can be ascribed to the second group but with some significant
novelty: first, we have a structural (graph-based) representation of a person;
second, our classification scheme is based on graph kernels. A graph kernel is a
function in graph space that shares the properties of the dot-product operator
in vector space, and so can be used to apply many vector-based algorithms to
graphs.

Many graph kernels proposed in the literature have been built on the notion
of bag of patterns. Graphlets kernels [22] are based on the number of common
sub-graphs of two graphs. Vert [15] and Borgwardt [23] proposed to compare the
set of sub-trees of two graphs. Furthermore, many graph kernels are based on
simpler patterns such as walks [14], trails [9] or paths.

A different approach is to define a kernel on the basis of a graph edit distance,
that is the set of operations with a minimal cost transforming one graph into
another. Kernels based on this approach do not rely on the (often simplistic)
assumption that a bag of patterns preserves most of the information of its as-
sociated graph. The main difficulty in the design of such graph kernels is that
the edit distance does not usually corresponds to a metric. Trivial kernels based
on edit distances are thus usually non definite positive. Neuhaus and Bunke [16]
proposed several kernels based on edit distances. These kernels are either based
on a combination of graph edit distances (trivial kernel, zeros graph kernel), use
the convolution framework introduced by Haussler [12] (convolution kernel, local
matching kernel), or incorporate within the kernel construction schemes several
features deduced from the computation of the edit distance (maximum similar-
ity edit path kernel, random walk edit kernel). Note that a noticeable exception
to this classification is the diffusion kernel introduced by the same authors [16]
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which defines the gram matrix associated to the kernel as the exponential of a
similarity matrix deduced from the edit distance.

We propose in this paper to apply a recent graph kernel [6,11] based on
edit distance, together with statistical machine learning methods, to people re-
identification. The remaining of this paper is structured as follows: we first de-
scribe in Section 2 our graph encoding of objects within a video. Moving objects
are acquired from different view points and are consequently encoded by a set of
graphs. Given such a representation we describe in Section 3 an algorithm which
allows to determine if a given input graph corresponds to a new object. If this
is not the case, the graph is associated to one of the objects already seen. The
different hypotheses used to design our algorithm are finally validated through
several experiments in Section 4.

2 Graph-Based Object Representation

The first step of our method aims to separate pixels depicting people on the
scene (foreground) from the background. We thus perform a detection of mov-
ing areas, by background subtraction, combined with a shadow elimination algo-
rithm [7]. This first step provides a set of masks which is further processed using
mathematical morphology operations (closing and opening) (Fig. 1a). Detected
foreground regions are then segmented using Statistical Region Merging (SRM)
algorithm [17] (Fig. 1c). Finally, the segmentation of the mask within each rect-
angle is encoded by a Region adjacency Graph (RAG). Two nodes of this graph
are connected by an edge if the corresponding regions are adjacent. Labels of a
node are: the RGB average color and the normalized size η defined as the ratio
betwen the area of the region and the one of the overall image (Fig. 1d).

3 Comparisons between Objects by Means of Graph
Kernels

Objects acquired by multiple cameras, or across a large time interval, may be
subject to large variations. Common kernels [14] based on walks, trails or paths
are quite sensitive to such variations. On the other hand, graph edit distances
correspond to the minimal overall cost of a sequence of operations transforming
two graphs. Within our framework, such distances are parametrized by two sets
of functions c(u → v), c(u → ε) and c(e → e′), c(e → ε) encoding respectively
the substitution, and deletion costs for nodes and edges. Using such distances,
small graph distortions may be encoded by small edit costs, hence allowing
to capture graph similarities over sets having important within-class distance.
Unfortunately, the computational complexity of the exact edit distance is expo-
nential in the number of involved nodes, which drastically limits its applicability
to databases composed of small graphs.

This paper is based on a sub optimal estimation of the edit distance
proposed by Nehauss and Bunke [19,20]. Let us consider two labeled graphs
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a) b)

c) d)

Fig. 1. a) Application of a suited morphological operator; b) Extraction of person
appearance; c) Image segmentation; d) RAG construction

g1 = (V1, E1, μ1) and g2 = (V2, E2, μ2) where μ1 and μ2 denote respectively the
vertice’s labels of g1 and g2. For any vertex w of V1 or V2, let us further denote
by ∠(w) the set of edges incident to w. The distance between g1 and g2 is es-
timated by first computing for each couple of vertices (u, v) ∈ V1 × V2 the best
mapping between ∠(u) and ∠(v). Such a mapping is defined by a permutation
σ from a set Su,σ ⊂ ∠(u) to a set Sv,σ ⊂ ∠(v), the remaining edges ∠(u)− Su,σ

and ∠(v) − Sv,σ being respectively denoted by Nu,σ and Nv,σ. The cost of a
mapping is defined as the overall cost of edges substitutions from Su,σ to Sv,σ

and edge deletions from Nu,σ and Nv,σ. The optimal mapping, denoted Δe(u, v)
being defined as the mapping of minimal cost:

Δe(u, v) = min
σ∈Mu,v

∑
e∈Su,σ

c(e→ σ(e)) +
∑

e∈Nu,σ∪Nv,σ

c(e→ ε)

where Mu,v denotes the set of mappings from ∠(u) to ∠(v).
This optimal mapping is determined using the Hugarian Algorithm [20] ap-

plied on the sets ∠(u) and ∠(v). The total cost of mapping vertex u to vertex
v together with the sets of incident edges of both vertices is denoted Δ(u, v) =
c(u → v) +Δe(u, v). The Hugarian algorithm between V1 and V2 based on the
cost functions Δ(u, v) and c(u → ε) provides an optimal mapping σ∗ between
the nodes of both sets denoted Editcost(g1, g2):

Editcost(g1, g2) =
∑

u∈S1,σ∗

Δ(u, σ∗(u)) +
∑

u∈N1,σ∗∪N2,σ∗

c(u→ ε) (1)



A Graph-Kernel Method for Re-identification 177

where S1,σ∗ (resp. S2,σ∗ ) corresponds to the set of vertices of V1 (resp. V2)
mapped to some vertices of V2 (resp. V1) by the optimal mapping σ∗ while
N1,σ∗ (resp. N2,σ∗) corresponds to the set of deleted vertices in g1 (resp. g2).

Now we will discuss the four cost functions used for defining the edit distance.
Within our framework, each node u encodes a region and is associated to the
mean color (Ru, Gu, Bu) and to the normalized size ηu of the region (Section 2).
We experimentally observed that small regions have larger chances to be deleted
between two segmentations. Hence, the normalized size of a region can be used
as a measure of its relevance within the whole graph.

The cost of a node substitution is defined as the distance between the mean
colors of the corresponding regions. We additionally weigh this cost by the maxi-
mum normalized size of both nodes. Such a weight avoids to penalize the match-
ing of small regions, which should have a small contribution to the global sim-
ilarity of both graphs. Also, a term is added to account for the size difference
between the regions:

c(u→ v) = max(ηu, ηv) · dc(u, v) + γNodeSize · |ηu − ηv| (2)

where dc(u, v) is the distance in the color space, and γNodeSize is a weight pa-
rameter selected by cross validation. The distance dc(u, v) is not computed as
the Euclidean distance between RGB vectors, but uses the following definition
that is based on the human perception of colors[1]:

dc(u, v) =

√
(2 +

r

2k
)δ2R + 4δ2G + (2− (2k − 1)− r

2k
)δ2B (3)

where k is the channel depth of the image, r = Ru+Rv

2 and δR, δG and δB encode
respectively the differences of coordinates along the red, green and blue axis.

The cost of a node deletion should be proportional to its relevance encoded
by the normalized size, and is thus defined as:

c(u→ ε) = γNodeSize · ηu (4)

Using the same basic idea, the cost of an edge removal should be proportional
to the minimal normalized size of its two incident nodes.

c((u, u′)→ ε) = γEdge · γEdgeSize ·min(ηu, ηu′) (5)

where γEdgeSize encodes the specific weight of the edge removal operation while
γEdge corresponds to a global edge’s weight.

Equation 4 and 5 are based on the implicit assumption that the main varia-
tions between two segmentations are induced by small regions which may appear
or disapear between two successive segmentations. Note that one may addition-
ally consider the possibility that two adjacent regions may be merged in one
segmentation and not in the other. Taking into account shuch phenomena may
improve our node and edge deletion cost at the price of additional parameters
within equations 4 and 5.
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Within a region adjacency graph, edges only encode the existence of some
common boundary between two regions. Moreover, these boundaries may be
drastically modified between two segmentations. Therefore, we choose to base
the cost of an edge substitution solely on the substitution’s cost of its two incident
nodes.

c((u, u′)→ (v, v′)) = γEdge · (c(u→ v) + c(u′ → v′)) (6)

Note that all edge costs are proportional to the weight γEdge. This last parameter
allows thus to balance the importance of node and edge costs.

3.1 From Graph Edit Distance to Graph Kernels

Let us consider a set of input graphs {G1, . . . , Gn}defining our graph test database.
Our person re-identification is based on a distance of an input graph G from the
space spanned by {G1, . . . , Gn}. Such a measure of novelty detection requires to
embed the graphs into a metric space. Given our edit distance (Section 3), one may
build an×n similarity matrixWi,j = exp(−EditCost(Gi, Gj)/σ)whereσ is a tun-
ing variable. Unfortunately, the edit distance does not fulfill all the requirements
of a metric; consequently, the matrix W may be not semi-definite and hence does
not define a kernel.

As mentioned in Section 1, several kernels based on the edit distance have been
recently proposed. However, these kernels are rather designed to obtain a
definite positive matrix of similarity than to explicitly solve the problem of kernel-
based classification or regression methods. We thus use a recent kernel construc-
tion scheme [6,11] based on an original remark by Steinke [24]. This scheme [6,11]
exploits the fact that the inverse of any regularised Laplacian matrix deduced
from W defines a definite positive matrix and hence a kernel on {G1, . . . , Gn}.
Thus, our kernel construction scheme first builds a regularised Laplacian operator
L̃ = I + λL, where λ is a regularisation coefficient and L denotes the normalized
Laplacian defined by: L = I − D− 1

2WD− 1
2 and D is a diagonal matrix defined

by Di,i =
∑n

j=1Wi,j . Our kernel is then defined as: K = L̃−1. Using a classifica-
tion or regression scheme, such a kernel leads to map graphs having a small edit
distance [6,11] (and thus a strong similarity) to close values.

3.2 Novelty Detection and Person Re-identification

Within our framework, each reappeared person is represented by a set of graphs
encoding the different acquisitions of this person. Before assigning a new input
graph to an already created class, we must determine if this graph corresponds to
a person already encountered. This is a problem of novelty detection, with the
specific constraint that each class of graphs encoding an already encountered
person has a large within-class variation. Several methods, such as one class
SVM [21] or support vector domain description [25] have been used for novelty
detection. However, these methods are mainly designed to compare an incoming
data with an homogeneous data set. The method of Desobry [8] has the same
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drawback and is additionally mainly designed to compare two sets rather than
one set with an incoming datum.

The method introduced by Hoffman [13] is based on kernel Principal Compo-
nent Analysis (PCA). An input datum is considered as non belonging to a class
if its squared distance from the space spanned by the first principal components
of the class is above a given threshold. Note that this method is particularly effi-
cient using high dimensional spaces such as the one usually associated to kernels.
This method has the additional advantage of not assuming a strong homogeneity
of the class.

Given an input graphG and a set of k classes, our algorithm first computes the
set {d1(G), . . . , dk(G)} where di(G) is the squared distance of the input graph
G from the space spanned by the first q principal component of class i. Our nov-
elty decision criterion is then based on a comparison of d(G) = mink=1,n dk(G)
against a threshold.

If d(G) is greater than the specified threshold, G is considered as a new person
entering the scene. Otherwise, G describes an already encountered person, which
is assigned to the class i that minimizes the value of di(G).

4 Experimental Results

We implemented the proposed method in C++ and tested its performance on
two video sequences taken from the PETS2009 [2] database (Fig. 2). Each video
sequence is divided in two parts so as to build the training and test sets. In this
experiment we have used one frame every 2 seconds from each video, in order to
have different segmentations of each person. The training set of the first sequence
(View001) is composed of 180 graphs divided into 8 classes, while the test set
contains 172 graphs (30 new and 142 existing). The second sequence (View005)
is composed of 270 graphs divided into 9 classes for the training set, and 281
graphs (54 new and 227 existing) for the test set.

In order to evaluate the performances of the algorithm, we have used the
following measures:

– The true positives rate (TP), i.e the rate of test patterns correctly clas-
sified as novel (positive): TP = true positive/total positive

a) View 001 b) View 005

Fig. 2. Sample frames from the PETS2009 dataset
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– The false positives rate (FP), i.e the rate of test patterns incorrectly
classified as novel (positive): TP = false positive/total negative

– The detection accuracy (DA):

DA = (true positive + true negative)/(total positive + total negative)

– The classification accuracy (CA), i.e the rate of samples classified as
negatives which are then correctly classified with multi-class SVM

– The Total Accuracy: TA = DA× CA.

As shown on Fig. 3 we obtained around 85% of novelty detection accuracy, and
70% of total accuracy for both View001 and View005 sequences. These results
were obtained with the Graph Laplacian Kernel using σ = 4.7 and λ = 10.0.

a)

b)

Fig. 3. Performances result on the view001 (a) and view005 (b) of the PETS2009
dataset

These results appear very promising. For a wide interval of threshold values
the classification accuracy rate remains close to 100%. Furthermore, the True
Positive Rate curve has a high slope in correspondence of a high value of the
threshold, while the False Positive Rate has a smoother behavior; this means
that the algorithm can reliably find a threshold value that is able to discard
most of the false positives while keeping most of the true positives. Finally, the
ROC curves (Fig. 4) are close to the upper and left edges of the True Pos-
itive/False Positive space, confirming the discriminant power of the proposed
method.



A Graph-Kernel Method for Re-identification 181

Fig. 4. ROC curves for the two sequences from the PETS2009 dataset

5 Conclusions

This paper presents a novel method for people re-identification based on a graph-
based representation and a graph kernel. It combines our graph kernel with a
novelty detection method based on Principal Component Analysis in order to
detect if an incoming graph corresponds to a new person and, if not, to correctly
assign the identity of a previously seen person. Our future works will also extend
the present method to people re-identification within groups. In such cases, a
whole group is encoded by a single graph. Thus, the used kernel should be able to
match subgraphs within larger graphs. We plan to study the ability of graphlet
kernels to perform this task.
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Abstract. 2D shape recognition from a set of points is largely used in
several imaging areas such as geometric modeling, image visualization or
medical image analysis. However, the perceived shape of a set of points
is subjective. It is mainly influenced by the spatial arrangement of the
points and by several cognitive factors. The Delaunay filtration methods
derived from the well-known α-shapes, like LDA-α-shapes or conformal-
α-shapes, provide a family of shapes capturing the intuitive notion of
“crude” versus “fine” shape of a set of points. In this paper, a quantita-
tive criterion based on shape measurements is defined for extracting the
“optimal” shape from this family that best corresponds to the human
visual perception. A novel automatic shape recognition method is pro-
posed and successfully evaluated on the KIMIA image database, where
the reference shapes are known and sampled by generating 2D point sets.

Keywords: Convexity, Delaunay triangulation, Human visual percep-
tion, LDA-α-shapes, Pattern recognition.

1 Introduction

The shape of a set of points may be quite naturally perceived from a human
point of view but it is rather difficult to be calculated by a computer. Indeed, a
lot of shapes can characterized a cloud of points. Its convex hull is one of them,
but it is most of the time relatively far from those one humanly perceived. So, a
mathematical concept to apprehend the shape of a set of points might be helpful
in order to find an appropriate shape by computing.

Jarvis in [5] was the first to consider the shape as a generalization of the convex
hull. A few years later, Edelsbrunner, Kirkpatrick and Seidel in [3], gave a very
powerful theory for reasoning about the shape of a set of points. This seminal
concept are the well-known α-shapes, a formal definition of a generalized convex
hull. The α-shapes are a filtration of the Delaunay triangulation depending on
α, a real number. They use a distance between two connected points of the
Delaunay triangulation to decide which edges belong to an α-shape. The α-
shapes lead to a discrete family of shapes, from the “crudest” to the “finest”

M. Kamel and A. Campilho (Eds.): ICIAR 2011, Part I, LNCS 6753, pp. 183–192, 2011.
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shape. The “crudest shape” is the whole plane when α =∞. The next shape is
the polygon inscribed in the smallest circle enclosing all the points and whose
vertices are the ones belonging to the boundary of the circle. An other shape is
the convex hull when α = 0. And the “finest” shape is the set of points itself
when α = −∞. There is a lot of non-convex shapes between 0 and −∞. It is
reasonable to think that the “desired” shape is close to one of them if the points
are uniformly distributed and if the set of points is dense enough.

However, there are situations where significant shapes do not belong to this
family, for example when the point set is not uniformly distributed. In order to
overcome this difficulty, a few of related notions were introduced, among them:

– The weighted-α-shapes [4] were the first response of Edelsbrunner. This is
the α-shapes with weighted points, where large weights can be assigned in
sparse region and small weights in dense region in order to counteract the
problem of a non-uniform distribution. But the way to compute the weights
is difficult and sometimes impossible.

– The A-shapes [8] are also a sub-graph of the Delaunay triangulation. More-
over, it contains the α-shapes. But it depends on a parameter A which is a
point set, and there is no really efficient algorithm to compute it.

– The conformal-α-shapes were introduced in [1]. This filtration depends on
two local parameters, α−

p and α+
p for each point p, and on a global variable

α that can vary from 0 to ∞. Both parameters α−
p and α+

p are computed
according to the neighborhood of p so that the variation of α leads to a
filtration depending on a local scale parameter fixed by α−

p and α+
p .

– The LDA-α-shapes were presented in [6]. This Delaunay filtration depends
on one variable α, a real number in [0, 1]. It takes into account the local
density of the points in order to admit non-uniform distributions for the
point set.

Note that, α-shapes, conformal-α-shapes, and LDA-α-shapes all produce a De-
launay filtration and can be generalized in any spatial dimension. In the present
work, only planar shapes and more precisely non-convex polygons enclosing the
whole point set are investigated.

The aim of this paper is to present a method that automatically find the
“good” shape from such kind of Delaunay filtrations according to the human
visual perception (Gestalt laws). Now the problem is to find, among a large set
of filtration methods, the one that fits our aim. To do our experiments, we have
chosen the LDA-α-shapes because:

1. This method considers non-uniform point sets (more suitable with our spe-
cific problem).

2. It depends on one variable only.
3. Its algorithm is very simple, efficient and easy to implemented.

But this could be tested with other Delaunay filtrations like the α-shapes or
the conformal-α-shapes. Note that it should not be possible for the A-shapes.
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2 LDA-α-Shapes

The aim of the LDA-α-shapes (short for Locally-Density-Adaptive-α-shapes) is
to reconstruct a domain from a “well-distributed” point set, even if it is not
uniformly distributed. So, the point set may be more or less dense in places
according to the local required amount of details. As shown on Figure 1, the
density of the point set is strong close to the eyes of the lizard or on its fingers,
while it is sparse on its back and on its tail. Since, on the one hand, a sudden
variation of the local density indicates the presence of a hole or a hollow, on the
other hand, variations of the local density are allowed, the point density must
change gradually to avoid the formation of non-existent holes. These observations

Fig. 1. A shape to reconstruct (left) and a possible sample (right)

lead to the definition of the LDA-α-shapes. The Delaunay triangulation can be
efficiently used to measure the density variation of a point set. For instance, in
Figure 2, the disks D and D′ circumscribed to the (white) Delaunay triangles
are much larger than some of their neighborhood “circumdisks”. This means
that there is a wide area with no point inside D∪D′ (by definition) surrounded
by a denser area. Therefore, there is probably a hole at this place, and, in that
case, the edge (dashed) shared by both white triangles may be eliminated. More
precisely, it is removed if the ratio between a disk and some of its neighborhoods
is more than 1/α. Note that the LDA-α-shapes are indeed very close to the
conformal-α-shapes [1] with α−

p equals 0 and α+
p equals the radius of the smallest

circumcircle to a Delaunay triangle whose p is a vertex. The variation of α from 0

Fig. 2. There is probably a hole
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α = 1 α = 0.91 α = 0.83 α = 0.8 α = 0.77

α = 0.72 α = 0.67 α = 0.5 α = 0.26 α = 0.22

α = 0.2 α = 0.19 α = 0.18 α = 0.17 α = 0.15

α = 1 α = 0.91 α = 0.833 α = 0.8 α = 0

Fig. 3. A few LDA-α-shapes of the same sample according to different values of α

to 1 leads the LDA-α-shapes to form an ordered discrete family of straight-line
graphs, the LDA-0-shape of a set of points being its convex hull, the LDA-1-
shape being the set of points itself. Figures 3 and 4 show such a variation with
a few of LDA-α-shapes of the same point set with different values of α.

The issue now is to find the appropriate shape, that is to say the “optimal”
α value which enables the best approximation of the perceived shape, among a
wide range of candidate shapes according to the human visual perception. For
example, in Figure 3, it would be one of them between the LDA-0.22-shape and
the LDA-0.72-shape or around LDA-0.5-shape in Figure 4. Note that to succeed,
the expected shape has to belong to the “family” of LDA-α-shapes. If the α-
shapes had been chosen instead of the LDA-α-shapes, with the same sample as
in Figures 3 or 4, it would not be able to find an appropriate shape, whatever α,
because of the sparsity to the right of the point set in Figure 3 or on the back
of the lizard in Figure 4.



Automatic Recognition of 2D Shapes from a Set of Points 187

α = 0.1 α = 0.25 α = 0.5 α = 0.67 α = 0.94

Fig. 4. A few LDA-α-shapes of the same sample according to different values of α

3 Automatic Recognition of the Perceived Shape

In the literature, a very few papers [7] [2] have investigated this automatic param-
eter selection in relation with the expected shape. In both papers, this selection
is based on the concept of minimum spanning trees. The second paper also de-
fines a criterion based on the the edge lengths of the Delaunay triangulation.
Nevertheless, in both papers, the selection of the optimal parameter is proposed
without any justification in relation with the human visual perception. In this
section, a quantitative evaluation of the perceived shape from a set of points is
proposed so as to automatically pick the optimal α value consistently with the
human visual perception.

3.1 What is the Perceived Shape of a Set of Points?

It is assumed in this paper that the studied set of points is noise free and repre-
sents only a simply connected compact set. Consequently, only the exterior hull
of the LDA-α-shape is taken into account (the shape has no holes). For example
in Figure 3 for α = 0.77, the edges which belong to the LDA-α-shape inside the
exterior hull are not considered. Under these assumptions, the investigation can
be restricted to LDA-α-shapes having specific properties:

– All the points should be interior to the exterior hull of the LDA-α-shape.
– The LDA-α-shape is composed of only one connected component.

The previous properties are very easy to verify for each LDA-α-shape. In this
way, only a subset {α1, . . . , αn = 0} with (α1 > α2 > · · · > αn = 0) of
{αk}k∈�1,m� are candidates. These restrictions are imposed in this paper but
the proposed method could be extended to more general cases.

The perceived shape of a set of points is highly subjective. It is mainly influ-
enced by the spatial arrangement of the points and by several cognitive factors.
In addition, the solution may not be unique. From a visual point of view, the
perceived shape should be close to the set of points while being regular (a tor-
tuous hull is not desirable). These two characteristics can be mathematically
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described: the perceived shape has minimal area and minimal perimeter. Nev-
ertheless, these objectives are controversial. Indeed, the perimeter can only be
minimized by maximizing the area. The convex hull (αn = 0) has maximum
area and minimum perimeter while the first hull (α1) has minimum area and
maximum perimeter (Figure 5). Consequently, a “reasonable” hull achieves a
compromise between reducing the area and increasing the perimeter.
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(a) LDA-α1-shape (tortu-
ous hull). A=0.34, P=5.73.
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(b) LDA-αi-shape (reason-
able hull). A=0.36, P=4.41.
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(c) LDA-αn-shape (convex
hull). A=0.50, P=2.63.

Fig. 5. Area and perimeter of different LDA-α-shapes. In black, the retrieved hull

3.2 The Proposed Criterion

First of all, to get homogeneous values between the area and the perimeter
of each LDA-α-shape, denoted A(α) and P (α) respectively, it is necessary to
normalize them. Let A(α) and P (α) be the normalized area and the normalized
perimeter of each LDA-α-shape respectively:

A(α) =
A(α) −A(α1)

A(αn = 0)−A(α1)
, P (α) =

P (α)− P (αn)
P (α1)− P (αn)

(1)

The proposed criterion to be minimized to retrieve a “reasonable” hull, depend-
ing on the α value, is defined by the L2-norm of the vector (A(α), P (α)). Never-
theless, this norm has to be weighted according to the convexity of the expected
shape. Indeed, if the perceived shape is convex, it is sufficient to only minimize
the perimeter. On the contrary, if the perceived shape is tortuous holding sev-
eral concavities, only the area has to be minimized. In this way, the proposed
criterion, denoted APC(α), is defined as:

APC(α) = ‖((1− C6)A(α), C6P (α))‖2 =
√

((1 − C6)A(α))2 + (C6P (α))2 (2)

where C ∈ [0, 1] denotes the convexity ratio of the expected shape, calculated
as:

C =
1
n

n∑
i=1

A(αi)/A(αn) (3)
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Concerning the choice of the power 6 for the convexity ratio, it has been empir-
ically selected after several tests. Finally, the optimal α value, denoted αopt, is
given by minimizing APC(α):

αopt = arg min
α
APC(α) (4)

3.3 Relevance of the Criterion

To evaluate the relevance of the proposed criterion, some experiments have been
performed on the KIMIA binary image database [9], each binary image repre-
senting a discretized simply connected compact set of a certain convexity. For
each image I, the boundary points of the simply connected compact set were
extracted and normalized into the unit square [0, 1]× [0, 1]. From these contour
pixels, the polygonal hull, which corresponds to the reference shape S, was re-
trieved.This reference shape was then sampled with random points using either a
uniform law or a specific law (namely, heterogeneous law) where the probability
is higher near the medial axis of the complementary of the shape. Actually, this
heterogeneous sampling corresponds to a more natural sampling for preserving
shape details. In addition, different point densities (low=1000 points per unit
area, medium=4500 points per unit area and high=20000 points per unit area)
were tested. Figure 6 shows some examples of shape sampling.

From these samples, the optimal αopt value obtained using the proposed
method was computed and this value was compared with the expected α̃ value
that minimizes the area of the symmetric difference ASD between the LDA-α-
shape and the reference shape S:

α̃ = arg min
α
ASD(LDA-α-shape, S) (5)

Hence, LDA-α̃-shape is the best approximation of the shape S, in the sense of
the symmetric difference distance which is naturally consistent with the human
visual perception. Finally, the error E between the two shapes LDA-αopt-shape
and LDA-α̃-shape was measured by calculating the normalized area of the sym-
metric difference:

E =
ASD(LDA-αopt-shape,LDA-α̃-shape)

A(α̃)
× 100 (6)

Table 1 synthesizes the results of the errors related to the proposed criterion
using three images of the KIMIA database (I1, I2, I3) which have different con-
vexity ratios. For each sampling, 1000 simulations were performed to get robust
statistics of the error E.

These results shows the relevance of the proposed criterion. Indeed, the au-
tomatically selected LDA-αopt-shape is closed to the LDA-α̃-shape, where the
LDA-α̃-shape best approximates the reference shape S in the sense of the sym-
metric difference distance. Higher the point density is, lower the mean error μ
is. For a high sampling, the mean error μ is less than 4 percent. Note that the
method gives better results for the heterogeneous law than the uniform one.
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(a) low sampling with a
uniform law
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(b) medium sampling with
a uniform law
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(c) high sampling with a
uniform law
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(d) low sampling with an
heterogeneous law
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(e) medium sampling with
an heterogeneous law
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(f) high sampling with an
heterogeneous law

Fig. 6. Shape sampling according to three point densities (low, medium, high) and two
probability laws (uniform, heterogeneous). The reference shape S is in red.

(a) I1 (b) I2 (c) I3

Fig. 7. Three KIMIA shape examples with different convexity ratios

4 Experiments with Quantitative Evaluation

To evaluate quantitatively the proposed method, a family of 1400 binary images
from the KIMIA shape database was considered [9], each binary image repre-
senting a discretized simply connected compact set of a certain convexity. As
explained in subsection 3.3, for each image, the reference polygonal hull S of
the contour pixels was retrieved and the shape was sampled with random points
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Table 1. Evaluation of the proposed criterion on three images with different convex-
ity ratios. The mean error μ is in percent and is calculated according to three point
densities (low, medium, high) and two probability laws (uniform, heterogeneous). σ is
the standard deviation.

uniform random sampling heterogeneous random sampling

low medium high low medium high

E(I1) μ = 8.47 μ = 2.65 μ = 1.03 μ = 7.62 μ = 2.22 μ = 0.87
(C = 0.9) σ = 4.55 σ = 0.67 σ = 0.17 σ = 5.32 σ = 0.53 σ = 0.14

E(I2) μ = 13.57 μ = 3.61 μ = 0.59 μ = 12.21 μ = 2.55 μ = 0.48
(C = 0.7) σ = 8.02 σ = 2.45 σ = 0.46 σ = 8.89 σ = 1.79 σ = 0.39

E(I3) μ = 23.75 μ = 10.12 μ = 3.38 μ = 22.79 μ = 8.21 μ = 2.51
(C = 0.5) σ = 9.30 σ = 4.44 σ = 1.29 σ = 10.61 σ = 4.09 σ = 0.98

using either a uniform law or an heterogeneous law with different point densities
(low, medium and high). Then, the shape boundary from the previous generated
points was retrieved computing the LDA-αopt-shapes. Finally, the error between
the retrieve boundary and the reference boundary was quantified by calculating
the normalized area of the symmetric difference between the reference shape S
and the retrieved boundary.

E =
ASD(LDA-αopt-shape, S)

A(S)
× 100 (7)

Table 2 synthesizes the results for the 1400 binary images. Considering the het-

Table 2. Quantitative evaluation of the proposed method on the KIMIA database. The
mean error μ is in percent and is calculated according to three point densities (low,
medium, high) and two probability laws (uniform, heterogeneous). σ is the standard
deviation.

uniform random sampling heterogeneous random sampling

low medium high low medium high

KIMIA μ = 32.89 μ = 15.90 μ = 6.92 μ = 31.33 μ = 14.30 μ = 5.95
database σ = 21.94 σ = 14.15 σ = 7.33 σ = 22.57 σ = 15.61 σ = 6.72

erogeneity of the studied shapes, the proposed method gives satisfying results.
Indeed, for a high sampling, the proposed method is capable to retrieve the ref-
erence shape with a mean error μ of less than 8 percent. Note that these error
values should be minimized because the error was calculating by comparing the
retrieve shape with the reference shape, which can only be retrieved with an infi-
nite density. At last, for a low sampling, the error seems quite high but actually,
for such a density, the shape is poorly sampled: even visually it is very difficult
to retrieve the shape boundaries. In addition, the method gives better results
for an heterogeneous random sampling.
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5 Conclusion and Prospects

In this paper, a novel method has been defined for automatically recognizing the
“optimal” shape from a 2D point set that best corresponds to the human visual
perception. It is based on the LDA-α-shapes and on a quantitative criterion
defined from shape geometrical measurements (area, perimeter, convexity). The
method is fully automatic without any required parameter. The performance
of the proposed method has been successfully evaluated on the KIMIA image
database using different point densities (low, medium, high) and sampling laws
(uniform, heterogeneous). On an Intel 2.83GHz CPU running Windows XP 32
bits, the proposed algorithm needs about 1 second, 2.5 seconds and 15 seconds to
retrieve αopt for the low, medium and high point densities respectively. Currently,
the authors try to generalize this shape recognition method to 3D point sets.
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Abstract. In this paper, the statistical effect of embedding data on Empirical 
Matrix (EM) of original and differential images is investigated and a novel 
steganalysis method, targeted at LSB Matching is proposed. It can be 
mathematically proven, that embedding data in a digital image, causes its 
empirical matrix and, also the empirical matrixes of its differential images to 
smooth. Therefore, the high frequency components of an image empirical 
matrix are omitted due to data hiding which motivates us to extract the radial 
moments of EM characteristic function as discriminative features for 
classification. Support Vector Machine with Gaussian kernel is adopted as an 
appropriate classifier in classification. Experimental results show that the 
extracted features are highly efficient in attacking LSB Matching.   

Keywords: steganalysis, data hiding, empirical (co-occurrence) matrix, 
characteristic function. 

1   Introduction 

In the past few years, information hiding has drawn an increasing attention in the field 
of information security and hidden communication. Information hiding is to hide data 
in a cover medium in a way that no doubt arises from communication channel 
observers. Steganography is one of the main typical applications of information hiding 
which is used for covert communication. The main goal of steganography in digital 
images is to embed as much information as possible in an ordinary image without 
causing any noticeable change in neither perceptual nor statistical aspects of the 
original image. In contrast to steganography, steganalysis is the art of detecting 
whether a cover medium contains hidden data or not. With the increasing demand for 
network security, various steganalysis methods have been developed to avoid covert 
illegal communications. Generally, two types of steganalysis algorithms exist. Target 
steganalysis algorithms, are designed to attack a special steganography method, while 
universal algorithms are designed to attack a wide variety of algorithm. 

Steganalysis, particularly the universal type can be considered as a pattern 
recognition problem in which the stego and cover images, represented by some 
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discriminative features, should discriminate from each other. Although the universal 
steganalysis algorithms are planned to detect the presence of the message in most of 
steganography algorithms, their most important goal is to reliably attack LSB 
Matching as the most prevalent data hiding techniques. In [2], Harmsen el al. proposed 
a novel steganalysis method called Histogram Characteristic Function Center of Mass 
(HCFCOM) in which the moments of Histogram Characteristic Function (HCF) were 
used as features for classification. But this algorithm, suffers from an insufficiency of 
discriminative features for classification.  

In [3], X. Chen el al. proposed an innovative universal steganalysis algorithm 
based on the features extracted from the co-occurrence matrix (Empirical Matrix) of 
an image. They claimed that the concentration effect of the empirical matrix is 
reduced after embedding data. According to this effect of data hiding, they offered to 
construct the projected histogram from the empirical matrix and extract the multi-
order moments of the projected histogram and its characteristic function as 
classification features.  

Afterwards, some other new steganalysis techniques based on empirical matrixes 
of image have been proposed such as [6,9].  All the Empirical based methods are 
based on the assumption that embedding data, causes the empirical matrixes of an 
image to smooth. No mathematical proof has been given to verify smoothing effect of 
data hiding on empirical matrix, yet. This paper presents a statistical analysis which 
mathematically verifies the smoothing effect of data hiding on empirical matrixes of 
digital images. At the rest of paper, an effective steganalysis algorithm is proposed on 
this mathematical analysis. The Algorithm is blind in attacking different data hiding 
techniques; however its design is based on the empirical matrix alterations caused by 
LSB Matching. Therefore, its performance in attacking LSB Matching is investigated 
and the results are compared with some other efficient steganalysis algorithms.   

2   The Statistical Analysis of Empirical Matrix 

Universal steganalysis is considered as two-class pattern recognition problem. In 
other words, some appropriate discriminative features should be extracted from the 
cover and stego images and a classifier must be trained on a large variety of training 
images to classify the stego images from the cover ones.  

The extracted features must have some specific characteristics which qualify them 
to be used in steganalysis. First, they must be very sensitive to data embedding. 
Second, the discriminative features must be relatively independent from the textural 
contents of images because of the diversity of the images used for embedding data.  

Empirical matrix is a very good statistical representation of images which reflects 
distortions caused by data hiding, efficiently. In this paper, we decide to exploit the 
empirical matrixes of differential images for extracting appropriate features. The 
mathematical analysis of data hiding effects on empirical matrixes of original and 
differential images has been given in sections 2.2 and 2.3. The mathematical analysis 
verifies the propriety of the exploited features in the proposed steganalysis method. 
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2.1   The Statistical Definition of Empirical Matrix 

The empirical matrix also referred as co-occurrence matrix of an image, reflects the 
joint distribution of two adjacent pixels. For image I, with L different gray levels, the 
EM is defined as follow:  

 , , 1, 1 , 2, 2 ) 

(1) 
                           

 . cos   . sin  

where ,  is a function that computes the number of co-occurring values at a given 
offset all over the image. r and θ, represent the type of the adjacency for the 
neighboring pixels. For each r and θ choesn, a different empirical matrix can be 
obtained and used for feature extraction.  

2.2   The Statistical Distortion in Empirical Matrix of Original Image Caused by 
Data Hiding 

In the previous works [3],[6] and [9], it  was asserted that embedding data into a 
digital image, causes its empirical matrix (EM) to smooth. In this section, a 
mathematical analysis of EM, based on joint probabilities of adjacent pixels, is 
developed which clearly proves the smoothing effect of Steganography on EM in the 
case of using LSB Matching as the data hiding technique.  

Harmsen and Pearlman [2] showed that data hiding can be modeled as additive 
noise. The embedding noise probability mass function (PMF) represented by ∆  is 
the distribution of the additive noise which is the probability that a pixel alters by n 
after data hiding. Harmsen, showed that the PMF of embedding noise for LSB 
Matching technique (represented by ∆ ) is a function of embedding rate (α) as 
follows: 

 f∆ n α4 . δ n 1 α2 . δ n α4 . δ n 1  (2)

By considering the PMF of embedding noise indicated in (2) and by applying 
probability rules, it can be mathematically proved that embedding data in a digital 
image with LSB Matching algorithm has a smoothing effect on empirical matrix. To 
say it more clearly, data hiding effect on EM is equivalent to applying a low-pass filter 
on the empirical matrix. We call this filter, "Embedding Effect Filer" to emphasize the 
filtering effect of data hiding.  

 By dividing the values of empirical matrix elements to the number of the pixels, the 
joint probability of adjacent pixels is obtained. The joint probabilities of adjacent 
pixels (x1 and x2) of the cover and stego images are represented by P i, j  andP i, j , 
respectively and are related as follows: , ,. ∆ ∆  (3)
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The Fourier Transform of ∆  is non-increasing which causes the embedding 
effect filter ∆ ,  to be a low pass filter as below: 

 ∆ , F∆ u . F∆ v 2 2 cos . 2 2 cos  (7)
 

As a result, embedding data in a digital image is equal to applying a low pass filter 
(with size of 3 3) to the empirical matrix. Figure (1), shows the EM of an image 
from Corel database before and after embedding data.  

As it is clearly shown in figure (1), the EM of the cover image is smoother than the 
EM of stego due to the smoothing effect of the filter obtained in (7). 

2.3   The Statistical Distortion in Empirical Matrix of Differential Images Caused 
by Data Hiding 

Instead of extracting the features from the EM of the original image; we decide to use 
the EM of differential images for feature extraction. It can be shown that the tiny 
variations in EM caused by data hiding are magnified by using the differential 
images. Differential images are constructed in 3 directions: horizontal, vertical and 
diagonal as in (8): 

  , , 1,  

(8)
 , , , 1  
       , , 1, 1  

Using the additive noise model proposed by Harmsen [2] and probability rules, we 
can obtain the PMF of the embedding noise in the differential images as follow: 

 ∆ ∆ . ∆  (9)

 
In which, ∆  and ∆  are the PMF of the embedding noise in the original 

and differential images, respectively.  
 

 

Fig.2. The empirical matrix of horizontal differential image before (left) and after data hiding 
(right) 
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According to (9), the PMF of the embedding noise in a differential image is the 
convolution of embedding noise PMF in the original image with itself. As a result, ∆  is a low-pass filter with a lower cut-off frequency which has a stronger 
smoothing effect than the one in the original images. Figure 2 shows the empirical 
matrix of a differential image after and before embedding. This figure depicts the 
strong smoothing effect of data hiding on differential empirical matrix.  

Smoothing effect of data hiding motivates us to use some appropriate measures 
which reflect the frequency content of differential empirical matrixes as 
discriminative features for our steganalysis system. 

3   Feature Extraction  

We decide to extract the features for the steganalysis system from the empirical 
matrixes of differential images in frequency domain. The magnitude of 2-D DFT of 
an empirical matrix is called Empirical Matrix Characteristic Function (EMCF) and 
its moments are utilized as the appropriate features. 

Generally, two frequency variables exist in a 2-D DFT (  and ) and the moments 
of EMCF can be calculated with respect to each of the frequency variables. In order to 
compute frequency components along both frequency variables, radial moments are 
suggested to be used as discriminative features. The th order radial moment of the 
EMCF is defined as follows: 

 ,  ∑ ∑ | , , |. 2 2 /2∑ ∑ | , , |  (10)

 

where | , , | is the EMCF of a differential image and the multiplying 

term  / , is the norm of two frequency variables to the power of  . In our 
experiments, we use H ,  in 9 different adjacencies (three angles and for each angle 
three steps) represented by the following pairs of r, θ : 1,0 , 2,0 , 3,0 , √2, /4 , 2√2, /4 , 3√2, /4 , 1, /2 , 2, /2 , 3, /2  
 
Therefore, for each test image, we obtain 3 differential images and for each 
differential image, nine empirical matrixes are computed. Finally, three radial 
moments of EMCF are extracted from each of them. As a result, we have (81=3*9*3) 
features for classification. We adopt the prediction-error image proposed in [5] to 
reduce the miscellaneous information and repeat the above feature extraction steps for 
the prediction-error image, thus there is 81 other features. Therefore, for each image, 
162 discriminative features are extracted and used for classification.  

 4   Experimental Results  

We test our proposed method on a 4000-member subset of Corel database. We 
randomly select 2500 images of the subset for training and the rest 1500 images for 
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the test. SVM classifier with Gaussian kernel is adopted for classifying the images. 
Fig. 3 shows the performance of the algorithm in attacking LSB Matching 

steganography at different embedding rates compared with three common 
steganalysis algorithms proposed in [1,3,8].  

The detection rate of the steganalysis methods drop with decreasing the embedding 
rate. The proposed steganalysis algorithm shows a better performance than the other 
steganalysis algorithms particularly in low embedding rates.  

 

 

Fig. 3. The recognition rate of different steganalysis techniques in attacking LSB matching with 
respect to different embedding rates  

 

Fig. 4. The ROC curves related to different steganalysis techniques in embedding rate of 0.2 
bpp..  

According to figure 3, the proposed algorithm shows a significantly better 
performance than WAM algorithm [1] and the method of Xuan [8] which are both 
based on the distortions caused by data hiding on the statistical characteristics of 
wavelet sub-bands. The detection rates of the proposed algorithm is close to the 
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recognition rate of the method proposed in [3] by Chen in embedding rates higher 
than 0.3. However, the proposed system outperforms the one in [3] in low embedding 
rates. In Fig. 4, we give receiver operating characteristic (ROC) curves, showing how 
false-positive and false-negative errors tradeoff as the detection threshold is varied in 
the embedding rate of 0.2. According to this figure, the proposed algorithm surpasses 
the other algorithms as it gives a higher true detection rate in each false positive rate.   
 

5   Conclusion  

In this paper, a mathematical analysis of empirical matrix (EM) of original and 
differential images is proposed. According to the statistical analysis, embedding data 
into an image by LSB Matching algorithm causes the EM of the original and 
differential images to smooth. An effective steganalysis method for attacking LSB 
Matching is also proposed based on the smoothing effect of data hiding. The 
experimental results show that the proposed method is a promising algorithm in   
steganalysis field.  Our work in the near future is to investigate the same features in 
wavelet sub-bands. 
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Abstract. A fully Bayesian approach to analyze infinite multidimen-
sional generalized Gaussian mixture models (IGGM) is developed in this
paper. The Bayesian framework is used to avoid model overfitting and
the infinite assumption is adopted to avoid the difficult problem of find-
ing the right number of mixture components. The utility of the proposed
approach is demonstrated by applying it on texture classification and in-
frared face recognition, while comparing it to different other approaches.

1 Introduction

Over the last decade, technological advances have brought an explosion of data
generation not only in size but also in dimension. These data pose a challenge
to standard statistical methods and have received much attention recently. The
importance of finding a way to model and analyze multidimensional data lie
in their usefulness in wide range of applications such as image processing and
computer vision. In recent years a lot of different learning algorithms were devel-
oped to recognize complex patterns, and to produce intelligent decisions based
on observed data. Mixture models are one of the machine learning techniques
receiving considerable attention in different applications. Mixture models are
normally used to model complex data sets by assuming that each observation
has arisen from one of the different groups or components [1]. In most of the ap-
plications, the Gaussian density is used in data analysis. However, many signal
processing systems often operate in environments characterized by non-Gaussian
and highly peaked sources [2]. Generalized Gaussian distribution (GGD) is con-
sidered as a good alternative to the Gaussian due to its shape flexibility which
allows it to model a large number of non-Gaussian signals (see, for instance,
[3,4,5,2]).

In the recent past, some deterministic approaches have been proposed for the
estimation of generalized Gaussian mixture (GGM) models parameters (see, for
instance, [6,7,4,8]). Despite the fact that deterministic approaches have domi-
nated mixture models estimation due to their small computational time, many
works have demonstrated that these methods have severe problems such as con-
vergence to local maxima, and their tendency to overfitt the data [9] especially
when data are sparse or noisy. Moreover, another important issue is the difficulty
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of getting reliable estimates in case of high dimensional data. With the com-
putational tools evolution, researchers were encouraged to implement and use
Bayesian MCMC methods and techniques as an alternative approach. Bayesian
methods consider parameters to be random, and to follow different prior distri-
butions (probability distributions). These distributions are used to describe our
knowledge before considering the data, as for updating our prior beliefs the like-
lihood is used. Please refer to [9] for interesting and in depth discussions about
the general Bayesian theory. One of the most challenging aspects, when using
mixture models, is the estimation of the number of clusters that best describes
the data without over or under fitting it. For this purpose, many approaches
have been suggested, which can be classified from computational point of view
into two groups: deterministic, and Bayesian methods. In this paper we use a
Bayesian non-parametric approach based on allowing the number of components
to increase to infinity as new data arrive. We describe a Bayesian algorithm for
learning IGGM, and demonstrate its effectiveness by applying it to two real
applications namely image texture classification and infrared face recognition.

The remainder of this paper is organized as follows. The next section describes
our Bayesian learning approach. Section 3 presents the complete algorithm used
for learning the model parameters. In section 4, we assess the performance of
our model on different applications while comparing it to other models. Our last
section is devoted to the conclusion.

2 Learning of the IGGM Model

2.1 The Mixture Model

If a d-dimensional X = (X1, ..., Xd) follows a GGD, then:

P (X|μ,α,β) =
d∏

k=1

βkαk

2Γ (1/βk)
e−(αk|Xk−μk|)βk (1)

where μ= (μ1, . . . , μd), α= (α1, . . . , αd), and β= (β1, . . . , βd) are the mean, the
inverse scale, and the shape parameters. Let X= (X1,. . . , XN ) be a set of N
iid vectors assumed to arise from a GGM with M components:

P (X|Θ) =
M∑

j=1

P (X |μj ,αj ,βj)pj (2)

where {pj} are the mixing proportions which must be positive and sum to
one. The set of parameters of the mixture with M components is defined by
Θ = ({μj}, {μj}, {αj}, {βj}, {pj}). We introduce stochastic indicator variables,
Zi, one for each observation, whose role is to encode to which component the ob-
servation belongs. In other words, Zij , the unobserved or missing vector, equals
1 if X i belongs to class j and 0, otherwise. The complete-data likelihood for this
case is then:

P (X , Z|Θ) =
N∏

i=1

M∏
j=1

(P (Xi|ξj)pj)Zij (3)
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where Z = {Z1, Z2, ..., ZN}, and ξj= (μj ,αj ,βj). Bayesian MCMC simulation
methods are based on the well-known Bayesian formulae:

π(Θ|X , Z) =
π(Θ)P (X , Z|Θ)∫
π(Θ)P (X , Z|Θ)

∝ π(Θ)P (X , Z|Θ) (4)

where (X , Z), π(Θ) and π(Θ|X , Z) are the complete data, the prior informa-
tion about the parameters and the posterior distribution, respectively. Having
π(Θ|X , Z) we can simulate our model parameters Θ, rather than computing
them.

For the {pj}, we know that (0 ≤ pj ≤ 1 and
∑M

j=1 pj = 1), then the typical
choice, as a prior, is a symmetric Dirichlet distribution with parameter η/M . As
for π(Z|p) we have:

π(Z|p) =
M∏

j=1

π(Zi|p) =
N∏

i=1

M∏
j=1

p
Zij

j =
M∏

j=1

p
nj

j (5)

where nj =
∑N

i=1 IZij=1 . Then using the standard Dirichlet integral, we may
integrate out the mixing proportions and write the prior directly in terms of the
indicators:

π(Z|η) =
Γ (η)

Γ (η +N)

M∏
j=1

Γ (η/M + nj)
Γ (η/M)

(6)

In order to be able to use Gibbs sampling for the missing vector, Z, we need
the conditional prior for a single indicator given all the others; this can be easily
obtained from Eq. 6 by keeping all but a single indicator fixed:

π(Zi = j|η, Z−i) =
n−ij + η/M

N − 1 + η
(7)

where the subscript −i indicates all indexes except i. Note that n−ij is the
number of observations, excluding Xi, in cluster j . For the parameters ξ, we
assign independent Normal prior with δ, ε2 as the mean and variance for the
distributions means (μj), respectively. Independent Gamma prior with ι, ρ as
the shape and rate parameters, respectively, is assigned for the inverse scale αj .
For the shape parameter, βj , we used independent Gamma prior with κ, ς as the
shape and rate parameters, respectively [10]. Thus, the posterior distributions
for μj , αj , and βj are given by:

P (μj|Z,X ) ∝
d∏

k=1

1
ε
e

−(μjk−δ)2

2ε2 ×
d∏

k=1

e
∑

Zij=1
(−αjk|Xik−μjk|)βjk

(8)

P (αj |Z,X ) ∝
d∏

k=1

αι−1
jk ριe−ραjk

Γ (ι)
×

d∏
k=1

[
αjk

]nj

e
∑

Zij=1
(−αjk|Xik−μjk|)βjk

(9)
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P (βj |Z,X ) ∝
d∏

k=1

βκ−1
jk ςκe−ςβjk

Γ (κ)
×

d∏
k=1

[
βjk

Γ (1/βjk)

]nj

e
∑

Zij=1
(−αjk|Xik−μjk |)βjk

(10)
In order to have a more flexible model, we introduce an additional hierarchical
level by allowing the hyperparameters to follow some selected distributions. The
hyperparameters, δ and ε2 associated with the μj are given Normal and Inverse
Gamma priors with parameters (ε, χ2) and (ϕ, !), respectively. Thus,

P (δ| . . .) ∝ P (δ|ε, χ2)
M∏

j=1

P (μj |δ, ε2) ∝ e
−(δ−ε)2

2χ2 ×
M∏

j=1

d∏
k=1

e
−(μjk−δ)2

2ε2 (11)

P (ε2| . . .) ∝ P (ε2|ϕ, !)
M∏

j=1

P (μj |δ, ε2) ∝ exp(−!ε2)
ε2(ϕ+1)

[
1
ε

]Md

×
M∏

j=1

d∏
k=1

e
−(μjk−δ)2

2ε2

(12)
The hyperparameters ι and ρ associated with the αj are given inverse Gamma
and Gamma priors with parameters (ϑ,#) and (τ, ω), respectively. Thus,

P (ι| . . .)∝P (αα|ϑ,#)
M∏

j=1

P (αj |ι, ρ) ∝ exp(−#/ι)
ιϑ+1

[
ρι

Γ (ι)

]Md

×
M∏

j=1

d∏
k=1

αι−1
jk e−ραjk

(13)

P (ρ| . . .) ∝ P (βα|τ, ω)
M∏

j=1

P (αj |ι, ρ) ∝ ρτ−1e−ωρ

[
ρι

]Md

×
M∏

j=1

d∏
k=1

αι−1
jk e−ραjk

(14)
The hyperparameters κ and ς associated with the βj are given inverse Gamma
and Gamma priors with parameters (λ, φ) and (ν, ψ), respectively. Thus,

P (κ| . . .)∝P (κ|λ, φ)
M∏

j=1

P (βj |κ, ς) ∝ exp(−φ/κ)
κλ+1

[
ςκ

Γ (κ)

]Md

×
M∏

j=1

d∏
k=1

βκ−1
jk e−ςβjk

(15)

P (ς| . . .) ∝ P (ς|ν, ψ)
M∏

j=1

P (βj |κ, ς) ∝ ςν−1e−ψς

[
ςκ

]Md

×
M∏

j=1

d∏
k=1

βκ−1
jk e−ςβjk

(16)

2.2 The IGGM Model

So far, we have considered M to be a fixed quantity. In this section, we overcome
this obstacle by assuming that M →∞ in Eq.7 which gives us

π(Zi = j|η, Z−i) =

{ n−ij

N−1+η
; if n−ij > 0 (cluster j ∈ R)

η
N−1+η

; if n−ij = 0 (cluster j ∈ U)
(17)
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where R and U are the sets of represented and unrepresented clusters, respec-
tively. Thus, the conditional posterior is obtained by combining this prior with
the likelihood of the data:

π(Zi = j|η,μj ,αj ,βj , Z−i,Xi) =

{ n−ij

N−1+η
p(Xi|μj , αj , βj ); if j ∈ R∫

η
N−1+η

p(Xi|μj , αj , βj )p(μj |δ, ε2)p(αj |ι, ρ)p(βj |κ, ς)dμjdαjdβj if j ∈ U (18)

The choice of the concentration parameter η is of high importance as it controls
the generation frequency of new clusters. We decided to use an Inverse Gamma
prior for η:

P (η|υ, γ) ∼ γυ exp(−γ/η)
Γ (υ)ηυ+1

(19)

Using the above equation with Eq. 17 we reach the following posterior:

P (η|...) ∝ γυ exp(−γ/η)
Γ (υ)ηυ+1

ηM
N∏

j=1

1
i− 1 + η

∝ γυ exp(−γ/η)
Γ (υ)ηυ+1

ηMΓ (η)
Γ (N + η)

(20)

Our hierarchical model can be displayed as a directed acyclic graph (DAG) as
shown in Fig. 1.

Fig. 1. Graphical Model representation of the Bayesian hierarchical IGGM model.
Nodes in this graph represent random variables, rounded boxes are fixed hyperparam-
eters, boxes indicate repetition (with the number of repetitions in the lower right) and
arcs describe conditional dependencies between variables.

3 The Complete Algorithm

Having all the conditional posteriors, we can employ a Gibbs sampler with the
following steps:

1. Generate Zi from Eq. 18 then update nj .
2. Update the number of represented components M .
3. Update the mixing parameters for the represented components by pj=

nj

N+η

for j = 1, . . . ,M , and for the unrepresented components by pU= η
N+η .

4. Generate the mixture parameters μj , αj , and βj from Eqs. 8, 9 and 10.
5. Update the hyperparameters δ, ε2, ι, ρ, κ, ς, and η from Eqs. 11, 12, 13, 14,

15, 16,20, respectively.
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Note that, for the initialization step we started by assuming that all the vectors
are in the same cluster, and we generated the parameters by sampling from their
prior distributions. It is quite easy to notice that we cannot simulate directly
from these posterior distributions because they are not in well known forms.
To solve this problem we applied the well known Metropolis-Hastings (M-H)
algorithm given in [11].

4 Experimental Results

In the following applications, we use 5000 iterations for our Metropolis-within-
Gibbs sampler (we discarded the first 800 iterations as “burn-in” and kept the
rest), and our specific choices for the hypeparameters are

(υ, γ, ε, χ2, ϕ, !, ϑ,#, τ, ω, λ, φ, ν, ψ) = (2, 0.2, 1, 0.5, 2, 5, 2, 5, 2, 0.2, 2, 5, 2, 0.2)

4.1 Categorization of Texture Images

In this application we are interested by the categorization of texture images
which is important in the case of content-based image retrieval, for instance.
In order to determine the vector of characteristics for a given texture, we use
set of features derived from the image correlogram [12], by considering four
neighborhoods and directions: (1; 0), (1, π/4), (1, π/2), and (1, 3π/4), from which
we derive eight features: mean, variance, energy, correlation, entropy, contrast,
homogeneity, and cluster prominence [13]. Thus, each image is represented by
a 32-dimensional vector. Finally, we apply two methods, our IGGM and the
infinite Gaussian mixture (IGM) [14], in order to categorize the images.

We perform our experiments using the Vistex texture data set 1. Six ho-
mogeneous texture groups (Bark, Fabric, Food, Metal, Water, and Sand) are
considered. We use four 512 × 512 images from each of the Bark, Fabric, and
Metal texture groups, and six 512×512 from each of the Food, Water, and Sand
texture groups, then we divide each image into sixty four 64 × 64 subimages.
Now, we have a total of 1, 920 sub-images: 256 sub-images for each class in the
first three groups, and 384 sub-images for each class in the second three groups.
Examples of images from each of the six categories are shown in figure 2.

The IGGM mixture favored 6 categories which is the case here. The IGM,
however, classified the texture images into 7 clusters where the 7th component
had a very small probability of 0.0276. In order to be able to compare both
methods, we supposed that we obtained the right number of clusters in the case
of the IGM. The confusion matrices for both methods are given in tables 1.a
and 1.b. As shown the total number of misclassified images in the case of IGGM
is 36 which identifies a high accuracy of 98.12%. The accuracy of the IGM was
93.80%, as it misclassified 119 images.

1 MIT Vision and Modeling Group (http://vismod.www.media.mit.edu)
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(a) (b) (c) (d) (e) (f)

Fig. 2. Sample images from each group. (a) Bark, (b) Fabric, (c) Food, (d) Metal, (e)
Sand, (f) Water.

Table 1. Confusion matrix for texture categorization using (a) IGGM and (b) IGM

Bark Fabric Metal Food Sand Water

Bark 255 0 0 0 1 0
Fabric 0 248 0 8 0 0
Metal 0 0 252 0 0 4
Food 0 6 0 378 0 0
Sand 3 0 0 0 380 1
Water 3 2 2 4 2 371

Bark Fabric Metal Food Sand Water

Bark 241 0 0 1 6 5
Fabric 2 238 0 6 2 2
Metal 0 2 237 3 0 4
Food 0 7 3 362 0 2
Sand 5 0 2 0 363 3
Water 4 1 2 3 1 360

(a) (b)

4.2 Infrared Face Recognition

Recently, different studies have shown that thermal IR offers a promising alterna-
tive to visible imagery for handling variations in face appearance [15]. Figure 3
shows visual and thermal image characteristics of faces with variations in il-
lumination and facial expression. Although illumination and facial expression
significantly change the visual appearance of the face, thermal characteristics
of the face remain nearly invariant. Several approaches have been proposed to
analyze and recognize infrared faces and can be divided into two main groups:
appearance-based and feature-based methods. While appearance-based meth-
ods focus on the global properties of the face, feature-based methods explore
the facial features (ex. eyes, mouth) statistical and geometrical properties [16].
Many of these approaches, however, suppose that the extracted infrared face
features are Gaussian which is not generally an appropriate assumption. We pro-
pose then, in this section, an appearance-based approach using IGGM. We are

Fig. 3. Visual and thermal image characteristics of faces with variations in illumination
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considering face recognition as an image classification problem by trying to clas-
sify to which person this image belongs. For feature extraction step we have em-
ployed both the edge orientation histograms [17] and the co-occurrence matrices
which capture the local spatial relationships between gray levels [18]. Figure 4
shows 3 face images, where the first two images are for the same person taken
from different poses, and the third image is for another person. It is quite clear
that the first two images have very close edge-orientation histograms compared
to the third image. In our experiments, we have considered the following four
co-occurrence matrices: (1; 0), (1, π/4), (1, π/2), and (1, 3π/4), respectively [19].
For each co-occurrence matrix we derived the following features: mean, variance,
energy, correlation, entropy, contrast, homogeneity, and cluster prominence [19].
Besides, the edge directions are quantized into 72 bins of 5◦ each. Using the
co-occurrence matrices and the histogram of edge directions each image was
represented by a 104-dimensional vector.

In our experiments, we performed face recognition using images from the Iris
thermal face database which is a subset of the Object Tracking and Classification
Beyond the Visible Spectrum (OTCBVS) database. First we used 1320 images
of fifteen persons not wearing glasses. Knowing that in IR imaging thermal
radiation cannot transmit through glasses because glasses severely attenuate
electromagnetic wave radiation beyond 2.4 mm, we decided to investigate if our
algorithm will be capable to identify persons with glasses, so we added 880
images of eight persons with glasses. For both experiments we used 11 images

(a) (d) (g)

(b) (e) (h)

(c) (f) (i)

Fig. 4. 3 different images of two different persons with their corresponding shape images
and corresponding shape histograms, (a)-(c) show three database images, (d)-(f) show
the corresponding edge images, (g)-(i) show the corresponding shape histograms.
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Table 2. Accuracies for The seven different methods

IGGM EMGGM IGM EMGM PCA HICA LICA

Data 1 97.02% 94.20% 86.67% 85.89% 95.58% 95.32% 94.46%

Data 2 96.33% 92.40% 82.54% 82.18% 94.35% 93.99% 92.81%

for each person as training set and the rest as testing set. This gave us 165
and 1155 images for training and testing, respectively, in the first data. The
second data set was composed of 253 and 1947 images for training and testing,
respectively. In order to validate our algorithm (IGGM) we have compared it
with the expectation maximization (EM) one (EMGGM). We also compared it
to six other methods namely principal component analysis (PCA) with cosine
distance, localized independent component analysis (LICA) with cosine distance,
holistic ICA (HICA) with cosine distance as implemented by FastICA [20], IGM
and Gaussian mixture models learned with EM (EMGM). Table 2 shows the
accuracies for the seven different methods. According to this table it is clear
that the IGMM outperforms all other methods which can be explained by its
ability to incorporate prior information during classes learning and modeling.

5 Conclusion

We have described and illustrated a Bayesian nonparametric approach based
on infinite generalized Gaussian mixtures. We proposed an MCMC algorithm
to learn the parameters of this mixture. The effectiveness of the proposed ap-
proach has been shown using two important applications namely texture images
classification and Infrared face recognition.
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Abstract. The image classification process is based on the assumption that 
pixels which have similar spatial distribution patterns, or statistical 
characteristics, belong to the same spectral class. In a previous study we have 
shown how we can improve the accuracy of classification of remotely sensed 
imagery data by incorporating contextual elevation knowledge in a form of a 
digital elevation model with the output of the classification process using 
Dempster-Shafer Theory of Evidence. A knowledge based approach is created 
for this purpose using suitable production rules derived from the elevation 
distributions and range of values for the elevation data attached to a particular 
satellite image. Production rules are the major part of knowledge representation 
and have the basic form: IF condition THEN Inference. Although the basic 
form of production rules has shown accuracy improvement, in general, in some 
cases accuracy can degrade. In this paper we propose a “refined” approach that 
takes into account the actual “distribution” of elevation values for each class 
rather than simply the “range” of values to solve the accuracy degradation. This 
approach is performed by refining the basic production rules used in the 
previous study taking into account the number of pixels at each elevation within 
the elevation distribution for each class.  

Keywords: Remote sensing, classification, evidence theory.  

1   Introduction and Background  

Remote sensing is the process of observation and measurement of the earth’s surface 
from a physical distance. The major component of this process is the interpretation 
and identification of information and is termed image classification. The traditional 
approaches for remotely sensed data classification, i.e. “supervised” and 
“unsupervised” have focused on using spectral data i.e. “within image” data only to 
perform the classification. However, spectral information has proven to be 
insufficient for accurate classification in many cases. In addition, there are many other 
types of external data (e.g. elevation, OS map, and soil type) that are attached to the 
area of interest, which can be utilized to aid the classification process. In previous 
studies ([1]), we have shown that contextual data, i.e. “elevation” can be fused with 
the output of traditional classification algorithms using Dempster-Shafer theory of 
evidence. A knowledge base of production rules can be generated for this purpose 
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from the elevation distributions of selected training areas/clusters. This approach has 
shown significant improvement in classification accuracy. However, in some cases 
this accuracy can get worse and therefore in this paper we propose a new approach 
based on modified production rules to address the problem of accuracy degradation. 
Pixel-based Semi-supervised Classification (SSC) using the “Expectation 
Maximization” (EM) algorithm [2] via a Gaussian mixture model is performed 
initially to classify the image. When limited “labelled” data is available then a semi-
supervised approach is useful since it can deal with labelled and unlabeled data in a 
single framework. Moreover, since the correlation between image band data is high 
then it is appropriate to use a Gaussian model to handle this data [3]. Semi-supervised 
classification (SSC) has been used in many different applications including text 
categorization [4], Biological data clustering [5] and for remotely sensed data [3].  

1.1   Evidential Theory 

Dempster-Shafer theory is a mathematical concept based on belief and plausibility, 
which is used to combine separate sources of evidence to “calculate the probability of 
an event” [6]. This theory has been used previously for different applications, e.g. for 
knowledge discovery [7], for combining different classifiers, for the combination of 
heterogeneously classified data [8] and for multi-scale data fusion [9]. Data, in this 
theory, is represented in the form of a mass function, which measures our degree of 
belief in various propositions or sets of values. The mass function assigns belief to sets, 
which together form the frame of discernment Ω. The mass function m is defined on 
subsets of Ω (propositions) as: , i.e. the mass function of the null proposition φ 
is always zero; , i.e. the sum of the masses of all the propositions (A) in the 

frame of discernment is one. These definitions indicate that the propositions may be 
overlapping and therefore provide a lower and upper bound (belief and plausibility) for 
the probability assigned to a particular proposition. The belief in a proposition is the 
sum of masses of all propositions contained in it; the plausibility of a proposition is the 
sum of the masses of all propositions in which it is wholly or partly contained. The  
belief and plausibility functions are therefore defined by: 
 

                                 
(1)

 

The belief and plausibility functions may thus be used to determine the amount of 
support for a proposition. They may then be used to induce rules based on the mass 
allocations for various propositions and may be regarded as providing pessimistic and 
optimistic measures of how strong a rule might be [10]. For example, if we want to 
classify an area into classes such as grass, soil, etc, we might define the mass function 
(m) as follows: 

Example: m ({grass}) = 0.9; m ({soil}) = 0.05; m ({grass, soil}) =0.05.  Here, we are 
90% sure that the area refers to grass, 5% sure that it is soil and 5% sure that it might 
be either. Hence Bel ({grass}) = 0.9; Pls ({gra ss}) = 0.95. Dempster’s law of 
combination allows us to combine evidence, in the form of mass functions, from 
different sources.  Let m1 and m2 be two mass functions on the frame of discernment 
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Ω. Then, for any subset H ⊆ Ω, the orthogonal sum ⊕ of two mass functions of 
propositions X and Y on H is defined as:  

 
(2)

The orthogonal sum thus allows two mass functions to be combined into a third 
mass function, which pools pieces of evidence to support propositions of interest.   

1.2   Semi-Supervised Classification   

Supervised classification requires the user to have a priori knowledge about the area 
while unsupervised classification assumes no a priori knowledge about it and 
therefore the classification process starts “blind”. Overall, it is difficult to obtain 
adequate and accurate labelled data from satellite images. Therefore, the so called 
“semi-supervised” classification (SSC) approach which utilises both labelled and 
unlabelled data has been proposed as a possible solution that copes with these data in 
a single framework [3]. The basic steps to perform semi-supervised classification are 
shown in Fig 1. 

 

Fig. 1. Basic steps in semi-supervised classification (adapted from [11]) 

It can be seen from this figure that the classification process makes use of labelled 
and unlabelled data to perform the classification. The unlabelled data is classified 
using an appropriate classification algorithm (e.g. Expectation Maximization 
algorithm) using unsupervised classification. However, the labelled data is excluded 
from this classification since it already has class labels. The Expectation 
Maximization (EM) algorithm is used to accomplish semi-supervised classification 
and is performed in two steps: the E-step is used to locate the posterior probability 
(conditional probability) of each pixel. The M-step is used to calculate new 
parameters (mean (µ), covariance matrix (Σ) and proportion (τ)) based on the new 
posterior probability calculated in the E-step. The two steps keep iterating until 
convergence is satisfied. A simplified version of the EM algorithm is illustrated in 
Fig. 2. (explained in more details in [2]). It can be seen from Fig. 2 that we initially 
define a conditional probability for each pixel for each cluster. For example we might 
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initialize the conditional probability for each pixel i of cluster k so that

   The M-step then starts for all data, i.e. pixels (labelled and unlabelled). 

Throughout the E-step the labelled data are excluded from the calculation since they 
already have class labels.  

 

Initialise “random” posterior probabilities Zik for each pixel i of cluster k so that: 

 

Loop   
 M-Step: Initialise Cluster Parameters  
 

  ,      ,   where nk is total no. of pixels in  

 
cluster k, n is total no. of  pixels and τ is cluster proportion.  

 , , where yi is the vector value of 

pixel i. 
 
 E-Step: update the posterior probability Zik  as follows: 
 

Labelled data: Zik  

Unlabelled data:    (Gaussian mixture model) 
 

 
Until convergence is satisfied 

Fig. 2. Semi-supervised classification using the EM algorithm via Gaussian mixture model 

2   Fusing Elevation Data 

2.1   Generating Basic Rules  

In our previous work, Dempster’s law of combination (equation 2) was used to combine 
the output of traditional classification algorithms with contextual data in a form of 
elevation knowledge [1]. This approach is based on using “basic rules”, where all rules 
are generated based on a fixed confidence (0.95). To illustrate the approach we consider a 
dataset for part of Nome, Alaska State, USA obtained from the USGS website [12]. The 
different types of data are: The Landsat Thematic Mapper (TM) (three bands), Digital 
Elevation Model and Landcover data (i.e. “groundtruth”) as shown in (Fig.3 a, b & c). 
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             a. Original                                  b. Elevation                               c. Landcover 

Fig. 3. Study area (a) Original (b) Elevation and (c) Landcover image 

The original image (Fig. 3 a) was initially classified using the semi-supervised 
classification discussed above. We use the landcover image (Fig. 3 c) only for 
evaluation and to determine the number of clusters in this area: water (c1), deciduous 
forest (c2), pasture/hay (c3), crops (c4), grains (c5) woody wetland (c6) and emergent 
wetland (c7) , i.e.: 

Ω = {c1, c2, c3, c4, c5, c6, c7,} 
 

We then extract rules from the elevation data where the range of elevations (in 
metres) for each cluster is calculated as shown in Table 1 (column 2). The conditional 
probabilities for a sample pixel (p) using SSC are also shown in Table 1 (SSC 
column).   

Table 1. The range of elevation for the selected classes and corresponding SSC probabilities 

Clusters Range of elevation (m) SSC 
c1 452-459 0.128 
c2 452-478 0.349 
c3 455-478 0.027 
c4 454-490 0.072 
c5 467-481 0.010 
c6 452-472 0.383 
c7 452-477 0.0311 

 
From these ranges we generate a number of rules to either verify the possibility of 

assigning a pixel to a particular cluster (positive rules) or to reduce the possibility of 
assigning the pixel to this cluster (negative rules) (or even to change a pixel 
assignment). A rule of a particular cluster is fired when an elevation is located within 
the range of elevations of this cluster. For example, we can define a ‘negative’ rule 
relating the elevation of a pixel ,ep, to the possibility of it being classified as mixed 
forest (c4):  

 

Rule 1: if (ep < l) OR (ep > u) then class ≠ {c4}, with confidence interval = [0.95, 1], 
where l and u are the lower and upper bound for the elevation distribution for c4 (697-
1315). The mass functions for this source of evidence can be expressed as:  
 

m{Ω\ c4} = 0.95 and m{Ω} = 0.05. 
 

where m{Ω\c4} represents all classes except c4.  Here we attach most of the mass 
(0.95) to m{Ω\ c4} and the remainder (0.05) is   spread over all classes including c4. 
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Our aim is to incorporate elevation knowledge in a form of such rule(s) into the 
classification output. Therefore, for pixel p two source of evidence (mass functions) 
are available for combination. The first piece of evidence is the conditional 
probabilities resulting from semi-supervised classification which can be formed as 
masses: m{ c1} = 0.128, m{ c2} = 0.349… m{c7} = 0.0311. The second source of 
evidence is the contextual knowledge associated with “elevation” resulting from 
applying the previous rules. Dempster’s law of combination (equation 2) can then be 
used to fuse the two masses to get new modified masses (probabilities). Although this 
approach has shown accuracy improvements in most cases, in some instances the 
accuracy can get worse. In the following section we show how the rules can be 
refined in order to address this issue. 

2.2   Refined Fusion Process 

A new approach is proposed for combining elevation data with spectral data within 
the framework of Dempster-Shafer evidence theory. The same combination of rules 
as before is used for this approach; however the confidence for generating a mass 
function is not fixed as is the case previously. This variation comes from considering 
the actual “distribution” of elevation values for each class rather than simply the 
“range” of values. Based on this distribution an “elevation weight” is calculated 
which is used as the confidence for the corresponding class.   

Fig. 4 (a) shows the elevation distribution and range of elevations for the selected 
classes and represents the number of pixels for each elevation in each corresponding 
class. Fig. 5 (b) is the equivalent elevation weight in which each elevation is weighted 
based on the number of pixels within the corresponding classes at each elevation. 

 

Fig. 4. (a) Elevation distribution (b) Elevation weight  
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From the elevation ranges (see Table 1) it can be noted that elevations between 
classes might overlap and therefore different rules attached to these classes are 
expected to fire for the same elevation. Each of these rules is considered in turn and 
probabilities modified for those rules which fire. Using the previous approach with 
the same fixed confidence (0.95) for each rule tends to cause rules to fire that might 
cancel each other out leading to misclassification.  

To illustrate this, we select an elevation that is located within different clusters. 
The elevation “452” is selected which is located within the range of elevations of c1, 

c2, c6, and c7 as shown in Table 1. Therefore, rules attached to these classes are 
expected to fire. However, the number of pixels at this elevation (452) within these 
classes are: 85, 1, 2 and 6 respectively as shown in Fig 5 (a).  From these values an 
“elevation weight” can be calculated which represents the confidence for the 
corresponding cluster. For example, the sum of all pixels attached to the selected 
elevation is (85+1+2+6 = 94 pixels). Therefore, (for elevation 452), the elevation 
weight for c1 is (85/94) x 0.95 = 0.859, for c2 is (1/94) x 0.95 = 0.0101, for c6 is (2/94) 
x 0.95 = 0.0202 and for c7 is (6/94) x 0.95 = 0.0606 as shown in Fig 5(b). In our 
previous approach, rules take the same confidence of (0.95). However, we are likely 
to have a higher confidence for an elevation that is represented by 85 pixels than that 
represented by 1 pixel.  

Table 2 & 3 illustrate the process of using a fixed confidence and a confidence 
resulting from calculating the elevation weight for each cluster.  Therefore, the 
previous rule (Rule 1) can be modified as: 

 

 

Fig. 5. a) Elevation distribution and b) Elevation weight for elevation “452” 



218 B. Al Momani, P. Morrow, and S. McClean  

Modified Rule 1: if (ep < l) OR (ep > u) then class ≠ {c4}, with confidence interval = 
[elevation weight, 1], The mass functions for this source of evidence can be expressed 
as:  

m{Ω\c4} = “elevation_weight” and m{Ω} = (1-elevation_weight). 
 

From Table 2, the SSC column represents the original probability resulting from 
using semi-supervised classification. Rules for classes: c1, c2, c6 and c7 are expected to 
fire in sequence. It can be seen that our sample pixel p will be initially assigned to c6 

since it has the highest probability. After firing the rule for c1 pixel p will be 
reassigned to c1 since it has the highest probability now. Eventually, pixel p will be 
reassigned to c6 again after firing the rule attached to this cluster. However, the 
number of pixels at elevation “452” within c1 is 85, whereas it is 6 for this elevation 
within c6. It is therefore more likely to have more confidence to assign pixel p to c1 

since it has a higher number of pixels than c6. Table 3 shows the process of taking the 
number of pixels into account as an “elevation weight” in our refined approach. It can 
be seen from Table 3 that pixel p will be assigned to c1 after firing all the rules in 
sequence when taking the elevation weight into consideration. This process therefore 
provides additional confidence when labelling satellite image pixels and also 
enhances the classification process as a whole.  

Table 2. The probabilities resulted for elevation 452 using fixed confidence 

Cluster SSC 
Fired classes 

c1 c2 c6 c7 
c1 0.349 0.91 0.856 0.729 0.405 
c2 0.128 0.015 0.014 0.012 0.007 
c3 0.027 0.002 0.068 0.059 0.032 
c4 0.072 0.02 0.009 0.156 0.082 
c5 0.01 0.001 0.001 0.001 0.012 
c6 0.383 0.05 0.049 0.042 0.453 
c7 0.031 0.002 0.003 0.001 0.009 

Table 3. The probabilities resulted for elevation 452 using “elevation weight” confidence  

Cluster SSC 
Fired classes 

c1 c2 c6 c7 
c1 0.349 0.469 0.462 0.45 0.449 
c2 0.128 0.096 0.094 0.091 0.092 
c3 0.027 0.026 0.04 0.04 0.029 
c4 0.072 0.059 0.059 0.093 0.084 
c5 0.01 0.009 0.009 0.009 0.008 
c6 0.383 0.328 0.323 0.307 0.319 
c7 0.031 0.013 0.013 0.01 0.019 
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Table 4. The confusion matrices along with the individual class accuracies for the three 
approaches 

 

3   Results  

The previous study area (Nome) was selected for evaluation. Fig. 6 shows the 
classified image resulting from performing the three approaches (SSC, SSC-basic 
rules and SSC-refined rules). The so-called confusion matrix [13] was used for 
evaluation and the confusion matrices for the three approaches along with individual 
class accuracies are shown in Table 4. It can be seen from this figure that the overall 
accuracy when performing SSC only, SSC with knowledge with basic rules and SSC 
with knowledge with refined rules is 61.02%, 51.37% and 65.75% respectively. These 
percentages show that using the refined rules has enhanced the classification process 
as whole. In addition, the individual class accuracies have also improved using this 
approach. 

 

 
Fig. 6. SSC only and SSC with knowledge – basic and refined rules 

Although the overall accuracy may seem not very high, the example has been 
deliberately chosen to highlight the problem of misclassification as an example in 
which the accuracy reduced when we applied the basic rules. Also, we have applied 
our refined approach to many example images and have achieved improved accuracy 
results in the majority of cases. In addition, we have used our approach with 
supervised maximum likelihood classification and model-based clustering and in both 
cases we obtained improved accuracy results. However, our new approach has solved 
the problem of accuracy degradation using the basic rules because we can control 
more precisely the manner in which the contextual data is used in the classification 
process.   

       Ref 
Class. C1 C2 C3 C4 C5 C6 C7 Row 

total 
C1 157 3 0 0 0 1 5 166 
C2 0 46 11 5 0 1 10 73 
C3 1 11 74 9 1 0 3 99 
C4 0 2 8 27 0 0 9 46 
C5 0 17 40 2 6 1 7 73 
C6 0 20 9 6 2 4 5 46 
C7 8 4 8 5 0 0 21 46 

Col total 166 103 150 54 9 7 60 549 

Class C1 C2 C3 C4 C5 C6 C7 Overall accuracy 
(%) 

SSC only (%) 94.57 44.66 49.33 50.0 66.66 57.14 35.0 61.02 
SSC – Basic rules (%) 66.86 39.8 49.33 50.0 66.66 57.14 35.0 51.37 

SSC – Refined rules (%) 98.19 44.66 49.33 59.25 66.66 71.42 58.33 65.76 

SSC only SSC with knowledge - Basic rules SSC with knowledge - Refined rules

 

     Ref 
Class. C1 C2 C3 C4 C5 C6 C7 Row 

total 
C1 111 4 0 0 0 1 5 121 
C2 2 41 11 5 0 1 10 70 
C3 1 13 74 9 1 0 3 101 
C4 0 8 8 27 0 0 9 52 
C5 0 15 40 2 6 1 7 71 
C6 0 18 9 6 2 4 5 44 
C7 52 4 8 5 0 0 21 90 

Col total 166 103 150 54 9 7 60 549 
 

       Ref 
Class. C1 C2 C3 C4 C5 C6 C7 Row 

total 
C1 163 3 0 0 0 1 3 170 
C2 0 46 11 5 0 0 5 67 
C3 1 11 74 8 1 0 3 98 
C4 0 2 8 32 0 0 5 47 
C5 0 17 40 2 6 1 4 70 
C6 0 20 9 4 2 5 5 45 
C7 2 4 8 3 0 0 35 52 

Col total 166 103 150 54 9 7 60 549 

a) SSC                                       b) SSC – basic                        c) SSC – refined 
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4   Conclusions and Future Work 

This paper presents a modified approach to enhance satellite image classification by 
using refined production rules to include contextual data within the classification 
process. In particular we have demonstrated how Dempster-Shafer’s theory of 
evidence can be used to combine two sources of evidence for the classification of 
pixel data. A knowledge base is built using specified production rules with different 
degrees of confidence based on the number of pixels at a particular elevation for each 
class. Dempster’s law of combination is used to combine the two sources of evidence 
resulting from traditional algorithms and elevation knowledge. A real image was used 
for illustration showing how using basic rules (fixed confidence) can cause the rules 
to cancel each other when fired for the same elevation. We then demonstrated how the 
use of our refined rules can improve the overall classification results.  

References 

1. Momani, B.M., Morrow, P.J., McClean, S.I.: Using Dempster-Shafer to incorporate 
knowledge into satellite image classification. Artif. Intell. Rev. 25, 161–178 (2006) 

2. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via 
the EM algorithm. Royal Statistical Soc. B 39, 1–39 (1977) 

3. Vatsavai, R.R., Shekhar, S., Burk, T.E.: A Semi-Supervised Learning Method for Remote 
Sensing Data Mining. In: Proc. ICTAI, pp. 207–211 (2005) 

4. Benkhalifa, M., Bensaid, A., Mouradi, A.: Text categorization using the semi-supervised 
fuzzy c-means algorithm. NAFIPS, 561–565 (June 1999) 

5. Huimin, G., Xutao, D., Bastola, D., Ali, H.: On clustering biological data using 
unsupervised and semi-supervised message passing. BIBE, 294–298 (2005) 

6. Dempster, A.P.: A Generalisation of Bayesian Inference. J. of the Royal Statistical Society 
B 30, 205–247 (1968) 

7. Guan, J.W., Bell, D.A.: Evidence Theory and its Applications. Elsevier Science Inc., New 
York (1991) 

8. McClean, S.I., Scotney, B.W.: Using Evidence Theory for the Integration of Distributed 
Databases. Int. Journal of Intelligent Systems 12, 763–776 (1997) 

9. Le Héegarat-Mascle, S., Richard, D., Ottl´e, C.: Multi-scale data fusion using Dempster-
Shafer evidence theory. In: ICAE, vol. 10, pp. 9–22 (2003) 

10. Yager, R.R., Engemann, K.J., Filev, D.P.: On the Concept of Immediate Probabilities. Int. 
Journal of Intelligent Systems 10, 373–397 (1995) 

11. Muaralikrishna, I.V.: Image Classification and Performance Evaluation of IRS IC LISS – III 
Data. In: IEEE Conference on Geoscience and Remote Sensing, vol. 4(S), pp. 1772–1774 
(1997)  

12. The US Geological Survey, 
http://www.seamless.usgs.gov (cited January 10, 2011)  

13. Congalton, R.G.: Accuracy assessment and validation of remotely sensed and other spatial 
information. Int. Journal of Wildland Fire 10, 321–328 (2001) 



Using Grid Based Feature Localization for Fast

Image Matching

Daniel Fleck and Zoran Duric

Department of Computer Science, American University, Washington DC 20016, USA
fleck@american.edu, zduric@cs.gmu.edu

Abstract. This paper presents a new model fitting approach to clas-
sify tentative feature matches as inliers or outliers during wide baseline
image matching. The results show this approach increases the efficiency
over traditional approaches (e.g. RANSAC) and other recently published
approaches. During wide baseline image matching a feature matching al-
gorithm generates a set of tentative matches. Our approach then classifies
matches as inliers or outliers by determining if the matches are consistent
with an affine model. In image pairs related by an affine transformation
the ratios of areas of corresponding shapes is invariant. Our approach
uses this invariant by sampling matches in a local region. Triangles are
then formed from the matches and the ratios of areas of corresponding
triangles are computed. If the resulting ratios of areas are consistent,
then the sampled matches are classified as inliers. The resulting reduced
inlier set is then processed through a model fitting step to generate the
final set of inliers. In this paper we present experimental results com-
paring our approach to traditional model fitting and other affine based
approaches. The results show the new method maintains the accuracy
of other approaches while significantly increasing the efficiency of wide
baseline matching for planar scenes.

1 Introduction

The goal of image matching is to determine if one image matches all or part of
another image. This is a fundamental operation for many tasks in computer vi-
sion, such as model building, surveillance, location recognition, object detection
and many others. In this paper we present a new approach to image matching
that increases the efficiency over previous approaches by using affine invariants
combined with grid-based localization of features.

In a recent review of matching algorithms conducted by Mikolajczyk and
Schmid [1] the algorithms typically have four phases. The first phase detects
features in the image. A feature descriptor is created in the second phase to
describe each feature. Descriptors are then matched pairwise between the images.
Because descriptors describe a small region around a feature, they frequently are
incorrectly matched with other small regions that look similar. For example, in
a building many windows look the same, thus a window in one image may be
matched to multiple windows in another image. Thus, the fourth phase is to filter

M. Kamel and A. Campilho (Eds.): ICIAR 2011, Part I, LNCS 6753, pp. 221–231, 2011.
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out the incorrect matches generated in the third phase by fitting a transformation
model to matches and removing any matches that do not fit the transformation.
This final model fitting phase is the focus of this paper.

Typical model fitting algorithms generate a model and test it many times
until a suitable model is found. In this paper we describe a new approach that
uses affine invariant properties to detect and remove incorrect matches before
applying standard model fitting approaches. We show that removing incorrect
matches early greatly increases the overall efficiency of the matching process. The
research presented improves upon earlier work by using a grid-based localization
method. We provide results showing the new method is more efficient than recent
model fitting algorithms and previous methods using affine invariants.

The remainder of this paper is organized as follows. Section 2 describes other
model fitting algorithms which we evaluate. Section 3 describes the new grid-
based affine algorithm. Section 4 presents experimental results and Section 5
concludes the paper.

2 Related Work

Matching algorithms typically produce both true positives and false positive
matches. With feature based matching algorithms this is unavoidable because a
local feature (e.g. a corner of a window) may look exactly like another corner
somewhere else in the image. Thus, duplicate features can cause false positive
matches when only comparing local neighborhoods. Matching errors also may
occur.

Robust methods recover some of the benefits of using global matching algo-
rithms while maintaining the advantage of feature matching algorithms. After
a feature matching algorithm has generated a set of putative matches, a robust
method will attempt to filter out incorrect matches based on the global proper-
ties of the matches. The most popular of these methods is the Random Sample
Consensus (RANSAC) method [2].

RANSAC starts by assuming some transformation model (typically affine or
perspective) exists between the two images. The minimum number of matches
needed to instantiate the model are then randomly selected from the original set
of putative matches. From the sample matches a model is created (M). Using M
all points P1 in one image are projected into the second image as P ′ using Eq. 1.
To determine if a match is an inlier when matching images the reprojection
error is typically used. Reprojection error (Rerr) is computed as the Euclidean
distance between the matched point P2 and the corresponding point predicted
by the model P ′

2 (Eq. 2). Once computed the given point is classified as an inlier
or outlier based on this distance (see Eq. 3).

P ′
2 = M × P1 (1)

Rerr = d(P2, P
′
2) (2)
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inlier =
{

true if Rerr < T
false otherwise (3)

Matches predicted with a reprojection below a threshold T are considered in-
liers and all others are considered outliers. The model with the highest number
of inliers is then chosen as the correct image transformation model. By build-
ing the model M from a minimal set of matches researchers have shown that
RANSAC can determine a correct model with up to 50% outliers in the original
set of matches [3].

Due to RANSAC’s success, many researchers have worked to improve the
efficiency [4,5,6] and the accuracy [7,8,9] of the original approach. In this work
we compare our approach to two popular RANSAC variants.

The traditional RANSAC algorithm has a time complexity of O(mn) where m
is the number of models evaluated and n is the number of matches checked per
model. Many improvements to RANSAC use a heuristic to select probable mod-
els which can reduce m. Other approaches reduce n by determining as early as
possible that the current model being tested is not correct enabling the algorithm
to stop model evaluation. An example of the first approach is described in [5].
In [5] Nister performs a shallow breadth first evaluation of model parameters
to determine likely inlier models and then completes the depth first evaluation
of only the models with the highest probability of being correct. Nister’s sys-
tem is applied to real-time applications by setting an upper bound on the time
available. Using that time available, the number of models to evaluate can be
computed. This allows model fitting to be achieved in a real-time system with
a trade-off of model accuracy. An example of the second approach is described
in [4]. Chum, et. al. use a randomized per-evaluation Td,d test to determine if
the current model being evaluated is likely to be a correct model. Using this
early exit from the testing process they report an efficiency improvement of an
order of magnitude. Recently, Chum improved upon this algorithm with Optimal
Randomized RANSAC (RANSAC-SPRT) [10]. RANSAC-SPRT applies Wald’s
sequential probability ratio test (SPRT) [11] to optimally determine if the cur-
rent model under evaluation is likely to be a good model. In RANSAC-SPRT
Wald’s likelihood ratio (Eq. 4) is computed.

λj =
j∏

r=1

p(xr|Hb)
p(xr |Hg)

(4)

Where Hb, Hg are a good model and bad model hypothesis, and xr is 1 if the
rth data point is consistent with the model and 0 otherwise. If λj is greater than
a computed decision threshold, the model is rejected as “bad”. The number of
points evaluated (j) increases until the model is rejected or all points have been
tested. By applying the SPRT algorithm during the model verification, incorrect
models can be discarded without verifying all matches in the data set. The
resulting algorithm is 2 to 9 times faster than standard RANSAC as reported
in [10]. These improvements still require the same number of initial hypothesis
as the standard RANSAC algorithm. The efficiency improvements also perform
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essentially the same steps as the original RANSAC algorithm, but reduce the
number of data points to evaluate through an early evaluation process.

Another popular RANSAC variant is Torr and Zisserman’s Maximum Like-
lihood Estimation Sample Consensus (MLESAC) [7]. In traditional RANSAC
to determine if a point is an inlier the reprojection error (Rerr) is computed
as the distance between the predicted location of the matching feature and the
observed location of the matching feature. Then the number of points with Rerr

lower than a threshold are considered inliers. In counting a match as either an
inlier or an outlier traditional RANSAC doesn’t take advantage of the differ-
ence in Rerr for points within the threshold. Model scoring in MLESAC uses
the reprojection error distance explicitly by minimizing the maximum likelihood
estimate of the reprojection error (e) (given for a single match (i) as Eq. 5).

e2
i =

∑
j=1,2

(x̂j
i − xj

i )
2 + (ŷj

i − yj
i )

2 (5)

Thus, points that fit more closely to the model are considered more favorable
than points farther from the model. This approach was shown in [7] to find
more accurate models than traditional RANSAC. Researchers have built on this
approach to create Guided-MLESAC [12], NAPSAC [13], MAPSAC [14] and
LLN-MLESAC [15].

In this paper we compare the accuracy and efficiency of affine model fitting
approaches to RANSAC-SPRT and MLESAC. At this time no publicly available
version of RANSAC-SPRT is available. Thus, experimental results for RANSAC-
SPRT use our own implementation of the algorithm. Experimental results for
MLESAC use the publicly available version from [16]. The results will be pre-
sented in section 4.

3 Affine Filtering Using Local Grids

In this work we propose a new way to classify matches as inliers or outliers using
affine invariants. Typical classification approaches (as described in section 2)
detect inliers by computing a transformation model that maximizes the number
of matches that fit the model. Finding the best model requires evaluating a large
number of matches during each iteration.

Our approach detects inliers using the property that affine invariant trans-
formations maintain a constant ratio of areas of shapes. We use this property
by iteratively sampling four matches in a local region. We then compute the
four possible triangles that can be created from the four matches as shown in
Fig. 1. If all four triangle pairs produce a consistent ratio of areas the matches
are considered inliers.

An affine transformation can model several changes between pairs of images.
The transformation has six degrees of freedom including translation in the X
and Y directions, rotation, non-isotropic scaling, and shear. The general affine
transformation matrix relating image coordinates is shown in Eq. 6.
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Fig. 1. A single image pair repeated four times showing the four possible triangles
created from four pairs of feature matches
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⎞⎠⎛⎝x
y
1

⎞⎠ (6)

Images related by an affine transformation have invariant properties including
parallelism of corresponding lines, ratio of the lengths of corresponding parallel
lines and ratios of areas of corresponding shapes [17]. Previous work demon-
strated a consistent ratio of areas across an entire image can be used to detect
inliers in planar scenes (e.g. images of buildings) [18]. The underlying assump-
tion was that the relationship between image pairs of planar scenes could be
approximated by an affine transform. It was shown in [19] that as the perspec-
tive distortion grew, this assumption broke down and the algorithm generated
unstable results. Further research showed that by selecting features in a local
region, the effects of perspective distortion are minimized resulting in better de-
tection of inliers [20]. In [20] features in a local region were selected by computing
the Delaunay triangulation [21] of the matches, and then searching the Delau-
nay graph to pick a random set of neighboring matches. In this work we present
results showing the regional affine approach using Delaunay triangulation is less
efficient than recent RANSAC improvements (MLESAC and RANSAC-SPRT).
We also present a new affine approach using grid-based match selection that
retains the set of inliers found by the Delaunay approach, and is more efficient
than MLESAC and RANSAC-SPRT.

3.1 Description of Grid-Based Affine Filtering

The grid-based affine method divides the image into a grid. In our work we used
grid cells covering 20% of the width by 20% of the image height. Four matches
are then randomly selected from a grid cell. The matches are used to generate
the four possible triangles. The ratios of areas of corresponding triangles are
computed using Eq. 7 where ATi,j is the area of triangle i in image j. The ratios
are normalized by dividing them by the maximum ratio as shown in Eq. 8. The
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Fig. 2. Histogram of Ratio Differences (Rdiff ). Left: Rdiff for correct matches only
(inliers). Right: Rdiff for incorrect matches only (outliers).

normalized ratio difference (Rdiff ) is computed as the difference between the
maximum and minimum normalized ratios (shown in Eq. 9). If Rdiff > ε all
matches in the set are discarded as outliers (see Eq. 10) because their ratios of
areas are not consistent. This process is repeated up to a set minimum for each
grid cell. The resulting inlier set is then processed through MLESAC to create the
final set of inliers. In all experiments presented we chose ε = 0.10%, meaning the
difference in area (Rdiff ) must be less than 10% to be considered an inlier. This
number was experimentally determined by matching images using traditional
methods. The Rdiff for the inliers and outliers were then plotted as separate
histograms as shown in Fig. 2. The figures show that the majority of inliers have
an Rdiff below 20%. In our experiments we chose a more conservative 10% that
retains enough inliers to ensure a robust model can be computed.

R1 =
AT1,1

AT1,2
, R2 =

AT2,1

AT2,2
, R3 =

AT3,1

AT3,2
, R4 =

AT4,1

AT4,2
(7)

R1n =
R1

max{R1, R2, R3, R4} R2n =
R2

max{R1, R2, R3, R4}
R3n =

R3

max{R1, R2, R3, R4} R4n =
R4

max{R1, R2, R3, R4}
(8)

Rdiff = max{R1n, R2n, R3n, R4n} −min{R1n, R2n, R3n, R4n} (9)

Rdiff =
{

< ε inliers
≥ ε outliers (10)

This grid-based process is similar to, but much more efficient than, the
Delaunay-based regional affine approach presented in [20]. Constructing the De-
launay triangulation is efficient with a time complexity of O(n log n) [22]. How-
ever, to determine the other features in the local region requires repetitively
searching the Delaunay graph which is inefficient. In the grid based approach,
creating the grid has a constant time complexity, and adding each feature into
it’s respective grid cell is an O(n) operation. The grid based affine method is
summarized as Alg. 1.



Using Grid Based Feature Localization for Fast Image Matching 227

Fig. 3. Sample image showing grid structure imposed by grid-based affine method

Algorithm 1: Grid-based affine method for inlier detection
Input: a set of tentative matches
Output: inliers from the tentative matches
foreach (match in allMatches) do

Add match into grid cell based on location
end
foreach (row in grid) do

foreach (col in grid) do
1. Choose random subsets of four matches in the grid square
2. Compute ratio of areas for subsets
3. Compute normalized ratios (Rn)
4. Compute Rdiff as the difference between the maximum and minimum

normalized ratios
5. Label sets as inliers where Rdiff < ε

end

end

4 Experimental Results

In this section we present results using real image pairs from the publicly avail-
able Zurich Building Database [23] to demonstrate the accuracy and efficiency
of the affine algorithms. The original Delaunay based regional affine algorithm
and the new grid-based algorithm are compared to baseline RANSAC and the
recently published improvements to RANSAC: Maximum Likelihood Estima-
tion Sample Consensus (MLESAC) [14] and Optimal Randomized RANSAC
(RANSAC-SPRT) [10].

In the experiments presented all code is run as Matlab functions. This pro-
vides a valid comparison of the efficiency of each algorithm. The experimental
results presented use a publicly available version RANSAC from Kovesi [24] and
of MLESAC from [16]. In the available MLESAC code there was no stopping
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criteria, however one was described in the paper. To provide a fair comparison
we modified the available implementation to stop when conditions were reached
as described in Torr’s paper. This change greatly increased the efficiency of
the implementation. Due to there being no publicly available Matlab version
of RANSAC-SPRT, we have implemented the algorithm based on Chum and
Matas’ description in [10].

Sample image pairs from the database are shown in Fig. 4.

Fig. 4. Sample image pairs used in tests

4.1 Test Methodology

Lowe’s SIFT [25] algorithm generated the tentative matches used as input to the
algorithm being tested. Each algorithm being tested was run on the same SIFT
matches to generate a set inliers. The resulting inliers were evaluated by apply-
ing the normalized direct linear transform algorithm to create a homography
transformation [17]. Using the generated transformation the reprojection error
was computed using Eq. 2 [26]. All original SIFT matches were then classified
as inliers or outliers based on the reprojection error. The results reported label
inliers where Rerr < 3 pixels. Experiments with other thresholds were conducted
with similar results as those reported here.

Figs. 5,6,7,8 show pairwise comparisons between algorithms. Tests were con-
ducted using all images from the Zurich Building Database comparing the first
view to each other view in the database. Each data point represents an image
pair. In Figs. 5 and 6 points below the diagonal indicate an image pair where
the approach on the X axis took more time than the approach on the Y axis.
Fig. 5 shows the results for regional affine approach using Delaunay triangula-
tion. Fig. 6 shows the results for the grid-based affine method. The figures show
that while the Delaunay is more efficient that RANSAC and RANSAC-SPRT,
in most cases it is not as efficient MLESAC. Fig. 6 shows that the grid-based
affine approach is consistently more efficient than all RANSAC variants tested.

Figs. 7 and 8 show pairwise comparisons of the number of inliers found. Each
data point represents an image pair. Points below the diagonal indicate an image
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Fig. 5. Pairwise comparison of time to compute inliers using different algorithms. (a)
Affine Delaunay versus RANSAC. (b) Affine Delaunay versus MLESAC. (c) Affine
Delaunay versus RANSAC-SPRT.
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Fig. 6. Pairwise comparison of time to compute inliers using different algorithms. (a)
Affine Grid versus RANSAC. (b) Affine Grid versus MLESAC. (c) Affine Grid versus
RANSAC-SPRT.
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Fig. 8. Pairwise comparison of number of model inliers found. (a) Affine Grid versus
RANSAC. (b) Affine Grid versus MLESAC. (c) Affine Grid versus RANSAC-SPRT.

pair where more inliers were found using the approach on the X axis. Both
figures show that the affine-based approaches generate very similar inliers as the
RANSAC-based approaches. Thus, while maintaining similar accuracy, the grid
based affine approach is much more efficient.

5 Conclusion

In this work we have proposed an enhanced method to classify feature correspon-
dences as inliers or outliers. Our approach does not rely on the typical model
generation and test approach used by RANSAC-based methods. The grid-based
regional affine invariant method samples features from a local region and com-
putes ratios of areas of corresponding triangles. By checking for consistent ratios
of areas of the triangles the algorithm can label inliers and outliers. Experi-
ments were performed on a large database of real images. The results show the
grid-based affine approach maintains similar accuracy, but is more efficient, than
previous affine approaches and recent RANSAC-based model fitting methods.
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Abstract. A characteristics of imbalanced points is their localities—an imbal-
anced point may be contiguous to some other imbalanced points in terms of
8-connectivity. A two-layer scheme was recently proposed for matching imbal-
anced points based on localities, where the first layer aims to build locality
correspondence, and the second layer aims to build point correspondence within
corresponding localities. Under the framework of the two-layer matching, we pro-
pose a hybrid representation of imbalanced points. Specifically, an imbalanced
point in the first layer is represented by a discriminant SIFT-type descriptor, and
in the second layer, the imbalanced point is simply represented by a patch-type
descriptor (the intensities of its neighborhood). We will justify the rationale of the
proposed hybrid representation scheme and show its superiority over non-hybrid
representation with experiments.

1 Introduction

Imbalanced points are image points whose first-order derivatives of intensity values
can be clustered into two imbalanced classes [10]. Unlike conventional interest points
(also called feature points and keypoints) [3,15,12,13,1], an imbalanced point may be
contiguous to some other imbalanced points in terms of 8-connectivity [10,8]. This
characteristics of imbalanced points is called the locality property [9]. One of advan-
tages of localities of imbalanced points is the improved localization accuracy [10] for
the higher-level applications, such as stereo correspondence and object recognition.

Based on the locality property, a two-layer scheme was proposed for matching im-
balanced points [11]. where the first layer (also called the global layer) establishes cor-
respondence between localities, and then the second layer (also called the local layer)
refines the locality correspondence to point correspondence. It is intuitive that locality
correspondence, with more local information, is more robust with respect to mismatch-
ing than conventional point correspondence. In the context of stereo correspondence,
the two-layer matching scheme performs a “divide-and-conquer” strategy to address
mismatching and imprecise matching separately. (Note that mismatching and imprecise
matching are the two main challenges in stereo correspondence [17,5].) An important
problem in the two-layer matching scheme is on how to measure the similarity between
localities that is equivalent to the problem of measuring similarity of two sets of vectors
[11]. Several methods have been proposed to measure similarity of localities, where a
similarity measure may or may not be symmetric [8,11,9].

M. Kamel and A. Campilho (Eds.): ICIAR 2011, Part I, LNCS 6753, pp. 232–241, 2011.
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Given an imbalanced point, its local patch, i.e., a window of intensities of its neigh-
boring points, was used as the representation (descriptor) of the point for the two-layer
matching scheme [8,11,9]. The patch-type representation was observed to perform more
effectively in the application of the estimation of the fundamental matrix of two stereo
images whose baseline is relatively small [9], being compared with SIFT-type represen-
tation [12]. But it is also well known that the performance of patch-type representations
is poor if images contain significant scaling or affine variations.

The study presented in this paper is motivated by a revisit of the tradeoff between
patch-type and SIFT-type representations of interest points, under the framework of
the two-layer matching scheme. It is known that that patch-type representations of in-
terest points is generally more sensitive to their localization accuracy than SIFT-type
representation. In other words, the patch-type representation of an interest point can be
significantly dissimilar to the patch-type representation of a neighboring interest point,
while the SIFT-type representation is changed less significantly due to their statistical
construction. As specified by Lowe in [12], SIFT can tolerate up to 4-pixel shift due
to the design of 4x4 window. This difference leads to the following consequences and
tradeoff between the two presentations:

– The patch-type representation tends to perform worse than the SIFT-type represen-
tation when imaging variations are significant.

– The patch-type representation tends to contain fewer instances of imprecise match-
ing due to the low tolerance of inaccurate localization.

– Feature extraction methods, such as Principal Component Analysis (PCA) [6,7] and
Linear Discriminant Analysis (LDA) [2,16], are expected to be more effective to the
SIFT-type presentation than the patch-type representation. Note that these methods
assume Gaussian distribution of feature vectors, and the statistical characteristics
of SIFT-type representation is more consistent with this assumption.

In this paper, we propose a hybrid representation of imbalanced points for the two-
layer matching scheme, based on the locality characteristics of imbalanced points and
the tradeoff between the patch-type and SIFT-type representations. Fig. 1 illustrates
the basic idea of the proposed hybrid representation. Specifically, we use SIFT-type
descriptors of imbalanced points in the first-layer matching (i.e., locality correspon-
dence) in order to tolerate the inaccurate localization of interest points under poten-
tially large imaging variations that in turn aims to reduce mismatching instances. Fur-
thermore, we propose to apply Linear Discriminant Analysis to extract discriminant
features of SIFT-type descriptors based on the Fisher criterion [2] that maximizes the
intra-locality similarity and minimizes inter-locality similarity of SIFT-type descrip-
tors. In the second-layer matching (i.e., point correspondence within corresponding lo-
calities), we use patch-type descriptors of imbalanced points to achieve precise point
correspondence.

In the experiment, we test performance of the proposed hybrid representation of
imbalanced points in the estimation of fundamental matrices, a well-known problem
that is sensitive to mismatching and imprecise matching.

The rest of the paper is organized as follows: In section 2, a hybrid representation
of imbalanced points is proposed. Experiments are presented in Section 3. Finally, con-
clusions are given in Section 4.
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Fig. 1. A hybrid representation of imbalanced points for the two-layer matching scheme

2 A Hybrid Representation for Two-Layer Matching

This section contains three parts. In the first part, we review a similarity measure of
two localities based on patch-type descriptors. In the second part, we propose a SIFT-
type descriptor of an imbalanced point and its Fisher discriminant representation. In the
last part, we propose a hybrid representation scheme that integrates the superiority of
patch-type and (discriminant) SIFT-type representations.

In the rest of the paper, we assume that a patch of an imbalanced point has been nor-
malized in terms of its scale and orientation (or more generally affine parameters). It is
worth noting that it is not straightforward to assign a characteristic scale and orientation
to an imbalanced point without involving non-maximum suppression. But we can still
assign a scale and orientation to an imbalanced point by a certain association approach
between the imbalanced point and an interest point with known scale and orientation
(such as a Lowe’s keypoint [12]). We skip the details on the scale and orientation selec-
tion in this paper due to the space constraint.

2.1 Similarity Measure of Localities

Given two images I1 and I2, denote P and P ′ as sets of imbalanced points of I1 and
I2 respectively. Note that the cardinality of two localities P and P ′, i.e., the numbers
of imbalanced points, may be different. Denote the descriptors of imbalanced points in
a locality Pi as DPi = {dp|p ∈ Pi}, where dp is a descriptor of a point p. We propose
the following idea to measure the similarity between two localities Pi and P ′

j , more
specifically, the similarity between DPi and DP ′

j
: for each p ∈ Pi, we find its most

similar point p′ ∈ P ′
j . It is possible that two different points pi1 and pi2 are found to

correspond to the same p′. So here, we have many-to-one and imprecise point corre-
spondence. Note that many-to-one point correspondence can happen since in certain
image variations, such as resolution (scale), two localities associated with the same
physical scene region may not have the exact same number of imbalanced points. Also
note that imprecise correspondence in global scale is not an issue since it will be refined
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in the local scale. Intuitively, the overall within-locality point similarity is high if two
localities associated with the same physical scene region.

Assume that DPi and DP ′
j

are patche-type descriptors. A similarity measure between
DPi and DP ′

j
proposed in the previous work [11] is defined as follows:

S(DPi , DP ′
j
) =

1
|Pi|

∑
p∈Pi

max
p′∈P ′

j

S(dp, dp′),

where | · | denotes the cardinality of a set. This similarity measure was motivated by
the fact that patch-type descriptors are sensitive to localization, and thus the correlation
between p ∈ Pi and q ∈ P ′

j varies significantly.

2.2 Locality Similarity Based on SIFT-Type Descriptors

Since SIFT-type descriptors are robust to localization error of interest points, and the
correlation between p and q is expected to be stable with respect to various imaging
conditions, we propose the following similarity measure for localities of SIFT-type de-
scriptors:

S(DPi , DP ′
j
) =

1
|Pi| × |Pj |

∑
p∈Pi,p′∈P ′

j

S(dp, dp′),

where | · | denotes the cardinality of a set.
In this paper, we will basically follow the construction method of Lowe’s SIFT rep-

resentation, i.e., the concatenation of orientation histograms of 4× 4 sub-blocks subdi-
vided from a patch [12]. But, we propose an alternative option to select an underlying
patch to construct a SIFT descriptor to address a subtle difference between an imbal-
anced point and a scale-invariant interest “point” such as a Lowe’s keypoint [12] or
Harris-Laplace “points” [14]). Specifically, a scale-invariant interest “point” may be
more strictly called an interest region that can be intuitively interpreted as a region sur-
rounded by edges, either entirely or partially. So, the patch used to construct a SIFT
descriptor is generally centered by the point, which is consistent with the surrounded
region associated with the point.

However, an imbalanced point itself is not a region. (This is also a reason why it is
not straightforward to assign scale and orientation to an imbalanced point as mentioned
before.) An imbalanced point usually lies in a border (more precisely a corner) of a
region, as illustrated by Fig. 2. So a patch centered by an imbalanced point likely covers
a foreground area (i.e., a potential interest region) and a background area. In Fig. 2, the
dash circle visualize the scale (i.e., a patch) of an imbalanced point. Note that this patch
covers both a foreground area and a background area, where the background area is
larger than the foreground area. In a 3D world, a background area tend to vary more
significantly with respect to a viewpoint change than a foreground area. Thus, a patch
centered by the imbalanced point may not be the best to construct a descriptor invariant
to a viewpoint change. We propose to use a patch centered by a point that is drifted
from the p along its orientation with the distance of the scale. Fig. 2 illustrates the
idea of “drifting a patch”, where the solid circle and solid arrow visualize the scale and
orientation of the drifted point.
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Fig. 2. Illustration of SIFT-type descriptors of imbalanced points

2.3 Discriminant SIFT-Type Descriptors

We propose a discriminant statistic model of the SIFT-type descriptors of imbalanced
points based on the locality property of imbalanced points, in the context of stereo cor-
respondence. Here, the sample space for the statistic model includes all descriptors from
a single image (one image of a stereo pair). In terms of classification terminology, we
consider a locality as a class. Specifically, we consider the descriptors of imbalanced
points in the same locality a set of instances of a class. With the above assumption
that patches have been normalized according to imaging conditions, such as scales and
orientations, the variation (uncertainty) among descriptors of imbalanced points in the
same locality are mainly caused by localization shift. If descriptors we use are Lowe’s
SIFTs, then the intra-locality descriptor similarity is expected to be high, i.e., small
variations intra-locality due to robustness of orientation histogram with respect to lo-
calization inaccuracy.

We construct discriminant descriptors under the Fisher criterion that maximizes sim-
ilarities of SIFT-type descriptors within the same locality and minimizes the similarities
of descriptors between different localities, simultaneously. For convenience, we call the
first type of similarity intra-locality similarity, and the second type of similarity inter-
locality similarity. Linear discriminant analysis is a popular feature extraction scheme
in classification applications, such as face recognition [2].

PCA-SIFT [7] is a statistic model of descriptors proposed in the context of image
retrieval, where Principal Component Analysis (PCA) [6] was applied to local gradient
patches (rather than Lowe’s histogram of oriented gradients) of keypoints detected from
a set of training images of diverse scenes. Theoretically, PCA-SIFT approach requests
a sufficiently large number of training images in order to collect a reliable sample space
to build a statistic model. Thus, the PCA-SIFT rationale may be not generally effective
such as in the applications of stereo correspondence, tracking, etc. The key motivation
of the authors introducing PCA-SIFT is the simplicity of the PCA approach, and the
reduced dimension to speedup retrieval, although it is assumed that data to model by
PCA should satisfy a Gaussian distribution. Recall that our motivation of applying LDA
to Lowe’s SIFT descriptors is that orientation histograms of imbalanced points within
each locality may satisfy Gaussian distribution.
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Given an image I , we denote N the number of imbalanced points of I , dp descriptor
of an imbalanced point p, n the dimension of a descriptor, Pi i-th locality of imbalanced
points, Ni is the number of imbalanced points in ith locality, and k the number of
localities, Denote DPi a matrix of the descriptors of imbalanced points in the locality Pi

The (local) centroid of descriptors in i-th locality Pi is denoted as d̄Pi = 1
Ni

∑
p∈Pi

dp.
The global centroid of descriptors of all imbalanced points in image I is denoted as
d̄ = 1

k

∑k
i=1 d̄Pi .

The inter-locality distance of descriptors of I can be formulated as

ΔB =
k∑

i=1

Ni

N
‖d̄Pi − d̄‖2, (1)

and the intra-locality distance of descriptors of I can be formuated as

ΔW =
k∑

i=1

∑
p∈Pi

‖dp − d̄Pi‖2, (2)

We define inter-locality scatter matrix Sb and intra-locality scatter Sw as follows:

Sb =
1
N

k∑
i=1

Ni(d̄Pi − d̄)(d̄Pi − d̄)T =
1
N

HbH
T
b ,

Sw =
1
N

k∑
i=1

∑
p∈Pi

(dp − d̄Pi)(dp − d̄Pi)
T =

1
N

HwHT
w , (3)

where

Hb = [
√

N1(d̄P1 − d̄), · · · ,
√

Nk(d̄Pk
− d̄)] ∈ Rn×k,

Hw = [DP1 − d̄P1 · e1, · · · , DPk
− d̄Pk

· ek] ∈ Rn×N ,

ei = (1, · · · , 1) ∈ R1×Ni .
LDA is commonly found by solving the trace optimization of the following,

G = arg max
G

trace
(
(GT SwG)−1(GT SbG)

)
, (4)

The optimization criterion in (4) is equivalent to the following generalized eigen
problem,

Sbx = λSwx, for λ �= 0. (5)

The solution can be obtained by solving an eigen problem on matrix S−1
w Sb. There are

at most k−1 non-zero eigenvalues, since the rank of the matrix Sb is bounded by k−1.
Therefore, the reduced dimension by LDA is at most k−1. A method to solve the eigen
problem is to apply SVD on the scatter matrices.

Algorithm 1 summarizes the steps for the construction of hybrid descriptors of im-
balanced points in the context of stereo correspondence.
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Algorithm 1. Construction of hybrid descriptors

Input: P - Imbalanced points detected in image I
P ′ - Imbalanced points detected in image I ′

Output:

Part I: Construct normalized patch-type and SIFT-type descriptors
1. Construct patch-type descriptors Dpatch

2. Construct SIFT-type descriptors Dsift

Part II: Construct Fisher-SIFT
1. Construct inter-locality scatter SB and intra-locality scatter SW .

2. G ← argmaxG
trace(GSBGT )

trace(GSW GT )

3. D̃sift = Dsift ∗ G

4. D̃sift,′ = Dsift,′ ∗ G

5. Normalize each vector in D̃sift and D̃sift,′ as a unit vector

3 Experiments

In this section, we will test the performance of proposed hybrid representation in point
correspondence and the estimation of the fundamental matrix (i.e., epipolar geometry).
Given a set of initial point correspondence, we apply the commonly used linear random-
ized approach to estimate its fundamental matrix, i.e., 8-point algorithm with RANSAC
to estimate the fundamental matrix [4]. Note that RANSAC is a randomize approach
to prune mismatches (outliers). The threshold on the residue of a point according to an
estimated fundamental matrix is set to 1.5 pixels, and the number of iterations for one
round of RANSAC is 500.

We first compare the performance of hybrid descriptors with non-hybrid descriptors
(i.e., patch-type descriptors and SIFT-type descriptors). The test images are boat images
from INRIA dataset that contains large scale and orientation variations. Fig. 3 shows
matched imbalanced points (with scales) and estimated epipolar lines overlaid on input
images via three different representations. The number of matching pairs via patch-type
descriptors (79 pairs) is fewer than the number of matching pairs via SIFT-type descrip-
tors (98 pairs). This is a common phenomenon in the comparison between patch-type
and SIFT-type descriptors due to the higher-tolerance of localization errors of SIFTs
than patches. The number of matching pairs via hybrid descriptors (116) is the largest.
The numbers of mismatched or inaccurately matched pairs via the three methods are
37, 32, and 21 respectively, which indicates that the ratio of (accurate) matching pairs
via hybrid descriptors is also the highest one. Note that the estimated epipolar geometry
via hybrid descriptors is the one most consistent with the ground truth.

Next, we present a test of hybrid representation of imbalanced points on Middle-
bury stereo dataset 2006. Middlebury stereo images have been introduced as a ground
truth dataset for the study of dense stereo correspondence. Stereo pairs of images are
taken by camera translations parallel to the optical plane, and they are further rectified
so that all epipolar lines are horizontal. In contrast to previous datasets, dataset 2006
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(a) Patch-type descriptors

(b) SIFT-type descriptors

(c) Hybrid descriptors

Fig. 3. Epipolar geometry estimated using (a) patch-type descriptors, (b) SIFT-type descriptors,
and (c) hybrid descriptors. The numbers of matching pairs are 79, 98, and 116, respectively. The
third result is most consistent with the ground truth.

introduced new challenges on the textures of scenes. One challenge is sparse textures.
Fig. 4 lists three examples of tested stereo images, named flowerpot, plastic, and lamp-
shade, respectively. The stereo views of tested images in Fig. 4 are named view 0 and
view 6, respectively, in the Middlebury dataset.

Sparse textures bring a challenge to interest point correspondence with the estima-
tion of an epipolar geometry as well as dense correspondence. Note that detecting large
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(a) Keypoints (b) Imbalanced points

Fig. 4. Test on Middlebury 2006 stereo dataset

numbers of interest points and thus building sufficient initial point correspondence
(based on NCC) has been a motivation for the state-of-the-art detectors [12,13]. From
Fig. 4, it is clear to observe that an epipolar geometry estimated via imbalanced points
with scales is much more consistent with the ground truth than the epipolar geome-
try estimated via keypoints. For the lampshade images, insufficient matched points are
found to estimate a fundamental matrix. The numbers of matched pairs of imbalanced
points on these three pairs of images are 31, 73, and 38, respectively. It is worth noting
that the numbers of matched pairs of keypoints extracted from these sparsely-textured
images are small, and moreover, the scales of matched keypoints are also small. The lat-
ter phenomenon may be caused by the following reason—the localization of keypoints
of larger scales from sparsely-textured images is less accurate than keypoints of smaller
scales, and descriptors of keypoints of larger scales are less distinctive than descriptors
of keypoints of smaller scales.

4 Conclusions

In this paper, we propose a hybrid representation of imbalanced points for the two-layer
matching scheme, where the first-layer matching is based on discriminant SIFT-type
descriptors of imbalanced points, and the second-layer matching is based on patch-type
descriptors. Experiments show the effectiveness of the hybrid representation.
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Grant IIS-1016668 and the Summer Faculty Scholarship 10-7052 of Western Kentucky
University.
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Wide-Baseline Correspondence from Locally

Affine Invariant Contour Matching

Zhaozhong Wang and Lei Wang
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Beijing 100191, China

Abstract. This paper proposes an affine invariant contour description
for contour matching, applicable to wide-baseline stereo correspondence.
The contours to be matched can be either object edges or region bound-
aries. The contour descriptor is constructed locally using matrix theory
and is invariant to affine transformations, which approximate perspective
transformations in wide-baseline imaging. Contour similarity is measured
in terms of the descriptor to establish initial correspondence, then new
constraints of grouping, ordering and consistency for contour matching
are introduced to cooperate with the epipolar constraint to reject out-
liers. Experiments using real-world images validate that the proposed
method results in more accurate stereo correspondence for clutter scenes
with large depth of field than point-based stereo matching algorithms.

1 Introduction

Wide-baseline stereo matching is a challenging problem in computer vision and
many excellent algorithms have been proposed in this field. The method pro-
posed in this paper uses contour cue for wide-baseline stereo correspondence.
We first extract contours using state-of-the-art contour detection methods, then
construct affine invariant descriptor to characterize the contours. The contours
between different views are finally matched in terms of the descriptor and match-
ing outliers are rejected using the epipolar constraint combined with new con-
straints suitable for contour matching. The contour-based matching is robust
to object occlusion between view changes and generates more accurate stereo
correspondence.

The proposed method is different from point-based stereo matching. A num-
ber of stereo matching methods based upon feature points have been studied
in the literature, for example the SIFT feature [12] and affine invariant fea-
tures [15], which are invariant to image transformations. The proposed method
is also distinguished from the approaches of affine invariant regions [19] for stereo
matching since they do not use the contour information.

Recently, the contour-based stereo methods have a great development. The
first research direction is mainly on improving the speed and accuracy. For ex-
ample, the work of [16] focus on accelerating the edge-based stereo algorithm
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through the reduction of search space; the researches in [9,17] apply belief prop-
agation on edge images to get more accurate stereo correspondence. When scene
structures do not lie in or near the frontal parallel plane, Zucker [11,10] proposed
a differential geometrical model which relates the structures in the left and right
images using the Frenet geometry of space curves.

The second improvement of contour-based stereo matching mainly focus on
wide-baseline correspondence. The difficulty that edges of left and right images
may be inconsistent due to viewpoint changing would make the matching impos-
sible. To handle this problem, Meltzer and Soatto [14] proposed a bipartite edge
descriptor for matching and used ordering constraint to improve the result. The
bipartite descriptor is formed by image intensity and gradient information, and
two descriptors are required for one occluding edge. Our method in this paper
is different from [14] because we use purely geometric information of contours
to form their descriptions, so it is simpler in theory. In addition to the ordering
constraint, we also use grouping and consistency constraints to refine matching
results.

We shall propose the theory of locally affine invariant contour description in
Section 2, then describe the contour matching scheme in Section 3. Experimental
results of our algorithm with comparisons to other methods on wide-baseline
stereo are shown and discussed in Section 4. Our conclusion is presented in the
last section.

2 Affine Invariant Contour Description

The proposed algorithm requires detected contours for matching. Detailed
schemes for contour detection will be proposed later; and we assume here that
we have obtained image contours. Now we describe the theory of contour invari-
ance for stereo correspondence. For wide-baseline matching, a contour descrip-
tion should be invariant to perspective transformations and viewpoint changes.
There are work for viewpoint invariant features [20], but for simplicity and ef-
ficiency, we shall use the affine invariance to approximate the view invariance.
This is similar to many point-based features [12,15] used for correspondence.
Our method uses geometric information along contours to describe them and
is derived from matrix theory; this is different from most point descriptors and
contour descriptors [14] formed by image intensity.

A contour in a 2D image plane can be represented by an ordered point set
C = {x1, · · · ,xm} ⊂ R2. For a point xi ∈ C, we take its neighboring n points
xk ∈ C, k = i− s, · · · , i+ s to characterize xi, where n = 2s+1 and s an integer
(we usually take s = 15). Then we construct the following configuration matrix

Xi = [xi−s, · · · , xi, · · · , xi+s ]T ∈ R
n×2, (1)

and assume that it is of full rank. Under the wide-baseline imaging, the con-
figuration Xi might be transformed perspectively, we approximate this local
transform of points using an affine transformation of the form

[Yj 1n] = [Xi 1n]
[

A 0
tT 1

]
, (2)
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where Yj represents the configuration of a point yj which is the correspondence
of xi, 1n := [1, · · · , 1]T ∈ Rn, A is a 2 × 2 nonsingular matrix representing
affine transformations like rotation, scaling and shearing, and t ∈ R2 is a trans-
lation vector. We can first remove the effect of translation by centerizing the
configurations using a formula like

X̆i =
(

I − 1
n
1n1T

n

)
Xi,

then Eq. (2) reduces to
Y̆j = X̆iA. (3)

We now need to establish affine invariant descriptors for the configurations Y̆j

and X̆i. To this end, we compute orthonormal matrices Ωj and Θi from Y̆j and
X̆i respectively, where Ωj , Θi ∈ Rn×2 and ΩT

j Ωj = ΘT
i Θi = I. Then we have

Ωj = ΘiO, (4)

where O ∈ R2×2 is an orthogonal matrix. There are several ways to prove this
relation, the following is a simple one: Eq. (3) implies that the two matrices
Y̆j and X̆i have the same column space [8], thus the columns of Ωj and those
of Θi form two orthonormal bases for the same space. This indicates that the
two bases are related by an orthogonal transformation like Eq. (4). Zuliani et
al. [21] proposed a result similar to Eq. (4); their result is only applicable to
closed contours, while Eq. (4) is applicable to both closed and open contours. In
addition, their work used a shape matrix-based descriptor for contour matching,
which is more complex than our descriptor, as proposed below.

By orthonormalizing the configuration matrices, the transformation between
two configurations reduces from an affine A to an orthogonal O, while the latter
has many useful properties. For example, an orthogonal transformation does not
change the norm of a vector. Let

Θi = [qi−s, · · · , qi+s ]T ,

where qT
k ∈ R2, k = i − s, · · · , i + s, are row vectors of Θi. These row vectors

qT
k can be viewed as orthonormalized versions of the original row vectors xT

k

(i.e., the coordinates of contour points) in Eq. (1). We take the norms of the row
vectors qT

k to form a new vector

wXi := [ ‖qi−s‖2, · · · , ‖qi+s‖2 ]T ∈ R
n. (5)

Note that wXi is equal to the square root of the diagonal vector of the matrix
ΘiΘ

T
i . From Eq. (4) we know that ΩjΩ

T
j = ΘiOOT ΘT

i = ΘiΘ
T
i , thus the vector

wXi is invariant to any orthogonal transformation O and in turn invariant to
any affine transformation A. We use the vector wXi as an affine invariant de-
scriptor of the contour point xi ∈ R

2; it is also the descriptor of the local contour
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Fig. 1. Illustrating the proposed contour descriptor. The left two images contain con-
tours to be matched, where the red dots are two matched points xi and yj and the
green points near them are those to form local configurations Xi and Yj . The middle
two plots show the orthonormal matrices Θi and Ωj , where each row vector of them is
plotted as a dot in R

2 plane. The right two plots illustrate the descriptor vectors wXi

and wYj .

configuration Xi. The descriptor will be measured in terms of vector norms to
determine if two contour points are matched, as shown in Section 3.

The orthonormal matrix Θi can be computed from the centerized configura-
tion matrix X̆i by fast numerical methods [8] like the QR factorization or the
Gram-Schmidt orthogonalization. Then the descriptor wXi is constructed by
the norms of row vectors of Θi. This pipeline is very simple and efficient. Fig. 1
illustrates the contour descriptor.

There are two remarks here. First, the similarity of two contour configura-
tions under affine transformation can be measured by a distance between two
subspaces [2] as well. This would be more robust, but also more time consuming
than the proposed vector of descriptor since more computations like the singular
value decomposition are required. Second, there may exist a reverse ordering of
contour points due to large degrees of in-plane rotation. In this case Eq. (2) does
not hold directly, and the reverse of point order should be taken into account.
For typical wide-baseline stereo imaging, the reverse of contour points is not
critical, so we omit its effect in this paper.

3 Contour Correspondence

The proposed affine invariant descriptor approximates the perspective transfor-
mations on a local segment of contour; this makes the descriptor suitable for
wide-baseline stereo. In this section we use the descriptor to match contour
points between two views. Then we use new global constraints such as grouping
and consistency to reject matching outliers.
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3.1 Initial Matching from Contour Descriptor

We assume in general that an image to be matched contains multiple contours Cα,
α = 1, 2, · · · , and another image also contains multiple contours Sβ , β = 1, 2, · · · .
The number of contours and the number of points on each contour can both be
different for the two images. We aim to establish a correspondence of points
between the two contour sets

∪C :=
⋃

α Cα, ∪S :=
⋃

β Sβ ,

i.e., look for a point mapping f : ∪C → ∪S.
For each point xi ∈ Cα ⊂ ∪C we pick up n points (typically n = 31) in its

neighborhood along the contour Cα to form a local configuration Xi ∈ Rn×2, then
compute the local descriptor wXi ∈ R

n. Similarly, for each point yj ∈ Sβ ⊂ ∪S
we compute its descriptor wYj ∈ Rn. To determine if the two points xi and yj

would be matched to each other, we use the following simple measure

γ(xi,yj) = ‖wXi −wYj‖1, (6)

where ‖·‖1 denotes the 1-norm of vector. Given the matching measures γ(xi,yj)
between all pairs of contour points, we initially construct a mapping f̄ : ∪C →
∪S by the following set of ordered pairs:

f̄ = {〈xi,yj〉 ∈ ∪C × ∪S : γ(xi,yj) < εa}, (7)

where εa > 0 is a constant representing the tolerant threshold of measure costs.
This initial mapping f̄ is an augmented mapping, which may be a many-to-many
correspondence. An ideal correspondence should be one-to-one, so we require
further steps to reject outliers.

3.2 Refined Matching Using Global Constraints

For point-based matching of wide-baseline stereo, the epipolar is a mainly used
global constraint. For contour-based matching, however, more global constraints
are available. This is one of the reasons why contour-based stereo could out-
perform the point-based. We shall use the constraints of grouping, ordering and
consistency to cooperate with the epipolar for refined matching.

The grouping constraint is important, since a contour is naturally a group of
points. We state the grouping constraint as: Corresponding points should belong
to corresponding contours (groups). The initially matched points in Section 3.1
may belong to unrelated contours; we expect that a pair of corresponding con-
tours would have larger number of matched points than a pair of unrelated
contours. Thus we assume that a pair of contours owning larger number of ini-
tially matched points has a higher probability to be corresponding contours, and
the point matchings between them are more likely to be inlier matchings, see
Fig. 2 for an illustration of this constraint.
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Fig. 2. Illustrating global constraints for contour matching. This figure simulates the
initial matching result of Section 3.1. The grouping constraint indicates that the con-
tour C1 is more probably to match S1 and S2, but less probably to match S3; C2 is more
likely to match S3, and C3 to S4. The ordering constraint indicates that the matching
points between C3 and S4 contain outliers, since their matching orders are different.

We now formulate the grouping constraint in a simple way, so as to determine
a mapping f ′ : ∪C → ∪S from the initial mapping f̄ as

f ′ = {〈xi,yj〉 ∈ f̄ : 〈xi,yj〉 ∈ Cα × Sβ , card(Cα × Sβ) > εg}, (8)

where card(Cα × Sβ) denotes the cardinal number of the set Cα × Sβ , i.e.,
the number of matching pairs 〈xi,yj〉 between the contours Cα and Sβ . The
constant εg gives a threshold for the enough number of point matchings a pair of
contours should own to become the corresponding contours. The mapping f ′ is
thus resulted from rejecting outliers which do not satisfy the grouping constraint.

The ordering constraint means that matched points on contours should be
ordered. If there is a matched point that does not follow the order of most
other points, it has a higher probability to be an outlier. Fig. 2 also illustrates
the ordering constraint. In experiments we find that this ordering constraint
along one contour is less important than the grouping constraint among multiple
contours, so we omit more details to formulate this constraint here.

The consistency constraint states that local transformations of corresponding
contour points should be consistent with the global transformation of the entire
image. We shall use the local transformations computed from the n points of
local configurations to vote for a global transformation. A global transformation
between stereo views is typically a perspective. As an intermediate step of re-
jecting outliers, however, we only use the local transformations to vote a global
similarity transformation, and reject matching pairs whose local transformations
do not consistent with the voted transform. This process is similar to the Hough
transform commonly used in feature point matching.

We finally use the epipolar constraint. Since we have removed many outliers,
the total number of matched points and the number of outliers may both be
small relative to the initial matches. We thus use the deterministic parameter
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estimation approach of constrained fundamental numerical scheme (CFNS) [4]
to estimate the fundamental matrix between stereo views and reject outliers; this
is slightly different from the widely used RANSAC-like schemes. More details of
CFNS are given in [4] and we omit them for conciseness.

In the finally obtained correspondence mapping f : ∪C → ∪S, if most of
the matched points locate on silhouettes of objects between different views, and
the silhouettes are not physically correspond to each other due to the viewpoint
change, then the outlier rejection process may fail to remove these matches.
This is a limitation of the contour-based approach; we shall illustrate it using
experiments in the next section.

It has to explain that because of the length limit of the article, detailed mathe-
matical explanation of the new constraints such as ”ordering” and ”consistency”
is not given in this paper and will be presented in an extended work. The pa-
rameters used in the constraints and in the descriptor (such as the point number
n = 31) are empirical and applicable to many experiments.

4 Experiments

We perform experiments in this section to demonstrate the performance of the
proposed method and compare it with existing algorithms. The image data used
in the experiments are divided into two parts: most are real-world images shot by
us and others are standard test data in the community. The algorithm is imple-
mented using Matlab. Contours should be extracted before using the proposed
algorithm, but the contour detection algorithm does not be restricted. One can
use the state-of-the-art edge detectors, such as those from Berkeley [13] or from
Donoser et al. [5]. We generally use the latter due to the tradeoff between accu-
racy and speed. Contours can also be extracted from (closed) region boundaries
by image segmentation algorithms, such as the graph-based segmentation [7] and
the saliency driven segmentation [6]. The detected contours are typically inter-
polated using cubic spline to make them smoother for the matching purpose.

We first test the matching of interior contours of objects between stereo pairs.
Interior contours refer to the contours formed by textures or structures on object
surfaces, which are physically correspond between different views. The left part
of Fig. 3 shows that the stereo correspondence can be well established using our
algorithm to match interior contours of objects. The method of [5] is used to
detect contours, but some of them are failed to be detected. This is a major rea-
son why the number of matched contour points is relatively small. Next we test
the matching of exterior contours of thin objects. Exterior contours (silhouettes)
may be physically unrelated due to the change of view angles, but this effect is
minor for thin objects. The right part of Fig. 3 depicts that our scheme matches
well the points on silhouettes of thin objects, and the stereo correspondence is
less affected by the bias of these silhouettes.

If objects are large enough, their silhouettes might have significant change
between views. But using our affine invariant descriptor we cannot distinguish
between interior and exterior contours; both of them could be matched, as il-
lustrated in Fig. 4. In this test the images of carving have obvious silhouettes
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Fig. 3. Illustrating the matching of interior contours of objects (the left pair, images
are from [18]) and exterior contours of thin objects (the right pair). Matched contour
points are linked by the colored solid lines.

Fig. 4. Illustrating the matching of exterior contours (silhouettes). The blue points in
images are detected contour points. The left pair is the matching result without the
epipolar constraint. The right pair is the result after using the epipolar constraint;
some matched points on unrelated silhouettes are maintained as inliers.

and many points on them are matched. After using epipolar constraint, matched
points on the silhouettes cannot be fully removed; this may affect the estimated
fundamental matrix. If more physically unrelated points on silhouettes are se-
lected as inlier matchings, a wrong stereo estimation would be deduced. This is
a major limitation of the contour-based stereo matching method and we shall
improve it in further work.

The test images in the above figures are relatively simple. We now test real-
world images with more clutters and larger depth of field, as shown in Fig. 5.
We also compare our result with the SIFT-based stereo matching followed by
an outlier rejection using the RANSAC algorithm. The results show that the
SIFT-based matching is stable, but the number of detected and matched points
are very small for images with less textures, e.g., the stereo pair of cars in the
second row of Fig. 5. Our algorithm obtains larger number of matches as long
as there are enough number of detected contours; this results in more stable
and accurate estimation of fundamental matrices. Compared with point-based
stereo matching like the SIFT, another advantage of our method is that it is able
to match contour points of foreground objects within cluttered backgrounds. In
the bottom two rows of Fig. 5, the SIFT-based matching cannot distinguish
between foreground trees and their backgrounds, so it is difficult to recover the
depth disparity between them; while the proposed method accurately matches
contour points of both foreground and background, thus suitable for stereo views
with large depth of field.

The computational load of the entire pipeline of the algorithm is comparable
to the SIFT-based matching, but the dominant part of computational resources



250 Z. Wang and L. Wang

Fig. 5. Experimental results for real-world images. All the left pairs are the results
of SIFT-based stereo matching. All the right pairs are the results of the proposed
algorithm. Matched contour points are linked by the colored solid lines. The blue
contours of the top two and the bottom two rows of images are extracted using the
method of [5] and [6] respectively.

Table 1. Comparison of computational time (seconds)

Test sets Contour Descriptor Matching Total SIFT

Set 1 88.10 0.38 6.97 95.45 19.34

Set 2 10.96 0.25 5.28 16.49 26.27

is consumed by contour detection. We provide the test data of running times in
Table 1, where the time data of Set 1 is the average of experiments in the top two
rows of Fig. 5, and Set 2 is the average of experiments in the bottom two rows of
that figure. The times for contour detection, descriptor construction and contour
matching are listed in the first three columns; the total running times of our
algorithm and the SIFT-based algorithm are listed in the last two columns. We
expect that our algorithm can be improved if faster contour detection methods
are applied. For example, the edge detector running on GPU [3] would be helpful
to speed up the contour-based stereo matching.

In order to demonstrate more performance of our method, we test some stereo
images from the Middlebury data sets [1], as shown in Fig. 6. The data sets are
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Fig. 6. Experimental results for stereo images in [1]

mainly used to evaluate short-baseline dense stereo matching algorithms. Though
our contour-based algorithm only outputs sparse correspondence, it can be used
as an initial step toward some dense correspondence, especially in the case of
matching texture-less regions.

5 Conclusion

The proposed approach for wide-baseline stereo correspondence is based on the
affine invariant description of local contour configurations, which approximates
perspective transformations in stereo imaging. This contour-based method is
superior to point-based matching such as the SIFT because it can obtain larger
number of matches even for textureless objects, and accurately match contours
of foreground objects within cluttered backgrounds, so as to recover their diverse
depths. More global constraints for contour matching than the epipolar are also
proposed, including the grouping, ordering and consistency constraints. They
perform well for rejecting matching outliers.

A limitation of the proposed method is that it may generate matched points
on physically unrelated silhouettes of objects, which can disturb the stereo esti-
mation. The quality and speed of contour detectors affect the contour matching
results; but the proposed is a flexible framework which can cooperate with other
advanced contour detection methods. Improvements of the algorithm and de-
tailed comparisons with more existing methods will be done in future work.
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Abstract. Repeatability is widely used as an indicator of the performance of an 
image feature detector but, although useful, it does not convey all the 
information that is required to describe performance. This paper explores the 
spatial distribution of interest points as an alternative indicator of performance, 
presenting a metric that is shown to concur with visual assessments. This metric 
is then extended to provide a measure of complementarity for pairs of detectors. 
Several state-of-the-art detectors are assessed, both individually and in 
combination. It is found that Scale Invariant Feature Operator (SFOP) is 
dominant, both when used alone and in combination with other detectors.  

Keywords: Feature extraction, coverage, performance measure. 

1   Introduction 

The last decade has seen significant interest in the development of low-level vision 
techniques that are able to detect, describe and match image features [1,2,3,4,5,6]. 
The most popular of these algorithms operate in a way that makes them reasonably 
independent of geometric and photometric changes between the images being 
matched. Indubitably, the Scale Invariant Feature Transform (SIFT) [1] has been the 
operator of choice since its inception and has provided the impetus for the 
development of other techniques such as Speeded-Up Robust Features (SURF) [2] 
and Scale Invariant Feature Operator (SFOP) [6].  

One of the main driving factors in this area is the improvement of detector 
performance. Repeatability [7,8], the ability of a detector to identify the same image 
features in a sequence of images, is considered a key indicator of detector 
performance and is the most frequently-employed measure in the literature for 
evaluating the performance of feature detectors [5,8]. However, it has been 
emphasized that repeatability is not the only characteristic that guarantees 
performance in a particular vision application [5,9]; other attributes, such as 
efficiency and the density of detected features, are also important. It is desirable to be 
able to characterize the performance of a feature detector in several complementary 
ways rather than relying only on repeatability [5,10,11].       

One property that is crucial for the success of any feature detector is the spatial 
distribution of detected features, known as the coverage [10]. Many vision 
applications, such as tracking and narrow-baseline stereo, require a reasonably even 
distribution of detected interest points across an image to yield accurate results. 
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However, it is sometimes found that the features identified by detectors are 
concentrated on a prominent textured object, a small region of the image. Robustness 
to occlusion, accurate multi-view geometry estimation, accurate scene interpretation 
and better performance on blurred images are some of the important advantages of 
detectors whose features cover images well [10,11].   

Despite its significance, there is no standard metric for measuring the coverage of 
feature detectors [10]. An approach based on the convex hull is employed in [12] to 
measure the spatial distribution for evaluating feature detectors. However, a convex 
hull traces the boundary of interest points without considering their density, resulting 
in an over-estimation of coverage. In [13], a completeness measure is presented but 
requires more investigation due to its dependence upon the entropy coding scheme 
and Gaussian image model used, and may provide varying results with other coding 
schemes for different feature types.        

To fill this void, this paper presents a metric for measuring the spatial distribution 
of detector responses. It will be shown that the proposed measure is a reliable method 
for evaluating the performance of feature detectors. Since complementary feature 
detectors (i.e., combining detectors that identify different types of feature) are 
becoming more popular for vision tasks [14,15,16], it is important to have measures 
of complementarity for multiple feature detectors, so that their combined performance 
can be predicted and measured [5]. This paper shows how mutual coverage, the 
coverage of a combination of interest points from multiple detectors, can be used to 
measure complementarity. 

The rest of the paper is structured as follows: Section 2 describes the coverage 
measure, which is used to evaluate the performances of eleven state-of-the-art 
detectors on well-established data sets in Section 3. A complementarity measure 
derived from coverage, mutual coverage, is proposed in Section 4 and its 
effectiveness is demonstrated by results for combination of detectors. Finally, 
conclusions are presented in Section 5.    

2   Measuring Coverage 

There are several desiderata for a coverage measure:  

• differences in coverage should be consistent with performance differences obtained 
by visual inspection; 

• penalization of techniques that concentrate interest points in a small region; and 
• avoidance of overestimation by taking into account the density of feature points. 

The obvious way to estimate coverage is to calculate the mean Euclidean distance 
between feature points. However, different densities of feature points yield the same 
mean Euclidean distance. Conversely, the harmonic mean, which is widely used in 
data clustering algorithms [17], does penalize closely-spaced feature points, which 
augurs well for encapsulating their spatial distribution. Indeed, the harmonic mean is 
an inherently conservative approach for estimating the central tendency of a sample 
space, as:  

 

 , … , , … , , … , (1) 
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where A(.) is the arithmetic, G(.) the geometric and H(.) the harmonic mean of the 
sample set x1,…, xn, xi ≥ 0 ∀i.  

Formally, we assume that p1,…, pN are the N interest points detected by a feature 
detector in image I(x, y), where x and y are the spatial coordinates. Taking pi as a 
reference interest point, the Euclidean distance dij between pi and some other interest 
point pj is    

 

   (2)

 
providing i ≠ j. Computation of (2) provides N - 1 Euclidean distances for each 
reference interest point pi. The harmonic mean of dij is then calculated to obtain a 
mean distance Di, i = 1,… N with pi as reference: 

 1∑ 1,  (3) 

 
Since the choice of the reference interest point can affect the calculated Euclidean 
distance, this process is repeated using each interest point as reference in turn, 
resulting in a set of distances Di. Finally, the coverage of the feature detector is 
calculated as  

 

 ∑ 1  (4) 

 

Since multi-scale feature detectors may provide image features at exactly the same 
physical location but different scales, interest points that result in zero Euclidean 
distance in (2) are excluded from these calculations on the basis that they do not 
provide independent evidence of an interest point. 

In general, a large coverage value is desirable for a feature detector as a small 
value implies the concentration of interest points into a small region. However, the 
final coverage value obtained from (4) needs be considered against the dimensions of 
a specific image as the same coverage value may indicate good distribution for a 
small image but poor distribution for a large one.   

3   Performance Evaluation 

For the proposed coverage measure to have any value, its values need to be consistent 
with visual assessments of coverage across a range of feature detectors and a variety 
of images. To that end, this section presents a comparison of the coverage of eleven 
state-of-the-art feature detectors: SIFT (Difference-of-Gaussians), SURF (Fast 
Hessian), Harris-Laplace, Hessian-Laplace, Harris-Affine, Hessian-Affine, Edge-
based Regions (EBR), Intensity-based Regions (IBR), Salient Regions, Maximally 
Stable Extremal Regions (MSER) and Scale Invariant Feature Operator (SFOP) [5,6].  
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Although different parameters of a feature detector can be varied to yield more 
interest points, it has a negative effect on repeatability and performance [13]. 
Therefore, authors’ original binaries have been utilized, with parameters set to values 
recommended by them, and the results presented were obtained with the widely-used 
Oxford datasets [18]. The parameter settings and the datasets used make our results a 
direct complement to existing evaluations. 

To demonstrate the effectiveness of this coverage measure, first consider the case 
of Leuven dataset [18] in Fig. 1. It is evident that SFOP outperforms the other 
detectors, where as values for EBR, Harris-Laplace and Harris-Affine indicate a poor 
spatial distribution of interest points. To back up these results, the actual distribution 
of detector responses for SFOP, IBR, Harris-Laplace and EBR for image 1 of the 
Leuven dataset are presented in Fig. 2. Visual inspection of these distributions is 
consistent with the coverage results of Fig. 1. 

The coverage values obtained for Boat dataset [18] are presented in Fig. 3. Again, 
the performance of well-established techniques like SIFT and SURF is eclipsed by 
SFOP, a relatively new entrant in this domain. Other popular methods, such as Harris-
Laplace, Harris-Affine, Hessian-Affine and EBR, again fare poorly. In addition, the 
curves depicted in Fig. 1 and 3 also exemplify the effects of illumination changes 
(Leuven) and zoom and rotation (Boat) on coverage. 

A summary of the mean results obtained with all these feature detectors for the 
remaining datasets [18] is presented in Table 1. It is clear that SFOP achieves much 
better coverage than the other feature detectors for almost all datasets under various 
geometric and photometric transformations. 

 

 

Fig. 1. Coverage results for Leuven dataset [18] 

To exemplify the impact of these results on real-world applications, consider the 
task of homography estimation for the Leuven dataset. The mean error was computed 
between the positions of points projected from one image to the other, using a 



 Measuring the Coverage of Interest Point Detectors 257 

‘ground-truth’ homography from [18], and a homography  determined using the 
above detectors. SFOP performed the best, with a mean error of 0.245, where as EBR 
achieved a poor value of 3.672, consistent with the results shown in Fig. 1 and 2. In 
addition, we refer the reader to [11] that explains the significance of coverage of 
interest points (including those that cannot be matched accurately) for the task of 
scene interpretation. The proposed measure seems a viable method for determining 
coverage for such applications.  

 

 

Fig. 2. Actual detector responses for image 1 of Leuven dataset [18]. From left to right:  EBR, 
SFOP, IBR and Harris-Laplace. 

 

Fig. 3. Coverage results for the Boat dataset [18] 
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Table 1. Coverage results for state-of-the-art feature detectors  

 Bark Bikes Graffiti Trees UBC Wall 
SIFT(DoG) 190.3 207.8 221.0 263.4 204.2 253.5 
SURF(FH) 195.8 228.1 221.9 265.4 205.4 246.6 
Harris-Lap 122.9 136.5 181.2 230.2 154.5 213.7 

Hessian-Lap 120.0 154.5 199.2 234.2 154.9 208.6 
Harris-Aff 122.8 136.0 181.0 229.9 153.8 212.8 

Hessian-Aff 119.9 148.9 191.0 233.0 153.5 208.2 
Salient Regions 190.6 258.7 218.0 256.4 201.5 236.4 

EBR 139.2 138.3 166.4 214.3 119.0 204.4 
IBR 192.3 214.7 209.7 255.5 198.4 243.8 

MSER 179.6 86.4 200.3 229.6 200.6 248.3 
SFOP 204.4 246.3 228.7 270.3 213.8 256.5 

4   Mutual Coverage for Measuring Complementarity 

Since the utilization of combinations of feature detectors is an emerging trend in local 
feature detection [5], this section proposes a new measure based on coverage to 
estimate how well these detectors complement one another. In addition to the 
principles mentioned in Section 2, the objective here is to penalize techniques that 
detect several interest points in a small region of an image. If detector A and detector 
B detect most feature points at same physical locations, they should have a low 
complementarity score. Conversely, a high score should be achieved if detector A and 
detector B detect most features at widely-spaced physical locations, indicating that 
they complement each other well. Again, a metric utilizing the harmonic mean seems 
a promising solution to achieve the required goal.  

Formally, let us consider an image I(x, y), where x and y are the spatial coordinates, 
being operated on by M feature detectors F1, F2,…, FM, so that Pz = {Pz1, Pz2,…PzN} is 
the set of N feature points detected by Fz. We then define 

 

 (5) 
 

as the set of feature points detected in image I(x, y) by Fz and Fk. The coverage is then 
calculated as described in Section 2 using Pzk; as that includes points detected by both 
Fz and Fk, we denote it as the mutual coverage of Fz and Fk for image I(x, y). 
Although this paper confines itself to combinations of two detectors, this notion of 
mutual coverage can be extended to more than two by simply combining their feature 
points in (5). 

Mutual coverage has been applied to combinations of the detectors examined in the 
previous section. Inspired by [13], they can be categorized into four major classes, 
shown in Table 2. For the purpose of this work, we confine ourselves to combinations 
of two detectors selected from two different categories; for example, SIFT is 
combined with EBR but not with SURF as they both detect blobs in a given image.  

Fig. 4, 5 and 6 depict the average image coverage for SFOP, EBR and MSER when 
grouped with detectors from other categories for all 48 images of the Oxford datasets 
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[18]. Interestingly, these results are consistent with the completeness results presented 
in [13]. Detectors from other categories perform well when combined with SFOP. 
The best results are achieved by grouping SFOP with a segmentation-based detector. 
A corner detector combined with a blob detector (except Hessian-Laplace and 
Hessian-Affine) yields good coverage. Segmentation-based detectors, however, do 
not seem to work well with corner detectors. 

 

 

Fig. 4. Mutual coverage of SFOP in combination with other detectors  

 

Fig. 5. Mutual coverage of EBR in combination with other detectors 

Table 2. A taxonomy of state-of-the-art feature detectors  

Category Type Detectors 

1. Blob detectors SIFT, SURF, Hessian-Laplace, 
Hessian-Affine, Salient Regions 

2. Spiral detectors Scale Invariant Feature Operator 
3. Corner detectors EBR, Harris-Laplace, Harris-Affine 
4. Segmentation-based detectors MSER, Intensity-based Regions  

1 
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Fig. 6. Mutual coverage of MSER in combination with other detectors 

5   Conclusions 

The performance of any image feature detector is dependent upon a number of 
different characteristics and one such property is coverage. This paper has proposed a 
coverage measure that produces results consistent with visual inspection. 
Furthermore, the mutual coverage of several feature detectors can be obtained simply 
by concatenating the feature points they detect and calculating the coverage of the 
combination. This gives us a rapid, principled way of determining whether 
combinations of interest point detectors will be complementary without having to 
undertake extensive evaluation studies; indeed, calculation is so rapid that one can 
consider using it online in an intelligent detector that adds features from other 
detectors in order to ensure that coverage, and hence accuracy of subsequent 
processing, is good enough.  

An examination of the coverages of a range of state-of-the-art detectors identifies 
SFOP as the outstanding detector, both individually and when used in combination 
with other detectors. 
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Abstract. Image retargeting is the process of adapting an existing image to 
display with arbitrary sizes and aspect ratios. A compelling retargeting method 
aims at preserving the viewers’ experience by maintaining the significant 
regions in the image. In this paper, we present a novel image retargeting method 
based on non-uniform mesh warping, which can effectively preserve both the 
significant regions and the global configuration of the image. The main idea of 
our method is sampling mesh vertices based on the saliency map, that is to say, 
we place mesh vertices more densely in the significant regions, defining 
different quadratic error metrics to measure image distortion and adopting a 
patch-linking scheme that can better preserve the global visual effect of the 
entire image. Moreover, to increase efficiency, we formulate the image 
retargeting as a quadratic minimization problem carried out by solving linear 
systems. Our experimental results verify its effectiveness. 

Keywords: Image retargeting, sampling mesh vertices, non-uniform mesh 
warping, patch-linking scheme. 

1   Introduction 

With the proliferation of display devices, such as television, notebooks, PDAs and 
cell phones, adjusting an image to heterogeneous devices with different sizes and 
aspect ratios is becoming more attractive. The critical problem for image retargeting 
is how to retarget the image effectively and to prevent the prominent object of the 
image from distorting. To address this problem, a large amount of effort has been 
spent on image retargeting. 

Previous approaches mainly include cropping and scaling images. Cropping is to 
crop the input image and get a cropping with the same aspect ratio as the target 
display. These methods inevitably discard too much information. Scaling can be 
performed in real-time and can preserve the global configuration. However, scaling 
image to arbitrary aspect ratios either stretch or squash the significant regions. 

Seam carving [1, 3] is an efficient technique for content-aware image resizing, 
which works by greedily carving out or inserting one-dimensional seams passing 
through unimportant regions. The drawback of this method is that the global 
configuration of an image may be severely damaged due to the energy-based strategy  
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Fig. 1. An example of retargeting:  input size is 400x320 and target size is 200x200. The results 
are computed using scaling, seam carving [1], optimal scale-and-stretch [4] and our method 
respectively. 

of the algorithm that always removes the seams containing or removing low energy 
until the desired image size is achieved. Besides, because the method adopts dynamic 
programming for seam searching, the computational speed is low. 

Wang et al. [4] provided an optimized scale-and-stretch warping method for image 
resizing using a quad-mesh, which attempts to ensure that important quads have 
homogeneous scaling while minimizing bending of grid line. This method distributes 
the distortion in all spatial directions. Compared to early image warping approaches, 
it better utilizes the available homogeneous regions to absorb the distortion. However, 
this method is lack of large scale feature preservation because a salient object 
occupies many quads but each quad has a locally acceptable homogeneous scaling. 

In this paper, we propose a novel content-aware image retargeting method that 
automatic samples mesh vertices based on the saliency and designs quadratic error 
metrics over the mesh to measure different image distortion and adopt patch-linking 
scheme [15] which apply constraints to neighboring meshes with similar significance 
to link image patches together. By using our method, the distortion is better diffused 
and the global configuration is better preserved, as shown in Fig.1. 

Firstly, we calculate the saliency map of an image combining the graph-based 
visual saliency and face information, and then sample mesh vertices based the 
saliency map, finally compute the error distortion metrics using this spatially varying 
importance. In this way, the retargeting problem is formulated as a quadratic 
minimization problem that can be solved using linear system. Finally, we render the 
final result using texture mapping [7]. 

Our main contributions are as follows:  

• We propose a novel saliency-driven approach to automatic sample the non-uniform 
mesh. 

• A patch distance measure between two neighbor mesh which is used when 
calculating the mesh-link scheme. 

2   Related Work 

Image retargeting is a standard tool in many image processing applications. Recently, 
many methods have appeared in the literature for retargeting images to displays with  
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different resolutions and aspect ratios. Traditional methods just work by uniformly 
resizing the image to a target size without taking the image content into account, 
equally propagating the distortion throughout the entire image and noticeably 
squeezing salient objects. To solve this problem, many approaches attempt to remove 
the unimportant information from the image periphery [8, 12]. Based on a face 
detection technique [14] and a saliency measure [9], the image is cropped to fit the 
target aspect ratio and then uniformly resized by traditional interpolation. More 
sophisticated cropping methods usually require human intervention to create an 
optimal window for the most appropriate portion of the scene. These methods work 
well for some special applications. However, cropping methods may potentially 
remove significant objects next to the image boundary, especially when the output 
resolution is lower than the input resolution. 

Recently proposed retargeting methods try to preserve the prominent object while 
reducing or removing other image content. Seam carving methods [1, 3, 10] reduce or 
expand monotonic 1D seam of pixels that run roughly in the orthogonal direction in a 
certain direction. To reduce artifacts, they search for minimal-cost seams that pass 
through homogeneous regions by calculating their forward [1] or backward energy 
[3]. These methods can produce very impressive results, but may deform prominent 
object when the homogeneous information in the required spatial direction runs out, 
especially structural object. Moreover, the global configuration may also be damaged 
in the output. 

Image warping [2, 4, 5, 6, 11, 15, 18] provides a continuous solution to image 
retargeting. To reduce the output distortion, the warping functions are generally 
acquired by a global optimization that squeezes or stretches homogeneous regions. 
Gal et al. [11] warp an image into various shapes, enforcing the user specified 
features to undergo similarity transformations that employ a simple heuristic to 
determine the scaling of the marked features. Wolf et al. [2] and Wang et al. [5] 
automatically determine the significance of each pixel and merge of the pixels of 
lesser importance in the reduction direction. Wang et al. [4] propose a “scale-and-
stretch” warping method that is iteratively updates a warped image that matches 
optimal local scaling factors, but because the distortion is distributed in all spatial 
directions, some objects may be excessively distorted, damaged the global 
configuration of the original image. Zhang et al. [6] estimate a nonlinear warping by 
minimizing a quadratic distortion energy function defined over a set of control points, 
including the vertices of a regular mesh grid and a lot of selected edge points, and are 
grouped into small local groups called handles, which are warped using a linear 
similarity transformation. Wang et al. [13] calculated the mesh similarity invariance 
of local region based on triangle similarity, constructed a quadratic energy to measure 
the similarity error of each local region and finally obtained by minimizing the energy 
function sum with salience as weight, which can preserve the shape of the local 
prominent regions. Niu et al[15] defined a variety of quadratic metrics to measure 
image distortion, introduced a patch-linking scheme, designed different strategies for 
upsizing and downsizing and formulated image resizing as a quadratic minimization 
problem, this method performs impressively and can effectively preserve the shape of 
the important objects and the global configuration of the image. 
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3   Image Retargeting Using Non-uniform Mesh 

We offer an image retargeting method that constructs the non-uniform mesh of the 
original image and calculates the target mesh position with minimum quadratic 
distortion by solving a linear optimization problem.  

We calculate a significance map and spread the distortion according to significant 
value of each patch, like the previous method [4, 15]. The significance map is 
composed of edge energy, graph-based visual saliency [17] and face detection 
information [14]. To keep the global visual effect, we measure not only the distortion 
of each image mesh, but also that between neighboring image grid mesh that satisfy a 
certain condition. Quadratic metrics [15] are designed to measure image distortion in 
different types. 

We first calculate the significance map of an image, then represent the image as a 
mesh  with vertices V, edges E and quad faces F, where 

 denotes the initial vertex coordinates. V and E form 

horizontal and vertical grid lines partitioning the image into F. We solve the problem 

of finding a new mesh with minimal distortion. The mesh is 

constructed based on the significance map, that is to say, the square of the mesh is 
less (more densely) in important region and is greater in unimportant region. 

In the following subsections, firstly, we describe calculating significance map, 
secondly we describe how to construct the non-uniform mesh and then we give the 
measure metrics on different distortion of the mesh and solve the distortion energy 
minimization problem. 

3.1   Significance Calculation 

It is important to get accurate significance map of image for understanding the image 
content. We present a new method to compute the significance map. Firstly, we 
compute saliency map by adopting GBVS [17] which is a new bottom-up visual 
saliency model based a simple, biologically plausible, and distributed computation. 
Compared with Itti’s [9], this method can differentiate the important region and 
prominent objects, but the boundary is fuzzy which may lead to damage the important 
regions, as shown in Fig.2. To enhance the boundary information, we introduce the 
edge energy into the significance map. We extract the edge information by using 
canny operator.  

We also want to prevent the faces from distorting, because people are very 
sensitive to the distortion of faces. So we add face information to our significance 
map. Currently, we use the Viola and Jones face detection mechanism [14]. The 
detector returns a list of detected faces, and then we adapt the cubic function [2] to 
compute the weight of each detected face, as shown in Fig.2 (e). 

Finally, we obtain the final significance map by combining the saliency map, edge 
energy and face information as follows: 

                              (1) 

where S(x, y) denotes the significance value that is at pixel(x, y) in the original image, 
Ss(x, y) is the saliency value, Se(x, y) is the edge energy and SF(x, y) is the face 
saliency value. 
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Fig. 2. An example of computing significance map: (a) original image;(b) Itti’s[9] saliency 
map;(c)gbvs [17] saliency map;(d)edge information computing by canny operator;(e) face 
information detected by[16];(f) the final significance map;(g)the significance map for 
constructing the mesh;(h)the binary image of the significance map, p=0.75 

3.2    Grid Mesh Construction 

The finer is the mesh, the less distortion is the quad. We present a novel method to 
construct the mesh based on the significance value of each pixel. We first obtain the 
significance value for constructing the mesh by combining the saliency map Ss(x, y) 
and the face information SF(x, y), and then binary the significance map image as 
shown in Fig.2(h). The function is as follows: 

                  (2) 

where Sb(x, y) denotes the binary value of each pixel, St is the threshold value, m and 
n is the size of the original image, and p is the percent factor to compute the threshold 
value. The greater is the p, the more coverage is the important region. 

We construct the mesh based on the binary image. Firstly, we compute the mesh 
vertices in the y direction , and then calculate the mesh 

vertices in the x direction  on the basis of Vy. We 

compute Vy just in the first column. The procedure is as follow: 

1. Set the size of the largest mesh GX0 and GY0, and denote the largest patch as M. 
2. Construct the position of the ith vertice in the y direction, denoted as vyi.  Firstly, we 

compute the average value of the significance value inside the ith mesh M, denoted 
as SQi, if SQi is less than the constraint value, presented as ( =0.1), we set 

, otherwise . 

3. Compute the position of the vertices similar to 2 until the position of the vertice is 
the height of the image. 
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After we get the Vy, we then compute the Vx similar to computing the Vy, but we 
will compute all the rows. The functions are as follows: 

           (3) 

              (4) 

where cx and cy are the ratio of sampling the vertices in the x and y direction 
respectively. SQ (i, j) presents the quad significance value of the quad in the ith row and 
the jth column. 

 

Fig. 3. The relationship between mesh F and its four neighboring meshes: (a) F and the right 
neighboring mesh M4, (b) F and the right bottom mesh M5, (c) F and the bottom mesh M6, (d) F 
and the left bottom mesh M7 

3.3   Distortion Metrics 

Different quadratic metrics, including shape, orientation and scale distortion, are 
defined to measure different image distortion on the mesh. And then an optimization 
problem is solved to retarget image with minimum visual distortion. To prevent the 
shape from distorting, we make each image mesh to undergo only similarity 
transformation. Because we are sensitive to the orientation of the important content, 
we expect preserving the orientation with the minimum distortion. Moreover, we hope 
the important object to undergo a uniform scaling, and the scaling factor is 
determined based on the source and target image size. 

Because an individual image mesh cannot keep the overall image configuration well 
[15], we adopt constraints to every two neighboring meshes with similar significance 
to link image meshes together, which can effectively keep the global configuration. 

The objective function, measuring the shape, orientation and scale distortion, is 
discussed in [15], which computes all the patch-neighboring and works well, but it is 
at the expense of time. Therefore, we think that it is sufficient for keeping the entire 
important region to compute the two neighboring patches with similar energy, which 
can save a large amount of time. 
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3.3.1   Shape Distortion 
The single shape distortion associated with mesh F {v1, v2, v3, v4} is: 

                   (5) 

where Sm is the sum of the significance value inside the mesh F{v1,v2,v3,v4} 
Niu et al. [15] encourage the eight neighboring patches to undergo the same 

transformation as itself for each mesh F{v1,v2,v3,v4} in F. This process consumes a 
large amount of time, so we encourage the neighboring meshes with similar 
importance values to undergo the same transformation. The neighboring relationship 
between two patches is symmetric, for example, M5 is a neighbor of F{v1,v2,v3,v4} and 
F{v1,v2,v3,v4} is also a neighbor of M5; we only consider the four neighboring meshes 
of mesh F{v1,v2,v3,v4}, M4, M5, M6 and M7, as shown in Fig.3. Firstly, we measure the 
similarity between the two neighboring patches, and then determine whether or not 
adopt the objective function terms to measure the shape distortion for every patch 
link. 

                  (6) 

where ESL{v1,v2,v3,v4}presents the shape distortion of the patch link, d denotes the 
maximum similarity difference. We don’t apply patch-linking scheme to the 
neighboring patches whose similarity difference are bigger than d. SF , SM4, SM5, SM6 
and SM7 denote the significance value of the quad mesh F, M4, M5, M6 and M7 
respectively. ESL4, ESL5, ESL6 and ESL7 are calculated by using the function terms in [15]. 

3.3.2   Orientation Distortion 
Orientation distortion is another distortion that disturbs the visual effect. The single 
orientation distortion associated with quad F {v1, v2, v3, v4} is: 

                    (7) 

where Sm is the sum of the significance value inside the mesh F{v1,v2,v3,v4}, EOH and 
EOV are the difference of two end points of the horizontal lines at vertical direction 
and the difference of two end points of the vertical lines at horizontal direction 
respectively, adapting the function terms of [15]. 

To avoid orientation distortion, we also adopt orientation links. Similar to shape 
links distortion, we only consider the four neighboring meshes of mesh F {v1, v2, v3, 
v4}, M3, M4, M5 and M7. The function is as follow: 

                (8) 
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where EOL{v1,v2,v3,v4}presents the orientation distortion of the patch link. EOL4, EOL5, 
EOL6 and EOL7 are calculated by using the function terms in [15]. 

3.3.3   Scale Grid Line Distortion 
There are three methods to compute the optimal scaling factor. Wang et al. [4] 
computed optical local scaling factor for each local region which scales different parts 
of an image differently and may change the proportions among diffract pats. 
Krähenbühl et al. [16] computed one global scaling factor. Niu et al. [15] computed 
the scaling factor by combining [16] and using different strategies to calculate the 
scaling factor for upsizing and downsizing. The idea of this method is computing 
optimal scaling factor by obtaining the minimal factor between wt/ws and ht/hs for 
upsizing and using the maximal factor between wt/ws and ht/hs for downsizing. We 
adopt the method [15]. 

After getting the scaling factor, we change the metrics from [2] to measure the 
scale distortion as follows: 

              (9) 

where EL{v1,v2,v3,v4} denotes the scale distortion of the single mesh F, ELH and ELV 
present the horizontal and vertical scale distortion measure respectively, wf and hf are 
the width and height of the mesh F, s0 is the scaling factor calculated by using [15]. 

Similar to the shape link and orientation link distortion, we apply constraints on 
scale links to keep the scale of the entire image information. The formulation of the 
measure metric is: 

(10) 

  (11) 

3.3.4   Boundary Constraints and Total Distortion 
To preserve the completeness of the entire image, the boundary vertices of the target 
image are the ones of the original image. Suppose that the resolution of the original is 
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w*h and the resolution of the output image is w’*h’, the boundary constraints are as 
follows: 

 

Base on the distortion measures defined above, we get the total distortion by 
combining all these distortion as following: 

                    (12) 

where ps, po, pL, pSL, pOL and pLL are the weight of single shape distortion, single 
orientation distortion, single scale distortion, shape link distortion, orientation link 
distortion and scale link distortion. We can transfer the different concern by change 
these weights. 

4   Results and Discussion 

We have implemented and tested our image retargeting method with matlab and C++ 
on a PC with 2.33 GHz Dual Core CPU and 2GB of memory. Our method is 
efficient because we formulate the minimization of total distortion as a linear system.  
 

 

Fig. 4. An example that different factor value affects the result of constructing the mesh: (a) 
original image with 350*400; (b) constructing the mesh using GX0=GY0=20, cx=cy=0.4, p=0.6; 
(c) constructing the mesh using GX0=GY0=20, cx=cy=0.4, p=0.9; (d)constructing the mesh using 
GX0=GY0=20, cx=cy=0.5, p=0.9; (e)constructing the mesh using GX0=GY0=16, cx=cy=0.5, 
p=0.9; in(b, c, d, e) , the first column is the mesh of the original image, the middle column is 
the mesh of the retargeted image, the right column is the targeted image 
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Fig. 5. Comparison of our results with those of scaling, seam carving (SC) [1] and optimal 
scale-and stretch (OSS) [4]. The results of scaling, OSS [4] and our method tend to be smoother 
than those of seam carving. Notice the discontinuities in the ship, people, flowers, house and 
tower, which are caused by the pixels being removed. Compared with scaling and OSS [4], our 
method can preserve the aspect ratios of prominent features better. 
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Fig. 6. Comparison of our results with those of scaling, SC[1],OSS[4] and Niu[15].The results 
of scaling, OSS[4], Niu[15] and our method tend to be smoother than those of seam carving. 
Notice the discontinuities in the chest and the house roof and wall, which are due to the pixels 
being directly removed. Compared with scaling, OSS [4], Niu[15], our method can preserve the 
aspect ratios of prominent features better. 

The computational cost relies on the parameter setting of the initialization and the 
factor, including p, GX0, GY0, cx and cy. The greater is p, the less is the range of the 
significant regions. The greater are GX0 and GY0, the coarser are the meshes. The 
smaller are cx and cy, the finer are the meshes of the significant regions. We show 
these effects in Fig.4, but these effects are muted. In our experiments, we set p=0.6, 
GX0=20, GY0=20, cx=0.4, cy=0.4. 

In Fig.5, we compare some results of homogeneous resizing, the seam carving 
(SC) [1] as implemented in Photoshop CS4, the optimized scale-and-stretch image 
resizing method (OSS) [4] and our method. It can be observed that the results of 
scaling, OSS [4] and our method produce smooth results, while seam carving produce 
noticeable discontinuity, especially in images containing structural objects. For 
example, the ship, people, tower, flowers, house since the pixels are directly removed. 
Comparing with the results of scaling and OSS [4], our method can preserve the 
aspect ratios of prominent objects. In Fig.6, we compare our results with Niu’s [15]. 
We can see that our results preserve the important regions better, for example, the 
house roof is distortion in Niu [15], while it is straight in our result; the aspect ratio of 
the chest on the girl is changed, while preserved in our result. 

5   Conclusion 

In this paper, we present a novel image retargeting method based on non-uniform 
mesh warping, which adopts the different quadratic error metrics to minimize 
different distortion of the important regions and adapts the patch-linking scheme to 
apply constraints to the neighboring patches. Our method can preserve both the 
important regions and the global effect effectively. Moreover, since we link the 
neighboring meshes which are similar with each other, we save a large amount of 
time and increase efficiency. The experiment results show its effectiveness. Besides, 
our image retargeting method can be extended to process video by adding continuity 
constraint between adjacent frames and adding the motion information to the 
significance map. 
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Moving Edge Segment Matching for the

Detection of Moving Object

Mahbub Murshed, Adin Ramirez, and Oksam Chae

Kyung Hee University, Yongin-si, Gyeonggi-do 446-701,
Republic of Korea

Abstract. We propose a segment based moving edge detection algo-
rithm by building association from multi-frames of the scene. A statis-
tical background model is used to segregate the moving segments that
utilize shape and position information. Edge specific knowledge depend-
ing upon background environment is computed and thresholds are de-
termined automatically. Statistical background model gives flexibility for
matching background edges. Building association within the moving seg-
ments of multi-frame enhances the detection procedure by suppressing
noisy detection of flickering segments that occurs frequently due to noise,
illumination variation and reflectance in the scene. The representation of
edge as edge segment allows us to incorporate this knowledge about the
background environment. Experiments with noisy images under vary-
ing illumination changing situation demonstrates the robustness of the
proposed method in comparison with existing edge pixel based moving
object detection methods.

Keywords: Edge Segment, Moving Object Detection, Multi-frame
based Edge matching, Statistical Background Model.

1 Introduction

The detection of moving object has been studied extensively due to the increas-
ing demand in vision based applications like robotics, security, data compression,
activity recognition system etc. Due to the simplicity of the detection procedure,
background subtraction method for the detection of moving object has gained
popularity. Here, current image is subtracted form the background image with
a threshold. The automatic selection of this threshold value is very hard due to
the nature of the application. Detecting moving object becomes more challeng-
ing where there are motion variations in the background. Moreover, a sudden
noise spike or change in illumination or reflectance from other objects can have
dramatic effect over the detection performance of a system. A comprehensive
literature review on various moving object detection techniques can be found
in [12] and [9]. There are two types of moving object detection approaches: the
region based approach and the feature based approach. In the region based ap-
proach every pixel in the background is modeled. This is very sensitive since the
intensity feature is very prone to illumination change. On the other hand, feature
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based methods like edge, contour, curvature, corner, etc. tries to improve per-
formance by utilizing feature strength, since features are less sensitive to illumi-
nation changing situation [12]. Among other feature based methods, edge based
methods are popular since edge is more robust in the illumination change. Exist-
ing edge based moving object detection methods use edge differencing [11]. Kim
and Hwang’s method [10] uses edge pixel differencing algorithm using a static
background. Thus the method gives scattered noise and cannot handle dynamic
background. Dailey’s method [5] computes background independent moving ob-
ject by utilizing sequence image. But the method makes exact matching between
edge pixels in consecutive frames. Thus the method brings out noise moreover
it fails to detect slowly moving objects. Traditional edge based approaches also
suffer from edge flickering. Edges flickers due to illumination variation, random
noise, and reflectance from other objects. These flickering edge segments are not
true moving edges. To cope with this difficulties, authors [13], tries to eliminate
irrelevant edges by only selecting boundary edges. To solve edge inconsistency
problems and to find object contour, authors used a multi-level canny edge map
which is computationally very expensive. Even if they use multi-level canny edge
map, to find a closed contour they needs to access image pixels directly, which
is very noise sensitive. Edge segment based approach introduced by Hossain et
al. [8], uses same chamfer [3] distance based matching method for both fore-
ground and background edge segment. Since the characteristics of background
edge segment are different from foreground edge segment, it is not suitable to use
a common distance threshold for them. Moreover, their method cannot handle
flickering edges that comes randomly due to the illumination reflectance of the
other objects in the scene. We follow the approach proposed by Hossain et al.
[8], but we have a separate evaluation technique for matching background edge
and moving object edge. We use a statistical background model for matching
every background edge segment separately as the motion variation of every back-
ground segment is not the same. Moreover, to overcome the problem of random
flickering edges from the detected moving edges, we have used multi-frame based
segment matching approach.

In the proposed method, edges from video frames are extracted using canny
edge detector [4] and then we represent these edges as a structure of edge seg-
ments [1]. Here, a group of edge pixels form an edge segment and are processed
together. An statistical background model adapts the motion variation of the
background. Edge matching in multi-frame handles random flickering edges that
evolve from the illumination reflectance of different objects by building associa-
tions within frames.

2 The Multi-frame Based Moving Edge Detection

The proposed method includes detection and verification of moving edge seg-
ments using a statistical background model for every input frame followed by
building association within frames by matching detected moving edge segments.

For the detection of moving edge segments from a single frame, the system
maintains two reference edge lists and a moving edge list. Static Background
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Edge List (SBEL) is the first reference edge list that is generated by accumulat-
ing a number of training background edge image frames followed by thinning.
Temporary Background Edge List (TBEL) is the other reference edge list. SBEL
is a static list that is not updated but TBEL is updated at every frame. Moving
Edge List (MEL) is made from the moving edges detected at current frame. Each
edge segment in these lists has position, size and shape information. Moreover,
TBEL edge segments have weight value with them.

Once moving edges are determined using a single input frame It, for every
moving segment in that frame, we search for a matched correspondence with
frame It−1. If the corresponding moving segment match is found within a dis-
tance threshold τd, the segment is placed in the output moving edge segment
list for the frame It. The reason for this multi-frame match is straight forward;
background model can eliminate background edges and edges from a stopped
moving object from the scene but background model cannot handle flickering
edges that comes occasionally by the illumination reflectance from background
object or moving object. If an edge segment is true moving edge segment, it is
more likely to come in consecutive frames where the flickering edges will not.
The proposed moving edge detection method is given in Fig. 1.

Fig. 1. The proposed moving edge detection method

2.1 The Statistical Background Model

Edges change their size and position within frames due to illumination change
and noise. The amount of variation for different edge segment is different. With-
out considering this variation from the background, true moving edges cannot
be detected.

Fig. 2 states the requirement to use statistical background model. Fig. 2(b) is
made from the superimposition of twenty five reference edge lists. It is obvious
that edges change their position and thus the edges in the superimposed edge
image have thick lines. This thickness of the line is different for different back-
ground edge segment. Thus, in our proposed method, we treat every background
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(a) (b)

Fig. 2. (a) A sample reference background frame. (B) Edges from 25 superimposed
background reference edge images.

segment individually. Using the statistical frequency accumulation information
for each segment, we can restrict the search boundary that can also enhance the
accuracy of matching as well as the speed.

The static background edge list (SBEL). Edges from training frames are
extracted and we superimpose first N reference edge images using Eq. 1 and
create accumulated reference edge image (AREI).

AREI(E,N) =
N∑

p=1

z∑
q=1

ep,q (1)

Here, E = {e} is the edge map of an image, N is the total number of frames
used, z is the number of edge segments on the pth training image. After the
accumulation, a smoothing operation is performed over the AREI. To make
AREI independent of training sequence, we threshold AREI with τ% of N . Here,
we emperically found that τ = 30% gives good result. Thus after thresholding,
we produce Statistical Distribution Map (SDM) for the background. We create
SBEL from the SDM by thinning SDM and extracting thin edge segments from
the mid positions for every thick line. We then create edge segment labeling map
for the extracted SBEL edge segment using SDM as shown in Fig. 3(d). The
labeling map represents the search boundary for a candidate background edge
segment during matching. We also have edge specific threshold for every SBEL

(a) (b) (c) (d)

Fig. 3. Distance Map used in Hossain et al. method and the proposed method. (a) A
sample reference frame. (b) CDM made from 50 training frames. (c) SDM made from
50 training frames. (d) Edge segment labeling map over the SDM.
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segment by calculating the average accumulation score of each SBEL segment
over the SDM.

Background edge segment matching. The background edge segment utilizes
background edge segments statistic. Thus, background edge with high motion
variation statistic will be matched with wider region and vice versa. For a given
sample edge segment l, to determine whether it is a background edge, we compute
average accumulation score SD by averaging the superimposed pixel positions
over the SDM by using Eq. 2.

SD[l] = [
1
k

k∑
i=1

SDM(li)] (2)

Here, k is the number of edge point in the sample edge segment l, SDM(li) is
the edge point accumulation value in the background for sample edge point posi-
tion li. From the labeled image of SBEL, we can find the candidate background
segment directly. If no candidate background segment is found then the segment
is a candidate moving edge segment. Otherwise, if the computed SD value is dif-
ferent from the corresponding background segment’s average accumulation score
by T%, then the segment is also candidate moving edge segment. Otherwise, it
is a background edge segment.

2.2 Multi-frame Based Moving Edge Matching

The problem at hand is to build partial segment matching between the candidate
moving segments found at frame It and frame It−1. If moving segments from a
moving object are detected correctly, there should be similarities between the
detected moving edges in successive frames. As we have shown segments change
their position within frames but the shape changes slowly. So if a moving seg-
ment has a significant portion of partial match in some consecutive frames, we
can assume the segment as a true moving segment. A segment that does not
show this shape consistency is surely a flickering edge that is generated due to
illumination variation or reflectance from other object and hence we should dis-
card these segments from the list of true moving segments. There are a number
of curve matching solution that considers matching curve under affine transfor-
mation [2], the registration of 2D and 3D point set [7], distance based similarity
measure based on multidimensional Hausdorff distance [18], all these methods
give whole to whole curve matching solution with similarity measures. But our
problem statement lies on the matching of whole to part matching problem with
an index of the starting point of the match. [14] and [17] provides solution for
whole to part matching problems but there method computes curvature points
to reduce dimensionality. i.e. there method is suitable for those aligning prob-
lems where the problem statement needs to consider sharing and scaling as well.
Also there methods are expensive to use in real time applications. Since we are
matching moving edges in two consecutive frames, we can simplify our assump-
tion that the matching curves can have some translation, small rotation, and
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overall partial shape similarity. With this assumption, we need to match the
edges considering partial shape match with translation and rotation only. The
simple algorithm proposed in [15] best matches our interest. In their method
two segments template segment and candidate segment are represented in slope
angle-arclength space, or θ− a space by partitioning into segments of fixed arc-
length a0. In our case between a pair of segments to be matched, we assign
the longer segment as candidate segment and shorter one as template segment.
Matching is performed in θ − a space. During matching the template segment
is moved along the a axis so that its centre is aligned with the centre of the
candidate segment to which it is to be compared. The template segment is then
shifted in the θ direction so that the mean θ value of the template segment has
the same mean θ value as the image segment. This θ shift measures the average
slope angle difference between them. The inverse of sum of the squares of these
differences is used to measure the similarity between them. Finally, the location
of the highest difference position along the a axis over the candidate segment is
the position from where the two edge segments got match. For the details about
the segment matching method please see [15].

2.3 Moving Edge Verification

Moving edges needs to be verified so that a stopped moving object is not detected
as a moving object in future frames. A chamfer distance map is used to verify
moving edge segments. A chamfer-3/4 distance map (CDM) [3] for the TBEL is
created using Eq. 3.

CDM(i, j)(E) = min
eεE
‖(i, j)− e| (3)

Here, E = {e} is the edge map of an image, i and j corresponds to row and
column positions along the distance map. The distance value CD for any edge
segment l can be computed using Eq. 4.

CD[l] =
1
3

√√√√1
k

K∑
i=1

CDM(li)
2 (4)

Here, k is the number of edge point in the sample edge segment l, CDM(li) is
the ith edge point distance value for the edge segment l.

To verify a moving edge segment, we create CDM for the high weighted seg-
ments from TBEL. Now the sample edge segment is placed over the CDM and
distance value CD is calculated using equation Eq. 4. If CD is less than some
threshold TCD, then the segment is a non moving segment otherwise it is a
moving segment.
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2.4 Updating the TBEL

TBEL is constructed by adding the edges from MEL. If a moving edge is found
in the same position in the next frame, the weight of that segment in TBEL
is increased otherwise it is decreased. An edge segment will be dropped from
TBEL if its weight reaches to zero.

3 Results and Analysis

Several experiments has been performed both in indoor and outdoor scene in-
cluding parking lot, road scene, corridor. These images have background motion,
illumination change, reflectance and noise. Our proposed method successfully de-
tects almost all of the moving objects for the scene.

Fig. 4 shows the strength of our proposed method for varying illumination
condition with noise. Fig. 4(a) shows a sample input frame No.890 of a street
scene sequence. Four moving objects are (three people and a mini bus) present
at the scene. Kim and Hwang [10] detects a lot of scattered edge pixels as shown
in Fig. 4(b). The detection result for the Dailey and Cathey Method [5] is shown
in Fig.4(c). Hossain et al. method [8] can control camera movement in a limited
scale but in their method the selection of a lower threshold results in matching
mostly rigid background edges where as higher threshold increases false matching
of moving edge as background edge. Moving object detection in our method uti-
lizes movement statistic of every background edge segment effectively. Moreover,
to eliminate flickering edges the proposed method tracks edge to edge match-
ing record from multi-frame, thereby building association within moving edge

(a) (b) (c)

(d) (e)

Fig. 4. (a) A sample input image frame No.890. (b) Detected moving edge image using
Kim and Hwang’s method (c) Moving edge using Dailey and Cathey’s method (d)
Detected moving edge segments proposed by Hossain at al. (e) Moving edge segments
in the proposed method.
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(a) (b) (c)

Fig. 5. (a) A sample image frame No.707. (b) Detected moving edge segments using
the method proposed by Hossain et al. (c) Detected output moving edge segments
using our proposed method.

segments. The detection output of our proposed method is given in fig. 4(e).
Fig. 5 shows another example where we compared our method with Hossain
et al. method since both of the methods have utilized edge segment structure.
Using Hossain et al. method, due to illumination reflectance and noise, brings
out flickering edge as moving edge that is found in Fig. 5(b). Our method, fig.
5(c), uses multi-frame edge segment matching, thus only true moving edge seg-
ments will have a good match. As a result, our detection output is more accurate
and thus can significantly improve the performance of video surveillance based
applications.

To evaluate the performance of the proposed system quantitatively, we com-
pare the detected moving edge segments with the ground truth that is obtained
manually. The metric used is based on two criteria: Precision and Recall and
is defined in Eq. 5 and 6. Precision measures the accuracy of detecting moving
edges while Recall computes the effectiveness of the extracted actual moving
edge segments. The experimental result is shown in Table. 1.

Precision =
Extracted moving edge pixels

T otal extracted edge pixels
(5)

Recall =
Extracted moving edge pixels

T otal actual moving edge pixels
(6)

Table 1. Performance of the proposed moving edge detector

Dataset Environment Frames Precision Recall

1 outdoor 500 94% 88%
2 outdoor 400 98% 90%
3 indoor 500 93% 84%

For segmenting the moving objects, an efficient watershed based segmentation
algorithm [16] can be used, where the region of interest (ROI) can be obtained
by utilizing method [6].
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4 Conclusion

This paper illustrates the suitability of using multi-frame based moving object
detection method along with the statistical background model using segment
based structure for the detection of moving object. Here, we utilized an efficient
partial edge segment matching algorithm for inter-frame segment matching, a
statistical background model for background edge segment matching and cham-
fer distance based matching for verifying moving edge segments from the scene.
Our proposed method can eliminate flickering edges that comes occasionally. The
example figures described in this paper clearly justifies the advantages of using
statistical background model along with multi-frame based matching, which is
highly efficient under illumination variation, reflection condition and background
edge location changing situation. In our future work, we will incorporate edge
contrast information with edge’s side color distribution map for the matching
and tracking of more sophisticated video surveillance based applications like
intrusion detection, activity recognition etc.
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Abstract. Keypoints detection and descriptors construction method
based on multiscale Gauss-Laguerre circular harmonic functions expan-
sions is considered. Its efficient acceleration procedure is introduced.
Two acceleration ideas are used. The first idea is based on the inter-
connection between Gauss-Laguerre circular harmonic functions system
and 2D Hermite functions system. The further acceleration is based on
the original fast Hermite projection method. The comparison tests with
SIFT algorithm were performed. The proposed method can be addition-
ally enhanced and optimized. Nevertheless even preliminary investigation
showed promising results.

Keywords: keypoints extraction, Gauss-Laguerre circular harmonic
functions, Hermite functions, fast Hermite projection method, image
matching.

1 Introduction

The images keypoints extraction is one of the basic problems of low level image
processing. Keypoints detection and parametrization is the initial step in tasks
like stereo matching [1], object recognition [2], video indexing [3], panorama
building and others. There are many approaches to the keypoints detection prob-
lem such as Harris corner detector [4], DoG approach presented by Lowe [5], the
approach based on circular harmonic functions theory [6], [7], etc. The problem
of keypoints descriptor construction is also widely presented in literature [4],
[5], [8]. The invariance to a class of projective and photometric transformations
is the target property of the descriptor construction algorithm. This property
is crucial to obtain high matching rate across multiple views. As the majority
of keypoints descriptors construction algorithms are computationally expensive,
development of efficient computation algorithms becomes actual.

In this paper the keypoints detection and descriptors construction multiscale
approach based on Gauss-Laguerre circular harmonic functions [6] is considered.
The 2D Hermite projection-based fast algorithm for efficient exact keypoints
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descriptors computation is proposed. The structure of the paper is the following:
the first section is devoted to the Gauss-Laguerre keypoints extraction and its
Hermite projection method acceleration, in the second section the fast Hermite
projection method is considered and test results are described in the last section.

2 Gauss-Laguerre Keypoints

2.1 Gauss-Laguerre Keypoints Detection

Let us consider a family of complex orthonormal and polar separable functions:

Ψ(r, γ; σ) = ψ|α|
n (r2/σ)eiαγ .

Their radial profiles are Laguerre functions:

ψα
n (x) =

1√
n!Γ (n + α + 1)

xα/2e−x/2Lα
n(x) ,

where n = 0, 1, ...; α = 0,±1,±2... and Lα
n(x) are Laguerre polynomials:

Lα
n(x) = (−1)nx−αex d

dxn
(xn+αe−x) .

The Laguerre functions ψα
n(x) can be calculated using the following recurrence

relations:

ψα
n+1(x) =

(x− α− 2n− 1)√
(n + 1)(n + α + 1)

ψα
n(x) −√

n(n + α)
(n + 1)(n + α + 1)

ψα
n−1(x) , n = 0, 1, ...,

ψα
0 (x) =

1√
Γ (α + 1)

xα/2e−x/2 , ψα
−1(x) ≡ 0 .

These functions Ψα
n (x), called Gauss-Laguerre circular harmonic functions

(CHFs), are referenced by integers n (referred by radial order) and α (referred
by angular order). The real parts of Ψα

n (x) (n = 0, 1, ..., 4; α = 1, 2, ..., 5) are
illustrated in Fig. 1.

The Gauss-Laguerre CHFs are self-steerable, i.e. they can be rotated by the
angle θ using multiplication by the factor eiαθ. They also keep their shape in-
variant under Fourier transformation. And they are suitable for multiscale and
multicomponent image analysis [6], [9].

Let us consider an observed image I(x, y) defined on the real plane R2. Due
to the orthogonality of Ψα

n family the image I(x, y) can be expanded in the
neighborhood of the analysis point x0, y0 for fixed σ in Cartesian system as:

I(x + x0, y + y0) =
∞∑

α=−∞

∞∑
n=0

gα,n(x0, y0; σ)Ψα
n (ρ, ω; σ) ,
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Fig. 1. The real part of Ψα
n (n = 0, 1, ..., 4; α = 1, 2, ..., 5)

where
ρ =

√
x2 + y2, ω = arctan(

y

x
) ,

and

gα,n(x0, y0; σ) =

∞∫
−∞

∞∫
−∞

I(x + x0, y + y0)Ψα
n (ρ, ω; σ)dxdy .

Let us consider the keypoints detection algorithm introduced in [6]. Let σ be
the scale parameter and σ ∈ [2−smax , 2smax ] discretized in (2smax + 1) octaves
where each octave contains Ns uniformly sampled scales. So the set of scales is
defined as {σj}, where j = 0, 1, ..., 2Ns(2smax + 1)− 1. Taking into account the
Gauss-Laguerre CHFs property of being detectors for some image features (like
edges, forks, crosses etc.), n = 0, α = 3, 4 that corresponds to forks and crosses
are considered. The set of 2Ns(2smax + 1) energy maps is defined as:

S(x, y; σ) = |g3,0(x, y; σ)|2 + |g4,0(x, y; σ)|2, σ ∈ {σj} ,

referred as image scalogram. The scalogram is inspected by 3D sliding window
(5 x 5 x 3). The keypoints candidates K = (x, y; σ) are defined as the scalogram
local maxima within the window. Here (x, y) is the keypoint coordinate and σ
is the keypoint reference scale. So the image keypoints set is {K}. This set is
reduced by rejecting those keypoints K which have the same position (x, y) for
more than two reference scales. And, finally, the keypoints K with energy value
S(x, y; σ) less than a selected threshold are omitted:

S(x, y; σ) < T ·max
x,y

(S(x, y; σ)) . (1)

T ∈ [0, 1] is adjustable parameter and it is used to control the number of
detected keypoints. In our tests T was set to get about 1000 keypoints in each
image of the pair.
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Fig. 2. The flowchart of the keypoints detection process

The flowchart of the keypoints detection algorithm is illustrated in Fig. 2

2.2 Gauss-Laguerre Keypoints Descriptors

The Gauss-Laguerre keypoints descriptors construction algorithm was first pro-
posed in [6]. Each keypoint K = (x, y; σ) is associated to a local descriptor
χ = {χ(n, α, j)}. This is a complex-valued vector consisted of local image pro-
jections to a set of Gauss-Laguerre CHFs Ψα

n at 2jmax scales neighbor to the
keypoint K reference scale σ. The χ elements are defined as:

χ(n, α, j) =
gα,n(x, y; σj) · e−iαθj

‖gα,n(x, y; σj) · e−iαθj‖ ,

n = 0, ..., nmax , α = 1, ..., αmax , j = −jmax, ..., jmax ,

where σj is the j-th scale following σ if j > 0, or preceding σ if j < 0 in
the discretized scale space. The normalization makes descriptor invariant to the
contrast changes. The phase shift e−iαθj is used to make the descriptors invariant
to the keypoint pattern orientation, where

θj = arg(g1,0(x, y; σj)) .

The matching performance of this technique was demonstrated in [6] in com-
parison with SIFT algorithm. It was found in [6] that Gauss-Laguerre keypoints
extraction method matching results overcome SIFT algorithm results in the
case of rotation, scale and translation transformation of images. Nevertheless
the computational cost of the algorithm is high.
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2.3 Descriptors Computation Using 2D Hermite Functions
Expansion

The 2D Hermite functions Φm,n(x, y; σ) form the complete orthonormal system
in L2 space and can be defined as:

Φm,n(x, y; σ) =
1
σ

φm

(x

σ

)
φn

( y

σ

)
, φn(x) =

1√
2nn!

√
π

e−
x2
2 Hn(x) , (2)

where n = 0, 1, 2... and Hn(x) are Hermite polynomials:

Hn(x) = (−1)nex2 d

dxn
(e−x2

) .

The Hermite functions φn(x) can be calculated using the following recurrence
relations:

φn(x) = x

√
2
n

φn−1(x) −
√

n− 1
n

φn−2(x) , n = 2, 3, ...,

φ0(x) =
1
4
√

π
e−

x2
2 , φ1(x) =

√
2x

4
√

π
e−

x2
2 .

The 2D Hermite image I(x, y) expansion in the analysis point x0, y0 for fixed σ
can be defined as:

I(x + x0, y + y0) =
∞∑

m=0

∞∑
n=0

hm,n(x0, y0; σ)Φm,n(x, y; σ) ,

where

hm,n(x0, y0; σ) =

∞∫
−∞

∞∫
−∞

I(x + x0, y + y0)Φm,n(x, y; σ)dxdy . (3)

As one can see from (2), Φm,n(x, y; σ) functions are Cartesian separable, so the
computation of (3) can be performed as:

hm,n(x0, y + y0; σ) =

∞∫
−∞

I(x + x0, y + y0)φm(
x

σ
)dx , (4)

for every fixed y and after that

hm,n(x0, y0; σ) =
1
σ

∞∫
−∞

hm,n(x0, y0 + y; σ)φn(
y

σ
)dy . (5)

The idea of using the interconnection of 2D Hermite functions and Gauss-
Laguerre CHFs was first introduced in [10]. Any Gauss-Laguerre CHF can be
represented as the linear combination of 2D Hermite functions [11], [12] (the
example of connection between Gauss-Laguerre CHF and 2D Hermite functions
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is illustrated in Fig. 3). So the corresponding coefficients gα,n and hm,n of image
expansion to the sets of these functions are connected with the same relation.
The formulae and more detailed description of the interconnection can be found
in [10].

Using the separability of Φm,n functions and interconnection between Φm,n

and Ψα
n functions the number of operations for gα,n computation can be reduced

up to several times.
To suppress the descriptor changes due to the brightness changes we introduce

the following step. Before expanding the image in keypoint neighborhood into
the set of Gauss-Laguerre CHFs the average value of keypoints boundary pixels
intensity is subtracted from keypoint neighborhood image intensity values.

Further acceleration can be achieved using fast Hermite projection method to
compute coefficients hm,n and hm,n in 1D expansions (4), (5).
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Fig. 3. An example of relation between Gauss-Laguerre CHFs and 2D Hermite func-
tions. The matrix M4 of connection between subset of 4 Gauss-Laguerre CHFs and 2D
Hermite functions is illustrated. [Ψ0,−3 Ψ1,−1 Ψ1,1 Ψ0,3]

T = M4 · [Φ3,0 Φ2,1 Φ1,2 Φ0,3]
T .

3 Fast Hermite Projection Method

In common case 1D Hermite projection method is defined as:

f(x) =
∞∑

m=0

cmφm(x)

where φm(x) are 1D Hermite functions, cm are Hermite coefficients:

cm =

∞∫
−∞

f(x)φm(x)dx . (6)
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Each coefficient in (6) can be rewritten through Hermite polynomials as fol-
lows:

cm =
1

βm

∞∫
−∞

e−x2
(
f(x)e

x2
2

)
Hm(x)dx ,

where Hm(x) is Hermite polynomial, βm is Hermite normalization constant:

βm =
√

2mm!
√

π .

This integral can be approximated by Gauss-Hermite quadrature [13]:

cm =
1

βm

∞∫
−∞

e−x2
(
f(x)e

x2
2

)
Hm(x)dx ≈ 1

βm

N∑
k=1

Ak

(
f(xk)e

x2
k
2

)
Hm(xk) ,

where xk – Hermite polynomials HN (x) zeros, Ak – associated weights:

Ak =
2N−1N !

√
π

N2H2
N−1(xk)

. (7)

Computation cost and precision loss of these associated weights increase with
the increase of N [14]. This problem can be solved by replacement of Hermite
polynomials by Hermite functions in (7) [14]. After simplification the following
formula can be obtained:

cm ≈ 1
N

N∑
k=1

μm
N−1(xk)f(xk) ,

where μm
N−1(xk) is an array of associated constants:

μm
N−1(xk) =

φm(xk)
φn

N−1(xk)
.

More details on fast Hermite projection method can be found in [14].
Keypoints descriptors elements computation can be even more accelerated

using fast Hermite projection method to calculate hm,n and hm,n in (4) and (5).
However fast Hermite Projection method is lossy. So this acceleration brings in
some error to the Gauss-Laguerre image expansion coefficients gα,n and as a
consequence keypoints descriptors elements.

4 Results

Proposed keypoints extraction algorithm has been tested on the images se-
lected from the dataset freely available on the web, which provides the im-
age and the relating homographies sequences (http://www.robots.ox.ac.uk/
~vgg/research/affine/).

http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.robots.ox.ac.uk/~vgg/research/affine/
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Typical values of achieved acceleration of initial descriptor construction algo-
rithm are demonstrated in Table 1. The threshold T in keypoints detection (1)
was set for each image independently to get about 1000 keypoints per image.
The values of descriptors construction parameters were n = 5, α = 5, jmax = 2.
Fast Hermite projection method was applied for keypoints with reference scale
σ > 5. This value was chosen experimentally to get optimal balance between
acceleration and approximation errors.

Table 1. Method acceleration results

Image 2D Hermite Fast Hermite projection Overall
name separability acceleration method acceleration acceleration

boat1 3.77 1.42 5.36
boat2 3.80 1.45 5.50
boat3 3.82 1.39 5.31
graf1 1.44 3.22 4.67
graf2 1.49 3.25 4.85
graf3 1.49 3.37 5.02

The complete comparison of computational cost of proposed acceleration of
Gauss-Laguerre descriptors construction algorithm and SIFT descriptors con-
struction algorithm [5] is not given in this paper due to the fact that current
implementation of Gauss-Laguerre keypoints descriptors construction algorithm
is not optimized. Current implementation of the Gauss-Laguerre algorithm with
the fast Hermite projection method acceleration is ∼ 10.5 times slower than im-
plementation of SIFT which is freely available on the web (http://www.robots.
ox.ac.uk/~vgg/research/affine/).

The proposed method was compared in precision-recall [8] with SIFT key-
points descriptors construction algorithm. Descriptors were constructed for the
same set of keypoints [5] selected with Gauss-Laguerre keypoints detection al-
gorithm. Threshold T was identical for both pair images and its value was set
to get at least 1000 keypoints in both images. The values of Gauss-Laguerre
descriptors construction parameters were n = 5, α = 5, jmax = 2. Fast Hermite
projection method was applied for keypoints with reference scale σ > 5. Dif-
ferent recall values were obtained changing the nearest neighbor distance ratio
parameter in descriptors matching procedure proposed by Lowe [5].

Typical results are illustrated in Fig. 4, 5. The proposed method needs addi-
tional enhancement and optimization. Nevertheless even preliminary investiga-
tion showed promising results.

In Fig. 4 the results for graf1-graf2 image pair are given. This pair corre-
sponds to points of view changing transformation. The obtained results show
that Gauss-Laguerre descriptors and fast modification of Gauss-Laguerre de-
scriptors perform better matching than SIFT descriptors for the same level of
recall. However SIFT descriptors allow to reach the higher level of recall.

In Fig. 5 the results for boat1-boat2 image pair are given. This pair corre-
sponds to rotation and zoom transformations. The obtained results show that
Gauss-Laguerre descriptors performs better matching than SIFT descriptors for

http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.robots.ox.ac.uk/~vgg/research/affine/
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Fig. 5. Precision-Recall graph with dif-
ferent descriptors for boat1-boat2 im-
age pair

some levels of recall, but SIFT descriptors outperforms proposed descriptors
in the area of high values of recall. Hermite projection based Gauss-Laguerre
descriptors demonstrate less level of both recall and precision than SIFT and
Gauss-Laguerre descriptors.

5 Conclusion

The efficient computation technique of Gauss-Laguerre keypoints descriptors
using both the interconnection between Gauss-Laguerre circular harmonic func-
tions and 2D Hermite functions and fast Hermite projection method have been
proposed. The preliminary test results look promising. Nevertheless the tests
showed that proposed descriptors are not fully invariant to brightness and con-
trast changes. Future work will include investigation in the field of brightness
and contrast invariance of the descriptors and further improvement of Gauss-
Laguerre keypoints detection algorithm.

Acknowledgments. The work was supported by RFBR grant 10-01-00535-a.

References

1. Schaffalitzky, F., Zisserman, A.: Multi-view Matching for Unordered Image Sets.
In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS,
vol. 2350, pp. 414–431. Springer, Heidelberg (2002)

2. Tuytelaars, T., Ferrari, V., Van Gool, L.: Simultaneous object recognition and
segmentation from single or multiple model views. Int. J. of Computer Vision 67(2),
159–188 (2006)

3. Morand, C., Benois-Pineau, J., Domenger, J.-P., Zepeda, J., Kijak, E., Guillemot,
C.: Scalable object-based video retrieval in HD video databases. J. Signal Process-
ing: Image Communication 25(6), 450–465 (2010)

4. Harris, C.G., Stephens, M.: A combined corner and edge detector. In: 4th Alvey
Vision Conf. Manchester, pp. 147–151 (1988)

5. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. of
Computer Vision 60(2), 91–110 (2004)



Gauss-Laguerre Keypoints Extraction 293

6. Sorgi, L., Cimminiello, N., Neri, A.: Keypoints Selection in the Gauss Laguerre
Transformed Domain. In: BMVC 2006, pp. 133–142 (2006)

7. Hse, H., Newton, A.R.: Sketched symbol recognition using zernike moments. In:
ICPR 2004, pp. 367–370 (2004)

8. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE
Trans. on PAMI 27(10), 1615–1630 (2005)

9. Jacovitti, G., Neri, A.: Multiresolution circular harmonic decomposition. IEEE
Trans. Signal Processing 48(11), 3243–3247 (2000)

10. Sorokin, D.V., Krylov, A.S.: Fast Gauss-Laguerre Keypoints Extraction using 2D
Hermite Functions. In: PRIA-10-2010, pp. 339–342 (2010)

11. Zauderer, E.: Complex argument Hermite-Gaussian and Laguerre-Gaussian beams.
J. Opt. Soc. Amer. A 3(4), 465–469 (1986)

12. Di Claudio, E.D., Jacovitti, G., Laurenti, A.: Maximum Likelihood Orientation
Estimation of 1-D Patterns in Laguerre-Gauss Subspaces. IEEE Tran. Image Pro-
cessing 19(5), 1113–1125 (2010)

13. Krylov, V.I.: Approximate Calculation of Integrals. Macmillan Press, New York
(1962)

14. Krylov, A., Korchagin, D.: Fast Hermite Projection Method. In: Campilho, A.,
Kamel, M.S. (eds.) ICIAR 2006. LNCS, vol. 4141, pp. 329–338. Springer, Heidel-
berg (2006)



Re-identification of Visual Targets in Camera Networks:
A Comparison of Techniques

Dario Figueira and Alexandre Bernardino

Institute for Systems and Robotics,
Instituto Superior Técnico,
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Abstract. In this paper we address the problem of re-identification of people:
given a camera network with non-overlapping fields of view, we study the prob-
lem of how to correctly pair detections in different cameras (one to many prob-
lem, search for similar cases) or match detections to a database of individuals (one
to one, search for best match case). We propose a novel color histogram based
features which increases the re-identification rate. Furthermore we evaluate five
different classifiers: three fixed distance metrics, one learned distance metric and
a classifier based on sparse representation, novel to the field of re-identification.
A new database alongside with the matlab code produced are made available on
request.

Keywords: Re-Identification, distance metrics, pattern recognition, visual
surveillance, camera network.

1 Introduction

Re-identification is still an open problem in computer vision. The enormous possible
variations from camera to camera in illumination, pose, color or all of those combined,
introduce large appearance changes on the people detected, which make the problem
very difficult to overcome.

Re-identification denotes the problem of given multiple cameras, and several people
passing in front of several cameras, to determine which person detected in camera X
corresponds to the person detected in camera Y.

There are a few works in the literature addressing the problem of re-identification in
camera networks. [9] uses the bag-of-visterms approach, clustering SIFT [8] features
into “words”, and using those “words” to describe the detections, in a one to one ap-
proach to re-identification in a shopping center environment. This approach is of interest
because it merges the “very high detail/specificity” of a SIFT feature with the general-
ization power of a cluster (a “word”). [5] uses SURF [1] features also in a one to one
approach to re-identification in a shopping center environment (CAVIAR database1).
SURF’s are extracted from the image’s hessian space, as opposed to SIFT’s features
that are extracted from the image’s laplacian space. SURF’s are also much faster to

1 http://groups.inf.ed.ac.uk /vision/CAVIAR/CAVIARDATA1/

M. Kamel and A. Campilho (Eds.): ICIAR 2011, Part I, LNCS 6753, pp. 294–303, 2011.
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be computed, which is of note since SIFT’s major drawback is its heavy computation
time. Both works use a voting classifier that is already standard when using such fea-
tures. Also of note is [10] for its simple features, histograms, used also in a one to
one approach, to re-identify people in similar poses walking inside a train, testing dif-
ferent histograms and normalizations to cope with greatly varying illumination. They
employ dimensionality reduction and nearest-neighbor for a classifier. [6] also uses sim-
ple histogram features but takes advantage of the appearance and temporal relationship
between cameras.

Our work is similar to [6, 10]’s in term of used features (histograms), although we
enrich them by considering the upper and lower body parts separately. A method to
detect the waist of a person is proposed, which allows the separate representation of
the colors on the upper and lower body parts. This aspect highly distinguishes our work
and significantly improves the re-identification results. Also we test additional metric
distances including one learned from the data. Furthermore we apply a sparse base
classifier, successful in the domain of face recognition, to the re-identification problem.

In this work we not only consider the one-to-one approach, where given a person
detection we want to recognize it in a database, but also a one-to-many approach, where
someone is trying to find similar matches in the system to a given person’s image.

We produced an indoors dataset where we evaluate several techniques and the effects
of our enriched feature, in both approaches.

In the next Section we define the problem. In Section 3 we propose our new color
based feature. In Section 4 we list the metrics reviewed. In Section 5 we describe the
data used and show the experimental results. Finally we conclude in the last Section.

2 Problem Definition

In this Section we define our problem, while the approaches are described in the fol-
lowing sub-sections.

Figure 1 depicts the environment: A network of fixed cameras with non-overlapping
fields of view, where people appear more than once, are detected, tracked while in
camera view, and then re-identified between different cameras. While a person is in
view, we track it, and extract the following feature from it:

1. Detect the person and extract its pixels with [2]’s background subtraction;
2. Normalize the color of the detection pixels with greyworld normalization [10];
3. Divide the image in two by the waist (detailed in Section 3);
4. Compute the color histograms of each part, and unit normalize them;
5. Compute the mean (µ) and covariance (Σ) for all histograms in the track sequence

to obtain one point per track sequence.

Therefor each track becomes an averaged histogram feature, which will then be a point
(x or y) in the following formulations.

2.1 One to One Problem - Recognize - “Who is this person?”

This is the standard re-identification approach, used in [9, 5, 10], and applied in real
world situations, where a surveillance operator picks out a person detection and asks
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Fig. 1. Two camera views, with several detections, waist-separated, and two tracks. A correct re-
identification would cluster them together or label them as the same individual from a database.

the system to recognize it. This approach is of particular interest in scenarios where you
have a controlled entrance to the system. In such an entrance we can easily insert the
incoming individuals into a database along with their identifications.

So in this case we always have a training set, a dataset of labeled tracks to start with.
Given a test sample we compute the best match to the classes in the training set for such
test sample.

2.2 One to Many Problem - Search - “Where Was This Person?”

In this work we also consider the one to many approach, where a surveillance operator
sees a person in a camera (identified or not), and asks the system to show him all related
detections, in all cameras.

Given the track points, we compute the distances from all to all, then solve the binary
classification problem of determining, given an appropriate distance metric, if a pair
of tracks belongs to a single person, or come from different people. By varying the
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distance threshold that determines if such a distance is small enough to belong to a pair
of tracks from a single person, we output a ROC curve. Thus examining the ability for
each re-identification technique to correctly cluster points.

We also study the advantage of learning a metric from data versus a standard distance
metric.

3 Person Representation

Simple color histograms have been used as the appearance features in tracking across
cameras [6,10]. We enrich such features by dividing the person histogram in two parts,
one above and one below the waist. We define the waist as the point that maximizes the
Euclidean distance between the upper part histogram and lower part histogram. After
computing the integral histogram, we do a vertical search for the waist, limiting the
search to an area around the middle of the image.

– Compute Vertical Integral Histogram
• Compute the histogram of the first horizontal line of the image; compute the

histogram of the first two lines of the image; ...; compute the histogram of the
whole image.

– Search for Point that Maximizes Distance Between Upper and Lower Body Parts
• Compare line by line, the upper and lower histograms; Plot the varying dis-

tance; Find maximum.
• Limit search to window between 35 and 60% of the image, counting from the

top (maximum and minimum empirical values of position of the waist found
during the manual labeling of the dataset).

4 Re-identification Techniques

In this section we describe the methods used in the automatic re-identification sys-
tem. We compared three distance metrics: Euclidean; Bhattacharya; and diffusion dis-
tance [7] with one linear metric learning method, and one recent classification method
[11] developed in the face recognition field. Each track is represented by x or y, as
stated in Section 2.

We consider the following metrics to compute distance between the histograms.

Euclidean. A simple neareast neighbor distance. dE(x,y) = ||x−y| |.
Bhattacharya. Modified Bhattacharya coefficient [3], a common choice for measuring

distance between histograms.

dBHATT (x,y) =

√
1−

m

∑
i=1

√
xiyi

Diffusion Distance. Given we use histograms for features, we looked for alternative
ways to measure distances between histograms. The Earth’s Mover Distance (EMD)
is popular, and the Diffusion Distance [7] has been shown to have equal or better
results than EMD, with the added benefit of faster computation.
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dDIFF(x,y) =
L

∑
l=0

|dl|

d0 = x−y

dl = [dl−1 ∗φ(dl−1)] ↓2 l = 1, ...,L

↓2 : downsample to half-size

φ(.) : gaussian filter

Metric Learning. The work of Xing in [12] linearly learns a metric of the following
form:

dML(x,y) = ||x− y| |A =
√

(x− y)T A(x− y),

by solving the following optimization problem

argmax
A

∑
(i, j)∈D

∥∥xi− x j
∥∥

A = ∑
(i, j)∈D

√
di jT Adi j

s.t. ∑
(i, j)∈S

∥∥xi− x j
∥∥2

A = ∑
(i, j)∈S

di jT Adi j ≤ t

A≥ 0

where t is a scalar, S and D are square binary matrixes that represent the similar
(from a same person) and dissimilar (from different people) training pair sets (in S,
one if a pair is similar, and zero otherwise. Likewise in D). We implemented this
optimization problem in MATlab with the CVX’s optimization toolbox2. A training
set of similar and dissimilar pairs is required.

Sparse Recognition Classifier. Sparsity has been widely used in signal processing for
reconstruction [4]. Here we apply it to recognition, in the form of a re-identification
problem. Simply put, given a test sample y, we solve the optimization problem

argmin
[i e]

|[i e] |1

s.t. [A I] [i e]T = y

A = [x1 . . .xT ]

where in the columns of A are the T training samples (i.e., three random histogram
vectors from three random detections from each person to be recognized). The
reasoning behind this formulation is that we wish to choose from A which training
class y belongs to. This information will be encoded in the indicator vector i, while
errors will be explicitly modeled in e. Moreover, by minimizing the l1 norm of
[i,e]T , and if the true solution is sparse, the l1 norm minimization will output the
same result as the l0 norm [4], the sparsest solution. i will then be mostly zero with
few large entries in the correct training set entries.
This idea has first been put forth in the field of face recognition by [11].

2 http://cvxr.com/cvx/

http://cvxr.com/cvx/
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5 Results

In this Section, first we describe the experimental setup where the datasets were taken.
We present our results in sub-sections 5.3 and 5.4, we validate our proposed feature,
and we discuss the results.

5.1 Experimental Setup

We produced a database of images, extracted from an indoors camera network, com-
pletely hand labeled for ground truth. In Figure 2 we show some samples of the varying
camera views from the dataset.

Indoor Dataset:

– 17388 detections;
– 275 tracks;
– 26 people (5 of which only have one track).
– 10 fixed cameras, with non-overlapping fields of view.
– Average 67 detections per track, Maximum 205 detections in a track.

Fig. 2. Indoor Dataset: Preview of some camera views

For all experiments we computed the detections and features as described in Section
2. These combine graycolor normalization and division by the waist. Figure 3 supports
the choices made.

5.2 Training

For the metric learning training and testing we used 5-fold cross validation. For Sparse
Recognition Classifier training, we picked 3 detection points per person to form the
training class matrix (A).
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5.3 One to Many Experiments

In Figure 4 we plot the ROC curves for the problem of binary classification “same/not-
same pair?” described in Sub-Section 2.2. Initially, distances from all tracks to all tracks
are computed. Then a threshold, that determines “similarity” is varied. For each thresh-
old value a True Positive Rate value and a False Positive Rate is computed. All these
values plot the Receiver Operating Characteristic (ROC) curves shown in the following
Figure 4.

We see in Figure 4 that the baseline Euclidean distance rivals diffusion distance or
bests the other techniques. Metric learning performs better as expected since it uses
additional information. Learning does seem to improve re-identification and despite
requiring labeled data for metric learning, this needs only be done once per system
configuration.

Comparing the use of our waist-division feature (full-line) with the counterpart of a
single histogram per detection (dashed-line) it is clear the positive influence our feature
has in the results of all techniques.

5.4 One to One Experiments

In Figure 5 we plot the Cumulative Matching Characteristic curve for all the tecniques
implemented, and also analyze the effect of our suggested improvement on the feature,

Fig. 5. Cumulative Matching Characteristic curves for comparing the different techniques, and
confirm the improvement in the results of our suggested feature. Full line: using our waist division
feature; Dashed line: not using waist division.
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the waist division described in Sub-Section 3. Using our feature improves the results on
all tecniques.

Due to the nature of the SRC algorithm, that outputs a sparse solution of one training
class per test sample, it is not possible to plot a Cumulative Matching Characteristic
curve. Nevertheless SRC gives the best results on the nearest-neighbor level.

6 Conclusions

In this work we addressed the re-identification problem. We not only consider the clas-
sical one to one problem, but also the one to many case that may be of interest for
practical surveillance applications. In this case someone tries to find similar matches
in the system of a given person’s image; and the one-to-one approach, where given a
person detection we recognize it in a database.

We built upon previous work [10], enriching the feature used by considering upper
and lower body parts separately, thus improving the re-identification results.

Metric learning showed promissing results in the one-to-many approach, expectedly
better than the other distances since it makes use of more information (labeled similar-
ity/dissimilarity pairs). In the one-to-one approach SRC reports the best re-identification
rates.

Simple Euclidean distance rivaled or bested the other techniques for re-identification
in both approaches.

6.1 Future Work

In the future, we will further enrich the set of features by either adding further body-part
selection or integrating SIFT or SURF features to form a multi-modal feature. We will
also take advantage of spatiotemporal constraints and appearance correlations between
cameras, to limit the search space of re-identification, reducing errors.

We make available by request the matlab source code of the methods developed in
this paper as well as the image database produced.
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Abstract. Graph cut algorithms are very popular in image segmenta-
tion approaches. However, the detailed parts of the foreground are not
segmented well in graph cut minimization.There are basically two reasons
of inadequate segmentations: (i) Data - smoothness relationship of graph
energy. (ii) Shrinking bias which is the bias towards shorter paths. This
paper improves the foreground segmentation by integrating the statisti-
cal significance measure into the graph energy minimization. Significance
measure changes the relative importance of graph edge weights for each
pixel. Especially at the boundary parts, the data weights take more sig-
nificance than the smoothness weights. Since the energy minimization
approach takes into account the significance measure, the minimization
algorithm produces better segmentations at the boundary regions. Ex-
perimental results show that the statistical significance measure makes
the graph cut algorithm less prone to bias towards shorter paths and
better at boundary segmentation.

Keywords: Graph Cut Segmentation, Energy Minimization, Shrinking
Bias, Statistical Significance Analysis.

1 Introduction

Current state-of-the-art segmentation methods are based on optimization pro-
cedure [1]. One of the popular optimization based methods is graph cut mini-
mization [2]. The graph cut approach models the image segmentation problem
as pixel labeling such that each pixel is assigned to a label which denotes the
segmentation classes. The algorithm first builds a graph G = (V, E). V con-
sists of set of vertices that correspond to the pixel features (e.g. intensity) and
two extra vertices which denote object and background terminals. E consists of
edges which are assigned to a nonnegative weights according to the relationship
between the vertices. After the graph structure is constituted, the optimal label-
ing configuration is found by minimizing an energy functional whose terms are
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based on the edge weights of the graph. The standard graph energy functional
is formulated as,

E(f) =
∑
i∈V

Ed(fi, di) + λ
∑

i,j∈N

Es(fi, fj), (1)

where V are the vertices, fi is the segmentation label, di is the a priori data of
pixel i, and N represents the neighborhood pixels j of pixel i. The first term in
the energy functional is called the data term Ed, which confines the segmenta-
tion labels to be close to the observed image. The second term is used for the
smoothness which confines the neighboring nodes to have similar segmentation
labels. The regularization weight λ balances the relationship between the data
and smoothness terms.

1.1 Motivation

Graph cut algorithms produce successful solutions for the image segmentation
[2,3,4]. However, the foreground boundary, especially at the detailed parts still
cannot be obtained well in the graph cut minimization. There are basically two
reasons of inadequate segmentations at the boundary regions:

(i) Data-Smoothness Relationship. One of the reasons of the inadequate
segmentation of graph cut algorithms is due to the energy minimization ap-
proach. The trade off between the data and the smoothness terms should be
well regularized in the energy functional. In order to obtain the boundary of
the foreground accurately, regularization should be small. In Fig 1.b, segmenta-
tion is obtained with a small λ. Small λ segments the objects sharply, however,
it produces noisy solutions (grassy regions). If we increase the λ in order to
obtain a noiseless segmentation, this time we lose the details such as the legs
and the ears of the horses (Fig 1.c). For the optimal segmentation, λ parameter
should be optimal as in Fig 1.d. Even for the optimal segmentation, the detailed
parts of the foreground still cannot be segmented accurately. The main reason
of the inadequate segmentation in energy minimization approach is that the op-
timal regularization parameter for overall segmentation is generally high for the
boundary regions.

(ii) Shrinking Bias. Another reason of the inadequate segmentation of graph
cut minimization is the shrinking bias [5] which is an inherent bias towards
shorter paths. The smoothness term in graph-cut methods consists of a cost sum-
mation over the boundary of the segmented regions. A short expensive bound-
ary may cost less than a very long cheap one. Especially at the long and thin
boundaries of objects, the graph cut algorithms may cut the boundary along the
shorter paths which causes inadequate segmentation for those parts. Figure 2
shows the optimal segmentation for the horse image in Figure 1.a and illustrates
the shrinking bias problem. The green boundary denotes the ground truth seg-
mentation. However, the graph cut algorithm segments the image along the red
boundary. Note the marked regions on the image. The algorithm segments the
object at the short-cut boundaries instead of long and thin boundary paths.
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(a) (b) (c) (d)

Fig. 1. The illustration of the trade off between the data and the smoothness terms
of the graph cut minimization. a) Input image. b) Segmentation by a small λ. Less
regularization provides to segment the detailed regions of the foreground such as the
legs parts. c) Segmentation by a large λ. Not only the noisy segmentation but also
the detailed parts of the segmentation is lost. d) Optimal segmentation is still not well
enough at the boundary parts.

Fig. 2. Graph Cut methods may short-cut the foreground along the red borders instead
of following the green borders, because short-expensive boundary may cost less than a
very long cheap one

1.2 Related Work

Shrinking bias problem of graph cuts is first addressed by Kolmogorov and
Boykov [5]. They define the flux along the boundary and improve the segmen-
tation. Flux knowledge causes stretching at the boundary while the graph cut
algorithm tries to smooth the solution because of the energy minimization. Al-
though the flux integration produces better solutions than the original graph cut
approach, the algorithm cannot be extended to color images, because flux can be
defined only on the grey-level images [6]. Another work which tries to overcome
the inadequate segmentation is geodesic segmentation which avoids the shrink-
ing bias of the graph cut methods by removing the edge component in the energy
formulation [7]. However this approach cannot localize the object boundaries and
it is very sensitive to seed placement [8]. Vincente and Kolmogorov [6] attempt to
solve the long and thin object segmentation by adding connectivity priors. They
manually add some additional marks at the endpoints of long-thin objects and
then run the Dijkstra’s algorithms after the graph cut minimization. Recently,
researchers argued that the same λ may not be optimal for all regions of the
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image. They proposed different algorithms which spatially change the regular-
ization parameter based on the local attributes of the images [9,10,11,12]. Since
the regularization weight is decreased at the boundary parts, energy minimiza-
tion cannot over-smooth the thin and long parts of the foreground. Therefore,
the spatially-adaptive methods will produce better segmentation results than
the traditional graph cut algorithms.

In this work, the statistical significance measure is integrated into the energy
minimization approach in order to improve the image segmentation problem.
In traditional statistics, statistical significance measures the randomness of an
outcome. It is previously proposed that the statistical significance can be used
as a comparison measure for the outcomes of different distributions [13,14]. In
this work, we redefine and modify the idea for the shrinking bias problem and
include additional experiments. The statistical significance measure is included
in the energy minimization approach through the graph structure. We measure
the statistical significance of all weights on the graph. Then we reconstruct the
graph structure by changing the weights with their statistical significance mea-
surements.

2 Statistically Significant Graph Cut Segmentation

2.1 p-value Calculation

Statistical significance is a probability value (p-value) which is the measurement
of randomness. It is used for the hypothesis testing mechanism in statistics. If
the observed outcome of an experiment is statistically significant, this means
that it is unlikely to have occurred by chance, according to the significance level
which is a predetermined threshold probability.

In order to measure the statistical significance of the outcome of an experi-
ment, cumulative probability distribution function of the experiment should be
known. If the distribution of the outcome is a known distribution such as the
exponential distribution, the parameters of this distribution is used to measure
the significance. On the other hand, if the distribution is not known, the possible
outputs of the experiment is used to form the probability distribution. The area
under the probability distribution forms the cumulative distribution function.
The location of the outcome on cumulative distribution determines the statis-
tical significance of the observed outcome. Equation 2 denotes the statistical
significance of the outcome x.

F (x) = P (X <= x) =
x∑

−∞
P (X = x) (2)

P (X = x) is the probability distribution of experiment X , F(x) produces the
p-value of the statistic x. If the obtained p-value is small then it can be said that
an unusual outcome has been obtained.
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2.2 Measuring the Significance of Edge Weights

In this work, we used the significance measure to bring the data and smoothness
energy terms (outcomes) into the same base, which is different from the tradi-
tional usage. We measured the statistical significance of energy terms in terms of
edge weights of the graph structure. In graph cut algorithms, objective function
is constituted of the edge weights. The edges between the terminal and pixel ver-
tices are called t-links whose weights form the data energy term. On the other
hand, the edges between the neighboring pixel vertices are called n-links whose
weights form the smoothness terms of the energy function. The weights of dif-
ferent types of links are determined through different functions such as squared
differences, absolute differences, truncated absolute differences, laplacian zero
crossing or gradient direction. As an example, in the interactive segmentation
of Boykov and Jolly [2], the weights of t-links are based on the marked pixel
histogram, whereas, n-links are the intensity difference between the neighboring
pixels. Note that, data and smoothness terms of the energy formulation have
different functional forms, whereas, graph cut minimization try to minimize the
different functional forms simultaneously through the same objective function.
In this work, we used the significance measure to bring the energy terms on the
common base by expressing the weights in terms of the statistical significance
measure.

In order to measure the statistical significance of data and smoothness terms,
the probability distribution of the terms should be generated. The edge weights
on the graph form the probability distribution of terms. Figure 3 illustrates the
procedure. The weights of the t-links (marked as red color on the graph) form the
probability distribution of data term of the energy function, on the other hand,
the weights of the n-links (marked as blue on the graph) form the probability
distribution of smoothness term. Two sample edge weight is denoted on the
graph by green color. Then we measure the statistical significance of each edge
weight by evaluating the weights on the distributions. t-link weights are evaluated
on the data term distribution; n-link weights are evaluated on the smoothness
distribution. After measuring each weight significance, we reconstruct a new
graph structure in which edge weight is assigned to a significance value.

Equation 3 and Equation 4 formulates the significance measurement.

F (xd) = P (Ed(f, d) <= xd), xd = E(fi, di) (3)

F (xs) = P (Es(f, d) <= xs), xs = E(fi, fj) (4)

where xs is the observed data weight, xs is the observed smoothness weight,
P (Ed(f, d)) denotes the probability distribution of data weights, and P (Es(f, d))
denotes the probability distribution of smoothness weights.

3 Data-Smoothness Weights Relationship

We measure the statistical significance of each term by evaluating the terms
according to the other graph terms. Evaluating the terms on its own distributions
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Fig. 3. Data and smoothness weights are normalized by evaluating weights according
to other data and smoothness weights on the graph. a) A simple graph structure. Data
edges denoted by red color, smoothness edges denoted by blue color. b) Probability
distribution of data terms. c) The probability distribution of the smoothness terms.

and expressing the edge weights by the same measurement have two explicit
advantages:

(i) The significance measure decreases the scale and distribution differences
between the data and smoothness energy terms and bring them on similar base.
Therefore, the tradeoff between the terms would be properly regularized.

(ii) The significance measure for the data weights are determined according
to other data weights on the graph. Similarly, the significance measure for the
smoothness weights are determined according to other smoothness weights on
the graph. It can be interpreted as each weight is normalized relative to other
weights. As an example, if one of the data weight has a high significance among
the other data weights, we can say that data term for that pixel is statistically
more significant than the smoothness term, albeit both terms have equal weight.
Normalization change the relative weights of data and smoothness terms accord-
ing to their randomness. Rare weights become more important than the normal
weights.
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Fig. 4. Data-Smoothness relationship for the dragonfly image. (a) A sample image.
(b)Smoothness/Data weight rate for each pixel of traditional graph structure. (c)
Smoothness/Data weight rate for each pixel of modified graph structure.

In order to show the relative relationship between data and smoothness weights
of each pixel, we constructed weight maps for both graph structures. We calcu-
lated the relative weight of each pixel i ∈ I of image I using Formula 5. Then
we normalize the weight rates to a fixed range [0-1]. If the weight rate is close
to the 1, this means that smoothness weight is relatively bigger than the data
weight for that pixel. If the smoothness weight increases, pixel get closer to the
red. On the hand, if the weight rate is close to the 0, it can be said that the
data weight is more important for that pixels. We show that type of pixels with
blue. Figure 4.a denotes the weight map of original graph structure, Figure 4.b
denotes the weight map of modified graph structure. Note that data weights at
the boundary part takes more importance than the smoothness weights in the
modified graph structure.

λEs(fi, fj)
Ed(fi, di)

∀i ∈ I (5)

4 Improvement in Shrinking Bias Problem

Statistical significance measurement decreases the smoothness weights along the
boundary as it can be seen in Figure 4. Therefore finding a short expensive
boundary, which may cost less than a very long cheap one become harder.
Figure 5 demonstrates the improvement in shortcutting. The segmentation is
obtained by minimizing the modified graph cut structure whose weights are
calculated by significance measurement. The red contour denotes the short-cut
boundary which is the optimal segmentation of traditional graph structure as
we showed previously in Figure 2. Note that the blue contour is explicitly closer
to the desired boundary.
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Fig. 5. Improvement in Shrinking Bias problem. The blue contour is closer to the
desired boundary than the short-cut boundary.

5 Experimental Results

To quantitatively evaluate the accuracy of the segmentation of the proposed
approach, we applied it to the Berkeley dataset [15]. We obtained optimal seg-
mentation of original graph structure and modified graph structure by comparing
the segmentations by ground truths. Figure 6 displays some segmentations re-
sults of both approaches. Note that the thin and long parts of foreground such
as legs of the dragonfly or wood in the bear image. The proposed approach pro-
duces better solutions at these problematic parts. The percentage errors of the
segmentations are listed on Table 1.

Table 1. Error Rates of the Segmentations in Figure 6

Traditional Graph Structure Modified Graph Structure
Image Optimal Segmentation Error Rate Optimal Segmentation Error Rate

Dragonfly 1.29 % 1.08 %
Eagle 4.34 % 2.99 %
Horse 2.97 % 2.56 %
Bear 4.32 % 3.07 %
Plane 0.83 % 0.70%
Trees 1.74 % 1.01%

6 Discussion

In this paper we have integrated the statistical significance measure into the graph
structure in order to improve the graph cut segmentation approach. We measured
the significance of data and smoothness edge weights according to other weights.
Then we constructed a new graph structure whose edge weights are the signifi-
cance measurements. Using the significance measurements instead of weights can
be interpreted as each weight is normalized relative to other weights. In the new
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Fig. 6. FirstColumn: Image from the Berkeley set [15]. SecondColumn: Optimal seg-
mentation by traditional graph structure. ThirdColumn: Optimal segmentation by
modified graph structure based on statistical significance measurement.
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graph structure, the relative weights of data and smoothness edges are changed ac-
cording to their randomness. Especially at the boundary regions of the foreground,
the data weights gets more importance than the smoothness weights. In another
word, the smoothness weights along the boundary is decreased. Therefore, find-
ing a short expensive boundary which may cost less than a very long cheap one
become harder. We demonstrated our algorithm on several images on Berkeley
segmentation set, and showed that our optimal segmentations are better than the
optimal segmentations of traditional graph cuts.
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Abstract. In this paper, we propose a new approach for detecting
people in video sequences based on geometrical features and AdaBoost
learning. Unlike its predecessors, our approach uses features calculated
directly from silhouettes produced by change detection algorithms. More-
over, feature analysis is done part by part for each silhouette, making
our approach efficiently applicable for partially-occluded pedestrians and
groups of people detection. Experiments on real-world videos showed us
the performance of the proposed approach for real-time pedestrian de-
tection.

Keywords: People detection, geometrical features, AdaBoost.

1 Introduction

Automatic human detection is a key issue for many computer vision applications,
such as robotics, video surveillance, human computer interaction and automated
person assistance [1]. Recently, several approaches have been proposed for people
modeling and detection in videos. These approaches can be broadly classified into
two main groups.

In the first group, methods based on histograms of oriented gradients (HoG)
are used to learn the shape of humans using techniques such as Adaboost [2–5] or
support vector machines (SVM) [6, 7]. The main advantage of those methods is
that the detection relies on features based on the derivatives of the image, which
are less sensitive to variations of human appearance. These features put together
in high-dimensional vectors are assumed to capture the pedestrian shape. How-
ever, if an object is partially occluded, or the pedestrian walks against a cluttered
background, or in a group of people, the detection may fail since a great part
of the pedestrian boundary will be missed. In the second group, learning tech-
niques are used with features similar to Haar wavelets [8, 9]. The success of those
methods relies on the assumption that the pedestrians walk against a uniform
background, allowing block differences (i.e., wavelets-like features) to capture the
different parts of a pedestrian. Therefore, the contour must be strong enough
to distinguish the pedestrian from its immediate neighborhood in the image.
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Besides, since the detection relies on block differences, the variation in pedes-
trian versus background appearance will influence the description, which is not
desirable for a detection that is robust to appearance changes, like the methods
in the first group.

One major limitation in the above methods lies in the fact that they are
dedicated to single, non-occluded, person detection. If several persons walk in
a group, or in the occurrence of occlusions, the detection can fail since a great
part of the boundary of the person will be lost (in the group). For realistic
scenarios, it is important that a pedestrian detection algorithm should work
for both isolated humans and groups of people. Last but not least, the above
methods require to scan the whole image and test for every possible window if
it contains a pedestrian. This can be computationally expensive and, therefore,
not suitable for real-time applications like video surveillance.

In the present paper, we propose an efficient and real-time approach for people
detection in videos. Based on the output of change detection algorithms, we use
directly the generated silhouettes to detect if a moving objet is a pedestrian
or not. We rely for our detection on using example-based learning approach
where a model of pedestrians is generated. First, each silhouette is analyzed
geometrically, and part by part, to detect if it contains possible humans. In
other words, we detect if a blob corresponds to a group of people, to a person
with another objet (e.g., a person on a bicycle, etc.), or if it does not contain
any human. If a blob is likely containing humans, a second analysis is performed
on the blob in order to isolate each person. For each step, we use AdaBoost
algorithm to learn a model from several examples of human silhouettes, and use
the model to classify each new silhouette.

This paper is organized as follows: Section 2 presents the main steps compos-
ing our approach. Section 3 presents some experiments on real world videos. We
end the paper with a conclusion and future work perspectives.

2 The Proposed Approach

In what follows, we present the different modules that compose our algorithm.
Starting from the first frame of the sequence, an adaptive background model
is built for the sequence as time goes on. Given a new frame of the sequence,
a change detection is operated first to separate the moving objects from the
rest of the image. Then, a first analysis is performed on the resulting blobs in
order to detect the ones that may contain people. Finally, the analysis is refined
on those blobs in order to isolate each person. Fig. 1 gives an overview of the
different modules composing our algorithm. In the following sections, we develop
separately the details of each module.

2.1 Background Subtraction

Since our approach uses object silhouettes, a good background subtraction al-
gorithm is essential to the success of our detection. In the literature, there are
several change detection algorithms that vary in complexity and efficiency. They
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Fig. 1. Architecture for our moving pedestrian detection in videos

range from the most näıve absolute difference between pixels to more complicated
algorithms that create a statistical model of the image, and process individual
pixels based on their historic rate of change [10–13]. While the former is fast,
but lacks efficiency, the latter is expensive in computation time and memory.
To achieve a fast, yet efficient, change detection we propose an approach that
focuses on the regions with the highest occupancy, aiming to process only the
regions that interest us (i.e., where the presumed pedestrians are likely to be
located). We achieve that by concentrating in the areas of the image where the
change density is higher, i.e., where a large number of pixels has changed. This
aims to exclude regions with relatively small changes due to non-stationary back-
grounds (i.e., swaying trees, etc.). Therefore, it allows to filter most noise and
image artifacts while focusing on potential humans.

First, we initialize the background model B with the first image of a given
video sequence. In ideal conditions, this image will not contain moving objects.
The algorithm then starts to process all subsequent images. For each image I,
our algorithm calculates a coarse foreground mask M and its complement M’.
The process to calculate M is the following: 1) The image I is divided by the
background model B and multiplied by a fixed coefficient C . 2) The resultant
matrix is then filtered by hysteresis [14]. When filtered by hysteresis, an upper
threshold and a lower threshold are applied. In our example, we apply a range
C±R , where C+R is the upper threshold and C−R is the lower threshold. Both
C and R are values that are determined empirically (please see the experimental
results section). 3) The resultant mask is dilated using a morphological filter,
where holes are filled as well. This preliminary coarse subtraction provides the
regions that are most different between the background model B and the current
image I. We call this mask M. Then, the absolute difference between I and B
is calculated for the pixels in M and then thresholded.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. a) Original background model B; b) Frame to be processed I; c) Coarse mask
M obtained after the first filtering; d) Mask complement M’; e) Image resulting of
multiplying the background model by the mask B x M = I’; f) Reconstructed back-
ground model Bt+1; g) Subtracted image; h) Final blobs after morphological dilation
and hole filling

Fig. 2 shows an example of background subtraction using our approach. To
update the background model, the algorithm takes the current image I and
multiplies it by the mask complement M’. This provides the current background
I’ without the moving blobs. The background model Bt is multiplied then by
the mask M, and that provides the background model B’ that belongs only to
the blob section. The combination I’+B’ gives the updated background model
Bt+1 .

We compared different background methods against our approach to find
the most suitable one. This comparison (by no means exhaustive) considered
the frame difference (FD) method, the approximate median (AM) method, and
the mixture of Gaussians (MoG) method. The major flaw of all those methods
against ours is that, even though the background model is dynamically updated,
objects tend to fade out and become part of the background as time goes along.
Fig. 3 shows example illustrating this fact. We can note that the chair disap-
pears after a number of frames (see the second column of the figure). The frame
difference method generates a trailing that increases the effective surface of the
silhouette. MoG provides, in general, better results than FD and AM, but it is
computationally very expensive. Among the compared methods, our approach
provides the most sharp and regular silhouette contours, which is very critical
for calculating accurate geometrical features as will be explained in the next
sections.
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2.2 Groups of People Detection

Once the candidate blobs have been identified, a blob segmentation process
is necessary to determine whether a single person or a group of persons are
contained within each blob. One approach used by [15] is to obtain a projection
histogram of the blob. The projection histogram calculates the sum of all positive
pixels on a given row. Unfortunately, such approach is not always good, for
example, when the pedestrian is leaning to one side and the head is not in line
with the rest of the body.

The approach we took is to trace a blob curve based on the distances of
the first positive pixel (on a vertical direction) to the horizontal line passing
through the center of the blob. The lowest points in the blob will give the lower
curve values, and vice versa. The curve will then be equal as the blob’s top
boundary profile (see Fig. 4). Once the curve is established, we detect its peaks

Fig. 3. Comparison between different background subtraction methods. The first row
shows the original images, whereas the rows below show, respectively, the frame differ-
ence method, the approximate median method, the mixture of Gaussians method, and
our proposed approach.
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(a) (b)

(c) (d)

Fig. 4. a) Source image; b) Horizontal profile with maximum and minimums already
marked; c) Image with profile line superimposed (only over the detected blobs); d)
Segmented blobs

and valleys. Then, we segment each blob using the peaks as the middle of the
pedestrian candidate and the peak’s adjacent valleys as the pedestrian lateral
limits. Fig. 4 shows an example of group of people detection. Each pedestrian
candidate is surrounded by a red square (see Fig. 4.d), the horizontal limits of
the squares are given by the blob’s valleys, and the presumed pedestrian heads
are given by the blob’s peaks.

2.3 Geometrical Feature Extraction

The Histogram of Oriented Gradients (HoG) is a method that has been widely
used to represent the shape information of the objets. In our work, we use this
information for identifying blobs that contain humans. Since we have the silhou-
ettes of moving objets, we extract the HoG only for the supposed pedestrian’s
head’s silhouette that we detect in the blobs. The algorithm takes a segmented
blob and the boundary of its upper portion (1/5) that will be the region of
interest (ROI) to be used to calculate the HoG. We then build the gradient ori-
entation histogram by grouping the occurrences of each angle using 9 bins. To
make the histograms invariant to scale change, we normalize the histograms by
dividing each bin by the number of pixels on the object contour.
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(a) (b) (c)

Fig. 5. Geometrical features calculated for each silhouette: a) inter-parts distances,
b) global shape signature, c) the signature in b) shown for 200 examples of human
silhouettes (the red line represents the median signature)

When a blob likely contain humans, a second analysis will consist of isolating
each person contained in the blob. For this purpose, we use geometrical features
calculated from each silhouette, where we first segment each blob using the
peaks as the middle of the pedestrian candidate and the peak’s adjacent valleys
as the pedestrian lateral limits, as explains in section (2.2). We then train an
AdaBoost model for human silhouettes according to the features w1

w2
, w2

w3
, H1

H2
,

H1
H3

, H2
H3

, w3
H1+H2+H3

, w2
H1

w3
H3

calculated on the blob segments (see Fig. 5.a), and
the normalized distance-versus-angle signature r(α) (see Figs. 5.b and 5.c). For
training, we used 400 examples of human silhouettes extracted from real videos.

Since we require a binary classification for our silhouettes, Adaboost algorithm
[16] is suitable for this task. Adaboost works by combining several weak linear
classifiers to construct a strong classifier. A weak classifier is defined to be a
classifier which is only slightly correlated with the true classification (it can
label examples better than random guessing). The number of weak classifiers
used during training impacts on the correctness of the final classifier. Intuitively,
we could say that the more weak classifiers we combine, the more correct the
final classifier is expected to be. However, we found that there is a ’sweet spot’
in terms of number of classifiers, and increasing the number of rounds does not
necessarily have a positive impact on performance (see Table 1).

3 Experimental Results

For the training set, we use a dataset of 800 examples (400 positive examples -
belonging to humans- and 400 negative examples). Out of 400 positive examples,
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250 were extracted from the PETS 2009 sequences after applying background
subtraction, and the others from other videos. Negative examples were chosen
not to contain human silhouettes but instead objects likely to move in front of
a camera, such as vehicles or pets. For our experiments, we obtained experi-
mentally the optimal number of classifiers that is suitable for our algorithm. To
establish this number, we trained the model using 20, 30, 40, 50, and 60 weak
classifiers, respectively. Then, we used the obtained model to classify 100 labeled
data that do not belong to the training set. We found that the combination of
40 weak classifiers gives the best results. We define Precision as TP

TP+FP , Recall
as TP

TP+FN , and Accuracy as TP+TN
TP+TN+FP+FN ; where TP (True positives) is the

number of human blobs detected as such, TN (True negatives) is the number
of human blobs classified as such; FP (False Positives) is the number of blobs
classified as human when they are not, FN (False Negatives) is the number of
blobs classified as non human when they’re in fact human. Table 1 gives the
values of these criteria for establishing the best number of classifiers:

Table 1. Precision, recall and accuracy vs. number of weak classifiers

Number of weak classifiers: 20 30 40 50 60

Precision 0.869 0.903 0.939 0.931 0.932
Recall 0.923 0.931 0.946 0.938 0.937

Accuracy 0.895 0.917 0.944 0.939 0.938

We tested our algorithm using different video sequences. We used experimental
values of C = 0.5 for the normalization coefficient and R = 0.1 for hysteresis
thresholding. After the preliminary difference is multiplied by the mask, we apply
an empirical threshold of 0.01 for background subtraction. Then, we apply closing
and opening morphological operations using a 5× 5 diamond structure. Finally,
we smooth out the silhouette image using a 3 × 3 Gaussian filter in order to
obtain regular silhouette contours.

One video we used was ”RedChair.avi” [17]. This video has 187 frames and
shows a man carrying a chair across a room. This gives us the opportunity of
identifying the person alone, or partially occluded, or both (e.g., if the same
blob contains a person and non-person object). Fig. 6 shows an example from
this video. From left to right and top to bottom, we show frames 54, 67, 60
and 75 of the sequence with the detected blobs in each frame. Green rectangles
delimit the blobs identified as pedestrians, whereas red rectangles delimit the
blobs identified as non-pedestrian. In the first row, we notice that whether there
is either backward or forward occlusion, the detection is positive and the whole
blob is marked as pedestrian. In the bottom row, even though they are part of
the same blob, both objects are properly detected and classified as pedestrian
or non-pedestrian. Finally, the last frame shows a non-human object that is left
at the scene and correctly classified as non-pedestrian.

Another video was based on the PETS 2009 benchmark data; we used the
dataset S0/Background/V iew008 to generate the background model and the
dataset S0/CityCenter/T ime12−34/V iew008 for the moving people. This yields
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Fig. 6. Example of person detection. We show from left to right and top to bottom
frames 54, 67, 60 and 75 of the sequence with the detected blobs for each frame. Green
rectangles delimit the blobs identified as pedestrians, whereas red rectangles delimit
the blobs identified as non-pedestrian.

Fig. 7. Example of person/group detection. The left column shows frames 58, 75, 94
and 472 from the PETS 2009 dataset (view 008, time 12:34). The right column shows
the detected blobs for each frame.

a sequence with a total of 939 frames which show pedestrians walking either
alone, in groups, or meeting to form groups and then dispersing. Fig. 7 shows
some examples extracted from this sequence.

Table 2 shows a quantitative performance evaluation of our method compared
to the HoG [2] and W4 [15] approaches. We note that the worst method for
the precision, recall and accuracy criteria is [15] since it uses critical points for
silhouette classification. The most time demanding method is [2] since it scans
all the image to detect possible pedestrians. While a comparable performance is
obtained for the precision, recall and accuracy criteria, the computational time
is much more efficient for our approach than [2]. Consequently, using our method
is more advantageous for real-time detection scenarios than using [2, 15]. Our
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Table 2. Quantitative evaluation of our approach

Criteria W4 [15] HoG [2] Our approach

Precision 0.78 0.95 0.94
Recall 0.70 0.78 0.79

Accuracy 0.76 0.87 0.84
Frame speed ≈ 0.03s ≈ 2.05s ≈ 0.01s

algorithm complexity sits at O(N) where N is the size of each frame, whereas
it is O(N2) in [2]. Note that we developed all the test code using MATLAB
environment running on a dual core 64-bit processor @2GHZ with 4GB of RAM.
With this setup, we achieved performances of 9 fps (frames of 720x576 pixels).

4 Conclusion and Discussion

In this paper, we presented an efficient and fast method for people detection in
videos. The method is based on Adaboost algorithm which operates a binary
classification on the silhouettes produced by change detection algorithms. Our
experiments demonstrated that our method detects people even in the presence
of occlusions and clutter. We demonstrated also that our method is suitable for
detecting both isolated individuals or groups of people, which is one of our major
contributions. Finally, we showed a quantitative performance for our approach
that demonstrate its usefulness and efficiency.

There are several roads leading to our method’s improvement. Further work
will be done over the background subtraction subject, more specifically on the
(now empiric) coefficients C, R, and the thresholding values. Gradient feature
extraction from zones other than head/shoulders could be added to improve ef-
ficiency. Other improvements could be classification using multi-class Adaboost,
to apply this algorithm to other objects (e.g., detecting pedestrians, different
types of vehicles, and road obstacles). Finally, we could enrich the algorithm by
using other features that aren’t related to the silhouette (e.g. motion informa-
tion).
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Abstract. Image-based fluid motion estimation is of interest to science and en-
gineering. Flow-estimation methods often rely on physics-based or spline-based
parametric models, as well as on smoothing regularizers. The calculation of
physics models can be involved, and commonly used 2nd-order regularizers can
be biased towards lower-order flow fields. In this paper, we propose a local para-
metric model based on a linear combination of complex-domain basis flows, and
a resulting global field that is produced by blending together local models using
partition-of-unity. We show that the global field can be regularized to an arbitrary
order without bias towards specific flows. Additionally, the blending approach to
fluid-motion estimation is more flexible than competing spline-based methods.
We obtained promising results on both synthetic and real fluid data.

Keywords: Fluid-flow estimation, optical flow, holomorphic functions.

1 Introduction

Estimating fluid motion from images is interesting to many science and engineering
applications, and has received renewed attention from the computer vision commu-
nity [2,7]. Fluid-flow estimation differs from the similar optical-flow estimation problem
in a number of ways [5]. First, general optical flow fields are often unstructured, while
fluid flows usually result from continuous physical processes. As a result, parametric
models are common in recent works that produce smooth and accurate results [3]. Sec-
ondly, smoothness regularizers in variational optical-flow methods are often based on
first-order derivatives [6]. These methods are thus biased towards piecewise-linear flow
fields limiting their application to fluid flows. This limitation can be addressed by us-
ing a second-order regularizer based on the flow fields’ divergence and rotation [2,3,7].
However, it is unclear how higher-order regularizers can be designed. In this paper, we
propose a parametric model that is robust to noise, is able to represent complicated tur-
bulence, and has a regularizer that is not biased to lower-order flow fields.

Parametric models of fluid flows can be classified into two main groups. The first
group are based on physics priors of fluid dynamics, and integrate temporal informa-
tion into the motion estimation process, producing temporarily consistent results [5].
However, flow fields described by these models are restricted by physics laws, and,
as observed in [7], these methods rely on rather involved minimization processes. The
second group of methods do not make explicit use of fluid dynamics, but estimate fluid
motion solely based on the apparent image deformation, and rely on simple smooth-
ness heuristics to regularize the estimation results [2,12,7]. This group of methods is

M. Kamel and A. Campilho (Eds.): ICIAR 2011, Part I, LNCS 6753, pp. 325–334, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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closely related to the classical problem of optical-flow estimation and nonrigid image
registration. A recent work by Isambert et al. [7] produced superior results on turbulent
flows, using locally supported vector splines, and representing flows using a multi-scale
scheme. However, spline-model optimization can be computationally expensive when
dense control-point grids are used, and it is sensitive to local minima. On the other hand,
the use of sparse control points can oversmooth estimated flow fields. Most importantly,
exact minimization of the functional proposed by Isambert et al. [7] leads to thin-plate
splines. This means that their model is still biased to certain lower-order flow fields.

To address the above problems, we introduce a simple parametric model, that is
robust yet flexible to represent turbulent flow fields, and can be regularized through a
convex functional. Our approach belongs to the second group of methods and makes
no assumptions about the fluid’s physics properties. Similar to [7], we use a locally
supported parametric model to represent a flow field. Instead of using splines and in-
terpolating the motion between control points [7], we use a linear model of orthogonal
basis flows represented as holomorphic functions, and approximate the global field by
blending the local models using partition-of-unity (Section 2). The use of holomor-
phic models leads to simpler handling of important fluid-flow properties such as diver-
gence and rotation, and allows us to regularize a fluid flow unbiasedly, by penalizing
inconsistencies between neighboring local flows instead of their spatial gradients [7,2].
Additionally, the resulting energy functional is convex, and can be minimized through
gradient-descent methods (Section 3). We tested our method on motions from both
synthetic and real fluid data (Section 4). Finally, we point out the limitations of our
holomorphic flow-field model, and directions for future work (Section 5).

2 Higher-Order Model of Flow Field

Parametric models provide a flexible yet compact flow-field representation. In this sec-
tion, we represent local flow fields using holomorphic complex functions. Local holo-
morphic models have been previously used to represent singular points in flow fields [8].
Here, we extend these functions to represent both singular and smooth flow regions.

2.1 Local Flow Field Model

We commence by representing a 2-D vector-flow field as a complex-valued function
F (z) defined on a finite domain Ω ∈ C [8,11]. This vector-flow field is then approxi-
mated by an holomorphic function centered at z0 ∈ C, i.e., f(z) ≈ F (z + z0), that can
be modeled using a linear combination of complex basis functions (basis flow fields).
For example, the Taylor expansion of f(z) about the origin (i.e., z0 = 0) can be written
as a linear combination of complex (orthogonal) monomials φk(z) = zk:

f (z) =
N∑

k=0

akφk(z) + RN (z), (1)

where ak = f(k)(0)
k! are the coefficients, and RN (z) is the residue. Here, f (k)(0) is the

k-th derivative of f evaluated at z0 = 0. For simplicity, we assume the basis φk(z)
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(a) φ0,1 (b) φ1,1 (c) φ2,1 (d) φ3,1 (e) φ4,1

(f) φ0,2 (g) φ1,2 (h) φ2,2 (i) φ3,2 (j) φ4,2

Fig. 1. Basis polynomials φk,i multiplied with weight function wσ(z) for k = 0, . . . , 4 and
i = 1, 2. First column: polynomials derived from zk. Second column: polynomials derived from
izk. φ1,1 is a rotation-free source field and φ1,2 is a divergence-free vortex. The flow fields exhibit
higher-order fluctuation with increasing k.

to be orthogonal, so the coefficients ak can be calculated by inner product projection.
Both the orthogonality condition and projection operator depend on the choice of inner
product in the analytic functions space A(Ω). The classic Hermitian inner product [4]
produces complex numbers, making projection calculations difficult. Instead, we use
vector fields’ correlation [8] as an alternative inner product:

〈f(z), g(z)〉 =
∫

C

(f(z) · g(z))wσ(z) dz, (2)

where · is the dot product between two complex numbers, and wσ is a Gaussian ker-
nel that makes the projection local. Flow-field f(z) can be projected onto the basis
function φk(z), with real-domain projection coefficients given by ak = 〈f(z),φk(z)〉

〈φk(z),φk(z)〉 .
Furthermore, we can re-write Equation 2 as:

〈f(z), g(z)〉 = (F ⊗ g)(z0) =
∫

C

(F (z + z0) · g(z))wσ(z) dz, (3)

which can be implemented efficiently using the Fast Fourier Transform (FFT). Given
the inner product defined in Equation 2, we can show that complex monomials {zk}N

k=1

and {izk}N
k=1 form a complete orthogonal basis. Intuitively, izk is a counterclockwise

90-degree rotation of the vectors in zk. Our basis flows can then be written as: φk,1(z) =
zk and φk,2(z) = izk. Figure 1 shows the weighted basis functions φk,i ∗ wσ(z) for
k = 0, . . . , 3. Using (1), the N -th order flow-field approximation at p ∈ Ω is:

F (z + z0) ≈ f(z) =
N∑

k=0

(ak,1φk,1(z) + ak,2φk,2(z)) , (4)
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0,1 0,2 1,1 1,2

Fig. 2. Decomposition and reconstruction. (a) Original turbulent flow and detail view. (b) Re-
constructed flow and detail view. (c)-(f) Correlation coefficient maps for the first four projection
coefficients for φk,1(z). Coefficient map A1,1 in (e) shows that the flow field is divergence free,
while stronger responses in A1,2 (f) indicate vertex locations. Blue color indicates orientation
match between filter and flow data while red indicates reverse orientation.

where ak,i = 〈f(z), φk,i(z)〉, for k = 1, . . . , N , and i = 1, 2. The approximation
produces 2(N + 1) real coefficients ap = ap

0,1, a
p
0,2, . . . , a

p
N,1, a

p
N,2 for location p.

According to (3), the coefficients are local values of the cross-correlation between F (z)
and φk,i(z). It can be shown that by letting z → 0 in Equation 4, the local flow field’s
divergence and rotation simply equal to a1,1 and a1,2, respectively. This observation
shows that both divergence and rotation are represented in our model. Figure 2 shows
the correlation between the first two basis pairs and a turbulent flow, i.e., Ak,1 = F (z)⊗
φk,1(z) and Ak,2 = F (z) ⊗ φk,2(z), k = 0, 1. The turbulent flow field happens to be
divergence free so A1,1 vanishes almost everywhere. This further confirms that a1,1 and
a1,2 are related to the divergence and rotation of the flow field.

2.2 Blending Local Models into a Global Flow Field

Local flow models can be blended into a global flow field using a partition-of-unity [7]:

F̃ (z) =
∑
k,i

∫
p

Ak,i(p)φk,i(z − p)h(z − p)d p. (5)

Here, function h is a blending function such that
∫

h(z)dz = 1, ensuring that the
contributions of neighboring models sum to one (partition-of-unity) [7]. In this paper,
we choose h(z) to be a Gaussian function with the same size as our basis flows. This
blending approach is more flexible than the interpolating splines [7], as local models are
not required to agree at control points. Similarly to splines, the global representation in
Equation 5 can be blended using a sparse grid of local models.
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3 Fluid Flow Estimation

We now extend the modeling described in previous sections to fluid-flow estimation. In
general, fluid-flow estimation is formulated as the following minimization problem [2]:∫

D (I(x + v, t + δt), I(x, t)) dx + λ

∫
S(v)dx, (6)

where x and v are the spatial and velocity vectors, respectively, D is the data term
enforcing luminance or mass constancy, and S is the regularizer preferring smooth so-
lutions. Since luminance constancy simplifies computation, and is widely used for in-
compressible fluid flows, in this work, we enforce the luminance constancy, and leave
the mass constancy for future study. The most common data term used to enforce lu-
minance constancy is based on a quadratic form that can be discretized into the well-
known optical-flow constraint as D (I(x + v, t + δt), I(x, t)) = (∇I · v + ∂I/∂t)2,
where∇I is the spatial image gradient, and ∂I

∂t is the time difference. There are two typ-
ical regularizers for regularizing the flow fields, including the first-order Horn-Shunk’s
regularizer [6] and the second-order regularizer used in [2], respectively:

S(1)(v) = ‖∇v1‖2 + ‖∇v2‖2 and S(2)(v) = ‖∇div(v)‖2 + ‖∇rot(v)‖2. (7)

S(1) is widely used in optical flow computation, and is biased towards piecewise linear
flows, while S(2) is considered more appropriate for regulating fluid motions. Here,
since we represent flow fields using parametric models, instead of recovering v directly,
we aim at finding the optimal coefficients representing the underlying motion between
two images. In the following section, we first show how the optical-flow constraint and
the existing regularizers can be rewritten using the proposed model. Then, we introduce
a general regularizer for arbitrary-order flow fields.

3.1 Local Optical-Flow Constraint

Let us write the image gradient as a complex function∇I(z) = ∂I
∂x + ∂I

∂y i, and let f(z)
represent v at pixel p. We can then substitute the linear approximation of f(z) in (4)
into the optical-flow constraint to minimize the following weighted error function:

D(p) =
∑

z∈Np

wσ(z)

(
N∑

k=0

(ak,1φk,1(z) + ak,2φk,2(z)) · ∇I(z)− ∂I/∂t

)2

, (8)

where wσ(z) is a Gaussian function that weights the image evidence more at the center.
Equation 8 can be written in a compact matrix form: (Rpap −Tp)

T

W(Rpap −Tp),
with W contains the weighting factor wσ(z), Rp is calculated from φk,i · ∇I(z), and
Tp is obtained by stacking ∂I

∂t . Minimizing Equation 8 leads to a local optical flow
calculation similar to the Lucas-Kanade [9] method that can be solved as a linear system.

3.2 Global Smoothness Constraint

In this section, we show how smoothness constraints can be formulated directly from
the local coefficients vector ∂ap

∂p , p ∈ Ω. If we consider z = 0 in Equation 4, the local
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velocity vector is simply (a0,1, a0,2). Thus, the first-order regularizer can be written
as S(1)(v) = ‖∇a0,1‖2 + ‖∇a0,2‖2. Furthermore, we haven shown in Section 2.1
that divf(z) = a1,1 and rotf(z) = a1,2 when z → 0. As a result, the second-order
regularizer becomes: S(2)(v) = ‖∇a1,1‖2 + ‖∇a1,2‖2. Similarly, we can define an

arbitrary-order regularizer SN
1 =

∑N
k=0 βk

(
‖∇ak,1‖2 + ‖∇ak,2‖2

)
where βk ≥ 0

are weight factors that emphasize on different orders, or equivalently:

S
(n)
1 =

∑
z∈Np

(az − ap)
T

Γ (az − ap) , (9)

where Γ = diag(β0, . . . , βN ), and Np is the set of neighboring local models. By choos-
ing small βk for lower-order coefficients, we avoid penalizing lower-order variations.
This can be justified by noticing that ak,i is related to the flow field’s derivatives through
Taylor’s expansion in (1), and the n-th order spatial derivatives of F (z) can be measured
from the derivatives of the corresponding coefficients an,i, i = 1, 2.

Unbiased higher-order regularizer. The regularizer in (9) penalizes spatial variations
of model parameters, and is similar to the one used in [10]. However, penalizing model
parameters’ gradients may lead to bias towards certain orders of flow fields, depending
on the choice of the weighting parameters Γ. Also, simply penalizing model parame-
ters’ spatial variations ignores the fact that the variation can be partially caused by local
coordinate system shifting. For example, the local flow f(z) = z + z2 observed at a
neighboring position z + δz will be f(z + δz) = (δz)

2
+ (1 + 2δz)z + z2. In other

words, there will be model parameter variations even when the flow field follows exactly
a polynomial model. We account for these variations by shifting the local parameters
before comparison with neighboring models. Fortunately, we can write the shifting of
a basis function (monomial) zk as a linear combination of lower-order monomials, i.e.,
(z+δz)k = (δz)k +(δz)k−1z+ . . .+zk. As result, the shifting operator can be written
as a lower-triangular matrix H(δz). Thus, an alternative regularizer can be defined as:

S
(n)
2 =

∑
z∈Np

(H(p− z)az − ap)
T

Γ (H(p− z)az − ap) , (10)

where H(p − z) is the shifting matrix, and the weighting matrix Γ is used to make
the notation consistent with Equation 9. In this paper, we simply choose Γ = λI with
λ > 0, for both (9) and (10). In this way, we are not penalizing the spatial variations of
the model parameters. Instead, we penalize the inconsistency between local models, so
flow fields with different orders will not be biased by the regularizer for the magnitude
of their variations, as long as they make consistent variations. It is easy to verify that
any holomorphic functions (flows) with order less than N can make S

(n)
2 vanish, and

this confirms that lower- and higher-order flow fields are equally penalized.

3.3 Gradient-Descent Minimization

We now combine both local and global constraints into a single functional as:

E
(n)
1 =

∑
p∈Ω

D(p) + S
(n)
1 (p) or E

(n)
2 =

∑
p∈Ω

D(p) + S
(n)
2 (p). (11)
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Here, both E
(n)
1 and E

(n)
2 are convex, and can be minimized using variational calculus.

Since their minimizing procedures are analogous, we will only explain the minimization
for E

(n)
2 . The gradients for this functional can be derived as follows:

∂EN

∂ap
= 2

⎧⎪⎨⎪⎩a
T

p (R
T

pWRp + ‖Np‖Γ)︸ ︷︷ ︸
Mp

−
∑

z∈Np

a
T

z H
T

(p − z)Γ︸ ︷︷ ︸
shifting term

−T
T

pWRp︸ ︷︷ ︸
Np

⎫⎪⎬⎪⎭ . (12)

In (12), matrices Mp and Np is pre-calculated from image gradients and basis flows.

The same applies to the shifting term H
T

(p− z)Γ.

4 Experiments

The goal of our experiments is to show that fluid-motion estimation can be improved
using our high-order model. We began by evaluating the homomorphic model by ob-
taining decompositions and reconstructions on synthetic turbulent flows. Then, we ran
our fluid-motion estimation algorithms on both synthetic and real images. In all imple-
mentations, we used luminance-constancy instead of mass-constancy constraint. The
reconstruction’s average end-point error (APE) on European FLUID dataset [1] using
2nd-order and 3dr-order models as a function of basis-flow radius was less than 5%,
showing that the fluid motion was well represented by our model. It is worth notic-
ing that as the radius of the local models approaches zero, our representation becomes
over-parameterized, and the 3rd-order model produced larger reconstruction error for
the radius were smaller than two pixels.

Synthetic PIV images. On synthetic images, we quantitatively compared the following
methods: the classic Horn-Shunk method 1 (S(1)), a B-spline adaptation of the method
in [7], and also with our higher-order regularizer without shifting (E(n)

1 ) and with shift-

ing (E(n)
2 ). For the last two, we tested the cases of n = 2 and n = 3. Although we

do not have implementations of the second-order regularizer used in [2] (i.e., S(2)), our
regularizer E

(2)
1 can be seen as a parametric version of it. As ground truth is hard to

obtain for fluid images, we resorted to synthetic PIV images from the FET-Open Euro-
pean project FLUID [1]. This database contains 6 different types of stable flows, and
turbulent flows. As stable and turbulent flows are different in nature, we tuned the algo-
rithm parameters separately for each dataset. These parameters are: (1) the smoothness
weight λhs for Horn-Shunk’s method; (2) the spacing of control points dsp, and the
smoothness weight λsp for spline-based method; (3) for our method, the scale (radius)
of the parameterized model r, the spacing between local models d, and the regularizer
weight λ. Table 1 summarizes the parameters used for each method and dataset.

Tables 2 show the average angular error (AAE) and average end-point error (APE)
of the compared methods. Our method performed better on almost all sequences, and
the errors decrease with increasing approximation order. Comparing results of E

(n)
1 and

E
(n)
2 shows that the shifting operator increases estimation accuracy. Additionally, the

1 Available for download from: http://www.cs.brown.edu/˜dqsun/

http://www.cs.brown.edu/~dqsun/
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Table 1. Algorithm Parameters

Dataset Horn-Shunk Spline E
(2)
1 &E

(2)
2 E

(3)
1 &E

(3)
2

λhs λsp dsp λ d r λ d r

Stable Flows 2500 0.1 32 0.1 8 32 0.5 8 32
Turbulence 1500 0.1 8 0.1 2 6 0.5 2 6

Table 2. AAE and APE on Analytic Fluid Sequence

Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5 Seq. 6 Turb.
AAE APE AAE APE AAE APE AAE APE AAE APE AAE APE AAE APE

HS 1.02 0.04 1.96 0.04 1.01 0.04 2.75 0.06 2.77 0.06 1.62 0.05 22.09 0.43
Spline 0.63 0.03 0.96 0.02 1.13 0.04 2.73 0.06 2.28 0.05 1.43 0.05 7.27 0.13

E
(2)
1 0.85 0.04 1.70 0.04 0.78 0.03 2.48 0.05 2.59 0.05 1.34 0.04 4.62 0.09

E
(2)
2 0.80 0.03 1.63 0.03 0.72 0.03 2.43 0.05 2.53 0.05 1.31 0.04 4.62 0.08

E
(3)
1 0.58 0.03 1.38 0.03 0.63 0.03 1.87 0.04 1.88 0.04 1.45 0.06 4.58 0.08

E
(3)
2 0.58 0.03 1.24 0.02 0.55 0.02 1.87 0.04 1.89 0.04 1.49 0.18 4.30 0.08

experiments confirmed the observation in [7] that spline-based methods produce better
results than their nonparametric counterparts, especially on turbulent flows. Figure 4
shows streamline and vorticity maps of the extracted turbulence motion. Although the
difference is visually small from the streamlines, it can be seen that both the spline-
based and our method produce a ‘smoother’ vorticity map than the Horn-Shunk method,
and that our method’s vorticity map is closest to the ground truth in its magnitude.

Real-world images. In Figure 4, we show the estimated motion from a wingtip vor-
tex 2 and satellite images 3. Both the spline model and ours produce smoother results
than the Horn-Shunk method. However the spline model easily got trapped in local min-
ima when small smoothness parameters were used, and produced over-smoothed results
when the parameter was large. Specifically, for satellite images, all the three methods
produced a weak flow for static image regions due to the smoothness constraint. In-
terestingly, as we have discussed in Section 3.2, Horn-Shunk’s first-order regularizer
produced piecewise linear flows, and the spline model split the flow field to satisfy the
thin-plate deformation energy, while ours produced consistent background flow.

5 Limitations of Our Method and Future Work

We have proposed a higher-order model of flow fields using complex polynomials. Us-
ing this model, we were able to reformulate the optical flow computation in a general

2 Courtesy of ONERA
3 Copyright @ EUMETSAT
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(a) Source image (b) Horn-Shunk (c) Vector-spline (d) Our method

(e) Source image (f) Horn-Shunk (g) Vector-spline (h) Our method

Fig. 3. Real-world image sequences. The first row shows flow fields estimated from a Wingtip
Vortex, and the second row shows the ones from satellite images. Compared to the spline model,
our method does not over-smooth the flow fields, and produce more consistent results.

(a) Ground Truth (b) Horn-Shunk (c) Vector-spline (d) Our method

Fig. 4. Fluid motion estimation. Both spline-based methods and ours produced smoother results
than Horn-Shunk’s. The vorticity estimated by our method is closer to the ground truth.

(a) (b) (c) (d)

Fig. 5. Flow fields that cannot be well approximated by holomorphic functions of similar scales,
including a conjugate flow f(z) = z (a) and its holomorphic approximation shown in (b), a shear
flow f(z) = z + z (c) and its holomorphic approximation shown in (d)
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way in which the regularizer can be chosen to penalize certain orders of variations. It
is important to point out that the holomorphic assumption used in our approximation
model is restrictive as certain flow fields may not be well represented by our model.

Figure 5 shows two examples of such flows, namely, the conjugate flow, f(z) = z,
and the affine flow, f(z) = z + z, with their holomorphic approximations using basis
flows of similar scales to the approximated local flows. Both of the flows are non-
analytic anywhere in the complex plane, and their holomorphic approximations are
poor. This problem can be partially addressed by minimizing the basis flows’ scales.
In the extreme case when the bases’ scale approaches zero, our flow-field model be-
come over-parameterized, and the flow fields can be fully represented. However, this
would increase computational cost, and we believe the better solution lies in extending
our approximation model to include non-analytic basis flows. Our future work also in-
cludes extension of the method to 3-D flow-field estimation, integration with flow-field
singular pattern detection [8], and the usage of mass-constancy constraints [2].
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Abstract. Texture analysis is used in numerous applications in various fields. 
There have been many different approaches/techniques in the literature for 
texture analysis among which the texton-based approach that computes the 
primitive elements representing textures using k-means algorithm has shown 
great success. Recently, dictionary learning and sparse coding has provided 
state-of-the-art results in various applications. With recent advances in 
computing the dictionary and sparse coefficients using fast algorithms, it is 
possible to use these techniques to learn the primitive elements and histogram 
of them to represent textures. In this paper, online learning is used as fast 
implementation of sparse coding for texture classification. The results show 
similar to or better performance than texton based approach on CUReT 
database despite of computation of dictionary without taking into account the 
class labels.  

Keywords: Dictionary learning, matrix factorization, sparse coding, texture 
classification. 

1   Introduction 

Texture provides important information in various fields of image analysis and 
computer vision. It has been used in many different problems including texture 
classification, texture segmentation, texture synthesis, material recognition, 3D shape 
reconstruction, color-texture analysis, appearance modeling, and indexing [1-4].  

As texture is a complicated phenomenon, there is no definition that is agreed upon 
by the researchers in the field [2, 3]. This is one of the reasons that there are various 
analysis techniques in the literature, each of which tries to model one or several 
properties of texture depending on the application in hand. 

Among these techniques, the approaches based on representing textures using 
some primitive elements, either predefined or learned, has recently shown great 
success in texture analysis. These approaches have roots in influential paper by Julesz 
[5]. He introduced textons as fundamental primitive elements that can describe 
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textures. However, he did not propose any method how to compute these primitive 
elements in [5].  

Based on Julesz proposal, two techniques have recently obtained prevalence in 
texture analysis. First, techniques based on local binary patterns (LBPs) [6], in which 
fixed operators, i.e., LBPs and their histogram are used to represent a texture. Second, 
texton-based approach where learned textons (composed in a dictionary) are used as 
primitive elements to represent a texture. Our focus in this paper is on this latter 
approach, i.e., learned dictionary of textons. 

Leung and Malik were the first to develop a complete texture classification system 
using texton-based approach [7]. They defined 2D textons as the cluster centers in 
filter bank responses, which made it possible to generate textons from the images 
automatically as the prototypes representing the source textures. These textons formed 
a dictionary from which a texton histogram could be constructed for each image using 
a similarity measure. Their work was further improved by Schmid [8], Cula and Dana 
[9], and Varma and Zisserman [10, 11]. 

In texton-based approach, the textons in the dictionary are learned using a 
clustering algorithm such as k-means. However, as explained in [10], one main 
shortcoming of k-means is that it can be only applied to points within a texture class. 
It cannot be applied across classes as it merges data points (by taking mean of points) 
and thus the resultant cluster centers cannot be identified uniquely with individual 
textures. This means that the cluster centers computed using k-means across classes 
are not representing textures in a class anymore.  

A solution to this problem is computing the dictionary using dictionary learning 
approaches based on sparse coding or using matrix factorization1. Previously, these 
approaches for dictionary learning were too slow to be utilized in these applications. 
However, with recent advances in this field and by introducing fast algorithms such as 
online learning [12], rank-one downdate (R1D) [13], and coordinate descent [14], it is 
now computationally feasible to compute the dictionary on millions of patches (data 
samples in general) in reasonable time. This means that the dictionary can be learned 
on whole training set (not per class) using these approaches. The main advantage is 
that we do not use the class labels at this stage, i.e., learning dictionary is fully 
unsupervised.  

Here, we propose using online learning [12] for learning a dictionary on the whole 
training set and computation of sparse coefficients over the whole dictionary and 
show that despite of fully unsupervised learning of dictionary, on standard databases 
such as Columbia Utrecht Reflectance and Texture (CUReT) database [15], it 
performs similar to or better than texton-based approaches using k-means, where 
dictionary is learned per class. 

The rest of the paper is organized as follows: Section 2 presents the theory of 
dictionary learning and sparse coding (DLSC) related to our work. Experimental 
setup is described in Section 3 followed by results in Section 4. The paper is 
concluded in Section 5. 

                                                           
1 The connection between matrix factorization and dictionary learning using sparse 

coding is explained in [12]. 
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2   Dictionary Learning and Sparse Coding  

In this section, we first provide an overview of dictionary learning and sparse coding 
(DLSC) and its connection to texton-based approach for texture classification. Then 
we provide the formulation for dictionary learning with sparse representation for 
texture classification.  

2.1   Background   

Dictionary learning and sparse representation/coding are two closely related topics in 
the literature. The initial work on these two topics was originated from two 
communities and problems under two different names, i.e., sparse coding (SC), which 
was originated by neurologists as a model for simple cells in mammalian primary 
visual cortex [16, 17]; and, independent component analysis (ICA), which was 
originated by researchers in signal processing to estimate the underlying hidden 
components of multivariate statistical data (refer to [18] for a review of ICA). These 
two problems merged, eventually, into similar techniques, but somewhat different 
description (the connection between SC and ICA is also explained in [18]). 

The main result of these two research works was that a class of signals with sparse 
nature, such as the images of natural scenes, can be represented using some primitive 
elements that form a dictionary, and that each signal in this class, can be represented 
by using only few elements in the dictionary (sparse representation). 

In fact, there are, at least, two ways in the literature to exploit sparsity [19]: first, 
using a linear/nonlinear combination of some predefined bases, e.g., wavelets [20]. 
Second, by using primitive elements in a learned dictionary, such as techniques 
employed in SC or ICA. This latter approach is our focus in this paper. 

As mentioned in the introduction, dictionary learning was introduced to the field of 
texture analysis by Julesz theory that stated textures can be represented using a few 
primitive elements [5] and following the work done in [7, 8, 9, 10, 11] that initiated 
the texton-based approach in texture classification. Texton-based approach mainly 
consists of two steps, dictionary learning and computation of models (features) for 
each texture image. In the first step, extracted patches from each texture image in a 
class are submitted to a clustering algorithm such as k-means and obtained cluster 
centers are used as primitive elements (called textons) that form the dictionary. In the 
second step, for each texture image, a histogram of textons is computed. To compute 
this histogram, patches are extracted from each texture image and each patch is 
compared with the textons in the dictionary. The closest match based on a similarity 
measure such as Euclidean distance is used to update the corresponding bin in the 
histogram of textons. Thus, each patch in a texture image is represented by only one 
single texton in the dictionary (the closest match). This is a kind of sparse 
representation, in which only one atom in the dictionary is active per patch. These two 
steps can be performed using DLSC, which is described next. 

2.2   Mathematical Formulation 

Considering a finite training set of signals , , … , , they can be 
represented by a dictionary D and a set of sparse coefficients a using 
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min, 12 l j , (1) 

where l is a regularization parameter and j(.) is a sparsity inducing function. The 
most common sparsity inducing function is ℓ  norm and the corresponding problem is 
known as the Lasso [21] 

min, 12 l . (2) 

To prevent obtaining very large values of D, which consequently leads to very 
small values of , a constraint is imposed on the columns of D such that they have 
unit ℓ  norm [12].  

Solving (2) using one of the approaches in the literature such as online learning 
[12] yields the dictionary D and the sparse coefficients a. If the dictionary has been 
already computed (using all , 1, … ,  in the training set), (2) can be used to find 
the sparse coefficients for a signal x in test set (D is fixed in this case).  

2.3   Texture Classification 

Texture classification using dictionary learning and sparse representation based on (2) 
can be done in two steps. In first step, the dictionary (k is the number of 
primitive elements in the dictionary) is learned using , , … , , 
where , 1, … ,  are patches extracted with size √ √  from texture images in 
training set in all classes. With fast algorithms such as R1D or online learning, this 
can be performed in few minutes over millions of patches.  

After learning the dictionary, we need to find the model (feature set) for each 
texture image in training and test sets. To this end, patches of the same size as what is 
used in dictionary learning step are extracted from each texture image, i.e., , , … , , where n is the number of patches extracted, which is not 
necessarily the same as m. Then using (2), the corresponding coefficients a, 1, … ,  are computed. For each patch , most of the elements in the 
corresponding coefficient  are zero. The nonzero elements in  determine the 
primitive elements in the dictionary D that contribute towards the representation of 
the patch . If we sum up all these coefficients for all patches extracted from a 
texture image, we effectively find the histogram of primitive elements contributing 
towards the representation of this particular texture, i.e., H ∑ . (3) 

 
We impose a positive constraint on  in (2) such that we eventually obtain a 
histogram H with positive values in all bins. This also prevents cancelling the effect 
of different patches when they are summed up in (3). Hence, we rewrite (2) as follows 
to consider this constraint as well as the constraint we considered on D columns in 
previous subsection 
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 min , ∑ l , 
                                      s.t. 1, … , , 1 & 0 , 

(4)

 
where  is the jth column of D. In this way, while in texton-based approach each 
patch is represented using only the closest texton in the dictionary, here each patch is 
represented by using several primitive elements in the dictionary and hence it can 
potentially provide richer representation than texton-based approach. The number of 
nonzero elements in  can be controlled using l in (4), i.e., larger values of l yield 
sparser coefficients [12].  

The distance between two normalized histograms is measured using   statistic, 
i.e., using  H , H 1 2⁄ ∑ ⁄ . One nearest neighbor is 
used as the classifier as suggested in [11]. 

Although, dictionary learning is also used in [22] for texture classification, our 
work is different in following three aspects. Firstly, in [22] one dictionary is learned 
per class and then these dictionaries are composed (concatenated) to form the overall 
dictionary (this is the same as what is reported in the literature for finding dictionary 
using k-means). We find the dictionary on the whole training set (not per class) and 
this means that we do not use class labels at this stage at all. Secondly, to find the 
sparse coefficients, in [22] part of dictionary which is most similar to the current 
patch is considered (it is not explained what kind of similarity is used) and the reason 
mentioned is that using the whole dictionary is computationally very expensive. We 
find the sparse coefficients on whole dictionary (this is possible with recent advances 
in computation of the Lasso in the literature as mentioned before). Thirdly, we have 
placed positive constraint on the coefficients as we eventually sum them up to find the 
histogram of primitive elements (in the dictionary) as the feature set for an image to 
be classified. In [22] this positive constraint on the coefficients is not considered and 
this might not be needed as the coefficients are not found on the whole dictionary but 
just on part of dictionary most similar to the current patch. In fact, our experiments 
show that without this positive constraint on the coefficients, the performance of the 
classification system is very poor. 

3   Experimental Setup 

The performance of the proposed classification system is evaluated on CUReT 
database. The database is used the same as what is reported in [11]. That is, there are 
92 images per class and 61 classes. Each image is 200 ä 200 pixels with the intensity 
resolution of 8 bit/pixel. The comparison is made with texton-based approach using 
raw pixel representation. This means that no filter banks are used.    

Data Preparation and Preprocessing. To make the images indiscriminable to the 
average intensity level and contrast, the mean of texture images is removed and they 
are also normalized to have unit standard deviation. 
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Computation of Dictionary. To compute the dictionary, 500 random patches are 
extracted from each texture image in the training set. Patch sizes of 5 ä 5, 7 ä 7, and 9 
ä 9 are used in the experiments. No filter banks are applied and raw pixel 
representation is used. The mean of patches are removed to make the images locally 
invariant to the average intensity. In texton-based approach, Weber's law 
normalization is used as reported in [10, 11]. In DLSC, each patch is normalized to 
have unit ℓ  norm. This is done based on the constraint on primitive elements in the 
dictionary as stated in (4). In texton-based approach, all patches belonging to one 
class are submitted to the k-means algorithm to find the cluster centers. These cluster 
centers over all classes are then composed into a single dictionary. In DLSC 
approach, all patches from all classes are used at once for learning the dictionary. 
Hence, no class labels are used at this stage. Online learning [12] is used for the 
implementation of (4) in DLSC. As suggested in [12], the regularization parameter l 
in (4) is chosen as 1.2 √⁄ , where patch size . This yields about 10 nonzero 
coefficients in average for the patches of 9 ä 9. 

Learning Models (Histograms). After computation of the dictionary, we need to find 
the model. To this end, small overlapping patches with the same size as what was 
used in the previous step are extracted from the top left to the bottom right of each 
ROI. As in the dictionary learning, no filter bank is used and raw pixel representation 
is considered. The mean of each patch is removed and they are normalized according 
to Weber's Law in texton-based approach and to unit ℓ  norm in DLSC. In texton-
based approach, Euclidean distance is used as the similarity measure to find the 
closest texton in the dictionary to each patch. In DSLC, online learning 
implementation of (4) is used with the same l value as previous step with positive 
constraint on the coefficients . Each coefficient is normalized to sum to one and all 
of them are then summed up to yield the overall frequency histogram of primitive 
elements for each texture image, which is used as the signature (model) of the 
particular texture image after normalization. 

4   Results 

In this section, we present the results of texture classification on CUReT database 
using both texton-based and DLSC approaches.  

Fig. 1 compares the dictionary learned using these two techniques. In texton-based 
approach, 10 textons are learned in each class using k-means and eventually all 
textons are composed into a dictionary (610 textons for 61 classes). As can be seen in 
Fig. 1, every 10 adjacent textons are similar as they are taken from the same class. In 
DLSC approach, all patches extracted from all classes are used for the learning of 
dictionary using (4). Hence class labels are not used at this stage. Different from 
texton-based dictionary, the primitive elements from all classes are spread over entire 
dictionary in DLSC. 

Table 1 shows the performance of one nearest neighbor classifier using texton-
based and DLSC approaches. The experiments are repeated 100 times over random 
sets of training and test sets. The performance is compared for three different patch 
and four different training set sizes. As can be seen from this table, the performance  
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Fig. 1. Dictionary of 610 primitive elements learned using patches of size 7 ä 7 extracted from 
23 training texture images per class using: (left) k-means algorithm where 10 textons per class 
are learned and all these textons are composed into a dictionary and (right) DLSC as described 
in this paper where all primitive elements are learned at once by submitting all extracted 
patches from all classes to (4). 

Table 1. Comparison between the classification accuracy of texton-based and DLSC 
approaches. The experiments are repeated 100 times on various random split of training and 
test sets. The dictionary is consisting of 610 primitive elements and results are reported for 
different train and patch sizes. 

    Patch Size 
 
Train Size 

5 ä 5 7 ä 7 9 ä 9 
Texton DLSC Texton DLSC Texton DLSC 

6 
73.76 
≤ 4.25 

74.22 
≤ 4.37 

74.73  
≤ 4.15 

75.77 
≤ 4.27 

75.65  
≤ 3.92 

76.32  
≤ 4.14 

12 
83.46  
≤ 2.60 

84.02  
≤ 2.55 

84.25  
≤ 2.66 

85.03  
≤ 2.55 

85.20  
≤ 2.54 

85.32  
≤ 2.49 

23 
90.09  
≤ 1.56 

90.52 
≤ 1.55 

90.81  
≤ 1.62 

91.33  
≤ 1.57 

91.42  
≤ 1.61 

91.62  
≤ 1.59 

46 
94.83  
≤ 0.95 

 

95.26  
≤ 0.93 

95.49  
≤ 0.93 

95.85  
≤ 0.87 

95.94  
≤ 0.85 

96.14 
≤ 0.87 

 
of DLSC is similar to or better than texton-based approach in all cases. This is while 
the dictionary of DLSC is learned over whole training set at once whereas dictionary 
of texton-based approach is learned per class, i.e., class labels are taken into account 
in this learning. 

5   Discussion and Conclusion 

Sparse representation using few primitive elements learned from data has recently 
shown great success in different fields such as face recognition and denoising. One of 
main obstacles for widespread application of this approach was rather slow algorithms 
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for the computation of dictionary and sparse coefficients over millions of data 
samples, which is usually the case in image processing and computer vision tasks. 
The initial algorithm proposed in [16], for example, took hours to compute the 
dictionary over patches extracted from only ten natural scenes.  

With recent fast algorithms proposed for dictionary learning and sparse coding 
such as online learning and R1D, it is now feasible to perform the computation over 
millions patches in few minutes. In this paper, we proposed using one of these 
algorithms, i.e., online learning, for the purpose of texture classification over large 
databases such as CUReT. In contrast to k-means algorithm used in texton-based 
approach that has to learn the dictionary per class, the proposed approach can learn 
the dictionary over all classes and hence class labels are not used at all in this step. 
Yet, the results of classification are similar to or better than texton-based approach. 
The positive constraint imposed on sparse coefficients enables learning the 
coefficients over whole dictionary and, consequently, finding the model histogram for 
each texture image is as simple as summing up the sparse coefficients learned for all 
patches extracted from the particular texture image. 

In future work, we would also like to impose positive constraint on the dictionary 
and utilize nonnegative matrix factorization using fast implementations such as R1D 
[13]. We would also like to extend this work to supervised dictionary learning [19] 
and compare it to our current results for possible further improvements.  
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Abstract. In this paper two criteria are presented to compute reduced sets of 
centers of maximal discs in the weighted <3,4> distance transform of 2D digital 
patterns. The centers of maximal discs selected by the above criteria are used as 
anchor points in the framework of 2D skeletonization and, depending on the 
adopted criterion, originate skeletons with different properties.  

1   Introduction 

Skeletonization is a process leading to the extraction of a linear subset of a digital 
pattern, spatially placed along the medial region of the pattern and characterized by 
the same topology. The resulting set, the skeleton, is a stick-like representation of the 
pattern and, depending on the adopted process, accounts for different shape 
properties, such as symmetry, elongation, width and contour curvature. 

A rich literature exists as concerns definition, extraction and use of the skeleton of 
2D patterns (see e.g., [1-2] for an extensive survey). In particular, many algorithms 
deal with the computation of the labeled skeleton, i.e., a skeleton where each pixel is 
assigned the value of its distance from the complement of the pattern. The labeled 
skeleton can be used for shape representation even in the case of patterns that can not 
be interpreted as consisting exclusively of ribbon-like parts.  

Most of the skeletonization algorithms, especially if dealing with the computation 
of the labeled skeleton, have been influenced by the work of Blum on the medial axis 
transform MAT [3]. Since the exact computation of the MAT is rather complex, 
different criteria have been suggested to generate an approximation of the MAT. One 
of these criteria is based on the detection of the centers of maximal discs CMD in the 
distance transform DT of the pattern. In fact, the CMD can be easily detected by 
comparing the distance values of neighboring pixels in DT, which is equivalent to 
comparing the radii of the discs associated to the neighboring pixels. Moreover, CMD 
are definitely symmetry points since their associated discs result to be tangent to the 
boundary of the pattern in at least two different boundary parts. Finally, each maximal 
disc is not included in any other single disc in the pattern and the union of the 
maximal discs coincides with the pattern. Unfortunately, the set of centers of maximal 
discs and the pattern are not generally characterized by the same topology. Thus, to 
obtain a topologically correct skeleton, also other pixels in DT have to be taken as 
skeletal pixels besides the CMD. To this aim, several DT based skeletonization 
algorithms have been suggested (see e.g., [4-12]). 
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DT based skeletonization algorithms can be implemented by following any of two 
different approaches. In both cases, CMD are taken as anchor points, i.e., as pixels 
that are definitely accepted as skeletal pixels. According to the first approach, the 
skeleton is computed by resorting to iterated contour peeling. At each iteration of the 
peeling process, pixels belonging to the current contour of the pattern and that are not 
anchor points are successively examined. Any such a pixel is removed, i.e., is 
assigned to the background, if its removal does not alter topology. Contour detection 
and peeling are iterated as far as pixel removal can be accomplished. DT is used not 
only for CMD detection, but also to reduce the computational cost of iterated peeling. 
In fact, repeated inspections of the image to identify the current contour of the pattern 
are avoided by processing for removal pixels of DT in increasing distance value 
order. According to the second approach, the skeleton is obtained by directly 
identifying in DT all the pixels constituting the skeleton. Once the anchor points have 
been detected, paths are grown in the direction of the increasing gradient from the 
anchor points having neighbors with larger distance value. Pixels detected by path 
growing are added to the set of the anchor points and path growing continues from 
them. This process originates a topologically correct skeleton in a fixed and small 
number of raster scan inspections of the image, independently of pattern’s thickness. 
Whichever of the above two approaches is followed, the CMD play a crucial role to 
guarantee that the skeleton is symmetrically placed within the pattern and is 
characterized by the recovery property, i.e., the pattern can be faithfully reconstructed 
by the envelope of the discs associated to the skeletal pixels.  

An important issue in DT based skeletonization is that the CMD of digital patterns 
are often very many, especially for natural shapes. Thus, accepting all the CMD as 
anchor points may originate skeletons with a too large number of non-significant 
branches, whose removal requires an elaborate post-processing pruning phase. 
Therefore, it is of interest to devise suitable criteria to filter out some, less significant, 
CMD and select as anchor points only a suitable subset of the set of CMD, so as to 
compute a skeleton more manageable and still adequate to represent the pattern.  

In this paper, based on the experience that we have recently gained when working 
with 3D object skeletonization [13, 14], we suggest two criteria for the selection of 
reduced sets of CMD in the <3,4> weighted distance transform of 2D patterns, and 
use the selected CMD as anchor points for skeletonization. We show that CMD 
selected according to the first criterion are adequate to compute manageable skeletons 
from which the input patterns can be almost completely reconstructed. In turn, 
skeletons computed by selecting the anchor points by means of the second criterion 
are of interest in the framework of skeletonization at different levels of detail.  

2   Preliminaries 

We deal with binary images, where the pattern P is the set of 1’s and the background 
B is the set of 0’s, and use the 8-connectedness and the 4-connectedness for P and B, 
respectively.  

The neighborhood N(p) of a pixel p includes the eight pixels ni, i=1,2,..,8, as shown 
in Fig. 1. The four ni, i odd, and the four ni, i even, are also termed edge-neighbors 
and vertex-neighbors of p, respectively. 
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n2 n3 n4 

n1 p n5 

n8 n7 n6 

Fig. 1. The eight neighbors of a pixel p 

A path linking two pixels p and q is a sequence p=p0, p1, ..., ps =q, where pi is a 
neighbor of pi-1, for 1≤ i ≤ s.  

The distance between two pixels p and q is the length of a shortest path linking p to 
q [15,16]. The <3,4> weighted distance is obtained if the length is measured by 
respectively weighting 3 and 4 the unit moves towards edge- and vertex-neighbors 
encountered along the path [17]. The <3,4> weighted distance combines the 
simplicity of path-based distances with a reasonable approximation to the Euclidean 
distance.  

The distance transform DT of P is a labeled replica of P, where the pixels of P are 
labeled with the length of a shortest path, entirely consisting of pixels of P, to the 
background B. In the following, we will refer to DT as to the distance transform 
computed by using the <3,4> weighted distance. We will denote the distance value of 
a pixel p in DT by d(p). DT can be conveniently computed in two raster scans of the 
image, during which local distance information is sequentially propagated to the 
currently inspected pixel from its already visited neighbors [17].  

Any pixel p in DT can be interpreted as the center of a disc with radius d(p) 
included in the pattern. The disc associated to p can be constructed by applying to p 
the reverse distance transformation [17]. A pixel is a center of maximal disc CMD if 
the associated disc is maximal, i.e., is included in the pattern, but is not included by 
any other single disc in the pattern. 

A pixel p of P is simple if its removal from P does not alter the topology of P. In 
other words, neither the number of 4-connected components of background pixels, 
nor the number of 8-connected components of pattern pixels should change in the 3×3 
neighborhood of p by removing p. We count the number of 8-connected components 
of pattern pixels by means of the connectivity number C8(p) [18]. We also count the 
number b(p) of background edge-neighbors of p. A pixel p is simple if the following 
condition is verified: 

 

b(p) > 0  and  C8(p) = 1  
 

Simple pixels can be identified in DT by performing a suitable binarization of the 
distance values in N(p) in order to distinguish the neighbors of p into pixels belonging 
to P and B. 

The skeleton S of P is a subset of P with the following features: 1) it has the same 
topology as P; 2) it is symmetrically placed within P; 3) it consists of arcs and curves; 
and 4) its pixels are labeled with their distance from B.  

As for the recovery property of the skeleton, is well known that if S includes all the 
CMD, then P can be completely reconstructed by the union of the discs centered on 
the pixels of S. It is also well known that it is seldom possible to obtain a skeleton that 
includes all CMD and is unit wide. Thus, if a unit wide skeleton is desired, some 
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pattern pixels may not be reconstructed from the skeleton. Moreover, also other 
pattern pixels may not be reconstructed if the skeleton undergoes pruning. On the 
other hand, pruning is often necessary to remove scarcely significant branches whose 
presence would otherwise make the structure of S too complex for a profitable use of 
the skeleton. Thus, in general, the recovery property is only partially satisfied by S. 
The ratio between the number of pixels actually recovered by the skeleton and the 
number of pixels constituting the input pattern can be used to measure the 
reconstruction ability of the skeleton.  If the ratio is equal to 1, P is fully recovered 
from S. 

3   Selecting the CMD in the Distance Transform 

The distance transform can be interpreted as the result of a process during which a 
wavefront, originated at the boundary of a pattern P, propagates distance information 
with constant velocity towards the interior of P. Pixels that are reached at the same 
instant of time by the wavefront have the same distance value.  

Centers of maximal discs are symmetrically placed within P. Thus, they are pixels 
of DT where the propagating wavefront (partially) folds upon itself. From these 
pixels, distance information is not propagated towards the interior of the pattern. 
Accordingly, CMD detection can be accomplished by comparing d(p) with the 
distance values of the neighbors of p, by taking into account the weights 3 and 4 [19].  

In detail, p is a center of maximal disc if for all its neighbors ni, i=1,2,..,8, it 
results: 

 

d(ni) - d(p) < 3, i odd  
                   and  

d(ni) - d(p) < 4, i even 
 

For completeness, we point out that the distance value 3 (6) must be replaced by 
the equivalent value 1 (5) before detecting the CMD. In fact, the discs with radii 3 (6) 
and 1 (5) are identical and replacement of 3 (6) by 1 (5) allows us to avoid 
erroneously detecting as CMD a pixel whose associated disc is not maximal [19]. 

Obviously, at least one neighbor of p in DT has distance value smaller than d(p). In 
fact, the distance transform can be interpreted as due to a local propagation process 
during which any pixel p of P receives distance information from some of its 
neighbors, and propagates distance information to its neighbors in the pattern that are 
farther than p from B. Thus, at least one edge-neighbor of p is labeled d(p)-3, or at 
least one vertex-neighbor is labeled d(p)-4. As concerns the remaining neighbors of a 
CMD p, we note that some of them may have distance values larger than d(p). In fact, 
edge-neighbors with value up to d(p)+2 and vertex-neighbors with value up to d(p)+3 
do not prevent p from satisfying the above CMD condition.  

If p is a CMD and the difference between d(ni) and d(p) is the largest possible (i.e., 
it is 2 for edge-neighbors of p and 3 for vertex-neighbors), the importance of p is 
small.  In fact, only a little part of the disc associated to p is not included in the disc 
associated to any of its neighbors with larger value. In turn, when the difference 
between d(ni) and d(p) is smaller, the importance of p increases, since a larger part of 
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the disc associated to p is not included in the disc associated to one of its neighbors 
with larger value. See Fig. 2, where the discs associated to p and to its edge-neighbor 
n7 are shown in the two cases (d(p)=25, d(n7)= 27) and (d(p)=25, d(n7)= 26). 

 

Fig. 2. Pixels belonging exclusively to the disc associated to p, with d(p)=25, and to the disc 
associated to n7, with d(n7)= 27, left, and with d(n7)= 26, right, are shown in black and in dark 
gray, respectively. Pixels belonging to both discs are in light gray. 

The above considerations allow us to introduce a criterion to select a particular 
type of CMD that we call relevant centers of maximal discs RCMD. We say that a 
CMD p is a RCMD if for all its neighbors ni, i=1,2,..,8, the following condition is 
satisfied: 

 

d(ni) - d(p) < 2, i odd  
       and  

d(ni) - d(p) < 3, i even 
 

The second criterion for CMD selection is based on the notion of convexity. The 
contour of P consists of the pixels of P having at least one edge-neighbor in B. A 
contour pixel p is placed on a locally linear part of the contour of P if N(p) includes 
three pixels belonging to the background B. In turn, p is placed in a local convexity of 
the contour if N(p) includes more than three pixels of B. The larger the number of 
background neighbors of p is, the sharper the convexity in p is.  

We extend the above notion on convexity, defined for the contour pixels, to the 
pixels in DT. In this case, for a pixel p with distance value d(p), we measure the 
degree of convexity by counting the neighbors of p whose distance value is smaller 
than d(p). In fact, pixels with the same distance value in DT are reached 
simultaneously by the propagating wavefront. In turn, pixels with smaller distance 
value have been reached by the propagating wavefront at previous instant of times, 
i.e., they are the pixels providing distance information to pixels with distance value 
d(p) and can be, accordingly, interpreted as background pixels. Hence, we can 
characterize the pixels on each wavefront (and in particular the CMD in the 
wavefront) with their corresponding convexity degree.  

Let m(p) be the number of neighbors of a CMD p with distance value smaller than 
d(p) and let θ be a threshold, whose value ranges from four to seven.  Then, we say 
that a CMD p is a θ-convexity center of maximal ball θ-CMD if the following 
condition is satisfied: 

m(p) ≥ θ 
 

Obviously, the θ-CMD selected for a given θ constitute a proper subset of each of 
the sets of θ-convexity centers of maximal balls selected with a smaller value of θ. 
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4   RCMD as Anchor Points for Skeletonization 

The CMD in the distance transform of a pattern P are generally not all equally 
important in the framework of skeletonization. For example, some CMD can be due 
only to the discrete nature of the digital space, as it is in the case of a digital circle. 
The digital counterpart of a continuous circle is unavoidably delimited by a polygonal 
line. Thus, weak convexities along the polygonal line may cause folding of the 
propagating wavefront upon itself, where CMD are detected. See Fig. 3.  

 

 

Fig. 3. A digital circle. The CMD are shown in black 

For the continuous circle only one symmetry point exists, namely the center of the 
circle, and the continuous skeleton coincides with such an unique symmetry point. In 
the discrete case, if all CMD are taken as anchor points, the skeleton of a circle will 
not be just the center of the circle. On the other hand, if only the CMD in 
correspondence with the center of the circle (i.e., the most internal CMD) is selected 
as anchor point, the pattern reconstructed by applying to the skeleton the reverse 
distance transformation would remarkably differ from the digital circle.  

More in general, if all CMD are taken as anchor points, a skeleton with a large 
number of scarcely significant branches is obtained. In turn, by selecting only the 
most internal CMD, found in correspondence with connected components of the 
wavefront entirely consisting of CMD, the skeleton would have a limited recovery 
property. Thus a compromise between the simplicity of the skeleton structure and a 
satisfactory pattern recovery is necessary. We suggest to use as anchor points only the 
RCMD, in order to obtain a skeleton having simple structure and still a good 
reconstruction ability. 

 

 

Fig. 4. Test images 

We accomplished skeletonization based on the selection of RCMD as anchor 
points on a number of binary images taken from a large publicly available dataset 
[20]. A set of ten test images taken from [20] is shown in Fig. 4. We follow the 
iterated peeling approach. Once relevant CMD have been marked as anchor points, 
we access pixels of DT in increasing distance value order. Pixels with the same 
distance value are sequentially removed, i.e., are assigned the background value 0, if 
they are not anchor points and are simple. As for the binarization of N(p) necessary to 
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check whether p is simple, neighbors of p with value 0, or with value smaller than 
d(p) and that are not marked as anchor points are interpreted as background pixels. 
All other neighbors of p are interpreted as pattern pixels. 

Since RCMD may form a 2-pixel wide set, the skeleton is likely to be 2-pixel wide 
and its reduction to unit thickness is obtained by means of final thinning. To avoid 
unwanted shortening of skeleton branches, we perform final thinning by removing 
pixels for which at least one edge-neighbor is a background pixel and any of the 
templates in Fig. 5 is matched, where letters b and p denote background pixels and 
pattern pixels, respectively.  

b p p b

p p p p p p p p

p b b p
 

Fig. 5. Templates for final thinning  

The skeletons of the ten test images obtained by taking as anchor points the RCMD 
can be seen in Fig. 6. We point out that pruning has not been performed. Thus, a few 
scarcely significant branches may still exist in the skeletons. 

 

 

Fig. 6. Skeletons computed by using the RCMD as anchor points 

The skeletons in Fig. 6 can be compared with the skeletons in Fig. 7, which are 
obtained by using the same algorithm, but by taking as anchor points all the CMD 
instead of only the RCMD. It is evident that the skeletons computed when only 
RCMD are selected are characterized by noticeably simpler structure. 

 

 

Fig. 7. Skeletons computed by using all the CMD as anchor points 

The performance of skeletonization based on the selection as anchor points of the 
RCMD can be quantitatively appreciated in Table 1. The first (second) row orderly 
shows for the ten test patterns the reconstruction ability of the skeleton based on the 
RCMD (on the CMD) measured as the ratio between the number of recovered pixels 
and the number of pixels in the input pattern. We note that the reconstruction ability 
of the skeleton based on RCMD is equal to or at most only slightly smaller than the 
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reconstruction ability of the skeleton computed by taking all CMD as anchor points. 
At the same time, the comparison between Fig. 6 and Fig. 7 shows that filtering out 
the centers of maximal discs that are not RCMD allows us to simplify the structure of 
the skeleton.  

Table 1. Reconstruction ability of the skeleton 

Skeleton based on RCMD 0.98 0.98 0.99 0.97 0.99 0.99 0.98 0.97 0.97 0.99
Skeleton based on CMD 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99

5    θ-CMD as Anchor Points for Skeletonization 

Though the recovery property is important to guarantee that the skeleton is a faithful 
representation of a pattern, in some cases a rougher representation may still be enough 
to give a sketched version of the shape of the pattern. Thus, it is of interest a criterion 
to select different subsets of the CMD able to originate different skeletons, from the 
more detailed skeletons to the less detailed ones.  

The notion of convexity introduced in Section 3 can be used to select subsets of the 
CMD based on their convexity degree and to originate skeletons with different levels 
of detail. As an example, refer to Fig. 8, showing the three sets of θ-convexity centers 
of maximal balls that have been selected for one of the test images by using three 
different values of the threshold on the number m(p) of neighbors of a CMD p with 
distance value smaller than d(p). Also the three corresponding skeletons are shown in 
Fig. 8. The same skeletonization algorithm described in the previous Section is used 
also in this case, but the anchor points are now the θ-CMD. As before, final thinning 
has been employed to obtain a unit wide skeleton and pruning has not been 
accomplished. 

 

     

Fig. 8. From left to right, the three sets of θ-CMD with θ=5, θ=6, and θ=7, and the three 
corresponding skeletons 

It can be seen that the number of peripheral branches of the skeleton diminishes 
when θ increases. Of course, while the structure of the skeleton becomes simpler, the 
representative power of the skeleton, in terms of reconstruction ability, diminishes. 
For large values of θ, the skeleton represents a sketched version of the input pattern, 
where some details are missing. Refer to Fig. 9, where the patterns reconstructed by  
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applying the reverse distance transformation to three skeletons based on the three sets 
of θ-CMD for θ=5, θ=6, and θ=7 are shown from left to right. In the three cases, the 
reconstruction ability of the skeleton is respectively 0.99, 0.98 and 0.90. 

 

           

Fig. 9. From left to right, the patterns recovered by applying the reverse distance transformation 
to the skeletons based on θ-CMD with θ=5, θ=6, and θ=7. Pattern’s pixels that are not 
recovered are shown in black. 

6    Conclusion 

In this paper we presented two criteria to compute reduced sets of centers of maximal 
discs in the weighted <3,4> distance transform of 2D digital patterns and used the 
selected centers of maximal discs as anchor points for skeletonization.  

In the literature, all the centers of maximal discs have been generally used as 
anchor points in the framework of skeletonization, but this leads to skeletons with a 
complex structure where not all branches are actually significant. We here suggested a 
criterion to select a subset of the CMD, namely the relevant centers of maximal balls 
RCMD that, used as anchor points, allow us to obtain skeletons with simple structure 
and still characterized by a satisfactory reconstruction ability. We also suggested a 
second CMD selection criterion, based on the notion of convexity, which identifies 
the θ-convexity centers of maximal balls θ-CMD and is useful in the framework of 
skeletonization at different levels of detail. Only CMD on local convexities of the 
wavefronts of DT characterized by a degree of convexity larger than a threshold are 
selected as anchor points. By changing the value of the threshold θ, different 
skeletons are obtained.  

The characterization of the CMD has been discussed with reference to the 
<3,4> weighted distance transform. However, we believe that this 
characterization can be simply extended to distance transforms computed by using 
a larger neighborhood (e.g., the 5×5 neighborhood, where also the knight move is 
taken into account).  

The algorithm has been implemented in C and runs on a Pentium 4 (3 GHz, 2 GB 
RAM) personal computer. It has been tested on about 100 patterns with different 
shape and size taken from [20].  
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Abstract. This paper presents an interactive method for 3D images segmenta-
tion. This method is based on a region adjacency graph representation that im-
proves and simplifies the segmentation process. This graph representation allows
the user to easily define some splitting and merging operations which gives the
possibility to make an incremental construction of the final segmentation. To val-
idate the interest of the proposed method, our interactive proposition has been
integrated into a volumetric texture segmentation process. The obtained results
are very satisfactory even in the case of complex volumetric textures. This same
system, including the textural features and our interactive proposition, has been
manipulated by specialists in sonography to segment 3D ultrasound images of the
skin. Some examples of segmentation are presented to illustrate the interactivity
of our approach.

Keywords: Interactive segmentation, 3D images, Graph.

1 Introduction

Image segmentation is an important topic in image analysis and computer vision and
concerns many domains of application. The purpose of the segmentation is to partition
images into regions that are in some sense homogeneous, or to isolate from the back-
ground one or several objects of interest. It is then possible to exploit the results of the
segmentation to compute characteristics corresponding to isolated objects, to produce
some visualizations, to follow an object in a video, etc.

To resolve various segmentation problems, numerous automatic methods have been
proposed in the literature [1,2]. Nevertheless, it is sometimes difficult to obtain the
desired results using an automatic process. The quality of an image acquisition or the
abnormalities in a scene can lead to some variations which can increase the difficulties
of building robust static segmentation methods. Moreover, automatic methods are often
dedicated to specific problems and do not have a general applicability.

Interactive segmentation algorithms provide a solution to these problems. Interaction
should allow the operator to drive and improve segmentation computation according to
the kind of the images being processed. A great number of interactive methods have
been developed mainly for 2D images [3,4]. Usually, these methods are proposed to
process medical images. Among the interactive volume segmentation methods (volume
segmentation systems), we can find the systems proposed in [5,6,7,8,9,10]. As in 2D,
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they are usually dedicated to medical image segmentation and none of them proposes a
similar representation as the one described below.

This paper describes in a formal way how it is possible to design a powerful and
generic segmentation system based on a Region Adjacency Graph (RAG). Using the
RAG representation, our purpose is to allow an operator to construct a segmentation
progressively using split and merge operations. A similar approach included in a frame-
work has been presented in [11]. Nevertheless, this method has not been proposed for an
interactive purpose. Moreover, it is based on a 2D oriented boundary graph that limits
the interaction with the user in a 3D domain.

In section 2, the design of the proposed segmentation system is presented using a
general view of an interactive process. Section 3 describes the region adjacency graph
content and construction. Section 4 presents the possible operations defined in order
to allow the user to incrementally transform the RAG and in the same way improve
the segmentation. In section 5, a concrete implementation of our model is realized to
create an interactive system for volumetric texture segmentation. Then, the system is
evaluated (considering the benefits of its interactivity or not). In section 6, this same
system, including textural features and our interactive proposition, is used by specialists
in sonography to segment 3D ultrasound images. To conclude, we provide a discussion
about our work and introduce the main prospects.

2 Design of an Interactive Segmentation System

Figure 1 presents a general interactive system for image segmentation. As explained in
[3], such a system contains different main components including the computational and
the interactive parts.

The computational part corresponds to a set of methods capable to generate a seg-
mentation. To be more precise, numerical features (F ) computed by Features Extractors
are exploited by one or several Segmentation Processes to generate a segmentation. In
a 3D segmentation system, the set of Features F is computed for each used voxels
in the image. Generally, all these methods use some parameters determined by prior
knowledge or defined by the user in the interactive part. In Figure 1, the Feature Ex-
traction Configuration component and the Segmentation Parameters component allow
respectively the user to tune the feature extraction and the segmentation process.

Putting the user in the loop (interactive system) means proposing an incremental
segmentation process to the user. Then, two problems have to be solved during the
conception of the system. How to let the user defining the criteria to use during the
segmentation computation ? Which feedback (representation of the results) and inter-
active tools (operators) to propose to the user to make this representation evolving in
the desired direction ?

To answer the first question, we think that the best choice is to use a region based
approach (clustering method) using criteria (features) defined by the user. The second
problem is solved by structuring the huge amount of data to process with a region
adjacency graph (RAG). This data structure constructed using the Computational part
information (section 3) allows us to define the user interaction. By coupling this com-
ponent with the Split/Merge Interactive Operations component and by analyzing the
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Fig. 1. The main components of our volume segmentation system

visual information of the segmentation given by the RAG (feedback), the user is able to
define some actions to drive the segmentation process in an incremental way. In other
words, the Split and Merge operations allow the user to manage the Region Adjacency
Graph evolution (section 4).

3 Construction of the RAG

3.1 Selection of the Features to be Used during the Incremental Segmentation

We define as A the set of possible image features extractors. Each of them is able to
provide one or more image features F . We can then write the following belonging
relation:

ai,j ∈ A with i ∈ {1..N} and j ∈ {1..Mi}
with ai,j the extractor j that allows to compute the feature i, N the number of possible
image features and Mi the number of extractors allowing to obtain the feature i.
Image features can then be computed as follows:

ai,j : D, UFeatj !→ Fi

with D the set of voxels to process, UFeatj the parameters of the feature computation
method j that the interactive part should allow to tune easily.

Among the available features, the user chose the features F = {F1, F2, ...} using
the interactive part. They are computed for each voxel of the image by running the
corresponding algorithm in the computational part (ai,j).

3.2 RAG Definition

We define G(V, E) the region adjacency graph with V the set of vertices and E the
set of edges. At the beginning of the graph representation, the number of vertices in
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the graph is 1 (number of edges E = 0). Indeed, the image to be processed is consid-
ered as a single region represented by one vertex. As we will see in section 4, some
operations associated to the graph have been defined in order to increase or reduce the
number of vertices (then the number of regions) to produce the desired segmentation.
In consequence, a vertex V of the graph represents a region of the image, and for each
vertex we associate the following information: the average features F̄ of the region that
corresponds to the centroid of the features F in the region, the center of gravity Ḡ of
the region that corresponds to the position of the vertex.

To connect the vertices (edge constructions), it is necessary to identify the adjacent
regions for each of them. To do so, the intersection (a surface) between each region is
computed. If its surface is not null then the two corresponding vertices are connected.
Each edge E contains the information of the two linked vertices and the intersection of
the two regions.

4 Interactive Segmentation Scheme

As we have seen previously, the RAG is initialized with a single vertex which is as-
sociated to the image to be processed. In consequence, the first step in the process of
segmentation is a splitting operation (sub-section 4.1). In the following, the operator
can define some parameters, some actions of splitting or merging in order to provide an
evolution of the segmentation. The segmentation progression can be written as follows:

Seg : F, USeg, Gk, Uop !→ Gk+1

For each iteration, the user has the choice to define Uop where the splitting and merg-
ing operations are specified. Using Uop, the graph Gk, features F and the segmentation
parameters USeg , the function Seg is able to generate a new segmentation, a new region
adjacency graph Gk+1. According to the chosen action in Uop, the function Seg trans-
forms the RAG representation (the segmentation) using formal operators described in
subsection 4.1 and 4.2. Then, the user can decide to stop this incremental process when
the desired segmentation is obtained.

In the previous section, the proposed formal representation based on the region ad-
jacency graph has been presented. In the following sub-sections, we detail how the
splitting and merging operations in our system work.

4.1 Splitting

If the user chooses to split a node (Uop.action = split), then the function Seg corre-
sponds to a K-means clustering. We chose to use this method because the processing
time of 3D images is sometimes huge and the main advantages of the K-means method
are its speed and its low memory cost. Moreover it allows an efficient clustering of
voxels.

The new graph representation Gk+1 is obtained as follows:

Gk+1 = Kmeans(Uop.V, Gk, F, USeg)
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(a) (b)

Fig. 2. Available actions with the RAG

with Uop.V the vertex to which the splitting operation is applied, Gk the actual RAG
and F the set of features. Here, USeg contains the specified number of classes K for the
K-means function.

Using this clustering function, the corresponding region is divided into different ar-
eas. For each of them, a new vertex is created in the graph Gk+1. As explained in section
3, the average feature F̄ is initialized with the centroid of the features F in the region.
The attribute Ḡ is initialized with the center of gravity of the region. Moreover accord-
ing to the adjacency surface between each new region, additional edges are added.

4.2 Merging

In this case (Uop.action = merge), the function Seg can be assimilated to a simple
merging function Merge where the two merged regions are identified by a new vertex
Vnew . The new graph representation Gk+1 is then obtained as follows:

Gk+1 = Merge(Uop.E, Gk)

with Uop.E the edge that contains the two vertices to merge and Gk the actual RAG.
To compute the attributes T = {F̄ , Ḡ} of the new node Vnew using the two vertices

V1 and V2, the following operation is applied:

Vnew .Ti =
(V1.Ti)(V1.NV ) + (V2.Ti)(V2.NV )

V1.NV + V2.NV

where NV corresponds to the number of voxels identified by a node in the region.

4.3 Interactive Segmentation Using the RAG Visualization

To manipulate the segmentation the user uses the 3D region adjacency graph displayed
in an openGL window (Figure 5 and 6). The operations of merging and splitting are
available by clicking on the nodes and on the edges inside the openGL Window
(Figure 2). The result of the chosen operation is then updated on the screen for the user
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(a) (b) (c)

Fig. 3. Example of the RAG evolution

feedback. The region adjacency graph representation is also an asset in visualization.
The user can easily visualize the structure of the image content and the different iden-
tified regions. In our representation, the size of the vertex depends on the number of
voxels inside each of the segmented areas. This allows the user to identify the main
regions, the main components in the processed image. To guide the user in its choices,
an openGL visualization of the regions is available by clicking on the corresponding
vertex. It is also possible to display a preview of the merge representation result by
clicking on the corresponding edges. This allows the user to visualize what should be
the new segmentation result with the merge operation (Figure 2).

Figure 3 shows an example of the region adjacency graph evolution. First the image
that is considered as a single region is represented by one vertex (Image 3 (a)). Then,
the user performs a splitting operation with USeg = 4 to identify the 4 regions. In the
image 3 (b), each of them is represented by one node and two nodes are not linked
because their corresponding regions are not identified as adjacent. At the end, the user
choose to merge the two upper nodes using the merging operation (Image 3 (c)).

5 Evaluation of Our Interactive System in a Texture Segmentation
Problem

In this part, our purpose is to prove the interest and the efficiency of our model. To do
so, we compare 2 systems using the same texture features: the first one does not propose
any interaction, the second one proposes to use the split and merge operations of our
RAG representation.

To describe the voxels of 3D images, we choose the 3D texture features presented
in [12], inspired by the human way to describe a texture. They are easily understand-
able by humans and, in the sense, these texture features make the setting up of our
interactive system easier. Indeed, it is more convenient for a user to select the features
which are interesting to use in a given application. The proposed characteristics (Fi)
are: Granularity, which can be represented by the number of three-dimensional patterns
constituting the texture, shape information about these patterns with the volume and
the compacity, regularity of these patterns, directionality that measures the strong or
weak presence of a privileged direction, contrast and roughness of the image, which are
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also important information. During the segmentation process, the proposed features are
computed for each voxel and for several resolutions. Then, a voxel of the initial image is
described by a vector containing 7n different features with n the number of resolutions
and 7 the number of proposed features. The K-means algorithm [13] allows to generate
a segmentation using the set of computed vectors.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4. Volumetric texture images : [a-e] 3 classes of textures, [f-j] 4 classes of textures

During our experiments, ten 3D textured images have been used (Figure 4): 5 images
with 3 classes of textures and 5 images with 4 classes of textures. To generate segmen-
tations, different cases have been considered. In the first one, the user works with a
system without any interaction (WI). The number of the chosen classes (in USeg) for
the K-means algorithm corresponds to the number of volumetric textures inside the
processed 3D image. The second one uses the split and merge operations of our RAG
representation that we described the section 4.

To give an evaluation of the produced segmentation, the generic discrepancy measure
dgdm [14] was used. This measure uses the computation of a distance between partitions
that have been defined by Gusfield [15]. If dgdm is equal to 0, then the segmentation is
ideal whereas an inverse segmentation generates the value 1.

Table 1 shows the normalized partition distance for each solid texture segmentation.
To have a better readability, results of the generic discrepancy measure have been mul-
tiplied by 100 and are comprised between 0 and 100.

As expected, the best results are obtained with the interactive system. Without any
interaction, the system cannot manage the different image specificities and it is difficult
to obtain good results of segmentation. In Table 1, the system without interaction gives
the lowest results every time. Providing the system with only the number of classes
inside the processed image is not sufficient. Sometimes, several regions can be identified
inside a same texture. With the interactive system, the user can sometimes avoid this
problem. By merging the different regions, he can reach the best segmentation. Indeed,
it is possible to merge regions when different classes are identified inside a unique
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texture, and it is possible to focus the system inside a region using the split operation
when a texture has not been correctly identified in the current segmentation. For all the
computed segmentations, the obtained results are very satisfactory even if the processed
3D images contain complex volumetric textures.

Table 1. Comparison of segmentation results using the generic discrepancy measure

Number of
classes

Systems Image (a) to (j)

3 classes
WI
RAG

11.78

2.94

12.07

2.80

21.61

2.46

19.53

3.12

27.98

5.59

4 classes
WI
RAG

25.96

12.05

14.87

2.10

29.56

7.38

44.37

10.41

28.91

11.72

Of course, a fully automatic system is different from an interactive one and in some
cases interactivity is not possible (when the amount of data to be processed is very huge
or when there are time constraints). Our proposition does not deal with such applica-
tions but concerns the numerous applications in which an expert has to interpret the
result of the segmentation process. We believe that showing just the final segmentation
result (even depending of some basic settings) is frustrating for the experts. It is pleas-
ant to participate to the segmentation process especially if the final results are better.
This is the case for most medical imaging systems. Furthermore, providing a system
that let the user act with complete freedom sometimes provides very interesting results
obtained in a roundabout way. The next section demonstrates this kind of utilization on
a real life application in the medical domain.

6 Segmentation of 3D Ultrasound Images

A software built using the concepts proposed in this paper has been manipulated by
specialists in sonography to segment 3D ultrasound images of the skin. To illustrate the
usability of this software, 2 scenarios of utilization are presented.

The first scenario allows the segmentation of a nevus presented in Image 5(a) that
is a 3D ultrasound image of the skin. As it is possible to see in Image 5(b), just a part
of the nevus has been identified by applying a first split operation on the initial RAG
(one node = the image). Here the Seg function corresponds to a K-means algorithm.
In this case, the user choses a number of classes (USeg = 3) that is too low to find
the desired region. It is then necessary to focus on the blue region in Image 5(c). To
do so, the user uses the region adjacency graph to select the corresponding region. It
is then possible for him to make a visual representation of the region in Image 5(c)
or to start a new segmentation of the selected region 5(d). After the splitting operation
(that used USeg = 2) of the blue region Image 5(c), Image 5(e) has been obtained. The
nevus is then identified but composed of two regions. By using the region adjacency
graph, these two regions can be merged to obtain a final segmentation Image 5(f). The
nevus is represented by one yellow area and it is then possible, for the user, to isolate
it using a mesh visualization (Image 5(g)) or to compute different kinds of features like
its volume, for example.
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(a) (b) (c)

(d) (e) (f)

(g)

Fig. 5. Segmentation of a nevus using the RAG interactive method

Figure 6 presents the second scenario of segmentation. The processed image is a
3D ultrasound image of the skin that contains a tendon. Here, the aim is to produce
a segmentation that allows the user to isolate the tendon area. The segmentation is
realized in a zone of interest around the tendon defined by the purple box (Image 6 (a)).

A first splitting operation is applied with USeg = 8 to generate the initial segmen-
tation Image 6 (b). Using merging operations, the user improves the results of seg-
mentation by merging the regions of the tendon that are isolated in the segmentation
Image 6 (b). The final segmentation presented in Image 6 (c) has been obtained and
Image 6 (d) shows its region adjacency graph representation. As previously, we show a



Interactive Segmentation of 3D Images Using a RAG Representation 363

(a) (b) (c)

(d) (e) (f)

Fig. 6. Segmentation of a tendon using the RAG interactive method

representation of the final segmentation inside the initial image (Image 6 (e)) and a mesh
visualization of the tendon (Image 6 (f)).

7 Conclusion

In this paper, a general scheme for interactive segmentation system conception has been
presented. It is based on a region adjacency graph representation and a list of features
associated to each voxel (that can be selected by the user at each step of the segmenta-
tion process). The vertices of the graph are positioned using the center of gravity of each
region in the segmented image. Two nodes in the graph are connected if the adjacency
surface between the corresponding region is not null. This graph allows a user to define
merging and splitting operations to incrementally improve the segmentation results. To
merge two regions, the user clicks on their corresponding edge, and to split a region the
user can select features and parameters to use before running the merging operation by
clicking on the corresponding node. To evaluate our proposition, a concrete case of tex-
ture segmentation has been presented. Using the proposed interactive method, the user
greatly improves the results of segmentation. The same system using textural features
has been used to segment 3D ultrasound images. Our software has been manipulated by
specialists in sonography that appreciated the flexibility of our proposition. Whatever
the situation, the user can improve the segmentation results using merging operations
or region focusing.

Several improvements could be added in the future. As we can see in Image 6 (c)
the number of generated vertices is sometimes important. This can be a problem for
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the user when he tries to find a particular region. Then it could be interesting to pro-
pose some automatic merging methods in order to reduce the graph complexity without
loosing useful information. Finally, the structural information contained in the region
adjacency graph representation could be compared to an atlas in order to guide segmen-
tation algorithms automatically.
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Abstract. This article deals with the problem of detecting the weak-
symmetry of a simple polygon. The main application of this work is the
automatic reconstruction of 3D polygons (planar or non-planar polylines)
symmetric with respect to a plane from free hand sketching 2D polygons.
We propose a provable approach to check on the weak-symmetry of a
simple polygon. The worst time complexity of the proposed algorithm is
O(n3) where n is the number of the vertices of the input polygon.

1 Introduction

The 3D reconstruction from freehand sketches is an important problem in com-
puter vision and computer graphics (see for example [1]). Given a set of 2D
polygons provided by the user (drawn by the user on the plane z = 0), the
3D reconstruction consists of computing the 3D polygons (planar or non-planar
polylines) such that their orthogonal projection matches the input 2D poly-
gons. The x and y coordinates of the vertices of the reconstructed polygons are
known. The z-coordinates have to be computed. The difficulty is that for each
vertex of the 2D polygons, there exist an infinite number of 3D vertices whose
orthogonal projection matches the 2D vertices. In this paper, we consider the
reconstruction of mirror-symmetric 3D polygons (orthogonal symmetric with re-
spect to a central plane) from their orthogonal projection, it involves two steps:
(1) finding what are the pairs of vertices symmetric to each other, (2) using
this correspondence called weak-symmetry, computing the vertex positions of
the mirror-symmetric 3D polygon.

The notion of weak-symmetry we will study here comes from the following
property: let V and V ′ be the two sets of vertices of a 3D polygon which are
mirror-symmetric to each other. Let Vp = {vp,0, · · · , vp,i, · · · , vp,n−1} and V ′

p =
{v′p,0, · · · , v′p,i, · · · , v′p,n−1} be the orthogonal projections of the two sets V and
V ′ (vp,i and v′p,i are respectively the projections of vi ∈ V and of its mirror-
symmetric v′i ∈ V ′).
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Property 1: The straight lines that join vp,i and v′p,i are parallel to each other.
For more detail see [2]. The correspondence between these vertices is called the
weak-symmetry.

Problem Statement. Given a 2D polygon which is an orthogonal projection of an
unknown mirror-symmetric 3D polygon. This paper deals with finding two sets
of vertices Vp and V ′

p that partitions the vertices of the 2D polygon such that
they verify Property 1 (the weak-symmetry between Vp and V ′

p is formally defined
in section 3). This step is the most difficult step. Knowing Vp and V ′

p the compu-
tation of the z-coordinates of the vertices of the 3D polygon is straightforward
(the computation method is explained in [2]).

Fig. 1. In (a), the symmetric closed 3D polygon and its orthogonal projection onto the
plane (z=0). In (b), the orthogonal projection of the mirror-symmetric 3D polygon;
lines joining pairs of symmetric vertices (red dashed lines in the figure) are parallel to
each other.

To the best of our knowledge, the symmetry detection from the orthogonal
projection of non-planar mirror-symmetric 3D polygons remains an open prob-
lem. The closest research work to our approach is the detection of skewed sym-
metry. Skewed symmetry, as defined by [3], depicts a mirror-symmetric planar
curves viewed from some (unknown) viewing direction. Posch [4] has proposed
an algorithm for skewed symmetry detection. The algorithm first finds all the
segments parallel to the same direction and connecting pairs of symmetric ver-
tices. The skewed symmetry is then detected by checking if the midpoints of
these segments are aligned. Shen et al. [5,6] have proposed an algorithm based
on an affine-invariant shape representation. They first build a similarity matrix
of the vertices of the curves and use this matrix to detect the lines corresponding
to the skewed-symmetry axis. Yip [7] has also proposed an approach to detect
skewed symmetry axes using Hough transformation. Compared to these previ-
ous works, our approach is able to find the weak-symmetry for the projection
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of planar and non-planar mirror-symmetric 3D polygons, see Fig. 1. In previ-
ous works, the skewed symmetry detection is achieved by finding the symmetry
axis. In the case of non-planar mirror-symmetric 3D polygons, such axis does
not exist; and thus previous works cannot be used to find the symmetry.

We propose a provable algorithm to the addressed problem of detecting weak-
symmetry, To this date no provable algorithm exists to detect the weak-symmetry
of a 2D polygon. The presented algorithm comprises two main steps. Firstly, we
compute a set of candidate directions which contain every straight line that could
make the input polygon weakly-symmetric. Secondly, we take one by one the lines
of the candidate-directions set, and we check on the weak-symmetry of the polygon
with the help of the sweeping-line strategy [10,9]. In the worst case the whole time
complexity of the proposed algorithm is O(n3).

This article is organized as follows: after the introduction of notation and of
the related notions (section 2), section 3 presents the formal definitions of the
symmetry problem. Sections 4 and 5 present the steps of the proposed algorithm.

2 Preliminaries

Throughout this article we denote P = (v1, · · · , vn) a simple polygon of ver-
tices vi in the counter-clockwise order and of edges the segments [vivi+1], where
i = 1, ..., n and vn+1 = v1. When P is not a close curve we call P a polygonal
line. In the following P (u, v) denotes the polygonal line going from the vertex
u to the vertex v in the counter-clockwise sense.

Monotonicity: A polygonal line P is said to be monotone with respect to a
straight line �, if every line parallel to � meets P in at most one point.

A Chain with respect to a direction �: Consider a polygon P , a sub polyg-
onal line Γ ⊂ P is said to be a chain with respect to a line � if and only if Γ
is monotone with respect to � and satisfies for every monotone polygonal line
Γ ′ ⊂ P , if Γ ⊂ Γ ′ then Γ ′ = Γ . The extremities of the chains of P are called
�-vertices of P . Fig. 2(a) shows an example of chains and �-vertices.

Type of a vertex: Let � be an oriented line tangent to a vertex vi ∈ P , vi is
said to be of type R if and only if it satisfies one of the following conditions:
(1) vi−1 and vi+1 are on the right side of �. (2) vi−1 is on � and vi+1 on the
right side of �. (3) vi+1 is on � and vi−1 on the right side of �. (4) If vi has
one adjacent vertex then it is on the right side of �. We get the definition of
a vertex of type L by replacing in the previous definition the term “right” by
“left”. Fig. 2(b) shows the different cases and their correspondent type.

3 Weak-Symmetry of a Polygon with Respect to a Line

3.1 Definitions

Defining the neighborhood of a point. Let us denote ]uw[ the open segment
that does not contain its extremities u and w. Let r be a positive real number,
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Fig. 2. (a) C1, C2, C3 and C4 are the chains of the polygon with respect to the
horizontal. Their extremities are respectively (0, 1), (1, 2), (2, 3) and (3, 0). 0, 1, 2
and 3 are the �-vertices of the polygon (� is the horizontal). (b) Type of a vertex vi.
(c) Examples of neighborhoods of points. Bold lines are neighborhoods of x and y.
The discs centered at u and v do not define neighborhoods. (d) A weakly-symmetric
polygon. The two polygonal lines of extremities 0 and 1 are weakly-symmetric.

the neighborhood V (x, r) of a point x ∈]vivi+1[ is the intersection set between
the closed disc b(x, r) centered at x with P such that b(x, r) ∩ P ⊂ [vivi+1]. The
neighborhood V (vi, r) of a vertex vi is the set b(vi, r)∩P that verifies b(vi, r)∩P ⊂
[vivi−1]∪ [vivi+1]. The neighborhoods V (x, r) are not defined for every real posi-
tive r, however there exists r0 > 0 small enough so that for every r < r0, V (x, r)
is well defined, that is, it satisfies the above inclusion constraint. In Fig. 2(c), the
intersections of the discs centered at x and y with the polygon define respectively
neighborhoods of x and y. However the intersections of the discs centered at u and
v with the polygon do not define neighborhoods of u and v.

Definition of the weak-symmetry notion. Two polygonal lines P1 and P2

are weakly-symmetric with respect to � if and only if there exists a mapping φ�

from P1 to P2 such that: (i) Parallel correspondence: for all x ∈ P1 the seg-
ment [xφ�(x)] is parallel to � or it is of zero length (i.e φ�(x) = x). (ii) Bijection:
φ� is bijective. (iii) Continuity: φ� and φ−1

� are continuous. The continuity of
φ� means that for all x ∈ P1 there exists ε0 > 0 such that for all ε < ε0, there
exists δ > 0 so that if y ∈ V (x, δ) then φ�(y) ∈ V (φ�(x), ε).

In Fig. 2(d), the polygonal lines P1 and P2 (of extremities 0 and 1) are weakly-
symmetric with respect to the line �, the weak-symmetry mapping φ� that maps
P1 onto P2 is defined as follows: We set φ�(0) = 0 and φ�(1) = 1, and we sweep



An Algorithm to Detect the Weak-Symmetry of a Simple Polygon 369

� over the polygon starting from the vertex 1 and ending at 0. The intersection
of � with the polygonal lines P (1, z) and P (1, φ�(z)) and its intersection with
P (z, 0) and P (φ�(z), 0) gives the weakly-symmetric points. For example, the
points φ�(x′), φ�(y) and φ�(x) are respectively weakly-symmetric to x′, y and x.

A polygon P is weakly-symmetric with respect to � if and only if P can be
divided in two polygonal lines P1 and P2 sharing their extremities and P1 is
weakly-symmetric to P2 with respect to �. In the rest of the paper, we say �-
weakly-symmetric instead of “weakly-symmetric with respect to �”. We say that
P is weakly-symmetric if and only if it exists a line � such that P is �-weakly-
symmetric.

The polygon of Fig. 2(d) is weakly-symmetric. An example of a polygon which
is not weakly-symmetric is illustrated in Fig. 3(a), its non weak-symmetry will
be clear after sections 4 and 5.

3.2 Consequences of the Weak-Symmetry Definition

The following Theorem gives two main properties of the weak-symmetry defini-
tion. Since there is not enough space, we have chosen not to develop the proofs
of Theorems in this article. The reader can find all the proofs and more detailed
presentation in the extended version of this paper [8].

Theorem 1. (i) If a polygon P is weakly-symmetric with respect to � then a
vertex of type R (respectively L) is weakly-symmetric to a vertex of type R
(respectively L). (ii) Le [vv′] be an edge of P parallel to �, if v is not weakly-
symmetric to v′ then [vv′] is weakly-symmetric to an edge of P aligned with [vv′].
Otherwise the half-edge [v v′+v

2 ] is weakly-symmetric to [v′ v′+v
2 ].

The next sections present the main steps of the algorithm detecting the weak-
symmetry of a polygon. Our strategy comprises two main steps. Step 1 (Finding
the candidate directions): The set of the candidate directions must contain every
line, if it exists, that makes the polygon weakly-symmetric. Step 2 (Verifying
the weak-symmetry of a polygon with respect to a candidate direction): In the set
of the candidate directions, we look for a line such that the polygon is weakly-
symmetric with respect to this line.

4 The Candidate Directions

4.1 Characterization of the Candidate Directions

Given a polygon P , the goal is to compute a set, as small as possible, containing
all the lines such that P is weakly-symmetric with respect to these lines. We call
this superset the candidate directions. To make this set as small as possible we
first present some properties.
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Definition 1. We call a concave segment (respectively convex segment) the seg-
ment e whose extremities are two concave vertices of P (respectively two convex
vertices of P ) having the same type with respect to the line passing through e.
Also, we call convex-concave segment a segment e whose an extremity is convex,
the other is concave and they have the same type with respect to the line passing
through e.

An example of convex, concave and convex-concave segments is illustrated in
Fig. 3(a). Now, let us define the following sets:

E = {e �∈ P ; e is a convex− concave segment}
E1 = E ∪ {e �∈ P ; e ∈ CH(P ) or e is a concave segment}

E2 = E ∪ {e �∈ P ; e is a convex segment}

The definition of the candidate directions set, defined in the next definition, is
based on the result presented in the following Theorem.

Theorem 2. If a polygon P is �-weakly-symmetric then � is parallel to two edges
e1 �∈ P and e2 �∈ P such that e1 ∈ E1 and e2 ∈ E2.

Definition 4 (the candidate directions). The set of candidate directions is
E1 if the number of the segments in E1 is smaller than the number of segments
in E2, otherwise it is E2.

We have proven that the number of the candidate directions cannot exceed in
the worst case the numbern(3n−2)

8 (the reader can find the proof in the extended
version of this paper [8]).

Example 2. The polygon of Fig. 3(b) has no convex-concave segments. Thus
the set E1 is composed of the segments of extremities taken from the set of
vertices {2, 4, 6, 8, 10, 12} and the edge of the convex hull (1, 13), the number of
segments in E1 is 16. The set E2 is a single segment of extremities 1 and 13.
Therefore the set of the candidate directions is the set E2.

4.2 An Algorithm to Compute the Candidate Directions

We sum up the steps of the algorithm computing the candidate directions set
in Algorithms 1 and 2. The time complexity of the algorithm computing the
candidate directions is O(n2) in the worst-case.
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Algorithm 1: Compute-Directions1

input : A polygon P , m convex or concave vertices of P : a1, ..., am.
output: The set of the directions S.

S ← ∅,2

i ← 0,3

while i ≤ m do4

j ← i + 15

while j <= m do6

e ← [aiaj ]7

if ai and aj have the same type with respect to the direction e and e8

is not parallel to an edge of S then
add e to S9

end10

j ← j + 111

end12

i ← i + 113

end14

Algorithm 1. Computing the sets E1 and E2

Algorithm 2: Candidate-Directions1

input : A polygon P .
output: list of the candidate directions

Compute CH(P ) the convex hull of P . Let us a1, ..., an1 be the concave2

vertices of P and b1, ..., bn2 are the convex vertices of P .
E1 ← Algorithm 1: Compute-Directions (P , a1, · · · , an1)3

E2 ← Algorithm 1: Compute-Directions (P , b1, · · · , bn2)4

Compute the convex-concave segments of E5

Add the edges of CH(P ) − P and the segments of E to E1 and to E26

if |E1| < |E2| then7

return E18

end9

else10

return E211

end12

Algorithm 2. Computing the candidate directions

5 Filtering the Set of the Candidate Directions

Our goal in this section is to select the right direction from the candidate set,
that is for each line of this set we verify that the polygon P is either �-weakly-
symmetric or not. To do this, our algorithm sweeps � over P . Without loss of
generality, we suppose that the direction � is horizontal, the algorithm comprises
the following two main steps.
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Step 1: Initialization (compute two �-weakly-symmetric vertices). To
start the process of sweeping the horizontal over the polygon, we need two
weakly-symmetric vertices. These vertices are the lowest leftmost and rightmost
vertices. This claim is presented in Theorem 3, The proof is presented in the
extended version [8]. Consider the lowest vertices u1 < u2 < ... < ur of P sorted
according to their increasing abscissa. An example of such vertices is 0 < 4 < 10
of the polygon illustrated by Fig. 3(c).

Theorem 3 (First weakly-symmetric vertices). If the polygon P is �-
weakly-symmetric then the weakly-symmetric of u1 is ur.

Step 2: The sweeping-line process. Recall that P (u, v) ⊂ P is the polyg-
onal line extracted from P , its extremities are the vertices u and v, the other
vertices of the polygonal line are obtained by scanning P in the clockwise ori-
entation from u and counter-clockwise from v. We divide P on two polygonal
lines, P1 = P (u1, ur) and P2 = P (ur, u1) and we check on the �-weak-symmetry
of P1 and P2. Beginning from u1 and ur, we sweep the line over P1 and then
over P2. The sweep stops at discrete “events” that is the line � hits �-vertices
or edges parallel to �. We check on that the touched �-vertices have the same
type or the line � contains weakly-symmetric edges parallel to � (see Theorem
1). If once this property is not satisfied we reject �, otherwise we return that P
is �-weakly-symmetric.

The key step of the sweeping-line process is the verification of the weak-
symmetry of a polygonal line, it is summed up in Algorithm 3. The input of
Algorithm 3 is a polygonal line P (vi, vj), where vi and vj are on the horizon-
tal. The weak-sweeping process will take the clockwise order from vi and the
counter-clockwise order from vj . next(j) is the label of the next �-vertex in the
counter-clockwise order, previous(i) is the label of the next �-vertex in the clock-
wise sense. The following algorithm returns true if the polygonal line P (vi, vj)
is weakly-symmetric.

Example 3. (Steps of the algorithm 3 through the example of Fig. 3(c)).
Applying this algorithm to the polygonal line P (10, 0) = (0, 1, 2, ..., 8, 9, 10) of
the polygon of Fig. 3(c), we get these iterations. Since 0 and 10 are weakly-
symmetric, (Theorem 3), the function previous(10) returns 7, and next(0) returns
the vertex 2. Since 2 and 7 are weakly-symmetric, the sweep continue: previous(7)
looks for the next �-vertex in the clockwise sense it is 4, next(2) returns also 4.
Since vi = vj = 4 the loop stops and returns that the polygonal line P (10, 0) is
weakly-symmetric. Let us turn to the polygonal line P (0, 10) = (10, 11, ..., 29, 0).
The iterations of the loop while are: firstly, previous(0) returns 26 and next(10)
returns 12, since they are weakly-symmetric, the next iterations check the weak-
symmetry respectively between 25 and 13, 24 and 14. When it reaches 22 and 16,
the algorithm stops and returns false because these two vertices are not weakly-
symmetric.
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Example 4. (Steps of the filtering algorithm through the example of Fig. 3(c)).
First of all, we transform the polygon P such that the direction � becomes
horizontal. The lowest vertices ui allows us to initialize the sweep process. In
Fig. 3(c), the ordered vertices ui are 0 < 4 < 10, thus the vertices 0 and 10 are
weakly-symmetric. we apply Algorithm 3:weakly-symmetric-polygonal line to
P (10, 0), it returns true, therefore we call again Algorithm3: weakly-symmetric-
polygonal line for the polygonal line P (0, 10), it returns false since it fails at the
vertices 22 and 16. Thus P is not weakly-symmetric with respect to the input
direction.

Algorithm 3: weakly-symmetric-polygonal-line1

input : The polygonal line P (vi, vj)
output: return true if P (vi, vj) is weakly-symmetric otherwise it returns

false

i ← previous(i). j ← next(j)2

weakly-symmetric ← true3

while (vi 
= vj and ([vivj ] 
∈ P and [vivj ] is horizontal) and4

weakly-symmetric) do
if vi is weakly-symmetric to vj then5

i ← previous(i). j ← next(j)6

end7

else8

weakly-symmetric ← false9

end10

Return weakly-symmetric11

end12

Algorithm 3. Verifying the weak-symmetry of the polygonal-line
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Fig. 3. (a) An example of convex, concave and convex-concave segments. (b) A polygon
with one convex segment: (1, 13) and 15 concave segments. This polygon is not weakly-
symmetric. (c) A non weakly-symmetric polygon with respect to the horizontal. The
bold vertices are the �-vertices, The vertex 22 is not weakly-symmetric to the vertex
16.



374 M. Melkemi, F. Cordier, and N.S. Sapidis

6 Conclusion

Detecting the weak-symmetry of a planar hand sketched polygon is a key step to
reconstruct mirror-symmetric non-planar 3D-polygons. We have formalized the
notion of weak-symmetry and have proposed a provable solution. No such algo-
rithm is known till date. For an input simple polygon, the presented algorithm
computes first a small set that contains all the direction that could make the
polygon weakly-symmetric. Secondly we iteratively look for, in this set, the di-
rection of weak-symmetry. The whole time complexity of the algorithm is O(n3)
in the worst case. The ongoing work will be the extension of this approach to
check on the weak-symmetry of a collection of non simple polygons.
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Abstract. In this paper, we introduce a new approach for color visu-
alization of multi/hyperspectral images. Unlike traditional methods, we
propose to operate a local analysis instead of considering that all the
pixels are part of the same population. It takes a segmentation map as
an input and then achieves a dimensionality reduction adaptively inside
each class of pixels. Moreover, in order to avoid unappealing disconti-
nuities between regions, we propose to make use of a set of distance
transform maps to weigh the mapping applied to each pixel with regard
to its relative location with classes’ centroids. Results on two hyperspec-
tral datasets illustrate the efficiency of the proposed method.

1 Introduction

Spectral imagery consists of acquiring a scene at more than three different ranges
of wavelengths, usually dozens. Since spectral display devices are yet rare, most
of today’s popular display hardware is based on the tri-stimulus paradigm [1].
Thus, in order to visualize spectral images, a dimensionality reduction step is
required so that only three channels (Red, Green and Blue for example) can
contain most of the visual information while easing interpretation by preserv-
ing natural colors and contrasts [2]. At this aim, many dimensionality reduction
techniques have been applied to the task of visualizing spectral datasets, they
are roughly divided into two categories: either they operate a transformation
or a selection of spectral channels. Even though the latter family is a subset
of the former one, they are based on two very different philosophies. Indeed,
band selection aim at preserving the physical meaning of spectral channels by
keeping them intact during the N-to-3 projection, whereas band transformation
allows any combination of channels (even nonlinear) as a means to fuse infor-
mation along the spectrum. Therefore, the choice between these two approaches
is of course application-driven. Band transformation methods are, for instance,
based on the use of Principal Components Analysis (PCA) [3,4], Color Matching
Functions (CMF) [5,2] or Independent Components Analysis [6]. Band selection
strategies involve the use of similarity criteria such as correlation [7], Mutual
Information [8] or Orthogonal Subspace Projection [9]. All these methods are
based on the assumption that all the pixels are part of the same population,
i.e. they perform a global mapping. Scheunders [10] proposed to spatially divide
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the image into blocks in order to achieve local mappings by means of PCA and
Neural Network-based techniques. Discontinuities between blocks are dealt with
by adapting the mappings at a pixel level. Not only do we propose to extend
Scheunders’ approach from a greyscale to a color framework, we enhance it in
two ways: by using a classification map so as to choose which visual features
deserve a local contrast enhancement, and by introducing a weighing function
allowing to balance not only the influence of global versus local mapping, but
also the respective influences of the individual classes. We will first introduce
the different steps of the proposed approach: classification map, distance trans-
forms and weighing of dimensionality reduction functions. Results will then be
presented and discussed before conclusion.

2 Spatially Variant Dimensionality Reduction

In this section, we give details on the different elements involved in the procedure.

2.1 Segmentation Map

The first step of the proposed technique is to obtain a spatial segmentation of
the image. This can be achieved either manually or automatically, by means
of classifiers such as the K-Means, or Support Vector Machines. The choice of
such a method is considered outside the scope of this paper as long as it is
application-dependent and that the following processings apply anyway.

Let then SegK(I) be a segmentation map of image I containing K classes.
While traditional methods consider each spectral channel as a whole, the core
idea of the spatially variant dimensionality reduction is to analyze sets of pixels
independently. For instance, if one desires to enhance the contrast between a
couple of specific objects, one must consider the corresponding set of pixels sep-
arately from the others, in order to obtain a more dedicated analysis. Therefore,
the final segmentation map must be computed not in a way that similar pixels
are clustered together, but so that each class contains objects that need to be
”separated”.

2.2 Distance Transform

In order to locally adapt the dimensionality reduction so that no discontinuities
occur between regions, we need to know, for each location in the image, the
distance to the closest centroids of each class. The distance transform is a way
to efficiently achieve such measurements. It applies on binary images and consists
of computing for each pixel with value 0 (black), its distance to the closest one
with value 1 (white). Therefore, we need a set of binary images containing, in
white, all the centroids of the different connected components from class Ci and
all the other pixels in black. We obtain such distance transform maps as the ones
depicted in Figure 1c and 1f. Eventually, for a pixel pci

(x,y) at spatial coordinates
(x, y), belonging to class ci, we obtain the set of its respective distances to the
other classes centroids d(x, y) = [d1(x, y), ..., dK(x, y)]T , including the distance
to the closest centroid of its own class.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Illustration of the distance transform applied on two possible segmentation
maps for the ”Jasper Ridge” dataset (see results section for full description). First
column: segmentation maps (4 classes), Second column : class 1 isolated in white,
Third column: the corresponding distance transforms. The first segmentation has been
achieved manually, whereas the second one is the result of the K-means classifier.

2.3 Weighing of Dimensionality Reduction Functions

Dimensionality Reduction (DR) is then performed in each class independently
from the others so that we obtain as many sets of DR functions as there are
classes. Moreover, a global mapping is also performed so as to be able to further
balance between global and local mapping. What we refer to as a DR function is
nothing more than a vector of coefficients used for fusing the spectral channels
in order to obtain one of the three (Red, Green or Blue) primary bands. For
instance, the Color Matching Functions (CMF) are such vectors.

Each pixel is then being affected with a set of weighted DR functions
DRRed(x, y), DRGreen(x, y) and DRBlue(x, y) such that:

DRRed(x, y) = ω0 ×DRRed
0 + (1− ω0)×

∑
k∈(1..K)

ωk×dk(x,y)×DRRed

k∑
k∈1..K

dk(x,y)

with ω0 being the parameter allowing to balance between global and local
mappings and ω = [ω1, ..., ωK ]T , the vector of coefficients depicting the respective
influences of the classes (its sum must be equal to one). The latter can be set
manually or automatically, so that, for example, largest classes are given more
weight. DRRed

0 is the global DR function and DRRed
k , ∀i ∈ [1..K] are the local

ones. Similar definitions apply of course for DRGreen(x, y) and DRBlue(x, y).
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3 Experiments and Results

3.1 Data Sets

For our experiments, we have used two hyperspectral datasets:

– ”Jasper Ridge” is a well-known 220 bands image from the AVIRIS sensor
[11]. We have used only a portion of the original dataset for the sake of
clarity.

– ”Norway” is a 160 bands remote sensing image, representing a urban area in
the neighborhood of Oslo (Norway). It was acquired with the HySpex VNIR-
1600 sensor, developed by the Norsk Elektro Optikk company in Oslo. The
sensor ranges from the early visible (400nm) to the near infrared (1000nm)
with a spectral resolution of 3.7 nm [12].

As a pre-processing step, bands with average reflectance value below 2% and
those with low correlation (below 0.8) with their neighboring bands have been
removed, as suggested in [13].

3.2 Dimensionality Reduction Techniques

We have selected two dimensionality reduction techniques to illustrate the pro-
posed approach.

– PCAhsv is the traditional Principal Components Analysis of which compo-
nents are mapped to the HSV color space (PC1→ V ; PC2→ S; PC3→ H).

– LP is a state-of-the-art band selection approached which has been proposed
by Du et al. [9] and consists of progressively selecting bands by maximizing
their respective orthogonality.

3.3 Evaluation

In order to evaluate the improvements by the proposed approach, we have, based
on a K-means classification, selected 3 objects (or classes) of interest (Obj1, Obj2
and Obj3) in each image and used the color difference metric CIE76 ΔEab∗ as
a means to measure how contrasted they are. Obviously, the more they are
contrasted, the more visual information we have. This metric has been applied
on the objects’ centroids (in the color space CIELAB). The objects of interest are
depicted on Figure 2 for both datasets. For the spatially-variant dimensionality
reduction, we have then used a segmentation map so that we obtain the three
classes : C1 = {Obj1∪Obj2}, C2 = Obj3 and C3 = {rest of the pixels}, as shown
in Figures 2b and 2d.

The object-separability metric will be referred to as Inter-Object Perceptual
Separability (IOPS)
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(a) (b)

(c) (d)

Fig. 2. Selected classes of interest (Obj1 in red, Obj2 in green and Obj3 in blue)

3.4 Results

Figures 3 and 4 depict respectively the resulting color composites by the global
mappings (ω0 = 1) and the local mapping (ω0 = 0) without smoothing. Figure
5 depict the obtained color composites while Tables 1 and 2 give the results in
terms of IOPS for the following configurations:

– Config 1: ω0 = 0 and ω = [13 , 1
3 , 1

3 ]
– Config 2: ω0 = 0 and ω = [0.8, 0.1, 0.1]
– Config 3: ω0 = 0 and ω = [0.1, 0.8, 0.1]
– Config 4: ω0 = 0.5 and ω = [13 , 1

3 , 1
3 ]
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(a) (b)

(c) (d)

Fig. 3. Results obtained for ω0 = 1 (global only). First row: PCAhsv, second row:
LP-based band selection.
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(a) (b)

(c) (d)

Fig. 4. Results obtained for ω0 = 0 and without weighing of the DR functions. First
row: PCAhsv, second row: LP-based band selection.
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Table 1. Inter-Object Perceptual Distance results for the ”Jasper Ridge” image and
for all the configurations considered

PCAhsv LP

Global
Obj1 vs. Obj2 19.3 21.4
Obj1 vs. Obj3 31.0 12.2

Config 1
Obj1 vs. Obj2 35.7 34.3
Obj1 vs. Obj3 21.2 11.3

Config 2
Obj1 vs. Obj2 44.4 39.0
Obj1 vs. Obj3 26.1 11.0

Config 3
Obj1 vs. Obj2 34.0 31.5
Obj1 vs. Obj3 21.3 10.3

Config 4
Obj1 vs. Obj2 27.3 30.9
Obj1 vs. Obj3 26.2 11.2

Table 2. Inter-Object Perceptual Distance results for the ”Norway” image and for all
the configurations considered

PCAhsv LP

Global
Obj1 vs. Obj2 44.8 65.3
Obj1 vs. Obj3 24.2 37.0

Config 1
Obj1 vs. Obj2 56.0 68.0
Obj1 vs. Obj3 21.3 27.7

Config 2
Obj1 vs. Obj2 70.3 74.5
Obj1 vs. Obj3 22.1 27.6

Config 3
Obj1 vs. Obj2 60.1 71.2
Obj1 vs. Obj3 24.0 28.6

Config 4
Obj1 vs. Obj2 48.8 73.4
Obj1 vs. Obj3 22.7 31.2

4 Comments on the Results

Based on the results presented in the previous section, we make the following
remarks:

– The absence of weighing of the DR functions results in sharp discontinuities,
as one can notice on Figures 4. Such artifacts are quite unappealing and
thus do not allow for an efficient interpretation, hence the usefulness of the
smoothing achieved by the weighing of the DR functions.

– Overall, one can observe significant improvements from global to local tech-
niques in the separation of Objects 1 and 2. On the other hand, separation
between Objects 1 and 3 is better handled by the global approach. This
comes from the fact that those three objects are given the same mapping in
the global configuration, unlike in the local one.

– The second configuration always gives the best separation between Objects
1 and 2. This is due to the fact that this configuration gives more weight to
the DR achieved in the class formed by these objects.
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– The global DR allows for an overall better separation but local contrasts are
not optimized, since better results are obtained from the first configuration,
where all the classes are considered of equal influence. As a follow to that
comment, the fourth configuration, which uses a 50-50 combination of global
and local mappings gives the best compromise between both separations.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Results obtained with the PCA-based dimensionality reduction, for all the
configuration - First column: Config 1, second column: Config 2 , third column: Config
3,, fourth column: Config 4

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Results obtained with the LP-based dimensionality reduction, for all the con-
figuration - First column: Config 1, second column: Config 2 , third column: Config 3,,
fourth column: Config 4
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5 Conclusions

An adaptive feature extraction algorithm has been presented, which takes into
account dissimilarities between pixels by first clustering them and then con-
ducting dimensionality reduction separately in each cluster. Preliminary results
show an increasing amount of informative as well as perceptual content. The
technique being obviously very sensitive to the pixel clustering conducted prior
to dimensionality reduction, this step will be further investigated along with the
influence of other feature extraction techniques as well as other distance metrics
in order to draw a more complete evaluation of the spatially-variant dimension-
ality reduction.
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Abstract. Tracking a very actively maneuvering object is challenging
due to the lack of state transition dynamics to describe the system’s evo-
lution. In this paper, a coarse-to-fine particle filter algorithm is proposed
for such tracking, whereby one loop of the traditional particle filtering
approach is divided into two stages. In the coarse stage, the particles
adopt a uniform distribution which is parameterized by the limited mo-
tion range within each time step. In the following fine stage, the particles
are resampled using the results of the coarse stage as the proposal distri-
bution, which incorporates the most present observation. The weighting
scheme is implemented using a partitioned color cue that implicitly em-
beds geometric information to enhance robustness. The system is tested
by a publicly available dataset for tracking an intentionally erratic mov-
ing human head. The results demonstrate that the proposed system is
capable of handling random motion dynamics with a relatively small
number of particles.

Keywords: motion tracking, particle filter, color cue, coarse-to-fine.

1 Introduction

With the availability of high-power computers, inexpensive video cameras and
the increasing needs, object tracking is one active research area and is required
in many applications such as automated surveillance, traffic monitoring, human-
computer interfaces, and other motion-based recognitions [15].

In object tracking applications, the most popular methods for estimating tar-
get positions incorporate variations of the Kalman filter [14,1,2]. Under the as-
sumption of a linear system with Gaussian noise, the Kalman Filters (KFs)
achieve the optimal estimation in terms of the minimal covariance.

However, in cases where the target is actively maneuvering, the system evo-
lution model is far from linearity and even shows multi-modality, and the per-
formance of the Kalman Filter degrades unsurprisingly. A typical example is
tracking people, whose erratic movements are poorly matched to any model of
more than second order [1].

M. Kamel and A. Campilho (Eds.): ICIAR 2011, Part I, LNCS 6753, pp. 385–394, 2011.
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The particle filter (PF) is the result of applying the Monte Carlo method in
recursive Bayesian filtering [1,3], which is used to estimate the posterior Prob-
ability Density Function (PDF) of the state variable based on Bayes Theorem.
In a particle filter, the PDF is sampled and represented by a collection of par-
ticles with weights proportional to their likelihood. This representation of the
distribution makes no assumption about the distribution shape, and is capable
of handling non-linear systems with non-Gaussian and multimodal distributions.

In this paper, a coarse-to-fine approach is proposed to enhance the particle
filter by dividing one loop of particle filter into two stages. For tracking highly
varied dynamics system, human motion, we cannot model the system dynamics
in a simple form, such as linear or Gaussian. Instead, we may just use the prior
knowledge about the dynamic range limits on the system state transition func-
tion. Therefore, in the coarse stage, the uniform distribution with range limits
is used as the proposed distribution. In the following fine stage, only the highly
probability area that are discovered by the coarse stage is explored further with
a Gaussian model. In this tracking system, we adopt partitioned color cue that
embeds geometric information implicitly as particle’s weighting scheme.

The proposed algorithm is tested with a challenging video sequence for the
task of tracking an intentional randomly moving human head. The experimental
results from both observations and quantitative results suggest that the coarse-
to-fine PF is capable of handling the tracking high varied motions with relative
small number of particles.

The outline of this paper is as follows. Section 2 reviews backgrounds on the
tracking problem itself and the basic form of particle filters. Section 3 introduces
a coarse-to-fine approach and also explains the weighting mechanism that is
taken in our tracking system. Experiments on a real video sequence are presented
in section 4. The paper is summarized with conclusions and future directions in
section 5.

2 Background

2.1 What to Track

The first question of the tracking problem is the choice of what to track. This is
close to the features selected for representing the interested object. In a visual
tracking system, objects are usually represented by their shapes and appear-
ances.

Object representations are usually chosen according to different application
scenarios. For tracking very small objects in an image, point representation is
usually appropriate. For example, Veenman et al. [13] use the point represen-
tation to track the seeds in a moving dish sequence. Similarly, Shafique and
Shah [10] use the point representation to track distant birds. For objects whose
shapes can be approximated by rectangles or ellipses, primitive geometric shape
representations are more suitable. Shen et al. [11] use an elliptical shape rep-
resentation integrated with color histogram computed from the elliptical region
for modeling the appearance of face. For tracking objects with complex shapes,
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for example, humans, a contour or a silhouette-based representation is common
[7]. Practically, many tracking algorithms use a combination of multiple cues to
achieve more reliable results [11].

2.2 State Space and the Dynamic Model

The object of interest can be formulated by the state sequence {zt, t = 1, 2...},
which evolves along the time domain. For a discrete time step, when using an
ellipse or rectangle model in the image space domain, the object is parameterized
by:

z = {x, y, a, b} (1)

where x and y denote the centroid of the ellipse or rectangle, a and b denote the
length of the half axes.

Another key problem is the representation of the system dynamics. The gen-
eral form of first-order Markov system evolving model is:

zt = f (zt−1, wt−1) (2)

where f () is the state transition function, zt is the system state which we are
interested in and wt is the process noise sequence. Then, the objective of tracking
is to recursively estimate zt by giving a sequence of measurements mt, where
the measuring model is:

mt = h (zt, vt) (3)

where h () is the measurement model and vt is a sequence of observation noise.

2.3 The Particle Filter

Following the above system state expressions, by simplifying f() and h() to
be linear and w, v to be Gaussian, the Kalman Filters (KFs) achieve optimal
estimations. In this case, the above equations (2) and (3) are simplified to:

zt = Azt−1 + wt−1 (4)

mt = Czt + vt (5)

For realistic systems that do not ideally follow these assumptions, some variants
of KF were developed in the literature, such as Extended Kalman Filter (EKF)
[1], unscented Kalman filter (UKF) [5], ensemble Kalman Filter (EnKF) [4].

If a system is far from the linear and Gaussian model, instead of analytically
solving the tracking problem, the particle filters take a different approach that
uses the sampling method for approximating any general form of distribution.
From the Bayesian perspective, if we can recursively calculate the posterior prob-
ability density function (PDF), p (zt|m1:t), we can easily conduct our estimation
based on it, such as expectation or maximum a posterior probability (MAP).
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3 Proposed Approach

For tracking actively maneuvering motions, such as erratic movement of the hu-
man head, the system state’s transition needs to be considered carefully. Due to
the fast varying in the moving velocity, acceleration, and dramatically changing
directions, using the linear model to represent the state transition is not suitable.
We present an amended approach that divided one loop of particle filter into a
coarse stage and a fine stage.

3.1 Overview of the Coarse-to-Fine Particle Filter

In [12], this problem is noticed and the authors break the iteration by inserting a
motion estimation step in the main particle filter loop. However, their proposed
method is still based on linear and Gaussian models for both the coarse and fine
steps, just with adjustments of different covariance for a sequence of three stages
in one loop.

Instead, based on re-examining the system state transition function zt =
f (zt−1, wt−1), we cannot conclude a linear function for f if the motion of an ob-
ject is varying randomly. But, this does not mean we can’t describe the system’s
evolving state. We still can infer some knowledge about the dynamics of system.
Here, for tracking a human who is intentionally moving randomly, we can apply
the range limitation about the f , that is:

‖zt − zt−1‖ ≤ R (6)

Further, this infers the system dynamics as:

zt ∈ zt−1 ±R (7)

where R is the pre-setting that explains the limitation of moving range for the
time step duration.

As a result, in the coarse step we use a uniform distribution that ranges in
the scope of zt−1 ± R. Following, the first round of weighting and resampling
are executed. Then, in the fine step we can focus on the high likelihood area
implicitly. In the fine step, we adopt Gaussian model and use small variance to
limit searching scope to expect a better performance.

In fact, this coarse-to-fine approach is intended to use the optimal proposal
distribution p(zt|zt−1, mt) instead of p(zt|zt−1), which incorporates the newest
measurement into the proposal distribution.

At the end of the fine step for each frame of image, the estimated state is
produced by choosing the hypothesis with the maximum weight following the
MAP principle.

The details of the proposed coarse-to-fine particle filter (CFPF) are described
in Algorithm 1.
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Algorithm 1. Motion tracking of Coarse-to-Fine particle filter
Require: state of t − 1
1. Coarse stage:
2. Generating N particles using uniform distribution for system model: zt ∈ zt−1±R;
3. Updating: weighting each particle;
4. Normalizing the weights;
5. Resampling according to the first round weights;
6. Fine stage:
7. Propagating the resampled N particles using Gaussian model;
8. Updating: re-weighting the N particles;
9. Normalizing the weights;

10. Output the estimation using MAP

3.2 Weight Calculation

In the root, the weight of each particle should reflect the true likelihood with
the tracking object’s representation. In our approach, we adopt the partitioned
color cue that combines color distribution with shape information implicitly.

The Color Cue. The color cue is based on template matching of color distri-
bution [8,9], where the color histograms are used as the target model.

To make the algorithm robust to lighting conditions, the color space is dis-
cretized into m bins and assign each pixel to the corresponding bin. In our
experiments, the RGB color value is mapped into 8+8+8 bins, i.e. using 8 bins
for each color channel.

After obtaining the color histogram for the sample particles and template, the
similarity is calculated using the Bhattacharyya distance. Suppose p = p(u), q =
q(u), u = 1 . . .m representing the discrete color histograms for a particle p and
the template q. The Bhattacharyya coefficient is defined as:

ρ[p, q] =
m∑

u=1

√
p(u)q(u) (8)

The more similar of the two distributions are, the larger ρ is. For two identical
normalized distributions, the ρ = 1. Then, the distance of two distributions is
defined as:

d[p, q] =
√

1− ρ[p, q] (9)

Further, in order to integrate the distance in a probabilistic way for the parti-
cle filter framework, we generate the particle’s color weight by a Gaussian model:

ω(p) =
1√
2πδ

exp−
d[p,q]2

2δ2 (10)

The Gaussian variance δ determines the discrimination power of particles in
this cue.
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(a) Original image
patch

(b) Head model

Fig. 1. Partitioned human head model

The Partitioned Color Cue. To complement the color cue, which uses only
one distribution representing the whole object and loses information about ob-
ject’s geometric structure, we model the human head with two sections: face and
hair, as illustrated in Fig. 1.

Then, we represent the object with 48 bins of color distribution: 24 for the
face section and 24 for the hair section.

The tracking target’s template can be initialized with a detector algorithm or
manually given. In our approach, the initial template is calculated from the first
frame specified by its ground truth.

4 Experimental Results

The proposed coarse-to-fine two stages particle filtering algorithm is tested to
track the random motion of the human head using a publicly available dataset,
SPEVI [16], which consists of 448 frames recorded with a webcam. The video also
includes manually marked ground truth so that further quantitative analysis can
be performed. The challenge of this video sequence comes from several sources:

– The actor is moving intentionally maneuvering by changing velocity, accel-
eration, and direction dramatically and randomly;

– The recording device is a low resolution webcam (320 X 240) at the rate
of 10 frames per second, some frames are very blurred when fast motion is
performed;

– The unstructured background also makes the tracking task difficult not only
because the wall area is very similar to the actor’s face color, but also the
illumination is unevenly changing.

4.1 Results

Fig. 2 illustrates the images captured from the tracking results. As we can ob-
serve, the tracking system performs well in different challenging scenarios. For
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(a) Frame 1 (b) Frame 25 (c) Frame 36 (d) Frame 55 (e) Frame 91

(f) Frame 135 (g) Frame 295 (h) Frame 321 (i) Frame 327 (j) Frame 346

Fig. 2. Selected frames from the tracking result

example, in the video the images are blurred due to fast movement of the actor
(frame 25). The frame series 88-93 even shows that half of the actor’s body al-
ready moves out of the capture scope of the camera. The appearing size of the
actor also varied a lot because of the changing distance to the camera (frame
135 shows small size, whilst frame 36 and 346 show a close-up). Sometimes the
actor is present at bright illumination environment (frame 36), and sometimes
the actor is at dimmer environment (frame 55 and 295). The tracking system is
still able to track most of these situations smoothly.

In order to further evaluate our tracking results quantitatively, the metrics
of tracking accuracy is defined as the area overlap between the estimation and
ground truth position as [6]:

Overlap =
Estimation ∩GroundTruth

Estimation ∪GroundTruth
× 100% (11)

Average error for each element of state space, [x, y, a, b], is calculated by av-
erage the absolute tracking error in pixels throughout all frames.

In the following each experimental setting, the reported tracking accuracy is
averaged by 10 runs and the standard deviation is calculated over all frames
within one run.

Time Factor. Fig. 3 plots the tracking accuracy as time proceeds based on
500 particles. From this figure, we can find that as time evolving, the overlap is
decreased with several low valleys, which corresponds to the frame number at
around 70-100 and 240-300. From the video, we can observe over the two time
periods that the actor is in the shadow area where the color of wall background
is very similar to the skin color. At the same time, images are also blurred which
causes the shape information to be lost too. The tracking accuracy of frame 321
to 325 is zero which correspond to the object of interest is totally going out of
the visible range.

The Number of Particles. Next, the factor regarding the needed number
of particles is investigated. Fig. 4 plots the average accuracy over 10 runs with
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Fig. 3. Tracking accuracy as time proceeds
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Fig. 4. Comparison of tracking accuracy over the two methods with different number
of particles

respect to different number of particles, from 20 to 90 stepped by 10, and from
100 to 500 stepped by 50. To make the two-stage and one-stage PF comparable,
the total number of particles for the two-stage method is equivalent to that of
the one-stage method.

Generally speaking, the tracking accuracy is improved as the number of par-
ticles increases for both coarse-to-fine PF and traditional one-stage PF. For
particular low number of particles (below 50), the tracking performance is not
well unsurprisingly. Also, when the number of particles reaches above 200, the
tracking performance is kept at that level without further improvement. This
can be explained as the system is reaching the peak and being limited by the
selected cues’ representation ability.
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Comparing the two methods, observing from the Fig. 4, the two-stage PF
achieves high level tracking accuracy with a relative low number of particles (70
and up). This benefit is due to the two rounds of estimation that makes use of
samples more efficiently.

Additionally, the tracking results show some fluctuations because the method
of particle filter is rooted with randomized generation of samples. However, from
Table 1 we can see that the standard deviations of all metrics from the two-stage
PF are smaller than that of the one-stage PF. This indicates the coarse-to-fine
PF also demonstrates robustness in the same condition.

Table 1. Performance comparison between one-stage and two-stage PF (500 particles)

Overlap Error x Error y Error a Error b

1-Stage 28.54 ± 24.58 41.24 ± 32.48 36.85 ± 44.43 11.99 ± 8.78 15.69 ± 10.84

2-Stage 43.70 ± 23.93 12.11 ± 14.13 15.03 ± 15.50 9.70 ± 7.80 11.88 ± 9.43

5 Conclusion

In this paper, we investigated the problem of tracking maneuvering motion of
human head. The motion model of a maneuvering object cannot be formulated
by a simple linear form. Therefore, a two-stage particle filter is proposed to
enhance the system. In the coarse stage, the particles adopt uniform distribution
which is parameterized by the limitation of its motion range within each time
step. In the following fine stage, the particles are resampled using the result
of the coarse stage. The system is tested with a challenging video sequence for
tracking a varied moving human head. The results demonstrate that the two-
stage approach is capable of handling maneuvering motion more accurately and
robustly through a relatively small number of particles.

To extend this work, we plan to investigate some cues that are robust to
illumination changes, such as texture.
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Abstract. This paper presents a multi-camera surveillance system for
motion detection and object tracking based on Motion History Image
(MHI), Color-based Particle Filtering (CPF), and a novel relay strategy.
The system is composed of two Pan-Tilt-Zoom (PTZ) cameras com-
pletely calibrated and placed on desks. Initially, both cameras work as
stationary Scene View Camera (SVC) to detect objects for abnormal
human motion events such as sudden falling using MHI. If an object
is detected in one camera, the other camera can then be controlled to
work as Object View Camera (OVC), follow this object, and get zoom-in
images using CPF. The states of the tracked object can be exchanged
across cameras so that in case that the OVC loses the object, the SVC
has sufficient knowledge of the object location, and it can become a new
OVC to run the tracking relay. Meanwhile, the original OVC should be
reset to work as SVC in order not to lose the global view. Two scenarios,
in which the cameras have large or little overlapping field of view, are
proposed and analyzed. Experimental study further demonstrates the
effectiveness of the proposed system.

Keywords: multi-camera, MHI, CPF, relay strategy.

1 Introduction

Visual detection and tracking is one of the active and challenging research topics
in machine vision. Several approaches have been proposed previously. The mean
shift algorithm is used but it requires the entire object patch be visible and does
not work properly in cases of occlusions or abrupt motions [1, 2]. The Kalman
filter, as a probabilistic prediction tool, is more robust to track objects under
occlusions [3, 4, 5]. However, the motion should be correctly modelled and the
posterior density function (PDF) is strictly assumed to be Gaussian. Compared
to the Kalman filter, the particle filtering is a sequential Monte Carlo algorithm
that does not assume specific type of densities and has the ability to handle
occlusions as well. For example, Nummiaro et al. [6] propose an algorithm to add
an adaptive appearance model based on color distributions to particle filtering.

With the decreasing cost of image sensors and the increasing computational
capability of supporting processors, the potential to include multiple cameras

M. Kamel and A. Campilho (Eds.): ICIAR 2011, Part I, LNCS 6753, pp. 395–405, 2011.
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Fig. 1. System Framework

has become more feasible [7]. Multiple cameras can enhance the total coverage
of a scene and recover 3D depth of the objects. Khan et al. [8] and Javed et al.
[9] use single camera tracking results along with the relation between boundaries
of camera field of view (FOV) to establish correspondence between views of the
same object in multiple cameras. Moreover, the features of Pan-Tilt-Zoom (PTZ)
cameras not only expand the camera view through panning and tilting, but also
direct attention to details through zooming [10]. Mottaghi et al. [11] develop
an optimized tracking approach using multiple PTZ cameras and Lu et al. [12]
build up a cooperative hybrid multi-camera tracking system.

In this paper, we propose a surveillance system consisting of two calibrated
cameras which can work as either stationary Scene View Camera (SVC) or mov-
ing Object View Camera (OVC). Initially, both cameras work as SVC and have
a wide view of the scene. Motion History Image (MHI) [15] is utilized to detect
events of interest and 3D projected bounding boxes are generated to represent
moving objects using the approach we propose in [13]. Since camera placement
plays a critical role in the process of event detection, in our experiment we put
the cameras on ordinary desks to investigate the motion of sudden falling based
on the dynamic states of the 3D bounding boxes. Two scenarios are designed
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for the experimental study. In the first scenario, the two cameras have a large
overlapping FOV and one camera may trigger the other to work as OVC if a fall
is detected. In the second scenario, the two cameras have little overlapping FOV
and states of the object can be exchanged across cameras to form a tracking
relay.

Sensitivity analysis of camera calibration has been studied to obtain better
calibration result [14], which is a critical factor for controlling the OVC. With an
accurate camera calibration, the position of the object of interest is obtainable
so that the OVC knows where to pan and tilt in order to fit the object in its
central view, and then zoom in to obtain various levels of detail. Color-based
particle filter (CPF) is implemented for object tracking. We use Hue-Saturation-
Value (HSV) color space model to generate multi-dimensional color histograms,
and then weigh samples through particle filtering. The novelty of the proposed
approach mainly lies in the mixture of PTZ capability, event detection, and relay
strategy about exchanging information across cameras that all together yield a
reliable system. Fig. 1 shows a framework of the proposed system.

The outline of the rest of this paper is as follows. In Section II, we state
motion event detection using MHI in SVC. In Section III, we present the CPF
for tracking people in OVC. Section IV explains the relay strategy for exchanging
information across cameras. Experimental results for our visual tracking system
are provided in Section V followed by concluding remarks in Section VI.

2 Motion Event Detection Using MHI

MHI is used to detect human motion events such as sudden falling in SVC. Our
novel contribution of 3D projected bounding boxes are developed to represent
silhouettes of moving objects. These 3D bounding boxes are generated based on
the multiple view geometry. Compared to traditional 2D bounding boxes, they
use one more dimension to reflect the dynamic status of objects, and thus can be
applied for the analysis of human motions. The specific procedure to generate a
3D box is proposed in [13].

Stationary SVC is used to detect human motion events. To recover a series
of motions, we generate MHI for a sequence of N + 1 successive frames with
N frame differences to be obtained and the accumulation of frame differences
can yield directional motion information of objects. We find some limitations if
only single camera is used. For example, if the object is close to the center of
the camera view or the motion occurs along the optical axis, very little changes
of the boundary can be detected. Hence, the camera fails in the detection. This
problem can be addressed by introducing multiple cameras that are positioned
appropriately.

Moving objects in SVC are first represented by individual bounding boxes
whose centers and sizes are calculated according to the N frame differences
layered in the MHI. We weight the successive frame differences and calculate the
center, width, and height of the bounding box through weighted sum of all the
sub-bounding boxes generated from each pair of neighbouring frame differences.
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(a) CAM1: MHI (b) CAM1: 2D (c) CAM1: 3D

(d) CAM2: MHI (e) CAM2: 2D (f) CAM2: 3D

Fig. 2. Two cameras work as SVC to detect human motions in a room

Fig. 2 shows results of the proposed approach using the CVLAB dataset [16].
The left column shows that three persons are walking around in a room and MHI
(N = 5) is applied to detect their motions in two SVCs at different locations. 2D
bounding boxes are tagged, and their center, width, and height are computed,
as shown in the middle column. The multi-camera setting-up makes it possible
to obtain spatial geometrical information of the objects. Based on the results of
camera calibration, In the right column, we construct projected 3D bounding
boxes to represent the walking persons.

A typical motion event, falling, is defined and experimented for this system.
The judging criterion is based on the dynamic states of the bounding boxes. Fall
happens when the height of a bounding box at time t, ht and vertical location, vt

dramatically decrease, which means h
′
t = ht−ht−1

ht−1
< Δh and v

′
t = vt−vt−1

ht−1
< Δv.

h
′
t and v

′
t are the instantaneous changes of height and vertical position of the

bounding box. Δh and Δv are thresholds defined during experiment.

3 Adaptive Color-Based Particle Filtering

The particle filtering is a sequential Monte Carlo method that requires a multi-
variate Gaussian distribution and makes few assumptions on either the transition
model or the sensor model. An overview of the particle filtering for visual track-
ing can be found in [17]. The general idea of particle filtering is to find the
posterior density function (PDF)

p (xt|z1, · · · , zt) =
p (xt|z1, · · · , zt−1) p (zt|xt, z1, · · · , zt−1)

p (zt|z1, · · · , zt−1)
(1)

where xt and zt are state and measurement at time t, respectively. Since zt is
independent of zt−1, according to Bayes’ rule, p (zt|xt, z1, · · · , zt−1) = p (zt|xt).
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Also p (zt|z1, · · · , zt−1) is a constant. We have

p (xt|z1, · · · , zt) = kp (zt|xt) p (xt|z1, · · · , zt−1) (2)

where k is a normalization factor that does not depend on xt. We use the recur-
sive definition to compute the filtered distribution p (xt|z1, · · · , zt) given the dis-
tribution p (xt−1|z1, · · · , zt−1). With a particle representing p (xt|z1, · · · , zt−1),
we may create a dynamic model to approximate xt as

xt = f (xt−1, nt−1) (3)

where f is a non-linear function of the previous state xt−1 and nt−1 is a sequence.
Given a set of N samples S, such that

S =
{(

s
(i)
t , π

(i)
t

)
|i = 1, · · · , N

}
(4)

Each sample is given a weight as

π
(i)
t = p

(
zt|xt = s

(i)
t

)
;
(
ΣN

i=1π
(i)
t = 1

)
(5)

Therefore, the estimated expectation of state vector at time t is

E (xt) = ΣN
i=1π

(i)
t s

(i)
t (6)

As the number of samples grows, particle filter can recover true PDF, and thus
provides a robust tracking framework. For example, if a tracked person is par-
tially or completely occluded for tens of frames, the tracker can still retrieve
correct tracking when the person reappears.

Once a motion event is detected and the object is centered in the view of
OVC, CPF is used to track the object. A color histogram generated based on
the color distribution within the object bounding box is created as a reference
to weigh samples in the particle filter. We use the color histogram created from
the Hue-Saturation-Value (HSV) color space model, which separates the chro-
matic information of hue, saturation and value from the intensity. Generally,
a color histogram with more dimensions makes the CPF more robust to color
distraction in the background, but it also results in the exponentially increased
computational cost. Compared with [12] in which 2D histogram composed of
mhms bins is used, where mh and ms are the numbers of hue and saturation
bins used, we use the color histogram consisting of m = mhms +mv bins, where
the extra mv is the number of value bins used and this proves to enhance the
robustness if there exists varying illumination. The normalized histogram may
represent the probability of hue, saturation and value that the object has. The
object to be tracked is represented by a 2D bounding box whose state vector st

is a 9-tuple vector

st =
{
ut, vt, u

′
t, v

′
t, wt, ht, w

′
t, h

′
t, s

}
(7)
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(ut, vt) is the center of the bounding box at time t. u
′
t and v

′
t are the instantaneous

velocity of the box moving in the directions of axes u and v in image the image
frame, respectively, at time t. wt and ht are the width and height of the box at
time t. w

′
t and h

′
t are the instantaneous changes of the width and height at time

t, s is the scaling factor of each sample.
To weigh the sample sets, we collect the color histogram of the target HT and

the color histogram of the sample Hi
S . Due to the factor that boundary pixels of

the bounding box usually belong to the background, we assign smaller weights to
those pixels that are further away from the center of camera view by employing
a weighing function

kr =

{
1− 4r2

u2
t+v2

t
r < 1

2

√
u2

t + v2
t

0 otherwise
(8)

where r is the distance between the corresponding pixel and the center pixel
within the bounding box. The Bhattacharyya distance dB, which measures the
similarity between two discrete probability distributions HT and Hi

S , is com-
puted as

dB =

√
1−Σm

j=1

√
krHi

S (j) HT (j) (9)

The smaller the value of dB, the similar the samples to the target. Smaller dB

corresponds to large weights. The weight function defined in Equation (5) is
chosen to be

π
(i)
t =

1√
2πiσi

e
− d2

B
2σ2

i =
1√

2πiσi
e−λd2

B (10)

where λ is scaling factor determined through experiments. The state of the
bounding box at t = 0 should be set to initiate the CPF based on the infor-
mation from SVC.

4 Relay Strategy for Exchanging Information

In a multi-camera system, collaboration between each pair of cameras is impor-
tant. Firstly, if a motion event is detected in one camera, we try to localize it
and initialize the CPF tracking in the other camera based on camera geome-
try. Secondly, in case one of the cameras loses the target, the other camera can
provide reliable information where to look in order to retrieve the target.

As shown in Fig. 3, We suppose that an object point P in space is projected
onto the image plane of one camera (CAM1) at p1 and the image plane of
the other camera (CAM2) at p2. The key to localize the target is to compute
the coordinate of p2 = (u2, v2), if given the coordinate of p1 = (u1, v1) and
calibration parameters. (Xc1, Yc1, Zc1) and (Xc2, Yc2, Zc2) are the 3D coordinates
of P in the camera frames of CAM1 and CAM2, respectively, and their values
are obtainable. Details of derivation can be found in [12].
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Fig. 3. Geometry relationship of two cameras

If CAM2 needs to rotate about Yc2 (panning) for α degrees and then rotate
about the new Xc2 (tilting) for β degrees in order to localize the target on its
view center, the rotation angles can be calculated as

α = −arctan
Xc2

Zc2
; β = arctan

Yc2

Zc2cosα−Xc2sinα
(11)

The OVC can zoom in to obtain close images of the target with the zoom-in
amount δf = f

′
2 − f2, where f2 is the original focal length and f

′
2 is the focal

length after zoom-in. The value of f
′
2 is computed as

f
′
2 =

Z
′
2arH

Hmmv2
(12)

where
Z

′
c2 = −Xc2sinαcosβ + Yc2sinβ + Zc2cosαcosβ (13)

is the projection of target along the z-axis of camera frame before zooming in;
Hm is the height of the person in meters; mv2 is the number of pixels per unit
distance along y-axis.

The relay strategy for exchanging object state information across cameras is
implemented in the situation when the tracked object runs out of the view of
OVC due to reasons such as occlusion. In these cases, the SVC is triggered to
work as a new OVC and the original OVC is reset to be a SVC so that the
system still keeps monitoring the global environment.

To initialize CPF in the new OVC, the object state vector at the time of target
handing over st1 =

{
ut1, vt1, u

′
t1, v

′
t1, wt1, ht1, w

′
t1, h

′
t1, st1

}
is set as follows. ut1

and vt1 are set as the image center since the CPF tracking in OVC starts after
panning and tilting to fit the target on the center view. u

′
t1 and v

′
t1 are the

estimated velocity of the object. For a person walking at a normal speed of
1.0m/s2, u

′
t1 is set as fmu/Z

′
c2 and v

′
t1 is set as fmv/Z

′
c2, where f is the focal

length, mu and mv are the numbers of pixels per unit distance along x-axis and
y-axis, respectively, and Z

′
c2 is defined in Equation (13). wt1 and ht1 are the

dimension of the bounding box achieved by computing the projected bounding
box between different views. w

′
t1, h

′
t1 and st1 are set flexibly in experiment. In

our system, we set w
′
t1 = h

′
t1 = 0 and st1 = 1.
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5 Experimental Results

Experimental results demonstrate the performance of our tracking system. We
use two cameras (Sony EVI-D100) with PTZ capabilities to capture images
having 640×480 resolution from live video streams at a frame rate of 30 fps. Both

(a) (b)

Fig. 4. Camera set-up and ground plan of two scenarios. The dash lines indicate the
FOV lines.

(a) (b) (c)

Fig. 5. Scenario One: (a) A fall is detected in CAM 1 as SVC; (b) Samples (N=100)
propagated in CAM 2 as OVC; (c) Weighed samples

(a) (b) (c)

(d) (e) (f)

Fig. 6. Occlusion handling by using CPF in OVC
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(a) CAM1:F267 (b) CAM1:F279 (c) CAM1:F351 (d) CAM1:F428

(e) CAM2:F496 (f) CAM2:F570 (g) CAM2:F642 (h) CAM1:F699

(i) CAM1:F267M (j) CAM1:F279S (k) CAM1:F351S (l) CAM1:F428S

(m) CAM2:F496S (n) CAM2:F570S (o) CAM2:F642S (p) CAM1:F699S

Fig. 7. Scenario Two: Snapshots captured by two cameras localized in two connected
rooms. The name of sub-figures is defined as F+frame number+(M: MHI or S: samples).
(a)-(d) and (h) are captured by CAM1 with weighted bounding boxes; (e)-(g) are
captured by CAM2 with weighted bounding boxes; (i) MHI of (a); (j)-(p) propagated
samples corresponding to (b)-(h), respectively.

cameras are attached to the same computer for data processing. Two scenarios
have been composed. The camera set-up and ground plan is shown in Fig. 4.

In the first scenario as shown in Fig. 4(a), two cameras are located in a single
room, sharing a large overlapping field of view. Two persons are walking around
in the room. Initially, MHI is utilized for the SVC to detect human motions and
3D projected bounding boxes are generated, encapsulating the persons. One of
the cameras detects a fall event happening to a person, and then triggers the
other camera to work as OVC. The OVC then pan and tilt to to fit the person
to the center of its view, and track him using CPF. Meanwhile, it zooms in to
obtain large and clear images of the object. The Threshold for fall detection is
set as Δh = −0.50 and Δv = −0.25 during the experiment so as to differentiate
it from other normal motions. Fig. 5 gives the snapshots when one SVC detects
the fall event and then triggers the other camera to work as OVC. The number
of samples is N = 100.
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In Fig. 6, the top row images use a single bounding box weighted by prop-
agated samples from the corresponding bottom row images. We find that the
proposed CPF method is capable of handling complete occlusion which lasts for
tens of frames as can be seen in the middle column images, where the person
being tracked is blocked by a newcomer.

In the second scenario as shown in Fig. 4(b), two cameras are localized in
two connected rooms sharing very little overlapping field of view. Fig. 7 are
the snapshots of the two cameras from video streams containing around 700
frames. At the beginning, both cameras work as SVC, heading to the door which
connects these two rooms. As an individual person in Room B falls onto the
ground, CAM1 is triggered and works as OVC to keep tracking the person. This
is shown in Fig. 7(a)-(d). The person then leaves Room B and enters Room C.
Since CAM1 completely loses the object, State vector of CPF for the person
is initialized in CAM2, which gets the relay to track the person. Finally, the
person returns to Room B from Room C as displayed in Fig. 7 (p), and CAM1
successfully retrieves the correct tracking.

6 Discussion and Future Work

In this paper, CPF and a relay strategy are utilized in a visual surveillance
system for real-time event detection and object tracking. MHI is used in the SVC
to detect human abnormal motions such as falling and 3D projected bounding
boxes are generated to represent the objects. SVC can be controlled to change
into OVC and then it can track the object by panning, tilting, and zooming
in. Multi-dimensional color histogram based on the HSV color space model is
fused with the particle filtering method to achieve accuracy people tracking.
Compared with some of the previous work, the main contribution of our work
is the integration of PTZ capability, event detection, and relay strategy that all
together yield an intelligent and reliable system.

One focus of our future work will be to investigate into detail technical prob-
lems about the relation between CPF and the zooming process. For example,
how the zooming process affects the particles of the filter and how the uncer-
tainty in the target position affects the focal length of the PTZ camera? Besides,
if 3D bounding box is used in OVC to represent the traced object, depth infor-
mation may also be included in the state vector st in Equation (7). In addition,
we may combine more features (e.g., gradient orientation distribution) with the
color distribution in the particle filter because the sole color likelihood does not
seem to be sufficient to distinguish the target occluded by objects with the sim-
ilar color. Another potential direction will be to study more crowded scenes,
possibly by using more cameras so that we may have more sensors available to
monitor not only the individual object, but the global scene as well to handle
events occurring at any time.
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Abstract. Since there does not exist labelled samples during tracking
period, most existing classification-based tracking approaches utilize a
“self-learning” to online update the classifier. This often results in drift
problems. Recently, semi-supervised learning attracts a lot of attentions
and is incorporated into the tracking framework which collects unlabelled
samples and use them to enhance the robustness of the classifier. In this
paper, we develop a gradient semi-supervised learning approaches for
this application. During the tracking period, the semi-supervised tech-
nology is used to online update the classifier. Experimental evaluations
demonstrate the effectiveness of the proposed approach.

Keywords: Visual tracking, semi-supervised learning.

1 Introduction

Object tracking is an important problem with extensive applications in domains
including video surveillance, robot guidance and human-computer interaction[7]
and therefore attracted significant interest in the compute vision community[15].
The goal of visual tracking is to automatically locate the same object in adjacent
frames in a video sequence.

Since tracking is a time-dependent problem, an adaptive mechanism is more
suitable for this application. [3] firstly proposed a method to adaptively select
color features that best discriminate the object from the current background. An-
other important work is [1], which used an adaptive ensemble of classifier. How-
ever, [1] does not update the weak classifiers themselves, but replaces some of the
older weak classifiers with new weak classifiers. [5] designed an on-line boosting
classifier that selects features to discriminate the object from the background. It
models the feature density by simple Gaussian and update their parameters us-
ing Kalman filter with some specified parameters. However, the Gaussian model
is not sufficient to characterize background samples. In [16], a classifier adaption
approach is proposed to improve an existing generic classifier. The main idea is
that the cost function on the old and new training data-set are combined in a
compact Taylor expansion form. However, the parameter controlling the relative
importance of the old and new data-set is difficult to determine. In addition, the
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approach proposed in [16] was used for adjusting voting weights of weak clas-
sifiers, but not classifiers themselves. Very recently, [12] and [9] proposed two
online boosting approaches which can adaptively adjust classifier parameters.
In [9], a gradient-based feature selection approach is used and show promising
results in object tracking and classifier updating.

These “classification-based tracking” approaches are so promising that many
scholars combined them with the popular particle filter. For example, [2] used
the approach proposed in [3] to design a particle filter with adaptive feature
selection ability. [14] embedded the feature selection procedure into the particle
filter with the aid of existing “background” particles. [8] proposed a cascaded
particle filter with discriminative observers of different lifespan.

However, it should be noticed that all the above-mentioned classifiers are
online updated in a “self-learning” manner, i.e., the estimated target region
is used to extract new positive samples and the surrounding regions are used
to extract negative samples. In practice these “positive” or “negative” samples
are not reliably labelled since the “teacher” is just the current tracking results.
Once minor bias occurs during tracking period (This is very often in tracking
applications), the assigned labels may be noisy. Therefore these “self-learning”
approaches usually tend to “drift” since the error may be accumulated during
the learning and tracking process. In fact, in many tracking applications, the
labelled samples are given by an extra detector which only works at the first
frame and therefore the number of labelled samples is very small, while the
unlabelled samples, which can be selected from any frame, is enormous and
easy to get. If we wish to update the classifier online, we should not ignore
the unlabelled samples. This motivates us to use the popular semi-supervised
learning approach[17].

Though the semi-supervised learning achieves great successes, its application
in tracking domain is still very rare. Recently, [13] utilized the co-training SVM
approach to design a semi-supervised tracker. A demerit of this approach is that
the tracker needs several initial frames to get enough labelled samples. In track-
ing scenarios, extracting feature from the first frame only is more attractive. In
addition, the co-training approach requires calculating different visual cues. In
[6], a SemiBoost-based online boosting approach was used for tracking, which is a
straightforward extension of the supervised online boosting approach[5]. To avoid
some intrinsic problems in SemiBoost, [5] just developed a very simplified Semi-
Boost version. In this paper, we propose a semi-supervised tracking approach.
Different from existing works, we use the unlabelled samples extracted during
tracking period to improve existing classifier, but not construct new classifier.
The updating procedure is based on gradient descent and therefore temporal
gradient learning is coupled with the intrinsic gradient learning in Boosting-
like approaches. By using this class of gradient learning, the information stored
in previous classifiers are kept and only some necessary modifications on the
classifiers will be made.
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2 Gradient Semi-supervised Learning

Consider a dataset {f1, f2, · · · , fn} (the last rows of all samples are 1 that is
used for calculating the intercept.) and the corresponding label {y1, y2, · · · , yn}.
The label yi takes value from the set {+1, 0,−1}, where +1, −1 and 0 represent
positive, negative and unlabelled labels, respectively. For conveniences, we denote
Fl as the index set of labelled samples, and Fu as the index set of unlabelled
samples, i.e., Fl = {i|yi �= 0} and Fu = {i|yi = 0}. The goal of semi-supervised
learning is to use the labelled samples and unlabelled samples to construct a
robust classifier.

Algorithm 1. GentleBoost algorithm

Given: Labelled samples {fi}i∈Fl , label {yi}i∈Fl , iteration number T .
OUTPUT: H(f) =

∑T
t=1 ht(f)

——————————
Initialize: H(f) = 0, wi = 1 for all i ∈ Fl

FOR t = 1, 2, · · · , T
– Determine the parameter of weak classifier as βt =

argminβ{
∑

i∈Fl
wi(β

Tfi − yi)
2.

– Define ht(f) = 2
π
atan(βT

t f).

– Compute the weight for i ∈ Fl: wi = wie
−yiht(fi) and normalize it to satisfy∑

i∈Fl
wi = 1.

– Update the classifier as H(f) = H(f) + ht(f).

The main idea of the proposed gradient semi-supervised learning to design
a preliminary classifier using labelled sample set Fl only, and then use the un-
labelled sample set Fu to improve its performance. Therefore we should first
utilize conventional Adaboost algorithm to construct a preliminary classier. In
this paper, we select GentleBoost for further conveniences. In this setting, H(·)
is an ensemble classifier which can be specifically represented as

H(f) =
T∑

t=1

ht(f) (1)

where ht(·) is a weak classifier which takes value from the continuous interval
[−1, +1], and T is the number of weak classifiers. For any sample f , the practical
classifier output is sign(H(f)).

Given sample vector fi, the t-th weak classifier is designed as

ht(f) =
2
π

atan(βT
t f) (2)

where βt, the parameter vector for ht(·), can be calculated by weighted least
square approach. For more details, please refer to [9] and [12].
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Algorithm 2. Gradient learning algorithm

Given: Unlabelled samples {fi}i∈Fu , Initial parameter {βt}T
t=1

OUTPUT: Updated parameter {β̄t}T
t=1

——————————
FOR t0 = 1, 2, · · · , T

– β̃t0 = βt0

– While (1)
– Form the current classifier according as

H(f) =
2

π
{

t0−1∑
t=1

atan(β̄T
t f) + atan(β̃T

t0f) +
T∑

t=t0+1

atan(βT
t f)} (3)

– Determine the pseudo-label of fi as zi = sign(H(fi))
– Compute the weight for i ∈ Fu: wi = e−ziH(fi), and normalize it to satisfy∑

i∈Fu
wi = 1.

– Compute the weighted error ε according to (4) and the gradient dε

dβ̃t0
according

to (5)
– If ε is decreasing then update β̃t0 ← β̃t0 − λ dε

dβ̃t0
Else terminate the loop.

– End
– β̄t0 = β̃t0

In the second step, we should utilize the unlabelled sample set Fu to obtain an
improved classifier. To this end, we need to define the so-called “pseudo-label”
of unlabelled samples. There exist many approaches to define “pseudo-label”,
here we adopt a straightforward and efficient approach: Using existing classifier
to define the “pseudo-label”. Note that this is similar to the “self-learning” but
it is in fact totally different with “self-learning”. In ‘self-learning”, the estimated
“pseudo-label” is fixed during the whole training period but in our works, the
“pseudo-label” changes in each iteration.

After then, the goal of the improvement is to minimize the weighted error

ε =
∑
i∈Fu

wi(H(fi)− zi)2 (4)

where zi is “pseudo-label” and wi is the samples weight which will be defined
later. Similar to [9], we adopt the gradient descent method to solve this problem
iteratively.

Taking the derivative with respect to βt gives

dε

dβt
=

4
π

∑
i∈Fu

wi(H(fi)− zi)
fi

1 + (βT
t fi)2

(5)

Then βt can be updated as βt ← βt − λ dε
dβt

, where the step size λ should be
determined by line search (this parameter was neglected by [9]). The updating
process can be proceeded according to recursive form (see (3)). The update
algorithm is summarized in Algorithm 2.
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3 The Framework for Visual Tracking

We adopt the approach similar to [1] to design the online classifier, i.e., each
pixel is regarded as a sample and the feature vector is constructed using its
RGB value (therefore the feature vector can be formed as [R G B 1]T ).

3.1 Classifier Updating

During tracking period, we can never get labelled samples. Most of the “self-
learning” approaches assume that “positive” samples can be extracted from the
current tracking result and the “negative” samples can be extracted from the
surrounding region. However, due to some unpredictable factors which often
occur, such as occlusions, and temporary tracking failures. The labels of such
samples may include noises, even are totally wrong. To tackle this problem, [1]
proposed an approach for outlier rejection, which can avoid wrongly updating
of classifier in some sense. However, this approach is based on a hard threshold,
which is difficult to determine in practice. In this work, we regard these samples
as unlabelled samples and use them to improve the existing classifier.

The concrete updating procedure follows Algorithm 2. Assume that at time
instant k − 1 we have strong classifier

Hk−1(f) =
2
π

T∑
t=1

atan(βT
k−1,tf). (6)

The tracking process is formulated into the framework of particle filter, which
will be described later. At the new frame, we generate some particles and use
Hk−1 to evaluate these particles. Then the weighted sum of these particles is
produced to obtain the current tracking result. After that, we use these particles
which are randomly generated as the unlabelled samples and call Algorithm 2
to update the previous classifier to get the new classifier

Hk(f) =
2
π

T∑
t=1

atan(βT
k,tf). (7)

3.2 Bayesian Tracking

The task of tracking is to use the available measurement information to es-
timate the hidden state variables. Given the available observations z1:k−1 =
z1, z2, · · · , zk−1 up to time instant k − 1, the prediction stage utilizes the prob-
abilistic system transition model p(xk|xk−1) to predict the posterior at time
instant k as p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. At time instant

k, the observation zk is available, the state can be updated using Bayes′s rule
p(xk|z1:k) = p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
, where p(zk|xk) is described by the observation

equation. The kernel of particle filter is to recursively approximate the poste-
rior distribution using a finite set of weighted samples. Each sample xi

k represents
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one hypothetical state of the object, with a corresponding discrete sampling
probability ωi

k, which satisfies
∑N

i=1 ωi
k = 1. The posterior p(xk|z1:k) then can

be approximated as p(xk|z1:k) ≈ ∑N
i=1 ωi

kδ(xk − xi
k), where δ(·) is Dirac func-

tion. Then the estimation of the state xk can be obtained as x̂k =
∑N

i=1 ωi
kx

i
k.

The candidate samples {xi
k}i=1,2,···,N are drawn from an importance distribution

q(xk|x1:k−1, z1:k) and the weight of the samples are ωi
k = ωi

k−1

p(zk|xi
k)p(xi

k|xi
k−1)

q(xk|x1:k−1,z1:k) .
The samples are re-sampled to generate an unweighed particle set according to
their importance weights to avoid degeneracy. In many cases, q(xk|x1:k−1, z1:k)
is set to be p(xk|xk−1) and the weights therefore become proportional to the
observation likelihood p(zk|xk). In this paper, the observation likelihood is de-
termined by the output of the online classifier:

p(zk|xi
k) ∝ eHi

k−1

eHi
k−1 + e−Hi

k−1
(8)

where Hi
k−1 is the output of the previous classifier on the current sample xi

k.

3.3 Comparison with Existing Approaches

In this section we give a detailed comparison between the proposed approach
with the most related literature, i.e.[9],[12], and [6].

– The gradient feature selection approach was proposed by [9], where His-
togram of Oriented Gradient (HOG) was used as the feature. Since the
adopted HOG is multiple dimensional vector, [9] adopted weighted Linear
Discriminative Analysis (LDA) to project it to 1-D feature space. However,
in many cases, the number of samples is less than the number of dimensions
and therefore LDA approach does not work. In this paper, we use weighted
least square to get the project coefficient vector βt and therefore avoid this
problem. In addition, in the gradient learning of [9], the optimization vari-
able includes not only the project coefficients, but also the coordinate values
of the cells of which HOG is extracted. However, it can be noted that these
variables are independent optimized according to gradient learning, without
considering their mutual constraints. If these constraints are neglected, it
is possible to get invalid solution. In this paper, what we optimize is just
the project coefficient βt and therefore no constraints need to be considered.
Finally, the approach of [9] is not suitable for tracking small object since in
this case HOG feature is difficult to get.

– In [12], an adaptive online boosting approach was proposed for tracking.
However, [12] introduced many parameters to be determined by the designer.
In addition, to avoid wrongly model updating, the online learning is switched
on or off depending on a hard threshold, which is difficult to determine in
practice. Finally, the approach proposed in [12] belongs to “self-learning”
and our works belongs to “semi-supervised learning”.

– [6] used SemiBoost[11] to design a tracker. However, there exist three major
differences between [6] and our work.
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• The adopted features are different. In [6], Harr-like features are adopted.
For small object, these features are difficult to extract. In this paper, the
tracker works on pixel level.

• SemiBoost[11] was originally proposed for off-line application. It utilizes
the similarity information between each pair of all samples. The calcu-
lating of similarity information is very time-consuming and therefore the
online application of SemiBoost is restrictive. To tackle this problem, [6]
avoided the similarity calculating by neglect the relationships between
unlabelled samples and used a prior classifier to approximate the simi-
larity between labelled samples and unlabelled samples. Therefore, the
semi-supervised learning approach used in [6] is just an approximate
version of SemiBoost. In fact, SemiBoost strongly emphasizes the im-
portance of similarity information, which however plays little role in the
work of [6]. In addition, a demerit of SemiBoost is that the parameter
in similarity is difficult to determine. [6] claimed to propose an learning
approach to determine the similarity. However, there still exist param-
eters to be determined in calculating similarity. In [6], the classifier is
updated once one unlabelled sample is extracted and therefore the re-
lationships between unlabelled samples are totally neglected. In fact, in
tracking scenarios, we can get many unlabelled samples in batch manner
for ONE frame and can sufficiently utilize the distribution information
to update the classifier.

• Similar to [5], [6] randomly selected the features and does not fully take
advantage of the nature that for object tracking, i.e., the high correlation
over time. While in this paper, the gradient learning approach which
exploits the correlation of sequential data is used for online learning.

4 Experimental Results

In this section, we evaluate the proposed tracker on some video sequences show-
ing that the semi-supervised approach can improve tracking performance. In our
algorithm, the number of weak classifiers is set to T = 10. During tracking pe-
riod, 300 pixels around the current tracking results are randomly extracted in
each frame to be unlabelled samples.

The first examples is tested on color video sequence from OTCBVS dataset col-
lection (http://www.cse.ohio-state.edu/OTCBVS-BENCH)[4]. In this example,

For the same video sequence, we make a comparison between the tracking
approach of [1] and ours. In Fig.1, the first column gives the initialization results.
The second and third column correspond to two adjacent frames. It shows that
both the approaches in [1] and ours give deflected tracking results at frame 51.
Since [1] adopts a “self-learning” approach, the classifier will then be wrongly
updated and the performance of the classifier deteriorates from then on (see
the third and fourth columns). On the other hand, since we use online semi-
supervised technology, we donot use the hard label of the extracted samples.
Therefore the error will no accumulate and the performance recovers during the
next frames.
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Fig. 1. From left to right: Frames 2, 51, 52 and 72. The first row corresponds to
ensemble tracking[1]; The second row corresponds to the approach proposed in this
paper.

Fig. 2. From left to right: Frames 2, 43, 70 and 98. The first row corresponds to
ensemble tracking[1]; The second row corresponds to the supervised version of the
proposed approach (i.e. GSL). The third row corresponds to the approach proposed
in this paper.

We also use PETS2007 dataset for tracking demonstrations. In Fig.2 we show
some representative images. In this experiment, we attempt to track the head
of a woman through clutters. In addition to ensemble tracking approach[1], we
also develop a supervised version of the proposed approach. This supervised
approach is similar to Algorithm 2, except that the labels of samples are known
and fixed —- The labels are extracted according to self-learning approach similar
to [1]. For convenience, we call this as “Gradient Supervised Learning” (GSL)
and Algorithm 2 as “Gradient Semi-Supervised Learning” (GS-SL). By this
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Fig. 3. The number of weak classifiers that change their parameters over time. (Red
line: GS-SL; Blue line: GSL)

comparison we can show the advantages of GS-SL. All three approaches begin
with the same initialization results. At frame 43, the result of ensemble tracking
(the first row) is distracted by a nearby white object, while GS-SL (the third
row) is not influenced by it. After frame 43, the performance of ensemble tracker
never recovers and GS-SL succeeds in tracking till frame 98. Also, GSL (the
second row) achieves similar results to ensemble tracking.

Finally, we give the number of updated classifies of GSL and GS-SL over
time in Fig.3 for comparison. From this figure we can see that in most cases
GS-SL updates less classifiers than GSL. This illustrates that semi-supervised
learning provides a more “mild” update strategy.

5 Conclusions

In this paper, we developed a gradient semi-supervised learning approaches for
two applications. First, at the first frame, usually we can get an initialization
result which is given by an extra detector, or by manual labelling. However, these
results usually include wrongly labelled samples. So we adopt semi-supervised
learning technology to refine the initial classifier. Secondly, during the tracking
period, the semi-supervised technology is used to online update the classifier.
In addition, the classifier update procedure is based on gradient learning which
exploits the correlation of sequential data.
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Abstract. Multiple-target tracking represents a challenging question in uncon-
trolled scenarios. Due to high-level applications, such as behavioral analysis, the
need of a robust tracking system is high. In a multiple tracking scenario it is
necessary to consider and resolve occlusions, as well as formations and splitting
of object groups. In this work, a method based in a hierarchical architecture for
multiple tracking is proposed to deal with these matters. Background subtraction,
blob detection, low-level tracking, collision detection and high-level appearance
tracking is used to avoid occlusion and grouping problems. Experimental results
show promising results in tracking management, grouping, splitting, occlusion
events, while remains invariant to illumination changes.

1 Introduction

Multiple target tracking around a scene has became one of the most active research
fields nowadays. This is so because of the need of techniques to capture object behavior
in applications such as video surveillance or body capturing. Despite this interest, it
is a problem far to be solved, specially under uncontrolled scenarios. Object tracking
tries to recognize and list non-rigid objects under illumination and background surface
changes. Due to the type of use, every object is considered as a solid blob, thus tracking
objects surrounded by other is forbidden. Tracking objects also interact with others,
and it is interesting to define such relations in order to introduce high level reasoning
over object behavior. It is also necessary because of grouping events. When an object
collides with another one, it is difficult to track both objects unless you can detect the
collision introducing object groups to model the inner collection. Once the objects are
separated in the scene, the split objects should be recognized as the old ones in the scene
prior to the collision.

In this work we present a methodology for multiple-object tracking that deals with
those situations, establishing an adequate framework for higher-level applications that
require tracking, such as pedestrian trajectory analysis. This paper is organized as fol-
lows: section 2 shows different approaches to the problem, including our method; sec-
tion 3 describes low level tracking, whereas section 4 describe high-level tracker and
target appearance detection; section 5 shows some experimental results and section 6
offers conclusions and future work.

M. Kamel and A. Campilho (Eds.): ICIAR 2011, Part I, LNCS 6753, pp. 416–425, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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2 Related Work

There are in the literature different approaches for object tracking. Low-level approaches
obtained good results tracking isolated objects. In [1] an optical flow detection is used
to track vehicles in an automatic video surveillance system, obtaining bad values over
non-moving objects. Rohr [2] uses Kalman Filters to predict target position under noise
conditions. However, they cannot solve the occlusion problem.

High-level approaches try to learn complex templates a priori in order to do pat-
tern matching. BraMBLe [3] models both background and foreground using Mixture
of Gaussians. Particle Filters are also a common choice ([4], [5]), but it cannot deal
with collision events and no multiple-tracking events are considered. Brand et al. [6]
use a coupled Hidden Markov Models to determine object interactions. M. Li et al.
[7] introduced a tracking based in omega-shape features, which performs a multiple
tracking-people by head-shoulder pattern detection.

Our approach to this topic is based in the hierarchical architecture proposed by
Daniel Rowe et al. [8]. In that work, each level performs a distinct functionality. The
lower level performs target detection, consists in background subtraction and a blob
detection using foreground contours. For each detection, the following level obtains an
ellipse representation for each object. Later, they reduce its appearance using color his-
tograms, which are less sensitive to rotations in depth or target deformations. A bunch
of 49 different RGB linear combinations is reduced to M histograms, according to a
foreground/background ratio. Finally, last level establishes coherent target relations be-
tween frames, including grouping, splitting and leaving the scene cases.

Our goal is to improve this hierarchical architecture to deal in a better way with the
problems mentioned before. As a result, a robust system is presented, with background
independent position and appearance information, with a better approach to the illumi-
nation invariance. Qualitative information, such as object relations or occlusions, will
also be presented. Our methodology works as follows: first, a background subtraction
is computed. Second, interest regions are detected. Third, an object representation is
obtained. Finally, coherent target relations are established between frames.

3 Blob Detection and Low-Level Tracking

The first stage of our system is the detection of blobs within the scene. In [8], a method
proposed by Horprasert et al. [9], based on a color background-subtraction, is used.
However, this method requires an extra parameter, ταlo, to locate dark foreground val-
ues. Since there is no automatic method to calculate ταlo, this approach is very de-
pendent of lighting condition. Thus, a lot of noise is introduced when it is not well
calibrated.

To avoid this problem, we use a method based in Mixture of Gaussians [10] (MoG).
Each background pixel is modeled as a bunch of gaussians, typically three. Pixel values
that do not fit the background distributions are considered foreground until there is
a Gaussian that includes them with enough evidence. Background model is updated
with every new frame using a parameter, α, which is the learning rate. Often every
stopped blob may become part of the background after some updates. To prevent this
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(a) (b)

(c) (d)

Fig. 1. (a) Frame. (b) MoG foreground detection. (c) Morphological operators. (d) Blob detection
after applying minimum-area filter.

situation, the training parameter α is set to a very low value. A requirement is that an
only-background sequence is needed to train the algorithm.

Once our background subtraction methodology is run, we have pixels classified into
two categories: foreground and background. After this, we apply dilation and closing
operators with a minimum-area filter in order to fill the blobs and avoid small regions,
holes or noise due to alterations such as camera movement or video compression when
detecting blob regions. Once detected, the j-observed blob at time t is given by zt

j =
(xt

j , y
t
j, h

t
j , w

t
j , θ

t
j), where xt

j , y
t
j represent the ellipse centroid, ht

j , w
t
j are the major and

minor axes, and θt
j the ellipse orientation. Fig. 1 shows an example of this methodology.

To prevent from noisy measures, a bunch of Kalman Filters is used to predict the
target state. Then, measure validation is established according the regions where the
target observations are expected. A specific Mahalanobis Square Distance (MSD), using
the innovation covariance matrix Sk, is computed to set the gates. This method obtains
good results, however, in absence of noise the MSD value tends to zero, even with
far ellipses from the predicted position. Furthermore, when a tracked object is lost,
predicted state tends to diverge in few iterations. To solve this situation, our approach
stores the position of the ellipse in a window of size M . Subsequently, a median filter
is used in order to smooth the values and a set of adaptive filters (Adalines) predict
the velocity of each ellipse parameter. Once the velocity is computed, it is added to the
previous position to obtain the prediction. With a low training parameter, this method
guarantees a smooth prediction in case a tracking object is lost.
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Fig. 2. (a) xt
j component. (b) yt

j component. (c) ht
j component. Blue color represents frame values

and red predictions. System is robust under occlusion events.

Fig. 2 shows filter response for each component of a certain object. xt
j is easily pre-

dicted and the adaptive filter obtains good results. When the object becomes occluded,
it also shows promising values. Furthermore, under noise conditions, such as yt

j and ht
j

components, stable values are guaranteed.
The method to match the ellipse frame with an existing tracking object starts by

computing the predicted state of the tracking object. We assumed that every object in
the frame moves slowly enough compared to the frame rate. Hence, if the ellipse frame
centroid is located within the predicted state, the low level tracking is confirmed.

To locate the position of the centroid i, j with respect to the ellipse zt
j = (xt

j , y
t
j , h

t
j ,

wt
j , θ

t
j) a transform is applied as follows:

iz cosθt
j −sinθt

j 0 1 0 −xt
i i

jz = sinθt
j cosθt

j 0 0 1 −yt
i j

1 0 0 1 0 0 1 1
, (1)

where (iz, jz) represents (i, j) under zt
j coordinates. If i2z

ht
j
2 + j2

z

wt
j
2 ≤ 1, the centroid is

within the ellipse.

4 High-Level Appearance Tracker

As mentioned before, low-level tracking has problems in cases of grouping and occlu-
sion, since it cannot detect when two tracking objects become a group, or vice versa. To
solve this, Rowe et al. propose the implementation of high-level trackers which include
information relative to the tracking appearance. Due to light sources, orientation and
position changes in the tracking object, the appearance must be updated every iteration.

In [11], an appearance modeling approach is presented. This method uses multiple
color features, which are evaluated and ranked taking into account the background near
the object. With multiple combinations between the RGB components, they obtain 49
different lineal dependent histograms. After this, the best N histograms are selected,
according to the differences between foreground histogram and local background his-
togram. The selected N histograms should be similar between frames. However, this is
not true under noise conditions or after occlusions, because the background difference
between the last and new detection could be high. Thus, based on this initial approach,
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we propose a definition of a fixed pool of valid histograms even if the background or
the illumination change.

Our proposal for high-level tracking consists of four main steps: management of
states in order to model different interactions of objects (collision, splittings, occlu-
sions), tracking object matching, feature selection and appearance computation.

4.1 Object State Management

Six different states are defined: single target, target grouping, grouped, splitting, split
and occluded. Once the ellipses in the new frame are computed and the predicted posi-
tions of the tracked target are calculated, a collision detection procedure is computed.

First, if two or more different ellipse centroids in the frame are within the same
tracking object predicted position, the target change its state to splitting. If the split is
confirmed in the next frame the state is changed to split. Then, the tracking object is
removed. If it is a group, we compare the appearance between the objects involved in
the group and the new ellipses. When a match is obtained, we associate the new ellipse
to the matching object. Finally, if we have any blobs left and we have no unmatched
tracking object associated with the group, we instantiate a new tracking object for every
ellipse within the group. In the other hand, if there are any tracking object associated
with the group and no blobs, we change every object state into occluded. If, on the
contrary, there are both blobs left and unassociated tracking objects, we instantiate a
new group for every blob we have, and every tracking object is associated to every
group. If the split is not confirmed, the tracking object state is changed to its previous
value.

Second, if two or more different tracking object are predicted within a ellipse in the
frame, a new tracking object is created with its state moved to grouping. If the group
is confirmed, the state is changed to grouped. Then, every tracking object within the
ellipse in the frame as part of the group is associated to the new tracking object. None
of the them can be used out of the group unless the group is dissolved.

Finally, if a tracking object labeled as grouped does not match the appearance with
a blob or a tracking object associated to the group has a more similar appearance, we
remove the group and label every tracking object as occluded except the matched one.

4.2 Tracking Object Matching

This module is activated when a low-level tracking object is trained. This happens when
it is detected for six consecutive frames. In previous approaches tracking object appear-
ance is calculated whenever the low-level tracker is confirmed. In our case, we com-
pute tracking appearance in all cases, because we can train features more quickly. In
the case of a new tracking object, in the first steps, both high-level and low-level pa-
rameters relative to the target position and shape are updated. However, until we the
low-level tracking is not considered trained, we do not compute a feature comparison,
because first we need to obtain a good appearance representation, avoiding noise prob-
lems. Furthermore, when the tracking object is trained, appearance comparison will also
computed.
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The system associates every tracking object to the newly created ones. If the high-
level appearance tracker confirms the match, the state is updated with the new position.
If no observation is associated to a particular target, its state is set using the previously
predicted state.

If there is no matching between the low-level comparison in a long-duration occlu-
sion, the tracker is marked as occluded. This means that we only make a appearance
comparison to locate the object. However, these trackers have lower priority than the
others, meaning that they can only be compared when the rest of trackers failed.

4.3 Feature Selection

The tracking object space is represented using color histograms. Instead of using raw
R, G, and B channels, we propose to use L*a*b, which is a color-opponent space with
dimension L for lightness and a and b for the color-opponent dimensions. This way we
can isolate the illumination into one component in order to work with the other two.
Therefore, we compute the histograms as follows

h = ω1 ∗ a + ω2 ∗ b, ω1,2 ∈ {−1, 0, 1} (2)

If we avoid possible lineal combinations between them, we reduce 8 to 4 different
histograms. In some cases, the lightness is important in order to make a distinction
between two different objects, so we add one more histogram calculated with the L
component. Features are normalized and discretized into 64 bins, which is high enough
to prevent from wrong matching, according to [8]. Thus, the ith-feature tracking object
histogram is given by pi = {pi

k; k = 1 : 64}. The probability of each feature is
calculated as:

pi
k = Ci

M∑
a=1

δ(b(xa)− k), (3)

where Ci is a normalization constant which ensures
∑64

k=1 pi
k = 1, δ is the Kronecker

delta, {xa; a = 1 : M} represent the pixel locations, M is the number of target pixels,
and b(xa) is a function that associates pixels to their corresponding bins.

4.4 Appearance Computation

For each one of the five features, the mean appearance histogram of the ith-feature in
time t, mi

t, is recursively computed:

mi
t =

nimi
t−1 + pi

t

ni + 1
, (4)

where ni is the number of times the histogram has been computed. Similarity between
two histograms is computed using the Hellinger distance, dH =

∑64
k=1

√
pkqk. There-

fore, the mean and variance of dH are updated with every new match. In fact, features
of a new frame target are matched using the previous mean and variance. If the frame
target matches with an existing tracker, this is updated. We consider a match to occur
when at least the 60% of the comparisons pass the test. If there is no match, a new
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tracking object is instantiated and trained. Once this is trained, it is compared against
other occluded trackers, because it could be one of the previously defined. If this is the
case, the tracker is merged with the previous one.

Finally, a tracker is deleted if it is lost before it is trained or if the number of times
being present is much lower than the number of frames since it appeared for the first
time.

5 Experimental Results

In our experiments we have used the PETS 2001 Test Case Scenarios [12] in order to
test the methodology. Three different videos are used, which implies more than four
minutes video recording at 25 frames per second. These videos take place outdoors.
Partial occlusions, grouping and splitting events are evaluated, as well as target exiting
and entering into the scene.

The sequences used in this algorithm test involve isolated people, groups and vehi-
cles. Once isolated targets are detected and each tracker is trained, the system performs
well both grouping and splitting events between them. In Fig. 3 we can see a cross-
ing example. Two trackers are trained and instantiated. At some point, the path of both
targets is crossed, which implies the creation of a new group tracker including both
of them. Later, the trackers are far enough and the split is performed. The algorithm
detects the new positions and assigns in a correct way the identification of the two ob-
jects. There are cases in which a group stayed close to the end of camera range. If one
member of the group leaves the scene, the algorithm detects that the new appearance is
close to one of the members rather than the group and remove it. One example of this
problem can be watched in Fig. 4. However, the method cannot handle the case of one
member close to the end of camera range and other object appeared just before it. Once
the target are far enough, the split method is activated and the algorithm process the first
target as a group.

The case of occluded target is also referred. As we see in Fig. 5, the system can
recover target identification under short occlusions, around 100-150 frames. The algo-
rithm performs well under total and partial occlusions. In cases of objects leaving the
scene and reentering much later (more than 150 frames), it obtains 50% of recovery
rate.

(a) (b) (c)

Fig. 3. (a) Tracking before grouping. (b) Tracking during grouping. (c) Tracking after grouping.
Ellipse color represents tracking identification. Once the group is created, a new tracker is instan-
tiated containing the two trackers. When splitting occurs, both trackers have the same previous
identification.



Solving Multiple-Target Tracking Using Adaptive Filters 423

(a) (b) (c)

Fig. 4. (a) Tracking before grouping. (b) Tracking during grouping. (c) Tracking after human
leaves the scene. The new ellipse apperance computation shows that the new object is closer
to the car than to the group, so the group is removed and the object is associated to the car
identification.

Fig. 5. Tracking object with occlusions. The algorithm can recover tracker identification over
occlusions with less than five seconds (100-150 frames).

Table 1 shows the results, mainly focused into object interactions. The object de-
tection performs well when using MoG algorithm, which implies that, once tracker is
trained, grouping events always have good results. Splitting events are generally well
detected but some problems arise in cases of more than two targets in a group. This
is because when there are more than two humans walking next to each other, split al-
gorithm have problems to make stable trackers to each person individually. In general,
short time occlusion events are good performed, meanwhile long time sometimes have
problems derived to appearance model.
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Table 1. Multiple-Target tracking results. Grouping and splitting method performs really well.
Most of the errors assumed is derived by background subtraction and blob detection. Illumination
changes and leaf movements introduce bad tracking objects. The system is able to recover a target
in more than a half of occlusion cases. Lost objects are tracking interrupt due to appearance bad
matching. MoG also introduces noise in the background subtraction, and the minimum-area filter
occasionally lost targets, which are moving away from the camera.

Total Correct Incorrect %

Tracked objects detected 24 18 6 75
Grouping events 18 18 0 100
Splitting events 24 21 3 87.5
Occlusion recovery 12 7 5 58.3

6 Conclusions

In this paper a new approach to the hierarchical architecture is presented in order to
avoid some of the problems presented in this architecture. A different low-level track-
ing, based in adaptive filters and ellipse formulation, is implemented with good results.
An appearance model based in L*a*b color space is preformed to obtain a background
independent appearance target model, showing promising results. Robust tracking is
achieved, even under grouping and splitting situations. In cases of sudden illumination
changes, background subtraction algorithm fails and blob detection is not feasible, so
constant illumination is needed in order to obtain good results.

In a future research a different blob detection would be interesting in order to ob-
tain a fully illumination independent algorithm. Also a new method to achieve a good
recovery identification under long occlusions is desired. A methodology for behavior
analysis in a future work, such as trajectory analysis, will be developed.
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vol. 4174, pp. 505–514. Springer, Heidelberg (2006)

[9] Horprasert, T., Hardwood, D., Davis, L.S.: A robust background substraction and shadow
detection. In: 4th ACCV, Taipei, Taiwan, vol. 1, pp. 34–41 (2000)

[10] Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time track-
ing. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
vol. 2, pp. 246–252 (1999)

[11] Collins, R., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking features.
PAMI 27(10), 1631–1643 (2005)

[12] PETS, International Workshops Performance on Evaluation of Tracking and Surveillance
(2001), http://peipa.essex.ac.uk/ipa/pix/pets/

http://peipa.essex.ac.uk/ipa/pix/pets/


From Optical Flow to Tracking Objects on

Movie Videos

Nhat-Tan Nguyen, Alexandra Branzan-Albu, and Denis Laurendeau

Computer Vision and Systems Laboratory,
Laval University, Quebec (Quebec) G1K 7P4 Canada

ntnguyen@gel.ulaval.ca

aalbu@ece.uvic.ca

denis.laurendeau@gel.ulaval.ca

http://vision.gel.ulaval.ca/

Abstract. This paper addresses the problem of tracking human motion
in a movie sequence involving camera movement. We have developed
an approach to track the bounding box of a human in motion without
using any particular model. This method exploits motion vector fields
from the image, then subtracts the motion caused by the camera to
obtain the segmentation of the object. In addition, we introduce a multi-
level tracking approach. This approach makes the tracking operation
more robust, and less prone to errors. Experiments with movie sequences
representing human walk are reported.

Keywords: optical flow, object tracking, motion vector fields, movie
sequences, image processing.

1 Introduction and Related Work

Various methods have been proposed to address the problem of tracking human
motion. We can classify these approaches into two categories. The first category
uses 2D or 3D models such as skeletons with connected segments, volumetric
human models like spheres or cylinders [1], [2]. It provides an effective represen-
tation of the physical structure and constraints of the human body, but leads to
complex analytical computations by fitting and matching the articulated model.
The second category uses spatio-temporal information. The spatio-temporal XT-
slices are exploited from the video sequence volume XYT, then typical trajectory
patterns can be associated with articulated motion [3]. Polana et al. [4] use the
motion fields computed between successive frames to segment and track actors.
A particle filter is proposed in [5] for visual tracking.

In this paper, we present a tool based on low-level information to detect and
track objects in movies, especially when camera movement is involved. This tool
is useful for subtitling. The remainder of the paper is organized as follows. Section
2 presents the process of color coding for motion vector fields. The background
subtraction method is presented in Section 3. Section 4 illustrates how the al-
gorithm can be used to detect and track objects in movies. Section 5 concludes
the paper and outlines areas for future work.

M. Kamel and A. Campilho (Eds.): ICIAR 2011, Part I, LNCS 6753, pp. 426–435, 2011.
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2 Color Coding for Motion Vector Fields

A motion vector fields of a frame is obtained by calculating the optical flow
between two successive frames. Each pixel in the fields contains a motion vector.
In order to represent a motion vector fields in color, a color wheel is generated as
illustrated in Fig.1. This color wheel is based on the HSV color representation.
It is first formed by 3 basic colors: red, blue and green. Then, it is combined
with the 3 primary colors: cyan, magenta and yellow. Basic colors and primary
colors are paired in the following way: red and cyan, green and magenta, blue
and yellow. The distances (in hue) between these colors are equal.

Fig. 1. The color system used for motion vector fields coding

Subsequently, the color is used to code the direction of the motion vector.
For example, blue indicates 0 degrees, red 120 degrees and so on. The radius
reveals the magnitude of the vector, and of course, the magnitude of the motion
vector fields is normalized into the [0,1] range. With a color wheel as in Fig.1,
a colormap is constructed. A colormap C is a 360-by-3 matrix of real numbers
between 0.0 and 1.0. Each row is an RGB vector that defines one color which
corresponds to one angular degree in the color wheel. Given a motion vector
a = (u, v) at pixel i, its direction and magnitude are defined respectively as
d = arctan(u, v)/π and m =

√
u2 + v2, m ∈ [0, 1]. The mapping vector a into

the colormap is given by:

ind =
⌊

d + 1
2

(360− 1) + 1
⌋

(1)

where ind is an index of the colormap. Then the color representing the vector a
is m× C(ind). The magnitude m serves as the factor of intensity.

With this mapping, a motion vector fields can be displayed as a color image.
Fig.2 presents some samples extracted from a movie sequence and its motion
vector fields. The first row represents the case where the camera is panning to
the right, the second row represents the case in which the camera is panning to
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(a) Frame 1 (b) Frame 2 (c) Flow fields

(d) Frame 4 (e) Frame 5 (f) Flow fields

Fig. 2. Some samples and resulting motion vector fields

the left. For example, Fig.2(c) is the colored flow fields image of the two successive
images in Fig.2(a) and 2(b). A pixel’s value in the image in Fig.2(c) contains
the movement information of a corresponding pixel in the image in Fig.2(b).
In this video sequence, the camera is panning from left to right. Consequently,
background pixels are all blue corresponding to the color wheel in Fig.1. Fig.2(f)
is the colored flow fields image of the two successive images (in Fig.2(d) and
2(e)) extracted from another sequence. This time, the camera is panning from
the right to left and, therefore, background pixels are coded in yellow according
to the color wheel.

3 Background Subtraction

The optical flow method is exploited based on the approach proposed by Zach et
al. [6]. When the camera is panning or tilting, the object is usually distinguished
from the background in the motion vector fields as shown in Fig.2. In other words,
the motion vectors that belong to the background are in the same direction, and,
obviously, appear in the same color in the colored motion vector field image. In
order to simplify the background subtraction step, blue is chosen as the coding
color to indicate the moving background regardless of the direction of camera
motion. To do this, the color wheel is rotated around its center through an angle
in which the blue in the wheel is parallel to the direction of camera motion. This
direction is known based on the camera motion estimation process described
in [7]. Then the motion vector fields is coded with the rotated color wheel to
obtain the colored motion vector field images. For example, the motion vector
fields shown in Fig.2(c) and Fig.2(f) are re-coded with their own rotated color
wheels are presented in Fig.3. Fig.3(a) and 3(b) represents the case where the
camera is panning to the right and Fig.3(c) and 3(d) represents the case in
which the camera is panning to the left. The arrows on color wheels indicate the
direction of camera motion.

With this kind of color image, a simple technique is used to eliminate the
background. First, the color image of the motion vector fields is separated into
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(a) (b) (c) (d)

Fig. 3. Rotated color wheel and colored motion vector fields

(a) Channel R (b) Channel G (c) Channel B

(d) Colored motion vector
fields

(e) Binary image (f) Original image

Fig. 4. Background subtraction results

three channels R, G and B (see Fig.4(a), 4(b) and 4(c)). In each channel image
(a grayscale image), Otsu’s method [8] is applied to select the threshold that
minimizes the intra-class variance of the black and white pixels and convert this
grayscale image into a binary image. Given that R, G and B are binary images
of the red, green and blue channels, then combining these images as R ∨G ∨B,
a binary image I is obtained as presented in Fig.4(e).

4 Multi-level Tracking

Adapted from the work of Torresan et al. in [9], the tracking is performed at mul-
tiple levels. The multi-level tracking algorithm is based on the concepts shown
in Fig.5(a). Fig.5(b) which summarizes the overall tracking strategy.

At the first level of the procedure, the algorithm matches and groups one or
several segmented regions, which are found at the background subtraction stage,
to create blobs. This blob tracking level is processed in chronological order, i.e.
from time t to t + 1, t + 2,..., named Forward blob tracking ; and in reverse
chronological order, i.e. from time t back to t − 1, t − 2,..., named Backward
blob tracking. This strategy can be used since this project is not submitted to
real-time tracking constraints. The results from these two processes are merged
together (see Figs.6(c) and 6(d)). The second level of tracking uses the results of
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(a) Concepts (b) Multi-level tracking procedure

Fig. 5. Multi-level concepts and tracking strategy

this merging. The blobs detected at the first level are then matched with blobs
in the next frame, compared to the prediction regions and grouped together to
obtain the final labeled objects. The rest of this section will present details which
are relevant to the tracking procedure.

Let a and b denote a blob at the time t and t − 1 respectively. Then R(a, b)
denoting the overlap between blob a and b, is defined formally as:

Rmax(a, b) = Max

(
SC(a, b)
RI(a)

,
SC(a, b)
RI(b)

)
(2)

Rmin(a, b) = Min

(
SC(a, b)
RI(a)

,
SC(a, b)
RI(b)

)
(3)

where RI(i) is the area of the ith blob’s ROI and SC(a, b) is the intersection
area between the two ROI.

S(a, b) is the similarity of blobs a and b:

S(a, b) = 1−
[
Abs(SRa − SRb)
Max(SRa, SRb)

]
(4)

where SRi is the actual area of the ith blob as indicated in Fig.5(a).
During the tracking process, the maximum overlapping factor Rmax is used to

follow-up blobs between two successive frames of a sequence. In the meanwhile,
Rmin and S are used to reduce the correspondence between blobs.

At the second tracking level (i.e. object tracking level), one or more blobs
can be grouped to create an object. The object’s velocity is computed and is
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then employed to produce a prediction region of the object. The position of the
prediction region can be modified by the average speed of the prediction region of
the last fifteen frames. Using the same principle, the dimension of the prediction
region is obtained by computing the mean value of the prediction region of the
last fifteen frames. When a new frame is processed, a blob that appears in a
prediction region of an object can be attached to this object. A blob can be
removed from the object if it has a different displacement from the object. The
difference between the object’s bounding box (i.e. the rectangle circumscribing
the object) and its prediction represents the correlation between the two. This
difference can be in dimension or in position. If it exceeds 15% of the prediction
region, the object’s bounding box will be replaced by its prediction region. This
percentage was estimated experimentally and works well for a large sample of
video sequences. Fig.6(a) and Fig.6(b) depict the prediction region in a yellow
box, the blobs in a green box, and the object in a dashed magenta box.

5 Experimental Results

This work aims at creating audio-video tools that will allow multimedia content
producers to improve the richness of the multimedia experience for the blind, the
deaf, the hard of hearing, and the hard of seeing, by automating key aspects of
the multimedia production and post-production processes. In this context, the
experiments are carried out on sequences extracted from two movies. Fig.6, 7,
and 8 illustrate the snapshots from 3 different video sequences. The sequences
shown in Fig.6 and 7 are extracted from the movie called “The Fabulous Destiny
of Amélie Poulain”. The sequence presented in Fig.8 is extracted from the movie
named “Life is a long quiet river”. Of course, we cannot convey all the aspects of
these sequences onto a static sheet of paper. Thus, only a few interesting frames
were selected. The experiments reported in this section involve a mobile camera
following an actor. The example reported in Fig.6 depicts an actress walking
from right to left, passing through the camera viewpoint. The camera follows
the actress. Fig.6(a) and 6(b) illustrate the shape of the object from several
blobs. The green boxes indicate the blobs, the yellow box depicts the predicted
area, the magenta box represents the object. Fig.6(c) and 6(d) represent the
combination of the forward tracking and the backward tracking process. The
green box with label Fdw indicates the result of the forward tracking process
and the blue box with label Rev indicates the result of the backward tracking
process. Fig.6(e) and 6(f) show the final result of tracking with the ID number
on the top left of the box.

Fig.7 shows a case where the camera follows an actor descending stairs and
approaching the camera, then passing through and leaving the camera viewpoint.
Note that the view of the actor is not lateral, but almost anterior. In Fig.8, the
camera stays focused on an actor who is moving away from the camera. Although
these images are static they do express the dynamics of the whole sequence.

In order to validate the algorithm, ground-truth information on several video
sequences is needed. Contrarily to standard video image databases, the ground-
truth of sequences extracted from movies is not directly available and must be
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(a) Frame 21 (b) Frame 57 (c) Frame 44

(d) Frame 87 (e) Frame 44 (f) Frame 87

Fig. 6. Samples of tracking results (Sequence01)

(a) Frame 1 (b) Frame 15 (c) Frame 30

(d) Frame 40 (e) Frame 50 (f) Frame 61

(g) Frame 65 (h) Frame 70 (i) Frame 80

Fig. 7. The snapshots of the tracking results of a video sequence extracted from the
movie “The Fabulous Destiny of Amélie Poulain” (Sequence02)

generated manually. For each sequence, a program was used to display each
frame on a monitor. Following, a human was asked to identify the object (i.e.
the actor) and draw the bounding box around this object. All the bounding
boxes are considered as the ground-truth of the sequence. In Fig.7 and 8, the
ground-truths are indicated by the red boxes, and the outputs of the algorithm
are indicated by the green boxes. We observe that they are very close to each
other.

The correspondence rate between these results and the ground-truth is then
calculated to provide a better and more objective idea of the results obtained
by the algorithm. The correspondence rate is defined as

C = 1− NN + NP

NR + NS
(5)
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(a) Frame 2 (b) Frame 22 (c) Frame 40

(d) Frame 60 (e) Frame 85 (f) Frame 104

Fig. 8. Additional results of a video sequence extracted from the movie “Life is a long
quiet river” (Sequence03)
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(c) Sequence03

Fig. 9. Correspondence rate for the experimental sequences. Blue curve: correspon-
dence rate between the results and the ground-truth. Red line: the average value of the
correspondence rate.

where NR is the total number of reference pixels in the ground-truth, NS is the
number of the object’s pixels. NP is the number of false positives:

NP = NS − (NS ∩NR) (6)
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NN is the number of false negatives:

NN = NR − (NS ∩NR) (7)

The correspondence rate indicates how the output of the algorithm fits with
the reference from the ground-truth. In other words, the higher the value of the
correspondence rate between the results and the ground-truth, the better the
performance of the algorithm.

The plots in Figure 9 show the correspondence rate between the outputs of
our algorithm and the ground-truth. The average of the correspondence rate is
represented as a red line, the correspondence rate is plotted in blue. According to
these plots, the algorithm achieves the best results for Sequence02 with an aver-
age correspondence rate reaching 94% (Figure 9(b)). In Sequence01 (see Figure
9(a)), the average correspondence rate is about 81%. It is the lowest rate ob-
tained among the experimental sequences. For other sequences, there are slight
variations of the correspondence rate around its average value(see Figure 9(c)
and 9(b)). These variation are caused by the cast shadows and false detections
which are small and acceptable in the case of automatic video indexing. More-
over, the average correspondence rates obtained from these sequences are quite
good (from 91% to 94%). Overall, we can conclude that the proposed algorithm
works well on all of these extracted movie sequences.

6 Conclusion

We have proposed a method for tracking human motion in video sequences in
which a moving camera is present. We can then reconstruct the 2D trajecto-
ries of the objects without requiring a high-level or special structural model.
The results are promising, and the proposed method proves to be quite useful
and convincing for video indexing. More experiments need to be conducted to
validate the algorithm. Future work will involve conducting the experiments on
additional scenarios with several actors, and with occlusions by other actors or
scene components.
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Abstract. This paper presents an approach for object detection and event 
recognition in video surveillance scenarios. The proposed system utilizes a 
Histogram of Oriented Gradients (HOG) method for object detection, and a 
Hidden Markov Model (HMM) for capturing the temporal structure of the 
features. Decision making is based on the understanding of objects motion 
trajectory and the relationships between objects’ movement and events. The 
proposed method is applied to recognize events from the public PETS and i-
LIDS datasets, which include vehicle events such as U-turns and illegal 
parking, as well as abandoned luggage recognition established by set of rules. 
The effectiveness of the proposed solution is demonstrated through extensive 
experimentation.  

Keywords: Activity recognition, object tracking, Hidden Markov Models, 
video surveillance, Histogram of Oriented Gradients. 

1   Introduction 

Recently, there has been extensive research on automatic video surveillance analysis, 
with potential application in biometrics, activity recognition, and human movement 
analysis. As a sub area of human computer interaction (HCI), the ability for machines 
to read and understand object and its movements is a much sought after goal. 
Advances in computer vision and image/video processing have made the processing 
of large amounts of data possible. Popular topics of research include biometrics, video 
surveillance, gesture recognition, and emotion recognition. These topics all look to 
create an intelligent system that can extract and process useful information from video 
sequences to improve automation and reduce man power required to process these 
overly abundant flow of video data. 

Various approaches have been introduced in the literature on the topic of motion 
understanding and recognition. Du and Guan incorporated body shape features and 
Kalman filters to recognize humans’ movement [1]. Hongeng et al. created a 
probabilistic finite automaton of event states from Bayesian networks for activity 
recognition [2]. 
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Currently the PETS workshop has focused on video surveillance projects. Previous 
works have focused on various detection rules. Most of the proposed techniques for 
abandoned object detection rely on tracking information [7, 8, 9]. Lu et al. used 
Bayesian inference of context, spatial and temporal rules to determine abandoned 
packages [3]. It detects the time and position of luggage appearance, creating a 
combination of spatial and temporal rules. Smith et al. used Markov Chain Monte 
Carlo tracking and identify bags versus humans using likelihood functions of bag size 
and velocity [4]. Shet et al. used rule and language rules with Prolog for video 
monitoring [5]. The Prolog system can determine high level concepts such as thefts, 
illegal entry and unattended package with simple facts. 

Current literature on video surveillance detection of special events of interest is 
usually based on heuristic rules. There are no formulations that can generalize to all 
security surveillance applications. Thus a probabilistic framework such as belief 
propagation using factor graphs can generalize and unite related concepts without 
specially created rules of thumb. Factor graphs and belief propagation has been used 
to infer high level semantic meaning by Naphade et al [6]. 

The task of detecting abandoned luggage is done by first segmenting objects of 
interest in the image sequence. If there are any objects detected, tracking is required 
to maintain identity and position of the objects. Given the objects are tracked 
correctly, special conditions may arise such as a luggage object left for an extended 
period of time, in which an alarm may be raised to signal the detection of a suspicious 
package for further handling. 

The remainder of the paper is organized as follows. We discuss related works in 
section 2. The system and its technical details are described in section 3. We present 
the results in section 4 and end with concluding remarks in section 5. 

2   Overview of the System 

In this paper, we propose a novel solution to detect events in various surveillance 
video scenarios. Fig. 1 shows our system flowchart. The system includes four main 
components: 1) foreground and object detection using Gaussian mixture model based 
background subtraction and histogram of oriented gradients 2) computer object 
properties 3) input object movement trajectory to Hidden Markov Model 4) 
recognition of events based on movement of the object. 

Foreground and 
Silhouette 

Detection and 
Tracking

Compute Object 
Properties

Feature Vectors
Trajectory

Analyze Event 1

Analyze Event 2

Analyze Event N

…

Event Recognitionvideo

Predefined Events  

Fig. 1. System flowchart 
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2.1   Foreground Extraction 

The first task of detecting objects in the image sequence requires a method for object 
extraction. Our system uses the Gaussian Mixture Model-based background 
subtraction method proposed in [7]. The distribution of each pixel is modeled as a 
Gaussian process, , ,  

The probability that an observed pixel will have an intensity value , ,  at ,  
and time  is estimated by  Gaussian distributions as follows: 

 ∑ , ⁄   ∑ ,                                (1) 
 

Where ∑  is the Gaussian’s covariance matrix, which is assumed to be diagonal. Thus 
the silhouette of objects is extracted if it is outside the range of the most likely pixel 
values: 

 , , 0, , , , , , ,1, ,                            (2) 

 

where , ,  is the binary silhouette value of a pixel at ,  of the  frame, 
and  is the determined threshold value. However, a static mean  and standard 
deviation  will not adapt to shifting backgrounds or changing lighting conditions. 
Thus given a location , ,  and  are updated using 

 1                                             (3) 1 ,                                (4) 
 

where  is the learning rate that determines the update speed of  and . Adjusting 
 changes the sensitivity of the silhouette detector, and 1/  is proportional to time 

background is adjusted. Since PETS 2006 had detection rules of unattended packages 
being 30 seconds, 1 750⁄ , 3, and 2 is set empirically. 

To enhance background subtraction, YUV colorspace is used instead of RGB. 
YUV and HSV are better than RGB as it more closely model the human perception of 
color changes. The pixels were not converted to grayscale but rather YUV Euclidean 
distance criteria can be used to find the silhouette, 

 

, , ,  , , ,                  (5) 
 

which allows for better detection of color changes and less subtle illumination 
changes, which eliminates some shadows and reflections. Fig. 2 shows simple 
extraction results. 

2.2   Camera-Real World Calibration 

To compute useful physical characteristics of the objects in the surveillance video, it 
is assumed that cameras are stationary, and its location and view orientation are 
known. With extrinsic parameters of the camera (translation  and rotation )  
 



 Event Detection and Recognition Using HOG and HMM 439 

 

Fig. 2. Object extraction results 

 

Fig. 3. Camera view transformation 

provided in the PETS dataset, we calculate real world coordinates of objects from 
image coordinates using , where   and  are world and image 
coordinate vectors (Fig. 3). 

After converting to real world coordinates, spatio-temporal properties can be easily 
calculated and multi-view scenarios synchronized. All objects that are found to be 
standing outside of the area of interest can be discarded. 

2.3   Histogram of Oriented Gradients 

In our system, the HOG is used to detect foreground objects in a much higher 
accuracy that traditional methods. Dalal and Triggs [14] presented a general object 
detection algorithm with excellent detection results. Their method uses a dense grid of 
Histogram of Oriented Gradients, computer over blocks of size 16 16 pixels to 
represent a detection window. This representation proves to be powerful enough to 
classify humans using a linear Support Vector Machine (SVM). Dalal and Triggs used 
the single window that was successfully used for object representation [13]. 

HOG requires first a learning phase by grouping a normalized training data set and 
encoding images into features and learn the binary classifier. The sample HOG models 
are shown in Fig 4. After learning the object model, the steps for detecting starts by 1) 
scan the image at all scales and locations, 2) run classifier to obtain object/non-object 
decisions, and 3) fuse multiple detection in 3-D position and scale space.  
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Fig. 4. A) HOG gradient model of a vehicle (sideview) and a human [13] B) Positive and 
negative weights from a trained car HOG model 

 
The individual calculations of HOG is as follows: 1) Gamma compression 2) 

compute gradients 3) weighted vote in spatial & orientation cells 4) contrast 
normalize over overlapping spatial cells 5) collect HOGs over detection window 6) 
linear SVM. The creation process for HOG give it robust features in able to operate in 
multi-scale and multitude of object classes.  

2.4    Hidden Markov Model (HMM) 

To capture the statistical dependence across successive frames and identify the 
inherent temporal structure of the features, an HMM is employed to characterize the 
distribution of an image sequence of length , which can be represented as , , … , . To this end, the resulting features of each frame are considered as 
the observation of an HMM [12], of which the probability density functions (PDF) 
given a state is modeled using Gaussian mixtures. To be specific, considering the case 
in which there are  classes, a feature sequence of length  of the -th class, denoted 
as , , … , , is used to train an -state HMM, which can be represented 
using , , . Corresponding to the sequence of observations, we denote 
their respective hidden states as , , … , , each of which takes on the 
values of a finite set of states, denoted as , , … , . Accordingly the first 
set of parameters of an HMM is composed of the initial state probabilities, i.e. , , … , , where  and 1,2, … , . In addition, the 
second set of parameters consist of the state transition probabilities  , 

where |  and , 1,2, … , . Finally, the third set of 
parameters , , … ,  characterize the PDF’s of a -
dimensional observation conditional on different states, which can be expressed as | ,                                               6  
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and 
 | ∑2 ⁄ |∑ | ⁄ ,                                     7  

 

Where  and ∑  are the mean vector and covariance matrix of the m-th mixture 
component of the -th class. It should be noted that because we employ homogeneous 
HMMs the time indexes of the parameters can be dropped. The parameters can be 
estimated through the standard expectation maximization (EM) procedure. 

Once the HMMs of all the classes are learned, the likelihood values of a new audio 
or video sample  , , … ,  with respect to different classes can be 
calculated through 

    , , … ,                                                                                  8     … , , … , ; , , … , ,        
 … .  

 

The extracted foreground objects’ center of gravity can produce a traced trajectory 
is input into the HMM. The discontinuity of tracks of moving objects often arises 
when moving objects are not detected for a few frames, such as from total occlusion, 
or when all regions do not satisfy the ground plan assumption. In this case, 
hypotheses about connections of fragments of tracks are smoothed over a few frames. 
The output of the HMM contains the likelihood of the query sample with respect to 
difference classes. In our system, the number of hidden states was chosen to be three. 
The HMM classifier requires no parameter tuning so it is relatively cheap in terms of 
concept detection performance.  

3   Experimental Results 

We tested our approach with the PETS2006 [11] and i-LIDS [10] datasets, which was 
designed to contain real world video surveillance footage in a public environment. 
The ground truth for the sequences includes the type of objects and also the 
coordinates and time of events of interest. The HOG is trained for a vehicle top view 
and an upright standing human trained from the PETS2006 and i-LIDS datasets.  

PETS2006 dataset contains 4 camera multi-sensor sequences containing left-
luggage scenarios with increasing complexity. There are seven scenarios each with 4 
different capture view points. Our algorithm processes one camera viewpoint at a 
time, and the results are from the camera view where objects are clearer and bigger. 
Table 1 and Fig. 3 show a summary of the dataset broken down into details. 
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Table 1. Challenges in the PETS 2006 dataset 

Seq. Length (s) Luggage 
items 

People 
nearby 

Abandoned Difficulty 
(PETS) 

S1 121 1 backpack 1 Yes 1/5 
S2 102 1 suitcase 2 Yes 3/5 
S3 94 1 briefcase 1 No 1/5 
S4 122 1 suitcase 2 Yes 4/5 
S5 136 1 ski 1 Yes 2/5 
S6 112 1 backpack 2 Yes 3/5 
S7 136 1 suitcase 6 Yes 5/5 

Table 2. PETS2006 Luggage and Alarm Detection Results 

Seq.  Luggage 
Detection 

Loc (x, y) Alarm Alarm 
Time 

S1 ground truth 
result 
error 

Yes 
Yes 
0% 

(.22, -.44)
(.22, -.34)
0.10m 

Yes 
Yes 
0% 

113.7s 
113.2s 
0.5s 

S2 ground truth 
result 
error 

Yes 
Yes 
0% 

(.34, -.52)
(.22, -.33)
0.20m 

Yes 
Yes 
0% 

91.8s 
90.8s 
1.08s 

S3 ground truth 
result 
error 

Yes 
No 
100% 

(.86, -.54)
- 
- 

No 
No 
0% 

- 
- 
- 

S4 ground truth 
result 
error 

Yes 
No 
0% 

(.24, -.27)
(.10, -.03)
0.25m 

Yes 
No 
100% 

104.1s 
- 
- 

S5 ground truth 
result 
error 

Yes 
Yes 
0% 

(.34, -.56)
(.24, -.49)
0.13m 

Yes 
Yes 
0% 

110.6s 
110.6s 
0.0s 

S6 ground truth 
result 
error 

Yes 
Yes 
0% 

(.80, -.78)
(.69, -.49)
0.30m 

Yes 
Yes 
0% 

96.9s 
96.9s 
0.0s 

S7 ground truth 
result 
error 

Yes 
Yes 
0% 

(.35, -.57)
(.30, -.34)
0.23m 

Yes 
Yes 
0% 

94.0s 
90.4s 
3.6s 

 
Tables 2 and 3 show our results for PETS2006, with 6 out of 7 sequences 

successfully detecting an abandoned luggage and raising an alarm. The alarm time 
and location of the events can be compared to fine-tune the results, and our results 
show that there are usually a few frames of delay between the ground truth data, 
which can attribute up to 0.30 meters of error in real-world coordinates. 
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Fig. 5. Alarm conditions. Owner outside of red ring (3 meters) represents abandoned luggage, 
between yellow (2 meters) and red represents unattended luggage, and green cross represents 
the position of the bag. 

i-LIDS dataset (Fig. 6) contains Quicktime MJPEG real CCTV footage based on four 
scenarios: 1) Parked vehicles 2) Abandoned baggage 3) Sterile Zone and 4) Doorway 
surveillance. Within the scenarios, certain alarm events are defined, for example, the 
presence of a parked vehicle in a defined zone for more than 60 seconds. This alarm 
can represent an illegally parked vehicle, and is an event of interest. 

 
Fig. 6. i-LIDS dataset, vehicle surveillance scenarios 

Table 4 and 5 shows the results of our method performed on i-LIDS dataset. The 
two main events are abandoned luggage in a train station and vehicle parking 
surveillance in a street. The results show that all abandoned luggage were detected, 
but with 3 false positives, generated from static people misidentified as an abandoned 
object.  
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Table 3. Abandoned object detection for PETS2006 

# of sequences abandoned objects True Positives False Positives 
7 7 6 0 

Table 4. Abandoned object detection for i-Lids dataset 

# of sequences Abandoned objects True Positives False Positives 
5 8 8 3 

Table 5. Illegally Parked vehicle detection for i-Lids dataset parked vehicle scenario 

# of sequences Parked vehicles True Positives False Positives 
5 6 6 1 

4   Conclusion and Future Work 

The detection of abandoned packages is an important application in video surveillance 
and security. In this paper a framework for event detection using HMM and HoG was 
demonstrated to detect abandoned packages. Results show that our method is accurate 
in detecting, tracking, and recognizing 3 different scenarios across datasets. In certain 
circumstances, there are false positives generated from misclassifying a static person 
as an abandoned luggage. For purposes of video surveillance and detection of 
suspicious events, false positives’ costs can be much lower than a false negative.  

Future research direction can apply our framework towards other surveillance and 
activity and event recognition tasks. Possibilities include determining other suspicious 
behaviors, thefts, loitering, as well as home based use such as helper surveillance in 
elderly homes and hospitals, and finally more complex scenarios involving multiple 
views and scenarios involving multiple actors. 

The experiments show promising results with different possible future research 
directions, such as only being monocular, and HOGs require object models trained 
according to the scenario type. Future research can further improve the robustness of 
our method by having automatic adaptation to normal scenes and suspicious events 
automatically. Our foreground extraction method can also be more robust, to account 
for excessive motion and constant lighting changes. The extensive testing results 
proved that our approach can be applied to real-world surveillance scenarios. 
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