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Preface

This volume contains the papers presented at SAT 2011, the 14th International
Conference on Theory and Applications of Satisfiability Testing (SAT). The
conference was held during June 19–22, 2011 and was hosted by the Computer
Science and Engineering Division of the Department of Electrical Engineering
and Computer Science at the University of Michigan in Ann Arbor. Affiliated
with the main conference were the workshops POS (Pragmatics of SAT), SPA
(SAT for Practical Applications), CSPSAT (Workshop on the Cross-Fertilization
Between CSP and SAT) and INCSAT (Workshop on Incomplete Techniques for
Proving UNSAT). In addition, SAT 2011 featured three solver competitions: SAT
Competition 2011, Pseudo-Boolean Competition 2011, and Max-SAT Evaluation
2011.

The International Conferences on Theory and Applications of Satisfiability
Testing (SAT) originated in 1996 as a series of workshops on satisfiability. By
the third meeting in 2000, the workshop had attracted a mix of theorists and
experimentalists whose common interest was the enhancement of our basic un-
derstanding of the theoretical underpinnings of the satisfiability problem as well
as the development of scalable algorithms for its solution in a wide range of ap-
plication domains. In 2002 a competition of SAT solvers was inaugurated to spur
further algorithmic and implementation developments, and to create an eclec-
tic collection of benchmarks. The competition expanded in subsequent years to
include pseudo-Boolean, QBF, and MAX-SAT solvers has become an integral
part of these meetings, adding an element of excitement and anticipation. The
interplay between theory and application, as well as the increased interest in
satisfiability from a wider community of researchers, led to the natural evolution
of these initial workshops into the current conference format. The annual SAT
conference is now universally recognized as the venue for publishing the latest
advances in SAT research.

This year marked the 14th SAT meeting. SAT is now interpreted in a broad
sense to include not just propositional satisfiability, but also pseudo-Boolean
constraint solving and optimization (PB), quantified Boolean formulae (QBF),
constraint programming techniques (CP) for word-level problems and their
propositional encoding, and satisfiability modulo theories (SMT). Submissions
were solicited for original research on proof systems, proof complexity, search
algorithms, heuristics, analysis of algorithms, hard instances, randomized for-
mulae, problem encodings, industrial applications, solvers, simplifiers, tools, case
studies and empirical results. A total of 57 submissions were received and rig-
orously reviewed by a 39-member international Technical Program Committee
(TPC), with each paper receiving at least four independent reviews. Of these
submissions, the TPC decided to accept 25 as regular papers (14 pages, 30-
minute presentation) and 10 as extended abstracts (2 pages) to be presented as
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posters. The accepted papers were organized into eight sessions and their full
text is included in these proceedings.

The conference program also featured two invited presentations. The first,
by Ryan Williams, described prior and current work on connecting the art of
finding good satisfiability algorithms with the art of proving complexity lower
bounds. The second, by Koushik Sen, described Concolic Testing, a software
verification approach that combines concrete and symbolic testing and utilizes
the power of modern constraint solvers.

We would like to acknowledge several people for their help in organizing
the conference and associated events. For the myriad logistical arrangements
we are grateful for the superb help we received from Lauri Johnson-Rafalski.
Steve Crang did an excellent job designing the SAT poster and banners as well
as the packet of materials provided to the conference attendees. We appreciate
the tireless efforts of the workshop organizers: Daniel Le Berre and Allen Van
Gelder (POS), Carsten Sinz and Olga Tveretina (SPA), Yael Ben-Haim and
Yehuda Naveh (CSPSAT), and Gilles Audemard, Gilles Dequen, and Djamal
Habet (INCSAT). We also thank the competition organizers: Matti Jarvisalo,
Daniel Le Berre, and Olivier Roussel (SAT Competition), Vasco Manquinho and
Olivier Roussel (Pseudo-Boolean Competition), and Josep Argelich, Chu Min
Li, Felip Many, and Jordi Planes (Max-SAT Evaluation). Last, but not least, we
thank the members of the TPC and the additional external reviewers for their
careful and thorough work, without which it would not have been possible for
us to put together such an outstanding conference program.

Finally, we would like to thank Microsoft Research and Microsoft Research
INRIA Joint Centre for their generous support of SAT 2011, the CSE division
of the department of EECS at the University of Michigan for providing excellent
facilities for hosting the conference and workshops, and the LRI of the University
of Orsay Paris-Sud 11 for hosting the conference website.

April 2011 Karem A. Sakallah
Laurent Simon
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Connecting SAT Algorithms

and Complexity Lower Bounds

Ryan Williams

IBM Almaden Research Center

Abstract. I will describe prior and current work on connecting the art
of finding good satisfiability algorithms with the art of proving complex-
ity lower bounds: proofs of limitations on what problems can be solved
by good algorithms. Surprisingly, even minor algorithmic progress on
solving the circuit satisfiability problem faster than exhaustive search
can be applied to prove strong circuit complexity lower bounds. These
connections have made it possible to prove new complexity lower bounds
that had long been conjectured, and they suggest concrete directions for
further progress.

Recent work has uncovered interesting connections between the satisfiability
problem and complexity theory. Let C be a generic class of Boolean circuits
that obey basic properties. Examples of possible C are the following, listed in
increasing order of computational power:

• AC0[m] is the class of constant-depth, polynomial-size circuits with un-
bounded fan-in MODm, AND, and OR gates. (A MODm gate outputs 1
iff the sum of its inputs is divisible by m.)
• ACC is the union over all m of the classes AC0[m].
• TC0 is the class of constant-depth, polynomial-size circuits with unbounded

fan-in MAJORITY gates and NOT gates.
• NC1 is the class of polynomial-size Boolean formulas over the connectives

AND, OR, and NOT.
• P/poly consists of arbitrary polynomial-size Boolean circuits with bounded

fan-in AND and OR gates, and NOT gates.

For each such class C, we may define a corresponding C-SAT problem: given
a generic circuit from the class C, is it satisfiable? Very little is known about
the worst-case time complexity of this problem, even when C is the class of
formulas in conjunctive normal form. For example, it is open whether the CNF-
SAT problem can be solved in O(1.9n) time on CNF formulas with n variables
and nO(1) clauses.

It turns out that understanding the time complexity of C-SAT is closely re-
lated to the problem of simulating computations within the class C. If the worst
case O(2n) time bound for C-SAT can be only slightly improved in some situ-
ations, then obstructions against C-circuits can be proved. That is, somewhat
weak algorithms for solving SAT on interesting circuits can be turned into strong

K.A. Sakallah and L. Simon (Eds.): SAT 2011, LNCS 6695, pp. 1–2, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 R. Williams

complexity lower bounds for solving other problems with these interesting cir-
cuits. More formally:

Theorem. [1,2] There is a c > 0 such that, if C-SAT can be solved
on circuits with n + c logn inputs and nk size in O(2n/nc) time for
every k, then the class NEXP (Nondeterministic Exponential Time) con-
tains languages that cannot be recognized with non-uniform C circuits of
polynomial size.

Intuitively, the theorem states that the difficulty faced by researchers who de-
sign fast algorithms for verification of certain kinds of circuits is related to the
difficulty of proving that certain problems can’t be efficiently solved with these
kinds of circuits.

Why might such a theorem be true? One intuition is that the existence of
a faster C-SAT algorithm shows us a weakness in representing computations
with circuits from C. The class C is not like a set of black boxes: these circuits
cannot hide a satisfying input so easily. Instead, there exists a way to analyze
the circuit more efficiently, finding a satisfying input or concluding there is none.
Another equally valid intuition is that the existence of a faster SAT algorithm
for C highlights a strength of algorithms that run in less-than-2n time: they can
solve nontrivial satisfiability problems.

Summing up, intuition says that a faster SAT algorithm for C simultane-
ously shows “less-than-2n algorithms are strong” and “C-circuits are weak”. This
gives some hint as to how we might separate the two notions, and prove that
some function in nondeterministic exponential time cannot be solved with small
(polynomial size) C circuits. (Warning: the actual proof is much more compli-
cated than this, and proceeds by contradiction. We assume the C-SAT algorithm
exists, and that every language in NEXP has small C circuits. These two assump-
tions are woven together in nontrivial and unexpected ways, and eventually we
derive a contradiction to a previously known complexity lower bound. Hence if
the desired SAT algorithm exists, then the small C circuits cannot exist.)

New circuit complexity lower bounds have recently been proved, building on
these connections. In particular, circuit size lower bounds for the class ACC
have been established from the design of new algorithms for satisfiability of ACC
circuits [2]. It is anticipated that further progress in complexity lower bounds
will be made by studying the complexity of satisfiability.

References

1. Williams, R.: Improving exhaustive search implies superpolynomial lower bounds.
In: ACM Symposium on Theory of Computing, pp. 231–240 (2010)

2. Williams, R.: Non-uniform ACC circuit lower bounds. To appear in IEEE Conference
on Computational Complexity (2011)



Concolic Testing and Constraint Satisfaction

Koushik Sen

EECS Department, University of California, Berkeley, CA, USA
ksen@cs.berkeley.edu

Software testing is the most common technique used in industry to improve reli-
ability and quality of software. Unfortunately, testing is mostly a manual process
that reportedly accounts for over half of the typical cost of software development
and maintenance. Symbolic execution [6,2,3,9,5] was proposed in the 70s to auto-
mate software testing by generating test inputs. During symbolic execution, the
program is run with symbolic (rather than concrete) inputs and generates a path
constraint. This path contraint is updated whenever a conditional statement is
executed and encodes the constraints on the input necessary to reach a given
program point. Test generation is performed by solving the collected constraints
using a constraint solver.

Although symbolic execution was proposed almost 35 years ago, we have
hardly seen any practical test generation tool based on this technique. There
are two key reasons behind this: 1) until recently, constraint solving techniques
were not powerful enough to solve constraints that arise during symbolic execu-
tion of most real-world programs, and 2) constraints generated during symbolic
execution of real-world programs often fall under theories that are not decid-
able. The first issue has been addressed by the recent advances in SAT and SMT
solving techniques.

In this talk, I will describe concolic testing [4,12,10,11,7] (also known as di-
rected automated random testing or dynamic symbolic execution), a technique
that addressed the second challenge associated with symbolic execution and
thus paved the way for development of practical automated test generation tools.
Concolic testing improves classical symbolic execution by performing symbolic
execution of a program along a concrete execution path. Specifically, concolic
testing executes a program starting with some given or random concrete input.
It then gathers symbolic constraints on inputs at conditional statements during
the execution induced by the concrete input. Finally, a constraint solver is used
to infer variants of the concrete input to steer the next execution of the pro-
gram towards an alternative feasible execution path. This process is repeated
systematically or heuristically until all feasible execution paths are explored or
a user-defined coverage criteria is met.

A key observation in concolic testing is that intractability in symbolic ex-
ecution can be alleviated using concrete values: whenever symbolic execution
generates a constraint that is beyond a decidable theory, one can simplify this
constraint by replacing some of the symbolic values with concrete values. In these
cases, the concolic execution degrades gracefully by leveraging concrete values
to keep the path constraint decidable.

K.A. Sakallah and L. Simon (Eds.): SAT 2011, LNCS 6695, pp. 3–4, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



4 K. Sen

Concolic testing and its variants are now the underlying technique of several
popular testing tools: UIUC’s CUTE and jCUTE1, Stanford’s KLEE2 tool uses
an approach similar to concolic testing, UC Berkeley’s CREST3 and BitBlaze4,
UCLA’s SPLAT [8]. Concolic testing technology is now used in industrial prac-
tice at Microsoft (Pex5, YOGI6) and IBM (Apollo [1]).
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Abstract. We study the performance of DPLL algorithms on param-
eterized problems. In particular, we investigate how difficult it is to
decide whether small solutions exist for satisfiability and other combi-
natorial problems. For this purpose we develop a Prover-Delayer game
which models the running time of DPLL procedures and we establish
an information-theoretic method to obtain lower bounds to the running
time of parameterized DPLL procedures. We illustrate this technique by
showing lower bounds to the parameterized pigeonhole principle and to
the ordering principle. As our main application we study the DPLL pro-
cedure for the problem of deciding whether a graph has a small clique.
We show that proving the absence of a k-clique requires nΩ(k) steps for a
non-trivial distribution of graphs close to the critical threshold. For the
restricted case of tree-like Parameterized Resolution, this result answers
a question asked in [11] of understanding the Resolution complexity of
this family of formulas.

1 Introduction

Resolution was introduced by Blake [12] and since the work of Robinson [25]
and Davis, Putnam, Logemann, and Loveland [20,19] has been highly employed
in proof search and automated theorem proving. In the last years, the study
of Resolution has gained great significance in at least two important fields of
computer science. (1) Proof complexity, where Resolution is one of the most
intensively investigated proof systems [22, 30, 16, 6, 8, 13, 1]. The study of lower
bounds for proof length in this system has opened the way to lower bounds in
much stronger proof systems [28,7]. (2) Algorithms for the satisfiability problem
of CNF formulas, where the DPLL algorithm [19, 4] is the core of the most
important and modern algorithms employed for the satisfiability problem [4, 5].

Parameterized Resolution was recently introduced by Dantchev, Martin, and
Szeider [18] in the context of parameterized proof complexity, an extension of the
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proof complexity approach of Cook and Reckhow [17] to parameterized complex-
ity. Analogously to the case of Fixed Parameter Tractable (FPT) algorithms for
optimization problems, the study of Parameterized Resolution provides new ap-
proaches and insights to proof search and to proof complexity. Loosely speaking,
to refute a parameterized contradiction (F, k) in Parameterized Resolution we
have built-in access to new axioms, which encode some property on assignments.
In the most common case the new axioms are the clauses forbidding assignments
of hamming weight greater than k. We underline that only those axioms appear-
ing in the proof account for the proof length. Hence Parameterized DPLL refu-
tations can be viewed as traces of executions of a (standard) DPLL algorithm
in which some branches are cut because they falsify one of the new axioms.

In spite of its recent introduction, research in this direction is already active.
Gao [21] analyzes the effect of the standard DPLL algorithm on the problem
of weighted satisfiability for random d-CNFs. Beyersdorff et al. [11], using an
idea also developed in [15], proved that there are FPT efficient Parameterized
Resolution proofs for all bounded-width unsatisfiable CNF formulae. The discov-
ery of new implications for SAT-solving algorithms in Parameterized Resolution
appears to be a promising research field at a very early stage of investigation.

As our first contribution, we look inside the structure of Parameterized DPLL
giving a new information-theoretical characterization of proofs in terms of a two-
player game, the Asymmetric Prover-Delayer (APD) game. The APD-game was
also used in [10] to prove simplified optimal lower bounds for the pigeonhole
principle in tree-like classical Resolution. Compared to [10] we present here a
completely different analysis of APD-games based on an information-theoretical
argument which is new and interesting by itself.

Parameterized Resolution is also a refutational proof system for parameter-
ized contradictions. Hence proving proof length lower bounds for parameterized
contradictions is important in order to understand the strength of such a proof
system. Dantchev et al. [18] proved significant lower bounds for Parameterized
DPLL proofs of PHP and of the ordering principle (OP). Moreover, recently the
work [11] extended the PHP lower bounds to the case of parameterized dag-like
bounded-depth Frege1.

As our second contribution we provide a unified approach to reach significa-
tive lower bounds in Parameterized DPLL using the APD-game. As a simple
application of our characterization, we obtain the optimal lower bounds given
in [18] for PHP and OP.

It is a natural question what happens when we equip a proof system with
a more efficient way of encoding the exclusion of assignments with hamming
weight ≥ k, than just adding all possible clauses with k + 1 negated variables.
Dantchev et al. [18] proved that this is a significant point. They presented a
different and more efficient encoding, and showed that under this encoding PHP
admits efficient FPT Parameterized Resolution proofs.

1 The APD-game appeared also in the technical report [9], together with a lower
bound for dag-like Parameterized Resolution, but all results in [9] are subsumed
and improved by [11] and the present paper.
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In the previous work [11] we investigated this question further and noticed
that for propositional encodings of prominent combinatorial problems like k-
independent set or k-clique, the separation between the two encodings vanishes.
Hence we proposed (see Question 5 in [11]) to study the performance of Pa-
rameterized Resolution on CNF encodings of such combinatorial problems and
in particular to prove lower bounds. This will capture the real proof-theoretic
strength of Parameterized Resolution, since it is independent of the encodings.
The k-clique principle (see also [11, 3] for similar principles) simply says that a
given graph contains a clique of size k. When applied on a graph not containing a
k-clique it is a contradiction. On the (k− 1)-partite complete graph the k-clique
principle admits efficient refutations in Parameterized Resolution.

As a third contribution, we prove significant lower bounds for the k-clique
principle in the case of Parameterized DPLL. Our k-clique formula is based on
random graphs distributed according to a simple variation of the Erdős-Rényi
model G(n, p). It is well known [23, Chapter 3] that when G is drawn according
to G(n, p) and p� n− 2

k−1 , with high probability G has no k-clique.
The paper is organized as follows. Section 2 contains all preliminary notions

and definitions concerning fixed-parameter tractability, parameterized proof sys-
tems, and Parameterized Resolution. In Section 3 we define our asymmetric
Prover-Delayer game and establish its precise relation to the proof size in tree-
like Parameterized Resolution. In Section 4, as an example of the application
of the APD-game, we give a simplified lower bound for the pigeonhole princi-
ple in tree-like Parameterized Resolution. In Section 5 we introduce the formula
Clique(G, k) which is satisfiable if and only if there is a k-clique in the graph G
and we show that on a certain distribution of random graphs the following holds
with high probability: G has no k-clique and the size of the shortest refutation
of Clique(G, k) is nΩ(k). From an algorithmic perspective, this result can be for-
mulated as: any algorithm for k-clique which (i) cleverly selects a vertex and
branches in whether it is in the clique or not, (ii) deletes all its non-neighbors
and (iii) stops branching when there are no vertices left, must use at least nΩ(k)

steps for most random graphs with a certain edge probability.

2 Preliminaries

Parameterized complexity is a branch of complexity theory where problems are
analyzed in a finer way than in the classical approach: we say that a prob-
lem is fixed-parameter tractable (FPT) with parameter k if it can be solved in
time f(k)nO(1) for some computable function f of arbitrary growth. In this set-
ting classically intractable problems may have efficient solutions, assuming the
parameter is small, even if the total size of the input is large. Parameterized
complexity also has a completeness theory: many parameterized problems that
appear not to be fixed-parameter tractable have been classified as being com-
plete under fpt-reductions for complexity classes in the so-called weft hierarchy
W[1] ⊆W[2] ⊆W[3] ⊆ . . . .

Consider the problem Weighted CNF Sat of finding a satisfying assignment
of Hamming weight at most k for a formula in conjunctive normal form. Many
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combinatorial problems can be naturally encoded in Weighted CNF Sat:
finding a vertex cover of size at most k; finding a clique of size at least k;
or finding a dominating set of size at most k. In the theory of parameterized
complexity, the hardness of the Weighted CNF Sat problem is reflected by
the fact that it is W[2]-complete (see [18, 11]).

Dantchev, Martin, and Szeider [18] initiated the study of parameterized proof
complexity. After considering the notions of propositional parameterized tautolo-
gies and fpt-bounded proof systems, they laid the foundations for the study of
complexity of proofs in a parameterized setting. The problem Weighted CNF

Sat leads to parameterized contradictions:

Definition 1 (Dantchev et al. [18]). A parameterized contradiction is a pair
(F, k) consisting of a propositional formula F and k ∈ N such that F has no
satisfying assignment of weight ≤ k.

The notions of a parameterized proof system and of fpt-bounded proof systems
were also developed in [18]:

Definition 2 (Dantchev et al. [18]). A parameterized proof system for a
parameterized language L ⊆ Σ∗ × N is a function P : Σ∗ × N → Σ∗ × N such
that rng(P ) = L and P (x, k) can be computed in time O(f(k)|x|O(1)) for some
computable function f . The system P is fpt-bounded if there exist computable
functions s and t such that every (x, k) ∈ L has a P -proof (y, k′) with |y| ≤
s(k)|x|O(1) and k′ ≤ t(k).

The main motivation behind the work of [18] was that of generalizing the clas-
sical approach of Cook and Reckhow [17] to the parameterized case and that of
working towards a separation of complexity classes as FPT and W[2] by tech-
niques developed in proof complexity.

2.1 Parameterized Resolution and Parameterized DPLL

A literal is a positive or negated propositional variable and a clause is a set of
literals. The width of a clause is the number of its literals. A clause is interpreted
as the disjunction of its literals and a set of clauses as the conjunction of the
clauses. Hence clause sets correspond to formulas in CNF. The Resolution system
is a refutation system for the set of all unsatisfiable CNF. Resolution gets its
name from its only rule, the Resolution rule {x}∪C {¬x}∪D

C∪D for clauses C,D
and a variable x. The aim in Resolution is to demonstrate unsatisfiability of a
clause set by deriving the empty clause. If in a derivation every derived clause
is used at most once as a prerequisite of the Resolution rule, then the derivation
is called tree-like, otherwise it is called dag-like. The size of a Resolution proof
is the number of its clauses where multiple occurrences of the same clause are
counted separately.

For the remaining part of this paper we will concentrate on Parameterized
Resolution as introduced by Dantchev, Martin, and Szeider [18]. Parameterized
Resolution is a refutation system for the set of parameterized contradictions (cf.
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Definition 1). Given a set of clauses F in variables x1, . . . , xn, a Parameterized
Resolution refutation of (F, k) is a Resolution refutation of the set of clauses
F ∪ {¬xi1 ∨ · · · ∨ ¬xik+1 | 1 ≤ i1 < · · · < ik+1 ≤ n}. Thus, in Parameterized
Resolution we have built-in access to all parameterized clauses of the form ¬xi1∨
· · · ∨ ¬xik+1 . All these clauses are available in the system, but when measuring
the size of a refutation we only count those which occur in the refutation.

If refutations are tree-like we speak of tree-like Parameterized Resolution. Run-
ning parameterized DPLL procedures on parameterized contradictions produces
tree-like Parameterized Resolution refutations, thus tree-like Resolution proof
lengths are connected with the running time of DPLL procedures. Exactly as
in usual tree-like Resolution, a tree-like Parameterized refutation of (F, k) can
equivalently be described as a boolean decision tree where inner nodes are labeled
with variables from F and leaves are labeled either with clauses from F or with
parameterized clauses ¬xi1 ∨ · · · ∨ ¬xik+1 .

3 Asymmetric Prover-Delayer Games for DPLL

The original Prover-Delayer game for tree-like Resolution has been developed by
Pudlák and Impagliazzo [24], and arises from the well-known fact that a tree-like
Resolution refutation for a CNF F can be viewed as a decision tree which solves
the search problem of finding a clause of F falsified by a given assignment. In
the game, Prover queries a variable and Delayer either gives it a value or leaves
the decision to Prover and receives one point. The number of Delayer’s points
at the end of the game bounds from below the height of the proof tree. Our
new game, in contrast, assigns points to the Delayer asymmetrically (log c0 and
log c1) according to two functions c0 and c1 (s.t. c−1

0 +c−1
1 = 1) which depend on

the principle, the variable queried, and the current partial assignment. In fact,
the original Prover-Delayer game of [24] is the case where c0 = c1 = 2.

Loosely speaking, we interpret the inverse of the score functions as a way to
define a distribution on the choices made by the DPLL algorithm. Under this
view the Delayer’s score at each step is just the entropy of the bit encoding
the corresponding choice. Since root-to-leaf paths are in bijection with leaves,
this process induces a distribution on the leaves. Hence the entropy collected on
the path is the entropy of the corresponding leaf choice. In this interpretation,
the asymmetric Prover-Delayer game becomes a challenge between Prover, who
wants to end the game giving up little entropy, and Delayer, who wants to get a
lot of it. This means that the average score of the Delayer is a measure (actually
a lower bound) of the number of leaves. In our setup the DPLL algorithm decides
the Prover queries, and the score function defines the distribution on paths. The
Delayer role corresponds to a conditioning on such distribution.

Let (F, k) be a parameterized contradiction where F is a set of clauses in
n variables x1, . . . , xn. We define a Prover-Delayer game: Prover and Delayer
build a (partial) assignment to x1, . . . , xn. The game is over as soon as the
partial assignment falsifies either a clause from F or a parameterized clause
¬xi1 ∨· · ·∨¬xik+1 where 1 ≤ i1 < · · · < ik+1 ≤ n. The game proceeds in rounds.
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In each round, Prover suggests a variable xi, and Delayer either chooses a value
0 or 1 for xi or leaves the choice to the Prover. In this last case the Prover sets
the value and the Delayer gets some points. The number of points Delayer earns
depends on the variable xi, the assignment α constructed so far in the game,
and two functions c0 and c1. More precisely, the number of points that Delayer
will get is

0 if Delayer chooses the value,
log c0(xi, α) if Prover sets xi to 0, and
log c1(xi, α) if Prover sets xi to 1.

Moreover, the functions c0 and c1 are non negative and are chosen in such a way
that for each variable x and assignment α

1
c0(x, α)

+
1

c1(x, α)
= 1 (1)

holds. We remark that (1) is not strictly necessary for all α and x, but it must
hold at least for those assignments α and choices x of the Delayer that can
actually occur in any game with the Delayer strategy. We call this game the
(c0, c1)-game on (F, k). The connection of this game to size of proofs in tree-like
Parameterized Resolution is given by the next theorem:

Theorem 3. Let (F, k) be a parameterized contradiction and let c0 and c1 be
two functions satisfying (1) for all partial assignments α to the variables of F .
If (F, k) has a tree-like Parameterized Resolution refutation of size at most S,
then for each (c0, c1)-game played on (F, k) there is a Prover strategy (possibly
dependent on the Delayer) that gives the Delayer at most logS points.

Proof. Let (F, k) be a parameterized contradiction using variables x1, . . . , xn.
Choose any tree-like Parameterized Resolution refutation of (F, k) of size S and
interpret it as a boolean decision tree T for F . The decision tree T completely
specifies the query strategy for Prover: at the first step he will query the variable
labeling the root of T . Whatever decision is made regarding the value of the
queried variable, Prover moves to the root of the corresponding subtree and
queries the variable which labels it. This process induces a root-to-leaf walk on
T , and such walks are in bijection with the set of leafs.

To completely specify Prover’s strategy we need to explain how Prover chooses
the value of the queried variable in case Delayer asks him to. A game position
is completely described by the partial assignment α computed so far, and by
the variable x 
∈ dom(α) queried at that moment. If the Prover is asked to

answer the query for x, the answer will be:

{
0 with probability 1

c0(x,α)

1 with probability 1
c1(x,α)

. Thus

we are dealing with a randomized Prover strategy. In a game played between our
randomized Prover and a specific Delayer D, we denote by pD,� the probability
of such a game to end at a leaf �. We call πD this distribution on the leaves. To
prove the theorem the following observation is crucial:
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If the game ends at leaf �, then Delayer D scores exactly log 1
pD,�

points.

Before proving this claim, we show that it implies the theorem. The expected
score of a Delayer D is

H(πD) =
∑

�

pD,� log
1
pD,�

which is the information-theoretic entropy of πD. Since the support of πD has
size at most S, we obtain H(πD) ≤ logS, because the entropy is maximized by
the uniform distribution. By fixing the random choices of the Prover, we can
force Delayer D to score at most logS points.

To prove the claim consider a leaf � and the unique path that reaches it.
W. l. o. g. we assume that this path corresponds to the ordered sequence of
assignments x1 = ε1, . . . , xm = εm. The probability of reaching the leaf is

pD,� = p1p2 · · · pm

where pi is the probability of setting xi = εi conditioned on the previous choices.
If Prover chooses the value of the variable xi, the score Delayer D gets at step i
is

log cεi(xi, {x1 = ε1, x2 = ε2, . . . , xi−1 = εi−1})
which is exactly log 1

pi
. If Delayer makes the choice at step i, then pi = 1 and

the score is 0, which is also log 1
pi

. Thus the score of the game play is

m∑
i=1

log
1
pi

= log
1∏m

i=1 pi
= log

1
pD,�

,

and this concludes the proof of the claim and the theorem. ��

4 An Application of the Lower Bound Method

We will illustrate the use of asymmetric Prover-Delayer games with an appli-
cation to the pigeonhole principle PHPn+1

n . Variable xi,j for i ∈ [n + 1] and
j ∈ [n] indicates that pigeon i goes into hole j. PHPn+1

n consists of the clauses∨
j∈[n] xi,j for all pigeons i ∈ [n+ 1] and ¬xi1,j ∨¬xi2,j for all choices of distinct

pigeons i1, i2 ∈ [n + 1] and holes j ∈ [n]. We prove that PHPn+1
n is hard for

tree-like Parameterized Resolution.

Theorem 4. Any tree-like Parameterized Resolution refutation of (PHPn+1
n , k)

has size nΩ(k).

Proof. Let α be a partial assignment to the variables {xi,j | i ∈ [n+ 1], j ∈ [n]}.
Let zi(α) = |{j ∈ [n] | α(xi,j) = 0}|, i. e., zi(α) is the number of holes already
excluded by α for pigeon i. We define

c0(xi,j , α) =
n− zi(α)

n− zi(α) − 1
and c1(xi,j , α) = n− zi(α)
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which clearly satisfies (1). We now describe Delayer’s strategy in a (c0, c1)-game
played on (PHPn+1

n , k). If Prover asks for a value of xi,j , then Delayer decides
as follows:

set α(xi,j) = 0 if there exists i′ ∈ [n+ 1] \ {i} such that α(xi′,j) = 1 or
if there exists j′ ∈ [n] \ {j} such that α(xi,j′ ) = 1

set α(xi,j) = 1 if there is no j′ ∈ [n] with α(xi,j′ ) = 1 and zi(α) ≥ n− k
let Prover decide otherwise.

Intuitively, Delayer leaves the choice to Prover as long as pigeon i does not
already sit in a hole, there are at least k holes free for pigeon i, and there is no
other pigeon sitting already in hole j. If Delayer uses this strategy, then clauses
from PHPn+1

n will not be violated in the game, i. e., a contradiction will always
be reached on some parameterized clause. To verify this claim, let α be a partial
assignment constructed during the game with w(α) ≤ k (we denote the the
weight of α by w(α)). Then, for every pigeon which has not been assigned to
a hole yet, there are at least k holes where it could go, and only w(α) of these
are already occupied by other pigeons. Thus α can be extended to a one-one
mapping of exactly k pigeons to holes.

Therefore, at the end of the game exactly k + 1 variables have been set to 1.
Let us denote by p the number of variables set to 1 by Prover and let d be the
number of 1’s assigned by Delayer. As argued before p+ d = k+ 1. Let us check
how many points Delayer earns in this game. If Delayer assigns 1 to a variable
xi,j , then pigeon i was not assigned to a hole yet and, moreover, there must be
n− k holes which are already excluded for pigeon i by α, i. e., for some J ⊆ [n]
with |J | = n− k we have α(xi,j′ ) = 0 for all j′ ∈ J . Most of these 0’s have been
assigned by Prover, as Delayer has only assigned a 0 to xi,j′ when some other
pigeon was already sitting in hole j′, and there can be at most k such holes.
Thus, before Delayer sets α(xi,j) = 1, she has already earned points for at least
n− 2k variables xi,j′ , j′ ∈ J , yielding at least

n−2k−1∑
z=0

log
n− z

n− z − 1
= log

n−2k−1∏
z=0

n− z
n− z − 1

= log
n

2k
= logn− log 2k

points for the Delayer. Note that because Delayer never allows a pigeon to go
into more than one hole, she will earn at least the number of points calculated
above for each of the d variables which she sets to 1.

If, conversely, Prover sets variable xi,j to 1, then Delayer gets log(n − zi(α))
points for this, but she also receives points for most of the zi(α) variables set to
0 before that. Thus, in this case Delayer earns on pigeon i at least

log (n− zi(α)) +
zi(α)−k−1∑

z=0

log
n− z

n− z − 1
=

log (n− zi(α)) + log
n

n− zi(α) + k
= logn− log

n− zi(α) + k

n− zi(α)
≥ logn− log k

points. In total, Delayer gets at least
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d(log n− log 2k) + p(logn− log k) ≥ k(log n− log 2k)

points in the game. By Theorem 3, we obtain ( n
2k )k as a lower bound to the size

of each tree-like Parameterized Resolution refutation of (PHPn+1
n , k). ��

As a second example we discuss the DPLL performance on the parameterized
ordering principle OP , also called least element principle. The principle claims
that any finite partially ordered set has a minimal element. There is a direct
propositional translation of OP to a family OPn of unsatisfiable CNFs. Each
CNF OPn expresses that there exists a partially ordered set of size n such that
any element has a predecessor. The ordering principle has the following clauses:

¬xi,j ∨ ¬xj,i for every i, j (Antisymmetry)
¬xi,j ∨ ¬xj,k ∨ xi,k for every i, j, k (Transitivity)∨
j∈[n]\{i}

xj,i for every i (Predecessor)

With respect to parameterization the ordering principles are interesting. Both
OP and the linear ordering principle (LOP), which additionally assumes the or-
der to be total, do not admit short tree-like Resolution refutations [14] and have
general Resolution refutations of polynomial size [29]. In the parameterized set-
ting things are different: LOP has short tree-like refutations (see [11]) while OP
does not and provides a separation between tree-like and dag-like Parameterized
Resolution. The following theorem has been first proved in [18]. Their proof is
based on a model-theoretic criterion, while ours is based on the Prover-Delayer
game. The proof will appear in the full version of this paper (see also [9]).

Theorem 5. Any tree-like Parameterized Resolution refutation of (OPn, k) has
size nΩ(k).

5 DPLL and the Decision Tree Complexity of k-Clique

Instead of adding parameterized clauses of the form ¬xi1 ∨· · ·∨¬xik+1 , there are
also more succinct ways to enforce only satisfying assignments of weight ≤ k.
One such method was considered in [18] where for a formula F in n variables
x1, . . . , xn and a parameter k, a new formula M = M(F, k) is computed such
that F ∧M is satisfiable if and only if F has a satisfying assignment of weight
at most k. The formula M uses new variables si,j , where i ∈ [k] and j ∈ [n], and
consists of the clauses

¬xj ∨
k∨

i=1

si,j and ¬si,j ∨ xj for i ∈ [k] and j ∈ [n] (2)

¬si,j ∨ ¬si,j′ for i ∈ [k] and j 
= j′ ∈ [n] (3)
¬si,j ∨ ¬si′,j for i 
= i′ ∈ [k] and j ∈ [n]. (4)
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The clauses (2) express the fact that an index i is associated to a variable xj

if and only if such variable is set to true. The fact that the association is an
injective function is expressed by the clauses (3) and (4).

In [11] we argue that the clique formulas are “invariant” with respect to this
transformation, thus its classical proof complexity is equivalent to its parame-
terized proof complexity (in both the formulation with explicit parameterized
axioms and the succinct encoding). Therefore in [11] we posed the question of de-
termining the complexity of the clique formulas in Resolution. Theorem 7 below
provides an answer to this question for the tree-like case.

Our study focuses on the average-case complexity of proving the absence of a
k-clique in random graphs distributed according to a variation of the Erdős-Rényi
model G(n, p). It is known that k-cliques appear at the threshold probability
p∗ = n− 2

k−1 . If p < p∗, then with high probability there is no k-clique; while for
p > p∗ with high probability there are many. For p = p∗ there is a k-clique with
constant probability.

The complexity of k-clique has been already studied in restricted computa-
tional models by Rossman [26, 27]. He shows that in these models any circuit
which succeeds with good probability on graph distributions close to the critical
threshold requires size Ω(n

k
4 ), and even matching upper bounds exist in these

models [2, 27]. Since we want to study negative instances of the clique problem,
we focus on probability distributions with p < p∗. To ease the proof presentation
we will prove a lower bound for a slightly sparser distribution. We now give the
CNF formulation of a statement claiming that a k-clique exists in a graph.

Definition 6. Given a graph G = (V,E) and a parameter k, Clique(G, k) is a
formula in conjunctive normal form containing the following clauses∨

v∈V

xi,v for every i ∈ [k] (5)

¬xi,u ∨ ¬xj,v for every i, j ∈ [k], i 
= j and every {u, v} 
∈ E (6)
¬xi,u ∨ ¬xi,v for every u 
= v ∈ V . (7)

Clearly, the formula Clique(G, k) is satisfiable if and only if the graph G has
a clique of size k.

We now describe a family of hard graph instances for k-clique: such graphs
have a simplified structure to make the proof more understandable. We also
restrict the formula, which makes it easier. This only strengthens eventual lower
bounds. We consider a random graph G on kn vertices. The set of vertices V
is divided into k blocks of n vertices each, named V1, V2, . . . , Vk. Edges may be
present only between vertices of different blocks. The random variable in the
graph is the set of edges. For any constant ε and any pair of vertices (u, v) with
u ∈ Vi, v ∈ Vi′ and i < i′, the edge {u, v} is present with probability

p = n−(1+ε) 2
k−1 .

We call this distribution of graphs Gε. Notice that all graphs in Gε are properly
colorable with k colors. Later we will focus on a specific range for ε.
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In a k-colorable graph, each clique contains at most one vertex per color class.
Because of this observation we can simplify the k-clique formula in the following
way, which we call h(G)∨

v∈Vi

xv for every i ∈ [k] (8)

¬xu ∨ ¬xv for every {u, v} 
∈ E(G). (9)

We omit the parameter k in the notation of h to keep notation as simple as
possible. We now see that a lower bound to the size of a (tree-like) Resolution
refutation of h(G) transfers to the same lower bound for Clique(G, k).

Fact 1. Let G be a k-colorable graph. Then each (tree-like) Resolution refutation
of Clique(G, k) can be transformed into a (tree-like) Resolution refutation of
h(G) of the same size (with the partition in h(G) induced by the coloring).

A comment regarding the encoding is required. In [3] formulas similar to Clique
(G, k) and h(G) have been studied for the dual problem of independent sets. They
study the case of k = Ω(n), so the former encoding has a lower bound because
it contains clauses of a non-trivial pigeonhole principle. In the parameterized
framework this is not necessarily true, since k is small and PHPk

k−1 is feasible
here.

We will now show that for a random graph G ∈ Gε any decision tree which
proves unsatisfiability of k-clique has size nΩ(k(1−ε)) with high probability. To
show that k-clique requires refutations of size nΩ(k(1−ε)) it suffices to exhibit
two score functions c0 and c1 and a Delayer strategy such that the Delayer is
guaranteed to score Ω(k(1 − ε) logn) points in any game played against any
Prover.

Theorem 7. For any 0 < ε < 1. For a random G ∈ Gε the k-clique CNF
requires tree-like Parameterized Resolution refutations of size nΩ(k(1−ε)) with
high probability.

Proof. Let G be a random graph distributed according to Gε. For a set S of
vertices, let Γ c(S) be the set of common neighbors of S. We first show that with
high probability the following properties hold:

1. G has no clique of size k;
2. For any set S of less than k

4 vertices in distinct blocks, |Γ c(S)∩Vb| ≥ nΩ(1−ε)

for any block Vb disjoint from S.

For item 1: the expected number of k-cliques in G is nkp(
k
2) = n−kε. By Markov

inequality, the probability of the existence of a single k-clique is at most the
expected value.

For item 2: it is sufficient to show the statement for sets of size exactly k
4 − 1.

Fix any such set S, and fix any block Vb which does not contain vertices in this
set. We denote by Xi the random variable which is 1 when i ∈ Γ c(S), and 0
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otherwise. Thus the size of Vb ∩ Γ c(S) is the sum of n independent variables.
Notice that Xi is 1 with probability p

k
4−1 ≥ n− 1+ε

2 . Thus the expected value is

at least n
1−ε
2 . We define T = n

1−ε
2

2 . Since T = nΩ(1−ε) and T is a constant
fraction of the expected value, by the Chernoff bound we obtain that Vb ∩ Γ (S)
has size less than T with probability at most e−nΩ(1−ε)

. By the union bound on
the choices of block Vb and of set S of size k

4 − 1 we get item 2.
We now define functions c0 and c1 which are legal cost functions for an asym-

metric Prover-Delayer game played on the k-clique formula of the graph G. We
also show a Delayer strategy which is guaranteed to score Ω(k logT ) points.
This, together with Theorem 3, implies the main statement.

For any partial assignment α we consider the set of vertices “chosen by α”,
which is {u | α(xu) = 1}; any vertex which is the common neighbor of the chosen
set is called “good for α”. Notice that a good vertex for α can be set to 1 without
causing an immediate contradiction. Notice also that α may set to 0 some good
vertices. In particular we denote by Rb(α) the vertices of the block Vb which are
good for α, but are nevertheless set to 0 in α.

When asked for a variable xv, for some v ∈ Vb, the Delayer behaves according
to the following strategy:

– If α contains at least k
4 variables set to 1, the Delayer surrenders;

– if there is u such that α(xu) = 1 and {u, v} 
∈ E(G), the Delayer answers 0;
– if Rb(α) has size at least T − 1, then the Delayer answers 1;
– otherwise the Delayer leaves the answer to the Prover.

During the game the invariant |Rb(α)| < T holds for every b ∈ [k]: the only
way such a set can increase in size is when Prover sets a good vertex in Vb to 0.
Thus the size of Rb(α) can only increase one by one. When it reaches T − 1 and
the Delayer is asked for a variable in that block, she will reply 1, so the size of
Rb(α) won’t increase any more.

Another important property of the Delayer strategy is that her decision to
answer 1 never falsifies a clause, since all blocks contain at least T good vertices
at any moment during the game. This follows from item 2 and from the fact that
the Delayer surrenders after k

4 vertices are set in α. This proves that no clause
in (8) can be falsified during the game.

Neither clauses in (9) can be falsified during the game: the Delayer imposes
answer 0 whenever a vertex is not good for α, which means that, if chosen, it
would not form a clique with the ones chosen before. It is also not possible that
the game ends by violating a parameterized clause as these are just weakenings
of the clauses (9). Therefore, the game only ends when the Delayer gives up.

For an assignment α and a vertex v ∈ Vb, let

c0 =
T − |Rb(α)|

T − |Rb(α)| − 1
and c1 = T − |Rb(α)|.

Because of the previous observations the values of c0 and c1 are always non-
negative. Furthermore notice that when |Rb(α)| = T − 1 Delayer never leaves
the choice to Prover, thus c0 is always well defined when the Delayer scores.
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Consider a game play and the set of k
4 vertices chosen by the final partial

assignment α. We show that for any chosen vertex, the Delayer scores logT
points for queries in the corresponding block.

Fix the block b of a chosen vertex u. Consider the assignment α which corre-
sponds to the game step when xu is set to 1. Consider R = Rb(α). We identify
partial assignments α0 ⊂ α1 ⊂ . . . ⊂ α|R|−1 ⊂ α corresponding to the moments
in the game when Prover sets to 0 one of the variables indexed by R. For such
rounds the Delayer gets at least

|R|−1∑
i=0

log
T − |Rb(αi)|

T − |Rb(αi)| − 1
≥

|R|−1∑
i=0

log
T − i

T − i− 1
= log(T )− log(T − |R|)

points. Here the first inequality follows from the fact that any vertex which
is good at some stage of the game is also good in all previous stages. Thus
|Rb(αi)| ≥ i.

Now we must consider two cases: either xu = 1 is set by Prover, or it is set by
Delayer. In the former case Delayer gets log(T − |R|) points for Prover setting
xu = 1. Together with the points for the previous zeros this yields logT points.
In the latter case Delayer gets 0 points as she set xu = 1 by herself, but now
|R| = T −1 and she got already logT points for all the zeros assigned by Prover.
In both cases the total score of the Delayer is logT = 1−ε

2 logn.
Since this score is obtained in at least k

4 blocks, we are done. ��
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Abstract. It is common to classify satisfiability problems by their time
complexity. We consider another complexity measure, namely the length
of certificates (witnesses). Our results show that there is a similarity
between these two types of complexity if we deal with certificates ver-
ifiable in subexponential time. In particular, the well-known result by
Impagliazzo and Paturi [IP01] on the dependence of the time complexity
of k-SAT on k has its counterpart for the certificate complexity: we show
that, assuming the exponential time hypothesis (ETH), the certificate
complexity of k-SAT increases infinitely often as k grows. Another exam-
ple of time-complexity results that can be translated into the certificate-
complexity setting is the results of [CIP06] on the relationship between
the complexity of k-SAT and the complexity of SAT restricted to formu-
las of constant clause density. We also consider the certificate complexity
of CircuitSAT and observe that if CircuitSAT has subexponential-time
verifiable certificates of length cn, where c < 1 is a constant and n is the
number of inputs, then an unlikely collapse happens (in particular, ETH
fails).

1 Introduction

If we assume P 
= NP, the question of refined complexity classification of NP-
complete problems remains open. For example, what is the best possible running
time for deciding k-SAT, SAT, or CircuitSAT? Is it possible to solve k-SAT in
subexponential time? Is it possible to solve SAT or even CircuitSAT faster than
using the trivial enumeration of all assignments? Although the questions like
those above seem far enough from being resolved, many interesting results shed-
ding more light on such questions have been appeared for the past two decades,
see surveys in [DH09, PP10].

In this paper, we compare a time-complexity classification of problems in
NP with a classification based on the length of certificates (witnesses). Note
an asymmetry between these complexity measures. Any problem in NP can be
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trivially solved by enumerating all possible candidates for a certificate. Therefore,
if the certificate length is upper bounded by a function � then the running time
is upper bounded by 2� up to the time needed for verifying a candidate. On
the other hand, if the running time is upper bounded by a function t then it is
not necessarily true that the certificate length is upper bounded by lg t (unless
E ⊆ NP, where E is the complexity class for exponential time with linear
exponent).

We observe a similarity between the two types of complexity classifications
for satisfiability problems. More specifically, we show that many known results
on the time complexity of k-SAT, SATΔ (the restriction of SAT to formulas whose
clause density is at most Δ), and CircuitSAT have their counterparts for the
certificate complexity. It is important to note that this similarity holds for cer-
tificates defined as certificates verifiable in subexponential time (although the
polynomial-time verification suffices for some cases). Precise definitions for the
subexponential-time verification are given in Sect. 2. Our main results can be
summarized as follows.

Certificate complexity of k-SAT. It is well known that k-SAT can be solved
in time O(2cn) where n is the number of variables and c < 1 is a constant
depending on k. This bound was obtained using different approaches: critical
clauses [PPZ97, PPSZ98], local search [Sch99], covering codes [DGH+02]. The
proof based on covering codes can be adapted to show that k-SAT has certificates
of length cn (we include this adapted proof for self-containedness).

Another known result on k-SAT is the result by Impagliazzo and Paturi [IP01]
on increasing the time complexity of k-SAT as k grows. They defined the sequence
{sk}k≥3 where

sk = inf{s | k-SAT can be solved by an O(2sn)-time algorithm}.

The conjecture that sk > 0 for all k ≥ 3 is called the Exponential Time Hypothe-
sis (ETH). Note that ETH is stronger than the P 
= NP conjecture. It is shown
in [IP01] that if ETH is true then {sk} increases infinitely often. We define the
sequence {ck}k≥3 by

ck = inf{c | k-SAT has certificates of length cn}

and we show that if ETH is true then {ck} increases infinitely often too. To index
the search space appearing in the proof of [IP01] by certificates of appropriate
length, we use the combinatorial (also called binomial) number system, see e.g.
[Knu05].

It is an intriguing open question whether sk = ck.

Certificate complexity of SATΔ. Using Schuler’s reduction from SATΔ to k-SAT
[Sch05], it was shown that SATΔ can be solved in time O(2cn) with c < 1 [CIP06].
We translate this result into the certificate settings: SATΔ has certificates of
length cn. The combinatorial number system is again used in our proof.
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The time complexity of SATΔ is characterized by the sequence {dΔ} where

dΔ = inf{d | SATΔ can be solved by an O(2dn)-time algorithm}.

It was shown in [CIP06] that this sequence is interwoven with {sk} and thus
s∞ = d∞, where s∞ = limk→∞ sk and d∞ = limΔ→∞ dΔ. We characterize the
certificate complexity of SATΔ by the sequence {bΔ}, where

bΔ = inf{b | SATΔ has certificates of length bn},

and we show that the relationship between the certificate complexities {ck} and
{bΔ} is similar to the relationship between the time complexities {sk} and {dΔ}.
In particular, limk→∞ ck = limΔ→∞ bΔ.

Nondeterministic subexponential time and CircuitSAT. The class SE consists
of all parameterized problems that can be solved in time subexponential in the
parameter [IPZ01]. In Sect. 5, we define the class NSE to be the class of all
parameterized problems that have subexponential-time verifiable certificates of
length bounded by the parameter. Note that there is an analogy between the pair
P versus NP and the pair SE versus NSE. We also define a subexponential-time
reducibility that preserves the certificate length and we observe that

– NSE is closed under this reducibility;
– CircuitSAT with the number of inputs as the parameter is complete for

NSE under this reducibility.

It follows from the completeness of CircuitSAT that if CircuitSAT has certifi-
cates of length cn, where n is the number of inputs and c < 1 is a constant,
then NSE collapses to SE. Therefore, since ETH is a stronger assumption than
SE 
= NSE, ETH also implies that CircuitSAT has no certificates shorter than
the number of inputs.

This observation can be viewed as a certificate offset of recent results on
the time complexity of CircuitSAT. For example, it is shown by Paturi and
Pudlák [PP10] that CircuitSAT cannot be solved by a one-sided probabilistic
polynomial-time algorithm with success probability better than 2−n+o(n) un-
less some unlikely complexity containments hold. On the other hand, Williams
[Wil10] shows that even a slight improvement in the running time over exhaus-
tive search for CircuitSAT implies a proof of NEXP 
⊆ P/poly.

2 Definitions

Definition 1 (parameterized problem, [FG06]). A parameterized problem
is a pair (L, p) consisting of a language L ∈ {0, 1}∗ and a polynomial-time
computable parameterization function p : {0, 1}∗ → N.

Definition 2 (verifier and certificate). A verifier for a parameterized prob-
lem (L, p) is an algorithm V such that

x ∈ L ⇐⇒ ∃w ∈ {0, 1}∗ (|w| ≤ p(x) and V accepts the pair (x,w))

where the string w is called a certificate for x.
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Remark 1. In the definition above and throughout the paper, we use the word
“algorithm” to denote a deterministic algorithm. However, all results of the paper
hold if “algorithm” means a randomized algorithm.

Definition 3 (subexponential verification scheme). A subexponential ver-
ification scheme for a parameterized problem (L, p) is a family {Vt}t∈N of verifiers
for (L, p) such that for each verifier Vt, the running time of Vt on (x,w) is

|x|O(1) 2p(x)/t

where the polynomial |x|O(1) may depend on t. If (L, p) has a subexponential
verification scheme, we also say that L has subexponential-time verifiable cer-
tificates of length p.

Remark 2. It would be more common if we defined subexponential verification
schemes as a family of verifiers Vε(x,w) like, for example, the definition of a
family of subexponential reductions (SERF) in [IPZ01]. These two versions are
equivalent, however we prefer the version with 1/t→ 0 instead of ε→ 0 to avoid
discussions on the representation of ε (especially when it is given as a function
of other parameters).

Remark 3. An important special case of subexponential verification schemes is
the case where all verifiers Vt are the same and each of them runs in time
polynomial in both p and |x|. If so, we say that L has polynomial-time verifiable
certificates of length p. An obvious example of this special case is the polynomial-
time verification for (SAT, n): a certificate for a satisfiable formula is an n-bit
string that encodes a satisfying assignment. Less obvious examples are given in
Theorems 1 and 3 below.

Remark 4. All certificates considered in this paper are verifiable in subexpo-
nential time. To simplify the terminology, we omit the words “subexponential-
time verifiable”. Thus, throughout the paper, when we write “L has certificates
of length p”, this means “L has subexponential-time verifiable certificates of
length p”.

3 Shortest Certificates for k-SAT

The time complexity of k-SAT for k ≥ 3 is characterized by the sequence {sk}k≥3

where

sk = inf{s | k-SAT can be solved by an O(2sn)-time algorithm}.

The current knowledge and open questions about this sequence can be described
as follows:

– We know that sk < 1. More exactly, sk ≤ (1−μ/k) for some constant μ > 0.
This bound is obtained using critical clauses [PPZ97, PPSZ98], local search
[Sch99], covering codes [DGH+02, MS11].
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– We do not know whether sk = 0. The conjecture that sk > 0 for all k ≥ 3 is
called the Exponential Time Hypothesis (ETH).

– If ETH holds then {sk} increases infinitely often [IP01].
– Let s∞ = limk→∞ sk. The conjecture that s∞ = 1 is called the Strong Ex-

ponential Time Hypothesis (SETH). The relationship between s∞ and the
complexity of SAT is also unknown, where the complexity of SAT is the min-
imum number s such that SAT can be solved in time 2sn up to a polynomial
in the input size.

The certificate complexity of k-SAT is defined below through a sequence similar
to {sk}.

Definition 4 (certificate complexity for k-SAT). For each k ≥ 3, let

ck = inf{c | k-SAT has certificates of length cn}.

The limit of {ck} as k →∞ is denoted c∞.

Note that sk ≤ ck for all k ≥ 3 and s∞ ≤ c∞.

3.1 Upper Bound on Certificate Length for k-SAT

The following theorem shows that ck < 1 and, moreover, this inequality holds
even for polynomial-time verifiable certificates.

Theorem 1. For each k ≥ 3 and for each ε > 0, k-SAT has polynomial-time
verifiable certificates of length

(
1− lg k+1

k + ε
)
n.

Certificates of the claimed length can be extracted from the algorithm that
solves k-SAT in time O

(
2(1−lg k+1

k +ε)n
)

using covering codes [DGH+02]. Such
a certificate includes the number of the ball containing a satisfying assignment
and the index of this assignment in a search tree inside the ball. Although the
proof essentially repeats that of [DGH+02], we include it here for the sake of
self-containedness.

Proof. Let F be a satisfiable k-CNF formula over n variables. We show that a
satisfying assignment for F can be encoded using less than n bits. Each assign-
ment for F is identified with a point in the Boolean cube {0, 1}n. The first step
of the encoding is to cover the cube with Hamming balls of radius ρn, where a
value for ρ will be chosen later. It is known that any such covering must contain
at least 2(1−H(ρ))n balls, where H is the binary entropy function. An “almost”
optimal covering (with at most 2(1−H(ρ)+ε)n balls for any ε > 0) is constructed
in [DGH+02] as follows.

The centers of the balls are viewed as a covering code for the cube. For any
ε > 0, we need a covering code of radius ρn that contains at most 2(1−H(ρ)+ε)n

codewords. Consider a partition of n bits into n/b blocks of size b, where b is
a constant (without loss of generality, we can assume that n is divisible by b
and n is sufficiently large). Using a brute-force enumeration, we can find an
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optimal covering code of radius ρb for each block. Let C = {w1, . . . , wM} be
such a code, where M is at most 2(1−H(ρ))b up to a polynomial in b. The direct
sum of n/b copies of C is a covering code of radius ρn for the cube. It is easy
to see that given ρ and ε, a value for b can chosen such that this direct sum
(denoted Cn/b) has at most 2(1−H(ρ)+ε)n codewords. We encode each codeword
wi ∈ C by an integer i. Then each codeword in Cn/b can be encoded by a
concatenation of n/b integers from 1 to M each. The length of this encoding is
at most (1−H(ρ)+ε)n. Moreover, given such a concatenation, the corresponding
codeword (or, equivalently, the corresponding ball center) can be computed in
time polynomial in n.

Assume that F has a satisfying assignment in a ball of radius ρn centered at
an assignment A. Then the encoding of A (with at most (1−H(ρ)+ ε)n bits) is
the first part of a certificate for F . To construct the second part, we again refer
to [DGH+02] where it is shown how to search for a satisfying assignment inside a
ball. This search is essentially a recursive procedure that modifies F and A using
the following approach: if the current assignment α does not satisfy the current
formula φ, take the first unsatisfied clause l1 ∨ . . . ∨ lh in φ and consider pairs
(φ1, α1), . . . , (φh, αh) where each αi is obtained from α by flipping the value of
the literal li and each φi is obtained from φ by substituting the new value for li
in φ. This procedure starts with (F,A) and builds a recursion tree T of depth at
most ρn. Since F is a k-CNF formula, the degree of each node in T is at most
k. At least one leaf in T is a pair (φ, α) where α satisfies φ. Hence, α satisfies F .

Thus, a satisfying assignment α in a ball of radius ρn centered at A can be
encoded by a path from the root to a leaf in T . Such a path is determined by
a sequence of literals chosen in unsatisfied clauses. If we choose a literal li in a
clause l1 ∨ . . . ∨ lh, we encode this choice by the integer i. The entire path can
thus be encoded by a sequence of integers i1, . . . , i
ρn� where 1 ≤ ij ≤ k for each
j. Removing the leading 1s in binary representation of these integers, we encode
the path by a concatenation of �ρn� bit strings of length �lg k� each.

Finally, a certificate for F is a pair, where the first element encodes the center
of a ball containing a satisfying assignment and the second element encodes a
path in T . For any ε, the total length of this certificate is at most (1 −H(ρ) +
ε)n+ ρn lg k. Taking ρ = 1/(k + 1), we have:

(1 −H(ρ) + ε)n+ ρn lg k =
(

1− lg
k + 1
k

+ ε

)
n.

To verify it polynomial time, just compute the center A of the ball from a given
index and use a given path to modify A to a satisfying assignment. ��

3.2 The Growth of Certificate Lengths for k-SAT

It is proved in [IP01] that ETH implies the following relationship between sk

and s∞:
sk ≤ s∞(1− σ/(ek)), (1)

where σ is the solution of H(σ) = s∞/2 on (0; 1/2]. Therefore, if ETH holds
then {sk} increases infinitely often. We prove a similar result for {ck}.
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Theorem 2. If ETH holds then

ck ≤ c∞(1− γ/(ek)) (2)

where γ is the solution of H(γ) = c∞/2 on (0; 1/2].

This theorem is proved using the following lemma from [IP01]:

Lemma 1 ([IP01]). Let F be a formula in k-CNF such that F is not satisfiable
by any assignment of weight1 at most δn. For any ε > 0, there exists k′ such
that the following holds: The satisfiability of F is equivalent to the satisfiability
of the disjunction F1 ∨ . . . ∨ FN , where N ≤ 2εn and each Fi is a formula in
k′-CNF on at most n(1 − δ/(ek)) variables. Moreover, this disjunction can be
computed from F in time nO(1) 2εn.

Proof (of Theorem 2). We mimic the proof of inequality (1) in [IP01]. The proof
shows how to construct an O(2cn)-time algorithm for k-SAT using an O(2c′n)-
time algorithm for k′-SAT for certain k′ > k and c′ > c. We must make sure that
the decrease in the running time is accompanied by the decrease in the length
of a certificate verifiable in subexponential time.

The algorithm constructed in [IP01] tests satisfiability of a given k-CNF for-
mula F as follows (here ε > 0 and w = �σn�):

1. Use exhaustive search to check all assignments of weight at most w. If at
least one of them satisfies F , return “satisfiable”.

2. Apply Lemma 1 (with δ = w/n) to obtain k′-CNF formulas F1, . . . , FN on
at most n(1− w/(ekn)) variables each, where N ≤ 2εn.

3. Apply a k′-SAT algorithm to Fi’s; if at least one of them is satisfiable, return
“satisfiable”; otherwise return “unsatisfiable”.

In the certificate settings, we take w = �γn� and we bound the length of
certificates considering two cases: the case of a satisfying assignment of low
weight (≤ w), and the case of application of Lemma 1.

1. If F is satisfied by an assignment of weight at most w then F has a certificate
of length ⌈

lg
(
n

w

)⌉
+O(lg n).

Such a certificate can be obtained using the combinatorial (also called bino-
mial) number system, see e.g. [Knu05].
(a) Consider the lexicographic order of all assignments (n-bit strings) of

weight exactly w and consider the numbering of assignments in this list
by numbers from 0 to

(
n
w

)
−1. LetA be an assignment with 1s on positions

n > aw > . . . > a1 ≥ 0 and 0s on all other positions. We encode A by

1 An assignment is identified with a bit string; the weight of an assignment is the
number of 1s in the string.



26 E. Dantsin and E.A. Hirsch

its number NA in the lexicographic order, where NA can be computed
as the following sum:

NA =
(
aw

w

)
+ . . .+

(
a1

1

)
.

Obviously, the decoding can be done efficiently: first, find aw, then pro-
ceed to lower terms.

(b) To encode an assignment of weight w − i, we first encode i and then
append the number (

aw−i

w − i

)
+ . . .+

(
a1

1

)
.

The encoding of i has length O(lg n) if we encode i as follows: 1 . . . 10〈i〉
where 〈i〉 is i written in binary and the number of 1s is equal to the
length of the binary representation of i.

2. In the case of application of Lemma 1, we specify the index i of the first
satisfiable formula Fi by �εn� bits. The formula itself can be found by running
the procedure in Lemma 1, which takes time 2εnnO(1). These �εn� bits are
appended with the the certificate for Fi. By definition of ck′ , its length is
bounded by (ck′ + ε) times the number of variables in Fi. Finally, we put
leading 0 on top of all that to indicate that this is the case of application of
Lemma 1.

In total, we have the following upper bound on the certificate length:

max{�lg
(

n
w

)
�+O(lg n), 1 + �εn�+ (ck′ + ε)�n(1− w/(ekn))�} =

n ·max{H(w/n), ck′(1− w/(ekn)) + 2ε}+O(1) =
n ·max{c∞/2, c∞(1− γ/(ek)) + 2ε}+O(1) =
n · (c∞(1− γ/(ek)) + 2ε) +O(1).

��

Corollary 1. If ETH holds then the sequence {ck} increases infinitely often as
k grows.

Proof. Straightforwardly follows from (2). ��

4 Shortest Certificates for SATΔ

The clause density of a CNF formula with m clauses over n variables is the ratio
m/n. For any positive constant Δ, we write SATΔ to denote the restriction of
SAT to formulas whose clause density is at most Δ.

Lemma 2. For each Δ > 0, k ≥ 3, and c > 0, if k-SAT has (polynomial-time
verifiable) certificates of length cn then SATΔ has (polynomial-time verifiable)
certificates of length (

c+
(Δ+ 1/k) lg e

2ck

)
n+ o(n).
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Proof. Let F be a satisfiable formula in CNF with m/n ≤ Δ. We build a certifi-
cate for F using Schuler’s reduction [Sch05] which transforms any CNF formula
into an equivalent disjunction of an exponential number of k-CNF formulas. This
reduction can be represented as a labeled binary tree in which the root is labeled
by F and the leaves are labeled by k-CNF formulas [CIP06]. Any path from the
root to a leaf is given by a sequence of choices:

– either choose a left branch where a clause is reduced to a k-clause;
– or choose a right branch where the number of variables is decreased by k

variables.

The maximum number of branchings to the left is m; the maximum number of
branchings to the right is n/k (without loss of generality we can assume that n
is divisible by k).

Consider a path from the root to a leaf such that the path contains exactly r
branchings to the right. Then the k-CNF formula at the leaf has n−kr variables.
Let Pr be the set of all such paths. Any path in Pr can be identified with a bit
string of length m+ n/k that has exactly r ones. We encode these strings using
the combinatorial number system [Knu05], like we encoded assignments of fixed
weight in the proof of Theorem 2. Then any path in Pr is encoded by a bit string
of length ⌊

lg
(
m+ n/k

r

)⌋
+ 1

and the decoding can be done in polynomial time.
Given a path from the root to a leaf, the k-CNF formula at this leaf can be

computed in time polynomial in the size of F . Therefore, a certificate for F is a
path to a leaf L labeled by a satisfiable k-CNF formula FL plus a certificate for
FL. If the path to L has r branchings to the right then a certificate for F can
be defined as the concatenation of the following three strings:

– the encoding of the integer r with �lg(n/k)�+ 1 bits;
– the encoding of the path to L with �lg

(
m+n/k

r

)
�+ 1 bits;

– the encoding of a certificate for FL with �c(n− kr)� + 1 bits.

Now we show

lg(n/k) + lg
(
m+ n/k

r

)
+ c(n− kr) ≤

(
c+

(Δ+ 1/k) lg e
2ck

)
n+ o(n).

Since the first term in the left-hand side is sublinear, it suffices to upper bound
the sum of the other two terms. We estimate it using the same way as in [CIP06]:

lg
(
m+n/k

r

)
+ c(n− kr) ≤ lg

(∑m+n/k
r=0

(
m+n/k

r

)
2c(n−kr)

)
≤ lg

(
2cn

(
1 + 2−ck

)m+n/k
)

≤ cn+ (m+ n/k) lg
(
e2

−ck
)

≤ cn+ (m+n/k) lg e
2ck

≤
(
c+ (Δ+1/k) lg e

2ck

)
n.
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Given a certificate described above, the verification of satisfiability of F con-
sists of two steps. The first step is to decode the certificate into a k-CNF formula
G and a certificate of satisfiability of G. This can be done in polynomial time.
The second step is to verify satisfiability of G. If a certificate for G is verifiable
in polynomial time then this step can also be done in polynomial time. ��

Theorem 3. For each Δ > 0, there exists b < 1 such that SATΔ has polynomial-
time verifiable certificates of length bn.

Proof. We apply Lemma 2 choosing k and c such that

c+
(Δ+ 1/k) lg e

2ck
< 1.

Namely, if c = 1− lg(1 + 1/k) + ε for some ε > 0 (Theorem 1) then

(Δ+ 1/k) lg e
2ck

≤ O(Δ)
2k

.

Now if we take k = r lg(Δ+ 2), where r is a sufficiently large constant, we have

c+ (Δ+1/k) lg e
2ck ≤ 1− lg

(
1 + 1

r lg(Δ+2)

)
+ ε+ O(Δ)

2r lg(Δ+2)

≤ 1− O(1)
r lg(Δ+2) + ε+ O(1)

(Δ+2)r−1 < 1.

��

Without loss of generality, we can assume that the clause density Δ is a positive
integer. Then, similarly to the case of k-SAT, the time complexity of SATΔ is
characterized by the sequence {dΔ}Δ≥1 where

dΔ = inf{d | SATΔ can be solved by an O(2dn)-time algorithm}.

It is known that dΔ < 1 for all Δ. More exactly, SAT can be solved in time
2(1−1/O(lg Δ))n up to a factor polynomial in the size of the input formula [CIP06,
DH09]. It is also known that {dΔ} is interwoven with {sk}. Namely, as shown
in [CIP06],

– for any k and for any ε > 0, there exists Δ such that sk ≤ dΔ + ε;
– for any Δ and for any ε > 0, there exists k such that dΔ ≤ sk + ε.

Therefore, s∞ = d∞ where d∞ = limΔ→∞ dΔ.
We define an analog of {dΔ} in the certificate settings and show a similarity

between the two sequences.

Definition 5 (certificate complexities for SATΔ). For each Δ ≥ 1, let

bΔ = inf{b | SATΔ has certificates of length bn}.

Similarly to d∞, we define b∞ = limΔ→∞ bΔ.
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Lemma 3. For each Δ > 0 and ε > 0, there exists k such that bΔ ≤ ck + ε.

Proof. Consider two cases: c∞ > 0 and c∞ = 0. In the case of c∞ > 0, we apply
Lemma 2 with k such that ck > 0. Then we have

bΔ ≤ ck +
(Δ+ 1/k) lg e

2ckk
+ o(1)

for each Δ > 0. Taking k sufficiently large, we can make the fraction in the right-
hand side arbitrarily small. If c∞ = 0, we can apply Lemma 2 with arbitrarily
small c > 0. In particular, if we take c as a function of k such that ck → ∞ as
k →∞, we can make the right-hand side arbitrarily small. Hence bΔ = 0 in this
case. ��

Corollary 2. b∞ ≤ c∞

Proof. Take Δ, k →∞ and ε→ 0. ��

Lemma 4 (Sparsification Lemma, [IPZ01]). Let F be a formula in k-CNF.
There is a function f(k, ε) upper bounded by a polynomial in 1

ε such that for any
ε > 0, the satisfiability of F is equivalent to the satisfiability of the disjunction
F1 ∨ . . . ∨ FN over the same set of variables, where N ≤ 2εn and each Fi is a
k-CNF formula in which every variable occurs at most f(k, ε) times. Moreover,
this disjunction can be computed from F in time nO(1) 2εn.

Lemma 5. For any k ≥ 3 and for any ε > 0, we have ck ≤ b∞ + ε.

Proof. Similarly to [CIP06, Corollary 2], the proof proceeds by application of
Lemma 4. Given k ≥ 3 and ε > 0, we show that k-SAT has certificates of length
(b∞+ε)n. Namely, we construct a subexponential verification scheme {Vt}, where
each verifier Vt runs in time

|F |O(1) 2(b∞+ε)n/t (3)

where |F | is the size of the input k-CNF formula F .
Each Vt starts with sparsifying F by Lemma 4. The parameter of the sparsi-

fication procedure is chosen so that the procedure runs in time

|F |O(1) 2(b∞+ε)n/2t.

Let Δ = Δ(k, ε) be the maximum clause density of the formulas F1, . . . , Fs

returned by the sparsification procedure. The input string w for Vt is interpreted
as a certificate of satisfiability for some Fj . Therefore, Vt tests each formula
Fi: whether w is a certificate for Fi. This test is done using a subexponential
verification scheme {Ut} for (SATΔ, bΔ + ε). More exactly, the verifier Vt uses U2t

and, thus, the test of Fi runs in time

|F |O(1) 2(bΔ+ε)n/2t.

Since bΔ ≤ b∞, the overall running time of Vt is (3). ��
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Corollary 3. c∞ ≤ b∞

Proof. Take k →∞ and ε→ 0. ��

Theorem 4. c∞ = b∞

Proof. Corollaries 2 and 3. ��

Theorem 5. If ETH holds then the sequence {bΔ} of certificate complexities
for SATΔ increases infinitely often.

Proof. Suppose that bΔ0 = b∞ for some Δ0. Then, by Lemma 3, there exists k0

such ck0 ≥ b∞. Since b∞ = c∞ and {ck} is nondecreasing, we have ck = c∞ for
all k ≥ k0, which contradicts Theorem 2. ��

5 Shortest Certificates for CircuitSAT

Definition 6 (subexponential time). We say that a parameterized problem
(L, p) can be solved in subexponential time if for any t ∈ N, there exists an algo-
rithm that decides L in time |x|O(1) 2p(x)/t, where x is an instance. The class SE
consists of all parameterized problems (L, p) that can be solved in subexponential
time.

Definition 7 (nondeterministic subexponential time). The class NSE
consists of all parameterized problems (L, p) that have subexponential verifica-
tion schemes.

Remark 5. Note that NSE is to SE as NP is to P: the larger class requires a
verifiable certificate to accept a “yes” instance. There are two differences:

– subexponential time versus polynomial time;
– the bound |w| ≤ p(x) on the certificate length in the case of parameter-

ized problems (L, p) ∈ NSE versus the bound |w| ≤ |x|O(1) in the case of
problems in NP.

The class SE is closed under reducibility defined in [IPZ01] and called subex-
ponential reduction families (SERFs for short). Informally, a SERF from (L, p)
to (L′, p′) is a collection of Turing reductions Rt from L to L′ such that each
reduction runs in time |x|O(1) 2p(x)/t and allows at most a linear increase of the
parameter. We define a “strict” version of SERFs under which NSE is closed.

Definition 8 (strict SERF). We say that R is a strict subexponential reduc-
tion family (strict SERF) from a parameterized problem (L, p) to a parameterized
problem (L′, p′) if R is a sequence of algorithms Rt such that

– each algorithm Rt takes a string x ∈ {0, 1}∗ as input and outputs strings
y1, . . . , ym, where m ≤ 2p(x)/t;

– each Rt runs in time |x|O(1) 2p(x)/t;
– p′(yi) ≤ p(x) for all 1 ≤ i ≤ m;
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– for every x ∈ {0, 1}∗, we have

x ∈ L ⇐⇒
∨

1≤i≤m

(yi ∈ L′).

Remark 6. A strict SERF is a special case of a SERF, where the word “strict”
alludes to two refinements:

– a strict SERF is a disjunctive truth table reduction, while a SERF is a Turing
reduction;

– a strict SERF does not increase the parameter, while a SERF allows multi-
plying the parameter by an arbitrary constant.

Note also that if we allowed a slight increase of the parameter

p′(yi) ≤ p(x) + o(p(x)),

we would have an equivalent definition.

Theorem 6. NSE is closed under strict SERFs: if (L, p) has a strict SERF to
(L′, p′) ∈ NSE, then (L, p) ∈ NSE.

Proof. A certificate for x is a certificate for a yi such that yi ∈ L′. The verification
of this certificate includes generating y1, . . . , ym with checking each of them:
whether the given certificate is a certificate for yj . ��

Theorem 7. CircuitSAT with the number of inputs as the parameter is com-
plete for NSE under strict SERFs.

Proof. Consider (L, p) ∈ NSE. Let t ∈ N. Consider a Turing machine that
verifies certificates of length p(x) in time |x|O(1) 2p(x)/2t. It is well-known that the
machine can be transformed into a circuit with p(x) inputs (after hardwiring a
specific x) and size polynomial in the length of the machine’s input and quadratic
in the running time. The reduction Rt outputs this circuit. ��

Corollary 4. If CircuitSAT has certificates of length cn, where n is the number
of inputs and c < 1 is a constant, then SE = NSE.

Proof. Suppose that CircuitSAT has certificates of length cn. We show that if
(L, p) ∈ NSE then (L, p) ∈ SE. Since (L, p) has a strict SERF to CircuitSAT
with p inputs, L has certificates of length cp. That is, (L, cp) ∈ NSE and there-
fore (L, cp) has a strict SERF to CircuitSAT with cp inputs. Using the supposi-
tion again, we obtain (L, c2p) ∈ NSE. Continuing, we can conclude that L has
certificates of arbitrarily small length. Hence, L can be solved in subexponential
time. ��

Remark 7. It follows from Corollary 4 that if ETH is true then there is no
constant c < 1 such that CircuitSAT has certificates of length cn. Indeed,
(3-SAT, n) ∈ NSE where n is the number of variables. However, if ETH is true
then (3-SAT, n) /∈ SE, i.e., ETH implies SE 
= NSE.
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Abstract. We consider the question of the existence of variables with
few occurrences in boolean conjunctive normal forms (clause-sets). Let
μvd(F ) for a clause-set F denote the minimal variable-degree, the min-
imum of the number of occurrences of variables. Our main result is
an upper bound μvd(F ) ≤ nM(σ(F )) ≤ σ(F ) + 1 + log2(σ(F )) for
lean clause-sets F in dependency on the surplus σ(F ). Lean clause-sets,
defined as having no non-trivial autarkies, generalise minimally unsatisfi-
able clause-sets. For the surplus we have σ(F ) ≤ δ(F ) = c(F )−n(F ), us-
ing the deficiency δ(F ) of clause-sets, the difference between the number
of clauses and the number of variables. nM(k) is the k-th “non-Mersenne”
number, skipping in the sequence of natural numbers all numbers of the
form 2n−1. As an application of the upper bound we obtain that clause-
sets F violating μvd(F ) ≤ nM(σ(F )) must have a non-trivial autarky
(so clauses can be removed satisfiability-equivalently by an assignment
satisfying some clauses and not touching the other clauses). It is open
whether such an autarky can be found in polynomial time.

1 Introduction

We study the existence of “simple” variables in boolean conjunctive normal
forms, considered as clause-sets. “Simple” here means a variable occurring not
very often. A major use of the existence of such variables is in inductive proofs
of properties of minimally unsatisfiable clause-sets, using splitting on a variable
to reduce n, the number of variables, to n − 1: here it is vital that we have
control over the changes imposed by the substitution, and so we want to split
on a variable occurring as few times as possible. The background for these con-
siderations is the enterprise of classifying minimal unsatisfiable clause-sets F in
dependency on the deficiency δ(F ) := c(F ) − n(F ), the difference between the
number c(F ) := |F | of clauses of F and the number n(F ) := |var(F )| of variables
of F . The most basic fact is δ(F ) ≥ 1, as first shown in [1]. For δ(F ) = 1 the
structure is completely known ([1,2,6], for δ(F ) = 2 the structure after reduction
� Supported by NSFC Grant 60970040.
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of singular variables (occurring in one sign only once) is known ([4]), while for
δ(F ) ∈ {3, 4} only basic cases have been classified ([15]).

The starting point of our investigation is Lemma C.2 in [6], where it is shown
that a minimally unsatisfiable clause-set F must have a variable v with at most
δ(F ) positive and at most δ(F ) negative occurrences; we write this as ldF (v) ≤
δ(F ) and ldF (v) ≤ δ(F ), using the notion of literal degrees (the number of
occurrences of the literal). Thus we have vdF (v) ≤ 2δ(F ), using the variable
degree vdF (v) := ldF (v)+ ldF (v). Using the minimum variable degree (min-var-
degree) μvd(F ) := minv∈var(F ) vdF (v) of F , this becomes μvd(F ) ≤ 2δ(F ). In
this article we show a sharper bound on μvd(F ) for a larger class of clause-sets F .
More precisely, we show that the worst-cases ldF (v), ldF (v) ≤ δ(F ) can not occur
at the same time (for a suitable variable), but actually ldF (v) + ldF (v) − δ(F )
only grows logarithmically in δ(F ), and this for a larger class of formulas.

The larger class of clause-sets considered is the class LEAN of lean clause-
sets, which are clause-sets having no non-trivial autarky. For an overview on the
theory of minimally unsatisfiable clause-sets and on the theory of autarkies see
[5]. The deficiency δ(F ) ∈ Z of clause-sets is replaced by the surplus σ(F ) ∈ Z,
which is the minimal deficiency over all clause-sets F [V ] for non-empty variable
sets V ⊆ var(F ), where F [V ] is obtained from F by removing clauses which
have no variables in V , and restricting the remaining clauses to V ; see [11] for
more information on the surplus of (generalised) clause-sets. We need to count
multiple occurrences of clauses here (which might arise during the process of
removing literals with variables not in V ), and thus actually multi-clause-sets
F are used here. Note that by considering V = var(F ) we have σ(F ) ≤ δ(F ),
and by considering V = {v} for v ∈ var(F ) we get σ(F ) ≤ μvd(F )− 1. Now the
main result of this article (Theorem 11) is

μvd(F ) ≤ nM(σ(F ))

for lean F , where nM : N → N (see Definition 2) is a super-linear function
with nM(k) ≤ k + 1 + log2(k). As an application we obtain (Corollary 12),
that if a (multi-)clause-set F has no variable occurring with degree at most
δ(F ) + 1 + log2(δ(F )), then F has a non-trivial autarky. It is an open problem
whether such an autarky can be found in polynomial time (for arbitrary clause-
sets F ); we conjecture (Conjecture 13) that this is possible.

Related work. This article appears to be the first systematic study of the prob-
lem of minimum variable occurrences in minimally unsatisfiable clause-sets and
generalisations, in dependency on the deficiency, asking for the existence of a
variable occurring “infrequently” in general, or for extremal examples where all
variables occur not infrequently. The problem of maximum variable occurrences
(asking for the existence of a variable occurring frequently in general, or for
extremal examples where all variables occur not frequently) in uniform (mini-
mally) unsatisfiable clause-sets, in dependency on the (constant) clause-length,
has been studied in the literature, starting with [14]; for a recent article see [3].

Overview. In Section 2 basic notions and concepts regarding clause-sets,
autarkies and minimal unsatisfiability are reviewed. Section 3 introduces the
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numbers nM(k) and proves exact formulas and sharp lower and upper bounds.
Section 4 contains the main results. First in Subsection 4.1 the bound is shown for
minimally unsatisfiable clause-sets (Theorem 15). In Subsection 4.2 the bound
then is lifted to lean clause-sets, proving Theorem 11. The immediate corollary
of Theorem 11 is, that if the asserted upper bound on the minimal variable
degree is not fulfilled, then a non-trivial autarky must exist (Corollary 12). In
Subsection 4.3 the problem of finding such autarky is discussed, with Conjecture
13 making precise our believe that one can find such autarkies efficiently. In Sec-
tion 5 we discuss the sharpness of the bound, and the possibilities to generalise
it further. Finally, in Section 6 open problems are stated, culminating in the
central Conjecture 25 about the classification of unsatisfiable hitting clause-sets
(or “disjoint/orthogonal tautologies” in the terminology of DNFs).

2 Preliminaries

We follow the general notations and definitions as outlined in [5], where also
further background on autarkies and minimal unsatisfiability can be found. We
use N = {1, 2, . . .} and N0 = N ∪ {0}.

Complementation of literals x is denoted by x, while for a set L of literals
we define L := {x : x ∈ L}. A clause C is a finite and clash-free set of literals
(i.e., C ∩C = ∅), while a clause-set is a finite set of clauses. We use var(F ) :=⋃

C∈F var(C) for the set of variables of F , where var(C) := {var(x) : x ∈ C}
is the set of variables of clause C, while var(x) is the underlying variable for a
literal x. For a clause-set F we denote by n(F ) := |var(F )| ∈ N0 the number of
variables and by c(F ) := |F | ∈ N0 the number of clauses. The deficiency of a
clause-set is denoted by δ(F ) := c(F )− n(F ) ∈ Z. We call a clause C full for a
clause-set F if var(C) = var(F ), while a clause-set F is called full if every clause
is full. For a finite set V of variables let A(V ) be the set of all 2|V | full clauses
over V . Thus full clause-sets are exactly the sub-clause-sets of some A(V ). A
partial assignment is a map ϕ : V → {0, 1} for some (possibly empty) set
V of variables. The application of a partial assignment ϕ to a clause-set F is
denoted by ϕ ∗ F , which yields the clause-set obtained from F by removing
all satisfied clauses (which have at least one literal set to 1), and removing all
falsified literals from the remaining clauses. A clause-set F is satisfiable iff there
is a partial assignment ϕ with ϕ ∗ F = � := ∅, otherwise F is unsatisfiable. All
A(V ) are unsatisfiable.

These notions are generalised to multi-clause-sets, which are pairs (F,m),
where F is a clause-set and m : F → N determines the multiplicity of the clauses.
Now c((F,m)) :=

∑
C∈F m(C), while the application of partial assignments ϕ

to a multi-clause-set F yields a multi-clause-set ϕ ∗ F , where the multiplicity
of a clause C in ϕ ∗ F is the sum of all multiplicities of clauses in F which are
shortened to C by ϕ. For example if ϕ is a total assignment for F (assigns all
variables of F ) which does not satisfying F (i.e., ϕ ∗ F 
= �), then ϕ ∗ F is
({⊥}, (f)C∈{⊥}), where ⊥ := ∅ is the empty clause, while f ∈ N is the number
of clauses (with their multiplicities) of F falsified by ϕ.



36 O. Kullmann and X. Zhao

For the number of occurrences of a literal x in a (multi-)clause-set (F,m) we
write ldF (x) :=

∑
C∈F,x∈C m(C), called the literal-degree, while the variable-

degree of a variable v is defined as vdF (v) := ldF (v) + ldF (v). A singular
variable in a (multi-)clause-set F is a variable occurring in one sign only once
(i.e., 1 ∈ {ldF (v), ldF (v)}). A (multi-)clause-set is called non-singular if it does
not have singular variables.

For a set V of variables and a multi-clause-set F by F [V ] the restriction of
F to V is denoted, which is obtained by removing clauses from F which have
no variables in common with V , and removing from the remaining clauses all
literals where the underlying variable is not in V (note that this can increase
multiplicities of clauses).

An autarky for a clause-set F is a partial assignment ϕ which satisfies ev-
ery clause C ∈ F it touches, i.e., with var(ϕ) ∩ var(C) 
= ∅. The empty partial
assignment is always an autarky for every F , the trivial autarky. If ϕ is an
autarky for F , then ϕ ∗ F ⊆ F holds, and thus ϕ ∗ F is satisfiability-equivalent
to F . A clause-set F is lean if there is no non-trivial autarky for F . A weak-
ening is the notion of a matching-lean clause-set F , which has no non-trivial
matching autarky, which are special autarkies given by a matching condition
(for every clause touched, a unique variable underlying a satisfied literal must
be selectable). The process of applying autarkies as long as possible to a clause-
set is confluent, yielding the lean kernel of a clause-set. Computation of the
lean kernel is NP-hard, but the matching-lean kernel, obtained by applying
matching autarkies as long as possible, which is also a confluent process, is com-
putable in polynomial time. Note that a clause-set F is lean resp. matching lean
iff the lean resp. matching-lean kernel is F itself. For every matching-lean multi-
clause-set F 
= � we have δ(F ) ≥ 1, while in general a multi-clause-set F 
= � is
matching lean iff σ(F ) ≥ 1, where the surplus σ(F ) ∈ Z is defined as the mini-
mum of δ(F [V ]) for all ∅ 
= V ⊆ var(F ). Note that while w.r.t. general autarkies
there is no difference between a multi-clause-set and the underlying clause-set,
for matching autarkies there is a difference, due to the matching condition. For
more information on autarkies see [5,11].

The set of minimally unsatisfiable clause-sets is MU , the set of all clause-
sets which are unsatisfiable, while removal of any clause makes them satisfiable.
Furthermore the set of saturated minimally unsatisfiable clause-sets is SMU ⊂
MU , which is the set of minimally unsatisfiable clause-sets such that addition
of any literal to any clause renders them satisfiable. We recall the fact that every
minimally unsatisfiable clause-set F ∈ MU can be saturated, i.e., by adding
literal occurrences to F we obtain F ′ ∈ SMU with var(F ′) = var(F ) such that
there is a bijection α : F → F ′ with C ⊆ α(C) for all C ∈ F . Some basic
properties of MU and SMU w.r.t. the application of partial assignments are
given in the following lemma.

Lemma 1. For all clause-sets F we have:

1. F ∈ SMU iff for all v ∈ var(F ) and ε ∈ {0, 1} we have 〈v → ε〉 ∗F ∈ MU.
2. If for some variable v holds 〈v → 0〉 ∗ F ∈ SMU and 〈v → 1〉 ∗ F ∈ SMU ,

then F ∈ SMU .
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3. If for some variable v holds 〈v → 0〉 ∗ F ∈ MU and 〈v → 1〉 ∗ F ∈ MU,
then F ∈MU .

For more information on minimal unsatisfiability see [5,12].

3 Non-mersenne Numbers

Splitting in minimally unsatisfiable clause-sets on variables with minimum oc-
currence will lead by Theorem 15 to the following recursion. The understanding
of this recursion is the topic of this section. On a first reading, only Definition 2
and the main results, Lemma 9 and Corollary 10, need to be considered.

Definition 2. For k ∈ N let nM(k) := 2 if k = 1, while else

nM(k) := max
i∈{2,...,k}

min(2 · i, nM(k − i+ 1) + i).

Remarks

1. This is sequence http://oeis.org/A062289 in the “On-Line Encyclopedia
of Integer Sequences”. It can be defined as the enumeration of those natural
numbers containing the string “10” (at consecutive positions). The sequence
leaves out exactly the number of the form 2n − 1 for n ∈ N, and thus the
name. The sequence consists of arithmetic progressions of slope 1 and length
2m − 1, m = 1, 2, . . . , each such progression separated by an additional step
of +1. The recursion in Definition 2 is new, and so we can not use these
characterisations, but must directly prove the basic properties.

2. nM(k) for k = (1), (2, 3, 4), (5, . . . , 11), (12, . . . , 26) is (2), (4, 5, 6), (8, . . . , 14),
(16, . . . , 30).

3. For k ≥ 2 we have nM(k) ≥ 4. This holds since nM(2) = 4, while the
induction step for k ≥ 3 is nM(k) = maxi∈{2,...,k} min(2i, nM(k−i+1)+i) ≥
min(4,min(4 + 2, 1 + 3)) = 4.

4. By induction and by definition we have k + 1 ≤ nM(k) ≤ 2 · k for k ∈ N.

For a sequence a : N→ R and k ∈ N let Δa(k) := a(k+1)−a(k) be the step
in the value of the sequence from k to k + 1. The next number in the sequence
of non-Mersenne numbers is obtained by adding 1 or 2 to the previous number:

Lemma 3. For k ∈ N holds ΔnM(k) ∈ {1, 2}.
Proof. For k = 1 we get ΔnM(1) = 2. Now consider k ≥ 2. We have
nM(k+1) = max(min(4, nM(k)+2),maxi∈{3,...,k+1} min(2i, nM(k−i+2)+i)) =
maxi∈{3,...,k+1} min(2i, nM(k − i + 2) + i) = maxi∈{2,...,k} min(2(i+ 1), nM(k −
(i + 1) + 2) + (i + 1)) = maxi∈{2,...,k} min(2i + 2, nM(k − i + 1) + i + 1) =
1 + maxi∈{2,...,k} min(2i+ 1, nM(k − i+ 1) + i).

Thus on the one hand we have nM(k+1) ≥ 1+maxi∈{2,...,k} min(2i, nM(k−i+
1)+i) = 1+nM(k), and on the other hand nM(k+1) ≤ 1+maxi∈{2,...,k} min(2i+
1, nM(k − i+ 1) + i+ 1) = 2 + nM(k). ��
Corollary 4. nM : N→ N is strictly increasing.

Corollary 5. We have nM(a+ b) ≥ nM(a) + b for a ∈ N and b ∈ N0, and thus
nM(a− b) ≤ nM(a)− b for b ≤ a.

http://oeis.org/A062289
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Instead of considering the maximum over k − 1 cases i ∈ {2, . . . , k} to compute
nM(k), we can now simplify the recursion to only one case i(k) ∈ {2, . . . , k}, and
for that case also consideration of the minimum is dispensable:

Lemma 6. For k ∈ N, k ≥ 2, let i(k) ∈ N be the smallest i ∈ {2, . . . , k} with
i ≥ nM(k−i+1) (note that k ≥ nM(k−k+1) = 2, and thus i(k) is well-defined).
For example we have i(2) = 2, i(3) = 3, i(4) = 4 and i(5) = 4. Then we have:

1. i(k)− nM(k − i(k) + 1) ≤ 2.
2. nM(k) = nM(k − i(k) + 1) + i(k).
3. Δi(k) ∈ {0, 1}.

Proof. We have i(k) = 2 iff k = 2, while for k = 2 the assertions hold trivially;
so assume k ≥ 3 and i(k) ≥ 3. Part 1 follows by Lemma 3 from the facts that
the sequence i ∈ {2, . . . , k} �→ i moves up in steps of +1, while the sequence
i ∈ {2, . . . , k} �→ nM(k − i + 1) moves down in steps of −1 or −2. It remains
to show Part 2. By Lemma 3 the sequence i ∈ {2, . . . , k} �→ nM(k − i + 1) + i
is monotonically decreasing, and thus by definition we obtain nM(k) = max(2 ·
(i(k)− 1), nM(k − i(k) + 1) + i(k)). That the maximum here is actually always
attained in the second component follows by Part 1. Finally Part 3 follows again
from Lemma 3. ��
After these preparations we are able to characterise the “jump positions”, the
set J ⊂ N of k ∈ N with ΔnM(k) = 2. Thus ΔnM(k) = 1 iff k /∈ J , and
J = {1, 4, 11, 26, . . .}. Note nM(k) = 1 + k + |{k′ ∈ J : k′ < k}|.
Lemma 7. Let i′(k) := k− i(k)+1 and h(k) := nM(i′(k)) for k ∈ N, k ≥ 2. Thus
Δi′(k) ∈ {0, 1} andΔi(k) = 1−Δi′(k). Furthermorewe havenM(k) = h(k)+i(k),
thusΔnM(k) = Δh(k) +Δi(k), and i(k)− h(k) ∈ {0, 1, 2}. Consider k ≥ 2.

1. If Δi(k) = 0, then:
(a) Δi(k + 1) = 1
(b) i(k) 
= h(k).
(c) i(k + 1) = h(k + 1).

2. If Δi(k) = 1, then:
(a) Δh(k) = 0, and so k /∈ J
(b) i(k) 
= h(k) + 2.

3. The following conditions are equivalent:
(a) k ∈ J
(b) Δh(k) = 2
(c) i(k) = h(k) + 2
(d) Δi(k − 1) = 1 and i(k − 1) = h(k − 1) + 1
(e) Δi(k − 2) = Δi(k − 1) = 1
(f) i′(k) = i′(k − 1) = i′(k − 2) and i′(k) ∈ J .

4. If k ∈ J , then i′(k) = max(k′ ∈ J : k′ < k).

Proof. Part 1a follows by definition. For Part 1b note i(k + 1) = i(k) while
h(k + 1) ≥ h(k) + 1. For Part 1c assume i(k + 1) > h(k + 1). Then we have
i(k) = h(k) + 2 and h(k + 1) = h(k) + 1. However then i(k) − 1 = h(k) + 1 =
h(k+1) = nM(k− (i(k)−1)+1) contradicting the definition of i(k). For Part 2a



On Variables with Few Occurrences in Conjunctive Normal Forms 39

assume i(k) = i(k+1) = i(k+2).Wehave i(k) ≥ h(k+2) = nM(k−i(k)+3),while
i(k)−1 < nM(k− (i(k)−1)+1) = nM(k− i(k)+2), i.e., i(k) ≤ nM(k− i(k)+2),
contradicting the strict monotonicity of nM. Part 2b follows by i(k + 1) ≤ h(k +
1) + 2 and i(k + 1) = i(k) + 1, h(k + 1) = h(k). Now consider Part 3.

Condition 3a implies condition 3b due toΔi(k) = 0 in case of k ∈ J by Part 2a.
Condition 3b implies condition 3c, since Δh(k) = 2 implies Δi(k) = 0 (otherwise
we had ΔnM(k) = 3), and so by Part 1c we have i(k) = i(k+1) = h(k+1), while
the assumption says h(k+ 1) = h(k) + 2. In turn condition 3c implies condition
3a, since by Part 2b we get Δi(k) = 0, and thus ΔnM(k) = Δh(k), while in case
of Δh(k) ≤ 1 we would have i(k)− 1 ≥ nM(k− (i(k)− 1) + 1) contradicting the
definition of i(k), due to nM(k − (i(k)− 1) + 1) = nM((k + 1)− i(k + 1) + 1) =
h(k+1) ≤ h(k)+1 = i(k)−1. So now we can freely use the equivalence of these
three conditions.

Condition 3c implies condition 3d, since we have Δi(k) = 0, and thus Δi(k−
1) = 1 with Part 1a, from which we furthermore get i(k) = i(k − 1) + 1 and
h(k− 1) = h(k), and so i(k− 1) = i(k)− 1 = h(k) + 1 = h(k− 1) + 1. Condition
3d implies condition 3e, since in case of Δi(k−2) = 0 we had i(k−1) = h(k−1)
with Part 1c. In turn condition 3e implies condition 3c, since i(k) = i(k−1)+1 =
i(k−2)+2, while h(k) = h(k−1) = h(k−2), where by definition i(k−2) ≥ h(k−2)
holds, whence i(k) ≥ h(k) + 2, which implies i(k) = h(k) + 2. So now the first
five conditions have been shown to be equivalent.

Now condition 3e implies condition 3f, since it only remains to show i′(k) ∈ J ,
which follows with condition 3b (using Δi(k) = 0). In turn condition 3f implies
immediately condition 3e.

Finally, we prove Part 4 by induction on k (regarding the enumeration of
J). We have i′(4) = 1, and so the induction holds for k = 4, the smallest
jump position k ≥ 2. Now assume that the assertion holds for all elements of
J ∩ {1, . . . , k − 1}, where k > 4, and we have to show the assertion for k. By
Part 3f we know i′(k) ∈ J , where 2 ≤ i′(k) < k. Assume there is k′ ∈ J with
i′(k) < k′ < k. Now by induction hypothesis we get i′(k) ≤ i′(k′) < k′. However
by Part 1 we get Δi′(k′) = 1, and thus i′(k) > i′(k′) (since k > k′). ��

Corollary 8. We have J = {2m+1 −m− 2 : m ∈ N}.

Proof. Let km for m ∈ N be the mth element of J ; so the assertion is km =
2m+1 −m − 2. We have k1 = 4 − 1 − 2 = 1 = min J ; in the remainder assume
m ≥ 2. We prove the assertion by induction, in parallel with i(km) = 2m+1−2m.
For m = 2 we have k2 = 8− 2 − 2 = 4 = minJ \ {1}, while i(4) is the smallest
i ∈ {2, 3, 4} with i ≥ nM(5−i), which yields i(4) = 4 = 23−22. Now we consider
the induction step, from m − 1 to m. The induction hypothesis yields km−1 =
2m −m− 1 and i(km−1) = 2m − 2m−1. Lemma 7, Part 4 yields i′(km) = km−1,
from which by i′(km) = km − i(km) + 1 follows km = 2m −m − 2 + i(km). By
definition we get i(km) = Δi(km− 1)+ · · ·+Δi(km−1)+ i(km−1). By Lemma 7,
Parts 1 - 3 the sequence of Δ-values has the form (starting with the lowest index)
0, 1, 0, 1, . . . , 0, 1, 1, and thus their sum has the value 1

2 (km−km−1−1)+1. So we
get i(km) = 1

2 (km−km−1−1)+1+i(km−1) = 1
2 (2m−m−2+i(km)−2m+m+1−
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1)+1+2m−2m−1 = 1
2 i(km)−1+1+2m−2m−1, from which i(km) = 2m+1−2m

follows. Finally km = 2m −m− 2 + 2m+1 − 2m = 2m+1 −m− 2. ��
Now the closed formula for nM(k) can be proven (using ld(x) := log2(x)):

Lemma 9. For k ∈ N let fld(k) := �ld(k)� (“floor of logarithm dualis”). Then
we have for k ∈ N the equality nM(k) = k + fld(k + 1 + fld(k + 1)).

Proof. Let g(k) := fld(k+1+fld(k+1)) and f(k) := k+ g(k) (so nM(k) = f(k)
is to be shown, for k ≥ 1). We have f(1) = 1 + fld(2 + fld(2)) = 1 + fld(3) = 2 =
nM(1). We will now prove that the function g(k) changes values exactly at the
transitions k �→ k + 1 for k ∈ J , that is, for indices k = km := 2m+1 −m − 2
(using Corollary 8) with m ∈ N we have Δg(km) = 1, while otherwise we have
Δg(km) = 0, from which the assertion follows (by the definition of J).

We have g(1) = 1 and g(2) = 2. Now consider m ∈ N and km +1 ≤ k ≤ km+1.
We show g(k) = m + 1, which proves the claim. Note that g(k) is monotoni-
cally increasing. Now g(k) ≥ g(km + 1) = �ld(2m+1 −m+ �ld(2m+1 −m)�)� =
�ld(2m+1−m+m)� = m+1 and g(k) ≤ g(km+1) = �ld(2m+2−m−2+�ld(2m+2−
m− 2)�)� ≤ �ld(2m+2 −m− 2 +m+ 1)� = �ld(2m+2 − 1)� = m+ 1. ��
As a result, we obtain very precise bounds:

Corollary 10. k + fld(k + 1) ≤ nM(k) ≤ k + 1 + fld(k) holds for k ∈ N.

Proof. The lower bound follows trivially. The upper bound holds (with equality)
for k ≤ 2, so assume k ≥ 3. We have to show g(k) = fld(k + 1 + fld(k +
1)) ≤ 1 + fld(k), which follows from ld(k + 1 + fld(k + 1)) ≤ 1 + ld(k). Now
ld(k + 1 + fld(k + 1)) ≤ ld(k + 1 + ld(k + 1)) ≤ ld(k + k) = 1 + ld(k). ��

4 Lean Clause-Sets and the Surplus

In this section we prove the main result of this paper, Theorem 11. The proof
consists in first handling a special case, minimally unsatisfiable clause-sets in-
stead of lean clause-sets, in Subsection 4.1, and then lifting the result to the
general case in Subsection 4.2. In Subsection 4.3 we consider the algorithmic
implications of this result.

Theorem 11. We have μvd(F ) ≤ nM(σ(F )) for a lean multi-clause-set F with
n(F ) > 0. More precisely, there exists a variable v ∈ var(F ) with vdF (v) ≤
nM(σ(F )) and ldF (v), ldF (v) ≤ σ(F ).

We obtain a sufficient criterion for the existence of a non-trivial autarky.

Corollary 12. Consider a multi-clause-set F with n(F ) > 0. If σ(F ) ≤ 0,
then F has a non-trivial matching autarky. So assume σ(F ) ≥ 1. If we have
μvd(F ) > nM(σ(F )), then for every ∅ 
= V ⊆ var(F ) with δ(F [V ]) = σ(F ) we
have an autarky ϕ for F with var(ϕ) = V (and thus F has a non-trivial autarky).

The quantities μvd(F ) and nM(σ(F )) (resp. nM(δ(F ))) are computable in poly-
nomial time, and so the applicability of Corollary 12 can be checked in polyno-
mial time. We conjecture that also “constructivisation” of Corollary 12 can be
done in polynomial time:
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Conjecture 13. There is a poly-time algorithm for computing a non-trivial au-
tarky in case of μvd(F ) > nM(σ(F )) (or μvd(F ) > nM(δ(F ))) for matching-lean
clause-sets F .

See Subsection 4.3 for more discussion on Conjecture 13 (there also the remaining
details of Corollary 12 are proven).

4.1 The Special Case of Minimally Unsatisfiable Clause-Sets

The main auxiliary lemma is the following statement, which receives its impor-
tance from the fact that every minimally unsatisfiable clause-set can be saturated
(this method was first applied in [6]).

Lemma 14. Consider F ∈ SMUδ=k for k ∈ N and a variable v ∈ var(F )
realising the minimal var-degree (i.e., vdF (v) = μvd(F )). Using m0 := ldF (v)
and m1 := ldF (v) we have 〈v → ε〉∗F ∈ MUk−mε+1 for ε ∈ {0, 1}, where n(〈v →
ε〉 ∗ F ) = n(F )− 1. Since minimally unsatisfiable clause-sets have deficiency at
least one, we get mε ≤ k.
Proof. We have n(〈v → ε〉 ∗ F ) = n(F ) − 1 since F contains no pure variable,
while v realises the minimum of var-degrees. Thus δ(〈v → ε〉∗F ) = δ(F )−mε+1,
while 〈v → ε〉 ∗ F ∈MU by Lemma 1, Part 1. ��
Theorem 15. For all k ∈ N and F ∈ MUδ≤k we have μvd(F ) ≤ nM(k). More
precisely, for n(F ) > 0 there exists a variable v ∈ var(F ) with vdF (v) ≤ nM(k)
and ldF (v), ldF (v) ≤ k.
Proof. The assertion is known for k = 1, so assume k > 1, and we apply in-
duction on k. Assume δ(F ) = k (due to k > 1 we have n(F ) > 1). Satu-
rate F and obtain F ′. Consider a variable v ∈ var(F ′) realising the min-var-
degree of F ′. If vdF ′(v) = 2 then we are done, so assume vdF ′(v) ≥ 3. Let
i := max(ldF ′(v), ldF ′(v)); so vdF ′(v) ≤ 2i. W.l.o.g. assume that i = ldF ′(v).
By Lemma 14 we get 2 ≤ i ≤ k. Applying the induction hypothesis and
Lemma 14 we obtain a variable w ∈ var(G) for G := 〈v → 1〉 ∗ F with
vdG(w) ≤ nM(k − i + 1). By definition we have vdF ′(w) ≤ vdG(w) + ldF ′(v).
Altogether we get μvd(F ) ≤ min(2i, nM(k − i+ 1) + i) ≤ nM(k). ��
It is interesting to generalise Theorem 15 for generalised clause-sets (see [11,12]
for a systematic study, and [10] for the underlying report). Generalised clause-
sets have literals “v 
= ε” for variables v with domains Dv and values ε ∈ Dv,
and the deficiency is generalised by giving every variable a weight |Dv| − 1
(which is 1 in the boolean case). The base case of deficiency k = 1 is handled
in Lemma 5.4 in [12], showing that for generalised clause-sets we have here
μvd(F ) ≤ maxv∈var(F )|Dv|. But k ≥ 2 requires more work:

1. The basic method of saturation is not available for generalised clause-sets,
as discussed in Subsection 5.1 in [12]. Thus the proofs for the boolean case
seem not to be generalisable.

2. Stipulating the effects of saturation via the “substitution stability parameter
regarding irredundancy”, in Corollary 5.10 in [12] one finds a first approach
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towards generalising the basic bound μvd(F ) ≤ 2δ(F ) (for the boolean case)
by μvd(F ) ≤ maxv∈var(F )|Dv| · δ(F ).

3. Another approachuses translations to boolean clause-sets.The “generic trans-
lation scheme” (see [9,12]) allows (for certain instances) to preserve the defi-
ciency and the other structures relevant here. So we get general upper bounds
for the minimum number of occurrences of variables in generalised clause-sets
from the boolean case. But further investigations are needed in these bounds.

4.2 Proof of the General Case

Now consider an arbitrary (multi-)clause-set F . Consider a set of variables ∅ 
=
V ⊆ var(F ) realising the surplus of F , i.e., such that δ(F [V ]) is minimal. If F [V ]
would be satisfiable, then a satisfying assignment would give a non-trivial autarky
for F . Assuming that F is lean thus yields that F [V ] must be unsatisfiable. So
there exists a minimally unsatisfiable F ′ ⊆ F [V ]. If now var(F ′) 
= var(F [V ]) = V
would be the case, then we would loose control over the deficiency of F ′. Fortu-
nately this can not happen, as the following lemma shows.
Lemma 16. Consider a multi-clause-set F with σ(F ) = δ(F ). Then for every
unsatisfiable sub-multi-clause-set F ′ ≤ F we have var(F ′) = var(F ).

Proof. Assume var(F ′) ⊂ var(F ), and consider a minimally unsatisfiable sub-
clause-set F ′′ ⊆ F ′. By definition we have δ(F ′′)+δ(F [var(F )\var(F ′′)]) ≤ δ(F ),
where δ(F [var(F )\var(F ′′)]) ≥ σ(F ) = δ(F ), from which we conclude δ(F ′′) ≤ 0,
but δ(F ′′) ≥ 1 must hold since F ′′ is minimally unsatisfiable. ��
Finally we are able to prove Theorem 11. Recall that F is a lean multi-clause-
set with n(F ) > 0, and we have to show the existence of a variable v with
vdF (v) ≤ nM(σ(F )) and ldF (v), ldF (v) ≤ σ(F ).

Consider ∅ 
= V ⊆ var(F ) with δ(F [V ]) = σ(F ), and let F ′ := F [V ]. F ′

is unsatisfiable, since F is lean. Because of δ(F ′) = σ(F ) we have δ(F ′) =
σ(F ′). Consider some minimally unsatisfiable F ′′ ⊆ F ′. By Lemma 16 we have
var(F ′′) = var(F ′). So we get δ(F ′′) = δ(F ′)− (c(F ′)− c(F ′′)). By Theorem 15
there is v ∈ var(F ′′) with vdF ′′(v) ≤ nM(δ(F ′′)) = nM(δ(F ′)−(c(F ′)−c(F ′′))) ≤
nM(δ(F ′)) − (c(F ′) − c(F ′′)) and ldF ′′(v), ldF ′′(v) ≤ δ(F ′′) = δ(F ′) − (c(F ′) −
c(F ′′)). Finally we have vdF (v) ≤ vdF ′′(v) + (c(F ′) − c(F ′′)) (note that all
occurrences of v in F are also in F ′), and similarly for the literal degrees. QED
Corollary 17. μvd(F ) ≤ nM(δ(F )) for lean multi-clause-sets F with n(F ) > 0.
Corollary 18. Consider a lean multi-clause-set F .

1. σ(F ) = 1 holds if and only if μvd(F ) = 2 holds.
2. μvd(F ) = 3 implies σ(F ) = 2.
3. σ(F ) = 2 implies μvd(F ) ∈ {3, 4}.

Proof. First consider Part 1. If σ(F ) = 1 (so n(F ) > 0), then by Theorem 11
we have μvd(F ) ≤ nM(1) = 2, while in case of μvd(F ) = 1 there would be
a matching autarky for F . If on the other hand μvd(F ) = 2 holds, then by
definition σ(F ) ≤ 2− 1 = 1, while σ(F ) ≥ 1 holds since F is matching lean. For
Part 2 note that due to σ(F ) + 1 ≤ μvd(F ) we have σ(F ) ≤ 2, and then the
assertion follows by Part 1. Part 3 also follows by Part 1. ��
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Remarks

1. An example for μvd(F ) = 4 in Part 3 is given by the full unsatisfiable
clause-set with 2 variables.

2. Is there a minimally unsatisfiable F with μvd(F ) = 4 and σ(F ) = 3?
3. More generally, is there for every k ∈ N a minimally unsatisfiable F with
σ(F ) = k and μvd(F ) = k + 1?

4.3 On Finding the Autarky

The following lemma together with Theorem 11 yields the proof of Corollary 12:

Lemma 19. Consider a matching-lean multi-clause-set F with n(F ) > 0. If we
have μvd(F ) > nM(σ(F )), then all F [V ] for ∅ ⊂ V ⊆ var(F ) with δ(F [V ]) =
σ(F ) are satisfiable.

Proof. If some F [V ] would be unsatisfiable, then by the proof of Theorem 11 in
Subsection 4.2 there would be a variable v with vdF (v) ≤ nM(σ(F )). ��
Now consider a matching-lean multi-clause-set F with n(F ) > 0, where Corollary
12 is applicable (recall that we have σ(F ) ≥ 1), that is, we have μvd(F ) >
nM(σ(F )). So we know that F has a non-trivial autarky. Conjecture 13 states
that finding such a non-trivial autarky in this case can be done in polynomial
time (recall that finding a non-trivial autarky in general is NP-complete, which
was shown in [7]).

The task of actually finding the autarky can be considered as finding a satisfy-
ing assignment for the following classMLCR ⊂ SAT ∩MLEAN of satisfiable(!)
clause-sets F , obtained by considering all F [V ] for minimal sets of variables V
with δ(F [V ]) = σ(F ) (where “CR” stands for “critical”):

Definition 20. Let MLCR be the class of clause-sets F fulfilling the following
three conditions:

1. F is matching-lean, has at least one variable, and does not contain the empty
clause.

2. The only ∅ 
= V ⊆ var(F ) with δ(F [V ]) = σ(F ) is V = var(F ) (and thus we
have δ(F ) = σ(F )).

3. μvd(F ) > nM(σ(F )).

It is sufficient to find a non-trivial autarky for this class of satisfiable clause-sets.
Constructing elements of MLCR seems a non-trivial task.

Lemma 21. Conjecture 13 is equivalent to the statement, that finding a non-
trivial autarky for clause-sets in MLCR can be achieved in polynomial time.

5 On Strengthening the Bound

For a class C of clause-sets let μvd(C) be the supremum of μvd(F ) for F ∈ C
with n(F ) > 0. So by Theorem 15 we have μvd(MUδ=k) ≤ nM(k) for all k ∈ N.
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The task of precisely determining μvd(MUδ=k) for all k will be pursued in the
forthcoming [13]; we need more theory for minimally unsatisfiable clause-sets
(especially for unsatisfiable hitting clause-sets), and so here we can only mention
some results connected with this article.

– We can show for infinitely many k that μvd(MUδ=k) = nM(k).
– We can also show that the smallest k where we don’t have equality is k = 6,

namely μvd(MUδ=6) = 8 = nM(6)− 1.
– Let nM1 : N → N be defined by the recursion as in Definition 2, however

with different start values, namely nM1(k) := nM(k) for 1 ≤ k ≤ 5, while
nM1(6) := nM(6)− 1 = 8. We have nM1(k) = nM(k) for k /∈ {2m −m+ 1 :
m ∈ N,m ≥ 3}, while for k = 2m−m+1 we have nM1(k) = nM(k)−1 = 2m.

– With the same proof as for Theorem 15 we can show μvd(MUδ=k) ≤ nM1(k)
for all k ∈ N.

– It seems that this bound can not be generalised to lean clause-sets (as in
Theorem 11).

Conjecture 22. For all k ∈ N we have μvd(MUδ=k) ≥ nM(k)− 1.

Conjecture 23. For all k ∈ N we have μvd(LEANδ=k) = nM(k).

Now we consider the question whether the bound holds for a larger class of
clause-sets, that is, whether Theorem 11 can be generalised further, incorporat-
ing
non-lean clause-sets. We consider the large class MLEAN of matching lean
clause-sets, as introduced in [7], which is natural, since a basic property of
F ∈ MU used in the proof of Theorem 11 is δ(F ) ≥ 1 for F 
= �, and
this actually holds for all F ∈ MLEAN . We will construct for arbitrary de-
ficiency k ∈ N and K ∈ N clause-sets F ∈ MLEAN of deficiency k where
every variable occurs positively at least K times. Thus neither the upper bound
max(ldF (v), ldF (v)) ≤ f(δ(F )) nor ldF (v) + ldF (v) = vdF (v) ≤ f(δ(F )) for
some chosen variable v and for any function f does hold forMLEAN .

An example for F ∈ MLEANδ=1 with μld(F ) ≥ 2 (and thus μvd(F ) ≥ 4)
is given in Section 5 in [8], displaying a “star-free” (thus satisfiable) clause-set
F with deficiency 1. In Subsection 9.3 in [11] it is shown that this clause-set is
matching lean. “Star-freeness” in our context means, that there are no singular
variables (occurring in one sign only once). Our simpler construction pushes the
number of positive occurrences arbitrary high, but there are variables with only
one negative occurrence (i.e., there are singular variables).

For a finite set V of variables let M(V ) ⊆ A(V ) be the full clause-set over V
containing all full clauses with at most one complementation. Obviously δ(F ) = 1
holds, and it is easy to see thatM(V ) ∈MLEAN (for every ∅ 
= F ′ ⊂ F ⊆ A(V )
we have δ(F ′) < δ(F ), and thus a full clause-set F is matching lean iff δ(F ) ≥ 1).
Furthermore by definition we have ldM(V )(v) = |V | and ldM(V )(v) = 1 for v ∈ V .

Lemma 24. For k ∈ N and K ∈ N there are clause-sets F ∈MLEANδ=k such
that for all variables v ∈ var(F ) we have ldF (v) ≥ K.



On Variables with Few Occurrences in Conjunctive Normal Forms 45

Proof. For k = 1 we can set F := M({v1, . . . , vK}); so assume k ≥ 2. Consider
any clause-set G ∈ MLEANδ=k−1 with n := n(G) ≥ K (for example we could
use F ∈ MUδ=k−1), and let V := var(G). Consider a disjoint copy of V , that
is a set V ′ of variables with V ′ ∩ V = ∅ and |V ′| = |V |, and consider two
enumerations of the clauses M(V ) = {C1, . . . , Cn+1}, M(V ′) = {C′

1, . . . , C
′
n+1}.

Now
F := G ∪

{
Ci ∪ C′

i : i ∈ {1, . . . , n+ 1}
}

has no matching autarky: If ϕ is a matching autarky for F , then var(ϕ)∩V = ∅
since G is matching lean, whence var(ϕ) ∩ V ′ = ∅ since M(V ′) is matching
lean, and thus ϕ must be trivial. Furthermore we have n(F ) = 2n and c(F ) =
c(G) + n+ 1, and thus δ(F ) = c(G) + n+ 1− 2n = δ(G) + 1 = k. By definition
for all variables v ∈ var(F ) we have ldF (v) ≥ n. ��

Remarks

1. It is open whether for deficiency k ∈ N there are examples F ∈MLEANδ=k

with μld(F ) ≥ k + 1 (the above mentioned star-free clause-sets shows that
this is the case for k = 1), or stronger, μld(F ) ≥ K for arbitrary K ∈ N.

2. The clause-sets F constructed in Lemma 24 are not elements ofMLCRδ=k

for k ≥ 2, since δ(F [V ′]) = n+ 1 − n = 1, thus σ(F ) = 1, and so Condition
2 of Definition 20 is not fulfilled. The corresponding autarky is a satisfying
assignment of M(V ′), which is easy to find.

6 Conclusion and Open Problems

We have shown the upper bound μvd(F ) ≤ nM(σ(F )) for lean clause-sets (The-
orem 11). The function nM(k) has been characterised in Lemma 9 and Corollary
10. We presented first initial results regarding the sharpness of the bound and
regarding the constructive aspects of the bound (i.e., what happens if the bound
is violated). There remain several open problems:

1. Prove Conjecture 13, which says that such an autarky, which must exist if a
clause-set does not fulfil the upper bound on the minimum variable degree of
Theorem 11, can be found in polynomial time. See Subsection 4.3 for more
information on this topic.

2. Generalise Theorem 15 to clause-sets with non-boolean variables; see the
discussion after Theorem 15.

3. See the remarks to Corollary 18 (an underlying question is to understand
better the quantity “surplus”).

4. Strengthen the bound on the minimum variable degree according to Conjec-
tures 22, 23 (see the forthcoming [13]).

5. Strengthen the construction of Lemma 24 (perhaps completely different con-
structions are needed).

As mentioned in the introduction, a major motivation for us is the project
of the classification of minimally unsatisfiable clause-sets for deficiencies δ =
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1, 2, . . . . Especially the classification of unsatisfiable hitting clause-sets in depen-
dency on the deficiency seems very interesting (recall that a hitting clause-set F
is defined by the condition that every two clauses C,C′ ∈ F , C 
= C′, clash in
at least one variable, that is |C ∩C′| ≥ 1). The main conjecture is:

Conjecture 25. For every deficiency k ∈ N there are only finitely many isomor-
phism types of non-singular unsatisfiable hitting clause-sets.

For k ≤ 2 this conjecture follows from known results, while recently we were
able to prove it for k = 3.
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Abstract. In the first part of this work (FSTTCS’10) we have shown that the
satisfiability of CNF formulas with β-acyclic hypergraphs can be decided in
polynomial time. In this paper we continue and extend this work. The deci-
sion algorithm for β-acyclic formulas is based on a special type of Davis-Putnam
resolution where each resolvent is a subset of a parent clause. We generalize the
class of β-acyclic formulas to more general CNF formulas for which this type
of Davis-Putnam resolution still applies. We then compare the class of β-acyclic
formulas and this superclass with a number of known polynomial formula classes.

1 Introduction

We continue our study [12] of the SATISFIABILITY (SAT) problem on classes of CNF
formulas (formulas in Conjunctive Normal Form) with restrictions on their associated
hypergraphs, which are obtained from these formulas by ignoring negations and con-
sidering clauses as hyperedges on variables.

Because many computationally hard problems can be solved efficiently on acyclic
instances, it is a natural to consider SAT for CNF formulas with acyclic hypergraphs.
There are several notions of acyclicity for hypergraphs as described by Fagin [6]: α-
acyclicity, β-acyclicity, γ-acyclicity, and Berge-acyclicity, which are strictly ordered
with respect to their generality, i.e., we have

α-ACYC � β-ACYC � γ-ACYC � Berge-ACYC

where X -ACYC denotes the class of X-acyclic hypergraphs, which are in 1-to-1 corre-
spondence to a class of CNF formulas called X-acyclic formulas. It is known that SAT
is NP-complete for α-acyclic formulas [13], and that Berge-ACYC-SAT is solvable in
polynomial time [7,13]. In a recent paper [12] we completed the complexity classifi-
cation of these four classes by showing that SAT can be solved in polynomial time for
β-acyclic formulas, and consequently, for γ-acyclic formulas as well.

New results. The first aim of our paper is to generalize our polynomial-time algorithm
for β-acyclic formulas [12]. This algorithm is based on the so-called Davis-Putnam Pro-
cedure [5], which successively eliminates variables using Davis-Putnam Resolution. In
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general, this procedure is not efficient, because the number of clauses may increase
after each application of Davis-Putnam Resolution. However, the special structure of
β-acyclic formulas allows us to compute an elimination ordering of the variables, such
that this does not happen. Hence, we can solve SAT in polynomial time for β-acyclic
formulas. In fact, the elimination ordering produced this way has the special property
that each obtained resolvent is a subset of a parent clause. This type of resolution is
known as subsumption resolution [11]. In Section 3 we show that there are CNF for-
mulas that are not β-acyclic but that still admit an elimination ordering of their variables
based on subsumption resolution, such that the Davis-Putnam procedure takes polyno-
mial time. We call such an elimination ordering DP-simplicial. This leads to a new
class DPS of CNF formulas that contains the class of β-acyclic formulas. In Section 4,
we show that testing membership in this class is an NP-complete problem. The reason
for the NP-hardness is that a formula may have several so-called DP-simplicial vari-
ables, one of which must be chosen to be eliminated but we do not know which one. In
Section 5, we show how to work around this obstacle to some extent, i.e., we identify a
subclass of DPS that is a proper superclass of the class of β-acyclic formulas for which
SAT is polynomial-time solvable.

The second aim of our paper is to make a comparison between the class of β-acyclic
formulas and other known polynomial classes of CNF formulas. We do this in Sec-
tion 6, and our results show that the class of β-acyclic formulas is incomparable with
all considered classes. Hence, β-acyclic formulas form a new “island of tractability”
for SAT.

2 Preliminaries

We assume an infinite supply of propositional variables. A literal is a variable x or a
negated variable x; if y = x is a literal, then we write y = x. For a set S of literals
we put S = { x | x ∈ S }; S is tautological if S ∩ S 
= ∅. A clause is a finite non-
tautological set of literals. A finite set of clauses is a CNF formula (or formula, for
short). A variable x occurs in a clause C if x ∈ C ∪ C; var(C) denotes the set of
variables which occur in C. A variable x occurs in a formula F if it occurs in one of its
clauses, and we put var(F ) =

⋃
C∈F var(C).

Let F be a formula and X ⊆ var(F ). A truth assignment is a mapping τ : X →
{ 0, 1 } defined on some set X of variables; we write var(τ) = X . For x ∈ var(τ) we
define τ(x) = 1 − τ(x). A truth assignment τ satisfies a clause C if C contains some
literal x with τ(x) = 1; τ satisfies a formula F if it satisfies all clauses of F . A formula
is satisfiable if it is satisfied by some truth assignment; otherwise it is unsatisfiable.
Two formulas F and F ′ are equisatisfiable if either both are satisfiable or both are
unsatisfiable. The SATISFIABILITY (SAT) problem asks whether a given CNF formula
is satisfiable.

Let C,D be two clauses such that C ∩ D = {x} for a variable x. The clause
(C ∪D) \ {x, x} is called the x-resolvent (or resolvent) of C and D; the clauses C and
D are called parent clauses of the x-resolvent. Note that by definition any two clauses
have at most one resolvent. Let F be a formula. A sequence C1, . . . , Cn is a resolution
derivation of Cn from F if every Ci is either in F or the resolvent of two clauses Cj
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and Cj′ for some 1 ≤ j < j′ ≤ i− 1. The derivation is minimal if we cannot delete a
clause from it and still have a resolution derivation of Cn from F . We call a clause Cn

a resolution descendant of a clause C1 ∈ F if there is a minimal resolution derivation
C1, . . . , Cn of Cn from F .

Consider a formula F and a variable x of F . Let DPx(F ) denote the formula ob-
tained from F after adding all possible x-resolvents and removing all clauses in which
x occurs. We say that DPx(F ) is obtained from F by Davis-Putnam Resolution, and
that we eliminated x. It is well known (and easy to show) that F and DPx(F ) are
equisatisfiable.

For an ordered sequence of variables x1, . . . , xk of F , we set DPx1,...,xk
(F ) =

DPxk
(· · · (DPx1(F )) · · · ) and DP∅(F ) = F . The Davis-Putnam Procedure [5] con-

siders an ordering of the variables x1, . . . , xn of a formula F and checks whether
DPx1,...,xn(F ) is empty or contains the empty clause. In the first case F is satisfiable,
and in the second case F is unsatisfiable. However, DPx(F ) contains in general more
clauses than F . Hence, repeated application of Davis-Putnam Resolution to F may
cause an exponential growth in the number of clauses. As a result, the Davis-Putnam
Procedure has an exponential worst-case running time.

3 Generalizing β-Acyclic Formulas

A hypergraph H is a pair (V,E) where V is the set of vertices and E is the set of
hyperedges, which are subsets of V . A hypergraph is α-acyclic if it can be reduced to
the empty hypergraph (∅, ∅) by repeated application of the following reduction rules:

1. Remove hyperedges that are empty or contained in other hyperedges.
2. Remove vertices that appear in at most one hyperedge.

A hypergraph H is β-acyclic if it is α-acyclic and remains α-acyclic after removing
an arbitrary number of hyperedges. Thus β-acyclicity is the hereditary variant of α-
acyclicity. The hypergraphH(F ) of a formula F has vertex set var(F ) and hyperedge
set { var(C) | C ∈ F }. We say that F is α-acyclic or β-acyclic ifH(F ) is α-acyclic or
β-acyclic, respectively. It is known that SAT is NP-complete for the class of α-acyclic
formulas [13]. However, β-acyclicity makes SAT polynomial.

Theorem 1 ([12]). SAT can be solved in polynomial time for β-acyclic formulas.

The proof of Theorem 1 is based on the following [12]. A vertex x of a hypergraphH is
weakly simplicial if the hyperedges ofH that contain x form a chain under set inclusion.
A nontrivial β-acyclic hypergraph always contains a weakly simplicial vertex. After
deletion of this vertex the hypergraph remains β-acyclic. Thus, by repeated deletion
of weakly simplicial vertices we can eliminate all vertices of a β-acyclic hypergraph,
producing a weakly simplicial elimination ordering of its vertices. Because we can find
a weakly simplicial vertex in polynomial time, we can compute a weakly simplicial
elimination ordering for a β-acyclic hypergraph in polynomial time. Once we have this
ordering, we apply the Davis-Putnam procedure. This results in a sequence of formulas
with a non-increasing number of clauses. As such, the Davis-Putnam procedure runs in
polynomial time. Consequently, Theorem 1 holds.
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Besides that it is possible to identify a “suitable” vertex in polynomial time, the
other key observation in the proof of Theorem 1 is that the number of clauses must
not increase by applying Davis-Putnam resolution. We can ensure this by requiring
the following property that is more general than being weakly simplicial. Let F be a
formula. We say that a variable x ∈ var(F ) is DP-simplicial in F if

(*) for any two clauses C,D ∈ F that have an x-resolvent, this x-resolvent is a subset
of C or a subset of D.

We observe that whenever an x-resolvent is a subset of a parent clause C then it is
equal to C \ {x, x}. If x is DP-simplicial in F , then |DPx(F )| ≤ |F |, as desired.
An ordering x1, . . . , xn of the variables of F is a DP-simplicial elimination ordering
if xi is DP-simplicial in DPx1,...,xi−1(F ) for all 1 ≤ i ≤ n. We let DPS denote the
class of all formulas that admit a DP-simplicial elimination ordering, and we let BAC
denote the class of all β-acyclic formulas. We observe that every weakly simplicial
elimination ordering ofH(F ) is a DP-simplicial elimination ordering of F . This means
that BAC ⊆ DPS. However, due to Example 3.1, the reverse is not true. Hence, DPS is
a proper superclass of BAC.

Given an DP-simplicial ordering, the Davis-Putnam procedure runs in polynomial
time. Hence we obtain the following result.

Proposition 1. Let F ∈ DPS. If a DP-simplicial elimination ordering of the variables
in var(F ) is given, then SAT can be solved in polynomial time for F .

In fact, if a DP-simplicial elimination ordering of the variables in var(F ) is given, we
can even compute a certificate for the (un)satisfiability of F in polynomial time. This
holds, because we can obtain a satisfying truth assignment of F from a satisfying truth
assignment of DPx(F ), and we can obtain a resolution refutation of F from a resolution
refutation of DPx(F ).

3.1 An Example

We give an example of a formula in DPS \ BAC. Consider the formula F that has
variables y, z, b, b′, b∗ and c and clauses {y, z, b, b′}, {y, z, b, b∗}, {y, b}, {y, b}, {z, b},
{z, b}, {y, b, b∗, c}, {y, b, b′, c}, {b′, b∗}, {b∗, b′}, {c, b′, b∗}, {c, b′, b∗} and {b, b′}.

We observe first that none of the variables of F are weakly simplicial. Consequently,
there is no weakly simplicial elimination ordering of F . Hence F /∈ BAC. However,
we will show below that y, b, b′, b∗, c, z is a DP-simplicial elimination ordering of F .
Then F ∈ DPS, as desired.

We find that y is DP-simplicial in F and obtain DPy(F ) = {{z, b, b′}, {z, b, b∗},
{z, b}, {z, b}, {b′, b∗}, {b∗, b′}, {c, b′, b∗}, {c, b′, b∗}, {b, b′}}. We then find that b
is DP-simplicial in DPy(F ) and obtain DPy,b(F ) = {{b′, b∗}, {b∗, b′}, {c, b′, b∗},
{c, b′, b∗}}. We then find that b′ is DP-simplicial in DPy,b(F ) and obtain DPy,b,b′(F ) =
{{c, b′, b∗}, {c, b′, b∗}}. We then find that b∗ is DP-simplicial in DPy,b,b′(F ) and ob-
tain DPy,b,b′,b∗(F ) = ∅. Hence, y, b, b′, b∗, c, z is a DP-simplicial elimination ordering
of F .

We note that z is also DP-simplicial in F . Suppose that we started with z instead
of y. We first derive that DPz(F ) = {{y, b, b′}, {y, b, b∗}, {y, b}, {y, b}, {y, b, b∗, c},
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{y, b, b′, c}, {b′, b∗}, {b∗, b′}, {c, b′, b∗}, {c, b′, b∗}, {b, b′}}. In contrast to DPy(F ),
the clauses {y, b, b∗, c} and {y, b, b′, c} are still contained in DPz(F ). This implies
that DPz(F ) has no DP-simplicial variables. Consequently, F has no DP-simplicial
elimination ordering that starts with z.

We conclude that in contrast to weakly simplicial elimination orderings it is impor-
tant to choose the right variable when we want to obtain a DP-simplicial elimination
ordering. In the next section we will extend this consideration and show that making
the right choice is in fact an NP-hard problem.

4 The NP-Completeness Result

We prove that the problem of testing whether a given CNF formula belongs to the
class DPS, i.e., admits a DP-simplicial elimination ordering, is NP-complete. This
problem is in NP, because we can check in polynomial time whether an ordering of the
variables of a CNF formula is a DP-simplicial elimination ordering. In order to show
NP-hardness we reduce from SATISFIABILITY. In Section 4.1 we construct a CNF
formula F ′ from a given CNF formula F . We also show a number of properties of F ′.
In Section 4.2 we use these properties to prove that F is satisfiable if and only if F ′

admits a DP-simplicial elimination ordering.

4.1 The Gadget and Its Properties

For a given CNF formulaF with variables x1, . . . , xn called the x-variables and clauses
C1, . . . , Cm, we construct a CNF formula F ′ as follows. For every xi we introduce two
variables yi and zi. We call these variables the y-variables and z-variables, respectively.
For every Cj we introduce a variable cj . We call these variables the c-variables. We
also add three new variables b, b′ and b∗ called the b-variables. We let var(F ′) consist
of all b-variables, c-variables, y-variables, and z-variables.

Let Cj be a clause of F . We replace every x-variable in C by its associated y-
variable if the occurrence of x in C is positive; otherwise we replace it by its associated
z-variable. This yields a clause Dj . For instance, if Cj = {x1, x2, x3} then Dj =
{y1, z2, y3}.

We let F ′ consist of the following 6n+ 4m+ 3 clauses:

• {yi, b} and {yi, b} for i = 1, . . . , n called by-clauses

• {zi, b} and {zi, b} for i = 1, . . . , n called bz-clauses

• {yi, zi, b, b
′} and {yi, zi, b, b

∗} for i = 1, . . . , n called byz-clauses

• {cj, b′, b∗} and {cj, b′, b∗} for j = 1, . . . ,m called bc-clauses

• Dj∪{b, b∗, cj}∪{ ck | k 
= j } andDj∪{b, b′, cj}∪{ ck | k 
= j } for j = 1, . . . ,m
called bcD-clauses

• {b, b′}, {b′, b∗} and {b′, b∗} called b-clauses.

We call a pair Dj ∪ {b, b∗, cj} ∪ { ck | k 
= j } and Dj ∪ {b, b′, cj} ∪ { ck | k 
= j }
for some 1 ≤ j ≤ m a bcD-clause pair. We call a CNF formula M a yz-reduction



52 S. Ordyniak, D. Paulusma, and S. Szeider

formula of F ′ if there exists a sequence of variables v1, . . . , vk, where every vi is either
a y-variable or a z-variable, such that DPv1,...,vk(F ′) = M , and vi is DP-simplicial in
DPv1,...,vi−1(F ′) for i = 1, . . . , k. We say that two clauses C and D violate (*) if they
have a resolvent that is neither a subset of C nor a subset of D, i.e., C ∩D = {v} for
some variable v but neither (C∪D)\{v, v} = C \{v} nor (C∪D)\{v, v} = D\{v}.
We will now prove five useful lemmas valid for yz-reduction formulas.

Lemma 1. LetM be a yz-reduction formula of F ′. IfM contains both clauses of some
bcD-clause pair, then no b-variable and no c-variable is DP-simplicial in M .

Proof. LetE1 = Dj∪{b, b∗, cj}∪{ ck | k 
= j } andE2 = Dj∪{b, b′, cj}∪{ ck | k 
=
j } for some 1 ≤ j ≤ m be a bcD-clause pair in M . We observe that by definition M
contains all b-clauses and bc-clauses. This enables us to prove the lemma. Let v be a
b-variable or c-variable. Then we must distinguish 5 cases. If v = b, then {b, b′} and
E1 violate (*). If v = b′, then {b′, b∗} and E2 violate (*). If v = b∗, then {b′, b∗}
and E1 violate (*). If v = cj , then {cj, b′, b∗} and E1 violate (*). If v = ck for some
1 ≤ k ≤ m with k 
= j, then {ck, b′, b∗} and E1 violate (*). ��

Lemma 2. LetM be a yz-reduction formula of F ′. Then yi ∈ var(M) or zi ∈ var(M)
for i = 1, . . . , n.

Proof. Suppose thatM does not contain yi or zi for some 1 ≤ i ≤ m, say yi /∈ var(M).
We show that zi ∈ var(M). Let M ′ be the formula obtained from F ′ just before
the elimination of yi. Because M is a yz-reduction formula, M ′ is a yz-reduction
formula as well. Hence, var(M ′) contains all b-variables. Because yi and zi are in
var(M ′), we then find that M ′ contains the clauses {yi, zi, b, b

′}, {yi, b}, {yi, zi, b, b
∗}

and {yi, b}. Because the first two clauses resolve into {zi, b, b
′}, and the last two re-

solve into {zi, b, b
∗}, we obtain that DPyi(M ′) contains {zi, b, b

′} and {zi, b, b
∗}, which

violate (*). Because M contains all b-variables by definition, zi will never become DP-
simplicial when we process DPyi(M ′) until we obtain M . Hence, zi ∈ var(M), as
desired. ��

Lemma 3. Let M be a yz-reduction formula of F ′, and let 1 ≤ j ≤ m. If there is a
variable that occurs in Dj but not in M , then M neither contains Dj ∪ {b, b∗, cj} ∪
{ ck | k 
= j } nor Dj ∪ {b, b′, cj} ∪ { ck | k 
= j } nor their resolution descendants.

Proof. Let v be a variable that occurs in Dj but not in M . We may assume without loss
of generality that v is the first variable inDj that got eliminated and that v = yi for some
1 ≤ i ≤ n. Let S be the set that consists of all clausesDj′ ∪{b, b∗, cj′}∪{ ck | k 
= j′ }
and Dj′ ∪ {b, b′, cj′} ∪ { ck | k 
= j′ } in which yi occurs.

LetM ′ be the formula obtained fromF ′ just before the elimination of yi. BecauseM
is a yz-reduction formula, M ′ is a yz-reduction formula as well. Hence, by definition,
all b-variables and all c-variables occur in M ′. Then the clauses in M ′, in which yi

occurs, are {yi, b}, {yi, b}, {yi, zi, b, b
′},{yi, zi, b, b

∗}, together with clauses that are
either from S or a resolution descendant of a clause in S. Note that these resolution
descendants still contain all their b-variables and c-variables.

When we eliminate yi, we remove all clauses in M ′ in which yi occurs. Hence,
DPyi(M

′), and consequently,M neither containsE1 = Dj∪{b, b∗, cj}∪{ ck | k 
= j }
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nor E2 = Dj ∪ {b, b′, cj} ∪ { ck | k 
= j }. We show that DPyi(M ′) does not contain
a resolvent of one of these two clauses either. This means that M ′ does not contain
one of their resolution descendants, as desired. We only consider E1, because we can
deal with E2 in the same way. There is no yi-resolvent of E1 and a clause C from
{{yi, b}, {yi, b}, {yi, zi, b, b

′},{yi, zi, b, b
∗}}, because E1 ∩ C contains b. There is no

yi-resolvent of E1 and a (resolution descendant from a) clause C of S either, because
E1 ∩ C contains cj . ��

Lemma 4. Let M be a yz-reduction formula of F ′, and let 1 ≤ i ≤ n. If var(M)
contains yi and zi, then both yi and zi are DP-simplicial in M .

Proof. By symmetry, we only have to show that yi is DP-simplicial in M . Let S be the
set of all clausesDj′∪{b, b∗, cj′}∪{ ck | k 
= j′ } andDj′∪{b, b′, cj′}∪{ ck | k 
= j′ }
in which yi occurs. By definition, var(M) contains all b-variables and all c-variables.
This has the following two consequences. First, as var(M) also contains yi and zi,
we find that M contains the clauses {yi, b}, {yi, b}, {yi, zi, b, b

′}, and {yi, zi, b, b
∗}.

Second, by Lemma 3, the other clauses ofM in which yi occurs form a subset of S. This
means that there are only 3 pairs of clauses C1, C2 in M with C1∩C2 = {yi}, namely
the pair {yi, b}, {yi, b}, the pair {yi, b}, {yi, zi, b, b

∗}, and the pair {yi, b}, {yi, zi, b, b
′}.

Each of these pairs satisfies (*). This completes the proof of Lemma 4. ��

Lemma 5. Let M be a yz-reduction formula of F ′. IfM contains neither bcD-clauses
nor resolution descendants of such clauses, then M has a DP-simplicial elimination
ordering b, c1, . . . , cm, b′, b∗, v1, . . . , v�, where v1, . . . , v� form an arbitrary ordering
of the y-variables and z-variables in var(M).

Proof. By our assumptions, the only clauses inM in which b occurs are by-clauses, bz-
clauses, byz-clauses, and the clause {b, b′}. In all these clauses b occurs as b. Hence, b is
(trivially) DP-simplicial in M . We then find that DPb(M) consists of {b′, b∗}, {b′, b∗}
and all bc-clauses. For every cj , there exists exactly one bc-clause, namely {cj, b′, b∗},
in which cj occurs as cj , and exactly one bc-clause, namely {cj, b′, b∗}, in which cj
occurs as cj . Hence, cj is DP-simplicial in DPb,c1,...,cj−1(M) for j = 1, . . . ,m. We
deduce that DPb,c1,...,cm(M) = {{b′, b∗}, {b′, b∗}, {b′, b∗}}. Then b′ is DP-simplicial
in DPb,c1,...,cm(M), and we find that DPb,c1,...,cm,b′(M) = {{b∗}}. Then b∗ is DP-
simplicial in DPb,c1,...,cm,b′(M), and we find that DPb,c1,...,cm,b′,b∗(M) = ∅. Conse-
quently, vi is DP-simplicial in DPb,c1,...,cm,b′,b∗,v1,...,vi−1(M) for i = 1, . . . , �. This
concludes the proof of Lemma 5. ��

4.2 The Reduction

We are now ready to prove the main result of Section 4.

Theorem 2. The problem of deciding whether a given CNF formula admits a DP-
simplicial elimination ordering is NP-complete.

Proof. Recall that the problem is in NP. Given a CNF formula F that has variables
x1, . . . , xn and clauses C1, . . . , Cm, we construct in polynomial time the CNF for-
mula F ′. We claim that F is satisfiable if and only if F ′ admits a DP-simplicial elimi-
nation ordering.
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First suppose that F is satisfiable. Let τ be a satisfying truth assignment of F . We
define functions f and g that map every x-variable to a y-variable or z-variable in the
following way. If τ(xi) = 1, then f(xi) = yi and g(xi) = zi. If τ(xi) = 0, then
f(xi) = zi and g(xi) = yi. Let x1, . . . , xn be the x-variables in an arbitrary ordering.
Then, for every 1 ≤ i ≤ n, the formula DPf(x1),...,f(xi)(F

′) is a yz-reduction formula.
From Lemma 4 we deduce that f(xi) is DP-simplicial in DPf(x1),...,f(xi−1)(F

′) for
every 1 ≤ i ≤ n. Because τ satisfies F , var(Dj) contains a variable that is not in
var(DPf(x1),...,f(xn)(F ′)), for every 1 ≤ j ≤ m. Lemma 3 implies that M does
not contain any bcD-clause or any of their resolution descendants. Then, by Lemma 5,
we find that f(x1), . . . , f(xn), b, c1, . . . , cm, b′, b∗, g(x1), . . . , g(xn) is a DP-simplicial
elimination ordering of F ′.

Now suppose that F ′ admits a DP-simplicial elimination ordering v1, . . . , v|var(F ′)|.
Let vk be the first variable that is neither a y-variable nor a z-variable. Then M =
DPv1,...,vk−1(F ′) is a yz-reduction formula. LetA = {v1, . . . , vk−1}, and letX consist
of all x-variables that have an associated y-variable or z-variable inA. We define a truth
assignment τ : X → {0, 1} by setting τ(xi) = 1 if yi ∈ A and τ(xi) = 0 if zi ∈ A,
for every xi ∈ X . By Lemma 2, we find that τ is well defined. Because vk is a DP-
simplicial b-variable or a DP-simplicial c-variable in M , we can apply Lemma 1 and
find that, for every 1 ≤ j ≤ m, at least one of the two clauses Dj ∪ {b, b∗, cj} ∪
{ ck | k 
= j } and Dj ∪ {b, b′, cj} ∪ { ck | k 
= j } is not in M . This means that every
clause Cj contains a literal x with τ(x) = 1. Hence, F is satisfiable. This completes
the proof of Theorem 2. ��

5 Intermediate Classes

We discuss a possibility for coping with the NP-hardness result of the previous section.
The ultimate reason for this hardness is that a formula may have several DP-simplicial
variables, and it is hard to choose the right one. A simple workaround is to assume
a fixed ordering of the variables and always choose the DP-simplicial variable which
comes first according to this ordering. In this way we loose some generality but win
polynomial time tractability. This idea is made explicit in the following definitions.

Let Ω denote the set of all strict total orderings of the propositional variables. Let
≺ ∈ Ω and F be a CNF formula. A variable x ∈ var(F ) is≺-DP-simplicial in F if x is
DP-simplicial in F , and var(F ) contains no variable y ≺ x that is DP-simplicial in F .
A strict total ordering x1, . . . , xn of the variables of F is a≺-DP-simplicial elimination
ordering if xi is ≺-DP-simplicial in DPx1,...,xi−1(F ) for all 1 ≤ i ≤ n. We let DPS≺
denote the class of all CNF formulas that admit a≺-DP-simplicial elimination ordering,
and we set DPS∀ =

⋂
≺∈Ω DPS≺.

Proposition 2. DPS≺ can be recognized in polynomial time for every ≺ ∈ Ω. More
precisely, it is possible to find in polynomial time a ≺-DP-simplicial elimination order-
ing for a given CNF formula F , or else to decide that F has no such ordering.

Proof. Let x1, . . . , xn be the variables of F , ordered according to≺. We check whether
xi is DP-simplicial in F , for i = 1, . . . , n. Each check is clearly polynomial. When we
have found the first DP-simplicial variable xi, we replace F by DPxi(F ). We iterate
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this procedure as long as possible. Let F ′ be the formula we end up with. If var(F ′) = ∅
then F ∈ DPS≺ and the sequence of variables as they have been eliminated provides a
≺-DP-simplicial elimination ordering. If var(F ′) 
= ∅ then F /∈ DPS≺. ��

Proposition 3. BAC � DPS∀ � DPS =
⋃

≺∈Ω DPS≺.

Proof. First we show that BAC � DPS∀. Let F ∈ BAC and ≺ ∈ Ω. We use induction
on the number of variables of F to show that F ∈ DPS≺. The base case |var(F )| = 0
is trivial. Let |var(F )| ≥ 1. Because F ∈ BAC and var(F ) 
= ∅, we find that F has at
least one weakly simplicial variable. Recall that each weakly simplicial variable is DP-
simplicial. Consequently, F has at least one DP-simplicial variable. Let x be the first
DP-simplicial variable in the ordering≺. By definition, x is a≺-DP-simplicial variable.
We consider F ′ = DPx(F ). Because a β-acyclic hypergraph remains β-acyclic under
vertex and hyperedge deletion, F ′ ∈ BAC. Because F ′ has fewer variables than F ,
we use the induction hypothesis to conclude that F ′ ∈ DPS≺. Hence BAC ⊆ DPS≺
follows. Because ≺ ∈ Ω was chosen arbitrarily, BAC ⊆ DPS∀ follows.

In order to see that BAC 
= DPS∀, we take a hypergraph H that is not β-acyclic
and consider H as a CNF formula with only positive clauses. All variables of H are
DP-simplicial and can be eliminated in an arbitrary order. Thus H ∈ DPS∀ \ BAC.

Next we show that DPS∀ � DPS. Inclusion holds by definition. In order to show
that the inclusion is strict, we consider the formula F of the example in Section 3.1.
In that section we showed that y, b, b′, b∗, c, z is a DP-simplicial elimination ordering
of F . Hence, F ∈ DPS≺ for any ordering ≺ with y ≺ b ≺ b′ ≺ b∗ ≺ c ≺ z.
We also showed that z is DP-simplicial in F but that F has no DP-simplicial ordering
starting with z. Hence, F /∈ DPS≺′ for any ordering≺′ with z ≺′ y. We conclude that
F ∈ DPS \ DPS∀. Finally, the equality DPS =

⋃
≺∈Ω DPS≺ holds by definition. ��

5.1 Grades of Tractability

What properties do we require from a class C of CNF formulas to be a “tractable class”
for SAT? Clearly we want C to satisfy the property:

1. Given a formula F ∈ C, we can decide in polynomial time whether F is satisfiable.

This alone is not enough, since even the class of all satisfiable CNF formulas has this
property. Therefore a tractable class C should also satisfy the property:

2. Given a formula F , we can decide in polynomial time whether F ∈ C.

However, if C is not known to satisfy property 2, then it may still satisfy the property:

3. There exists a polynomial-time algorithm that either decides where a given a for-
mula F is satisfiable or not, or else shows that F does not belong to C.

The algorithm mentioned in property 3 may decide the satisfiability of some formulas
outside of C, hereby avoiding the recognition problem. Such algorithms are called
robust algorithms [16]. In addition we would also assume from a tractable class C to be
closed under isomorphisms, i.e., to satisfy the property:
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4. If two formulas differ only in the names of their variables, then either both or none
belong to C.

This leaves us with two notions of a tractable class for SAT, a strict one where properties
1, 2, and 4 are required, and a permissive one where only properties 3 and 4 are required.
Every strict class is permissive, but the converse does not hold in general. For instance,
the class of Horn formulas is strictly tractable, but the class of extended Horn formulas
is only known to be permissively tractable [14].

Where are the classes from our paper located within this classification? As a result
of Theorem 1, we find that BAC is strictly tractable. By Theorem 2, DPS is not strictly
tractable (unless P = NP). The classes DPS≺ do not satisfy property 4. Hence they are
not considered as tractable classes. However, DPS∀ is permissively tractable, because
an algorithm for DPS≺ for an arbitrary ordering ≺ is a robust algorithm for DPS∀. It
remains open whether DPS is permissively tractable.

6 Comparisons

We compare the classes of our paper with other known (strictly or permissively) tractable
classes. Due to Proposition 3, we only need to consider the boundary classes BAC and
DPS. We say that two classes C1 and C2 of CNF formulas are incomparable if for every
n larger than some fixed constant there exist formulas in C1 \ C2 and in C2 \ C1 with
at least n variables. We show that BAC and DPS are each incomparable with a wide
range of classes of CNF formulas, in particular with all the tractable classes considered
in Speckenmeyer’s survey [15], and classes based on graph width parameters [9].

We first introduce some terminology. The incidence graph I(H) of a hypergraph
H = (V,E) is the bipartite graph where the sets V and E form the two partitions,
and where e ∈ E is incident with v ∈ V if and only if v ∈ e. The incidence graph
of a formula F is the bipartite graph I(F ) with vertex set var(F ) ∪ F and edge set
{ {C, x} | C ∈ F and x ∈ var(C) }. A graph is chordal bipartite if it is bipartite and
has no induced cycle on 6 vertices or more. There exists a useful relationship between
β-acyclic formulas and chordal bipartite graphs, due to Tarjan and Yannakakis [17].
They presented this relationship in terms of β-acyclic hypergraphs, whereas we use the
formulation of our previous paper [12].

Proposition 4 ([17]). For a CNF formula F , statements (i)-(iii) are equivalent:

(i) F is β-acyclic;
(ii) I(H(F )) is chordal bipartite;

(iii) I(F ) is chordal bipartite.

The following four families of formulas will be sufficient for showing most of our
incomparability results. Here, n ≥ 1 is an integer, x1, . . . , xn and y1, . . . , y2n are
variables, and C1, . . . , C2n are all possible clauses with variables x1, . . . , xn.
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Fa(n) = {C1, . . . , C2n}

Fs(n) = {{x1, . . . , x�n
2 �}, {x�n

2 �, . . . , xn}}

Fc(n) = { {xi, xi+1} | 1 ≤ i ≤ n− 1 } ∪ {{xn, x1}}

Fac(n) = { {yj−1, yj} ∪ Cj | 1 < j ≤ 2n } ∪ {{y2n, y1} ∪ C1} ∪
{ {yj, yj+1} ∪ Cj | 1 ≤ j ≤ 2n } ∪ {{y2n, y1} ∪ C2n}.

We observe that every I(Fa(n)) is a complete bipartite graph with partition classes
of size n and 2n, respectively, and that every I(Fs(n)) is a tree. Because complete
bipartite graphs and trees are chordal bipartite, we can apply Proposition 4 to obtain the
following lemma.

Lemma 6. Fa(n), Fs(n) ∈ BAC for all n ≥ 1.

By the following lemma, the other two classes of formulas do not intersect with DPS.

Lemma 7. Fc(n), Fac(n) /∈ DPS for all n ≥ 3.

Proof. Throughout the proof we compute indices of modulo n for the vertices xi, and
modulo 2n+1 for the vertices yj .

First we show that Fc(n) /∈ DPS. The clauses C = {xi, xi+1} and C′ = {xi−1,
xi} ∈ Fc(n) have the xi-resolvent {xi−1, xi+1} which is not a subset of C or C′.
Hence, C and C′ violate (*). Consequently, xi is not DP-simplicial for any 1 ≤ i ≤ n.
Because Fc(n) has no other resolvents, Fc(n) has no DP-simplicial variables. Because
var(Fc(n)) 
= ∅ either, we conclude that Fc(n) /∈ DPS for all n ≥ 3.

Next we show that Fac(n) /∈ DPS. Let 1 ≤ i ≤ n for some n ≥ 3. Let 1 ≤
j1, j2 ≤ 2n such that Cj1 ∩ Cj2 = {xi}. By definition, Fac(n) contains the clauses
C = {yj1 , yj1+1} ∪ Cj1 and C′ = {yj2 , yj2+1} ∪ Cj2 , which have xi-resolvent C∗ =
{yj1 , yj1+1, yj2 , yj2+1}∪ (Cj1 ∪Cj2 ) \ {xi, xi} . However, since {yj1 , yj1+1} 
= {yj2 ,
yj2+1}, we find that C∗ is not a subset of C or C′. Hence, C and C′ violate (*).
Consequently, xi is not DP-simplicial for any 1 ≤ i ≤ n.

Let 1 ≤ j ≤ 2n for some n ≥ 3. Then Fac(n) contains the two clauses
C = {yj, yj+1} ∪ Cj and C′ = {yj−1, yj} ∪ Cj , which have yj-resolvent C∗ =
{yj−1, yj+1} ∪ Cj . However, yj−1 ∈ C∗ \ C and yj+1 ∈ C∗ \ C′. Hence, C∗ is not
a subset of C or C′. Consequently yj is not DP-simplicial for any 1 ≤ j ≤ 2n. Be-
cause Fac(n) has no other resolvents, Fac(n) has no DP-simplicial variables. Because
var(Fac(n)) 
= ∅ either, we conclude that Fac(n) /∈ DPS for all n ≥ 3. ��

Suppose that we want to show that BAC and DPS are incomparable with a class C of
CNF formulas. Then, Proposition 3 combined with Lemmas 6 and 7 implies that we
only have to show the validity of the following two statements:

(i) Fa(n) /∈ C or Fs(n) /∈ C for every n larger than some fixed constant;
(ii) Fc(n) ∈ C or Fac(n) ∈ C for every n larger than some fixed constant.
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6.1 Easy Classes

We use (i) and (ii) to show that BAC and DPS are incomparable with the classes con-
sidered by Speckenmeyer [15]. For example, consider the class of 2-CNF formulas,
i.e., CNF formulas where every clause contains at most two literals. For every n ≥ 3,
Fa(n) is not a 2-CNF formula. This shows (i). Furthermore, (ii) follows from the fact
that Fc(n) is a 2-CNF formula for every n ≥ 3. Consequently, the class of 2-CNF
formulas is incomparable with BAC and DPS.

As a second example we consider the class of hitting formulas, i.e., CNF formulas
where C ∩ C′ 
= ∅ holds for any two of their clauses [15]. Now, for every n ≥ 3 the
formula Fs(n) is not a hitting formula. This shows (i). It is not difficult to see that for
n ≥ 3, Fac(n) is a hitting formula. This shows (ii). Consequently, the class of hitting
formulas is incomparable with BAC and DPS. The proofs for other classes of formulas
considered in [15] are similar. In particular, for the classes Horn, renameable Horn,
extended Horn, CC-balanced, Q-Horn, SLUR, Matched, bounded deficiency, nested,
co-nested, and BRLRk formulas we can utilize the formulas Fa(n) to show (i) and the
formulas Fc(n) to show (ii).

6.2 Classes of Bounded Width

The SATISFIABILITY problem is tractable for various classes of formulas that are de-
fined by bounding certain width-measures of graphs associated with formulas. Besides
the incidence graph I(F ), the two other prominent graphs associated with a CNF for-
mula F are the primal graph P (F ) and the directed incidence graphD(F ). The graph
P (F ) has vertex set var(F ) and edge set { {x, y} | x, y ∈ var(C) for some C }. The
graphD(F ) is the directed graph with vertex set var(F )∪F and arc set { (C, x) | C ∈
F and x ∈ C } ∪ { (x,C) | C ∈ F and x ∈ C }. We restrict our scope to the graph
invariants treewidth (tw), and clique-width (cw). For their definitions we refer to other
sources [9], as we do not need these definitions here.

For a graph invariant π, a graph representation G ∈ {P, I,D} and an integer k, we
consider the class CNFG

k (π) of CNF formulasF with π(G(F )) ≤ k. It is known [9] that
for every fixed k ≥ 0, SAT can be solved in polynomial time for the classes CNFP

k (tw),
CNFI

k(tw), and CNFD
k (cw).

Proposition 5. For every k ≥ 2, CNFP
k (tw) is incomparable with BAC and DPS.

Proof. We prove that (i) and (ii) hold with respect to CNFP
k (tw). Because P (Fa(n))

is the complete graph on n vertices, it has treewidth n − 1 [1,10]. Hence, Fa(n) /∈
CNFP

k (tw) for all n ≥ k+ 2. This proves (i). Because P (Fc(n)) is a cycle of length n,
it has treewidth 2 [1,10]. Hence, Fc(n) ∈ CNFP

2 (tw). This proves (ii). ��

Proposition 6. For every k ≥ 2, CNFI
k(tw) is incomparable with BAC and DPS.

Proof. We prove that (i) and (ii) hold with respect to CNFI
k(tw). Because I(Fa(n)) is

a complete bipartite graph with partition classes of size n and 2n, respectively, it has
treewidth n [1,10]. Hence, Fa(n) /∈ CNFI

k(tw) for all n ≥ k + 1. This proves (i).
Because I(Fc(n)) is a cycle of length 2n, it has treewidth 2 [1,10]. Hence, Fc(n) ∈
CNFI

2(tw). This proves (ii). ��
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Proposition 7. For every k ≥ 4, CNFD
k (cw) is incomparable with BAC and DPS.

Proof. First we show that BAC \ CNFD
k (cw) contains formulas with an arbitrary large

number of variables. For all n ≥ 1, Brandstädt and Lozin [3] showed that there is a
bipartite permutation graphG(n) with clique-width n. We do not need the definition of
a bipartite permutation graph; it suffices to know that bipartite permutation graphs are
chordal bipartite [16].

Let G′(n) = (Un ∪ Wn, En) denote the graph obtained from G(n) by deleting
twin vertices as long as possible (two vertices are twins if they have exactly the same
neighbors). The deletion of twins does not change the clique-width of a graph [4].
Hence,G′(n) has clique-width n. It is well known and easy to see that the clique-width
of a bipartite graph with partition classes of size r and s, respectively, is not greater
than min(r, s) + 2. Hence |Un| ≥ n − 2. Because we only deleted vertices, G′(n) is
also chordal bipartite.

Let F (n) = {N(w) | w ∈ Wn } where N(w) denotes the set of neighbors of w in
G′(n). ThenG′(n) is the incidence graph of F (n), becauseG′(n) has no twins. Hence
F (n) ∈ BAC follows from Proposition 4. Recall that the clique-width of G′(n) =
I(F (n)) is n and that |Un| ≥ n − 2. Since all clauses of F (n) are positive, I(F (n))
and D(F (n)) have the same clique-width. We conclude that F (n) is a formula on at
least n− 2 variables that belongs to BAC \ CNFD

k (cw) for n ≥ k + 1.
For the converse direction we observe thatD(Fc(n)) is an oriented cycle and clearly

has clique-width at most 4. This means that D(Fc(n)) ∈ CNFD
4 (cw). By Lemma 7,

we have that D(Fc(n)) /∈ DPS for all n ≥ 3. We then conclude that CNFD
4 (cw) \DPS

contains D(Fc(n)) for all n ≥ 3. We are left to apply Proposition 3 to complete the
proof of Proposition 7. ��

Results similar to Propositions 5-7 also hold for the graph invariants branchwidth and
rank-width, since a class of graphs has bounded branchwidth if and only if it has
bounded treewidth [1], and a class of directed graphs has bounded rank-width if and
only if it has bounded clique-width [8].

7 Conclusion

We have studied new classes of CNF formulas: the strictly tractable class BAC, the
permissively tractable class DPS∀, and the hard-to-recognize class DPS. Our results
show that the classes are incomparable with previously studied classes. Our results
establish an interesting link between SAT and algorithmic graph theory: the formulas
in BAC are exactly the formulas whose incidence graphs belong to the class of chordal
bipartite graphs, a prominent and well-studied graph class. It would be interesting to
consider other classes of bipartite graphs, e.g., the classes described by Brandstädt,
Le and Spinrad [2], and determine the complexity of SAT restricted to CNF formulas
whose incidence graphs belong to the class under consideration. Of particular interest
are minimal super-classes of the class of chordal bipartite graphs.
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Abstract. Pseudo-Boolean constraints are omnipresent in practical
applications, and therefore a significant effort has been devoted to the
development of good SAT encoding techniques for these constraints. Sev-
eral of these encodings are based on building Binary Decision Diagrams
(BDDs) and translating these into CNF. Indeed, BDD-based encodings
have important advantages, such as sharing the same BDD for repre-
senting many constraints.

Here we first prove that, unless NP = Co-NP, there are Pseudo-
Boolean constraints that admit no variable ordering giving a polyno-
mial (Reduced, Ordered) BDD. As far as we know, this result is new (in
spite of some misleading information in the literature). It gives several
interesting insights, also relating proof complexity and BDDs.

But, more interestingly for practice, here we also show how to over-
come this theoretical limitation by coefficient decomposition. This allows
us to give the first polynomial arc-consistent BDD-based encoding for
Pseudo-Boolean constraints.

1 Introduction

In this paper we study Pseudo-Boolean constraints (PB constraints for short),
that is, constraints of the form a1x1 + · · ·+ anxn # K, where the ai and K are
integer coefficients, the xi are Boolean (0/1) variables, and the relation operator
# belongs to {<,>,≤,≥,=}. We will assume that # is ≤ and the ai and K are
positive since other cases can be easily reduced to this one (see [ES06]).

Such a constraint is a Boolean function C : {0, 1}n → {0, 1} that is monotonic
decreasing in the sense that any solution for C remains a solution after flipping
inputs from 1 to 0. Therefore these constraints can be expressed by a set of
clauses with only negative literals. For example, each clause could simply define
a (minimal) subset of variables that cannot be simultaneously true. Note however
that not every such a monotonic function is a PB constraint. For example, the
function expressed by the two clauses x1∨x2 and x3∨x4 has no (single) equivalent
PB constraint a1x1 + · · ·+anxn ≤ K (since wlog. a1 ≥ a2 and a3 ≥ a4, and then
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also x1 ∨ x3 is needed). Hence, even among the monotonic Boolean functions,
PB constraints are a rather restricted class (see also [J.S07]).

PB constraints are omnipresent in practical SAT applications, not just in typ-
ical 0-1 linear integer problems, but also as an ingredient in new SAT approaches
to, e.g., cumulative scheduling [SFSW09], so it is not surprising that a signifi-
cant number of SAT encodings for these constraints have been proposed in the
literature. Here we are interested in encoding a PB constraint C by a clause set
S (possibly with auxiliary variables) that is not only equisatisfiable, but also
(generalized) arc-consistent : given a partial assignment A, if xi is false in every
extension of A satisfying C, then unit propagating A on S sets xi to false.

To our knowledge, the only polynomial arc-consistent encoding so far was
given by Bailleux, Boufkhad and Roussel [BBR09]. Other existing encodings are
based on building (forms of) Binary Decision Diagrams (BDDs) and translating
these into CNF. Although [BBR09] is not BDD-based, our motivation to revisit
BDD-based encodings is twofold:

Example 1. Consider the constraint 3x1 + 2x2 + 4x3 ≤ 5 and the constraint
30001x1 + 19999x2 + 39998x3 ≤ 50007. Both are clearly equivalent: the Boolean
function they represent can be expressed, e.g., by the clauses x1∨x3 and x2∨x3.
However, encodings like the one of [BBR09] heavily depend on the concrete co-
efficients of each constraint, and generate a significantly larger SAT encoding
for the second one. Since, given a variable ordering, (Reduced, Ordered) BDDs
are a canonical representation for Boolean functions [Bry86], i.e., each Boolean
function has a unique ROBDD, a ROBDD-based encoding will treat both con-
straints equivalently. ��

The second reason for revisiting BDDs is that in practical problems numerous
PB constraints exist that share variables among each other. Representing them
all as a single BDD has the potential of generating a much more compact SAT
encoding that is moreover likely to have better propagation properties.

Related work. The same authors of [BBR09] proposed an encoding “very
close to those using a BDD and translating it into clauses” [BBR06]. It is
arc-consistent, but an example of a PB constraint family is given in [BBR06]
for which their kind of non-reduced BDDs, with their concrete variable order-
ing is exponentially large. However, as we show here, ROBDDs for this fam-
ily are polynomial. Their method works as follows. Given the PB constraint
a1x1 + · · · + anxn ≤ K with coefficients ordered from small to large, the root
node is labelled with variable Dn,K , expressing that the sum of the first n terms
is no more than K. Its two children are Dn−1,K and Dn−1,K−an , which cor-
respond to setting xn to false and true, respectively, etc. Two binary and two
ternary clauses per node express the relationships between the variables.

Example 2. The encoding of [BBR06] on 2x1 + · · ·+ 2x10 + 5x11 + 6x12 ≤ 10 is
illustrated in Figure 1. Node D10,5 represents 2x1 + 2x2 + · · · 2x10 ≤ 5, whereas
node D10,4 represents 2x1 +2x2 + · · · 2x10 ≤ 4. The method fails to identify that
both these PB constraints are equivalent and hence subtrees B and C will not
be merged, yielding a much larger representation than with ROBDDs. ��
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D12,10

D11,10 D11,4

D10,10 D10,5 D10,4

D10,−1

≡ false

00

0

11

1

A B C

Fig. 1. Tree-like construction of [BBR06] for 2x1 + · · · + 2x10 + 5x11 + 6x12 ≤ 10

On the other hand, Eén and Sörensson use ROBDDs in MiniSAT+ [ES06]. Their
encoding uses six three-literal clauses per BDD node and is arc-consistent, but
the proof of arc-consistency relies on a particular variable ordering. Regarding
the size of their ROBDDs, they cite [BBR06] to say “It is proven that in general
a PB-constraint can generate an exponentially sized BDD [BBR06]” which, as
we have seen, cannot be concluded from that paper since they do not use ROB-
DDs. Apart from their BDD-based encoding, [ES06] also suggests two alternative
methods: one based on adder networks (O(n) in size but not arc-consistent) and
another one based on sorting networks (O(n log n) in size and not arc-consistent).

Finally, as we have already mentioned, [BBR09] presents an arc-consistent
and polynomial BDD-based SAT encoding (size O(n2 logn log amax), i.e., it de-
pends on the size of the coefficients) based on a network of unary adders.

Main Contributions and Organization of This Paper

• Subsection 3.2: The first, to our knowledge, PB constraint family for which
ROBDDs with small-to-large variable ordering are exponential in size (and
also for the large-to-small ordering).
• Subsection 3.3: A proof that, unless NP=co-NP, there are PB constraints

that admit no polynomial-size ROBDD, independently of the variable order.
• Subsection 4.1: A proof that PB constraints whose coefficients are powers of

two do admit polynomial-size BDDs.
• Subsections 4.2 and 4.3: An arc-consistent and polynomial (size
O(n3 log amax)) BDD-based encoding for PB constraints.
• Section 5: An arc-consistent SAT encoding of BDDS for monotonic functions,

a more general class of Boolean functions than PB constraints. This encoding
uses only one binary and one ternary clause per node (the standard if-then-
else encoding for BDDs used in, e.g., [ES06], requires six ternary clauses per
node). Moreover, this translation works for any BDD variable ordering.
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2 Preliminaries

We assume the reader is familiar with the basic notions of propositional logic.
Otherwise, basic definitions can be found in [BHvMW09]. Pseudo-Boolean con-
straints (PB constraints for short) are constraints of the form a1x1 + · · · +
anxn # K, where the ai and K are integer coefficients, the xi are Boolean
(0/1) variables, and the relation operator # belongs to {<,>,≤,≥,=}. We will
assume that # is ≤ and the ai and K are positive, since other cases can be easily
reduced to this one 1: (i) changing into ≤ is straightforward if coefficients can be
negative; (ii) replacing −ax by a(1−x)− a; (iii) replacing (1−x) by x. Negated
variables like x can be handled as positive ones or, alternatively, replaced by a
fresh x′ and adding the clauses x ∨ x′ and x ∨ x′.

Our main goal is to find SAT encodings for PB constraints. That is, given a
PB-constraint C, construct an equisatisfiable clause set (a CNF) S such that any
model for S restricted to the variables of C is a model of C. Two extra properties
are sought: (i) consistency checking by unit propagation or simply consistency:
whenever a partial assignment A cannot be extended to a model for C, unit
propagation on S and A produces a contradiction (a literal l and its negation
l); and (ii) (generalized) arc-consistency (again by unit propagation): given an
assignment A that can be extended to a model of C, but such that A ∪ {x}
cannot, unit propagation on S and A produces x. More concretely, we will use
BDDs for finding such encodings, as illustrated by the following example.
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Fig. 2. Construction of a BDD for 2x1 + 3x2 + 5x3 ≤ 6

Example 3. Figure 2 explains (one method for) the construction of a ROBDD
for the PB constraint 2x1 + 3x2 + 5x3 ≤ 6 and the ordering x1 < x2 < x3.
The root node has as selector variable x1. Its false child represents the PB
constraint assuming x1 = 0 (i.e., 3x2 + 5x3 ≤ 6) and its true child represents
2 + 3x2 + 5x3 ≤ 6, that is, 3x2 + 5x3 ≤ 4. The two children have the next
variable in the ordering (x2) as selector, and the process is repeated until we
reach the last variable in the sequence. Then, a constraint of the form 0 ≤ K
is the True node (1 in the figure) if K ≥ 0 is positive, and the False node (0)
1 An =-constraint can be split into a ≤-constraint and a ≥-constraint. Here we con-

sider (arc-)consistency for the latter two isolatedly, not for the original =-constraint.
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if K < 0. This construction (leftmost in the figure), is known as an Ordered
BDD. For obtaining a Reduced Ordered BDD (BDD for short in the rest of the
paper), two reductions are applied until fixpoint: removing nodes with identical
children (as done with the leftmost x3 node in the second BDD of the figure), and
merging isomorphic subtrees, as done for x3 in the third BDD. The fourth final
BDD is a fixpoint. For a given ordering, BDDs are a canonical representation
of Boolean functions: each Boolean function has a unique BDD. BDDs can be
encoded in CNF by introducing an auxiliary variable a for every node. If the
selector variable of the node is x and the auxiliary variables for the false and
true child are f and t, respectively, add the if-then-else clauses:

x ∧ f → a x ∧ t→ a f ∧ t→ a
x ∧ f → a x ∧ t→ a f ∧ t→ a ��

In what follows, the size of a BDD is its number of nodes. We will say that a
BDD represents a PB constraint if they represent the same Boolean function.
Given an assignment A over the variables of a BDD, we define the path induced
by A as the path that starts at the root of the BDD and at each step, moves to
the false (true) child of a node iff its selector variable is false (true) in A.

3 Exponential BDDs for PB Constraints

In this section, we prove that, unless NP=co-NP, there are PB constraints whose
BDDs are all exponential, regardless of the variable ordering. We start by defin-
ing the notion of the interval of a PB constraint. After that, we consider two
families of PB constraints and we study the size of their BDDs. Finally, we prove
the main result of this section.

3.1 Intervals

Example 4. Consider the constraint 2x1 + 3x2 + 5x3 ≤ 6. Since no combination
of its coefficients adds to 6, the constraint is equivalent to 2x1 + 3x2 + 5x3 < 6,
and hence to 2x1+ 3x2 + 5x3≤5. This process cannot be repeated again since 5
can be obtained with the existing coefficients.

Similarly, we could try to increase the right-hand side of the constraint. How-
ever, there is a combination of the coefficients that adds 7, which implies that
the constraint is not equivalent to 2x1 + 3x2 + 5x3 ≤ 7. All in all, we can state
that the constraint is equivalent to 2x1 + 3x2 + 5x3 ≤ K for any K ∈ [5, 6]. It is
trivial to see that the set of valid K’s is always an interval. ��

Definition 1. Let C be a constraint of the form a1x1 + · · · + anxn ≤ K. The
interval of C consists of all integers M such that a1x1 + · · ·+ anxn ≤ M , seen
as a Boolean function, is equivalent to C.

In the following, given a BDD representing a PB constraint and a node ν, we
will refer to the interval of ν as the interval of the constraint represented by the
BDD rooted at ν. Unless stated otherwise, the ordering used in the BDD will
be x1 < x2 < . . . < xn.
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Proposition 2. If [β, γ] is the interval of a node ν with selector variable xi

then:

1. There is an assignment {xj = vj}nj=i such that aivi + · · ·+ anvn = β.
2. There is an assignment {xj = vj}nj=i such that aivi + · · ·+ anvn = γ + 1.
3. There is an assignment {xj = vj}i−1

j=1 such that K − a1v1 − a2v2 − · · · −
ai−1vi−1 ∈ [β, γ]

4. Take h < β. There exists an assignment {xj = vj}nj=i such that aivi + · · ·+
anvn > h and its path goes from ν to True.

5. Take h > γ. There exists an assignment {xj = vj}nj=i such that aivi + · · ·+
anvn ≤ h and its path goes from ν to False.

6. The interval of the True node is [0,∞).
7. The interval of the False node is (−∞,−1]. Moreover, it is the only interval

with negative values.

We now prove that, given a BDD for a PB constraint, one can easily compute
the intervals for every node bottom-up. We first start with an example.
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Fig. 3. Intervals of the BDD for 2x1 + 3x2 + 5x3 ≤ 6

Example 5. Let us consider again the constraint 2x1 + 3x2 + 5x3 ≤ 6. Assume
that all variables appear in every path from the root to the leaves (otherwise,
add extra nodes as in the rightmost BDD of Figure 3). Assume now that we
have computed the intervals for the two children of the root (rightmost BDD in
Figure 3). This means that the false child of the root is the BDD for 3x2 +5x3 ≤
[5, 7] and the true child the BDD for 3x2 + 5x3 ≤ [3, 4]. Assuming x1 to be
false, the false child would also represent the constraint 2x1 + 3x2 + 5x3 ≤
[5, 7], and assuming x1 to be true, the true child would represent the constraint
2x1 +3x2 +5x3 ≤ [5, 6]. Taking the intersection of the two intervals, we can infer
that the root node represents 2x1 + 3x2 + 5x3 ≤ [5, 6]. ��

More formally, the interval of every node can be computed as follows:

Proposition 3. Let a1x1 + a2x2 + · · ·+ anxn ≤ K be a constraint, and let B be
its BDD with the order x1 < . . . < xn. Consider a node ν with selector variable
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xi, false child νf (with selector variable xf and interval [βf , γf ]) and true child
νt (with selector variable xt and interval [βt, γt]). The interval of ν is [β, γ], with:

β = max{βf + ai+1 + · · ·+ af−1, βt + ai + ai+1 + · · ·+ at−1},
γ = min{γf , γt + ai}.

If in every path from the root to the leaves of the BDD all variables were present,
the definition of β would be much simpler (β = max{βf , βt + ai}). The other
coefficients are necessary to account for the variables that have been removed
due to the BDD reduction process.

3.2 Some Families of PB Constraints and Their BDD Size

We start by revisiting the family of PB constraints given in [BBR06], where it is
proved that, for their concrete variable ordering, their non-reduced BDDs grow
exponentially for this family. Here we prove that ROBDDs are polynomial for
this family, and that this is even independent of the variable ordering. The family
is defined by considering a, b and n positive integers such that

�n
i=1 b

i < a. The
coefficients are ωi = a+bi and the right-hand side of the constraint is K = a·n/2.
We will first prove that the constraint C : ω1x1 + · · ·+ ωnxn ≤ K is equivalent
to the cardinality constraint C′ : x1 + · · · + xn ≤ n/2 − 1. For simplicity, we
assume that n is even.

– Take an assignment satisfying C′. In this case, there are at most n/2 − 1
variables xi assigned to true, and the assignment also satisfies C since: ω1x1+

· · ·+ ωnxn ≤
n�

i=n/2+2

ωn = (n/2− 1)a+
n�

i=n/2+2

bn < K − a+
n�

i=1

bi < K.

– Consider now an assignment not satisfying C′. In this case, there are at
least n/2 true variables in the assignment and it does not satisfy C either:

ω1x1 + · · ·+ ωnxn �
n/2�
i=1

ωi = (n/2) · a+
n/2�
i=1

bi > (n/2) · a = K.

Since the two constraints are equivalent and BDDs are canonical, the BDD
representation of C and C′ are the same. But the BDD of C′ is known to be of
quadratic size because it is a cardinality constraint (see, for instance, [BBR06]).

Theorem 4. There exists a family of PB constraints parameterized by n, whose
ROBDDs grow exponentially in n when ordering the variables according to their
coefficients from small to large. The same happens ordering from large to small.

Proof. We consider constraints of the form a1x1 + · · ·+ a4nx4n ≤ K. It is con-
venient to describe the coefficients in binary notation:
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2n� �� �
a1 = 0 0 0 0 0 · · · 0 1 = 1
a2 = 0 0 0 0 0 · · · 1 0 = 2

· · · . ..

a2n−1 = 0 0 0 0 1 · · · 0 0
a2n = 0 0 0 1 0 · · · 0 0 = 22n−1

a2n+1 = 1 0 0 0 0 · · · 0 1
a2n+2 = 1 0 0 0 0 · · · 1 0

· · · . ..

a4n−1 = 1 0 0 0 1 · · · 0 0
a4n = 1 0 0 1 0 · · · 0 0

K = dm . . . d0 0 0 1 1 · · · 1 1

where dm . . . d0 is the binary representation of n. Note that, to sum to exactly
K, one needs exactly n coefficients of the bottom half (between a2n+1 and a4n)
to obtain the digits dm . . . d0, and that, once such a subset is chosen, a unique
subset of exactly n coefficients of the top half exists that will complete the
11 . . .11 suffix of K. Reversely, for each subset of size n of the top half, a unique
subset of size n of the bottom half exists that complements it to sum exactly K.
Now consider a BDD ordered x1 < · · · < x4n, and any two distinct assignments
T and T ′ for x1 . . . x2n that set exactly n variables to true. Then T and T ′

induce paths that necessarily lead to different nodes of the BDD. To see this,
wlog., assume that the sum of coefficients corresponding to true variables in T
is smaller than the one of T ′. Consider the assignment B to x2n . . . x4n that sets
to true the unique size-n subset of the bottom half coefficients that sums to K
for T (and hence exceeds K for T ′). Then the PB constraint satisfies T ∪ B,
but not T ′ ∪ B; hence B distinguishes the nodes for T and T ′. Altogether, the
BDD must have at least as many nodes as distinct assignments setting exactly
n variables of the top half to true, i.e., an exponential number,

�2n
n

�
. For the

large-to-small ordering exactly the same reasoning applies2. ��
For the PB constraint family of the previous proof, it can be shown that the
“interleaved” ordering x1 < x2n+1 < x2 < x2n+2 < . . . < x2n < x4n leads to
a polynomial-sized BDD (the proof is non-trivial, but we had to omit it here
due to space limitations). The next natural step would be to present a concrete
family of PB constraints whose BDDs are always exponential regardless of the
variable ordering. We have not been able to find such a family. But in the next
section we prove that, unless NP=co-NP, such a family must exist.

3.3 Probably There Are No Small BDDs for All PB Constraints

Our goal is now to prove that, unless NP=co-NP, there are PB constraints
all whose BDDs are exponential, independently of the variable ordering. The
2 We thank Guillem Godoy for his help with this example.
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main ingredient is an algorithm that, given a BDD B and a PB constraint C :
a1x1 + · · · + anxn ≤ K over the same set of variables, allows one to decide, in
time polynomial in the size of the BDD, whether B represents C. Again, w.l.o.g.,
we assume that the BDD ordering is x1 < x2 < . . . < xn.

Given the BDD, the algorithm first computes, in a bottom-up manner, an
interval for every node of the BDD, as explained in Proposition 3 and points 6
and 7 of Proposition 2. Note that the cost of computing a single interval is O(n)
and hence computing all intervals takes O(nm) time, where m is the BDD’s size.
After that, we know that B is a representation of C if and only if K belongs to
the interval of the BDD root.

Theorem 5. B is a BDD representing a PB constraint a1x1+· · ·+anxn ≤ K if,
and only if, K belongs to the interval of the root of B computed by our algorithm.

Proof. If B is a BDD representing C, then K belongs to the interval of the root
by definition of interval (Def. 1). Moreover, Proposition 3 guarantees that our
algorithm correctly computes such an interval.

Let us now assume that B is not a BDD representing C. Then, there exists
an assignment {x1 = v1, . . . , xn = vn} that either satisfies C but leads to the
False node in B or does not satisfy C but leads to the True node in B.

Let us assume that the assignment satisfies C. The other case is analog to
this one. In this case, we will prove that γ1 < K, where [β1, γ1] is the interval
computed for the root node.

We define a sequence of nodes ν1, ν2, . . . , νn, νn+1 as follows: ν1 is the root of
B. If the selector variable of ν1 is not x1, ν2 = ν1. Otherwise, ν2 is its false child
if v1 = 0 or its true child if v1 = 1, and so on. By definition of the assignment,
νn+1 is the False node. If we let [βi, γi] be the computed interval for the node
νi, we want to prove that every node νi satisfies γi < ai+1vi+1 + · · ·+ anvn.

Since νn+1 is the False node and its theoretical interval is (−∞,−1], it holds
that γn+1 < 0. Assume that it is true for every k > i′, and let us prove it for i′.

Let us assume that xi is the selector variable of νi′ (in this case, i′ ≤ i by
construction). There are two cases:

11 00

xixi

xj

(. . . , ν
i
′ , ν

i
′+1

, . . . , ν
i
)(. . . , ν

i
′ , ν

i
′+1

, . . . , ν
i
)

(ν
i+1, νi+2, . . . , νj)

. . .
. . .

Case 1: vi = 0

xk

(ν
i+1, νi+2, . . . , νk)

Case 2: vi = 1

Fig. 4. Several ν’s refer to the same BDD node. νj and νk are the last in the sequence.

– vi = 0. Let us take j such that νj is the false child of νi′ and the selector vari-
able of νj is xj (see Figure 4). Then, γi′ ≤ γj by definition of the algorithm.
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Using the induction hypothesis:

γi′ ≤ γj < aj+1vj+1 + · · ·+ anvn ≤ ai′+1vi′+1 + · · ·+ anvn.

– vi = 1. Similarly, let us take k such that νk is the true child of νi′ and the
selector variable of νk is xk (see Figure 4). Then, γi′ ≤ γk + ai by definition
of the algorithm. Using the induction hypothesis and that vi = 1:

γi′ ≤ ai + γk < ai + ak+1vk+1 + · · ·+ anvn ≤ ai′+1vi′+1 + · · ·+ anvn.

Therefore, it holds that γi < ai+1vi+1 + · · ·+anvn for every i. In particular, it
holds for i = 1. Since the assignment satisfies the PB constraint by hypothesis,
we have

γ1 < a1v1 + · · ·+ anvn ≤ K,
and hence K does not belong to the theoretical interval of the root node. ��

Notice that if B is not the BDD of C some of the computed intervals might be
empty. However, the algorithm will be able to compute the remaining intervals
and, since the interval of the root node will be empty, the algorithm will also be
correct. We are now ready for the following result.

Theorem 6. Unless NP=co-NP, there are PB constraints that do not admit
polynomial BDDs.

Proof. A well-known NP-complete problem is the following (variant of the) sub-
set sum problem: given a set of integers {a1, . . . , an} and an integer K, decide
whether there exists a subset of {a1, . . . , an} that sums to exactly K. Here we
prove that if a polynomial-size BDD existed for every PB constraint then for ev-
ery unsatisfiable subset sum problem a polynomial-size unsatisfiability certificate
would exist, that could moreover be verified in polynomial time, thus collaps-
ing NP and co-NP. Indeed, obviously, a subset sum problem ({a1, . . . , an},K)
is unsatisfiable if, and only if, the PB constraints a1x1 + · · · + anxn ≤ K and
a1x1 + · · · + anxn ≤ K − 1 are equivalent, i.e., they are the same Boolean
function. So if the subset sum problem ({a1, . . . , an},K) is unsatisfiable, and a
polynomial-size BDD for a1x1 + · · · + anxn ≤ K existed, this BDD would also
represent a1x1 + · · ·+ anxn ≤ K − 1, which, as we proved in the previous theo-
rem, can be checked in polynomial time (for both PB constraints at once). ��

We find it quite surprising that, even for the limited kind of monotonic functions
that can be represented by a single PB constraint, the existence of polynomial-
size BDDs would imply NP=co-NP. As said, to our knowledge it remains unknown
whether there exists a family ofPBconstraints that admitnopolynomial-sizeBDD.
This situation is analogous to what happens with extended resolution in Cook’s
program for propositional proof complexity: it is unknown whether there exists a
family of propositional problems that admit no polynomial-size extended resolu-
tion proof. So, finding successively more compact unsatisfiability certificates for
subset sum might be an interesting alternative to Cook’s program for attacking
the NP vs co-NP question.
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4 Avoiding Exponential BDDs

In this section we introduce our positive results. We restrict ourselves to a par-
ticular class of PB constraints, where all coefficients are powers of two. As we
will show below, these constraints admit polynomial BDDs. Moreover, any PB
constraint can be reduced to this class.

Example 6. Let us take the PB constraint 9x1 + 8x2 + 3x3 ≤ 10. Considering
the binary representation of the coefficients, this constraint can be rewritten into
(23x3,1 + 20x0,1) + (23x3,2) + (21x1,3 + 20x0,3) ≤ 10 if we add the binary clauses
expressing that xi,r = xr for appropriate i and r. ��

4.1 Power-of-Two PB Constraints Do Have Polynomial-Size BDDs

Let us consider a PB constraints of the form:
C : 20 · δ0,1 · x0,1 + 20 · δ0,2 · x0,2 + · · · + 20 · δ0,n · x0,n +

21 · δ1,1 · x1,1 + 21 · δ1,2 · x1,2 + · · · + 21 · δ1,n · x1,n +
. . . +

2m · δm,1 · xm,1 + 2m · δm,2 · xm,2 + · · · + 2m · δm,n · xm,n ≤ K,
where δi,r ∈ {0, 1} for all i and r. Notice that every PB constraint whose coef-
ficients are powers of 2 can be expressed in this way. Let us consider its BDD
representation with the ordering x0,1 < x0,2 < . . . < x0,n < x1,1 < . . . < xm,n.

Lemma 7. Let [β, γ] be the interval of a node with selector variable xi,r. Then
2i divides β and 0 ≤ β < (n+ r − 1) · 2i.

Proof. By Proposition 2.1, β can be expressed as a sum of coefficients all of which
are multiples of 2i, and hence β itself is a multiple of 2i. By Proposition 2.7,
the only node whose interval contains negative values is the False node, and
hence β � 0. Now, using Proposition 2.3, there must be an assignment to the
variables {x0,1, . . . , xi,r−1} such that 20δ0,1x0,1 + · · ·+ 2iδi,r−1xi,r−1 belongs to
the interval. Therefore:

β ≤ 20δ0,1x0,1 + · · ·+ 2iδi,r−1xi,r−1 ≤ 20 + 20 + · · ·+ 2i

= n20 + n21 + · · ·+ n2i−1 + (r − 1) · 2i = n(2i − 1) + 2i(r − 1)

< 2i(n+ r − 1)

Corollary 8. The number of nodes with selector variable xi,r is bounded by
n+ r − 1. In particular, the size of the BDD belongs to O(n2m).

Proof. Let ν1, ν2, . . . , νt be all the nodes with selector variable xi,r. Let [βj , γj ]
the interval of νj . Note that such intervals are pair-wise disjoint since a non-
empty intersection would imply that there exists a constraint represented by
two different BDDs. Hence we can assume, w.l.o.g., that β1 < β2 < · · · < βt.
Due to Lemma 7, we know that βj − βj−1 � 2i. Hence 2i(n + r − 1) > βt �
βt−1+2i � · · · � β1+2i(t−1) � 2i(t−1) and we can conclude that t < n+r. ��
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4.2 A Consistent Encoding for PB Constraints

Let us now take an arbitrary PB constraint C : a1x1 + · · · anxn ≤ K and assume
that aM is the largest coefficient. For m = log aM , we can rewrite C splitting
the coefficients into powers of two as shown in Example 6:

C̃ : 20 · δ0,1 · x0,1 + 20 · δ0,2 · x0,2 + · · · + 20 · δ0,n · x0,n +
21 · δ1,1 · x1,1 + 21 · δ1,2 · x1,2 + · · · + 21 · δ1,n · x1,n +

. . . +
2m · δm,1 · xm,1 + 2m · δm,2 · xm,2 + · · · + 2m · δm,n · xm,n ≤ K,

where δm,r δm−1,r · · · δ0,r is the binary representation of ar. Notice that C and
C̃ represent the same constraint if we add clauses expressing that xi,r = xi for
appropriate i and r. This process is called coefficient decomposition of the PB
constraint. A similar idea can be found in [BBR03].

The important remark is that, using a consistent SAT encoding of the BDD
for C̃ (e.g. the one given in [ES06] or the one presented in the next section) and
adding clauses expressing that xi,r = xi for appropriate i and r, we obtain a
consistent encoding for the original constraint C using O(n2 log aM ) auxiliary
variables and clauses.

This is not difficult to see. Take an assignment A over the variables of C
which cannot be extended to a model of C. This is because the coefficients
corresponding to the variables true in A add more than K. Using the clauses for
xi,r = xi, unit propagation will produce an assignment to the xi,r ’s that cannot
be extended to a model of C̃. Since the encoding for C̃ is consistent, a false clause
will be found. Conversely, if we consider an assignment A over the variables of C
than can be extended to a model of C, this assignment can clearly be extended
to a model for C̃ and the clauses expressing xi,r = xi. Hence, unit propagation
on those clauses and the encoding of C̃ will not detect a false clause.

4.3 An Arc-Consistent Encoding for PB Constraints

Unfortunately, the previous approach does not produce an arc-consistency en-
coding. The intuitive idea can be seen in the following example:

Example 7. Let us consider the constraint 3x1 + 4x2 ≤ 6. After splitting the
coefficients into powers of two, we obtain C′ : x0,1 + 2x1,1 + 4x2,2 ≤ 6. If we set
x2,2 to true, C′ implies that either x0,1 or x1,1 have to be false, but the encoding
cannot exploit the fact that both variables will receive the same truth value and
hence both should be propagated. Adding clauses stating that x0,1 = x1,1 does
not help in this sense. ��

In order to overcome this limitation, we follow the method presented in
[BKNW09, BBR09]. Let C : a1x1 + · · · + anxn ≤ K be an arbitrary PB con-
straint. We denote as Ci the constraint a1x1 + · · ·+ ai · 1 + · · ·+ anxn ≤ K, i.e.,
the constraint assuming xi to be true. For every i with 1 ≤ i ≤ n, we encode Ci

as in Section 4.2 and, in addition, we add the binary clause ri ∨ ¬xi, where ri
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is the root of the BDD for Ci. This clause helps us to preserve arc-consistency:
given an assignment A such that A ∪ {xi} cannot be extended to a model of C,
literal ri will be propagated using A (because the encoding for Ci is consistent).
Hence the added clause will allow us to propagate xi.

All in all, the suggested encoding is arc-consistent and uses O(n3 log(aM ))
clauses and auxiliary variables, where aM is the largest coefficient.

5 SAT Encodings of BDDs for Monotonic Functions

In this section we consider a BDD representing a monotonic function F and we
want to encode it into SAT. As expected, we want the encoding to be as small
as possible and arc-consistent.

As usual, the encoding introduces an auxiliary variable for every node. Let ν
be a node with selector variable x and auxiliary variable n. Let f be the variable
of its false child and t be the auxiliary variable of its true child. Only two clauses
per node are needed:

¬f → ¬n ¬t ∧ x→ ¬n.

Furthermore, we add a unit clause with the variable of the True node and another
one with the negation of the variable of the False node.

Theorem 9. The encoding is consistent in the following sense: a partial assign-
ment A cannot be extended to a model of F if and only if ¬r is propagated by
unit propagation, where r is the root of the BDD.

Proof. We prove the theorem by induction on the number of variables of the
BDD. If the BDD has no variables, then the BDD is either the True node or the
False node and the result is trivial.

Assume that the result is true for BDDs with less than k variables, and let F
be a function whose BDD has k variables. Let r be the root node, x1 its selector
variable and f, t respectively its false and true children (note that we abuse the
notation and identify nodes with their auxiliary variable). We denote by F1 the
function F|x1=1 (i.e., F after setting x1 to true) and by F0 the function F|x1=0.

– Let A be a partial assignment that cannot be extended to a model of F .
• Assume x1 ∈ A. Since A cannot be extended, the assignment A \ {x1}

cannot be extended to a model of F1. By definition of the BDD, the
function F1 has t as a BDD. By induction hypothesis, ¬t is propagated,
and since x1 ∈ A, ¬r is also propagated.
• Assume x1 
∈ A. Then, the assignment A \ {¬x1} cannot be extended to

a model of F0. Since F0 has f as a BDD, by induction hypothesis ¬f is
propagated, and hence ¬r also is.

– Let A be a partial assignment, and assume ¬r has been propagated. Then,
either ¬f has also been propagated or ¬t has been propagated and x1 ∈ A
(note that x1 has not been propagated because it only appears in one clause
which is already true).
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• Assume that ¬f has been propagated. Since f is the BDD of F0, by
induction hypothesis the assignment A \ {x1,¬x1} cannot be extended
to a model of F0. Since the function is monotonic, A \ {x1,¬x1} neither
can be extended to a model of F . Therefore, A cannot be extended to a
model of F .
• Assume that ¬t has been propagated and x1 ∈ A. Since t is the BDD of
F1, by induction hypothesis A \ {x1} cannot be extended to a model of
F1, so neither can A be extended to a model of F . ��

For obtaining an arc-consistent encoding, we only have to add a unit clause.

Theorem 10. If we add a unit clause forcing the variable of the root node to
be true, the previous encoding becomes arc-consistent.

Proof. We will prove it by induction on the variables of the BDD. The case n = 0
is trivial, so let us prove the induction case.

As before, let r be the root node, x1 its selector variable and f, t its false and
true children. We denote by F1 and F1 the functions F|x1=1 and F|x1=0.

Let A be a partial assignment that can be extended to a model of F . Assume
that A∪{xi} cannot be extended. We want to prove that xi will be propagated.

– Let us assume that x1 ∈ A. In this case, t is propagated due to the clause
¬t ∧ x1 → ¬n and the unit clause n. Since x1 ∈ A and A ∪ {xi} cannot be
extended to a model of F , A \ {x1} ∪ {xi} neither can be extended to an
assignment satisfying F1. By induction hypothesis, since t is the BDD of the
function F1, ¬xi is propagated.

– Let us assume that x1 
∈ A and xi 
= x1. Since F is monotonic, A ∪ {xi}
cannot be extended to a model of F if and only if it cannot be extended to a
model of F0. Notice that f is propagated thanks to the clause ¬f → n and
the unit clause n. By induction hypothesis, the method is arc-consistent for
F0, so xi is propagated.

– Finally, assume that x1 
∈ A and xi = x1. Since A∪{x1} cannot be extended
to a model of F , A cannot be extended to model of F1. By Theorem 9, ¬t
is propagated and, due to ¬t ∧ x1 → ¬n and n, also is ¬x1. ��

6 Conclusions and Future Work

Both theoretical and practical contributions have been made. Regarding the the-
oretical part, we have proved that, unless NP=co-NP, there are PB constraints
that do not admit polynomial BDDs. The existence of a concrete PB constraint
family for which no polynomial BDDs exist remains an open problem, with inter-
esting connections to the area of proof complexity. One of our aims is to continue
working on this open question in the near future.

At the practical level, we have introduced a BDD-based polynomial and arc-
consistent encoding of PB constraints and we have developed a BDD-based arc-
consistent encoding of monotonic functions that only uses two clauses per BDD
node. Indeed our initial motivation for this work has been practical, and we
are currently working on implementation and experimental comparison of our
encodings with other existing approaches on realistic problems.
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Abstract. The paper presents logical derivation algorithms that can
be applied to inversion of polynomially computable discrete functions.
The proposed approach is based on the fact that it is possible to or-
ganize DPLL derivation on a small subset of variables appeared in a
CNF which encodes the algorithm computing the function. The exper-
imental results showed that arrays of conflict clauses generated by this
mode of derivation, as a rule, have efficient ROBDD representations. This
fact is the departing point of development of a hybrid DPLL+ROBDD
derivation strategy: derivation techniques for ROBDD representations of
conflict databases are the same as those ones in common DPLL (vari-
able assignments and unit propagation). In addition, compact ROBDD
representations of the conflict databases can be shared effectively in a
distributed computing environment.

1 Introduction

We consider the problem of inverting functions that form a family of type

fn : {0, 1}n → {0, 1}∗,

where {0, 1}n is the set of all possible binary sequences of the length n, n ∈ N1,

{0, 1}∗ =
⋃

n∈N1

{0, 1}n .

Assume that there exists a programM for deterministic Turing machine which
computes an arbitrary function fn of the considered family, and this program is
polynomial time. The problem of inverting a function fn at point y ∈ range fn

is the problem of finding such (an arbitrary) x ∈ {0, 1}n that fn(x) = y.
There exists an effective procedure (polynomial time in n) reducing this prob-

lem to SAT problem. With the use of Tseitin transformations [22] this procedure
constructs a CNF-encoding of a circuit S(fn) over {&,¬} (any other complete
basis could be here) which emulates M on all the possible inputs of {0, 1}n.
By X = {x1, . . . , xn} we denote a set of Boolean variables corresponding to n
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c© Springer-Verlag Berlin Heidelberg 2011
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inputs of S(fn). For each logic gate G some new auxiliary variable v(G) is in-
troduced. Every AND-gate G is encoded by a CNF-representation of a Boolean
function v(G)↔ u&w. Every NOT-gate G is encoded by a CNF-representation
of a Boolean function v(G)↔ ¬u. Here u and w are the variables corresponding
to inputs of G. The CNF-encoding of S(fn) is

&
G∈S(fn)

C(G),

where C(G) is a CNF-encoding of G. Then

Cy(fn) =
(

&
G∈S(fn)

C(G)
)
· yσ1

1 · . . . · yσm
m

is a CNF encoding the invertion problem of the function fn at point y =
(σ1, . . . , σm). Here

zσ =
{
z̄, if σ = 0
z, if σ = 1

and y1, . . . , ym are Boolean variables corresponding to outputs of S(fn). If y ∈
range fn then CNF Cy(fn) is satisfiable, and in any of its satisfying assignments
one can find effectively such a vector x ∈ {0, 1}n that fn(x) = y.

It is well-known that while searching for a satisfying assignment for Cy(fn)
it is possible to restrict DPLL derivation to a set of variables denoting an input
for S(fn). We refer to this derivation strategy as “core-DPLL”. Along with
clause learning and restarts core-DPLL is complete for CNFs which encode the
inversion of discrete functions of the class described above.

It is shown in [12] that, generally speaking, core-DPLL cannot polynomi-
ally simulate DPLL (even without clause learning and restarts). Our aim is to
show that, nevertheless, the use of core-DPLL in inversion of discrete functions
provides a number of additional (or rather useful) technical capabilities. In par-
ticular, a number of problems difficult for modern DPLL-solvers can though
be solved without removing learnt clauses. One can also observe that arrays of
conflict clauses learnt by core-DPLL generally have small ROBDD representa-
tions (even for CNFs which encode cryptographic algorithms). The size of these
ROBDD representations are hundreds of times smaller than the original clauses
form. Therefore, it is possible to share effectively arrays of conflict clauses (in
the ROBDD form) accumulated at various nodes of distributed computing en-
vironments.

A brief outline of the paper is given below. In the first section, we describe
basic logical derivation mechanisms combining core-DPLL and a derivation tech-
nique for ROBDD representations of conflict databases. The second section de-
scribes a parallel implementation of DPLL+ROBDD solver made with the use
of MPI. In the third section, we present results of numerical experiments on
inversion of some cryptographic functions by the described solver.
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2 Basic Mechanisms of DPLL+ROBDD Derivation

Let Cy(fn) be a CNF encoding the problem of inverting a discrete function fn (of
the class described above) at an arbitrary point y ∈ range fn. In this section we
use binary decision diagrams (more precisely, ROBDDs) to represent arrays of
conflict clauses accumulated by core-DPLL while finding a satisfying assignment
for Cy(fn). General ideas to represent exhaustive DPLL derivation in the form
of binary decision diagrams were considered in [11]. It should be also noted that
there are examples of hybrid approaches combining DPLL with BDDs [1,8,4,9].
The methods we suggest here are based on the empirical fact that ROBDDs do
compress arrays of conflict clauses learnt during the core-DPLL derivation.

Binary decision diagrams (BDDs) were introduced by C. Y. Lee in the article
[14]. The importance of this fundamental data structure for discrete mathematics
was realized after R. Bryant’s work [3] coming out. In that paper he described a
family of algorithms manipulating Boolean functions with the use of BDDs. One
of the main theoretical results in [3] is the theorem about canonical representa-
tion of Boolean functions in the form of ROBDDs (a ROBDD is a reduced BDD
without repeatable fragments). ROBDDs are often able to represent Boolean
functions arising in applications in a very compact form.

Next, we will use two algorithms described in [3]. The first one is Apply which
constructs a ROBDD representation of a function f1 ∗ f2 using ROBDD repre-
sentations B(f1) and B(f2) of functions f1 and f2, where “∗” is an arbitrary
binary logical operation. If the variable orderings in B(f1) and B(f2) are iden-
tical, then time complexity of Apply is O (|B(f1)| · |B(f2)|) (here and below by
|B| we denote a number of vertices in B). The second one is Restrict. Algorithm
Restrict takes (B(f), x, α) as an input. Here B(f) is a ROBDD representation of
a function f defined by a Boolean formula L(f), x is a variable appeared in L(f)
and α is a constant of {0, 1}. This algorithm produces a ROBDD representation
of a function f |x=α defined by a formula L(f)|x=α. Time complexity of Restrict
is O (|B(f)|).

Consider a CNF

Cy(fn) ·D1

(
x1

1, . . . , x
1
r1

)
· . . . ·Dq

(
xq

1, . . . , x
q
rq

)
,

where Di

(
xi

1, . . . , x
i
ri

)
, i ∈ {1, . . . , q} are the conflict clauses learnt during q

restarts of core-DPLL for Cy(fn). Thus,

q⋃
i=1

{xi
1, . . . , x

i
ri
} ⊆ X,

where X = {x1, . . . , xn} is a set of input variables for a circuit S(fn). Let’s
denote a ROBDD representation of a function defined by the formula

D1

(
x1

1, . . . , x
1
r1

)
· . . . ·Dq

(
xq

1, . . . , x
q
rq

)
(1)

as B∗. We have the following fact.
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Theorem 1. Let x ∈ {0, 1}n be a solution of the inversion problem for fn at
some point y ∈ range fn. Then there exists such a path π in B∗ from the root
to the terminal “1”, that x ∈ A(π), where A(π) is a subset of {0, 1}n specified
by π.

Proof sketch. Let x ∈ {0, 1}n be an arbitrary solution of the inversion problem
considered. Suppose that there is no such a path from the root of B∗ to “1”,
which contains x. Therefore, if we substitute x into (1) we get 0. Note that each
clause Di

(
xi

1, . . . , x
i
ri

)
, i ∈ {1, . . . , q}, is a logical consequence of CNF Cy(fn).

However, if we substitute x into Cy(fn) then the satisfying assignment for Cy(fn)
results from unit propagation [6]. Thereby, CNF Cy(fn) is made true by some
assignment and CNF (1) (which is a logical consequence of Cy(fn)) is made false
by the same assignment. This contradicts our assumption, so we are forced to
conclude that there is a path from the root of B∗ to “1”, which contains x. ��

This theorem provides a basis for the general hybrid DPLL+ROBDD derivation
strategy considered below. During the derivation process a ROBDD represen-
tation of conflict databases is regarded as a formula. Therefore, one can assign
some variables in the ROBDD, and certain variables can be implied from a unit
propagation similarity. Just as in DPLL, the result of every conflict is some
conflict clause learnt. In our case, every conflict clause contains only literals
over a set of input variables for a function. The resulting conflict clauses are
added to the ROBDD representation of a conflict database using Apply proce-
dure. Let B(f) be a ROBDD representation of an arbitrary Boolean function
f(x1, . . . , xn). Each path from the root of B(f) to a terminal vertex defines a
family of sets of truth values for x1, . . . , xn.

Let’s put in correspondence each variable xi, i ∈ {1, . . . , n}, and terminal
vertex “0” with a set of the variable’s truth values defined by all the paths in
B(f) from the root to “0”. We denote this set by Δ0(xi). One can define Δ1(xi)
in a similar manner.

Suppose, that in ROBDD B(f) the following conditions for a variable xk ∈ X ,
X = {x1, . . . , xn}, hold:

1. Every path π in B(f) from the root to “1” passes through a vertex marked
by xk.

2. |Δ1(xk)| = 1.

Then variable xk may take on exactly one value (the value of Δ1(xk)) in any
truth assignment over X that makes f assign true.

Definition 1. The situation defined by conditions 1–2 is called a ROBDD-based
consequence of a value of variable xk.

A ROBDD-based consequence of some variable in B(f) presenting an array of
conflict clauses is a similarity of unit propagation used in DPLL derivation.
Further we make use of a modified version of Restrict which could assign a set
of variables of X into B(f) at the same time. As noted by R. Bryant in [3],
time complexity of this algorithm is the same as time complexity of the original
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Fig. 1. ROBDD representation of a function x2 ·(x1 ⊕ x3 · x4) using the variable order-
ing x1 ≺ x2 ≺ x3 ≺ x4. We have a ROBDD-based consequence of variable x2 (x2 = 1)
here because each path from the root to “1” passes through a vertex marked by x2 and
|Δ1(x2)| = 1.

Restrict, i. e. O (|B(f)|). The basic idea of the procedure described below was
proposed in [5]. However, the authors of that paper did not estimate its time
complexity.

Theorem 2. For a ROBDD B(f) and the values xi1 = αi1 , . . . , xim = αim ,
m ≤ n, αij ∈ {0, 1}, j ∈ {1, . . . ,m}, time complexity of the procedure which
substitutes given values into B(f) and checks for ROBDD-based consequences of
other variables is O (|B(f)|).

Proof sketch. Let’s substitute xi1 = αi1 , . . . , xim = αim into B(f). As it was said
above, this process takes time bounded byO(|B|). After making the substitutions
we check for ROBDD-based consequences. Note that ROBDD-based consequence
of some variable xk results in exactly one of the following:

1. each vertex marked by xk has “0” as the high-child;
2. each vertex marked by xk has “0” as the low-child.

Therefore, we have a ROBDD-based consequence of xi = 1 if and only if each
vertex marked by xi has “0” as the low-child and every path from “1” to the
root passes through a vertex marked by xi.

Using this fact, we go from “1” towards the root of the ROBDD. Let V (1)
be a set containing parents of “1”. We also denote a set of variables marking
vertices of V (1) by X(1) = {xi1 , . . . , xir}. We can choose from V (1) all the
vertices marked by such a variable xi∗ that xi∗ ≺ xj ∀j ∈ {i1, . . . , ir} \ {i∗}
(according to the variable ordering in the ROBDD). Variable xi∗ is referred
to as a minimal variable in X(1) with respect to the variable ordering. It is
obvious that for any variable of X(1) \ {xi∗} a ROBDD-based consequence is
not possible. By Ṽ (1) we denote a set of all vertices marked by variables of
X(1) \ {xi∗}. Next, move up from each vertex in Ṽ (1) toward the root of the
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ROBDD until the first vertex marked by variable xk appears, such that either
xk = xi∗ , or xk ≺ xi∗ . A set of the ROBDD vertices generated in this sense by
set V (1) is denoted by V (xi∗), and a set of variables to mark vertices of V (xi∗)
is denoted by X(xi∗) = {xk1 , . . . , xks}. If xk1 = . . . = xks = xi∗ , then we check
for each vertex of V (xi∗) whether its low-child (or high-child) is “0”. If yes,
then we have a ROBDD-consequence of variable xi∗ . If not, then we should go
on the procedure. It is not difficult to understand that the described algorithm
finds all the possible ROBDD-consequences in one pass through the ROBDD.
Hence, time complexity of the procedure which makes substitutions into B(f)
and checks for every possible ROBDD-based consequence is O (|B(f)|). ��

This theorem implies the next corollary.

Theorem 3. If some substitution into B(f) implies a ROBDD-based conse-
quence of xk = αk, αk ∈ {0, 1} for some xk ∈ X, then substitution of xk = αk

in B(f) cannot imply another ROBDD-based consequence.

Proof sketch. Suppose, that some substitution into B(f) implies a ROBDD-
based consequence xk = αk. Assume without loss of generality that αk = 1.
In accordance with the above (see the first paragraph of theorem’s 2 proof)
this assumption means that the low-child of each vertex marked by xk is “0”.
Substitution of xk = 1 in B(f) means that each vertex u(xk) hands over its
high-child to its parents. However, the low-child of u(xk), that is, the terminal
“0”, is not handed over to any vertex. Thus, substitution of xk = 1 into B(f)
cannot cause such a vertex in B(f) to appear, that some of its children is “0”
(but it does not mean that there is no such a vertex before the substitution).
Similar arguments hold if αk = 0. ��

This fact shows a very useful feature of ROBDD considered as an array of
Boolean constraints. It’s known that substituting a variable’s value into a CNF
may lead to a situation where unit clause rule can be used several times. The
procedure implementing iterative unit clause rule is the so-called Boolean con-
straint propagation (BCP). In the general case, BCP passes through the CNF
many times. The obtained feature of ROBDDs means that ROBDD-based conse-
quences implied by an arbitrary substitution cannot imply a new ROBDD-based
consequence and, therefore, all the information implied by the substitution comes
out as a result of a single pass through a ROBDD (see Fig. 2).

Another positive property of the hybrid derivation is the possibility to easily
implement lazy computations (an analogue of well-known data structures used
in BCP, i. e. “watched literals”, [15]) using ROBDDs.

Let’s consider the conditions determining a situation which in some sense is
ambivalent to a ROBDD-based consequence.

3. For a variable xq ∈ X , X = {x1, . . . , xn}, every path π in B(f) from the
root to “0” passes through a vertex marked by xq.

4. |Δ0(xq)| = 1.
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(a) BCP (b) ROBDD-case

Fig. 2. On the left we show the BCP process in CNF (x1 ∨ x2) · (x2 ∨ x3) · (x3 ∨ x4)
started by assigning x1 = 0; on the right we demonstrate the result of substituting
x1 = 0 into ROBDD representation of the considered CNF — here a single pass
through the ROBDD is required.

Theorem 4. Let B(f) be an arbitrary ROBDD and there be such a variable xq

in B(f) so that conditions 3–4 hold for xq. Then there are no possible ROBDD-
based consequences of any variable from X \ {xq} in B(f). Time complexity of
procedure which checks whether conditions 3–4 hold is O (|B(f)|).

Proof sketch. Let conditions 3–4 hold for some variable xq ∈ X in B(f). Assume
without loss of generality that Δ0(xq) = {1}. By analogy with the proof of
theorem 2 the assumption means that each vertex marked by xq has “1” as the
low-child.

Let xp ∈ X \{xq} be an arbitrary variable. There are two possible alternatives
for its location relative to xq with respect to the variable ordering in B(f)
(variable x1 marks the root of B(f)):

1 : x1 ≺ . . . ≺ xq ≺ . . . ≺ xp ≺ . . .
2 : x1 ≺ . . . ≺ xp ≺ . . . ≺ xq ≺ . . .

Consider the first case. As it was said above, the low-child of each vertex
marked by xq is the terminal “1”. This means that there is such a path from the
root of B(f) to “1” that does not pass through vertices marked by xp. In other
words, the ROBDD-based consequence of xp is not possible.

Consider the second case. Assume there is a ROBDD-based consequence of
xp in B(f), i. e. conditions 1–2 hold for xp. Then one of the children of each
vertex marked by xp is “0”. However, this means that there are such paths from
vertices marked by xp to “0” which do not pass through vertices marked by xq.
This contradicts the fact that conditions 3–4 hold for xq.

It is not difficult to understand that validity of conditions 3–4 can be checked
by a procedure which is similar to the procedure described in the proof of theorem
2 and has the same time complexity — O (|B(f)|). ��

This theorem provides a possibility to formulate mechanisms of lazy compu-
tations while assigning variables implied during the hybrid derivation process.
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If conditions 3–4 hold for some xq in a ROBDD B∗, and a value of xk, k 
= q,
is derived from a CNF, then it is not necessary to substitute this value into B∗

because no new ROBDD-based consequences will be implied. It is sensible to
store up all the variables to assign until the moment of assigning xq and after
that to substitute them all into B∗ at the same time checking every possible
ROBDD-based consequence (see theorem 2).

3 Parallel DPLL+ROBDD Solver Sharing Arrays of
Conflict Clauses in the ROBDD Form

As already mentioned, in practice even for hard cryptographic tests core-DPLL
generates conflict databases which have compact ROBDD representations (one
can use the variable ordering defined by a current state of accumulated variable
activities [17]). This fact leads us to an idea of a parallel solver to accumulate
arrays of conflict clauses in the ROBDD form at different computing nodes and
to share them effectively between the nodes. It is a small size of a ROBDD
representation of conflict clauses that provides the efficiency.

In more detail, the solver consists of two components. A core-DPLL compo-
nent is implemented as a modification of MiniSat-C v1.14.1 [7] named “coresat”.
Conflict analysis made by coresat uses information only on those function’s input
variables which are responsible for a conflict. It is based on the use of character-
istic vectors (this technique is similar to the one proposed in [13]). As a result,
there is no need to use an implication graph [16] to determine a reason for the
conflict. Another solver’s component encloses the process constructing ROBDD
representations of conflict databases and derivation procedures for ROBDDs
based on the algorithms described above.

The interaction between core-DPLL and ROBDD components of the hybrid
solver is implemented in compliance with the schema shown in Fig. 3.

Under this schema, the hybrid DPLL+ROBDD solver is an iterated procedure
determined by the actions listed below.

1. At the initial stage only coresat operates. The result is an array of learnt
conflict clauses, each contains literals over a set of input variables for the
function.

2. The solver suspends coresat and starts to construct a ROBDD represen-
tation of the array of conflict clauses learnt during the first step (for this
purpose we use algorithm Apply by R. Bryant). It is reasonable to use the
variable ordering defined by variable activities which were accumulated by
this moment.

3. The result of each iteration is a new ROBDD obtained using Apply to a
previous one and the ROBDD representation of the conflict database con-
structed during the current iteration (see step 2). The variable ordering can
differ in the two ROBDDs. Therefore, before running Apply we need to re-
order the old ROBDD according to the new variable ordering.

4. The process continues iteratively and is terminated if a satisfying assignment
is found or it is proven that the CNF instance is unsatisfiable.
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Fig. 3. Schema of the hybrid DPLL+ROBDD solver

A sequential variant of the hybrid solver is referred to as “hsat”. A parallel
version of the hybrid solver (we name it “mhsat”) is implemented as an MPI
application and is a bunch of hsat instances, which work simultaneously and
periodically share their conflict databases in the ROBDD form. To ensure that
hsat instances start to solve the problem differently from each other, we choose
unique initial variable activities for each of them.

Operating of mhsat can be seen as a serial implementation of the following
steps:

1. The stage of accumulating conflict clauses in the ROBDD form. Each node
generates conflict clauses irrespective of each other and constructs its local
ROBDD in accordance with its current variable activities.

2. The stage of merging accumulated conflict databases. There is a number of
alternatives on how to make this step. Here we describe the simplest one:

(a) Exchanging local variable activities to construct the common variable
ordering;

(b) Reconstructing each local ROBDD according to the common variable
ordering;

(c) Exchanging conflict databases and joining them (we use recursive dou-
bling [21] and Apply for this purpose). The result of this stage is a final
ROBDD which is constructed on some computing node and represents
the complete array of conflict clauses with respect to the common vari-
able ordering;

(d) Sharing the final ROBDD to all the other nodes;
(e) Reconstructing the final ROBDD according to a local variable ordering

on each of the computing nodes.
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It should be noted that joining the ROBDDs with the use of Apply is optional.
Instead it is possible to make each node store local copies of all the ROBDDs
made by other nodes. In this case, each of the nodes has an array of the ROBDDs
and runs a derivation process for all the ROBDDs separately. Such approach
can improve the solver’s performance when the serial use of Apply leads to an
exponential growth of the output ROBDD’s size.

4 Experimental Results

We experimented on CNFs which encode a cryptanalysis of the weakened key-
stream generator used in the cipher A5/1. This generator is used to encrypt
the traffic in GSM networks. The authors of [19] minutely described procedures
for constructing a CNF encoding cryptanalysis of the generator A5/1. They
also presented results on coarse-grained approach to logical cryptanalysis of the
generator in a Grid system. This approach is based on the technology of de-
composition of a SAT problem encoding the generator algorithm into a family
of SAT problems of lower dimension. By C(A5/1) we denote the CNF encod-
ing the algorithm of the generator A5/1, and by X(A5/1) we denote the set of
Boolean variables appeared in C(A5/1). In accordance with the technique de-
scribed in [19], from X(A5/1) one can select a subset of Boolean variables, each
corresponds to initial contents of a cell of a register of the generator. Cardinality
of this subset is d, d ≤ 64. This set is called a decomposition set and denoted
by Xd. Substituting all possible truth values for variables of Xd in C(A5/1)

Fig. 4. Schema of the A5/1 keystream generator which consists of 3 LFSRs, given by
the following connection polynomials over GF(2): LFSR 1: X19 +X18 +X17 +X14 +1;
LFSR 2: X22 + X21 + 1; LFSR 3: X23 + X22 + X21 + X8 + 1. The algorithm of A5/1
keystream generator is encoded by CNF in accordance with the technique described in
[19].
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generates a decomposition family consisting of 2d CNFs. This family forms a
parallel task list that can be processed in a distributed computing environment.
Inter-processor communications are extremely rare here.

The coarse-grained approach shows the best results in the case of decomposing
by 31 variables. In Fig. 4 shown below the cells corresponding to this set of 31
variables are dark shaded.

In our experiments we used the decomposion set X20 shown in Fig. 5. Sub-
stituting all possible truth values for variables of X20 in C(A5/1) generates a
decomposition family consisting of 220 CNFs. As the test material we consid-
ered 50 CNFs, chosen randomly from this decomposition family. All selected in
such a way CNFs were unsatisfiable. Tests were run on a platform of Intel Xeon
E5345 (4 cores, 2.33 GHz), 8 GB RAM. To evaluate efficiency of the hybrid
DPLL+ROBDD derivation we used approaches listed below:

1. Coarse-grained parallelization without sharing clauses. For each of the fifty
CNFs we constructed 4 simpler CNFs obtained by substituting all the possi-
ble values of two variables x23 and x45 into the original one. Thus, each of the
4 CPU cores solved its own fifty SAT problems irrespective of other cores. In
this series of experiments we used the following solvers: hsat, dminisat [19]
and MiniSat 2.2.0 [7].

2. The use of solvers with parallel architecture. In this series of experiments
there were involved multi-threaded solvers MiraXT 1.1 [18] and Many-
SAT 1.1 [10], as well as mhsat, which is an MPI application.

3. Sequential solving all the considered tests by hsat using one CPU core.

We emphasize that the original versions of ManySAT and MiniSat cannot cope
with tests of the set under consideration. But it is possible to solve this problem
by assigning nonzero values to initial activity for those variables which correspond

Fig. 5. Schema of the decomposition set X20
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Table 1. Average solving time for each of the solvers

place solver mode of operating number of cores avg. time (seconds)

1 mhsat parallel 4 569.016
2 hsat coarse-grained 4 644.254
3 MiraXT (mod) parallel 4 1639.192
4 hsat sequential 1 2385.578
5 dminisat coarse-grained 4 2750.486
6 MiraXT (orig) parallel 4 3214.178
7 ManySAT (mod) parallel 4 3378.078
8 MiniSat (mod) coarse-grained 4 5836.782

to initial contents of A5/1’s registers (in Table 1 this modification is denoted by
“mod”). In contrast to ManySAT and MiniSat even the original version of MiraXT
can handle the considered tests. However, increasing initial activity of the same
variables doubles its performance on average.

Note the fact that mhsat taking 4 CPU cores is more than 4 times faster than
its sequential version (hsat).

In addition to the parallel solvers listed above, we tried to use the well-known
solvers CryptoMiniSat 2.9.0 [20] and Plingeling 276 [2]. However, these solvers
could not cope with the tests in a reasonable time.

5 Conclusions and Future Work

According to the experimental results we can conclude that the hybrid DPLL+
+ROBDD derivation techniques described in the paper may be useful in solving
the function inversion problems that are difficult for the solvers performed better
on the well-known test libraries.

We suppose that our hybrid methods have potential to be heavily improved.
In particular, some improvements of the basic hsat’s algorithms are expected in
the near future. In addition, we also project to analyze various alternatives on
inter-process sharing the arrays of conflict clauses generated by different nodes
of a large-scale distributed computing environment.

Despite the interesting experimental results we realize that they are not
enough to justify the efficiency of our approach to a wide class of functions.
Therefore, we hope to succeed in expanding the class of tests, which can be
solved by the described algorithms much more efficiently in comparison with
traditional DPLL-based derivation methods.
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Abstract. Permutations and combinations are two basic concepts in el-
ementary combinatorics. Permutations appear in various problems such
as sorting, ordering, matching, coding and many other real-life situa-
tions. While conventional SAT problems are discussed in combinatorial
space, “permutatorial” SAT and CSPs also constitute an interesting and
practical research topic.

In this paper, we propose a new type of decision diagram named
“πDD,” for compact and canonical representation of a set of permuta-
tions. Similarly to an ordinary BDD or ZDD, πDD has efficient algebraic
set operations such as union, intersection, etc. In addition, πDDs hava a
special Cartesian product operation which generates all possible compos-
ite permutations for two given sets of permutations. This is a beautiful
and powerful property of πDDs.

We present two examples of πDD applications, namely, designing per-
mutation networks and analysis of Rubik’s Cube. The experimental re-
sults show that a πDD-based method can explore billions of permutations
within feasible time and space limits by using simple algebraic operations.

1 Introduction

Permutations and combinations are two basic concepts in elementary combina-
torics and discrete mathematics [4]. Permutations appear in various problems
such as sorting, ordering, matching, coding and many other real-life situations.
Permutations are also important in group theory since they correspond to bijec-
tive functions and generate symmetric groups. While conventional SAT problems
are defined in combinatorial space, “permutatorial” SAT and CSPs also consti-
tute an interesting research topic.

In this paper, we propose a new type of decision diagram named “πDD,” for
compact and canonical representation of sets of permutations. πDDs are based
on BDDs (Binary Decision Diagrams)[1] and ZDDs (Zero-suppressed BDDs)[6].
Ordinary BDDs/ZDDs provide representations of propositional logic functions or
sets of combinations, namely, they represent partial sets of combinatorial space.
Data structures and algorithms on BDDs/ZDDs have been researched for more
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than twenty years, and BDD/ZDD-based SAT solving techniques have also been
explored [2]. However, most DD-based methods are limited to combinatorial
space, and no practical techniques for direct solving of permutational problems
are known, even though they have various important applications.
πDDs are the first practical idea for efficient manipulation of sets of permuta-

tions on the basis of decision diagrams. This data structure can compress a large
number of permutations into a compact and canonical representation. Similarly
to ordinary BDDs/ZDDs, πDDs have efficient algebraic set operations such as
union, intersection, and difference. In addition, πDDs have a special Cartesian
product operation which generates all possible composite permutations (cascade
of two permutations) for two given sets of permutations. This is a beautiful and
powerful property for solving various problems in permutation space. For exam-
ple, we can represent the primitive moves of Rubik’s Cube with a small πDD,
and by simply multiplying this πDD by itself k times, we can generate a single
canonical πDD representing all possible positions reachable within k moves. The
computation time depends on the size of the πDD, which is sometimes much
smaller than the number of positions. Once we have generated πDDs for a prob-
lem, we can easily apply various analysis or testing techniques, such as counting
the exact number of permutations, exploring satisfiable permutations for a given
constraint and calculating the minimal or the average cost of all permutations.

The idea of πDDs provide hints about the application of state-of-the-art SAT
techniques used for solving combinatorial problems in the “permutatorial world.”
There is a rich body of studies in group theory led by Galois and many researchers
in discrete mathematics [3]. πDDs represent a new computational technique
which can be applied in such research fields, and we can expect it to yield
numerous exciting results in the future.

In the rest of this paper, Section 2 describes some notations and the basics
of BDDs/ZDDs. In Section 3, we propose the general structure of πDDs, and
Section 4 gives the algorithms of algebraic operations for πDDs, followed by
Section 5, which presents experimental results for two typical problems, namely,
designing permutation networks and analyzing Rubik’s Cube.

2 Preliminaries

2.1 Sets of Permutations

A permutation is a bijective function π : S → S, where S is a finite set
{1, 2, 3, . . . , n}. Although it is often confusing, in this paper we use the nota-
tion for permutation π = (a1, a2, a3, . . . , an), in which each item k moves to
ak. For example, π = (4, 2, 1, 3) implies 1 → 4, 2 → 2, 3 → 1, and 4 → 3.
In this case, we may also use multiplicative forms, such as 1π = 4, 2π = 2,
3π = 1, and 4π = 3. A composition of two permutations π1π2 simply indi-
cates a composition of two bijective functions. For example, if π1 = (3, 1, 2) and
π2 = (3, 2, 1) then π1π2 = (1, 3, 2) because 1π1π2 = 3π2 = 1, 2π1π2 = 1π2 = 3,
and 3π1π2 = 2π2 = 2. In general, π1π2 
= π2π1.
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In this paper, πe denotes an identical permutation (1, 2, 3, . . . , n). Clearly
ππe = πeπ = π for any π. We define the dimension of a permutation dim(π)
as the highest item number moved by π. For example, dim((3, 1, 2, 4)) = 3 as
item 4 does not move. We set dim(πe) = 0, and otherwise dim(π) ≥ 2. Also,
we sometimes omit items larger than dim(π). For example, (3,2,1,4,5) can be
written simply as (3,2,1).

The main objective of this paper is the representation of sets of permutations.
We describe such set as P = {πe, (2, 1), (2, 3, 1)}. The empty set is denoted as
∅. We also define the dimension of a set of permutations such that dim(P ) =
max({dim(π)| π ∈ P}). Finaly, we set dim(P ) = 0 iff P = ∅ or P = {πe},
otherwise dim(P ) ≥ 2.

We may use a multiplicative notation between a set of permutation P and a
permutation π, which is defined as follows: P · π = {π′π | π′ ∈ P}.

Fig. 1. Binary Decision Tree, BDD and ZDD

2.2 BDDs and ZDDs

A Binary Decision Diagram (BDD) [1] is a graph representation for a Boolean
function. As illustrated in Fig. 1, it is derived by reducing a binary decision tree
graph, which represents a decision making process through the input variables.
If we fix the order of the input variables and apply the following two reduction
rules, then we obtain a compact canonical form for a given Boolean function:

(1) Delete all redundant nodes whose both edges have the same destination, and
(2) Share all equivalent nodes having the same child nodes and the same vari-

ables.

Although the compression ratio achieved by using a BDD depends on the prop-
erties of the Boolean function to be represented, it can be between 10 and 100
times in some practical cases. In addition, we can systematically construct a
BDD as a result of a binary logic operation (i.e., AND or OR) for a given pair
of operand BDDs. This algorithm is based on hash table techniques, and the
computation time is almost linear with respect to the size of the BDD.

A zero-suppressed BDD (ZDD) [6] is a variant of BDD customized for manip-
ulating sets of combinations. ZDDs are based on special reduction rules which
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Fig. 2. ZDD reduction rule

differ from ordinary ones. As shown in Fig. 2, we delete all nodes whose 1-edge
points directly to the 0-terminal node and do not delete the nodes that would
be deleted in ordinary BDDs. Similarly to ordinary BDDs, ZDDs give com-
pact canonical representations for sets of combinations. We can construct ZDDs
by applying algebraic set operations such as union, intersection and difference,
which correspond to logic operations in BDDs.

The zero-suppressing reduction rule is extremely effective for sets of sparse
combinations. If the average appearance rate of each item is 1%, ZDDs are
possibly up to 100 times more compact than ordinary BDDs. Such situations
often appear in real-life problems, for example, in a supermarket, the number
of items in a customer’s basket is usually much smaller than the number of all
items displayed at the supermarket. ZDDs are now widely recognized as the most
important variant of BDDs (for details, see Knuth’s book fascicle [5].)

3 Data Structures

3.1 Desired Properties for πDDs

Before discussing the general structure of πDDs, we list the basic properties
desired for πDDs which are necessary for representing sets of permutations.

– The empty set ∅ corresponds to a 0-terminal node in a πDD since this is a
zero element for union operation.

– The singleton set {πe} corresponds to a 1-terminal node since this is an
identity element for composite operations.

– The form of a πDD for P does not depend on items larger than dim(P ).
For example, {(3, 2, 1), (2, 1)} and {(3, 2, 1, 4, 5), (2, 1, 3, 4, 5)} should yield
the same πDD.

– A πDD should provide a canonical (unique) representation for a set of per-
mutations. This allows for efficient equivalence checking and satisfiability
testing.

– Each path from the root node to a 1-terminal node should correspond to a
permutation included in the set, namely, the number of paths corresponds
to the cardinality of the set.
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Fig. 3. Decomposition for a permutation
(3,5,2,1,4)
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P =  P0 U (P1 τ(x,y) )

Fig. 4. Basic structure of πDD

3.2 Decomposition of Permutations

Transposition is a basic permutation of simple swapping of two items. In this
paper, τ(x,y) denotes the transposition of items x and y. Clearly, τ(x,y) = τ(y,x)

and (τ(x,y))2 = πe for any x and y. We set τ(x,x) = πe.
The key idea behind πDDs is based on the observation that any permutation π

can be decomposed into a sequence of up to (dim(π)−1) transpositions. For ex-
ample, a permutation (3, 5, 2, 1, 4) can be decomposed into τ(2,1)τ(3,2)τ(4,1)τ(5,4),
as illustrated in Fig. 3.

Theorem 1. Any non-identical permutation π has a decomposition form which
consists of up to (dim(π) − 1) transpositions, and there is a way to obtain a
unique decomposition form for any given permutation.

Proof. If dim(π) = 2 then π should be a single transposition τ(2,1). Next, we
assume dim(π) > 2. If we let x = dim(π) and π1 = π·τ(x,xπ), then xπ1 = x holds.
Since x is not moved by π1, then dim(π1) < dim(π). The equation π1 = π ·τ(x,xπ)

can be transformed into π = π1 · τ(x,xπ), and thus π can be decomposed into a
permutation π1 followed by one transposition. In applying this procedure to π1

recursively, the dimension decreses monotonically, and eventually we can obtain
a unique decomposition form which consists of up to (dim(π)−1) transpositions.

��
For the example shown in Fig. 3, the dimension is 5, item 5 is moved to 4, and
we obtain (3, 5, 2, 1, 4) = (3, 4, 2, 1) · τ(5,4). Next, the dimension is 4, item 4 is
moved to 1, and we obtain (3, 4, 2, 1) = (3, 1, 2)·τ(4,1). Similarly, we subsequently
obtain (3, 1, 2) = (2, 1) · τ(3,2), and finally (2, 1) = τ(2,1). In total, we obtain a
sequence of 4 transpositions. This procedure is deterministic and the result is
unique for any given permutation.

3.3 General Structure of πDDs

From the above observation, we can uniquely represent a permutation by using
a combination of transpositions. Since ZDDs are efficient representations for sets
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Fig. 5. Variable ordering rules in πDD
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Fig. 6. Multi-rooted shared πDD

Table 1. Primitive πDD operations

∅ Returns the empty set. (0-termial node)
{πe} Returns the singleton set. (1-terminal node)
P.top Returns the IDs (x, y) at the root node of P .
P ∪ Q Returns {π | π ∈ P or π ∈ Q}.
P ∩ Q Returns {π | π ∈ P, π ∈ Q}.
P \ Q Returns {π | π ∈ P, π /∈ Q}.
P.τ (x, y) Returns P · τ(x,y).
P ∗ Q Returns {αβ | α ∈ P, β ∈ Q}.
P.cofact(x, y) Returns {πτ(x,y)| π ∈ P, xπ = y}.
P.count Returns the number of permutations.

of combinations, we might arrive at a ZDD-like data structure for representing
sets of permutations.

Figure 4 shows the main idea behind πDDs. We assign a pair of item IDs
(x, y) to each decision node, where x = dim(P ) and x > y ≥ 1. Each decision
node has the following semantics:

P = P0 ∪ (P1 · τ(x,y)),

where P0 and P1 represent a partition of P determined by the existence of τ(x,y)

in their decomposition forms. More formally, they are described as:

P0 = {π | π ∈ P, xπ 
= y}, and P1 = {πτ(x,y)| π ∈ P, xπ = y}.

Note that dim(P1) < dim(P ) holds since x has not been moved by any of the
permutations in P1. Applying this expansion recursively, we eventually obtain
one of the two trivial sets of permutations, namely, the empty set ∅ (0-terminal
node) or the singleton set {πe} (1-terminal node).

Similarly to ordinary ZDDs, a fixed order of variables is necessary for all τ(x,y)

in order to preserve the unique representation of the πDD. We use the following
order from bottom to top:

(2, 1)(3, 2)(3, 1)(4, 3)(4, 2)(4, 1)(5, 4)(5, 3)(5, 2)(5, 1)(6, 5)(6, 4) . . .
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Fig. 7. Construction of πDDs by algebraic operations

Figure 5 shows the rules for variable ordering between two adjacent decision
nodes in our πDDs.

In a πDD, any combination of transpositions can be represented by a unique
path from the root node to a 1-terminal node.

Finally we confirm the node reduction rules in πDDs. Similarly to ordinary
ZDDs, sharing of equivalent nodes is effective for πDDs as well. Note that itis
necessary to check a pair of items (x, y) instead of only one decision variable in
ZDDs. The zero-suppressing rule works rather well for the deletion of redundant
nodes in πDDs since unnecessary transpositions are automatically deleted, and
thus nodes corresponding to unmoved items never appear in πDDs.

As another similarity to BDDs/ZDDs, multiple πDDs can share their respec-
tive subgraphs with each other in a multi-rooted πDD, as shown in Fig. 6.

4 Algorithms for Algebraic Operations

In the previous section, we presented the basic structure of πDDs. However, we
should consider not only compact representation but also efficient manipulation
algorithms. Similarly to ordinary BDDs/ZDDs, πDDs can be constructed by
applying algebraic operations, as illustrated in Fig. 7. Table 1 summarizes the
primitive operations used in πDDs for manipulating sets of permutations. Here,
we present a method for computing these operations efficiently. We are aiming
at developing an efficient algorithm which computes in linear or small-order
polynomial time with respect to the size of the relevant πDD, which is sometimes
much smaller than the total number of permutations.

4.1 Binary Set Operations

First we consider the following three binary set operations: union, intersection
and difference. As mentioned above, πDD is based on the expansion: P = P0 ∪
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(P1 · τ(x,y)) on each decision node. Since the two parts P0 and (P1 · τ(x,y)) are
disjoint, and since the τ operation is independent of the union, intersection and
difference operations, we can execute those set operations in the same manner
as for ordinary BDDs/ZDDs. For example, the intersection operation can be
written as follows:

P ∩Q = (P0 ∪ (P1 · τ(x,y))) ∩ (Q0 ∪ (Q1 · τ(x,y)))
= (P0 ∩Q0) ∪ ((P1 ∩Q1) · τ(x,y)).

Then, (P0 ∩ Q0) and (P1 ∩ Q1) are called recursively. Similarly to ordinary
BDDs/ZDDs, we can avoid duplicate recursive calls by using cache to store
previous operations and their results.

4.2 Transposition

Next, we consider the transposition operation with any pair of items for a given
set of permutations. Let P be a given πDD and P.top = (x, y), after which we
compute P · τ(u,v). If u > x, we can simply return a decision node with items
(u, v), whose 0-edge points to ∅ and whose 1-edge points to P . On the other
hand, if u ≤ x, more complex work is needed in order to traverse the internal
nodes of P .

To illustrate the algorithm, we recall the example permutation (3, 5, 2, 1, 4)
shown in Fig. 3, and we compute (3, 5, 2, 1, 4) τ(3,1). In a πDD, (3, 5, 2, 1, 4) is
represented by a sequence of transpositions τ(2,1)τ(3,2)τ(4,1)τ(5,4), and thus we
should compute (τ(2,1)τ(3,2)τ(4,1)τ(5,4)) τ(3,1). Then, we can observe the following
transformation:

(τ(2,1)τ(3,2)τ(4,1)τ(5,4)) τ(3,1)

= (τ(2,1)τ(3,2)τ(4,1)) (τ(5,4)τ(3,1))
= (τ(2,1)τ(3,2)τ(4,1)) (τ(3,1)τ(5,4))
= (τ(2,1)τ(3,2)) (τ(4,1)τ(3,1)) τ(5,4)

= (τ(2,1)τ(3,2)) (τ(3,1)τ(4,3)) τ(5,4)

= τ(2,1) (τ(3,2)τ(3,1)) τ(4,3)τ(5,4)

= τ(2,1) (τ(2,1)τ(3,2)) τ(4,3)τ(5,4)

= (τ(2,1)τ(2,1)) τ(3,2)τ(4,3)τ(5,4)

= τ(3,2)τ(4,3)τ(5,4).

In this transformation, two adjacent transpositions are compared, and if the or-
der violates the fixed order of the πDD, then the two transpositions are swapped.
For example, (τ(5,4)τ(3,1)) is transformed into (τ(3,1)τ(5,4)), and (τ(4,1)τ(3,1)) be-
comes (τ(3,1)τ(4,3)). In this way, eventually we can obtain a normalized decom-
position form of the πDD. Care should be taken since some item numbers are
slightly altered in this process.

Figure 8 illustrates an example of swapping τ(x,y)τ(u,v) with τ(u′,v)τ(x,y′). In
this example, u, v, and x are kept while y is changed. Here, we determine that
such swapping is always possible for any pair of transpositions, and we also
determine the cases in which the items should be changed.
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τ(x,y) τ(u,v)
4,1 3,1

1 1
2 2
3 3
4 4

τ(u',v) τ(x,y')
3,1 4,3

1 1
2 2
3 3
4 4

Fig. 8. Swapping of adjacent transpositions

Theorem 2. For given positive integers x, y, u, v where x > y > 0 and x ≥ u >
v, a pair of cascading transpositions τ(x,y)τ(u,v) can be transformed into πe or
τ(u′,v)τ(x,y′), where u′ and y′ are some positive integers satisfying u′ < x and
x > y′ > 0.

Proof. If there are no colliding items for τ(x,y) and τ(u,v), they can be swapped
transparently. Next, we check all collision cases. If y = u, then u′ = u and y′ = v.
If y = v, then u′ = y′ = u. If x = u, then u′ = y′ = y. If x = u and y = v, then
τ(x,y)τ(u,v) = πe. Otherwise, simply u′ = u and y′ = y. ��
Based on this theorem, we can implement a recursive algorithm for the trans-
position operation. If P.top = (x, y) and u ≤ x, then P · τ(u,v) can be written as
follows:

P · τ(u,v) = (P0 ∪ (P1 · τ(x,y))) · τ(u,v)

= P0 · τ(u,v) ∪ (P1 · (τ(x,y)τ(u,v)))
= (P0 · τ(u,v)) ∪ ((P1 · τ(u′,v)) · τ(x,y′))

This formula shows that we can obtain a decision node with IDs (x, y′), whose
0-edge points to the result of P0 · τ(u,v) and whose 1-edge points to the result
of P1 · τ(u′,v). Here, it should be noted that dim(P1 · τ(u′,v)) must be lower than
x. Each sub-operation can be computed by a recursive call, and eventually we
arrive at a trivial case. Similarly to other operations, we can avoid duplicate
recursions by using operation cache.

4.3 Cartesian Product

The Cartesian product P ∗ Q = {αβ | α ∈ P, β ∈ Q} computes the set of
all possible composite permutations chosen from P and Q. This is the most
important and useful operation in manipulating permutations.

By using transposition operations, the product P ∗Q can be written as follows.
Here, we assume Q.top = (x, y).

P ∗Q = P ∗ (Q0 ∪ (Q1 · τ(x,y)))
= (P ∗Q0) ∪ ((P ∗Q1) · τ(x,y))
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Fig. 9. Example of Cartesian product

This formula indicates that we may recursively call sub-operations (P ∗Q0) and
(P ∗ Q1), and we eventually arrive at a trivial operation P ∗ ∅ or P ∗ {πe}.
As in the case of other operations, we can avoid duplicate recursions by using
operation cache. However, one different point here is that we cannot ensure
dim(P ∗Q1) < x, and therefore it is necessary to apply a general transposition
operation for (P ∗Q1) · τ(x,y).

Figure 9 shows an example of product operation for two πDDs whose items
are disjoint. In this case, even though the number of permutations increases mul-
tiplicatively, the size of the πDD increases only additively. Since the computation
time also depends on the size of the πDD, in such cases the effectiveness of the
πDD-based method increses exponentially as compared to using an explicit data
structure.

4.4 Cofactor

After generating a πDD for a set of permutations, it is necessary to extract a
subset of permutations in order to check whether a certain property is satisfied.
A cofactor operation P.cofact(u, v) = {πτ(u,v)| π ∈ P, uπ = v} generates a
subset of permutations such that the item u is moved to v. For example,

{(3, 2, 1), (2, 3, 1), (1, 3, 2), (2, 1)}.cofact(3, 1)
= {(3, 2, 1)τ(3,1), (2, 3, 1)τ(3,1)}
= {πe, (2, 1)}.

Note that P.cofact(u, u) can extract the permutations where u is not moved.
Using cofactor and other set operations, various constraints can be specified and
applied to πDDs.

Here, we discuss the method for executing the cofactor operation. If (u, v)
corresponds to P.top, we may simply return the 1-edge of the root node. Oth-
erwise, it is necessary to traverse the internal nodes in P . We can observe that
the following equation holds.
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P.cofact(u, v) = (P · τ(u,v)).cofact(u, u),

Thus, the cofactor operation can be executed by using a transposition operation.
Due to space limitations, we omit the details regarding the implementation of
this operation.

5 Application Examples

Here, we present two application examples and the respective experimental re-
sults. We implemented a prototype version of a πDD manipulator based on our
own BDD/ZDD package. The program consists of 330 lines of C++ code, newly
added to the basic libraries including 6,000 lines of C/C++ code. The following
experiments were performed by using a 2.4 GHz Core2Duo PC with 2 GB of
RAM, SuSE 10 OS and GNU C++ compiler.

5.1 Design of Permutation Networks

A permutation network is an n-input and n-output network which can generate
any permutation of the input items. Such circuits are often used in customized
hardware of cryptographic systems and signal processing systems. Here, we con-
sider a type of permutation networks using a set of n-bit parallel lines with a
number of swapping switches Xk between any two adjacent lines, as shown in
Fig. 10. We then consider an optimal layout of switches for a given permutation.

A set of permutations given by one switch can be written as
⋃n−1

i=1 τ(i,i+1).
Thus, all possible permutations generated by up to k switches are described as
follows.

P0 = πe

P1 = P0 ∪ (
⋃n−1

i=1 τ(i,i+1))
Pk = Pk−1 ∗ P1 (for k ≥ 2)

According to this iterative formula, we can generate πDDs for P0, P1, P2, . . . by
increasing k, and eventually Pk+1 = Pk for any k ≥ m. Then, m shows the
minimum number of switches to required cover all permutations.

Table 2 shows the experimental results for a 10-bit permutation network. In
this table, “πDD size” shows the number of decision nodes in the πDD, “# of

1
2
3
4
5
6

1
2
3
4
5
6

X1 X2 X5X3 X4 X6 X7

Fig. 10. A permutation network for (4,2,1,6,5,3)
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Table 2. Experimental results for a 10-bit permutation network

Pk πDD # of total
size perm. #τ

P0 0 1 0
P1 9 10 9
P2 31 54 97
P3 63 209 546
P4 109 649 2152
P5 172 1717 6704
P6 261 4015 17632
P7 390 8504 40751
P8 558 16599 84985
P9 773 30239 162995
P10 1034 51909 291537
P11 1353 84592 491272
P12 1727 131635 786100
P13 2169 196524 1201963
P14 2688 282578 1764353
P15 3286 392588 2495497

Pk πDD # of total
size perm. #τ

P16 3956 528441 3412177
P17 4685 690778 4522462
P18 5455 878737 5821218
P19 6249 1089826 7296041
P20 7047 1319957 8915085
P21 7834 1563651 10645703
P22 8591 1814400 12433871
P23 9293 2065149 14239194
P24 9905 2308843 15996836
P25 10397 2538974 17671711
P26 10735 2750063 19206325
P27 10894 2938022 20584666
P28 10857 3100359 21772380
P29 10614 3236212 22773147
P30 10157 3346222 23579581
P31 9497 3432276 24214975

Pk πDD # of total
size perm. #τ

P32 8655 3497165 24691907
P33 7669 3544208 25039740
P34 6590 3576891 25279788
P35 5470 3598561 25439624
P36 4374 3612201 25539440
P37 3353 3620296 25598543
P38 2444 3624785 25630975
P39 1671 3627083 25647411
P40 1055 3628151 25654943
P41 602 3628591 25657983
P42 305 3628746 25659023
P43 136 3628790 25659303
P44 59 3628799 25659355
P45 45 3628800 25659360
P46 45 3628800 25659360

perm.” indicates the number of permutations included in Pk, and “total #τ” is
the total number of transpositions included in all permutations in Pk. Note that
the total #τ corresponds to the data size when using an explicit representation
for Pk.

The result shows that P46 is equivalent to P45, and thus we can see that
m = 45. In other words, 45 switches are sufficient to cover all 362,880 (=10!)
permutations. The number of permutations and the total number of transposi-
tions increase monotonically in this iteration process, however, the size of the
πDD reaches a peak of 10,894 at P27, and consequently we require a πDD of
only 45 decision nodes to represent all 10! permutations. The latter Pks might
yield more beautiful structures, and the πDD nodes are well shared, even though
they include a rather large number of permutations.

We can also observe that P45 and P44 differ by only a single number of permu-
tations by simply applying the difference set operation (P45 \ P44), and we can
confirm that the last permutation is (10,9,8,7,6,5,4,3,2,1). By applying algebraic
operations for πDDs to Pks, we can determine the minimal number of switches
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Table 3. Experimental results for n-bit permutation networks

n m πDD size # of total time
(peak) (final) perm. #τ (sec)

1 0 0 0 1 0 0.00
2 1 1 1 2 1 0.00
3 3 3 3 6 7 0.00
4 6 9 6 24 46 0.00
5 10 27 10 120 326 0.00
6 15 89 15 720 2556 0.01
7 21 292 21 5040 22212 0.02
8 28 972 28 40320 212976 0.06
9 36 3241 36 362880 2239344 0.26

10 45 10894 45 3628800 25659360 1.19
11 55 36906 55 39916800 318540960 5.77
12 66 125904 66 479001600 4261576320 27.06
13 78 435221 78 6227020800 61148511360 126.80
14 91 1520439 91 87178291200 937030429440 666.29

1
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1112

13
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16
17 18

19

20 21

22

2324

Fig. 11. Assignment of items for the corner cubes of Rubik’s Cube

for any given permutation, and we can find the layout of the switches which is
necessary in order to obtain this permutation.

Table 3 presents the results for n-bit permutation networks for n up to 14. We
show the peak and the final size of the πDDs and their respective computation
times. The number of all permutations is clearly n!, however, the final size of
the πDD is only n(n − 1)/2. Even though the peak size of the πDD grows
exponentially, its growth rate appears to be slower than that of n!. Here, we
can observe that the πDDs are at least 1000 times more compact than explicit
representations.

5.2 Analysis of Rubik’s Cube

Rubik’s CubeTMis one of the most popular puzzles related to permutation group
theory, and πDD can be useful for analyzing it. Here, we focus only on the moves
of the eight corner cubes. Figure 11 illustrates our assignment of the items to all
the 24 faces of the corner cubes. Then we can describe 90◦ moves along the X-,
Y- and Z-axis as follows.

πx = τ(3,5)τ(3,17)τ(3,15)τ(1,6)τ(1,16)τ(1,14)τ(2,4)τ(2,18)τ(2,13)

πy = τ(2,14)τ(2,24)τ(2,12)τ(3,13)τ(3,23)τ(3,10)τ(1,15)τ(1,22)τ(1,11)

πz = τ(1,10)τ(1,7)τ(1,4)τ(3,12)τ(3,9)τ(3,6)τ(2,11)τ(2,8)τ(2,5)
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Table 4. Experimental results for Rubik’s Cube

Pk πDD # of total
size perm. #τ

P0 0 1 0
P1 63 10 72
P2 392 64 888
P3 1789 385 5634
P4 6860 2232 34446
P5 23797 12224 194406
P6 84704 62360 1012170
P7 290018 289896 4752582
P8 608666 1159968 19087266
P9 580574 3047716 50272542
P10 18783 3671516 60540732
P11 511 3674160 60579900
P12 511 3674160 60579900

where all possible permutations of at most one of the primitive moves
(+90◦,−90◦, and 180◦ for each axis) are described as follows.

P1 = πe + πx + πx
2 + πx

3 + πy + πy
2 + πy

3 + πz + πz
2 + πz

3

Now we can generate the set of permutations for up to k moves by using the
following simple iterative formula.

Pk = Pk−1 ∗ P1 (for k ≥ 2)

Similarly to the case of permutation networks, we can find a fixed point m
such that Pk+1 = Pk for any k ≥ m. If we ignore all edge and center cubes,
Pm contains all meaningful patterns for the eight corner cubes. Note that the
cube {19, 20, 21} is fixed to the original position in order to eliminate symmetric
patterns.

Table 4 shows the result of generating πDDs for the Pk’s. We can see that the
number of all possible patterns of the corner cubes is 3,674,160. We confirmed
that 11 moves are sufficient to generate all possible patterns, in other words,
any pattern of the corner cubes can be returned to the original positions in 11
or fewer moves. As a result, this requires only 511 decision nodes of πDDs for
representing all patterns, and P8 reaches a peak at a πDD size of 608,666. The
computation time for generating all πDDs was 207 seconds.

After generating the πDDs for the Pk’s, we can analyze various properties
of Rubik’s Cube. For example, we can explore patterns where only two corner
cubes are moving and the other six cubes remain at their original positions. Such
patterns can be detected by cofactor operations as follows.

Sk = Pk.cofact(9, 9).cofact(11, 11).cofact(15, 15)
.cofact(17, 17).cofact(21, 21).cofact(23, 23)

Our experiment shows that, for k ≤ 9, Sk only includes πe. For k = 10, we
discover (2,3,1,6,4,5), (3,1,2,5,6,4), (4,5,6,1,2,3) and (6,4,5,2,3,1), and by using
the maximal number of moves (k = 11), we arrive at (6,4,5,2,3,1). After such a
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pattern is detected, it is not difficult to find a sequence of moves which generates
it. We can apply one of the primitive moves to the final pattern in order to obtain
a candidate for a preceding pattern, and we check for its existence in Pk−1. At
least one of the candidates must be in Pk−1, and then we can repeat the process
until we reach P1.

Although we have considered only the corner cubes, Rokicki et al. [7] recently
confirmed that all patterns of the Rubik’s cube can be solved as few as 20 moves,
and this is the exact minimum. They applied some mathematical pruning and
used a network of PCs for massive parallel computation amounting to a total
of 35 CPU years. Although the straight-forward application of πDDs to this
problem might cause memory overflow, we nevertheless believe that it will be
useful for accelerating such kind of problem solving.

6 Conclusion

In this paper, we proposed a new idea of decision diagrams for manipulating
sets of permutations. The method of πDDs provides hints about the application
of state-of-the-art SAT techniques used for solving combinatorial problems to
permutational problems. There is a rich body of research in group theory led by
Galois and many researchers in discrete mathematics [3]. We can expect much
future work in this area, for example, developing software tools for studying
group theory, considering many other practical applications, implementing vari-
ous other operations for sets of permutations and considering extended models,
such as sets of k-out-of-n permutations or multisets of permutations.
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Abstract. The equivalence problem for monotone formulae in normal
form Monet is in coNP, is probably not coNP-complete [1], and is solv-
able in quasi-polynomial time no(log n) [2].

We show that the straightforward reduction from Monet to UnSat

yields instances, on which actual Sat-solvers (SAT4J) are slower than cur-
rent implementations of Monet-algorithms [3]. We then improve these
implementations of Monet-algorithms notably, and we investigate which
techniques from Sat-solving are useful for Monet. Finally, we give an
advanced reduction from Monet to UnSat that yields instances, on
which the Sat-solvers reach running times, that seem to be magni-
tudes better than what is reachable with the current implementations of
Monet-algorithms.

1 Introduction

The equivalence problem for Boolean formulae is one of the classical coNP-com-
plete problems. It remains coNP-complete also if the formulae are given in normal
form. For monotone formulae—i.e. formulae with conjunctions and disjunctions,
but without negations—the equivalence problem is coNP-complete, too [4], but
its complexity drops, if the formulae are in conjunctive or disjunctive normal
form. The reason is that for every monotone formula, the minimal equivalent for-
mula in the considered normal form is unique, and the minimal equivalent normal
form formula is efficiently computable from the non-minimal normal form for-
mula. Therefore, checking whether two monotone formulae in conjunctive normal
form (resp. two monotone formulae in disjunctive normal form) are equivalent,
can be done in polynomial time. The remaining case is the equivalence problem
for monotone formulae, where one formula is in conjunctive normal form and the
other is in disjunctive normal form. This is the problem Monet, i.e. Mo(notone)
n(ormal form) e(quivalence) t(est). This problem is strongly related to dualiza-
tion of monotone conjunctive normal forms and transversal hypergraph gener-
ation [5]. This means that an algorithm for Monet solves many fundamental
problems in a wide range of fields, including artificial intelligence and logic, com-
putational biology, database theory, data mining and machine learning, mobile
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communication systems, distributed systems, and graph theory (see [3] for an
overview). The currently best Monet algorithms have quasi-polynomial running
time no(log n), or polynomial time using O(log2 n) nondeterministic bits [6,2,1].
Thus, on the one hand, Monet is probably not coNP-complete, but on the other
hand a polynomial time algorithm is not yet known. This situation turns Monet

into one of the very few problems “between” P and NP- resp. coNP-hard. The
exact complexity of the general problem Monet is a long standing famous open
question [7].

As for evaluating the practical performance, in [8,9,10,11,12,13,14] one can
find several experimental studies on known algorithms for Monet or equivalent
problems. Over all, the algorithms by Fredman and Khachiyan [2], that are the
Monet algorithms with the best worst-case upper-bounds, turn out to be strong
practical performers [3].

In this paper, we mainly address the following two questions.

Can the performance of the algorithms by Fredman and Khachiyan be improved
by using techniques from Sat-solving? The two algorithms by Fredman and
Khachiyan basically use a technique similar to the DPLL-algorithm for Sat [15].
Both algorithms leave—more or less—open which variable to choose as the split-
ting variable. We added unit propagation and tried several strategies known from
Sat-solving like MOMs [16], BOHM [17], and clause reduction heuristic [18]. In
our experimental study we show that unit propagation and the mentioned strate-
gies notably improve our implementations of the algorithm.

Are Sat-solvers good for Monet? Since Monet reduces to the complement of
Sat, it is straightforward to use a reduction and a Sat-solver to solve Monet.
Eventually, it turned out not to be that straightforward. We give a reduction
from Monet to the complement of Sat that does not increase the size of the
instances. Using this reduction function and a Sat-solvers reaches computation
times that are very much better than what is currently possible with Monet

solvers.
This paper is organized as follows. In Section 2 we introduce the basic nota-

tion and review the FK-algorithms [2]. Section 3 shows how unit propagation
and strategies for choosing a splitting variable can be used in the FK-algorithms.
Section 4 considers how Monet can be reduced UnSat. Our experimental re-
sults are discussed in Section 5, and conclusions are drawn in Section 6.

2 Preliminaries

Monotone formulae and equivalence. A Boolean formula ϕ is called mono-
tone if ϕ has only ∧ and ∨ as connectives–no negations are allowed. Let Vϕ denote
the set of variables of ϕ. An assignment is denoted as a set A ⊆ Vϕ of variables,
where x is assigned true iff x ∈ A. Otherwise x is assigned false. A term is a set
of variables that is either interpreted as a conjunction or as a disjunction of the
variables. We call a term a monomial if it is a conjunction and we call it a clause
if it is a disjunction. In this paper m always denotes a monomial and c always
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denotes a clause. A monotone Boolean formula is a DNF (disjunctive normal
form) if it is a disjunction of monomials, and it is a CNF (conjunctive normal
form) if it is a conjunction of clauses. Throughout the whole paper we regard
a CNF (resp. DNF) as a set of clauses (resp. monomials). A monotone DNF or
CNF is called irredundant if it contains no two terms such that one contains the
other. It is important, that every monotone Boolean formula has a unique irre-
dundant monotone CNF and DNF [19]—and for a given monotone CNF (resp.
DNF) the irredundant CNF (resp. DNF) can be obtained in quadratic time by
deleting all supersets of terms. Two monotone Boolean formulae are equivalent
if and only if they have the same irredundant monotone CNF. This paper deals
with the equivalence test of monotone formulae in different normal forms.

Monet: Instance: irredundant, monotone DNF D and CNF C
Question: are D and C equivalent?

In this paper D always denotes a monotone DNF and C always denotes a
monotone CNF. The length of a term is the number of variables in this term,
and the length of a normal form D (resp. C) is the number of terms in it.

The Algorithms of Fredman and Khachyian

The algorithms with the best known worst-case upper bound for solving Monet

are by Fredman and Khachiyan [2]. Both these algorithms search for a witness
of non-equivalence by a depth-first search in the tree of all assignments—we call
such a witness conflict assignment. Note that this technique is very similar to the
DPLL-algorithm for Sat [15]. The FK-algorithms work as follows. In the first
step the input formulae are modified to irredundant normal forms1. Unless the
formulae are small enough to check them by brute force, the algorithm chooses
a variable, sets the value of this variable to false and modifies the formulae due
to this assignment—we call the variable chosen the splitting variable. Next, the
equivalence of the new formulae will be tested recursively. If the recursive call
does not yield a conflict assignment, the splitting variable is set to true and the
accordingly modified formulae are tested recursively. If this second recursive call
does not yield a conflict assignment, then the formulae must be equivalent.

The modifications of the formulae are as follows. If a variable is set to true in
a DNF, then this variable can be deleted in each monomial. And if it is set to
false, then all terms which contain this variable can be deleted. For the CNF it is
dual. Let φ be a DNF or CNF, and let x be a splitting variable. Then φx

0 denotes
the formula that consists of terms of φ from which x is removed. Analogously,
φx

1 denotes the formula that consists of all terms of φ that do not contain x.

φx
0 = {t− {x} : t ∈ φ and x ∈ t} φx

1 = {t : t ∈ φ and x 
∈ t}

Thus, if x is set to true in D and C, we obtain Dx
0 ∨Dx

1 and Cx
1 . If it is set to

false, we obtain Dx
1 and Cx

0 ∧ Cx
1 .

1 This step is necessary because the formulae will be modified in further steps and the
algorithms are recursive.
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Fredman and Khachiyan [2] provide necessary conditions for equivalence, that
are also checked during the depth-first search, as follows.

(1) m ∩ c 
= ∅ for every monomial m ∈ D and every clause c ∈ C.
(2) D and C must contain exactly the same variables, i.e. VD = VC .
(3) max{|m| : m ∈ D} ≤ |C| and max{|c| : c ∈ C} ≤ |D|.

FK-algorithm A [2]. The central question is about the choice of the splitting
variable. Fredman and Khachiyan provide an additional necessary condition for
the FK-algorithm A which ensures the existence of a frequent variable.∑

m∈D

2|VD|−|m| +
∑
c∈C

2|VC|−|c| ≥ 2|VD|. (4)

If this condition is violated the formulae are not equivalent and a conflict
assignment can be computed in linear time. As splitting variable FK-algorithm
A chooses a variable with frequency ≥ 1/ log(|D|+ |C|) in either D or C.

Theorem 1. [2] FK-algorithm A has running time nO(log2 n) on input (D,C),
where n = |D|+ |C|.
Algorithm 1 shows a pseudo-code listing of FK-algorithm A. It is shown in an
experimental study in [10] that FK-algorithm A performs well in practice.

There is also a version presented in [20] which works in space polynomial
in |D|.

FK-algorithm B [2]. What happens if the first recursive call FK-A(Dx
1 , C

x
0 ∧

Cx
1 ) of FK-algorithm A does not yield a witness for non-equivalence? In this

case we gain the information that Dx
1 is equivalent to Cx

0 ∧Cx
1 . FK-algorithm A

does not use the fact that the second recursive call is performed only if the first
recursive call does not yield a witness for non-equivalence. But FK-algorithm B
makes use of this. The main conclusion is a restriction for the search tree when
the value of the splitting variable is set to true. It then suffices to find a conflict
assignment A for the formulae Dx

0 and Cx
1 with the restriction that A(Cx

0 ) = 0
(cf. [2,3]). Hence, one has to check all maximal assignments not satisfying Cx

0

only. Note that there are exactly |Cx
0 | assignments, one for every clause c ∈ Cx

0

(the resp. assignment is VCx
0
− c).

Thus, if the first recursive call does not yield a conflict assignment it suffices
to perform a recursive call for every clause c ∈ Cx

0 on the pair (Dc,x
0 , Cc,x

1 ), where
Dc,x

0 and Cc,x
1 denote the formulae we obtain if we set all variables in c to false.

We receive a similar result if we swap the chronological order of the first and
the second recursive call, cf. [2,3]. If the recursive call on the pair (Dx

0 ∨Dx
1 , C

x
1 )

does not yield a witness for non-equivalence it suffices to perform a recursive call
for every monomial m ∈ Dx

0 on the pair (Dm,x
1 , Cm,x

0 ), where Dm,x
1 and Cm,x

0

denote the formulae we obtain if we set all variables in m to true (if we found a
conflict, the resp. assignment is m).

One of the main differences to FK-algorithm A is the choice of the variable and
the advanced branching. The choice of the splitting variable does not matter in [2]
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Algorithm 1. The FK-algorithm A (FK-A)
Input: irredundant, monotone DNF D and CNF C
Output: ∅ in case of equivalence; otherwise, assignment A with A(D) �= A(C)
1: make D and C irredundant
2: if one of conditions (1)–(4) is violated then
3: return conflict assignment
4: if |D| · |C| ≤ 1 then
5: return appropriate assignment found by a trivial check
6: else
7: choose a splitting variable x with frequency ≥ 1/ log(|D| + |C|) in D or C
8: A ← FK-A(Dx

1 , Cx
0 ∧Cx

1 ) // recursive call for x set to false
9: if A = ∅ then

10: A ← FK-A(Dx
0 ∨ Dx

1 , Cx
1 ) // recursive call for x set to true

11: if A �= ∅ then return A∪ {x}
12: return A

Algorithm 2. The FK-algorithm B (FK-B)
Input: irredundant, monotone DNF D and CNF C
Output: ∅ in case of equivalence; otherwise, assignment A with A(D) �= A(C)
1: make D and C irredundant
2: if one of conditions (1)–(3) is violated then return conflict assignment
3: if min{|D|, |C|} ≤ 2 then
4: return appropriate assignment found by a trivial check
5: else
6: choose a splitting variable x from the formulae
7: if x is at most μ-frequent in D then
8: A ← FK-B(Dx

1 , Cx
0 ∧Cx

1 ) // recursive call for x set to false
9: if A �= ∅ then return A

10: for all clauses c ∈ Cx
0 do

11: A ← FK-B(Dc,x
0 , Cc,x

1 ) // see 〈1〉
12: if A �= ∅ then return A∪ {x}
13: else if x is at most μ-frequent in C then
14: A ← FK-B(Dx

0 ∨Dx
1 , Cx

1 ) // recursive call for x set to true
15: if A �= ∅ then return A∪ {x}
16: for all monomials m ∈ Dx

0 do
17: A ← FK-B(Dm,x

1 , Cm,x
0 ) // see 〈2〉

18: if A �= ∅ then return A∪ m
19: else
20: A ← FK-B(Dx

1 , Cx
0 ∧Cx

1 ) // recursive call for x set to false
21: if A = ∅ then
22: A ← FK-B(Dx

0 ∨ Dx
1 , Cx

1 ) // recursive call for x set to true
23: if A �= ∅ then return A∪ {x}
24: return A

〈1〉: Dx
1 ≡ Cx

0 ∧ Cx
1 : recursive call for all maximal non-satisfying assignments of

Cx
0 for x set to true

〈2〉: Dx
0 ∨Dx

1 ≡ Cx
1 : recursive call for all minimal satisfying assignments of Dx

0 for
x set to false
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for the theoretical upper bound, because FK-algorithm B chooses an appropriate
branching with respect to the frequency of the splitting variable. Therefore,
the algorithm uses a frequeny-threshold μ(n) with the property μ(n)μ(n) = n.
Note, that μ(n) ∼ logn/ log logn. Thus, μ(n) ∈ o(logn). A pseudo-code listing
of FK-algorithm B is given in Algorithm 2. There, a variable x is called at
most μ-frequent in D (resp. C) if its frequency is at most 1/μ(|D| · |C|), i.e.
|{m ∈ D : x ∈ m}|/|D| ≤ 1/μ(|D| · |C|).

Theorem 2. [2] FK-algorithm B has running time no(log n) on input (D,C),
where n = |D|+ |C|.

3 Unit Propagation and Decision Strategies

As mentioned before, the choice of the splitting variable is free in FK-algorithm
B, and it is almost free in FK-algorithm A. In the old implementations in [3],
the first variable in the formula is taken as splitting variable for FK-algorithm
B, and the first variable that satisfies the frequency condition is taken as split-
ting variable in FK-algorithm A. In our new implementations, we replaced this
by running unit propagation and choosing a splitting variable according to a
somewhat more involved strategy.

Unit propagation for Monet. Unit propagation (UP), or also called one-
literal rule, is a technique for simplifying a set of clauses in an automated theorem
proving system. This technique is also used for the DPLL-algorithm [15]. A
clause (resp. monomial) is a unit clause (resp. unit monomial) if it consists of
one variable only. How can the FK-algorithms gain from considering unit clauses
or unit monomials? There are two cases.
Case (a): There is a unit clause in C. Let {x} ∈ C, and let D and C satisfy
condition (1). Then Cx

0 –i.e. the set of clauses obtained from CNF C by setting x
to false–is unsatisfiable, and Dx

1–i.e. the set of monomials obtained from DNF D
by setting x to false–is unsatisfiable, too, because x is contained in all monomials
of D (cf. condition (1)). Thus, the recursive call for setting the splitting variable
x to false will yield no conflict assignment and can be left out.

Lemma 1. Let {x} ∈ C. Then D ≡ C if and only if Dx
1 = ∅ and Dx

0 ≡ Cx
1 .

According to Lemma 1, if C contains a unit clause {x} then it suffices to check
condition (1) on (Dx

0 , C
x
1 ) and to do the recursive call FK-A(Dx

0 , C
x
1 ).

Case (b): There is a unit monomial in D. This case is dual to case (a).

Lemma 2. Let {x} ∈ D. Then D ≡ C if and only if Cx
1 = ∅ and Dx

1 ≡ Cx
0 .

Note, that for formulae D and C satisfying condition (1) it is impossible that
D and C contain the same unit term (excepted D = C = {{x}}). Thus, one
can search for all unit clauses and unit monomials in the formulae and setting
the variables to the resp. values. Because both formulae are irredundant we only
have to delete the unit terms in the resp. formula. If there is no unit term left in
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D and C we can choose a splitting variable. It is also possible to avoid checking
condition (1). Thus, if we find a unit term {x} in D (resp. C) we have to check
that x is contained in all terms of C (resp D).

Decision strategies for the splitting variable. A main difference between
FK-algorithm A and FK-algorithm B is the choice of the splitting variable.
FK-algorithm A chooses a variable that is at least log(|D| + |C|)-frequent in
either D or C—one can also simply choose the most frequent variable. (If D is
equivalent to C, then there exists a log(|D|+|C|)-frequent variable [2]). However,
FK-algorithm B is free to choose any variable as splitting variable. In general,
a random choice is not a good strategy (see experiments with FKB(rMin) in
Section 5). Thus, it is interesting to investigate whether strategies for choosing
the splitting variable improve FK-algorithm B. We tried the following strategies.

(i) Choose the first free variable [3]—it is related to a random choice.
(ii) Choose the most frequent variable.
(iii) Choose the most frequent variable in the smallest terms (MOMs [16]).
(iv) Choose a variable randomly in the smallest terms.
(v) Choose the variable with maximal occurence in small terms (BOHM [17]).
(vi) Clause reduction heuristic (CRH [18]).

4 Solving Monet Using SAT-Solvers

Since Monet is in coNP, it is polynomial-time reducible to UnSat. Therefore, a
straightforward approach to solve Monet is to use this reduction and a common
SAT-solver. Clearly, (D,C) is in Monet if and only if ¬(D → C) 
∈ Sat and
¬(C → D) 
∈ Sat.

Since D is a DNF and C is a CNF, the formula ¬(C → D) is represented by
the CNF C∪D¬, whereD¬ is the set of monomials inD, in which all appearances
of variables are negated2. Similarly, the other part ¬(D → C) can be seen as a
conjunction of two DNFs and can be brought into conjunctive normal form using
the standard translation by Tseitin [21] that results in an equisatisfiable formula
in CNF. Even though this translation enlarges the formula only linearly, our
experiments with SAT-solvers on the translated formulae yielded computation
times that were worse than that of the FK-algorithms (see Section 5, Table 2).

Let us consider the formula ¬(D → C) more precisely. It is satisfied by as-
signments that satisfy a monomial in the DNF D and falsify all clauses in the
CNF C. This happens if and only if there is a monomial m ∈ D and a clause
c ∈ C such that m∩c = ∅. This condition can be checked in time O(|D| · |C| ·n),
where n denotes the number of variables. Therefore, this test can be used in the
polynomial time function f that reduces Monet to UnSat as follows.

f(D,C) =

{
C ∪D¬, if m ∩ c 
= ∅ for all m ∈ D and all c ∈ C
true, otherwise

2 Remind that C ∪ D¬ represents C ∧ D¬.
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where true denotes a formula that is satisfied by every assignment.

Lemma 3. The above function f is a polynomial-time function that reduces
Monet to UnSat.

This reduction function can be seen as a generalization of reduction used in [5,22].
Note that the property of non-empty intersection of every clause and monomial
is condition (1) from the necessary conditions for equivalence, and this is also
checked in the FK-algorithms. Nevertheless, this check is not necessary for the
correctness of the algorithms, but needed in the proof of the upper bound for
the running time [2]. In our implementations we avoid to check condition (1),
because in our experiments it seems to waste time only.

5 Experiments

We experimentally compare the following implementations of algorithms for
Monet in Java. All experiments were conducted on an Intel i7-860, 2.8 GHz, 8
GB RAM running Ubuntu 10.04.

(1) The old implementations used by [3] for the FK-algorithms A and B. We
call these implementations FKA(HHM) and FKB(HHM). The strategy of
FKA(HHM) for choosing the splitting variable is to choose the firstly found
log-frequent variable. The strategy of FKB(HHM) is to take the first variable.

(2) Our new implementations of the FK-algorithms A and B. They distinguish
in the strategy how the splitting variable is chosen.

– FKA(mf) and FKB(mf) are the FK-algorithm A and B with the strategy
of choosing the most frequent variable.

– FKA(th) is FK-algorithm A that chooses the firstly found log-frequent
(threshold) variable. This is a new implementation of FKA(HHM).

– FKB(BOHM) (resp. CRH and MOMs) denotes FK-algorithm B with
BOHM (resp. CRH and MOMs) heuristic.

– FKB(rMin) is FK-algorithm B that chooses randomly a variable in a
term of minimal length.

(3) The implementation that uses our reduction to the complement of Sat and
Sat4j [23] as Sat-solver. For simplicity, we call this reduction to Sat .

We run tests on test data that are equivalent formulae, and on those that
are not equivalent. For equivalent formulae, the runtimes strongly depend on
the structure of the test data. For non-equivalent formulae, this is not the case.
Therefore we consider both these cases separately. We use test data M(k), TH(k),
and SDTH(k) that was used also in previous studies [10,3] and that are articifially
produced Monet instances. Additionally we have test data from the UC Irvine
Machine Learning Repository [24,9] and from the Frequent Itemset Mining Im-
plementations Repository (FIMI) [25]. Notice that an instance (A,B) ∈Monet

if and only if (B,A) ∈ Monet, where on the left hand side the set of terms A
is read as a DNF and on the right hand side it is read as a CNF (B similarly).
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Fig. 1. Runtimes and reduction ratio on M(k)

Matching M(k). The formula Mk of k variables (k even) consists of the terms
{{xi, xi+1} : 1 ≤ i < k, i is even}. Thus, |Mk| = k/2. The formula M̃k equivalent
to Mk consists of the 2k/2 terms obtained by choosing one variable from every
term of Mk. The instance M(k) is the pair (Mk, M̃k). Notice that the size of M(k)
is exponential in k. Simply said, the matching instances are pairs of equivalent
formulae, where one formula is exponentially larger than the other.

Figure 1 shows the runtimes for the matching instances. It shows that the
FKB-implementations are the slowest, the FKA-implementations are interme-
diate and the reduction to Sat is the fastest. For the reduction to Sat, the
reduction ratio shows how much of the runtime was used by the reduction func-
tion and by the Sat-solver. One can see that the new FKA-implementation is
better than the old one.

Threshold TH(k). The formula Tk of k variables is the set of terms {{xi, xj} :
1 ≤ i < j ≤ k, j is even}. Thus, |Tk| = k2/4. The formula T̃k equivalent to Tk

is T̃k = {{1, . . . , 2t− 1} ∪ {2t+ 2, 2t+ 4, . . . , k} : 1 ≤ t ≤ k/2} ∪ {{2, 4, . . . , k}}.
This yields |T̃k| = k/2+1. The instance TH(k) is (Tk, T̃k) and has size in O(k2).
Simply said, the threshold instances are pairs of equivalent formulae, where one
formula is quadratic in the size of the other.

Figure 2 shows the runtimes for the threshold instances. It shows that the old
FKA-implementation is the slowest, and the old FKB-implementation and the
new FKB(rMin) are the fastest among the FK-implementations. The reason is
that the choice of the variable does not really matter on these instances, and
using a strategy wastes time. Again, the reduction to Sat is the fastest and
seems to have the slowest slope.

Self Dual Threshold SDTH(k). The formula STk of k variables (k even) is
the set of terms {{xk−1, xk}}∪{{xk}∪m : m ∈ Tk−2}∪{{xk−1}∪m : m ∈ T̃k−2}.
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Note that STk read as DNF is equivalent to STk read as CNF. The instance
SDTH(k) is (STk,STk) and has size O(k2). Simply said, the self dual threshold
instances are pairs of equivalent formulae of the same size.

Figure 3 shows the runtimes for the self-dual-threshold instances. It shows
that the old FKA-implementation is the slowest, but the new FKB(rMin)—that
was quite fast on the threshold instances—is very slow, too. The other new
FKB-implementations are the fastest among the FK-implementations. Again,
the reduction to Sat is the fastest.
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Fig. 3. Runtimes and reduction ratio on SDTH(k)
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Fig. 4. Runtimes and reduction ratio on L(r) and W(r)

Connect-4 L(r) and W(r). “Connect-4” is a board game. Each row of the
dataset corresponds to a minimal winning (W) or losing (L) stage of the first
player, and is represented as a term. A term of an equivalent formula of a set
of winning stages (represented as a formula in DNF or CNF) is a minimal way
to disturb winning/losing moves of the first player. To form a dataset, we take
the first r rows of the minimal winning stage (called Wr) and the first r rows of
the minimal losing stage (called Lr) [9,26]. To compute the equivalent formula
L̃r and W̃r we used the DL-algorithm [9]. Thus, we have L(r) = (Lr, L̃r) and
W(r) = (Wr, W̃r) as instances. The set of testdata are from the UC Irvine
Machine Learning Repository [24]. It is used to compare algorithms that compute
equivalent normal forms. The smallest formula L(100) consists of 2,441 terms
with 77 variables, and L(1600) is the largest and has 214,361 terms with 81
variables. W(100) has a size of 387 terms with 76 variables, and W(3200) has
462,702 terms with 82 variables. Figure 4 shows the runtimes for the Connect-4
instances. Only few instances were solvable within the given time bound. All FK-
implementations behave similar, and for sake of clarity we left some of them out
in Figure 4. The new FKB(CRH) is the fastest among the FK-implementations.
As before, the reduction to Sat is the fastest.

BMS-WebView-2 BMS(s) and accidents AC(s). This testdata is gener-
ated by enumerating all maximal frequent sets from datasets “BMS-WebView-2”
and “accidents”. For a dataset and a support threshold s, an itemset is called
frequent if it is included in at least s members, and infrequent otherwise. A
frequent itemset included in no other frequent itemset is called a maximal fre-
quent itemset, and an infrequent pattern including no other infrequent item-
set is called a minimal infrequent itemset. A minimal infrequent itemset is in-
cluded in no maximal frequent itemset, and any subset of it is included in at
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Fig. 5. Runtimes and reduction ratio on AC(s) and BMS(s)

least one maximal frequent itemset. Thus, the dual of the set of the comple-
ments of maximal frequent itemsets is the set of minimal infrequent itemsets
[26]. Note, if we want to check the correctness of enumerating all maximal fre-
quent sets we can use Monet, because it is equivalent to this problem [2].
The problem instances are generated by enumerating all maximal frequent sets
from datasets BMS-WebView-2 BMS(s) and accidents AC(s) with threshold s,
taken from Frequent Itemset Mining Implementations Repository (FIMI) [25].
The smallest formula AC(150k) has a size of 1,486 terms with 64 variables,
and the largest is AC(30k) with 320,657 terms and 442 variables. BMS(500)
has a size of 17,143 terms with 3340 variables, and BMS(30) has 2,314,875
terms with 3340 variables. Figure 5 shows the runtimes for the AC and BMS
instances. The BMS instances show impressively, how good the reduction to
Sat works.

The experiments described up to now used instances that consist of equivalent
formulae. To produce non-equivalent instances, we randomly delete variables
and terms in the above formulae. If we delete few variables or terms, we obtain
few conflict assignments. We compare some experiments on 236 non-equivalent
instances with thresholds of 60 and 360 seconds, where mf(¬UP) denotes the
mf-strategy without UP (see Table 1). The reduction to Sat solves all instances
within a time limit of 360 seconds, whereas our best implementation only solves
223 of 236 instances with this time. Furthermore, the experiments show that unit
propagation (UP) helps to solve more non-equivalence instances, since without
unit propagation less instances are solved. The runtimes do not depend on the
classes of test data introduced above.

Finally, we show that in order to solve Monet using reduction to Sat with
a Sat-solver, it is much better to use the reduction function f (see Section 4)
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Table 1. Non-equivalent instances (of 236) solved within 60 and 360 seconds

seconds
FKA FKB reduction

to Satmf(¬UP) mf HHM mf(¬UP) mf MOMs BOHM CRH HHM

60 194 201 166 162 181 182 148 143 161 221

360 209 223 196 201 213 216 186 188 189 236

Table 2. Comparison of runtimes of different reductions to Sat in seconds

reduction
M(k) TH(k) SDTH(k)

22 24 250 500 700 250 400

using f 0.1 0.2 0.1 0.2 0.3 0.3 0.7

using Tseitin-translation 94 453 44 854 3604 539 4974

max. of FK-algorithms 1.9 5.1 8 136 563 20.5 211

FKB(HHM) FKA(HHM)3

than the usual Tseitin-translation [21]. Table 2 shows that using the Tseitin-
translation the runtimes are worse than using the FK-algorithms.

6 Conclusion

The main finding is that a good reduction function and a Sat-solver provides
a more effective way for Monet than any current implementation of the FK-
algorithms. It is a little surprising that it does not help to use the Tseitin trans-
lation only. Essentially, our reduction solves one direction of the equivalence test,
and the Sat-solver solves the other direction. Eventually, it is not that surprising
that the Sat-solvers are better than the implementations of the FK-algorithms.

On the other hand, we could improve the old implementations of the FK-
algorithms [3] by using better data structures and unit propagation. Among
the strategies for finding a splitting variable, it seems that MOMs is a good
choice. This is not that surprising because MOMs is similar to choosing the
most frequent variable, and the latter is a straightforward strategy intended in
the formulation of FK-algorithm A [2].

Our next steps will be to figure out which strategies of Sat-solvers are respon-
sible for the fast solution of reduced Monet instances and to see whether they
can be integrated into the FK-algorithms. For example, clause learning seems to
be useless for the FK-algorithms. Does the Sat-solver use it however for solving
Monet instances? Moreover, the clauses obtained from the reduction function
are easy in the sense that they are not needed for the NP-hardness of Sat—
otherwise Monet would be coNP-complete. Therefore, one can assume that the
“full power” of Sat-solvers is not necessary in order to solve reduced Monet

instances fast. Another question is whether it makes the equivalence test easier

3 Note that FKB(HHM) does not finish on SDTH(400).
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if one checks both implication directions separately. The combination of reduc-
tion and Sat-solver works this way, whereas the FK-algorithms recursively make
equivalence tests on decreasing formulae.

Acknowledgements. The authors thank Sebastian Kuhs for some implemen-
tations, and Markus Chimani and Stephan Kottler for helpful comments.
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Abstract. We address the problem of enumerating all models of Boolean for-
mulæ in order of non-decreasing weight in Schaefer’s framework. The weight
of a model is the number of variables assigned to 1. Tractability in this context
amounts to enumerating all models one after the other in sorted order, with poly-
nomial delay between two successive outputs. The question of model-enumeration
has already been studied in Schaefer’s framework, but without imposing a specific
order. The order of non-decreasing weight changes the complexity considerably.
We obtain a new dichotomous complexity classification. On the one hand, we
develop new polynomial delay algorithms for Horn and 2-XOR-formulæ to enu-
merate the models by non-decreasing weight. On the other hand, we prove that in
all other cases such a polynomial delay algorithm does not exist, unless P = NP.

Keywords: Enumeration, complexity, polynomial delay, generalized
satisfiability, CSP.

1 Introduction

This paper is concerned with algorithmic and complexity of enumeration, the task of
generating all solutions of a given problem. The area of enumeration algorithms has ex-
perienced tremendous growth over the last decade. This is motivated by the explosion in
the size of the data that algorithms are called upon to process in everyday applications.
The prime application is query answering in databases, where huge answer sets arise
naturally. Computing queries incrementally and efficiently has become an increasingly
important issue. For instance users of web search engines want to obtain the first re-
sults of their keyword search as quickly as possible. Other application domains include
constraint solving, operations research, data mining, Web mining, bioinformatics and
computational linguistics (see e.g. [17,8,1]).

Because of the amount of solutions that enumeration algorithms possibly produce,
the size of their output is often much larger (e.g. exponentially larger) than the size
of their input. Therefore, polynomial time complexity is not a suitable yardstick of ef-
ficiency when analyzing their performance. Actually, one would be interested in the
regularity of these algorithms rather than in their total running time. For this reason,
polynomial delay is customarily regarded as the good notion of tractability for enumer-
ation complexity: an enumeration algorithm has polynomial delay p(n) if the elapsed
time between two successive outputs is polynomial in the size of the input.

K.A. Sakallah and L. Simon (Eds.): SAT 2011, LNCS 6695, pp. 120–133, 2011.
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Since the seminal result of Schaefer [19], the theoretical interest of the CSP point
of view on complexity questions has been largely assessed (see e.g. [5]). By offering a
unified framework which has intimate connections with various problems in database,
it allowed numerous classification results for a variety of computational tasks, see [7]
for a survey. The present paper refers to this line of research.

In the context of non-uniform Boolean CSP we fix a constraint language Γ , which
is a finite set of Boolean relations. A Γ -formula is then a conjunction of clauses where
the form of the clauses is restricted by Γ . Thus the problem of enumeration can be
phrased as follows: given a Γ -formula, can we efficiently enumerate all its models?
Prior works handled that question. In [4], Creignou and Hébrard proved a first classi-
fication result about enumeration for Γ -formulæ: if Γ is Horn, dual-Horn, bijunctive
or affine, there exists a polynomial delay algorithm that enumerates all models of any
Γ -formula; otherwise, such an algorithm does not exist unless P = NP. But their result
ignores an important feature in the design of enumeration algorithms: the specification
of the order in which we wish the solutions to be output. This is a fundamental aspect of
enumeration because in many cases we cannot afford to enumerate all the solutions, but
rather we want to produce the most "important" ones in some metric. In other cases we
need to find a solution that satisfies some other complicated side conditions and thus we
generate the solutions in order of preference until we find an acceptable one (see some
examples in [15,26]). Besides, it turns out that the order affects heavily the complexity.
Johnson et al. [10] prove for instance that maximal independent sets of a graph can be
enumerated in lexicographical order by a polynomial delay algorithm, while there is no
such algorithm for the reverse lexicographical order, unless P = NP.

In this paper, we specify the order in which we wish the models of Γ -formulæ to
be output. We deal with enumeration of models according to their weight, which is
the number of variables they assign to 1. The weight is a natural parameter in Boolean
CSPs [16,18,6], that can be seen as a cost of the assignment. Hence our approach refers
to numerous works that focus on enumeration by non-decreasing cost [25,15,26]. Thus,
the key problem addressed in this paper is: can one enumerate efficiently all models
of a Γ -formula by non-decreasing weight? We answer this question with a dichoto-
mous classification result: If a set of relations Γ is Horn or width-2 affine, there is a
polynomial-delay algorithm that generates all models of a Γ -formula by non-decreasing
weight. Otherwise such an algorithm does not exist, unless P = NP. The proof of this
theorem reveals new enumeration algorithms for Boolean CSPs, different from the ones
developed so far, in particular in the case of Horn formulæ.

The paper is organized as follows. In Sect. 2 we give the relevant material on Boolean
CSPs and enumeration algorithms. We also state our main result, Theorem 2. The proof
of this theorem is presented throughout the following sections. Section 3 deals with ef-
ficient enumeration algorithms in the case where Γ is width-2 affine or Horn. In Sect. 4
we prove the negative part of Theorem 2: for any relation Γ that is neither Horn nor
width-2 affine, the existence of a polynomial delay algorithm for enumerating the mod-
els of a Γ -formula by non-decreasing weight would imply P = NP. We conclude and
briefly point out open questions in Sect. 5.
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2 Material

2.1 Constraint Languages and Γ -Formulæ

A logical relation of arity k is a relation R ⊆ {0, 1}k. By abuse of notation we do not
make a difference between a relation and its predicate symbol. A constraint, C, is a
formula C = R(x1, . . . , xk), where R is a logical relation of arity k and the xi’s are
(not necessarily distinct) variables. If u and v are two variables, then C[u/v] denotes
the constraint obtained from C in replacing each occurrence of v by u. If V is a set
of variables, then C[u/V ] denotes the result of substituting u to every occurrence of
every variable of V in C. An assignment m of truth values to the variables satisfies
the constraint C if

(
m(x1), . . . ,m(xk)

)
∈ R. A constraint language Γ is a finite set

of logical relations. A Γ -formula ϕ, is a conjunction of constraints using only logical
relations from Γ and is hence a quantifier-free first order formula. With Var(ϕ) we
denote the set of variables appearing in ϕ. A Γ -formula ϕ is satisfied by an assign-
ment m : Var(ϕ) → {0, 1} if m satisfies all constraints in ϕ simultaneously (such a
satisfying assignment is also called a model of ϕ). Assuming a canonical order on the
variables we can regard models as tuples in the obvious way and we do not distinguish
between a formula ϕ and the logical relation Rϕ it defines, i.e., the relation consisting
of all models of ϕ.

Throughout the text we refer to different types of Boolean relations following Schae-
fer’s terminology [19]. We say that a Boolean relation R is Horn (resp. dual Horn) if
R can be defined by a CNF formula which is Horn (resp. dual Horn). A relation R is
bijunctive if it can be defined by a 2-CNF formula. A relation R is affine if it can be
defined by an affine formula, i.e., conjunctions of XOR-clauses (consisting of an XOR
of some variables plus maybe the constant 1) — such a formula may also be seen as a
system of linear equations over GF[2]. A relation is affine with width 2 (width-2 affine,
for short) if it is definable by a conjunction of clauses, each of them being either a unary
clause or a 2-XOR-clause (consisting of an XOR of 2 variables plus maybe the constant
1) — such a conjunctive formula may also be seen as a system of linear equations over
GF[2] with at most two variables per equation. A relation R is 0-valid (resp., 1-valid)
if R(0, . . . , 0) = 1 (resp., R(1, . . . , 1) = 1). Finally, a constraint language Γ is Horn
(resp. dual Horn, bijunctive, affine, width-2 affine, 0-valid, 1-valid) if every relation in
Γ is Horn (resp. dual Horn, bijunctive, affine, width-2 affine). We say that a constraint
language is Schaefer if Γ is either Horn, dual Horn, bijunctive, or affine.

There exist easy criteria to determine if a given relation is Horn, dual Horn, bijunc-
tive, or affine. Indeed all these classes can be characterized by their polymorphisms
(see e.g. [7] for a detailed description). We recall some of these properties here briefly
for completeness. The operations of conjunction, disjunction, and addition applied on
k-ary Boolean vectors are applied coordinate-wise.

– R is Horn if and only if m,m′ ∈ R implies m ∧m′ ∈ R.
– R is dual Horn if and only if m,m′ ∈ R implies m ∨m′ ∈ R.
– R is affine if and only if m,m′,m′′ ∈ R implies m⊕m′ ⊕m′′ ∈ R.
– R is affine and 0-valid if and only if m,m′ ∈ R implies m⊕m′ ∈ R.

The satisfiability problem for Γ formulæ, denoted by SAT(Γ ), was first studied by
Schaefer [19] who obtained a famous dichotomous classification: If Γ is Schaefer or
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0-valid or 1-valid, then SAT(Γ ) is in P; otherwise SAT(Γ ) is NP-complete. The com-
plexity of finding a non-trivial solution (i.e., a solution different from all-zero and all-
one), SAT∗(Γ ), was studied in [4]: If Γ is Schaefer, then SAT∗(Γ ) is in P; otherwise
SAT∗(Γ ) is NP-complete. Since then and in the recent past, complexity classifications
for many further computational problems for Γ -formulæ have been obtained (see [7]
for a survey).

2.2 Enumeration

In this paper, we focus on enumeration by non-decreasing weight of the models of
Boolean constraint formulæ, the weight of an assignment being the number of variables
assigned to 1. The corresponding problem can be displayed as follows:

Problem: ENUM-SATw(Γ )
Input: a Γ -formula ϕ.
Output: generate all models of ϕ by non-decreasing weight.

We say that an algorithm A computes the enumeration problem ENUM-SATw(Γ ) if
for a given input ϕ, A generates one by one the models of ϕ, by non-decreasing weight,
without repetition, and stops after writing the last one.

Polynomial time complexity is not a suitable yardstick of efficiency when analyz-
ing an enumeration algorithm since the output size is usually exponential in the size
of the input. In [10] several notions of efficiency are discussed. The least we could ask
is that the enumeration algorithm runs in polynomial total time, that is that the time
required to output all solutions be polynomial in the size of the input and in the number
of solutions (i.e., the size of the output). This notion is also referred to as output polyno-
mial. An important feature of an enumeration algorithm is the ability to start generating
configurations as soon as possible, and more generally to generate configurations in a
regular way with a limited delay between two successive outputs. Hence we say that an
enumeration algorithm runs in polynomial delay if the delay until the first solution is
output and thereafter the delay between any two consecutive solutions is bounded by a
polynomial p(n) in the input size. It is worth noticing that such an algorithm generates
the first k outputs in time k · p(n). This is an important property of polynomial delay
algorithms, since when one has not enough time to enumerate all solutions, at least the
first k solutions (the top-k-ranked in the case of an enumeration in a ranked order) can
be efficiently enumerated. If ENUM-SATw(Γ ) is computable by a polynomial delay
algorithm, we write ENUM-SATw(Γ ) ∈ delayP.

For characterizing space efficiency we ignore the amount of space needed for writing
the output, only the space used for storing intermediate results is measured. Enumera-
tion algorithms are sometimes required to run in polynomial space, which means that
the amount of space involved during the whole computation is polynomial in the size of
the input. This requirement is restrictive, even for polynomial delay algorithms. Indeed
there are polynomial delay algorithms, especially when a specified order is required,
that build exponentially large data structures (see [10,14,24]). This is also the case for
the polynomial delay algorithm for Horn formulæ, described in Sect. 3. Nevertheless,
any polynomial delay algorithm runs in incremental polynomial space, which means
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that the space needed for generating the first k solutions is bounded by k times a poly-
nomial in the input size.

2.3 Main Result

The complexity of enumerating all models of generalized Boolean formulæ, without
specifying any order, has been studied in [4]. An alternative proof making use of partial
polymorphisms was given later in [21].

Theorem 1. (Model enumeration [4].) If Γ is Schaefer, then there is a polynomial-
delay algorithm that generates all models of a Γ -formula. Otherwise such an algorithm
does not exist unless P = NP.

In this paper we are interested in enumerating all models by non-decreasing weight. Of
course, when Γ is Schaefer, Theorem 1 enables to do that in polynomial total time: first,
generate all solutions in lexicographic order with the algorithm underlying the proof of
this theorem; then, sort the solutions in order to output them by non-decreasing weight.
However such a procedure forbids any control on the regularity of the enumeration since
for instance, the first solution is output after an exponential amount of time if there is
an exponential number of models. Therefore, we have to develop specific techniques to
perform efficient enumeration in this order. Sets of relations that admit a good behavior
with respect to this task do not coincide with Schaefer’s ones. Our main theorem details
this situation, stating a new dichotomy result concerning the enumeration of models by
non-decreasing weight.

Theorem 2. (Enumeration by non-decreasing weight.) If Γ is Horn or width-2 affine,
then there is a polynomial-delay algorithm that generates all models of a Γ -formula by
non-decreasing weight. Otherwise such an algorithm does not exist unless P = NP.

3 Efficient Enumeration Algorithms

The efficient enumeration algorithms proposed earlier in [4] (see Theorem 1) were
based on self-reducibility ([23,13,20]). The self-reducibility property of a problem al-
lows a “search-reduces-to-decision” algorithm to enumerate the solutions. As a conse-
quence, the models are provided in lexicographical order. Moreover the algorithms use
only polynomial space. Enumerating the solutions in order of non-decreasing weight
requires new algorithms. The two classes of constraint languages under examination in
this section, namely width-2 affine and Horn, invoke different algorithmic approaches.
Indeed they differ in the complexity of their associated k-ONES problem, in which,
given a formula and an integer k, we want to know whether there exists a model with
exactly k ones. For width-2 affine formulæ this problem is in P, whereas for Horn for-
mulæ it is NP-complete (see [6]). As a consequence for width-2 affine formulæ one can
use the tractability of the k-ONES problem to get an efficient enumeration algorithm.
In contrast, Horn formulæ require another strategy. It is natural to use a data structure
which maintains an ordered set of elements and which supports efficient operations of
insertion and extraction. The algorithm we will present for the Horn case makes use of
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a priority queue in order to produce the right order of the output solutions. This method
was already used in e.g. [10,14]. As in these papers, our priority queue allows inser-
tion of elements and extraction of the top element in logarithmic time in the size of the
queue. Thus the size of the queue may grow exponentially whereas polynomial delay is
still maintained.

Proposition 1. If Γ is width-2 affine, then there is a polynomial-space polynomial-
delay algorithm that generates all models of a Γ -formula by non-decreasing weight.

Proof. Let Γ be width-2 affine and let ϕ be a Γ -formula. Without loss of generality we
can suppose that ϕ does not contain unitary clauses. Then each clause of ϕ expresses
either the equality or the inequality between two variables. Using the transitivity of the
equality relation and the fact that in the Boolean case a �= b �= c implies a = c, we
can identify equivalence classes of variables such that each two classes are either inde-
pendent or they must have contrary truth values. We call a pair (A,B) of classes with
contrary truth values cluster, B may be empty. It follows easily that any two clusters
are independent and thus to obtain a model of ϕ, we choose for each cluster (A,B)
eitherA = 1, B = 0 or A = 0, B = 1. We suppose in the following that ϕ is satisfiable
(otherwise, we will detect a contradiction while constructing the clusters). Let n ≥ 1 be
the number of clusters, then the number of models will be 2n. The weight contribution
of each cluster to a model is either |A| or |B|, where |A| = |B| may occur. We represent
a model by an n-tuple s ∈ {0, 1}n, indicating for each cluster which of the two assign-
ments is taken. In the case |A| �= |B| we indicate by 0 the light assignment and by 1
the heavy assignment. Surely (0, 0, . . . , 0) will represent a model of minimal weight,
and (1, 1, . . . , 1) will represent a model of maximal weight. For enumeration we may
consider only the weight difference

∣∣|A| − |B|
∣∣ of each cluster, since we can subtract

the weight of a minimal model. Setting (w1, . . . , wn) to these weight differences of the
clusters, we reduce our problem to the following enumeration problem:

Problem: SUBSET-SUM

Input: A sequence of non-negative integers (w1, . . . , wn) ∈ Nn

Output: generate all n-tuples s ∈ {0, 1}n by non-decreasing weight δ(s),
where δ(s) = Σn

i=1si · wi

To solve this enumeration problem we make use of the fact that in our case the sum of
the weightsW := Σn

i=1wi is linearly bounded by the number of variables of the original
formula ϕ. This allows a strategy of dynamic programming to compute in polynomial
time a matrix A ∈ {0, 1}(n+1, W+1) such that A(i, k) = 1 if and only if with the
weights w1, . . . , wi one can construct the sum k, where 0 ≤ i ≤ n, 0 ≤ k ≤ W . The
matrix A is constructed by first setting A(0, 0) = 1 and A(0, k) = 0 for all k ≥ 1, and
then filling the other fields row by row according to the rule A(i, k) = 1 if and only
if A(i − 1, k) = 1 or A(i − 1, k − wi) = 1. Thus the computation of A takes time
O(n ·W ). After this precomputation, for each k for which there is at least one solution
of weight k we enumerate all such solutions by constructing the solution strings from ε
(the empty string) recursively.
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Algorithm 1. Algorithm for SUBSET-SUM

MAIN(w1, . . . , wn)

1: compute A ∈ {0, 1}(n+1, W+1)

2: for k = 0 to W do
3: if A(n, k) = 1 then
4: CONSTRUCTSOLUTIONS(n, k, ε) /* enumerate all solutions of weight k */
5: end for

CONSTRUCTSOLUTIONS(i, j, s)

1: if i = 0 then
2: output s
3: else
4: if A(i − 1, j − wi) = 1 then
5: CONSTRUCTSOLUTIONS(i − 1, j − wi, 1 ◦ s) /* ◦ stands for the concatenation

operator */
6: if A(i − 1, j) = 1 then
7: CONSTRUCTSOLUTIONS(i − 1, j, 0 ◦ s)

The reader may convince himself or herself that Algorithm 1 enumerates all solutions
s of the SUBSET-SUM problem by non-decreasing weight δ(s). Since both n and W
are linearly bounded by the number of variables of ϕ, Algorithm 1 has a quadratic
precomputation time and a linear delay thereafter. The translations between our original
problem and SUBSET-SUM can be performed in polynomial time. �

Proposition 2. If Γ is Horn, then there is a polynomial-delay algorithm that generates
all models of a Γ -formula by non-decreasing weight.

Proof. Let Γ be Horn and let ϕ be a Γ -formula. Then ϕ is equivalent to a conjunction
of Horn clauses. We will use a priority queue Q to respect the order of non-decreasing
weight and to avoid duplicates. The command Q.enqueue(s, k) enqueues an element s
with an integer key-value k (a weight). The queue sorts by non-decreasing key-value
and inserts an element s only if it is not yet present in the queue.

For notational convenience we represent a model by the set of variables it sets to
1. We use the well-known fact that for Horn formulæ the intersection of all models
is the unique minimal model which is polynomial time computable. For a satisfiable
Horn formula ϕ we indicate the minimal model by mm(ϕ). Note that for a set of vari-
ables V ⊆ V ars(ϕ) the formula ϕ ∧ V := ϕ ∧

∧
v∈V v is still representable as a

Horn formula and thus, if ϕ ∧ V is satisfiable, also mm(ϕ ∧ V ) can be computed in
polynomial time.

We claim that Algorithm 2 enumerates the models of a given Horn formula with
polynomial delay, by non-decreasing weight. The polynomial delay is easily seen. By
definition of the priority queue and by the fact that the models m′ generated out of
m in line 12 are always of bigger weight than m itself, it is also easily seen that the
models are output in the right order and that no model is output twice. To prove that no
model is omitted, it suffices to show that for every model m′ �= mm(ϕ) there exists a
submodel m � m′ such that in line 12 the algorithm generates m′ out of m. That is,
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Algorithm 2. Algorithm for HORN-SAT

Require: ϕ a Horn formula
1: if ϕ unsatisfiable then
2: return ’no’
3: Q = newPriorityQueue
4: m := mm(ϕ)
5: Q.enqueue(m, |m|)
6: while Q not empty do
7: m := Q.dequeue
8: output m
9: for all x ∈ V ars(ϕ) \ m do

10: if ϕ ∧ m ∧ x satisfiable then
11: m′ := mm(ϕ ∧ m ∧ x)
12: Q.enqueue(m′, |m′|)
13: end for
14: end while

there must be an x ∈ m′ \m such that m′ = mm(ϕ∧m∧ x). Consider for this the set
H := {m | m a model of ϕ and m � m′}. The set H is not empty since it contains at
least the minimal model mm(ϕ). A maximal element m of H fulfills our needs, since
it satisfies m′ = mm(ϕ ∧m ∧ x) for any x ∈ m′ \m.

Let us finally stress that in contrast to Algorithm 1, Algorithm 2 potentially runs in
exponential space. �

4 Hardness Results

In this section we investigate the case where Γ is neither Horn nor width-2 affine.
Clearly, in order to enumerate the models of a Γ -formula by non-decreasing weight,
it is a necessary condition to be able to find the lightest model efficiently. As we will
prove, this is not a sufficient condition, we need also to be able to find the second one
efficiently. So let us introduce the following problems.

Problem: MIN-ONES(Γ )
Input: a Γ -formula ϕ, an integer W
Question: Is there a model of ϕ that assigns 1 to at most W variables?

Problem: MIN-ONES∗(Γ )
Input: a Γ -formula ϕ, an integer W
Question: Is there a model ofϕ different from all-0 that assigns 1 to at most

W variables?

From the classification obtained in [12] for the corresponding optimization problem,
one can deduce the following.

Proposition 3. (Minimum ones satisfiability [12].) If Γ is 0-valid or Horn or width-2
affine, then MIN-ONES(Γ ) is in P, otherwise MIN-ONES(Γ ) is NP-complete.
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Our main contribution in this section is the following hardness result, which obviously
proves that when Γ is neither Horn nor width-2 affine, there is no polynomial delay
algorithm that enumerates all models of a Γ -formula in order of non-decreasing weight,
unless P = NP.

Proposition 4. Let Γ be a set of relations which is neither Horn nor width-2 affine.
Then MIN-ONES∗(Γ ) is NP-complete.

Proof. If Γ is not Schaefer, then SAT∗(Γ ) is NP-complete [19] and hence so is the
problem MIN-ONES∗(Γ ). If Γ is not 0-valid, then, since it is neither Horn nor width-2
affine, the result follows from the NP-completeness of MIN-ONES(Γ ) (Proposition 3).
Therefore, it remains to study sets Γ that are Schaefer and 0-valid but that are neither
Horn nor width-2 affine. There are three cases to analyse.

- Γ is bijunctive and 0-valid but neither Horn nor width-2 affine.
- Γ is affine and 0-valid but neither Horn nor width-2 affine.
- Γ is dual Horn and 0-valid but neither Horn nor width-2 affine.
Observe that a 2-CNF formula which is 0-valid is also Horn. So the first case does

not occur. Besides, one can easily prove that a 0-valid affine relation which is not Horn
cannot be width-2 affine. Therefore the proof of the proposition will be completed when
we successively prove the NP-completeness of MIN-ONES∗(Γ ) for any set Γ such that:

1. Γ is affine and 0-valid but not Horn, or
2. Γ is dual Horn and 0-valid but neither affine nor Horn.
The NP-completness of MIN-ONES∗(Γ ) for any set Γ fulfilling the description 1 or

2 above is settled, respectively, by the forthcoming Proposition 5 and Proposition 6. �

4.1 Affine, 0-valid, not Horn

In this section we deal with relations that are 0-valid and affine but not Horn. We will
prove that for such a relation R, finding a non-all-0 model of minimal weight of an
R-formula is NP-hard. In order to do so, we need some technical lemmas. The two first
ones are definability results, while the third is a basic hardness result. One of the most
successful techniques to obtain results on the complexity of constraints related problems
(including enumeration), has been the application of tools from universal algebra. A
Galois connection relates the expressive power of a constraint language to its set of
so-called polymorphisms or partial polymorphisms (see e.g. [9,22]). However here it is
not worth using this algebraic tool. The technical results that are needed concern only
very restrictive sets of relations and can be obtained “by hand”.

In the proofs of all the following lemmas, R will denote a relation of arity k and V a
set of k distinct variables, say V = {x1, . . . , xk}.

Lemma 1. Let R be a relation which is 0-valid and affine but neither Horn nor 1-valid.
Then there exists an R-formula equivalent to ¬w ∧ (x⊕ y ⊕ z = 0).

Proof. Consider the constraint C = R(x1, . . . , xk). Since R is non-Horn there exist
m1 and m2 in R such that m1 ∧ m2 /∈ R. Since R is 0-valid and affine, we have
m1 ⊕m2 ∈ R. For i, j ∈ {0, 1}, set Vi,j = {x | x ∈ V,m1(x) = i ∧m2(x) = j}.
Observe that V0,1 �= ∅ (respectively, V1,0 �= ∅), otherwise m1 ∧ m2 = m2 (resp.,
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m1 ∧ m2 = m1), contradicting the fact that m1 ∧ m2 /∈ R. Moreover V1,1 �= ∅,
otherwisem1∧m2 = 0, a contradiction. Consider the {R}-constraint:M(w, x, y, z) =
C[w/V0,0, x/V0,1, y/V1,0, z/V1,1]. According to the above remark the three variables
x, y and z effectively occur in this constraint. Let us examine the set of models of M
assigning 0 to w: it contains 0011 (since m1 ∈ R), 0101 (since m2 ∈ R), 0110 (since
m1 ⊕m2 ∈ R) and 0000 (since R is 0-valid). But it does not contain 0001 (since by
assumption m1 ∧m2 /∈ R). Thus it does not contain 0111 either. Indeed, otherwise it
would contain 0011 ⊕ 0101 ⊕ 0111 (since R is affine), which is equivalent to 0001,
a contradiction. From this one can prove that it contains neither 0010 nor 0100 (since
0000⊕ 0011⊕ 0010 = 0001 and 0110⊕ 0101⊕ 0100 = 0111). Note that since R is
0-valid but not 1-valid C[w/V ] ≡ ¬w. Hence, let us consider

ϕ(w, x, y, z) = C[w/V ] ∧M(w, x, y, z).

TheR-formulaϕ is equivalent to ¬w∧ (x⊕y⊕z = 0), thus concluding the proof. �

Lemma 2. LetR be a relation which is 0-valid, 1-valid, affine but not Horn. Then there
exists an R-formula equivalent to (w ⊕ x⊕ y ⊕ z = 0).

Proof. Observe that an affine relation R which is both 0-valid and 1-valid is neces-
sarily complementive, i.e. for all m ∈ R we have also 1 ⊕ m ∈ R. We can mimic
the analysis made in the previous lemma and consider the constraint M(w, x, y, z) =
C[w/V0,0, x/V0,1, y/V1,0, z/V1,1]. Thus, the formula ϕ(w, x, y, z) = M(w, x, y, z) ∧
M(w, y, z, x) ∧M(w, z, x, y) verifies ϕ(w, x, y, z) ≡ (w ⊕ x⊕ y ⊕ z = 0). �

Lemma 3. MIN-ONES∗(x ⊕ y ⊕ z = 0) and MIN-ONES∗(w ⊕ x ⊕ y ⊕ z = 0) are
NP-complete.

Proof. Consider a homogeneous linear system over the finite field GF(2). Finding the
non-all-0 solution with minimum weight of such a system is known to be NP-hard
(see [2, Theorem 4.1]). In order to prove the lemma we have to show that this problem
remains hard when restricted to systems that have three (resp., four) variables by equa-
tion. Let S be a homogeneous linear system over GF(2). Suppose that S has n variables,
x1, . . . , xn. In order to reduce the number of variables in each equation we introduce
auxiliary variables. If there is an equation xi1 ⊕xi2 ⊕· · ·⊕xik

= 0 for some k ≥ 4, we
introduce a new variable yi1,i2 and replace the original equation by the two equations
yi1,i2 ⊕ xi1 ⊕ xi2 = 0 and yi1,i2 ⊕ xi3 ⊕ . . .⊕ xik

= 0. We repeat this process until all
equations have three variables. The satisfiability is preserved during this transformation.
The number of auxiliary variables is bounded from above by the number of occurrences
of variables in the original system. In order to keep the information on the weight of the
solutions we need to introduce enough copies of the original variables, which make the
auxiliary variables neglectable. Let N be the number of occurrences of variables in S.
Let f be a fresh variable that will play the role of the constant 0. For each i = 1, . . . , n,
we introduceN copy-variables x1

i , . . . , x
N
i of xi and add the equations xi⊕xj

i ⊕f = 0
for j = 1, . . . N . Finally we add the equation f ⊕ f ⊕ f = 0, i.e., f = 0 (this will
ensure that xi = xj

i for all j). There is a one-to-one correspondence between the solu-
tions of S and the solutions of the so-obtained system S′. Moreover S has a non-trivial
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solution of weight at most W if and only if S′ has a non-trivial solution of weight at
most W (N + 1) +N . Since the system S′ can be seen as an (x⊕ y ⊕ z = 0)-formula
we have thus proved the NP-hardness of MIN-ONES∗(x⊕ y ⊕ z = 0).

Let us now reduce MIN-ONES∗(x⊕y⊕z = 0) to MIN-ONES∗(w⊕x⊕y⊕z = 0).
Let S be a homogeneous linear system over n variables such that each equation has
exactly three variables. Let w and wi for i = 1, . . . , n+1 be fresh variables. Transform
S into S′ as follows: transform every equation x⊕ y ⊕ z = 0 into w ⊕ x⊕ y ⊕ z = 0
and add the n + 1 equations w ⊕ w ⊕ w ⊕ wi = 0 for i = 1, . . . , n + 1. Solutions
of S′ assigning 0 to w coincide with the solutions of S. Moreover any solution of S′

assigning 1 to w has weight at least n + 1. Therefore, S has a non-trivial solution of
weight at mostW (W ≤ n) if and only if S′ has a non-trivial solution of weight at most
W . This completes the proof. �

Proposition 5. IfR is 0-valid and affine but not Horn, then the problem MIN-ONES∗(R)
is NP-complete.

Proof. It follows from the three lemmas above: if R is not 1-valid, then Lemma 1
allows a reduction from MIN-ONES∗(x⊕ y⊕ z = 0) to MIN-ONES∗(R) (replace each
constraint (x⊕y⊕z = 0) by theR-formula equivalent to ¬w∧ (x⊕y⊕z = 0), where
w is a fresh variable). If the relationR is 1-valid, then Lemma 2 allows a reduction from
MIN-ONES∗(w ⊕ x⊕ y ⊕ z = 0) to MIN-ONES∗(R). In both cases one can conclude
with Lemma 3. �

4.2 Dual Horn, 0-valid, neither Affine nor Horn

In this section we deal with relations that are 0-valid and dual Horn but neither affine
nor Horn. The method of proof is not the same as in the previous section. We will also
need some intermediate lemmas.

Lemma 4. Let R be a relation which is 0-valid, dual Horn but neither affine nor 1-
valid. Then there exists an R-formula equivalent to ¬t ∧ (u→ v).

Proof. Consider the constraint C = R(x1, . . . , xk). Observe that since R is 0-valid
but not 1-valid, C[t/V ] ≡ ¬t. Since R is 0-valid and non-affine there exist two dis-
tinct tuples m1 and m2 in R such that m1 ⊕m2 /∈ R. Since R is dual Horn, we have
m1 ∨m2 ∈ R. For i, j ∈ {0, 1}, let Vi,j = {x | x ∈ V,m1(x) = i ∧m2(x) = j}. Ob-
serve that V1,1 �= ∅, otherwise m1 ∨m2 = m1 ⊕m2, a contradiction. Moreover, since
m1 �= m2 either V0,1 or V1,0 is nonempty. Suppose first that they are both nonempty.
Consider the R-constraint M(w, x, y, z) = C[w/V0,0, x/V0,1, y/V1,0, z/V1,1]. The
three variables x, y and z effectively appear in this constraint. Let us examine the set of
models of M assigning 0 to w: it contains 0011 (since m1 ∈ R), 0101 (since m2 ∈ R),
0111 (since m1 ∨m2 ∈ R) and 0000 (since R is 0-valid), but does not contain 0110
(since by assumption m1 ⊕m2 /∈ R). The membership of 0100, 0010, 0001 is open:

– If it does not contain 0100, then consider the R-formula ϕ(t, u, v) := C[t/V ] ∧
M(t, u, v, v). Its set of models is {001, 011, 000} and therefore, ϕ(t, u, v) ≡ ¬t ∧
(u→ v).
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– If it contains 0100, then it does not contain 0010. Indeed otherwise, sinceR is dual-
Horn it would also contain 0110, which provides a contradiction. Thus consider the
R-formulaϕ(t, u, v) := C[t/V ]∧M(t, v, u, v). Its set of models is {001, 011, 000}
and therefore, ϕ(t, u, v) ≡ ¬t ∧ (u→ v).

If for instance V0,1 = ∅, then consider M(w, y, z) = C[w/V0,0, y/V1,0, z/V1,1]. In
this case ϕ(t, u, v) := C[t/V ] ∧M(t, u, v) is equivalent to ¬t ∧ (u→ v). �

Lemma 5. Let R be a relation which is 0-valid, 1-valid, dual Horn but not Horn, then
there exists an R-formula equivalent to (u→ v).

Proof. SinceR is dual Horn but non Horn, it is non-complementive, that is, there exists
an m ∈ R such that m ⊕ 1 /∈ R. Consider the constraint C = R(x1, . . . , xk). For
i ∈ {0, 1}, let Vi = {x | x ∈ V ∧ m(x) = i}. Consider the R-formula ϕ(u, v) =
C[u/V0, v/V1]. Then ϕ(u, v) ≡ ¬u ∨ v ≡ u→ v. �

Proposition 6. If R is 0-valid and dual Horn but neither affine nor Horn, then the
problem MIN-ONES∗(R) is NP-complete.

Proof. Let R be a relation which is 0-valid and dual Horn but neither affine nor Horn.
Let T be the constant unary relation T = {1}. According to Proposition 3, the problem
MIN-ONES(R, T ) is NP-complete. We reduce MIN-ONES(R, T ) to MIN-ONES∗(R).
Let ϕ be an {R, T }-formula, ϕ = ψ ∧

∧
x∈V T (x) where ψ is an R-formula. Let t be

a fresh variable and consider

ϕ′ = ψ[t/V ] ∧
∧

x∈Var(ϕ)\V

x→ t.

Observe that the only solution that assigns 0 to t in ϕ′ is the all-0 one. Therefore it is
clear that ϕ has a solution of weight at most W (W ≥| V |) if and only if ϕ′ has a
non-trivial solution of weight at most W− | V | +1. The two above lemmas allow to
express ϕ′ as an R-formula (modulo the introduction of an additional variable that will
always take the value 0 when R is not 1-valid), thus concluding the proof. �

5 Conclusion

We have classified the complexity of enumerating all models of a Γ -formula by non-
decreasing weight. We have proved that in the case of Boolean CSPs a necessary and
sufficient condition for enumerating all solutions in order of non-decreasing weight with
polynomial delay is the ability to efficiently find a non-all-zero solution of minimal
weight. Note that by duality, under the assumption P �= NP, one can enumerate the
models of a Γ -formula by non-increasing weight with polynomial delay if and only if
Γ is width-2 affine or dual Horn.

Another related question is: When does exist a so-called polynomial time iterator for
the solutions’ weight? That is, given a modelm, when are we able to efficiently compute
a model of the next weight level? In the width-2 affine case this task is tractable since
k-ONES is tractable. In the Horn case this task becomes NP-hard: If it were tractable,
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by iteration we would be able to efficiently compute a model of maximal weight, which
is NP-hard [12]. In the remaining cases, that is when enumeration by non-decreasing
weight can not be done with polynomial delay unless P = NP, both situations may
occur. A complete classification might reveal new classes of formulæ interesting in the
context of enumeration.

We could also have dealt with the weighted version of the problem, i.e., we have a
weight function w : V → N and the weight of a model m is given by

∑
v∈V w(v) ·

m(v). The algorithm proposed in Proposition 2 for Horn formulæ could also tackle this
variant. But the algorithm proposed in Proposition 1 for width-2 affine formulæ does
not run in polynomial delay when the weights are not polynomially bounded. However,
for cost of exponential space, one can also construct a polynomial delay algorithm for
this case, using a priority queue in a similar way as in the Horn case.

Asking the enumeration to be performed in order of non-decreasing weight has re-
vealed new enumeration algorithms for Boolean CSPs, different from the ones devel-
oped so far. The algorithm developed for Horn formulæ requires potentially an expo-
nential amount of space. Ideally we would like to avoid this. Interesting open questions
are to find out whether there is a space/delay trade-off and whether the exponential
space requirement is inherent to the order of non-decreasing weight for Horn formulæ.

Another interesting direction of research is the study of enumeration in order of
non-decreasing weight for CSPs over arbitrary finite domains. Enumeration of all so-
lutions of such CSPs has been studied in [3,21]. As mentioned in [21] considering dif-
ferent orderings could be the key to discover further enumeration algorithms. Also, in
[11] the authors studied the complexity of the so-called MAX-SOL(Γ ) problem, which
generalizes the MAX-ONES problem to arbitrary finite domains. They identified two
tractable classes of constraint languages, namely injective and generalized max-closed
constraint languages. These two classes can be seen as substantial and nontrivial gener-
alizations of the tractable classes known for the MAX-ONES problem over the Boolean
domain, namely width-2 affine, 1-valid and dual-Horn. It would be interesting to exam-
ine whether these classes give rise to polynomial delay algorithms for the enumeration
of solutions by non-increasing weight.
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Abstract. A tanglegram is a pair of trees on the same set of leaves
with matching leaves in the two trees joined by an edge. Tanglegrams
are widely used in computational biology to compare evolutionary his-
tories of species. In this paper we present a formulation of two related
combinatorial embedding problems concerning tanglegrams in terms of
CNF-formulas. The first problem is known as planar embedding and the
second as crossing minimization problem. We show that our satisfiabil-
ity formulation of these problems can handle a much more general case
with more than two, not necessarily binary or complete, trees defined on
arbitrary sets of leaves and allowed to vary their layouts.

Keywords: satisfiability, mixed Horn formula, 2-CNF, level graph, tan-
glegram, planar embedding, crossing minimization, graph drawing.

1 Introduction

In this paper we are interested in two combinatorial embedding problems con-
cerning generalized tanglegrams on level graphs, a generalization of the well-
known binary tanglegrams. A binary tanglegram [16] is an embedding (drawing)
in the plane of a pair of rooted binary trees whose leaf sets are in one-to-one
correspondence (perfect matching), such that matching leaves are connected by
inter-tree edges. Clearly, the number of crossings between the inter-tree edges
depends on the layout of the trees. From a practical point of view, an embed-
ding with many crossings can hardly be analyzed. Fig. 1 shows an example of
a binary tanglegram coming from phylogenetic studies done by Charleston and
Perkins [5]. Thus, the first problem one can consider here consists of determin-
ing an embedding of one or both trees such that the inter-tree edges do not
cross, if such an embedding exists. This problem is known as the planar embed-
ding problem. If such a planar embedding is not possible, then we may want to
find an embedding with as few crossing inter-tree edges as possible. This second
problem, crossing minimization, is known in the literature also as the tangle-
gram layout problem [2,3,20]. Both problems are motivated by the desire to find
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a good display of hierarchical structures, e.g., in software engineering, project
management, or database design. They belong to the area of graph drawing [7].
Matching and aligning trees is also a recurrent problem in computational biol-
ogy [16]. Embeddings with fewer crossings or with matching leaves close together
are useful in biological analysis [20]. An embedding imposes an order among the
leaves of the tree. Therefore, comparing the drawings of the trees is equivalent
to comparing the permutations of the leaves. Here, prominent applications are
in particular the comparisons of phylogenetic trees [5,6,8].

(St. V) P. az. white

A. roquet

A.marmoratus

A. oculatus

A. trinitatus

A. sabanus

A. bimaculatus

A. gundlachi (Gu) P. az. white

(S) P. az. white

(PR) P. az. white

(D) P. az. white

(St.K) P. az. white

(M) P. az. white

a

b

c

d

Fig. 1. A binary tanglegram from [5] showing phylogenetic trees for lizards (left tree)
and strains of malaria (right tree) found in the Caribbean tropics. The dashed lines
represent the host-parasite relationship. Here, the number of crossings is 7. This can
be reduced to 1 by interchanging the children of nodes a, b, c, and d.

Bansal et al. [2] analyzed generalized tanglegrams where the number of leaves in
the two binary trees may be different and a leaf in one tree may match multiple
leaves in the other tree, thus no perfect matching is required here. They pointed
out that such a generalization of the problem makes it possible to address not
only the gene tree and species tree embedding problem, but also those problems
in which the inter-tree edges between the trees can be completely arbitrary. Such
general instances arise in several settings, e.g., in the analysis of host-parasite
cospeciation [16].

Crossing minimization in tanglegrams has parallels to crossing minimization
in graphs. Computing the minimum number of crossings in a graph is NP-
complete [12]. However, it can be verified in linear time that a graph has a
planar embedding [13]. The last assertion holds also for a more special case
of level graphs [15,18]. Computing the minimum number of crossings is fixed-
parameter tractable [3,14]. Analogously, crossing minimization in tanglegrams
is NP-complete, as shown by Fernau et al. [10] by a reduction from the MAX-
CUT problem [11], while the special case of planarity test can be decided in linear
time [10]. Furthermore, the problem of minimizing the number of crossings where
one tree is fixed and the layout of the other tree is allowed to vary can be solved
efficiently. For binary trees with arbitrary topology, Fernau et al. [10] showed an
O(n log2(n)) solution, further improved to O(n log2(n)/ log log(n)) by Bansal et
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al. [2]. Here, n gives the number of leaves in each tree. Venkatachalam et al. [20]
provided recently an algorithm working on the integer programming formulation
of the problem with the so far best-known time bound of O(n log(n)). For the
case of generalized tanglegrams, Bansal et al. [2] presented two algorithms with
running times O(m log2(m)/ log log(m)) and O(mh), where m is the number of
edges between the two trees and h is the height of the tree whose layout can
change. Based on the result of Fernau et al. [10], they also showed that the
existence of planar embedding can be verified in O(m) time.

In our generalization of the tanglegram problem we go even further than
Bansal et al. [2]. In generalized tanglegrams on level graphs we consider problem
instances with more than two trees where every tree is defined on an arbitrary set
of leaves. Notice that here the pairwise disjoint leaf sets and the corresponding
inter-tree edges (no perfect matching) connecting two neighboring leaf sets con-
stitute a level graph [18] where each level is defined by some leaf set. Thus, each
tree defined on some level implies additional constraints reducing considerably
the set of possible embeddings. E.g., k-ary trees with n leaves allow for at most
k!

n−1
k−1 different leaf orders implied by different orderings of the subtrees, i.e.,

2n−1 in case of binary trees, compared with n! permutations if no restrictions
are imposed on the order of the leaves. Furthermore, in our setting we do not
restrict the tanglegrams only to binary trees, but consider rooted k-ary trees in
which each node has not more than k children, for some fixed integer k > 1.

In this paper we study planar embeddability problems of generalized tangle-
grams on level graphs. More specifically, we investigate the simultaneous exis-
tence of a planar embedding of the inter-tree nodes on some horizontal plane
with planar embeddings of the trees on separate vertical planes, one for each
tree. Our intention is to present all of them nicely on at least two orthogonal
planes. To this end, we present formulations of the planarity test and the cross-
ing minimization problem on generalized tanglegrams on level graphs in terms
of CNF-formulas by incorporating ideas used already for level graphs in [18,19].
By doing this, the planarity test essentially reduces to testing satisfiability of
a 2-CNF formula. The crossing minimization problem has a formulation as a
PARTIAL MAX-SAT problem of a CNF formula with a mandatory part of 3-
and 2-clauses that must be satisfied for the solution to be reasonable, and a
second part of 2-clauses such that its truth assignment must satisfy as many of
these clauses as possible. In the mandatory part, the 3-clauses reflect transitiv-
ity conditions forced by the genus of the surface, whereas the 2-clauses reflect
antisymmetry conditions. These clauses have to be satisfied in order to obtain
a layout. The second part of 2-clauses reflects non-crossing conditions. Each un-
satisfied clause from this part represents one arc crossing. This formulation offers
a simple alternative for finding reasonable approximate solutions of the crossing
minimization problem. We show that the planarity test of a generalized tangle-
gram on a level graph having a total of n vertices and with k-ary trees defined
on each level, for some fixed integer k > 1, can be solved in O(n2) time by an
elementary 2-SAT algorithm. Finally, to the best of our knowledge, this is the
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first time that the generalized tanglegram problem has been treated by means
of a satisfiability formulation.

The rest of the paper is organized as follows. In Section 2 we provide some
basic notation and definitions of relevant computational problems for generalized
tanglegrams on level graphs. The satisfiability-based formulation of the two main
problems on generalized tanglegrams on level graphs is given in Section 3. Finally,
in Section 4 we conclude our paper and state some open questions.

2 Preliminaries and Basic Notation

Formally, a level graph is a triple (G, λ, L) where G = (V,E) is a directed graph,
L = {1, ..., |L|} is the set of levels, and λ : V → L is the level-mapping, that
assigns the vertices to levels such that each arc is directed from a lower to a
higher level, i.e., ∀e = (u, v) : λ(v) > λ(u). For simplicity, we identify the
above triple by G having the other two components in mind. Observe that there
exists no arc between vertices on the same level. If in addition, for every arc
e = (u, v) ∈ E, λ(v) = λ(u) + 1 holds, then the level graph is called proper.
In the present paper we consider proper level graphs only, hence we simply
will speak of level graphs. This restriction means no loss of generality since an
arbitrary level graph can be turned into a proper one preserving the crossing
number by simply adding dummy vertices as shown in [9,18].

Level graphs are drawn in the Euclidean x, y-plane by linear order, i.e., all
vertices on the same level j ∈ L are placed at arbitrary different positions on the
line y = j; the x-coordinate of vertex u is denoted as x(u). Arcs are represented
by straight lines between the points representing their incident vertices. Often
arrows at arc heads are omitted since the direction is implicitly fixed by the levels.
For two vertices u, v on the same level, we simply write u < v iff x(u) < x(v). One
is especially interested in level-graph drawings such that no two arc lines cross
outside their endpoints. A level graph for which such a drawing exists is called
level-planar. It is not hard to see that a level graph with |E| > 2|V | − 4 cannot
be level-planar [18]. Therefore, for most level graphs all what one can hope for
is to find a plane embedding such that the number of arc-crossings is minimized.
Moreover, by reduction from the FEEDBACK ARC SET problem [11], Eades
and Wormald [9] showed that crossing minimization in level graphs is NP-hard,
even if there are only two levels with a fixed order of nodes on one level.

In generalized tanglegrams on level graphs, we define additionally on the nodes
of each level i ∈ L of a level graph G a tree Ti with nodes of level i as leaf
set. Clearly, the presence of a tree on each level reduces the search space of
admissible embeddings considerably. More formally, a generalized tanglegram
on a level graph G is a quadruple (G, λ, L, F ) where F = {T1, ..., T|L|} is a forest
of level-trees and G, λ, and L are defined as above. We say that a rooted level-
tree is complete if all its leaves have the same depth. Given a rooted, unordered
tree T ∈ F , we write V (T ), and E(T ) to denote its node set, and edge set,
respectively. Furthermore, for two trees Ti and Ti+1 from F defined on two
adjacent levels i and i+1 of level graph G, we define the set of inter-tree arcs as

E(Ti, Ti+1) := {(u, v) ∈ E(G) : λ(u) = i, λ(v) = i+ 1}.
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Observe that for a proper graph G holds E(G) =
⋃

i=1,...,|L|−1E(Ti, Ti+1).
For each node v ∈ V (T ), let T (v) denote the subtree of T rooted at v. Given

a tree T , we say that a linear order σ on the leaves of T is compatible with T
if for each node v ∈ V (T ) the leaves in T (v) form an interval (i.e., appear as
a consecutive block) in σ. We write u <σ v to mean that leaf u appears before
leaf v in the linear order σ on the leaves of T . Given compatible linear orders σi

and σi+1 on two trees Ti and Ti+1 from F defined on two adjacent levels i and
i+1 of level graph G, respectively, the number of crossings between σi and σi+1

among the inter-tree arcs E(Ti, Ti+1) is defined as

τ(σi, σi+1) :=
∣∣{{(u, a), (v, b)} ⊆ E(Ti, Ti+1) : ¬

(
(u <σi v) ↔ (a <σi+1 b)

)}∣∣.
Note that a pair of arcs cross at most once (see Fig. 1). Moreover, since we
assume here that G is a proper level graph, only adjacent levels can induce
crossings. Finally, the overall number of crossings for an instance (G, λ, L, F )
and a set S := {σ1, ..., σ|L|} of compatible orders for each level in L (tree in F )
is defined as

τ(G, λ, L, F, S) :=
∑

i=1,...,|L|−1

τ(σi, σi+1).

Problem 1 (Planarity Test). Given an instance (G, λ, L, F ), verify if there exists
a planar embedding, i.e., if there exists some set S of compatible linear orders
σi for each level i ∈ L (tree Ti ∈ F ) such that τ(G, λ, L, F, S) = 0.

Problem 2 (Crossing Minimization). Given an instance (G, λ, L, F ), find a set
S of compatible linear orders σi for each level i ∈ L (tree Ti ∈ F ) such that
τ(G, λ, L, F, S) is minimized.

To complete the notation, let CNF denote the set of formulas (free of duplicate
clauses) in conjunctive normal form over a set V = {x1, ..., xn} of propositional
variables xi ∈ {0, 1}. Each variable x induces a positive literal (variable x) or a
negative literal (negated variable x). Each formula C ∈ CNF is considered as a
clause set C = {c1, ..., c|C|}. Each clause c ∈ C is a disjunction of different literals
li, and is also represented as a set c = {l1, ..., l|c|}. A clause is termed a k-clause,
for some k ∈ N, if it contains at most k literals. The number of clauses in C
is denoted by |C|. For k ∈ N, let k-CNF denote the subset of formulas C such
that each clause has length at most k. We denote by V (C) the set of variables
occurring in formula C. The satisfiability problem (SAT) asks, whether formula
C is satisfiable, i.e., whether there is a truth assignment t : V (C) → {0, 1} setting
at least one literal in each clause of C to 1. Given C ∈ CNF, the optimization
version MAX-SAT searches for a truth assignment t satisfying as many clauses
of C as possible.

3 Satisfiability Formulation of Crossing Minimization

In the following we provide a formulation of the crossing minimization prob-
lem for generalized tanglegrams on level graphs in terms of propositional logic.
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We proceed in two steps. Given a generalized tanglegram (G, λ, L, F ), we first
show the construction of CNF-formulas for the level graph (G, λ, L). In the sec-
ond step, we describe a similar construction for the forest F of the generalized
tanglegram.

Consider in a proper level graph G two subsequent levels i and i+ 1 from L,
as shown in Fig. 2. Let e = (u, a) and f = (v, b) be two arcs from E(Ti, Ti+1)
directed from level i to level i+ 1 with different tails u �= v and different heads
a �= b. In a drawing of G, e and f do not cross iff

u <σ v ⇔ a <σ b

for some linear order σ. Observe that arcs having the same head or tail never
cross in any drawing of G.

a

u

e f

v

b

i

i+1

Fig. 2. Adjacent levels i and i + 1 of a level graph G. Arcs e = (u, a) and f = (v, b)
have different tails and heads.

The construction of a Boolean formula CG representing the plane embedding of
G proceeds as follows:

1. For each level i ∈ L and every pair {u, v} of distinct vertices from level i,
i.e., λ(u) = λ(v) = i, create a Boolean variable uv that is true iff u <σ v for
some linear order σ.

2. Create the following Boolean subformulas:
(i) For each level i ∈ {1, ..., |L|− 1} and every two arcs e = (u, a), f = (v, b)

from E(Ti, Ti+1) having their tails u �= v on level i and heads a �= b on
level i+ 1, form the non-crossing preserving expression:

uv ↔ ab

(ii) For each level i ∈ {1, ..., |L|} and each pair {u, v} of distinct vertices on
level i, form the antisymmetry expression:

uv↔ vu

(iii) For each level i ∈ {1, ..., |L|} and each triple {u, v, w} of distinct vertices
on level i, form the transitivity expression:

uv ∧ vw → uw



140 E. Speckenmeyer, A. Wotzlaw, and S. Porschen

Observe that the formulas resulting from (i) and (ii) yield 2-CNF formulas Ci

and Cii via
a↔ b ≡ (a ∨ b) ∧ (b ∨ a).

The formula resulting from (iii) yields a Horn formula Ciii with clauses of length
3 via elementary equivalence

(a ∧ b→ c) ≡ (a ∨ b ∨ c).

Recall that each clause of a Horn formula contains at most one positive literal.
Hence the formula CG = Ci ∧ Cii ∧ Ciii encoding the plane embedding of a
level graph G is a mixed Horn formula [17]. If G has n vertices distributed
over |L| levels then CG has |V (CG)| ∈ O(n2) variables. Moreover, by counting
|Ci| ∈ O(|E(G)|2), |Cii| ∈ O(n2), and |Ciii| ∈ O(n3). Hence the number of
clauses in CG is bounded by O(n3 + |E(G)|2). As mentioned before, the maximal
number of arcs in a level-planar graph containing n > 2 nodes is at most 2n− 4.
Thus, in the case we use CG for a level planarity test, a preprocessing ensures
that only O(n2) 2-clauses in Ci are generated. The following result shows that
the level planarity test can be formulated as a satisfiability problem.

Proposition 1 ([18]). A level graph G with n vertices has a level-planar em-
bedding iff CG − Ciii is satisfiable. The test can be done in time O(n2).

According to [18], the transitivity formula Ciii is superfluous for the level pla-
narity test. This results in a better complexity of O(n2), since SAT for 2-CNF
formulas can be decided in linear time in the number of variables and clauses in
the input formula [1].

Minimizing the number of crossings ofG is equivalent in terms of propositional
calculus to determining a truth assignment which satisfies all clauses in Cii and
Ciii and which maximizes the number of satisfied clauses in Ci. This optimiza-
tion problem is known as PARTIAL MAX-SAT [4], a variant of the MAX-SAT
problem, and remains NP-hard even for (unsatisfiable) 2-CNF instances. Un-
fortunately, it turns out that for considering crossing minimization in terms of
PARTIAL MAX-SAT, formula Ciii cannot be dropped in general [19].

Proposition 2 ([18]). Let G be a level graph and t : V (CG) → {0, 1} be a truth
assignment satisfying all clauses of Cii and Ciii and minimizing the number τG
of violated clauses in Ci. Then τG is the minimum number of arc crossings in a
level embedding of G.

Consider now some tree Ti from F built on a level i from L. Without loss of
generality assume that Ti is a complete, k-ary tree of height d, for some integers
k, d > 1. Note that for d = 1 the edges of Ti never cross in any drawing of Ti

and the generation of a CNF formula CTi for Ti can be omitted. Let w be some
node from V (Ti) such that the height of subtree Ti(w) is at least 2. Note that
the edges of Ti(w) connecting nodes of depth 0 and 1 never cross in any drawing
of Ti(w). Therefore, let e = {u, a} and f = {v, b} be two edges from E(Ti(w))
with u �= v having both depth 1 and a �= b being some children of u and v,
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respectively, as shown in Fig. 3. In a drawing of Ti(w), e and f do not cross iff

u <σ v ⇔ a <σ b

for some linear order σ.

w

fe

u v

a b

Fig. 3. Part of subtree Ti(w) with two non-crossing edges e and f

We describe now the construction of a Boolean formula CTi encoding the
plane embedding of Ti. We proceed as follows:

1. For each level j = 1, ..., d of Ti and every pair {u, v} of distinct vertices from
level j, create a Boolean variable uv that is true iff u <σ v for some linear
order σ.

2. Create the following Boolean subformulas:
(iv) For each level j = 1, ..., d − 1 of Ti and every two edges e = {u, a} and

f = {v, b} from E(Ti) such that u �= v have depth j and a and b have
depth j + 1 in Ti, form the non-crossing preserving expression:

(uv → ab) ∧ (vu→ ba)

(v) For each level j = 1, ..., d and each pair {u, v} of distinct vertices of
depth j in Ti, form the antisymmetry expression:

uv↔ vu

Notice that the formulas resulting from (iv) and (v) yield after some elementary
transformations 2-CNF formulas CTi

iv and CTi
v , respectively, for each tree Ti. We

proceed with the generation of Boolean formulas CTi = CTi

iv ∧ CTi
v for all trees

from F and obtain finally a Boolean formula

CF =
∧

Ti∈F

CTi

encoding the plane embedding of F .
We shall now estimate the length of each formula CTi . The number of variables

generated for each level j = 1, ..., d of a k-ary tree Ti is equal to
(
kj

2

)
and

thus bounded by O(k2j). If ri ≤ n is the number of vertices in level i ∈ L of
graph G, then the height of any k-ary complete tree Ti is at most �logk(ri)�.
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Hence, each CTi has O
( r2

i −1
k2−1

)
variables. Furthermore, the number of 2-clauses

contributed to formula CTi

iv by a level j ∈ {1, ..., �logk(ri)� − 1} of Ti is at
most 2k2

(
kj

2

)
∈ O(k2+2j), what summed up over �logk(ri)�− 1 tree levels yields

|CTi

iv | ∈ O
( r2

i −k2

k2−1

)
. For the number of clauses in CTi

v we proceed similar as for the

number of variables above and obtain that |CTi
v | ∈ O

( r2
i −1

k2−1

)
. Thus, the number

of 2-clauses in CTi is bounded by O(r2i ) for some fixed integer k > 1. Notice
that in case of a tree Ti with ri leaves but of height greater than �logk(ri)�,
there must be an inner node in V (Ti) with less than k children. That yields
formulas CTi

iv and CTi
v with less variables and clauses than for the case of the

k-ary complete tree with ri leaves. Similar to Proposition 1, we obtain finally
the following result for Ti:

Proposition 3. For some fixed integer k > 1, a k-ary tree Ti built on a level
i with ri vertices has a planar embedding iff CTi is satisfiable. The test can be
done in time O(r2i ).

Since ri is the number of vertices on level i ∈ L in graph G and r1 + ...+r|L| = n,
it follows that |V (CF )| ∈ O(n2) and |CF | ∈ O(n2).

Corollary 1. For some fixed integer k > 1, a set of k-ary trees built on a level
graph G with n vertices has a planar embedding iff CF is satisfiable. The test
can be done in time O(n2).

Note that every satisfying truth assignment for CF induces compatible linear
orders σi on the leaves of each Ti ∈ F , and vice versa.

We are now ready to give a final satisfiability-based formulation for an instance
(G, λ, L, F ) of a generalized tanglegram on a level graph G. To this end, we
simply generate CNF formulas CG and CF for (G, λ, L) and F , respectively, as
described above, and combine them into a new CNF formula as follows

CGF = CG ∧ CF = (Ci ∧Cii ∧ Ciii) ∧
∧

Ti∈F

(
CTi

iv ∧ CTi
v

)
.

Observe that even if each Ti is planar embeddable (i.e., CTi is satisfiable) and a
level graph G has a planar embedding (i.e., CG −Ciii is satisfiable), too, it does
not imply that G plus all the Ti’s together is planar embeddable. As mentioned
in the introduction, in our setting we test the existence of a planar embedding
of (G, λ, L, F ) on at least two planes, i.e., on one horizontal plane for the level
graph G and on |L| vertical planes, one for each tree Ti from F .

For a level graph G with n vertices and k-ary trees F defined on its levels
L, the number of clauses in CGF is bounded by O(n3 + |E(G)|2), according to
the discussion above. Furthermore, CGF has O(n2) variables. Note that these
estimates hold only for some fixed integer k > 1.

Since CGF contains 3-clauses, it cannot in general be solved for SAT effi-
ciently. However, since the transitivity formula Ciii ∈ 3-CNF is superfluous for
the planarity test, we can remove it from CGF , thus obtaining a 2-CNF formula.
Similarly as for Proposition 1, we can now solve the planarity test for (G, λ, L, F )



A Satisfiability-Based Approach for Embedding Generalized Tanglegrams 143

in time O(n2) by applying the algorithm of Aspvall et al. [1]. Recall that the
maximal number of arcs in a level-planar graph containing n > 2 nodes is at
most 2n− 4. Hence, the number of clauses |CGF − Ciii| ∈ O(n2).

Proposition 4. Let (G, λ, L, F ) be an instance of a generalized tanglegram on
a level graph G with n vertices and k-ary trees F , for some fixed integer k > 1.
Then (G, λ, L, F ) has a planar embedding iff CGF − Ciii is satisfiable. The test
can be done in time O(n2).

Minimizing the number of crossings of (G, λ, L, F ) is equivalent to determining
a truth assignment which satisfies all clauses in CGF −Ci and which maximizes
the number of satisfied clauses in Ci, thus solving an instance of the PARTIAL
MAX-SAT problem. Again, for considering crossing minimization in terms of
PARTIAL MAX-SAT, formula Ciii ∈ 3-CNF cannot be dropped.

Proposition 5. Let (G, λ, L, F ) be an instance of a generalized tanglegram on a
level graph G with n vertices and k-ary trees F , for some fixed integer k > 1, and
let t : V (CGF ) → {0, 1} be a truth assignment satisfying all clauses of CGF −Ci

and minimizing the number τ of violated clauses in Ci. Then τ is the minimum
number of arc crossings in an embedding of (G, λ, L, F ).

Observe that compatible linear orders σi for each level i ∈ L can be extracted
from a truth assignment t in time O(n2) by traversing all variables of CGF .

4 Conclusion and Open Problems

We have presented a satisfiability-based formulation of the planarity test and
the crossing minimization problem on generalized tanglegrams defined on level
graphs. Here, the first problem essentially reduces to testing satisfiability of a 2-
CNF formula and can be solved in O(n2) time for instances with n level vertices
and k-ary trees defined on each level, for some fixed integer k > 1. Moreover, we
have shown that the latter problem has a formulation as a PARTIAL MAX-SAT
problem. Here, the question arises whether one could derive bounds on the ap-
proximation ratio for generalized tanglegram instances. From a practical point of
view, it would be interesting to test the efficiency of our satisfiability-based ap-
proach against other techniques while solving (generalized) binary tanglegrams.
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Abstract. Automated reasoning tasks in many real-world domains involve anal-
ysis of redundancies in unsatisfiable instances of SAT. In CNF-based instances,
some of the redundancies can be captured by computing a minimally unsatisfiable
subset of clauses (MUS). However, the notion of MUS does not apply directly to
non-clausal instances of SAT, particularly those that are represented as Boolean
circuits. In this paper we identify certain types of redundancies in unsatisfiable
Boolean circuits, and propose a number of algorithms to compute minimally un-
satisfiable, that is, irredundant, subcircuits.

1 Introduction

Understanding the causes of unsatisfiability of sets of Boolean constraints is a problem
of both theoretical and practical interest. Over the last decade, a large number of algo-
rithms for identifying minimally unsatisfiable subformulas (MUSes) of CNF formulas
have been developed. Recent accounts of practical algorithms can be found in [3,2,8],
and the current theory of CNF-based MUSes in [6]. However, in many settings the
original problem representation is not CNF formulas, but arbitrary Boolean formulas or
circuits. For example, in hardware model checking, the next state logic can be repre-
sented as a Boolean circuit. Also, for predicate-based abstraction [10], it is necessary to
compute MUSes starting from circuit structures. A fairly straightforward observation
is that computing an MUS from a clausal representation of a circuit may not result in
a circuit. In some contexts this is not a significant issue, but in others it can represent
an important drawback. For example, circuit designers are likely to prefer to analyze a
Boolean circuit than a set of apparently unrelated clauses. As a result, it is of interest to
be able to compute a non-clausal Boolean formula or circuit that represents a minimal
source of unsatisfiability. Early examples of work addressing minimal sources of un-
satisfiability in non-clausal formulas include [6,11]. However, these early attempts are
only applicable in restricted cases, and so do not provide a general solution.

This paper contains the following main contributions. First, the paper formalizes
the notion of minimally unsatisfiable circuits. Second, the paper proposes algorithms
for the computation of minimally unsatisfiable subcircuits of Boolean circuits (circuit
MUSes). Third, the paper investigates the relationship between circuit MUSes and the
recently proposed notion of group oriented MUSes [10]. Experimental results confirm
the practical efficiency of the proposed algorithms, and the usefulness of dedicated
techniques.
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2 Preliminaries

Propositional formulas are constructed in terms of a countably infinite set of proposi-
tional variables, logical constants F and T and a set logical connectives (in this paper,
we assume this set to be {¬,∨,∧}). We denote the set of all propositional formulas
by PROP, and when α ∈ PROP the set of propositional variables that occur in α by
V ar(α). A truth-value assignment (or simply, assignment) for α ∈ PROP is function
h mapping V ar(α) ∪ {F, T } into the set {0, 1} in such a way that h(F ) = 0 and
h(T ) = 1. An assignment h is extended naturally to all subformulas of α. A formula α
is satisfiable if there is an assignment h such that h(α) = 1.

Propositional formulas in which the negation connective applies only to variables are
said to be in the Negation Normal Form (NNF). A literal is a propositional variable or
its negation, a clause is a disjunction of literals. A formula is said to be in the Conjunc-
tive Normal Form (CNF) if it is a conjunction of clauses. Formulas in CNF are often
represented using set notation, and treated as sets of clauses – we use this representation
in this paper.

For a formula α ∈ PROP, the polarity of a subformula α′ of α is positive (resp.
negative) if α′ is in the scope of an even (resp. odd) number of negation connectives.
We write pol(α′) = 1 (resp. pol(α′) = −1) when the polarity of α′ is positive (resp.
negative). Recall that if pol(α′) = 1, then for any assignment h we have h(α(α′/F )) ≤
h(α) ≤ h(α(α′/T )) – the inequalities are reversed when pol(α′) = −1. Here α(α′/γ)
denotes the formula obtained from α by replacing the subformula α′ with the logical
constant γ.

Let G be a countably infinite set of gate variables (or simply gates). A Boolean
circuit over G is a finite set C of equations of the form g = f(g1, . . . , gn), where
g, g1, . . . , gn ∈ G, and f : {0, 1}n → {0, 1} is a Boolean function, with the addi-
tional requirements that (i) each g ∈ G appears at most once as the left hand side in
the equations in C, and (ii) the underlying directed graph 〈G,E(C)〉, where E(C) =
{〈g, g′〉 ∈ G×G | g = f(. . . , g′, . . .) ∈ C}, is acyclic. We refer to the elements of
E(C) as wires, and to the graph 〈G,E(C)〉 as the circuit graph of C. If the equation
g = f(g1, . . . , gn) is in C then g is an f -gate (or, of type f ), the equation is denoted by
eqg. When no ambiguity is possible, we write g ∈ C to denote eqg ∈ C.

For a gate g, the set of its children (resp. parents) in the circuit graph is called the
fanin (resp. fanout) of g and is denoted by FI(g) (resp. FO(g)). A gate with the empty
fanin (resp. fanout) is an input gate (resp. output gate). A gate that is neither an input
nor an output is an internal gate. The sets of input gates and output gates in C are
denoted by Inputs(C) and Outputs(C), respectively.

An assignment for a circuit C, is a function h : Inputs(C) → {0, 1} extended in
the natural way to all gates in C – that is, for each g = f(g1, . . . , gn) ∈ C, h(g) =
f(h(g1), . . . , h(gn)). Satisfiability for Boolean circuits can be defined in the following
way: for each circuit C fix a designated output gate outC ∈ Outputs(C). Then C is
satisfiable (with respect to outC ) if there exists an assignment h such that h(outC) = 1,
otherwise C is unsatisfiable. The polarity of gates in C with respect to the designated
output outC can be defined in terms of paths in the circuit graph and the monotonicity
of functions that appear on these paths.
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3 Definitions of Minimal Unsatisfiability

We begin by reviewing the well-known definition of minimal unsatisfiability for formu-
las in CNF, and some of the existing proposals for generalization of minimal unsatisfi-
ability to non-clausal propositional formulas.

Definition 1. A CNF formula F is minimally unsatisfiable if F is unsatisfiable, and for
any clause c ∈ F , the formula F \ {c} is satisfiable.

As in [6], by MU we denote the set of minimally unsatisfiable formulas in CNF. The
set of minimally unsatisfiable subformulas of a CNF formula F , in symbols MUS(F )
is defined as MUS(F ) = {F ′ | F ′ ⊆ F and F ′ ∈MU}.

A definition of minimal unsatisfiability for propositional formulas in NNF has been
proposed in [6]. Let α be an NNF formula, and Tα be the tree representationα. Consider
any subtree Tα′ of Tα whose root is either an ∨-node or a literal, and that is a succes-
sor of an ∧-node. Then, formula α′ represented by Tα′ is called an or-subformula of
α. The minimal unsatisfiability can be defined with respect to the elimination of or-
subformulas.

Definition 2 (cf. [6]). An NNF formulaα is minimally unsatisfiable ifα is unsatisfiable,
and for any or-subformula α′ of α, the formula produced by the elimination of α′ from
α is satisfiable.

We denote the set of minimally unsatisfiable, according to Definition 2, NNF formulas
by MUNNF (it is MU∗ in [6]). Note that a syntactic elimination of a subformula does
not necessarily yield a well-formed formula, as such, the term “elimination” in this def-
inition implies an additional simplification. Nevertheless, given an NNF formula α one
can define a set MUSNNF(α) by analogy with CNF – this set contains all formulas in
MUNNF that can be obtained from α via elimination of any number of or-subformulas
(including none). It is not difficult to see that on the domain of formulas in CNF, Defi-
nition 2 captures the same set of formulas as Definition 1.

A number of notions of minimal unsatisfiability for temporal formulas in LTL have
been proposed in [11]. One of these notions, when specialized to the (classical) propo-
sitional logic (which is a fragment of LTL) results in the following definition:

Definition 3 (cf. [11]). A propositional formula α is minimally unsatisfiable if α is
unsatisfiable, and the replacement of any of its positively (resp. negatively) polarized
subformula by the logical constant T (resp. F ) produces a satisfiable formula.

By MUPROP we denote the set of minimally unsatisfiable, according to Definition 3,
propositional formulas. Given a propositional formula α, the set MUSPROP(α) can be
defined by analogy with the definition ofMUSNNF(α). Note that Definition 3 captures
the same set of formulas in NNF as Definition 2, that is MUNNF = MUPROP ∩NNF.

The notions of minimal unsatisfiability presented in this section, and the related no-
tions of MUS, both in clausal and non-clausal domains, rely on some basic operation
with certain properties. Formally, we can describe such operation by a binary relation
on a set of formulas. For example, in the case of CNF the basic operation is the removal
of a single clause, and the corresponding relation RCNF on the set of CNF formulas is:

〈F, F ′〉 ∈ RCNF if and only if ∃c (F ′ = F \ {c}). (1)
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Then, a CNF F ∈ MU if F is unsatisfiable, and any F ′ ∈ RCNF(F ) is satisfiable.
In addition, given a CNF F , the set MUS(F ) is defined simply as R∗

CNF(F ) ∩MU.
The relations RNNF and RPROP on the set of propositional formulas that describe the
operations used in the definitions ofMUNNF andMUPROP can be defined analogously.

In general, given a set LE of logical entities with a defined notion of satisfiability
(for example, logical formulas, or Boolean circuits), and a binary relation R on LE, we
can define the set MULE(R) of minimally unsatisfiable, with respect to R, members
of LE as

MULE(R) = {L ∈ LE | L is unsatisfiable, and any L′ ∈ R(L) is satisfiable },

and, given L ∈ LE, the related set

MUSLE(L,R) = R∗(L) ∩MULE(R).

However, for some relations R, the sets defined in this way might not capture the in-
tuitive meaning of minimal unsatisfiability – the irredundancy. As such, we propose a
number of characteristic properties of R that, albeit somewhat imprecise, aid in con-
structing intuitively meaningful definitions of minimal unsatisfiability and MUS.

Property 1. R has to be satisfiability preserving, that is if L ∈ LE is satisfiable, then
any L′ ∈ R(L) is satisfiable.

This property ensures that minimal unsatisfiability defined using R captures a strong
notion of irredundancy – if L is in MULE(R), then every L′ in R+(L) is satisfiable.

Property 2. For any unsatisfiable L ∈ LE, R(L) �= ∅.

This property of R prevents definitions of minimal unsatisfiability that are vacuous –
that is, elements L of MULE(R) that are minimally unsatisfiable simply because the
basic operation captured by the relation R cannot be applied to L.

Property 3. Every L′ ∈ R(L) is in some sense “smaller” than, and is “close” to L.

This property can be made precise by defining a suitable order and a metric on LE,
however for this paper we will rely on its intuitive meaning. Note that in general L′ ∈
R(L) is not a necessarily a “sub-object” of L – in fact, among the definitions presented
above, it is only in the case of CNF, where L′ is a sub-formula of L.

In the next section we propose two relations on the set of Boolean circuits that satisfy
the above requirements, and give rise to intuitively meaningful definitions of minimally
unsatisfiable Boolean circuits and circuit MUSes.

4 Minimally Unsatisfiable Boolean Circuits

Consider a Boolean circuit C over a set of gates G – recall that C is a finite set of
equations eqg of the form g = f(g1, . . . , gn). Let outC be the designated output of C,
and assume that C is unsatisfiable, that is, for every assignment h for C, h(outC) = 0.
Consider the situation when there exists a gate g ∈ C such that C \ {g} is unsatisfiable.
Then the gate g, or more precisely the equation eqg , is redundant with respect to the
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Fig. 1. (a) An example circuit C (a half-adder with both the carry c and the sum s set to 1). C is
unsatisfiable. (b) The circuit C′ = C \ {g1} is also unsatisfiable, and since C′ ∈ Rg(C), the
circuit C is not gate-minimally unsatisfiable. However, the circuit C′ is, and is a gate-MUS of C.

unsatisfiability of C. This suggests a possible gate-based definition of minimal unsat-
isfiability for circuits: a circuit is unsatisfiable, and no gate equation can be removed
without making it satisfiable. We will formalize this definition shortly, but first present
a slightly different perspective.

Each gate equation g = f(g1, . . . , gk) in the circuit captures a relationship, a con-
straint, between the values of g and the values of gates in FI(g). When the gate is
redundant, the relationship of g with all these values is redundant. However, when the
gate is not redundant, it does not necessarily mean that the relationship of g with all
gates is not redundant. It is possible that only some of these relationships are important
for unsatisfiability, while others can be dropped. These individual relationships corre-
sponds to the wires in the circuit – i.e. the edges in the circuit graph – that connect the
gate to the gates in its fanin. This suggests a different, wire-based, definition of minimal
unsatisfiability for circuits – it is more refined than the gate-based, in that a minimally
unsatisfiable circuit from the gate view, is not necessarily minimally unsatisfiable from
the wire point of view.

With this motivation, we proceed to formalizing the two proposed types of minimal
unsatisfiability.

4.1 Gate-Based Minimal Unsatisfiability

Let CIRC be a set of Boolean circuits over the set of gates G, and let Rg ⊆ CIRC2 be
defined as follows:

〈C,C′〉 ∈ Rg if and only if outC = outC′ and ∃g ∈ C C′ = C \ {g}.

When C′ = C \ {g} we have Inputs(C′) = Inputs(C) ∪ {g}, thus the effect of
the removal of eqg from C is that g becomes an unconstrained input. As an example,
consider the circuit C in Figure 1(a), and the circuit C′ obtained from C by removing
gate g2 (Figure 1(b)). We now establish the basic properties of the relation Rg , that,
as argued in Section 3, will afford a meaningful definition of minimally unsatisfiable
circuit and circuit MUS based on Rg .
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Proposition 1. Let C be a satisfiable Boolean circuit. Then, for any C′ ∈ Rg(C), C′

is satisfiable.

Proof. Let h be satisfying assignment for C, and let C′ = C \ {g}. Then, h′ = h ∪
{〈g, h(g)〉} is a satisfying assignment for C′. ��
Hence, Rg is satisfiability preserving (Property 1). Further, we have that for every un-
satisfiable circuitC,Rg(C) �= ∅, becauseC must have at least one gate (Property 2). Fi-
nally, when C′ ∈ Rg(C), C′ ⊂ C, as such C′ is smaller than C in terms of the number
of gate definitions, and is close to C as the two circuits differ by exactly one gate (Prop-
erty 3). Thus, paraphrasing the definitions ofMUCIRC(Rg) andMUSCIRC(C,Rg) we
have:

Definition 4. A Boolean circuit C is gate-minimally unsatisfiable, if C is unsatisfiable
and for every gate g ∈ C, the circuit C \ {g} is satisfiable.

Definition 5. Let C be an unsatisfiable Boolean circuit. Then the circuit C′ is a gate-
MUS of C if C′ ⊆ C and C′ is gate-minimally unsatisfiable.

We denote the set MUCIRC(Rg) as MUg, and a set MUSCIRC(C,Rg) as MUSg(C)
for the rest of this paper. The circuit C′ in Figure 1(b) is gate minimally unsatisfiable,
and is the gate-MUS of the circuit C in Figure 1(a).

In Section 3 we have emphasized the fact that the presented definitions of mini-
mal unsatisfiability are strict generalizations: on the domain of CNF formulas, the set
MUNNF coincides with the set MU, while on the domain of NNF formulas, the set
MUPROP coincides with the set MUNNF. We now demonstrate that the proposed def-
inition of gate-based minimal unsatisfiability for Boolean circuits, despite its intuitive
appeal, is in a sense too coarse.

Take any α ∈ PROP, and let sm : V ar(α) �→ G be some injective function
(“subformula map”). We are going to extend sm to all subformulas of α, and, simulta-
neously, associate each subformulaα′ of αwith a Boolean circuitCα′ . The construction
is defined inductively on the structure of α as follows:

(i) if α = p, then let Cα = ∅, and outC = sm(p);
(ii) if α = β ∧ γ, then take a fresh gα ∈ G, and let

Cα = Cβ ∪ Cγ ∪ {gα = ∧(outCβ
, outCγ )},

and let outCα = gα, and sm = sm ∪ {〈α, gα〉}.
(iii) the constructions for the cases α = β ∨ γ and α = ¬β are analogous to (ii).

Thus, the circuit graph of Cα is tree-like, with the possible exception of the inputs.
Furthermore, for every gate g ∈ Cα, the polarity pol(g) is the same as pol(sm−1(g)),
and for every non-variable subformula α′ of α, pol(α′) = pol(sm(α′)).

Let h be an assignment to V ar(α), then we can define define a corresponding as-
signment for Cα in a straightforward manner:

hsm = {〈 sm(p), h(sm(p)) 〉 | p ∈ V ar(α)}.

Clearly, for any subformula α′ of α, h(α′) = hsm(sm(α′)). Similarly, given an as-
signment h for circuit Cα we can define the corresponding assignment hsm−1 with the
analogous property.
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Theorem 1. For every propositional formula α, if α ∈ MUPROP , then Cα ∈ MUg,
however the converse doesn’t hold.

Proof. It is easy to see that formula α is unsatisfiable if and only if so is the circuit Cα.
Towards a contradiction, assume that α ∈ MUPROP, but Cα /∈ MUg. Since α is

unsatisfiable, so is Cα and we conclude that there exists g ∈ Cα such that the circuit
C′ = Cα \ {g} is unsatisfiable. Let α′ = sm−1(g), and assume pol(α′) = 1. Then
the formula α(α′/T ) must be unsatisfiable, as otherwise, if h is a satisfying assignment
for α(α′/T ), then hsm ∪ {〈g, 1〉} satisfies C′. Since α(α′/T ) ∈ RPROP we have
α /∈MUPROP.

One of the reasons that the reverse implication does not hold is that the operation
RPROP allows to substitute the constants T/F for variables in the formula, while an
equivalent of such operation is not captured by Rg . Consider for example the formula
α = q ∧ (¬q ∧ r). Then, α /∈ MUPROP because the formula α′ = q ∧ (¬q ∧ T ) is
still unsatisfiable. However, the corresponding circuit Cα = {out = ∧(q, g1), g1 =
∧(g2, r), g2 = ¬(q)} is gate-minimally unsatisfiable. ��

Note that the formula α used as a counterexample in the above proof is a propositional
representation of the CNF formula F = {q,¬q, r} and soRg gives rise to the definition
of minimal unsatisfiability that is too coarse on domain of CNF formulas as well.

The counterexample in the proof of Theorem 1 might suggest that Rg could be re-
fined if it were to allow the replacement of inputs by constants according to their polar-
ity. Unfortunately, this suggestion poses an immediate problem: in unsatisfiable circuits
there must be non-polarized inputs. Selecting an arbitrary constant for non-polarized in-
puts results in satisfiability non-preserving operation. Further, the following, intuitively
minimally unsatisfiable example circuit C = {out = ∧(p, g1), q1 = ¬(p)} would
not be minimally unsatisfiable, as we could replace p with 0 (or 1) and still obtain an
unsatisfiable circuit.

The real reason for the fact that in certain cases unsatisfiable formulas that are not in
MUPROP map to gate-minimally unsatisfiable circuits (i.e.MUg is in this sense coarser
than MUPROP) is that RPROP allows the replacement of an individual occurrence of
a variable in the formula without affecting other occurrences of this variable. Multiple
occurrences of a variable p in formula α are represented by multiple wires connecting
the input sm(p) in the circuit Cα, hence an operation that would allow to “break”
wires in the circuit would address this weakness of Rg . Thus, in conjunction with the
discussion at the beginning of this section, we have a strong motivation for the definition
of wire-based minimal unsatisfiability of Boolean circuits.

4.2 Wire-Minimal Unsatisfiable Circuits

Let I be a set of gates disjoint fromG, let CIRC be a set of Boolean circuits overG∪I ,
and let Rw ⊆ CIRC2 be defined as follows:

〈C,C′〉 ∈ Rw if and only if outC = outC′ and ∃g, gk ∈ G, ∃i ∈ I such that

g = f(. . . , gk, . . . ) ∈ C and C′ = C \ {g} ∪ {g = f(. . . , i, . . . )}

In words, when C′ ∈ Rw(C), the circuit C′ can be obtained by replacing some wire
〈g, gk〉 in the circuit graph of C with a wire 〈g, i〉, where i is a fresh input gate. Thus,
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Fig. 2. (a) An example circuit C (also a half-adder with both the carry c and the sum s set to
1). C is unsatisfiable. (b) The circuit C1 obtained from C by removing the wire 〈g2, a〉, hence
C1 ∈ Rw(C); C1 is also unsatisfiable. (c) The circuit C2 obtained from C1 by removing the
wire 〈g1, b〉, hence C2 ∈ Rw(C). C2 ∈ MUw, and is a wire-MUS of C (and C1)

effectively the operation eliminates the connection, or constraint, between the values of
gk and g in C. Note that only that wires that connect gates in G can be replaced, as
such, once replaced, a wire cannot be replaced again. As such we will often refer to this
operation as the removal of the wire 〈g, gk〉 from C.

As an example, consider the circuit C depicted in Figure 2(a), and the circuit C1 in
Figure 2(b) that is obtained from C by removing the wire {g2, a}. Thus, C1 ∈ Rw(C).
The circuit C2 in Figure 2(c) is obtained from C1 by removing the wire 〈g1, b〉, as
such C2 ∈ Rw(C1). We use this opportunity to point out that both C1 and C2 are
unsatisfiable, but C is gate minimally unsatisfiable. In order to further motivate the
definition of minimal unsatisfiability based on the relation Rw, we establish the basic
properties of this relation outlined in Section 3.

Proposition 2. Let C be a satisfiable Boolean circuit. Then, for any C′ ∈ Rw(C), C′

is satisfiable.

Proof. Let h be a satisfying assignment for C, and assume that C′ was obtained from
C by replacing some wire 〈g, gk〉 with 〈g, i〉, where i is a fresh input gate. Then, the
assignment h′ = h ∪ {〈i, h(gk)〉} is satisfying for C′. ��

Thus, Rw is satisfiability preserving (Property 1). Further, every unsatisfiable circuit,
with the exception of Cd = {out = 0}, has at least one wire, as such for every un-
satisfiable C �= Cd, Rw(C) �= ∅. Hence, Property 2 almost holds – the rather degen-
erate circuit Cd is the only case that violates this property, note, however, that Cd ∈
MUCIRC(Rw), albeit vacuously. Finally, with respect to Property 3, when 〈C,C′〉 ∈
Rw, C′ is not a subcircuit of C (but neither are the formulas related by RNNF or
RPROP). It is however, smaller than C in the sense that it has one less constraint be-
tween the values of gates. Thus, paraphrasing the definitions of MUCIRC(Rw) and
MUSCIRC(C,Rw) we have:

Definition 6. A Boolean circuit C is wire-minimally unsatisfiable if C is unsatisfiable
and for any wire 〈g, gk〉 in C, the circuit C′ obtained by the replacement of this wire
with 〈g, i〉 for a fresh input i is satisfiable.
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Definition 7. Let C be an unsatisfiable Boolean circuit. Then the circuit C′ is a wire-
MUS of C, if C′ can be obtained from C by removing zero or more wires, and C′ is
wire-minimally unsatisfiable.

We denote the sets MUCIRC(Rw) and MUSCIRC(C,Rw) as MUw and MUSw(C),
respectively. The circuit C2 depicted in Figure 2(c) is wire-minimally unsatisfiable, and
is a wire-MUS of both the circuits C and C1 in Figures 2(a),2(b).

The example in Figure 2 demonstrates that there are gate-minimally unsatisfiable
circuits that are not wire-minimally unsatisfiable. The following theorem shows that,
with the exception of circuits with constant gates, every wire-minimally unsatisfiable
circuit is gate-minimally unsatisfiable. Let CIRCnc ⊂ CIRC be the set of Boolean
circuits without constant gates. Then,

Theorem 2. For every Boolean circuit C ∈ CIRCnc, if C ∈ MUw, then C ∈ MUg,
however the converse does not hold.

Proof. We prove the contrapositive: assume that C ∈ CIRCnc is unsatisfiable and
C /∈ MUg, we show that C /∈ MUw. By assumption ∃g ∈ C, such that Cg = C \ {g}
is unsatisfiable. Let g = f(g1, . . . , gk), let {i1, . . . , ik} be a set of fresh input gates,
and consider the circuit Cw = C \ {g} ∪ {g = f(i1, . . . , ik)}. Then, Cw must be
unsatisfiable, as otherwise a satisfying assignment h for Cw can be used to construct a
satisfying assignment h ∪ {〈g, f(h(i1), . . . , h(ik))〉} for Cg . Note that Cw ∈ Rk

w(C),
and therefore for some C′ ∈ Rw(C), C′ is unsatisfiable because Rw is satisfiability
preserving. We conclude that C /∈MUw.

The fact that the converse does not hold is demonstrated in Figure 2. ��

The circuit depicted on the right margin illustrates the issue with the
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⊕constant gates. While the constant gate 0 can be removed from this cir-
cuit (recall that this is equivalent to replacing it by an unconstrained
input) without breaking its unsatisfiability, removing any of the wires
leading from this gate will make the circuit satisfiable. Thus, by al-
lowing the removal of wires, we get an almost refinement of MUg.
The following theorem shows that we also gain the equivalence with
MUPROP, and as such, with MUNNF and MU (the sets of minimally unsatisfiable
formulas in NNF and CNF, respectively).

Theorem 3. For every propositional formula α, α ∈ MUPROP, if and only if Cα ∈
MUw.

Proof. We prove the contrapositives. Recall that Cα is a circuit constructed using the
structure of α (Section 4.1).

Assume α is unsatisfiable and α /∈MUPROP, we show that α /∈MUw. Without the
loss of generality, let α′ be a positively polarized subformula of α such that the formula
α(α′/T ) is unsatisfiable. Since pol(α′) = 1, the formula α(α′/F ) is also unsatisfiable.
Note that α′ must be a proper subformula of α because the formula T , which is the
result of substitution of α itself by T , is obviously satisfiable. As such, let β be the
parent of α′ in the formula tree of α. Then the circuit C′ obtained from C by removing
the wire 〈sm(β), sm(α′)〉 is also unsatisfiable. Hence, C /∈MUw.
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Assume now that Cα is unsatisfiable and Cα /∈MUw, we show that α /∈MUPROP.
Let 〈g1, g2〉 be the wire in Cα that can be removed to obtain an unsatisfiable circuit C′.
If g2 is not an input gate, then let α2 = sm−1(g2), otherwise let α2 be the occurrence of
the variable sm−1(g2) in the subformula sm−1(g1). Then, bothα(α2/T ) andα(α2/F )
must be unsatisfiable. Therefore, α /∈MUPROP. ��

5 Computing Circuit MUSes

In this section we propose possible solutions to the problem of computing a gate-MUS
or a wire-MUS of a given unsatisfiable circuit C. For reasons of clarity, in this section
we assume that C does not have constant gates, that is C ∈ CIRCnc.

Most of the high-performing algorithms for computation of CNF-based MUSes are
based on the identification of so called transition clauses [3] in unsatisfiable CNF for-
mulas. A clause c ∈ F is called a transition clause, if F is unsatisfiable but F \ {c} is
satisfiable. The key property of the transition clauses is that if c is a transition clause
for F , then c belongs to all MUSes of F . Then, given an unsatisfiable formula F , a
deletion-based MUS extractor picks a clause c ∈ F , and tests the formula F ′ = F \{c}
for satisfiability. If F is satisfiable, then c is final – it is a part of constructed MUS. Oth-
erwise, the algorithm continues with the formula F ′. When all clauses are final, the
current formula is an MUS of the initial formula F . In most cases, this basic extraction
algorithm can be accelerated significantly when the underlying SAT solver supports
incremental SAT solving, and is capable of producing proofs of unsatisfiability.

It is not difficult to see that in the case of Boolean circuits, the analogous concepts –
transition gates, and transition wires – can be defined, and possess similar properties.
As such, the existing CNF MUS algorithms, such as the deletion-based algorithm de-
scribed above, can be adapted to the circuit MUS problem. It is plausible, however, that
in the case of circuits the structure can be used to accelerate the circuit MUS computa-
tion – we present empirical data to support this claim in Section 6.

Unfortunately, the publicly available efficient circuit SAT solvers, such as [4], nei-
ther expose an incremental interface, nor produce proofs of unsatisfiability. Thus, it is
advantageous to develop CNF-based techniques for circuit MUS extraction in order to
capitalize on the continuing progress of CNF-based SAT technology.

Let C be a Boolean circuit. For each g ∈ C, let Ts(g) be the set of clauses ob-
tained by the Tseitin transformation of g to CNF [12], and thus, Ts(C) = {outC} ∪⋃

g∈C Ts(g) be the Tseitin encoding of C. It is tempting to compute CNF-based M =
MUS(Ts(s)), and then “inflate” each clause in M to obtain the circuit

CM =
⋃

c∈M

{g | c ∈ Ts(g)}.

In general, the resulting circuit CM is not a gate-MUS of C, and so CNF MUS ex-
tractors are not applicable to circuit MUS problem. However, circuit MUSes can be
computed using the tools developed for the recently proposed problem of group ori-
ented MUS extraction [10]:
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Definition 8 ([5]). Given an explicitly partitioned unsatisfiable CNF formula F = D∪⋃
G∈G G, where G = {G1, . . . , Gk}, and D and each Gi are disjoint sets of clauses, a

group oriented MUS of F is a subset G′ of G such that D ∪
⋃

G∈G′ G is unsatisfiable,
and, for every G′′ ⊂ G′, we have that D ∪

⋃
G∈G′′ G is satisfiable.

It is not difficult to see that if we let GC = {Ts(g) | g ∈ C}, and let D = {outC}, then
the group oriented MUS of the formula FC = D ∪

⋃
G∈GC

G corresponds to a gate-
MUS of the circuit C, and vice-versa. Thus, gate-MUSes for circuits can be computed
using group oriented MUS extractors, for example SAT4J [7].

The problem of wire-MUS computation for a given circuit C, however, cannot be
solved directly by computation of group oriented MUS of the formulaFC . Consider for
example a gate g ∈ C defined as g = ∧(g1, g2, g3). The set Ts(g) contains four clauses
cm, c1, c2, c3, where

cm = g ∨ ¬g1 ∨ ¬g2 ∨ ¬g3, c1 = ¬g ∨ g1, c2 = ¬g ∨ g2, c3 = ¬g ∨ g3.

Assume now that we remove the wire 〈g, g1〉 from C, that is we replace 〈g, g1〉 with
〈g, i1〉, where i1 is a fresh input, to obtain a circuit C′. Then, in C′ the set Ts(g)
contains the clauses c′m, c

′
1, c2, c3, where

c′m = g ∨ ¬i1 ∨ ¬g2 ∨ ¬g3, c′1 = ¬g ∨ i1.

Since the variable i1 does not appear in any other clause of Ts(C′) except c′m and c′1,
from the perspective of the satisfiability the net effect of removing the wire 〈g, g1〉 from
C on Ts(C) is simply the removal of clauses cm and c1 from Ts(C). Formally, the
CNF formula Ts(C′) is satisfiable if and only if the formula F = Ts(C) \ {cm, c1} is
satisfiable. The “only if” direction is obvious, since F ⊂ Ts(C′). For the “if” direction,
let h be satisfying for F – if h(g) = 1, then c′m is satisfied in Ts(C′), and we assign
1 to i1 to satisfy c′1; if h(g) = 0, then c′1 is satisfied, and we assign 0 to i1 to satisfy
c′m. Similarly, the effect of removing the wire 〈g, g2〉 from C′ amounts to removing the
clause c2 from Ts(C′). Finally, the subsequent removal of 〈g, g3〉 results in the formula
with all clauses cm, c1, c2, c3 removed – note that this is equivalent to removing all
clauses in Ts(g) from Ts(C), and as such, removing the gate g from C. Indeed, as the
proof of Theorem 2 shows, removing all wires in the fanin of g ∈ C is equivalent to
removing the gate g itself.

We now point out that the problem of computing a wire-MUS of C could have
been mapped to group oriented MUS directly, if in Definition 8 the groups Gi were
not required to be disjoint. If this were the case, then we could set G1 = {cm, c1},
G2 = {cm, c2}, and G3 = {cm, c3} – note that the groups intersect on cm. Then, re-
moving the group G1 from the formula F , would result in the removal the clause cm
from G2 and G3. As an aside, this suggests a possible generalization of the definition
of the group oriented MUS problem. Meanwhile, we can still map wire-MUS prob-
lem to the group oriented MUS problem, though at the cost of adding extra variables.
We demonstrate the mapping using the previous example of g = ∧(g1, g2, g3) with
Ts(g) = {cm, c1, c2, c3}.

The idea is to add one extra variable for every intersecting group. Let l1, l2 and l3
be three fresh variables, and let G∗

1, G∗
2 and G∗

3 be the groups of clauses defined in the
following way:
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G∗
1 = {cm ∨ ¬l2 ∨ ¬l3, c1 ∨ ¬l1, l1}

G∗
2 = {cm ∨ ¬l1 ∨ ¬l3, c2 ∨ ¬l2, l2}

G∗
3 = {cm ∨ ¬l1 ∨ ¬l2, c1 ∨ ¬l3, l3}

Then, for example, the removal of group G∗
1 makes the variable l1 unconstrained, and,

as such, the first clause in both groups G∗
2 and G∗

3 effectively becomes satisfied. It is
easy to see that this has the exact effect of the removal of the groupG1 under the gener-
alized definition of group MUS that allows non-disjoint groups. The demonstrated tech-
nique for mapping non-disjoint group MUS problem to (disjoint) group MUS problem
can be applied in a general setting. We omit the formal definition of such mapping, and
the proofs of its correctness from this paper.

Intuitively, it seems plausible that the structure of a given instance of group oriented
MUS problem can provide additional information that allows to accelerate group-MUS
extraction. In the application of group-MUS to circuit-MUS computation problem, the
circuit structure can be used to deduce the relationships between groups which, in turn,
can be used to guide a group-MUS extractor. We propose two such techniques, and, in
the following section, demonstrate empirical evidence to their effectiveness.

One of the techniques is based on the following observation. Let g be a gate in C.
By D(g) let us denote the set of gates dominated by g, that is

D(g) = {g′ ∈ C | every path from g′ to outC in the graph of C includes g }.

Note that g ∈ D(g). Then the circuitC′ = C \{g} is satisfiable if and only if the circuit
C′′ = C \ {D(g)} is satisfiable. As such, during the gate-MUS extraction, rather than
testing the circuit C′ for satisfiability, we can test the circuit C′′. Since C′′ is smaller
than C′ the SAT test might be faster. In addition, if C′′ is unsatisfiable, we remove a
potentially large set of gates at once, thus reducing the number of SAT checks. This,
domination based optimization can be improved further by the analysis of the satisfying
assignment for C′′ in case it is satisfiable.

6 Empirical Study

To evaluate some of the ideas presented in this paper empirically, we implemented a
prototype circuit MUS extractor ncmuser. The extractor computes gate-MUSes by
mapping the gate MUS problem to group oriented MUS in the manner described in
the previous section. ncmuser interfaces with the group-MUS extractor (the group-
oriented version of MUSer [9]) by controlling the order in which the latter selects the
groups for removal. The mapping of the wire-MUS computation problem to the group
oriented MUS extraction problem described in the previous section is currently not used
– instead, for wire-MUS extraction ncmuser interfaces directly with an incremental
SAT solver (picosat version 935 [1]). The benchmark circuits for our experiments
were selected from the following sets:

(i) unsatisfiable (i.e. correct) sequential designs from the Hardware Model Checking Competi-
tion 2010 (http://fmv.jku.at/hwmcc10/) – combinational And-Inverter-Graph (AIG) circuits
were generated using aigtobmc (http://fmv.jku.at/aiger);
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Fig. 3. Effects of gate selection strategies on gate-MUS computation times

(ii) AIGs generated using Boolector (http://fmv.jku.at/boolector/) to bit-blast QF BV (theory of
bit-vectors) instances of the SMT Competition 2009; (http://www.smtcomp.org/2009/)

(iii) unsatisfiable circuits in ISCAS format from the fvp-unsat-1.0 and fvp-unsat-2.0
benchmark suites of M. Velev (http://www.miroslav-velev.com/sat benchmarks.html).

The objective of the first part of our empirical study was to investigate the effective-
ness of the structure-based techniques for gate-MUS extraction described in Section
5. We implemented four gate selection strategies in ncmuser: the random selection
(RND), the top-down traversal of the circuit (i.e. reverse topological order, TD), the
top-down traversal with the domination based optimization (TD+D), and, finally, the
strategy TD-D with the addition of the analysis of satisfying assignments (TD+DS).
From our set of benchmarks we selected a subset of 245 instances solvable with top-
down (TD) strategy given 5000 seconds of CPU time and 4 GB of RAM on HPC cluster
nodes consisting of two quad-core Intel Xeon E5450’s with 32 GB of RAM. From this
subset we selected 75 instances that were found to have between 10% to 90% of re-
dundant gates, and added 25 randomly selected timed-out instances. The results of the
comparative evaluation of the four gate-selection strategies are presented in Figure 3.
We note that the performance of gate-MUS extraction clearly improves with the amount
of the circuit-based structural information used to aid the computation.

The goal of the second part of our empirical study was to find out whether the redun-
dant wires do occur in practice. During the computation of wire-MUSes ncmuser uses
the top-down circuit traversal strategy. As wire-MUS extraction may require more SAT
calls than gate-MUS extraction, in wire-MUS extraction mode ncmuser was able to
solve 228 instances out of 245 described above. We found that out of these 228 instances
30 had over 50%, and 70 had over 10% of redundant wires after all the redundant gates
have been removed.
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7 Conclusion

This paper addresses the problem of minimal unsatisfiability in Boolean circuits. The
paper starts by formalizing the gate-based and wire-based notions of minimally unsat-
isfiable circuits, and then proposes algorithms for the computation of gate-MUSes and
wire-MUSes of Boolean circuits. One key aspect is the tight relationship between circuit
and group-oriented MUS extraction [10,5]. This applies both to gate-based and wire-
based minimal unsatisfiability. Another key aspect is that the extraction can be acceler-
ated by exploiting circuit structure. Experimental results, obtained on Boolean circuits
from different application domains, confirm the practical efficiency of the proposed
algorithms, and the usefulness of dedicated techniques. Finally, the general treatment
of minimal unsatisfiability used in this paper appears to be quite convenient. Future
work will investigate further the relationship between circuit and group-oriented MUS
extraction.

Acknowledgements. We thank the anonymous referees for helpful comments. This
work is partially supported by SFI PI grant BEACON (09/IN.1/I2618).
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Abstract. Minimally Unsatisfiable Subformulas (MUS) find a wide range of
practical applications, including product configuration, knowledge-based valida-
tion, and hardware and software design and verification. MUSes also find applica-
tion in recent Maximum Satisfiability algorithms and in CNF formula redundancy
removal. Besides direct applications in Propositional Logic, algorithms for MUS
extraction have been applied to more expressive logics. This paper proposes two
algorithms for MUS extraction. The first algorithm is optimal in its class, meaning
that it requires the smallest number of calls to a SAT solver. The second algorithm
extends earlier work, but implements a number of new techniques. The resulting
algorithms achieve significant performance gains with respect to state of the art
MUS extraction algorithms.

1 Introduction

There has been a remarkable amount of recent work on algorithms for
computing minimal explanations of unsatisfiability over the last decade
(e.g. [28,16,3,15,14,9,10,11,27,12,7,13,23,25]). Most of this work is inspired by
earlier work on computing explanations for inconsistencies (e.g. [5,4,1]). Algorithms
for MUS extraction have often been characterized as constructive [12] (also referred to
as insertion-based [7,23]), as destructive [12] (also referred to as removal-based [7],
or deletion-based [23]), or as dichotomic [16,14]. All MUS extraction algorithms
involve a number of calls to a SAT solver (or some other NP oracle). For destructive
approaches, the best performing algorithms require O(m) calls to a SAT solver, where
m is the number of clauses in the original formula. Existing constructive approaches
require O(m × k) calls to a SAT solver, where k is the size of the largest MUS in the
original CNF formula [12]. Finally, the dichotomic approach requires O(k logm) calls
to a SAT solver. Recent work proposed an approach based on a weighted Maximum
Satisfiability (MaxSAT) solver [7], but the function problem associated with computing
a weighted MaxSAT solution is inΔP

2 , and so unlikely to be in NP. There is also a large
body of work on computing good approximations of MUSes (e.g. [23]). Despite the
large body of work, MUS extraction algorithms are not industrial-strength, meaning
that, with a few recent exceptions (e.g. [25]), MUS extraction algorithms are seldom
evaluated on large problem instances or used in practical settings. This is demonstrated
in the results section of this paper, where existing MUS extraction algorithms are
shown to be in general inefficient for large complex problem instances from practical
applications.

K.A. Sakallah and L. Simon (Eds.): SAT 2011, LNCS 6695, pp. 159–173, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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This paper represents a first effort towards developing industrial-strength MUS ex-
traction algorithms, and has the following main contributions. First, the paper develops
a constructive algorithm for MUS extraction that requires O(m) calls to a SAT solver.
This result implies (i) that destructive and constructive approaches have the same worst-
case complexity in terms of the number of calls to a SAT solver; and (ii) that when
k = Θ(m), the new algorithm represents the optimal case (as does the destructive algo-
rithm). More importantly, this new algorithm blurs the distinction between destructive
and constructive algorithms. Motivated by this observation, the paper proposes a hy-
brid algorithm that formally operates as a constructive algorithm, but that essentially
exploits all steps of the algorithm to reduce the number of required iterations. This
causes the algorithm to operate in a mostly hybrid mode, iteratively constructing the
MUS, but also exploiting available information to reduce the number of iterations. An-
other contribution of the paper is the integration of a number of techniques that serve
to simplify each SAT solver call, and to reduce the set of clauses that need to be ana-
lyzed through a call to a SAT solver. Moreover, the paper also shows that some existing
techniques need not be considered for MUS extraction. Finally, the paper conducts a
comprehensive evaluation of existing publicly available MUS extractors on represen-
tative industrial problem instances, obtained from well-known practical applications of
SAT, where MUS extraction finds application.

2 Preliminaries

A set of variablesX = {x1, . . . , xN} is assumed. A formula F in Conjunctive Normal
Form (CNF) is defined as a set of sets of literals defined on X . A literal is either a
variable or its complement. Each set of literals is referred to as a clause. Moreover,
it is assumed that each clause is non-tautological. Given a clause ci, {¬ci} denotes
the set of unit clauses obtained from negating ci. Additional standard definitions can be
found elsewhere (e.g. [8,24]). The focus of this paper are unsatisfiable formulas, and the
characterization of the sources of unsatisfiability. Throughout the paper, F , F ′ ⊆ F ,
FR, FI and U denote CNF formulas, S and S′ denote MUSes of F , and M denotes a
subset of an MUS S.

Definition 1 (MUS). M ⊆ F is a Minimally Unsatisfiable Subset (MUS) iff M is
unsatisfiable and ∀c∈M,M\ {c} is satisfiable.

Definition 2 (MCS). C ⊆ F is a Minimal Correction Subset (MCS) iff F \ C is satisfi-
able and ∀c∈C ,F \ (C \ {c}) is unsatisfiable.

Throughout the paper, m denotes the number of clauses in the original CNF formula
F , m = |F|, and k denotes the number of clauses in the largest MUS M, k = |M|.
The MUS decision problem, i.e. the problem of deciding whether a CNF formula F
is an MUS is DP -complete. In contrast, the problem of computing an MUS from an
unsatisfiable CNF formula requires a number of calls to a SAT oracle. Over the years,
three main approaches have been proposed for computing an MUS: constructive [5],
destructive [4,1] and dichotomic [16,14]. Constructive approaches require O(m × k)
calls to an NP-oracle, destructive approaches require O(m) calls, and dichotomic ap-
proaches require O(k × logm) calls. Despite the theoretical interest of the dichotomic
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Algorithm 1. Destructive MUS Extraction
Input : Unsatisfiable CNF Formula F
Output: MUS M

1 begin
2 M ← F // MUS over-approximation

3 foreach ci ∈ M do
4 if not SAT(M\ {ci}) then // ci is not transition clause

5 M ← M\ {ci}
6 return M // Final M is an MUS

7 end

algorithm, the most recent implementation of MUS extraction algorithms are either de-
structive [2,25] or constructive [27].

Most practical MUS computation algorithms iteratively identify transition
clauses [12]. The following definition is used throughout this paper.

Definition 3 (Transition Clause). Let F be an unsatisfiable set of clauses and let c ∈
F be a clause. If F \ {c} is satisfiable then c is a transition clause with respect to F .

Lemma 1. Let c be a transition clause of CNF formula F . Then c is included in any
MUS of F .

Proof. F \ {c} is satisfiable. Any unsatisfiable subset of F must include c. �

Throughout the paper, SAT solvers are used as NP-oracles, that test the satisfiability
of CNF formulas. In general, SAT(F) tests the satisfiability of a formula F ; it returns
value true if the formula is satisfiable, and value false if the formula is unsatisfiable.
Where necessary, SAT(F) may also return the satisfying assignment and an unsatisfi-
able subset. In this case, the output of the SAT solver call is represented as follows:
(st, ν,U) ← SAT(F). st is a Boolean variable assigned value true if the instance is sat-
isfiable, in which case ν contains a solution to F , or assigned value false, in which case
U ⊆ F is an unsatisfiable subformula. Besides the use of SAT solvers as NP-oracles,
some algorithms propose the use of weighted MaxSAT solvers [7].

The standard organization of a destructive MUS extraction algorithm is shown in Al-
gorithm 1 [12,23]. The algorithm starts with a working formulaM equal to the original
formula F . Iteratively, the algorithm checks whether each one of the clauses ci ∈ M
is a transition clause. Non transition clauses are removed from M. In the end, M is an
MUS. This algorithm is studied in more detail in later sections.

Recent overviews of MUS extraction algorithms can be found in [12,7,23].

3 New Constructive Algorithm for MUS Extraction

This section develops a new constructive algorithm, that takesO(m) calls to a SAT ora-
cle. This result implies that constructive and destructive approaches for MUS extraction
have the same worst-case complexity in terms of the number of calls to a SAT solver,
and improves known results in this area [12,23].
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Algorithm 2. Constructive MUS Extraction with AtMost1 Constraint
Input : Unsatisfiable CNF Formula F
Output: MUS M

1 begin
2 M ← ∅ // M: MUS under-approximation

3 R ← {ri | ri is fresh variable for ci ∈ F} // R: relaxation variables

4 FR ← {ci ∪ {ri} | ri ∈ R ∧ ci ∈ F} // FR: working formula

5 T ← CNF(
∑

ri∈R ri ≤ 1) // ≤ 1 constraint

6 while FR �= ∅ do // Repeat while relaxed clauses exist

7 (st, ν,U) ← SAT(FR ∪ T ∪M)
8 if st = true then
9 ri ← TrueVariable(ν, R) // Get true relaxation variable

10 cR
i ← Clause(FR, ri) // Get clause associated with ri

11 FR ← FR \ {cR
i } // Remove clause cR

i = ci ∪ {ri} from FR

12 M ← M∪ {cR
i \ {ri}} // Add clause ci = cR

i \ {ri} to MUS

13 else // If unsatisfiable, U ∩ T �= ∅
14 if U ∩ FR = ∅ then
15 FR ← ∅
16 else
17 cR

i ← SelectClause(FR ∩ U)

18 FR ← FR \ {cR
i } // Block one MUS

19 return M // Final M is an MUS

20 end

Algorithm 2 shows the new constructive MUS extraction algorithm. This new algo-
rithm borrows ideas from a number of earlier algorithms. Similarly to AMUSE [26], it
adds relaxation variables to all clauses. In addition, and similarly to the use of weighted
MaxSAT for MUS extraction [7], a SAT (resp. weighted MaxSAT) test is used to decide
which clause to add to the MUS being built.

The operation of the algorithm is as follows. Assume the original formulaF is unsat-
isfiable. The algorithm starts by creating a working formula FR by relaxing all clauses
in F . An AtMost1 constraint is created and encoded into the CNF formula T , requiring
at most one relaxation variable ri to be assigned value true. M is initially an empty set
and in the end is an MUS.

The outcome of the SAT solver call (see line 7) given formula FR ∪ T ∪ M can
either be true or false. If the outcome st is true, this means that exactly one relaxation
variable was set to true. This relaxation variable ri is associated with a clause ci that
is part of the MUS M being constructed. If st is false, this means that more than one
relaxation variable would have to be assigned value true for the outcome to be true. This
also implies the existence of more than one MUS, and so the solution is to (arbitrarily)
block one MUS. This is done by simply removing a clause cRi fromFR that also occurs
in the unsatisfiable formula U computed by the SAT solver. The process is iterated until
FR becomes empty (denoting that M is unsatisfiable), in which case M is an MUS.

To prove that Algorithm 2 computes an MUS ofF , the following intermediate results
will be used.
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Definition 4. Throughout the execution of Algorithm 2, let FI represent the clauses in
FR without the corresponding relaxation variables. (Observe that FI ∩M = ∅.)

Lemma 2. Assume M � S ⊆ FI ∪M, where S is an MUS. Let FR ∪ T ∪M be
unsatisfiable. Then M can be extended to strictly more than one MUS.

Proof. Suppose that M can be extended to exactly one MUS S. Select a clause ci in
S \ M, and relax clause ci. By definition of MUS, S \ {ci} must be satisfiable, and
since M can be extended to exactly one MUS, then FR ∪ T ∪M would have to be
satisfiable; a contradiction. �

Corollary 1. Assume M � S ⊆ FI ∪ M, where S is an MUS. Let FR ∪ T ∪ M
be unsatisfiable (i.e. line 13 of the algorithm), let U be an unsatisfiable subformula
computed by the SAT solver, and let (ci ∪ {ri}) ∈ FR ∩ U . Then there exists an MUS
S′ with S′ ⊆M∪ (FI \ {ci}).

Proof. M∪ (FR \ {ci ∪ {ri}}) ∪ T is either satisfiable, requiring exactly one clause
in FR to be relaxed, or remains unsatisfiable. In either case, it still contains an MUS. �

Lemma 3. Assume M � S ⊆ FI ∪ M, where S is a MUS. Let FR ∪ T ∪ M be
satisfiable, and let ci be a clause with an associated true relaxation variable ri. Then,
any MUS with clauses in FI ∪M will include ci.

Proof. By hypothesis, FI ∪ M is unsatisfiable. If FR ∪ T ∪ M is satisfiable, then
FR ∪M has an MCS of size 1, which is identified by the relaxed clause ci. Hence, by
definition of MCS, ci must be part of any MUS in FI ∪M. �

Theorem 1. Algorithm 2 returns an MUS of unsatisfiable CNF formula F .

Proof. To prove that Algorithm 2 computes an MUS of F , the following invariants
hold after each iteration of the algorithm: (i) FI ∪ M is unsatisfiable; and (ii) there
exists an MUS S, with M⊆ S ⊆ FI ∪M. The invariants can be proved by induction
on the number of iterations of the algorithm. Clearly, the invariants hold for the base
case, with M = ∅ and FI unsatisfiable. Suppose that the invariants hold after iteration
j − 1. Then, the objective is to analyze the invariants after iteration j. Suppose the SAT
call in line 7 returns false. Hence, one clause is removed from FI . From Lemma 2 and
Corollary 1, it is guaranteed that the resulting formula FI ∪ M is still unsatisfiable
and contains an MUS. Alternatively, suppose the SAT call in line 7 returns true. Hence,
the relaxation variable is removed from the identified relaxed clause and the clause is
added to M. From Lemma 3, the identified clause is included in any MUS, and so can
be added to M. Moreover, the two invariants still hold: M continues to be part of an
MUS and FI ∪M is unsatisfiable. �

Lemma 4. The number of calls to a SAT solver by Algorithm 2 is in Θ(m).

Proof. To prove that the number of calls is O(m), observe that the algorithm removes
one clause fromFR at each iteration of the loop. Hence, there can be at mostm calls to
a SAT solver. To prove that the number of calls is Ω(m), consider the following CNF
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formula F = {¬x1} ∪N−1
i=1 {xi,¬xi+1} ∪ {xN}, with |F| = N + 1 = m. F has a

single MUS, containing all clauses. Each iteration of the algorithm will add exactly one
clause to M. Hence, the number of calls to the SAT solver is N + 1 = m. Thus, the
number of calls to a SAT solver is in Ω(m). �

Lemma 4 shows that deletion-based and insertion-based MUS extraction algorithms can
have the same asymptotic complexity in terms of the number of calls to a SAT solver.
Moreover, Algorithm 2 provides one concrete example of such algorithm. It should be
noted that Algorithm 2 runs the SAT solver on a modified problem instance. However,
as will be shown later, despite working on a modified problem instance, Algorithm 2
provides a few practical advantages.

4 Hybrid MUS Extraction

One of the interesting aspects of Algorithm 2 is that it blurs the distinction between
constructive and destructive algorithms. On the one hand, the algorithm iteratively ex-
pands a subset of an MUS. On the other hand, the algorithm requires O(m) calls to a
SAT solver. Similarly, one can develop a variant of Algorithm 1 that is essentially a con-
structive algorithm. Algorithm 3 shows this variant. As with Algorithm 2, M denotes a
subset of an MUS, and the number of calls to a SAT solver is O(m). Nevertheless, Al-
gorithm 3 also shares similarities with Algorithm 1, namely that each clause is analyzed
exactly once, thus guaranteeingΘ(m) calls to a SAT solver. Besides the minor changes
needed to make a constructive variant of Algorithm 1, Algorithm 3 also includes a num-
ber of key optimizations detailed below. Observe that for these techniques to be easily
integrated, the algorithm needs to operate in constructive mode.

A first observation is that the input formula is assumed to be trimmed, i.e. the use of
iterative identification of unsatisfiable cores was used to reduce the size of the working
CNF formula. Clause set trimming is detailed in Section 4.2. To describe the techniques
used to improve the performance of MUS extraction, it is convenient to isolate the
clauses known to be part of an MUS (i.e. M) from the clauses yet to be analyzed
(i.e. F ′). Hence, the algorithm can be viewed as constructive. The new techniques are
included in lines 7, 10, and 12.

The first technique (line 7) consists of creating a more constrained instance of SAT,
by adding to the CNF formula the negation of the removed clause. It is well-known
that ci is redundant if F \ {ci} ∪ {¬ci} is unsatisfiable [19]. Although this technique
was first proposed elsewhere [27], in the context of an O(m × k) algorithm for MUS
extraction, it has not been used in destructive (or hybrid) MUS extraction algorithms.
In addition, its use affects the integration of other techniques, as discussed below.

Next, we analyze the technique summarized in line 12 of Algorithm 3. First, assume
that the redundancy removal technique is not used, i.e. {¬ci} is not added to the CNF
formula given to the SAT solver. Let the outcome of the SAT solver be false. In this case,
one can refine the working set of clauses with the unsatisfiable subformula computed
by the SAT solver.

Lemma 5 (Clause Set Refinement). Let F , F ′, M and U be as defined in Section 2.
Consider the outcome of the SAT solver on formulaF ′∪M. If the result is unsatisfiable,
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Algorithm 3. Hybrid MUS Extraction
Input : (Trimmed) Unsatisfiable CNF Formula F
Output: MUS M

1 begin
2 F ′ ← F // Working CNF formula

3 M ← ∅ // MUS under-approximation

4 while F ′ �= ∅ do
5 ci ← GetClause(F ′)
6 F ′ ← F ′ \ {ci}
7 (st, ν,U) = SAT(M∪F ′ ∪ {¬ci}) // Add redundancy checking

8 if st = true then // If SAT, ci is transition clause

9 M ← M∪ {ci}
10 (F ′,M) ← Rotate(F ′,M, ν) // Find more transition clauses

11 else if U ⊆ M∪F ′ then // Equivalently, if U ∩ {¬ci} = ∅
12 F ′ ← U \M // Clause-set refinement

13 return M // Final M is an MUS

14 end

with unsatisfiable subformula U , then any MUS in U contains M. Thus, the working
formula F ′ can be set to U \M.

Proof. By construction, M is composed of transition clauses, each of which is part of
an MUS (see Lemma 1). Hence, any MUS in U must contain the clauses in M. Since
the clauses in M are known to be transition clauses, the working formula F ′ can be
updated to U \M. �

A more complicated version of clause set refinement, that involves considering the res-
olution proof after each unsatisfiable outcome, has been described elsewhere [6,25].
Our approach considers solely the computed unsatisfiable core, and so allows using the
SAT solver as a black box (provided the solver returns an unsatisfiable core).

The integration of the redundancy removal technique (line 7) and clause set refine-
ment is not immediate. The solution is to provide a test (line 11) to decide when the
unsatisfiable core can be used as the next working CNF formula.

Proposition 1. Let U be the unsatisfiable core returned by the SAT solver in line 7 of
Algorithm 3. If U ∩ {¬ci} = ∅, then U contains an MUS S of F .

Finally, we analyze the technique summarized in line 10 of Algorithm 3. Let the out-
come of the SAT solver be true and let ν be the computed model. This assignment must
unsatisfy the clause removed from F ′. Similarly, any assignment that unsatisfies a sin-
gle clause ck from F ′ and satisfies all clauses in M proves that ck must be part of an
MUS.

Lemma 6. Let F , F ′ ⊆ F and M be as defined in Section 2. Let ν be a model of
M∪F ′ ∪ {¬ci} (that must unsatisfy clause ci). Then ci is included in any MUS of F
that contains M.

Proof. ci is a transition clause. Hence, by Lemma 1, ci is included in any MUS of F ′.
Since F ′ ⊆ F , any MUS of F ′ is an MUS of F . �
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Therefore, given a model ν, we can compute additional clauses to add to the MUS by
selective flipping of the variable assignments in ν. The question is then how to decide
which variable assignments to flip. The technique described in this paper is referred to
as model rotation. This technique consists of analyzing changes to the computed model
ν that will satisfy the single clause unsatisfied by ν. In order to keep the overhead low,
only single literal flips are considered. This is illustrated with the following example.

Example 1 (Model Rotation). LetF = {c1, c2, c3, c4} be an unsatisfiable formula, with
c1 = {¬x1, x2}, c2 = {¬x1,¬x2}, c3 = {x1}, and c4 = {¬x2, x1, x3}. Also, let
M = ∅. Suppose that c1 is removed from F . Then F \ {c1} is satisfiable, with model
ν = {x1,¬x2}. This means that c1 is part of an MUS, and so it is added to M. Observe
that this model (necessarily) unsatisfies c1. The next step is to check whether a literal flip
in ν unsatisfies exactly another clause. For this example, flipping ¬x2 to x2 satisfies c1
and solely unsatisfies c2. This means that c2 is also part of an MUS of F . The resulting
model of M∪F \ {c2} is ν′ = {x1, x2}, and M is updated to {c1, c2}. We can now
analyze ν′ and check for a single flip that satisfies c2 and unsatisfies a single clause of
the remaining clauses not already in M, namely c3 and c4. For example, flipping x1 to
¬x1 satisfies c2 and unsatisfies c3. Since c3 is the solely unsatisfied clause, then c3 is
also part of an MUS ofF . The resulting model ofM∪F\{c3} is ν′′ = {¬x1, x2}, and
M is updated to {c1, c2, c3}. Observe that the model cannot be further rotated, since
M = {c1, c2, c3} is already unsatisfiable. This also means that c4 is excluded from the
computed MUS.

Clearly, model rotation could use more elaborate approaches for finding assignments
that unsatisfy a single clause. For example, local search or even a complete SAT solver
could be considered. Nevertheless, the objective of model rotation is to eliminate calls
to the SAT solver, and so a simple (linear time) procedure is used instead. The analysis
of computed models was first used in [27]. However, model rotation is a fundamen-
tally different technique. Whereas the approach in [27] associates a model with each
clause and requires worst-case quadratic space, model rotation simply considers single
variable value changes to each computed model, so as to identify clauses that are in an
MUS of the original formula.

Our results indicate that model rotation is a very effective technique, often allowing a
large percentage of the satisfiable SAT calls to be skipped. Clearly, it is far more efficient
to evaluate possible model rotations (in linear time), than to modify the SAT instance
and call the SAT solver (in worst-case exponential time). This observation holds even
if the problem instance is easy to solve.

Although the techniques described in this section are integrated in Algorithm 3, they
can be applied with minor modifications to any destructive, constructive or dichotomic
MUS algorithm.

4.1 Analysis of Other Techniques

Algorithm 3 integrates, adapts and extends several techniques proposed in earlier work.
One additional technique could be considered, namely autarkies [17]. For example, au-
tarkies have been successfully used in recent MUS enumeration algorithms [21]. In
contrast, the use of autarkies in Algorithm 3 is less clear. First, by definition a clause is
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part of an autarky if and only if it is not included in any resolution refutation. Hence,
since the proposed algorithms start by trimming the initial CNF formula, the autarkies
of F are guaranteed to be automatically removed. Nevertheless, a less known observa-
tion is that, since clauses are discarded while searching for an MUS, it is possible that
additional autarkies may exist with respect to F ′. Nevertheless, and similarly to clause
set trimming, the use of clause set refinement also guarantees that autarkies are auto-
matically eliminated, and so need not be computed. Although the previous observations
suggest that identification of autarkies is unnecessary if clause set trimming and refine-
ment are used, there are cases where autarkies can still find application in Algorithm 3.
Observe that, due to the redundancy removal technique, clause set refinement may not
be applicable after every unsatisfiable outcome. When this happens, then autarkies may
exist, and can be identified. However, our experimental results indicate that the size
of new autarkies does not justify their computation during the execution of the MUS
extraction algorithm.

4.2 Preprocessing and Interfacing SAT Solvers

As indicated earlier, a standard technique for computing MUSes of large CNF formulas
is clause set trimming, that consists of iteratively calling the SAT solver on computed
unsatisfiable subformulas until no changes are detected in between calls to the SAT
solver [28]. However, for large practical problem instances, iterating the computation
of unsatisfiable subformulas until a fixed point is reached can be inefficient. A simpler
alternative is to iterate the computation of unsatisfiable subformulas a constant number
of times, or until the size change in the computed unsatisfiable subformulas is below a
given threshold. Observe that clause set trimming can be viewed as the preprocessing
step equivalent to clause set refinement described earlier in Section 4.

In MUS extraction algorithms, SAT solvers can either be used in incremental or non-
incremental mode (e.g. [2]). Recent experimental results suggest that incremental mode
provides significant performance gains [27,25]. Our implementation uses an incremen-
tal interface to the SAT solver, with one key change. Any clause ci declared as being
part of the MUS M needs not continue to be handled in incremental mode. Hence,
the assumption variable used to activate ci can be eliminated. This technique is bene-
ficial for problem instances with large MUSes, since the overhead of the incremental
interface is reduced as more clauses are added to the MUS M.

5 Results

The algorithms described in the previous sections were implemented in the MUS ex-
traction tool MUSer (MUS ExtratoR), built on top of the Picosat [2] SAT solver. Sup-
ported by existing experimental evidence [23], the incremental interface of Picosat was
used. (Observe that other work [25] also proposes the use of the incremental interface of
modern SAT solvers.) The experimental evaluation focused on the following MUS ex-
tractors: the new constructive MUS extraction algorithm based on relaxation variables
(CRV) described in section 3; the hybrid MUS extraction algorithm (HYB) described
in section 4; a reference destructive algorithm (DREF); a reference constructive algo-
rithm [5] (CREF); the recent constructive algorithm from [27] (MUNSAT); a recent
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Fig. 1. Cactus plot with running times of MUS extractors

local-search-guided destructive MUS extraction algorithm from [11] (AOMUS); a well-
known MUS extractor from [28] (ZMIN); SAT4J [18] MUS extractor in linear construc-
tive mode (S4J I), in QuickXPlain [16] mode (S4J Q), and in destructive mode (S4J D).
Finally, a destructive MUS extraction algorithm available in the Picosat distribution [2]
(PMUS). As shown by the results below, fairly recent MUS extractors [11,27,7] per-
form considerably worse than the most recent generation of MUS extractors, including
the ones described in this paper.

The experimental evaluation focused on 500 problem instances submitted to the
upcoming MUS track of the 2011 SAT Competition1. All problem instances were ob-
tained from practical applications of SAT, including hardware bounded model checking,
FPGA routing, hardware & software verification, equivalence checking, abstraction re-
finement, design debugging, function decomposition, and bioinformatics. Clause set
trimming was applied to all problem instances before running any of the MUS ex-
traction algorithms. Otherwise, algorithms that do not implement clause set trimming
would perform poorly. All results were obtained on an HPC cluster, where each node
is an 8-core CPU Xeon E5450 3GHz, with 32GByte RAM and running Linux. For
each problem instance, the specified resources were a time limit of 1200 seconds and
a memory limit of 4 GByte. For SAT4J, the Java virtual machine used was the Java
HotSpot(TM) 64-Bit Server VM (build 19.1-b02).

Figure 1 shows a cactus plot with all MUS extractors, showing the instances solved by
increasing run times. The following conclusions can be drawn. First, the new constructive
algorithm based on relaxation variables (CRV) clearly outperforms all other construc-
tive algorithms, namely MUNSAT, S4J C and CREF. Second, and more importantly, the
new hybrid algorithm HYB outperforms all other MUS extraction algorithms. It solves

1 http://www.satcompetition.org/2011/



On Improving MUS Extraction Algorithms 169

Table 1. Number of solved instances

Solver CREF MUNSAT S4J I CRV ZMIN AOMUS S4J Q PMUS S4J D DREF HYB
# Solved 112 154 158 228 235 374 429 444 453 454 473

Table 2. Comparison with [25]

Instance 3pipe 4pipe 1 barrel6 barrel7 barrel8 longmult6 longmult7 longmult8

Best in [25] 167 1528 348 700 4110 968 5099 —
HYB 194 1143 35 72 400 11 99 811
DREF 365 — 40 94 332 30 398 —
PMUS — — 68 102 701 51 283 —
S4J S 223 — 395 829 — 152 883 —

more instances, but the plot also shows a clear performance edge with respect to all other
algorithms. Third, fairly recent MUS extractors algorithms, namely MUNSAT [27] and
AOMUS [11], perform significantly worse than the more recent generation of MUS ex-
tractors. Fourth, and finally, constructive algorithms perform significantly worse than
destructive algorithms, the exceptions being the new algorithms CRV and HYB. How-
ever, the results confirm that constructive algorithms requiringO(m× k) calls to a SAT
solver simply do not scale in practice.

The cactus plot is completed with Table 1, that shows the number of solved instances.
The main conclusions here are that: (i) the new algorithm HYB solves the largest
number of instances; and (ii) recently published MUS extraction algorithms [11,27]
are unable to solve many instances, many of which are easily solved by other
approaches.

Finally, Figure 2 shows scatter plots comparing the run times of HYB with the
next best MUS extraction algorithms, namely DREF, S4J D, PMUS, and AOMUS.
Again the results are clear. HYB clearly outperforms DREF, i.e. the reference imple-
mentation of destructive MUS extraction. Moreover, HYB clearly outperforms PMUS,
in many cases by one order of magnitude or more. Also, HYB extensively outper-
forms AOMUS, in most cases by more than one order of magnitude. Finally, HYB
also outperforms S4J D, although in this case there are a number of outliers. These
outliers represent problem instances with small MUSes, for which S4J D performs
well.

To conclude the experimental evaluation, the best performing MUS extraction tools
are compared against the MUS extractor from [25], on selected problem instances. The
best run times from [25] are used, since the tool is not publicly available. Moreover,
the hardware where the MUS extractors were run is similar. The run times (in seconds)
are shown in Table 2. As can be concluded, HYB performs significantly better. For
the barrel instances, the speedup is around one order of magnitude. For the longmult
instances, the speedup is almost two orders of magnitude. For the pipe instances, HYB
performs better in one instance, and worse in another.
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Fig. 2. Scatter plot comparing HYB with other MUS extractors

6 Related Work

To the best of our knowledge, Algorithm 2 is new. Nevertheless, the use of relax-
ation variables for MUS extraction has been proposed in earlier work. For example,
AMUSE [26] also uses relaxation variables. However, AMUSE does not compute an
MUS, and identifies instead a reduced unsatisfiable subset. The use of relaxation vari-
ables has also been considered extensively in the enumeration of MUSes [20,22], and
in the use of MaxSAT for MUS extraction [7]. Although the use of relaxation vari-
ables resembles the use of selector variables [25], it is fundamentally different. Selector
variables serve solely to specify clause (de)activation in incremental SAT. Relaxation
variables serve to specify constraints on how many clauses can be relaxed.

Algorithm 3 is novel, even though its organization can be viewed as a (constructive)
variant of Algorithm 1. Moreover, some of the techniques implemented by Algorithm 3
are novel, and their integration is also novel. Also, the implementation of these tech-
niques requires a constructive MUS extraction algorithm. Clause set refinement was
first studied in [6,25]. However, the solution proposed there is more complicated, be-
ing based on analyzing resolution proofs. In contrast, our approach simply uses the
returned unsatisfiable core. The analysis of computed models for finding more than one
transition clause per iteration of the algorithm was first used in [27], in the context of a
constructive algorithm requiringΘ(m× k) calls to a SAT solver. In [27], each clause is
characterized by an associated assignment, that aims to satisfy all clauses in a working
set of clauses but itself; clearly this can entail non-negligible memory requirements for
large-scale problems instances. The model rotation technique proposed in this paper
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is novel, since computed models are only analyzed immediately after being computed,
and only checked for single changes of variable values. Finally, the technique of includ-
ing {¬ci} in the CNF formula given to the SAT solver is standard in CNF redundancy
checking [19], and was first used for MUS extraction in [27]. Our implementation fol-
lows this approach. Nevertheless, this paper proposes a new solution for integrating the
redundancy removal technique and clause set refinement.

7 Conclusions

This paper develops new algorithms for the efficient extraction of MUSes from unsat-
isfiable CNF formulas, and has two main contributions. The first contribution is a new
constructive MUS extraction algorithm. Whereas existing algorithms requireO(m×k)
calls to a SAT oracle, the new algorithm requires O(m) calls. In practice, the new al-
gorithm is shown to outperform all existing constructive algorithms. More importantly,
this new algorithm shows that constructive and destructive MUS extraction algorithms
share a number of important similarities. The second contribution exploits this observa-
tion, and develops a hybrid algorithm, that is organized as a constructive algorithm, but
that exploits features of destructive algorithms. In addition, this algorithm integrates a
number of key MUS extraction techniques, including redundancy removal, clause set
refinement, and model rotation, that essentially exploit all of the main steps of the MUS
extraction algorithm, i.e. calls to the SAT solver, and both unsatisfiable and satisfiable
outcomes. Moreover, the paper also develops conditions for the integration of these
techniques. Although these techniques are integrated in the new algorithm, they can be
used with any MUS extraction algorithm. The resulting algorithm (HYB) outperforms
all publicly available MUS extraction tools. The performance gains often exceed one
order of magnitude when compared with state of the art MUS extraction tools. Finally,
algorithm HYB is shown to also outperform recent non-publicly available MUS extrac-
tion algorithms [25].

The experimental results are promising and indicate that HYB represents the new
state of the art in the area of MUS extraction algorithms. Nevertheless, practical ap-
plications of MUS extraction algorithms can gain from more efficient solutions. En-
visioned research directions include better heuristics for model rotation and adapting
SAT solvers to minimize computed unsatisfiable subformulas, e.g. by exploiting the
AMUSE [26] heuristics.
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CON (09/IN.1/I2618), European Community FP7 project MANCOOSI (214898) and
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Abstract. Various verification techniques are based on SAT’s capability
to identify a small, or even minimal, unsatisfiable core in case the formula
is unsatisfiable, i.e., a small subset of the clauses that are unsatisfiable
regardless of the rest of the formula. In most cases it is not the core itself
that is being used, rather it is processed further in order to check which
clauses from a preknown set of Interesting Constraints (where each con-
straint is modeled with a conjunction of clauses) participate in the proof.
The problem of minimizing the participation of interesting constraints
was recently coined high-level minimal unsatisfiable core by Nadel [15].
Two prominent examples of verification techniques that need such small
cores are 1) abstraction-refinement model-checking techniques, which use
the core in order to identify the state variables that will be used for re-
finement (smaller number of such variables in the core implies that more
state variables can be replaced with free inputs in the abstract model),
and 2) assumption minimization, where the goal is to minimize the us-
age of environment assumptions in the proof, because these assumptions
have to be proved separately. We propose seven improvements to the re-
cent solution given in [15], which together result in an overall reduction
of 55% in run time and 73% in the size of the resulting core, based on our
experiments with hundreds of industrial test cases. The optimized proce-
dure is also better empirically than the assumptions-based minimization
technique.

1 Introduction

Given an unsatisfiable CNF formula ϕ, an unsatisfiable core (UC) is any sub-
set of ϕ that is unsatisfiable. The decision problem corresponding to finding
the minimum UC is a Σ2-complete problem [8]. Finding a minimal UC (a UC
such that the removal of any one of its clauses makes the formula satisfiable) is
DP -complete [17]1. There are many works in the literature on extracting min-
imum [8,11], minimal [16,3,12,21], or just small cores [22,6,4] — see [15] for an
extensive survey.
� Currently on sabbatical at the Software Engineering Institute, Pittsburgh, PA, USA
1 DP is the class containing all languages that can be considered as the difference

between two languages in NP, or equivalently, the intersection of a language in NP
with a language in co-NP.
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c© Springer-Verlag Berlin Heidelberg 2011



Faster Extraction of High-Level Minimal Unsatisfiable Cores 175

There are many uses to the core in SAT-based verification, typically related to
abstraction or decomposition. In most cases, however, it is not the core C itself
that is being used, rather C is processed further in order to check which Interest-
ing Constraints participate in the proof, where which constraints are interesting
is given as input to the problem. Hence we can assume that in addition to the
formula we are given as input a set of sets of clauses IC = {R1 . . . Rm}, where
each Ri is a set of clauses that together encode an interesting constraint. The
goal is thus to minimize the number of constraints in IC that have a non-empty
intersection with C. This problem was first mentioned in [12] and recently coined
the high-level minimal unsatisfiable core problem by Nadel [15], who observed
that in his experiments with industrial problems the number of clauses that be-
long to interesting constraints is on average about 5% of the clause database. In
fact in the verification group in Intel high-level cores are the only type of cores
that are being computed, and we are not aware of any use of the general core in
the EDA industry.

Two prominent examples of such techniques that are used in Intel and are
described in more detail in the above reference are:

– A popular abstraction-refinement model-checking is based on iterating
between a complete model checker and a SAT-based bounded model
checker [14,9]. The model checker takes an abstract model, in which some
of the state variables are replaced with inputs, and either proves the prop-
erty or returns the depth in which it found a counterexample. In the latter
case, this depth is used in a bounded-model checking run over the concrete
model, which may either terminate with a concrete counterexample, or with
an unsat answer. In the latter case SAT’s capability to identify an unsatis-
fiable core is used for identifying those state variables that are sufficient for
proving that there is no counterexample at that depth. All the clauses that
contain a given state variable (in any time-frame) constitute a constraint in
IC. Those state variables that participate in the proof define the next ab-
stract model (these are the state variables that are not replaced by inputs),
which is a refinement of the previous one. The process then reiterates until
either the model checker is able to prove the property or the SAT solver finds
a concrete counterexample.

– In formal equivalence verification (see, e.g., [10]), two similar circuits are ver-
ified to be functionally equivalent. This is done by decomposing the two cir-
cuits to ‘slices’ which are pair-wise verified for equivalence. The equivalence
of each such pair is verified against various assumptions on the environment.
In other words, rather than integrating a model of the environment with the
equivalence verification condition, various properties of the environment are
assumed, and added as constraints on the inputs of that condition. Then, if
the equivalence is proven, it is still necessary to verify that the assumptions
are indeed maintained by the environment. Each assumption is modeled with
a set of clauses. The unsatisfiable core obtained when checking the equiva-
lence is analyzed in order to find those assumptions that were used in the
proof. Hence, here each constraint in IC is a set of clauses that encode an
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environment assumption. Here too the verification process attempts to min-
imize the high-level core in order to minimize the number of environment
assumptions that should be verified.

We will address the question of how to minimize the core in the next section.
A problem which is mostly orthogonal to minimization is how to make the SAT
solver emit a core once it determines that a formula is unsatisfiable. There are
two well-known approaches to solve this problem:

– Resolution-based. The first approach is based on the ability of many mod-
ern SAT solvers to produce a resolution proof in case the formula is unsat-
isfiable. The solver traverses the proof backwards from the empty clause,
and reports the clauses at the leaves as the core [22,7]. This core is then
intersected with the sets of clauses in IC in order to find a high-level core.

– Assumptions-based. A second approach is based on the assumptions tech-
nique, which was first implemented in an early version of Minisat [5]. As-
sumptions are literals that are assigned true (as decisions) before any other
decision. If constraint propagation leads to flipping the assignment of one of
the assumptions to false, it means that with these assumptions the formula
is unsatisfiable. Minisat is capable of identifying which assumptions led to
this conflict, which is exactly what is needed for extracting a high-level core.
This can be done with clause selectors as follows: Let Ri be constraint in
IC and let {c1, . . . , cn} be the clauses that encode it. To each clause in this
set we add the literal ¬li, where li is a new variable. Then we add li to the
set of assumptions. Hence setting li to true activates this constraint, and
setting it to false deactivates it.

The process of extracting the set of assumptions that led to a conflict is
computationally easy. Let C be the clause that forces an assumption to its
opposite value. Minisat resolves C with all its predecessors in the implication
graph until a clause is generated which contains only negation of assumption
literals. The negation of this clause is a conjunction of the assumptions that
led to the conflict, also known as the relevant assumptions. The relevant
assumptions constitute a high-level core.

The assumptions technique generates larger conflict clauses owing to the new
selector variables, which may become significant if there are many assump-
tions [15,1]. The alternative of activating and deactivating constraints with unit
clauses is more economic, as it simplifies and removes clauses. On the other hand,
the assumptions technique does not consume memory for saving the proof, nor
does it consume time to extract the core. Another difference between these two
approaches, which turns out to be very important in our context, is related to
clause minimization [2,20], which is a technique for shrinking conflict clauses.
Whereas in resolution-based core extraction minimization of a clause may pull
into the proof additional constraints, this does not happen in the assumptions-
based approach. We will describe this issue in more detail in Sect. 4. The exper-
iments in [15] showed that the assumptions-based method is on average faster
than the resolution-based method, and produces slightly smaller cores. In the
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experiments we conducted (on a larger set of benchmarks) we witnessed similar
results.

In this article we study seven improvements to the resolution-based high-
level MUC problem. With these techniques, which we implemented on top of
MiniSat-2.2 and ran over hundreds of industrial examples from Intel, we are
able to show a 55% reduction in run time comparing to the techniques in [15],
and a 28% improvement comparing to the assumptions-based technique. The
configuration that achieves these improvements also reduces the core by 73%
and 57%, respectively. More details on our experiments can be found in Sect. 4.

Since we take [15] as the starting point of our improvements, we begin in the
next section by describing it in some detail.

2 Resolution-Based High-Level Core Minimization

The improvements we consider are relevant to resolution-based core extraction.
We implemented inside Minisat 2.2 a rather standard mechanism for maintaining
the resolution DAG. The resolution information is kept in a separate database,
which we will call here the resolution table. This table maintains the indices of the
parents and children of each derived clause. On top of this we implemented the
reference counter technique of Shacham et al. [19]. In this technique every conflict
clause has a counter, which is increased every time it resolves a new clause, and
decreased when a child clause is erased. Once the counter of a clause is 0, it
does not need to be maintained any longer for the purpose of later retrieving the
resolution DAG. In the experiments that were reported in [19], this optimization
led to a reduction by a factor of 3 to 6 in the size of the resolution table.

The unsatisfiable core is retrieved as usual by backward traversal from the
empty clause to the roots. But since we are interested in minimizing the core,
the story does not end here. We implemented the high-level core minimization
algorithm of [15], which appears in Pseudo-code in Alg. 1. The input to this
algorithm is a set of interesting constraints IC = {R1 . . . Rm}, each of which
is a set (or a conjunction, depending on the context) of clauses, and a formula
Ω, which is called the remainder. The formula Ψ =

∧m
j=1 Rj ∧Ω is assumed to

be unsatisfiable, and the proof is available at the beginning of the algorithm.
We denote the initial core by initial core. The output of the algorithm is a
high-level minimal unsatisfiable core with respect to IC and Ω, i.e., a subset
IC′ ⊆ IC such that Ψ ′ =

∧
Rj∈IC′ Rj ∧Ω is unsatisfiable, and no constraint can

be removed of IC′ without making Ψ ′ satisfiable.
The algorithm is rather self-explanatory, so we will be brief in describing it.

In line 1 any constraint Ri that none of its clauses participated in the proof is
removed together with its cone, i.e., all the clauses that were derived (transi-
tively) from Ri clauses. The next line defines the set of candidate indices for
the core, which is initiated to the indices of the constraints in IC that were not
removed in the previous step. From here on the algorithm attempts to remove
elements of this set. In each iteration of the loop, it removes a constraint Rk

together with its cone and checks for satisfiability. If the formula is satisfiable,
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then Rk with its cone is returned to the formula, and Rk is added to the solution
set muc. Otherwise, the unsatisfiability proof is checked in order to remove any
constraint Ri, together with its cone, that did not participate in the proof.

Algorithm 1. Resolution-based high-level MUC extraction (Based on Alg. 2
in [15])
Input: Unsatisfiable formula of the form Ψ =

∧
Rj∈IC Rj ∧ Ω.

Output: A high-level MUC with respect to IC and Ω.

1: Remove any Ri together with its cone if it is not reachable from the empty clause;
2: muc cands := {Ri | Ri ∩ initial core �= ∅}; � MUC Candidates
3: muc := {};
4: while muc cands is non-empty do
5: Rk := a member of muc cands;
6: Check satisfiability of the formula without Rk and its cone;
7: if satisfiable then
8: return Rk and its cone to the formula;
9: muc := muc ∪ {Rk};

10: else
11: for Ri ∈ muc cands do
12: if Ri ∩ core = ∅ then � core is the unsat core of the proof
13: Remove Ri and its cone;
14: muc cands := muc cands \ {Ri};
15: return muc;

It is interesting to note that this algorithm is tailored for high-level core
minimization, and not for general core minimization. The difference is evident
by observing that the whole set of clauses associated with a constraint Ri is
removed, together with their joint core. Had the object of minimization been
the whole core, we would rather remove all clauses that did not participate in
the proof, even if other clauses that share the same constraint do participate in
the proof. For example, if Ri = {c1, c2}, and only c1 participate in the proof,
Alg. 1 retains both c1 and c2, because removing c2 does not reduce the size of
the high-level core, whereas it may assist in consecutive iterations. Furthermore,
retaining c2 is needed in order to guarantee minimality. Without it we may miss
the fact that some other constraint can be removed.

3 Optimizations

In this section we describe seven optimizations to the basic algorithm that was
presented in the previous section. We will use the following terminology: a clause
is an IC-clause if it either belongs to one of the initial constraints in IC or is
a descendant of such a clause in the resolution DAG. Other clauses are called
remainder clauses. We say that a literal is IC-implied if it is implied by an
IC-clause or just implied otherwise.
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A: Maintaining Partial Resolution Proofs. In this optimization we main-
tain only clauses in the cone of IC-clauses in the resolution table, and the links
between them. That is, we save an IC-clause, and the parents and children that
are also IC-clauses. Comparing to full resolution, this reduces the amount of
memory required by more than an order of magnitude in most cases, reduces
the amount of time that it takes to find clauses that are in the cone of an IC (re-
call that in line 13 of Alg. 1 IC-clauses are removed together with their cones),
and, more importantly, allows to activate a certain simplification (see below) for
remainder clauses, which is normally turned off when running Alg. 1.

The simplification in point is applied in decision level 0, owing to constants.
If the clause database includes a unit clause, e.g., (x), then many solvers would
remove those clauses that contain x, and remove ¬x from all other clauses, at
decision level 0 (MiniSat is a little different in this respect: it does not remove
¬x from existing clauses once x is learned, but rather it does not add ¬x to
new learned clauses). This simple, yet powerful simplification has to be turned
off when running Alg. 1. For example, if (x) is an IC-clause associated with
constraint R1, then we cannot just remove clauses with x from the formula,
since we might decide at line 13 to remove R1, which will force us to retrieve
these clauses. Empirically it is better to retain such clauses rather than keeping
them in a file and then retrieving them. The same issue occurs when removing the
negation of x from clauses: here too, we will need to retrieve the original clauses
once R1 is removed. One of the advantages of this optimization, therefore, is
that we can turn back on this simplification for the remainder clauses.

B: Selective Clause Minimization. Clause minimization [2,20] is a technique
for shrinking conflict clauses. Once a clause is learnt, each of its literals is tested:
if it implies other literals in the clause, it can be removed.

Example 1. Consider the following clauses:

C1 = (¬v1 ∨ v2) C2 = (¬v2 ∨ v3)
C3 = (¬v4 ∨ v5) C4 = (¬v5 ∨ v6)
C5 = (¬v1 ∨ ¬v3 ∨ ¬v4 ∨ ¬v6)

Suppose that the first decision is v1. This decision implies v2 (from C1) and
v3 (from C2). Suppose now that the next decision is v4. This decision implies v5
(from C3) and v6 (from C4) and a conflict in clause C5. Conflict analysis based
on 1-UIP returns in this case a new clause C = (¬v1 ∨¬v3 ∨¬v4). From C1 and
C2 we can see that v1 → v3, or equivalently ¬v3 → ¬v1, which is an implication
between literals in C. Clause minimization will find this implication by following
the resolution DAG and remove ¬v3. ��

We will not present the full algorithm for clause minimization here, but rather
only mention that it is based on traversing the resolution DAG backward from
each literal l in the learned clause. The hope is to hit a ‘frontier’ of other literals
from the same clause that by themselves imply l. If in this process we hit a
decision variable, it means that l cannot be removed.
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Example 2. Continuing the previous example, the algorithm scans each non-
decision literal in C. Consider v3: this literal was implied in C2, and hence we
progress to look at the other literal in that clause, namely v2. This literal was
implied by C1 and hence we look at v1. But since v1 ∈ C, it means that we
found an implication within C, and hence ¬v3 can be removed. Note that the
minimized clause can be resolved from the original one and the clauses that are
traversed in the process. In this case Res(C,Res(C1, C2)) = (¬v1 ∨ ¬v4). ��

The problem with clause minimization in our context is that it may turn a non-
IC-clause C into a shorter IC-clause C′. This can happen if the minimization
process uses an IC-clause: in that case C′ has to be marked as an IC-clause
as well. Furthermore, it can turn an IC-clause C that depends on a certain set
of interesting constraints, into a shorter IC-clause that depends on more such
constraints. This means that if that clause will participate in the proof, it will
‘pull-in’ more constraints into the core.

Our suggested optimization is to cancel clause minimization in any case that
an IC-clause is involved. In other words, we prefer a large clause that depends on
a few constraints, over a smaller one with more such dependencies. The latter
may pull more constraints into the proof, and lead to other such clauses. We
aspire, instead, to keep the resolution table as small as possible and with the
fewest connections to IC-constraints. Ideally we should check whether using a
certain IC-clause in the minimization process indeed adds dependencies, but this
is simply too expensive: for this we would need to traverse the DAG backwards
all the way to the roots in order to check which constraints are involved.

It is interesting to analyze the behavior of the assumptions-based method
with respect to clause minimization. It turns out that it solves this problem for
free, and hence in this respect it is a superior method. In fact from analyzing
various cases in which it performs much better than the clause-based method
(before the optimizations suggested here were added), we realized that this is
the main cause for the difference in run-time, rather than the facts mentioned in
the introduction (the fact that it does not need to save the resolution table, nor
to extract the core in the end of each iteration). How does it solve this problem
for free? Observe that with this technique all IC-clauses have as literals all
the selector variables that correspond to constraints that were used in deriving
that clause. For example, let R1, R2 be two constraints with associated selector
variables l1, l2 respectively. If R1 and R2 participate in inferring C, then C
must contain ¬l1 and ¬l2. This is implied by the fact that selector variables
appear only in one phase in the formula, and hence cannot be resolved away.
Hence the presence of these literals in IC-clauses is an invariant. If we falsely
assume that a minimized clause C can increase its dependency on constraints,
we immediately reach a contradiction: the supposedly added constraint implies
that a new selector variable was added to C, which contradicts the fact that
literals are only removed from C in the minimization process.

C: Postponed Propagation Over IC-Clauses. In this optimization we
control the BCP order. We first run BCP over non-IC-clauses until completion.
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If there is no conflict, we propagate a single implication due to an IC-clause, and
run regular BCP again. We repeat this process until no more propagations are
possible or reaching a conflict. The idea behind this optimization is to increase
the chances of learning a remainder clause rather than an IC-clause.

D: Reclassifying IC-Clauses. When we discover that some IC-constraint R
must be in the MUC (line 8 in Alg. 1), we add its clauses back as remainder
clauses, together with all the clauses in its cone that do not depend on other
constraints. To identify this set of constraints, we employ an algorithm in the
style of a least-fix-point computation. We insert all the R clauses into a set S.
Then we add all the children of those clauses that all their parents are in S. We
repeat this process until reaching a fix-point.

Without this optimization R’s clauses are added back as is, with their mark-
ing as IC-clauses. By adding them back as remainder clauses, we enable more
simplifications, as described in the case of optimization A.

E: Selective Learning of IC-Clauses. When detecting a conflict, the learned
clause may be an IC-clause. If all else is equal, such a clause is less preferable
than a remainder clause, as it may increase the high-level core, in addition to
the fact that it leads to a larger resolution table and hence longer run times.
We found that learning a non-asserting remainder clause instead, combined with
partial restart, improves the overall performance. The learning of the remainder
clause is essential for termination, and also turns out to decrease run time. The
alternative remainder clause that we learn is even closer to the conflict than the
first UIP. We can learn it only if the conflicting clause is not an IC-clause; in
other cases we simply revert to learning the IC-clause. Learning the remainder
clause is done by reanalyzing the conflict graph as if the IC-implications were
decisions. This optimization is only ran in conjunction with optimizations B and
C above, for reasons that we will soon clarify. Alg. 2 describes the procedure for
learning this clause.

Algorithm 2. An algorithm that attempts to find a remainder conflict clause by
reanalyzing the conflict graph as if the IC-implications were decisions. Returns
a remainder clause if one can be found, and NULL otherwise.
function Get Remainder Clause
1. If the conflicting clause is an IC-clause then return NULL.
2. Search an IC-implied literal l in the trail, starting from the latest implied literal

and ending just before the 1-UIP literal.
3. Convert the implication of l into a decision, and update accordingly the decision

level of all implied literals in the trail that come after it.
4. Call Analyze Conflict() with the same conflicting clause, but while referring to

the new decision levels. Let C be the resulting conflict clause.
5. Return C.

Note that the fact that we use this algorithm only when optimization C is
active, guarantees that the literals searched and updated in steps 2 and 3 are
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implied by l, i.e., the fact that BCP was ran to completion on non-IC-clauses
before asserting l, guarantees that the rest of the implications at that decision
level depend on asserting l. Also note that the clause learnt in step 4 is necessarily
a remainder clause because Analyze Conflict() cannot cross an IC-implied
literal (such implications were made into decisions), and that it corresponds to a
cut in the implication graph to the right of the first UIP. The reason we activate
this optimization in conjunction with optimization B, is that we want to refrain
from a case in which we learn a remainder clause, but it then turns into an
IC-clause owing to clause minimization. This is not essential for correctness,
however: we could also have just compared this smaller IC-clause to the original
one and choose between the two, but our experience is that it is better to give
priority to minimizing the number of IC-clauses. Finally, note that there is no
reason to revert the changes made to the trail, because backtracking removes
this part of the trail anyway.

Example 3. Figure 1 presents an implication graph, where IC-implications are
marked with dashed edges. The marked 1-UIP cut in the top drawing is calcu-
lated while considering such implications as any other implication. The suggested
heuristic is to learn instead a normal clause, by considering such implications as
new decisions, as depicted in the bottom drawing. ��

As mentioned earlier, learning the alternative clause is combined with a partial
restart. Let dl be the level to which we would have jumped had we learned the
IC-clause. We backtrack to dl, but at this point nothing is asserted because
we did not learn an asserting clause. We then move to the next decision level,
dl + 1, and decide the negation of the original 1-UIP literal. Hence instead of
learning an asserting clause and implying the negation of the 1-UIP literal, we
refrain from learning that clause and decide on the same value. This assignment
in neither necessary or sufficient for preventing the same conflict to occur. What
prevents us from entering an infinite loop in the absence of standard learning
is the fact that we learn at least one clause between such partial restarts. Since
the solver cannot enter a conflict state that leads to learning an existing clause,
we are guaranteed not to enter an infinite loop.

Example 4. Referring again to the conflict graphs in Example 3, our solver back-
tracks to the end of level 3 — the same level we would have jumped with the
original IC-clause — progress to level 4 and decides ¬l1. ��

In our experiments we also tried other decisions (such as ¬l2 in the example
above), but ¬l1 seems to work better in practice. We also tried different strategies
of updating the scores. The best strategy we found in our experiments is to
update the score according to both the original and the alternative clause.

F: Selective Chronological backtracking. Recall that optimization E in-
volves a partial restart when learning an IC-clause. Different heuristics can be
applied in order to choose the backtracking level. Our experiments show that
if we only backtrack one level, rather than to the original backtrack level as
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explained above, the results improve significantly. The complete set of data,
available from [18], shows that this heuristic improves the run time in most in-
stances, and that it improves the search itself and not only reduces constants,
as is evident by the fact that it reduces the number of conflicts. It seems that
the reason for the success of this heuristic is related to the fact that with normal
backtracking and score scheme we may lose the connection to the clause that
we actually learn, i.e., the scores might divert the search from a space which is
more relevant to the alternative clause that we learn.
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Fig. 1. In these conflict graphs, dashed arrows denote IC-implications, and the dotted
lines denote 1-UIP cuts. In the top drawing, where such implications are referred to as
any other implications, the learned 1-UIP clause must be marked as an IC-clause, since
it is resolved from the IC-clause c. We can learn instead a normal clause by taking, for
example, the 1-UIP clause in the bottom conflict graph. In that graph, c’s implication
are considered as decisions, which changes the decision levels labeling the nodes.

G: A removal strategy. Recall that in line 5 of Alg. 1 constraints are removed
in an arbitrary order. We suggest a simple greedy heuristic instead: remove the
constraint that contributed the largest number of clauses to the proof. This
heuristic, as will be evident in the next section, reduces the size of the resulting
core but slightly increases run time.

We also experimented with a heuristic by which we remove the constraint
with the least number of clauses in the proof, speculating that this leaves more
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clauses in the formula and hence increases the chance that there will be a proof
without this constraint. This option also improves performance comparing to the
arbitrary order with which we started, but is not as good as the one suggested
above. There is an indirect cause behind this difference: the large constraints (i.e.,
those that have many clauses) are typically necessary for the proof regardless of
the other constraints, and hence the faster we make them remainder constraints
– with optimization D – the faster the rest of the solution process is. This, in
turn, affects the size of the core because it leads to less time-outs. As we will
explain in the next section, the result of the algorithm when interrupted by a
time-out is the last computed core, or, in case that even the first iteration does
not terminate, the entire set of IC-clauses.

4 Experimental Results

Our tool hhlmuc (for Haifa’s high-level MUC) was built, as mentioned earlier,
on top of Minisat 2.2. It contains the algorithm from Sect. 2 and also the tech-
nique of [19] for reducing the amount of required data in the resolution table
by using a reference-counter. On top of this we implemented the optimizations
that were described in the previous section, and ran all possible combinations
(excluding the restrictions mentioned in optimization E), on the set used in [15]
(family ‘lat-fmcad10’ in the tables below), and additional nine families of harder
abstraction-refinement benchmarks from Intel. We removed from the benchmark
set instances that could not be solved by any of the configurations in the given
time-out of one hour. This left us with 144 benchmarks, all of which are from the
two application domains that were described in the introduction. This set con-
stitute Intel’s contribution to the benchmarks repository that will be used in the
upcoming SAT competition dedicated to this problem. The average number of
clauses per instance is 2,572,270; the average number of constraints per instance
is 3804; and, finally, the average number of interesting clauses per instance is
96568 (25.3 clauses per constraint), which is approximately 6% of the clauses.
All experiments were ran on Intel R© Xeon R© machines with 4Ghz CPU frequency
and 32Gb of memory.

Table 4 shows run time results for selected configurations.2 The second column
(“Full”) refers to our starting point as explained above. One may observe that
the best result is achieved when combining the first six optimizations, whereas
the seventh slightly increases the overall run-time.

We also compared our results to assumptions-based minimization. We tried
both a simple scheme, and the improvement suggested in [15]. In the simple
scheme, a constraint is added to the MUC (line 8 in Alg.1) by setting its as-
sociated selector variable to true; In the improved method the same effect is
achieved by adding a unit clause asserting this literal to true. Similarly, in the
simple scheme an environment assumption is removed from the formula (line 13
in Alg.1) by setting its associated selector to false; In the improved method the
2 The tool and the full set of results, including a comparison to MUC tools (which

does not appear here) can be downloaded from [18].
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same effect is achieved by adding a unit clause asserting this literal to false.
The improved method is better empirically apparently because the unit clause
invokes a simplification step in decision level 0, which removes the selector vari-
able and erases some clauses. The results we witnessed with the two methods
appear in the last two columns of the table. Overall the combination of optimiza-
tions achieve a reduction of 55% in run time comparing to our starting point,
and a reduction of 28% comparing to the assumptions-based method.

All the presented methods can be affected by the order in which constraints
are removed in line 5. We therefore tried three different arbitrary removal orders
in each case. Empirically this hardly had an effect on the average run-time when
using the resolution-based methods, whereas it had some effect when using the
assumption-based methods. The table below represents the best overall run times
among the different orders we tried (i.e., we present the results that together have
the minimum run-time). Regarding the size of the resulting core, the different
arbitrary orders had inconsistent effect, as expected, but the order referred to
in optimization G had a non-negligible positive effect on the size of the core, as
will be shown momentarily.

Table 1. Summary of run-time results by family (144 instances all together)

Benchmark Resolution-based Assumptions-based
family Full A AB ABC ABCE A–E A–F A–G units

latch1 2001 1604 660 465 570 575 425 423 819 798
gate1 3747 1403 705 636 620 579 490 477 856 855
latch2 9113 5915 6636 6116 5685 5656 2424 2370 8153 8043
latch3 348 293 274 274 283 275 262 200 236 236
latch4 769 529 506 457 467 455 443 379 504 521
latch5 1103 820 735 657 678 630 632 625 747 689
lat-fmcad10 785 457 445 451 435 435 400 394 417 425
latch6 8868 5456 5329 5188 5007 5006 4948 4943 5322 5279
latch7 9956 7050 5719 5244 5094 5096 5302 5286 5688 5652
latch8 8223 7946 5673 6133 5459 5420 5127 5587 8004 5534

Total 44913 31473 26682 25621 24298 24127 20453 20684 30746 28032

Next, we consider the size of the resulting high-level MUC. The configuration
that achieves the best run-time (A–F) achieves the second smallest high-level
core, whereas the second best configuration in terms of run time (A–G) achieves
the smallest core. If a solver timed-out in our experiments, we considered its
latest computed core, i.e., the set muc ∪ muc cands. If a solver did not finish
even the first iteration, then we considered the entire set of clauses in IC as its
achieved core. This policy, which reflects the way such cores are used, explains
the different results of strategies that are supposed to be equivalent with respect
to the size of the core. For example, the partial-resolution proof optimization
(A) does not remove more clauses than ‘Full’, but since the latter is generally
slower, it times-out more times and hence its core count is larger. The ‘TO’ row
contains the number of such time-outs with each configuration.
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Table 2. Summary of the size of the high-level core by family. The ‘TO’ row indicates
the number of time-outs.

Benchmark Resolution-based Assumptions-based
family Full A AB ABC ABCE A–E A-F A-G units

latch1 41 41 41 41 42 42 41 42 52 45
gate1 1143 1210 1089 568 1029 1029 870 901 618 1192
latch2 5887 2851 127 3040 2851 2851 131 129 3782 4165
latch3 168 202 202 199 211 211 208 123 140 132
latch4 236 237 248 236 238 238 237 162 177 217
latch5 224 266 266 206 206 206 220 222 222 223
lat-fmcad10 577 456 456 489 540 540 453 454 457 450
latch6 2550 2502 2502 2490 2490 2490 2480 2480 2463 2502
latch7 2578 322 585 253 154 154 211 204 304 287
latch8 5591 615 2867 393 344 344 371 373 2887 2877

TO 8 5 3 3 2 2 2 2 6 5

Total 18995 8702 8383 7915 8105 8105 5222 5090 11102 12090

5 Summary and Future Work

The recently introduced problem of finding a high-level minimal unsatisfiable
core has various applications in the industry. Until [15] the standard practice
was to minimize the core itself, and only then to find the interesting part of
it. Our experiments show that this approach cannot compete with a solver that
focuses on the high-level core. In this article we introduced seven techniques that
reduce both the run time and the resulting high-level core.

A straight-forward direction for future research is to migrate some of the sug-
gested optimizations to the assumptions-based approach. Related SAT problems
may also benefit from these methods. First - it is possible that general SAT solv-
ing can be improved with some combination of optimizations E and F. Second,
the same techniques can potentially expedite other methods in which the SAT
component needs to extract only partial information from the resolution proof,
like interpolation-based model checking [13]. In interpolation only a small part
of the proof is necessary in order to generate the interpolant, and we want to
explore possibilities to minimize that part and decrease the overall run time with
variants of the methods suggested here.
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Abstract. In this paper, we propose a new dynamic management policy of the
learnt clause database in modern SAT solvers. It is based on a dynamic freezing
and activation principle of the learnt clauses. At a given search state, using a
relevant selection function, it activates the most promising learnt clauses while
freezing irrelevant ones. In this way, clauses learned at previous steps can be
frozen at the current step and might be activated again in future steps of the search
process. Our strategy tries to exploit pieces of information gathered from the past
to deduce the relevance of a given clause for the remaining search steps. This
policy contrasts with all the well-known deletion strategies, where a given learned
clause is definitely eliminated. Experiments on SAT instances taken from the last
competitions demonstrate the efficiency of our proposed technique.

1 Introduction

The SAT problem, i.e. the problem of checking whether a set of Boolean clauses is
satisfiable or not, is central to many domains of computer science and artificial intelli-
gence (theorem proving, planning, non-monotonic reasoning, VLSI correctness check-
ing or knowledge-base verification and validation). During the last two decades, SAT

has gained considerable audience with the advent of a new generation of SAT solvers
that are able to solve large instances encoding real-world applications. These solvers,
called CDCL (Conflict Driven, Clause Learning) [11,5], are based on a nice combination
of (i) clause learning [9,10,15], (ii) VSIDS heuristics [11] and (iii) restart policies [6,7],
enhanced with efficient data structures (eg. Watched literals). On the theoretical side,
K. Pipatsrisawat and A. Darwiche [13] proved that modern SAT solvers formalized as
a proof system are equivalent in strength to general resolution, if the search is restarted
at each conflict. This result shows that resolution-based clause learning is an important
component of modern SAT solvers, since it pushes forward DPLL-like procedures from
tree-like to general resolution, a more powerful proof system. On the practical side, as
the set of clauses that can be derived from conflicts is of exponential size in the worst
case, several strategies have been designed to cope with this combinatorial explosion
problem. To maintain a learnt clause database of polynomial size - and consequently
perform unit propagation with reasonable cost - all these strategies dynamically reduce
the learnt database by deleting clauses considered to be irrelevant to the next search
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steps. The most popular strategy considers a learnt clause as irrelevant if its activity or
its involvement in recent conflict analysis is marginal. In [2], a static measure called
literal block distance (LBD, corresponding to the number of different levels involved
in a given learnt clause) is used to quantify the quality of learnt clauses. Clauses with
smaller LBD are considered as more relevant. Theoretically, the first unique implica-
tion point (UIP) scheme is shown to be optimal among schemes that learn an asserting
clause in terms of LBD measure [1]. The main drawback of these cleaning strategies
is that they cannot avoid the elimination of relevant learnt clauses. Their irreversible
elimination makes it possible that the same clause will be derived repeatedly.

The problem of determining what is a useful learnt clause in advance remains very
challenging and computationally hard. In this paper, we propose a new dynamic man-
agement policy of the learnt clause database in modern SAT solvers. It is based on a
dynamic freezing and activation principle of the learnt clauses. At a given search state,
it activates the most promising learnt clauses while freezing irrelevant ones. In this
way, previously learned clauses can be discarded for the current step, but may be acti-
vated again in future steps of the search process. Our policy tries to exploit pieces of
information gathered from the past to deduce the relevance of a given clause for the
remaining search steps. This policy contrasts with all well-known deletion strategies,
where a given learned clause is definitely eliminated. In this way, a clause can be use-
less at a given step and relevant at another step of the search process. The ideal is to
freeze a learnt clause when it is not used and just to reactivate it at the time when it
could play a role in the proof.

The next part of the paper is organized as follows: section 2 introduces necessary
background. In section 3, we introduce a new relevance measure of learnt clauses,
whereas in section 4, we present our dynamic freezing and activation strategy of learnt
clauses. Before concluding, we present in section 5, an experimental comparison of our
new dynamic learnt clauses management policy with the well known state-of-the-art
reduction policies as well as state of the art solvers.

2 Definitions, Notations and Technical Background

In this section, after some preliminary definitions and notations, we introduce the most
salient computational features of modern SAT solvers.

A CNF formula Σ is a conjunction (interpreted as a set) of clauses, where a clause is
a disjunction (interpreted as a set) of literals. A literal is a positive (x) or negative (¬x)
Boolean variable. The two literals x and ¬x are called complementary. A unit clause
is a clause with only one literal (called unit literal). An empty clause, is interpreted as
false, while an empty CNF formula, is interpreted as true. A set of literals is complete
if it contains one literal for each variable occurring in Σ and fundamental if it does not
contain complementary literals. An interpretation I of a boolean formulaΣ associates
a value I(x) to some of the variables x appearing in Σ. An interpretation can be repre-
sented by a fundamental set of literals, in the obvious way. A model of a formula Σ is
an interpretation I that satisfies the formula, i.e. that satisfies all clauses of the formula.
Finally, SAT is the problem of deciding whether a given CNF formulaΣ admits a model
or not.
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Algorithm 1. CDCL solver
Input: a CNF formula Σ
Output: SAT or UNSAT

Δ = ∅; /* learnt clause database */1

while (true) do2

if (!propagate()) then3

if ((c = analyzeConflict()) == ∅) then return UNSAT;4

Δ = Δ ∪ {c};5

if (timeToRestart()) then backtrack to level 0;6

else7

backtrack to the assertion level of c;8

else9

if ((l = decide()) == null) then return SAT;10

assert l in a new decision level;11

if (timeToReduce()) then clean(Δ);12

Let us now briefly describe the basic components of CDCL based SAT solvers [11,5].
To be exhaustive, these solvers incorporate unit propagation (enhanced by efficient
and lazy data structures), variable activity based heuristic, literal polarity phase, clause
learning, restarts and a learnt clause database reduction policy.

These main components are depicted by the general scheme given in Algorithm 1. At
each step of the main loop, the algorithm performs unit propagation (line 3). In case of
conflict (lines 4-8), a new asserting clause is derived by conflict analysis (line 4). If such
a clause is empty, then the formula is answered unsatisfiable, otherwise it is added to
the learnt clause database (line 5). If it is not time to restart, the algorithm backjumps to
the assertion level of the learnt clause, i.e. the level where the learnt clause becomes unit
(line 8), otherwise it backjumps to the root of the search. When the formula is closed
under unit propagation without generating the empty clause, a new decision literal - if
it exists - is selected and asserted in a new decision level (line 11), otherwise a model is
found and the formula is answered to be satisfiable (line 10).

Finally, when it is time to reduce, the learnt clause database is cleaned (line 12). This
component, usually omitted in the description of CDCL solvers, is clearly crucial to the
solvers’ performance. Indeed, keeping too many learnt clauses will slow down the unit
propagation process, while deleting too many of them will break the overall learning
benefit. Consequently, identifying good learnt clauses - relevant to the proof derivation
- is clearly an important challenge. The first proposed quality measure follows the suc-
cess of the activity based VSIDS heuristic. More precisely, a learnt clause is considered
relevant to the proof, if it is involved more often in recent conflicts, i.e. usually used to
derive asserting clauses. Clearly, this deletion strategy supposes that a useful clause in
the past could be useful in the future. More recently, a more accurate measure called
LBD is used to estimate the quality of a learnt clause leading to a better cleaning strat-
egy than the previous one [2]. This new measure is based on the number of different
decision levels appearing in a learnt clause and is computed when the clause is learnt.
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Extensive experiments demonstrates that clauses with small LBD values are used more
often than those with higher LBD ones.

Another feature of CDCL solvers recently proposed in [12] concerns the literal po-
larity to be chosen when the next decision variable is selected thanks to the VSIDS

heuristic. Usually, a default polarity (e.g. false) is defined and used each time a decision
literal is assigned. Based on the observation that restarts and backjumping might lead
to repetitive solving of same subformulas, Pipatsrisawat and Darwiche [12] proposed
to dynamically save for each variable the last used polarity. This literal polarity based
heuristic, called progress saving, prevents the solver from solving the same satisfiable
subformulas several times. These memorized polarities can be represented as a com-
plete interpretation P . Each time a decision variable is chosen, its assignment polarity
is selected from P . Consequently, P gives us at least the polarities of the decision lit-
erals. And each time a literal is assigned by the solver, its associated polarity is set
in P .

In the next section, we exploit P (progress saving) to approximate the usefulness
that one can expect in the near future from a learnt clause, in other words to measure
the likelihood for a given clause to be part of the implication graph.

3 A New Measure for Identifying Relevant Learnt Clauses

As mentioned above a CDCL-based SAT solver can be formulated as a resolution proof
system [13,3]. In practice, the main problem behind resolution-based techniques arises
from their exponential space complexity. Consequently, the practical incarnation of
modern SAT solvers can be seen as a resolution-based procedure with a deletion strat-
egy. As a consequence, the completeness of modern SAT solvers is heavily connected
to both the chosen deletion and restart policies. For example, if we use a restart with
a static cutoff value and an aggressive deletion strategy, we cannot guarantee the com-
pleteness of the solver. For this reason one needs to be careful when designing a deletion
strategy. Consequently, defining what is a relevant clause before completing the proof
itself is of a great importance for the efficiency of the solver. However answering such
a question is computationally hard and it is related to finding a proof of minimal size.

In this section we define a simple measure to identify the relevance of a given
learnt clause and we experimentally show its effectiveness. Our measure is based on
the progress saving polarity [12] introduced in the previous section. This progress sav-
ing based quality measure, in short psm, is defined as follows: given a clause c and
a complete set of literals P representing the current set of saved literals polarities, we
define psmP(c) = |P ∩c|. This measure can be related to another one proposed in [11].
In this paper, a learnt clause was tagged useless, in the goal to delete it, if its number of
unassigned literals has reached a predefined threshold.

First let us note that the psm measure is highly dynamic. Since the set P of saved
literals polarities will evolve during search, the psm of a given clause will also evolve
consequently. For example, when a clause is learnt, its psm value is equal to zero and
becomes one after backjumping to the assertion level. It is also important to note that
when a given learnt clause is at the origin of unit propagation, its psm value is also
equal to one. These preliminary remarks suggest that clauses with small psm value are
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the most relevant to the near future of the search. Let I be the current partial interpreta-
tion and P be the current complete interpretation representing the current saved literals
polarities, and c a learnt clause. As I ⊂ P , psmP(c) represents the number of literals
that are assigned to true by I or that would be assigned to true by P\I. Consequently, a
clause with a small psm value has a lot of chance to be unit propagated or to be falsified.
On the contrary, a clause with a big psm value has a lot of chance to be satisfied by more
than one literal and then to be irrelevant for the subsequent part of the search.

To analyze and to validate this assumption, experiments are conducted on some SAT

instances. Figure 1 shows, for a sample of instances, the average number of times
clauses with a given psm value are used during the unit propagation process. In this
experiment, we consider a time sequence tk with k > 0 (the search starts at t0) corre-
sponding to the successive steps of the search where the learnt database is classically re-
duced. LetPtk

andPtk+1 be the progress saving literal polarities at the steps tk and tk+1

respectively. Let us consider the time window between tk and tk+1, when a given clause
c from the learnt database is used for unit propagation, we compute psm = psmPtk

(c)
and then α(psm) the number of times a clause with such psm value is used for prop-
agation is increased by one. The average number of times a clause with a given psm
value (x-axis) is used in unit propagation (y-axis), corresponds to α(psm) divided by
the total number of times a learnt database is reduced.

As we can observe from Figure 1, learnt clauses with small psm value are used more
often in the unit propagation process than those with higher psm value. If we look closer,
we can see that the most used clauses are those with psm value around 10. Based on
extensive experiments, we observed that on the majority of instances the distribution of
psm values looks like those represented in the two upper curves of Figure 1.

This first experiment illustrates the relevance of clauses with small psm value. To
compare it with previous learnt clauses quality measure, we integrate our psm measure
to the learnt clauses reduction policy (clean(Δ) - line 12) of MINISAT 2.2 which is the
latest version of the well known solver MINISAT [5]. Similarly to previous approaches,
each time a reduction is performed, the set of clauses is sorted according to the increas-
ing order of psm value. When two clauses admit the same psm value, the one with the
greatest activity (VSIDS) is preferred. Then the learnt database is reduced by half. Like
other strategies, we keep the binary clauses in the learnt database.

In the sequel, all our experiments are conducted on a Quad-core Intel XEON X5550
with 32Gb of memory, using the 292 application instances of the SAT 2009 competition.
The CPU time limit is set to 900 seconds.

For each solver, we indicate the number of solved instances (#Solved) with the num-
ber of satisfiable (#SAT) and unsatisfiable instances (#UNSAT) in brackets. We also give
the average time in seconds (avg time) necessary to solve these instances.

Table 1 summarises the results obtained by MINISATd [5], MINISATd + LBD [2] and
MINISATd+psm using the default time sequence (noted MINISATd) of MINISAT. As we
can see, MINISATd + psm obtains the best overall results and is the best on satisfiable
instances. This first experiment shows the efficiency of our new measure psm using the
default time reduction sequence of MINISAT.

To make a fair comparison between these three approaches, we also present in
Table 2 the results obtained using an aggressive cleaning policy as presented in [2]
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Fig. 1. Progress saving measure / relevance with respect to UP

Table 1. Results with the MINISAT default time cleaning sequence

Solver #Solved (#SAT- #UNSAT) avg time
MINISATd 174 (68 - 106) 142
MINISATd + psm 177 (73 - 104) 130
MINISATd + LBD 173 (71 - 102 ) 132

(noted MINISATa). In this experiment the learnt database Δ is reduced using the fol-
lowing time sequence, t0 = 4000 conflicts and tk = tk−1 + 300 conflicts for k > 0.
Using aggressive (more frequent) cleaning time sequence, the result obtained by the
LBD measure are better than those obtained by VSIDS like criterion and the psm
measure.

As a summary, considering the classical reduction and deletion strategies, these first
experiments clearly show that our measure is competitive with the two other
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Table 2. Results with an aggressive time cleaning sequence

Solver #Solved (#SAT- #UNSAT) avg time
MINISATa 162 (68 - 94) 136
MINISATa + psm 163 (70 - 93) 140
MINISATa + LBD 168 (72 - 96) 128

well-known measures using both aggressive and less aggressive cleaning policy. This
measure will be used in next section in order to design a dynamic management policy
of learnt clauses.

4 Freeze and Reactivate: A Dynamic Management Policy

In section 3, we defined a new measure based on progress saving [12] for identifying
relevant learnt clauses. In this section, we describe our dynamic management policy
of the learnt clause database. Our proposed framework is based on two important key
points. First, the progress saving based measure is highly dynamic and evolves during
search. Consequently, a clause might be considered irrelevant (high psm value) at a
given step of the search and could become relevant (small psm value) in the future steps
of the search. Secondly, determining if a given learnt clause will be involved again in
the resolution proof is a computationally hard task. All the well-known management
policies are not safe from regularly eliminating relevant learnt clauses. For both rea-
sons, our proposed approach introduces an additional and new concept of frozen learnt
clauses. A learnt clause considered as irrelevant at a given step can be frozen and re-
activated when it is considered as useful again. More precisely, freezing (respectively
activating) a clause means that the clause is disconnected (respectively attached) to the
learnt database, and then it is not used during the search (respectively used).

This kind of management strategy cannot be defined using the other known mea-
sures such as activity and LBD-based ones. Indeed, the LBD value of a given clause is
definitely set at the time of its generation and does not change during search, while the
activity (VSIDS-based) measure is dynamic but can only be used to update the activity
of learnt clauses currently in the database.

Let us now formally describe our new learnt clause management policy. First, as
the psm value of a given clause is highly dynamic, we introduce a notion of deviation
between two successive sets of progress saving polarities. Let Vtk

be the set of variables
assigned by the solver between two consecutive time sequences (as defined in previous

section) tk−1 and tk. The deviation dtk
is defined as follows: dtk

=
h(Ptk

,Ptk−1 )

|Vtk
| , where

h is the usual hamming distance.
This deviation defined as a normalized hamming distance, gives us an outline of the

evolution of progress saving polarities between two successive cleanings of the learnt
database. A deviation tending to zero indicates that the solver explores around the same
part of the search space whereas a value close to one indicates that the solver explores
different part of the search space.

To obtain a more precise view of the search behavior, we introduce another notion of
minimal deviation dm

tk
= min{dti|0 ≤ i ≤ k} at time step tk.
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Fig. 2. State diagram of a learnt clause

Using this minimal deviation, we can now refine our psmmeasure. Indeed, let c be a
clause to be evaluated at time step tk, if psmPtk

(c) > dm
tk
×|c| then the clause c is likely

to be satisfied in a near future, otherwise it is likely to be involved in the propagation
process.

Our approach depicted in Figure 2 is represented as a state diagram. At each cleaning
tk, learnt clauses can move from a state to another one following some conditions.

First, a learnt clause c can be in one of the three following states:

1. Active state A: c is active and watched.
2. Frozen state F : c is frozen i.e. c is not watched
3. Dead state D: c is deleted.

Let us describe these different transitions:

– Each time a clause is learnt it enters the state A.
– A clause c ∈ A with a short LBD (lbd(c) ≤ 3 in the figure) remains in the state A

until the end of the search process.

– A clause c ∈ A such that
psmPtk

(c)

|c| > dm
tk

enters the frozen state F .

– A clause c ∈ F such that
psm

Sni
(c)

|c| ≤ dm
ni

enters the active state A.
– A clause c ∈ F not activated after k time steps is deleted. Similarly, a clause
c ∈ A remaining active more than k steps without participating to the search is
also deleted. In both cases, it enters the state D after k = 7 time steps in our
experiments.

One of the main advantages of our approach comes from the fact that we can perform
frequent cleaning of the learnt clause database without taking care of removing relevant
clauses. So we choose a very aggressive policy. We set t0 = 500 conflicts, and tk =
tk−1 + 100 conflicts.



196 G. Audemard et al.

Aprove07-25 q query 3 l48 lambda

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0  50  100  150  200  250  300  350  400

A -> F
F -> A
Active

Frozen
Dead

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0  20  40  60  80  100  120  140

A -> F
F -> A
Active

Frozen
Dead

goldb-heqc-frg1mul countbitsarray08 32

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0  50  100  150  200  250  300

A -> F
F -> A
Active

Frozen
Dead

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0  50  100  150  200  250  300  350  400  450  500

A -> F
F -> A
Active

Frozen
Dead

Fig. 3. Evolution of the number of clauses in different states and number of state transfers

We conducted some experiments to analyse the transfer of the clauses from the state
A to the state F and vice versa. Figure 3 shows, for the same sample of instances as
in the Figure 1, the number of deleted clauses, the number of transitions to the frozen
state, the number of transitions to the active state, the number of active (or watched)
learnt clauses and finally the number of frozen clauses. These data are represented
by the y-axis, whereas the x-axis represents the cleaning operated at the time step
tk. For clarity reasons, all curves have been smoothed. For all instances, the number
of frozen clauses (Frozen) and the number of active clauses (Active) are relatively
similar. The curve representing the number of clauses becoming active (F → A) is
dominated by those representing the number of clauses becoming frozen (A → F ).
However, the two curves evolve similarly and they are closer on some instances (e.g.
q query 3 l48 lambda) than on others (e.g. Aprove07 − 25) . Finally, we can also
observe that, at each cleaning time step, some clauses are definitively deleted (Dead).
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5 Empirical Evaluation

This section is divided in two parts. In the first, we compare our dynamic man-
agement policy (psmdym) against the classical reduction approach with different
quality measures (LBD, VSIDS like, psm). In the second experiment, we compare
it with three state-of-the-art solvers: GLUCOSE which embeds LBD measure, a dy-
namic restart policy and some other features [2], LINGELING which also embeds
more powerful reasoning like blocked clause elimination [8], and finally, CRYP-
TOMINISAT which adds many other features (e.g. vivification, reasoning on xor
clauses. . . ). Descriptions of these solvers areavailable on the SATRACE 2010 website
http://baldur.iti.uka.de/sat-race-2010. Except for LINGELING and
CRYPTOMINISAT which embed preprocessing inside, the other solvers use SatElite
for preprocessing [4].
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Fig. 4. Comparison with different learnt clauses quality measures

http://baldur.iti.uka.de/sat-race-2010
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Fig. 5. Comparison with state of the art solvers: GLUCOSE, LINGELING and CRYPTOMINISAT

In the first experiment, we use the same solver and the only difference is in the learnt
clause management policy. In the second experiment, our aim is to compare our learnt
clause management approach integrated in MINISAT 2.2 (MINISAT-psmdyn) with the
state-of-the-art SAT solvers. Source code and extensive experiments can be found at
http://www.cril.fr/˜lagniez/ressource.html.

5.1 Comparison with Different Quality Measures

We compare our dynamic policy, called MINISAT-psmdyn with the classic MINISAT,
and MINISAT with learnt database reduction based on psm (MINISAT-psm) and on LBD

(MINISAT-LBD) (like in section 3). Figure 4 summarizes the results. It contains three
scatter plots corresponding to the comparison of MINISAT-psmdyn with the 3 others
solvers. In such a plot, each dot corresponds to a given instance, the x-axis corresponds
to the cpu time needed by the MINISAT, LBD or psm to solve the instance, whereas
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the-y axis corresponds to the cpu time needed by psmdyn to solve it. So, dots below the
diagonal correspond to instances solved faster by MINISAT-psmdyn (SAT and UNSAT

instances are differentiated). Figure 4 also contains a cactus plot related to the compar-
ison of the 4 solvers.

It is quite clear that our freezing strategy outperforms the other strategies. It solves
189 instances (76 SAT and 113 UNSAT), which is significantly better than the other
solvers (see Table 1). Furthermore, as we can see on the scatter plots, MINISAT-psmdyn

solves instances faster than the others solvers.

5.2 Comparison with State of the Art Solvers

Figure 5 summarizes the comparison with state of the art solvers. It is structured as fig-
ure 4. Let us detail the number of solved instances by each solver: LINGELING solves
187 instances (77 SAT, 110 UNSAT), GLUCOSE 189 (70 SAT and 119 UNSAT) and CRYP-
TOMINISAT 194 (74 SAT, 120 UNSAT). These results and the plots of Figure 5 show that
our dynamic management policy is really competitive with state-of-the-art solvers (re-
member, it solves 189 instances (76 SAT and 113 UNSAT)). It does not even embed
sophisticated components such as dynamic restart, etc.

6 Conclusion

In this paper, we introduced a new measure for identifying relevant learnt clauses. The
main advantage of this measure is that it is dynamic (unlike the LBD measure) and it
can be computed even if clauses do not participate in the search process (unlike the
VSIDS like measure). Thanks to this property, a new learnt clause database manage-
ment framework has been proposed. It exploits a novel dynamic policy that activates
the most promising learnt clauses while freezing irrelevant ones. This is in contrast
with all the well-known deletion strategies, where a given learned clause is definitely
eliminated. Experiments on SAT instances taken from the last competitions demonstrate
the effectiveness of our approach.

As future work, we plan to exploit the evolution of the set of progress saving literal
polarities in order to decide if cleaning has to be performed. Considering the connection
between restarts and clause learning [14], we plan to exploit this connection to improve
our proposed leant database management approach.

Acknowledgments. We would like to thank the anonymous reviewers for insightful
comments.
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Abstract. This paper develops techniques for efficiently detecting redundancies
in CNF formulas. We introduce the concept of hidden literals, resulting in the novel
technique of hidden literal elimination. We develop a practical simplification algo-
rithm that enables “Unhiding” various redundancies in a unified framework. Based
on time stamping literals in the binary implication graph, the algorithm applies vari-
ous binary clause based simplifications, including techniques that, when run repeat-
edly until fixpoint, can be too costly. Unhiding can also be applied during search,
taking learnt clauses into account. We show that Unhiding gives performance im-
provements on real-world SAT competition benchmarks.

1 Introduction

Applying reasoning techniques (see e.g. [1,2,3,4,5,6,7]) to simplify Boolean satisfia-
bility (SAT) instances both before and during search is important for improving state-
of-the-art SAT solvers. This paper develops techniques for efficiently detecting and
removing redundancies from CNF (conjunctive normal form) formulas based on the
underlying binary clause structure (i.e., the binary implication graph) of the formulas.

In addition to considering known simplification techniques (hidden tautology elimi-
nation (HTE) [6], hyper binary resolution (HBR) [1,7], failed literal elimination over
binary clauses [8], equivalent literal substitution [8,9,10], and transitive reduction [11]
of the binary implication graph [10]), we introduce the novel technique of hidden literal
elimination (HLE) that removes so-called hidden literals from clauses without affect-
ing the set of satisfying assignments. We establish basic properties of HLE, including
conditions for achieving confluence when combined with equivalent literal substitution.

As the second main contribution, we develop an efficient and practical simplification
algorithm that enables “Unhiding” various redundancies in a unified framework. Based
on time stamping literals via randomized depth-first search (DFS) over the binary impli-
cation graph, the algorithm provides efficient approximations of various binary clause
based simplifications which, when run repeatedly until fixpoint, can be too costly. In
particular, while our Unhiding algorithm is linear time in the total number of literals
(with an at most logarithmic factor in the length of the longest clause), notice as an
example that fixpoint computation of failed literals, even just on the binary implication
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graph, is conjectured to be at least quadratic in the worst case [8]. Unhiding can be
implemented without occurrence lists, and can hence be applied not only as a prepro-
cessor but also during search, which allows to take learnt clauses into account. Indeed,
we show that, when integrated into the state-of-the-art SAT solver Lingeling [12], Un-
hiding gives performance improvements on real-world SAT competition benchmarks.

On related work, Van Gelder [8] studied exact and approximate DFS-based algo-
rithms for computing equivalent literals, failed literals over binary clauses, and implied
(transitive) binary clauses. The main differences to this work are: (i) Unhiding approxi-
mates the additional techniques of HTE, HLE, and HBR; (ii) the advanced DFS-based
time stamping scheme of Unhiding detects failed and equivalent literals on-the-fly, in
addition to removing (instead of adding as in [8]) transitive edges in the binary im-
plication graph; and (iii) Unhiding is integrated into a clause learning (CDCL) solver,
improving its performance on real application instances (in [8] only random 2-SAT in-
stances were considered). Our advanced stamping scheme can be seen as an extension
of the BinSATSCC-1 algorithm in [13] which excludes (in addition to cases (i) and
(iii)) transitive reduction. Furthermore, while [13] focuses on simplifing the binary im-
plication graph, we use reachability information obtained from traversing it to simplify
larger clauses, including learnt clauses, in addition to extracting failed literals.

As for more recent developments, CryptoMiniSAT v2.9.0 [14] caches implied liter-
als, and updates the cache after top-level decisions. The cache can serve a similar pur-
pose as our algorithms, removing literals and clauses. Yet, the cache size is quadratic
in the number of literals, which is also the case for using the cache for redundancy re-
moval for the whole CNF. Thus, at least from a complexity point of view, the cache of
CryptoMiniSAT does not improve on the quadratic algorithm [8]. In contrast, Unhiding
requires only a single sweep over the binary implication graph and the other clauses.

After preliminaries (CNF satisfiability and known CNF simplification techniques,
Sect. 2), we introduce hidden literal elimination and establish its basic proper-
ties (Sect. 3). We then explain the Unhiding algorithm: basic idea (Sect. 4) and inte-
gration of simplification techniques (Sect. 5). Then we develop an advanced version
of Unhiding that can detect further redundancies (Sect. 6), and present experimental
results (Sect. 7).

2 Preliminaries

For a Boolean variable x, there are two literals, the positive literal x and the nega-
tive literal x̄. A clause is a disjunction of literals and a CNF formula a conjunction of
clauses. A clause can be seen as a finite set of literals and a CNF formula as a finite set
of clauses. A truth assignment for a CNF formula F is a function τ that maps literals in
F to {0, 1}. If τ(x) = v, then τ(x̄) = 1 − v. A clause C is satisfied by τ if τ(l) = 1
for some literal l ∈ C. An assignment τ satisfies F if it satisfies every clause in F .

Two formulas are logically equivalent if they are satisfied by exactly the same set of
assignments. A clause is a tautology if it contains both x and x̄ for some variable x. The
length of a clause is the number of literals in the clause. A clause of length one is a unit
clause, and a clause of length two is a binary clause. For a CNF formula F , we denote
the set of binary clauses in F by F2.
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Binary Implication Graphs. For any CNF formula F , we associate a unique directed
binary implication graph BIG(F ) with the edge relation {〈l̄, l′〉, 〈l̄′, l〉 | (l ∨ l′) ∈ F2}.
In other words, for each binary clause (l ∨ l′) in F , the two implications l̄ → l′ and
l̄′ → l, represented by the binary clause, occur as edges in BIG(F ). A node in BIG(F )
with no incoming arcs is a root of BIG(F ) (or, simply, of F2). In other words, literal l
is a root in BIG(F ) if there is no clause of the form (l ∨ l′) in F2. The set of roots of
BIG(F ) is denoted by RTS(F ).

2.1 Known Simplification Techniques

BCP and Failed Literal Elimination (FLE). For a CNF formula F , Boolean con-
straint propagation (BCP) (or unit propagation) propagates all unit clauses, i.e. repeats
the following until fixpoint: if there is a unit clause (l) ∈ F , remove from F \ {(l)} all
clauses that contain the literal l, and remove the literal l̄ from all clauses in F , resulting
in the formula BCP(F ). A literal l is a failed literal if BCP(F ∪ {(l)}) contains the
empty clause, implying that F is logically equivalent to BCP(F ∪{(l̄)}). FLE removes
failed literals from a formula, or, equivalently, adds the complements of failed literals
as unit clauses to the formula.

Equivalent Literal Substitution (ELS). The strongly connected components (SCCs)
of BIG(F ) describe equivalent classes of literals (or simply equivalent literals) in F2.
Equivalent literal substitution refers to substituting in F , for each SCC G of BIG(F ),
all occurrences of the literals occurring in G with the representative literal ofG. ELS is
confluent, i.e., has a unique fixpoint, modulo variable renaming.

Hidden Tautology Elimination (HTE). [6] For a given CNF formula F and clause
C, (hidden literal addition) HLA(F,C) is the unique clause resulting from repeating
the following clause extension steps until fixpoint: if there is a literal l0 ∈ C such that
there is a clause (l0 ∨ l) ∈ F2 \ {C} for some literal l, let C := C ∪ {l̄}. Note that
HLA(F,C) = HLA(F2, C). Further, for any l ∈ HLA(F,C) \ C, there is a path in
BIG(F ) from l to some l0 ∈ C. For any CNF formula F and clause C ∈ F , (F \
{C}) ∪ {HLA(F,C)} is logically equivalent to F [6]. Intuitively, each extension step
in computing HLA is an application of self-subsuming resolution [2,15,16] in reverse
order. For a given CNF formula F , a clause C ∈ F is a hidden tautology if and only
if HLA(F,C) is a tautology. Hidden tautology elimination removes hidden tautologies
from CNF formulas. Note that distillation [4] is more generic than HTE [6] (and also
more generic than HLE as defined in this paper). However, it is rather costly to apply,
and is in practice restricted to irredundant/original clauses only.

Transitive reduction of the binary implication graph (TRD). A directed acyclic
graph G′ is a transitive reduction [11] of the directed graph G provided that (i) G′

has a directed path from node u to node v if and only ifG has a directed path from node
u to node v, and (ii) there is no graph with fewer edges than G′ satisfying condition (i).
It is interesting to notice that, by applying FLE restricted to the literals in F2 before
HTE, HTE achieves a transitive reduction of BIG(F ) for any CNF formula F purely
on the clausal level [6].
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3 Hidden Literal Elimination

In this section we present a novel redundancy elimination procedure exploiting the bi-
nary clause structure of a CNF formula. We call the technique hidden literal elimination.

For a given CNF formula F and literal l, we denote by HL(F, l) the unique set of
hidden literals of l w.r.t F . HL(F, l) is defined as follows. First, let L = {l}. Then
repeat the following steps until fixpoint: if there is a literal l0 ∈ L such that there is a
clause (l0∨ l′) ∈ F2 for some literal l′, let L := L∪{l̄′}. Now, let HL(F, l) := L \ {l}.
In other words, HL(F, l) contains the complements of all literals that are reachable from
l̄ in BIG(F ), or, equivalently, all literals from which l is reachable in BIG(F ). Notice
that HL(F, l) = HL(F2, l). Also, HL captures failed literals in F2 in the sense that by
definition, for any literal l in F2, there is a path from l to l̄ in BIG(F ) if and only if
l̄ ∈ HL(F, l).

Proposition 1. For any CNF formula F , a literal l in F2 is failed iff l̄ ∈ HL(F, l).

For a given formula F , hidden literal elimination (HLE) repeats the following: if there
is a clause C ∈ F and a literal l ∈ C such that C ∩HL(F, l) �= ∅, let F := (F \{C})∪
{C \ HL(F, l)}. In fact, the literals in HL(F, l) can be removed from all clauses that
contain l.

Proposition 2. For every CNF formula F , any result of applying HLE on F is logically
equivalent to F .

Proof. For any CNF formulaF and two literals l and l′, if l′ ∈ HL(F, l), then F ∪{(l′)}
logically implies l by the definition of HL. Hence, for any clause C ∈ F with l, l′ ∈ C,
for any satisfying assignment τ for F with τ(l′) = 1 we have τ(l) = 1, and hence τ
satisfies (F \ {C}) ∪ {C \HL(F, l)}. �

A relevant question is how many literals HLE eliminates relative to other literal elim-
ination techniques. One example is self-subsuming resolution (SSR) [2] that replaces
clauses that have a resolvent that subsumes the clause itself with the resolvent (essen-
tially eliminating from the clause the literal not in the resolvent).

Proposition 3. There are CNF formulas from which HLE can remove more literals
from clauses than SSR.

Proof. Consider the formulaF = (a∨b)∧(b̄∨c)∧(a∨ c̄∨d). Since HL(F, a) = {b̄, c̄},
HLE can remove literal c̄ from the last clause in contrast to SSR. �

HLE can also strengthen formulas by increasing possibilities for unit propagation.

Proposition 4. Removal of hidden literals can increase BCP.

Proof. Consider the formulaF = (a∨b)∧(b̄∨c)∧(a∨ c̄∨d). Since HL(F, a) = {b̄, c̄},
HLE removes literal c̄ from the last clause. When d is assigned to 0 after eliminating
literal c̄, BCP will infer a. �

In general, HLE does not have a unique fixpoint.
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Proposition 5. Applying HLE until fixpoint is not confluent.

Proof. Consider the formula F = (a∨ b)∧ (ā∨ b̄)∧ (a∨ b̄∨ c). Since HL(F, a) = {b̄}
and HL(F, b̄) = {a}, HLE can remove either b̄ or a from (a ∨ b̄ ∨ c). A fixpoint is
reached after removing one of these two literals. �

In the example the non-confluence is due to a and b̄ being equivalent literals. In fact,
assume that all clauses in F2 are kept even in the case HLE turns a binary clause into a
unit clause (i.e., in such cases HLE will introduce new unit clauses into F ). Then HLE
can be made confluent (modulo variable renaming) by substituting equivalent literals.

Theorem 1. For any CNF formula F , assuming that all clauses in the original F2

are kept, alternating ELS and HLE (until fixpoint) until fixpoint is confluent modulo
variable renaming.

Proof sketch. ELS is confluent modulo variable renaming. Now consider HLE. Assume
that we do not change F2. Take any clause C with l, l′ ∈ C and l′ ∈ HL(F, l). The only
possible source of non-confluence is that l ∈ HL(F, l′). Then there is a cycle in F2, and
hence l and l̄′ are equivalent literals. This is handled by ELS afterwards. Now assume a
binary clause is added to F2 by HLE shortening a clause of length> 2. Newly produced
cycles are handled by ELS afterwards. �

4 Unhiding Redundancies Based on Time Stamping

In this section we present an efficient algorithm for detecting several kinds of redun-
dancies in CNF formulas, focusing on techniques which exploit binary clauses.

For a given CNF formula F , our algorithm, referred to as Unhiding (see Fig. 1,
details explained in the following), consists in essence of two phases. First, a depth-first
search (DFS) over the binary implication graph BIG(F ) is performed. During the DFS,
each literal in BIG(F ) is assigned a time stamp; we call this process time stamping.
In the second phase, these time stamps are used for discovering the various kinds of
redundancies in F , which are then removed.

In the following, we will first describe a basic time stamping procedure (Sect. 4.1).
Then we will show how redundancies can be detected and eliminated based on the time
stamps (Sect. 5). After these, in Sect. 6 we describe a more advanced time stamping
procedure that embeds additional simplifications that are captured during the actual
depth-first traversal of BIG(F ).

4.1 Basic Time Stamping

The basic time stamping procedure implements a depth-first search on the binary impli-
cation graph BIG(F ) of a given CNF formulaF . The procedure associates a discovered-
finished interval (or a time stamp) with each literal in BIG(F ) according to the depth-
first traversal order. For any depth-first traversal of a graph G, a node in G is discov-
ered (resp. finished) the first (resp. last) time it is encountered during search. For a
given depth-first traversal, the discovery and finish times of a node v in G, denoted by
dsc(v) and fin(v), respectively, are defined as the number of steps taken at the time
of discovering and finishing, respectively, the node v. The important observation here
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is that, according to the well-known “parenthesis theorem”, for two nodes u and v
with discovered-finished intervals [dsc(u), fin(u)] and [dsc(v), fin(v)], respectively, we
know that v is a descendant of u in the DFS tree if and only if dsc(u) < dsc(v) and
fin(u) > fin(v), i.e., if the time stamp (interval) of u contains the time stamp (interval)
of v. These conditions can be checked in constant time given the time stamps.

Pseudo-code for the main unhiding procedure Unhiding and the time stamping pro-
cedure Stamp is presented in Fig. 1. The main procedure Unhiding (left) initializes the
attributes and calls the recursive stamping procedure (right) for each root in BIG(F ) in
a random order. When there are no more roots, we pick a literal not visited yet as the
next starting point until all literals have been visited.1 Stamp performs a DFS in BIG(F )
from the given starting literal, assigns for each literal l encountered the discovery and
finish times dsc(l) and fin(l) according to the traversal order, updates stamp (initially
0), and for each literal l, defines its DFS parent prt(l) and the root root(l) of the DFS
tree in which l was discovered.

In the following, we say that a given time stamping represents the implication l→ l′

if the time stamp of l contains the time stamp of l′.

Unhiding (formula F )
1 stamp := 0
2 foreach literal l in BIG(F ) do
3 dsc(l) := 0; fin(l) := 0
4 prt(l) := l; root(l) := l
5 foreach r ∈ RTS(F ) do
6 stamp := Stamp(r, stamp)
7 foreach literal l in BIG(F ) do
8 if dsc(l) = 0 then
9 stamp := Stamp(l, stamp)
10 return Simplify(F )

Stamp (literal l, integer stamp)
1 stamp := stamp + 1
2 dsc(l) := stamp
3 foreach (l̄ ∨ l′) ∈ F2 do
4 if dsc(l′) = 0 then
5 prt(l′) := l
6 root(l′) := root(l)
7 stamp := Stamp(l′, stamp)
8 stamp := stamp + 1
9 fin(l) := stamp

10 return stamp

Fig. 1. The Unhiding algorithm. Left: the main procedure. Right: the basic stamping procedure.

Example 1. Consider the formula

E = (ā ∨ c) ∧ (ā ∨ d) ∧ (b̄ ∨ d) ∧ (b̄ ∨ e) ∧ (c̄ ∨ f) ∧ (d̄ ∨ f) ∧ (f̄ ∨ h) ∧ (ḡ ∨ f) ∧
(ḡ ∨ h) ∧ (ā ∨ ē ∨ h) ∧ (b̄ ∨ c̄ ∨ h) ∧ (a ∨ b ∨ c ∨ d ∨ e ∨ f ∨ g ∨ h).

The formula contains several redundant clauses and literals. The clauses (ā ∨ ē ∨ h),
(ḡ∨h), and (b̄∨ c̄∨h) are hidden tautologies. In the last clause, all literals except e and
h are hidden. The binary implication graph BIG(E) ofE, as shown in Fig. 2, consists of
two components. A partition of BIG(E) produced by the basic time stamping procedure
is shown in Fig. 3. The nodes are visited in the following order: g, f , h, ē, b̄, b, e, d,
h̄, ḡ, f̄ , d̄, ā, c̄, a, c. BIG(E) consists of 30 implications including the transitive ones.
However, the trees and time stamps in the figure explicitly represent only 16 of them,
again including transitive edges such as h̄→ ā. The implications b→ f , f̄ → b̄, b→ h,

1 Thus, BIG needs not to be acyclic. Note that eliminating cycles in BIG by substituting variables
might shorten longer clauses to binary clauses, which in turn could introduce new cycles. This
process cannot be bounded to be linear and is not necessary for our algorithms.
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and h̄ → b̄ are not represented by this time stamping. Note that the implication f̄ → c̄
is represented, and thus implicitly c → f as well. Using contraposition this way the
four transitive edges mentioned above are not represented, the other 26 edges are.

a b

c d e

f g

h ā b̄

c̄ d̄ ē

f̄ ḡ

h̄

Fig. 2. BIG(E). The graph has five root nodes: a, b, ē, g, and h̄.

The order in which the trees are traversed has a big impact on the quality, i.e. the
fraction of implications that are represented by the time stamps. The example shows that
randomized stamping may not represent all implications in BIG. Yet, for this formula,
there is a DFS order that produces a stamping that represents all implications: start from
the root h̄ and stamp the tree starting with literal f̄ . Then, by selecting a as the root of
the second tree, regardless of the order of the other roots and literals, the time stamps
produced by stamping will represent all implications. �

a : [29, 32] b : [11, 16]

c : [30, 31] d : [14, 15] e : [12, 13]

f : [2, 5] g : [1, 6]

h : [3, 4] ā : [22, 23] b̄ : [8, 9]

c̄ : [25, 26] d̄ : [21, 24] ē : [7, 10]

f̄ : [20, 27] ḡ : [18, 19]

h̄ : [17, 28]

Fig. 3. A partition of BIG(E) into a forest with discovered-finished intervals [dsc(v),fin(v)]
assigned by the basic time stamping routine. Dashed lines represent implications in BIG(E)
which are not used to set the time stamps.

5 Capturing Various Simplifications

We now explain how one can remove hidden literals and hidden tautologies, and fur-
thermore perform hyper binary resolution steps based on a forest over the time stamped
literal nodes produced by the main DFS procedure. The main procedure Simplify for this
second phase, called by the main Unhiding procedure after time stamping, is shown in
Fig. 4. For each clause C in the input CNF formula F , Simplify removes C from F .
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Simplify (formula F )
1 foreach C ∈ F
2 F := F \ {C}
3 if UHTE(C) then continue
4 F := F ∪ {UHLE(C)}
5 return F

Fig. 4. Procedure for applying HTE and HLE based on time stamps

Then, it first checks whether the UHTE procedure detects that C is a hidden tautology.
If not, literals are (possibly) eliminated from C by the UHLE procedure (using hidden
literal elimination). The resulting clause is added to F .

Notice that the simplification procedure visits each clause C ∈ F only once. The
invoked sub-procedures, UHTE and UHLE, exploit the time stamps, and use two sorted
lists: (i) S+(C), list of the literals in C sorted according to increasing discovery time,
and (ii) S−(C), list of the complements of the literals in C, sorted according to increas-
ing discovery time. We will now explain both of these sub-procedures in detail.

5.1 Hidden Literals

Once literals are stamped using the unhiding algorithm, one can cheaply detect (possi-
bly a subset of) hidden literals. In this context, literal l ∈ C is hidden if there is (i) an
implication l → l′ with l′ ∈ C that is represented by the time stamping, or (ii) an
implication l̄′ → l̄ with l′ ∈ C that is represented by the time stamping.

We check for such implications as follows using the UHLE procedure shown in
Fig. 5. For each input clause C, the procedure returns a subset of C with some hidden
literals removed from C. For this procedure, we use S+(C) in reverse order, denoted
by S+

rev(C). In essence, we go through the lists S+
rev(C) and S−(C), and compare the

finish times of two successive elements in the lists. In case an implication is found, a
hidden literal is detected and removed.

Lines 1-4 in Fig. 5 detect implications of the form l → l′ with l, l′ ∈ C that are repre-
sented by the time stamping. Recall that in S+

rev(C) literals are ordered with decreasing
discovering time. Let l′ be located before l in S+

rev(C). If fin(l) > fin(l′) we found
the implication l → l′, and hence l is a hidden literal (in the code finished = fin(l′)).
Line 3 checks whether the next element in S+

rev(C) is a hidden literal, and if so, the
literal is removed. Lines 5-8 detect implications l̄′ → l̄ with l, l′ ∈ C. In S−(C) literals
are ordered with increasing discovering time. Now, l̄′ be located before l̄ in S−(C)
and finished = fin(l̄′). On Line 7 we check that fin(l̄) < fin(l̄′) or, equivalently,
fin(l̄) < finished . In that case l is a hidden literal and is hence removed.

Example 2. Recall the formula E from Example 1. All literals except e and h in the
clause C = (a ∨ b ∨ c ∨ d ∨ e ∨ f ∨ g ∨ h) ∈ E are hidden. In case the literals in
RTS(E) are stamped with the time stamps shown in Figure 3, the UHLE procedure
can detect them all. Consider first the sequence S+

rev(C) = (c, a, d, e, b, h, f, g). Since
fin(c) < fin(a), a is removed from C. Similarly, fin(e) < fin(b) and fin(f) < fin(g),
and hence b and g are removed fromC. Second, consider the complements of the literals
in the reduced clause: S−(C) = (ē, h̄, f̄ , d̄, c̄). Now, fin(h̄) > fin(f̄), fin(d̄), fin(c̄), and
hence f , d, and c are removed. �
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UHLE (clause C)
1 finished := finish time of first element in S+

rev(C)
2 foreach l ∈ S+

rev(C) starting at second element
3 if fin(l) > finished then C := C \ {l}
4 else finished := fin(l)
5 finished := finish time of first element in S−(C)
6 foreach l̄ ∈ S−(C) starting at second element
7 if fin(l̄) < finished then C := C \ {l}
8 else finished := fin(l̄)
9 return C

Fig. 5. Eliminating hidden literals using time stamps

5.2 Hidden Tautologies

Fig. 6 shows the pseudo-code for the UHTE procedure that detects hidden tautologies
based on time stamps. Notice that if a time stamping represents an implication of the
form l̄ → l′, where both l and l′ occur in a clause C, then the clause C is a hidden
tautology.

The UHTE procedure goes through the sorted lists S+(C) and S−(C) to find two
literals lneg ∈ S−(C) and lpos ∈ S+(C) such that the time stamping represents the im-
plication lneg → lpos, i.e., it checks if dsc(lneg) < dsc(lpos) and fin(lneg) > fin(lpos).
The procedure starts with the first literals lneg ∈ S−(C) and lpos ∈ S+(C), and loops
through the literals in lpos ∈ S+(C) until dsc(lneg) < dsc(lpos) (Lines 4–6). Once
such a lpos is found, if fin(lneg) > fin(lpos) (Line 7), we know that C is a hidden tau-
tology, and the procedure returns true (Line 10). Otherwise, we loop through S−(C)
to select a new lneg for which the condition holds (Lines 7–9). Then (Lines 4–6), if
dsc(lneg) < dsc(lpos), C is a hidden tautology. Otherwise, we select a new lpos. Unless
a hidden tautology is detected, the procedure terminates once it has looped through all
literals in either S+(C) or S−(C) (Lines 5 and 8).

One has to be careful while removing binary clauses based on time stamps. There
are two exceptions in which time stamping represents an implication lneg → lpos with
lneg ∈ S−(C) and lpos ∈ S+(C) for which C is not a hidden tautology. First, if
lpos = l̄neg, then lneg is a failed literal. Second, if prt(lpos) = lneg, then C was used to
set the time stamp of lpos. Line 7 takes both of these cases into account.

Example 3. Recall again the formula E from Example 1. E contains three hidden tau-
tologies: (ḡ∨h), (ā∨ ē∨h), and (b̄∨ c̄∨h). In the time stamping in Fig. 3, h̄ : [17, 28]
contains ḡ : [18, 19]. However, prt(ḡ) = h̄, and hence (ḡ ∨ h) cannot be removed.
On the other hand, ḡ : [1, 6] contains h̄ : [3, 4], and prt(h) �= g, and hence (ḡ ∨ h) is
identified as a hidden tautology. We can also identify (ā ∨ ē ∨ h) as a hidden tautology
because h̄ : [17, 28] contains ā : [22, 23]. This is not the case for (b̄∨ c̄∨h) because the
implications b→ h and h̄→ b̄ are not represented by the time stamping. �

Proposition 6. For any Unhiding time stamping, UHTE detects all hidden tautologies
that are represented by the time stamping.



210 M.J.H. Heule, M. Järvisalo, and A. Biere

UHTE (clause C)
1 lpos := first element in S+(C)
2 lneg := first element in S−(C)
3 while true
4 if dsc(lneg) > dsc(lpos) then
5 if lpos is last element in S+(C) then return false
6 lpos := next element in S+(C)
7 else if fin(lneg) < fin(lpos) or (|C| = 2 and (lpos = l̄neg or prt(lpos) = lneg)) then
8 if lneg is last element in S−(C) then return false
9 lneg := next element in S−(C)
10 else return true

Fig. 6. Detecting hidden tautologies using time stamps

Proof sketch. For every lneg ∈ S−(C), UHTE checks if time stamping represents the
implication lneg → lpos for the first literal in lpos ∈ S+(C) for which dsc(lneg) <
dsc(lpos) holds. The key observation is that if there is a lneg ∈ S−(C) and a
lpos ∈ S+(C) such that time stamping represents the implication lneg → lpos, then
the stamps also represent lneg → l′pos with l′pos being the first literal in S+(C) for
which dsc(lneg) < dsc(lpos) holds. �

If a clause C is a hidden tautology, then HLA(F,C) is a hidden tautology due to
HLA(F,C) ⊇ C. However, it is possible that, for a given clause C, UHTE(C) re-
turns true, while UHTE(UHLE(C)) returns false. In other words, UHLE could in some
cases disrupt UHTE. For instance, consider the clause (a∨b∨c) and the following time
stamps: a : [2, 3], ā : [9, 10], b : [1, 4], b̄ : [5, 8], c : [6, 7], c̄ : [11, 12]. Now UHLE
removes literal b which is required for UHTE to return true. Therefore UHTE should be
called before UHLE, as is done in our Simplify procedure (recall Fig. 4).

5.3 Adding Hyper Binary Resolution

An additional binary clause based simplification technique that can be integrated into
the unhiding procedure is hyper binary resolution [1] (HBR). Given a clause of the
form (l1 ∨ · · · ∨ lk) and k− 1 binary clauses of the form (l′ ∨ l̄i), where 2 ≤ i ≤ k, the
hyper binary resolution rule allows to infer the clause (l1 ∨ l′) in one step.

For HBR in the unhiding algorithm we only need the list S−(C). Let C be a clause
with k literals. We find a hyper binary resolvent if (i) all literals in S−(C), except the
first one l1, have a common ancestor l′, or (ii) all literals in S−(C), except the last
one lk, have a common ancestor l′′. In case (i) we find (l1 ∨ l̄′), and in case (ii) we find
(lk∨ l̄′′). It is even possible that all literals in S−(C) have a common ancestor l′′′ which
shows that l′′′ is a failed literal, in which case we can learn the unit clause (l̄′′′).

While UHBR(C) could be called in Simplify after Line 4, our experiments show that
applying UHBR(C) does not give further gains w.r.t. running times, and can in cases
degrade performance. We suspect that this is because UHBR(C) may add transitive
edges to BIG(F ). Consider the formula F = (a∨ b∨ c)∧ (ā∨ d) ∧ (b̄∨ d) ∧ (c∨ e)∧
(c ∨ f) ∧ (d ∨ ē). Assume that the time stamping DFS visits the literals in the order f̄ ,



Efficient CNF Simplification Based on Binary Implication Graphs 211

c, a, d, d̄, ē, ā, b̄, c̄, f , e, b. UHBR((a∨ b∨ c)) can learn (c∨ d), but it cannot check that
this binary clause adds a transitive edge to BIG(F ).

5.4 Some Limitations of Basic Stamping

As already pointed out, time stamps produced by randomized DFS may not represent
all implications of F2. In fact, the fraction of implications represented can be very small
in the worst case. Especially, consider the formula F = (a∨ b∨ c∨ d)∧ (ā∨ b̄)∧ (ā∨
c̄)∧ (ā∨ d̄)∧ (b̄∨ c̄)∧ (b̄∨ d̄)∧ (c̄∨ d̄) that encodes that exactly one of a, b, c, dmust be
true. Due to symmetry, there is only one possible DFS traversal order, and it produces
the time stamps a : [1, 8], b̄ : [2, 3], c̄ : [4, 5], d̄ : [6, 7], b : [9, 12], ā : [10, 11], c :
[13, 14], d : [15, 16]. Only three of the six binary clauses are represented by the time
stamps. This example can be extended to n variables, in which case only n − 1 of the
n(n−1)/2 binary clauses are represented. In order to capture as many implications (and
thus simplification opportunities) as possible, in practice we apply multiple repetitions
of Unhiding using randomized DFS (as detailed in Sect. 7).

6 Advanced Stamping for Capturing Additional Simplifications

In this section we develop an advanced version of the DFS time stamping procedure.
Our algorithm can be seen as an extension of the BinSATSCC-1 algorithm in [13]. The
advanced procedure, presented in Fig. 7, enables performing additional simplifications
on-the-fly during the actual time stamping phase: the on-the-fly techniques can perform
some simplifications that cannot be done with Simplify(F ), and, on the other hand,
enlarging the time stamps of literals may allow further simplifications in Simplify(F ).
Although not discussed further in this paper due to the page limit, we note that, addi-
tionally, all simplifications by UHTE, UHLE, and UHBR which only use binary clauses
could be performed on-the-fly within the advanced stamping procedure.

Here we introduce the attribute obs(l) that denotes the latest time point of observing
l. The value of obs(l) can change frequently during Unhiding. Each line of the advanced
stamping procedure (Fig. 7) is labeled. The line labeled with OBS assigns obs(l) for
literal l. The label BSC denotes that the line originates from the basic stamping proce-
dure (Fig. 1). Lines with the other labels are techniques that can be performed on-the-
fly: transitive reduction (TRD / Sect. 6.1), failed literal elimination (FLE / Sect. 6.2),
and equivalent literal substitution (ELS / Sect. 6.3). The technique TRD depends on
FLE and both techniques use the obs() attribute while ELS is independent of obs().

6.1 Transitive Reduction

Binary clauses that represent transitive edges in BIG are in fact hidden tautologies [6].
Such clauses can already be detected in the stamping phase (i.e., before UHTE), as
shown in the advanced stamping procedure on Line 6 with label TRD.

A binary clause (l̄ ∨ l′) can only be observed as a hidden tautology if dsc(l′) > 0
during Stamp(l, stamp). Otherwise, prt(l′) := l, which satisfies the last condition on
Line 7 of UHTE. If dsc(l′) > dsc(l) just before calling Stamp(l′, stamp), then (l̄ ∨ l′)
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is a hidden tautology. When transitive edges are removed on-the-fly, UHTE can focus
on clauses of size ≥ 3, making the last check on Line 7 of UHTE redundant.

Transitive edges in BIG(F ) can hinder the unhiding algorithm by reducing the time
stamp intervals. Hence as many transitive edges as possible should be removed. Notice
that in case 0 < dsc(l′) < dsc(l), Stamp(l, stamp) cannot detect that (l̄∨ l′) is a hidden
tautology. Yet by using obs(l′) instead of dsc(l′) in the check (Line 14 of Fig. 7), we
can detect additional transitive edges. For instance, consider the formula F = (ā∨ b)∧
(b ∨ c̄) ∧ (b ∨ d̄) ∧ (c̄ ∨ d) where (b ∨ c̄) is a hidden tautology. If Unhiding visits the
literals in the order a, b, c, d, b̄, ā, c̄, d̄, then this hidden tautology is not detected using
dsc(l′). However, while visiting d in advanced stamping, we assign obs(b) := dsc(d).
Now, using obs(l′), Stamp(c, stamp) can detect that (b ∨ c̄) is a hidden tautology.

6.2 Failed Literal Elimination over F2

Detection of failed literals in F2 can be performed on-the-fly during stamping. If a
literal l in F2 is failed, then all ancestors of l in BIG(F ) are also failed. Recall that there
is a strong relation between HLE restricted to F2 and failed literals in F2 (Prop. 1).

To detect a failed literal, we check for each observed literal l′ whether l̄′ was also
observed in the current tree, or dsc(root(l)) ≤ dsc(l̄′). In that case the lowest com-

Stamp (literal l, integer stamp)
1 BSC stamp := stamp + 1
2 BSC/OBS dsc(l) := stamp; obs(l) := stamp
3 ELS flag := true // l represents a SCC
4 ELS S.push(l) // push l on SCC stack
5 BSC for each (l̄ ∨ l′) ∈ F2

6 TRD if dsc(l) < obs(l′) then F := F \ {(l̄ ∨ l′)}; continue
7 FLE if dsc(root(l)) ≤ obs(l̄′) then
8 FLE lfailed := l
9 FLE while dsc(lfailed) > obs(l̄′) do lfailed := prt(lfailed)

10 FLE F := F ∪ {(l̄failed)}
11 FLE if dsc(l̄′) �= 0 and fin(l̄′) = 0 then continue
12 BSC if dsc(l′) = 0 then
13 BSC prt(l′) := l
14 BSC root(l′) := root(l)
15 BSC stamp := Stamp(l′, stamp)
16 ELS if fin(l′) = 0 and dsc(l′) < dsc(l) then
17 ELS dsc(l) := dsc(l′); flag := false // l is equivalent to l′

18 OBS obs(l′) := stamp // set last observed time attribute
19 ELS if flag = true then // if l represents a SCC
20 BSC stamp := stamp + 1
21 ELS do
22 ELS l′ := S.pop() // get equivalent literal
23 ELS dsc(l′) := dsc(l) // assign equal discovered time
24 BSC fin(l′) := stamp // assign equal finished time
25 ELS while l′ �= l
26 BSC return stamp

Fig. 7. Advanced literal time stamping capturing failed and equivalent literals
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mon ancestor in the current tree is a failed literal. Similar to transitive reduction, the
number of detected failed literals can be increased by using the obs(l̄′) attribute instead
of dsc(l̄′). We compute the lowest common ancestor lfailed of l′ and l̄′ (Lines 8–9 in
Fig. 7). Afterwards the unit clause (l̄failed) is added to the formula (Line 10).

At the end of on-the-fly FLE (Line 11), the advanced stamping procedure checks
whether to stamp l′ after finding a failed literal. In case we learned that l̄′ is a failed
literal, then we have the unit clause (l′). Then it does not make sense to stamp l′, as all
implications of l′ can be assigned to true by BCP. This check also ensures that binary
clauses currently used in the recursion are not removed by transitive reduction.

6.3 Equivalent Literal Substitution

In case BIG(F ) contains a cycle, then all literals in that cycle are equivalent. In the basic
stamping procedure all these literals will be assigned a different time stamp. Therefore,
many implications of F2 will not be represented by any of the resulting time stampings.
To fix this problem, equivalent literals should be assigned the same time stamps.

A cycle in BIG(F ) can be detected after calling Stamp(l′, stamp), by checking
whether fin(l′) still has the initial value 0. This check can only return true if l′ is an
ancestor of l. We implemented ELS on-the-fly using a variant of Tarjan’s SCC de-
composition algorithm [17] which detects all cycles in BIG(F ) using any depth-first
traversal order. We use a local boolean flag that is initialized to true (Line 3). If true,
flag denotes that l represents a SCC. In case it detects a cycle, flag is set to false (Lines
16–17). Additionally, a global stack S of literals is used, and is initially empty. At each
call of Stamp(l, stamp), l is pushed on the stack (Line 4). At the end of the procedure,
if l is still the representative of a SCC, all literals in S being equivalent to l, all literals
in S are assigned the same time stamp (Lines 19–25).

7 Experiments

We have implemented Unhiding in our state-of-the-art SAT solver Lingeling [12] (ver-
sion 517, source code and experimental data at http://fmv.jku.at/unhiding) as an addi-
tional preprocessing or, more precisely, inprocessing technique applied during search.
Batches of randomized unhiding rounds are interleaved with search and other already
included inprocessing techniques. The number of unhiding rounds per unhiding phase
and the overall work spent in unhiding is limited in a similar way as is already done in
Lingeling for the other inprocessing. The cost of Unhiding is measured in the number of
recursive calls to the stamping procedure and the number of clauses traversed. Sorting
clauses (in UHTE and UHLE) incurs an additional penalty. In the experiments Unhiding
takes on average roughly 7% of the total running time (including search), which is more
than twice as much as standard failed literal probing (2%) and around half of the time
spent on SatElite-style variable elimination (16%).

The cluster machines used for the experiments, with Intel Core 2 Duo Quad Q9550
2.8-GHz processors, 8-GB main memory, running Ubuntu Linux version 9.04, are
around twice as fast as the ones used in the first phase of the 2009 SAT com-
petition. For the experiments we used a 900 s timeout and a memory limit of 7

http://fmv.jku.at/unhiding


214 M.J.H. Heule, M. Järvisalo, and A. Biere

GB. Using the set of all 292 application instances from SAT Competition 2009
(http://satcompetition.org/2009/), a comparison of the number of solved instances for
different configurations of Unhiding and the baseline (up-to-date version of Lingeling
without Unhiding) is presented in Table 1. Note that we obtained similar results also for
the SAT Race 2010 instances, and also improved performance on the crafted instances
of SAT Competition 2009.

The three main observations are: (i) Unhiding increases the number of solved satisfi-
able instances already when using the basic stamping procedure; (ii) using the advanced
stamping scheme, the number of solved instances increases notably for both satisfiable
and unsatisfiable instances; and (iii) the UHBR procedure actually degrades the perfor-
mance (in-line with the discussion in Sect. 5.3). Hence the main advantages of Unhiding
are due to the combination of the advanced stamping procedure, UHTE, and UHLE.

8 Conclusions

The Unhiding algorithm efficiently (close to linear time) approximates a combination
of binary clause based simplifications that is conjectured to be at least quadratic in
the worst case. In addition to applying known simplification techniques, including the
recent hidden tautology elimination, we introduced the novel technique of hidden literal
elimination, and implemented it within Unhiding. We showed that Unhiding improves
the performance of a state-of-the-art CDCL SAT solver when integrated into the search
procedure for inprocessing formulas (including learnt clauses) during search.

Table 1. Comparison of different configurations of Unhiding and the baseline solver Lingeling.
The 2nd to 4th columns show the number of solved instances (sol), resp. solved satisfiable (sat)
and unsatisfiable (uns) instances. The next three columns contain the average percentage of total
time spent in unhiding (unhd), all simplifications through inprocessing (simp), and variable elim-
ination (elim). Here we also take unsolved instances into account. The rest of the table lists the
number of hidden tautologies (hte) in millions, the number of hidden literal eliminations (hle),
also in millions, and finally the number of unhidden units (unts) in thousands which includes the
number of unhidden failed literals. We also include the average percentage (stp) of hidden tautolo-
gies resp. derived units during stamping, and the average percentage (red) of redundant/learned
hidden tautologies resp. removed literals in redundant/learned clauses. A more detailed analysis
shows that for many instances, the percentage of redundant clauses is very high, actually close to
100%, both for HTE and HLE. Note that “unts” is not precise as the same failed literal might be
found several times during stamping since we propagate units lazily after unhiding.

configuration sol sat uns unhd simp elim hte stp red hle red unts stp

adv.stamp (no uhbr) 188 78 110 7.1% 33.0% 16.1% 22 64% 59% 291 77.6% 935 57%
adv.stamp (w/uhbr) 184 75 109 7.6% 32.8% 15.8% 26 67% 70% 278 77.9% 941 58%
basic stamp (no uhbr) 183 73 110 6.8% 32.3% 15.8% 6 0% 52% 296 78.0% 273 0%
basic stamp (w/uhbr) 183 73 110 7.4% 32.8% 15.8% 7 0% 66% 288 76.7% 308 0%
no unhiding 180 74 106 0.0% 28.6% 17.6% 0 0% 0% 0 0.0% 0 0%
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Between Restarts and Backjumps
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Abstract. This paper introduces a novel technique that significantly
reduces the computational costs to perform a restart in conflict-driven
clause learning (CDCL) solvers. Our technique exploits the observation
that CDCL solvers make many redundant propagations after a restart.
It efficiently predicts which decisions will be made after a restart. This
prediction is used to backtrack to the first level at which heuristics may
select a new decision rather than performing a complete restart.

In general, the number of conflicts that are encountered while solving a
problem can be reduced by increasing the restart frequency, even though
the solving time may increase. Our technique counters the latter effect.
As a consequence CDCL solvers will favor more frequent restarts.

1 Introduction

Restarts are used in satisfiability (SAT) solvers to avoid heavy-tail behavior [4].
Restart strategies [7,14] have been a crucial feature in conflict-driven clause
learning (CDCL) solvers [8] to tackle hard industrial problems. These solvers
favor frequent restarts in recent years [5].

CDCL solvers select decision variables based on their involvement in emerged
conflicts [10]. In case of frequent restarts, only several new conflicts have been
hit between two succeeding restarts. As a consequence, CDCL solvers tend to
select the same variables in a similar order after succeeding restarts. Additionally,
phase-saving [12] ensures that decision variables are assigned to the same truth
value as the value they were assigned to before a restart. Due to these heuristics,
CDCL solvers generally do not perform a full restart, but effectively they perform
a partial restart.

This paper capitalizes on this observation by introducing two techniques to
reduce the computational costs to perform a restart. In case the solver wants to
restart, we show how to efficiently predict the first level at which the heuristics
may select a different decision variable. The solver can perform a partial restart
by backtracking to this level, rather than perform a more costly full restart.

Additionally, by reducing the restart costs, it appears that restarting even
more frequently improves the performance of CDCL solvers. We implemented
our techniques in MiniSAT 2.2 [2]. Experiments show that the enhanced version
with rapid restarts solves more real-world SAT instances from the SAT 2009
application suite than the original version.
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The remainder of this paper is structured as follows: the next section pro-
vides some background information about CDCL solvers and corresponding ter-
minology. In Section 3 we motivate our work and Section 4 presents two novel
techniques to reduce the computational costs to perform a restart. Experimental
results are described in Section 5. Finally, we offer suggestions for future work
in Section 6 and we draw conclusions in Section 7.

2 Conflict-Driven Clause Learning Solvers

The strategy used by conflict-driven clause learning (CDCL) solvers is to make
a series of decisions (heuristically chosen assignments) and to propagate assign-
ments that can be derived from these decisions by means of unit propagation
(satisfying the remaining literal in every unit clause). The solver will continue to
make decisions and propagate information until either a satisfying assignment is
found for the problem, or a conflict emerges.

A conflict emerges if the solver finds a conflicting clause – a clause for which
all literals are false. When this occurs, the solver analyzes the reason for the
conflict. This is captured in a so-called learned clause [9,10] , which intuitively
can be considered a clause that will avoid recurrence of the same combination of
assignments that led to the conflict. Now, the solver unassigns variables until the
learned clause becomes unit and continues to make decisions and apply other
unit propagations as before.

The terminology introduced in this section is used in the remainder of this
paper. Fig. 1 graphically shows the most important terms. This figure will also
be used as a running example throughout the paper.

2.1 Heuristics

In addition to the general process described above, most CDCL solvers use the
Variable State Independent Decaying Sum (VSIDS) heuristic [10] to determine
the order in which decisions should be made. This heuristic stores an activity
value for each variable, which is increased by 1 whenever a variable appears
in a learned clause. After incrementing the activity value, the value of every
variable is decreased by multiplying them with a constant factor δ1, called the
variable decay. This decay factor δ has a value in interval (0, 1). In general,
CDCL solvers use δ = 0.95. The lower the value of δ, the more VSIDS prefers to
select variables that were involved in recent conflicts. When no more information
can be propagated, a new decision is made by selecting the unassigned variable
with the highest activity value.

After a decision variable is selected by the solver, it must be assigned a value.
A commonly used method is phase-saving [12], which stores for each variable
the last value to which it was assigned by unit propagation. Decision variables
are assigned to that value. By assigning variables to their last implied value, the
solver picks up where it left off and continues its search in a similar part of the
search space after a restart. Therefore, phase-saving facilitates frequent restarts.
1 In practice, VSIDS is implemented by multiplying the incremental value by 1

δ
instead.
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2.2 Decision Levels and Backjumping

Each decision introduces a new decision level. A decision level consists of the
sequence of assignments of a decision variable and all variables that are implied
by that decision. Decision levels are numbered incrementally, where 0 is the level
where no decisions have yet been made – also known as the restart level. Decision
level 1 is the first level that involves an actual decision. A decision is the first
assignment in each level (denoted in Fig. 1 by the rectangles), other assignments,
if any, are caused by unit propagation.

The decision levels form a trail of assignments. This trail can be seen as a
list of variable assignments at a certain moment in time. The trail comprises
both decisions and unit propagations, where each decision starts a new decision
level. Finally, the backjump level [3] is the level to which the solver backtracks
whenever a conflict is found. This is the level at which the learned clause is a unit
clause. Notice that backjumping could be seen as performing a partial restart.

2.3 Restart Strategies

Modern solvers use restarts to avoid spending too much time searching for a
solution in the same region without finding useful information. By restarting,
CDCL solvers try to avoid heavy-tail behavior [4]. When a restart is performed,
the solver will undo every assignment on the trail and make a new series of
decisions and propagations. Because the learned clauses and the VSIDS heuristic
will have changed since the previous run, the new run may perform decisions in
a different order. This could reduce the total number of decisions necessary to
solve a problem [6].

A commonly used restart strategy in recent years is based on a sequence of
restart sizes suggested by Luby et al. [7]. In their work the authors show that the
suggested sequence is log optimal when the runtime distribution of the problems
is unknown. In this strategy the length of restart i is u · ti when u is a constant
unit run and

ti =

{
2k−1, if i = 2k − 1
ti−2k−1+1, if 2k−1 ≤ i < 2k − 1.

Since unit runs are commonly short, solvers using the Luby restart strategy
exhibit frequent restarts. The solvers Rsat [12] and TiniSat [6] use a unit run
of 512 conflicts, while MiniSAT 2.2 [2] and precoSAT [1] use a shorter unit run
of 100 conflicts.

In this paper, we propose partial restarts which can be combined with these full
restart strategies. An alternative partial restart strategy that has been proposed
is random jump [15]. This strategy randomly backtracks to a level between the
restart level and the backjump level. In [11] a technique is proposed to partially
restart based on the learned clause if certain conditions are met.
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F = (¬x1 ∨ x2 ∨ ¬x7) ∧ (¬x1 ∨ ¬x4) ∧ (x1 ∨ x5) ∧ (¬x2 ∨ x6 ∨ ¬x8) ∧
(¬x2 ∨ x4 ∨ x7) ∧ (x3 ∨ ¬x5 ∨ ¬x6) ∧ (¬x3 ∨ x9) ∧ (x6 ∨ x8 ∨ ¬x9)

trail before restart trail after restart

restart level
x1 = 1 x1 = 1

x4 = 0 x4 = 0

MatchingTrail level
x7 = 1 x2 = 1

x2 = 1 x7 = 1

x5 = 0 x5 = 0

PermutedTrail level
x3 = 1 x9 = 1

x9 = 1 x6 = 1

backjump level

x6 = 0 ...
x8 = 1

conflict : (¬x2 ∨ x6 ∨ ¬x8)

learned : (¬x2 ∨ x6 ∨ ¬x9)

VSIDS
x1 : 5.42
x7 : 4.11
x5 : 3.96
x2 : 3.51
x3 : 3.19
x4 : 3.02
x9 : 2.91
x6 : 2.84
x8 : 2.55

VSIDS
x1 : 5.42
x2 : 4.51
x7 : 4.11
x5 : 3.96
x9 : 3.91
x6 : 3.84
x3 : 3.19
x4 : 3.02
x8 : 2.55

decision level 1

decision level 2

decision level 3

decision level 4

decision level 5

decision level 1

decision level 2

decision level 3

decision level 4

Fig. 1. Visualization of our running example. Example of the outcome of Matching-

Trail and PermutedTrail. In both trails, the first five assigned variables are x1,
x2, x4, x5, and x7, albeit in different order. Therefore, backtracking to decision level
3 – right after the five matching assignments – causes the state of the solver to be
equivalent to the state after restarting to decision level 0 and assigning the first five
variables.

3 Motivation

The main contributions of this paper are two techniques to reduce the compu-
tational costs of performing a restart. In this section, we motive our work. First,
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we argue that CDCL solvers actually perform a partial restart and we indicate
how to capitalize on that observation (Section 3.1). Second, we show that CDCL
solvers traverse a smaller part of the search space when they restart more fre-
quently. However, due to the restart costs, this may not always translate into
improved performance (Section 3.2).

3.1 Partial Restart

The first observation that inspired the work below is that modern CDCL solvers
usually make partial restarts rather than a full one. Yet in practice a full restart
is performed, followed by the setup of a similar trail to the one that was just
removed. By avoiding the redundant propagations, the cost of a restart can be
reduced significantly.

Consider our example formula F and the two trails shown in Fig. 1. At the
bottom of this figure the activities (VSIDS scores) are shown. Due to the learned
clause (¬x2 ∨ x6 ∨ ¬x9) the activity of the corresponding variables is increased
by 1, which slightly changes the order. Recall that the variable with the highest
activity that is not yet assigned is always selected as the next decision. The
left part of Fig. 1 shows the assignments before the restart; the right shows the
assignments after.

Let us compare the two trails. The first similarity is that decision level 1 is
exactly the same before and after the restart, because variable x1 still has the
highest VSIDS score after the restart. Due to this similarity, the solver actually
performs a partial restart. Yet this observation is not exploited by current solvers.
As a result, they perform redundant propagations. Because the second decision
after the restart is x2 (instead of x7), the trails no longer match. We denote by
MatchingTrail, the last level at which the trails before and after a restart
completely match. We show how to compute this level efficiently in Section 4.1.

A second similarity can be observed between the two trails. Notice that (i)
the first five variables in both trails are the same and (ii) that these variables
are assigned to the same values in the new trail as in the former trail. This is
not a coincidence. The reason for (i) is that CDCL solvers restart frequently.
Therefore, only a few clauses are learned between two restarts. This changes the
VSIDS order of the variables only slightly. Additionally, (ii) is ensured by the
phase-saving heuristic which is used by most CDCL solvers.

Since we know that there are no new propagations before the backjump level,
the only difference in the trail is that the order of variables are permuted. We
denote the last level at which both (i) and (ii) hold by PermutedTrail. No-
tice that at the PermutedTrail level the reduced formula is exactly the same
before and after the restart. Therefore, performing a partial restart to the Per-

mutedTrail level is similar to performing a full restart. Section 4.2 shows how
to compute this level efficiently.

3.2 Restart Frequency

Another observation regarding restarts in modern CDCL solvers was presented
in [5] showing that restarting with shorter unit runs reduces the size of the search
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space the solver explores to tackle a problem. More specifically, more frequent
restarts reduce the number of conflicts encountered during the search.

We computed the effect of Luby-based restarts with various unit runs on the
average number of conflicts. The only difference between our experiment and [5]
is the use of the latest version of MiniSAT (2.2) [2]. The results for the SAT 2009
application suite are shown in Table 1.

Table 1. Average number of conflicts for several unit runs of the Luby sequence. The
numbers between brackets denote the number of solved instances within 1200 seconds.
We used three seeds to initialize the VSIDS scores to obtain a more stable image.

Strategy SAT UNSAT SOLVED UNSOLVED ALL

Luby-1 190525 (64) 428450 (102) 336830 (166) 2470522 1241357

Luby-2 236141 (67) 609316 (101) 460046 (168) 2547307 1323072

Luby-4 235651 (67) 626690 (101) 471207 (168) 2708730 1401559

Luby-8 209926 (68) 725730 (102) 519003 (170) 2834041 1465453

Luby-16 252346 (67) 729354 (102) 539303 (169) 2939230 1526033

Luby-32 249255 (69) 835857 (102) 599158 (171) 3062220 1594681

Luby-64 297142 (70) 764207 (97) 569364 (167) 3130413 1640186

Luby-128 264409 (69) 770363 (96) 559378 (165) 3147708 1662650

Luby-256 222895 (68) 688930 (94) 492907 (162) 3277263 1708840

Luby-512 238800 (68) 725555 (93) 520394 (161) 3186994 1687999

First consider the number of solved instances shown in the first three columns.
Although the Luby unit run is incrementally increased by a factor two, the
number of instances solved remains quite comparable. The biggest differences
are on the satisfiable instances. This was expected because CDCL solvers are not
very stable on those formulas. When comparing the average number of conflicts,
we observe that the longer the unit run, the higher this average. For the longest
unit runs, we do not observe this pattern. These averages have been influenced
by the lack of solved hard unsatisfiable instances within the timeout.

The last two columns show a clearer pattern regarding the average number of
conflicts. Both columns are almost strictly increasing. Based on the data in these
columns we can estimate the number of conflicts per second for different unit
runs. Both the averages shown in the UNSOLVED and ALL columns indicate
that the long unit runs handle about 35% more conflicts per second compared
to the short unit runs. This difference is likely to be caused by restart costs.

By restarting with a short unit run, the solver encounters on average fewer
conflicts while solving a problem. However, due to the costs of restarting fre-
quently, using shorter unit runs does not result in solving more instances. In
fact, both effects appear to cancel each other out since the various settings solve
practically the same number of instances. We aim to reduce the costs of restarts
which should in turn favor solvers that restart more frequently.



222 A. Ramos , P. van der Tak, and M.J.H. Heule

4 Reducing Restart Costs

This section describes the two algorithms we propose to compute the level to
which to backtrack, MatchingTrail and PermutedTrail. The algorithms
rely on phase-saving, VSIDS ordering, and the absence of random decisions –
all default in e.g. the latest MiniSAT 2.2. Furthermore, they should have access
to the assignment type of each variable (Decision, Implication, Unassigned) and
the decision level at which the variable was assigned. In the algorithms these are
denoted by AssignmentType[x] and DecisionLevel[x] respectively, where x is
a variable.

4.1 Matching Trail

Fig. 2 shows the pseudo-code of how to compute the MatchingTrail level.
The algorithm increases MTLevel for every decision that will be made at the
same level in the current trail and the trail after the restart. The algorithm
loops through variables in descending order of activity. If the variable is not
currently assigned, the next decision level after the restart will be different and
the algorithm will terminate (Line 4). If the variable is already assigned a value
at MTLevel or before, it will be an implied variable in both trails and can be
ignored (Line 5). Finally, if it is a decision variable, it will be the next decision
in the trail after the restart. Therefore, if the variable matches the decision at
MTLevel, a match is found and MTLevel is incremented (Line 7). If not, the
decisions at the next level will be different, and the algorithm returns the last
level at which they were the same (Line 9).

Example. Again consider the example in Fig. 1. The algorithm starts with
MTLevel = 0 and considers x1. It detects that both trails will have matching
decisions at level 1, and increments MTLevel to 1. Next, variable x2 is found
to become the decision at level 2 after the restart, but it does not match deci-
sion variable x7 at the same level of the current trail. Therefore, the algorithm
terminates and returns MTLevel = 1.

MatchingTrail (DecisionLevel, AssignmentType, VSIDS order)
1 MTLevel ← 0
2 forever do
3 x ← Next variable with highest activity
4 if AssignmentType[x] = Unassigned then break
5 if DecisionLevel[x] ≤ MTLevel then continue
6 if AssignmentType[x] = Decision and DecisionLevel[x] = MTLevel + 1 then
7 MTLevel ← MTLevel + 1
8 else break
9 return MTLevel

Fig. 2. Pseudo-code of the MatchingTrail algorithm. This algorithm returns the last
level at which all decisions will occur in the exact same order after the restart.
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4.2 Permuted Trail

The PermutedTrail algorithm (Fig. 3) aims to compute the last level at which
the partial assignment (and hence the reduced formula under this assignment) is
exactly the same before and after a restart (recall Section 3.1). Like Matching-

Trail, PermutedTrail loops through variables in descending order of activity.
For each variable, it determines at which level it was assigned, and stores the
running maximum in MinimalLevel (Line 7). This value represents the level at
which all variables that have been processed so far have been assigned. Also, it
counts how many of these are currently decision variables, and stores this value
in MatchCount (Line 9). Any variable that is currently unassigned terminates
the algorithm, since this variable will become a decision that can never be part
of a permutation of the current trail (Line 6).

Now consider what happens when MatchCount = MinimalLevel. By defini-
tion of MinimalLevel, the set of variables that the algorithm has processed so
far is a subset of the variables that are assigned up to MinimalLevel. Because
this set includes MatchCount decision variables, it must include each decision
variable up to MinimalLevel. Since at least the same decisions are made, unit
propagation will ensure that any currently implied variable is also assigned after
the restart. Since the algorithm is performed at the backtrack level, no addi-
tional unit clauses may appear in the trail after the restart up to this point,
which means that both trails must contain the exact same variables. Therefore
the algorithm indicates that a partial restart is possible at this level in PTLevel
(Line 10).

PermutedTrail (DecisionLevel, AssignmentType, VSIDS order)
1 PTLevel ← 0
2 MinimalLevel ← 0
3 MatchCount ← 0
4 forever do
5 x ← Next variable with highest activity
6 if AssignmentType[x] = Unassigned then break
7 if DecisionLevel[x] > MinimalLevel then MinimalLevel ← DecisionLevel[x]
8 if AssignmentType[x] = Decision then
9 MatchCount ← MatchCount + 1
10 if MatchCount = MinimalLevel then PTLevel ← MatchCount
11 return PTLevel

Fig. 3. Pseudo-code of the PermutedTrail algorithm. This algorithm returns the
decision level at which all decisions occur in the trail after the restart (so that there
are no intermediate decisions), but possibly in a different order.

Example. Consider how the algorithm will find the PermutedTrail level for
the running example in Fig. 1. The algorithm starts considering x1, which is
set in decision level 1, so that MinimalLevel is set to 1. Since it is also a
decision variable, MatchCount is incremented to 1. The values match, and



224 A. Ramos , P. van der Tak, and M.J.H. Heule

hence the algorithm finds that a partial restart is possible at PTLevel = 1.
Next, x2 has the highest activity. It is a propagation in level 2, and it updates
MinimalLevel = 2 and MatchCount = 1. Next, x7 is a decision in level 2, so
that MinimalLevel = MatchCount = 2. Both values match, and PTLevel = 2
is another possible backtrack level for a partial restart. Note that this is detected
even though x2 became a decision variable and x7 became an implied variable.
Now x5 is considered, leading to MatchCount = MinimalLevel = 3, which
means that PTLevel = 3 is the best candidate so far. For x9, MinimalLevel = 4
and MatchCount = 3, so that PTLevel = 3 remains unchanged. Finally, x6 is
currently unassigned because the algorithm runs after backtracking to the back-
jump level. The algorithm thus terminates with PTLevel = 3.

4.3 Discussion

The MatchingTrail technique has the nice feature that solvers will explore
the search space exactly the same as when performing a full restart. Yet al-
though the reduced formula before and after a restart is exactly the same at the
PermutedTrail level, the solver may explore the search space differently when
this technique is applied. This is caused by the so-called reason clauses [2]. The
reason clause for an implied variable is the one that assigned its truth value (the
first to become unit). Reason clauses are used to compute learned clauses. By
making decisions in a different order, the reason clauses may be different, which
in turn could make the conflict clauses different. This may influence the way the
search space is explored.

Ideally one wants to backtrack to the last level at which the partial assignment
is exactly the same before and after a restart. Although the PermutedTrail

algorithm is designed to do that, it may return a “subprime” level.
To illustrate this, let LastSameAssignment be the ideal backtrack level

(i.e. the last level where the partial assignment is the same before and after
the restart). Let y be the decision variable at the LastSameAssignment level.
Now, assume that there is a variable x which is a decision variable before the
LastSameAssignment level in the current trail, and which has a lower activity
than y after the restart. Because the partial assignment is the same, x is assigned
in the trail after the restart, and because it has a lower activity than y it must be
an implied variable. However, using the PermutedTrail algorithm, we cannot
detect that x is implied by the assignments in the new trail. Therefore it will not
return the LastSameAssignment level. During our experiments we observed
that in practice this does not occur often, so that there is not much difference be-
tween the level returned by PermutedTrail and the LastSameAssignment

level.

5 Experimental Results

We implemented MatchingTrail and PermutedTrail in MiniSAT 2.2 and
configured it to facilitate our analysis. There are three main requirements for



Between Restarts and Backjumps 225

using the proposed algorithms: phase-saving, the VSIDS heuristic, and the ab-
sence of random selection of decision variables. Each of these is default in
MiniSAT 2.2, therefore the implementation of the algorithms was easy and
straightforward.

We used the (292) application instances of the SAT 2009 competition2. Each
instance was run with a time limit of 1200 seconds using different configurations
on a server of 20 Intel Xeon X5570 CPUs running on 2.9 GHz with 32 GB of
memory.

5.1 Matching Trail

It turned out that the MatchingTrail algorithm was much less effective than
the PermutatedTrail algorithm. Fig. 4 shows a typical distribution of the
MatchingTrail, PermutedTrail, and backjump levels. The distributions of
the PermutedTrail and backjump level are quite comparable. However, the
MatchingTrail levels are generally much lower – which explains why it is less
successful in reducing the restart costs. Therefore, we focused our experiments
on the usefulness of the PermutedTrail algorithm.

decision level
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backjump level
PermutedTrail level
MatchingTrail level

Fig. 4. Distribution of the MatchingTrail, PermutedTrail, and backjump levels
while solving the ACG-15-10p1.cnf benchmark of the SAT 2009 competition using
MiniSAT 2.2 with a Luby-1 restart strategy

2 Available from http://www.satcompetition.org/

http://www.satcompetition.org/
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5.2 Permuted Trail

In this section we compare the performance of MiniSAT 2.2 with and without
PermutedTrail. Comparing the performance of SAT solvers is hard, because
a small change, for example to the order in which unit propagation is applied,
can have a huge impact on the performance. Therefore, our focus in this section
is not only on solving time, but also on the number of conflicts per second. The
latter seems a bit more robust (recall also Section 3.2).

We experimented with three restart strategies. First, the default strategy of
MiniSAT 2.2, which uses the Luby sequence with a unit run of 100 (in short
Luby-100). Second, because we expect that the PermutedTrail technique is
especially useful for short unit runs, we added the strategy with the shortest unit
run 1 (Luby-1). Third, we included a radical strategy that restarts before ev-
ery decision (Const-1). This strategy would profit most from PermutedTrail,
showing thereby the maximum one could gain using this technique. Notice that
a CDCL solver with the Const-1 restart strategy is still complete [13].

Fig. 5 shows the number of conflicts per second (left) and the solving time
(right) for MiniSAT using the three restart strategies with and without partial
restarts to the PermutedTrail level. The Const-1 and Luby-1 strategies can
clearly process more conflicts per second when PermutedTrail is enabled.
For the Luby-100 strategy no real improvement is observable, as expected. For
some instances, the PermutedTrail actually had a negative effect. For these
benchmarks the performance greatly depends on the seed3.

In our last experiment, we wanted to see whether the use of Permuted-

Trail would make a rapid restart strategy preferred over the default Luby-100.
In the tests above we used the default variable decay of MiniSAT δ = 0.95 (see
Section 2.1). However, preliminary tests showed that when using rapid restarts
such as Const-1 and Luby-1, a lower value of the δ results in improved per-
formance. Notice that a lower variable decay will make PermutedTrail itself
a bit less effective because variables will go up and down faster in the VSIDS
order. We found that δ = 0.75 results in strong performance. Therefore, in this
last experiment we combined PermutedTrail with δ = 0.75 (denoted by an
asterisk, e.g. Luby-1*).

Figure 6 shows the results. Combining PermutedTrail with δ = 0.75 in-
creases the number of instances solved for each restart strategy, especially for
Const-1 (156 vs 168 instances solved) and Luby-1 (173 vs 187 instances solved).
The impact on Luby-100 is hardly visible. This is expected since this strategy
restarts much less frequently, therefore the cost reduction of restarts hardly in-
fluences the performance. Luby-1* performed best during our experiments. This
shows that PermutedTrail reduced the restart costs to such level that the
benefits of encountering fewer conflicts to solve a problem can be exploited to
the point where it solves 10 instances more than the default configuration of
MiniSAT.

3 MiniSAT has the option to randomly initialize the VSIDS scores. For many bench-
marks the seed used for the initialization has a huge impact on the performance.
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Fig. 5. Comparison of the number of conflicts per second (left) and solver runtime
(right) between full restarts and PermutedTrail for the SAT 2009 application bench-
marks. PermutedTrail propagates more conflicts per second above the diagonal (left)
and solves instances faster below the diagonal (right).
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Fig. 6. Cactus plot showing the number of instances solved versus the time required
to do so for three restart strategies and two configurations. PermutedTrail with
δ = 0.75 – denoted in the legend with an asterisk – improves the performance of
MiniSAT.

6 Suggestions for Future Work

Although our algorithm finds a reasonably high partial restart level, the solver
still performs redundant work sometimes when a decision variable becomes an
implied variable after a restart (recall Section 4.3). The current algorithms will
not always detect that, and therefore may not return the optimal backtrack level.
Although we have not seen this happen frequently in practice, it is possible that
for some instances this occurs often, in which case it might be interesting to
further analyze this issue and to develop efficient solutions.

We expect that the performance improvements are mainly caused by the re-
duced restart costs. Yet, the PermutedTrail algorithm has also an important
side effect. After a full restart, the reason clauses of implied variables may change,
while after a partial restart the reason clauses stay the same. We want to study
whether this effect influences the performance positively or negatively.

7 Conclusion

In this work, we implemented and tested two performance enhancements that
reduce restart costs for CDCL solvers. We implemented both techniques in the
latest MiniSAT solver. We show how to reduce the redundant work that is in-
troduced by a restart by predicting the trail that will occur after a restart.
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By applying a partial restart based on this prediction and by restarting more
frequently, the performance of CDCL solvers can be improved.
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Abstract. Quantified Boolean Formulas (QBFs) enable standard representation
of PSPACE problems. In particular, formulas with two quantifier levels (2QBFs)
enable representing problems in the second level of the polynomial hierarchy
(ΠP

2 , ΣP
2 ). This paper proposes an algorithm for solving 2QBF satisfiability

by counterexample guided abstraction refinement (CEGAR). This represents an
alternative approach to 2QBF satisfiability and, by extension, to solving deci-
sion problems in the second level of polynomial hierarchy. In addition, the paper
presents a comparison of a prototype implementing the presented algorithm to
state of the art QBF solvers, showing that a larger set of instances is solved.

1 Introduction

The Quantified Boolean Formula (QBF) decision problem represents the paradigmatic
PSPACE-complete decision problem [21]. Restrictions of QBF have also been used to
characterize the polynomial hierarchy [21]. The QBF problem is important not only
from a theoretical perspective, but also from an applied one, with many applications
being easily modeled as instances of QBF [14]. There has been renewed interest in
QBF solving over the last decade, in part motivated by the practical success of SAT
solvers [23]. Most modern QBF algorithms build on the success of SAT solvers, but
implement dedicated techniques [14].

One of the most successful approaches for symbolic model checking is counter-
example-guided abstraction refinement (CEGAR) [6,7], having been applied in BDD-
based and SAT-based model checking [5,7,8]. The success of CEGAR motivated its use
with more expressive logics [1,27,12]. Moreover, recent work has applied the CEGAR
paradigm in handling quantification on a number of different settings with promising re-
sults, including propositional circumscription [20], quantified bit-vector formulas [40],
and linear real arithmetic [26]. Although the previous approaches for handling quantifi-
cation could be used for solving QBF, it is expected that dedicated solutions will result
in more effective algorithms.

This paper develops a CEGAR approach for solving QBF with 2 levels of quan-
tifiers. The proposed algorithm generalizes the algorithm from [20] to the 2QBF case.
Although the two algorithms exhibit similar abstraction refinement loops, the actual im-
plementation of the key steps of the algorithms differs substantially. These differences
are detailed in this paper. Experimental results, obtained on a wide range of problem in-
stances, shows that the new algorithm outperforms the best QBF solvers from the most
recent QBF evaluation [28]. Moreover, the new algorithm also outperforms the encod-
ing of 2QBF to propositional circumscription [20], thus confirming that reduction of
2QBF to other domains is unlikely to result in efficient algorithms.

K.A. Sakallah and L. Simon (Eds.): SAT 2011, LNCS 6695, pp. 230–244, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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Is there a solution for the abstraction?

Is there a counterexample to the solution?

return false

return true

refine yes
yes

no

no

Fig. 1. CEGAR loop

2 Preliminaries

Lowercase letters from the end of the alphabet are used for Boolean variables (x1, y,
etc.); capital letters from the end of the alphabet (X , Y , etc.) are used to denote vectors
of variables. Quantified Boolean formulas (QBF) are assumed to be in the prenex form
Q1z1. . .Qnzn.φ where Qi ∈ {∀, ∃}, zi are distinct variables, and φ is a propositional
formula using only the variables zi and the constants 0 (false), 1 (true). The sequence
of quantifiers in a QBF is called the prefix and the propositional formula the matrix. If a
prefix contains a subsequence ∀x1 . . . ∀xn, resp. ∃x1 . . . ∃xn, we denote it by ∀X , resp.
∃X , for the variable vector X = {x1, . . . , xn}.

The Greek letters ν and μ are used to denote vectors of the constants 0 and 1. For a
Boolean formula φ and vectorsX = {x1, . . . , xn}, ν = {a1, . . . , an} we write φ[X/ν]
for the simultaneous substitution of occurrences of xi by ai. Further, φ[X/ν] assumes
that the formula has been partially evaluated (x∨ 0 ≡ x, etc.). If X are all the variables
in φ, we treat the value vector ν as a variable valuation and φ[X/ν] is the formula’s
value under that valuation. We write B for the set {0, 1} and Bn for the set of vectors
of the values 0,1 of length n.

A Boolean formula in conjunctive normal form (CNF) is a conjunction of clauses,
where a clause is a disjunction of literals, and a literal is either a variable or a comple-
ment. Whenever convenient, a CNF formula is treated as a set of clauses and a clause
is treated as a set of literals. For a literal l we write var(l) for the variable in l, i.e.
var(¬x) = var(x) = x.

Some of the heuristics proposed in the paper use a partial MAX-SAT problem formu-
lation. The partial MAX-SAT problem is specified with two sets of clauses: a set of hard
clauses, and a set of soft clauses. A solution to the problem is a variable valuation that
satisfies all the hard clauses and maximizes the number of satisfied soft clauses [22].

2.1 Counterexample Guided Abstraction Refinement (CEGAR)

Counterexample Guided Abstraction Refinement (CEGAR) was designed for tackling
problems whose implicit representation is infeasible to solve and thus an abstract rep-
resentation is tackled instead. Here we present a informal description of the approach
necessary for the understanding of the article. For more details see [7].

In CEGAR-based algorithm we talk about concrete and abstract representation of
the problem. Then we talk about abstract solutions, which are solutions to the abstract
version, and concrete solutions which are solutions to the actual problem. The goal of
the CEGAR approach is to get to a concrete solution via abstract solutions. The relation
between these two representations is characterized by the following properties:
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1. If the abstraction does not have a solution, the concrete problem does not have a
solution either.

2. If an abstract solution is not a concrete solution, a counterexample is produced to
demonstrate this fact.

3. If there are no counterexamples to an abstract solution, it is also a concrete solution.

The search for a solution of the concrete problem is carried out in the following
loop (see Figure 1). First, a solution for the abstraction is computed. If such does not
exist, the search terminates unsuccessfully due to property 1. If the abstraction has a
solution, it needs to be checked whether it is also a concrete solution. If there are no
counterexamples to the abstract solution, it is also a concrete solution and the search
terminates successfully due to property 3. Otherwise, the abstraction needs to be refined
where the obtained counterexample is used to guide the refinement. Observe that an
abstract solution is in fact a candidate for a solution to the given problem, the second
step of the iteration then checks if it is really a solution.

We should note that conceptually, here we are looking for a solution to the problem.
However, often, especially in verification, the goal of the CEGAR loop is to show un-
satisfiability of the problem, i.e., lack of solutions. Finding a solution then corresponds
to finding an error in the modeled system. Algorithmically, these goals are identical but
the pertaining terminology in literature may differ.

3 Problems

This article focuses on the satisfiability of formulas with two levels on quantifiers. In
particular, we focus on the following two problems.

Name: 2QBF PROBLEM

Given: ∃X∀Y.φ, where φ is a propositional formula

Question: Is there value a vector ν such that ∀Y.φ[X/ν]?

Name: 2QCNF PROBLEM

Given: ∃X∀Y.(¬φ′), where φ′ is a CNF

Question: Is there value a vector ν such that ∀Y.¬φ′[X/ν]?

In both problems, a vector ν satisfying the condition is called a solution of ∃X∀Y.φ.
While deciding the satisfiability of a QBF is PSPACE complete, the above problems are
ΣP

2 -complete [24,21].
Here we make several notes on the specific form of the problems that we chose

for this article. While 2QCNF PROBLEM is a special case of 2QBF PROBLEM, we
single out 2QCNF PROBLEM as the uniformity of the format can be exploited for effi-
ciency. The satisfiability of a formula of the form ∀X∃Y.φ can be decided by negating
to ∃X∀Y.¬φ and negating the response, which is why we consider only the latter form.
Conceptually, ∃X∀Y.¬φ can be thought of as an attempt to refute ∀X∃Y.φ .

While for CNF φ′ the satisfiability of ∀X∃Y.φ′ is in ΠP
2 , ∃X∀Y.φ′ is an NP prob-

lem. Hence, we consider only the satisfiability of ∃X∀Y.(¬φ′), which corresponds to
refuting ∀X∃Y.φ′.
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4 Algorithm for the 2QBF PROBLEM

This section presents a CEGAR-based algorithm for the 2QBF PROBLEM. The algo-
rithm relies on a SAT oracle (a SAT solver) and hence we begin by observing the rela-
tion of 2QBF to Boolean satisfiability. First let us observe that the 2QBF PROBLEM can
be expressed as a Boolean satisfiability problem if the universal quantifier is expanded
into conjunctions.

4.1 Algorithm

Observation 1. A value vector ν is a solution to ∃X∀Y.φ iff ν is a satisfying assign-
ment of the following formula: ∧

μ∈B|Y |

φ[Y/μ] (1)

Consequently, ∃X∀Y.φ has a solution iff (1) is satisfiable.

Hence, a naı̈ve approach to solving the 2QBF problem would be to perform the ex-
pansion outlined above and invoke a SAT solver. However, this is infeasible since the
formula grows exponentially. We continue by observing that the question whether a cer-
tain value vector is a solution can be formulated as a Boolean satisfiability question1.

Observation 2. A value ν is a solution to ∃X∀Y.φ iff the following formula is
unsatisfiable:

¬φ[X/ν] (2)

Example 1. Expanding the formulaQ = ∃x∀y.x→ y yields x→ 0∧ x→ 1, which is
equivalent to the formula ¬x. Hence, according to Observation 1, {x = 0} is a solution
of the formula Q. In contrast, Observation 2 tells us that the value vector {x = 1} is
not a solution since 1 ∧ ¬y is satisfiable.

The two observations above motivate the following abstraction-based approach. Instead
of considering the full expansion of the given problem (see (1)), we consider only a
partial expansion, which will serve as the abstraction in the approach.

Definition 1 (W -abstraction). Let W ⊆ B|Y |, then the W -abstraction of ∃X∀Y.φ is
the following formula. ∧

μ∈W

φ[Y/μ] (3)

A satisfying valuation of a W -abstraction is not necessarily a solution for the given
problem. Recall that a solution ν must satisfy ∀Y.φ[X/ν]. Hence, if ν is not a solution,
then there must exist a valuation μ of the variables Y for which φ[X/ν] does not hold,
i.e. φ[X/ν][Y/μ] = 0. This valuation μ is used as the counterexample in the approach.

Definition 2 (counterexample). If ν and μ are value vectors and μ is a satisfying
valuation of ¬φ[X/ν] then μ is called a counterexample to ν.

1 This observation is in fact a consequence of the fact that the problem is in Σ2
P.
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Algorithm 1. CEGAR loop for 2QBF
input : ∃X∀Y.φ
output: (true, ν) if there exists ν s.t. ∀Y φ[X/ν],

(false, –) otherwise

1 ω ← 1
2 while true do
3 (outc1, ν) ← SAT(ω) // find a candidate solution
4 if outc1 = false then
5 return (false,–) // no candidate found

6 (outc2, μ) ← SAT (¬φ[X/ν]) // find a counterexample
7 if outc2 = false then
8 return (true, ν) // candidate is a solution

9 ω ← ω ∧ φ[Y/μ] // refine

Proposition 1. If aW -abstraction is unsatisfiable then the corresponding 2QBF PROB-
LEM has no solutions. If for a value vector ν there are no counterexamples, then ν is a
solution to the 2QBF PROBLEM.

Proof (sketch). For any W ⊆ B|Y |, the W -abstraction ω is weaker than (1), hence if ω
is unsatisfiable, the given problem does not have a solution due to Observation 1. There
are no counterexamples to ν iff ¬φ[X/ν] is unsatisfiable, which is true only if ν is a
solution (Observation 2).

Algorithm 1 shows a pseudo-code representation of the 2QBF CEGAR loop using the
notion of abstraction and counterexample defined above. The pseudo-code assumes a
satisfiability oracle SAT which for a Boolean formula returns whether it is satisfiable or
not. If it is satisfiable, it also returns a satisfying valuation; this information is returned
as a pair with the first element representing satisfiability and the second element the
valuation (if applicable).

The algorithm maintains the W -abstraction in the variable ω and it starts with W =
∅, i.e. ω = 1 (line 1). Each iteration of the loop begins by looking for a solution for
the abstraction, this solution is called the candidate. If the abstraction is unsatisfiable—
there are no candidates—the given problem is unsatisfiable and hence the loop termi-
nates (line 5). If a candidate was found, the algorithm checks whether the candidate is
indeed a concrete solution to the given problem or not. If the candidate is a solution,
then the loop terminates successfully (line 8). If the candidate is not a concrete solution,
the abstraction is refined according to the counterexample. The refinement consists in
adding the counterexample μ to the set W , which corresponds to conjoining φ[Y/μ]
to ω (line 9). Observe that the set W monotonically increases from ∅ to B|Y | with one
iteration adding one element to it.

Example 2. Let φ = (x1 ∨ y1) ∧ (x2 ∨ y2) then ¬φ = (¬x1 ∧ ¬y1) ∨ (¬x2 ∧ ¬y2)
and the following is a possible run of Algorithm 1. Initial ω1 = 1, yields a candidate
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SAT(ω1) = (true, ν1) with ν1 = {x1 = 0, x2 = 0}. In turn we obtain a counterexample
SAT (¬φ[X/ν1]) = (true, μ1) with μ1 = {y1 = 1, y2 = 0}. The counterexample yields
the refinement ω2 = ω1 ∧ x2 = x2. The second iteration yields a candidate SAT(ω2) =
(true, ν2) with ν2 = {x1 = 0, x2 = 1} and a counterexample SAT (¬φ[X/ν2]) =
(true, μ2) with μ2 = {y1 = 0, y0 = 1}. The corresponding refinement is ω3 = ω2 ∧
x1 = x2 ∧ x1. The candidate in the third iteration is inevitably ν3 = {x1 = 1, x2 = 1},
which is a solution as there are no counterexamples to it (SAT(¬φ[X/ν3]) = (false, –)).

4.2 Properties

Here we discuss the correctness and some other properties of the algorithm. A cru-
cial observation is that no counterexample can appear in two distinct iterations of the
CEGAR loop, which is stated by the following lemma.

Lemma 1. Let μi and μk be counterexamples found in the i-th and k-th iterations of
the loop, respectively, where i < k. Then μi �= μk.

Proof (sketch). For contradiction assume that μ = μi = μk and let ν be a candidate
found in the k-th step. The candidate ν satisfies the current abstraction, which is of the
form ω′ ∧ φ[Y/μ] since the abstraction was refined with μ in the step i. Hence, μ is a
model of φ[X/ν], which is a contradiction since it is also a model of ¬φ[X/ν].

The above lemma ensures that the CEGAR loop will have a finite number of iterations
since there is only a finite number of possible counterexamples. However, the algorithm
has even a stronger property. Once a counterexampleμ is found, all candidates to which
μ is a counterexample are eliminated from the space of possible candidates. This is
stated formally in the following lemma.

Lemma 2. Let μi be a counterexample found in the i-th iteration of the loop and νk

be a candidate found in the k-th iteration of the loop, where k > i. Then μi is not a
counterexample to νk. In particular, no candidate can appear more than once.

Proof (sketch). In the i-th iteration of the loop the abstraction has been refined as ω =
ω′ ∧ φ[Y/μi]. Since νk must satisfy ω, and therefore also φ[Y/μi]. Consequently, μi

and νk cannot together satisfy ¬φ.

Lemma 1 and Lemma 2 tell us that neither candidates nor counterexamples can repeat
in the iteration loop, which yields the following upper bound on the total number of
iterations.

Proposition 2. Let k = min(|X |, |Y |), then Algorithm 1 performs at most 2k iterations
of the loop and requires O(|φ| ∗ 2k) space.

Proof (sketch). Immediate consequence of Lemma 1, Lemma 2, and the fact that there
are 2|Z| different value assignments to a set of variables Z .
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Algorithm 2. CEGAR loop for 2QCNF

input : ∃X∀Y.(¬φ′)
output: (true, ν) if there exists ν s.t. ∀Y ¬φ′[X/ν],

(false, –) otherwise

1 ω ← 1
2 while true do
3 (outc1, ν) ← SAT(ω) // find a candidate solution
4 if outc1 = false then
5 return (false,–) // no candidate found

6 (outc2, μ) ← SAT (φ′[X/ν]) // find a counterexample
7 if outc2 = false then
8 return (true, ν) // candidate is a solution

// refine
9 C ← {c | c′ ∈ φ′ ∧ c = c′[Y/μ] ∧ c �= 1} // substitute

10 let zc be a fresh variable for each c ∈ C
11 ω ← ω ∪ {¬zc ∨ ¬l | c ∈ C ∧ l ∈ c}
12 ω ← ω ∪ {

∨
c∈C zc}

While the theoretical upper bound given by Proposition 2 is rather crude, we can ob-
serve that Lemma 2 gives us some further insight. A refinement according to a coun-
terexample μ prevents the algorithm from finding any candidates to which μ is also a
counterexample. In other words, the space of possible candidates is diminished more if
the counterexample is a counterexample to many possible candidates. This is illustrated
by the following example.

Example 3. Let Φ = ∃xy∀q. ((x ∧ q) ∨ (x ∧ ¬q))∧ ((y ∧ q) ∨ (y ∧ ¬q)) and consider
the following run of the algorithm. The first candidate ν1 = {x = 0, y = 0} yielding
the counterexample μ1 = {q = 1}. The corresponding refinement is ω2 = x ∧ y.
Inevitably, the second candidate ν1 = {x = 1, y = 1} is a solution to the problem.
Observe that μ1 is a counterexample to all candidates that are not solutions.

More generally, we hypothesize that the algorithm is likely to work well for problems
where one counterexample is a counterexample to many potential candidates.

5 Algorithm for the 2QCNF PROBLEM

This section looks in more detail at the CNF formulation of the problem. Recall that
in 2QCNF PROBLEM the input formula φ is of the form ¬φ′ where φ′ is in CNF.
The structure of the algorithm remains the same but we make several observations that
enable more efficient implementation. The pseudo-code is presented by Algorithm 2.

First, observe that ¬φ[X/ν] = φ′[X/ν] since φ = ¬φ′. Hence, a search for a coun-
terexample to the candidate ν is simplified to SAT(φ′[X/ν]) (instead of SAT(¬φ[X/ν])).
Second, the refinement ω ← ω ∧ φ[Y/μ] now has the form ω ← ω ∧ ¬φ′[Y/μ]. To
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maintain ω in CNF, we perform a variant of Plaisted-Greenbaum transformation [30]2.
For each clause c ∈ φ′[Y/μ] introduce a fresh variable zc and add to ω the clauses
¬zc ∨ ¬l for each literal l ∈ c. Finally, add the clause

∨
c∈φ′[Y/μ] zc. Intuitively, a vari-

able zc represents that the clause c is false and their disjunction represents that at least
one of them is false, thus enforcing ¬φ′[Y/μ].

The size of the refinement is trimmed by omitting those clauses that are immediately
satisfied by the counterexample μ (this happens whenever μ satisfies at least one literal
in the clause). Further, at the implementation level, the incremental interface of the SAT
solver is used as ω is gradually strengthened; the variables zc are reused if the clause c
appears in multiple iterations of the CEGAR loop.

5.1 Heuristics

The CEGAR loop relies on two calls to a SAT solver and either of these two calls may
yield different models for the same abstraction or candidate, respectively. While the
correctness of the algorithm is not affected by which of these models is returned, the
overall efficiency of the algorithm may be affected. Here we propose heuristics that
determine which candidates and counterexamples are better.

Candidate heuristic. The objective of the heuristic used in computing a candidate is to
find such candidates that there likely to be solutions to the original problem∃X∀Y.(¬φ′).
Since a solution must satisfy ∀Y.¬φ′, we propose a heuristic that maximizes the number
of unsatisfied clauses in φ′. In particular, the satisfiability problem SAT(ω) is replaced
by the following MAX-SAT problem:

{hard c | c ∈ ω}
{hard ¬zc ∨ ¬l | zc is a fresh variable ∧ c ∈ φ′ ∧ l ∈ c ∧ var(l) /∈ Y }
{soft zc | c ∈ φ′}

(4)

Counterexample heuristic. In the refinement step we need to consider only those clauses
that are not satisfied by the counterexample μ, i.e. c ∈ φ ∧ c[Y/μ] �= 1. Hence, the
clause

∨
zc, added in line 12, has less literals the more clauses are satisfied by μ. Since,

in general, short clauses represent stronger constraints then long clauses, we propose
the heuristic to look for those counterexamples that maximize the number of satisfied
clauses in φ′. In particular, the satisfiability problem SAT (φ′[X/ν]) is replaced by the
following MAX-SAT problem:

{hard c | c′ ∈ φ′ ∧ c = c[X/ν]}
{soft c | c′ ∈ φ′ ∧ c = {l | (l ∈ c′) ∧ var(l) /∈ X}} (5)

Implementing heuristics. In both of the aforementioned heuristics the corresponding
SAT problem is transformed into a MAX-SAT problem. Solving these MAX-SAT prob-
lems in each iteration of the CEGAR loop is not feasible because typically a large
number of iterations is required (up to hundreds of thousands) and MAX-SAT is sig-
nificantly more time-consuming than SAT. Hence, in the implementation we compute

2 As opposed to Tseitin transformation [38], implications in only one direction are introduced.
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Table 1. Numbers of solved instances

struqs QuBE7.1 qbf2circ AReQS AReQS-H

2qbf ‘10 pre (114) 30 93 37 101 101
circ pre (117) 6 113 117 117 117
icore pre (140) 30 23 33 62 62

robots pre (999) 516 921 647 974 975
noprepro (232) 15 47 18 51 55

total (1602) 597 1197 852 1305 1310

an approximate solution to the MAX-SAT problems by skewing the default decision
polarity and variable activity of a SAT solver. Hard clauses are given to the SAT solver
as standard clauses without any change. Each soft clause c is represented by the clause
rc ∨ c where rc is a fresh variable. The polarity of the variable rc is set to 0 and the
activity increased. This instructs the SAT solver to set rc to 0 as soon as possible in
the search for a satisfying valuation, which then enforces c to be satisfied. While this
approach does not guarantee the optimum, it is commonly used in modern MAX-SAT
and PB solvers and has been successfully applied to SAT solving with preference [35].

6 Experimental Results

A prototype implementing Algorithm 2 was developed using MiniSat2.2 as the un-
derlying SAT solver [10]. In the following text we refer to the prototype as AReQS
(Abstraction Refinement QBF Solver). Two versions of AReQS were evaluated: one
that does not use any heuristics (denoted AReQS) and the second that uses the heuris-
tics described in Section 5.1 (denoted AReQS-H).

For comparison, two QBF solvers were chosen: struqs [37] and QuBE7.1 [16], which
are the official and unofficial3 winner, respectively, of the 2QBF track of the 2010 QBF
evaluation [31]. Besides comparing to these two solvers, AReQS was compared to our
own tool qbf2circ. The tool utilizes a transformation from 2QBF to propositional cir-
cumscription [11], and invokes a dedicated propositional circumscription solver [20].
Since the dedicated solver is based on similar ideas presented in this paper, the purpose
of this translation was to investigate whether a dedicated QBF solver pays off.

A variety of benchmarks was chosen for the empirical evaluation. The sources for
the benchmarks were: QBF library [32], QBF evaluation [31], and two well-knownΣP

2

andΠP
2 complete problems. From the QBF library [32] we chose the Robots2D bench-

marks, from QBF evaluation the set of problems used in 2010 2QBF track. Entailment
in propositional circumscription is a well-knownΠP

2 problem and instances from prod-
uct configuration were used [19]; implicates core is the problem of deciding for a given
clause c, a constant k, and a CNF φ whether there exists a clause c′ ⊆ c, s.t. |c′| < k
and φ → c′, the problem is well known to be ΣP

2 -complete [39]4. Only problems of

3 QuBE7 was disqualified because of discrepancies, which are already fixed in QuBE7.1.
4 The problem is usually presented for an implicant rather than implicate, which is easily con-

vertible to the implicate problem by negating the input formula.
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the form ∀∃ were considered from the QBF library (this was true for all the problems in
the 2QBF track of the QBF-Evaluation); the implicant core problem was directly gen-
erated in its negated form (again producing the ∀∃ form). All experimental results were
obtained on an Intel Xeon 5160 3GHz, with 4GB of memory, and running Linux. The
experiments were obtained with a 1000 seconds time limit and 2GB memory limit.

Our initial experiments showed that all the tested solvers perform extremely poorly
when the input problem is not preprocessed. Hence, the preprocessor sQueezeBF [13]
(part of QuBE7.15) was first applied on the instances (discarding instances solved com-
pletely by the preprocessor). A random subset of the aforementioned problems were
chosen for the evaluation without the processing (noprepro). Therefore, all the sets in-
stances except for noprepro consist of instances already simplified by sQueezeBF.

Table 1 shows the number of solved instances for each set of benchmarks and solver.
The new tool AReQS solves ca. 10% more instances than QuBE7.1 and more than double
the instances solved by struqs. The gains achieved with AReQS are uniformly distributed
among the classes of problem instances considered. The tool qbf2circ solves more in-
stances than struqs, but less than QuBE7.1. Figure 2 shows a more detail overview of the
runtimes with cactus and scatter plots. Both versions of AReQS consistently outperform
all the other approaches; QuBE7.1 comes second; struqs performs slightly worse than
qbf2circ, and both perform significantly worse than QuBE7.1.

The first scatter plot compares AReQS-H and QuBE7.1 on all the instances com-
bined. This plot shows that AReQS-H not only solves more instances but the majority
is solved faster. The last two scatter plots compare the heuristic approach to the non-
heuristic approach. In the first of the to scatter plots the times are compared and in the
second the number of iterations of the CEGAR loop. The heuristics yield an overall im-
provement, both in time and iteration count; in a number of instances the improvement
is in orders of magnitude.

The experimental results suggest that CEGAR is a promising approach for devel-
oping dedicated algorithms for 2QBF. Although the AReQS tool is still a prototype,
it consistently outperforms state of the art QBF solvers on several classes of problem
instances. Nevertheless, the importance of preprocessing should be noted, and any ap-
proach needs preprocessing for achieving good overall performance.

7 Related Work

QBF is a well-known PSPACE-complete problem (e.g. [21]), with a wide range of
practical applications [14]. Restrictions on the number of alternations have been used
to characterize the polynomial hierarchy [21]. QBF algorithms have been the subject of
significant improvements over the last decade [14,33,29]. Examples of recent work can
be found in [28,15].

Counterexample guided abstraction refinement was successfully applied in model
checking [6,7] and since then it has appeared in various forms. In satisfiability modulo
theories (SMT) solvers, CEGAR has been used to abstract first order theories as propo-
sitional theories with the use of a SAT solver and decision procedures [1,27,12]. The
refinement in these works consists in blocking the abstract solution just found.

5 QuBE itself was then run with the no processing option.



240 M. Janota and J. Marques-Silva

 0

 200

 400

 600

 800

 1000

 0  20  40  60  80  100  120

C
P

U
 t

im
e

 [
s
]

instances

2qbf 2010, preprocessed

qbf2circ
struqs

QuBE7.1
AReQS

AReQS-H

 0

 100

 200

 300

 400

 500

 600

 0  20  40  60  80  100  120

C
P

U
 t

im
e

 [
s
]

instances

circumscription, preprocessed

qbf2circ
struqs

QuBE7.1
AReQS

AReQS-H

 0

 200

 400

 600

 800

 1000

 0  10  20  30  40  50  60  70

C
P

U
 t

im
e

 [
s
]

instances

impl. core, preprocessed

qbf2circ
struqs

QuBE7.1
AReQS

AReQS-H
 0

 200

 400

 600

 800

 1000

 0  10  20  30  40  50  60

C
P

U
 t

im
e

 [
s
]

instances

no preprocessing

qbf2circ
struqs

QuBE7.1
AReQS

AReQS-H

 0

 200

 400

 600

 800

 1000

 0  100  200  300  400  500  600  700  800  900  1000

C
P

U
 t

im
e

 [
s
]

instances

robots, preprocessed

qbf2circ
struqs

QuBE7.1
AReQS

AReQS-H

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

A
R

e
Q

S
-H

QuBE7.1

QuBE7.1 and AReQS-H [s]

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

A
R

e
Q

S
-H

AReQS

 comparison of AReQS with and without heuristics [s]

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

A
R

e
Q

S
-H

AReQS

number of iterations of the CEGAR loop

Fig. 2. Overview of the experimental results
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Rintanen uses an idea similar to the W -abstraction in a technique called inversion of
quantifiers in the context of search-based QBF solving [34]. This abstraction is popu-
lated randomly (whereas in our case it is determined by counterexamples); the abstrac-
tion does not drive the algorithm, instead, it is used as a simplification technique in a
search-based algorithm. SAT-based algorithms were used for solving 2QBF formulas
in the context of bounded model checking [9] and in planning [4]. However, these algo-
rithms are highly specialized for the problems in question and it is not clear how they
could be generalized for arbitrary 2QBF.

A variation of the CEGAR approach used in SMT [1,27,12] was applied to cer-
tain special forms of 2QBF. Mneimneh and Sakallah compute the vertex eccentricity
of a transition system (also known as the diameter) [25]. Browning and Remshagen
tackle the validity of Q-ALL SAT [3]. Besides the fact that the algorithms presented in
these articles are specialized to subsets of 2QBF, there is also an important difference
in the refinement they use. Once a candidate is found, it is simply blocked so that it
is not found again. That means that the set of possible candidates is explored one by
one. In contrast, in our approach multiple candidates are removed upon each iteration
(see Lemma 2). The one-by-one iteration over candidates not only affects the theoreti-
cal upper bound for number of iterations (Proposition 2) but also is likely to lead to an
unmanageable number of iterations, especially for unsatisfiable instances where all pos-
sible candidates need to be considered. Browning and Remshagen address this problem
by a heuristic for decreasing the size of the blocking clause. This heuristic is computa-
tionally expensive since it requires additional calls to the solver, does not provide any
theoretical guarantee, and it is unclear how it could be generalized for arbitrary QBF.

More recently, there has been increased interest in the CEGAR approach in the con-
text of quantification [20,40,26]. Out of these works, our own work on propositional
circumscription entailment is probably the most similar [20]. Although the algorithm
based on propositional circumscription can be used to solve 2QBF, e.g. by using the
well-known reduction from [11], the new dedicated 2QBF algorithm is shown to out-
perform this approach. The dedicated algorithm exploits the problem representation,
and this provides a natural performance edge.

The work described in [26] is for quantified linear real arithmetic. Although this
work could be used on QBF formulas, the key techniques do not aim Boolean formulas.
Finally, the work reported in [40] is solving a computationally harder decision prob-
lem, namely quantified bit-vector formulas. This means that [40] can be used to solve
arbitrary QBFs, but it is also unlikely to scale as well as a dedicated algorithm.

8 Conclusions

This paper develops a new algorithm for the 2QBF and 2QCNF problems. The algo-
rithm exploits the counterexample-guided abstraction refinement paradigm [6,7], and is
shown to outperform the best peforming QBF solvers from the most recent QBF Eval-
uation [28]. Although the work builds on recent work on using counterexample-guided
abstraction for handling quantification [20,40,26], the algorithm exploits the natural
properties of the problem formulation, and is shown to outperform approaches based
on mapping QBF to another domain [20]. Refining the abstraction in some sense corre-
sponds to traversing the search space with the use of learned clauses [23,17]. However,
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there are some important differences. Learned clauses can be removed without affecting
the correctness of the algorithm, which is not the case for the abstraction refinements.
This has the adversary effect that the abstraction algorithm requires exponential space.
One the other hand, the CEGAR-based search does not require traversal in any particu-
lar order, which enables us to focus on likely solutions. This advantage is demonstrated
by the heuristics developed for the approach (Section 5.1). Further, we hypothesize that
the approach will work well on certain types of problems (Section 4.2).

The promising experimental results motivate extending the work to arbitrary levels
of the polynomial hierarchy and to general QBF. Nevertheless, many interesting appli-
cations lie in the second level of the polynomial hierarchy and this paper suggests that
dedicated algorithm may in general represent the best approach for achieving the most
efficient solutions.
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Abstract. We consider the extension of Boolean circuits to quantified
Boolean circuits by adding universal and existential quantifier nodes with
semantics adopted from quantified Boolean formulas (QBF). The con-
cept allows not only prenex representations of the form ∀x1∃y1...∀xn∃yn c
where c is an ordinary Boolean circuit with inputs x1, ..., xn, y1, ..., yn.
We also consider more general non-prenex normal forms with quan-
tifiers inside the circuit as in non-prenex QBF, including circuits in
which an input variable may occur both free and bound. We discuss the
expressive power of these classes of circuits and establish polynomial-
time equivalence-preserving transformations between many of them. Ad-
ditional polynomial-time transformations show that various classes of
quantified circuits have the same expressive power as quantified Boolean
formulas and Boolean functions represented as finite sequences of nested
definitions (NBF). In particular, universal quantification can be simu-
lated efficiently by circuits containing only existential quantifiers if over-
lapping scopes of variables are allowed.

1 Introduction

Boolean circuits are a powerful concept to store propositional formulas. On the
one hand, they can suitably represent important structural information, and on
the other hand, they allow sharing of common subexpressions. For example, a
formula like (α1∨β1)∧(α1∨β2)∧(α2∨β1)∧(α2∨β2) with arbitrary subformulas
α1, α2, β1, β2 can be represented by a circuit in which the value of each of those
subformulas is computed only once and then reused multiple times by fanout.
Fig. 1 shows a simple circuit for the formula (¬x ∨ (x ∧ ¬y)) ∧ ((x ∧ ¬y) ∨ z)
in which (x ∧ ¬y) is shared. Under favorable circumstances, sharing can lead to
significantly shorter encodings of formulas as circuits. Accordingly, circuits have
been used successfully also for SAT and QBF solvers, e.g. in [9, 10, 11, 13].

Similar to other representations like [14], Boolean circuits can be extended by
allowing quantifiers. That is, a circuit can contain universal and existential quan-
tifier nodes in addition to propositional logic gates. Typically, existing work on
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Fig. 1. Circuit in negation normal form

quantified circuits, e.g. [2], has focused on decision problems for circuits in prenex
form ∀x1∃y1...∀xn∃yn c(x1, y1, ..., xn, yn), where c is an ordinary quantifier-free
Boolean circuit and quantification is applied subsequently on its input variables.
In this paper, we want to investigate the expressive power of quantified cir-
cuits not only in prenex form, but also in arbitrary negation normal form where
quantifiers are allowed inside the circuit. The most general case that we con-
sider covers circuits in which an input variable may occur both free and bound.
In QBF, it is easy to obtain unique variable names and prenex representations
by renaming bound variables. We will see that such renamings are problematic
for quantified circuits due to the sharing of subcircuits, but this paper shows
that there still exist efficient transformations between many classes of quanti-
fied circuits. Another main contribution is the interesting result that universal
quantification can be simulated in linear time by negation normal form circuits
containing only existential quantifiers if overlapping variable scopes are allowed.
For QBF, this appears to be possible only for special classes such as quantified
Horn or 2-CNF formulas [3, 5], unless the polynomial hierarchy collapses.

2 Boolean Circuits and Propositional Formulas

We begin our discussion with a brief review of basic relationships between cir-
cuits and propositional formulas. A Boolean circuit is a directed acyclic graph
with one outgoing edge (the sink) and multiple input nodes labeled with Boolean
variables. The other nodes are AND-, OR-, and NOT-gates that each have two
(AND and OR) or one (NOT) incoming edges and an arbitrary number of out-
going edges. We let C be the class of circuits in negation normal form (NNF),
that means circuits in which the inner nodes are only AND- and OR-gates and
the inputs are variables x and negated variables ¬x. Fig. 1 shows an example
of a circuit in NNF. The length or size of a circuit is the number of gates, in-
cluding negations associated with input variables. By the laws of De Morgan
and the elimination of double negations, any circuit can be transformed in linear
time in NNF, although in the worst case the size of the circuit might double.
Subsequently, we consider only circuits in NNF, because we later want to avoid
quantifier nodes being negated. The negation of a quantifier essentially inverts
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its meaning, which is in particular problematic in combination with subcircuit
sharing, because one quantifier might then be shared in its original and in its
negated form, so a variable would be existentially and universally quantified
in the same subcircuit. For clarity, we sometimes use the equivalence operator
(written as =). But since operations such as equivalence, and also implication or
XOR, implicitly contain negation and therefore cause the same problems with
quantifiers, we consider such operations only as abbreviations which must be
expanded in the actual representation of the circuit.

For propositional formulas, we allow the same operators ∧ (AND), ∨ (OR)
and ¬ (NOT) and propositional variables. Similar to circuits, a formula is in
negation normal form if the negation symbols occur only directly in front of
variables. The length of a formula is the number of variable occurrences.

Definition 1. (Propositional Formulas and Circuits)
1. BF := {φ | φ is propositional formula in negation normal form}
2. C := {c | c is a Boolean circuit in negation normal form}

Let α and β be two formulas or two circuits or a mixed pair of one formula and
one circuit, and let z1, ..., zr be the union of all variables which occur in α or
β inside a formula or in a circuit input. Then α and β are (logically) equiva-
lent, in symbols α ≈ β, if and only if for every truth assignment to z1, ..., zr it
holds that α and β evaluate to the same truth value after substituting the as-
signed truth values for z1, ..., zr. This is significantly stronger than satisfiability
equivalence, which requires that if one of the formulas or circuits is satisfied by
some assignment to z1, ..., zr, the other one must also have some (possibly dif-
ferent) satisfying assignment to z1, ..., zr. Satisfiability equivalence is sometimes
too weak: for example, replacing a term inside a larger formula with a different
term is in general only sound if both terms are logically equivalent.

For circuit or formula classes A and B, we write A ≤p B to express that there
are polynomial-time transformations from A to B. That means A ≤p B if and
only if there is a poly-time mapping T , such that T (a) ∈ B and T (a) ≈ a for
each a ∈ A. A =p B is an abbreviation for A ≤p B and B ≤p A.

There is obviously a close relationship between Boolean circuits and propo-
sitional formulas: Every propositional formula can be considered as a circuit
with fanout 1, and vice versa. Fanout 1 means that every node has exactly one
outgoing edge and there is no sharing of subcircuits. On the other hand, an ar-
bitrary Boolean circuit can be encoded as a formula when we label the edges of
the circuit with new auxiliary variables and describe the gates by propositional
clauses over these auxiliary variables [1]. For example, we obtain y = x1 ∧ x2

for an AND-node having incoming edges labeled with x1 and x2 and output
edges labeled with y. This can be performed in linear time, but the resulting
formula is in general only satisfiability equivalent to the circuit, because adding
new variables typically destroys logical equivalence. To achieve full logical equiv-
alence, the auxiliary variables must be bound by existential quantifiers, which
are formally introduced in the following section.
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3 Quantified Boolean Formulas

Quantified Boolean formulas (QBF) extend propositional logic with universal (∀)
and existential (∃) quantifiers over variables. For example, ∀x(¬x∨(∃y(y∨x∨z)))
is a quantified Boolean formula. Variables on which a quantifier is applied are
called bound variables, and variables which are not bound by a quantifier are
free. In the example, x and y are bound, and z is free. ∀x φ(x) is defined to be
true if and only if φ(0) is true and φ(1) is true, and ∃y φ(y) means that φ(0) or
φ(1) is true. To save parentheses, we assume that the logical connectives have a
higher binding priority than the quantifiers, so we could also write the previous
example as ∀x ¬x ∨ (∃y y ∨ x ∨ z). As for propositional formulas, the length
of a quantified Boolean formula is the number of variable occurrences, but now
including occurrences with quantifiers. Accordingly, the example has length 6.

A formula Φ(z1, ..., zr) with free variables z1, ..., zr is satisfiable if and only if
there exists a truth assignment τ to the free variables such that Φ(τ(z1), ..., τ(zr))
is true. Here, Φ(τ(z1), ..., τ(zr)) denotes the substitution of the truth values in
τ for the free variables in Φ. Two quantified Boolean formulas Φ(z1, ..., zr) and
Ψ(w1, ..., ws) with free variables z1, ..., zr and w1, ..., ws are logically equivalent if
and only if for every truth assignment τ to the free variables z1, ..., zr, w1, ..., ws

both formulas evaluate to the same truth value. This means that the bound
variables are not directly considered when checking for logical equivalence, which
makes them local to the respective formula. The ability to introduce new local
variables without losing full equivalence is a powerful advantage over ordinary
propositional calculus. A propositional formula can be considered as a special
case of a quantified Boolean formula in which all variables are free. Similarly,
all input variables in a Boolean circuit can be treated as free variables. Logical
equivalence between QBF formulas is then a generalization of the equivalence
criterion presented in the previous section and can naturally be extended to
mixed pairs from all three representations.

Negation normal form is defined for QBF as it is for propositional formulas
and can be achieved with the additional equivalences ¬(∀x Φ) ≈ ∃x¬Φ and
¬(∃x Φ) ≈ ∀x¬Φ. A QBF formula Φ is in prenex form if Φ = Q1v1...Qkvk φ with
quantifiers Qi ∈ {∀, ∃} and a propositional formula φ. We call Q := Q1v1...Qkvk

the prefix and φ the matrix of Φ.

Definition 2. (Quantified Boolean Formulas)
1. QBF := {Φ | Φ is a quantified Boolean formula in negation normal form}
2. ∃BF := {Φ | Φ ∈ QBF and Φ contains only existential quantifiers}
3. pQBF := {Φ | Φ ∈ QBF in prenex form}

An arbitrary QBF can be transformed in linear time into prenex form. The result
is in general not unique, and different prenexing strategies have been widely
investigated, e.g. in [8]. Following the notation ≤p and =p, we write ≤linear and
=linear for linear-time transformations.

Proposition 1. QBF =linear pQBF
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4 Nested Boolean Functions

Before we introduce quantified circuits, we briefly consider another representa-
tion of Boolean functions which appears rather different at first glance, but will
soon turn out to be closely related to both quantified circuits and QBF. Every
Boolean function can be defined by a suitable set of initial functions, for example
AND, OR and NOT, and a composition of these functions. Instead of a fixed
set of starting functions, we can also allow arbitrary propositional formulas as
starting functions. In order to illustrate the idea, we present a short example:

Let f1(x, y) := x ∨ ¬y and f2(z, w) := z ∧ w be two initial functions, and let
f3(x1, x2) := f2(0, f1(x1, x2)) and
f4(x, y, z) := f2(f3(x, z), f1(z, y)) be compound functions.
Then f4(x, y, z) is equivalent to the propositional formula (0∧(x∨¬z))∧(z∨¬y).
Such definition schemes for Boolean functions have been introduced in [6] as
Boolean Programs. But this name is also used for different concepts in other
fields. To avoid confusion, we use the name Nested Boolean Functions (NBF).
Definition 3. A nested Boolean function (NBF) is a finite sequence D(fk) =
(f1, ..., fk) of definitions of Boolean functions. For fixed t ∈ {1, ..., k}, it contains

– initial functions f1, ..., ft, which are each defined by fi(xi) := αi(xi) for a
propositional formula αi over variables xi := (xi,1, ..., xi,ni), and

– compound functions ft+1, ..., fk of the form fi(xi) := fj0(fj1(xi
1), ..., fjr (xi

r))
for previously defined functions fj0 , ..., fjr ∈ {f0, ..., fi−1}. The arguments
xi

1, ...,x
i
r are tuples containing variables in xi or Boolean constants, such

that the arity of xi
l matches the arity of fjl

and r is the arity of fj0 .

We call fk the defined Boolean function. The length of a NBF D(fk) is |D(fk)| :
= |f1| + ... + |fk|, where |fi| is the total number of occurrences of constants,
variables and function symbols on the right hand side of the defining equation
of fi.

A Boolean circuit c(x) with input variables x can be represented as a finite
sequence of definitions D(fc(x)) ∈ NBF with c(x) ≈ fc(x). The initial functions
are fid(x) := x, f¬(x) := ¬x, f∧(x, y) := x∧ y and f∨(x, y) := x∨ y. Bottom-up,
we assign a function to each edge in the circuit. For an input x or ¬x, we simply
use fid(x) or f¬(x). For the output edges of an AND-node over incoming edges
associated with g(x) and h(y), we choose f(x∩y) := f∧(g(x), h(y)). Here, x∩y
is the tuple of all variables occurring in g and h, without multiple occurrences
and in arbitrary order. Analogously, we assign functions to the OR-nodes and
NOT-nodes (for non-NNF circuits). It is not difficult to see that the function
associated with the outgoing edge of the circuit is equivalent to the circuit. We
have already mentioned a linear-time encoding of circuits as existentially quan-
tified Boolean formulas (Section 2). Now, the number of function symbols in
the resulting NBF is again linear in the size of the circuit, but the length of
the NBF also includes occurrences of variables as arguments. We obtain a time
and space bound of O(|x| · |c(x)|), where |x| is the number of input variables
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and |c(x)| is the circuit size. Subsequently, we use the term v-linear for O(|v|·|A|),
where |A| is the length of an expression A and |v| the number of variables in A.

Proposition 2. C ≤v-linear NBF

For an arbitrary NBF D(fk) = (f1, ..., fk), the problem of deciding whether
fk(a1, ..., ank

) = 1 for given arguments a1, ..., ank
∈ {0, 1} has been shown to be

PSPACE-complete [6]. This immediately implies also the PSPACE-completeness
of the NBF satisfiability problem, i.e. the problem of determining whether there
exists a choice of arguments for which the defined function is true. This PSPACE-
completeness suggests a close relationship to quantified Boolean formulas. In
fact, it is not difficult to encode QBF formulas as NBFs. For example, let Φ(z) =
∀x∃y φ(x, y, z) be a pQBF formula with matrix φ and free variables z. First, we
define the initial functions f∧(x1, x2) := x1 ∧ x2, f∨(x1, x2) := x1 ∨ x2 and
f1(x, y, z) := φ. Then we simulate the existential quantifier by means of the
∨ function, using the equivalence ∃y φ(x, y, z) ≈ φ(x, 0, z)∨φ(x, 1, z). This leads
to the definition f2(x, z) := f∨(f1(x, 0, z), f1(x, 1, z)), and analogously f3(z) :=
f∧(f2(0, z), f2(1, z)) to simulate the universal quantifier by the ∧ function. By
construction, we obtain f3(z) ≈ Φ(z). Because of the need to count the variables
in the arguments, the length of the resulting definition is in general not linear
in the length of the formula, but only v-linear.

The inverse direction from NBF to QBF is less intuitive. By a general argu-
ment, every Boolean function defined by a NBF can be simulated by a poly-space
Turing machine [6]. And a poly-space Turing machine can be encoded as a QBF
of polynomial length [12]. Recently, a linear-time equivalence-preserving trans-
formation from NBF to pQBF has been found [4].

Lemma 1. NBF ≤linear pQBF,QBF and pQBF,QBF ≤v-linear NBF.

Whether there exists a linear-time transformation from (p)QBF to NBF is an
open question and closely related to the question whether for circuits there is a
linear-time transformation to NBF.

5 Quantified Circuits

Similar to quantified Boolean formulas being an extension of propositional for-
mulas, we now introduce quantified circuits as Boolean circuits which may in
addition contain nodes labeled with ∀x or ∃x for a propositional variable x.
Each of these quantifier nodes has exactly one incoming edge and an arbitrary
number of outgoing edges. Examples of quantified circuits are given in Fig. 2.
We say that a variable x occurs bound in a quantified circuit if there is a path
from the input x or ¬x to the sink which passes through a quantifier node ∃x
or ∀x. On the other hand, x occurs free if there is a path from x or ¬x to the
sink which contains no node ∃x or ∀x. In the left circuit in Fig. 2, x is bound, z
is free, and y occurs free and bound.

We borrow the semantics of quantified circuits from quantified Boolean for-
mulas by mapping to each edge of a quantified circuit a QBF formula in the
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Fig. 2. Quantified circuits in non-prenex form (left) and prenex form (right)

following bottom-up manner: The formula for an input node x or ¬x is x or ¬x
itself. The output edge of an AND-node over incoming edges associated with
formulas α(x) and β(y) is then labeled with α(x) ∧ β(y). OR- and NOT-nodes
are treated analogously. When we encounter a quantifier node ∃x that has an
incoming edge labeled with α(x,y), we label its outgoing edges with ∃xα(x,y),
and analogously ∀xα(x,y) for nodes ∀x. Finally, the interpretation of the cir-
cuit is defined as the value of the formula associated with its output when the
variables are assigned as determined by the circuit inputs. For example, the left
circuit in Fig. 2 is equivalent to ∀x ((z ∨ (¬x ∧ y)) ∧ (∃y(¬x ∧ y))).

This semantics means that when we ignore the direction of the edges, a quan-
tified circuit can be understood as the extension of a syntax tree of a quantified
Boolean formula with additional sharing of subformulas. That is also the reason
why we prefer to draw those circuits with the sink on the top.

When we construct the associated QBF formula as in the semantics definition,
it is obvious that the length of the formula can be super-polynomial in the length
(size) of the circuit, since we lose the sharing of subcircuits. It turns out that
this can be avoided easily when we represent the quantified circuit as NBF. The
encoding is the same as the one for ordinary Boolean circuits from Section 4,
with the following extension: For an ∃x node (a ∀x node, respectively) that
has an incoming edge labeled with f(x,y), we define a new function symbol
g(y) := f∨(f(0,y), f(1,y)) (g(y) := f∧(f(0,y), f(1,y)), respectively).
Proposition 3. Quantified Circuits ≤v-linear NBF

5.1 Normal Forms

For QBF, various normal forms are well known. We now define analogous normal
forms for quantified circuits and analyze them in the following subsections.
Definition 4. Let c be a quantified circuit. Then we say:

1. c is in negation normal form (NNF) if each inner node is either an AND-
node, an OR-node or a quantifier node, and the inputs are variables x or
negated variables ¬x. That means only inputs can be negated.
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2. c is in prenex form if every successor node of a quantifier node is a quantifier
node, too. That means quantifiers are only allowed in front of the sink.

3. c is pure if no variable has both bound and free occurrences in c.

The quantified circuits shown earlier in Fig. 2 are both in negation normal form.
The circuit on the left is neither in prenex form nor pure, while the one on the
right is in prenex form and thus also pure. Subsequently, we assume that all
quantified circuits are in negation normal form, unless stated otherwise.

Proposition 4. A quantified circuit c is in negation normal form (in prenex
form, or pure, respectively) if and only if the associated QBF formula is in
negation normal form (in prenex form, or pure, respectively).

In QBF, it is easy to transform NNF formulas into equivalent pure or even
prenex formulas by renaming and shifting of quantifiers. Consider the example
Φ = ∀x ((z ∨ (¬x ∧ y)) ∧ (∃y (¬x ∧ y))) where y occurs free and bound. Then
Φ ≈ ∀x ((z ∨ (¬x∧ y)) ∧ (∃u (¬x ∧ u))) ≈ ∀x∃u ((z ∨ (¬x ∧ y)) ∧ (¬x∧ u)). But
such renamings are problematic for non-prenex quantified circuits due to shared
subcircuits. Consider again the left circuit in Fig. 2. If we rename ∃y into ∃u,
the resulting term (¬x∧u) can no longer be shared with (¬x∧y), which we still
need to keep, because the free occurrence of y cannot be renamed without losing
equivalence. Thus, we need to have two copies of the previously shared subcir-
cuit. In general, this can cause exponential growth. That observation motivates
separate investigations of prenex and non-prenex circuits.

5.2 Quantified Circuits in Prenex Form

Definition 5. (Quantified Circuits in Prenex Form)
1. QC := {c | c is a circuit over ∧,∨,¬, ∀ and ∃ in NNF and prenex form}
2. ∃C := {c | c is a circuit over ∧,∨,¬ and ∃ in NNF and prenex form}

Because of the previously mentioned linear transformation of Boolean circuits
into existentially quantified Boolean formulas by labeling edges with auxiliary
variables as in Section 2, we immediately get the following relationships:

Proposition 5. ∃C =linear ∃BF and QC =linear QBF, pQBF.

5.3 Pure Quantified Circuits in Non-prenex Form

Now, we investigate quantified circuits which are not in prenex form, but still
pure. In the next section, we will also drop the purity restriction.

Definition 6. (Pure Quantified Circuits in Negation Normal Form)
1. C∀,∃ := {c | c is a pure circuit over ∧,∨,¬, ∀ and ∃ in NNF}
2. C∃ := {c | c is a pure circuit over ∧,∨,¬ and ∃ in NNF}

In order to discuss the expressive power of C∃, we further refine this class. The
idea is to restrict the number of occurrences of ∃x nodes for a single variable x.
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Definition 7. For k ≥ 1, we let
C∃(k) := {c ∈ C∃ | each variable occurs in at most k ∃ nodes of the pure circuit c}

When k = 1, all ∃ nodes have distinct variable names. Furthermore, no variable
occurs both free and bound, since the circuits are pure. That allows us to move
all ∃ nodes in front of the sink, just like prenexing in QBF. As the circuits are
also in NNF, we obtain an equivalent circuit in ∃C. In the other direction, every
∃C circuit is trivially equivalent to a C∃(1) circuit, because if a prenex circuit has
quantifier nodes with duplicate names, all but the innermost can be dropped.

Proposition 6. C∃(1) =linear ∃C

For k = 2, we shall see that the expressive power jumps to the full power
of quantified circuits. That means C∃(2) circuits can compactly encode uni-
versal quantifiers using only existential quantifiers. This is quite simple if we
waive the NNF requirement and use the equivalence ¬∃xφ ≈ ∀x¬φ. But if
we only consider circuits and QBF formulas in NNF, this is not possible. In
fact, a poly-time simulation of universal quantifiers in negation normal form
QBF formulas would lead to the collapse of the polynomial hierarchy. Accord-
ingly, the following idea is specific to circuits and uses structure sharing by
fanout: It is well known that quantifiers can be expanded, e.g. by the equiv-
alence ∀xα(x,y) ≈ α(0,y) ∧ α(1,y) with some free variables y. Repeated
application clearly causes exponential growth due to the duplication of α. Un-
fortunately, sharing by fanout only works for subexpressions which are exactly
the same, but α has different arguments here. Our trick is to use the equivalence
∀xα(x,y) ≈ (∃x(x ∧ α(x,y)) ∧ (∃x(¬x ∧ α(x,y)) instead. Now, we have two
identical occurrences of α(x,y), which can be shared as shown in Fig. 3. By
repeated expansion of universal nodes in this way, any quantified circuit in NNF
can be transformed into a representation that uses only ∃ nodes. Obviously, the
size of the resulting circuit remains linear in the size of the initial circuit.

⇒

∧

x x

∧ ∧

α(x, y)

y ¬x

∃x∃x∀x

x

α(x, y)

y

Fig. 3. ∀-simulation by ∃ nodes and sharing of subcircuits
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We can now summarize our expressiveness results in the following theorem.

Theorem 1. QC =p C∀,∃ =p C∃ =p C∃(2) =p NBF =p QBF =p pQBF

Proof. We show QBF ≤p QC ≤p C∃(2) ≤p C∃ ≤p C∀,∃ ≤p NBF ≤p QBF.

1. QBF ≤p QC according to Proposition 5.
2. QC ≤p C∃(2) by encoding a universal node with two existentials (Fig. 3).
3. C∃(2) ≤p C∃ ≤p C∀,∃: C∃(2) is a subset of C∃, which in turn is a subset of C∀,∃.
4. C∀,∃ ≤p NBF follows from Proposition 3.
5. NBF ≤p QBF by Lemma 1. ��

5.4 Non-pure Quantified Circuits

We now consider quantified circuits in which a variable may occur both free
and bound. In the analogous QBF case, we can rename such bound variables in
consideration of their scope, so that finally no variable is both free and bound.
For example, (∃x α(x, y)) ∧ α(x, y) ≈ (∃x′ α(x′, y)) ∧ α(x, y). We have already
pointed out that such renamings are problematic for circuits, since they make
direct sharing of subcircuits impossible. In the example, α can no longer be
shared, so we need two copies α(x′, y) and α(x, y). Can we avoid such copying?

Clearly, non-pure circuits can be made pure by an indirect transformation:
We know that all quantified circuits, including non-pure ones, can be encoded as
v-linear NBFs, which in turn correspond to linear-size pure quantified circuits.

But there is also a direct linear-time transformation from non-pure to pure
circuits: for every variable x which has both free and bound occurrences in a
given quantified circuit c, let x′ be a new variable which does not yet occur in
c. Then we substitute x′ for all occurrences of x in c, including occurrences in
quantifier nodes. We call the resulting circuit c[x/x′]. To make it equivalent to the
original one, we bind x′ with an existential quantifier and require x′ to be true if
and only if x is true. We obtain a circuit which represents ∃x′((x′ = x)∧c[x/x′]),
as shown in Fig. 4 for the above example (∃x α(x, y)) ∧ α(x, y).

Essentially, this construction turns a free variable into a bound variable, so
instead of having a free variable named like a bound variable, we now have bound
variables with duplicate names (in Fig. 4, we get two quantifier nodes ∃x′). For
the previously mentioned indirect transformation from non-pure to pure circuits
via NBF, the situation is similar, because it requires universal quantifier nodes,
and their simulation by existential ones as in Fig. 3 also introduces existential
quantifier nodes with duplicate names. This is not unexpected, since pure circuits
with distinct quantifier names, previously denoted C∃(1), seem to be significantly
weaker (C∃(1) =p ∃BF) than those with duplicate names (C∃(2) =p QBF). Inter-
estingly, we can now show that the full expressiveness of QBF can be achieved
by existentially quantified circuits with distinct quantifier names if we allow
non-purity. Formally, the non-pure counterpart of C∃(1) is defined as follows:

Definition 8. C∗∃(1):= {c | c is a circuit over ∧,∨,¬ and ∃ in negation normal
form, every quantified variable occurs exactly once in the set of ∃ nodes }
In contrast to C∃(1) =linear ∃BF, we now prove C∗∃(1) =v−linear QBF.
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α(x, y)

∃x

∧

⇒

α(x′, y)

∃x′

∧

∧

∃x′

x′
= x

x y

x′ y

x′ x

Fig. 4. Transformation of a non-pure into a pure circuit

Theorem 2. C∗∃(1) =v−linear QBF

Proof. 1. C∗∃(1) ≤v−linear QBF is obvious from the fact that any quantified
circuit, and thus also a C∗∃(1) circuit, can be transformed into a v-linear NBF
(Proposition 3), followed as before by a linear-time transformation to QBF.

2. We show QBF ≤linear C∗∃(1) with a similar approach as for the transforma-
tion from QBF to C∃(2) from Theorem 1: we bring the formula into prenex
form (with uniquely named variables) and use the obvious linear mapping
from pQBF into a corresponding quantified circuit in prenex form. We then
simulate the universal quantifier nodes using only existential nodes, but with
a new procedure which is different from the one shown in Fig. 3.

The new procedure uses the equivalence ∀x α(x,y) ≈ α(x,y) ∧ α(¬x,y).
Notice that x is now free in the right-hand formula. Typically, equivalent
formulas need to have the same free variables, but it is possible to have
additional ones which occur only on one side, as long as their actual values
do not influence the truth value of the formula. This is the case here with
x: no matter whether x = 0 or x = 1, the formula on the right represents
α(0,y) ∧ α(1,y), which is just the definition of universal quantification.

Now, we need to express this equivalence by a quantified circuit which
contains only one copy of α. Sharing of subcircuits by fanout only works if
both instances of α have exactly the same arguments, say α(x,y). Our idea
is to first introduce a new existential variable x′ which abbreviates ¬x:

∀x α(x,y) ≈ α(x,y) ∧ ∃x′((x′ = ¬x) ∧ α(x′,y))

In order to turn α(x′,y) into α(x,y), we then perform another renaming, but
this time, the new existential variable is named x, just like the free variable:

∀x α(x,y) ≈ α(x,y) ∧ ∃x′((x′ = ¬x) ∧ ∃x((x = x′) ∧ α(x,y)))
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We end up with two copies of α(x,y) that can be shared by fanout, as shown
in Fig. 5. Everything else added to the resulting circuit has constant size, so
repeated application of this procedure will lead to a circuit of linear size. It
is clearly in C∗

∃(1), since all quantified variables have distinct names. ��

⇒

∧

∧

∧

α(x, y)

∃x

∃x′

∀x

x

α(x, y)

y

x = x′

x′
= ¬x

x yx x′

x′ x

Fig. 5. ∀-simulation with unique quantifier names

We now have a second method to simulate universal quantifiers. Both of them re-
quire the ability to express overlapping scopes of variables with identical names,
but the theorem shows that it does not matter whether that overlapping is be-
tween two bound variables or between a bound and a free variable.

The expressive power of C∗∃(1) is also evident from the following observation:
In QBF, it is possible to compress conjunctions of formula instantiations for
different variable names with the following equivalence [7]:

α(x′, y) ∧ α(x, y) ≈ ∀u (((u = x′) ∨ (u = x)) → α(u, y))

For the dual case α(x′, y) ∨ α(x, y), we can use existential quantification:

α(x′, y) ∨ α(x, y) ≈ ∃u (α(u, y) ∧ ((u = x′) ∨ (u = x)))

In both cases, only one copy of α is needed. The second equivalence can obviously
be applied exactly the same in C∗∃(1). An equivalence of the first form could be
translated into C∗∃(1) by the above simulation of universal quantifiers, but it turns
out that the same degree of compression can be achieved by a direct encoding
without universal quantifiers. The idea is to introduce a local renaming of x′:

α(x, y) ∧ α(x′, y) ≈ α(x, y) ∧ ∃x((x = x′) ∧ α(x, y))

Now, both instances of α(x, y) can be computed by one subcircuit (Fig. 6).



Transformations into Normal Forms for Quantified Circuits 257

⇒

∧

∧

∃x∧

x

α(x, y)

y

x = x′

x x′x y

x′

α(x′, y)

y

α(x, y)

Fig. 6. Compression of renamed instantiations

6 Conclusion

We have studied quantified circuits, an extension of Boolean circuits with ad-
ditional quantifier nodes. Such a circuit can be understood as syntax tree of a
quantified Boolean formula with additional sharing of subformulas. In general,
quantified circuits have the same expressive power under polynomial-time equiv-
alence reductions as quantified Boolean formulas and nested Boolean functions:

Quantified Circuits =p QBF =p NBF

We could, however, prove the interesting result that every quantified circuit
can be transformed into a polynomial-size equivalent circuit containing only
existential quantifier nodes, which implies:

C∃ =p QBF

This simulation of universal quantifiers does require the ability to express over-
lapping scopes of variables with identical names, be it pairs of bound variables
or bound and free variables having the same names:

C∃(2) =p C∗∃(1) =p QBF

Such overlapping makes it possible to rename variables, and in combination
with the subformula sharing ability of the underlying circuit structure allows
compact encodings of subformula instantiations with different names, such as e.g.
α(x, y)∧α(x′, y). With the construction from Fig. 6, this can be expressed with
one copy of the circuit α(x, y) and without the need to use universal quantifiers
as in the QBF encoding α(x′, y)∧α(x, y) ≈ ∀u (((u = x′)∨ (u = x)) → α(u, y)).
Ordinary Boolean circuits and purely existentially quantified Boolean formulas
(∃BF) seem to be lacking exactly that renaming ability and appear to be limited
to abbreviate exact repetitions of subformulas. Nevertheless, it remains a long-
standing open problem to show that QBF is indeed exponentially more powerful
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than ∃BF. Perhaps, quantified circuits might provide a new perspective onto
that problem, especially since they allow focusing only on one kind of quantifier
and instead to consider renaming as the crucial feature.
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Abstract. Failed literal detection (FL) in SAT is a powerful approach
for preprocessing. The basic idea is to assign a variable as assumption. If
boolean constraint propagation (BCP) yields an empty clause then the
negated assumption is necessary for satisfiability. Whereas FL is common
in SAT, it cannot easily be applied to QBF due to universal quantifica-
tion. We present two approaches for FL to preprocess prenex CNFs. The
first one is based on abstraction where certain universal variables are
treated as existentially quantified. Second we combine QBF-specific BCP
(QBCP) in FL with Q-resolution to validate assignments learnt by FL.
Finally we compare these two approaches to a third common approach
based on SAT. It turns out that the three approaches are incomparable.
Experimental evaluation demonstrates that FL for QBF can improve the
performance of search- and elimination-based QBF solvers.

1 Introduction

The logic of quantified boolean formulae (QBF) is an extension of propositional
logic (SAT) where variables are existentially or universally quantified. Whereas
this often allows for more succinct encodings of problems, it also causes PSPACE-
completeness of the decision problem of QBF.

A standard and common input format of QBF solvers is prenex conjunctive
normal form (PCNF). The conversion of an arbitrary QBF encoding into PCNF
might hide relevant structural properties like variable dependencies. This in turn
can influence solver performance negatively. In order to overcome this drawback,
several approaches for preprocessing PCNFs have been suggested. Some were
ported from SAT to QBF such as binary clause reasoning, equivalence detection
and variable elimination by resolution or expansion [2,5,6,11,21,25,26].

This work focuses on the detection of failed literals (FL) in QBF. The idea is
to make an assumption, i.e. a trial assignment of a variable, and apply boolean
constraint propagation with QBF-specific inference rules (QBCP, see also Section
2). If the empty clause is discovered then the negated assumption is a necessary
assignment for satisfiability and can be added to the formula as a learnt unit
clause. In contrast to SAT where application of FL is straightforward, compli-
cations arise in the context of QBF.
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Example 1. The satisfiable PCNF ψ := ∀x∃y. (x ∨ ¬y) ∧ (¬x ∨ y) expresses
equivalence of x and y. When assuming y in FL, then the first clause becomes
empty due to universal reduction (see Section 2). But adding unit clause (¬y),
which corresponds to the negated assumption, produces an unsatisfiable formula.
The problem pointed out in Example 1 is that y depends on x. That is, y must not
be assigned as assumption without considering the value of x as was erroneously
done by FL. This might destroy satisfiability of PCNFs due to violations of the
quantifier ordering: x is outermost but y was assumed first. Hence that ordering
must be respected in preprocessing just as in QBF solving in general.

The objective of our work is to apply sound variants of FL to PCNFs for
preprocessing, i.e. where preprocessing by FL produces an equivalent formula.
In the following we introduce and evaluate three approaches to detect necessary
assignments of QBFs in PCNF. First we reconsider a known technique based on
SAT solving (Section 3). A SAT solver is used to check if a unit clause is implied
by the plain (i.e. ignoring quantifiers) CNF of some PCNF. Such unit clauses
can then be added to the PCNF as well.

Second we introduce FL with respect to an abstraction of a PCNF (Section 4).
A unit clause learnt by FL on the abstraction can also be added to the original
PCNF. An abstraction is obtained separately for each assumption. Variables are
treated as existentially quantified if they are smaller in the quantifier ordering
than the current assumption.

Third we combine FL on the original PCNF with Q-resolution (Section 5).
If an empty clause is discovered in FL then we try to derive the unit clause
corresponding to the negated assumption by Q-resolution. The choice of Q-
resolution candidates is heuristically guided by the current run of QBCP in FL.

A major contribution of our work is a comparison (Sections 6 and 7). We
provide examples pointing out that the three aforementioned approaches are in-
comparable with respect to effectiveness. There are formulae where particular
unit clauses can be learnt with one approach but not with another. This obser-
vations also raise questions whether conflict-driven clause learning (CDCL) in
QBF solvers could be improved in this respect. Moreover, our abstraction-based
approach can be regarded as a polynomial-time1 alternative to the common SAT-
based approach. Hence FL could be applied dynamically in search-based QBF
solvers when interleaved with the search. This idea is similar to optimizations
carried out in many SAT solvers when backtracking to the topmost decision
level, e.g. after restarting or if a unit clause was learnt.

We implemented the three approaches for FL in our novel preprocessor
QxBFand evaluated their effectiveness in combination with various search- and
elimination-based QBF solvers (Section 7). Our experiments confirm observa-
tions regarding incomparability. Although the vast performance improvement is
observed for elimination-based solvers, we conjecture that search-based solvers
could benefit from dynamic applications of various approaches of FL.

Related Work. FL for SAT originated in [9] and is an integral part of look-
ahead SAT solvers [14]. A comprehensive treatment of FL for preprocessing is
1 We interpret QBCP as the polynomial-time procedure defined in Section 2.
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given in [1,18], which also includes inferences of unit clauses based on com-
plementary assumptions [13]. We consider that future work and refrain from
discussion in this work.

FL was applied to QBF in [22] but with a special treatment of empty clauses
and QBCP lacking universal reduction and pure literal detection. Thus the full
propagation power of QBCP was not exploited. In contrast to this, our FL
approaches presented in Sections 4 and 5 are an improvement.

A theoretical foundation of QBF preprocessing was given in [26] in terms of
QBF models. Additionally binary clause reasoning for QBF was introduced in
[25] where QBCP was used for detecting binary clause inferences. We combine
QBCP in FL with Q-resolution to find derivations of unit clauses (Section 5).

In [21] a SAT solver was applied to detect necessary assignments of the CNF
part of PCNFs. We consider the same approach mainly for reference (Section 3)
but also show that it is incomparable to our FL approaches (Section 6).

A SAT solver was integrated into a search-based QBF solver in [24]. It was
observed that the two solvers are capable of learning clauses the other one can
not learn. We make similar observations and provide examples regarding the
detection of unit clauses by SAT solving and by our FL approaches (Section 6).

2 Preliminaries

For a set of propositional variables V , a literal is either a variable x ∈ V or its
negation ¬x where v(x) = x and v(¬x) = x denotes the variable of a literal.
A clause Ci is a disjunction over literals where {x,¬x} �⊆ Ci for all x ∈ V .
For clauses Ci, a propositional formula φ := C1 ∧ . . . ∧ Cn is in conjunctive
normal form (CNF). For a CNF φ and a literal l, the set of occurrences of l is
O(l) := {C | C ∈ φ, l ∈ C}.

A quantified boolean formula (QBF) ψ := Q1S1 . . . QnSn. φ in prenex con-
junctive normal form (PCNF) consists of a CNF φ over a set of variables V
and a quantifier prefix Q1S1 . . . QnSn. The quantifier prefix is a linearly ordered
set of scopes Si forming a partition on V . A scope Si is existential (Qi = ∃)
if it is associated with an existential quantifier and universal (Qi = ∀) other-
wise. For scopes Si and Si+1, Qi �= Qi+1 for 1 ≤ i < n. For a literal x with
v(x) ∈ Si, q(x) := Qi is the quantifier type of (the variable of) x. For clause C
and Q ∈ {∀, ∃}, LQ(C) := {l ∈ C | q(l) = Q}. For literals l, k with v(l) ∈ Si and
v(k) ∈ Sj , l ≤ k if, and only if i ≤ j for 1 ≤ i, j ≤ n.

Given CNF φ, an assignment is a mapping A : V → {true, false} from vari-
ables in φ to truth values. An assignment m is a CNF-model of φ, written as
m |= φ, if every clause in φ is satisfied under m.

We introduce QBF semantics based on tree-like models as in [26]. This allows
for a simpler definition of necessary assignments (see below) and proofs. In this
framework, a necessary assignment is a property of all models of a QBF. This
cannot easily be expressed within standard QBF semantics based on recursive
evaluation like e.g. in [7]. Further, relying on tree-like models, our results can
naturally be generalized to QBF solving using dependency schemes [23].
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Given a PCNF ψ := Q1S1 . . . QnSn. φ. An assignment tree T is a tree of
assignments according to the following restrictions. Every node N in T except
the root represents a truth assignment to a variable v in V . A node has at
most (exactly) one sibling if it assigns a truth value to an existential (universal)
variable. Two siblings altogether denote assignments true and false. Every path
P from the root to a leaf of T corresponds to an assignment A for variables in
CNF φ. A node N for variable v is an ancestor of another node N ′ for variable
v′ in P if and only if v ≤ v′. That is, assignments along every path P respect
the quantifier ordering. An assignment tree m is a PCNF-model of ψ, written as
m |= ψ, if every path P in m is a CNF-model of φ.

A CNF is satisfiable if it has a CNF-model. Two CNFs φ and φ′ are model-
equivalent, written as φ ≡m φ′, if and only if for all assignments m, m |= φ if
and only if m |= φ′. Two CNFs φ and φ′ are satisfiability-equivalent, written
as φ ≡s φ

′, if and only if φ is satisfiable then φ′ is satisfiable and vice versa.
A transformation of a CNF φ into a CNF φ′ is sound if and only if φ ≡m φ′.
Satisfiability, model-equivalence, satisfiability-equivalence and soundness with
respect to PCNFs are defined accordingly. The following properties are well
known.

Proposition 1 ([21,26]). Given PCNF ψ := Q1S1 . . .QnSn. φ and CNF φ′

where φ ≡m φ′. Let ψ′ = Q1S1 . . .QnSn. φ
′. Then ψ ≡m ψ′.

Proposition 2 (e.g. [7]). For CNF φ and literal x, φ ∧ {¬x} is unsatisfiable
iff φ ≡m φ ∧ {x}.

Given PCNF ψ and xi ∈ V . Assignment xi �→ t, where t ∈ {false, true}, is
necessary for satisfiability of ψ iff xi �→ t is part of every path in every PCNF-
model of ψ.

Given PCNF ψ := Q1S1 . . . QnSn. φ, the assignment of literal l with v(l) ∈ Si

yields the formula ψ[l] := Q1S1 . . . QiS
′
i . . . QnSn. φ

′ where S′
i := Si \ {v(l)} and

clauses O(l) and literals ¬l in O(¬l) are deleted in φ′.
For clause C, universal reduction is denoted by UR(C) := C \ {lu ∈ L∀(C) |

∀le ∈ L∃(C), le < lu}. A clause C ∈ φ where UR(C) = {l} is unit and ψ ≡s ψ[l]
[6,8]. For a QBF ψ := Q1S1 . . . QnSn. φ, a literal l where O(l) �= ∅ and O(¬l) = ∅
is pure [8]: if q(l) = ∃ then ψ ≡s ψ[l], and if q(l) = ∀ then ψ ≡s ψ[¬l].

We assume that clauses in a PCNF are fully reduced by UR. For clauses C1, C2

with v ∈ L∃(C1),¬v ∈ L∃(C2), the Q-resolvent C, written as (C1, C2)  v C, is
defined as follows [6]: let C′ := (C1 ∪ C2) \ {v,¬v}. If {x,¬x} ⊆ C′ for x ∈ V
then no Q-resolvent exists, otherwise C := UR(C′). We write ψ  ∗ C if clause
C can be derived from QBF ψ by Q-resolution. Adding Q-resolvents to a PCNF
yields a model-equivalent formula.

Lemma 1 ([26]). Given PCNF ψ and clause C. Then ψ ∧C2 ≡m ψ ∧UR(C).

Proof. Our definition of PCNF-models differs from the one in [26]. There, nodes
N assigning existential variables do not have a sibling. The proof in [26] also

2 For PCNF ψ := Q1S1 . . . QnSn. φ, let ψ ∧ C denote Q1S1 . . . QnSn. (φ ∧ C).
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applies to our semantical framework. The subtree rooted at a sibling of such node
N can be deleted, and the resulting assignment tree is still a PCNF-model. ��

Lemma 2. Given PCNF ψ. If ψ  ∗ C then ψ ≡m ψ ∧ C.

Proof. Q-resolution can be regarded as a combination of resolution for proposi-
tional logic and UR. Adding propositional resolvents yields a model-equivalent
formula [7]. The claim then follows from Lemma 1 and Proposition 1. ��

Given PCNF ψ and a literal x, ψ′ := QBCP(ψ, x) denotes a formula obtained
from ψ[x] by applying UR, unit clause and pure literal rule. Literal x is called
an assumption. For clause C, C ∈ QBCP(ψ, x) if ψ′ = QBCP(ψ, x) and C ∈ ψ′.
We write ∅ ∈ QBCP(ψ, x) if the empty clause can be obtained.

3 SAT-Based FL

First we review a well-known technique for inferring unit clauses from the CNF
part of a PCNF based on propositional satisfiability testing. This has already
been applied to QBF [21]. We include it here as a reference for our approaches
introduced in Sections 4 and 5. We show that these approaches have different
effectiveness in Sections 6 and 7.

A general approach for preprocessing PCNFs can be obtained from QBF
semantics and model-equivalence of CNFs. When combining Propositions 1 and
2, a SAT solver can be used to check if a unit clause is implied by the CNF part
of a PCNF for QBF preprocessing [21].

Whereas propositional satisfiability testing allows to exploit Proposition 2 to
full extent, a subset of all necessary assignments of a CNF can be identified by
failed literal detection (FL) for SAT [1,9,18]. FL is a common approach in SAT
which can be carried out in polynomial time based on BCP3 as follows.

Proposition 3. Given a CNF φ and literal x. If ∅ ∈ BCP(φ, x) then φ ≡m

φ ∧ {¬x}. Literal x is called a failed literal.

If x is a failed literal then every CNF-model of φ must set x to false.

Definition 1. Given a PCNF ψ and a literal x. If ψ ≡m ψ ∧ {x} then ¬x is
called a failed literal. Assigning x to true is a necessary assignment for ψ.

Example 1 pointed out that Proposition 3 is not directly applicable to QBF
because satisfiability might be destroyed. The reason is that assumptions are
made out of quantifier ordering. This can be regarded as modifying the quantifier
prefix. Carrying out QBCP(ψ, y) in Example 1 is similar to shifting y to the
leftmost position in the prefix, yielding ∃y∀x prior to assigning it. This might
allow applications of UR impossible based on the original prefix.

In the following we introduce two approaches to detect necessary assignments
by FL for QBF similar to Proposition 3, i.e. based on QBCP. The goal is to have
3 “BCP” denotes QBCP without pure literal rule and universal reduction.
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a polynomial-time alternative to satisfiability testing as in Propositions 1 and
2. However, as shown in Section 6, it turns out that the three approaches are
actually incomparable. In the following section we apply FL with QBCP to an
abstraction of the original PCNF.

4 Abstraction-Based FL

In an early approach of FL for QBF presented in [22], QBCP included neither UR
nor pure literal rule. This results in limited propagation power as both UR and
universal pure literals possibly trigger additional unit literals. We conjecture that
such restrictions of QBCP combined with a special treatment of empty clauses
like in [22] are sufficient to ensure soundness of FL.

In our approaches of FL for QBF we allow the full set of rules in QBCP as
defined in Section 2. In the following, we analyze special cases where FL based
on QBCP is sound. These results will then be used to prove soundness of FL
when QBCP is applied to an abstraction of the original PCNF.

Lemma 3. Given ψ := Q1S1 . . .QnSn. φ and literal x where v(x) ∈ S1. If
∅ ∈ QBCP(ψ, x) then ψ ≡m ψ ∧ {¬x}.

Proof. Since x ∈ S1 we assume that x is assigned first on every path in every
model of ψ. By definition of QBCP , ψ[x] ≡s ∅, i.e. ψ does not have a model
where x is assigned true on any path. Therefore, x must be assigned false on all
paths in all models m (if any) of ψ. Hence ψ ≡m ψ ∧ {¬x}. ��

Due to Lemma 3, FL with QBCP and assumptions from the leftmost scope is
sound. For universal assumptions, this can be generalized to arbitrary scopes.

Lemma 4. Given PCNF ψ := Q1S1 . . . QnSn. φ and literal x where v(x) ∈ Si

and Qi = ∀. If ∅ ∈ QBCP(ψ, x) then ψ is unsatisfiable.

Proof. The PCNF where QBCP is carried out can be regarded as ψ′ := ∀xQ1S1

. . . Qi−1Si−1∀(Si \ {x}) . . .QnSn. φ. Note the change in the prefix by moving
∀x to the front. If ∅ ∈ QBCP(ψ′, x) then ψ′ is unsatisfiable due to Lemma 3.
Then ψ is unsatisfiable as well because if a PCNF with prefix pattern ∀x . . .∃y
(pattern of ψ′) is unsatisfiable then also with ∃y . . . ∀x (pattern of ψ). ��

We introduce an approach where FL is carried out on an abstraction of the
original PCNF. The abstraction affects the quantifier prefix.

Definition 2 (Quantifier Abstraction). For ψ := Q1S1 . . .Qi−1Si−1QiSi . . .
. . . QnSn. φ, the quantifier abstraction of ψ with respect to Si is Abs(ψ, i) :=
∃(S1 ∪ . . . ∪ Si−1)QiSi . . . QnSn. φ.

By Definition 2 variables from scopes smaller than Si are treated as existentially
quantified. This gives an overapproximation of ψ with respect to PCNF-models,
following from the definition in Section 2.

Corollary 1. For PCNF ψ and PCNF-model m: if m |= ψ then m |= Abs(ψ, i).
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In practice, FL with assumptions from Si and QBCP is carried out on Abs(ψ, i)
instead of ψ. This is called abstraction-based FL. Unit clauses learnt by FL on
Abs(ψ, i) can then be added to the original PCNF ψ (see Example 2 below).
‘First we prove soundness of abstraction-based FL with respect to Abs(ψ, i).
Lemma 5. Given PCNF ψ := Q1S1 . . .QnSn. φ and literal x where v(x) ∈ Si.
If ∅ ∈ QBCP(Abs(ψ, i), x) then Abs(ψ, i) ≡m Abs(ψ, i) ∧ {¬x}.

Proof. We distinguish cases by the quantifier type of x.
If q(x) = Qi = ∃ then Abs(ψ, i) = ∃(S1 ∪ . . . ∪ Si−1 ∪ Si) . . . QnSn. φ. Due to

Lemma 3, Abs(ψ, i) ≡m Abs(ψ, i) ∧ {¬x}.
If q(x) = Qi = ∀ then Abs(ψ, i) = ∃(S1 ∪ . . . ∪ Si−1)∀Si . . .QnSn. φ. If

∅ ∈ QBCP(Abs(ψ, i), x) then Abs(ψ, i) is unsatisfiable due to Lemma 4, and so
is Abs(ψ, i) ∧ {¬x}. ��
If QBCP on Abs(ψ, i) with assumption x where v(x) ∈ Si yields the empty
clause then x is a failed literal and clause {¬x} can be added to Abs(ψ, i). Due
to Corollary 1 and the second case of the proof of Lemma 5, Abs(ψ, i) preserves
an intuitive property of universal quantification in ψ: if one branch of a universal
variable cannot lead to a solution then ψ is unsatisfiable. Relying on Corollary 1
and Lemma 5, we prove that failed literals obtained on Abs(ψ, i) are also sound
with respect to original PCNF ψ.

Theorem 1. Given PCNF ψ := Q1S1 . . . QnSn. φ and literal x where v(x) ∈ Si.
If ∅ ∈ QBCP(Abs(ψ, i), x) then ψ ≡m ψ ∧ {¬x}.

Proof. We show both directions of ψ ≡m ψ ∧ {¬x}. If m |= ψ ∧ {¬x} then also
m |= ψ since ψ is less constrained than ψ ∧ {¬x}.

For the other direction assume ∅ ∈ QBCP(Abs(ψ, i), x). Let m be a PCNF-
model of ψ, i.e. m |= ψ (if no such m exists then the claim follows immediately).
By Corollary 1, also m |= Abs(ψ, i). By Lemma 5, also m |= Abs(ψ, i) ∧ {¬x}.
Clause {¬x} is satisfied under m. Therefore, m |= ψ ∧ {¬x}. ��

Example 2. Given PCNF4 ψ := ∀a1∃e2,e3∀a4∃e5. {a1, e2}, {¬a1, e3}, {e3,¬e5},
{a1, e2,¬e3}, {¬e2, a4, e5}. We have ∅ ∈ QBCP(Abs(ψ, 2),¬e3) since the as-
sumption will make clauses {¬a1, e3} and {e3,¬e5} unit because a1 is treated as
existential. Clause {¬e2, a4, e5} becomes unit due to UR. Finally clause {a1, e2}
is empty and unit clause {e3} is learnt.

Although abstraction-based FL uses all QBCP rules in contrast to [22], in general
this does not result in full propagation power of QBCP on Abs(ψ, i). Depending
on i, i.e. the quantifier level of the current assumption, Abs(ψ, i) typically has
fewer universal variables than ψ. This influences detection of unit literals by UR
and pure literal rule. Hence we expect more powerful QBCP for assumptions
from S1 than from Sn. For assumptions from different scopes, our approach is
more dynamic than restricting the set of QBCP rules in advance as in [22].
4 Unless stated otherwise, all PCNFs in examples provided in the paper are satisfiable.

For brevity, pure literal detection is ignored and CNFs (clauses) are presented as sets
of clauses (literals).
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5 QBCP-Guided Q-Resolution

Abstraction-based FL from the previous section allows to apply QBF-specific
inference rules like UR and universal pure literals to a larger extent than pre-
vious approaches where QBCP rules were restricted. However, it still lacks full
propagation power as could be obtained on the original PCNF.

In this section we present an approach for FL which operates on the original
PCNF, thus taking full benefits from QBF-specific QBCP rules. Because this
might in general destroy satisfiability as pointed out in Example 1, we apply Q-
resolution to validate failed literals detected by QBCP. This approach is inspired
by CDCL in search-based QBF solvers [12,29].

An assignment A is generated by making an assumption x and carry-
ing out QBCP with the full set of inference rules on the original PCNF. If
∅ ∈ QBCP(ψ, x) then candidate clauses for Q-resolution are selected from ψ
entirely with respect to assignment A, i.e. its implication graph like in CDCL
for SAT solving [27]. If the unit clause {¬x} corresponding to the negated as-
sumption can be deduced in that way then x is a valid failed literal. This is
called QBCP-guided Q-resolution. Soundness follows right from Lemma 2. The
following example shows a nontrivial application.
Example 3. Given PCNF ψ := ∃e1,e2∀a3∃e4,e5. {a3, e5}, {¬e2, e4}, {¬e1, e4},
{e1, e2,¬e5}. With assumption ¬e4 we get ∅ ∈ QBCP(ψ,¬e4) since {¬e1},
{¬e2} and {¬e5} become unit. Finally {a3, e5} is empty by UR. The negated
assumption {e4} is then derived by resolving clauses in reverse-chronological
order as they were affected by assignments: ({a3, e5}, {e1, e2,¬e5})  {e1, e2},
({e1, e2}, {¬e2, e4})  {e1, e4}, ({e1, e4}, {¬e1, e4})  {e4}.
Note that selecting Q-resolution candidates based on the current assignment
generated by QBCP is only a heuristic. That is, even when it fails the negated as-
sumption can possibly be deduced by selecting arbitrary clauses for Q-resolution.

Example 4. Given PCNF ψ := ∀a1∃e2∀a3∃e4. {a1, e2}, {e2, a3, e4}, {e2, a3,¬e4}.
We have ∅ ∈ QBCP(ψ,¬e2) immediately by UR in the first clause, but e2
obviously cannot be produced by Q-resolution from that single clause affected
by the assignment. However, we have ({e2, a3, e4}, {e2, a3,¬e4})  ∗ {e2}.
Due to Lemma 4 unsatisfiability can be concluded without Q-resolution if
∅ ∈ QBCP(ψ, x) for x ∈ Si whereQi = ∀. This property is similar to abstraction-
based FL but we expect more QBF-specific inferences in QBCP with this ap-
proach. Further the empty clause might be derived when validating a failed
literal by Q-resolution. In this case, unsatisfiability follows immediately.
Example 5. Given PCNF ψ := ∀a1∃e2,e3,e4,e5. {e2,¬e5}, {¬e2, e5}, {a1, e2},
{¬a1, e3}, {¬e3, e4}, {¬e3,¬e4}. We have ∅ ∈ QBCP(ψ, e2) because {a1, e2} is
satisfied which makes {a1} pure and {e3} unit in {¬a1, e3}. Finally {e4} is
unit and {¬e3,¬e4} becomes empty. Q-resolution as in Example 3 produces the
empty clause: ({¬e3,¬e4}, {¬e3, e4})  {¬e3}, ({¬e3}, {¬a1, e3})  ∅. Note that
∅ �∈ QBCP(Abs(ψ, 2), e2) because {e3} does not become unit since the universal
pure literal rule is not applicable as before.
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6 Comparing FL Approaches

We presented one approach for FL based on SAT testing and two based on QBCP
to find necessary assignments in PCNFs: SAT-based FL according to Proposition
2 (Section 3), abstraction-based FL (Section 4) and QBCP-guided Q-resolution
(Section 5). As argued above, the last two benefit from QBF-specific inferences
in QBCP increasingly in that order. This is due to larger numbers of universal
variables in the formulae where FL is applied to.

In the following we compare the three approaches according to their effective-
ness. We name examples which demonstrate that they are incomparable: one
approach is able to detect necessary assignment the other one cannot.

Proposition 4. Abstraction-based FL and QBCP-guided Q-resolution are in-
comparable with respect to detecting necessary assignments.

Example 6. For the PCNF from Example 2 unit clause {e3} cannot be derived
by Q-resolution, i.e. neither by QBCP-guided Q-resolution nor when allowing
arbitrary candidate clauses. This is in contrast to abstraction-based FL. Note
that assigning e3 to true is necessary as can be seen from a semantical evaluation.
Every path in every PCNF-model has to assign e3 to true.

Example 7. For the PCNF from Example 3 we have ∅ �∈ QBCP(Abs(ψ, 3),¬e4)
which is in contrast to QBCP-guided Q-resolution. Due to abstraction UR is
not applicable to make {a3, e5} empty. Similarly, clause {e4} cannot be inferred
when UR is excluded from QBCP rules as in [22].

Note that Proposition 4 severely affects QBF solvers relying on Q-resolution for
conflict-driven clause learning (CDCL). For certain PCNFs no such solver will
ever be able to deduce all necessary assignments.

The following result was also obtained in the more general context of clause
learning when SAT solving was combined with search-based QBF solving [24].

Proposition 5. SAT-based FL and QBCP-guided Q-resolution are incompara-
ble with respect to detecting necessary assignments.

Example 8. Given PCNF ψ := ∃e1∀a2∃e3. {e1, a2, e3}, {e1, a2,¬e3}, {e1,¬a2, e3},
{e1,¬a2,¬e3}. A SAT solver will find out that the CNF with assumption ¬e1 is
unsatisfiable, hence {e1} can be learnt. This is possible neither by QBCP-guided
Q-resolution nor by abstraction-based FL.

Example 9. For the PCNF from Example 3, SAT-based FL cannot learn {e4}
because the CNF has a model with assumption ¬e4.

Proposition 6. SAT-based FL and abstraction-based FL are incomparable with
respect to detecting necessary assignments.

Example 10. For the PCNF from Example 2, SAT-based FL cannot detect {e3}
because the CNF has a model with assumption ¬e3.

Example 11. See Example 8.
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7 Experiments

We implemented the three approaches of FL for QBF presented in Sections 3
to 5 in our novel preprocessor QxBF5. The idea is to profit from all approaches
based on the observations from the previous section. The tool operates in rounds
with three phases. First, QBCP with the full set of QBF-specific rules is carried
out on the original formula, including any unit clauses learnt in earlier rounds.
The second phase consists of either abstraction-based FL or QBCP-guided Q-
resolution. Finally, SAT-based FL is applied in the third phase because it turned
out to be most effective in practice (see below). Rounds are run in cyclic fashion
until completion unless a time limit is reached.

The SAT solver PicoSAT [3] is used for SAT-based FL by Proposition 2. This
allows for incremental SAT solving and optimizations based on CNF-models to
reduce the number of SAT solver calls like in [21]. Additionally, unit clauses
learnt by PicoSAT are propagated using QBF-specific QBCP rules within QxBF.

Table 1 compares the impact of different FL approaches on the performance of
QBF solvers based on search (DepQBF [17] and QuBE7.1 [10]) and variable elim-
ination (Quantor [2], squolem [15] and Nenofex [16]) using all benchmarks from
QBFEVAL’10 [20]. For QuBE7.1 internal preprocessing was disabled (QuBE7.1-
np). We used latest publicly available versions of solvers except internal versions
of Nenofex and DepQBF, all without proprietary preprocessing6. Results using
sQueezeBF [11], a state-of-the-art QBF preprocessor, are reported for reference.
We cannot expect FL to be competitive with sQueezeBF as the latter applies a
larger pool of inference rules (details are given below).

We combined abstraction-based FL and QBCP-guided Q-resolution with
SAT-based FL (lines “ABS+SAT” and “QRES+SAT”) in rounds and phases as
described above. At most 40 seconds were assigned to each approach, totalling
a maximum of 80 seconds for entire preprocessing. Additionally, heuristic limits
were imposed on numbers of propagations in QBCP and decisions in PicoSAT.
Performance of elimination-based solvers increases considerably both in terms of
solved formulae and run time (lower part of table). Results are less impressive for
search-based solvers. Further, they only differ slightly with respect to individual
FL approaches when applied to DepQBF (middle part of table), with a limit of 80
seconds each. We combined only “ABS+SAT” with elimination-based solvers as
the performance with “QRES+SAT” is likely similar. We did not apply “SAT”
alone due to incomparability observed in Section 6. DepQBF performs best with
SAT-based FL but also preprocessing times are larger. We argue that tuning the
run time of abstraction-based FL and QBCP-guided Q-resolution while main-
taining effectiveness is easier in practice. Run time of QBCP is close to linear
with respect to formula size in contrast to SAT solving time in SAT-based FL.

Our FL approaches are not competitive compared to sQueezeBF. In the
first line of Table 1, we allowed 900 seconds altogether for the combination

5 Project web page: http://fmv.jku.at/qxbf/
6 Setup: Ubuntu Linux 9.04, Intel R©Q9550 2.83 GHz with 900 seconds / 3GB total

time and memory limit. Exceeding the memory limit is counted as a time out.

http://fmv.jku.at/qxbf/


Failed Literal Detection for QBF 269

Table 1. Solver performance with(out) time-limited failed literal preprocessing. Times
are average total run times including preprocessing and time outs, with average pre-
processing times in parentheses. The leftmost column indicates FL approaches: no
preprocessing (“None”), SAT-based FL (“SAT”), abstraction-based FL (“ABS”) and
QBCP-guided Q-resolution (“QRES”).

QBFEVAL’10: 568 formulae

Preprocessing Solver Solved Time (Preproc.) SAT UNSAT

sQueezeBF
DepQBF

435 233.28 (36.94) 201 234
sQueezeBF+(ABS+SAT) 434 239.84 (42.79) 201 233

SAT

DepQBF

379 322.31 (7.17) 167 212
QRES+SAT 378 322.83 (6.22) 167 211
ABS+SAT 378 323.19 (7.21) 167 211

ABS 375 327.64 (3.33) 168 207
QRES 374 327.63 (1.83) 167 207
None 372 334.60 (—) 166 206

ABS+SAT
QuBE7.1-np

320 432.22 (7.21) 143 177
None 318 434.69 (—) 143 175

ABS+SAT
Quantor 229 553.65 (7.21) 112 117

Nenofex
224 553.37 (7.21) 104 120

None
211 573.65 (—) 103 108

Quantor 203 590.15 (—) 99 104
ABS+SAT

squolem
154 658.28 (7.21) 63 91

None 124 708.80 (—) 53 71

of sQueezeBF and DepQBF because the former does not support setting re-
source limits. In this experiment, sQueezeBF alone solved 39 formulae and timed
out on 15. Overall performance decreases slightly (second line) if “ABS+SAT”
with 80 seconds time limit as before is applied additionally to formulae which
were simplified but not solved by sQueezeBF. However, now 64 formulae were
solved solely by preprocessing. This indicates that “ABS+SAT” is incompara-
ble to sQueezeBF at least from a practical perspective. From the 514 formulae
simplified but not solved by sQueezeBF, 489 were not solved by “ABS+SAT”
alone. Among them, still 147 assignments were fixed on average (median 20) by
“ABS+SAT”. Further, the total number of remaining (i.e. neither eliminated nor
assigned) variables in all 489 formulae was reduced by 2% due to “ABS+SAT”.

Table 2 compares the effectiveness of the three FL approaches in more de-
tail. We considered formulae from QBFEVAL’10 where all approaches ran until
completion within 900 seconds but, differently from Table 1, neither with prop-
agation nor decision limits. In general FL fixes substantially more assignments
than QBCP on the original formula (column “None”). Abstraction-based and
SAT-based FL are best according to average and median numbers of fixed as-
signments, but the latter is more costly in terms of run time. The large difference
between average and median values is due to few benchmarks from (blackbox)
model checking (instances “biu*” and “*BMC*”, see also below) where SAT-based
FL fixed fewer assignments. Further, QBCP-guided Q-resolution performs fewer
propagations per assumptions in QBCP than abstraction-based FL. The rea-
son is that the former typically detects spurious empty clauses earlier due to
universal reduction. This also results in smaller run times.

Motivated from incomparability observed in Section 6, we compared the
sets of assignments that were fixed by different FL approaches in Table 3.



270 F. Lonsing and A. Biere

Table 2. Average and median run times, fixed assignments, and propagations per
assumption for FL approaches. “None” is QBCP on original formula only.

QBFEVAL’10: 524 formulae completed by all

Preprocessing None ABS QRES SAT
Avg. Fixed 607.17 730.31 724.10 715.77
Med. Fixed 103.5 137.00 135.00 181.50
Avg. Time 0.02 3.19 0.76 10.80
Med. Time 0.00 0.16 0.02 0.20

Avg. Props/As — 118.80 51.08 —
Med. Props/As — 40.01 6.68 —

We considered all three pairwise combinations. Like in Table 2, we focused on
formulae where both FL approaches of a pair ran until completion within 900
seconds. For each pairwise combination, only formulae where sets of fixed assign-
ments (FA) were different were taken into account (first line). We then separated
formulae by larger numbers of unique FAs (second line), i.e. FAs detected by one
approach but not by the other. For example in section “ABS vs. QRES”, on 121
formulae abstraction-based FL found more unique FAs than QBCP-guided Q-
resolution. Equal numbers of unique FAs do not show up in that statistics. The
third, fourth and fifth line report total, average and median numbers of unique
FAs over formulae with different FAs. For example in section “ABS vs. QRES”,
abstraction-based FL detected 3752 (average 28.86, median 1) unique FAs com-
pared to 58 (average 0.44, median 0) by QBCP-guided Q-resolution. The last
two lines show average and median differences between unique FAs detected by
left and right approaches in each section. Larger values indicate that the left
approach is better than the right one. For example in section “ABS vs. QRES”,
for each of the 130 considered formulae we subtracted the number of unique FAs
detected by abstraction-based FL from the one of QBCP-guided Q-resolution.
On average abstraction-based FL detected 28.41 more unique FAs than QBCP-
guided Q-resolution whereas the median is 1.

In general average values suggest that abstraction-based FL is better than
QBCP-guided Q-resolution and SAT-based FL (sections “ABS vs. QRES” and
“ABS vs. SAT”) and that QBCP-guided Q-resolution is better than SAT-based
FL (section “QRES vs. SAT”). But median values indicate the opposite ten-
dency. As in Table 2, few benchmarks account for skew statistics in Table 3. For
example in section “ABS vs. QRES”, abstraction-based FL found 1603 unique

Table 3. Pairwise comparison of FL approaches (complete runs as in Table 2)

QBFEVAL’10: formulae with different fixed assignments (FAs)

ABS vs. QRES ABS vs. SAT QRES vs. SAT
Formulae with Diff. FAs 130 183 220

Formulae wrt. Unique FAs 121 9 57 126 36 180
Total Unique FAs 3752 58 24268 16648 24237 19874
Avg. Unique FAs 28.86 0.44 132.61 90.97 110.16 90.33
Med. Unique FAs 1 0 0 13 0 5

Avg. Diff. in Unique FAs 28.41 41.63 19.83
Med. Diff. in Unique FAs 1 -14 -4.5
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FAs on instance lognBWLARGEB1-shuffled compared to 0 by QBCP-guided Q-
resolution. In section “ABS vs. SAT”, abstraction-based FL found between 1000
and 7000 unique FAs on some “biu*” instances from bounded model checking
compared to 0 by SAT-based FL. In contrast to this, SAT-based FL found 2668
on instance c3 BMC p1 k256-shuffled compared to 0 by abstraction-based FL.
Similar observations can be made for section “QRES vs. SAT”, hence Table 3
confirms incomparability results from Section 6.

8 Conclusion

We studied failed literal detection (FL) for QBF to infer necessary assignments.
Whereas a common approach based on SAT solving turned out to be effective,
it suffers from exponential run time and requires careful tuning in practice. We
presented two alternatives based on abstraction and Q-resolution which rely on
QBCP. The three approaches are incomparable: there are QBFs where a neces-
sary assignment can be detected by one approach but not by the other. Experi-
ments with our implementation in QxBF confirmed that observations. Moreover,
abstraction-based FL is a polynomial-time alternative to SAT-based FL. This
enables efficient dynamic applications in search-based QBF solvers. Incompara-
bility suggests that FL could benefit from combinations of all three approaches in
portfolio-style preprocessors. Combinations of FL with other preprocessing tech-
niques for QBF are future work. Further, it is unclear if clause learning in QBF
solvers could be improved. The common implementations based on Q-resolution
are not optimal due to incomparability and results from [24].

We want to thank Aina Niemetz and Mathias Preiner for implementing parts
of QxBF, Martina Seidl for discussions, and the reviewers for valuable comments.
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Abstract. Motivated by our own industrial users, we attack the fol-
lowing challenge that is crucial in many practical planning, scheduling
or timetabling applications. Assume that a solver has found a solution
for a given hard problem and, due to unforeseen circumstances (e.g., re-
scheduling), or after an analysis by a committee, a few more constraints
have to be added and the solver has to be re-run. Then it is almost always
important that the new solution is “close” to the original one.

The activity-based variable selection heuristics used by SAT solvers
make search chaotic, i.e., extremely sensitive to the initial conditions.
Therefore, re-running with just one additional clause added at the end
of the input usually gives a completely different solution. We show that
naive approaches for finding close solutions do not work at all, and that
solving the Boolean optimization problem is far too inefficient: to find
a reasonably close solution, state-of-the-art tools typically require much
more time than was needed to solve the original problem.

Here we propose the first (to our knowledge) approach that obtains
close solutions quickly. In fact, it typically finds the optimal (i.e., closest)
solution in only 25% of the time the solver took in solving the original
problem. Our approach requires no deep theoretical or conceptual in-
novations. Still, it is non-trivial to come up with and will certainly be
valuable for researchers and practitioners facing the same problem.

1 Introduction

For many practical problems, good encodings into propositional logic exist that
make them amenable to be solved with SAT. Due to techniques such as conflict-
driven backjumping, lemma learning and restarts, state-of-the-art SAT solvers
can in many cases efficiently solve large and hard real-world instances. For
problems that have no good or compact direct encodings into propositional
logic, several extensions of SAT are emerging. One of these extensions is SAT
Modulo Theories (SMT), where atoms need not be propositional symbols, but
may belong to theories, like, for example, linear arithmetic, as in the formula
x ≤ 2 ∧ (x+y ≥ 10 ∨ 2x+3y ≥ 30) ∧ y ≤ 4. In SMT, a SAT solver cooper-
ates with theory solvers that can handle conjunctions of theory atoms (see, e.g.,
[NOT06] for details). Another extension of SAT is the Lazy Clause Generation
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approach of [OSC09], where new propositional clauses are generated on demand
each time a given constraint propagates, thus frequently reducing the number of
clauses needed in comparison with a direct a priori SAT encoding.

SAT and SAT-like solving approaches almost universally make use of activity-
based search heuristics, which roughly speaking, select the variables that have
been involved in many recent conflicts. A drawback of activity-based heuristics
is that they make the search behave chaotically (explaining why is out of the
scope of this paper), i.e., extremely sensitive to the initial conditions, the so-
called butterfly effect.

But in practice it is almost always important that the new solution is “close”
to the original one. For example, analyzing a solution may take time and effort
and include discussions with other people. If someone, inspired by the solution,
suggests adding a few new constraints, it is undesirable that a new solution for
the extended problem has nothing in common with what was analyzed previ-
ously. Something similar happens in the context of rescheduling, where a solution
that was intended to be used for a period of time has to be adapted due to un-
foreseen circumstances: changes should be minimal since many resources (people,
vehicles, machines) are already allocated according to the original solution.

In this paper, Section 2 gives a short introduction to state-of-the-art SAT
solving. In Section 3 we accurately define the problem and we discuss the distance
metrics, e.g., what it means for a solution to be close. Section 4 presents the
experimental setting and the large set of real-world benchmarks used along the
paper. In particular, in Section 5 we use them to experimentally demonstrate
the extremely chaotic behavior of SAT Solvers, and in Section 6 to evaluate a
naive attempt for finding close solutions inspired by local search methods.

Since this method does not solve the problem, in Section 7 we introduce a new
approach. It combines a polarity heuristic, incremental SAT and branch-and-
bound. In Section 8 we compare our method with (i) SAT-based optimization
and Max-SAT solvers; (ii) modeling the problem as a 0-1 integer optimization
problem and using CPLEX on it. As we shall see, approaches (i) and (ii) behave
very poorly,1 but our new approach obtains close solutions very quickly. In fact,
it typically finds the optimal (i.e., closest) solution in only 25% of the time the
solver takes in solving the original problem.

Finally, Section 9 gives a factor analysis of our approach: experiments reveal
that all ingredients contribute. Related work is discussed and conclusions are
given in Section 10.

2 State-of-the-Art SAT Solvers

Let P be a fixed finite set of propositional symbols. If p ∈ P , then p and ¬p
are literals of P . The negation of a literal l, written ¬l, denotes ¬p if l is p, and
p if l is ¬p. A clause is a disjunction of literals l1 ∨ . . . ∨ ln. A unit clause is a
1 An earlier (rejected) submission about this work failed to explain this adequately

and to show this experimentally for approach (i). In addition, here we also consider
approach (ii) and compare with more related work.
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clause consisting of a single literal. A (CNF) formula is a conjunction of one or
more clauses C1 ∧ . . . ∧ Cn. A (partial truth) assignment M is a set of literals
such that {p,¬p} ⊆ M for no p. A literal l is true in M if l ∈ M , is false in
M if ¬l ∈ M , and is undefined in M otherwise. A literal is defined in M if it is
either true or false in M . A clause C is true in M if at least one of its literals
is true in M . It is false in M if all its literals are false in M , and it is undefined
in M otherwise. A formula F is true in M , denoted M |= F , if all its clauses
are, and then M is a model of F . If F has no models then it is unsatisfiable. If
F and F ′ are formulas, we write F |= F ′ if F ′ is true in all models of F . If C
is a clause l1 ∨ . . . ∨ ln, we write ¬C to denote the formula ¬l1 ∧ . . . ∧ ¬ln.

Following [NOT06], here we say that a state in a SAT solver is a pair of the
form M || F , where F is a finite set of clauses, and M is a (partial) assignment,
where a literal l may be annotated as a decision literal (see below), writing it as
ld. A clause C is a conflict in a state M || F,C if M |= ¬C. A SAT solving
procedure can be modeled by a set of rules over such states:

UnitPropagate :

M || F, C ∨ l =⇒ M l || F, C ∨ l if
{
M |= ¬C
l is undefined in M

Decide :

M || F =⇒ M ld || F if
{
l or ¬l occurs in a clause of F
l is undefined in M

Fail :

M || F, C =⇒ Fail if
{
M |= ¬C
M contains no decision literals

Backjump :

M ld N || F, C =⇒ M l′ || F, C if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M ld N |= ¬C, and there is
some clause C′ ∨ l′ such that:
F,C |= C′ ∨ l′ and M |= ¬C′,
l′ is undefined in M , and
l′ or ¬l′ occurs in F or in M ld N

Learn :

M || F =⇒ M || F, C if
{

each atom of C occurs in F or in M
F |= C

Forget :
M || F, C =⇒ M || F if

{
F |= C

For deciding the satisfiability of an input formula F , one can generate an
arbitrary derivation ∅ || F =⇒ . . . =⇒ Sn, where Sn is a final state
(no rule applies). Under simple conditions, this always terminates. Moreover, for
every derivation ending in a final state Sn, (i) F is unsatisfiable iff Sn is Fail ,
and (ii) if Sn is of the form M || F then M is a model of F (cf.[NOT06] for
details).

In the current state-of-the-art SAT solvers such as MiniSAT [ES04], the vari-
able selection heuristics are activity-based : roughly, Decide is done on variables
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with many occurrences in recent conflicts. In this paper we also consider the
choice of polarity for Decide, i.e., whether the variable is set to true or to false.

We say that a state M is at decision level n if in M there are n decision
literals. In Backjump, C′ ∨ l′ is called the backjump clause. This clause is a logi-
cal consequence to which UnitPropagate would have applied at a lower decision
level, and Backjump does precisely this, after reverting to that decision level. In
practice, the backjump clause is computed in a conflict analysis process, which
is beyond the scope of this paper.

The Learn rule corresponds to adding lemmas (clauses that are logical con-
sequences) such as the backjump clause. Since a lemma is aimed at preventing
future similar conflicts, when these conflicts are not very likely to be found again
the lemma can be removed by the Forget rule. In practice, a lemma is removed
when its activity drops below a certain threshold; the activity can be, e.g., the
number of times it becomes a unit or a conflicting clause [GN02].

3 Problem Definition

Assume we have found a solution Sol to a problem defined by a formula (a set
of clauses) F and we are given a small set of additional clauses δ. We wish to
find a solution Sol ′ that is close to Sol for the clause set F ∪ δ.

One way for defining solutions’ proximity is by considering their Hamming dis-
tance (the number of variables which take a different value). As many problems
have some hidden auxiliary variables in their SAT encoding F, it is frequently
useful to consider only the visible (i. e. non hidden) variables for the distance
definition.

Certain applications can require slightly more involved cost functions instead
of just Hamming distance. For example, a single property of the solution, seen
by the user, may depend on combinations of visible variables. For example, in
the sports scheduling problems we will use later, a property like a match may
depend on a variable mijr saying that these two teams i and j meet on round r,
and another two hir and hjr saying whether team i and j plays at home on round
r. A more accurate cost function to capture “nearness to the existing solution”
in this case would count a distance of 1 if either of mijr or hir differ from their
previous values, but not count 2 if both differ.

However, in this paper we have only considered Hamming distance cost func-
tions for simplicity in the computations. In the majority of the practical cases, a
close solution for some distance is also a close solution for the Hamming distance
(see the previous example).

4 Benchmarks

We have considered 40 instances of real-world benchmarks coming from five dif-
ferent families. Each instance consists of a different SAT formula F , the first
solution Sol , and a number of required additional constraints δ. The first four
families are for scheduling a double round-robin tournament among N (16, 20
or 24) teams:
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r16: 10 instances with about 3000 variables and around 55000 clauses each;
r20: 10 instances with around 5000 variables and 180000 clauses each;
R20: 10 instances with around 5000 variables, 140000 clauses each;
r24: 4 instances with around 9000 variables, 270000 clauses each.

All teams meet each other once in the first N − 1 weeks and again in the second
N − 1 weeks, with exactly one match per team each week. A given pair of teams
must play at the home of one team in one half, and at the home of the other
in the other half, and such matches must be spaced at least a certain minimal
number of weeks apart. Additional constraints include, e.g., that no team ever
plays at home (or away) three times in a row, other (public order, sportive, TV
revenues) constraints, blocking given matches on given days, etc. Instances are
rather different among each other, but most of them have around 10% hidden
variables. The R20 instances are also different in that their δs contain more
constraints and hence the closest solution is usually not as close (see below).

The fifth family of benchmarks has six problems tt0 - tt5 coming from
real-world hard curriculum-based course timetabling problems, from the Inter-
national Timetabling Competition, see the Barcelogic results on formulation 2
at http://tabu.diegm.uniud.it/ctt. These problems are very different from
the r ones. Their numbers of (visible) variables and clauses are:

instances variables visible variables clauses
tt0 12537 1500 71919
tt1 137688 6314 667470
tt2 60968 3150 305601
tt3 556569 9810 3372803
tt4 125029 4494 1001737
tt5 124330 3381 612475

For each instance, we consider Hamming distance on the visible variables as the
cost function. All experiments were performed on a 2.66MHz Xeon.

5 Chaotic Behavior of SAT

In this section we analyze what happens when simply re-executing the Solver
with the new input F ∪ δ. Table 1 contains results on all 40 instances.

Here Time original denotes the time (in seconds) spent to compute the orig-
inal solution Sol , Time re-execution denotes the time spent in the computation
of Sol ′. dopt denotes the minimal Hamming distance from the original solution
Sol to any solution of F ∪ δ. Time ratio is defined by the ratio between the
re-execution time and the original time.

The quality of a solution Sol ′ at distance d of Sol is a real number between 0
and 1 defined by dopt/d. For example, if dopt is 10, then a solution at distance
50 has quality 0.2.

http://tabu.diegm.uniud.it/ctt
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Table 1. Results of re-execution

Instance Time original dopt Quality Time re-execution Time ratio

r16-0 0.88 12 0.03 0.93 1.06

r16-1 1.58 14 0.04 1.27 0.80

r16-2 1.66 8 0.02 0.74 0.45

r16-3 0.97 8 0.02 1.63 1.68

r16-4 3.56 64 0.14 7.09 1.99

r16-5 0.03 12 0.22 0.04 1.33

r16-6 0.02 14 0.03 0.05 2.50

r16-7 0.4 18 0.04 0.69 1.72

r16-8 3.55 8 0.02 1.27 0.36

r16-9 1.39 12 0.03 0.61 0.44

r20-0 12.23 24 0.04 12.37 1.01

r20-1 59.6 8 0.01 20.00 0.34

r20-2 9.47 12 0.02 9.65 1.02

r20-3 12.82 14 0.03 2.83 0.22

r20-4 20.15 18 0.19 20.03 0.99

r20-5 20.48 16 0.02 8.82 0.43

r20-6 8.81 18 0.04 2.09 0.24

r20-7 10.88 20 0.03 13.46 1.24

r20-8 13.52 16 0.04 8.95 0.66

r20-9 7.04 12 0.03 12.39 1.76

R20-0 1.77 8 0.02 3.56 2.01

R20-1 2.37 88 0.17 6.30 2.66

R20-2 6.69 96 0.19 9.53 1.42

R20-3 9.46 8 0.01 5.30 0.56

R20-4 5.4 136 0.25 1.14 0.21

R20-5 1.14 1 0.00 7.04 6.18

R20-6 7.71 104 0.19 4.95 0.64

R20-7 5.45 26 0.05 0.62 0.11

R20-8 0.61 82 0.16 7.03 11.52

R20-9 7.49 94 0.16 1.78 0.24

r24-0 227.97 42 0.04 143.51 0.63

r24-1 124.28 58 0.05 315.14 2.54

r24-2 277.49 14 0.01 226.80 0.82

r24-3 200.53 8 0.01 416.14 2.08

tt-0 1.62 10 0.03 0.36 0.22

tt-1 0.96 10 0.07 0.93 0.97

tt-2 0.38 6 0.04 0.28 0.74

tt-3 16.3 8 0.01 14.20 0.87

tt-4 27.42 26 0.04 16.17 0.59

tt-5 1.75 8 0.02 1.73 0.99
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These experiments show the chaotic behavior of SAT Solvers: re-running the
same solver with the same set of clauses except one or two added at the end of the
input file causes the solver to perform a completely different search, giving a very
different execution in terms of distance of the solutions and also in computation
time. In particular, qualities are typically below 0.1, that is, ten times more
distant than the optimal solution.

6 Trying a Local Search-Like Solution

In local search techniques, to find close solutions one usually resumes the search
at the point where the original solution was found with the hope that another
solution is found in the nearby neighborhood. Therefore, at first sight, mimicking
local search might seem a good option for overcoming the chaotic behavior of
SAT.

More specifically, we want to re-execute the solver in the region of the search
tree where the original solution was found. A simple way of implementing this
idea is by changing the variable selection heuristics as follows. We remember the
ordered sequence of decision literals of the original solution, and when the solver
is re-launched with the new constraints, it always decides on the first undefined
literal of the sequence, with the same polarity, until the first conflict occurs.
After that, we fall back to the standard decision heuristic. Note that this will
always find the same solution Sol if Sol is also a solution of F ∪ δ.

Unfortunately, the results do not improve significantly upon re-running from
scratch as described in the previous section. Table 2 contains the results of this
method. We have obtained similar results with some variations of this method
(keeping the lemmas of the original execution as in the next section, keeping this
heuristic, or a combination of both).

7 Our Barcelogic Approach

As we have seen in the previous sections, the naive approaches are not effective
for solving this problem in practice. The good news is that an adequate com-
bination of three quite well-known ingredients does obtain close solutions very
quickly.

The first ingredient is a polarity selection heuristic: the SAT solver uses its
standard heuristic for picking the next variable to decide upon, but for visible
variables it sets this variable’s polarity as in the original solution Sol (other
optimization tools do this too: first try those values that minimize the cost
function; it is also related to, but different from, phase saving [PD10]).

Second, a branch-and-bound wrapper is placed around the standard SAT loop.
Each time the cost of the best solution discovered so far is exceeded by the current
partial assignment, due to literals l1 . . . ln (on visible variables) that disagree
with Sol , a backjump is forced from a conflict analysis on an “explanation”
¬l1 ∨ . . . ∨ ¬ln of why the cost is currently too high. In particular, this is done
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Table 2. Results of a local-search-like approach

Instance Time original dopt Quality Time re-execution Time ratio

r16-0 0.88 12 0.03 0.80 0.91

r16-1 1.58 14 0.03 1.87 1.18

r16-2 1.66 8 0.02 0.66 0.40

r16-3 0.97 8 0.02 2.81 2.90

r16-4 3.56 64 0.13 3.82 1.07

r16-5 0.03 12 0.03 0.08 2.67

r16-6 0.02 14 0.03 0.00 0.00

r16-7 0.4 18 0.04 0.18 0.45

r16-8 3.55 8 0.02 0.85 0.24

r16-9 1.39 12 0.03 1.27 0.91

r20-0 12.23 24 0.04 9.50 0.78

r20-1 59.6 8 0.31 0.03 0.00

r20-2 9.47 12 0.55 0.03 0.00

r20-3 12.82 14 0.03 6.64 0.52

r20-4 20.15 18 0.33 0.03 0.00

r20-5 20.48 16 0.03 21.12 1.03

r20-6 8.81 18 0.03 17.50 1.99

r20-7 10.88 20 0.03 6.69 0.61

r20-8 13.52 16 0.03 2.15 0.16

r20-9 7.04 12 0.02 6.96 0.99

R20-0 1.77 8 0.02 2.43 1.37

R20-1 2.37 88 0.16 5.20 2.19

R20-2 6.69 96 0.15 2.26 0.34

R20-3 9.46 8 0.02 4.77 0.50

R20-4 5.4 136 0.26 6.34 1.17

R20-5 1.14 1 0.00 5.84 5.12

R20-6 7.71 104 0.20 6.18 0.80

R20-7 5.45 26 0.05 11.27 2.07

R20-8 0.61 82 0.16 4.94 8.10

R20-9 7.49 94 0.17 2.82 0.38

r24-0 227.97 42 0.04 134.14 0.59

r24-1 124.28 58 0.05 3574.00 28.76

r24-2 277.49 14 0.01 157.08 0.57

r24-3 200.53 8 0.01 296.43 1.48

tt-0 1.62 10 0.03 0.21 0.13

tt-1 0.96 10 0.29 0.29 0.30

tt-2 0.38 6 0.60 0.13 0.34

tt-3 16.3 8 0.01 18.13 1.11

tt-4 27.42 26 0.04 11.88 0.43

tt-5 1.75 8 0.01 2.36 1.35
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each time a better model is found, in order to find, from then on, only lower-cost
models. Here this explanation clause need not be learned.

The backjump clause itself is learned as usual. Eventually this process termi-
nates by discovering unsatisfiability—that there is no “better” solution to the
best already found. As is well-known, it may require far more time to prove op-
timality than it does to find an optimal solution.2 However, good solutions can
often be found in a short time. See, e.g., [MMS04, LNORC09, LNORC11] and
references of these for many more details and an abstract framework for Boolean
optimization.

Third, the lemmas the SAT Solver generated when finding the original solution
are added; this is sound since there are only additional constraints, no removed
ones; this latter idea is also used in the context of incremental SAT solving for,
e.g., verification applications.

8 Experimental Comparison with Cplex and Other Tools

In this section we compare experimentally our approach with other tools. We
first encoded F ∪ δ together with the cost function as a pseudo-Boolean (0-1 In-
teger Programming) optimization problem and tried the state-of-the-art pseudo-
Boolean solver Bsolo [MMS04] and the well-known commercial CPLEX solver.

We also tried several state-of-the-art Max-SAT solvers. MiniMaxSAT [HLO08]
found close solutions only in a few cases. The unsatisfiable-core-based MaxSAT
solvers msuncore [MSP09] and PM2 [ABL09] were not competitive either, among
other reasons because unsat-core-based solvers find no solution before the op-
timal one. We do not report here on these MaxSAT solvers’ results: they were
always much worse than the listed ones.

We also tried Barcelogic omitting its ingredients one by one, i.e., without
keeping the lemmas from the first run or without the modified polarity heuristic.
The results are described in the next section. Bsolo and CPLEX results are
without the lemmas: the number of lemmas was much bigger than the number
of original constraints and these solvers perform much worse if we add them.

The results are given in Table 3.
Solution quality: As before, the table lists solution qualities as real numbers
between 0 and 1: dopt denotes the minimal Hamming distance from the original
solution Sol to any solution of F ∪ δ and again we say that a solution Sol ′ at
distance d of Sol has quality dopt/d.
Entries in the table: The table gives results on all 40 instances for Barcelogic,
Bsolo and CPLEX. For each instance, column 2 lists the time T the (Barcelogic)
SAT solver took to compute the initial solution Sol . The third column indicates
the cost of the optimal solution, dopt. For each approach, the table lists the
quality of the solution found after 25% of T , after 50% of T , etc., up to 800%
of T . Moreover, the two average rows show the average of, respectively, the
first 20 problems and the 20 other (harder) ones. The two plots of figure 1

2 In fact, for some of the benchmarks in this paper proving optimality took days of
CPU time.
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Table 3. Comparative results of the three most competitive approaches: Barcelogic,
Bsolo and CPLEX

Time dopt Barcelogic Bsolo Cplex

25 50 100 200 400 800 25 50 100 200 400 800 25 50 100 200 400 800

r16-0 0.88 12 1 1 1 1 1 1 0 0 .67 .67 1 1 0 0 0 1 1 1

r16-1 1.58 14 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1

r16-2 1.66 8 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1

r16-3 0.97 8 1 1 1 1 1 1 0 0 .67 1 1 1 0 0 1 1 1 1

r16-4 3.56 64 .86 .86 .94 1 1 1 .67 .67 .67 .67 .67 .67 0 0 0 0 0 0

r16-5 0.03 12 0 0 .50 .60 1 1 0 0 0 0 0 0 0 0 0 0 0 0

r16-6 0.02 14 0 0 0 0 .12 .64 0 0 0 0 0 0 0 0 0 0 0 0

r16-7 0.4 18 .82 .82 .82 .82 1 1 0 0 0 .36 .36 .36 0 0 0 0 0 0

r16-8 3.55 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

r16-9 1.39 12 1 1 1 1 1 1 0 .60 .60 .60 .60 1 0 0 1 1 1 1

r20-0 12.23 24 1 1 1 1 1 1 .34 .34 .34 .50 1 1 0 0 0 0 0 1

r20-1 59.6 8 1 1 1 1 1 1 .67 1 1 1 1 1 1 1 1 1 1 1

r20-2 9.47 12 1 1 1 1 1 1 .27 .38 .38 .60 .60 .75 0 1 1 1 1 1

r20-3 12.82 14 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

r20-4 20.15 18 1 1 1 1 1 1 .41 .41 .41 .43 .43 .64 0 0 .38 .38 1 1

r20-5 20.48 16 1 1 1 1 1 1 .57 .57 .57 .89 .89 1 0 0 0 0 .24 1

r20-6 8.81 18 1 1 1 1 1 1 .30 .82 .82 .82 .82 1 0 0 0 .90 .90 1

r20-7 10.88 20 1 1 1 1 1 1 .83 .83 .83 .91 1 1 0 0 .32 .32 .32 1

r20-8 13.52 16 1 1 1 1 1 1 .35 .35 .35 .35 .35 1 0 0 0 0 1 1

r20-9 7.04 12 1 1 1 1 1 1 0 .22 .25 .55 .60 .86 0 1 1 1 1 1

Av. - - .88 .88 .91 .92 .96 .98 .32 .46 .58 .67 .72 .81 .10 .30 .43 .53 .62 .80

R20-0 1.77 8 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1

R20-1 2.37 88 .57 .57 .57 .57 .72 .75 0 0 0 0 .66 .66 0 0 0 0 0 0

R20-2 6.69 96 .74 .74 .74 .80 .84 .89 0 .53 .53 .55 .55 .70 0 0 0 0 0 0

R20-3 9.46 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

R20-4 5.4 136 .65 .65 .86 .86 .91 .97 0 0 0 0 0 0 0 0 0 0 0 0

R20-5 1.14 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1

R20-6 7.71 104 .80 .80 .88 .88 .88 .88 0 0 0 .42 .57 .57 0 0 0 0 0 0

R20-7 5.45 26 .93 .93 1 1 1 1 .68 .68 .68 .68 .68 .68 0 1 1 1 1 1

R20-8 0.61 82 .84 .84 .84 .85 .98 .98 0 0 0 0 .60 .60 0 0 0 0 0 0

R20-9 7.49 94 .64 .77 .77 .84 .90 .90 0 .43 .59 .59 .59 .59 0 0 0 0 0 0

r24-0 227.97 42 1 1 1 1 1 1 0 0 0 0 .57 .57 0 0 0 0 0 0

r24-1 124.28 58 .58 .58 .58 .74 .74 .74 0 .42 .42 .42 .42 .42 0 0 0 0 0 0

r24-2 277.49 14 1 1 1 1 1 1 .37 .37 .37 .37 .37 .37 0 1 1 1 1 1

r24-3 200.53 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

tt-0 1.62 10 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1

tt-1 0.96 10 0 .36 .36 .36 .36 .36 0 0 0 0 0 0 0 0 0 0 0 0

tt-2 0.38 6 0 .60 .60 .60 .75 .75 0 0 0 0 0 0 0 0 0 0 0 0

tt-3 16.3 8 .57 .57 .57 .57 .67 .67 0 0 0 0 0 0 0 0 0 0 0 0

tt-4 27.42 26 .10 .10 .50 .50 .50 .50 0 0 0 0 0 0 0 0 0 0 0 0

tt-5 1.75 8 0 0 0 0 .13 .14 0 0 0 0 0 0 0 0 0 0 0 0

Av. - - .67 .73 .76 .78 .82 .83 .15 .22 .28 .35 .45 .46 .10 .20 .25 .30 .30 .35
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Fig. 1. Average quality of the different approaches on the first 20 problems (left) and
the second 20 harder ones (right).

represent graphically these averages. They also give some intuition about how
the approaches scale.

9 Factor Analysis of the Barcelogic Approach

In this section we evaluate separately the different ingredients used in our ap-
proach. More specifically, we show the experimental results of our solver with
just a Branch and Bound (“B&B” in the table; first column), adding the lem-
mas (“B&B + lemmas”; second column), with the modified polarity heuristic
(“B&B + polarity”; third column) and finally “B&B + All” (fourth column).
The results are given in Table 4. As in the previous section, the table shows the
quality of the solution found after 25%, 50%, etc. of the time spent in solving
the original problem.

Clearly, the polarity decision heuristic hugely improves the method. On the
other hand, keeping the lemmas helps significantly for the hard problems, while
on the easier ones the overhead of reading the additional clauses frequently does
not pay off.

Again, the two plots of figure 2 represent graphically the results of the table
for average solution qualities of, respectively, the first 20 instances, and the other
much harder 20 ones.

10 Related Work and Conclusions

We have studied, from a practical point of view, the problem of, given a SAT
formula F with a model Sol , and a small set of additional clauses δ, finding a
model of F ∪ δ that is close to Sol .

Similar problems were studied before in a more theoretical (complexity) set-
ting. [HHOW05] examine the problem of finding a set of diverse or similar so-
lutions for a single problem using constraint programming. Their MostClose
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Table 4. Results of the factor analysis

Basic B&B B&B + lemmas B&B + polarity B&B + All

25 50 100 200 400 800 25 50 100 200 400 800 25 50 100 200 400 800 25 50 100 200 400 800

r16-0 0 0 0 .04 .04 .04 .03 .03 .03 .04 .04 .04 1 1 1 1 1 1 1 1 1 1 1 1

r16-1 0 0 .04 .04 .04 .04 0 0 .04 .04 .04 .04 1 1 1 1 1 1 1 1 1 1 1 1

r16-2 0 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 1 1 1 1 1 1 1 1 1 1 1 1

r16-3 0 0 0 .03 .03 .03 0 0 .02 .02 .02 .02 1 1 1 1 1 1 1 1 1 1 1 1

r16-4 0 0 0 .14 .16 .16 0 0 .14 .14 .15 .16 .80 .80 .82 .82 .86 .91 .86 .86 .94 1 1 1

r16-5 0 0 .38 .38 .38 .38 0 0 0 .03 .03 .03 0 0 .24 1 1 1 0 0 .50 .60 1 1

r16-6 0 0 0 .03 .03 .04 0 0 0 0 0 .03 0 .12 1 1 1 1 0 0 0 0 .12 .64

r16-7 0 0 0 .04 .05 .05 0 0 0 .05 .05 .05 .69 .82 .90 .90 1 1 .82 .82 .82 .82 1 1

r16-8 0 .02 .02 .02 .02 .02 0 .02 .02 .02 .02 .02 1 1 1 1 1 1 1 1 1 1 1 1

r16-9 0 .04 .04 .04 .04 .04 0 0 0 .03 .03 .03 1 1 1 1 1 1 1 1 1 1 1 1

r20-0 0 0 0 .05 .05 .06 .04 .04 .05 .05 .05 .05 1 1 1 1 1 1 1 1 1 1 1 1

r20-1 0 .01 .01 .01 .01 .02 .01 .01 .01 .01 .01 .01 1 1 1 1 1 1 1 1 1 1 1 1

r20-2 0 0 0 .02 .02 .02 0 0 .02 .02 .02 .02 1 1 1 1 1 1 1 1 1 1 1 1

r20-3 .03 .03 .03 .03 .03 .03 0 0 .02 .02 .03 .03 1 1 1 1 1 1 1 1 1 1 1 1

r20-4 0 0 0 .20 .20 .20 0 0 .04 .04 .04 .04 1 1 1 1 1 1 1 1 1 1 1 1

r20-5 0 .02 .02 .03 .03 .03 0 .03 .03 .03 .03 .03 1 1 1 1 1 1 1 1 1 1 1 1

r20-6 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 1 1 1 1 1 1 1 1 1 1 1 1

r20-7 0 0 0 .03 .03 .05 .06 .06 .06 .06 .06 .06 .91 .91 1 1 1 1 1 1 1 1 1 1

r20-8 0 0 .04 .04 .04 .04 0 .03 .03 .03 .03 .03 1 1 1 1 1 1 1 1 1 1 1 1

r20-9 0 0 0 .03 .03 .03 0 0 .02 .02 .02 .02 1 1 1 1 1 1 1 1 1 1 1 1

Av. 0 .01 .03 .06 .06 .07 .01 .01 .03 .04 .04 .04 .87 .88 .95 .99 .99 1 .88 .88 .91 .92 .96 .98

R20-0 0 0 0 0 .02 .02 0 0 0 .02 .02 .02 1 1 1 1 1 1 1 1 1 1 1 1

R20-1 0 0 0 0 .18 .18 0 0 0 .15 .15 .15 0 0 .64 .64 .64 .71 .57 .57 .57 .57 .72 .75

R20-2 0 0 0 .19 .19 .20 0 0 .22 .25 .25 .25 .52 .69 .73 .75 .86 .91 .74 .74 .74 .80 .84 .89

R20-3 0 0 .01 .02 .02 .02 0 .02 .02 .02 .02 .02 1 1 1 1 1 1 1 1 1 1 1 1

R20-4 .25 .25 .25 .25 .26 .26 .23 .25 .25 .25 .25 .27 0 .44 .77 .77 .79 .85 .65 .65 .86 .86 .91 .97

R20-5 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

R20-6 0 0 .20 .20 .26 .26 0 .16 .16 .23 .23 .23 .81 .81 .87 .87 .90 .91 .80 .80 .88 .88 .88 .88

R20-7 .05 .05 .06 .06 .06 .06 0 .05 .05 .05 .05 .06 .93 .93 1 1 1 1 .93 .93 1 1 1 1

R20-8 0 0 0 0 0 0 0 0 0 0 .13 .13 .50 .50 .50 .59 .72 .93 .84 .84 .84 .85 .98 .98

R20-9 0 .16 .20 .20 .20 .20 .18 .21 .21 .21 .24 .24 .71 .81 .85 .85 .89 .89 .64 .77 .77 .84 .90 .90

r24-0 0 0 .04 .04 .04 .04 0 0 0 .04 .04 .04 1 1 1 1 1 1 1 1 1 1 1 1

r24-1 0 0 0 0 .05 .05 0 .05 .05 .06 .06 .06 .67 .67 .76 .76 .76 .76 .58 .58 .58 .74 .74 .74

r24-2 0 0 .01 .01 .01 .01 0 .01 .01 .01 .01 .01 1 1 1 1 1 1 1 1 1 1 1 1

r24-3 0 0 0 0 .01 .01 .01 .01 .01 .01 .01 .01 1 1 1 1 1 1 1 1 1 1 1 1

tt-0 .03 .03 .03 .03 .04 .04 0 0 0 0 .03 .03 .05 .14 .14 .19 .25 .50 1 1 1 1 1 1

tt-1 0 0 .07 .07 .07 .07 0 0 .04 .04 .04 .04 0 .36 .36 .36 .36 .36 0 .36 .36 .36 .36 .36

tt-2 0 0 .04 .04 .04 .04 0 0 0 .02 .02 .02 0 .60 .60 .60 .60 1 0 .60 .60 .60 .75 .75

tt-3 0 0 .01 .01 .01 .01 0 0 0 .01 .01 .01 0 0 .01 .04 .11 .29 .57 .57 .57 .57 .67 .67

tt-4 0 0 .04 .04 .04 .04 0 .04 .04 .04 .04 .04 0 0 .06 .41 .41 .41 .10 .10 .50 .50 .50 .50

tt-5 0 0 0 .02 .02 .02 0 0 .02 .02 .02 .02 0 0 0 0 .14 .14 0 0 0 0 .13 .14

Av. .02 .02 .05 .06 .08 .08 .02 .04 .05 .07 .08 .08 .51 .60 .66 .69 .72 .78 .67 .73 .76 .78 .82 .83

question is very similar to the problem we examine looking for the closest so-
lution to an existing solution, but both solutions are for the same problem.
They outline two approaches: a reformulation approach that at least doubles
the size of the problem, and a more efficient heuristic approach which is simply
a branch and bound search. Our results show that this by itself is not enough in
the SAT context. Distance-SAT [BM06] explores the decision problem, given a
formula G and an arbitrary partial interpretation I, is there a model of G that
disagrees with I on at most k variables? [BM06] tries on random and handcrafted
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Fig. 2. Average quality of the factor analysis on the first 20 problems (left) and the
second 20 harder ones (right)

problems two algorithms based on the classical Davis/Logemann/Loveland (DLL)
procedure [DLL62], but a translation into CNF is reported to work better. For
our case, where deciding SAT for G is already hard, such a translation is rather
hopeless. One clearly needs to exploit that in our problem I is a model of a
known subformula of G that is almost the same as G.

Indeed, our experiments reveal that, while state-of-the-art Boolean optimiza-
tion solvers behave poorly, our Barcelogic approach behaves very well, frequently
finding the optimal (i.e., closest) solution in only 25% of the time the SAT solver
took in solving the original problem.
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Abstract. This paper considers the DiversekSet problem in SAT, that
is, the problem of efficiently generating a number of diverse solutions
(satisfying assignments) given a propositional formula. We provide an
extensive analysis of existing algorithms for this problem in a newly
developed framework and propose new algorithms. While existing algo-
rithms adapt modern SAT solvers to solve DiversekSet by changing
their polarity selection heuristic, our new algorithms adapt the variable
ordering strategy as well. Our experimental results demonstrate that the
proposed algorithms improve the diversification quality of the solutions
on large industrial instances of DiversekSet arising in SAT-based semi-
formal verification of hardware.

1 Introduction

SAT solving is a core reasoning engine in a variety of applications [1]. The basic
functionality of a SAT solver consists of solving the following decision prob-
lem: given a propositional formula in Conjunctive Normal Form (CNF), decide
whether it has a satisfying assignment (also called a model or solution). However,
major industrial applications require additional abilities from the solver. This
paper considers the DiversekSet problem in SAT: given a satisfiable propo-
sitional formula in CNF, return a user-given number of solutions that are as
diverse as possible.

In [2] we proposed a number of algorithms for solving DiversekSet in SAT
in the context of the SAT-based semiformal hardware verification flow, where
the DiversekSet solver is the core reasoning engine. The flow has practical
importance, since it is able to find bugs in complex industrial designs that are
missed by both Bounded Model Checking (BMC) and simulation [2]. The main
idea of [2] is that, given a complex property that cannot be verified by BMC,
since BMC cannot reach a sufficient bound, one can advance towards the prop-
erty along multiple paths via user-given waypoints. The paths must be as diverse
as possible in order not to miss bugs. A DiversekSet solver is used to extract
such paths. Diversification quality is defined in [2] as the normalized sum of
the Hamming distances between each pair of solutions. The DiversekSet algo-
rithms proposed in [2] adapt a modern conflict-driven clause-learning (CDCL)
SAT solver, invoking it only once to generate all the models. The algorithms
are polarity-based in the sense that diversification is achieved solely by changing
the polarity selection heuristic, where the polarity is the value assigned to each

K.A. Sakallah and L. Simon (Eds.): SAT 2011, LNCS 6695, pp. 287–301, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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new decision variable. We proposed randomized and guided polarity-based ap-
proaches. Randomized approaches select the polarity randomly on all or some
of the occasions, while guided approaches select the polarity so as to explicitly
guide the solver away from previous solutions.

The first contribution of this paper is the development of a convenient frame-
work for analyzing DiversekSet algorithms and the analysis of existing algo-
rithms using this framework. (The analysis in [2] is very brief, since [2] is mostly
dedicated to a particular application of DiversekSet.) In particular, our frame-
work allows one to measure diversification quality online (i.e. while the solver is
running, as opposed to offline, after the solver has finished) and to estimate the
contribution of each variable to diversification quality.

We analyze the empirical behavior of DiversekSet algorithms on 66 CNF
instances generated by Intel’s semiformal verification flow for generating 2 to
100 models. This is in contrast to [2], which reports about experiments with 10
models only, since this number was used by the semiformal application. Our ex-
perimental setup provides us the valuable ability to analyze the behavior of the
algorithms as a function of the number of models. Our analysis can also be em-
pirically helpful for semiformal verification, since the number of required models
is expected to grow as more computational resources become available. In order
to improve readability, we present and discuss relevant experiments immediately
after describing a certain family of algorithms instead of concentrating all the
experimental results in one section. The instances we used have 213,047 variables
and 738,862 clauses on average, while the largest instance has 910,868 variables
and 3,251,382 clauses. All the instances are available from the author. All the
algorithms were implemented in Intel’s CDCL SAT solver Eureka and run on
Intel� Xeon� machines with 4Ghz CPU frequency and 32Gb of memory.

The second contribution of this paper is the introduction and analysis of new
algorithms for DiversekSet. Our new algorithms are variable-based ; that is,
they change the variable ordering in addition to the polarity selection heuristic.
We propose guided and randomized variable-based methods, which can be local
or global with respect to the default decision heuristic. Our algorithms improve
diversification quality. We observe a trade-off between diversification quality and
run-time. Moderate improvement of diversification quality can be achieved with
negligible run-time cost, while more significant improvement in quality requires
additional run-time. We show how one can control the trade-off between quality
and run-time.

The rest of the paper is organized as follows. Section 2 reviews some related
work and provides the necessary background. Definitions are provided in Sec-
tion 3. Existing algorithms are analyzed in Section 4. Section 5 is dedicated to
the new variable-based algorithms. The conclusion and directions for future work
appear in Section 6.

2 Related Work and Background

As far as we know, the only work that considers the DiversekSet problem in
SAT is our previous work [2]. However, the problem of finding a user-given num-
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ber of diverse solutions has been studied in the Constraint Satisfaction Prob-
lem (CSP) domain (e.g., [3, 4]). A guided value-based method for solving Di-

versekSet for CSP is proposed in [3]. A randomized value-based method is
also known in the CSP community [4] (we did not find a paper introducing it).
A number of efficient value-based methods are proposed in [4] in the context of
automatic generation of architectural tests.

A number of works (e.g., [5–7]) are dedicated to the related problem of gener-
ating a (nearly) uniformly distributed sampling of the solution space in various
domains, including SAT [7]. We denote by kSampling the problem of generating
k out of N solutions, where each solution should be selected with the probabil-
ity as close as possible to 1/N . It is important to realize the difference between
DiversekSet and kSampling (explained in the context of CSP in [4]). Con-
sider the problem of finding two diverse/uniformly distributed solutions given
a tautological formula. Consider an algorithm which returns the following two
models: (1) All the variables are assigned 1; (2) All the variables are assigned 0.
This algorithm returns the optimal solution for DiversekSet for a tautological
formula. However, it is unsatisfactory for the sake of kSampling, since the solu-
tions are predefined. Still, since a set of solutions for kSampling can be used as
an approximation for a set of solutions for DiversekSet, one can evaluate the
performance of existing algorithms for kSampling on DiversekSet instances.

The DiversekSet algorithms presented in this paper are built on top of
a modern CDCL SAT solver. Modern SAT solvers are extremely efficient on
huge industrial instances. Among the key features that enable the solvers to
be so efficient, despite the apparent difficulty of solving huge instances of NP-
complete problems, are dynamic behavior and search locality, that is, the ability
to maintain the set of assigned variables and recorded clauses relevant to the
currently explored space. This effect is achieved through various techniques,
such as 1UIP conflict clause learning [8], non-chronological backtracking [9],
rapid restarts [10], variable decision heuristics (also known as variable ordering
heuristics) and polarity selection heuristics.

The variable decision heuristics of a modern SAT solver are dynamic [8]. Their
goal is to improve the locality of the search by picking variables that participated
in recent conflict analysis. One can distinguish between variable-based decision
heuristics and clause-based decision heuristics (mixed variable- and clause-based
heuristics are also in use). Variable-based heuristics are based on VSIDS [8].
VSIDS maintains a score for each literal. The score is increased for a variable
that participates in conflict analysis. Once in a while the scores are decreased.
Consider now the clause-based heuristic CBH [11]. CBH maintains a clause list
containing both the initial and the conflict clauses. Whenever a new conflict
clause is derived, CBH moves the clauses that participated in conflict analysis,
along with the new conflict clause, to the top of the list. The next decision
variable is picked from the topmost non-satisfied clause using the variable with
the greatest VSIDS score. CBH tends to pick interrelated variables, a fact which
makes the search more local.
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Most modern SAT solvers (including Eureka, which we use for our exper-
iments) employ the phase-saving heuristic [12–14] as their polarity selection
heuristic. The phase-saving heuristic for variable v always chooses the last value
v was assigned. This strategy tries to refocus the search on subspaces that the
solver has knowledge about.

3 Definitions

We start with defining some auxiliary notions. Given two boolean values σ1

and σ2, a pair {σ1, σ2} is different if σ1 �= σ2. Assume we are given a proposi-
tional formula in CNF F with q variables V and r satisfying assignments M =
{μ1, . . . , μr} (also known as models or solutions) for F . We define μu

m ∈ {0, 1},
where u ∈ V and 1 ≤ m ≤ r, to be a value assigned to the variable u in μm.

The Hamming distance between two models μi and μj is defined to be the
number of different pairs amongst

{
μu

i , μ
u
j

}
for u ∈ V . Diversification quality is

defined in [2] as the sum of the Hamming distances between each pair of models,
normalized to the range [0 . . . 1] by dividing by q

(
r
2

)
.

We use the same measure for diversification quality but calculate it differently,
keeping in mind two goals. First, we want to be able to estimate the contribu-
tion of each variable to quality. Second, we want to be able to measure quality
online as well as offline. An offline version of our definitions is presented next.
Afterwards we show how to generalize our definitions so that they can be used
online as well.

Let the variable (diversification) quality Su
m, given a variable u and m mod-

els, be the number of different pairs amongst the pairs of values assigned to u
(namely,

{
μu

i , μ
u
j

}
, where 1 ≤ i, j ≤ r and i < j). Note that the variable quality

Su
m+1 for m ≥ 1 models is the variable quality for m models plus the number

of different pairs amongst
{
μu

m+1, μ
u
i

}
for 1 ≤ i ≤ m. Let pu

m and nu
m be the

number of times u was assigned 1 and 0, respectively, in m models. We have the
following recursive definition for variable quality for m ≥ 1:

Su
1 = 0;Su

m+1 =
{
Su

m + nu
m if μu

m+1 = 1;
Su

m + pu
m if μu

m+1 = 0.

We provide an alternative definition for variable quality, which is sometimes
more useful. It is not hard to see that pu

m×nu
m is exactly the number of different

pairs amongst
{
μu

i , μ
u
j

}
. Hence, we have:

Su
m = pu

m × nu
m

Now we can define the (diversification) quality Qm for 1 ≤ m ≤ r models as
the sum of all the variable qualities, normalized to the range [0 . . . 1]:

Qm =
∑

u∈V S
u
m(

m
2

)
q
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We provide another useful notion of a potential of a variable. Given a variable
u ∈ V and m ≥ 1 models, Πu

m = pu
m − nu

m is the potential of u. The potential of
a variable is the difference between the number of 1’s and 0’s assigned to u in
all the models. The absolute potential of u is the absolute value of the potential
|Πu

m|. We will see later that the potential and the quality of a variable are closely
connected. Fig. 1 provides a simple example of applying our definitions.

μ1 μ2 μ3

v 0 0 0
u 1 1 0

Fig. 1. An example of applying our definitions, given two variables and three models.
We have: pv

3 = 0; nv
3 = 3; pu

3 = 2; nu
3 = 1. The variable qualities are: Sv

3 = pv
3 ×nv

3 = 0;
Su

3 = pu
3 × nu

3 = 2. The quality is: Q3 = (0 + 2)/(3 × 2) = 1/3. The potentials are:
Πu

3 = 1; Πv
3 = −3.

Now we show how to modify our definitions so as to allow using them both
online and offline. The algorithms presented in this paper invoke a CDCL SAT
solver once to generate all the models and restart the search immediately after a
new model is discovered. We call the algorithms/solvers which follow the above-
mentioned scheme compact. Suppose that a compact DiversekSet solver has
found m > 0 models and is searching for a new model. Such a solver maintains
the current partial assignment. We modify the notions of pu

m/nu
m, the variable

quality Su
m, and the variable potential Πu

m simply by considering the current
partial assignment as another model when counting the number of 1’s and 0’s as-
signed to a variable (the modification is required for assigned variables only). To
generalize the notion of overall quality, one needs to make an adjustment, since
the number of satisfying assignments is now different for assigned and unassigned
variables. Let q1 be the number of unassigned variables and q2 be the number of
assigned variables. Then we have: Qm = (

∑
u∈V S

u
m)/(

(
m
2

)
q1 +

(
m+1

2

)
q2). Note

that the online versions of our definitions are a strict generalization of our notions
(namely, those of pu

m, nu
m, Su

m, Πu
m, and Qm) in the sense that they converge

with the offline versions after the solver has completed its run. When mention-
ing these notions in the paper, we are referring to their online version when a
DiversekSet solver invocation is analyzed online and either to their online or
offline version if the solver has finished.

4 Analizing Existing Algorithms

First, we refer to two non-compact algorithms, dpll-based sampling (men-
tioned in [6] without a reference) and xor-sample [7], that were designed for
the kSampling problem, but which can also be applied to DiversekSet. Both
dpll-based sampling and xor-sample invoke a SAT solver once to generate
each model. Diversification is achieved by randomizing the first value assigned
to each variable for dpll-based sampling and by adding random XOR con-
straints for xor-sample. dpll-based sampling and xor-sample are shown
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in [2, 15] to be inferior to compact DiversekSet algorithms in terms of both
quality and run-time. In addition, [15] analyzes a compact DiversekSet al-
gorithm AllSAT-Sampling [2], which yields a low quality but is very fast. The
present work concentrates on compact algorithms that yield a relatively high
quality.
����� [2] (Rand-k-SAT in [2]) is a compact randomized polarity-based algo-
rithm. It operates by overriding the traditional polarity selection heuristic to
select the polarity randomly on all occasions. prand can be thought of as a
generalization of dpll-based sampling.

�����	 [2] (Guide-k-SAT in [2]) is a compact guided polarity-based algorithm.
It is designed to greedily improve quality. pguide does not change the default
behavior of the SAT solver before the first model is encountered. Assume pguide

is about to decide on the polarity of a newly assigned variable u when m > 0
models have already been found. If Πu

m > 0, u is assigned 0; if Πu
m < 0, u is

assigned 1; if Πu
m = 0, u is assigned a random value. Prop. 1 shows that this

simple algorithm improves quality whenever the variable decision heuristic picks
an unassigned variable with a non-zero potential. Note that this useful property
does not hold for prand, hence pguide is expected to result in better quality.

Proposition 1. Assume that a compact DiversekSet solver employing
pguide is running and that it has encountered m > 0 models. Let u be an
unassigned variable picked by the variable decision heuristic. Let Q1

m and Q0
m be

the qualities if the current partial assignment is extended by assigning a value
1 and 0, respectively, to u. Then, if Πu

m > 0 then Q0
m > Q1

m; if Πu
m < 0 then

Q1
m > Q0

m; if Πu
m = 0 then Q1

m = Q0
m.

Proof. Assume Πu
m > 0. The recursive definition of variable quality implies

that assigning u the value 1 or 0 will change its variable quality by nu
m or pu

m,
respectively. The assumption Πu

m > 0 implies that pu
m > nu

m. Hence, the change
in the variable quality of u will be greater if u is assigned 0 than if it is assigned
1. Note that the change in the overall quality is proportional to the change in
the variable quality of u, since the variable quality of u is the only addendum
that changes in the dividend of the definition of quality, while the change in the
divisor is independent of the value assigned to u. Hence we have Q0

m > Q1
m. The

proof for the other two cases is similar. ��

pguide is designed to correct the potential of one variable at a time, where by
correcting the potential we mean bringing the absolute potential closer to 0. This
operation improves the quality of one specific variable. Such a strategy yields
the optimal overall quality given a tautological formula. However, it does not
take into account dependencies between variables, which appear in real-world
well-structured formulas.

�
������	 [2] (BCP-aware Guide-k-SAT in [2]) is a refinement of pguide which
takes into consideration dependencies between variables by taking into account
the impact of Boolean Constraint Propagation (BCP) on quality. It performs
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BCP for both polarities of a new decision variable u alternatively and measures
the new quality for each polarity. It then continues with the polarity that yielded
the better quality. pbcpguide’s flow is detailed in [2]. Note that unlike pguide,
pbcpguide is designed to take into account dependencies between variables.
Applying pbcpguide might have a significant negative impact on performance,
since it has to perform BCP two or three times per decision. To be able to
control the trade-off between quality and run-time, one can limit pbcpguide

usage as follows. pbcpguide will be used until a user-given number of conflicts
T is encountered by the solver. Afterwards, the algorithm will switch to plain
pguide until the next model is encountered. Then pbcpguide is reinvoked until
T conflicts are encountered again.
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Fig. 2. Comparing polarity-based algorithms

Compare the empirical behavior of pguide and prand in Fig. 2 and Table 1.
Both the mean run-time and the mean quality of pguide is consistently better
than that of prand for any number of models. The difference in quality is
especially significant for the first models, but it goes down quickly as the number
of models increases and seems to approach an asymptote.

Compare the behavior of pbcpguide to that of pguide in Table 1. Four ver-
sions of pbcpguide with different threshold values T ∈ {10, 100, 1000, 10000}
(called pbcpguide T for each T ) were tested. Predictably, pbcpguide has a
positive impact on quality, but deteriorates performance, where the effect is
more significant for larger threshold values. Interestingly, while pbcpguide 1000
and pbcpguide 10000 yield almost the same quality, the run-time of
pbcpguide 10000 is significantly inferior. Hence it is not worth using a thresh-
old greater than 1000. The balance between quality and run-time achieved
by pbcpguide 100 is attractive. For example, for generating 100 models,
pbcpguide 100 yields a better quality than pguide by 9.1% and is slower
by only 47.2%. Compare the behavior of pbcpguide 100 as a function of the
number of models with that of pguide in Fig. 2. The run-time function of
pbcpguide 100 goes up much more quickly than that of pguide; however, the
gap for 100 models is still reasonable. The quality function of pbcpguide 100
is always higher than that of pguide. Interestingly, the gap increases with the
number of models. Moreover, while pguide’s quality function is monotonically
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decreasing, pbcpguide 100’s quality function’s tail is increasing. This is related
to the fact that, unlike pguide, pbcpguide takes into account dependencies
between variables. Further explanation regarding the behavior of the quality
functions of pguide and pbcpguide 100 and the difference between them is
provided in [15].

Table 1. Mean quality and mean run-time for DiversekSet algorithms, given 100,
50, and 10 models on 66 benchmarks from the semiformal verification of hardware. All
the numbers except the last row are relative to the behavior of pguide. For example,
pbcpguide 100 yields better quality than pguide by 9.1%, but is slower by 47.2%
for generating 100 models. The algorithms are sorted by the quality obtained when
generating 100 models. The absolute mean quality and mean run-time in seconds of
pguide are provided in the last row.

100 50 10
Algorithm Quality Time Quality Time Quality Time

pbcpguide 100-vrandglob 30 1.123 4.649 1.119 4.536 1.087 4.435
pbcpguide 100-vrandglob 20 1.121 3.829 1.114 3.653 1.081 3.469
pbcpguide 100-vrandglob 10 1.117 2.925 1.109 2.694 1.074 2.474
pbcpguide 10000 1.111 7.628 1.111 6.731 1.1 4.559
pbcpguide 1000 1.11 3.465 1.11 2.677 1.082 1.505
pbcpguide 100-vguideglob 200 1.107 1.707 1.09 1.509 1.063 1.259
pbcpguide 100-vguideglob 100 1.107 1.665 1.09 1.472 1.058 1.224
pbcpguide 100-vrandglob 2 1.106 2.007 1.093 1.766 1.05 1.52
pbcpguide 100-vguideglob 10 1.105 1.656 1.087 1.44 1.055 1.171
pbcpguide 100-vrandloc 1.102 1.742 1.083 1.537 1.036 1.348
pguide-vrandglob 30 1.099 4.058 1.095 4.181 1.062 4.243
pbcpguide 100-vguideloc 1.097 1.537 1.078 1.317 1.047 1.121
pguide-vrandglob 20 1.091 3.331 1.086 3.407 1.055 3.422
pbcpguide 100 1.091 1.472 1.068 1.239 1.036 1.033
pbcpguide 100-vrandloc-näıve 1.085 1.733 1.07 1.53 1.041 1.375
pguide-vrandglob 10 1.077 2.4 1.072 2.426 1.041 2.42
pbcpguide 100-vguideloc-näıve 1.076 1.632 1.06 1.367 1.045 1.118
pguide-vguideglob 200 1.054 1.288 1.057 1.282 1.04 1.203
pguide-vguideglob 100 1.053 1.262 1.051 1.253 1.033 1.199
pbcpguide 10 1.042 1.071 1.039 1.03 1.03 1.016
pguide-vrandglob 2 1.042 1.484 1.042 1.483 1.021 1.485
pguide-vguideglob 10 1.041 1.202 1.039 1.202 1.031 1.132
pguide-vrandloc 1.036 1.263 1.033 1.274 1.01 1.296
pguide-vguideloc 1.014 1.004 1.016 1.008 1.021 1.013
pguide 1 1 1 1 1 1
prand 0.9839 1.413 0.9731 1.439 0.9123 1.519

The absolute numbers for pguide 0.1954 159 0.1968 143 0.2086 122

5 Variable-Based Methods

This section introduces a number of variable-based compact algorithms for Di-

versekSet. We show how diversification quality can be improved by changing
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the variable ordering. We propose local and global variable-based methods. Local
methods select the next decision variable from a subset of variables considered
as relevant by the variable decision heuristic, while global methods consider a
wider set of variables. Local variable-based methods are expected to result in a
moderate quality improvement, but be run-time-efficient. Global variable-based
methods are expected to be more costly in terms of performance, but yield better
diversification quality. We propose both guided and randomized variable-based
algorithms. Guided variable-based methods select variables with the largest ab-
solute potential. Randomized variable-based methods add a certain degree of
randomness to the variable ordering. We take pguide and pbcpguide 100 as
the baseline algorithms in the sense that we integrate our variable-based methods
into a solver that already uses pguide or pbcpguide 100.

Section 5.1 proposes local variable-based algorithms intended to be integrated
with pguide. Section 5.2 shows how to modify these algorithms of Section 5.1
in order to combine them with pbcpguide 100. Section 5.3 presents the global
variable-based algorithms. Our algorithms are integrated within the CBH deci-
sion heuristic.

5.1 Local Variable-Based Methods for �����	

�����	�� is a guided local variable-based algorithm. vguideloc changes the
variable decision heuristic after m > 0 models have already been found as fol-
lows. It picks an unassigned variable with the maximal absolute potential from
the topmost non-satisfied clause in the clause list. If more than one variable have
the same absolute potential, a variable with the greatest VSIDS score is picked as
in the original CBH. vguideloc is designed to increase pguide’s positive im-
pact on quality, since, according to Prop. 2, picking a variable with a larger
absolute potential improves quality by a larger margin. pguide-vguideloc

(that is, the combination of pguide and vguideloc) is not expected to sig-
nificantly deteriorate the performance of the solver, since this strategy makes
only minimal changes to the default CBH heuristic. Prop. 3 yields that vguide-

loc picks variables with the worst variable quality in the clause and corrects its
potential. However, since pguide is unaware of dependencies between variables,
pguide-vguideloc might deteriorate the quality of other variables assigned by
BCP. This fact might hurt the ability of pguide-vguideloc to improve overall
quality.
������� is a randomized local variable-based algorithm. vrandloc picks

a random variable from the topmost non-satisfied clause. pguide-vrandloc

(that is, the combination of pguide and vrandloc) is fairer than both plain
pguide and pguide-vguideloc with respect to variable ordering, since pguide-
vrandloc may choose variables that would rarely or never be chosen by the
other two methods due to their low VSIDS score or low absolute potential.
Randomized variable-based method will work better than the guided method
when there are many hidden dependencies between variables. pguide-vrandloc

is expected to have a negative impact on the performance of the solver, since
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it violates the locality principle, yet this impact should not be too significant,
because the variables are still picked from the same clause.

Below, after proving a useful lemma, we provide two propositions that are
essential for understanding the ideas behind vguideloc.

Lemma 1. Assume that a compact DiversekSet solver employing pguide is
running and that it has encounteredm > 0 models. Let v and u be two unassigned
variables, such that |Πu

m| > |Πv
m|. Then max (pu

m, n
u
m) > max (pv

m, n
v
m).

Proof. The definition of the potential implies that for every variable t it holds
that |Πt

m| = max (pt
m, n

t
m)−min(pt

m, n
t
m). Since pt

m +nt
m = m, we have |Πt

m| =
max (pt

m, n
t
m)− (m−max(pt

m, n
t
m)) = 2×max(pt

m, n
t
m)−m. The latter equation

implies that if |Πu
m| > |Πv

m| then max(pu
m, n

u
m) > max (pv

m, n
v
m). ��

Proposition 2. Assume that a compact DiversekSet solver employing
pguide is running and that it has encountered m > 0 models. Let v and u
be two unassigned variables, such that |Πu

m| > |Πv
m|. Assume that the solver is

about to assign either u or v. Let the quality after u or v is assigned be Qu
m or

Qv
m, respectively. Then, Qu

m > Qv
m.

Proof. Recall from the proof of Prop.1 that the change in overall quality is
proportional to the change in the quality of the variable picked by the variable
decision heuristic. pguide’s flow implies that if it holds that pt

m > nt
m or nt

m >
pt

m for an unassigned variable t picked by the decision heuristic, then pguide

will pick the value 0 or 1, respectively, for t . This latter fact and the recursive
definition of variable quality imply that the change in variable quality following
an assignment of t by pguide is max(pt

m, n
t
m). By Lemma 1, max (pu

m, n
u
m) >

max (pv
m, n

v
m). ��

Proposition 3. Assume that a compact DiversekSet solver employing
pguide is running and that it has encountered m > 0 models. Let u and v
be two unassigned variables. If |Πu

m| > |Πv
m|, then Su

m < Sv
m.

Proof. Assume to the contrary that Su
m ≥ Sv

m. We denote max (pu
m, n

u
m) and

max (pv
m, n

v
m) by x and y, respectively. The definition St

m = pt
m × nt

m and our
assumption imply that x(m−x) ≥ y(m− y). By Lemma 1, if |Πu

m| > |Πv
m| then

x > y, hence one can express x as x = y+δ, where δ > 0. Substituting the latter
equality into x(m−x) ≥ y(m−y) gives us: x(m−x) ≥ (x−δ)(m−x+δ). Opening
parenthesis and simplifying gives us the following inequality: δ(2x −m − δ) ≤
0. Since δ > 0, we have 2x − m − δ ≤ 0. Substituting δ = x − y into the
latter inequality gives us the following one: m ≥ x + y. Definitions imply that
max (pt

m, n
t
m) ≥ m/2 for any unassigned t , hence x, y ≥ m/2. Since x > y, it

must hold that x > m/2. Since y ≥ m/2 and x > m/2, it cannot hold that
m ≥ x+ y. Contradiction. ��

Compare the empirical behavior of pguide-vguideloc and pguide-vrandloc

to that of plain pguide in Table 1 and Fig. 3. Both pguide-vguideloc and
pguide-vrandloc yield a consistent improvement in quality over pguide.
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pguide-vguideloc’s run-time penalty over pguide is negligible, while pguide-
vrandloc is 26% slower than pguide for 100 models. pguide-vrandloc yields
better quality than pguide-vguideloc when the number of models exceeds 14.
As the number of models increases, pguide-vrandloc’s advantage in quality
becomes more significant. Hence, in the long run, being fairer with respect to
variable ordering contributes to pguide’s impact on quality more than correcting
the potential of one variable at a time, even though the selected variable has the
largest absolute potential in the topmost clause. The guided variable-based ap-
proach is more efficient in terms of run-time than the randomized approach, since
the guided method is closer to the efficient default variable decision heuristic:
while the randomized method chooses variables, independently of their VSIDS
score, the guided method prefers variables with the highest VSIDS score out of
all the variables with the same potential. Interestingly, both pguide-vguideloc

and pguide-vrandloc are inferior to pbcpguide 10 in terms of quality. In the
next section we show how one can combine the variable-based algorithms with
pbcpguide.

5.2 Local Variable-Based Methods for �
������	

We considered a number of ways of combining local variable-based methods with
pbcpguide. First, one could integrate vguideloc and vrandloc as is into
pbcpguide. However, it is unclear whether the resulting algorithms (named
pbcpguide 100-vguideloc-näıve and pbcpguide 100-vrandloc-näıve, re-
spectively) would yield better quality than plain pbcpguide, since, unlike
pguide, pbcpguide tries to improve quality by taking into account dependencies
between variables per se. It might turn out that additional variable-based consid-
erations are not required. Second, one could apply vguideloc and vrandloc

only after the threshold on the number of conflicts for pbcpguide is reached. We
dub the resulting strategies pbcpguide 100-vguideloc and pbcpguide 100-
vrandloc, respectively. They utilize the power of both pbcpguide and the
combination of vguideloc and vrandloc with pguide to improve quality by
taking into account dependencies between variables, yet they should not be as
costly as applying pbcpguide with a larger threshold.

Consider the behavior of pbcpguide 100-vguideloc and pbcpguide 100-
vrandloc in Table 1 and Fig. 3. These methods improve the quality of plain
pbcpguide 100 at the expense of run-time. Note that while the guided method
is faster than the randomized method, the randomized method is preferable
to the guided method in terms of quality. Recall that we observed (and ex-
plained) a similar behavior when we combined the variable-based methods with
pguide. Compare the empirical behavior of pbcpguide 100-vguideloc-näıve

and pbcpguide 100-vrandloc-näıve with plain pbcpguide 100 in Table 1.
Not only do these strategies not improve the quality of pbcpguide 100, but
they deteriorate both the quality and the run-time for 100 models as well. Hence
the variable-based methods that try to take into account dependencies between
variables interfere with pbcpguide.
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Fig. 3. Combining local variable-based algorithms with pguide and pbcpguide 100

It would be interesting to try a BCP-aware guided variable-based method,
which would apply BCP for both polarities for more than one variable and pick
the variable and polarity that yield the best quality. We did not implement such
an algorithm, since a straightforward implementation would be extremely costly
in terms of run-time. Applying BCP in parallel and borrowing techniques from
look-ahead SAT solvers [16], designed to consider a wider set of variables at each
decision point, are appealing directions for future work to improve quality. The
present work proposes another way to improve quality: global variable-based
methods which apply the same principles as the local methods but consider a
wider set of variables at each decision point. These global variable-based methods
are discussed in the next section.

5.3 Global Variable-Based Methods

�����	��
 is a global guided variable-based algorithm. It picks a variable v
with the largest absolute potential out of a wider selection of clauses than its
local counterpart. vguideglob picks a variable with the greatest potential from
the N topmost clauses, including satisfied clauses, unless the N topmost clauses
are satisfied, in which case the algorithm considers all the clauses in the list
up to and including the topmost non-satisfied clause. The primary criteria for
breaking ties is to prefer a variable from a clause that is as close as possible in
the list to the topmost non-satisfied clause. The secondary criteria for break-
ing ties is to prefer variables with better VSIDS scores. The idea behind the
tie-breaking strategies is to make the heuristic as efficient as possible by mak-
ing it as close as possible to the original CBH. For our experiments, we used
N ∈ {10, 100, 200}. We refer to the combination of pguide and pbcpguide 100
with vguideglob with a parameter value N as pguide-vguideglob N and
pbcpguide 100-vguideglob N , respectively.
�������
 is a global randomized variable-based algorithm. It picks an unas-

signed variable at random in T% of the cases out of all the decisions, where
T is a parameter. The default decision heuristic is used in the rest of the
cases. Note that this strategy is independent of the decision heuristic. We tried
T ∈ {2, 10, 20, 30} for our experiments. We refer to the combination of pguide
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and pbcpguide 100 with vrandglob with a parameter value T as pguide-
vrandglob T and pbcpguide 100-vrandglob T , respectively.

We combined global variable-based methods with pbcpguide by applying
them only after the threshold on the number of conflicts for pbcpguide was
reached, since this was found in Section 5.2 to be the optimal strategy for inte-
grating local variable-based methods with pbcpguide.

Consider the empirical behavior of the combination of the global variable-
based methods with pguide and pbcpguide 100 in Table 1. The following con-
clusions equally hold for combining global variable-based methods with either
pguide or pbcpguide 100. As expected, the global methods yield better quality
than the local methods (combined with the respective polarity-based algorithm),
but do so at the expense of run-time. This observation holds for both randomized
and guided methods. The parameter N or T for randomized or guided methods,
respectively, can be used to control the trade-off between quality and run-time.
The larger the corresponding parameter, the better the quality and the worse
the run-time. However, increasing the parameter too much does not yield added
benefit, since the improvement in quality becomes marginal, while the run-time
continues to increase. Compare now the global guided methods vs. the global
randomized methods. The randomized methods are costly in terms of run-time,
but yield better quality (when the threshold N is higher than 2). Recall that we
observed the same behavior while analyzing local methods.

Interestingly, pbcpguide 100-vrandglob T , when T is sufficiently large,
outperforms plain pbcpguide with threshold 10000 in terms of both quality
and run-time for 100 and 50 models. This result shows that, in the long run,
it pays first to use pbcpguide 100 and then to switch to pguide-vrandglob,
rather than to use plain pbcpguide with a larger threshold. Understanding the
reasons for this phenomenon is left for future research.

6 Conclusions and Future Work

This work is the first full-blown paper dedicated to the DiversekSet problem in
SAT, that is, the problem of efficiently generating a number of diverse solutions
(satisfying assignments) given a propositional formula. We proposed a framework
for analyzing DiversekSet algorithms in SAT and carried out an extensive
empirical evaluation of existing and new algorithms on large industrial instances
of DiversekSet arising in SAT-based semiformal verification of hardware [2].

Our analysis showed that adapting the SAT solver’s polarity selection heuristic
in a guided way, that is, explicitly avoiding previous solutions, is preferable
to randomizing the polarity. Considering the dependencies between variables
by taking into account the effect of BCP improves diversification quality, but
deteriorates run-time.

We introduced a number of variable-based algorithms that improve diversi-
fication quality by adapting the variable decision heuristic in addition to the
polarity selection heuristic. We distinguished between randomized and guided
algorithms as well as between local and global algorithms. Randomized and
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global algorithms are more costly in terms of run-time but yield better qual-
ity than guided and local algorithms. Overall, while a moderate improvement
in quality over purely polarity-based methods can be achieved at a negligible
run-time cost, obtaining a more significant improvement in quality requires ad-
ditional run-time. We showed how one can control the trade-off between quality
and run-time to achieve an attractive balance. The eventual choice of algorithms
should depend on the needs of each specific application.

The following directions for future research seem attractive. Parallelizing Di-

versekSet algorithms should be helpful in improving both quality and run-
time. It would be interesting to investigate ways to adapt various components
of the SAT solver (such as conflict analysis schemes or restart strategies) to Di-

versekSet. Borrowing techniques from look-ahead SAT solvers and developing
DiversekSet algorithms on top of such solvers is another interesting direction.
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Abstract. Stochastic local search (SLS) methods are well known for their abil-
ity to find models of randomly generated instances of the propositional satisfia-
bility problem (SAT) very effectively. Two well-known SLS-based SAT solvers
are SPARROW, one of the best-performing solvers for random 3-SAT instances,
and VE-SAMPLER, which achieved significant performance improvements over
previous SLS solvers on SAT-encoded software verification problems. Here, we
introduce a new highly parametric algorithm, CAPTAIN JACK, which extends the
parameter space of SPARROW to incorporate elements from VE-SAMPLER and
introduces new variable selection heuristics. CAPTAIN JACK has a rich design
space and can be configured automatically to perform well on various types of
SAT instances. We demonstrate that the design space of CAPTAIN JACK is easy
to interpret and thus facilitates valuable insight into the configurations automat-
ically optimized for different instance sets. We provide evidence that CAPTAIN

JACK can outperform well-known SLS-based SAT solvers on uniform random
k-SAT and ‘industrial-like’ random instances.

1 Introduction

The propositional satisfiability problem (SAT) is one of the most prominent problems
in computer science, not only because it is a prototypical NP-complete problem, but
also because of its simplicity, expressiveness and practical relevance. Problem instances
from domains such as software verification can be easily encoded into SAT, and there
is much interest in developing SAT solvers that can solve these practical problems ef-
fectively. There is also much interest in random instances; they have been frequently
studied and are underlying one of the three categories in the SAT competition.

Two popular approaches for solving SAT are conflict driven clause learning (CDCL)
and stochastic local search (SLS), and in this work we focus on the latter. SLS solvers
are usually incomplete, i.e., they cannot determine with certainty that a given propo-
sitional formula is unsatisfiable. SLS algorithms for SAT typically start by randomly
assigning to every variable appearing in a given formula a value of either true or false.
Then, in each subsequent search step a variable is selected to have its truth assignment
flipped from true to false or vice versa.

K.A. Sakallah and L. Simon (Eds.): SAT 2011, LNCS 6695, pp. 302–316, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Because SLS is the most effective approach for solving random satisfiable instances,
there has been much interest in studying the performance of SLS-based solvers on ran-
dom instances from the so-called uniform random k-SAT distribution [6], especially
3-SAT instances at, or near, the solubility phase transition, where there is an equal
probability of generating a satisfiable or unsatisfiable instance [12]. One of the best
known SLS solvers for large random 3-SAT instances near the phase transition is SPAR-
ROW [3], which replaced the variable selection heuristic in GNOVELTY+ [13] with a
probabilistic distribution-based mechanism. We will describe SPARROW in Section 2.1.

While SLS is currently not competitive with CDCL on large satisfiable industrial
instances, there has been some recent success in closing the gap. The VE-SAMPLER

algorithm [18] was able to achieve a significant improvement in this area by solving
the CBMC software verification benchmark instances over ten times faster than the
previous best known SLS algorithm SATENSTEIN-LS [10]. In Section 2.2, we will
describe some of the specifics of VE-SAMPLER.

SATENSTEIN-LS and VE-SAMPLER are examples of highly parametric algorithms
that are designed to be automatically configured, using an automated algorithm config-
urator that takes as inputs an algorithm, its configuration space and an instance set and
then attempts to find the best-performing configuration of the algorithm on the given
instance set. Following this approach, which is a prominent special case of computer-
aided algorithm design [7], the traditional role of an algorithm designer is redefined to
be more focused on constructing rich and interesting spaces of algorithms.

It is well established that SAT instances drawn from different sources and distribu-
tions have different characteristics, and the efficacy of a solver on an instance often
depends on those characteristics. Portfolio-based approaches, such as SATZILLA [19],
exploit this phenomenon by selecting one or more solvers to be used for solving a
given instance based on characteristics of that instance. One of our goals in this work
was to create a highly parametric algorithm that can help explore the algorithmic dif-
ferences (or similarities) between configurations that achieve good results on different
types of instances (e.g., random vs application or random 3-SAT vs 7-SAT). To achieve
this goal, our algorithm should have a parameter space that is not only easy to under-
stand, but also contains configurations that achieve good performance on a wide variety
of instance types; without good performance, the resulting configurations are not very
meaningful, and without intuitively understandable configurations, it is difficult to draw
conclusions from automatically optimized configurations. In Section 4, we introduce
CAPTAIN JACK, a new, highly parametric algorithm that attempts to strike a balance
between these two objectives. It was named for the fictional pirate Captain Jack Spar-
row, because it incorporates elements from SPARROW, as well as because it can achieve
good performance on a wide variety of instances, and is hence a jack-of-all-trades.

In Section 6, we present evidence that CAPTAIN JACK does achieve good
performance on nine different instance sets, and is now the best known SLS-based SAT
algorithm for large random 3-SAT instances and a class of recently proposed ‘industrial-
like’ instances [1]. Moreover, we show how the resulting configurations found by CAP-
TAIN JACK provide interesting insight into the configurations found for each of the
instance sets; for example, we found evidence that the CAPTAIN JACK configuration
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optimized for the previously mentioned industrial-like instances exhibits characteristics
consistent with those obtained for some practical software verification instances.

Additional information and experimental data, including source code and instance
sets, can be found at www.cs.ubc.ca/research/captain-jack.

2 Background

Throughout this work, we use the approach for modeling and representing SLS algo-
rithms introduced by Tompkins and Hoos [18], according to which each search step
involves three heuristic stages. First, the variables are filtered so that only a subset of
variables are considered as flip candidates. Next, the candidates are evaluated according
to one or more variable expressions (VEs), where each VE is a mathematical expression
that can include properties of the variables. Finally, once the VEs have been evaluated,
a variable selection mechanism (VSM) is employed to select the variable to be flipped.
A controller determines for each search step which filter, VEs and VSM are used.

Some variable properties are defined via a VE that contains other properties, such
as score, which is equivalent to the VE 〈make − break〉, where the properties make
and break measure the number of clauses that would become satisfied and unsatisfied,
respectively, if the variable were to be flipped. The value of a property can depend on the
specific context in which the variable is selected and additional state information of the
algorithm. For example, algorithms with dynamic clause penalties, such as PAWS [15]
and GNOVELTY+ [13], use a penalized property penScore, whose value depends on the
full variable assignment and on the clause penalties (weights).

Variable properties can be loosely classified as either greedy properties, which tend
to increase the number of satisfied clauses during search, such as make and break , or
diversification properties, which tend to better explore the search space and avoid local
minima, such as age and flips. The age property is defined as the number of search steps
that have occurred since the given variable was last flipped. The flips property (a.k.a.
flipcount) measures how many times a variable has been flipped. In Section 4, we will
describe several new greedy and diversification properties.

2.1 SPARROW

The SPARROW algorithm [3], named after the city of Ulm’s mascot, is based on the
GNOVELTY+ algorithm [13]. GNOVELTY+ combines a clause penalty-based scheme
similar to PAWS [15] with the promising variable scheme of G2WSAT [11] (see [13]
and the GNOVELTY+ source code, version 1.2, from the 2009 SAT Competition for
more details). The behaviour of SPARROW differs from GNOVELTY+ only when there
are no (penalized) promising variables, in which case a novel VE and a probabilistic
VSM is used instead of the NOVELTY-based component in GNOVELTY+. The VE used
by SPARROW is 〈sparrowScore · sparrowAge〉, where sparrowScore and sparrowAge
are defined as follows1:

sparrowScore =
{
c penScore
b if penScore < 0

1 otherwise
, sparrowAge = 1 +

(
age
cd

)ce

.

1 The definition and notation we use differs slightly from the published version of SPARROW [3],
but accurately reflects the source code implementation.

www.cs.ubc.ca/research/captain-jack


Captain Jack 305

SPARROW uses a distribution-based VSM, where each variable is selected propor-
tionally to the VE 〈sparrowScore · sparrowAge〉. When we use a similar approach to
select an element from a set where the elements are assigned fixed weights, we will
refer to it as weighted selection.

The full parameter space for SPARROW includes the three constants mentioned above
and the smoothing probability (ps) inherited from GNOVELTY+. Balint and Fröhlich
proposed (cb, cd, ce, ps) := (2, 4, 105, 0.347) as a good configuration for large 3-SAT
instances, which was found by manual tuning on selected 3-SAT competition bench-
mark instances [3].

2.2 VE-SAMPLER and PARAMILS

VE-SAMPLER [18] was developed to demonstrate the power of using new and inno-
vative variable properties and VEs in SLS algorithms. It was inspired by the VW2
algorithm [14], which was observed to be very effective on the CBMC software verifi-
cation instances with the VE 〈break + c · flips〉. Based on the WALKSAT architecture,
VE-SAMPLER uses the selection of an unsatisfied clause as a filter. In each search step,
a controller selects one of six VEs using weighted selection; one of these VEs corre-
sponds to a (freebie) random walk step, and the remaining five are all of the general
form:

‖greedy‖a1 + clw(s,m, l) · ‖diversification‖a2 ,

where ‖p‖ indicates a property p that is normalized to values between zero and one,
and clw(s,m, l) is a simple mechanism that selects between three coefficients (s,m, l)
depending on whether the clause length is respectively less than, equal to, or greater
than three. Each VE uses one greedy property (chosen from a set of five) and one
diversification property (chosen from a set of thirteen), except for one VE that uses
two greedy properties (see [18] for details). VE-SAMPLER uses maximum VSM, where
the variable with the maximum evaluated VE is selected. At the time of this writing,
VE-SAMPLER is the fastest SLS-based SAT solver on the CBMC and SWV software
verification instances [18]; it has subsequently been shown to have good performance
on random 3-SAT instances [16], although on these, it does not reach the performance
of SPARROW or SATENSTEIN-LS.

The configuration space of VE-SAMPLER is enormous, with over 1050 unique con-
figurations. The configurator used on VE-SAMPLER was PARAMILS [9,8], an SLS-
based procedure that searches the configuration space of a given algorithm. The primary
inputs to PARAMILS are a target solver (binary), a set of target (training) instances,
a solver cutoff time, an evaluation function and a configuration file that specifies the
configuration space (each solver parameter along with a set of possible values). The
evaluation function used was the penalized average runtime (PAR-10), where instances
not solved within the cutoff are counted as ten times the given cutoff time. The primary
output of PARAMILS is the best configuration of the target algorithm that PARAMILS
found by the search process, i.e., the configuration that achieves the best PAR-10 per-
formance on the instances in the given set.

To ensure that the results from PARAMILS generalize to instances other than those
used during the optimization process, we use a set of test instances to report final results
that is disjoint from the training set used when running PARAMILS.
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3 Design Considerations underlying CAPTAIN JACK

Many SLS for SAT algorithms switch between greedy (intensification) steps and diver-
sification steps, or use diversification properties as tie-breakers in greedy steps. SPAR-
ROW and VE-SAMPLER have mixed steps that combine a greedy and a diversification
property in a VE; the likelihood of a variable being selected can be dominated by the
greedy property, the diversification property or neither of them. CAPTAIN JACK allows
for all three types of steps (greedy, diversification and mixed), and we introduce pa-
rameters to control the balance between the three. Mixed steps are rarely used in SLS
algorithms for SAT, and we were interested in observing the proportion of mixed steps
PARAMILS would select, and how that proportion would depend on the target instance
set. We were also curious whether PARAMILS would select a distribution-based VSM
as in SPARROW or a maximum VSM as in VE-SAMPLER; therefore, CAPTAIN JACK

supports both types of VSMs.
One of the objectives of our earlier work had been to encourage the use of more di-

verse variable properties [18]; this was achieved in VE-SAMPLER by means of categor-
ical parameters that select properties from a given set. One problem with this approach
is that a configuration only has a few selected properties, which may include duplicates,
and it is hard to assess the viability of each individual property. To help avoid this prob-
lem in CAPTAIN JACK, each property has a parameterized weight that controls how
frequently it is selected. This makes it easier to assess which properties are important
for a given instance set. It also renders CAPTAIN JACK an excellent framework for in-
troducing and testing new variable properties; after these are added to the configuration
space, the automated configurator can gradually introduce them into configurations by
means of modifying their weights relative to other properties.

One significant departure in CAPTAIN JACK from SPARROW is the absence of pe-
nalized clause weights. In preliminary experiments, we observed that with penalized
clauses the proportion of (greedy) promising steps was significantly higher, reducing
the impact of the core CAPTAIN JACK components we were interested in exploring.
In addition, we found the penalized promising variable mechanism as implemented
in GNOVELTY+ (and, hence, SPARROW) problematic and memory intensive for large
instances.

Finally, when designing a highly parametric algorithm with the aim of configuring
it automatically, it is important to understand the limitations of the automatic algorithm
configurators currently available. The state-of-the-art configurator PARAMILS, which
we used in this work, tends to have difficulties with configuration spaces like that of
VE-SAMPLER, characterized by many categorical parameters (e.g., property selection)
and complex interaction between parameters (e.g., the normalization and non-linear
transformation for each property). The same holds for all other configurators we are cur-
rently aware of. To render CAPTAIN JACK more easily configurable, we decided to use
very few categorical parameters, no conditional parameter dependencies and smoother
interactions between parameters (as introduced by the previously mentioned property
weights).
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4 Captain Jack

In each search step of CAPTAIN JACK, the controller makes four core algorithmic deci-
sions that determine the behaviour of the solver:

1. if promising steps are enabled and promising variables exist, select one; otherwise,
2. determine if a greedy, diversification or mixed step will occur;
3. select the greedy and/or diversification properties to use; and
4. determine the VSM (maximum or distribution-based) to be used and select the

variable accordingly.

First, if promising variables exist, a straightforward G2WSAT greedy search step [11]
is taken, in which the promising variable with the best score is selected, breaking ties
by the age property; this step is skipped if promising variables are turned off, which is
one of the many configurable parameters. If no promising variables exist, an unsatisfied
clause is selected at random (i.e., the same filter as in WALKSAT is used).

The second decision in CAPTAIN JACK is which type of step to take: a greedy step, a
diversification step or a mixed step. Each type of step has a parameterized weight, and
the type of step is determined by weighted selection. For instances with variable clause
lengths, the weights also depend on the length of the selected clause. CAPTAIN JACK

uses a clause length range classification similar to VE-SAMPLER, where each clause
falls into one of the following four ranges: {≤ 2, 3, 4 . . .9,≥ 10}; thus, for instances
with variable clause lengths, there are 12 weights that determine the step type.

The next decision is to select the greedy and/or diversification properties. There are
9 greedy and 17 diversification properties, as described in Table 1. Each property is
assigned a parameterized weight and is selected by weighted selection. For greedy and
diversification steps, only one property is selected, while for mixed steps one greedy
and one diversification property is selected, and the product of those two is computed.

The final decision in CAPTAIN JACK is whether to use a distribution-based VSM or
a maximum VSM. The probability of using a maximum VSM is a parameterized value
that is determined by the clause size and the type of the search step, resulting in 12 total
probabilities for instances with variable clause lengths.

Table 1 gives an overview of the variable properties used in CAPTAIN JACK. As
in VE-SAMPLER, when using interchangeable properties, special care must be taken to
adjust the values of the score properties that can have negative values, and the break and
flips properties, where large property values indicate undesirable choices. In CAPTAIN

JACK, we opted for simplicity over potentially more effective normalizations and used
very straightforward adjustments. For example, a constant is added to the score property
values so the minimal candidate variable score is one (see website for more details).

In addition to the five greedy properties used in VE-SAMPLER, we introduced four
new greedy properties (see upper part of Table 1). The sparrowScore property assigns a
constant value of one to non-promising variables with a positive score; sparrowScore2

replaces this constant with a new parameter (cs). The scoreRatio has two obvious forms,
and we added a separate Boolean parameter (bs) to determine which of the two ratios
should be used. relMake and relBreak were already used in VE-SAMPLER, as the rel-
ative number of clauses affected, normalized by the number of occurrences of the vari-
able (numOcc and numOcc’ are the number of clauses the variable currently appears in
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Table 1. Variable properties in CAPTAIN JACK Top: greedy, bottom: diversification

make number of clauses that become satisfied if the variable is flipped
break number of clauses that become unsatisfied if the variable is flipped
score increase in the number of satisfied clauses if the variable is flipped (make − break)

sparrowScore2 from the SPARROW algorithm: if score ≤ 0, cb
score , otherwise cs

scoreRatio if bs, (make/(make + break)), otherwise (make/(break + ε))

relMake (make/numOcc): make adjusted by the number of occurrences of the variable (see text)
relBreak (break/(numOcc’ + ε))

relScore (relMake − relBreak)

relScoreRatio same as scoreRatio, with relMake and relBreak

rand a random number between zero and one
flat no property value, i.e., one
fair 1 for the ‘next’ variable in the clause, otherwise 0 (see text)
last 0 if the variable was flipped the last time the clause was selected, otherwise 1

age number of search steps since the variable was last flipped
age1 number of search steps since the flip prior to the most recent flip
age5 number of search steps since the fifth most recent flip
ageRange the age property with less sensitivity 	age/cr

sparrowAge from the SPARROW algorithm: 1 + (age/cd)ce

tabu 0 if the variable is tabu (age < ct), otherwise 1

flips number of times the variable has been flipped
flops number of times the variable appeared in a selected clause, but was not flipped
normFlops similar to flops, but is increased by 1/clauseLen each time it is not flipped
resetFlops same as flops, but reset to zero whenever the variable is flipped (excl. promising steps)

relFlips (flips/numOcc)
relFlops (relFlops/numOcc)
relNormFlops (normFlops/numOcc)

as false and true, respectively). The properties relScore and relScoreRatio are defined
similarly.

Furthermore, we introduced ten new diversification properties (see lower part of
Table 1). Whenever a clause is selected and the fair property is selected, the ‘next’
variable in the clause is assigned a property value of one, and all others are zero; this is
implemented by maintaining a counter for each clause and simply selecting the next
variable in sequence. The last property is zero for the variable that was flipped at
the most recent time the same clause was selected, regardless of the property based
on which that previous selection was made. In VE-SAMPLER, the age’ property was
used to keep track of the number of steps since the flip prior to the most recent flip.
Here, we call this property age1 and generalize it to the agek family of properties. In
CAPTAIN JACK we wanted to explore larger values of k and added the age5 property.
The ageRange property uses a divisor parameter (cr) and a floor function to achieve a
coarser evaluation of age. In VE-SAMPLER, the filtCount property was used to main-
tain how often a variable appears in the filtered variables (i.e., the selected clause). The
flops property is very similar, but is instead only incremented when the variable ap-
pears in the selected clause and is not flipped. The normFlops property is related to
flops, but is incremented by (1/clauseLen) when the variable is not flipped. The reset-
Flops property is the same as flops, but is reset to zero whenever the variable is selected
(excluding when it is flipped as a promising variable). Finally, the relFlips, relFlops and
relNormFlops properties are all normalized analogously to relMake.
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5 Experimental Setup

For our experiments we used nine benchmark sets: six random uniform k-SAT sets, one
random industrial-like set and two sets of SAT-encoded software verification problems.

For the random instances, we generated two sets each for k = 3, 5, 7; one set for
smaller instances at the solubility phase transition and one set of larger, slightly un-
derconstrained instances. For the phase transition sets, we used clauses/variables ratios
of 4.26, 21.11 and 87.79 for 3-, 5-, and 7-SAT, respectively, as specified by Mertens
et al. [12]. For the underconstrained sets, we chose ratios of 4.2, 20 and 85, as previ-
ously used in the SAT competition. To select the instance size n for these sets, we took
into consideration both the sizes used in the competition and the time required to solve
instances. We selected n = 1 000 (1k) and 10 000 (10k) for 3-SAT, 100 and 500 for
5-SAT, and 60 and 90 for 7-SAT. For each set, we generated instances with the 2009
SAT competition generator and removed instances that were not solved by TNM within
10 000 seconds; we randomly selected 250 instances for training and 250 for testing.

The CBMC and SWV software verification instance sets have been previously stud-
ied in the literature [10,8,18]. While PICOSAT [4] can solve any of the instances in
these sets in less than two seconds, they are known to be challenging for SLS-based
solvers; in fact, about 50% of the instances in SWV cannot be solved consistently by
any SLS-based SAT solver we are aware of.

Finally, we used the double power-law generator provided by Ansótegui et al. to
generate a set of random industrial-like instances we dub IL50k; we chose this gener-
ator since it produces variable length clauses that have properties similar to industrial
problems [1]. Our set contains satisfiable instances with the same characteristics as the
instances used by Ansótegui et al. (m

n , β, k) := (2.650, 0.75, 5), but with 5 · 104 (50k)
variables instead of 500k; we randomly chose 50 training and 50 test instances.

We compared the performance of CAPTAIN JACK against six state-of-the-art SLS
solvers. These include the three top SLS solvers from the 2009 SAT Competition ran-
dom category, TNM, GNOVELTY+2 and ADAPTG2WSAT2009++ (henceforth, as
AG22009++), for which we used the parameterless competition versions (see the com-
petition booklet for details). We also selected the UBCSAT [17] implementation of
SPARROW [3]; it behaves exactly like the original implementation, but is more efficient
and exposes additional parameters. The final two solvers are the highly parametric VE-
SAMPLER [18] and SATENSTEIN-LS [10] solvers. For VE-SAMPLER, we used the
three native (i.e., non-interpreted) implementations configured for CBMC, SWV and
random 3-SAT instances at the phase transition (R3SAT in [10]). We chose not to re-
configure the interpreted version of VE-SAMPLER on our new sets, which would re-
quire developing native implementations for a fair comparison.

We used the FOCUSEDILS 2.3.5 variant of the PARAMILS framework to configure
SPARROW, SATENSTEIN-LS and CAPTAIN JACK on each of the nine sets. In each of
the configuration experiments for SPARROW and SATENSTEIN-LS, we performed 24
independent PARAMILS runs of at least 7 CPU days each, from which we selected
the one with the best performance on the respective training set. For CAPTAIN JACK,
we used a training protocol comprising three sequential stages, designed to deal with
successively harder instances and larger fractions of the given training set. These three
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Table 2. Solver Evaluation on Test Sets. Each cell summarizes the test-set performance of the
solver for 10 runs on each instance in the set with a cutoff of 600 seconds. The top row shows
the penalized average runtime (PAR-10): the mean of all runs over all instances with timeouts
replaced with a penalized value of 6 000 (= 10 · 600) seconds. The second row shows the mean
of the median runtimes for each instance in the set, where if any instances has a median at the
cutoff time, the median is included but marked (+). The third row indicates the percentage of
all runs completed within the timeout. The algorithms indicated ([∗]) have been optimized by
PARAMILS on each target set. Unfortunately, GNOVELTY+2 crashed on the CBMC and SWV
instances and could therefore not be evaluated on those.

3-SAT 5-SAT 7-SAT
IL50k CBMC SWV

1k 10k 100 500 60 90
Algorithm PAR-10 PAR-10 PAR-10 PAR-10 PAR-10 PAR-10 PAR-10 PAR-10 PAR-10

m.m. m.m. m.m. m.m. m.m. m.m. m.m. m.m. m.m.
% sol. % sol. % sol. % sol. % sol. % sol. % sol. % sol. % sol.
69.0 43.3 0.31 12.1 1.5 68.9 0.83 0.35 4 533

CAPTAIN JACK[∗] 15.4+ 24.4 0.23 9.2 1.1 22.3+ 0.78 0.31 464+

99.0% 99.8% 100% 100% 100% 99.4% 100% 100% 24.5%
63.0 220 0.18 12.9 0.81 32.4 1.4 69.4 4 413

SPARROW[∗] 11.9+ 58.3+ 0.14 9.1 0.59 12.9 1.3 3.9 446+

99.1% 97.1% 100% 100% 100% 99.7% 100% 99.0% 26.5%
82.4 0.08 2 856

VE-SAMPLER[∗] 15.0+ n/a n/a n/a n/a n/a n/a 0.07 295+

98.8% 100% 52.5%
33.5 72.1 0.21 3.3 0.92 34.1 1.2 0.62 4 640

SATENSTEIN[∗] 8.2+ 30.0 0.15 2.6 0.68 13.6 1.1 0.54 464+

99.6% 99.3% 100% 100% 100% 99.7% 100% 100% 22.7%

75.4 691 0.22 27.2 1.9 30.6 350 525 4 640
TNM 14.2+ 154+ 0.17 17.5 1.6 13.3 44.4+ 73.5+ 464+

98.9% 90.3% 100% 99.9% 100% 99.8% 94.4% 91.8% 22.7%
78.6 2 604 0.27 11.2 1.1 22.1 1 901

GNOVELTY+ 2 16.3+ 382+ 0.20 8.3 0.78 10.3 295+ n/a n/a
98.9% 58.8% 100% 100% 100% 99.9% 70.4%
76.3 2 373 0.21 24.4 1.5 15.6 6.9 3 267 4 217

AG22009++ 12.4+ 331+ 0.17 15.2 1.4 11.9 6.5 383+ 440+

98.8% 62.1% 100% 99.9% 100% 100% 100% 46.7% 30.0%

stages consisted of 24 independent PARAMILS runs for one, three and three CPU days,
respectively (see website for further details).

The PARAMILS training was conducted on Westgrid clusters (see website for de-
tails), but otherwise all solver evaluations and times reported were performed using the
EDACC framework [2] running on bwGRiD [5] (Intel two socket 4-Core Xeon E5540
CPUs 2.83 GHz, with 16GB RAM running Linux).

6 Results and Discussion

In Table 2, we present the results from our evaluation of CAPTAIN JACK and several
state-of-the-art algorithms on the instance sets described in Section 5. As previously
mentioned, CAPTAIN JACK was designed to perform well on a wide variety of in-
stances, and this is reflected in the results. We note that the configurations evaluated
here are, for the most part, not the best that exist in the CAPTAIN JACK design space.
For example, in results not reported here, but available online, we ran PARAMILS for an
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additional three days on each set and were able to obtain configurations that achieved
modest improvements in PAR-10 (6%-9%) on 3sat10k, 5sat500 and IL50k and more
significant improvement (20%) on CBMC and SWV. Furthermore, as we will discuss
later in this section, we found evidence that in some cases, the best CAPTAIN JACK

configuration on a given type of instances was not the one optimized for that type,
which clearly indicates that PARAMILS at least in some cases produced sub-optimal
configurations.

The relative performance of CAPTAIN JACK is the best on 3sat10k and IL50k, and
CAPTAIN JACK is now the best known SLS solver for those sets. On the sets 5sat100,
7sat60 and 7sat90 CAPTAIN JACK performs significantly worse than SPARROW. We
conjecture that this is connected to the relatively small number of variables in these
instances, but further investigation is needed to explain this phenomenon.

Finally, we were quite surprised by the strong performance of SPARROW on IL50k,
as results obtained for the default configuration of SPARROW were much worse. In-
terestingly, the configuration of SPARROW found by PARAMILS on IL50k uses no
smoothing, a rare situation for high-performance SLS algorithms using clause penal-
ties – a phenomenon that might warrant further investigation.

Next, we investigated the CAPTAIN JACK configurations found by PARAMILS for
each of our instance sets (see Table 3). As mentioned earlier, we do not believe that
these configurations are optimal, and longer runs of PARAMILS could produce rather
different configurations. Nevertheless, we believe that qualitative differences between
these configurations, which are based on multiple, long runs of PARAMILS, are likely
meaningful.

In CAPTAIN JACK we introduced several new variable properties, and we were cu-
rious to see which role these would play in the configurations found by PARAMILS.
Clearly, the age5 property is very effective, which was surprising to us, especially
since the value of 5 was selected somewhat arbitrarily; this suggests that the agek

family of properties merits further study. The slight modification we introduced in
sparrowScore2, which allows for positive non-promising variables to have a parame-
terized value (cs), also appeared to be quite effective, and most configurations had a
value of cs slightly greater than one. Considering that the original sparrowScore prop-
erty had been developed for solving random 3-SAT, it is perhaps not surprising that
sparrowScore2 is prominently used only in the random k-SAT configurations. Con-
versely, our new properties scoreRatio and relScoreRatio appeared to be useful only on
the software verification benchmarks, both of which had bs set to true (see Table 1). Our
intuition was that the fair and flops-based properties would be good for diversification,
but that they should be used sparingly; our results are consistent with this intuition, but
further study is warranted. Overall, the diversification properties most often selected
are the age variants, which is also the most prominent diversification property in the
literature. It is also very clear that the flips properties are very important for instances
with variable-length clauses and non-uniform variable distributions.

We were wondering whether PARAMILS would prefer a ‘traditional’ approach for
SLS-based SAT solving with mostly greedy steps and a few diversification steps, as
it did for 7sat90; however, most of the optimized configurations turned out to favour
mixed steps. This supports previous evidence that exploring new and innovative
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Table 3. Parameter Settings in CAPTAIN JACK. (Top:) The weight for each search step type
(greedy / mixed / diversification), and for each type, the percent of steps where the maximum
VSM was selected (as opposed to a distribution-based VSM). For instances with variable length
clauses, the values depend on the selected clause length {≤ 2, 3, 4 . . . 9,≥ 10}. (Bottom:) The
weight for each variable property (greedy and diversification properties are selected indepen-
dently). All weights have been normalized to appear as percentages. Non-applicable values are
shown as a dash (-), and weights with value zero are blank. The most significant properties (with a
combined weight of ≥ 75%) are in bold. As an example, for 3sat10k, 94% of the (non-promising)
search steps are mixed steps, and in 90% of those steps the maximum VSM is used. make and
age5 are each independently selected as the greedy and diversification property for 40% of the
mixed steps. This means that for 13.5% (0.94 ·0.9 ·0.4 ·0.4) of the (non-promising) search steps
the variable with the maximum value of 〈make · age5〉 is selected.

3-SAT 5-SAT 7-SAT
IL50k CBMC SWV

step type / 1k 10k 100 500 60 90
VSM % % % % % % ≤ 2 3 4-9 ≥ 10 ≤ 2 3 4-9 ≥ 10 ≤ 2 3 4-9 ≥ 10

greedy step 3 6 67 93 10 8 8 67 89 33 31 32 94
mixed step 100 94 94 33 100 1 80 100 67 31 62 17 66 62 100 64 3
div. step 3 6 10 33 62 31 17 11 1 8 4 3
greedy: % max - 80 30 50 - 50 80 - - 100 80 0 40 0 100 - 0 90
mixed: % max 10 90 90 10 90 0 90 10 0 70 60 70 - 10 60 100 0 30
div.: % max - 0 - - - 20 10 - 20 0 30 10 80 0 10 - 50 0

3-SAT 5-SAT 7-SAT
IL50k CBMC SWV

property 1k 10k 100 500 60 90
% % % % % % % % %

make 40 2.8 0.7 0.5 13
break 1.2 10 2.8 50 47 6.3 6.2
score 9.9 10 2.8 20 3 70 25 0.4
sparrowScore2 79 40 90 78 50 47 0.5 0.8 3.1
scoreRatio 9.9 1.4 2.4 1.5 0.8 25
relMake - - - - - - 18 1.6 0.4
relBreak - - - - - - 8.8 3.1
relScore - - - - - - 1.1 1.6 12
relScoreRatio - - - - - - 1.1 51 50
rand 15 0.6 0.5 0.3 0.6 52 1.3 1.4
flat 9.9 1 44 0.3 0.3 0.3
fair 0.2 0.5 1.4 0.3 0.7 5.2 0.7
last 15 4.9 4.1 0.7 10 13 0.3 0.3
age 3.6 9.9 33 1.4 2.5 13 1.3 2.8
age1 0.5 20 16 1.4 43
age5 15 40 4.1 0.7 20 42 44
ageRange 7.3 0.6 1 2.7 0.6 0.3 1.3
sparrowAge 29 0.3 0.7 20 1.6 2.7 0.3
tabu 3.6 4.9 33 44 41 3.2 0.7 0.7
flips 3.6 2 0.7 1.3 43 0.3 44
flops 7.3 0.5 2.5 1.6 0.3 0.3 0.3
normFlops 0.5 0.3 2.7 0.3 13
resetFlops 0.5 9.9 4.1 0.3 0.3 3.2 0.3 0.7
relFlips - - - - - - 5.4 42 1.4
relFlops - - - - - - 2.7 5.2 0.3
relNormFlops - - - - - - 0.7 2.8

methods for mixing properties in VEs is a promising area of research. We introduced
clause-length-dependent behaviour in CAPTAIN JACK to see if we could observe inter-
esting trends, e.g., we hypothesized that mixed or diversification steps could be more
important for larger clause lengths, but the results are inconclusive. However, it appears
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that IL50k and CBMC benefit from more diversification steps than the random k-SAT
sets, and – as we will observe in Table 4 – it appears that SWV does as well. For random
k-SAT, the configurations for the underconstrained sets allow for more greedy steps,
which is consistent with the understanding that these instances are relatively easier to
search than those at the phase transition. The proportion of solely greedy steps is actu-
ally higher (12%) for 3sat10k if we consider that flat is selected as the diversification
property for 10% of the mixed steps; this is an example of the kind of inter-parameter
dependency that we were attempting to minimize in CAPTAIN JACK, but is impossible
to eliminate completely.

There is no clear preference between maximum vs distribution-based VSMs. It would
be interesting re-run PARAMILS on CAPTAIN JACK with two different restricted con-
figuration spaces that force all steps to be either a maximum or distribution-based VSM;
we could then observe which VSM would achieve better performance, and study the
differences between the resulting configurations. We note that CAPTAIN JACK is well
suited for this kind of analysis, which we are confident will lead to an improved under-
standing of the performance potential inherent in various algorithm components, and of
their interaction when solving various types of SAT instances.

There are a few additional parameter settings, such as the parameters cs, cr and bs
in Table 1, that are not shown in Table 3 and can be found online. One of these is the
Boolean parameter to control if G2WSAT promising steps are taken; only the CBMC
and SWV configurations do not take promising steps. This may suggest that promising
steps may be more suited for randomly generated instances (including IL50k), which
is consistent with the observation that AG22009++, which relies heavily on promising
steps, is the worst performer on CBMC in Table 2.

Another method for evaluating the differences between our configurations is to cross-
test each of the configurations on each of the sets, and we present the results of these
experiments in Table 4. These results also indicate how ‘specialized’ each of our op-
timized configurations are. The most surprising result is that in several cases, the best
configuration for an instance set is actually not the one optimized for the respective
training set. As previously stated, this clearly indicates that PARAMILS does not al-
ways find optimal configurations within the design space of CAPTAIN JACK. The most
interesting such configuration is the one obtained for IL50k, which performs very well
on the SWV set. This suggests that the industrial-like instances could indeed be very
useful for optimizing performance on harder industrial instances. This similarity is re-
inforced further as the SWV configuration is the second-best configuration (by a large
margin) on the IL50k set. Finally, because the IL50k set has an average clause length
of 5, we hypothesized that the 5-SAT configurations might perform well on IL50k or
vice-versa, but this appears not to be the case. This further highlights the fact that the
structural aspects of real verification instances captured by the industrial-like instances,
albeit simplistic, are at least to some degree informative.

One final experiment we performed was to test if algorithms trained on the IL50k
instances would be able to solve larger instances from the same distribution. Ansótegui
et al. [1] generated larger (500k) instances, and demonstrated that GNOVELTY+ was
unable to solve these. We generated a set of ten such instances (IL500k) that, aside
from the number of variables, have the same characteristics as the IL50k set. Because
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Table 4. Cross-Testing of CAPTAIN JACK configurations. Each configuration of CAPTAIN

JACK was run once on each instance in each test set with a cutoff of 600 seconds. We report the
ratio of the resulting PAR-10 to the PAR-10 for the targeted configuration. Configurations that
outperform the targeted configuration for the set are in bold.

Configuration
3-SAT 5-SAT 7-SAT

IL50k CBMC SWV
1k 10k 100 500 60 90

CJ [3sat1k] 1 61.5 1.38 95.7 1.08 1.03 157 5 876 1.02
CJ [3sat10k] 2.65 1 1.41 545 1.99 3.99 167 1 890 1.02
CJ [5sat100] 2.56 135 1 93.2 1.18 0.72 170 7 108 1.03
CJ [5sat500] 24.3 200 1.35 1 1.00 0.97 1 271 10 014 1.00
CJ [7sat60] 99.1 200 0.82 539 1 2.33 786 9 989 1.02
CJ [7sat90] 105 200 1.82 12.1 1.44 1 1 929 3 088 0.98
CJ [IL50k] 16.6 200 4.50 567 2.20 15.8 1 1 106 0.83
CJ [CBMC] 19.9 200 6.71 483 2.97 7.70 1 236 1 1.02
CJ [SWV] 148 200 17.6 567 9.47 79.2 2.29 2.43 1

the instances are so large, we observed that many SLS solvers (e.g., from the SAT
competition, but also SATENSTEIN-LS) encounter technical problems when trying to
solve them. We ran the IL50k configurations of CAPTAIN JACK and SPARROW and the
UBCSAT implementation of ADAPTG2WSAT+ on each of the 10 instances with a
cutoff of 12 hours per instance. ADAPTG2WSAT+ solved only 5 instances and SPAR-
ROW was able to solve 9. However, CAPTAIN JACK was able to solve all 10 instances in
a combined time of 77 minutes. For perspective, PICOSAT [4] solved all 10 instances
in a combined time of 2 minutes and showed little variation in runtime per instance
compared to the SLS solvers.

7 Conclusions and Future Work

In this work, we have introduced CAPTAIN JACK, a highly parametric SLS algorithm
that can be automatically configured to perform well on various types of SAT instances
and is currently the best known SLS algorithm for solving large random 3-SAT and
‘industrial-like’ instances. We designed CAPTAIN JACK in a way that would aid us in
exploring which components and heuristic mechanisms give rise to strong performance
on different types of SAT instances and made several interesting observations in this
respect. We also introduced several new variable properties and provided evidence these
can be very effective; in particular, our results suggest that the family of agek properties
merits further investigation. Finally, we provided preliminary evidence that training on
smaller industrial-like instances may be a viable approach to improving SLS algorithm
performance on larger industrial problems.

Our results reported here provided further evidence that mixed VEs can be very
effective; while CAPTAIN JACK, SPARROW and VE-SAMPLER combine only two vari-
able properties, we believe that it may be interesting to investigate more complex com-
binations. We also see potential in developing an adaptive CAPTAIN JACK that adjusts
its balance between diversification and intensification throughout the search and incor-
porates a mixed VE that combines property values accordingly. Ultimately, we hope
that CAPTAIN JACK will provide further insight into SLS algorithm development, and
that algorithm developers will be able to gain insight and inspiration from examining
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CAPTAIN JACK configurations that are effective for solving particular instance sets. We
believe that such work will lead to new and specialized lightweight algorithms, similar
to SPARROW, that improve the state-of-the-art for solving SAT.
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Abstract. In several fields, Satisfiability being one, there are regular
competitions to compare multiple solvers in a common setting. Due to
the fact some benchmarks of interest are too difficult for all solvers to
complete within available time, time-outs occur and must be considered.

Through some strange evolution, time-outs became the only factor
that was considered in evaluation. Previous work in SAT 2010 observed
that this evaluation method is unreliable and lacks a way to attach sta-
tistical significance to its conclusions. However, the proposed alternative
was quite complicated and is unlikely to see general use.

This paper describes a simpler system, called careful ranking, that
permits a measure of statistical significance, and still meets many of the
practical requirements of an evaluation system. It incorporates one of
the main ideas of the previous work: that outcomes had to be freed of
assumptions about timing distributions, so that non-parametric methods
were necessary. Unlike the previous work, it incorporates ties.

The careful ranking system has several important non-mathematical
properties that are desired in an evaluation system: (1) the relative rank-
ing of two solvers cannot be influenced by a third solver; (2) after the
competition results are published, a researcher can run a new solver on
the same benchmarks and determine where the new solver would have
ranked; (3) small timing differences can be ignored; (4) the computations
should be easy to understand and reproduce. Voting systems proposed
in the literature lack some or all of these properties.

A property of careful ranking is that the pairwise ranking might con-
tain cycles. Whether this is a bug or a feature is a matter of opinion.
Whether it occurs among leaders in practice is a matter of experience.

The system is implemented and has been applied to the SAT 2009
Competition. No cycles occurred among the leaders, but there was a
cycle among some low-ranking solvers. To measure robustness, the new
and current systems were computed with a range of simulated time-
outs, to see how often the top rankings changed. That is, times above
the simulated time-out are reclassified as time-outs and the rankings are
computed with this data. Careful ranking exhibited many fewer changes.

1 Introduction and Overview

Empirical comparison of computational performance is an important technique
for advancing the state of the art in software. In Propositional Satisfiability

K.A. Sakallah and L. Simon (Eds.): SAT 2011, LNCS 6695, pp. 317–328, 2011.
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and several related fields testing programs on benchmarks is complicated by
the fact that time limits must be set, because some benchmarks of interest are
too difficult for all programs to complete within available time. Programs can
fail to complete a test due to exhausting time or some other resource, often
memory. There is no clearly correct way to integrate the results of failed tests
and completed tests, to compute a single “figure of merit.”

To focus the discussion, let us assume that the property we wish to measure
is speed of solution, and we are evaluating the results of a SAT competition.
If every program could complete every test, we would simply add up the times
for each program and rank them according to this total, with smallest being
best. From this point of view, time-outs and other failures are defects in the
experiment.

In actuality, there is not time for every program to complete every test, and
failures do occur. This leads to what is called censored data in the literature: there
“really” is a value for the time the program would have taken on a benchmark,
we just did not find out what that value is. The question is, what is a good way
to rank the programs, based on the data that is available. Logically, we would
want this ranking method to produce the same results as the ideal experiment,
to the extent possible.

The ranking method that has been used in recent SAT competitions, which
we shall call solution-count ranking ,1 is to set some time limit ad hoc, and
simply count how many tests are successfully completed. Through some strange
evolution, time-outs, which are the manifestations of defects in the experiment,
became the only factor that was considered in evaluation. Total CPU time is
used as a tie-breaker only if solution counts are equal.

Previous work by Nikolić observed that solution-count ranking is unreli-
able and lacks a way to attach statistical significance to its conclusions [Nik10].
However, the proposed alternative was quite complicated and had some practi-
cal drawbacks. The purpose of this paper is to describe and propose a simpler
system that meets the practical requirements for ranking solvers in a SAT com-
petition (endorsed by a survey of solver developers and users),1 and also gives
information about the statistical significance of the results, or lack thereof.

Definition 1. Practical requirements

1. The relative ranking of two solvers cannot be influenced by a third solver.
2. After the competition results are published, a researcher can run a new solver

on the same benchmarks and determine where the new solver would have
ranked.

3. Small timing differences can be ignored.
4. The computations should be easy to understand and reproduce.

One earlier method, called the purse method,2 lacked properties (1) and (2) and
fell into disfavor after a few trials.
1 See http://www.satcompetition.org/2009/spec2009.html, where it is called “Lex-

icographical NBSOLVED, sum ti.”
2 See http://www.satcompetition.org/2007/rules07.html
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The methodology we propose, called careful ranking , incorporates one of the
main ideas of Nikolić: that outcomes must be free of assumptions about timing
distributions, because we have no information about these distributions. Non-
parametric methods are necessary. Unlike the previous work, our proposal incor-
porates ties to account for timing differences that are considered inconsequential
for ranking purposes.

The careful ranking system has the important non-mathematical properties
given in Definition 1. The main ingredient of careful ranking is that all pairs
of competitors are compared in isolation, leading to a pair of “scores” that sum
to zero. A large positive score indicates a significantly faster solver. The null
hypothesis is that both solvers are equally fast “overall,” or “in the long run.”
The expected value of the score is zero, under this hypothesis. The difference
between zero and the observed score may be converted into a standard measure
of statistical significance.

For a k-way competition, there are k(k − 1)/2 pairwise matches. The results
are expressed with a dominance matrix, as described in Section 5. The final
ranking is extracted from this matrix.

There is a meta-ranking question to be addressed. How can we compare vari-
ous ranking methods, since we do not know the “true answers?” The method we
propose, and use, is to measure sensitivity to changes in the time limit. We do
not know what would have happened if we used a larger time limit. But what
would have happened under all shorter time limits can be determined from the
available data.

The careful ranking system is implemented3 and has been applied to the
SAT 2009 Competition. The implementation is csh scripts, sed, and awk, which
should be portable. No cycles occurred among the leaders, but there was a cycle
among some low-ranking solvers. To measure robustness, the new and current
systems were computed with a range of simulated time-outs, to see how often the
top rankings changed. That is, times above the simulated time-out are reclassified
as time-outs and the rankings are computed with this data.

2 Related Work

There is a large body of work on various aspects of experimental comparisons.
We restrict ourselves to immediately related work on ranking solvers. Non-
mathematical considerations for a scoring method are discussed in general terms
by Le Berre and Simon [LBS04], and influenced several aspects of the method
proposed here. One such aspect is our provision for many timing differences to
be treated as a tie, because it appears that many people consider calling one
solver the winner in these cases is a distortion. The reaction to this perceived
distortion has been to reduce the importance of speed to nearly nothing, as long
as the solver stays within the time limit. We hope that treating “minor” timing
differences as ties will make the technique more acceptable than prior techniques
that used time as the major consideration.
3 Code is at http://www.cse.ucsc.edu/∼avg/CarefulRanking/
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Brglez and co-authors [BLS05, BO07] replicate instances into classes to gather
statistics. Their goals are quite different from ranking a competition. Nikolić
[Nik10] extends these ideas to compare more than two programs. The non-
mathematical, practical issues mentioned in Definition 1 are not considered in
these papers.

Pulina conducted an extensive empirical evaluation of several scoring methods
[Pul06]. One criterion he used is similar to the one we use, decreasing the time
limit and measuring stability. Our proposed method is significantly different from
those he analyzed. Most or all of the comparison methods he studied lacked the
independence from a third solver. Thus a later researcher could not see where
new work fit into a previous competition.

Pulina introduced the idea of viewing the ranking problem as a voting situa-
tion: each benchmark “votes” for the solvers (the “candidates”) by a preference
ballot that ranks them by solution time. This is a very attractive idea, but un-
fortunately, none of the well-known proposed voting methods satisfy the criteria
of Definition 1 and elaborated further in the URL given there. There is a vast
literature on this subject, as surveyed by Levin and Nalebuff [LN95], and more
recently treated by Pomerol and Barba-Romero [PBR00] and Tideman [Tid06].

A detailed comparison with all proposals would take us far afield, so we restrict
attention to the Schulze method, which has enjoyed recent popularity [Sch03].
That popularity is not surprising, because the Schulze method, unlike many
other proposals (such as Borda), permits voters to vote equal preferences among
subsets of the candidates (e.g., D=1, (A,C)=2, B=7 is a valid ballot in a field
of 10).

Suppose a competition is being run with six solvers and 63 benchmarks with
Schulze ranking (the example may use many combinations of numbers), and the
following events transpire. After 60 benchmarks have been run on all solvers,
the Schulze ranking is computed and solver A is uniquely winning. On each of
the last three benchmarks, solver A has the best performance of any solver and
solver D has the worst performance of any solver. (For example, solver D might
time out on the last three benchmarks). However, when the Schulze ranking is
computed using all 63 benchmarks, D wins. No, this is not a typo. See Appendix
B of [Sch03] for complete details4.

It is impossible to imagine that any organizers of a competition would adopt
the Schulze method, if they know about this possibility. Moreover, this is not a
quirk in the Schulze method. It is known to be present in a large class of methods
that satisfy the Condorcet principle [LN95, Tid06]. The phenomenon is known
as the no-show paradox [Mou88], because solver A would have been better off
without the “support” of the last three benchmarks, on all of which A was the
clear winner.

The above example is possible under Schulze ranking and many other voting
systems because it does not satisfy criterion (1) in Definition 1, that other solvers
should not be able to affect the relative ranking of solvers A and D.

4 The example cited has some pairwise ties among candidates, for simplicity of presen-
tation, but these ties can be removed by “fuzzing” without changing the outcomes.
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3 What Is a Tie?

Say we are comparing solvers (R,S) on a set of benchmarks, {Bi | i = 1, . . . , n},
with time limit τ . The data is two lists of numbers, ti(R) and ti(S), the solution
times of the two solvers on Bi. Numbers are floating point and include Inf to
denote a failure of any kind. (We choose not to distinguish among failure reasons,
except that a wrong answer means the solver is disqualified and its matches are
not scored.) All data other than Inf is between 0 and τ , and we call these finite
times.

We interpret the lists ti(R) and ti(S) as a series of n mini-matches, each with
a stake of one point. A tie awards 0 to each solver. A win for R gives R a score
of 1 and gives S a score of −1, and the reverse if S wins.

Clearly if ti(R) = ti(S), the result is a tie. The question is what other outcomes
should be considered a tie. The current method treats any pair of finite times
as a tie; the only win is a finite time vs. Inf. The opposite extreme is that
any ti(R) < ti(S) is a win for R. Nikolić performed a theoretical analysis that
depended on a complete absence of ties, so he “discarded” benchmarks where
all times were under 5 seconds, which got rid of all the exact equalities with
finite times, and then treated any finite time difference as a win [Nik10]. This is
essentially the same as saying any pair of times under 5 seconds is a tie.

Our thesis is that some time differences should be considered “inconsequen-
tial” in the sense that someone trying to select the better solver between R and
S for use in an application would not be influenced these time differences. We
hypothesize that on longer runs, larger time differences would be considered in-
consequential, so we want to define a tie zone whose width grows as run times
get longer. We also believe that most people agree that below some threshold, all
time differences are inconsequential. The user decides where to set this thresh-
old, which we call noise, and which is the only user-specified parameter needed
to specify the tie zone.

The growth rate we choose is founded in recurrent-event theory. We model the
solver’s computation as a long series of search events with independent outcomes.
The probability that a search event has a successful outcome is very small,
and the solver terminates upon the first successful search event. This is the
well-known Poisson process. The standard deviation of the time to termination
is proportional to the square root of the average time to termination. If two
solvers have the same (theoretical) average time to termination on benchmark
Bi, then their time difference is a random variable with mean zero and standard
deviation proportional to the square root of their common average. We propose
that observed time differences less than some number of standard deviations
should be considered as ties, because they do not provide compelling evidence
that one solver’s average is really shorter than the other’s. This is purely an
heuristic model, of course.

Once we accept the idea that it is sensible for the tie zone to grow proportion-
ally to

√
(ti(R) + ti(S))/2, the square root of the average of the two observed

solving times, all that remains is to choose a constant of proportionality. The
user makes this choice indirectly by specifying a scalar parameter called noise.
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Fig. 1. Tie Zone for noise = 1 minute; times in minutes. Lower curve: faster solver
time; upper curve: slower solver time; middle line: average of upper and lower curves.

As stated above, the intuition is that all solution times at or below the noise
level should be treated as indistinguishable. Figure 1 shows the tie zone for noise
= one minute. Any pair of times, both under one minute, fall into the tie zone.

To generate the desired tie zone, we define:

α =
√

noise/ 2

Δ = α
√

(ti(R) + ti(S))/2.

Then the “tie zone” extends from (ti(R)+ti(S))/2 −Δ to (ti(R)+ti(S))/2 + Δ.
For R to win it is necessary that

ti(R) < (ti(R) + ti(S))/2 − Δ

Since ti(R) ≥ 0, S is assured of (at least) a tie whenever ti(S) ≤ noise, as was
desired by the user.

4 Pairwise Matches

Say we are comparing solvers (R,S) on a set of benchmarks, {Bi | i = 1, . . . , n},
with time limit τ . The data is two lists of numbers, ti(R) and ti(S). As described
in Section 3, we interpret the lists ti(R) and ti(S) as a series of n mini-matches,
with each outcome for R being −1, 0, or 1. The (algebraic) total is the raw
score for the match, denoted raw(R,S). For simplicity, all pairs are processed,
so S is compared with R at some point to get raw(S,R), which of course equals
−raw(R,S).
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The value of raw(R,S) can be used to test the null hypothesis, which is that R
and S have an equal probability of winning a random mini-match. We also need
the number of decisive (non-tie) mini-matches, denoted decisive(R,S). Then the
Student t parameter is given by

Student t =
raw(R,S)√

decisive(R,S)
, (1)

which expresses the raw score in standard deviations. Statistically, the match is
modeled as decisive(R,S) fair coin flips. If decisive(R,S) is large, the distribution
is close to Gaussian. We are certainly justified in rejecting the null hypothesis
when |t| ≥ 2, without figuring out the exact value of p, which is the probability
of observing a t-value this large or larger. In this case p < 0.03.

To summarize, if Student t ≥ 2 in (1), we may conclude that R is faster
than S with high confidence, on a space of benchmarks for which the actual
benchmarks used are representative. If Student t = 1 we may have “medium”
confidence, because a value this large or larger would occur with probability
about 0.16 if the solvers were really equally fast on average.

5 Competition Ranking

We propose to create a k-way competition ranking of solvers S1, . . ., Sk by
forming a k × k matrix M in which

Mi,j =

⎧⎨⎩
1 if raw(Si, Sj) > 0

0.5 if raw(Si, Sj) = 0
0 if raw(Si, Sj) < 0

(2)

This matrix can be interpreted as specifying a directed graph (also called M),
where solvers are vertices and an edge from Si to Sj exists wherever Mi,j �= 0. If
Mi,j = Mj,i = 0.5, there are edges in both directions. If this graph is acyclic, it
defines a total order among the solvers, which we call the dominance order. In
practice, we usually are not concerned about establishing a total order among all
participants; it is sufficient if there is a total order among the leaders, perhaps
the 5–6 top ranks.

First, let us focus on the case that the leaders do not have any tied matches,
not even with a non-leader. Things are slightly more complicated otherwise. In
the case of no leader ties, adding up the rows of the leaders provides a “definitive”
ranking. That is, if M restricted to the leaders defines an acyclic graph, each
row sum is unique, and ranking the leaders by row sums is unambiguous.

However, it is possible, even in the case of no leader ties, that the graph
has a cycle [Nik10]. This possibility is present because ties are not transitive in
mini-matches. In other words, on a specific benchmark Bi, it is possible that
S1 ties with S2 and S2 ties with S3, but S1 wins or loses against S3. We can
easily create a set of timings on three benchmarks so that raw(S1, S2) = 1,
raw(S2, S3) = 1, and raw(S3, S1) = 1. Longer and more complex cyclic structures
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can be constructed, as well. If a cyclic structure is present, then at least two row
sums must be equal (still in the case of no leader ties in matches).

The conclusion from the preceding discussion is that row sums can provide
quick hints, are easily interpreted, but may be inconclusive. If used carelessly
in the presence of ties, they can be misleading. On the positive side, we expect
them to be adequate for most situations. But “most” is not good enough, so we
need a procedure that always gives an unambiguous result.

Example 2. This small example shows some complications that can arise, in-
volving pairwise ties and cycles. Let us assume that the time-out is 15 and that
a difference of 3 is a winning margin in the range of times shown below, while a
difference of 2 is a tie. The left side shows times for three solvers on three bench-
marks. The middle shows the raw scores. The right side shows the dominance
matrix.

S1 S2 S3

B1 10 13 14
B1 14 12 10
B3 12 11 14

S1 S2 S3

S1 0 1 0
S2 −1 0 1
S3 0 −1 0

S1 S2 S3

S1 0 1 0.5
S2 0 0 1
S3 0.5 0 0

Although S1 beats S2 and S2 beats S3, still S3 ties S1, so all three are cyclically
related. However, no row-sums are equal.

Treating M simply as a connected, directed graph, its vertices (the solvers) can
be partitioned into strongly connected components. (For small graphs, the fa-
mous linear-time procedure is unnecessary; matrix multiplications and additions
suffice.) The component graph, obtained by collapsing every strongly connected
component to a single node, defines a total order.

We propose that all solvers living in the same strongly connected compo-
nent (SCC) of the graph M described in (2) shall be equally ranked; otherwise
the relative ranking is determined by the component graph. This policy provides
an unambiguous specification for all situations.

If a tie-break is necessary (e.g., an indivisible trophy is awarded), we recom-
mend that all solvers in a single SCC shall be ranked among themselves by the
sums of their raw scores within the SCC. That is, if S1, . . ., Sk comprise an SCC,
then

TieBreak(Si) =
k∑

j=1

raw(Si, Sj)

This amounts to treating each mini-match among S1, . . ., Sk as a single-point
contest between two solvers in a round-robin event similar to teams in a league
playing a season, so we call this the round-robin tie-break method. It is also
known as Copeland’s method in the voting-system literature [PBR00]. The ad-
vantage of this method is that it is easily understood and familiar. Its disad-
vantage is that the comparative ranking of S1 and S2 depends on mini-matches
involving other solvers in the SCC.
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Table 1. The dominance matrix for 16 solvers in the final phase, based on careful
ranking

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 CircUs 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0
2 LySAT i 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 0
3 MXC 1 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0
4 ManySAT 1.1 1 0 1 0 0 0 1 1 1 1 1 1 0 1 1 0
5 MiniSAT 09z 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0
6 MiniSat 2.1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0
7 Rsat 1 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0
8 SAT07 Rsat 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0
9 SAT07 picosat 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 SATzilla 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0
11 SApperloT 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
12 clasp 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
13 glucose 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0
14 kw 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0
15 minisat cumr 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0
16 precosat 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

In practice, we expect SCCs to be about 2–4 solvers. Outcomes perceived
as being “unfair” seem unlikely, because all the solvers involved are peers. In
Example 2, the round-robin tie-break makes S1 > S2 > S3. Notice that tweaking
the times by ±0.1 does not change the result, using this method. However, with
the solution-count method, S1 and S2 are tied with the times as shown, but
tweaking can make either one the winner.

6 Results on the SAT 2009 Competition

The final round of the Application section in the SAT 2009 Competition5 was
conducted with a time limit of 10000 seconds, used 292 benchmarks, and in-
volved 16 solvers. The organizers were Daniel Le Berre, Laurent Simon, and
Olivier Roussel. The discussion uses abbreviated solver names; please see the
web page for complete names. The solvers were ranked for the competition us-
ing the solution-count ranking method described in Section 1. We computed
the rankings that would have resulted using careful ranking. The dominance
matrix discussed in Section 5 is shown in Table 1.

Examination of this matrix shows that solvers 1, 10, 14, and 15 are in one
strongly connected component, so they share ranks 9–12, according to Section 5.
All other solvers are not in any cycles, so have unique ranks.

6.1 Robustness of Ranking

We analyzed the robustness of the ranking methods by counting how many
times there was some change in the top three ranks as the time limit was varied
5 See http://www.satcompetition.org/2009/
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Table 2. Numbers of changes in top three ranks for two ranking methods and various
time limits (seconds)

time range solution-count careful rank

1600–2000 8 4
2000–4000 10 0
4000–6000 4 0
6000–8000 0 0

8000–10000 1 0

continuously. We note that precosat stayed in first place for all time limits 4000
seconds and above, in both ranking methods. Table 2 summarizes the numbers
of changes in various ranges. (Returning to an earlier permutation is considered
a change, too.) It seems clear that careful ranking is more robust by this
criterion.

We offer this intuitive explanation for why careful ranking gives less varia-
tions as the time limit changes. With solution-count ranking, a mini-match
victory is only temporary, as the time limit increases: S1 wins the mini-match
against S2 only if S1 succeeds and S2 times out. But for a high enough time
limit S2 also succeeds (in theory), and the victory is wiped out. However, with
careful ranking, once the time limit is sufficiently above the solving time of S1

and S2 still has not succeeded, the victory is permanent for this mini-match.

6.2 Differences in Ranking

The two ranking methods, careful ranking and solution-count ranking,
disagreed on the third place solver with the final time limit of 10,000 seconds.
MiniSat 2.1 held third place behind glucose for all time limits above 2000
under careful ranking.

Under the solution-count ranking, MiniSat 2.1 and LySAT i exchanged
places two and three several times, with LySAT i finally taking the lead after
about 8100. By the 10,000 mark MiniSat 2.1 was in sixth place.

Under the solution-count ranking, precosat and glucose were apparently
“neck and neck,” as they each solved 204 instances. The tie-break was on cu-
mulative CPU time, and precosat won. Other solvers were in the 190’s well
separated from the two leaders.

Quite a different picture emerges under careful ranking. We show three
matches with their statistics. “Std. Devs.” refers to the Student t from (1).

Winner Loser Raw Score Std. Devs. Prob. Faster
precosat glucose 16 1.65 0.97
glucose MiniSat 2.1 8 0.83 0.79
MiniSat 2.1 LySAT i 8 0.86 0.80

In this ranking, precosat has a more convincing win than any of the others.
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6.3 Tie-Break Illustration

Recall that Table 1 shows that solvers 1, 10, 14, and 15 are in one strongly
connected component, sharing ranks 9–12, For purposes of illustration, we apply
the round-robin tie-break procedure described in Section 5 to these four solvers,
although in practice it is probably not important to break this tie.

The left side just below shows the raw scores for solvers involved. The right
side shows the dominance subgraph.

S1 S10 S14 S15

S1 0 13 −9 1
S10 −13 0 −8 3
S14 9 8 0 −1
S15 −1 −3 1 0

S1 S10

S14 S15

�

�
�

����
�

���

�
�

	

The round-robin ranking, based on the row-sums, gives S14 > S10 > S15 > S1.

7 Conclusion

This paper described a new ranking system that provides a measure of statis-
tical significance, allows for small timing differences to be treated as ties, and
ensures that a pairwise comparison between two solvers is not influenced by a
third solver. The latter property also allows later researchers to replicate the
competition conditions and find out where their solver would have ranked. An-
other application of this technique is to evaluate whether software changes from
one version to another caused a performance difference that is statistically sig-
nificant, or whether the difference is in a range that might well just be random.

Acknowledgment. We thank Daniel Le Berre, Laurent Simon, and Olivier
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Abstract. The dominant propositional satisfiability solvers of the past
decade use a technique often called conflict-driven clause learning (cdcl),
although nomenclature varies. The first half of the decade concentrated
on deriving the best clause from the conflict graph that the technique
constructs, also with much emphasis on speed. In the second half of the
decade efforts have emerged to exploit other information that is derived
by the technique as a by-product of generating the conflict graph and
learning a conflict clause. The main thrust has been to strengthen the
conflict clause by eliminating some of its literals, a process often called
conflict-clause minimization, but more accurately described as conflict-
clause width reduction, or strengthening.

This paper first introduces implication sequences as a general frame-
work to represent all the information derived by the CDCL technique,
some of which is not represented in the conflict graph. Then the paper an-
alyzes the structure of this information. The first main result is that any
conflict clause that is a logical consequence of an implication sequence
may be derived by a particularly simple form of resolution, known as
linear input regular. A key observation needed for this result is that the
set of clauses in any implication sequence is Horn-renamable. The sec-
ond main result is that, given an implication sequence, and a clause C
derived (learned) from it, it is NP -hard to find a minimum-cardinality
subset of C that is also derivable. This is in sharp contrast to the known
fact that such a minimum subset can be found quickly if the derivation
is restricted to using only clauses in the conflict graph.

1 Introduction

More and more, propositional satisfiability solvers (SAT solvers, for short) are
making their way into other applications as tools. The leading methodology,
often called conflict-driven clause learning (CDCL), is well established, yet con-
tinues to evolve. The underlying idea is to derive conflict clauses as a by-product
of failed search lines; these clauses are added to the set of clauses representing
the formula to be solved. Recall that in SAT testing a formula is a conjunctively
joined set of clauses, each of which is a set of disjunctively joined literals, abbre-
viated as CNF format. The number of literals in a clause is its width. The field
has become extremely technical, but we shall try to present the main ideas of
our new findings informally, to be accessible to non-specialists.

K.A. Sakallah and L. Simon (Eds.): SAT 2011, LNCS 6695, pp. 329–342, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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One active line of research is how to “strengthen”, or reduce the width of,
such conflict clauses. We put “strengthen” in quotes because one finds several
different terms in the literature, including “improve,” “subsume,” “reduce,” and
“minimize.” In most cases, what is meant is to find another soundly derived
clause whose literals comprise a proper subset of the literals in the conflict clause
(sometimes the reference clause to be reduced is an original clause). The clause
is a constraint that can be satisfied by making any one of its literals true, so re-
ducing the number of literals creates a stronger constraint. For the strengthening
to be logically sound, no solutions to the overall formula may be eliminated. The
stronger constraint simply replaces the original conflict clause. Han and Somenzi
provide a good review of this emerging subfield [9].

In recent papers two rather surprising observations have emerged concerning
solution of typical industrial instances, with thousands of variables and over a
million clauses, in some cases: (1) conflict clauses can be reduced 32% in width,
on average, permitting a substantial savings in memory [2]; (2) these reductions
can be discovered and applied to achieve substantial net savings in time, as well
[16,17]. the method sketched in a poster by Sörensson and Eén, The reduction
method has come to be known as recursive conflict-clause minimization. It uses
only the same clauses as were used to derive the conflict clause.

The subject of this paper, and some other recent papers, is how to bring ad-
ditional clauses from the formula into the strengthening process, clauses which
were not used in the derivation of the conflict clause. We call this generalized
conflict-clause strengthening. Audemard et al. describe one method, which they
call inverse arcs, to use other clauses beneficially. In their method, the newly
derived conflict clause is not necessarily a subset of the original, but it removes
certain literals from the original to enable a longer back-jump during the back-
track, which ensues immediately after the conflict clause is recorded [1]. Han and
Somenzi go somewhat in the other direction, by using (possibly intermediate)
clauses derived during conflict analysis to strengthen clauses that existed before
the analysis began [9].

One motivation for considering subsets of the originally derived conflict clause
(rather than including new literals, as in [1]) is that this clause is known to have
a property called 1-empowering [15]. Derivable subsets of a 1-empowering clause
are also 1-empowering.

Implication sequences are introduced in Section 2 as a new formalization of
part of the operation of CDCL SAT solvers. Implication sequences are supersets
of the previous formalization, which we call antecedent sequences in this paper.
The additional clauses that are included are called volunteers. Section 3 shows
that implication sequences are Horn Renamable, after reviewing Horn clauses
and Horn renamability. The main technical results are given in Section 4. There
it is shown that every clause that is a logical consequence of an implication
sequence has a certain simple and short form of resolution derivation. Then it is
shown that finding a minimum-cardinality conflict clause that satisfies additional
natural conditions is NP -hard.
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1.1 Terminology and Notation

Let V be a set of propositional variables. Propositional variables may take on
the truth values true (or 1) and false (or 0). A literal is either v or its negation,
v , where v is a variable in V or v = ⊥, which denotes false, but is treated as
a positive literal to make the notation more uniform. Instead of ⊥ we write $,
for readability. We consider v to be synonymous with v. (To distinguish propo-
sitional variables from literals, usually letters near the middle of the alphabet
(p, q, r, etc.) denote literals, and letters near the end of the alphabet denote
propositional variables.)

A clause is a disjunctively connected set of literals, and is non-tautological
unless specified otherwise. The literals comprising a clause may be shown be-
tween square brackets. The width of a clause is the number of literals in it. A
CNF formula (formula for short) is a conjunctively connected set of clauses.

An assignment is a partial function from variables to truth values. It is often
represented by a set of literals that are assigned true by the assignment. A total
assignment assigns values to all variables. An assignment A is said to satisfy a
literal p if A assigns true to p, and it is said to falsify p if it assigns true to p .
The terminology extends to logical expressions in the natural way. A formula is
said to satisfiable if it is satisfied by some assignment; otherwise the formula is
unsatisfiable.

Resolution is denoted as follows. For two clauses, C1 = [r, p1, . . . , pk] and
C2 = [ r , q1, . . . , qj ], r is called the clashing literal and resolution on r yields the
resolvent : resr(C1, C2) = [p1, . . . , pk, q1, . . . , qj ], which must not be tautological,
unless stated otherwise. A resolution proof is a sequence of resolutions whose
operand clauses are in the formula under consideration or derived earlier in the
proof. A resolution refutation (refutation for short) is a resolution proof that
derives an empty clause.

Unit-clause propagation consists of doing all possible resolutions in which at
least one operand is a unit clause. The effect is to reduce the width of the
second operand by one, which may result in a new unit clause, whose effects
are similarly propagated. If the second operand is also a unit clause, the empty
clause is derived.

In the course of unit-clause propagation, the first clause that shrinks to width
one or zero is called the antecedent of the associated unit literal in many papers.
(Some papers use the term “reason” instead of “antecedent”.)

2 Implication Sequences

Although CDCL solvers have many technical details, the part we are concerned
with can be described in terms of implication sequences, which are composed
of propagation sequences. We define propagation sequences and implication se-
quences abstractly, but the action of a CDCL solver actually creates such se-
quences.
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Definition 2.1. An assumption clause is a special clause that serves only a
notation purpose, of the form [q,$]. This records that literal q is assumed to be
true, and is assigned true at this point in whatever sequence contains the clause.
For uniformity, q is called the satisfied literal of such a clause. In addition, [$]
is a placeholder assumption clause that assumes nothing.

A unit clause is a clause in which all literals except one have been assigned
false (falsified). The remaining literal is called the implied literal, as well as the
satisfied literal of this clause. The complements of the falsified literals in the
clause are called reason literals for this clause.

A falsified clause is a clause in which all literals have been assigned false.
However, for uniformity, we add ⊥ as an extra literal, and call it the implied
literal and satisfied literal, so that a falsified clause can be processed as though
it were a unit clause.

Definition 2.2. A propagation sequence is a sequence of clauses Ci, i = 1,
. . ., m, that begins with an assumption clause and continues with zero or more
standard clauses that have become unit clauses or falsified clauses. The unit-
clause propagation begins with the assumption, as well as variable assignments
that were made prior to the propagation sequence, as its unit clauses. The clauses
Ci, for i > 1, appear in the propagation sequence in the order they were found to
be unit or falsified. To some extent, this order is solver dependent. A propagation
sequence ends when no further unit clauses or falsified clauses can be derived by
unit-clause propagation.

The sequence may not be unique, but once C1 is chosen, the set of clauses in
the propagation sequence is unique. If no falsified clause is derived, then the final
assignment, as a set of literals, is unique. Assignments made in one propagation
sequence carry over into subsequent propagation sequences that are part of the
same implication sequence, which is defined next.

Definition 2.3. An implication sequence is a sequence of one or more propa-
gation sequences in which the last propagation sequence contains at least one
falsified clause, and no earlier propagation sequence contains a falsified clause.
Each propagation sequence is usually called a level (or decision level) in the
implication sequence, with level numbers beginning at one for the first assump-
tion (and zero before any assumption). An implication sequence may also be
viewed as the concatenation of its propagation sequences; which view is taken
should be clear from the context. Within an implication sequence, clauses (other
than assumption clauses) are named as follows: (1) The clause that is earliest
in the implication sequence among those that contain q as their satisfied literal
is called the antecedent of q, and is said to satisfy q. If the antecedent is not
an assumption clause it also is said to imply q (the word force is sometimes
seen). (2) Other clauses that contain q as their (only) satisfied literal are called
volunteers.1 These clauses are said to re-imply q.

1 In gardening lexicon, a volunteer is a plant that was not intentionally planted but
is not objectionable, whereas a weed is objectionable.
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Notice that [q] is a unit clause that implies or re-implies q, while [q,$] denotes
an “assumption” (decision or guess) to make q true in the computation, but has
no logical effect on whether the sequence is satisfiable.

Note that many solvers stop processing before an implication sequence is com-
plete, if a falsified clause is discovered, and many do not record volunteers.
However, the assignments that were recorded, and their order, determine, at
least implicitly, which clauses are in the implication sequence, as defined.

Example 2.1. This example illustrates the definition of implication sequence,
using these clauses, which are part of a formula.

C1 = [ v , x , y , z ] C2 = [y, u , w , x ] C3 = [z, x , v ]

C4 = [w, v , y ] C5 = [u, v , w ] C6 =
[
x, t , u

]
(1)

The following is a possible implication sequence, with one level per line. The
implied or re-implied literal is shown in parentheses for each clause.

1 [v,$]
2 [w,$] , C5(u)
3 [t,$] , C6(x) C2(y) C3(z) C4(w) C1(⊥) (2)

C5 becomes a unit clause at level 2 with u as the implied literal, and v and w
as reason literals. C4 is a volunteer because it re-implies w. It appears in the
sequence at a point where all of its literals are assigned. The order in which C4

and C3 appear depends on the solver, as they are both eligible as soon as y is
assigned true. This example is continued in Example 2.2.

2.1 DPLL and Implication Sequences

Before the modern era of SAT solving the predominant solver methodology was a
backtracking search that came to be called DPLL, or a variant of that procedure.
“DPLL”” stands for Davis, Putnam, Logemann, and Loveland, who originated
the procedure in two classical papers [6,5]. We briefly review this for unsatisfiable
formulas in terms of implication sequences.

DPLL builds an implication sequence as just described, and in addition keeps
track of whether each assumption is a left branch or a right branch in the search
tree of assignments that it is exploring. When an implication sequence is con-
cluded with a falsified clause on a left branch with assumption p, the procedure
retracts the entire propagation sequence including p, and starts a new propaga-
tion sequence with the right-branch assumption p . Every left-branch assumption
is followed up with the complementary right-branch assumption. In Example 2.1,
the level-3 propagation sequence would be retracted and an alternative level-3
propagation sequence would be initiated with the assumption t .

DPLL is naturally expressed with a recursive procedure. Early attempts to
enhance DPLL used essentially the same backtracking method, and attempted
to prune the search by deriving various clauses.
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2.2 CDCL and Implication Sequences

CDCL began with GRASP [14], was soon improved by Chaff [13], and quickly
became the dominant SAT solving methodology of the modern era. Many pa-
pers mistakenly describe this method as DPLL enhanced with clause learning.
Although DPLL can be “annotated” to derive the same clauses as GRASP, it
might be forced also to derive exponentially many additional clauses. Therefore,
as claimed by the original GRASP authors, the way CDCL derives and uses
conflict clauses makes it an essentially different method. Stepping through the
process with an appropriate example quickly illustrates the difference.

Example 2.2. We continue with Example 2.1 at the conclusion of its implication
sequence, (1). The immediate goal is to derive a conflict clause that has exactly
one literal that was falsified during the latest propagation sequence, which is
level 3 in the example (see (2)). We illustrate the 1-UIP scheme, which is most
popular. A sequence of resolutions begins with the falsified clause, C1, and works
backwards through antecedent clauses that are also at level 3.

D1 = resy(C2, C1) = [⊥, v , x , u , w , z ]
D2 = resz(C3, D1) = [⊥, v , x , u , w ]

The literal x is called the first unique implication point (1-UIP) and D2 is called
the 1-UIP conflict clause because D2 has x as its only literal that was assigned
on level 3. D2 is called an asserting clause because, after all level-3 assignments
are retracted, D2 becomes a unit clause. The CDCL solver now “learns” D2,
that is, D2 is now considered part of the formula.

So far, this could fit into the framework of DPLL, but now the CDCL differ-
ence emerges. All assignments made on level 3 are retracted. D2 is now a unit
clause, as one literal became unassigned. Instead of starting another propagation
sequence with some assumption, the level-2 propagation sequence is continued
with the new unit clause D2 and implied literal x .

1 [v,$]
2 [w,$] , C5(u) D2(x ) . . . (3)

Notice that x is not the complement of any previous assumption. If x causes
further unit (or empty) clauses to be derived, they append to the level-2 propa-
gation sequence. If unit-clause propagation dies out without falsifying a clause,
then a new propagation sequence, with a new assumption literal, is initiated.

In standard CDCL, volunteers are ignored. Thus the position of C4 on level 3
does not matter. The continuations in Example 2.3 and Example 2.4 illustrate
issues that must be considered if volunteers are to be incorporated into the
clause-learning process. The inverse arcs technique [1] was a first step in this
direction.

Example 2.3. The formula and implication sequence are the same as in Exam-
ple 2.2. This example shows that volunteers can create a cyclic structure that
complicates correct reasoning.
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The conflict clause derived from the above implication sequence is

D2 = [ v , w , u , x ] .

As things stand now, backtracking will go to level 2, whereD2 has one unassigned
literal, but cannot go further due to the presence of u and v . Can D2 be
strengthened to permit backtracking to level 1?

Clause C4 meets all the criteria of Audemard et al. [1] for a usable inverse
arc: the reason literal y appears as an implied literal at level 3, the level of the
conflict, and its antecedent, C2, participated in the derivation of the conflict
clause; the reason literal v appears at level 1, which precedes the level in which
w became satisfied; finally, w was satisfied at level 2, the current backtrack level.

The motivation is that resolving w out of the conflict clause makes progress
toward permitting a longer back jump, while introducing y might not be a
problem because y was able to be resolved out during the derivation of the
conflict clause.

However, care must be taken to actually perform the steps, and not simply
delete w, assuming the steps will succeed as hoped. (In the minisat2 conflict-
clause reduction, literals are simply deleted, and this is sound because only
antecedents are used.) The derivation may continue:

D3 = resu(C5, D2) = [⊥, v , x , w ]
D4 = resw(C4, D3) = [⊥, v , x , y ]
D5 = resy(C2, D4) = [⊥, v , x , u , w ]

D4 re-introduced y at level 3, so it is not an asserting clause, like D3 is. The
extra level-3 literal had to be resolved out using C2. But the resolvent D5 is just
the same clause as D2, so the procedure is in a cycle. Indeed, [ v , x ] would be
an unsound derivation. A more favorable case is shown in Example 2.4.

Example 2.4. A slight change to the clauses in Example 2.3 illustrates how a
volunteer can be useful. Clause C7 replaces clause C4.

C1 = [ v , x , y , z ] C2 = [y, u , w , x ] C3 = [z, x , v ]

C7 = [w, v , z ] C5 = [u, v , w ] C6 =
[
x, t , u

]
We assume the same implication sequence as earlier examples, but with C7 in
the place of C4. The conflict clause D2 is the same, since its derivation ignores
volunteers. C7 also meets all the criteria of Audemard et al. [1] for a usable
inverse arc (z plays the former role of y). The derivation may continue:

D3 = resu(C5, D2) = [⊥, v , x , w ]
D6 = resw(C7, D3) = [⊥, v , x , z ]
D7 = resz(C3, D6) = [⊥, v , x ]

This time, z at level 3 has been re-introduced in D6, making it non-asserting,
so C3 must be used to resolve out the extra level-3 literal, producing D7. D7 is
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asserting and is stronger than the previously derived asserting clauses, D2 and
D3. The end result is that D7 is soundly derived as the conflict clause, and a
back-jump to level 1 is possible. That is, after retracting all assignments made
at the current level 3, the procedure determines that none of the assignments at
level 2 influence D7, so these are all retracted, as well, and D7 is added as an
additional unit clause at level 1, with x as the satisfied literal.

1 [v,$] , D7(x ) . . . (4)

Notice that x is not the complement of any previous assumption. If x causes
further unit (or empty) clauses to be derived, they append to the level-1 prop-
agation sequence. Thus the CDCL procedure has departed decisively from the
DPLL framework. In fact, it would be perfectly proper for the next assumption
literal to be w or t again.

Examples 2.3 and 2.4 demonstrate the importance of discovering cycles, if vol-
unteers are to be included in conflict-clause reduction.

2.3 Traditional Use of Implication Sequences

In the standard methodology originated in GRASP [14], and continued in Chaff
[13], Minisat [7], and other solvers, a conflict graph is constructed using only
antecedents, besides one chosen falsified clause. Several papers formalize this
technique [18,3]. For any literal that has been assigned false, there is precisely
one antecedent in which its complement is the (true) implied literal (the an-
tecedent might be an assumption clause). The antecedent necessarily precedes
all occurrences of this false literal.

Definition 2.4. Let C = {Ci} be an implication sequence of clauses. Let CA

be the subsequence of decisions and antecedents, and let CV be the subsequence
of volunteer clauses. We call CA an antecedent sequence to distinguish it from
the implication sequence. We suppose that the final decision in C led to one or
more falsified clauses, the earliest being in CA. Any additional falsified clauses
are in CV .

It is an easy matter to define an acyclic graph in which satisfied literals are
vertices, with ⊥ being the satisfied literal of the chosen falsified clause. If q is a
vertex and its antecedent is [q, p1 , . . . , pk ], there are directed edges from q to
the vertices for p1, . . . , pk; if q is an assumption, there are no outgoing edges.2

Vertices are included in the conflict graph only if they are reachable from the ⊥
vertex.

We have defined an antecedent sequence to be an implication sequence in
which all volunteers have been discarded. Since we have a one-to-one correspon-
dence between vertices and antecedents, we might regard the antecedents as
being the vertices, instead of the satisfied literals being the vertices. Then the
vertices of the conflict graph comprise a subset of the antecedent sequence, which
in turn is a subset of the full implication sequence.
2 This edge orientation is opposite that seen in several papers, but is consistent with

the solvers’ actual data structure.
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3 Implication Sequences Are Horn Renamable

The key insight for this paper is that the set of clauses in any implication se-
quence is Horn renamable. Thus the rich body of theory for Horn-clause reason-
ing can be brought to bear. Recall that a Horn clause has one or zero positive
literals. A Horn set is a set of Horn clauses. A set of clauses is called Horn
renamable if flipping the polarities of all occurrences of certain variables turns
it into a Horn set. It is known from the early days of theorem proving [10,4,12]
that:

Theorem 3.1. Positive unit resolution is complete for Horn sets; that is, the
empty clause is derivable from a Horn set if and only if it is derivable by a
resolution proof in which one operand is always a positive unit clause.

Corollary 3.2. Unit resolution is complete for renamable Horn sets; that is, the
empty clause is derivable from a renamable Horn set if and only if it is derivable
by a resolution proof in which one operand is always a unit clause.

The following simple lemma may be known to some researchers, at least for an-
tecedent sequences.3 We state it here for self-containment and because it appears
not to be widely known and is so far unpublished.

Lemma 3.3. An implication sequence is Horn renamable.

Proof: Flip every negative satisfied literal and flip every negative assumption
literal. Now every clause is a Horn clause whose positive literal is its satisfied
literal.

It is unnecessary to do this flipping in the actual computation, but for conve-
nience of presentation, we assume without loss of generality that satisfied literals
are always positive. (The attentive reader may have noticed this in the examples;
Lemma 3.3 justifies the practice.)

4 Conflict-Clause Strengthening Problem

Let C = C1, C2, . . . , Cm be an implication sequence of clauses. As in Defini-
tion 2.4, let CA be the antecedent sequence of C; that is, the subsequence of
decisions and antecedents. Let CV be the subsequence of volunteer clauses. We
suppose that the final decision in C led to one or more falsified clauses, the
earliest being in CA. Any additional falsified clauses are in CV .

Let γ0 be the conflict clause derived by the CDCL solver using the 1-UIP
scheme [14,18,3], or any scheme that derives asserting clauses (recall Section 2.2).
That is, γ0 is derived from the conflict graph based on clauses in CA reachable
from the falsified clause; we call these clauses C∗

A. We know that adding ¬(γ0) as

3 Previous papers use the term “implication graph” for the graph associated with
antecedents, but we avoid this term because our “implication sequence” includes
volunteers.
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unit clauses to C∗
A makes an inconsistent set. The conflict-clause strengthening

problem is to find another, stronger, conflict clause, γ ⊂ γ0, where subset is
strict. There are several versions, depending on what is allowed.

Suppose the problem is cast as finding a minimum-width γ ⊆ γ0 that is
logically implied by C∗

A, or equivalently, such that adding ¬(γ) as unit clauses
to C∗

A causes inconsistency. Then it is a “folklore theorem” that this problem
can be solved in P-time and that the minimum-width clause is unique [16,17].
The procedure implemented in MiniSat 2.0 [8] is believed to achieve this. This
procedure is now called recursive conflict-clause reduction.

A more ambitious goal is to require that γ ⊆ γ0 be the minimum-width
clause that is logically implied by all of C. That is, by including the volunteer
clauses in CV , a smaller subset of γ0 may be logically implied, or equivalently, a
smaller subset of ¬(γ0) may be sufficient to produce inconsistency, as illustrated
in Example 2.4. We now define this problem formally in the NP framework as a
decision problem.

Definition 4.1. The decision form of the general minimum conflict clause prob-
lem is defined as follows.

Input: An implication sequence C (Definition 2.3), a conflict clause γ0 as de-
scribed above, and a positive integer K.

Question: Is there a clause γ ⊂ γ0 with at most K literals such that ¬(γ) ∪ C
is inconsistent?

Note that ¬(γ) is treated as a set of unit clauses in this notation.

Before addressing the complexity of the strengthening problem, we show in Sec-
tion 4.1 that any clause that is a logical consequence of an implication sequence
C has a simple, short derivation of a particular kind.

4.1 Implication Sequences and Linear Input Regular Derivations

The property stated in the next theorem is known for antecedent sequences (i.e.,
C∗

A in the above discussion), due to Beame et al. [3]. The next theorem shows
that it holds for entire implication sequences. The proof idea reduces the problem
to one covered by Beame et al..

Definition 4.2. A linear input regular (LIR) resolution derivation is a sequence
in which each derived clause after the first uses an “input” clause as the first
operand and the previous derived clause as the second operand, and does not
resolve on any literal more than once. (The terminology follows Biere [2], but
such derivations were less descriptively called “trivial resolutions” by Beame et
al. [3].) An “input” clause is one that was in the original formula or was derived
before the present derivation began.

Theorem 4.3. Let C be an implication sequence and let the clause γ be a
logical consequence of the clauses in C. (Note that assumption clauses do not
play any role in determining logical consequences.) Then γ (or a subset of γ)
can be derived by a LIR resolution from C.
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Proof: Assume W.L.O.G. (in view of Lemma 3.3) that C and γ are Horn. Add
¬(γ) to the antecedents and volunteers of C, and find a refutation by positive unit
resolution, which is known to be complete for Horn clauses. (Theorem 3.1). Derive
each positive unit clause only once. The result is a conflict graph in which every
implied literal has a unique antecedent. For purposes of forming the conflict graph,
every positive literal of ¬(γ) is treated as a decision, i.e., it has no antecedent. If
γ has a positive literal x, then [x ] ∈ ¬(γ) is treated as a unit clause in the input
clause set. Following the terminology and results of Beame et al. [3], the conflict
graph has a cut in which the literals of ¬(γ) comprise the “reason” side of the cut
and the remaining literals comprise the “conflict” side of the cut. Therefore, γ can
be derived by LIR. Note that if γ has a positive literal x it becomes a negative unit
clause [x ]. Although it cannot play the role of the required positive unit clause for
resolution, eventually the positive unit clause [x] gets implied, and then the two
can resolve. This completes the proof.

The implication of this theorem is that conflict clauses that are derivable from
implication sequences that include volunteers have short, non-redundant, deriva-
tions. For example, the procedures described by Audemard et al. [1] for using
“inverse arcs” apparently involve redundant derivations, as illustrated in Exam-
ple 2.4. The above theorem tells us that resolving on the same literal more than
once is unnecessary if a proper order is used.

Example 4.1. Again consider the clauses and the same implication sequence as
in Example 2.4, where the use of the volunteer C7 was successful, but required
resolving on some literals more than once.

C1 = [ v , x , y , z ] C2 = [y, u , w , x ] C3 = [z, x , v ]

C7 = [w, v , z ] C5 = [u, v , w ] C6 =
[
x, t , u

]
Here is a linear input regular derivation from C1, the falsified clause:

D1 = resy(C2, C1) = [⊥, v , x , u , w , z ]
D8 = resu(C5, D1) = [⊥, v , x , w , z ]
D9 = resw(C7, D8) = [⊥, v , x , z ]
D10 = resz(C3, D9) = [⊥, v , x ]

The key difference from Example 2.4 is that resolution on z at level 3 was
delayed, so that it did not need to be re-introduced.

After the initial conflict clause has been derived, there are several published
methods for reducing it. The method used in MiniSat 2.0 amounts to doing
additional resolutions (possibly redundantly) on literals that were implied in
earlier propagation sequences, yielding a subset of the original conflict clause
[8,16]. It is now known that the redundancy is efficiently avoidable [17]. Volunteer
clauses are not used. (Although Theorem 4.3 guarantees that a LIR proof exists,
even when volunteer clauses are included, it does not tell how to find it.)
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Definition 4.4. Given a set of Horn clauses H , define directed edges between
variables by v → w wheneverH contains some clause in which v occurs positively
and w occurs negatively. If the resulting graph is acyclic, then H is said to be
acyclic. A Horn renamable set of clauses is acyclic if it is acyclic Horn after some
renaming.

Antecedent sequences are always acyclic. Although implication sequences often
are not acyclic, Theorem 4.3 guarantees that any logical consequence can be
derived from a subset of clauses that is acyclic.

Audemard et al. [1] described a method for using certain volunteers to resolve
away literals that were assigned in the propagation sequence at the backtrack
level, to enable longer back jumping. Their method might resolve on literals
more than once, and might produce a a conflict clause that is not a subset of
the original.

The general conflict-clause strengthening problem addressed in this paper has
the goal of reducing the final conflict clause to be a small subset of the original,
using volunteers in some cases, to achieve greater reductions than are possible
with antecedents alone.

4.2 The General Minimum Conflict Clause Problem Is
NP-Complete

Our next result is that the decision form of the general minimum conflict clause
problem, stated in Definition 4.1, is NP -complete. That is, finding a minimum-
cardinality subset γ ⊂ γ0, where γ0 is a conflict clause derived from a general
implication sequence, is NP -hard. This finding stands in sharp contrast with the
fact that the problem can be solved a low-degree polynomial time for implication
sequences without volunteers. Kleine Büning and Lettmann give a theorem with
somewhat the same flavor [11, Problem MI, p. 245], but Theorem 4.6 below
is not a corollary, because it requires that (A) the input clauses comprise an
implication sequence C that could be generated by a CDCL solver and (B) the
clause to be minimized must be a subset of a specified conflict clause γ0, that
could be derived by the same CDCL solver, rather than being any subset of
variables. CDCL-derivable conflict clauses are not arbitrary; it is known that
they have a property called 1-empowering [15]. Thus Theorem 4.6 has several
additional restrictions not found in “Problem MI.” The proof uses reduction
from the well known Hitting Set problem, whose formal definition follows.

Definition 4.5. The decision form of the Hitting Set problem is:

Input: A collection of sets Si, i = 1, . . . ,m whose union is U = {xj | j =
1, . . . , n} and an integer M such that 0 < M < n.

Question: Is there a subset H ⊂ U with at most M elements such that H
intersects each Si?

Theorem 4.6. The general minimum conflict clause (GMCC) problem is NP -
complete. The problem remains NP -complete if the implication sequence C is
restricted to be an acyclic clause set, as defined in Definition 4.4.
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Proof: The problem is in NP because, if a clause γ is presented as a certificate,
then the set of clauses ¬(γ)∪C is renamable-Horn, so can be checked for incon-
sistency with unit-clause propagation in P-time. To show NP -hardness, reduce
from Hitting Set (Definition 4.5).

Using the notation in the definition, the transformation arranges that each
xj ∈ U is an assumption and γ0 contains each xj , as well as some “control”
literals. Clauses of the form [si, xj ] are generated to specify set membership, i.e.,
xj ∈ Si in the Hitting Set instance. Control variables y1, y2, y3, and z ensure that
the desired conflict clause γ0 is derived by a CDCL solver. Additional “control”
clauses, including one volunteer clause, ensure that a sufficiently small-width γ
is logically implied if and only if the xj that occur in ¬(γ) provide a sufficiently
small H . The formal details follow.

Transform a Hitting Set instance ({Si},M) into a GMCC instance (C, γ0,K)
with the following steps:
(1) Output the following propositional clause sequence over the variables xj ,
j = 1, . . . , n; si, i = 1, . . . ,m; yk, k = 1, 2, 3; and z.

S-clauses: For each xj in order, j = 1, . . . , n: output the decision clause
[xj ,�], then, for each Si such that xj ∈ Si, output [si, xj ].

decision y-clause: output [y1, �].
first z-clause: output [z, y1 , x1 , x2 , . . . , xn ].
second y-clause: output [y2, y1 ].
volunteer z-clause: output [z, y2 , s1 , s2 , . . . , sm ].
third y-clause: output [y3, y2 ].
all-negative clause: output [ y1 , y3 , z ].

The above clauses comprise the sequence C, which is easily seen to be an impli-
cation sequence.
(2) Output the 1-UIP conflict clause γ0 = [ y1 , x1 , . . . , xn ].
(2) Output K = M + 1.

The output C, is clearly an acyclic Horn clause set, and can clearly be com-
puted in time quadratic in the length of the Hitting set instance. It is straightfor-
ward to show that (C, γ0,K) is a yes instance of GMCC if and only if ({Si},M)
has a hitting set of size at most M = K − 1.

Keep in mind that the sequence C is not the whole formula presented to the
CDCL solver, just one “run” to a conflict clause. In general, given any specific
deterministic solver of this class, the transformation can be tweaked and the rest
of the formula can be specified to force the solver into the desired sequence of
decisions, implications and re-implications.

5 Conclusion

We considered the structure of the set of all fully assigned clauses at the time
that a conflict-driven clause-learning (CDCL) solver derives (learns) a conflict
clause. These clauses can be organized into an implication sequence that faith-
fully represents the actions of a CDCL solver, such as GRASP, Chaff, Minisat,
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and others. However, these solvers ignore the information available in many of
these clauses, which we name “volunteers.” We showed that the set of clauses
in an implication sequence is always Horn renamable. It followed from this that
any clause that is logically implied by the clauses of the implication sequence
has a linear input regular derivation (Definition 4.2). We also showed that in
this environment trying to squeeze a derived clause, such as a conflict clause,
down to its absolutely minimum width is NP -hard.
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Abstract. Boolean Satisfiability (SAT) solving has dramatically evolved
in the past decade and a half. The outcome, today, is manifested in dozens
of high performance and relatively scalable SAT solvers. The significant
success of SAT solving technology, specially on practical problem in-
stances, is credited to the aggregation of different SAT enhancements. In
this paper, we revisit the organization of modern conflict-driven clause
learning (CDCL) solvers, focusing on the principal techniques that have
contributed to their impressive performance. We also examine the in-
teraction between input instances and SAT algorithms to better under-
stand the factors that contribute to the difficulty of SAT benchmarks. At
the end, the paper empirically evaluates different SAT techniques on a
comprehensive suite of benchmarks taken from a range of representative
applications. The diversity of our benchmarks enables us to make fair
conclusions on the relation between SAT algorithms and SAT instances.

1 Introduction

SAT solving, today, plays a significant role in modeling and solving real world
applications. Although first to be proved NP-complete, SAT gained significant
attention due to its practical importance, and managed to achieve major ad-
vancements in its algorithms and data structures, specially over the past 15
years. There are currently a number of highly scalable SAT solvers, all based
on the classic DPLL search framework. These solvers, known as conflict-driven
clause learning (CDCL) solvers, can generally handle problem instances with
several million variables and clauses.

Modern CDCL solvers differ in many aspects, but they all share four major
features. These features, proposed at different stages of SAT development, are:

– Conflict-driven clause learning [23,24]
– Random search restarts [17]
– Boolean constraint propagation using lazy data structures [27]
– Conflict-based adaptive branching [27]

Centered around the above four features, and spurred in large part by SAT
competitions and races, a number of performance techniques have also been
incorporated in different solvers including:

K.A. Sakallah and L. Simon (Eds.): SAT 2011, LNCS 6695, pp. 343–356, 2011.
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– Random branching combined with adaptive branching [14]
– Random initial scoring for conflict-based adaptive branching [14]
– Conflict clause minimization [36]
– Literal phase saving [31]
– Random restart strategies [1,6,34]

With the above enhancements, SAT solving has seen dramatic progress. However,
modern solvers still fail, unpredictably, on many practical problem instances.
Furthermore, even for cases where a solver manages to process an instance,
it is generally not obvious what features of the solver contributed most to the
instance’s tractability. And while most researchers in the field would acknowledge
that the above enhancements are generally helpful, there is still some debate
about their relative importance. Attempts at “dissecting” modern SAT solvers to
isolate the relative contribution to overall performance of the various components
of their intricate algorithms have been quite rare. An early attempt is reported
in [20], but to our knowledge very little has been reported in the open literature
since. In this paper, we review all the aforementioned features of modern CDCL
solvers, and experimentally characterize their contribution in solving a suite of
1000 benchmarks chosen from 12 diverse application areas. The diversity of our
benchmarks allows us to better understand the behavior of modern solvers and
their interaction with input instances. The immediate aim of this article is to
experimentally verify the validity of some of the widely-accepted “facts” in the
SAT community, and to report possible anomalies. As a larger goal, we hope
to raise enough incentive for the theoretical computer science community to
develop appropriate theoretical/analytical models that can better explain the
remarkable success and the unexpected failures of modern SAT solvers.

The remainder of this paper is organized as follows. Section 2 briefly recounts
the major developments in SAT technology, and discusses various performance
techniques. Section 3 presents the methodology of our study. Section 4 describes
our benchmark suite and articulates the rationale behind our choice. The results
of the experiments, obtained using a configurable version of MiniSAT, are pre-
sented and analyzed in Section 5. Finally, the paper ends with conclusions in
Section 6.

2 Major Features of CDCL Solvers

The pioneering techniques to solve the SAT problem, referred to as the DPLL
algorithm, go back to the early 1960s [12,11]. DPLL is composed of three main
features: branching, unit propagation (or Boolean constraint propagation (BCP)),
and backtracking. Branching is essential to move forward in the search space, and
backtracking is used to return from futile portions of the space. Unit propagation
speeds up the search by deducing appropriate consequences, i.e. implications, of
branching choices. This basic framework was subsequently extended with several
algorithmic enhancements that greatly increased its performance and scalability.
In the remainder of this section, we review four of the major enhancements, and
highlight several of their extensions. The features discussed in this section have
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been shown, through extensive empirical evidence, to be critical for scalability
and performance. These features are presented in chronological order of their
appearance.

2.1 Conflict-Driven Clause Learning

The first major enhancement to DPLL came in 1996 with the debut of the
GRASP solver [23,24]. GRASP introduced a new learning mechanism from
conflicting assignments. The learning procedure in GRASP consists of the fol-
lowing steps:

– Analyzing the conflict and deriving an effective learned clause
– Attaching the newly derived learned clause to the original formula clauses
– Performing non-chronological backtracking

Instead of simply negating all the literals of a conflicting assignment, GRASP
identifies a small set of assignments that are sufficient to expose the conflict by
building an implication graph. When this so-called effective learning is complete,
GRASP attaches the new learned clause to the original formula clauses, and
backtracks non-chronologically to the decision level where the conflict is resolved.

Recent solvers, such as MiniSAT 2.2.0 [13,14], perform learning by follow-
ing the exact same steps as proposed in GRASP, but also employ additional
enhancements in conflict analysis. One such enhancement is conflict clause mini-
mization [36] which aims at eliminating redundant literals from a conflict clause.
There are two types of conflict minimization implemented in MiniSAT: local
and recursive. In local, self-subsuming resolution is applied in reverse assignment
order, using antecedents marked in the implication graph. In recursive, the con-
flict clause is recursively minimized by deleting the literals whose antecedents
are dominated by other literals of the clause in the implication graph.

2.2 Random Restarts

In 1998, an experimental study [16], conducted by Gomes et al., revealed that
the running times of complete search algorithms, such as SAT, often show a
non-negligible amount of unpredictability; there always exists a probability of en-
countering a problem that takes exponentially more time to solve than any other
problems encountered before. They explained this behavior by a phenomenon
called heavy-tailed cost distribution. To avoid heavy tails (mitigate against ex-
ponential run times), Gomes et al. suggested the use of a controlled amount of
randomization in search algorithms [17]. This allows search procedures to escape
from regions of the space that contain no solutions. In SAT solving, randomiza-
tion takes place in the form of restarts. When a SAT solver encounters a certain
number of conflicts, it restarts the search by backtracking to the root level of the
search tree. The limit on the number of conflicts varies in different solvers, but
one common policy, also adopted in MiniSAT, is to use the Luby [1] sequence.
Other restarting strategies, such as adaptive [6] and problem-specific [34], are
also addressed in more recent publications.
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2.3 Boolean Constraint Propagation Using Lazy Data Structures

Triggered by the observation that the run time of constraint solvers was mostly
dominated by Boolean constraint propagation, a new efficient and highly scalable
data structure and related algorithms were introduced by the Chaff solver [27] in
2001. The new scheme, referred to as two-literal watching, asserts that the status
of a clause, required for the propagation process, can be maintained by watching
just two of the literals of the clause that are not assigned to 0. The status is up-
dated only when one of the watched literals is assigned to 0. Using this scheme,
the clause becomes unit when no non-0-assigned literal other than the other cur-
rently watched literal is found. This scheme was in contrast to earlier mechanisms
which determined the status of a clause by monitoring a counter that kept track
of assignments to the clause’s literals. The two-literal watching scheme enabled
the status of clauses to be updated lazily and led to a significant reduction in the
overhead of BCP.

2.4 Conflict-Based Adaptive Branching

Branching heuristics can have a significant effect on the performance of SAT
solvers. Ranging from random decision strategies to complicated cost optimiza-
tion functions, branching heuristics aim to minimize the number of decision
steps, while imposing a minimal computational overhead. One effective heuris-
tic, introduced in GRASP, is dynamic largest individual sum (DLIS) [22]. DLIS
maintains counts of literals in unresolved clauses, and selects the literal with the
highest count as its next branching decision. A more recent and more effective de-
cision strategy, however, is Variable State Independent Decaying Sum (VSIDS),
introduced in Chaff [27]. Unlike previous strategies, VSIDS is highly coupled
with the clause learning procedure. It attempts to satisfy conflict clauses (par-
ticularly, more recent ones) by keeping a counter for each literal, incrementing
the counters at the time of a conflict for the literals that appear in the con-
flict, and choosing the literal with the highest counter at each round of decision.
Since VSIDS updates counters only when a conflict is encountered, it has the
advantage of incurring very low overhead.

The original VSIDS, as introduced in Chaff, kept a counter for each literal.
In MiniSAT, counters, called activities, are associated with variables. Further-
more, MiniSAT takes advantage of literal phase saving [31] to avoid solving
independent subproblems multiple times, when non-chronological backtracking
occurs. First introduced by RSat [30], phase saving caches the literals that are
erased from the list of assignments during backtracking, and uses them to de-
cide on the phase of the variable that the branching heuristic suggests next.
Using this strategy, SAT solvers maintain the information of the variables that
are not related to the current conflict, but forced to be erased from the list of
assignments by backtracking.
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3 MiniSAT Configurations

For the experiments in our study, we chose MiniSAT 2.2.0 as the constraint
solver. By default, MiniSAT performs conflict-driven clause learning and pro-
vides the following user-specified options:

– rnd-freq: This option applies a controlled amount of random decisions (0%
to 100%) to VSIDS. 0 is default.

– rnd-init: When enabled, the activities of variables are initialized randomly.
By default, all activities are initialized to 0.

– ccmin-mode: This is used to set the level of conflict minimization, (0) none,
(1) basic (local) and (2) deep (recursive). Deep minimization is default.

– phase-saving: This option controls the level of phase saving, (0) none, (1)
limited, and (2) full. In full, all the literals erased from the list of assignments
during backtracking are cached. In limited, only the literals assigned in the
latest decision level are saved. Full phase saving is default.

– luby: If deactivated, a power of 2 function (i.e., 2x) with a base interval of
100 is applied as the restarting sequence. Luby is default.

We will refer to the default configuration of MiniSAT as CDCL. To assess the
contribution of the four major enhancements to DPLL described in Section 2,
we instrumented MiniSAT with the following additional options:

– Disable clause learning (dis-learn): When activated, MiniSAT re-
verts to DPLL-style search, i.e, it no longer performs clause learning, or
non-chronological backtracking. In our implementation, we still account for
conflict analysis, since VSIDS requires this procedure to correctly update
variable counts. Note that, since learning is disabled, we discard the result
of conflict analysis (i.e., the derived learned clause).

– Disable restarts (dis-restart): MiniSAT applies a Luby restart mech-
anism with a base interval of 100. In other words, it restarts the search
whenever the number of conflicts reaches 100, 100, 200, 100, 100, 200, 400,
.... By using this option, restarting is disabled during search.

– Disable two-watched-literals (dis-2WL): Enabling this option forces
MiniSAT to perform counter-based BCP.

– Disable VSIDS (DLIS): When activated, MiniSAT applies the DLIS
branching heuristic; otherwise it defaults to the VSIDS heuristic.

In our study, we conducted two sets of experiments. In the first set, we mea-
sured the relative contribution of each of the four major CDCL features by
disabling them one at a time to determine the impact of a feature’s absence on
performance. These configurations of MiniSAT are denoted by ¬CL (no clause
learning), ¬RST (no restarts), ¬2WL (counter-based BCP), and ¬VSIDS) (DLIS
branching). Our reference for comparison was the default CDCL configuration
which enables all of these features. In the second set of experiments, we started
with CDCL under default settings for all options and explored the effect of a)
adding randomness to VSIDS branching, b) adding randomness to the initial
variable activities, c) adjusting the amount of conflict clause minimization, d)
changing the level of phase saving, and e) modifying the restart policy.
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Table 1. Benchmark families

Family Instances SAT UNS UNK Description

atpg 100 28 72 0 Circuit testing
bioinf 30 8 12 10 Bioinformatics
config 50 15 35 0 Product configuration
crypto 30 26 3 1 Cryptanalysis
equiv 30 5 25 0 Equivalence checking
fpga 50 25 22 3 FPGA routing
hbmc 250 88 146 16 Hardware bounded model checking
hverif 200 125 75 0 Hardware verification
netcfg 10 7 2 1 Network configuration
plan 80 51 24 5 Planning
sverif 120 57 52 11 Software verification
termrw 50 26 22 2 Term rewriting

Total: 1000 461 490 49

4 Benchmarks

We assembled a suite of 1000 CNF instances from 12 diverse application areas.
The list of benchmark families, along with the total number of instances (column
“Instances”), and the number of satisfiable, unsatisfiable and unknown instances
(columns “SAT”, “UNS” and “UNK”, respectively) are shown in Table 11. These
benchmarks were chosen based on a number of factors including:

– Representation of real-world problem domains where SAT had been success-
fully applied over the last decade and a half.

– Representation of benchmark archives that are used to rank solvers in SAT
Competitions (http://www.satcompetition.org/) and SAT Races
(http://baldur.iti.uka.de/sat-race-2010/).

– Inclusion of a reasonable number of easy problem instances to enable all
solver configurations to finish on at least some instances.

– Weighting the participation of each family (in terms of the number of in-
stances representing it) by the relative success of applying SAT solving tech-
nology to that family in the recent past.

Our suite consists of benchmarks dated from the early 1990s to today. The
oldest benchmarks are from the atpg, plan, equiv and fpga families [19,33,28].
Of these, atpg has seen the most progress in the processing time of its instances.
Other families, such as config [35], hbmc [7], hverif [37,21] and sverif [4], rep-
resent application areas where SAT was extensively applied over the years. The
remaining benchmarks, netcfg [29], termrw [15], crypto [25], and bioinf [8,10],

1 The status of each instance was determined by consulting publicly-available data at
various benchmark archives. We were unable to determine the status of 28 instances
and tagged them with UNK even though they may be known to be SAT or UNS.

http://www.satcompetition.org/
http://baldur.iti.uka.de/sat-race-2010/
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Fig. 1. Benchmark Statistics

correspond to more recent application domains. The majority of the instances in
our suite have also appeared in SAT competitions. Note that we did not include
random benchmarks since a) such benchmarks, especially random 3-SAT, have
been studied extensively [26], and b) real-world applications are rarely random.

Figures 1 and 2 provide a variety of statistics for the benchmark families. The
benchmarks cover a wide range with the smallest instance (50 variables and 159
clauses) coming from hbmc and the largest (2,270,930 variables and 8,901,845)
from netcfg. For the clause size distributions in Figure 2, we did not include
the percentage of 1-literal clauses, since they are eliminated prior to the search.

5 Experimental Evaluation

Our experiments were conducted on a cluster of servers at University College
Dublin (UCD) consisting of 3GHz CPUs with 32GB memory and running the
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Table 2. Number of instances solved by disabling major CDCL features

Family Runs ¬CL ¬VSIDS ¬2WL ¬RST CDCL

atpg 1000 965 1000 1000 1000 1000
bioinf 300 19 34 88 141 150
config 500 472 500 500 500 500
crypto 300 52 22 113 235 237
equiv 300 50 92 187 224 231
fpga 500 325 403 444 441 470
hbmc 2500 762 1872 2241 2307 2333

hverif 2000 1413 1700 1934 1967 1984
netcfg 100 0 20 60 74 87
plan 800 327 449 559 564 650

sverif 1200 336 592 937 754 1006
termrw 500 116 248 346 446 420

Total: 10000 4837 6932 8409 8653 9068

64-bit Linux operating system. To obtain meaningful statistical data, we used a
script that re-orders the variables and clauses in a CNF instance using a random
seed2 to create ten different versions of each benchmark. We then applied fifteen
different configurations of MiniSAT to each benchmark version for a total of
150,000 separate runs. Each run was allowed a maximum of 1000 CPU seconds.

5.1 Relative Contribution of Major CDCL Features

Table 2 and Figure 3 summarize the results of the first set of experiments. The
goal here was to determine the relative contribution to overall performance,
measured by the number of solved instances within the 1000-second time-out, of
each of the four CDCL features. This goal was achieved indirectly by disabling
the features one at a time as described earlier. Examination of these results leads
to the following conclusions:

– The number of instances solved by disabling each of the features suggests
the following ordering of their relative importance to solver performance: CL
> VSIDS > 2WL > RST. Specifically, disabling clause learning yields the
worst performance (finishing on only 4837 instances) followed by disabling
VSIDS (6932 instances solved), two-watched-literals (8409 instances solved)
and restarts (8653 instances solved). Another way of stating this is to note
that the solver configurations that include clause learning (namely, ¬VSIDS,
¬2WL, and ¬RST) dominate the configuration that excludes it. This is not
true of the other configurations, i.e., including a feature does not always yield
improved performance over excluding that feature. A more direct measure
of the relative importance of these features is to compare the configurations

2 We obtained the reorder.c script and a seed generator from Laurent Simon. The script
was originally written by Edward Hirsh and later modified by Simon to handle large
benchmarks.
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Fig. 3. The run time distribution of the four major CDCL features (data points for
timed-out runs are not shown to reduce clutter). These run times are averages over 10
runs per benchmark, and account for time-outs using maximum likelihood estimation
(MLE) [32]. With a 90% confidence level, 71% of those averages are accurate to within
25%. Higher accuracy can always be obtained by increasing the number of runs.

in which they are disabled against the CDCL configuration in which they
are all enabled. Using this measure, we see that enabling CL, VSIDS, 2WL,
and RST leads, respectively, to the solution of 4231, 2136, 659, and 415
additional instances.

– Configurations ¬VSIDS and CDCL differ only in the branching heuristic
and allow a direct comparison between DLIS and VSIDS. The number of
instances solved with VSIDS (9068 in configuration CDCL) is significantly
higher than the number solved with DLIS (6932 in configuration ¬VSIDS).
Two factors contribute to this performance advantage: a) the much lower
overhead of VSIDS compared to DLIS since it only updates activities when-
ever conflicts arise whereas DLIS updates literal counters every time a literal
is assigned/unassigned, b) the selection of literals occurring in the most re-
cent conflicts as opposed to literals occurring the most in unresolved clauses.

– Configurations ¬2WL and CDCL differ only in the implementation of BCP
and allow a direct comparison between counter-based and two-watched-
literal unit propagation. The number of instances solved with 2WL (9068
in configuration CDCL) is higher than the number solved with the counter-
based approach (8409 in configuration ¬2WL). This performance improve-
ment is also due to two factors: a) unlike the counter-based approach which
requires updating clause status during branching and backtracking, 2WL
propagation needs to update clause status only during branching, and b)
2WL propagation only needs to perform status updates when watched liter-
als are assigned to 0.

– Configurations ¬RST and CDCL differ only in whether restarts are disabled
or enabled (using the Luby strategy) and show that the impact of restarts,
compared with the other major features, is rather modest. Enabling Luby
restarts allows 9068 instances to be solved compared to 8653 instances solved
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Table 3. Number of instances solved under different MiniSAT options

Family CDCL rnd-freq rnd- ccmin-mode phase-saving no-

25 50 75 100 init none basic none limited luby

atpg 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
bioinf 150 133 107 72 46 150 139 149 150 150 148
config 500 500 500 500 50 500 500 500 500 500 500
crypto 237 67 63 49 35 228 214 223 219 234 243
equiv 231 221 216 181 162 231 220 222 224 235 224
fpga 470 456 453 444 421 470 471 468 454 463 462
hbmc 2333 2328 2322 2225 2057 2328 2328 2333 2318 2326 2315

hverif 1984 1989 1993 1997 1949 1984 1993 1991 1971 1997 1960
netcfg 87 76 75 60 72 80 76 77 74 74 67
plan 650 619 593 526 490 647 637 640 606 636 586

sverif 1006 915 858 762 302 1004 1003 996 976 967 944
termrw 420 416 407 378 291 420 416 417 426 424 444

Total: 9068 8720 8587 8194 7325 9042 8997 9016 8918 9006 8893

when restarts are disabled. To better understand the behavior of random
restarts, we examined their effect separately on the SAT and UNS instances.
Of the 10000 instances, Luby restarts (configuration CDCL) solved 4533
SAT instances and 4535 UNS instances and timed out on the remaining
932. When restarts were disabled, 4230 SAT and 4423 UNS instances were
solved and 1347 instances timed out. These results suggest that, surprisingly,
restarts do help for both SAT and UNS instances, but that they are more
helpful for SAT instances. However, additional analysis shows that the effect
of restarts is not always predictable. For instances, only 420 instances (250
SAT and 170 UNS) of the termrw family were solved with restarts whereas
446 (252 SAT and 194 UNS) were solved when restarts were disabled.

– Of the four features, CL and 2WL showed consistent improvement across all
instances when they were enabled. In contrast, the performance of VSIDS
and RST was more variable. On reflection, this is to be expected as VSIDS
and RST are heuristics whereas CL and 2WL are algorithmic optimizations.

As expected, enabling these four features (the CDCL configuration) yields the
best performance and explains why most competitive SAT solvers include them
in their implementations.

5.2 The Impact of Additional Options in CDCL Solvers

Table 3 reports the number of instances solved by MiniSAT (configuration
CDCL) when several of its options deviate from their default settings. Bolded
entries in the table indicate option settings that led to better performance than
the default. These results show that, overall, MiniSAT performs best under the
default settings. In some cases, however, changing a default setting yields slightly
improved performance. For example, adding some randomness to VSIDS helped
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solve up to 13 more instances of the hverif family. Similarly, relaxing conflict
clause minimization helped solve up to 9 more instances of the same family.
Relaxing phase saving was modestly helpful for the equiv, hverif and termrw
families. Finally, applying a power of 2 rather than the Luby restart strategy
helps solve more instances in the crypto and termrw families. Still, Luby is
generally more effective, confirming the earlier results reported by Huang [18].

One surprising anomaly in these experiments is the observation that a com-
pletely random branching strategy (option rnd-freq=100) solved more instances
(7325) than the DLIS heuristic (6932). However, DLIS branching solved 477 in-
stances that random branching failed to process! Such mixed results are hard to
explain without further detailed analysis of the specific instances involved and
any particular attributes they may have.

Finally, unlike the first set of experiments, it is not possible to draw general
conclusions from these results as it seems that the optimal values of such settings
need to be determined by trial and error. The options analyzed here are best
viewed as refinements added on top of the four major features of CDCL. This is
partly justified by noting that, unlike CL, VSIDS, 2WL and RST, the inclusion
or exclusion of these refinements has, at best, a modest impact on performance.

6 Conclusions

Much effort has been devoted over the past fifteen years to improve the capacity
and performance of SAT solvers that are architected around the CDCL frame-
work. On the other hand, few researchers have explored the interactions among
the various algorithmic and heuristic components of a modern CDCL solver to
determine their relative importance. And while such solvers are successful in pro-
cessing many practical instances, they still fail, unpredictably, on many others.
The question of why CDCL works well on certain instances and not so well on
others is rarely addressed in the literature. One of the few attempts to provide
a theoretical explanation for the success of clause learning is due to Beame et
al. [5] who show that, as a proof system, clause learning is more powerful than
regular and therefore DP resolution.

This paper should be viewed as a preliminary attempt to understand the
impact on performance of the primary and secondary features of a modern CDCL
solver. The ultimate goal should be the development of analytical/theoretical
models that relate the performance of a CDCL solver to key attributes of its
input SAT instances. Such attributes include the symmetries of CNF formulas
[2], the cut width of graph representations of CNF instances [9], and the scale-free
graph structure of industrial instances [3]. This will help spur further algorithmic
improvements as well as the development of customized SAT solvers that can
take advantage of such structural attributes.
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1 Introduction

A Pseudo-Boolean constraint (PB-constraint) is a generalization of a clause. A
PB-constraint is an inequality (equality) on a linear combination of Boolean lit-
erals (

∑n
i=1 aili OP b) where a1, · · · an and b are constant integers, l1, · · · , ln are

literals and OP is a comparison operator. The left-hand side of a PB-constraint
under assignment A is equal to the sum of the coefficients whose corresponding
literals are mapped to true by A. This kind of constraints has been widely used
in expressing NP-complete problems. Several approaches have been proposed to
translate a PB-constraint to CNF, [3], [2].

In this paper, we propose a new encoding for translating PB-constraints whose
comparison operator is “=” to CNF. The CNF produced by the proposed en-
coding has small size, and also the constraints for which one can expect the
SAT solvers to perform well on the produced CNF can be characterized. We
show that there are many constraints for which the proposed encoding has a
good performance. It worths mentioning that an arbitrary PB-constraint can be
rewritten as a single equivalent PB-constraint whose comparison operator is “=”
and all its constant integers are positive.

Definition 1. Given constraint Q on set of variables X , we call the pair 〈v, C〉,
where v is a Boolean variable, C is a set of clauses on X ∪ Y ∪ {v} and Y is
a set of propositional variables, a valid translation if for every satisfying total
assignment A to X ∪ Y ∪ {v} for C, A satisfies Q iff it maps v to true, i.e.,
C |= v ⇔ Q.

2 Proposed Method

Let a PBMod-constraint be an equation in the following form:

n∑
i=1

a′
ili = b′ (mod M). (1)

where 0 ≤ a′
i < M for all 1 ≤ i ≤ n and 0 ≤ b′ < M . Total Assignment A is

a solution to (1) iff the value of left-hand side summation under A minus the
value of right-hand side of the equation, b′, is a multiple of M .
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c© Springer-Verlag Berlin Heidelberg 2011



358 A. Aavani

Definition 2. The PBMod-constraint Q(M) :
∑

a′
ili = b′(mod M) is called to

be the conversion of the PB-constraint Q :
∑

aili = b, modulo M iff

1. a′
i = ai mod M

2. b′ = b mod M

Proposition 1. Let M = {M1, · · · , Mm} be a set of m relatively prime integers.
The set of assignments satisfying Q :

∑
aili = b is exactly the same as the set of

assignments satisfying all the m PBMod-constraints Q(Mk) if
∏m

k=1 Mk > S =∑
ai.

One candidate for the set M is a subset of prime numbers. One can enumerate
the prime numbers and add them to the set of modulos, MP = {2, 3, ..., Pm}, until
their multiplication exceeds S. The next proposition gives us an estimation for
the size of set MP as well as the maximum value in MP.

Proposition 2. Let MP = {2, · · · , Pm} be the set of primes s.t.
∏

p∈MP p ≥ S.
Then:
1. m = |MP| ≤ log S.
2. Pm < (log S)2.

Theorem 1. Let Q :
∑

aili = b be a PB-constraint. Also let MP = {P1, · · · , Pm}
be as above, and the pair 〈vk, Ck〉 be a valid translation for PBMod-constraint
Q(Pk). Then, the pair 〈v, C〉 is a valid translation for PB-constraint Q where
C = ∪kCk ∪ C′ and C′ is the set of clauses describing v ⇔ (v1 ∧ v2 · · · ∧ vm).

Translation of PBMod-constraint Through DP The translation presented
here is similar to translation through BDD, described in [3]. Tseitin variable,
Dl

m, is defined inductively as follows: +

Dl
m=

⎧⎨⎩
� if l and m are both zero;
⊥ l = 0 and m > 0;

(Dl−1
(m−al)mod M ∧ xl) ∨ (Dl−1

m ∧ ¬xl) Otherwise

3 Performance of Unit Propagation

There are three situations in which UP is able to infer the input variables values of a
PB-constraint Q:

1. Unit Propagation Detects Inconsistency: If Q is unsatisfiable, UP may be able to
infer that there is no assignment satisfying Q.

2. Unit Propagation Solves Constraint: UP may be able to infer the whole solution
for Q if there is just a single satisfying solution to Q.

3. Unit Propagation Infers the Value for an Input Variable: UP may be able to infer
that the value of input variable xk is true/false if xk takes the same value in all
the solutions to Q. This is a generalization of previous case.

It can be shown that for each of the above cases, there are at least (
∑

ai
log

∑
ai

)n+1 =

2nPoly(n)

Poly(n)n+1 different PB-constraints in the form
∑

a1li = b such that CNFs, produced

using the proposed approach, allow UP to infer input variables.
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4 Conclusion

Our translation produces a polynomial size CNF w.r.t. the input size. We also argued
that for exponentially many instances, produced CNFs are arc-consistent. This number
is much bigger for our encoding comparing to the existing encodings. Interested readers
are invited to read the complete version of this paper [1].

References

1. Aavani, A.: Translating Pseudo-Boolean Constraints into CNF,
http://arxiv.org/abs/1104.1479

2. Bailleux, O., Boufkhad, Y., Roussel, O.: New encodings of pseudo-boolean con-
straints into CNF. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 181–194.
Springer, Heidelberg (2009)
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The MaxSAT Evaluation [1] is an affiliated event of the SAT Conference that is held
every year since 2006, and is devoted to empirically evaluate exact MaxSAT algorithms
solving any of the following problems: MaxSAT, Weighted MaxSAT (WMaxSAT), Par-
tial MaxSAT (PMaxSAT), and Weighted Partial MaxSAT (WPMaxSAT).

The objective of this paper is to analyze the instances of the 2010 MaxSAT Eval-
uation in order to gain new insights into their computational hardness, answer some
questions that have been asked to us as organizers, and evaluate how appropriate are
the current settings of parameters such as timeout and available RAM memory. To this
end, we conducted a number of experiments, which were performed on a cluster with
160 2 GHz AMD Opteron 248 Processors with 1 GB of RAM memory.

In the experiments, we considered the 2,675 instances of the 2010 MaxSAT Eval-
uation: 544 MaxSAT instances, 349 WMaxSAT instances, 1,122 PMaxSAT instances,
and 660 WPMaxSAT instances. Instances were assigned to one of the following three
categories: random, crafted and industrial. We used the 17 solvers that participated
in MaxSAT-2010. They can be classified into three main types: branch and bound
(B&B) solvers, satisfiability-based (sat-based) and unsatisfiability-based (unsat-based)
solvers. In the first type, we find 10 solvers: akmaxsat, akmaxsat ls, IncMaxSatz, IncW-
MaxSatz, Maxsat Power, LS Power, WMaxsat Power, LSW Power, WMaxSatz-2009,
and WMaxSatz+. In the second type, we find 2 solvers: SAT4J-Maxsat,and QMaxSAT.
In the third type, we find 5 solvers: WPM1, PM2, WPM2, wbo 1.4a, and wbo 1.4b.

In what follows, we summarize the experiments, point out the lessons we have
learned, and suggest to introduce some modifications in forthcoming evaluations:

Experiment 1: Historical evolution. We compared how fast are the best solvers of
the last evaluation compared with the best solvers that participated in previous evalua-
tions but have not been submitted to MaxSAT-2010 on the PMaxSAT instances of the
random, crafted and industrial categories. The results provide evidence that some older
solvers are yet highly competitive in some categories, and suggest that we should con-
sider the best previous solver for each problem and category until it is beaten by new
solvers. On the other hand, taking into account the number of unsolved instances not
yet solved by any participating solver, we should report the number of instances that
have been solved for the first time in the results of the evaluation.
� Research supported by Generalitat de Catalunya (2009-SGR-1434), Ministerio de Ciencia

e Innovación (CONSOLIDER CSD2007-0022, INGENIO 2010, Acción Integrada HA2008-
0017, TIN2009-14704-C03-01, and TIN2010-20967-C04-01/03), and the Secretarı́a General
de Universidades del Ministerio de Educación: Programa Nacional de Movilidad de Recursos
Humanos.
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Experiment 2: Analysis of the timeout. We evaluated the impact of setting a timeout
of 7,200 seconds instead of the timeout of previous evaluations (1,800 seconds). The
idea is to find out if it is necessary to change the current timeout because it introduces a
bias in favor of some solvers. The results indicate that the current timeout is adequate for
the evaluation. The introduction of a higher timeout could complicate the development
of the evaluation without introducing significant differences in the results.

Experiment 3: Analysis of RAM memory. The amount of available RAM memory
may produce quite different performance profiles. The cluster used in the evaluation has
2 processors per node, and they share 1 GB of RAM memory. So, we decided to evaluate
the impact of setting 1GB of RAM memory instead of 512MB. The results indicate that
the fact of doubling the available RAM memory does not lead to remarkable differences
in performance. However, it is interesting to double the memory from time to time in
order to detect anomalous situations: Maxsat Power and LSW Power showed a much
better performance profile with 1GB, due to the way these solvers manage dynamic
memory but not to the solving techniques they implement. On the other hand, it would
be interesting to perform the evaluation with a cluster allowing 4GB or more of RAM
memory to every solver, but this is beyond the reach of the organizers for the time being.

Experiment 4: Size of instance sets. The submitted instance sets have different size,
and we rank solvers by the total number of solved instances. This may bias the results
in that there may be sets of instances with a large number of instances and sets with just
a few instances. Therefore, for ranking solvers by their ability to solve instances from
different sets, we normalized the results taking into account the number of instances
in each set. We observed that in some cases the resulting rankings are different, and
propose, for future evaluations, to set a maximum of 100 instances per set, and present
the results using both the ranking based on total number of solved instances and the
ranking based on percentage of solved instances.

Experiment 5: Parameters of instances. We have analyzed several parameters of the
instance sets: the median number of variables and clauses, the mean size of the first core
found, the mean value of the solutions, and the core size multiplied by the solution.
The results indicate that the problem size, the first size of the unsatisfiable core, and
the number of unsatisfiability cores can give very useful indications when selecting a
MaxSAT solver: when the instance has fewer than, e.g. 5,000 clauses, use a B&B solver;
otherwise, search for a unsatisfiable core of the instance, if the core contains more than,
e.g. 10 clauses, again use a B&B solver, if the hard clauses of the instances are of very
simple form (e.g. binary clauses with negative literals), always use a B&B solver. In all
other cases, use a sat-based or unsat-based solver. Regarding sat-based solvers, which
are good on large size instances, it seems to be decisive the quality of the first upper
bound.
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The inclusion-exclusion principle is a well-known mathematical principle used to count
the number of elements in the union of a collection of sets in terms of intersections of
sub-collections. We present an algorithm for counting the number of solutions of a given
k-SAT formula using the inclusion-exclusion principle. The key contribution of our
work consists of a novel subsumption pruning technique. Subsumption pruning exploits
the alternating structure of the terms involved in the inclusion-exclusion principle to
discover term cancellations that can account for the individual contributions of a large
number of terms in a single step.

The Inclusion-Exclusion Principle and #SAT

Given setsA1, . . . , Am,m > 0, the inclusion-exclusion principle states that |
⋃m

i=1Ai| =∑m
i=1 |Ai| −

∑
1≤i<j≤m |Ai ∩Aj |+ · · · (−1)m+1 |A1 ∩A2 ∩ · · · ∩Am| . It is well-

known that this principle can be applied to count the number of solutions of a given k-
CNF formula [4,3].

Letϕ be a k-CNF formula consisting of variablesx1, . . . , xn and clausesC1, . . . , Cm.
Each clause lits(Ci) : {�(1,k), . . . , �(i,k)} is a set of k literals, each literal of the form
�i : xj or �i : ¬xj . We will count the number NU : #UNSAT(ϕ) of solutions that do
not satisfy ϕ using the inclusion-exclusion principle. Let A1, . . . , Am denote the sets
of variable assignments which dis-satisfy the clauses C1, . . . , Cm, respectively, in ϕ.
Therefore, NU = |

⋃m
i=1 Ai| can be calculated using the inclusion-exclusion principle,

as a summation ranging over all subsets of clauses S ⊆ {C1, . . . , Cm}:

NU =
∑

S⊆{C1,...,Cm}
t(S) where t(S) =

{
0 if ∃ j, {xj ,¬xj} ⊆ lits(S)(
(−1)|S|+1 · 2n−|lits(S)|) otherwise

,

where lits(S) represents all the literals appearing in the clauses of S. Given NU , we
may obtain the number of satisfying solutions as 2n − NU . Note that the number of
terms involved in the summation is exponential in the formula size.

One solution to improving the complexity of this procedure is to prune away terms
involving subsets S where N(S) = 0 in the summation above. This is achieved by
avoiding subsets S which include interfering clauses Cj , Ck that contain a variable xi

and its negation ¬xi. Such an optimization has been proposed elsewhere [3,4]. In this
work, we present yet another optimization through subsumption pruning.

� This work was partially supported by the National Science Foundation (NSF) award CNS-
1016994.
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Tree Exploration and Subsumption Pruning

We now present a brief sketch of our subsumption pruning technique. More details are
available from an extended version of this paper [1]. Our technique arranges the terms
in the inclusion-exclusion formula as a tree and performs a recursive depth-first tree ex-
ploration to consider non-interfering clause sequences of the form [Ci1; . . . ;Cid]. Each
node v in the search tree is defined by its current clause sequenceS : [Ci1;Ci2; . . . ;Cid],
where d ≥ 1 is the depth of the node. The node is associated with the term t(S) =
(−1)d+12n−|lits(S)|. Through the search, we maintain the invariant that S is interfer-
ence free and that 1 ≤ i1 < · · · < id ≤ m.

Consider a node S : [Ci1; . . . ;Cij ]. Let T : [S;Cl] be a child of S extended by
adding the clause Cl. We say that S subsumes T iff lits(S) = lits(T ). In other words,
every literal in the clauseCl is already contained in some clause in S. The main theorem
in this paper takes advantage of subsumptions to make a drastic improvement on the
basic scheme given previously:

Theorem 1. Let Tj be a subsumed child of S in the search tree. Considering any child
Tl : [S;Cl] of S, where l > j and the corresponding child T ′

l : [Tj : Cl], then t(T ′
l ) =

−t(Tl) and t(subtree(T ′
l )) = −t(subtree(Tl)). We conclude that t(subtree(S)) =∑j−1

i=1 t(subtree(Ti)).

This theorem, whose proof is in the extended version of the paper, concludes that if
S subsumes one of its children Tj , then due to the alternating sum involved in the
inclusion-exclusion principle that the children of S and Tj cancel each other out. In
practice this means that we need only explore the children T1, . . . , Tj−1 of S, a signifi-
cant improvement over evaluating all of the children of S, especially when j is small.

Preliminary experimental evaluations of our technique is reported in our extended
report [1]. We present a summary of these results obtained over randomly generated
k-SAT instances. (A) The application of our subsumption pruning technique provides a
significant speedup (2-3x) on most of the larger instances. Nevertheless, the technique
itself is limited in the size of formulae that can be handled, especially when compared
to other approaches to counting using DPLL [2]. (B) An integration of our technique
inside DPLL-based model counters compares favorably to existing DPLL-based model
counters CDP and Relsat.

Currently, we are in the process of evaluating our approach over structured bench-
marks and analyzing the expected running times for our technique over randomly gen-
erated formulae.
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Introduction and Background 

Phase transitions, as a kind of well-known phenomena in artificial intelligence, have 
attracted a great amount of attention in recent years [1,2]. Many NP-complete prob-
lems, such as random SAT and random Constraint Satisfaction Problems (CSPs), 
have a critical point that separates overconstrained and underconstrained regions, and 
soluble-to-insoluble phase transition occurs at this critical point, which is always 
accompanied with the transitions of CPU runtimes. Both systematic search algorithms 
and local search algorithms suffer an easy-hard-easy pattern when solving those prob-
lems. In fact, the easy-hard-easy patterns are not only expressed in terms of the time, 
but also in terms of the space. That is phase transition in knowledge compilation. 

Knowledge compilation [3] is used to compile solutions of a problem into a tracta-
ble language. Many target languages of knowledge compilation have been proposed 
for compiling SAT instances and CSPs. Easy-hard-easy patterns in those languages 
have been shown in the early studies [4,5]. Schrag and Crawford [4] studied phase 
transitions in compiling 3-SAT instances to prime implicates (PIs) and showed the 
critical point occurs when the ratio (r) of #clauses (m) to #variables (n) is around 2.0. 
While recent studies have proposed many more succinct languages [3], such as Or-
dered Binary Decision Diagram (OBDD) [6], deterministic, Decomposable Negation 
Normal Form (d-DNNF) [7] and Deterministic Finite-state Automaton (DFA). Differ 
from PIs, these languages covert solutions into more compact forms using the prop-
erty of solution symmetry. In this paper, we investigate easy-hard-easy patterns in 
empirical results of compiling random SAT and CSP into OBDD, d-DNNF and DFA.  

Main Results 

First, we show experimental results concerning random 3-SAT instances. Fig. 1 de-
picts the easy-hard-easy pattern when compiling instances with n=30 into the three 
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target languages, where the number of nodes in the compilation results are used to 
measure the sizes. The peak points of those curves are with same value of the ratio r, 
which is 1.8. Additionally, random k-SAT instances are also considered. We can 
obverse that those target languages share the same critical point of the easy-hard-easy 
pattern, where r≈2.6 for k=4 and r≈4.5 for k=5. Based on those results, we conjecture 
that all target languages belonging to subsets of Decomposable Negation Normal 
Form (DNNF) suffer the compilation phase transition with the same critical point. An 
explanation of this phenomenon is the inherent changes on interchangeable structure 
of solutions. We observe that the number of interchangeable solutions with respect to 
2 variables has a great impact on the sizes of compilation results. 

Next, we show the sizes of compilation results increase exponentially as n grows 
linearly. We convert 3-SAT instances into d-DNNFs, and take 6 values of r uni-
formly. For each r, we vary n from 10 to 60 at increments of 5. Fig. 2 shows the re-
sults with the logarithmic vertical axis. Curves are all nearly linear, so the size grows 
exponentially in the general cases. As r is close to 1.8, slopes of lines grow larger, and 
the sizes around phase transition regions grow fastest. Besides, we surmise there also 
exists a phase transition separates polynomial and exponential sizes. For 3-SAT, the 
critical point of the polynomial-to-exponential phase transition is around r=0.3. 

Furthermore, we show that the easy-hard-easy pattern also exists in compiling ran-
dom CSPs. We employ RB model [7] to generate random CSP instances. The RB 
model is described by constraint arity k, the number of variables n, domain size d=nα, 
constraint number m=rnlnn, and the constraint tightness p. We fix k, α,p, and compile 
CSPs into DFAs. The peak point of DFA sizes is fixed as the number of variables 
increases. For instance, when k=2, α=1.2, p=0.5, the peak point occurs at r=0.52. 
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While the application of unit propagation (UP) is of vital importance in sys-
tematic search solvers to solve structured problems of the SAT competitions
[8], its application in stochastic local search (SLS) solvers is rare. Examples for
combining UP with SLS solvers are UnitWalk [4] and QingTing [6] and both
solvers show strong performance on structured instances. Despite the success
on structured formulas, the application of UP in SLS only seemed to weaken
the performance on random k-CNF formulas. The approach described in this
abstract briefly presents how UP can be embedded in SLS solvers to boost their
performance on random 3-CNF formulas as well.

In summary, several questions must be answered in order to embed UP into a
given SLS solver: When to call for UP in the ongoing SLS search? What variable
assignments is UP supposed to propagate in what order? And finally, how to use
the result of a UP call? For the following explanations, we assume the ongoing
search on a CNF formula F of a G2WSAT solver [5] with current assignment α.

When to call for UP? It is reasonable to interrupt the SLS search as soon
as it cannot improve its current assignment α anymore. This is usually the case
as soon as it has no further promising variables to flip (we call this a dead end).

What variable assignments is UP supposed to propagate in what
order? The idea is to use the dead end assignment α and propagate all the
assignments made herein, because such an assignment usually satisfies a large
portion of the clauses of F . Propagation stops as soon as UP runs into a conflict.
The result is a (partial) assignment β, that hosts all variable assignments that
could be propagated by UP without running into a conflict.

The variable ordering we use is computed according to a recursive weight
heuristic. The general idea of recursive weight heuristics is to help systematic
search SAT solvers identify variables with strong impact on the formula. Such
solvers usually pick a single variable in every node of their search tree and assign
it to a not yet explored value. Picking variables with strong impact will then give
a large reduction of the remaining formula, and therefore, a strong reduction in
the size of the remaining search space.

To create a variable ordering, we use the recursive weight heuristic RW [3,1].
We create a variable ordering θRW5 such that with xi, xj ∈ VAR(F ): θRW5(xi) <
θRW5(xj) ⇔ RW5(xi) > RW5(xj). The ordering θRW5 has to be computed ex-
actly once (i.e., it is static) and prioritizes variables with high impact on F .

The reason why we prefer variables with high impact is that assigning these
variables first creates new unit clauses sooner. Creating new unit clauses sooner
then means that UP relies less often on the dead end assignment α in future
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iterations. Given a satisfiable formula, this is helpful since this dead end, cur-
rently not satisfying all clauses of the formula, must contain erroneous variable
assignments. The less often UP relies on it, the smaller the chance of propagating
one of the contained errors.

How to use the result of a UP call? Comparing α and β on all vari-
ables that are assigned in β can provide a set of variables that has changed
its assignment during the unit propagation. Let us call this set M. In short
M = {x ∈ V | β(x) is defined and α(x) �= β(x)}. The idea is to multi-flip all
variables in M and continue the SLS search from this new position in the search
space. In general, applying UP helps the SLS solver to escape from the current
dead end to an assignment that has increased consistency regarding the formula.

There is, however, an additional problem that arises from the application of
the static variable ordering θRW5 . Empirical tests show that a G2WSAT solver
will encounter a dead end in about every third flip on a 3-CNF formula. Calling
for UP in every third flip will most likely give similar results, and is therefore
considered to be a waste of computational time. In order to overcome that prob-
lem, it is sufficient to increase the number of flips between two calls to UP (we
call this a cool-down period and denote it by c).

Our approach to compute these cool-down periods uses the Cauchy probability
distribution. Let γ ∈ R, γ > 0 and ω ∈ R. The cumulative distribution function of
the Cauchy distribution is C : R �→ R, C(z) = P (Z < z) = 0.5+1/π ·arctan((z−
ω)/γ). In summary, whenever UP was performed, a random number a ∈ [0, 1) is
picked and the next cool-down period is then computed as c = min{z|C(z) ≥ a}.

We have performed an empirical study to test the feasibility of our approach.
The results show an average speedup of 18% when using a UP enhanced G2WSAT
solver in comparison to its pure SLS variant for large size random 3-CNF for-
mulas. Preliminary tests on crafted and application formulas suggest that our
approach to combine UP with SLS can be of advantage here as well. The results
are available at [7]. This abstract is available as a full paper at [2].
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When tackling a computationally challenging combinatorial problem, one often
observes that some solution approaches work well on some instances, while other
approaches work better on other instances. This observation has given rise to the
idea of building algorithm portfolios [5]. Leyton-Brown et al. [1], for instance,
proposed to select one of the algorithms in the portfolio based on some features
of the instance to be solved. This approach has been blessed with tremendous
success in the past. Especially in SAT, the SATzilla portfolios [7] have performed
extremely well in past SAT Competitions [6].

We investigate alternate ways of building algorithm portfolios that differ sub-
stantially from the way SATzilla assembles a portfolio. The key idea behind
SATzilla is to train a runtime prediction model for each constituent solver, based
on a number of well-engineered features of SAT instances. Given a new instance,
SATzilla predicts the runtime of each candidate solver based on instance features
and the trained models, and chooses the solver that is predicted to perform the
best. In contrast, we consider non-model-based machine learning techniques such
as simple k-nearest-neighbor (k-NN) classification to determine which solver to
use to tackle a given instance.

Our motivation stems from two observations: (a) accurately predicting the
runtime of sophisticated SAT solvers is a very challenging task; indeed, the
runtime predictor underlying SATzilla can be even orders of magnitude off from
the true runtime; and (b) while fast and accurate runtime prediction is certainly
sufficient for building a solver portfolio, it is by no means necessary. In fact, it
would suffice entirely if we could predict the fastest solver without having any
knowledge of how long it will actually take to solve the given instance. This
idea has found success in fields adjoining SAT, for example in portfolios for the
quantified Boolean formula (QBF) problem [4], for general constraint satisfaction
problems (CSPs) [3], and to some extent even for SAT itself [2].

Our portfolio works as follows. In the learning phase, we are given a pool
T of training instances, a function that provides features for any given problem
instance (we use the 48 core SATzilla features here), a set S of constituent solvers
forming the portfolio, and a timeout t. We compute the runtime (with cutoff t)
for all solvers on all instances as well as normalization parameters so that all
features for all instances in the training set populate the interval [0, 1].

At runtime, given a new instance I, we compute its features, normalize them,
and compute the set TI ⊂ T consisting of k training instances closest to I
in terms of Euclidean distance. Then, for each solver S ∈ S, we compute the
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Table 1. Performance comparison of pure solvers, portfolios, and virtual best solver

Pure Solvers Portfolios
VBSagw- agw- gnov-

kcnfs march
pico- SAT- SAT-

12-NN
sat0 sat+ elty+ sat enstein zilla

PAR10 6400 6667 6362 5813 6524 7384 7089 4399 3940 3454
Avg Time 678 698 677 659 688 752 722 534 529 480
# Solved 268 255 270 298 262 220 234 366 390 413
% Solved 47.0 44.7 47.4 52.3 46.0 38.6 41.1 64.2 68.4 72.5

penalized runtime (PAR10 score) of S on TI , and select the solver that has the
lowest PAR10 score as our recommended solver to use on I. The choice of k can
have an impact on the performance of the portfolio. We therefore learn a “good”
value of k for the training set T by performing cross-validation with 100 random
sub-samples of base-validation splits in a 70-30 ratio.

Extensive empirical results are omitted due to lack of space. Table 1 shows
one representative sample of our results, comparing against SATzilla2009 R, the
Gold Medal winning solver in the random category of SAT Competition 2009 [6].
We base our portfolio on the same set of solvers as SATzilla2009 R, use the 2,247
random category instances from SAT Competitions 2002-2007 as our training set
and the 570 random category instances from SAT Competition 2009 as the test
set, and a 1,200 second timeout. Experiments were run on Intel dual-core, dual
processor, Dell Poweredge 1855 blade servers with 8GB of memory each.

As Table 1 shows, SATzilla outperforms individual solvers dramatically, solv-
ing 68 more instances (366) than the best performing individual solver, kcnfs.
Our k-NN approach pushes the performance level substantially further, solving
390 instances within 1200 seconds whereby the VBS can solve only 23 more. In
other words, SATzilla closes 55% of the gap between the best individual solver
and the best possible portfolio. Simple k-NN closes 80% of this gap. We conclude
that this easy non-model-based approach marks a significant improvement over
a portfolio approach that has dominated SAT Competitions for half a decade.
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Many mathematical and practical problems can be expressed as constraint sat-
isfaction problems (CSPs). The general CSP is known to be NP-complete, but
many different conditions have been identified which are sufficient to ensure that
classes of instances satisfying those conditions are tractable, that is, solvable in
polynomial time [1,2,3,4,7]. The increasing efficiency of SAT-solvers has led to
the development of SAT-based constraint solvers and various SAT encodings
for CSPs [6]. However, most previous comparison between such encodings has
been purely empirical. In a recent paper we showed that current SAT-solvers
will decide the satisfiability of the direct encoding of any CSP instance with
bounded width in expected polynomial time [5]. In this paper we give a theory-
based argument to prefer the order encoding instead for certain other families
of tractable constraint satisfaction problems. We consider problems of the form
CSP(C), consisting of all CSP instances whose constraint relations belong to
some fixed set of relations C, known as a constraint language. Schaefer’s well-
known dichotomy theorem [7] identifies all the tractable constraint languages
over a Boolean domain, that is, all the tractable language classes for SAT.

A sparse encoding of a CSP instance introduces a new Boolean variable, x=
v,a,

for each possible variable assignment, v = a. The log encoding introduces a
Boolean variable for each bit in the value of a CSP variable. It turns out that
under such encodings tractable CSPs cannot be translated into tractable lan-
guage classes of SAT. In particular, we have shown that:
Proposition 1. No sparse encoding of a CSP instance with domain size > 2
belongs to a tractable language class of SAT. Moreover, the log encoding of any
CSP instance with domain size > 7 containing certain unary constraints does
not belong to any tractable language class of SAT.
In the order encoding [8] each Boolean variable, x≤v,c, represents a comparison,
v ≤ c. Under that encoding we have shown that certain tractable CSP classes are
translated to tractable language classes of SAT, and hence efficiently solvable.

For example, a CSP instance is called constant-closed if every constraint in it
allows some fixed constant value d to be assigned to all variables in its scope.
Theorem 1. If all the constraints in a CSP instance are constant-closed for the
lowest domain value, then its order encoding will be constant-closed for the value
True.
Hence, we have shown that using the order encoding to translate a CSP instance
that is constant-closed for the lowest domain value gives a set of clauses satisfying
� The provision of an EPSRC Doctoral Training Award to Justyna Petke is gratefully

acknowledged.
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the first condition of Schaefer’s Dichotomy Theorem. Similarly, constraints that
are constant-closed under the highest domain value translate under the order
encoding to clauses that satisfy the second condition of that theorem.

A rather more interesting family of tractable constraint satisfaction problems
is the class of CSPs whose constraints are all max-closed.
Lemma 1 ([4]). If the domain of the variables is {True, False}, with False <
True, then a constraint is min-closed if and only if it is logically equivalent to a
conjunction of Horn clauses over literals representing comparisons.
Theorem 2. If a CSP instance P contains max-closed constraints only, then
its order encoding will be min-closed.
Hence, max-closed constraints translate using the order encoding to clauses sat-
isfying the third condition of Schaefer’s Dichotomy Theorem. By symmetry be-
tween min-closed and max-closed constraints, min-closed constraints translate
to clauses satisfying the fourth condition of Schaefer’s Dichotomy Theorem.

Connected-row-convex constraints were first defined in [3] using a standard
matrix representation of binary relations. Here is an alternative characterisation:
Lemma 2 ([2]). A constraint is connected-row-convex if and only if it is log-
ically equivalent to a conjunction of 2-CNF clauses over literals representing
comparisons.
Connected-row-convex constraints translate to clauses satisfying the fifth condi-
tion of Schaefer’s Dichotomy Theorem due to the following result:
Theorem 3. If a CSP instance P contains only connected-row-convex con-
straints, then its order encoding will be connected-row-convex.
The final, sixth, condition in Schaefer’s Dichotomy Theorem can never be satis-
fied using the order encoding, since (for all domains with 3 or more elements) it
is already broken by the consistency clauses, ¬(x≤v,c−1) ∨ (x≤v,c). Hence we have
given a complete list of all constraint languages which are encoded to tractable
language classes for SAT using the order encoding.

References

1. Cohen, D., Jeavons, P.: The complexity of constraint languages. In: Handbook of
Constraint Programming, ch. 8, pp. 245–280. Elsevier, Amsterdam (2006)

2. Cohen, D., et al.: Building tractable disjunctive constraints. Journal of the ACM 47,
826–853 (2000)

3. Deville, Y., et al.: Constraint satisfaction over connected row convex constraints.
In: Proceedings of IJCAI 1997, pp. 405–411 (1997)

4. Jeavons, P., Cooper, M.C.: Tractable constraints on ordered domains. Artificial In-
telligence Journal, 327–339 (1995)

5. Petke, J., Jeavons, P.: Local consistency and SAT-solvers. In: Cohen, D. (ed.)
CP 2010. LNCS, vol. 6308, pp. 398–413. Springer, Heidelberg (2010)

6. Prestwich, S.D.: CNF encodings. In: Handbook of Satisfiability, ch. 2, pp. 75–97.
IOS Press, Amsterdam (2009)

7. Schaefer, T.J.: The Complexity of Satisfiability Problems. In: Proceedings of the
10th ACM Symposium on Theory of Computing - STOC 1978, pp. 216–226. ACM,
New York (1978)

8. Tamura, N., et al.: Compiling finite linear CSP into SAT. Constraints Journal 14,
254–272 (2009)



Applying UCT to Boolean Satisfiability

Alessandro Previti1, Raghuram Ramanujan2,�, Marco Schaerf1,
and Bart Selman2,�

1 Dipartimento di Informatica e Sistemistica Antonio Ruberti,
Sapienza, Università di Roma,
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In this paper we perform a preliminary investigation into the application of
sampling-based search algorithms to satisfiability testing of propositional for-
mulas in Conjunctive Normal Form (CNF). In particular, we adapt the Upper
Confidence bounds applied to Trees (UCT) algorithm [5] which has been success-
fully used in many game playing programs including MoGo, one of the strongest
computer Go players [3].

Rather than explore the search space in a depth-first fashion, in the style of
DPLL [2], UCT repeatedly starts from the root node and incrementally builds
a tree based on estimates of node utilities and node visit frequencies computed
from previous iterations. In most implementations of UCT, the estimated util-
ity of a new node is computed using Monte-Carlo methods, i.e., by generating
random completions of the search (termed “playouts”) and averaging their out-
comes. This utility is revised each time the search revisits the node using the
estimated values of the children. This technique is especially effective when no
adequate heuristic is available to perform this value estimation task.

In this paper, we introduce and study an algorithm called UCTSAT that em-
ploys the UCT search control mechanism but replaces the playouts with a heuris-
tic to estimate the initial utility of a node. The heuristic we use is the fraction
of the total set of clauses that are satisfied by the partial assignment associated
with the node; this fraction is computed after the application of unit propa-
gation. While we do not expect UCTSAT to outperform the highly-optimized,
state of the art SAT solvers (especially with respect to CPU time), we believe
that the development of an algorithm based on a radically different search tech-
nique is important for at least two reasons: (a) the hardness of SAT instances
is related to the algorithm used [1], and hence UCTSAT, which uses a differ-
ent search strategy, can provide useful and new insights into the complexity of
SAT instances; and (b) because such an algorithm can be useful when included

� Supported by NSF Expeditions in Computing award for Computational Sustain-
ability, 0832782; NSF IIS grant 0514429; and IISI, Cornell Univ. (AFOSR grant
FA9550-04-1-0151).
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in a portfolio of algorithms (see, for example, [6]) where very different solution
techniques can help expand the range of applicability of the portfolio.

As such, we focus our efforts on understanding whether UCTSAT is capable
of solving SAT instances using smaller search trees than DPLL. To simplify
the comparisons, we contrast our algorithm against a no-frills implementation of
DPLL. We set the exploration bias parameter in UCTSAT to 0 as this yielded the
best performance on average. We also experimented with varying the number of
atoms that UCTSAT assigned at a given node in the search tree and discovered
that setting more than one atom at once hurt the performance of the algorithm.

We compared the performance of DPLL and UCTSAT on problem instances
drawn from the SATLIB repository [4]. On uniform random 3-SAT and flat-graph
coloring instances of various sizes, we found little difference in the sizes of the
search trees constructed by the two algorithms. We believe that this is due to the
unstructured nature of these instances — UCTSAT works well when each explo-
ration of the tree yields information that can be successfully used in subsequent
iterations. In instances drawn from real-world problems (namely, single-stuck-
at-fault analysis problems) that exhibit structure, we discovered that UCTSAT
constructs significantly smaller search trees than DPLL — this is illustrated in
table 1.

Table 1. Average tree sizes (number of nodes) for SSA circuit fault analysis instances

Instance DPLL UCTSAT

ssa-7552-038 9183 173
ssa-7552-158 6564 134
ssa-7552-159 5513 147
ssa-7552-160 4095 164
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Extended Abstract

A (finite) Constraint Satisfaction Problem (CSP) is a combinatorial problem
to find an assignment which satisfies all given constraints over finite domains.
A SAT-based CSP solver is a program which solves a CSP by encoding it to
SAT and searching solutions by SAT solvers. Remarkable improvements in the
efficiency of SAT solvers make SAT-based CSP solvers applicable for solving
hard and practical problems. A number of SAT encoding methods have been
therefore proposed: direct encoding, support encoding, log encoding, log-support
encoding, and order encoding.

Among them, order encoding [4] has showed a good performance for a wide
variety of problems, including Open-Shop Scheduling problems, two-dimensional
strip packing problems, and test case generation. Its effectiveness has also been
shown by the fact that a SAT-based CSP solver Sugar 1 became a winner in
several categories of the 2008 and 2009 International CSP Solver Competitions.

However, in the order encoding, the size of SAT-encoded instances becomes
huge when the domain size of the original CSP is large. On the other hand, the
log encoding [3,1] uses a bit-wise representation for integer variables. The size of
SAT-encoded instances is therefore compact (linear to log d), but its performance
is slow in general because it requires many inference steps to “ripple” carries.

In this paper, we propose a new encoding, named compact order encoding,
aiming to be compact and efficient. The basic idea of the compact order encoding
is the use of a numeric system of base B ≥ 2. That is, each integer variable x is
represented by a summation

∑m−1
i=0 Bixi where m = �logB d� and 0 ≤ xi < B

for all xi, and each xi is encoded by the order encoding.
Each ternary constraints of addition and multiplication can be encoded into

at most O(B2 logB d) and O(B3 logB d + B2 log2
B d) clauses respectively which

are much less than O(d2) clauses of the order encoding. The compact order en-
coding can generate much efficient SAT instance than the log encoding in general
because it requires fewer carry propagations. Please note that the compact order
encoding with base B = 2 is equivalent to the log encoding, and the one with
base B ≥ d is equivalent to the order encoding.

1 http://bach.istc.kobe-u.ac.jp/sugar/
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Fig. 1. Cactus plot of different encodings, choco, and Mistral for OSS instances

To evaluate the effectiveness and scalability of our encoding, we used the most
difficult series of Open-Shop Scheduling (OSS) benchmark set by Brucker et al.
We also used the instances with very large domain sizes, which are generated
from OSS instances by multiplying the process times by constant factor s ∈
{1, 10, 20, 100, 200, 1000}. The performance of the compact order encoding with
m = 2 (i.e. B = �d 1

2 �) is compared with those of the order and log encodings in
addition to the state-of-the-art CSP solvers choco 2.11 [5] and Mistral 1.550 [2].

Fig. 1 shows the cactus plot of benchmark results in which the number of
solved instances is on the x-axis and the CPU time is on the y-axis. The compact
order encoding solved the most instances for almost any CPU time limit and it
solved large instances which could not be solved by order solvers.

As future work, we plan to investigate the choice of appropriate base B for
solving a wide variety of problems.
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1 Introduction

Few instances of a computational problem are sui generis ; most instead belong
to some distribution of related instances, and information gained from solving
past instances from the distribution may be leveraged to solve future instances
more efficiently. Algorithm portfolio methods and algorithm synthesis systems
are two examples of this idea. This paper proposes and demonstrates a third
approach. It shows that, for related instances of satisfiability (SAT), variables’
values in satisfying assignments can be correlated with structural features of their
appearances in those instances, such as the mean polarities of their literals and
the statistics of their constraint graph neighborhoods. Experiments on widely-
used benchmark collections show that these features can be used by a standard
classifier to generate better initial assignments and substantially improve the
average performance of a modern solver.

2 Polarity Prediction as Supervised Learning

SAT variables that are semantically related may also share structurally similar
positions. Consider two variables: do both appear exclusively in short clauses?
Are both seen mostly in negated literals? Do both appear infrequently in their
expressions? If a variable in an unsolved instance appears similar to variables in
previously-solved instances, most of which take on a particular value in known
satisfying assignments, then that information may inform the search process.

This paper transforms variable initialization into the supervised learning prob-
lem of predicting the satisfying value of each variable given a vector of real-valued
features, including the mean and standard deviation of the lengths of the clauses
in which the variable appears; the mean and standard deviation of the ratios of
positive literals in such clauses; the number of such clauses; the number of times
that the variable appears in a Horn clause; the number of times that the variable
appears as a consequent; the ratio of positive literals involving that variable; and
the degree of the corresponding node in the variable graph.

3 Classification for Assignment Initialization

To measure the impact of this learning framework, logistic regression is used
to initialize the starting assignment of the TNM [4] local search solver for each
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of eight different collections of benchmarks, drawn from SATLIB [1] and from
those used previously in the literature [2,3]. Each classifier is trained on assign-
ments obtained by solving a fraction of the instances in each benchmark collec-
tion. Assignments are then generated either deterministically, by computing the
maximum-likelihood assignment according to the classifier, or probabilistically,
by sampling according to its class probabilities.

Table 1. The median number of search actions required to solve the instances in
each benchmark collection, using deterministic or random classifier-based initialization,
given as the fraction of the corresponding result obtained under the solver’s default
initialization scheme. Lower values are therefore better, and values less than one rep-
resent improvements in search speed. These ratios were averaged over 64 random 50%
train/test splits, for which both mean (μ) and standard deviation (σ) are reported.
Runs were limited to 2,000,000 steps. Both classifier-based initialization schemes re-
duce search cost, often substantially, for the benchmarks tested.

Cost Ratio

Deterministic Random

Collection μ σ μ σ

SAPS-newQCP 0.98 0.14 0.98 0.13
SAPS-SWGCP 0.21 0.04 0.97 0.21
satenstein-cbmc 0.01 0.00 0.23 0.11
satlib-bms 0.97 0.19 0.98 0.18
satlib-cbs-m403-b10 0.58 0.08 0.82 0.10
satlib-cbs-m449-b90 0.87 0.10 0.96 0.10
satlib-ii 0.97 0.32 0.76 0.26
satlib-rti 0.76 0.10 0.93 0.12

Table 1 reports the effects of different initialization schemes on the number
of required solver steps. These empirical results strongly suggest that classifier-
based initialization can reduce the net computational cost of solving large col-
lections of related SAT instances.
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