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Preface

This LNCS volume on Mathematical Morphology and Its Applications to Im-
age and Signal Processing contains the full papers accepted for presentation at
the 10th International Symposium on Mathematical Morphology (ISMM 2011),
held in Intra, Italy, 6th–8th of July, 2011. ISMM is a biannual event bringing
together researchers, students, and practitioners of Mathematical Morphology
to present and discuss advances on topics ranging from new theoretical devel-
opments to novel applications, solving complex image analysis problems. ISMM
was established as the main scientific event in the field and this anniversary edi-
tion marked the tenth successful organisation in the series that was initiated in
1993 in Barcelona.

The call for papers was answered with 49 submissions. Each submitted paper
was peer-reviewed by three referees selected from the Programme Committee.
Based on their reviews, a total of 39 papers were accepted for publication in this
volume, 27 of which were selected for oral, and 12 for poster presentation. The
final programme of ISMM 2011 was divided into nine thematic areas: theory, lat-
tices and order, connectivity, image analysis, processing and segmentation, adap-
tive morphology, algorithms, remote sensing, visualisation, and applications.

The topic of special attention for ISMM 2011 was the adaptation of mor-
phological methods for the analysis of geo-spatial data. It shaped the separate
section on remote sensing consisting of five contributions, further backed by four
papers on the topics of connectivity and algorithms. The symposium programme
was enriched by the following three keynote lectures:

– “Applications of Discrete Calculus in Computational Science” by Leo Grady
(Siemens Corporate Research);

– “Morphological Profiles in Classification of Remote Sensing Imagery” by Jón
Atli Benediktsson (University of Iceland);

– “Mathematical Morphology in Computer Graphics, Scientific Visualization
and Visual Exploration” by Jos B.T.M. Roerdink (University of Groningen).

ISMM 2011 was organised by the Institute for the Protection and Security of
the Citizen (IPSC), of the European Commission’s Joint Research Centre in
Ispra, Italy. The success of the event is attributed to the joint effort of many
individuals. In particular, we wish to thank all the authors who accepted our
invitation, the members of the Programme Committee for delivering thorough re-
views of the submitted manuscripts, the invited speakers for offering three high-
quality lectures, and the Session Chairs for running the symposium smoothly.
We wish to acknowledge the IPSC (JRC) for supporting this event, and the
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hotel Il Chiostro, Intra, for facilitating the symposium and taking care of the
organisation of the social event. Special thanks go to Ana-Maria Duta (IPSC)
for assisting in organisational issues. All submitted material was managed by
the online EasyChair conference management system.

April 2011 P. Soille, M. Pesaresi, and G.K. Ouzounis
Ispra, Italy EC Joint Research Centre
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Roberto Lotufo
Cris L. Luengo Hendriks
Beatriz Marcotegui
Fernand Meyer
Annick Montanvert
Laurent Najman
Nicolas Passat

Jos B.T.M. Roerdink
Christian Ronse
Philippe Salembier
Gabriella Sanniti di

Baja
Jean Serra
Hugues Talbot
Iván Ramon

Terol-Villalobos
Erik Urbach
Marc Van

Droogenbroeck
Michel Westenberg
Michael Wilkinson

Additional Reviewers

Pascal Gwosdek
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Sparse Mathematical Morphology Using
Non-negative Matrix Factorization

Jesús Angulo and Santiago Velasco-Forero

CMM-Centre de Morphologie Mathématique, Mathématiques et Systèmes, MINES
ParisTech; 35, rue Saint Honoré, 77305 Fontainebleau Cedex, France

{jesus.angulo,santiago.velasco}@mines-paristech.fr

Abstract. Sparse modelling involves constructing a succinct represen-
tation of initial data as a linear combination of a few typical atoms of
a dictionary. This paper deals with the use of sparse representations
to introduce new nonlinear operators which efficiently approximate the
dilation/erosion. Non-negative matrix factorization (NMF) is a dimen-
sional reduction (i.e., dictionary learning) paradigm particularly adapted
to the nature of morphological processing. Sparse NMF representations
are studied to introduce pseudo-morphological binary dilations/erosions.
The basic idea consists in processing exclusively the image dictionary and
then, the result of processing each image is approximated by multiplying
the processed dictionary by the coefficient weights of the current im-
age. These operators are then extended to grey-level images by means of
the level-set decomposition. The performance of the present method is
illustrated using families of binary shapes and face images.

1 Introduction

Mathematical morphology [11,4] is a nonlinear image processing methodology
based on the application of lattice theory to spatial structures. Morphological
filters and transformations are useful for various image processing tasks [12],
such as denoising, contrast enhancement, multi-scale decomposition, feature ex-
traction and object segmentation. In addition, morphological operators are de-
fined using very intuitive geometrical notions which allows us the perceptual de-
velopment and interpretation of complex algorithms by combination of various
operators.

Let E be a space of points, which is considered here as a finite digital space
of the pixels of the image, i.e., E ⊂ Z2 such that N = |E| is the number of
pixels. Image intensities are numerical values, which ranges in a closed subset
T of R = R ∪ {−∞, +∞}; for example, for an image of discrete L values, it
can be assumed T = {t1, t2, · · · , tL}. Then, a binary image X is modelled as a
subset of E, i.e., X ∈ P(E); a grey-level image f(pi), where pi ∈ E are the pixel
coordinates, is a numerical function E → T , i.e., f ∈ F(E, T ). In mathematical
morphology, an operator ψ is a map transforming an image into an image. There
are thus operators on binary images, i.e., maps P(E) → P(E); or on grey-level
images, i.e., maps F(E, T ) → F(E, T ).

P. Soille, M. Pesaresi, and G.K. Ouzounis (Eds.): ISMM 2011, LNCS 6671, pp. 1–12, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 J. Angulo and S. Velasco-Forero

Sparse coding and dictionary learning, where data is assumed to be well rep-
resented as a linear combination of a few elements from a dictionary, is an active
research topic which leads to state-of-the-art results in image processing appli-
cations, such as image denoising, inpainting or demosaicking [3,9,14]. Inspired
by these studies, the aim of this paper is to explore how image sparse represen-
tations can be useful to efficiently calculate morphological operators.

Motivation and outline of the approach. In many practical situations, a
collection of M binary or grey-level images (each image having N pixels) should
be analysed by applying the same morphological operator (or a series of oper-
ators) to each image. If one considers that the content of the various images
is relatively similar, we can expect that the initial collection can be efficiently
projected into a dimensionality reduced image space. Then, the morphological
operator (or an equivalent operator) can be applied to the reduced set of images
of the projective space, in such a way that the original processed image is ap-
proximately obtained by projecting back to the initial space. Typical examples
of image families which can be fit in this framework are: i) collection of shapes
or a database of face images, ii) the spectral bands of a hyperspectral image, iii)
the set of patches of a large image. The rationale behind this kind of approach is
the hypothesis that the intrinsic dimension of the image collection is lower than
N ×M . Usually the subspace representation involves deriving a set of basis com-
ponents (or dictionary composed of atoms) using linear techniques like PCA or
ICA. The projection coefficients for the linear combinations in the above meth-
ods can be either positive or negative, and such linear combinations generally
involve complex cancellations between positive and negative numbers. There-
fore, these representations lack the intuitive meaning of “adding parts to form
a whole”. This property is particularly problematic in the case of mathematical
morphology since the basic binary operator, the dilation of a set, is defined as the
operator which commutes with the union of parts of the set. Non-negative matrix
factorization (NMF) [6] imposes the non-negativity constraints in learning basis
images: the pixels values of resulting images as well as the coefficients for the
reconstruction are all non-negative. This ensures that NMF is a procedure for
learning a parts-based representation [6]. In addition, sparse modelling involves
for the construction of a succinct representation of some data as a combination
of a few typical patterns (few atoms of the dictionary) learned from the data
itself. Hence, the notion of sparse mathematical morphology introduced for the
first time in this paper is based on sparse NMF.

Paper organisation. This paper is structured as follows. Section 2 reviews
the notion of NMF and the various algorithms proposed in the state-of-the-art,
including the sparse variants. The use of NMF representations for implementing
sparse pseudo-morphological binary dilations/erosions is introduced in Section
3. Using the level set decomposition of numerical functions, the extension to
grey-level images of this morphological sparse processing is tackled in Section 4.
Conclusions and perspectives are finally given in Section 5.
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2 Non-negative Matrix Factorization and Variants

Definition. Let us assume that our data consists of M vectors of N non-negative
scalar variables. Denoting the column vector vj , j = 1, · · · , M , the matrix of
data is obtained as V = (v1, · · · ,vM ) (each vj is the j-th column of V), with
|vj | = N . If we analyze M images of N pixels, these images can be stored in
linearized form, so that each image will be a column vector of the matrix.

Given the non-negative matrix V ∈ RN×M , Vi,j ≥ 0, NMF is a linear non-
negative approximate data decomposition into the two matrices W ∈ RN×R and
H ∈ RR×M such that

V ≈ WH, s.t. Wi,k,Hk,j ≥ 0, (1)

where usually R 	 M (dimensionality reduction). Each of the R columns of
W contains a basis vector wk and each row of H contains the coefficient vector
(weights) hj corresponding to vector vj : vj =

∑R
k=1 wkHk,j = Whj . Using the

modern terminology, the matrix W contains the dictionary and H the encoding.
A theoretical study of the properties of NMF representation has been achieved

in [2] using geometric notions: NMF is interpreted as the problem of finding a
simplicial cone which contains the data points in the positive orthant, or in other
words, NMF is a conical coordinate transformation.

Algorithms for computing NMF. The factorization V ≈ WH is not nec-
essarily unique, and the optimal choice of matrices W and H depends on the
cost function that minimizes the reconstruction error. The most widely used is
the Euclidean distance: minimize ‖V − WH‖2

2 =
∑

i,j (Vi,j − (WH)i,j)
2 with

respect to W and H, subject to the constraints W,H > 0. Although the min-
imization problem is convex in W and H separately, it is not convex in both
simultaneously. In [7] is proposed a multiplicative good performance algorithm
to implement this optimization problem. They proved that the cost function is
nonincreasing at the iteration and the algorithm converges at least to a local
optimal solution. More precisely, the update rules for both matrices are:

Hk,j ← Hk,j

(WT V)k,j

(WT WH)k,j

; Wi,k ← Wi,k

(VHT )i,k

(WHHT )k,j

Another useful cost function, also considered in [7], is the Kullback-Leibler (KL)
divergence, which leads also quite simple multiplicative update rules. In [8], it
was proposed a variant of KL divergence NMF, which is named Local NMF
(LNMF), aiming at learning spatially localized components (by minimizing the
number of basis R to represent V and by maximizing the energy of each retained
components) as well as imposing that different bases should be as orthogonal as
possible (in order to minimize redundancy between the different bases). The
multiplicative update rules for LNMF are given by

Hk,j ←
√

Hk,j

∑

i

Vi,j
Wi,k

(WH)i,k

; Wi,k ← Wi,k

∑
j Vi,j

Hk,j
(WH)i,j

∑
j Hk,j

; Wi,k ← Wi,k
∑

i Wi,k
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NMF with sparseness constraints. A very powerful framework to add a
degree of sparseness in the basis vectors W and/or the coefficients H was intro-
duced in [5]. The sparseness measure σ of a vector v ∈ RN×1 used in [5] is based
on the relationship between the L1 norm and the L2 norm: σ(v) =

√
N−‖v‖1/‖v‖2√

N−1
.

This function is maximal at 1 iff v contains only a single non-zero component,
and takes a value of 0 iff all components are equal (up to signs). Then, matrix W
and H are solved by the problem (1) under additional constraints σ(wk) = Sw

and σ(hj) = Sh, where Sw and Sh are respectively the desired sparseness of W
and H. The algorithm introduced in [5] is a projected gradient descent algo-
rithm (additive update rule), which takes a step in the direction of the negative
gradient, and subsequently projects onto the constraint space. The most sophis-
ticated step finds, for a given vector v, the closest non-negative vector u with
a given L1 norm and a given L2 norm, see technical details in [5]. Sparseness
is controlled explicitly with a pair of parameters that is easily interpreted; in
addition, the number of required iterations grows very slowly with the dimen-
sionality of the problem. In fact, for all the empirical tests considered in this
paper, we have used the MATLAB code for performing NMF and its various
extensions (LNMF, sparse NMF) provided by P. Hoyer [5].

Besides the spareness parameters (Sw, Sh), a crucial parameter to be chosen
in any NMF algorithm is the value of R, that is, the number of basis of pro-
jective reduced space. Any dimensionality reduction technique, such as PCA,
requires also to fix the number of components. In PCA, the components are
ranked according to the second-order statistical importance of the components
and each one has associated a value of the represented variance; whereas in
NMF the selection R can be evaluated only a posteriori, by evaluating the error
of reconstruction.

3 Sparse Binary Pseudo-dilations and Pseudo-erosions

Let X = {X1, · · · , XM} be a collection of M binary shapes, i.e., Xj ∈ P(E). For
each shape Xj , let xj(i) : I → {0, 1}, with i ∈ I = {1, 2, · · · , N} and N = |E|,
be its characteristic vector : ∀Xj ∈ P(E), we have xj(i) = 1 if pi ∈ Xj and
xj(i) = 0 if pi ∈ Xc

j . Then the shape family X has associated a data matrix
V ∈ {0, 1}N×M , where each characteristic vector corresponds to one column,
i.e., Vi,j = xj(i).

Sparse NMF approximations to binary sets. After computing NMF op-
timization on data V, for a given dimensionality R, an approximation to V is
obtained. More precisely, if we denote by φk(pi) : E → R+ the basis images
associated to the basis matrix W, i.e., φk(pi) = Wi,k, the following image is
obtained as

aXj (pi) =
R∑

k=1

φk(pi)Hk,j (2)

It is obvious that without any additional constrains, function aX(pi) is neither a
binary image not even strictly defined in interval [0, 1] (the value can be slightly
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> 1). Hence, a thresholding operation at value α is required to impose a binary
approximate set X̃j to each initial shape Xj , i.e.,

Xj
NMF−−−−→ X̃j : pi ∈ X̃j if aX(pi) > α (3)

We propose to fix, for all the examples of the paper, the threshold value to
α = 0.4, in order to favor the reconstruction of Xj against its complement.

Let us consider a practical example of binary image collection X , using M =
100 images of the Fish shape database (N = 400×200). Fig. 1 depicts the corre-
sponding basis images for various NMF algorithms: we have fixed R = 10 for all
the cases (relatively strong dimensionality reduction). We observe that standard
NMF produces a partial part-based representation, which includes also almost
complete objects for outlier shapes (basis 2-upper-center and 5-center-center).
As expected, LNMF produces more local decompositions, however the orthogo-
nality constraints involves also an atomization of some common parts. A similar
problem arises for Sparse-NMF when Sw �= 0 (constraint of sparsity in basis
matrix W). When the sparsity constraint is limited to Sh, with a typical value
around 0.6, the obtained dictionary of shapes is less local, but in exchange,
this constraint involves that each binary shapes is reconstructed using a limited
number of atoms. The various groups of fish shapes are therefore better approxi-
mated by the latter case than using the other NMF algorithms. The comparison
of Fig. 2 illustrates the better performance of Sparse-NMF (Sw = 0, Sh = 0.6)
with respect to the others.

Sparse max-approximation to binary dilation. The two fundamental mor-
phological operators are the dilation and the erosion, which are defined respec-
tively as the operators which preserve the union and the intersection. Given a
structuring element B ⊆ E, i.e., a set defined at the origin which introduces
the shape/size of the operator, the dilation of a binary image X by B and the
erosion of a binary image X by B are defined respectively by by [11,4,1]

δB(X) = ∪{B(pi)| pi ∈ X} , (4)

and
εB(X) = {pi ∈ E| B(pi) ⊆ X} , (5)

where B(pi) is the structuring element centered at pixel pi. In the case of nu-
merical functions f ∈ F(E, T ), which are considered in detail in next section,
the dilation of a grey-level image is defined by [4,12,1]

δB(f)(pi) =
{
f(pm)| f(pm) = sup [f(pn)] , pn ∈ B̌(pi)

}
, (6)

and the dual grey-level erosion is given by [4,12,1]

εB(f)(pi) = {f(pm)| f(pm) = inf [f(pn)] , pn ∈ B(pi)} . (7)

where B̌(pi) is the transposed structuring element centered at pixel pi. If B is
symmetric with respect to the origin B̌ = B.
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(a) Original binary images (b) NMF basis images

(c) LNMF basis images (d) Sparse-NMF basis images (Sw = 0.5,Sh = 0.5)

(e) Sparse-NMF basis images (Sw = 0.6,Sh = 0) (f) Sparse-NMF basis images (Sw = 0,Sh = 0.6)

Fig. 1. Non-negative representation of binary shapes. A collection of M = 100 shapes
has been used in the NMF experiments (in (a) is given only a selection of 9 shapes),
where the number of reduced dimensions has been fixed to R = 10 (in the examples
are given the first 9 basis images).

The characteristic function of set X , denoted ξX : E → {0, 1}, is defined by

∀X ∈ P(E), ∀pi ∈ E, ξX(pi) =
{

1 if pi ∈ X
0 if pi ∈ Xc (8)

For a function f : E → T , the thresholded set at value t ∈ T is a mapping from
F(E, T ) to P(E) given by [11]

	t(f) = {pi ∈ E| f(pi) ≥ t} . (9)

Using these transformations it is obvious that the binary dilation (5) can be
computed using the numerical operator (6), i.e.,

δB(X) = 	1 (δB(ξX)(pi)) . (10)

We know that given a set defined as the union of a family of sets, i.e., X =
∪k∈KXk, the corresponding dilation is

δB(X) = δB (∪k∈KXk) = ∪k∈KδB(Xk). (11)
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��� �������	 
����� �����

�
� ��� ������������� ��� ���� �������������

��� ��������� ������������� �Sw = 0.6�Sh = 0� �� ��������� ������������� �Sw = 0�Sh = 0.6�

Fig. 2. Sparse NMF approximations to binary sets: (a) three original shapes Xj ; (b)-(e)
Top, reconstructed function aXj and Bottom, approximate set X̃j

It is also easy to see that

δB(X) = 	1

(

δB

(

min

{

1,
∑

k∈K

ξXk
(pi)

}))

= 	1

(
∑

k∈K

δB (ξXk
(pi))

)

. (12)

In fact, the justification for using NMF in sparse mathematical morphology arises
from equations (11) and (12).

Coming back to the NMF reconstruction, expressions (2) and (3), we can now
write

Xj ≈ X̃j = 	α

(
R∑

k=1

φk(pi)Hk,j

)

. (13)

Hence, we propose to introduce the following nonlinear operator, named sparse
max-approximation to binary dilation,

DB(Xj) = 	α

(
R∑

k=1

δB (φk) (pi)Hk,j

)

. (14)

Note that by the positivity of Hk,j , we have δB (φk(pi)Hk,j) = δB (φk) (pi)Hk,j .
We can say that δB(Xj) ≈ DB(Xj), however neither the increasiness nor the
extensitivity of DB(Xj) w.r.t. Xj can be guaranteed and consequently, this op-
erator is not a morphological dilation. In other terms, in order to approximate
the dilation by B of any of the M sets Xj , we only need to calculate the dilation
of the R basis images. In addition, the sparsity of H involves that only a limited
number of dilated atoms are required for each Xj .

Dual sparse max-approximation to binary erosion. One of the most inter-
esting properties of mathematical morphology is the duality by the complement
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of pair of operators. Hence, the binary erosion of set X by B can be defined as
the dual operator to the dilation: εB̌(X) = (δB(Xc))c. Using this property, we
propose to define the sparse max-approximation to binary erosion as

EB(Xj) = 	α

(
R∑

k=1

�
[
δB

(
�[φk]

)
(pi)

]
Hk,j

)

, (15)

where the complement basis images are defined by �[φk(pi)] = max(Wi,k) −
φk(pi) + min(Wi,k).

The results of DB(Xj) and EB(Xj) for three examples of the Fish shapes,
compared with respect to the standard binary dilation and erosion, are given in
Fig. 3. We have compared in particular the sparse max-approximation for the
standard NMF and for the Sparse-NMF.

��� ������	 
������ ������ δB(Xj) ��� ��
	�	 
������ ������ εB(Xj)

��� ��������	 ��������
�� 	����� DB(Xj) �	� ��������	 ��������
�� ��
	� EB(Xj)

��� ������ ��������	 ��������
�� 	����� DB(Xj) ��� ������ ��������	 ��������
�� ��
	� EB(Xj)

Fig. 3. Comparison of dilation/erosion (a)/(b) vs. sparse pseudo operators for three
examples of the Fish shapes. It is compared in particular the sparse max-approximation
to dilation/erosion for the standard NMF (c)/(d) and for the Sparse-NMF (e)/(f), with
(Sw = 0,Sh = 0.6). The structuring element B is a square of 5 × 5 pixels.

4 Extension to Grey-Level Images

We deal in this section with families of discrete grey-level images, i.e., F =
{f1(pi), · · · , fM (pi)}, with fj(pi) ∈ F(E, T ), T = {t1, t2, · · · , tL} with (tl+1 −
tl) = Δt. The thresholded set of fj at each tl, i.e., Xtl

j = 	tl
(fj), is called the

cross-section or level-set at tl. The set of cross-sections constitutes a family of
decreasing sets: tλ ≥ tμ ⇒ Xtλ ⊆ Xtμ and Xtλ = ∩{Xtμ , μ < λ}. Any image
fj can be viewed as an unique stack of its cross-sections, which leads to the
following reconstruction property:

fj(pi) = sup{tl| pi ∈ Xtl

j }, tl ∈ T . (16)

We prefer here to consider the alternative reconstruction [13,10] using a numer-
ical sum of the characteristic function of cross sections:

fj(pi) = Δt

L∑

l=1

ξ
X

tl
j

(pi). (17)
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It is well known in mathematical morphology that any binary increasing oper-
ator, such as the dilation and erosion, can be generalised to grey-level images by
applying the binary operator to each cross-section, and then by reconstructing
the corresponding grey-level image [11,10], i.e.,

δB(fj)(pi) = Δt

L∑

l=1

ξ
δB(X

tl
j )(pi), and εB(fj)(pi) = Δt

L∑

l=1

ξ
εB(X

tl
j )(pi). (18)

Consider now that each image of the initial grey-level family F of M images
is decomposed into its L cross-sections. Hence, we have

F = {f1, · · · , fM} �→ X = {Xt1
1 , Xt2

1 · · · , XtL
1 , · · · , XtL

M−1, X
t1
M , · · · , XtL

M },

where X is a family of M ′ = M × L binary images. Therefore, we can use
NMF algorithms, for a given dimension R, to approximate each set Xtl

j and
then approximate the corresponding function fj(pi). Using the results of the
previous section, we are able now to introduce the following definition for the
sparse max-approximation to grey-level dilation and erosion given respectively
by:

DB(fj)(pi) = Δt

L∑

l=1

ξ
DB(X

tl
j )(pi), (19)

and

EB(fj)(pi) = Δt

L∑

l=1

ξ
EB(X

tl
j )(pi). (20)

with

DB

(
Xtl

j

)
= 	α

(
R∑

k=1

δ (φk) (pi)Hk,j+l

)

;

EB

(
Xtl

j

)
= 	α

(
R∑

k=1

�
[
δB

(
�[φk]

)
(pi)

]
Hk,j+l

)

.

We must point out again that these approximate nonlinear operators do not
satisfy the standard properties of grey-level dilation and erosion. The precise
properties of DB(fj) and EB(fj) will be studied in detail in a subsequent paper.

Fig. 4 illustrates the behaviour of sparse max-approximation to grey-level di-
lation and erosion. This preliminary experiment deals with images from the ORL
face database. In this particular case, the results obtained using the standard
NMF are significantly better than those obtained using any Sparse-NMF version.

In fact, as we can observe, the quality of the sparse max-approximation to
dilation and to erosion, for a particular image, depends on the quality of the
initial NMF reconstruction of the image. For instance, the first face (man with
glasses) is not very well approximated with the learned NMF basis and hence,
its approximated dilation and erosion are also unsatisfactory. On the contrary,
in the case of the last image (woman), the results are more appropriate.
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(a) Original images fj(pi)

(b) NMF approximation f̃j(pi)

(c) Dilated images δB(fj)(pi)

(d) Sparse max-approximation dilat. DB(fj)(pi)

(e) Eroded images εB(fj)(pi)

(f) Sparse max-approximation erod. EB(fj)(pi)

Fig. 4. Four examples of the ORL face database (a) (quantized in L = 10 grey-
levels) and corresponding approximated image using standard NMF. Comparison of
dilation/erosion (c)/(d) vs. sparse max-approximation to dilation/erosion for the stan-
dard NMF (e)/(f). A collection of M = 20 faces has been used in the NMF experiments
where the number of reduced dimensions for the binary matrix V has been fixed to
R = 75 (note that M ′ = 20 × 10 = 200 dimensions). The structuring element B is a
square of size 3 × 3 pixels.
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In any case, this is only a first experiment and a more concise investigation
of the effect of variations of the parameters would be studied in ongoing re-
search. Typically, we need to evaluate quantitatively, for a given operator, the
approximation power for different sizes of structuring element as well as the ap-
proximation power of the morphological operators with respect to the degree of
approximation of the initial image. In addition, the influence on the approxi-
mated morphological operators of dimensionality R and of the parameters Sw

and Sh from Sparse NMF should be also evaluated. It will be also probably
useful a direct comparison to another dimensionality reduction technique, typi-
cally PCA, in order to have a better judgment of the potential of the presented
approach.

5 Conclusions and Perspectives

We have introduced the notion of sparse binary and grey-level pseudo-dilations
and erosions using NMF sparse representation. The first results are relatively
encouraging and they open a new avenue to study how the current paradigm of
sparse modelling (based mainly on linear operations) can be particularised to
the nonlinear morphological framework.

Besides a deeper experimental quantitative analysis, as discussed above, in
ongoing research, we will focus, on the one hand, on NMF representations which
produces binary basis images, see for instance [15], which is still a quite open
problem. On the other hand, we will study in deep the properties of the sparse
max-approximation to dilation/erosion, as well as consider alternative extensions
to the grey-level case. Finally, the construction of more complex operators than
dilation/erosion, and eventually the introduction of new ones, and their possible
applications for inverse problems (regularisation, debluring, etc.) will be also
foreseen.

References

1. Bloch, I., Heijmans, H., Ronse, C.: Mathematical Morphology. In: Aiello, M.,
Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics, ch. 14,
pp. 857–944. Springer, Heidelberg (2007)

2. Donoho, D., Stodden, V.: When does non-negative matrix factorization give a
correct decomposition into parts? In: Advances in Neural Information Processing
16 (Proc. NIPS 2003). MIT Press, Cambridge (2004)

3. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations
over learned dictionaries. IEEE Trans. on Image Proc. 15(12), 3736–3745 (2006)

4. Heijmans, H.J.A.M.: Morphological Image Operators. Academic Press, Boston
(1994)

5. Hoyer, P.: Non-negative Matrix Factorization with Sparseness Constraints. J.
Mach. Learn. Res. 5, 1457–1469 (2004)

6. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-
torization. Nature 401(6755), 788–791 (1999)



12 J. Angulo and S. Velasco-Forero

7. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In:
Advances in Neural Information Processing 13 (Proc. NIPS 2000). MIT Press,
Cambridge (2001)

8. Li, S.Z., Hou, X., Zhang, H., Cheng, Q.: Learning spatially localized parts-based
representations. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), Hawaii, USA, vol. I, pp. 207–212 (2001)

9. Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration.
IEEE Trans. on Image Proc. 17(1), 53–69 (2008)

10. Ronse, C.: Bounded variation in posets, with applications in morphological im-
age processing. In: Passare, M. (ed.) Proceedings of the Kiselmanfest 2006, Acta
Universitatis Upsaliensis, vol. 86, pp. 249–281 (2009)

11. Serra, J.: Image Analysis and Mathematical Morphology. Image Analysis and
Mathematical Morphology, vol. I. Theoretical Advances, vol. II. Academic Press,
London (1982) (1988)

12. Soille, P.: Morphological Image Analysis. Springer, Berlin (1999)
13. Wendt, P.D., Coyle, E.J., Gallagher, N.C.: Stack Filters. IEEE Trans. on Acoustics,

Speech, and Signal Processing 34(4), 898–911 (1986)
14. Yu, G., Sapiro, G., Mallat, S.: Solving Inverse Problems with Piecewise Linear

Estimators: From Gaussian Mixture Models to Structured Sparsity. IEEE Trans.
on Image Processing (2011)

15. Yuan, Y., Li, X., Pang, Y., Lu, X., Tao, D.: Binary Sparse Nonnegative Matrix
Factorization. IEEE Trans. on Circuits and Systems for Video Technology 19(5),
772–777 (2009)



Fuzzy Bipolar Mathematical Morphology:
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Abstract. Bipolar information is an important component in informa-
tion processing, to handle both positive information (e.g. preferences)
and negative information (e.g. constraints) in an asymmetric way. In
this paper, a general algebraic framework is proposed to handle such in-
formation using mathematical morphology operators, leading to results
that apply to any partial ordering.

Keywords: Bipolar information, fuzzy bipolar dilation and erosion, bipo-
lar connectives.

1 Introduction

A recent trend in contemporary information processing focuses on bipolar in-
formation, both from a knowledge representation point of view, and from a
processing and reasoning one. Bipolarity is important to distinguish between
(i) positive information, which represents what is guaranteed to be possible, for
instance because it has already been observed or experienced, and (ii) negative
information, which represents what is impossible or forbidden, or surely false [1].
In this paper, we propose to handle such bipolar information using mathemati-
cal morphology operators. Mathematical morphology on bipolar fuzzy sets was
proposed for the first time in [2], by considering the complete lattice defined
from the Pareto ordering. Then it was further developed, with additional prop-
erties, geometric aspects and applications to spatial reasoning, in [3,4]. The lex-
icographic ordering was considered too in [5]. Here we propose a more general
algebraic setting and we show that the usual properties considered in mathemat-
ical morphology hold in any complete lattice representing bipolar information,
whatever the choice of the partial ordering. Recently, mathematical morphology
on interval-valued fuzzy sets and intuitionistic fuzzy sets was addressed, indepen-
dently, in [6], but without considering the algebraic framework of adjunctions,
thus leading to weaker properties. This group then extended its approach with
more properties in [7]. Pareto ordering was used in this work. Again this paper
proposes a more general and powerful setting.

Mathematical morphology [8] usually relies on the algebraic framework of
complete lattices [9]. Although it has also been extended to complete semi-
lattices and general posets [10], based on the notion of adjunction [11], in this
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c© Springer-Verlag Berlin Heidelberg 2011
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paper we only consider the case of complete lattices. Let us assume that bipolar
information is represented by a pair (μ, ν), where μ represents the positive infor-
mation and ν the negative information, under a consistency constraint [1]. Let us
denote by B the set of all (μ, ν). We assume that it is possible to define a spatial
ordering � on B such that (B,�) is a complete lattice. We denote by

∨
and

∧

the supremum and infimum, respectively. Once we have a complete lattice, it is
easy to define algebraic dilations δ and erosions ε on this lattice, as classically
done in mathematical morphology [11,12], as operations that commute with the
supremum and with the infimum, respectively:

∀(μi, νi) ∈ B, δ(
∨

i

(μi, νi)) =
∨

i

δ((μi, νi)), (1)

∀(μi, νi) ∈ B, ε(
∧

i

(μi, νi)) =
∧

i

ε((μi, νi)), (2)

where (μi, νi) is any family (finite or not) of elements of B.
Classical results derived from the properties of complete lattices and adjunc-

tions [11,12] hold in the bipolar case too.
Bipolar information can be represented in different frameworks, leading to

different forms of μ and ν, for instance:

– positive and negative information are subsets P and N of some set, and the
consistency constraint is expressed as P ∩ N = ∅, expressing that what is
possible or preferred (positive information) should be included in what is
not forbidden (negative information) [1];

– μ and ν are membership functions to fuzzy sets, defined over a space S, and
the consistency constraint is expressed as ∀x ∈ S, μ(x) + ν(x) ≤ 1 [2]. The
pair (μ, ν) is then called a bipolar fuzzy set;

– positive and negative information are represented by logical formulas ϕ and
ψ, generated by a set of propositional symbols and connectives, and the
consistency constraint is then expressed as ϕ∧ψ |= ⊥ (ψ represents what is
forbidden or impossible).

– Other examples include functions such as utility functions or capacities [13],
preference functions [14], four-valued logics [15], possibility distributions [16].

One of the main issues in the proposed extensions of mathematical morphology
to bipolar information is to handle the two components (i.e. positive and negative
information) and to define an adequate and relevant ordering. Two extreme cases
are Pareto ordering (also called marginal ordering) and lexicographic ordering.
The Pareto ordering handles both components in a symmetric way, while the
lexicographic ordering on the contrary gives a strong priority to one component,
and the other one is then seldom considered. This issue has been addressed in
other types of work, where different partial orderings have been discussed, such
as color image processing (see e.g. [17]) and social choice (see e.g. [18]). The
works in these domains, and the various partial orderings proposed, can guide
the choice of an ordering adapted to bipolar information.
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In the following, we will detail the case of bipolar fuzzy sets, extending our
previous work in [2,3] to any partial ordering. This includes the other examples
described above: the case of sets corresponds to the case where only bipolarity
should be taken into account, without fuzziness (hence the membership functions
take only values 0 and 1). In the case of logical formulas, we consider the models
�ϕ� and �ψ� as sets or fuzzy sets. Hence the case of bipolar fuzzy sets is general
enough to cover several other mathematical settings.

The lattice structure is described in Section 2. Then bipolar connectives and
their properties are detailed in Section 3. They are then used to define general
forms of morphological dilations and erosions in Section 4, based on bipolar
degrees of intersection and inclusion. Proofs are omitted here, and can be found
in [19].

2 Partial Ordering and Lattice of Bipolar Fuzzy Sets

Let S be the underlying space (the spatial domain for spatial information pro-
cessing). A bipolar fuzzy set on S is defined by an ordered pair of functions
(μ, ν) such that ∀x ∈ S, μ(x) + ν(x) ≤ 1. Note that bipolar fuzzy sets are for-
mally linked to intuitionistic fuzzy sets [20], interval-valued fuzzy sets [21] and
vague sets, where the interval at each point x is [μ(x), 1−ν(x)], or to clouds when
boundary constraints are added [22], as shown by several authors [23]. However
their respective semantics are very different, and we keep here the terminology
of bipolarity, for handling asymmetric bipolar information [16].

For each point x, μ(x) defines the degree to which x belongs to the bipolar
fuzzy set (positive information) and ν(x) the non-membership degree (negative
information). This formalism allows representing both bipolarity and fuzziness.
The set of bipolar fuzzy sets defined on S is denoted by B.

Let us denote by L the set of ordered pairs of numbers (a, b) in [0, 1] such
that a+ b ≤ 1 (hence (μ, ν) ∈ B ⇔ ∀x ∈ S, (μ(x), ν(x)) ∈ L). Let � be a partial
ordering on L such that (L,�) is a complete lattice. We denote by

∨
and

∧

the supremum and infimum, respectively. The smallest element is denoted by 0L
and the largest element by 1L.

The partial ordering on L induces a partial ordering on B, also denoted by �
for the sake of simplicity:

(μ1, ν1) � (μ2, ν2) iff ∀x ∈ S, (μ1(x), ν1(x)) � (μ2(x), ν2(x)). (3)

Then (B,�) is a complete lattice, for which the supremum and infimum are
also denoted by

∨
and

∧
. The smallest element is the bipolar fuzzy set (μ0, ν0)

taking value 0L at each point, and the largest element is the bipolar fuzzy set
(μI, νI) always equal to 1L. Note that the supremum and the infimum do not
necessarily provide one of the input bipolar numbers or bipolar fuzzy sets (in
particular if they are not comparable according to �). However, they do in case
� is a total ordering.
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3 Bipolar Connectives

Let us now introduce some connectives, that will be useful in the following
and that extend to the bipolar case the connectives classically used in fuzzy set
theory. In all what follows, increasingness or decreasingness is intended according
to the partial ordering �.

A bipolar negation, or complementation, on L is a decreasing operator
N such that N(0L) = 1L and N(1L) = 0L. In this paper, we restrict ourselves
to involutive negations, such that ∀(a, b) ∈ L, N(N((a, b))) = (a, b) (these are
the most interesting ones for mathematical morphology).

A bipolar conjunction is an operator C from L × L into L such that
C(0L, 0L) = C(0L, 1L) = C(1L, 0L) = 0L, C(1L, 1L) = 1L, and that is increas-
ing in both arguments, i.e.: ∀((a1, b1), (a2, b2), (a′1, b′1), (a′2, b′2)) ∈ L4, (a1, b1) �
(a′1, b

′
1) and (a2, b2) � (a′2, b

′
2)⇒ C((a1, b1), (a2, b2)) � C((a′1, b

′
1), (a

′
2, b

′
2)).

A bipolar t-norm is a commutative and associative bipolar conjunction such
that ∀(a, b) ∈ L, C((a, b), 1L) = C(1L, (a, b)) = (a, b) (i.e. the largest element of
L is the unit element of C). If only the property on the unit element holds, then
C is called a bipolar semi-norm.

A bipolar disjunction is an operator D from L × L into L such that
D(1L, 1L) = D(0L, 1L) = D(1L, 0L) = 1L, D(0L, 0L) = 0L, and that is in-
creasing in both arguments.

A bipolar t-conorm is a commutative and associative bipolar disjunction
such that ∀(a, b) ∈ L, D((a, b), 0L) = D(0L, (a, b)) = (a, b) (i.e. the smallest
element of L is the unit element of D).

A bipolar implication is an operator I from L×L into L such that I(0L, 0L) =
I(0L, 1L) = I(1L, 1L) = 1L, I(1L, 0L) = 0L and that is decreasing in the first
argument and increasing in the second argument.

Proposition 1. Any bipolar conjunction C has a null element, which is the
smallest element of L: ∀(a, b) ∈ L, C((a, b), 0L) = C(0L, (a, b)) = 0L. Simi-
larly, any bipolar disjunction has a null element, which is the largest element
of L: ∀(a, b) ∈ L, D((a, b), 1L) = D(1L, (a, b)) = 1L. For implications, we have
∀(a, b) ∈ L, I(0L, (a, b)) = I((a, b), 1L) = 1L.

As in the fuzzy case, conjunctions and implications may be related to each other
based on the residuation principle, which corresponds to a notion of adjunc-
tion. This principle is expressed as follows in the bipolar case: a pair of bipolar
connectives (I, C) forms an adjunction if, ∀(ai, bi) ∈ L, i = 1...3,

C((a1, b1), (a3, b3)) � (a2, b2)⇔ (a3, b3) � I((a1, b1), (a2, b2)). (4)

These connectives can be linked to each other in different ways (again this is
similar to the fuzzy case).

Proposition 2. The following properties hold:

– Given a bipolar t-norm C and a bipolar negation N , the following operator
D defines a bipolar t-conorm: ∀((a1, b1), (a2, b2)) ∈ L2,

D((a1, b1), (a2, b2)) = N(C(N((a1, b1)), N((a2, b2)))). (5)
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– A bipolar implication I induces a bipolar negation N defined as:

∀(a, b) ∈ L, N((a, b)) = I((a, b), 0L). (6)

– The following operator IN , derived from a bipolar negation N and a bipolar
conjunction C, defines a bipolar implication: ∀((a1, b1), (a2, b2)) ∈ L2,

IN ((a1, b1), (a2, b2)) = N(C((a1, b1), N((a2, b2)))). (7)

– Conversely, a bipolar conjunction C can be defined from a bipolar negation
N and a bipolar implication I: ∀((a1, b1), (a2, b2)) ∈ L2,

C((a1, b1), (a2, b2)) = N(I((a1, b1), N((a2, b2)))). (8)

– Similarly, a bipolar implication can be defined from a negation N and a
bipolar disjunction D as: ∀((a1, b1), (a2, b2)) ∈ L2,

IN ((a1, b1), (a2, b2)) = D(N((a1, b1)), (a2, b2)). (9)

– A bipolar implication can also be defined by residuation from a bipolar con-
junction C such that ∀(a, b) ∈ L\0L, C(1L, (a, b)) �= 0L: ∀((a1, b1), (a2, b2)) ∈
L2,

IR((a1, b1), (a2, b2)) =
∨
{(a3, b3) ∈ L | C((a1, b1), (a3, b3)) � (a2, b2)}.

The operators C and IR are then said to be adjoint (see the definition in
Equation 4).

– Conversely, from a bipolar implication IR such that ∀(a, b) ∈ L \ 1L, IR(1L,
(a, b)) �= 1L, the conjunction C such that (C, IR) forms an adjunction is
given by: ∀((a1, b1), (a2, b2)) ∈ L2,

C((a1, b1), (a2, b2)) =
∧
{(a3, b3) ∈ L | (a2, b2) � IR((a1, b1), (a3, b3))}.

Proposition 3. If C and I are bipolar connectives such that (I, C) forms an
adjunction (i.e. verifies Equation 4), then C distributes over the supremum and
I over the infimum on the right, i.e.: ∀(ai, bi) ∈ L, ∀(a, b) ∈ L,
∨

i

C((a, b), (ai, bi)) = C((a, b),
∨

i

(ai, bi)),
∧

i

I((a, b), (ai, bi)) = I((a, b),
∧

i

(ai, bi)).

Note that the distributivity on the left requires C to be commutative.
The following properties of adjunctions will also be useful for deriving math-

ematical morphology operators.

Proposition 4. Let (I, C) be an adjunction. Then the following properties hold:

– C is increasing in the second argument and I in the second one. If further-
more C is commutative, then it is also increasing in the first one.

– 0L is the null element of C on the right and 1L is the null element of I on
the right, i.e. ∀(a, b) ∈ L, C((a, b), 0L) = 0L, I((a, b), 1L) = 1L.
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4 Morphological Dilations and Erosions of Bipolar Fuzzy
Sets

We now assume that S is an affine space (or at least a space on which trans-
lations can be defined), and we use the notion of structuring element, which
defines a spatial neighborhood of each point in S (or a binary relation between
worlds in a logical framework). Here we consider fuzzy bipolar structuring ele-
ments. More generally, without any assumption on the underlying domain S, a
structuring element is defined as a binary relation between two elements of S
(i.e. y is in relation with x if and only if y ∈ Bx). This allows on the one hand
dealing with spatially varying structuring elements (when S is the spatial do-
main), or with graph structures, and on the other hand establishing interesting
links with several other domains, such as rough sets, formal logics, and, in the
more general case where the morphological operations are defined from one set to
another one, with Galois connections and formal concept analysis. The general
principle underlying morphological erosions consists in translating the structur-
ing element at every position in space and check if this translated structuring
element is included in the original set [8]. This principle has also been used in the
main extensions of mathematical morphology to fuzzy sets or to logics. Similarly,
defining morphological erosions of bipolar fuzzy sets, using bipolar fuzzy struc-
turing elements, requires to define a degree of inclusion between bipolar fuzzy
sets. Such inclusion degrees have been proposed in the context of intuitionistic
fuzzy sets [24]. With our notations, a degree of inclusion of a bipolar fuzzy set
(μ′, ν′) in another bipolar fuzzy set (μ, ν) is defined as [2]:

∧

x∈S
I((μ′(x), ν′(x)), (μ(x), ν(x))) (10)

where I is a bipolar implication, and a degree of intersection is defined as:

∨

x∈S
C((μ′(x), ν′(x)), (μ(x), ν(x))) (11)

where C is a bipolar conjunction. Note that both inclusion and intersection
degrees are elements of L, i.e. they are defined as bipolar degrees.

Based on these concepts, we can now propose a general definition for mor-
phological erosions and dilations, thus extending our previous work in [2,3,5].

Definition 1. Let (μB, νB) be a bipolar fuzzy structuring element (in B). The
erosion of any (μ, ν) in B by (μB, νB) is defined from a bipolar implication I as:

∀x ∈ S, ε(μB ,νB)((μ, ν))(x) =
∧

y∈S
I((μB(y − x), νB(y − x)), (μ(y), ν(y))). (12)

In this equation, μB(y − x) (respectively νB(y − x)) represents the value at
point y of the translation of μB (respectively νB) at point x.
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Definition 2. Let (μB, νB) be a bipolar fuzzy structuring element (in B). The
dilation of any (μ, ν) in B by (μB , νB) is defined from a bipolar conjunction C
as:

δ(μB ,νB)((μ, ν))(x) =
∨

y∈S
C((μB(x− y), νB(x− y)), (μ(y), ν(y))). (13)

Proposition 5. Definitions 1 and 2 are consistent: they actually provide bipo-
lar fuzzy sets of B, i.e. ∀(μ, ν) ∈ B, ∀(μB, νB) ∈ B, δ(μB,νB)((μ, ν)) ∈ B and
ε(μB ,νB)((μ, ν)) ∈ B.

Proposition 6. In case the bipolar fuzzy sets are usual fuzzy sets (i.e. ν = 1−μ
and νB = 1− μB), the definitions lead to the usual definitions of fuzzy dilations
and erosions. Hence they are also compatible with classical morphology in case
μ and μB are crisp.

Proposition 7. Definitions 1 and 2 provide an adjunction (ε, δ) if and only if
(I, C) is an adjunction.

Proposition 8. If I and C are bipolar connectives such that (I, C) is an ad-
junction, then the operator ε defined from I by Equation 12 commutes with the
infimum and the operator δ defined from C by Equation 13 commutes with the
supremum, i.e. they are algebraic erosion and dilation. Moreover they are in-
creasing with respect to (μ, ν).

Proposition 9. If (I, C) is an adjunction such that C is increasing in the first
argument and I is decreasing in the first argument (typically if they are a bipolar
conjunction and a bipolar implication), then the operator ε defined from I by
Equation 12 is decreasing with respect to the bipolar fuzzy structuring element
and the operator δ defined from C by Equation 13 is increasing with respect to
the bipolar fuzzy structuring element.

Proposition 10. C distributes over the supremum and I over the infimum on
the right if and only if ε and δ defined by Equations 12 and 13 are algebraic
erosion and dilation, respectively.

Proposition 11. Let δ and ε be a dilation and an erosion defined by Equa-
tions 13 and 12. Then, for all (μB, νB), (μ, ν), (μ′, ν′) in B, we have:

δ(μB ,νB)((μ, ν) ∧ (μ′, ν′)) � δ(μB ,νB)((μ, ν)) ∧ δ(μB ,νB)((μ′, ν′)), (14)

ε(μB ,νB)((μ, ν)) ∨ ε(μB ,νB)((μ′, ν′)) � ε(μB ,νB)((μ, ν) ∨ (μ′, ν′)). (15)

Proposition 12. A dilation δ defined by Equation 13 is increasing with respect
to the bipolar fuzzy structuring element, while an erosion ε defined by Equa-
tion 12 is decreasing with respect to the bipolar fuzzy structuring element.
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These results fit well with the intuitive meaning behind the morphological
operators. Indeed, a dilation is interpreted as a degree of intersection, which is
easier to achieve with a larger structuring element, while an erosion is interpreted
as a degree of inclusion, which means a stronger constraint if the structuring
element is larger.

Proposition 13. Let δ and ε be a dilation and an erosion defined by Equa-
tions 13 and 12. Then, for all (μB, νB), (μ′B , ν

′
B), (μ, ν) in B, we have:

δ(μB ,νB)∧(μ′
B ,ν′

B)((μ, ν) � δ(μB ,νB)((μ, ν)) ∧ δ(μ′
B ,ν′

B)((μ, ν)), (16)

ε(μB ,νB)((μ, ν)) ∨ ε(μ′
B ,ν′

B)((μ, ν)) � ε(μB ,νB)∧(μ′
B ,ν′

B)((μ, ν)). (17)

Proposition 14. Let δ be a dilation defined by Equation 13 from a bipolar con-
junction C. The dilation satisfies δ(μB ,νB)((μ, ν)) = δ(μ,ν)((μB , νB)) if and only
if C is commutative.

This result is quite intuitive. When interpreting the dilation as a degree of inter-
section, it is natural to expect this degree to be symmetrical in both arguments.
Hence the commutativity of C has to be satisfied.

Proposition 15. Let δ be a dilation defined by Equation 13 from a bipolar con-
junction C. It satisfies the iterativity property, i.e.:

δ(μB ,νB)(δ(μ′
B ,ν′

B)(μ, ν)) = δδ(μB ,νB)((μ
′
B ,ν′

B))((μ, ν)),

if and only if C is associative.

Proposition 16. Let δ be a dilation defined by Equation 13 from a bipolar
conjunction C. If C is a bipolar conjunction that admits 1L as unit element
on the left (i.e. ∀(a, b) ∈ L, C(1L, (a, b)) = (a, b)) and C((a, b), 1L) �= 1L for
(a, b) �= 1L, then the dilation is extensive, i.e. δ(μB ,νB)((μ, ν)) � (μ, ν), if and
only if (μB, νB)(0) = 1L, where 0 denotes the origin of space S.

A similar property holds for erosion and if I is a bipolar implication that
admits 1L as unit element to the left (i.e. ∀(a, b) ∈ L, I(1L, (a, b)) = (a, b))
and I((a, b), 0L) �= 0L for (a, b) �= 1L, then the erosion is anti-extensive, i.e.
ε(μB ,νB)((μ, ν)) � (μ, ν), if and only if (μB , νB)(0) = 1L.

The second condition on C holds in particular if 1L is also unit element on the
right. This holds in specific cases in which C is a bipolar t-norm, which are the
most interesting ones from a morphological point of view, as shown below.

Note that the condition (μB, νB)(0) = 1L (i.e. the origin of space completely
belongs to the bipolar fuzzy set, without any indetermination) is equivalent to
the conditions on the structuring element found in classical [8] and fuzzy [25]
morphology to have extensive dilations and anti-extensive erosions.

Proposition 17. If I is derived from C and a negation N , then δ and ε are dual
operators, i.e.: δ(μB ,νB)(N(μ, ν)) = N(ε(μ̌B ,ν̌B)((μ, ν))), where (μ̌B, ν̌B) denotes
the symmetrical of (μB, νB) with respect to the origin of S.
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Duality with respect to complementation, which was advocated in the first
developments of mathematical morphology [8], is important to handle in an con-
sistent way an object and its complement for many applications (for instance in
image processing and spatial reasoning). Therefore it is useful to know exactly
under which conditions this property may hold, so as to choose the appropriate
operators if it is needed for a specific problem. On the other hand, adjunction is
a major feature of the “modern” view of mathematical morphology, with strong
algebraic bases in the framework of complete lattices [9]. This framework is now
widely considered as the most interesting one, since it provides consistent defini-
tions with sound properties in different settings (continuous and discrete ones)
and extending mathematical morphology to bipolar fuzzy sets in this framework
inherits a set of powerful and important properties. Due to the interesting fea-
tures of these two properties of duality and adjunction, in several applications
both are required.

From all these results, we can derive the following theorem, which shows that
the proposed forms are the most general ones for C being a bipolar t-norm.

Theorem 1. Definition 2 defines a dilation with all properties of classical math-
ematical morphology if and only if C is a bipolar t-norm. The adjoint erosion is
then defined by Equation 1 from the residual implication IR derived from C. If
the duality property is additionally required, then C and I have also to be dual
operators with respect to a negation N .

This important result shows that taking any conjunction may not lead to di-
lations that have nice properties. For instance the iterativity of dilation is of
prime importance in concrete applications, and it requires associative conjunc-
tions. This is actually a main contribution of our work, which differs from [6],
where some morphological operators are suggested on intuitionistic fuzzy sets
and for the Pareto ordering, but without referring to the algebraic framework,
and leading to weaker properties (for instance the erosion defined in this work
does not commute with the infimum and is then not an algebraic erosion). This
group has then proposed some extensions in [7], still for the specific case of
Pareto ordering, which closely follow our previous results in [2,3,5]. Moreover
the result expressed in Theorem 1 is stronger and more general since it applies
for any partial ordering leading to a complete lattice on B. Note that pairs of ad-
joint operators are not necessarily dual. Therefore requiring both adjunction and
duality properties may drastically reduce the choice for C and I. Note that this
strong constraint is similar to the one proved for fuzzy sets in [26]. Although the
choice of C and I is limited by the results expressed in Theorem 1 if sufficiently
strong properties are required for the morphological operators, some choice may
remain. The following property expresses a monotony property with respect to
this choice.

Proposition 18. Dilations and erosions are monotonous with respect to the
choice of C and I:

C � C′ ⇒ δC � δC
′
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where δC is the dilation defined by Equation 13 using the bipolar conjunction or
t-norm C, and

I � I ′ ⇒ εI � εI′

where εI is the erosion defined by Equation 12 using the bipolar implication I.

Examples of connectives and derived morphological operators, along with their
properties, can be found for the Pareto ordering and for the lexicographic order-
ing in our previous work [2,3,5].

5 Conclusion

A general algebraic framework for fuzzy bipolar mathematical morphology was
proposed, along with a set of properties. This general formulation is an original
contribution, leading to new theoretical results. More properties on the composi-
tions δε and εδ can also be derived [19]. This framework can now be instantiated
for various partial orderings. The case of Pareto ordering and lexicographic or-
dering have been detailed in [2,3,5], showing different properties, behaviors and
interpretations.

From the basic morphological operators, other ones can be derived, as classi-
cally done in mathematical morphology, thus endowing the complete toolbox of
operations with a bipolarity layer. Some examples of such operators (opening,
closing, conditional operators, gradient...), along with geometrical measures and
distances on bipolar fuzzy sets have been proposed in [4].

Let us now briefly comment on the applicability of these new tools for im-
age processing and understanding. When dealing with spatial information, both
fuzziness and bipolarity occur. Fuzziness may be related to the observed phe-
nomenon itself, to the image acquisition process, to the image processing steps,
to the knowledge used for image understanding and recognition, etc. This is
now taken into account in a number of works. As for bipolarity, which has not
been much addressed until now in this domain, several situations could bene-
fit from its modeling. For instance, when assessing the position of an object in
space, we may have positive information expressed as a set of possible places,
and negative information expressed as a set of impossible or forbidden places
(for instance because they are occupied by other objects). As another example,
let us consider spatial relations. Human beings consider “left” and “right” as
opposite relations. But this does not mean that one of them is the negation
of the other one. The semantics of “opposite” captures a notion of symmetry
(with respect to some axis or plane) rather than a strict complementation. In
particular, there may be positions which are considered neither to the right nor
to the left of some reference object, thus leaving room for some indetermination,
neutrality or indifference.

As an illustrative example, a typical scenario showing the interest of bipo-
lar representations of spatial relations and of morphological operations on these
representations for spatial reasoning has been described in [3,4], for recognizing
brain structures in medical images. The recognition was guided by anatomical
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knowledge, expressing its bipolarity. For instance, the putamen is exterior (i.e.
to the right in the right hemisphere and to the left in the left one) of the union
of lateral ventricles and thalamus (positive information) and cannot be interior
(negative information); the putamen is quite close to the union of lateral ven-
tricles and thalamus (positive information) and cannot be very far (negative
information). Merging this information allows reducing the search area for the
putamen, by dilating reference objects (lateral ventricles and thalamus in this
example) with bipolar fuzzy sets representing these spatial constraints, thus fo-
cusing on the only regions of space where the spatial relations are satisfied, while
avoiding forbidden regions.

Developing these preliminary examples, future work aims at applying this
framework in the domain of spatial reasoning, in particular for knowledge-based
object recognition in images. Another line of research is its application in the
domain of preference modeling, for fusion, mediation and argumentation.
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20. Atanassov, K.T.: Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 20, 87–96
(1986)

21. Zadeh, L.A.: The Concept of a Linguistic Variable and its Application to Approx-
imate Reasoning. Information Sciences 8, 199–249 (1975)

22. Neumaier, A.: Clouds, fuzzy sets, and probability intervals. Reliable Comput-
ing 10(4), 249–272 (2004)

23. Dubois, D., Gottwald, S., Hajek, P., Kacprzyk, J., Prade, H.: Terminology Diffi-
culties in Fuzzy Set Theory – The Case of “Intuitionistic Fuzzy Sets”. Fuzzy Sets
and Systems 156, 485–491 (2005)

24. Deschrijver, G., Cornelis, C., Kerre, E.: On the Representation of Intuitionistic
Fuzzy t-Norms and t-Conorms. IEEE Transactions on Fuzzy Systems 12(1), 45–61
(2004)
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Image Decompositions and Transformations as

Peaks and Wells

Fernand Meyer
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Abstract. An image may be decomposed as a difference between an
image of peaks and an image of wells. This decomposition depends upon
the point of view, an arbitrary set from where the image is considered:
a peak appears as a peak if it is impossible to reach it starting from any
position in the point of view without climbing. A well cannot be reached
without descending. To any particular point of view corresponds a dif-
ferent decomposition. The decomposition is reversible. If one applies a
morphological operator to the peaks and wells component before apply-
ing the inverse transform, one gets a new, transformed image.

1 Introduction

A binary image is made of particles and holes. Each particle may contain one
or several holes and each hole one or several particles. These structures may be
deeply nested. For describing this structure, J.Serra [8] introduced the homotopy
tree, H.Heijmans [2] called it the adjacency tree. R. Keshet [3] and C. Ballester [1]
studied it in depth and gave algorithms for constructing it. They then extended
this tree construction to grey tone images, each in a different way, resulting in
the so called tree of shapes.

In the present paper we propose a decomposition which decomposes any image
into a peak and a well component, given a particular set, called point of view, an
arbitrary set from where the image is considered: a peak appears as a peak if it
is impossible to reach it starting from any position in the point of view without
climbing. A well cannot be reached without descending. If the point of view
intersect the minimum of a well, then this particular well will not be considered
as well, since it is possible to reach any of its nodes without descending. To any
particular point of view corresponds a different decomposition. Serra, Keshet of
Ballester base their decomposition on a point in the background from which it is
possible to apply hole-filling. Starting from an image X , a hole filling algorithm
will produce a peak image P1, then define the residue R1 = P1 −X , on which
we can perform again a hole filling with a peak and residue, and so on until no
residue is left. Summing up all peaks on one hand and all holes on the other hand
produces the same result as our method if we adopt as view point. However, our
method can use any set as view point and is also applicable to grey tone images.
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Given a reference set X , called view-point set, we decompose an image in
a difference between two components, one representing its peaks, the other its
wells. They represent respectively the sums of positive and negative variations
of the image if one follows a path starting in X . Ch.Ronse proposed an identical
decomposition for functions of bounded variation on a poset P, with the final
aim to find a sound way for constructing a flat operator on gray level image from
a non-increasing operator on binary images [6].

The decomposition is reversible. If one applies a morphological operator to
the peaks and wells component before applying the inverse transform, one gets
a new, transformed image. In order to identify the admissible transforms on the
peak and well components we study their algebraic structure, showing that they
form a complete lattice. Openings, closings and morphological filters may then
be derived from an adjunction defined on this lattice. Reconstruction openings,
also called razings are also allowed opertors on this lattice. The last part of
the paper is devoted to illustrations, showing how chosing an optimal point of
view for the decomposition leads to interesting results. We conclude with a final
discussion.

2 Decomposing an Image into Peaks and Wells

2.1 A Hiking Metaphor

A grey tone image may be considered as a topographic surface. Consider a hiker
going from position x to position y on a montaineous landscape along a given
route. Its tiredness will depend upon the total amount of climbing he has to do
on his trip: no matter if he goes up and down, he only sums up the difference
of level when he climbs. He may then chose the route along which this sum is
minimal. Obviously, this minimal amount depends upon the starting point. If all
possible starting points belong to a set X, then he may chose both the starting
point x within X and the route between x and y which requires the minimum
of climbing ; this minimal sum of climbing between X and y is a measure of the
difficulty to reach y on the topographic surface if one starts from X.

Summing up only the differences of levels on the descending portions of the
path would similarly yield a measure linked to the preceding measure: for a route
between x and y, the altitude of y is equal to the sum of the altitude of x plus
the total amount of climbing minus the total amount of descending. The next
section gives a precise meaning to this hiking metaphor.

2.2 The Decompostion into Peaks and Wells

Let f be an image defined on a grid. This grid may be considered as a graph,
where the pixels are the nodes and where two neighboring pixels i and j are
linked by two arcs, one from i to j and the other from j to i. The weights
of node i is fi, the value of f at i. We consider three graphs e+, e− and e#

characterized by the following distribution of weights on the edges:
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– e+ : f+
ij = ∨(fj − fi, 0) positive for upwards transitions and null otherwise.

– e− : f−ij = ∨(fi−fj, 0) positive for downwards transitions and null otherwise.
– e# : |fij | = |fj − fi|

Consider now an arbitrary path π = (x1, x2, ..., xn) between two nodes x1 and
xn. We may decompose f(x) along the path π as follows:
f(xn) = f(xn)− f(xn−1) + f(xn−1)− f(xn−2) + ...+ f(x2)− f(x1) + f(x1)
Since fj − fi = f+

ij − f−ij for neighboring pixels i, j in the path π, we get

f(xn) = f(x1) +
∑

ij∈π

f+
ij −

∑

ij∈π

f−ij .

Among all possible paths between x1 and xn, there is a path π̂ for which∑

ij∈π

f−ij is minimal. As f(x1)+
∑

ij∈π

f+
ij −

∑

ij∈π

f−ij has a constant value, the expres-

sion f(x1) +
∑

ij∈π

f+
ij is also minimal on π̂ and so is their sum f(x1) +

∑

ij∈π

f+
ij +

∑

ij∈π

f−ij = f(x1) +
∑

ij∈π

|fij |.

The quantities f(x1) +
∑

ij∈π̂

f+
ij ,
∑

ij∈π̂

f−ij and f(x1) +
∑

ij∈π̂

|fij | respectively rep-

resent the positive, negative and total variation along π̂ in G.
The length of the shortest path π̂(x1, y) on e+ between x1 and any node y of

G is a function Θx1(e+, f) which depends only upon x1 and f and which takes
the value f(x1) +

∑

ij∈π̂(x1,y)

f+
ij on the node y. Consider now multiple starting

points of paths belonging to a set X. The minimum ΘX(e+, f) =
∧

z∈X

Θx1(e+, f)

represents the peak component of each node ; for the node y it represents the
minimal value taken by f(z) +

∑

ij∈π̂(z,y)

f+
ij for all paths starting at a node z in

X and joining y.
We have seen that if f(x1) +

∑

ij∈π̂(x1,y)

f+
ij is minimal on the path π̂(x1, y),

then
∑

ij∈π̂(x1,y)

f−ij and f(x1) +
∑

ij∈π

|fij | also are minimal on this same path. We

obtain like that a function Θx1(e+, f) depending only upon x1 and f and taking
the value

∑

ij∈π̂(x1,y)

f−ij on the node y, representing the well component of y and

a function Θx1(e#, f) taking the value f(x1) +
∑

ij∈π̂(x1,y)

|fij | representing the

total variation at y.
As before we consider the minimum of these functions on all paths starting

in X and joining y and define ΘX(e−, f) =
∧

z∈X

Θx1(e−, f) and ΘX(e#, f) =
∧

z∈X

Θx1(e#, f).
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Finally, to each view point X corresponds a decomposition of the function f
into a difference between a function representing the peaks and another repre-
senting the valleys: f = ΘX(e+, f)−ΘX(e−, f). This relation also shows how f
may be reconstructed from ist peak and well components.

2.3 Setting the Scenario of Trains Circulating on Graphs

This section explains how to construct these functions ΘX(e+, f) and ΘX(e−, f).
ΘX(e+, f)(y) represents the minimal value taken by f(z) +

∑

ij∈π̂(z,y)

f+
ij for all

paths starting at a node z in X and joining y. This is an unconventional shortest
path problem, as the length of the path π = (x1, x2, ..., xn) is equal to the sum
of the arcs leading from x1 to xn, plus the initial weight fx1 . We again use a
metaphor. The graph may be considered as a railway network, where the nodes
are railway stations and the arrows are connections between them. Trains may
follow all possible paths on G. However, they may only start from a subset
X ⊂ N of railway stations.

Consider a particular train. It starts at station s ∈ X at time τ(s), follows
a path θ = (x0 = s, x1, ..., xn = t) where xi and xi+1 are two railway stations
linked by an arrow (i, i+1) of E, weighted by the time ei,i+1 needed for following
it. The arrival time at destination is then τ(s) +

∑

i,i+1∈θ

ei,i+1.

We now consider all trains starting at all possible nodes and taking all possible
routes, and observe the earliest time when each node is reached by a train; if a
train arrives at i before τ(i), we replace τ(i) by this first arrival time. For some
nodes no train ever arrives ; for such a node i, all trains coming from another
node arrive at i after τ(i). For others, no train ever departs: if τ(i) is too late,
no train starting from i has a chance to be the first to reach another node ; this
is in particular the case if τ(i) = ∞. Some nodes cumulate both situations, and
no train departs or arrives.

The resulting shedules τ̂ = ΘX(e, τ) depend on the distribution of initial
departure times and crossing times of each edge. Defining τ∞X by τ∞X = τ on
X and τ∞X = ∞ elsewhere, it is obvious that ΘX(e, τ) = ΘX(e, τ∞X ), since no
train with an infinite departure time has the chance to reach another node first.
ΘX(e, τ∞X ) is clearly an opening on the initial distribution of departure times
on all nodes; it is obviously anti-extensive and increasing. It is also idempotent,
as a second scheduling would not change the distribution τ(i) any further. We
also remark that if τ(s) = 0 for s ∈ X, the resulting schedules simply are the
shortest path between X and all other nodes.

2.4 Harmonizing the Schedules Is a Shortest Path Problem in a
Completed Graph

The preceding unconventional shortest path problem on the graph G can be
transformed into a conventional one on an augmented graph GX , obtained by
adding to G a dummy node Ω with weight τ(Ω) = 0 and dummy edges (Ω, i)
between Ω and each node i of X , with eΩi = τi. Since the travelling time along
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the edge (Ω, i) is τi, it is equivalent for a train to start from i at time τi or from
Ω at time 0 and follow the edge (Ω, i) for reaching i.The earliest time for a train
to arrive at any node k of G is the total duration of the shortest path between
Ω and k. It follows that scheduling the graph G amounts to constructing the
shortest path between Ω and all other nodes in the graphGX , which is a classical
problem in graph theory for which many algorithms exist. In ”Scheduling trains
with delayed departures” (http://hal.archives-ouvertes.fr/hal-00547261/fr/), we
have presented the algorithms of Moore Dijkstra and of Berge and shown that, if
the introduction of a dummy node Ω and dummy edges (Ω, i) is a useful support
for thinking, it is not necessary in practice.

3 The Lattice of Floodings with a Unique Regional
Minimum

We are now able to decompose a function f into its peak and wells components,
given the point of view set X . The function f may be reconstructed by f =
ΘX(e+, f) − ΘX(e−, f). Applying an operator ψ to each component leads to a
transform ψ̂(f) = ψΘX(e+, f)−ψΘX(e−, f). This section analyses the algebraic
structure of the peak and wells components in order to identify which operators
ψ are admissible and transform a peak or wells component into an other grey
tone image with the same characteristics.

The schedule τ̂X(x) = ΘX(e, τ) is the length of the shortest path between
Ω and the node x. The edge weights being non negative, there exists a non
ascending path between any node and Ω for the valuations τ̂X . Hence Ω is the
only regional minimum of τ̂X .

The following formulations are equivalent:

– Ω is the only regional minimum of τ̂X .
– the only regional minima of τ belong to X.
– τ̂X is invariant by the swamping which imposes Ω as only regional minimum

; that is the reconstruction closing of τ̂X with a marker function 0∞Ω equal
to 0 at Ω and ∞ elsewhere. This operation, also called flooding, is an anti-
extensive leveling [5], written Λ+(τ̂X , 0∞Ω ).

– τ̂ is invariant by the swamping which imposes the minima of X as only
regional minima ; that is the flooding Λ+(τ̂ , τ∞X ).

– considering the threshold at valuation λ, the subgraph spanning all nodes
with a valuation τ < λ (we call it the background at level λ) has only one
connected component, and this component contains Ω.

We call FX the lattice of all functions verifying the previous equivalent criteria.

3.1 Infimum and Supremum in the Lattice FX

FX is a complete lattice, with the ordinary order relations for functions, 0 as
minimal element, ∞ as maximal element.
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If h1 and h2 are two functions of FX , their infimum in FX is simply h1 ∧ h2.
As a matter of fact, the bakgrounds of h1 and h2 at level λ comprise each
one connected component ; as they both contain Ω, their union, which is the
background of h1 ∧ h2 also consists in one connected component containing Ω.

Now, h1 ∨ h2 may have regional minima outside X, which have to be sup-
pressed by swamping. For this reason the supremum h1 �h2 is equal to Λ+(h1 ∨
h2; (h1 ∨ h2)

∞
X ).

Remark: These operators are not distributive one with another.

3.2 An Adjunction in the Lattice FX

If for each node x we define a neighborhood Vx, the erosion of a function f with
this variable structuring element is εV f(x) =

∧

y∈Vx

fy. This operator is an erosion

both in the ordinary lattice of functions as in the lattice FX . Its adjunct dilation
in the ordinary lattice is δV f(y) =

∨

x∈V t
y

fx, where V t
y = {x | y ∈ Vx} . Being

an adjunction, they verify for each couple (f, g) of functions the relation: f <
εV g ⇔ δV f < g.

As δV f(y) =
∨

x∈V t
y

fx does generally not belong to FX , we construct δ̃V f(y) =

⊔

x∈V −
y

fx = Λ+(δV f, (δV f)∞X ). To establish that δ̃V is the ajunct of εV in FX , we

have to prove that δV f < g ⇔ Λ+(δV f, (δV f)∞X ) < g.
On one hand, floodings being extensive we have Λ+(δV f, (δV f)X) < g ⇒

δV f < g.
On the other hand, if f and g belong to FX., then δV f < g ⇒ Λ+(δV f, (δV f)X) <
Λ+(g, gX). But Λ+(g, gX) = g, as g is invariant by the flooding Λ+(g, gX).
Concatenating all equivalences, we get for any couple of functions in FX : f <
εV g ⇔ δV f < g ⇔ δ̃V f = Λ+(δV f, (δV f)X) < g, showing that (εV f, δ̃V f) =
(
∧

y∈Vx

fy,
⊔

x∈V −
y

fx) is indeed an adjunction on FX .

Classically εV δ̃V is then a closing and δ̃V fεV an opening. Based on these
openings one may construct all classical morphological filters based on openings
and closings [4],[9].

Razings clip peaks and do not create new holes. Thus the image of FX by any
type of razing or reconstruction opening is FX . Finally, we obtain a large family
of operators which operate on and in FX .

4 Min, Max and Morphological Operators Through the
Decomposition in Peaks and Wells

Suming up, given a set X, serving as view-point, we are now able to decompose
any image f into a cumulative image of its peaks f+

X and a cumulative image of
its wells f−X , such that f = f+

X − f
−
X . Both functions belong to FX , a lattice

where we defined a supremum, infimum and an adjunction. Furthermore this
lattice is stable by any type of razing.
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Fig. 1.
Columns 1 and 2 : Binary sets Z and Y and their decomposition
Column 3 : Z � Y and its decomposition
Column 4 : Z � Y and its decomposition

4.1 “Supremum” and “Infimum” of Two Functions

Let (f+
X , f

−
X) and (g+X , g

−
X) be the decomposition of two function into peaks and

wells, given the view point X. For any composition law � on FX , we may define
f � g = f+

X � g
+
X − f

−
X � g

−
X .

Remark: We do not necessarily have (f � g)+X = f+
X � g+X and (f � g)−X =

f−X�g
−
X . This means that the decomposition (f+

X�g
+
X , f

−
X�g

−
X) is not necessarily

a minimal decomposition of f � g.
Based on the operator ∧ and � in FX , we obtain f � g = f+

X ∧ g
+
X − f

−
X ∧ g

−
X

and f � g = f+
X � g+X − f−X � g−X .

Both operators are illustrated by the images Irc disposed in a matrix in fig.1.
Row 1 of the matrix shows the binary images, row 2 and 3 respectively their
peak and wells components, taking as point of view set X the boundary of the
image. Column1 and 2 show two sets Z and Y, column 3 their intersection Z�Y
and column 4 their union Z � Y. The images I23 and I24 represent respectively
Z+

X ∧ Y
+
X and Z+

X �Y
+
X . The images I33 and I34 represent respectively Z−

X ∧ Y
−
X

and Z−
X �Y

−
X . The images I13 and I14 represent respectively Z�Y = Z+

X ∧Y
+
X −

Z−
X ∧ Y −

X and Z � Y = Z+
X � Y +

X − Z−
X � Y −

X .

4.2 Operators Operating on the Peaks and Wells

Binary images. Given the decomposition (f+
X , f

−
X) of a function f into peaks

and wells, and given an increasing operator ψ from FX into FX , we define ψ̂f =
ψ
(
f+

X

)
−ψ

(
f−X
)
. The decomposition is not necessarily minimal, but since f−X <

f+
X and ψ increasing, ψ̂f will be positive if f is positive.
Figure 2 presents in a matrix a number of operators on a binary image. The

view point set X is the boundary of the image. The first row shows successively
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Fig. 2. Decomposition and transformations on binary images

the initial image f , its peak component f+
X , its wells component f−X , and the to-

tal variation f+
X + f−X . Rows 2-6 present each a different tranform ψ̂f = ψ

(
f+

X

)
−

ψ
(
f−X
)
.Firstψ

(
f+

X

)
andψ

(
f−X
)
, represented in columns 2 and 3 are constructed,

then ψ
(
f+

X

)
− ψ

(
f−X
)

represented in column 1 and ψ
(
f+

X

)
+ ψ

(
f−X
)

represented
in column 4. The transforms illustrated in each row are: 1) initial image; 2) ero-
sion of size 11; 3) dilation of size 15; 4) opening of size 11; 5) closing of size 15; 6)
reconstruction opening of size 11.

The matrix of images Irc in figure 3 also presents an erosion of size 11 of the same
binary image, but the decomposition is made with respect to a different view point
setX, represented as a white dot superimposition to the binary set f in image I11.
X is contained in a white particle of Z, itself contained in a hole contained in a
particle. Images I12 and I13 present the peaks and wells components of Z with
respect to the point of view X, and image I13 the total variation. An erosion ε11
of size 11 is applied to the peak and wells components represented in images I22
and I23. The transformed image ε̂11 (f) = ε11

(
f+

X

)
− ε11

(
f−X
)

is presented in
image I21 and the total variation ε11

(
f+

X

)
+ ε11

(
f−X
)

in figure I24.
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Fig. 3. Decomposition and transformations on binary images. The view point set is
the white particle in the first image.

The second row of both figures 2 and 3 present an erosion of size 11, but with
respect to a different point of view set X . The first example takes for X the
boundary of the image, the second a dot contained within in a particle. In this
last case, particles containing X are treated differently from particles which do
not contain it. As the particles and holes containing X appear as holes both in
the peak as in the wells image, their erosion enlarges them. On the contrary,
particles and holes not containing X appear as peaks and are indeed eroded.

Grey tone images. Fig.4 presents the decomposition and transformation of
grey tone images, if one takes as point of view the boundary of the image ; there
are four matrices of images with an identical disposition. In each matrix the
first row shows the positive variation σ+ and negative variation σ−, whereas the
second row shows the initial image and the total variation σ#. The first matrix
presents the initial image and its decomposition. The second matrix an erosion
of size 3, the third a dilation of size 3 and the last an opening of size 3. Since the
first letter ”P” of ”Paulus” intersects the boundary of the image, which plays
the role of view point set X, it is not transformed as the other letters.

The last example in fig. 5 is taken from an image of the retina. The aim is to
detect the small dots and the bloodings without detecting the vessel, although
they have the same width. The images are organized as two matrices with the
same structure. Both matrices differ by the choice of the view point set. For the
left matrix the view point set is the left boundary of the image, and for the right
matrix the white segment in superimposition with the vessel in image I11. Both
matrices are organized as follows. I11 the initial image, I12 its filtered version
which is decomposed. The peaks are in I21, the wells in I31.

Consider the vessel which crosses the image. In the left matrix, where the
left boundary of the image is the point of view set, the right boundary of the
vessel produces an upwards transition in the peaks component in I21. In the wells
component in I31 it is the left boundary of the vessel which produces an upwards
transition. Like that, with an appropriate choice of a point of view set, a thin
dark structure like the vessel appears in each component as a step for climbing on
a plateau. Small dark and round structures, here microaneurisms appear indeed
as bright peaks in the wells component and not at all in the peaks component.
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Fig. 4. Decomposition and transformation of grey tone images.

A reconstruction opening after a small erosion of both components produces
duly suppresses the aneuvrism but leaves the step of the plateau unchanged (see
images I22 and I32). Subtracting the initial image in I12 from the reconstructed
image after reconstruction opening of the components in I41 yields the final
result shown in I42.

Consider now the right matrix. As the point of view is inside the vessel, the
vessel does not appear as peak in the wells components in I31. On the contrary
in the peaks component I21, it appears as a well. Here again the behaviour of the
aneurisms are different, they are not visible in the peaks component and appear
as peaks in the wells component. An erosion applied to the components blows
up the vessel in the peaks component in I22 and suppresses the aneurisms in the
wells component. The recomposed image after erosion in I41 shows a blown up
vessel and no aneurisms. Subtracting I12 ∨ I41 from the initial image I12 yields
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Fig. 5. Analysis of the retina in order to detect the micro-anevrysms and discard the
vessel

a residual image in I42 where the vessel has disappeared and only the aneurisms
are visible.

5 Conclusion

Decomposing an image into peaks and wells leads to interesting operators. We
have several degrees of freedom. First chose the right point of view. Then ap-
ply the adequate operator on the peaks and wells components. The analysis of
the lattice structure of the wells and peaks like images has shown that a large
collection of operators are available. The construction of the decomposition is
fast, as it only involves shortest paths algorithms. As the resulting component
images turn the peaks and wells of the original image into peaks, they may
advantageously be encoded as max-trees [7] in order to enlarge the scope of ap-
plicable operators to the peaks and wells components and increase the speed of
processing.

It is also interesting to decompose the same image with respect to several
distinct points of view. Changing the point of view produces a different decom-
position of the same scene, with a different distribution of contrast, between the
same objects, which may facilitate the segmentation.

More exotic variants can be envisaged. Changing the edge weights, for in-
stance by keeping only the variations along each edge which are higher than
a threshold will put the focus with contrasted contours and ignore the objects
with a more fuzzy contour. The distribution of weights on the edges may also
be directional, favoring some directions and discarding others. This gives the
possibility to analyze anisotropies.
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Abstract. Given a set E, the partitions of E are usually ordered by
merging of classes. In segmentation procedures, this ordering often gen-
erates small parasite classes. A new ordering, called ”grain building or-
dering”, or GBO, is proposed. It requires a connection over E and states
that A � B, with A, B ⊆ E, when each connected component of B con-
tains a connected component of A. TheGBO applies to sets, partitions,
and numerical functions. Thickenings ψ with respect to the GBO are in-
troduced as extensive idempotent operators that do not create connected
components. The composition product ψγ of a connected opening by a
thickening is still a thickening. Moreover, when {γi, i ∈ I} is a gran-
ulometric family, then the two sequences {ψγi, i ∈ I} and {γiψ, i ∈ I}
generate hierarchies, from which semi-groups can be derived. In addition,
the approach allows us to combine any set of partitions or of tessellations
into a synthetic one.

1 Introduction

In image processing, the segmentation techniques, which aim to partition the
space of definition of the image under study, often generate a few correct classes.
They are large and representative, but surrounded by a multitude of small para-
sitic other ones. Figure 1, depicts a typical example of the phenomenon. Several
authors, such as Ph. Salembier et Al. [9] or J. Crespo et Al. [3], among others,
propose solutions by merging of flat zones that satisfy convenient criteria, in as-
sociation with some constraints (e.g. not to subdivide the small zones). In [14],
P. Soille and J. Grazzini try to stamp out the parasites by imposing the presence
of one extremum at least of the image inside each segmented class. In [1], the
small regions are removed by erosions of partitions.

Small classes turn out to be inherent in the segmenting techniques. In case of
connective segmentation, for example, they satisfy the chosen criterion, in the
same way as the large classes. If they are reduced by intersection of constraints,
they become singletons [11], or they are absorbed by the background [7]. The
trouble is shifted, but not solved: what to do, then, with this background, or
with these unclassified singletons? The solution adopted in [11] (figures 11 and
12) consists in building the influence zones of the large classes, which absorb the
small ones. Independently, the above authors often did the same, but surrep-
titiously, for not catching attention on a procedure that resembles to cooking,
rather than to nice theorems.

P. Soille, M. Pesaresi, and G.K. Ouzounis (Eds.): ISMM 2011, LNCS 6671, pp. 37–48, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Segmentations quasi-flat zones of increasing slopes λ; as λ increases, the details
of the face progressively vanish, though the parasite small grains remain (by courtesy
of Noyel et Al. [6])

The elimination of the small classes refers to a wider question: what does the
usual ordering on partitions stand for? According to this so called ”refinement
ordering”, one goes from a smaller partition to a larger one uniquely by merging
classes, hence by only removing frontiers and not by moving them, or by creating
new ones. This rapidly leads to ambiguous situations whose paradigm is depicted
in figure 2. In case of the figure, must we introduce some choice in a segmenting
approach which is basically deterministic?

Fig. 2. The usual ordering on partitions can suppress the small class in a) only by
merging it with one of the two large ones. Could another ordering divide up the small
central class among the two others, as in b)?

When passengers are fully packed in the metro, and that one person leaves
the carriage, does one of his neighbors suddenly swell and monopolize the whole
free space for himself? At the end of a war, do both winners and losers decide, as
an absolute rule, not to move any frontier? In figure 2 as well, we would like to
refuse the ukase of the refinement ordering, and to share the small class among
the two large ones, by joining x to y by a simple arc. If we proceed this way,
then every class of the resulting partition contains at least one class of the initial
one. It is exactly this property that we will now raise to an axiom1.
1 A first version of this work, with all proofs and supplementary results, was presented

in a worksop at ESIEE, in April 2010 [13]. This initial work inspired Ch.Ronse with
several other orderings on partial partitions, and with the resulting optimisations.
They can be found in these proceedings [8].
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2 Grain Building Ordering (GBO)

Given set E, we consider the lattice P(E) of all its subsets, and provide it with
an arbitrary connection C∗, said to be standard. Unlike inclusion, where A ⊆ B
means that any point of A belongs to B, the ordering relation introduced below
holds on the C∗-components de P(E), hence its generic appellation of connected
ordering. We will indicate a few notation. The image of P(E) under operation
ψ is written by Pψ

Pψ = {ψ(X), X ∈ P(E)}.
In order to avoid confusion between the various openings that intervene, we

denote by
.

Ax, the C∗-component of A at point x (instead of γx(A)). When the
labelling of the C∗-components of A is not necessary, one just writes

.

A (with
.

A ⊆ A). When the context is not ambiguous the expression ”C∗- connected
component” is replaced by ”component”, or by ”grain”, and ” C∗-connected
opening” by ”connected opening”. On the other hand, we keep the same symbol
⊆ to designate the setwise inclusion as well as the ordering relation it induces
between operators (i.e. γ ⊆ γ′ iff γ(A) ⊆ γ′(A) for all A ⊆ E).

Let A ∈ P(E), of connected components
·
Ai. An anti-extensive grain operator

is an operation on A that suppresses some
·
Ai and leave unchanged the others,

according to an increasing binary criterion that holds on each grain separately.
When the grain operator γ is idempotent, we speak of connected opening. It
may be the matter of an area threshold, or of the radius of the inscribed disc,
or of any external attribute.

An extensive and idempotent operation ψ : P(E) → P(E), is traditionally
called thickening, or sometimes idempotent thickening [10]. In addition we as-
sume here that the thickening ψ does not create connected components. Given
connection C∗, neither the grain operators and their connected openings, nor
thickenings, involve the lattice structure of P(E), but its inclusion ordering only.
Therefore, these three notions apply for any partial ordering on P(E).

Proposition 1. When P(E) is equipped with connection C∗, then the relation

A � B iff each
.

B ⊆ B contains at least one
.

A (1)

defines over P(E) a C∗-connected ordering, called grain building ordering (in
short: GBO).

For example, a ⊆-thickening ψ that does not create connected components is not
only ⊆-extensive, but also �-extensive, and as its idempotence is independent
of the ordering, it turns out to be a �-thickening as well. It is the same for any
connected opening γ. We have indeed that γ(A) � A, since every C∗-component
of γ(A) contains a C∗-component of A, namely itself. Note that the �-order of
γ(A) and A is the opposite of that of inclusion. Remark also that the axiom of
the conditional union, which characterizes the connection, does not intervene in
Proposition 1.
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Fig. 3. GBO: a) for sets: the dilates of a few grains (in white) generate a set larger
than the initial one; b) for partitions: in dark grey, the larger partition

Every set ordering relation extends to partitions via their classes. In the
present case, we can state the following:

Corollary 2. The set property (1) generates an ordering on the space D of the
partitions of E with C∗-connected classes, where D1 � D1, D1, D2 ∈ D, when
each class of D2 contains one class of D1 at least.

Clearly, the set GBO does not preserve inclusion, neither connection C∗, since
when A � B some C∗-components of the smaller set, A, may lie partly or even
completely outside of B, as shown in figure 3. In case of sets, GBO is thus non
comparable to inclusion, though, for partitions, it is more restrictive than the
usual refinement:

D1 ≤ D2 ⇒ D1 � D2, D1, D2 ∈ D, (2)

an implication which is no longer true for partial partitions. For extending the
setwise GBO to functions, one proceeds by comparing each section Xf(t) = {x :
x ∈ E, f(x) ≥ t} to the analogue Xg(t), by putting

f � g ⇔ Xf (t) � Xg(t), ∀t ∈ R̄ (or ∀t ∈ Z) .

which defines a numerical ordering, which is illustrated by Figure 4.
The set GBO does not induce any lattice: if

.

A1 and
.

A2 are two � −components
of A, each of both sets

.

A1 = A1 and
.

A2 = A2 is an upper bound of A, but there
is no upper bound of A smaller than A1 and A2. Therefore one can still introduce
increasing mappings.

By duality under complementation, Relation (1) induces the following one:

A
 � B
 if every
.

(Bc) ⊆ Bc contains at least one
.

(Ac) ⊆ Ac, (3)

which is still an ordering relation. The two relations (1) and (3) are not equiva-
lent, neither incompatible, and their logical intersection defines a third ordering,
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Fig. 4. GBO for numerical functions. Function g, in dotted lines, is the greater.

of type homotopic type, in that it makes symmetrical the roles of grains and
pores. Other orderings associated with connections and partitions can be de-
fined [13] [8]. In particular, one can take the logical intersection between GBO
and inclusion, which eliminates all outside small objects. This yields the restric-
tion of the GBO to the partial partitions with same support. The �-thickenings
below satisfy this double ordering.

This partial GBO governs the variations of some physical phenomena, such
as changes of metallic grains under fatigue. It appears also in political changes
(e.g. the dismemberment or the Ottoman Empire at the end of 19th century).

3 Thickening and � Ordering

3.1 �-Thickening from Connected Opening

We will now construct operations that simplify sets and partitions, by sorting out
certain main regions which then expand and cover the whole space. Their choice
is governed by an opening, and their expansion by a thickening. The simplest,
but the most worked out case, occurs when the opening is C∗-connected:*

Proposition 3. Given a connection C∗ on P(E), let γ : P(E)→ P(E) be a ⊆-
anti-extensive grain operator, and ψ : P(E)→ P(E) be a ⊆-thickening that does
not create connected components. The composition product ψγ is a thickening
for the GBO, and we have

I � ψγ = γψγ = (ψγ)2. (4)

The product γψ also behaves as a thickening, up to factor ψ:

I � ψγψ = γψγψ = (γψ)n n > 1. (5)

Below, the grain operators of the proposition are always connected openings.
Note that the proposition does not inform us on the distance between connected
components in ψγ and γψ.

Extension to partitions. Proposition 3 can be stated in terms of partitions of E
into connected classes. Let D be the set of these partitions, D ∈ D and Dx the
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class of D at point x. The set connected opening γ induces on D the following
operation γD

Dx[γD(D)] = γ(Dx) = Dx if x ∈ γ(Dx)
Dx[γD(D)] = {x} if not

Proposition 3 extends to partitions by replacing γ : P(E)→ P(E) by γD :
D(E)→ D(E), and by using a thickening ψ : D(E)→ D(E).

Fig. 5. a) Initial tessellation A, b) opening γ(A) that suppresses grains according to
their inscribed disc (here for radius ≤ 15); c) Voronoi thickening ψγ(A) of γ(A), which
is identical to its opening γψγ(A)

�-thickening from non-connected opening. When opening γ is not con-
nected, then Proposition 3 is no longer valid, and is replaced by a more specific
result.

Proposition 4. Let γ be an opening on P(E) that acts independently on con-
nected components, and let ψ : P(E)→ P(E) be a ⊆-extensive operator that
does not create C∗- components. Denote by (γ̃ψ)γ(A) the union of those C∗-
components of γψγ(A) that contain a C∗-component of γ(A). The composition
product (γ̃ψ) is then �-extensive on Pγ = γ[P(E)]:

γ(A) � (γ̃ψ)jγ(A) � (γ̃ψ)j+1γ(A). (6)

The idempotence of ψ is not necessary, and the condition, on γ, of individual
processing is satisfied by the usual openings by convex structuring elements. For
finite sets of E = Z2 the limit μ = (γ̃ψ)nγ = (γ̃ψ)n+1γ is reached after n steps,
n <∞ (see Figure 6).
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Fig. 6. The initial tesselation is that of figure 7; a) opening of the classes by a dodecagon
of size 15; b) limit opening μ, c) limit Voronoi thickening ψμ (and γψμ = μ)

Tessellations, partitions and Voronoi thickenings

Tesselations. In R2, it is convenient to distinguish between a partition and the
opening of its classes. Following R. Miles, we shall call ”tesselation” any set of
R2 whose all C∗-components but one are topologically open, the last one being
a locally finite union of simple arcs. These contours are called ”cleavages”, and
the open classes ”tassels” [13]. When the cleavages class is connected, then the
tassels are simply connected. The practical interest of a tessellation is that its
open classes can always be handled as subsets of P(R2).

Voronoi thickening in R2. Start from the family G0 of all locally finite unions

of disjoints open sets. Let A = ∪
·
Ak ∈ G0 ⊆ P(R2). The zone of influence of

·
Ak is the set of all points closer to

·
Ak than to any other

·
Ap ∈ A, p �= k, and

the Voronoi thickening of A is the union ψ(A) of all zones of influence. The
complement set [ψ(A)]c is a locally finite union of simple arcs [4], called skeleton
by zones of influence. Therefore, the operator ψ is a ⊆-thickening on G0 that
does not create connected components, hence a �-thickening. Consider now a
grain opening γ : G0 → G0, then Rel. (4) implies that the composition product
ψγ : G0 → G0 is still a �-thickening.

Although ψ is not �-increasing in general, it becomes �-increasing for those
pairs A and A′ ∈ G0, such that A′ = A ∪ B, B ∈ G0, the C∗-components of B
being disjoint from those of A.

Proposition 5. Let A,A′, B ∈ G0, with A′ = A∪B, and B ∩A = ∅. Then the
Voronoi thickening ψ is �-increasing, i.e.

{A′ = A ∪B, B ∩A = ∅} ⇒ {A′ � A ⇒ ψ(A′) � ψ(A)}. (7)

Voronoi thickening in Z2. One cannot transpose the above approach directly to
Z2, because the involved digital distances do not ensure that the connectivity of
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Fig. 7. a) Initial tessellation ψ, b) and c) thickening ψγ10ψγ0, and then ψγ20ψγ10ψγ0.
The results are ordered according to both �, and to the semi-group.

the seeds is preserved under growing. We must proceed by sequences of elemen-
tary operations which do maintain homotopy at each step (chap. XI-E in [10])
such as G. Bertrand’s topological watersheds [2], in a binary and complemented
version. Freedom is left for the succession of the elementary thickenings, so that
one can well approximate the final equidistant cleavages of the Euclidean homo-
logues. Moreover, Proposition 5 extends to P(Z2) when ψ is the opposite of a
topological watershed.

3.2 Hierarchies of Thickenings Based on Connected Opening

Consider, in R2 or in Z2, a family {γj, j ∈ J} of connected openings that
depend on the integers j ∈ J , and the Voronoi thickening ψ. We now construct
hierarchies of connected thickenings ψγj . Remark firstly that ⊆-decreasingness
of the γi is equivalent to their �-increasingness (the γi are connected openings,
and each connected component of γj(A) is also a connected component of γi(A))

{j ≥ i ⇒ γj ⊆ γi} ⇔ {j ≥ i ⇒ γj � γi}.

Hierarchies can be obtained in two ways, according as we focus on the increasing-
ness of j → γjψ, or as we look for semi-groups. The second approach generates
a more powerful structure, but requires sequences of operations.

Hierarchies of ordered operators

Proposition 6. Let ψ be a thickening by zones of influence, and let {γj , j ∈ J}
be a �-increasing family of connected openings, both in R2 or in Z2. Then the
two thickenings {ψγj , j ∈ J} and {γjψ, j ∈ J} form two chains for the GBO:

j ≥ i ⇒ ψγj � ψγi and γjψ � γiψ i, j ∈ J.
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Hierarchies by semi-groups Consider the �-connected thickening ψγ and let
γ = γj decrease according to j ∈ J ,

j ≥ i ⇒ γj ≤ γi, i, j ∈ J .

The connected components ψγj are unchanged under γi, and by idempotence of
ψ, we obtain

j ≥ i ⇒ (ψγi)(ψγj) = (ψγj).

Consequently, the {ψγj} generate, by sequential composition, the Matheron
semi-group Mj:

MiMj =MjMi =Mj = (ψγj)...(ψγ2)(ψγ1), (8)

where the Mj are increasing for the GBO, since

j > i ⇒Mj = (ψγj)...(ψγi+1)Mi �Mi.

Figure 7 illustrates such a progression.

Saliency and Hierarchy. Unlike the hierarchies based on the refinement ordering,
those on the GBO involve two saliencies for each edge, at least in the case of
Voronoi reconstructions that we study here. A new edge appears either at the
lowest level, or when a new grain is generated at level i. Then it does not change
as long as the two grains it separates are still present in the hierarchy, and
disappears permanently when one of these grains vanishes, at level j > i.

Fig. 8. a) and b), the two saliencies of a �-hierarchy; c) and d), the respective cross
sections of these saliencies at level 42; e) set diifference between c) and d), which results
in partition 42 of the �-hierarchy.

An example of this double saliency is depicted in Figure 8. A hierarchy has
been produced by applying the semi group of operators (8) to the tessellation of
Figure 7a). The pyramid is represented in a synthetic way by the two numerical
functions of Figure 8a) and b). By selecting all frontiers darker than 42 in Figure
8a) we obtain the family of those frontiers that appear before step 42 (Fig. 8c)).
Similarly, the threshold of 8b) at level 42 provides all frontiers that disappeared
before step 42 (Fig. 8d)). The set difference between the two sections results in
the partition at level 42 in the hierarchy (Fig. 8e)).
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Fig. 9. a) partition Di; b) partition Dj ≥ Di; c) ψγ(Di), where the dotted rings
indicate the places of changes; d) partition D∗

j = Dj � ψγ(Di)

Mixing two hierarchies. Segmentation processing often leads to hierarchies where
a sequence of partitions is ordered by refinement (symbol ≤). This occurs, for
example, in maps of watersheds when one weights the edges between adjacent
basins according to their flooding level. Let {Di, i ∈ I} be such a sequence of
partitions, with

i ≤ j ⇒ Di ≤ Dj ⇒ Di � Dj

Consider a thickening ψγ that �-enlarges Di i.e. Di � ψγ(Di). As ψγ is not �-
increasing, we cannot write ψγ(Di) � ψγ(Dj); the hierarchical structure seems
to be lost. However, the partition ψγ(Di) is composed of the partial partition D′

i

of all classes of Di left unchanged under ψγ, and of the partial partitionD′′
i of all

the other classes of ψγ(Di). Let S′ and S′′ be the two corresponding supports,
with S′ ∪S′′ = E. Take the restriction of Dj to set S′ and that of ψγ(Di) to set
S′′, and define by D∗

j the partition of E which is obtained by the concatenation
� of these two partial partitions:

D∗
j = (Dj)in S′ � (ψγ(Di))in S′′ .

The partition D∗
j is equal to ψγ(Di) in S′′, and �-larger than ψγ(Di) elsewhere,

hence D∗
j � ψγ(Di). Moreover, D∗

j is invariant under ψγ, since all its classes are
invariant under γ. We can write

Di � ψγ(Di) � D∗
j = ψγ(D∗

j ).

Suppose now that the γ′s are themselves ordered, i.e. that they form the gran-
ulometry {γp, p ∈ P}. Then, for p ≤ q we can write

p ≤ q and i ≤ j ⇒ Di � ψγp(Di) � ψγp(D∗
j ) � ψγqψγp(D∗

j ).

We find again the semi-goup (8).

�-thickening a low level. The GBO can also serve as a tool for filtering. Consider
a level Di0 in the hierarchy {Di, i ∈ I} that we want to �-amend for reducing
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its small particles (e.g. Figure 10b)). One can perform some �-thickening ψγ,
which produces the new partition ψγ(Di0) of Figure 10c), and apply to ψγ(Di0)
the criterion which already allowed us to suppress edges in the initial hierarchy
{Di, i ∈ I}. Indeed, one can check by comparing Figures 10 a) and c) that most
of the long previous edges are still in place, in the case of this example at least.a)
Initial tessellation; b) additional noisy small classes; c) thickening ψμ of b), by
a dodecagonal opening γ of size 5.

Fig. 10. a) Initial tessellation; b) additional noisy small classes; c) thickening ψμ of
b), by a dodecagonal opening γ of size 5

4 Conclusion

The grain building ordering presented here, as well as the other orderings stud-
ied [8] model how partitions of the space are reorganized, and enlarged, in some
physical processes. It does it in a more realistic way than the usual refinement
ordering, but in compensation, it leads to less simple properties (e.g. two salien-
cies instead of one). In practice, it allows to eliminate small parasite classes in
partitions, and also to ”average” different partitions closed enough to each other
(this last point, not presented above, was already developed in [12]).
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Abstract. The segmentation of a function on a set can be considered
as the construction of a maximal partial partition of that set with blocks
satisfying some criterion for the function. Several order relations on par-
tial partitions are considered in association with types of operators and
criteria involved in the segmentation process. We investigate orders for
which this maximality of the segmentation partial partition is preserved
in compound segmentation with two successive criteria. Finally we con-
sider valuations on partial partitions, that is, strictly isotone functions
with positive real values; this gives an alternative approach where the
valuation, not the partial partition, should be maximized.

1 Introduction

The purpose of this communication is to discuss order-theoretic issues involved
in image segmentation. We consider images as functions E → T , where E is the
space of points and T is the set of image values. A partition of E is a family of
nonvoid mutually disjoint subsets of E, called blocks, whose union is E. Soille
[15] summarizes conventional requirements of image segmentation as follows:

1. The segmentation method relies on a criterion that determines, for every
function F and every subset A of E, whether F is homogeneous on A or not.

2. Given a function F , its segmentation is a partition of E into connected blocks
on which F is homogeneous; these blocks are called segmentation classes.

3. Merging two or more adjacent segmentation classes, F is not homogeneous
on the resulting set; in other words F cannot be homogeneous on a connected
union of two or more segmentation classes.

Let us formalize these principles. We first recall some terminology. WriteΠ(E)
for the set of all partitions of E. Now Π(E) is ordered by refinement : for π1, π2 ∈
Π(E), we say that π1 is finer than π2, or that π2 is coarser than π1, and write
π1 ≤ π2 (or π2 ≥ π1), iff every block of π1 is included in a block of π2, that
� This work received funding from the Agence Nationale de la Recherche, contract
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is, every block of π2 is a union of blocks of π1. Then (Π(E),≤) is a complete
lattice. For any family C ⊆ P(E), let Π(E, C) = Π(E)∩P

(
C \{∅}

)
be the family

of all partitions whose blocks belong to C (in fact, to C \ {∅}).
The connectivity of sets is given by a connection C on P(E) [10,4,9]. By

item 1, the segmentation method is based on a criterion [12,9], that is a map
cr : TE × P(E) → {0, 1}, where for F : E → T and A ∈ P(E), we have
cr[F,A] = 1 if A is connected (i.e., A ∈ C) and F is homogeneous on A. For
any F : E → T , we obtain the family CF

cr of all connected sets on which F is
homogeneous, that is,

CF
cr = {A ∈ P(E) | cr[F,A] = 1} . (1)

By item 2, the segmentation of F is a partition πF
cr of E with blocks in CF

cr , that
is, πF

cr ∈ Π(E, CF
cr ), and by item 3, for any partition π strictly coarser than πF

cr ,
the blocks of π cannot belong to CF

cr , that is, πF
cr < π ⇒ π /∈ Π(E, CF

cr ). Thus the
segmentation of F is a maximal element of Π(E, CF

cr ) for the refinement order.
As remarked by Serra [12,9], it is necessary to consider the segmentation of

a function F not only on E, but on any subset A of E. Thus in the above
conditions, we have to consider the segmentation of a function F on a subset A
of E, which is a partition of A. Here the segmentation method based on criterion
cr associates to every function F : E → T and subset A of E the segmentation
σF

cr (A), which is a partition of A; we require then that σF
cr (A) is a maximal

element of Π(A, CF
cr ) for the refinement ordering. We call this requirement the

maximality principle.
This wider approach has the advantage of allowing to consider the segmenta-

tion process as an operator acting on the lattice of partitions [7]. Indeed, we have
introduced here a set splitting operator σF

cr that maps each A ∈ P(E) on a parti-
tion of A. From σF

cr we derive the block splitting operator β(σF
cr ) : Π(E)→ Π(E)

that acts on a partition π by applying σF
cr to each block of π, in other words

β(σF
cr )(π) =

⋃
B∈π σ

F
cr (B), see [7]. Then the maximality principle means that

β(σF
cr )(π) is a maximal element of the set of all π′ ∈ Π(E, CF

cr ) such that π′ ≤ π.
Now this order-theoretic approach to image segmentation has been general-

ized to partial partitions [5,9]. A partial partition of E is a partition of any
subset of E; in other words, it is a family of nonvoid mutually disjoint subsets
of E, called blocks, but here we do no more assume that their union covers E. In
parallel, the theory of connections has been generalized to that of partial connec-
tions [5]. Indeed, apart from the obvious fact that some segmentation algorithms
produce a partial partition rather than a partition (the points of E not covered
by it constitute the borders between regions), the “partial” framework is more
versatile, allowing to represent individual or multiple set markers, as well as the
progressive steps in the construction of a segmentation; also the construction of
new connections [5] or new operators on partitions [6] is easier with the use of
partial connections and partial partitions.

Write Π∗(E) for the set of all partial partitions of E. Write Ø for the empty
partial partition (with no block), and for any A ∈ P(E) \ {∅}, let 1A = {A}
and 0A =

{
{p} | p ∈ A

}
, while 1∅ = 0∅ = Ø [5]. For π ∈ Π∗(E), the
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support of π, written supp(π), is the union of its blocks: supp(π) =
⋃
π; the

complement E \ supp(π) of the support is the background of π. For C ⊆ P(E),
let Π∗(E, C) = Π∗(E) ∩ P

(
C \ {∅}

)
. The refinement order on Π(E) extends

naturally to Π∗(E): for π1, π2 ∈ Π∗(E), we write π1 ≤ π2 (or π2 ≥ π1), iff
every block of π1 is included in a block of π2. Now contrarily to Π(E), for
π2 ≥ π1 a block of π2 is not necessarily a union of blocks of π1, it can also
contain points outside the support of π1, it can even contain no block of π1;
thus a “coarsening” of a partial partition results not only from merging blocks,
but also from inflating individual blocks or creating new blocks. Hence this
order relation on Π∗(E) should not be called refinement, a more appropriate
denomination could be extended refinement ; we will simply call it the standard
order. Its main advantages are that (1) it naturally constitutes Π∗(E) into a
complete lattice, (2) its restriction to Π(E) coincides with the refinement order,
and the non-empty supremum and infimum operations in Π(E) are inherited
from those in Π∗(E), and (3) we easily obtain a nice theory about idempotent
block splitting operators [7,8].

Let us recall here that each order relationR is identified with the set of ordered
pairs (a, b) such that a R b, so if we say that the order S is included in the order
R, or that R contains S, this means that a S b ⇒ a R b.

���� ����������

T

E

B

Fig. 1. Left: the graph of a one-dimensional grey-level edge; below we show its segmen-
tation into connected classes with bounded slope (light grey rectangles for non-singleton
classes, vertically hatched ones for groups of singleton classes); notice the large num-
ber of small classes on the edge; eliminating them, the final segmentation (bottom)
consists of the influence zones of the two large classes. Middle: a subset of the plane
is segmented into two connected zones open by a disk B, while the remaining points
form singletons; right: the desired segmentation is obtained by the the influence zones
of the two open zones.

Serra [13,14] noticed that in many image segmentation algorithms, “small
parasitic” segmentation classes appear along contours and transitions, where
the region homogeneity criterion fails; they can be eliminated and then one
can take as final partition the influence zones of the significant segmentation
classes corresponding to objects. See Figure 1. In order to analyse this process,
he defined the building order � on Π∗(E) as follows1: π1 � π2 iff every block of
π2 contains at least one block of π1. Then � is a partial order relation, and it is
generally unrelated to the standard order ≤, except when the partial partitions

1 In fact, Serra wrote π1 � π2, but we will use the symbol ≺ for the covering relation.
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have the same support: if π1 ≤ π2 and supp(π1) = supp(π2), then π1 � π2;
in particular for partitions, the building order � contains the refinement order
≤. However the building order does not constitute a lattice, and it is not easy
to define operators with given order-theoretic properties (for example, isotony).
Serra constructs extensive operators for the building order in two steps; starting
from a partial partition π0:

1. Remove “small parasitic” blocks from π0 (through some “parasitism” and
size criterion); the resulting partial partition π1 satisfies π0 ⊇ π1, thus π0 ≥
π1, but π0 � π1.

2. Inflate the blocks of π1 (for example by a SKIZ), without creating any new
block; the merging of blocks is not excluded, but it is not used in practice;
the resulting partial partition π2 satisfies both π1 ≤ π2 and π1 � π2.

Then the partial partition π2, having fewer but bigger blocks than π0, is “better”,
a quality that is certified by the order π0 � π2.

We remark that the construction of π2 from π0 involves two operations using
two distinct criteria, and two distinct orders included in �, which are at the
same time included in ≥ and ≤ respectively. Furthermore, although π0 � π1, π1

is not considered as a “good” result; in all practical examples, the block growth
of step 2 must be repeated until the blocks removed in step 1 are fully covered,
in other words supp(π2) = sup(π0) (in fact, Serra considers that π0 and π2 are
partitions of E).

We propose that a meaningful order relation on partial partitions should be
viewed through the family of operations that “enlarge” a partial partition, and
these operations should effectively be involved in image segmentation techniques;
if possible, they should be linked with segmentation criteria. We will indeed
obtain several relevant orders included in the standard order ≤. Following the
maximality principle, namely that the segmentation of F : E → T on A ⊆ E
following a criterion cr, is a maximal element of Π∗(A, CF

cr ), we show that for
some of these orders, this principle is preserved in the compound segmentation
paradigm [11,9], where after a first segmentation, a second one (with another
criterion) is applied to the residue. Finally we investigate valuations on partial
partitions, that is, strictly isotone maps Π∗(E) → R+, and the possibility to
replace “maximal” by “having maximal valuation” in the maximality principle.

2 Partial Order Relations on Π∗(E)

We will investigate several partial order relations on Π∗(E). Each order is de-
noted by a variant of ≤, such as �, with the associated notation � for the corre-
sponding strict order, and the mirror notation 	 for the inverse order and 	 for
the inverse strict order. We first propose three primary partial order relations,
from which other ones will be built:

1. The inclusion order ⊆: π1 ⊆ π2 iff every block of π1 is a block of π2. This
order is involved in the elimination of “parasitic” segmentation classes, cf.
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Serra’s step 1 above, but also in the compound segmentation paradigm,
where we add to the blocks of a first segmentation those of a second segmen-
tation of the residue.

2. The pure refinement order �: π1 � π2 iff π1 ≤ π2 and supp(π1) = supp(π2);
in other words, every block of π1 is included in a block of π2, and every block
of π2 is a union of blocks of π1; we say then that π1 is purely finer than π2, or
that π2 is purely coarser than π1. This order is involved in split-and-merge
operations in segmentation.

3. The inflating order 
: π1 
 π2 iff π1 ≤ π2 and every block of π2 contains
exactly one block of π1, in other words the inclusion relation between blocks
of π1 and those of π2 is a bijection; we say then that π1 is a deflation of
π2, or that π2 is an inflation of π1. This order is involved in parallel region
growing (SKIZ, watershed), cf. Serra’s step 2 above.

Next we give two secondary partial order relations; as their names (and notation)
suggest, they can be constructed by composing two of the three primary orders,
see Proposition 1:

4. The inclusion-inflating order ⊆
 is defined by π1 ⊆
 π2 iff π1 ≤ π2 and every
block of π2 contains at most one block of π1.

5. The refinement-inflating order �
 is the intersection of the building and
standard orders, it is defined by π1 �
 π2 iff π1 ≤ π2 and every block of π2

contains at least one block of π1.

The above five order relations are included in the standard order ≤, in other
words, each such relation on (π1, π2) implies that π1 ≤ π2. More precisely:

Proposition 1. Here π1, π2, π, π
′ designate arbitrary partial partitions of E.

1. The standard order contains the inclusion, pure refinement and inflating
orders: each of π1 ⊆ π2, π1 � π2 and π1 
 π2 implies π1 ≤ π2. It is generated
by inclusion followed by pure refinement: π1 ≤ π2 ⇐⇒ ∃π, π1 ⊆ π � π2.

2. The inclusion-inflating order contains the inclusion and inflating orders:
each of π1 ⊆ π2 and π1 
 π2 implies π1 ⊆
 π2. It it is generated by composing
them in any order:

π1 ⊆
 π2 ⇐⇒
(
∃π, π1 ⊆ π 
 π2

)
⇐⇒

(
∃π′, π1 
 π′ ⊆ π2

)
.

3. The refinement-inflating order contains the pure refinement and inflating
orders: each of π1 � π2 and π1 
 π2 implies π1 �
 π2. It is generated by
composing them in any order:

π1 �
 π2 ⇐⇒
(
∃π, π1 � π 
 π2

)
⇐⇒

(
∃π′, π1 
 π′ � π2

)
.

4. The building order contains the inverse inclusion, pure refinement and in-
flating orders: each of π1 ⊇ π2, π1 � π2 and π1 
 π2 implies π1 � π2. It is
generated by inverse inclusion followed by inflating: π1 � π2 ⇐⇒ ∃π, π1 ⊇
π 
 π2.
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Each primary order on Π∗(E) corresponds to the operations on blocks used
for enlarging a partial partition; thus the inclusion ⊆, inverse inclusion ⊇, pure
refinement � and inflating 
 orders correspond respectively to: creating, remov-
ing, merging and inflating blocks. We show in Figure 2 the sequence of two such
operations involved in the orders ≤, ⊆
, �
 and �.
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Fig. 2. In each partial partition, blocks are distinguished by their hatching. (1) π1 ≤ π2;
π2 is obtained from π1 by creating, then merging blocks. (2) π1 ⊆
 π2; π2 is obtained
from π1 by creating blocks outside supp(π1) and at the same time inflating blocks of
π1. (3) π1 	
 π2; π2 is obtained from π1 by merging, then inflating blocks, or vice versa.
(4) π1 � π2; π2 is obtained from π1 by removing, then inflating blocks.

In watershed segmentation, the saliency of a watershed line between two
basins is the flooding level at which these two basins merge [2]. More gener-
ally, given a hierarchy of segmentations, that is, an increasing sequence 0E =
π0 ≤ . . . ≤ πn = 1E of segmentation partitions (with connected blocks), given
two neighbouring blocks B,C ∈

⋃n
i=0 πi, the saliency of the edge separating

B and C is the level i at which this edge disappears, in other words the least
level i such that B and C are included in the same block of πi [1]. For partial
partitions, things are more complicated, because the growth of the supports can
lead to the creation of new edges. Between two neighbouring digital points p, q
lies an edge element e(p, q) (line in 2D, surface in 3D). In a partial partition π,
any edge element belongs to one of the following 4 categories:
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1. background : lying between two points of the background of π;
2. outer : lying between a point of the support and one of the background of π;
3. separating: lying between two points belonging to two distinct blocks of π;
4. inner : lying between two points belonging to the same block of π.

In a hierarchy Ø = π0 ≤ . . . ≤ πn = 1E of segmentation partial partitions (for
the standard order), as the growth adds points to the support and merges blocks,
each edge element can change category only in increasing order: background <
outer < separating < inner. Thus the saliency associated to an edge element on
a block boundary is given by two numbers, the level where it appears (transition
background → outer or separating), and the higher level where it disappears
(transition outer or separating → inner); for edge elements not belonging to
block boundaries, we have the transition background→ inner.

Alternately, the saliency s(p) of a point p ∈ E is the least level i such that
p ∈ supp(πi), and the saliency s(p, q) of an edge element e(p, q) is the least level j
such that p and q belong to the same block of πj . For two neighbouring pixels p, q,
the 3 salencies s(p), s(q) and s(p, q) satisfy s(p, q) ≥ max(s(p), s(q)), and they de-
termine for each level the category of e(p, q): for i < min(s(p), s(q)): background ;
for min(s(p), s(q)) ≤ i < max(s(p), s(q)): outer ; for max(s(p), s(q)) ≤ i < s(p, q):
separating; for s(p, q) ≤ i: inner.

3 Maximality in Compound Segmentation

A set splitting operator on P(E) is a map σ : P(E) → Π∗(E) such that for
every X ∈ P(E), σ(X) ∈ Π∗(X); the corresponding block splitting operator on
Π∗(E) is the map β(σ) : Π∗(E) → Π∗(E) : π �→

⋃
B∈π σ(B) (i.e., it applies σ to

each block of a partial partition) [7]. Given a partial order relation � on Π∗(E),
a family C ⊆ P(E), and a set splitting operator σ on P(E), we say that σ is
C-maximal for � if for every A ∈ P(E), σ(A) is a maximal element of Π∗(A, C)
according to the order �.

For a segmentation method based on a criterion cr, to any function F : E → T
is associated the family CF

cr of “homogeneous sets”, see (1), and the set splitting
operator σF

cr , where for A ∈ P(E), σF
cr (A) is the segmentation of F on A. Now

the maximality principle states that for every function F : E → T , σF
cr is CF

cr -
maximal for the chosen order (usually the standard order ≤ [7], but possibly the
building order � [13]).

In connective segmentation [12,5,9], each CF
cr is a partial connection, equiva-

lently, for every A ∈ P(E), Π∗(A, CF
cr ) has a greatest element (for the standard

order ≤), namely the partial partion of A into its CF
cr -components. Thus by the

maximality principle, the segmentation σF
cr (A) must necessarily be that greatest

element. In fact, this corresponds to the case where β(σF
cr ) is an opening [7].

Since partial connections constitute a complete lattice for the inclusion order,
such connective segmentations also form a complete lattice [12,5,9]; for a family
cri (i ∈ I) of connective criteria, the infimum of the connective segmentation
operators σF

cri
is σF

infi∈I cri
, and their supremum is

∨
i∈I σ

F
cri

.
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There is a priori no such lattice structure in the non-connective case. How-
ever the maximality principle is consistent with Serra’s compound segmentation
paradigm [11,9], where after a first segmentation producing a partial partition,
the residue (the set of points not covered by that partial partition) is parti-
tioned by another segmentation method, and the union of the two partial par-
titions forms the compound segmentation. This operation has been formalized
as follows [8]. Let σ1, σ2 be two set splitting operators on P(E); the residual
combination of σ1 followed by σ2 is the set splitting operator σ1 � σ2 on P(E)
defined by (σ1 �σ2)(X) = σ1(X)∪σ2

(
X \ supp[σ1(X)]

)
for any X ∈ P(E). Note

that in [8] we wrote it rc[σ1, σ2].
Let us define the binary operation � on subsets of P(E) by setting for any

H1,H2 ⊆ P(E):

H1 �H2 = H1 ∪
{
X ∈ H2 | ∀Y ∈ P(X) \ {∅}, Y /∈ H1

}
.

In other words H1 �H2 = H1 ∪
{
X ∈ H2 | P(X)∩H1 ⊆ {∅}

}
. Let us say that a

partial order relation � on Π∗(E) is well-composed if for any π0, π1, π2 ∈ Π∗(E)
we have:

π0 ⊆ π1 =⇒ π0 � π1 =⇒ π0 ≤ π1,
(
π0 ≤ π1 ⊆ π2 and π0 � π2

)
=⇒ π0 � π1 .

For example the inclusion ⊆, inclusion-inflating ⊆
 and standard ≤ orders are
well-composed.

Theorem 2. Let � be a well-composed partial order relation on Π∗(E), let
C1, C2 ⊆ P(E), and let σ1, σ2 be set splitting operators on P(E), respectively
C1-maximal and C2-maximal for �. Then σ1 � σ2 is C1 � C2-maximal for �.

The residual combination � is associative [8], thus we can define σ1 � · · ·�σn

for any n ≥ 2, and we have for any X ∈ P(E):

(σ1 � · · ·� σn)(X) =
n⋃

i=1

σi(Xi), where

X1 = X and for i = 2, . . . , n, Xi = X \
i−1⋃

j=1

supp
[
σj(Xj)

]
.

We can easily show that the operation � is also associative, and we have

H1 � · · ·�Hn = H′
1 ∪ · · · ∪ H′

n, where H′
1 = H1 and

for i = 2, . . . , n, H′
i =

{
X ∈ Hi | ∀Y ∈ P(X) \ {∅}, Y /∈

i−1⋃

j=1

Hj

}
.

Corollary 3. Let � be a well-composed partial order relation on Π∗(E), let
C1, . . . , Cn ⊆ P(E) (n ≥ 2), and let σ1, . . . , σn be set splitting operators on P(E)
such that for each i = 1, . . . , n, σi is Ci-maximal for �. Then σ1 � · · · � σn is
C1 � · · ·� Cn-maximal for �.
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4 Block Splitting Thinnings

We will consider now the possible idempotence of β(σ) for a C-maximal set
splitting operator σ on P(E). But let us first briefly introduce some general
terminology. Consider a poset (P,≤); for any operator π on P , let Inv(ψ) =
{x ∈ P | ψ(x) = x} be the invariance domain of ψ. A thinning is an anti-
extensive idempotent operator. A max-thinning is an operator ψ such that for
all x ∈ P , ψ(x) is a maximal element of {y ∈ Inv(ψ) | y ≤ x}. A C-thinning [8]
(in [3] we said an open-condensation) is an anti-extensive operator ψ such that
for any x, y ∈ P ,

[
ψ(x) ≤ y ≤ x

]
⇒ ψ(y) = ψ(x). Then every C-thinning is a

max-thinning, and every max-thinning is a thinning.

Proposition 4. Let � be a well-composed partial order relation on Π∗(E) and
let C ⊆ P(E). A set splitting operator σ on P(E) is C-maximal for � iff for any
π ∈ Π∗(E), β(σ)(π) is a maximal element (for �) of {π′ ∈ Π∗(E, C) | π′ ≤ π}.

In fact, β(σ) will be idempotent iff for every A ∈ C \ {∅}, 1A is the greatest
element (for �) of Π∗(A, C).

Let us now consider the particular case where � is the standard order ≤.
Following Proposition 4, we see that a set splitting operator σ on P(E) is C-
maximal for ≤ iff β(σ) is a max-thinning with Inv(β(σ)) = Π∗(E, C).

In [8] we showed that given two set splitting operators σ1, σ2 such that β(σ1)
and β(σ2) are C-thinnings on Π∗(E, C), then β(σ1 �σ2) will be a C-thinning on
Π∗(E, C). This result was in fact a particular case of a general construction on
posets, of which another special case was a result of [3]: given two C-thinnings
θ1, θ2 on P(E), the operator on P(E) : X �→ θ1(X)∪ θ2

(
X \ θ1(X)

)
will be a C-

thinning. However Theorem 2 is specific to Π∗(E), the analogous result on P(E)
is not valid. For example, let E = Z2 and define the operator θ on P(E) that
extracts from any X ∈ P(E) a rectangle θ(X) ⊆ X by applying rules (a,b,c,d)
with decreasing priority: (1◦) if width(X) < height(X), θ(X) has (a) greatest
height, then (b) greatest width, and is located (c) topmost, then (d) leftmost; (2◦)
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(1) (2) (3) (4) (5) (6)

Fig. 3. E = Z2. (1) The set X, with width(X) > height(X). (2) The rectangle A =
θ(X) (shown with horizontal hatching) is selected with priority to width. (3) Now
width(X \ A) < height(X \ A) < ∞, so the rectangle B = θ(X \ A) (shown with
vertical hatching) is selected with priority to height; then (1θ � 1θ)(X) = {A, B} is
invariant under further application of β(1θ � 1θ). (4) Y = A ∪ B, with width(Y ) <
height(Y ) < ∞. (5) The rectangle C = θ(Y ) (shown with vertical hatching) is selected
with priority to height. (6) Now width(Y \ C) > height(Y \ C), so the rectangle
D = θ(Y \C) (shown with horizontal hatching) is selected with priority to width; then
(1θ � 1θ)(Y ) = {C, D}, but C ∪ D ⊂ Y = A ∪ B.
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if width(X) ≥ height(X), θ(X) has (a) greatest width, then (b) greatest height,
and is located (c) leftmost, then (d) topmost. Consider now the set shrinking
operator [7] 1θ : X �→ 1θ(X). Then 1θ is is H-maximal for the set H of all
rectangles; however the operator on ψ : P(E)→ P(E) : X �→ θ(X)∪θ

(
X\θ(X)

)

is not idempotent, see Figure 3.
In [8] we showed also that given a C-thinning κ and an adjunction (ε, δ),

δκε will be a C-thinning. This does not hold for max-thinnings. Indeed, the
map supp : Π∗(E) → P(E) : π �→ supp(π) is the lower adjoint of the map
1• : P(E) → Π∗(E) : A �→ 1A [5], and β(1θ � 1θ) is a max-thinning, but
ψ = supp · β(1θ � 1θ) · 1• is not idempotent.

5 Valuations on Partial Partitions

Let the space E be finite, so that Π∗(E) is finite, and let � be a partial order
relation on Π∗(E) having Ø as least element. For π1, π2 ∈ Π∗(E), we say that
π2 covers π1 if π1 � π2 but there is no π ∈ Π∗(E) with π1 � π � π2. The
covering relation is written ≺, with possible variants like

x
≺. We call a valuation

on (Π∗(E),�) a map f : Π∗(E) → R such that f(Ø) = 0 and for all π1, π2 ∈
Π∗(E), π1 � π2 ⇒ f(π1) < f(π2); thus f is in fact Π∗(E) → R+. Since Π∗(E)
is finite, the order� is determined by the covering relation≺, and f : Π∗(E) → R
is a valuation iff f(Ø) = 0 and for π1, π2 ∈ Π∗(E), π1 ≺ π2 ⇒ f(π1) < f(π2).
The valuation f is said to be linear if for any π ∈ Π∗(E), f(π) =

∑
B∈π f(1B), in

other words if there is a map g : P(E) \ {∅} → R such that for any π ∈ Π∗(E),
f(π) =

∑
B∈π g(B). It is said to be homogeneous if it is invariant under any

permutation of the points of E; equivalently, for any π ∈ Π∗(E), f(π) depends
only on the histogram of sizes of all blocks of π, that is, the function N → N :
n �→

∣
∣{B ∈ π | |B| = n}

∣
∣ (here |X | denotes the size of a set X). It is both

homogeneous and linear if there is a map h : N \ {0} → R such that for any
π ∈ Π∗(E), f(π) =

∑
B∈π h(|B|).

Let us briefly describe the covering relation and linear valuations for the
standard order ≤ on Π∗(E). A similar analysis can easily be done for the well-
composed order relations ⊆ and ⊆
 (that admit also Ø as least element). For
π1, π2 ∈ Π∗(E), we say that π2 m-covers (resp., c-covers) π1 and write π1

m
≺ π2

(resp., π1

c
≺ π2) if π2 is obtained from π1 by merging two blocks (resp., by

creating a new singleton block):

π1

m
≺ π2 ⇐⇒ ∃B,C ∈ π1, B �= C, π2 =

(
π1 \ {B,C}

)
∪ {B ∪ C} ,

π1

c
≺ π2 ⇐⇒ ∃ p ∈ E \ supp(π1), π2 = π1 ∪

{
{p}

}
.

We have π1 ≺ π2 iff π1

m
≺ π2 or π1

c
≺ π2 [6]. Thus a linear valuation takes the form

f(π) =
∑

B∈π g(B), where g : P(E) \ {∅} → R satisfies g({p}) > 0 for all p ∈ E,
and g(B ∪C) > g(B) + g(C) for all disjoint B,C ∈ P(E) \ {∅}. A homogeneous
linear valuation takes the form f(π) =

∑
B∈π h(|B|), where h : N \ {0} → R

satisfies h(1) > 0 and h(m + n) > h(m) + h(n) for all m,n > 0. In a covering
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chain Ø ≺ · · · ≺ π, we always have |supp(π)| − |π| m-coverings
m
≺ and |supp(π)|

c-coverings
c
≺; assigning them respective costs μ, γ > 0, we get the homogeneous

linear valuation

f(π) = μ
(
|supp(π)| − |π|

)
+ γ|supp(π)| = (μ+ γ)|supp(π)| − μ|π| ; (2)

here h(n) = (μ+ γ)n− μ for all n > 0. For example, μ = γ = 1 gives the height
2|supp(π)| − |π| of π [6], with h(n) = 2n− 1.

Let us now apply valuations in image segmentation methodology. According
to the maximality principle, σF

cr (A), the segmentation of F : E → T on A ⊆ E
following a criterion cr, is a maximal element of Π∗(A, CF

cr ) for the chosen order
� on Π∗(E). We can modify that principle by requiring that σF

cr (A) is an element
of Π∗(A, CF

cr ) having maximum valuation; for the valuation f , we have:

∀F ∈ TE, ∀A ∈ P(E), f
(
σF

cr (A)
)

= max
{
f(π) | π ∈ Π∗(A, CF

cr )
}

This represents in fact a strengthening of the maximality principle; indeed, since
π1 � π2 ⇒ f(π1) < f(π2), an element of Π∗(A, CF

cr ) with maximum valuation
must necessarily be maximal.

Let now � be the standard order ≤. In connective segmentation, for each
F : E → T , CF

cr is a partial connection, that is, for every A ∈ P(E), Π∗(A, CF
cr )

has a greatest element; then this greatest element has necessarily maximum
valuation. Hence maximum valuation does not modify connective segmentation.

In Serra’s method for “eliminating parasitic segmentation classes” [14,13],
we start from an initial segmentation π0 ∈ Π∗(A, CF

cr ), eliminate “small par-
asitic” blocks, getting π1 ∈ Π∗(A, CF

cr ), then inflate the blocks of π1, getting
π2 ∈ Π∗(A, CF

cr ); ideally supp(π0) ⊆ supp(π2) ⊆ A. Clearly π0 � π1 � π2, so
from Serra’s point of view, the modifications π0 �→ π1 �→ π2 are two succes-
sive improvements. In the light of a valuation f , since π0 > π1 < π2, we have
f(π0) > f(π1) < f(π2), which is consistent with our view that the intermediate
result π1 is not satisfactory; now taking f as in (2), since π2 has fewer blocks
than π0, and a larger or equal support, we get f(π2) > f(π0), confirming that
π2 improves on π1.

6 Conclusion and Perspectives

We have analysed image segmentation as the construction of an “optimal” par-
tial partition with “homogeneous” blocks, where the optimality can mean either
maximality for an order, or maximality of a valuation; the latter is generally
a stronger requirement, except for connective segmentation, where the two are
equivalent. Maximality for a well-composed order is preserved in compound seg-
mentation, leading to max-thinnings on partial partitions. It seems that maximal
valuation can lead to a segmentation eliminating “small parasitic” classes.

We have analysed several orders included in the standard order. There are
other orders included in the building order, for example: π1 � π2 iff each block of
π2 is a union of blocks of π1, i.e., ∃π, π1 ⊇ π � π2. Serra’s work [13,14] suggests a
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new order relation onΠ∗(E), the apportioning order�, where π1 � π2 iff π1 � π2

and supp(π1) = supp(π2). Consider further the apportioning-inflating order �
,
with π1 �
 π2 iff π1 � π2 and supp(π1) ⊆ supp(π2) (briefly considered and written
� in [13]), and the extended order≤, with π1 ≤ π2 iff π1 � π2 ∩P(supp(π1)) and
supp(π1) ⊆ supp(π2). We then get the analogue of items 1 and 3 of Proposition 1
with �,�
,≤ instead of �,�
,≤.
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Abstract. We begin by defining the setup and the framework of con-
nective segmentation. Then we start from a theorem based on connective
criteria, established for the power set of an arbitrary set. As the power set
is an example of a complete lattice, we formulate and prove an analogue
of the theorem for general complete lattices.

Secondly, we consider partial partitions and partial connections. We
recall the definitions, and quote a result that gives a characterization of
(partial) connections. As a continuation of the work in the first part, we
generalize this characterization to complete lattices as well.

Finally we link these two approaches by means of a commutative
diagram, in two manners.

Keywords: Connective segmentation, complete lattice, partial parti-
tion, block-splitting opening, commutative diagram.

1 Introduction

The theory of connective segmentation on sets, developed by, among others,
Serra (see e.g. [8]) and Ronse (see e.g. [3]), has proved fruitful in image segmen-
tation. In this article, we generalize this theory and concider connective segmen-
tation on arbitrary complete lattices, rather than on the power set lattice P(E)
of subsets of a set E. Apart from the theoretical value of such a generalization,
it is also relevant in practice, as a number of important lattices are not of type
P(E). Two major examples are

– viscous lattices, as described in [7]. The elements of a viscous lattice are the
images of the subsets of a set E under a given dilation, ordered by inclusion.
The smallest and greatest elements are ∅ ⊆ E and E, respectively, and
for a non-empty family of subsets, the supremum is the union, whereas the
infimum is the opening (corresponding to the dilation) of the intersection.
Viscous lattices are atomistic, the atoms being not the points of E, as is
true for P(E), but rather the images of such points under the dilation. For
example, if E = Rn, the structure element of the dilation may be a ball of
fixed radius r. This gives a model of the physical world in the sense that
atoms indeed are not singular points.
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– the lattice of functions defined on an arbitrary set, and taking values on the
extended real line R = R ∪ {±∞}. While this lattice is indeed important, it
is not even atomistic, and thus there is a motivation to extend the theory
beyond atomisticity as well.

Section 1.2 gives the definitions and one of the main results to be generalized.

1.1 Notation

Throughout this paper, all sets considered that are not obtained from other sets
as subsets (and that are usually denoted by E) are assumed to be non-empty,
unless otherwise stated. Analogously, in all complete lattices that do not arise
from a construction on other complete lattices (and that are usually denoted by
L) we assume that the smallest element, usually denoted by 0, and the greatest
element, usually denoted by 1, do not coincide. Finally, the symbols < and ⊂
always denote strict inequality and strict inclusion, respectively.

1.2 Fundamentals of Connective Segmentation

First, we recall the definition of connections and connective criteria.

Definition 1. [8] Let E and T be sets, and F a family of functions f : E → T .

1. A criterion on F is a map σ : F × P(E) → {0, 1} satisfying σ(f, ∅) = 1.
The criterion σ is said to be validated on (f,A) ∈ F × P(E) whenever
σ(f,A) = 1; otherwise it is refuted on (f,A).

2. A subset C of P(E) is a connection if
(a) ∅ ∈ C,
(b) ∀x ∈ E; {x} ∈ C, and
(c) if {Ci}i∈I ⊆ C for some index set I, and

⋂
i∈I Ci �= ∅, then

⋃
i∈I Ci ∈ C.

3. A criterion σ on F is connective if for each f ∈ F , the set σf = {A ∈
P(E);σ(f,A) = 1} is a connection.

The elements of C are said to be C-connected, or connected if the connection
is clear from the context. A connected component of a set A ⊆ E is an element
C ∈ C ∩P(A), C �= ∅, such that there exists no D ∈ C that satisfies C ⊂ D ⊆ A;
if A = E, such sets will simply be called connected components.

Next we define partitions and segmentation.

Definition 2. A partition of E is a map π : E → P(E) that satisfies

1. ∀x ∈ E;x ∈ π(x), and
2. ∀x, y ∈ E such that π(x) ∩ π(y) �= ∅ it holds that π(x) = π(y).

When confusion is improbable, we will denote the image of a partition π, i.e the
collection of all its classes, by π as well. Thus the notation C ∈ π means that C
is a class of π.
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The collection of all partitions of a set E, denoted Π(E), is known to be a
complete lattice under the refinement order, defined as follows. For π, π′ ∈ Π(E),
π ≤ π′ if and only if π(x) ⊆ π′(x) for each x ∈ E, i.e. if and only if each class
of π is contained in a class of π′. The smallest element (or empty supremum)
in this lattice is the partition I; I(x) = {x} for all x ∈ E, while the greatest
partition (or empty infimum) is 1; 1(x) = E for all x ∈ E. The infimum π of a
non-empty family {πi}i∈I of partitions, where I is an index set, is the partition
whose classes are the intersections

π(x) =
⋂

i∈I

πi(x) (1)

while the supremum π′ of {πi}i∈I is the smallest partition such that for each x ∈
E, πi(x) ⊆ π′(x) for all i ∈ I.1 Partitions are the corner stone of segmentation.

Definition 3. [8] Given f ∈ F where F is a family of functions from a set E
to a set T , and given A ∈ P(E) and a criterion σ on F , let Π(A, σf ) be the
family of all partitions π on A such that σ is validated on each class of π. The
criterion σ is said to segment f (over A) if

1. ∀x ∈ E, σ(f, {x}) = 1, and
2. the family Π(A, σf ) is closed under the supremum of partitions.

In that case, the supremum of Π(A, σf ) is the segmentation of f on A by σ.

Remark 1. Closure under the supremum in item 2 is equivalently expressed by
saying that Π(A, σf ) is a dual Moore family in Π(A). When the set A is not
specified, the segmentation is understood to be over E (as is the case in the
theorem below). Note that item 1 is the special case of item 2 when taking the
empty supremum of partitions, thus making item 1 redundant. Nevertheless, we
use this formulation to prepare for the generalized version of the definition.

We aim at generalizing the following result by Serra.

Theorem 1. [8] Given two sets E and T , let F be a family of functions f :
E → T , and σ a criterion on F . Then σ is connective if and only if σ segments
all f ∈ F .

From [8] we know that in this case, for each f ∈ F the segmentation obtained
is the partition of E into its σf -connected components.2

2 Generalization to Arbitrary Complete Lattices

In this section, we will consider arbitrary complete lattices L = (L,≤) sup-
generated by a set S ⊆ L. (This indeed holds for all complete lattices L by
1 This is a formal definition. A way to construct the supremum is by chaining ; see [2].
2 This will indeed be the case in every generalization of the theorem, as the reader

will see in the coming sections.
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choosing S = L \ {0}, but often more interesting choices can be made. If, for
example, L is atomistic, then S can be chosen to be the set of all atoms.) We
always assume 0 /∈ S. An important property of a sup-generating set is that for
any x, y ∈ L, it holds that3

(∀s ∈ S; s ≤ x⇒ s ≤ y, )⇐⇒ x ≤ y . (2)

2.1 Adapting the Setting

We begin by generalizing the definitions.

Definition 4. Let L be a complete lattice sup-generated by a subset S ⊆ L, T
an arbitrary set, and F a family of functions f : S → T .

1. A criterion on F is a map σ : F × L → {0, 1} satisfying σ(f, 0) = 1. The
criterion σ is said to be validated on (f, l) ∈ F × L whenever σ(f, l) = 1;
otherwise it is refuted on (f, l).

2. [5] A subset C of L is an S-connection if it satisfies
(a) 0 ∈ C,
(b) S ⊆ C, and
(c) if {ci}i∈I ⊆ C for some index set I, and

∧
i∈I ci �= 0, then

∨
i∈I ci ∈ C.

3. A criterion σ on F is S-connective if for each f ∈ F , the set σf = {l ∈
L;σ(f, l) = 1} is an S-connection.

Note that the domain of the functions is S and not L; indeed S generalizes
the set E of Definition 1, and L generalizes P(E). (In [5], an S-connection is
just called a connection.)

For simplicity, when the function f is clear from context, we will say that σ
is validated on l ∈ L, meaning that σ(f, l) = 1. An S-connected component of
an element l ∈ L greater than or equal to a given s ∈ S is an element c ∈ C such
that s ≤ c ≤ l and there exists no d ∈ C such that c < d ≤ l; due to Definition
4.2.(c), this is precisely

∨
{c ∈ C; s ≤ c ≤ l}.

Next is the definition of partitions on complete lattices.

Definition 5. [1] Let L be a complete lattice sup-generated by a subset S ⊆ L.
An S-partition on L is a map π : S → L that satisfies

1. ∀s ∈ S; s ≤ π(s), and
2. ∀s, t ∈ S such that π(s) ∧ π(t) �= 0 it holds that π(s) = π(t).

Ordered by refinement, in analogy with the case of Π(E), the set ΠS(L) of
S-partitions on L is a complete lattice. As before, we will use the same notation
for a partition and its image (which we continue to call the set of its classes,
even though the term no longer bears its original meaning), and the prefix S
will sometimes be dropped when the set S is clear from context. Segmentation
is defined as follows.
3 Thus this holds for S = L \ {0} as a special case; indeed, the strength of the notion

of a sup-generating set is that any such set S satisfies this property.
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Definition 6. Let L be a complete lattice sup-generated by a subset S ⊆ L.
Given f ∈ F where F is a family of functions from S to a set T , and a criterion
σ on F , let ΠS(L, σf ) be the family of all S-partitions π of L such that σ is
validated on each class of π. The criterion σ is said to S-segment f if

1. ∀s ∈ S, σ(f, s) = 1, and
2. the family ΠS(L, σf ) is closed under the supremum of S-partitions.

In that case the supremum of ΠS(L, σf ) is the S-segmentation of f by σ.

Remark 2. For a set E, the lattice P(E) is sup-generated by the set of singleton
sets, i.e. the points of E. Setting L = P(E) and S = {{x};x ∈ E} we retrieve the
original definitions from the generalized ones upon identifying E = {{x};x ∈ E}.

Remark 3. In general lattices, the empty supremum of partitions is not the map
π : S → L, π(s) = s, as this is not necessarily a partition (see, for instance, the
lattice in Example 1). Thus item 2 does not imply item 1. Lemma 1 below will
describe the empty supremum from a connectivity point of view.

2.2 Main Result

We now aim to generalize Theorem 1, for which we need the following

Lemma 1. Let L be a complete lattice sup-generated by a subset S ⊆ L. Let
ΠS(L) be the complete lattice of all S-partitions on L, and denote by π its
smallest element. Then for any S-connection C on L, π(s) ∈ C for all s ∈ S.

Proof. Given an S-connection C, consider the map πC : S → L defined by4

πC(s) =
∨
{c ∈ C; s ≤ c ≤ π(s)} (3)

for all s ∈ S. Then as π is an S-partition, it follows that πC is an S-partition.
Moreover, πC(s) ∈ C for all s ∈ S by Definition 4.2.(c), and in the lattice ΠS(L)
we have πC ≤ π, thus πC = π since π is the smallest S-partition on L. ��

Theorem 2. Let L be a complete lattice sup-generated by a subset S ⊆ L. Let
F be a family of functions f : S → T where T is an arbitrary set, and let σ be
a criterion on F .

1. If σ is S-connective, then σ S-segments all f ∈ F .
2. If L is atomistic, and S is the set of all atoms of L, it conversely holds that

if σ S-segments all f ∈ F , then σ is S-connective.

Proof. Throughout the proof, let f be any element of F . Let σf = {l ∈ L;σ(f, l)
= 1}, and let ΠS(L, σf ) be the collection of all S-partitions all of whose classes
belong to σf . We start by proving item 1.

4 This definition is equivalent to saying that πC assigns to each s ∈ S the connected
component of π(s) greater than or equal to it.
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Assume that σ is S-connective. By Definition 4.2.(b), the first item of Def-
inition 6 is satisfied. Definition 6.2. is satisfied for the empty supremum (i.e.
smallest S-partition) of ΠS(L, σf ) since by Lemma 1 the empty supremum of
ΠS(L) is in ΠS(L, σf ). Next, let {πi}i∈I , for some index set I, be a non-empty
family in ΠS(L, σf ) with π =

∨
i∈I πi. Let πC : S → σf be defined by

πC(s) =
∨
{c ∈ σf ; s ≤ c ≤ π(s)} (4)

for all s ∈ S. It is readily checked that πC is a partition. Now, πC ≤ π, and
for all i ∈ I and s ∈ S, πi(s) ≤ πC(S) since πi(s) ∈ σf and s ≤ πi(s) ≤ π(s).
Hence πC is an upper bound of {πi}i∈I , and π being the least such, we have
π ≤ πC and altogether π = πC . Thus ΠS(L, σf ) is also closed under non-empty
suprema. This proves item 1.

As for the converse, by Definitions 4.1 and 6.1, σ(f, l) = 1 for all l ∈ {0} ∪ S.
Take any {ci}i∈I ⊆ σf satisfying

∧
i∈I ci �= 0. Since S is sup-generating, this

implies that ∃s0 ∈ S; s0 ≤
∧

i∈I ci. Each ci induces a map πi : S → L defined by
{
πi(s) = ci if s ≤ ci and
πi(s) = s otherwise . (5)

If each s is an atom, then indeed each πi is a partition, and clearly we have
πi ∈ ΠS(L, σf ) for all i ∈ I. Since σ S-segments all f ∈ F , it follows that
π =

∨
i∈I πi ∈ ΠS(L, σf ). Define x =

∨
i∈I ci. We need show that x ∈ σf . For

any i ∈ I, the definition of πi implies that πi(s0) = ci and hence πi(s0) ≤ x for
all i ∈ I. Now define the partition π′ by

{
π′(s) = x if s ≤ x and
π′(s) = s otherwise (6)

for all s ∈ S. For all i ∈ I it holds that πi ≤ π′, and as π =
∨

i∈I πi, we have
π ≤ π′, and thus π(s0) ≤ π′(s0) = x.

Since πi ≤ π, we have ci = πi(s0) ≤ π(s0) for all i ∈ I. By the definition of the
supremum this implies that x =

∨
i∈I ci ≤ π(s0). Altogether x = π(s0), whereby

x ∈ σf since ΠS(L, σf ) is closed under suprema. Thus σf is an S-connection
and the proof is complete. ��

The following example demonstrates that item 2 of the theorem is in general
false when atomisticity is not required.

Example 1. Let L be the set {0, 1, s0, s1, s2, s3, t} and define the partial order ≤
on L by

0 �� s0 ��

���
��

��
��

� s1 ��

���
��

��
��

� s3 �� 1

s2 �� t

����������

(7)

where for l ∈ L and m ∈ L, l ≤ m if and only if there exists a directed path
from l to m. It is easily checked that L is a lattice, hence a complete lattice by
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finiteness, and that it is sup-generated by the set S = {si, i = 0, 1, 2, 3}. It is
however not atomistic as e.g. s0 and s1 necessarily belong to each sup-generating
set. Let T be any set, and F any family of functions from S to T . Define the
criterion σ on F by {

σ(f, l) = 0 if l = t and
σ(f, l) = 1 otherwise (8)

for all f ∈ F . Since t = s1 ∨ s2, and s1 ∧ s2 �= 0, this implies that σ is not
connective. However, by the structure of L the only possible S-partition on L is
the one whose unique class is 1, and as σ(f, 1) = 1, we get that σ S-segments f .

Thus we conclude that Theorem 1 generalizes completely to the atomistic
setting, but in general not farther. The approach of Section 3 will, as it turns
out, in fact mend this issue.

3 Partial Connections and Partial Partitions

We now extend this study in another direction, by looking at operators that act
on partitions. More specifically, we study a certain type of openings on partial
partitions, and their relation to partial connections (concepts to be defined).
This follows the work of Ronse, who has established this theory for the case of
the power set lattice in [4]. We begin by the definitions for that case.

Definition 7. [3] Let E be a set.

1. A subset C of P(E) is a partial connection on E if it satisfies
(a) ∅ ∈ C, and
(b) if {Ci}i∈I ⊆ C for some index set I, and

⋂
i∈I Ci �= ∅, then

⋃
i∈I Ci ∈ C.

2. A partial partition of E is a map π : E → P(E) that satisfies
(a) ∀x ∈ E;π(x) = ∅ or x ∈ π(x), and
(b) ∀x, y ∈ E;x ∈ π(y)⇒ π(x) = π(y).

It is seen that every connection is a partial connection, and by [3] every
partition is a partial partition. As in the case of partitions, the notation C ∈ π
means that C is a class of π. Definition 7 implies that singleton sets are not
generally assumed to be connected, and that the connected components of a
partial connection and the classes of a partial partition do not necessarily cover
E. In [4], one motivation of using partiality is that in computations, considering
singleton sets to be a priori connected becomes impractical. In general, this offers
a great deal of flexibility to the theory, as we will see.

The collection of partial connections on E, denoted by Γ ∗(E), is a complete
lattice under the inclusion order: for C,D ∈ Γ ∗(E), C ≤ D ⇐⇒ ∀C ∈ C, C ∈ D;
the set of partial partitions on E is denoted Π∗(E); it is a complete lattice under
the refinement order previously defined for partitions. [3] The greatest element
in this lattice is the partition 1; 1(x) = E for all x ∈ E, while the smallest partial
partition is 0; 0(x) = ∅ for all x ∈ E.

The notions of partially connective criteria and partial segmentation, in which
a criterion segments a function partially, are obtained by replacing connections
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and partitions in Definitions 1.3 and 3.2 by partial connections and partial par-
titions, and disregarding Definition 3.1. (about singleton sets). A detailed study
of partial connections and partial partitions is conducted in [3]. We move on to
a class of operators on Π∗(E), defined in two steps.

Definition 8. [4] Let E be a set.

1. A map ψ : P(E) → Π∗(E) is set splitting if ψ(A) ∈ Π∗(A), i.e. if ψ(A)(x) ⊆
A for all x ∈ E.

2. Given a set splitting map ψ, the class splitting operator induced by ψ is
the operator ψ∗ : Π∗(E) → Π∗(E) such that for each partial partition π ∈
Π∗(E), ψ∗(π) =

∨
C∈π ψ(C).

Note that the supremum in item 2 of the definition is in fact the partial partition
whose classes are the images under ψ of the classes of π.

From [4] one learns that ψ is set splitting if and only if for all A ⊆ E and
x ∈ E \A, ψ(A)(x) = ∅. In [4] class splitting operators are called block splitting.

3.1 Openings on Partial Partitions

An opening (say, ω) on a complete lattice is an anti-extensive (ω(x) ≤ x), idem-
potent and order-preserving operator on it. The set of openings on a complete
lattice L is a subset of the complete lattice of operators on L. It exhibits addi-
tional structure by the following well-known fact.

Lemma 2. [6] Let L be a complete lattice, and LL the complete lattice of op-
erators on L. The subset of LL consisting of all openings on L is a dual Moore
family5 in LL. It is thus a complete lattice under the order induced by the order
on LL.

In this lattice, the supremum resp. the infimum of a non-empty family P of
openings is the supremum of P in LL resp. the greatest opening smaller than or
equal to the infimum of P in LL; the smallest element in the lattice of openings
is the map l �→ 0 for all l ∈ L, and the greatest element is the identity map l �→ l
for all l ∈ L.

There is indeed a greatest opening smaller than or equal to a given element
in LL, by definition of a dual Moore family; it is for the same reason that the
supremum in LL of a family of openings is an opening.

The following result by Ronse is central in the characterization of partial
connections in terms of class splitting openings.

Proposition 1. [4] The set Ω(E) of class splitting openings on Π∗(E) for a set
E is a complete sublattice of the lattice of openings on Π∗(E). It is isomorphic
to the lattice Γ ∗(E) of partial connections. The isomorphism is given by the map

λ : Γ ∗(E) → Ω(E); C �→ C∗• (9)

where for all π ∈ Π∗(E), C∗•(π)(x) =
∨
{C ∈ C;x ∈ C ⊆ π(x)} for all x ∈ E.

5 See Remark 1.
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Put simply, λ maps each partial connection C to the (class splitting) opening
that splits the classes of a partial partition into their C-connected components.

3.2 Generalizing Ronse’s Result

Following the lines of our treatment of partitions and connections on complete
lattices, Definition 7 generalizes readily. Note that, in contrast to the general-
ization of the concept of a connection (Definition 4.2), the partial counterpart
is independent of any sup-generating set. Indeed, the dependence of Definition
4.2 on a sup-generating set lies in its second item, which does not appear here,
generalizing the aforementioned fact that in the power set lattice, singleton sets
are now not a priori assumed connected.

Definition 9. 1. Let L be a complete lattice. A subset C of L is a partial
connection if it satisfies
(a) 0 ∈ C, and
(b) if {ci}i∈I ⊆ C for some index set I, and

∧
i∈I ci �= 0, then

∨
i∈I ci ∈ C.

2. Let L be a complete lattice sup-generated by a subset S ⊆ L. A partial S-
partition on L is a map π : S → L that satisfies
(a) ∀s ∈ S;π(s) = 0 or s ≤ π(s), and
(b) ∀s, t ∈ S such that s ≤ π(t) it holds that π(s) = π(t).

The sets of partial connections and partial S-partitions on L, henceforth denoted
by Γ ∗(L) and Π∗

S(L), respectively, are complete lattices by a straight-forward
proof. Partial S-segmentation, where a criterion S-segments a function partially,
and partially connective criteria are defined in an analogous manner to that
described above Definition 8 for the power set lattice.

Example 2. If L is a complete lattice sup-generated by S ⊆ L, then for each
m ∈ L, the function 1m : S → L defined by 1m(s) = m if s ≤ m, and 1m(s) = 0
otherwise, is a partial S-partition with m as unique non-zero class.

The class splitting operators become as follows in the general setting.

Definition 10. Let L be a complete lattice sup-generated by a subset S ⊆ L.

1. A map ψ : L → Π∗
S(L) is element splitting if ψ(l) ≤ 1l for all l ∈ L;

equivalently, if ∀l ∈ L; ∀s ∈ S;ψ(l)(s) ≤ l.
2. Given an element splitting map ψ, the class splitting operator induced by ψ

is the operator ψ∗ : Π∗
S(L) → Π∗

S(L) such that for each partial S-partition
π ∈ Π∗

S(L), ψ∗(π) =
∨

c∈π ψ(c).

Now we are ready to generalize Proposition 1.

Theorem 3. Let L be a complete lattice sup-generated by a subset S ⊆ L. Let
ΩS(L) be the set of all class splitting openings on Π∗

S(L). Then ΩS(L) is a
complete sublattice of the lattice of openings on Π∗

S(L). As a complete lattice, it is
isomorphic to the lattice Γ ∗(L) of partial connections on L, via the isomorphism

λ : Γ ∗(L) → ΩS(L); C �→ C∗• (10)

where for all π ∈ Π∗
S(L), C∗•(π)(s) =

∨
{c ∈ C; s ≤ c ≤ π(s)} for all s ∈ S.
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The long, technical proof leading to this result follows the lines of the proof of
Proposition 1, given in [4], and we here give a brief sketch due to space limits.

Proof. The smallest opening on Π∗
S(L) is 0 : π �→ 0, which is class splitting.

The greatest opening on Π∗
S(L) is the identity map, which is class splitting

as induced by the element splitting map m �→ 1m. Consider next a non-empty
family of class splitting openings {ψ∗

i }i∈I for an index set I. Each ψ∗
i is shown to

be induced by a unique, order-preserving element splitting map ψi. By Lemma
2, the supremum

∨
i∈I(ψ

∗
i ) is an opening, which is in fact class splitting. The

infimum in the lattice of openings is described in Lemma 2. One deduces that it
is class splitting from the ψi being order preserving. This proves the first part.
Given C ∈ Γ ∗(L), the operator C∗• : Π∗

S(L) → Π∗
S(L) is a class splitting opening,

induced by the map that splits an element of L into its C-connected components.
Thus λ is well-defined, and an isomorphism by technical considerations. ��

We moreover give the following result, which is the analogue of Theorem 2 in
the partial setup. The special case for the power set lattice was proven in [3].

Lemma 3. Let L be a complete lattice sup-generated by a subset S ⊆ L, and let
C ⊆ L be a subset. Then C is a partial connection if and only if the set Π∗

S(L, C) of
partial S-partitions all whose classes are in C is closed under arbitrary suprema.

Corollary 1. Let L be a complete lattice sup-generated by a subset S ⊆ L, F a
family of functions f : S → T for a set T , and σ a criterion on F . Then σ is
partially connective if and only if σ S-segments all f ∈ F partially.

Note how partiality circumvents the need of atomisticity in order for the result
to be fully valid as no longer all s ∈ S are required to be connected.

4 Relating Ronse’s Approach to Serra’s

In this section we will state and prove a relation between the characterization
of (partially) segmenting criteria of Corollary 1 (Theorem 2), and that of class
splitting openings of Theorem 3; this will be done by means of a commutative
diagram. We give the link in both the partial and non-partial setup, and we state
it directly for general lattices; of course, it then also holds for the special case
of the power set lattice. To the authors’ knowledge, such a link has not been
presented before in any setting.

For connective segmentation in the non-partial sense, we have the following

Theorem 4. Let L be a complete lattice, sup-generated by a subset S ⊆ L, T
a set, and F a family of functions f : S → T . Define ΣS(F ,L) to be the set of
all S-connective criteria on F , ΠS(L) the complete lattice of S-partitions on L,
Π∗

S(L) the complete lattice of partial S-partitions on L, Γ ∗(L) the complete lat-
tice of partial connections on L, and ΩS(L) the complete lattice of class splitting
openings on Π∗

S(L). Let moreover
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– for each f ∈ F , φf : ΣS(F ,L) → ΠS(L) be the map that assigns to each
S-connective criterion σ its S-segmentation of f , and

– λ : Γ ∗(L) → ΩS(L) be the lattice isomorphism that assigns to each partial
connection C the class splitting opening C∗• .

Then for each f ∈ F there exist maps μf and κ such that following diagram
commutes

ΣS(F ,L)
φf ��

μf

��

ΠS(L)

Γ ∗(L)
λ

�� ΩS(L)

κ

��
. (11)

In other words we have φf (σ) = κλμf (σ) for all f ∈ F and σ ∈ ΣS(F ,L).
Specifically,

– μf is the map that assigns to each S-connective criterion σ the S-connection
{c ∈ L;σ(f, c) = 1}, and

– κ is the map that assigns to each class splitting opening γ∗ the partial S-
partition γ∗(1), where 1 is the greatest S-partition on L.

Proof. Given f ∈ F , take any criterion σ ∈ ΣS(F ,L). Then μf (σ) = {c ∈
L;σ(f, c) = 1}, and composing μf with λ and κ gives κλμf (σ) = (μf (σ))∗•(1),
where for all s ∈ S,

(μf (σ))∗•(1)(s) =
∨
{c ∈ μf (σ); s ≤ c ≤ 1} =

∨
{c ∈ μf (σ); s ≤ c} , (12)

i.e. (μf (σ))∗•(1)(s) is equal to the μf (σ)-connected component greater than or
equal to s, if it exists, and otherwise it is equal to 0. Since μf (σ) is a partial
connection, (μf (σ))∗•(1) is a partial S-partition all of whose classes belong to
μf (σ). It is moreover an S-partition, since μf (σ) is an S-connection. This is
the largest S-partition all of whose classes belong to μf (σ). Hence it is the S-
segmentation of f by σ, which completes the proof. ��

Next, we replace connections and partitions by partial connections and partial
partitions, respectively, to get the following

Theorem 5. Let L be a complete lattice, sup-generated by a subset S ⊆ L, T
a set, and F a family of functions f : S → T . Define Σ∗(F ,L) to be the set
of all partially connective criteria on F , Π∗

S(L) the complete lattice of partial
S-partitions on L, Γ ∗(L) the complete lattice of partial connections on L, and
ΩS(L) the complete lattice of class splitting openings on Π∗

S(L). Let moreover

– for each f ∈ F , φ′f : Σ∗(F ,L) → Π∗
S(L) be the map that assigns to each

partially connective criterion σ its partial S-segmentation of f , and
– λ : Γ ∗(L) → ΩS(L) be the lattice isomorphism that assigns to each partial

connection C the class splitting opening C∗• .
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Then for each f ∈ F there exist maps μ′f and κ such that following diagram
commutes

Σ∗(F ,L)
φ′

f ��

μ′
f

��

Π∗
S(L)

Γ ∗(L)
λ

�� ΩS(L)

κ

��
(13)

where μ′f is the map that assigns to each partially connective criterion σ the
partial connection {c ∈ L;σ(f, c) = 1}, and κ is the map that assigns to each
class splitting opening γ∗ the partial S-partition γ∗(1) (where 1 is the greatest
S-partition on L).

The proof is analogous to that of Theorem 4. Theorems 4 and 5 thus relate the
two approaches to connective segmentation discussed in Sections 1–3.

5 Conclusion

As we have seen, the theory of connective segmentation generalizes to atomistic
lattices in a natural way. When dealing with non-atomistic lattices, partiality
becomes necessary in order to maintain the full strength of the theory. We have
also seen that the two approaches to connective segmentation are linked on all
levels. In short, the apparatus of connective segmentation lends itself to inves-
tigations of a large number of complete lattices that arise naturally in different
theoretical and practical contexts of mathematical morphology.
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Abstract. In this paper the notion of hyperconnectivity, which is an extension
of connectivity is explored in the lattice theoretical framework. It is shown that a
fourth axiom is needed when moving from connections to hyperconnections, in
order to define hyperconnected components meaningfully, which is important for
the definition of, e.g., viscous levellings. New hyperconnectivity openings, which
are the hyperconnected equivalents of connectivity openings are then defined.
It then shown that all algebraic openings which are translation and grey-scale
invariant can be described as hyperconnected attribute filters. This means that
hyperconnectivity lies at the heart of a vast range of morphological filters.

1 Introduction

Hyperconnectivity was first put forward by Serra [8] as a generalization of connectivity.
As discussed in [10, 11], hyperconnectivity offers the prospect of generalizing a large
number of morphological filters into a single framework, and the existence of a contin-
uum of filters with properties intermediate between connected and structural filters was
proposed. Fig. 1 shows an example comparing structural open-close with connected
and viscous hyperconnected levellings. Though viscous reconstruction can readily be
described in terms of a connection on a viscous lattice [9], this is awkward for a lev-
elling, because the viscous lattice, consisting of the set of dilates of members of some
lattice L, is not complemented. This means we cannot define auto-dual filters because
the complement of a member of a viscous lattice is not necessarily a member of that
lattice. Because viscous hyperconnections are defined in terms of the original lattice
in [10], we can define auto-dual filters such as levellings without difficulty. This is one
reason why we need to define hyperconnections for complete lattices.

A shortcoming of [10], was that only the finite, set-theoretical case was discussed.
In this paper, the theory is extended to the compete lattice framework, and the infinite
case. The new theory provides deeper understanding of hyperconnectivity, and provides
a theoretical basis for grey-scale hyperconnected filters such as those developed in [5,
4]. I will first define some basic notions and notation, and then recall the theory of
connectivity classes or connections, as developed by Serra in the complete lattice case
[8]. In the same paper Serra put forward the notion of hyperconnections, by generalizing
the third axiom for connections. I will show that this generalization is insufficient to
define hyperconnected components properly, and that a fourth axiom is required. This
extra axiom allows definition of new hyperconnectivity openings, which generalize the
operators developed in the finite, set theoretical case in [10]. In that paper, and in [11],
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c© Springer-Verlag Berlin Heidelberg 2011



74 M.H.F. Wilkinson

(a) (b) (c) (d)

Fig. 1. Self-dual filters: (a) original image f ; (b) point-wise average of structural open-close, and
close-open of f ; (c) levelling of f using (b); (c) equivalent viscous hyperconnected levelling

it was shown that structural openings, viscous filters, and path openings all were special
cases of hyperconnected filters. In this paper I will show that all openings which when
applied to any canonical sup-generator (e.g., impulse function) returns the zero element
of the lattice is a hyperconnected attribute filter. This means that hyperconnectivity lies
at the heart of a vast number of morphological filters.

2 Theory

In the following L denotes a complete lattice, with global infimum and supremum 0
and 1, and P(L) the power lattice of L. Elements of L are denoted as lower-case a, b, c;
elements of P(L) as upper-case A,B,C, etc. An algebraic opening is any operator
γ which is idempotent (γ(γ(a)) = γ(a)), increasing (a ≤ b ⇒ γ(a) ≤ γ(b)) and
anti-extensive (a ≤ γ(a)). A cover C of any a ∈ L is an element of P(L) such that∨
C = a. A partition P ∈ P(L) of any a ∈ L, is a cover such that any two x1, x2 ∈ P

are either equal or disjoint. A chain is any totally ordered set.

2.1 Redundancy Operators

Any non-empty A ∈ P(L) is the union of a set of maximal chains Ci, because any
chain C ⊆ A can be extended to a maximal chain according to the Hausdorff maximal
principle. For every element a ∈ A, {a} is a chain, which can be extended to a maximal
chain Ci with {a} ⊆ Ci ⊆ A. Thus the union

⋃
iCi ⊆ A, because all maximal chains

Ci ⊆ A. However, because all a ∈ A are contained in at least one chainCi,A ⊆
⋃

iCi,
and thus A =

⋃
iCi. This leads to the definition of non-redundancy:

Definition 1 (Non-redundancy). Any element A ∈ P(L) is said to be non-redundant
if

ai ≤ aj ⇒ ai = aj , ∀ai, aj ∈ A (1)

or, equivalently, that all maximal chains Ci ⊆ A have cardinality #(Ci) = 1.

It is readily seen that all partitions are non-redundant covers, but not all non-redundant
covers are partitions.
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Any set A ∈ P(L) is said to be chain-sup-complete if for every non-empty chain
C ⊆ A we have

∨
C ∈ A. All non-redundant sets, and all finite A are chain-sup-

complete. Note that if the supremum of the empty chain (= 0) is also member of A it
is chain complete or ω-complete as in [3]. It can readily be shown that the union of two
chain-sup-complete sets is itself chain-sup-complete. The set of all chain-sup-complete
elements of P(L) is denoted as Pcsc(L).

We define N (L) ⊆ Pcsc(L) ∪ {∅} as the family of all non-redundant elements of
Pcsc(L) ∪ {∅}. On N (L) we define the refinement order � as used in partitions

A � B ≡ ∀ai ∈ A ∃bj ∈ B : ai ≤ bj (2)

If A1 � A2 for two partitions or covers we state that A1 is finer than A2, or, equiva-
lently,A2 is coarser than A1. Relation � is a partial orderN (L), and a partial preorder
on P(L), i.e., it is reflexive and transitive, but not antisymmetric. We can now define
the reduction operator which is crucial to the selection of hyperconnected components:

Definition 2 (Reduction Operator). The reduction operator ψN : P(L) → N (L) is
defined as

ψN (A) = {a ∈ A | �b ∈ A : a < b} (3)

Because ψN (A) ⊆ A, we can readily see from the definition that no two elements
a, b ∈ ψN (A) exist such that a ≤ b, and ψN (A) ∈ N (L).

Proposition 1. For any set A ∈ Pcsc(L)

1. ψN (A) is the least element in N (L) with A � ψN (A)
2.
∨
A =

∨
ψN (A)

Proof. If A ∈ Pcsc(L), ψN (A) contains all maximal elements of A, and nothing else.
Therefore, A � ψN (A). If we obtain some B ∈ N (L), with B � ψN (A), by either
removing any element a ∈ ψN (A), or replacing it by some b < a, this means there
exists no c ∈ B such that a ≤ c. Because a ∈ A we have A �� B, proving property 1.

To prove the second point, we can write

A =
⋃

i

{Ci} ⇒
∨
A =

∨

i

{∨
Ci

}

(4)

with {Ci} the set of all maximal chains Ci ⊆ A. Because A is chain sup-complete, it
contains the maximal elements of all its non-empty chains Ci, and we may write

ψN (A) =
{∨

Ci

}

⇒
∨
ψN (A) =

∨

i

{∨
Ci

}

=
∨
A (5)

which proves Proposition 1.

If A �∈ Pcsc(L), these properties do not necessarily hold. For example, let A be the set
of open balls br of radius r defined as A = {b(1−1/n), n ∈ Z+}. The supremum of this
set is the open ball b1 �∈ A, and thus A �∈ Pcsc(L). Because for any element a ∈ A
there exist infinitely many b ∈ A such that a < b, we obtain ψN (A) = ∅. This violates
both properties in Proposition 1.
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2.2 Connectivity

Connectivity such as is used in morphological filtering is defined through the notion of
connectivity classes [8, 6] defined as follows.

Definition 3. A connectivity class C ⊆ P(L) is a set of elements ofL with the following
three properties:

1. 0 ∈ C
2. C is sup-generating,
3. for each family {ci} ⊆ C,

∧
ci �= 0 implies

∨
ci ∈ C.

Any element c ∈ C is said to be connected. Any element a ∈ L can be partitioned into
connected components. These are the elements of c ∈ C such that c ≤ a of maximal
extent, i.e., if c ≤ a, c ∈ C, and there exists no d ∈ C such that c < d ≤ a, then c is a
connected component of a. Let Ca be defined as follows:

Ca = {c ∈ C | 0 < c ≤ a}, (6)

in other words Ca is the set of all elements of C \ {0} majorated by a. The set of all
connected components C∗a of a is simply

C∗a = ψN (Ca). (7)

We can do this because of the following property.

Proposition 2 (Chain completeness and connections). Any connection C on any com-
plete lattice L is chain complete.

Proof. The supremum of the empty chain is 0 ∈ C. LetB ⊆ C be a non-empty chain. If∧
B �= 0, then

∨
B ∈ C by definition. If

∧
B = 0, and

∨
B �= 0 we pick an arbitrary

m ∈ B such that 0 < m ≤
∨
B and define the set

B+ = {bi ∈ B | m ≤ bi}. (8)

Thus, 0 < m ≤
∧
B+ and therefore

∨
B+ ∈ C. Obviously

∨
B =

∨
B+ ⇒

∨
B ∈ C. (9)

Finally, if
∨
B = 0 we have

∨
B ∈ C as well, proving Proposition 2.

The connected components of any image can be accessed through connectivity openings
[8, 1]:

Definition 4. The connectivity opening γx of a ∈ L marked by some x ∈ C \ {0}, is
given by

γx(a) =

{∨
{ci ∈ C | x ≤ ci ≤ a} if x ≤ a

0 otherwise.
(10)
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In this definition the notion of maximum extent is derived by taking the supremum of
all connected subsets of a but larger than or equal to x. It can readily be shown that this
is equivalent to

γx(a) =

{
ci ∈ C∗a : x ≤ ci if x ≤ a
0 otherwise.

(11)

This equivalence stems from the fact that ci in (10) for which of x ≤ ci ≤ a have
infimum x �= 0, and that their supremum is therefore connected. Serra [8] notes that
in many important cases it is sufficient to use some canonical set of sup-generators S
to obtain all connected components of any a ∈ L, through a family of connectivity
openings {γs, s ∈ S}. Proposition 2 shows that if the smallest connection possible of
L is {0} ∪ S, as asserted in [8, 6], this is only true if S is chain-sup-complete.

2.3 Hyperconnectivity

Hyperconnectivity extends connectivity by generalizing the third condition of Defini-
tion 3 [8]. Instead of using a non-empty intersection, we can use any overlap criterion
⊥ which is defined as follows.

Definition 5. An overlap criterion in L is a mapping ⊥ : P(L) → {false, true} such
that ⊥ is decreasing, i.e., for any A,B ∈ P(L)

A ⊆ B ⇒ ⊥(B) ≤ ⊥(A). (12)

Note that false ≤ true. Any A ∈ P(L) for which ⊥(A) = true is said to be overlap-
ping. We can now define a hyperconnectivity class as follows.

Definition 6. A hyperconnectivity classH ⊆ L is a class with the following properties:

1. 0 ∈ H
2. H is sup-generating
3. H is chain-sup complete,
4. for each family {hi} ⊂ H, ⊥({hi}) implies

∨
i hi ∈ H,

with ⊥ an overlap criterion, for which ⊥(A)⇒
∧
A �= 0.

The above definition of hyperconnections differs from that given by Serra [8], in that it
has four axioms, rather than just three. The additional axiom (number 3) is necessary in
the infinite case, as will be discussed shortly. If a canonical family of sup-generators S
exists, axiom 2 can be rewritten to s ∈ H for all s ∈ S as in the connected case [8, 6].

Serra [8] showed that connectivity is an extension of hyperconnectivity, in which
the third axiom in Def. 3 is replaced by a stricter requirement. For example we might
require that there exist a ball br of some diameter r for which br ≤

∧
i hi, leading to

viscous hyperconnections [10]. Axioms 1 and 3 of Def. 6 mean hyperconnections are
chain complete, just like connections.

Like the notion of connected components for connectivity classes, we need to define
the notion of hyperconnected components of a ∈ L, which are members of the hyper-
connection hi ∈ H, such that hi ≤ a has maximal extent. In complete analogy with
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connected components we can first define the set Ha of all elements of H such that
0 < hi ≤ a:

Ha = {h ∈ H | 0 < h ≤ a}. (13)

Ha is either chain-sup-complete or empty. The latter is the case if a = 0. If a �= 0,
there exists at least one h ∈ H such 0 < h ≤ a, because H is sup-generating. In that
case, consider any non-empty chain {hi} ⊂ Ha. Obviously,

∨

i

hi ∈ H, (14)

through axiom 3 in Def. 6. Because all hi ≤ a it follows that

∨

i

hi ≤ a, ⇒
∨

i

hi ∈ Ha. (15)

This proves that Ha is chain-sup-complete if a �= 0. The set of hyperconnected com-
ponentsH∗

a of a is defined equivalently

H∗
a = ψN (Ha). (16)

Unlike C∗a , H∗
a is not necessarily a partition of a, because two hyperconnected com-

ponents hj, hk, with hj �= hk, may have a non-zero infimum, but hj ∨ hk is not a
member of Ha because ⊥({hj, hk}) = false. This is easily understood, because if
⊥({hj, hk}) = true, then hj ∨ hk ∈ Ha. However, because hj , hk ∈ H∗

a, we have
hj � hk and hk � hj because of the definition of ψN . Thus hj < hj ∨ hk and
hk < hj ∨hk. This means hj ∨hk is a larger element ofHa than either hj or hk which
contradicts their membership ofH∗

a. Note that due to Prop. 1,H∗
a only is a cover of a if

H is chain-sup-complete. This is why we need the third axiom in Def. 6 in the infinite
case.

2.4 Hyperconnectivity Openings

We now introduce the families of hyperconnectivity openings Υh : N (L) → N (L),
with h ∈ H, which return sets of hyperconnected components. If the lattice is supplied
with a canonical set of sup-generators S, we may restrict the family {Υh, h ∈ H} to
{Υs, s ∈ S}, as before. As in [10] we need the reduction operator.

Definition 7. The hyperconnectivity opening Υx : N (L) → N (L), with x ∈ H \ {0},
associated with hyperconnectivity classH is defined as

Υx(A) = ψN

(⋃

a∈A

{h ∈ Ha | x ≤ h}
)

(17)

If the parameter A is just a singleton {a}, Υx extracts the set of hyperconnected com-
ponents of a containing x. Note that Υx(∅) = Υx({0}) = ∅, and more generally that if
there exists no a ∈ A such that x ≤ a we have Υx(A) = ∅.
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Theorem 1 (Υx are algebraic openings). For any hyperconnectionH on any complete
lattice L, {Υx, x ∈ H\{0}} is a family of algebraic openings on (N (L),�), for which

{0} ∪
( ⋃

x∈H\{0}

⋃

A∈Inv(Υx)

A

)

= H. (18)

Inv(γ) ⊆ L denotes the invariance domain of γ, which is the set {a ∈ L | a = γ(a)}.

Proof. By definition, the output of Υh(A) is a non-redundant subset of H such that for
each element hi ∈ Υx(A) ⊆ H we have s ≤ hi. Furthermore, Υx(A) � A, because we
can see from the definition that for every hi ∈ Υx(A) there exists an a ∈ A such that
hi ≤ a, which proves anti-extensiveness in terms of � as defined in (2).

It is readily verified that Υx(∅) = ∅ for all x ∈ H \ {0}, so idempotence holds
whenever Υx(A) = ∅. Let {hi} = Υx(A) �= ∅, with i from some index set. Applying
Υx to {hi} is equivalent to applying the reduction operator to the union of all sets

Hs
hi

= {hj ∈ H | s ≤ hj ≤ hi}. (19)

AllHs
hi

contain hi because s ≤ hi and hi ∈ H. Thus eachHs
hi

contains hi as maximal
element. Therefore we have

Υx(Υx(A)) = Υx({hi}) = ψN

(⋃

i

Hs
hi

)

= {hi} (20)

because the reduction operator removes all elements hj of everyHs
hi

, such that hj < hi,
for each hi ∈ Υx(A). All elements hi ∈ Υx(A) are preserved because it is a non-
redundant set, which cannot be reduced any further. Thus

Υx(Υx(A)) = Υx(A) (21)

and Υx(A) is idempotent. The above arguments also show that all elements of the in-
variance domain of any Υx consist of subsets ofH. Furthermore, any non-zero hi ∈ H
is marked by at least one sup-generator, so that every non-zero element of H is con-
tained in the union of the elements of the invariance domains of all Υx, x ∈ H \ {0},
simply because Υx({hi}) = {hi}, for any x ≤ hi. Thus, the union of all elements of
the invariance domains of all Υx, x ∈ H \ {0}, augmented with 0 is equal to H.

Finally, we must show that Υx is increasing in terms of �. Let A,B ∈ N (L) with
A � B. This means that for every a ∈ A there exists a b ∈ B such that a ≤ b. We
already know that for every hi ∈ Υx(A) there exists an a ∈ A such that hi ≤ a.
Therefore, there exists a b ∈ B such that hi ≤ b. This means that either hi ∈ Υx(B), or
there exists an hj ∈ Υx(B) such that hi < hj . Thus, for every hi ∈ Υx(A) there exists
an hj ∈ Υx(B) such that hi ≤ hj , and thus

A � B ⇒ Υx(A) � Υx(B), (22)

proving increasingness, and all Υx, x ∈ H \ {0} are algebraic openings, proving Theo-
rem 1, and that the family {Υx, x ∈ H \ {0}} retrievesH, through (18).
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What needs to be done is to assess which properties a family of mappings Υx : N (L) →
N (L) requires for it to define a hyperconnectivity class, in the same way a family of
connectivity openings defines a connectivity.

Theorem 2 (Hyperconnectivity Openings). On any lattice L, every hyperconnection
H associated to an overlap criterion ⊥ is equivalent to a family of algebraic openings
{Υx, x ∈ H \ {0}} on (N (L),�) with the following properties

1. Υx is an algebraic opening indexed by x ∈ H \ {0}.
2. for all x ∈ H \ {0} we have Υx({x}) = {x}
3. for all A ∈ N (L), and all x ∈ H \ {0} we have s � a, ∀a ∈ A ⇒ Υx(A) = ∅;
4. for any x, y ∈ H \ {0} and any A ∈ P(L), hi ∈ Υx(A) and y ≤ hi ⇒ hi ∈
Υy(A).

5. for all x ∈ H \ {0} and all a ∈ L, and any {hi} ⊆ Υx({a}) we have #{hi} �=
1 ⇒ ⊥({hi}) = false.

Proof. The first property follows directly from Theorem 1, and its proof. The second
property follows directly from Def. 7 and the fact that

The third property derives directly from Def. 7, because (17) implies that if x � a
for all a ∈ A, Υx(A) = ∅. Together with the first two this guarantees

∨
Υ (A) =

∨
A.

The fourth property can be derived directly from (17): Because hi ∈ Υx(A), there
exists no hyperconnected set hj ∈ Υx(A), such that hi < hj , because Υx(A) is non-
redundant. If t ≤ hi but hi �∈ Υt(A), this would imply that there is some hj ∈ Υx(A),
such that hi ≤ hj , leading to contradiction.

The fifth property states that no set of two or more sets {hi} ∈ Υx({a}) can overlap
in the sense of ⊥. If they did,

∨
i hi ∈ H and s ≤

∨
i hi ∈ Υx({a}, and {hi} �⊂

Υx({a}).
We now show that any family of operators {Υx, x ∈ H \ {0}} with the above prop-

erties for a given overlap criterion⊥ is associated with a hyperconnection. Suppose we
have some family {Υx, x ∈ H \ {0}} of algebraic openings marked by x ∈ H \ {0}.
Let I be defined as

I = {0} ∪
( ⋃

x∈H

⋃

A∈Inv(Υx)

A

)

, (23)

for our family {Υx, x ∈ H \ {0}}. We must now show that I is a hyperconnection.
The second property implies H ⊂ I, proving I, is sup-generating, conforming to

property 2 of Def. 6. The definition of I states that 0 ∈ I, meeting property 1 of
Def. 6. Furthermore, let C ⊂ I be a chain. This implies Υx({

∨
C}) = {

∨
C}. If

not, we would have to represent the hyperconnected components
∨
C as a chain with

cardinality larger than one, which contradicts the fact that Υx({
∨
C}) ∈ N (L). Thus

I is chain sup complete.
Similarly, let ⊥(H) = true for some H ⊆ I. According to property 5, and the

fact that
∨
Υ (A) =

∨
A for any A ∈ N (L), we have Υx({

∨
H}) =

∨
H and thus

⊥(H) = true guarantees
∨
H ∈ I, and I is a hyperconnection.

Finally, we show that applying (17) to the hyperconnection I, we find the same fam-
ily of openings we started out with, note that H ⊆ I, due to property 2 in Theorem 2.
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Let the family {Υ I
x , x ∈ H\{0}} be the new family of operators, with each Υ I

x defined
as

Υ I
x (A) = ψN

(⋃

a∈A

{h ∈ Ia | x ≤ h}
)

(24)

which is just rewriting (17), by replacingH with I. It is readily verified that the invari-
ance domain Inv(Υ I

x ) of each Υ I
x is given by

Inv(Υ I
x ) = {A ∈ N (I) | ∀a ∈ A : x ≤ a} (25)

with N (I) the family of non-redundant subsets of I. This is true because the input of
Υ I

x must be non-redundant by definition, and if and only if the inputA of Υ I
x is a subset

of I and all elements of A are larger than or equal to x is A left unaffected by Υ I
x . For

the original family {Υx, x ∈ H \ {0}} , we have that all members of Inv(Υx), must
also be non-redundant, and a subset of I, each element of which must be larger than
or equal to x, due to properties 2 and 3 of Theorem 2, and increasingness of openings.
Thus,

Inv(Υx) = {A ∈ N (I) | ∀a ∈ A : x ≤ a} = Inv(Υ I
x ) (26)

for all x ∈ H \ {0}. Because any opening γ maps the input A to the largest element
B ∈ Inv(γ) such that B ≤ A, the invariance domain uniquely defines an opening. This
means Υx = Υ I

x for all x ∈ H \ {0}, proving Theorem 2.

3 Openings and Hyperconnections

We now turn to the question of which openings form part of the gamut of hypercon-
nected filters. In this discussion we restrict ourselves to the case in which a chain-sup-
complete, canonical set S of sup-generators exists, i.e. S∪{0} is a minimal connection.
In the binary case we have S = {{x} | x ∈ E}. In the lattice of functions from E to
R ∪ {−∞,+∞} we obtain S = {δax, x ∈ E, a ∈ R ∪ {+∞}}, with

δax(y) =

{
a if x = y
−∞ otherwise,

(27)

i.e., we need to include both finite and infinite impulses.
In the following we need the property that Inv(γ) is closed under supremum [7]

for any algebraic opening. In analogy to connected filters we arrive at the following
definition.

Definition 8 (Hyperconnected openings). An opening γ : L → L is hyperconnected
if there exists a hyperconnectionH such that

H∗(γ(a)) ⊆ H∗(a) ∀a ∈ L (28)

The meaning of this is that a hyperconnected opening only removes hyperconnected
components. Due their anti-extensive nature, no opening can extend an existing hy-
perconnected component. In analogy with connected filters, no new components may
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arise. Thus, any hyperconnected component present in the opening must be present in
the original.

Hyperconnected attribute filters can be defined in much the same way as connected
attribute filters, using trivial filters. A trivial filter ΨΛ(h) based on criterion Λ : H →
{false, true} returns h if Λ(h) = 1, and 0 otherwise, for any h ∈ H. Let ΨΛ(H∗

a) be
shorthand for the set of all hj ∈ H∗

a such that Λ(hj) = 1. A hyperconnected attribute
filter ΨΛ : P(L) → P(L) based on criterion Λ : H → {false, true} is defined as

ΨΛ(a) =
∨

s≤X

∨

hi∈Υx(a)

ΨΛ(hi) =
∨

hj∈H∗
a

ΨΛ(hj) =
∨

hk∈ΨΛ(H∗
a)

hk, (29)

The following theorem links openings with hyperconnections.

Theorem 3 (Hyperconnections and openings). Every algebraic opening γ on any
complete, sup-generated lattice L with a chain-sup-complete set of sup-generators S
is associated with a hyperconnectionHγ given by

Hγ = Inv(γ) ∪ S. (30)

with overlap criterion

⊥γ(A) =
∧
A �= 0 ∧ A ⊆ Inv(γ) (31)

Proof. Because 0 = γ(0) by anti-extensiveness, and inclusion of the sup-generators,
we adhere to the first two properties of hyperconnections. It is trivial to show that ⊥γ

is decreasing because both terms are decreasing, and all must be met. The first term
of (31) guarantees that the infimum of A is not 0, which meets the requirement that
⊥γ must imply a non-zero infimum. The second term states that A ⊆ Inv(γ), which
guarantees

∨
A ∈ Hγ , because Inv(γ) is closed under supremum.

Finally, Hγ is the union of of two chain-sup-complete sets, and is therefore chain-
sup-complete. ThereforeHγ is a hyperconnection, proving Theorem 3.

We have now shown any opening on any complete lattice, sup-generated by a chain-
sup-complete family S to be associated with a hyperconnection, but that does not prove
they are hyperconnected openings. For that we need to see whether the result of any
opening contains only hyperconnected components of the input.

The hyperconnected components of any a ∈ L are simply γ(a) augmented with such
sup-generators as are required to “fill the gaps” between a and γ(a), or

H∗
γ(a) = ψN ({γ(a)} ∪ {s ∈ S|s ≤ a}). (32)

This yields a non-redundant cover of a because Hγ is a hyperconnection if S is chain-
sup complete. For example, take the image in Fig. 2(a). The main hyperconnected
component γ(f) is shown in Fig. 2(b). The remaining hyperconnected components
are impulse functions at all points (x, y) where γ(f)(x, y) �= f(x, y). The height of
each impulse function at (x, y) is given by f(x, y), and their supremum is shown in
Fig. 2(c). Fig. 2(d) shows that the infimum of (b) and(c) is not zero. We now consider
the following opening γs with s ∈ S, defined as

γs(a) = s ∧ a. (33)



Hyperconnections and Openings on Complete Lattices 83

(a) (b) (c) (d)

Fig. 2. Hyperconnection derived from structural opening: (a) surface plot of grey-scale image f ;
(b) structural opening γ(f); (c) union of sup-generators s ∈ S such that s ≤ f but s � γ(f); (d)
the non-zero infimum of (b) and (c), typical for a hyperconnection, rather than a connection

This is an opening because it is idempotent, anti-extensive and increasing. Now let
t ∈ S such that s ≤ t. Obviously H∗

γs
(t) = {t} because t is the only hyperconnected

component of t. The only hyperconnected component of γs(t) is s and

H∗
γs

(γs(t)) = {s} �⊆ H∗
γs

(t), (34)

and therefore γs is not a hyperconnected filter according to Def. 8.
However, consider the subset of all openings on L which treats all sup-generators

equally, in the sense that either

S ⊂ Inv(γ) or γ(s) = 0 ∀s ∈ S. (35)

The first case only holds for the identity operator, because if all sup-generators are in
Inv(γ), so are all elements of L. The identity operator is obviously hyperconnected.
The second case holds in all openings that only preserve substructures in an object
larger than any single sup-generator (remember S ∈ Pcsc(L)). In particular, in the
lattice of grey-scale images it holds for all translation and grey-scale invariant openings
not equal to the identity operator. We will call such openings S-rejecting openings.

Theorem 4 (S-rejecting openings). All S-rejecting openings γ on any complete lat-
tice L, sup-generated by S ∈ Pcsc(L) are hyperconnected.

Proof. If x ∈ S, we have γ(x) = 0, because γ is S-rejecting, andH∗
γ(γ(x)) = ∅.

For any x ∈ L \ S, we have either γ(x) = 0, or γ(x) ∈ Inv(γ) \ {0}. In the first
case we have the same situation as above, and in the second case h0 = γ(x) is the sole
hyperconnected component of γ(x). Because h0 ∈ H∗

γ(x), γ is hyperconnected.

The above hyperconnected openings can be described as attribute filters in which the
criterion Λ : Hγ → {false, true} is

Λ(h) = (h ∈ Inv(γ)). (36)

4 Conclusion

In this paper I have shown how to extend the theory of hyperconnections to complete
lattices. It was shown that we must require hyperconnections to be chain complete in the
sense of [3], in the infinite case, in order to guarantee the existence of hyperconnected
components.
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Furthermore, a large family of openings, well beyond the cases discussed in [10,5,11]
can be shown to be hyperconnected attribute filters. However, though we can write the
operator in this way, it is not particularly useful, because the attribute criterion is defined
in terms of Inv(γ), which is most easily checked by computing γ(h), which is rather
circular. Also, the generation of a cover consisting of a single huge entity plus a few
details filled in by sup-generators might also be thought of as unsatisfactory.

However, given that there exists a hyperconnection describing any given S-rejecting
opening, it should in principle be possible to find a smallest hyperconnectionH0

γ ≤ Hγ

which describes the opening under study most efficiently. The smallest possible one
would be {0} ∪ S, which is impractical, because the acceptance or rejection of the
hyperconnected components by the filter would not just rely on the components them-
selves, but on their context as well. An attribute filter using this description would not
be adjacency stable [2]. Somewhere between {0} ∪ S and Hγ lies an optimum hyper-
connection hyperconnectionH0

γ which is the smallest one which allows description of
γ as an adjacency stable, hyperconnected, attribute filter. This hyperconnection would
be the characteristic hyperconnection of γ. For structural openings, path openings, and
viscous openings, these characteristic hyperconnections have been found in [10, 11].
For others, we must still obtain them.
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Abstract. We propose a new class of hyper-connections in order to im-
prove the consistency of hyper-connected filters and to simplify their
design. Our idea relies on the principle that the decomposition of an
image into h-components must be necessary and sufficient. We propose
a set of three equivalent axioms to achieve this goal. We show that an
existing h-connection already fulfils these properties and we propose a
new h-connection based on flat functions that also fulfils these axioms.
Finally we show that this new class brings several new interesting proper-
ties that simplify the use of h-connections and guarantee the consistency
of h-connected filters as they ensure that: 1) every deletion of image com-
ponents will effectively modify the filtered image 2) a deleted component
can not re-appear in the filtered image.

1 Introduction

Connections in image processing describe how pixels can be grouped together
according to their spatial relationships and/or their gray level values. In recent
years, several works were devoted to the development of new theories of connec-
tions among which hyper-connection (h-connection) [1,2,3] is a very promising
notion. Contrary to traditional connections (like set connections), h-connections
allow to decompose images into intersecting components.

In this paper, we investigate the problem of the consistency of connected fil-
ters (edge-preserving filters) based on h-connections. The usual way to produce a
h-connected filter on an image is based on the following three steps: 1) consider
the set of h-connected components of this image, 2) select a subset of theses
components and 3) reconstruct an image using the select h-components. In this
scheme, one expect that the result image contains the selected h-components
and only those ones. But in the current theory, we can easily show that the
result will contain the selected h-connected components but may also contain
other components. These unwanted components are in fact h-components of the
original image that have not been selected during the 2nd step (see proposition 2
further). This effect can be circumvented by the addition of a new property that
relies on the idea that the decomposition of an image into h-components must
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be necessary and sufficient to describe the image. We think that this property
is fundamental for some image processing tasks as it implies that the decompo-
sition into h-components completely describes the whole image (sufficient) and
that none of its components is useless (necessary). These requirements enforce
the consistency of the h-connected filters as they ensure that: 1) every deletion
of image components will effectively modify the filtered image 2) a deleted com-
ponent can not re-appear in the filtered image. From a more formal point of
view, the sufficiency and necessity conditions can be formulated like this: the
supremum of the h-components of an image must be equal to the whole im-
age (sufficient) and the supremum of a family strictly included in the family of
h-components must be strictly included in the image (necessary).

In this article we propose a set of three axioms to achieve this goal and we
show that they are indeed equivalent. We show that an existing h-connection
(the functions with a unique maximum) already fulfills these axioms and we
propose a new h-connection based on flat functions, that may be seen as a
generalization of the flat zones, that also fulfills these axioms. Finally we show
that these new axioms bring several new interesting properties that simplify the
use of h-connections and guarantee the consistency of h-connected filters.

This article is organized as follows: section 2 gives some preliminary defini-
tions, section 3 presents the theory of h-connections and establishes some new
results, section 4 presents our new theoretical developments and finally section 5
concludes this work.

2 Lattices and Connections

This section gives some preliminary definitions about lattices and set connec-
tions. In the sequel, sets and families are written in capital letters while elements
of a set are written in lower-case letters. The logical conjunction (respectively
disjunction) is noted ∧ (respectively ∨).

A lattice (L,≤,
∨
,
∧

) is composed of a non-empty set L with a partial order
≤ and two operators: a supremum

∨
and an infimum

∧
. In the following, we

consider only complete lattices where every non empty family A ⊆ L has a
supremum

∨
A and an infimum

∧
A in L and we note ! the greatest element

(
∨
L = !) and ⊥ the least element (

∧
L = ⊥) of the lattice. A set S ⊆ L such

that ⊥ /∈ S is called a sup-generating family of L if every element of L can be
written as the supremum of elements of S (∀a ∈ L, ∃B ⊆ S, a =

∨
B). The

elements of S are called sup-generators. Important examples of lattices are:

– the extended real line R = R
⋃
{−∞,+∞}, which is a complete chain under

the usual order, infimum, and supremum. It is sup-generated by R.
– the set of all subsets of a set E (noted P (E)), which is a complete lattice

with the partial order defined by the inclusion relation, and the infimum and
supremum given by the set intersection and union. It is sup-generated by the
singletons of E.
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– the set of functions from a set E into a lattice L (noted LE), which is a lattice
under the pointwise order ∀f, g ∈ LE , f ≤ g ⇔ ∀x ∈ E, f(x) ≤L g(x). The
infimum and supremum are similarly defined by a pointwise application of
the infimum

∧
L and supremum

∨
L of the underlying lattice. LE is sup-

generated by the pulses: the functions δtx, ∀x ∈ E, ∀t ∈ L, t �= ⊥ defined by
∀y ∈ E, δtx(y) = t if x = y, ⊥ otherwise. The properties of LE depend of the
properties of the underlying lattice L.

A connection on a lattice L, furnished with a sup-generating family S, is a family
C ⊆ L composed of the connected elements of L. Formally we say that C is a
connection if [4]:

1. ⊥ ∈ C: the least element is connected;
2. ∀s ∈ S, s ∈ C: the sup-generators are connected;
3. ∀A ⊆ C,

∧
A �= ⊥ ⇒

∨
A ∈ C, the supremum of intersecting connected

elements is connected.

3 Hyper-Connection

We now present the theory of h-connections for the finite case, we give the defi-
nition of a new h-connection and we establish two new properties. The extension
of the theory to infinite (countable or not) lattices is still an open problem [3]
and is not discussed here. Being given a lattice L with a sup-generating family S,
an h-connection C+ on L is a subset of L verifying the following conditions [1]:

1. ⊥ ∈ C+: the least element is h-connected;
2. ∀s ∈ S, s ∈ C+: the points (i.e. the sup-generators) are h-connected;
3. ∀A ⊆ C+, �� A ⇒

∨
A ∈ C+, the supremum of overlapping h-connected

elements is h-connected.

where �� is a predicate on P (L) called the overlap criterion. This predicate must
be decreasing: ∀A ∈ P (L), ∀B ∈ P (L), A ⊆ B, ��� A ⇒��� B meaning that a
family of non overlapping elements cannot become overlapping by the addition
of new elements. Note that a connection is a particular case of h-connections
with the overlap criterion defined by: ∀A ∈ P (L) , �� A⇔

∧
A �= ⊥.

A simple example of h-connection is made of functions with a unique max-
imum [1,2]. This h-connection is defined on the lattice of functions LE and it
is based on a primary set connection Co on E. Then, one says that a function
has a unique maximum if it is connected at all levels with respect to the pri-
mary set connections. More formally, we define the set of connected functions by:
C+

m =
{
f ∈ LE | ∀t ∈ L, f¬t ∈ Co

}
, with f¬t = {p ∈ E | t ≤ f(p)} the thresholding

of f at level t. The overlap criterion can be defined as: ∀ {fi} ⊆ LE , ��m {fi} ⇔
∀t ∈ L, Ut = ∅ or

⋂
Ut �= ∅ with Ut =

{
fi
¬t | fi¬t �= ∅

}
.

Another new example of h-connection is given by the set of all flat functions.
Let LE be the image space, let Co be a primary set connection on P (E), the set
of flat functions is defined by:

C+
p =

{
fC,t ∈ LE |C ∈ Co, t ∈ L

}
(1)
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with ∀x ∈ E, fC,t(x) = t if x ∈ C, ⊥ otherwise. Then the overlap criterion ��p

is defined by:

∀ {gi∈I} ⊆ C+
p , ��p ({gi}) =

{
true if U �= ∅ and ∀i, j ∈ I, ∀x ∈ U, gi(x) = gj(x)
false otherwise

(2)
with U =

⋂
i∈I supp (gi) and supp (gi) = {p ∈ E | gi(p) �= ⊥} is the support of

the function gi. Flat functions are overlapping if their supports intersect and
if they have the same value on this intersection. Figure 1 shows examples of
overlapping and non-overlapping flat functions according to ��p. Contrary to
the usual definition of flat zones (the largest connected component such that
the function is constant), the h-connected flat zones can spread under other flat
zones that have a higher level. Several flat zones according to the usual definition
can then be represented by a unique h-connected flat function.

Fig. 1. The overlap criterion �	p. Functions a and b are not overlapping because they
don’t have the same value on their intersection. Functions c and d are not overlapping
because their supports do not intersect. Functions e and f overlap.

Proposition 1. (C+
p , ��p) is an h-connection of LE (see Figure 2).

Proof. We must show that the three axioms of the h-connection are verified by
(C+

p , ��p). First note that ��p is trivially decreasing.
1) By definition of set connections, ∅ ∈ Co, ∀t ∈ L, f∅,t = ⊥ ∈ C+

p .
2) By definition of set connections, the singletons of E belong to Co, thus,

∀x ∈ E, ∀t ∈ L, the f{x},t = δx,t ∈ C+
p are the pulses of LE which are a

sup-generating family S of LE .
3) Let {ai∈I} be a family of C+

p , let also U =
⋂

i∈I supp (ai), and assume that
U �= ∅ and ∀i, j ∈ I, ∀x ∈ U, ai(x) = aj(x) then we must show that

∨
ai ∈ C+

p .
From property 3) of set connections, if U �= ∅ then

⋃
i∈I supp (ai) = R ∈ Co, then

from the definition of C+
p and from the condition ∀i, j ∈ I, ∀x ∈ U, ai(x) = aj(x),

all ai have the same value t on their supports, thus,
∨
ai = fR,t ∈ C+

p .

Hyper-connected operators and openings. H-operators [3] are applications
from L into P (L) which extract the h-components marked by a sup-generator.
Formally, being given a sup-generator s ∈ S, we define the h-operator by:

∀a ∈ L, γ∗s (a) =
{
h ∈ C+ | s ≤ h ≤ a, ∀g ∈ C+, h ≤ g ≤ a⇒ g = h

}
(3)
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The h-components are maximal h-connected elements and the h-components of
a ∈ L are given by:

γ∗ (a) =
⋃

s∈S
γ∗s (a) (4)

The h-opening marked by s is the supremum of the h-components of a above s:

∀a ∈ L, γs (a) =
∨
γ∗s (a) (5)

The two following properties hold [2]:

1. a =
∨
γ∗ (a): an element is the supremum of its h-components;

2. ∀b, c ∈ γ∗ (a), b �= c⇒ b ��� c: two h-components do not overlap.

Z-operators. In [2], the authors propose the interesting notion of z-operators.
Let a ∈ L, the equivalence relation a∼ on S is defined by:

∀b, c ∈ S, b
a∼ c⇔ γb (a) = γc (a) (6)

Then, the z-operator is defined as the supremum of an equivalence class of a∼:

∀s ∈ S, ζs (a) =
∨{

b ∈ S | b a∼ s
}

(7)

Finally, the set of all z-zones of a is noted:

ζ (a) = {ζs (a) | ∀s ∈ S} (8)

The authors of [2] have chosen to base the z-operators on the h-connected open-
ings, but we can also define them in terms of h-connected operators leading to
a slightly different definition. Let a∼∗ be the equivalence relation defined by:

∀b, c ∈ S, b
a∼∗c⇔ γ∗b (a) = γ∗c (a) (9)

The alternative z-operator∗ is the supremum of an equivalence class of a∼∗:

∀s ∈ S, ζ∗s (a) =
∨{

b ∈ S | b a∼∗s
}

(10)

Generally, as h-components can be intersecting, ζs (a) �= ζ∗s (a). Consider the set
E = {a, b, c} and the h-connection {∅, {a} , {b} , {c} , {ab} , {bc} , {ac}} on P (E)
with the overlap criterion defined as false (two elements are never overlapping,
this is a valid criterion since it is trivially decreasing). Then, the h-components
of E are {{ab} , {bc} , {ac}}. Thus, we have γa (E) = γb (E) = γc (E) = E and
ζa (E) = ζb (E) = ζc (E) = E. But γ∗a (E) = {{ab} , {ac}}, γ∗b (E) = {{ab} , {bc}}
and γ∗c (E) = {{ac} , {bc}} thus ζ∗a (E) = {a} �= ζa (E). In section 4, we show
that under certain conditions, we have ∀a ∈ L, ∀s ∈ S, ζs (a) = ζ∗s (a). Figure
2 shows an example of function decomposition with the z-operators and the
h-connection of functions having a unique maximum.



90 B. Perret, S. Lefèvre, and C. Collet

a

b c d e

f g h i

Fig. 2. Example of decomposition of the function f using the h-connection of flat
functions. Figure (a) shows the function f , 8 pulses δ1, . . . , δ8 that are representative

of the 8 equivalence classes of the sup-generating family according to
f∼. In image (a),

each zone of f marked by the pulses δi, corresponds to an equivalence class and is thus
the result of a z-operator ζδi (f). Figures (b) to (i) show the results of the h-openings of
f marked by the δi. One can note that figures (c), (e), (g) and (i) are the h-components
of f while the results of the h-opening marked by δ1, δ3, δ5 and δ7 represented in figures
(b), (d), (f) and (h) are not h-connected.

a b c

Fig. 3. Example of h-reconstruction with the h-connection of flat functions. Figure (a)
shows the function f and the marker m. The figure (b) represents the result of the
h-reconstruction �f�m of f by m proposed in [2]. Figure (c) represents the result �f�ζ

m

of f by m with our definition.
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H-reconstruction. Being given a marker m ∈ L, the hyper-reconstruction
(h-reconstruction) of a ∈ L marked by m is defined by [2]:

#a$m =
∨

s∈S,s≤m

γs (a) (11)

We propose another definition based on the alternative z-operators:

#a$ζm =
∨

s∈S,s≤m

ζs (a) (12)

The latter is more flexible, the two approaches are compared in Figure 3.

New properties. We establish here two properties that will help us in following
proofs. Let a ∈ L:

Proposition 2. ∀ {hi} ⊆ γ∗ (a), {hi} ⊆ γ∗ (
∨
{hi})

Proof. Let a in L, {hi} ⊆ γ∗ (a) and b =
∨
{hi}, for all i , we have hi ≤ b and

b ≤ a. Suppose that there exists some h ∈ C+ such that hi ≤ h ≤ b ≤ a. But
by definition of γ∗ (a) and as hi belongs to γ∗ (a), we have hi = h showing that
hi ∈ γ∗ (b). Thus we have {hi} ⊆ γ∗ (

∨
{hi}).

This property that was already known under a different form in [2] states that:
being given a family of h-components, the h-components of its supremum is a
superset of the given family. Those two families are generally not equal, take
for example the h-connection given in section 3; the h-components of the ele-
ment {abc} are {{ab} , {bc} , {ac}}. Now, consider the subfamily {{ab} , {bc}},
the supremum of this family is equal to {abc} and the h-components of this
supremum is a strict superset of the family.

Proposition 3. ∀s ∈ S, ∀h′ ∈ γ∗ (a), if s ≤ h′ and γs (a) = h ∈ C+ then
h = h′.

Proof. Let s in S, h ∈ C+ such that γs (a) = h and h′ ∈ γ∗ (a) such that s ≤ h′.
We have h′ ≤

∨
{g ∈ γ∗ (a) | s ≤ g} = h, so s ≤ h′ ≤ h ≤ a and by definition of

h-components h = h′.

If the h-opening of a marked by the sup-generator s is an h-component then
there is no other h-component of a above s.

In the following, we assume the existence of a complete lattice L with the
sup-generating family S and the h-connection C+ such that the number of h-
components of each element of L is finite.

4 Toward a New Class of Hyper-Connections

Despite the successful developments of h-connections in recent works [3,5,6,7,8,2],
the theory of h-connections is still not satisfactory. All of the successes obtained
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have been based on specific h-connections, whereas only a few general properties
have been established. This lack of theoretical results comes from the very broad
definition of h-connections. The third axiom (the overlap criterion) is especially
problematic. On one hand, this axiom is satisfactory because it formalizes the
intuitive union based approach. On the other hand, the definition of the overlap
criterion is so wide that, in practice, this third axiom does not bring any mean-
ingful property to the h-connection (for example, consider the overlap criterion
which is always false, and the third axiom is never applicable). In fact one can
note that, for any set L verifying axioms 1 and 2 of h-connections, there exists
a set of possible overlap criteria O such that ∀ ��∈ O, the couple (L, ��) is an
h-connection. The set O is partially ordered (given two overlap criteria ��1 and
��2, we say that ��1 is lower than ��2 if ∀A ∈ P (L), ��1 A⇒��2 A) and it owns
a least and a greatest element. The least overlap criterion (noted ��⊥) is the ”al-
ways false criterion” while the greatest overlap criterion (noted ���) is given by
∀A ⊆ C+, �� A⇔ (∀B ⊆ A,

∨
B ∈ C+). Usually, one tends to choose an overlap

criterion close to the greatest one (the most constraining one) but rarely reaches
it [1,2,7,5,6]. One can also observe that the greatest overlap criterion ��� is re-
dundant with the definition of the set of h-connected elements C+: on one hand
��� is completely defined by the definition of C+ and on the other hand, given
���, C+ can be recovered by computing the transitive closure conditionally to ���
of the set of sup-generators (the limit of the sequence (C+

n ) defined recursively by
C+
0 = S and ∀n ∈ N∗, C+

n = C+
n−1 ∪

{
x ∈ L | ∃A ∈ P

(
C+

n−1

)
, �� A, x =

∨
A
}
).

To harden the definition of h-connections, we propose the fundamental prop-
erty that an h-connection must provide for each element a decomposition in
h-components that is necessary and sufficient. With the current theory it is
clear that the decomposition in h-components is sufficient in the sense that an
element is equal to the supremum of its h-components. But in general this de-
composition is not necessary in the sense that only a subset of the h-components
of an element can be necessary to retrieve the element by supremum.

More formally, one can define the following properties ∀a ∈ L:

P-1 – ∀h′ ∈ γ∗ (a) ,
∨
{h ∈ γ∗ (a) |h �= h′} <

∨
γ∗ (a): all h-components of an

element are necessary to describe the element.
P-2 – ∀ {hi} ⊆ γ∗ (a) , ∀h ∈ γ∗ (a) , h ≤

∨
{hi} ⇒ h ∈ {hi}: an h-component

cannot be covered by other h-components.
P-3 – ∀h ∈ γ∗ (a) , ∃s ∈ S, γ∗s (a) = h: each h-component of an element can be

individually retrieved through an h-opening.

Then, the following proposition holds:

Proposition 4. Properties P-1, P-2, and P-3 are equivalent. In the following,
we will say that a connection is accessible if the previous properties hold.

Proof. We first show P-2⇒P-1. Let {hi} ⊆ γ∗ (a), and assume that ∃h′ ∈ {hi}
such that

∨
{h ∈ γ∗ (a) |h �= h′} =

∨
γ∗ (a). Let F =

∨
{h ∈ γ∗ (a) |h �= h′},

one have h′ ≤
∨
γ∗ (a) =

∨
F but that contradicts P-2 since h′ /∈ F .

Then, we show P-1⇒P-2: let {hi} ⊂ γ∗ (a) and assume that there exists
h ∈ γ∗ (a) such that h /∈ {hi} and h ≤

∨
{hi}. Let b =

∨
{hi} =

∨
({hi} ∪ {h}),
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we have by proposition 2 that h ∈ γ∗ (b) and that {hi} ⊆ γ∗ (b). And then we
have

∨
{h′ ∈ γ∗ (b) |h′ �= h} =

∨
{hi} = b which contradicts P-1.

Now P-3⇒P-2: let {hi} ⊆ γ∗ (a) and h ∈ γ∗ (a). Assume that h ≤
∨
{hi}

then, by P-3, there exists s ∈ S such that γs (a) = h and s ≤ h ≤
∨
{hi}. By

assumption, the family γ∗ (a) is finite, so there exists j such that s ≤ hj and
from proposition 3 we can say that h = hj and thus h belongs to {hi}.

And finally, P-1⇒P-3: let h ∈ γ∗ (a), P-1 implies that
∨
B < a with B =

{h′ ∈ γ∗ (a) |h′ �= h}. Now, consider the smallest family {si} ⊆ S such that∨
(B ∪ {si}) = a. Let s be an element of {si}, we have for all h′ ∈ B, s � h′

and s ≤ h thus γs (a) = h.

P-1 and P-2 are two direct formulations of the ”necessity” condition, the first one
from a global point of view, the second from a local point of view. P-3 shows that
this condition naturally comes to the notion of special groups of sup-generators
that give access to a unique h-component through an h-opening. From the image
processing point of view, this means that every h-component of an image can be
selected individually with a simple opening.

Proposition 5. The h-connection (C+
m, ��m) of functions with a unique maxi-

mum is accessible.

Proof. We show that C+
m verifies the property P-3. Let a ∈ LE , h ∈ γ∗ (a) and

x ∈ E such that h(x) = maxy∈E h(y) (h(x) is in the maximum of h). Let the
pulse δx,h(x) and we show that γ∗δx,h(x)

(a) = {h}.
The inclusion {h} ⊆ γ∗δx,h(x)

(a) is direct as δx,h(x) ≤ h and h ∈ γ∗ (a).
We now show the inverse inclusion γ∗δx,h(x)

(a) ⊆ {h}. Let h′ ∈ γ∗δx,h(x)
(a).

We start by showing that ��m ({h, h′}) is true. Let t ∈ L, we have: if t ≤ h(x)
then h¬t �= ∅ and h¬t′ �= ∅ (as δx,h(x) ≤ h′), else if t > h(x) then h¬t = ∅ (h(x)
is the maximal height of h). And yet ∀t ∈ L, t ≤ h(x), we have x ∈ h¬t∩ h′¬t �=
∅. So ��m ({h, h′}) is true. In consequence,

∨
{h, h′} ∈ C+

m, but h, h′ ≤ a so∨
{h, h′} ≤ a, and as h and h′ are h-connected components of a, we have either

h = h′ or h and h′ are not comparable. Assume that h and h′ are not comparable,
then h <

∨
{h, h′}, h′ <

∨
{h, h′}, and as

∨
{h, h′} ≤ a, h and h′ cannot be

h-connected components of a. Thus we have h = h′ and γ∗δx,h(x)
(a) ⊆ {h}.

Thus, we have the double inclusion and γ∗δx,h(x)
(a) = {h}. Every h-connected

component of a can be obtained by an h-opening. The h-connection C+
m verifies

property P-3 and is accessible.

Proposition 6. The h-connection (C+
p , ��p) of flat functions is accessible.

Proof. The demonstration is similar to the previous one using the opening
γ∗δx,h(x)

(a) = {h} with x ∈ E such that h(x) = a(y).

Accessible h-connections also have stronger properties:

Proposition 7. If C+ is accessible, being given a family of h-components, the
h-components of its supremum is the same family: ∀ {hi} ⊆ γ∗ (a), {hi} =
γ∗ (

∨
{hi})
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Proof. We already have the first inclusion {hi} ⊆ γ∗ (
∨
{hi}) by proposition 2.

The second inclusion γ∗ (
∨
{hi}) ⊆ {hi} is directly given by P-2: let h ∈

γ∗ (
∨
{hi}), as we have h ≤

∨
{hi}, P-2 says that h belongs to {hi}. Finally, the

double inclusion proves that {hi} = γ∗ (
∨
{hi}).

Compared to proposition 2, this version is harder and it ensures that by selecting
a family of h-components, its reconstruction by the supremum operator will not
introduce new h-components. From the image processing point of view, this
ensures that, when performing an h-connected filtering, a deleted h-component
cannot re-appear after the reconstruction of the selected h-components. Another
interesting property of accessible h-connections concerns z-operators:

Proposition 8. If C+ is accessible, the equivalence relations a∼ and a∼∗ are
equivalent: ∀s1, s2 ∈ S,

(
s1

a∼ s2
)
⇔
(
s1

a∼∗s2
)
.

Proof. First, we show that ∀s1, s2 ∈ S, s1
a∼∗s2 ⇒ s1

a∼ s2, this part does not
need the accessibility property. We have:

s1
a∼∗s2 ⇔ γ∗s1

(a) = γ∗s2
(a)⇒

∨
γ∗s1

(a) =
∨
γ∗s2

(a) ⇔ γs1 (a) = γs2 (a)

⇔ s1
a∼ s2

The reverse implication is given by: assume that we have s1
a∼ s2, which is

equivalent to γs1 (a) = γs2 (a). Let h ∈ γ∗s1
(a), we have h ≤ γs1 (a) =

∨
γ∗s1

(a) =∨
γ∗s2

(a). Then, P-2 implies that h ∈ γ∗s2
(a) and thus γ∗s1

(a) ⊆ γ∗s2
(a). The same

argument is used to prove that γ∗s2
(a) ⊆ γ∗s1

(a) showing that γ∗s2
(a) = γ∗s1

(a)
which is equivalent to s1

a∼∗s2.

This property removes the necessity of operating a choice between the two dis-
tinct approaches when dealing with z-operators. Thus it simplifies the process
of creating image filters based on z-zones.

5 Conclusion

We have proposed a new class of h-connections motivated by the desirable prop-
erty that the decomposition of an image into connected components should be
necessary and sufficient to describe this image. Due to this evolution, based
on three equivalent axioms, we have set out several new important properties
for image processing which ensure the consistency and simplify the use of h-
connected filters. This theoretical work offers a strong basis for the development
of hierarchical representations based on h-connections [9].

The axiomatic of h-connections is still an open problem because it is only valid
in the finite case and because its third axiom is not well established. Accessible
connexions are certainly too constrained to be the new axiomatic we are looking
for, because it excludes some useful operators like structural filters and path
filters. Nevertheless, besides being a strong basis for meaningful h-connected
filter definition, it is a new step toward the researched axiomatic.
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Favouring It within Homogeneous Regions
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Abstract. By its very nature, alpha-connectivity is subject to the chain-
ing property of single linkage clustering. Thanks to the selection of appro-
priate connectivity constraints, connected components that are affected
by the chaining through transitions can be invalidated. However, it may
happen that (i) a stream of small connected components at the transition
between larger components are created and (ii) none of the connected
components is matching a desired object whatever the threshold levels
associated with the constraints. These two problems are caused by the
presence of transitions. In this paper, we characterise transitions in view
of their impact on constrained connected paths. We then show that both
problems can be addressed simultaneously by either pre-filtering or by
introducing a dissimilarity measurement preventing connections through
transitions while keeping a definition based on absolute difference mea-
surements.

Keywords: single-linkage clustering, alpha-connectivity, dissimilarity,
constrained connectivity, increment operators, smooth connection.

1 Introduction

A connectivity relation between elements of an arbitrary set is an equivalence re-
lation producing a unique partition of this set. The partition cells are equivalence
classes that correspond to connected regions of maximal extent called connected
components. For example, in image processing, a connectivity relation can be
obtained by stating that two pixels of a grey tone image are connected if there
exists a path of pixels linking these pixels and such that the grey level absolute
difference between adjacent pixels of the path (i.e., weights of the edges of the
path) does not exceed a given threshold value [1,2]. The resulting connected
components are called quasi-flat [3] or lambda-flat [4] zones in mathematical
morphology. This type of connectivity can be expressed in terms of a connective
criterion as shown in [5]. The terminologies quasi- and lambda-flat zones are
somewhat misleading because the ‘flatness condition’ set by the threshold value
lambda acts only on paths so that it does not forbid the creation of connected
components containing adjacent pixels with a local difference larger than the
value of lambda. For this reason and because it is explicitly referring to the
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x

f(x) region 2transition pixel
region 1

Fig. 1. A 1-dimensional hypothetical signal with a 1 pixel thick transition between two
regions characterised by a square signal

notion of connected component, the terminology α-connected component was
introduced in [6]. A hierarchy of fine to coarse partitions of the image domain
into α-connected components is obtained by increasing the value of the absolute
difference threshold parameter α.

It has already been recognised in [2,6] that α-connectivity corresponds to
the single linkage clustering which is itself related to the notion of minimum
spanning tree [7]. This hierarchical clustering method is known for not being
subject to ties (so that it generates unique partitions) but, on the other hand,
for being sensitive to the presence of samples of intermediate characteristics.
This sensitivity is referred to as the chaining effect in [8] but we prefer to call
it chaining through transitions because the chaining effect itself is related to the
very nature of single linkage and is therefore a property rather than an effect.
Constrained connectivity addresses this problem by invalidating connected com-
ponents that are subject to the chaining through transitions. This is achieved
by selecting the largest connected components satisfying a series of constraints
expressed in terms of logical predicates [9]. However, while this approach suc-
ceeds in preventing the selection of α-connected components that were subject
to chaining through transitions, it creates a stream of small α-connected compo-
nents located in image regions called transitions and characterised by a gradual
change in brightness from neighbouring dark and bright regions. Moreover, in
some situations the formation of connected components that would otherwise be
desired is not occurring whatever the considered constraints and their associated
threshold values. Take for example the 1-dimensional signal illustrated in Fig. 1
representing two regions characterised by identical square signals up to an offset
equal to their amplitude. For this signal, depending on whether the α threshold
is less than the amplitude or not, there exists either a α-connected component
for each pixel or a unique α-connected component matching all pixels. Therefore,
the application of constraints to the α-connected components will never lead to
three connected components (one for each region and one for the so-called tran-
sition pixel). While the example of Fig. 1 is artificial and extreme, transitions
are commonly observed on digital images. Accordingly, image partitioning based
on constrained connectivity leads to a string of small connected components at
the boundary of larger components or even impede the formation of desirable
connected components.

In this paper, after a series of preliminary definitions and notations on hierar-
chical graph segmentation and constrained connectivity (section 2), a character-
isation of transition regions and their impact on α-paths are presented (section
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3). Then, methods for handling transitions are detailed (section 4). Before con-
cluding, the experimental section (section 5) shows that the method based on a
dissimilarity measure preventing connections through transitions while keeping
a definition based on absolute difference measurements is the most effective.

2 Preliminaries

This section presents definitions related to hierarchical graph segmentation in
general and then in the context of constrained connectivity.

2.1 Hierarchical Graph Segmentation

A graph1 is an ordered pair (V,E) comprising a set V of vertices followed by a
set E of edges, which are 2-element subsets of V . The operators that return the
vertex and edge sets of a graph are denoted by V and E respectively. Hence, if
X = (V,E) then V = V(X) and E = E(X). A graph Y is a subgraph of a graph
X if and only if V(Y ) ⊆ V(X) and E(Y ) ⊆ E(X). Two subgraphs X1 and X2 of
a graph X are said to be adjacent if there exists at least one edge e = {vi, vj}
of E(X) such that vi ∈ V(X1) and vj ∈ V(X2). A subgraph Y of a graph X is
said to be induced if, for any pair of vertices {vi, vj} of Y , {vi, vj} is an edge of
Y if and only if {vi, vj} is an edge of X . If the vertex set of Y is a subset S of
V(X), then Y can be written as X [S] and it is said to be induced by S.

By analogy with the usual definition of a segmentation in image process-
ing [11], we define the segmentation of a connected graph X as a collection of
connected induced subgraphs of X realising a partition of the vertices of X and
such that there exists a logical predicate P returning true on each subgraph but
false on any graph induced by the union of the vertices of adjacent subgraphs.
That is, a series of subgraphsXi of a graphX forms a segmentation of this graph
if and only if the following six conditions are met (i) Xi = X [V(Xi)] for all i,
(ii) ∪iV(Xi) = V(X), (iii) V(Xi) ∩ V(Xj) = ∅ for all i �= j, (iv) Xi is connected
for all i, (v) P (Xi) = true for all i, and (vi) P (X [V(Xi) ∪ V(Xj)]) = false if Xi

and Xj are adjacent.
The coarsest possible segmentation of a graph is the graph itself and its finest

possible segmentation is composed of the collection of its vertices. A hierarchical
segmentation of a graph is a fine to coarse sequence of segmentations of this
graph such that each subgraph of a segmentation is included in a subgraph of
the subsequent segmentation (nesting property).

By construction, a hierarchical segmentation of a graph is parameterised by
a non-negative real number indicating the level of a given segmentation in the
hierarchy. At the bottom level, this number is equal to zero and each node
corresponds to a subgraph so that the finest possible segmentation is obtained.
At the top level, one finds the input graph. Given any two vertices, it is possible
to determine the minimum level value for which these two vertices belong to
the same subgraph. A key property of hierarchical segmentation is that the
1 Standard definitions of graph theory can be found for example in the online book [10].
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function that measures this minimum level is an ultrametric. An ultrametric is a
measurement that satisfies all properties of a metric (distance) plus a condition
stronger than the triangle inequality and called ultrametric inequality. It states
that the distance between two vertices is lower than or equal to the maximum
of the distances calculated from (i) the first vertex to an arbitrary third vertex
and (ii) this third vertex to the second vertex. Denoting by d the ultrametric
function and u, v, and w respectively the first, second and third vertices, the
ultrametric inequality corresponds to the following equation:

d(u, v) ≤ max{d(u,w), d(w, v)}.

The ultrametric property of hierarchical clustering was discovered in [12]. This
property was referred to in the context of morphological hierarchical segmenta-
tion for the first time in [13].

The segmentation of a graph X = (V,E) relies on a function associating
its edges with a weight. This function can be viewed as a measure of the de-
gree of dissimilarity between adjacent vertices. A dissimilarity measurement
[14, pp. 5–6] between the elements of a set V is a function d
 from V × V
to the set of nonnegative real numbers satisfying the three following conditions:
(i) d
(x, y) ≥ 0 for all x, y ∈ V (i.e., positiveness), (ii) d
(x, x) = 0 for all x ∈ X ,
and (iii) d
(x, y) = d
(y, x) for all x, y ∈ V (i.e., symmetry). Starting from an
arbitrary dissimilarity measurement, it is possible to construct a hierarchical seg-
mentation with the ultrametric distance between any two vertices (or subgraphs)
being defined as the dissimilarity threshold level from which these two vertices
(or subgraphs) belong to the same subgraph. In practice, this is achieved by an
iterative procedure linking first the pair of adjacent vertices with the smallest
dissimilarity value so as to form a first non-trivial subgraph (i.e., non reduced to
one node). To proceed, the dissimilarity measurement between adjacent vertices
needs to be extended so as to be applicable to subgraphs. Let Xi and Xj denote
two subgraphs obtained at a given iteration level. The dissimilarity between be-
tween these two subgraphs is naturally defined as a function of the dissimilarities
associated with the edges of X linking these two subgraphs:

d
(Xi, Xj) = Φ
{
d
(vi, vj) | vi ∈ Xi, vj ∈ Xj , and {vi, vj} ∈ E(X)

}
.

Typical choices for the function Φ are the minimum, average, or maximum.
In contrast to the maximum and average functions, the minimum rule (also
called nearest neighbour) is insensitive to ties so that the result is unique (order
independent). Segmentation by the minimum rule is referred to as single linkage
segmentation. Indeed, only the pair (link) with the smallest dissimilarity value
is playing a role.

In practice, there is a one to one correspondence between the objects under
study and the vertices of corresponding graph. If these objects have a spatial
location like the pixels of a digital image, the edges of the graph do not usually
contain every possible pair of vertices but only those pairs that are spatially
related according to some predefined rule. In this paper, for all examples referring
to discrete images, we assume that the 4-connected graph is considered.
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2.2 Constrained Connectivity

Constrained connectivity [6] extracts maximal connected components of a hi-
erarchical representation satisfying a series of constraints expressed in terms of
logical predicates. The hierarchy relies on a dissimilarity measurement originally
defined as the absolute difference between pixel intensity values (i.e., local range
measurement α) and is directly applicable to other dissimilarity measurements
(see example in [15]).

Let (V,E) be a graph with vertex set V valued by a function f and edge set E
valued by a dissimilarity function d
. The α
-connected components of the graph
(V,E) are the connected component of the graph (V,E′) where the edge set E′

is obtained by removing from the edge set E all edges which have a dissimilarity
value strictly greater than the value of the non-negative parameter α
: E′ =
{ei ∈ E | d
(ei) ≤ α
}. An equivalent definition can be obtained in terms of
α
-connectivity. A α
-path is a sequence of vertices such that from each vertex
there exists an edge to the next vertex in the sequence and with a dissimilarity
(weight) less than or equal to α
. Two vertices p and q are α
-connected if there
exists at least one α
-path from p to q. By definition, a pixel is said to be α
-
connected to itself. The vertex set of the α
-connected component of a pixel p,
denoted by α
-CC(p), is defined as the set of image pixels that are α
-connected
to p:

V [α
-CC(p)] = {q ∈ V | q is α
-connected to p}.

The edge set of α
-CC(p) is defined as the set of edges of the graph induced by
the vertices of α
-CC(p) and whose associated dissimilarity is less than or equal
to α
:

E [α
-CC(p)] =
{
{vi, vj} ∈ E

[
X
[
V [α
-CC(p)]

]]
| d
(vi, vj) ≤ α


}
.

Note that the α
-connectivity relation is equivalent to the single linkage clus-
tering rule with its corresponding hierarchical representation and ultrametric
[16] that can be represented by the so-called α
-tree [17]. This hierarchy can be
expressed in terms of a hierarchy of watersheds where the flooding starts from
the image 0-dissimilar connected components [15].

Assume a series of n ≥ 1 predicates Pk returning true on every 0-dissimilar
connected component: Pk(0
-CC(p)) = true for all pixels p. The constrained
connected component of a pixel p associated with these predicates is denoted by
(P1, . . . , Pn)-CC(p) and is defined as follows [9,18]:

(P1, . . . , Pn)-CC(p) =
∨{

α

i -CC(p)

∣
∣
∣ (1)

Pk

(
α


i -CC(p)
)

= true for all k ∈ {1, . . . , n} and

Pk

(
α


j -CC(q)
)

= true for all j ≤ i and all q ∈ α

i -CC(p)

}
.

Throughout this paper, the notation α refers explicitly to the threshold value
corresponding to the dissimilarity measure defined as the absolute difference
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while the notation α
 refers to the threshold level associated with an arbi-
trary dissimilarity measure d
. In the next section, the notions of increasing,
α-increasing, and strictly increasing paths will be needed. An increasing path of
a graph with real valued vertices is a sequence of adjacent vertices whose val-
ues are monotonic increasing. An α-increasing path is an increasing path such
that the maximum absolute difference between all pairs of successive pixels of
the paths is equal to α. A path is strictly increasing if the values of its vertices
are strictly increasing. Finally, recall that the length of a path is defined as the
number of its edges, or, equivalently, the number of its vertices minus 1.

3 Characterisation of Transitions

Transitions are analysed hereafter by studying their impact on the paths linking
the regions they separate while minimising the maximum absolute grey level
difference between successive points of these paths.

Transitions originate from the digitisation and quantisation processes. Indeed,
when sampling a signal such as an ideal 1-dimensional step edge, aliasing is
usually mitigated by applying a low-pass anti-aliasing filter such as a box-filter
before sampling. Then, if the resulting signal is sampled at the minimum rate
required by the sampling theorem, the resulting signal will show a transition
(blurred edge) with a width at least equal to the sampling distance [19]. In the
case of 2-dimensional signals (images), if there is a one-to-one correspondence,
both in shape and in spacing, between sensor elements and pixels, and if the
sensor elements show uniform sensitivity and linear response, then the pixel value
will be proportional to the mean value of the signal portion which is being covered
by that pixel. Consider for example two regions separated by an ideal step edge
whose orientation is expressed by an irreducible fraction b/a while including
the forms 0/1 and 1/0 for referring to horizontal and vertical lines respectively.
After digitisation, the internal boundary of the two resulting regional extrema
regions will appear as a discrete Bresenham line of slope b/a. The transition
is located in between these extrema regions. While its width in the direction
perpendicular to that of the edge is close to 1 pixel (if sampling occurs at the
minimum rate required by the sampling theorem), the least upper bound of the
length of the strictly increasing (or strictly decreasing) paths linking the two
extrema regions is equal to max(|a|, |b|)) + 1 pixels, assuming that the intensity
values are not quantised. Therefore, the theoretical greatest lower bound for the
value of α of a α-increasing path linking two regions separated by an ideal step
edge of arbitrary orientation, is only limited by the intensity quantisation step
(assumed to be uniform). Expressing the orientation of the edge in terms of an
irreducible fraction b/a and denoting by h and Δ the intensity difference between
the regions and the quantisation step respectively, the greatest lower bound of
α is equal to max{h/(max(|a|, |b|) + 1), Δ}.

This effect can be observed in practice as shown in Fig. 2 on a series of 4
zooms of a typical aerial image. Each zoom displays the transitions between
dark and bright regions (the former are shadows cast by buildings and the latter
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(a) 512 × 512 aerial image. (b) Four 16×16 samples of (a) with clearly visible
transitions.

Fig. 2. A grey level image and a series of 4 zooms with transitions at the interface
between bright and dark regions. The input image originates from the miscellaneous
section of the USC-SIPI image database, see http://sipi.usc.edu/database/

the buildings themselves or the ground). In these zooms, notice that the length of
the longest strictly increasing paths linking dark to bright regions increases when
the slope of the edge between these regions gets closer to the horizontal or vertical
directions. Accordingly, the α value of the corresponding α-increasing paths
decreases. Experimental results on controlled and real data with quantitative
measurements confirm these observations. The previous examples also show that
partitions relying on α-connectivity will depend on the orientation of the image
objects. Consequently, the use of subsequent constraints applied to the resulting
α-connected components cannot suppress this dependency.

4 Handling Transitions in Constrained Connectivity

As stated in the introduction, constrained connectivity based on α-connectivity
is effective in preventing chaining through transitions because the resulting con-
nected components would violate the input constraints, but it may generates
many small connected components between adjacent larger connected compo-
nents. In addition, if none of the α-connected components of an α-hierarchy is
matching a given homogeneous region because its internal homogeneity is higher
than its external isolation, the use of additional constraints does not help. While
appropriate post-processing can address the former problem, this approach can-
not solve the latter problem. Both problems can be handled simultaneously by
pre-filtering the image as shown in section 4.1. An alternative approach is to con-
sider a contrast-based dissimilarity measurement that does not allow chaining
through transitions as proposed in section 4.2.

http://sipi.usc.edu/database/
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4.1 Pre-filtering

Pre-filtering consists in pre-processing the image in such a way that transi-
tion regions are suppressed or at least reduced. This can be achieved by most
neighbourhood-based contrast enhancement techniques. For example, iterations
of the Kramer-Bruckner enhancement [20] (further developed in mathematical
morphology in [21,22]) leads to images containing only local minima and max-
ima and therefore no more transition pixels. However, this approach modifies
drastically the image and has side-effects such as the creation of halos [21].

By its very nature, a transition pixel is a pixel that is not a local extremum [18].
The transition pixels of a grey tone image f correspond to the non-zero values
of the point-wise minimum between the elementary gradients by erosion and
dilation of f (denoted by ρε and ρδ respectively):

p, transition pixel of f ⇔
[
ρε(f) ∧ ρδ(f)

]
(p) �= 0. (2)

Pre-filtering consists in preprocessing the image so as to reduce the occurrence
of transition pixels. This can be achieved by applying the following contrast
enhancement filter. First, the local extrema of the input image are extracted.
Then, they are expanded to generate the local extrema mosaic using a region
growing process driven by a similarity measurement [23]. Each region of the local
extrema mosaic is then set to the value of the local extremum that generated
this region. This leads to a contrast enhanced image with only few remaining
transition pixels. Consequently, constrained connected components of the en-
hanced image are less likely to chain from one component to another so that
chaining within homogeneous regions is favoured while being prevented through
transitions. Note that this method inherits of the order dependence of most re-
gion growing algorithms. The iterative ramp sharpening method proposed in [24]
is order independent and avoid ringing (halos) but it is not as effective as the
extrema mosaic for mitigating the occurrence of transition pixels in the sense of
Eq. 2.

4.2 Contrast-Based Dissimilarity Measurement

To prevent chaining through transition pixels, an estimation of the minimum α-
dissimilarity (i.e., absolute difference of the intensity of adjacent pixels) along the
most contrasted increasing paths2 of three pixels going through the considered
pixel is needed. The most contrasted path going through a transition pixel links
its (or one of its) adjacent pixel(s) having the lowest intensity level to its (or one
of its) adjacent pixels having highest intensity level. Therefore, the contrast of
the most contrasted increasing paths of an arbitrary pixel is equal to the value of
the morphological gradient ρ at this pixel if it is a transition pixel, 0 otherwise.
The resulting map is called transition map in [18]. Accordingly, the minimum
α-dissimilarity along the most contrasted paths going through a pixel is equal to

2 The contrast of an increasing path is defined as the absolute difference of the intensity
values of its end points.
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the point-wise minimum value of the values of the gradients by erosion ρε and
dilation ρδ at this pixel. We call the corresponding operator the inf-increment
operator and denote it by ρ∧:

ρ∧ = ρε ∧ ρδ.

Alternatively, if transition paths need to be restricted to horizontal or vertical
sequences of pixels, the inf-increment operator should be redefined accordingly:

ρ∧ =
∨

θ∈{0,π/2}
{ρε

θ ∧ ρδ
θ},

where ρε
θ = id− εθ and ρδ

θ = δθ − id with εθ (resp. δθ) denoting the elementary
directional erosion (resp. dilation) in the direction θ.

The extension of these definitions to larger neighbourhoods is left for an exten-
sion of this paper. Because gradients by erosion and dilation boil down to local
downward and upward contrast measurements (grey level differences), they can
be combined with absolute grey level differences when designing a contrast based
dissimilarity measure. Since the goal is to prevent chaining through transitions,
the combination should be based on the point-wise maximum rule. We obtain
therefore the following dissimilarity measure:

d
(p, q) = max
{
|f(p)− f(q)|, ρ∧(p), ρ∧(q)

}
. (3)

With this dissimilarity value, pixels located in the middle of the paths linking
two regions by chaining through transitions (see Sec. 3) have a dissimilarity
value close to half of the absolute difference of the values of the regions they
link. Therefore, this dissimilarity measure prevents linking through transitions
while favouring it through homogeneous regions.

5 Results and Discussion

Results are illustrated on a synthetic image displayed in Fig. 3a. This image
consists of two regions (with intensity values set to 1 or 0 and 5 or 6 respectively)
separated by a one pixel thick vertical ramp with steps of one intensity level.
It follows that there are only two types of α-connected components for this
image: either the pixels themselves (the 0-CCs) or only one connected component
covering the whole image definition domain (the 1-CC). Assuming 4-adjacency,
the transition between these regions goes by steps of one intensity level. The
contrast enhanced image according to the method of Sec. 4.1 is shown in Fig. 3b.
Note that the value of the middle pixel of the transition region is to either 6
or 0 (here 0), the choice depending on the implementation. Two α-connected
components matching the left and right regions is obtained for all values of α in
the range [1, 4] as shown in Fig. 3c.

Figures 4a–e show the results obtained with contrast-based dissimilarity mea-
surement and assuming also 4-adjacency. In this case, no pre-filtering is required
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(a) Input synthetic image (b) Contrast enhanced image (c) α-CCs for α ∈ [1, 4]

Fig. 3. Handling transitions using pre-filtering method
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(a) Internal gradient ρε
(b) External gradient ρδ (c) Inf-increment ρ∧ = ρε∧ρδ
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(d) Dissimilarity map d� (boxed
values) following Eq. 3

(e) 2�-CCs (f) For comparison: using
degree-based dissimilarity

Fig. 4. Handling transitions using modified dissimilarity measures. (a)–(e) The pro-
posed contrast-based dissimilarity. (f) The degree-based dissimilarity of [15]. The input
image is shown in Fig. 3a.

and the resulting segmentation (Fig. 4e) is uniquely defined (no ties). For com-
parison, Fig. 4f shows the output of a degree-based dissimilarity [15] (with α = 2
and deg ≥ 3) preventing chaining through transitions but creating one pixel CCs
for all pixels having less than three α-neighbours (i.e., deg < 3), e.g., all corners.

Note that chaining through transitions does not arise in the smooth connec-
tion proposed in [5]. Indeed, contrary to dissimilarity based connectivity, smooth
connection is not based on graph adjacency but on a connective criterion defined
in terms of balls on which the function is Lipschitz so that any smooth linkage
between two regions must necessarily have a minimum width. However, the draw-
back of this approach is that flat and thin bright and dark image structures are
also decomposed into isolated pixels (singletons of the partition) as well as all
pixels the edges of the smooth regions. More precisely, the support of the sin-
gleton connected components of the smooth connection with Lipschitz constant
set to k are obtained by thresholding the point-wise maximum of the elementary
gradients by erosion and dilations for all values that are greater than or equal
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(a) Sup-increment ρ∨ = ρε∨ρδ (b) Smooth connection

Fig. 5. Smooth connection. (a) Sup-increment function of the synthetic image shown
in Fig. 3a. (b) Resulting connected regions according to the smooth connection [5] with
Lipschitz constant k set to 1.

to k. The point-wise maximum of the elementary gradients by erosion and dila-
tions is called the increment function in [5]. By analogy with the inf-increment
operator put forward in this paper, we call the operator underlying the incre-
ment function of [5] the sup-increment operator and denote the it by ρ∨, i.e.,
ρ∨ = ρε ∨ ρδ. For example, the output of the sup-increment operator of Fig. 3a
is displayed in Fig. 5a (see Figs. 4a–b for the gradients by erosion and dilation)
and the output of the corresponding smooth connection is shown in Fig. 5b.

6 Conclusion

Having all pixels in focus and sampling close to the minimum rate is essen-
tial when considering constrained connectivity. Fortunately, these conditions are
fulfilled for most aerial and satellite images. If not, transitions in the direc-
tion perpendicular to the object edge could span over many pixels so that the
proposed dissimilarity measure would not be as effective for blocking chaining
through these transitions. In this latter case, other dissimilarities would need to
be developed. For example, the concept of frequent and dependent connectivity
in the framework of decision based connectivity [25] could be used to mitigate
chaining through transitions as briefly hinted in the latter paper. A paper unify-
ing these concepts and assessing quantitatively their impact on the constrained
connectivity partitioning of satellite images is in preparation.
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Abstract. Constrained connectivity relations partition the image defi-
nition domain into connected sets of maximal extent. The homogeneity
and maximality of the resulting cells is subject to non-connective crite-
ria that associate to logical predicates. The latter are based on attribute
metrics, and are used to counter the leakage effect of the single-linkage
clustering rule. Linkage is controlled by some dissimilarity measure and
if unconstrained, may be used to generate regular connectivity classes.
In this paper we introduce a hierarchical partition representation struc-
ture to map the evolution of components along the dissimilarity range in
the absence of constraints. By contrast to earlier approaches, constraints
may be put in place on the actual structure in the form of filters. This
allows for custom and interactive segmentation of the image. Moreover,
given an instance of the dissimilarity measure, one can retrieve all con-
nected sets making up the corresponding connectivity class, directly from
the hierarchy. The evolution of linkage relations with respect to the at-
tributes on which the predicates are based on is used to compute a new
type of pattern spectrum that is demonstrated on two real applications.

1 Introduction

Image segmentation in the context of connected morphology [18] is the partition-
ing of the image definition domain into homogeneous cells of maximal extent.
Maximality is guaranteed through a connective criterion of homogeneity, i.e. one
that generates a connection [17, Chap. 2] from the homogeneous image regions.
Connective criteria however, introduce leakage effects on the connected compo-
nents and examples are discussed in [12].

Constrained connectivity [19] provides a segmentation framework that relies
on a sub-connection of the canonical path-based graph connectivity. This is
referred to as dissimilarity-based or α-connectivity [19] and can be constrained
through a series of logical predicates. Utilizing appropriate constraints minimizes
the leakage effect in the process of generating homogeneous image regions by
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preventing the creation of a maximal partition [18]. That is because the binary
criterion associated to each predicate is not connective. This works in the benefit
of many applications since it allows for strict controls over the segmentation
process.

The α-connected components (α-CCs) [19], also known as single-linkage com-
ponents [7], are equivalence classes on the image definition domain, thus defining
a unique partition. Constrained α-partition cells are non maximal in the sense
of a connective criterion, and an example is discussed in Section 3. α-partitions
however, irrespective of any constraints, are totally ordered with respect to the
dissimilarity range [15] and can be organized in a hierarchical structure that we
refer to as a partition pyramid. This can be further reduced to a compact equiv-
alent, the partition hierarchy, which is characterized by strict inclusion, thus
resolving redundancies caused by replicating components over multiple pyramid
levels. Both structures are discussed in Section 4. Running queries based on cell
attributes [2] allows for customizing the segmentation in ways not supported by
the conventional connective segmentation scheme. The work in this paper deals
with computing pattern spectra [5] from both types of partition representation
structures. This is described in Section 5 and it is followed by two applications
given in Section 6. A short discussion and conclusions are given in Section 7.

2 Preliminaries

Let I be a gray-tone image and E be its definition domain, i.e. a Euclidean
subspace. A partition P of E is its division into a set of non overlapping and non-
empty cells, the union of which is equal to E. The cells of P are both collectively
exhaustive and mutually exclusive with respect to the set being partitioned. The
formal definition as given in [17, Chap. 1], is the following:

Definition 1. Let E be the definition domain of an image. A partition P of E
is a mapping x→ P(x) from E into the power set of E, denoted by P(E), such
that:

1. ∀x ∈ E ⇒ x ∈ P(x);
2. ∀x, y ∈ E ⇒ P(x) = P(y) or P(x) ∩P(y) = ∅.

The term P(x) above indicates a cell of P marked by/containing a point x ∈ E.
It follows that: ⋃

x∈E

P(x) = E. (1)

A partitioning scheme frequently encountered in image analysis is the sepa-
ration of the image content into foreground and background components. This
dichotomy can be realized by connected operators, examples of which are the
connectivity openings and closings. Given a point x ∈ E that marks a set X ⊆ E,
the connectivity opening Γx extracts the set of maximal extent containing x or
returns ∅ otherwise. A set C ⊆ E is of maximal extent if there is no other set
C′ ⊃ C such that C′ ⊆ E and C′ ∈ C . In this case C is referred to as a connected
component according to the connectivity class C .
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A connectivity class is the family of all the sets of a space E that are connected
according to some notion of connectivity. The axiomatic definition given in [17,
Chap. 2] states:

Definition 2. Let E be an arbitrary non-empty space. A connectivity class or
connection C is any family in P(E) such that:

1. ∅ ∈ C ;
2. ∀ x ∈ E, {x} ∈ C ;
3. for each family {Ci, i ∈ L} ⊆ C ,

⋂
i Ci �= ∅ implies

⋃
i Ci ∈ C , where L is an

index set.

Connectivity openings are directly related to connectivity classes [17, Chap. 2],
and can be customized to address more general notions of connectivity such as
clustering, contraction [14,1], mask-based connectivity [11] or partition-induced
connectivity [18, 12]. They are anti-extensive, increasing and idempotent oper-
ators and form the basis of attribute filters [2]. The latter are edge preserving
operators that extract connected components which satisfy some attribute crite-
rion. Attribute filters and other connected operators can be organized in families
known as granulometries [17], with respect to some scale or attribute parame-
ter s from a totally ordered set, from which one can study the distribution of
image detail with respect to the concerned attribute.

Let S = {0, s1, ..., smax}, be a set of totally ordered thresholds for some in-
creasing attribute. Formally, a granulometry of a binary image X can be defined
as a decreasing family of attribute openings {Γ s | s ∈ S} for which:

∀s, s′ ∈ S ⇒ Γ s(Γ s′
(X)) = Γ s′

(Γ s(X)) = Γmax(s,s′)(X). (2)

Granulometries for non-increasing operators have been investigated in [22]. The
order in that case is preserved by utilizing appropriate filtering rules. The dis-
tribution of image detail that is often given by the sum of pixels, with respect
to one or more attributes is a histogram that is referred to as the granulometric
curve or pattern spectrum [5]. An attribute class or histogram bin to which a
point x ∈ X contributes, is the smallest value of s for which x �∈ Γ s(X). The
pattern spectrum by PSΓ s(X) applying an attribute-specific granulometry {Γ s}
to a binary image X is defined as [22]:

(PSΓ s(X))(u) = −dξ(Γ s(X))
ds

∣
∣
∣
∣
s=u

. (3)

The term ξ is the Lebesgue measure, which for n = 2 is the set area.

3 Constrained Connectivity

Consider a gray-tone image I projected on a graph space in which, vertices
(nodes) correspond to atomic elements, and edges to pairs of adjacent vertices.
A path {x  y} between any two elements x to y is a chain of pairwise adjacent
elements commonly given in the form of {x  y} ≡ 〈x0 = x, x1, ..., xn = y〉.
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Fig. 1. Three points on the input space labeled by some attribute value, (a). Setting
α=1 yields 6 connected sets; the 3 singletons in (b), the set {2, 3} in (c), the set {3, 4}
in (d), and the set of maximal extent, i.e. α-connected component, in (e). For the last
three, the difference between neighbors is no greater than 1. The total range constraint
ω = α yields three singleton sets since the ω range of the 1-CC in (e) is 2, i.e. ω prevents
its creation, (f).

Links between adjacent nodes are called edges. Assuming that d is the slope, i.e.
the intensity difference, between any two adjacent elements, then setting d = 0
leads to the definition of flat zones [16], which are connected image regions of
constant intensity. Note that d is not necessary intensity-specific. The term flat-
zone refers to components with members of 0 dissimilarity between them, and
in the more general case, single-linkage [7] or α-connected components [19], also
known as quasi-flat zones [6], can be defined as follows:

Cα(x) = {x} ∪ {y | ∃{x  y} : ∀xi ∈ {x  y} ∧ xi �= y, d(xi, xi+1) ≤ α}. (4)

That is, all atomic elements are connected sets themselves, and a connected set
of maximal extent, i.e. a connected component, marked by a point x ∈ E is
the union of all points y ∈ E, such that for each one there exists a path to x
in which all adjacent elements have a dissimilarity measure less than or equal
to α. The α parameter in the above definition is a threshold; if the difference
between some attribute of x and y is less than or equal to α, the two are directly
connected, i.e. there exists an edge between x and y, thus are members of the
same α-connected component Cα(x). The case in which d(x, y) > α does not
imply that x and y do not belong to the same Cα(x) but only that there is no
direct linkage between them. Note that any α-CC given by (4), satisfies the two
last conditions of Def. 2, i.e. α-connectivity is a sub-connection of the canonical
path-wise connection on a graph space. Fig. 1 shows an example of a single 1-CC
consisting of three points. In image (e) the union of two α-connected sets {2, 3}
and {3, 4} that have a non-empty intersection, is α-connected too.

Connectivity relations based on dissimilarity measures are known to suffer
from leakage effects through paths in which adjacent elements differ less than α.
One solution, proposed explicitly for this problem, is the introduction of con-
straints through a sequence of logical predicates based on various attributes [21].
An example is the ω range [19], i.e. the total intensity variation allowed within
a component, which leads to the following definition:

C(α,ω)(x) = max
{
Cαj (x) | αj ≤ α and R(Cαj (x)) ≤ ω

}
. (5)
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A C(α,ω)(x) connected component is essentially the maximal indexed Cαj (x)
containing the point x ∈ E that does not exceed the local and global dissimilarity
threshold α and ω respectively. The latter is given by the R() functional.

The two conditions of (5) can be expressed as Boolean valued functions,
each returning true when the associated argument satisfies the corresponding
predicate and false otherwise. Consider a binary criterion σ [18] enumerating
the logical output of each predicate in the general case of constrained
connectivity.

Definition 3. Let E and T be two arbitrary sets and let F be a family of func-
tions from E into T . A criterion σ on the class F is a binary function from
F × P(E) into {0, 1} such that for each function f ∈ F , and for each set
X ∈ P(E):

1. σ[f, X ] = 1, if the predicate returns true,

2. σ[f, X ] = 0, if the predicate returns false.

Moreover, it is assumed that for all functions the respective criteria are satisfied
on ∅, i.e.:

σ[f, ∅] = 1, ∀ f ∈ F . (6)

In the interest of segmentation as described in [18], searching for the largest
partition in conjunction to the connectivity class axiomatics, Serra concludes to
the more explicit connective criterion which is defined as follows:

Definition 4. A criterion σ : F × P(E) → {0, 1} is connective if for each
set f ∈ F the sets X for which the predicate(s) is (are) satisfied, generate a
connection, i.e.:

1. for the class of singletons S and ∀ f ∈ F , {x} ∈ S ⇒ σ[f, {x}] = 1;
2. ∀ f ∈ F and ∀{Xi} ∈ P(E) : σ[f, {Xi}] = 1 the following holds:

⋂
Xi �= ∅

and
∧

σ[f, {Xi}] = 1⇒ σ
[
f,
⋃

Xi

]
= 1.

Returning to the example of Fig. 1, it is seen that the three points of image (a)
define 6 α-connected sets for α = 1; that is the 3 singletons, the sets {2, 3} and
{3, 4}, and the 1-CC consisting of all 3 points, i.e. the connected set of maximal
extent. The conditions for the criterion σ to be connective, are satisfied. In
particular, the sets {2, 3} and {3, 4} have a non-empty intersection and the α
predicate is satisfied in their union. This however, is not the case when a further
constraint is added. Image (f) shows an example for the case that ω = α (ω is
the total range). The corresponding criterion σ is satisfied on each of the two
overlapping connected sets but fails on their union because the total range is 2.
Thus, σ does not generate a connection for α = ω = 1, i.e. it is not a connective
criterion.
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4 Partition Pyramids and Hierarchies

Creating a partition of the image definition domain based on constrained con-
nectivity relations was so far dealt with by constraining the evolution of regular
α-CCs. In this section we propose an alternative method, in which the evolution
of components is computed under the absence of constraints, and represented
in a hierarchical structure. Constraints are put in place in a separate stage,
through binary attribute criteria on the respective α-CCs. Creating the desired
partition becomes an equivalent process to regular attribute filtering, and allows
for interactive segmentation.

Recall that the notion of connectivity defines an equivalence relation on the
image definition domain. Like with regular adjacency-based connectivity,
dissimilarity-based connectivity was shown to be reflexive, symmetric and tran-
sitive [21, 19], thus leading to a partition of any given I to a finite set of cells
that correspond to α-CCs. The cells of Pα are also known as equivalence classes.
Note that all elements in a given cell are equivalent among themselves and no
element is equivalent to any other element from a different cell.

Given an image I, let ΠA(E) be the set of all α-partitions of its definition
domain E. A is called the alpha dissimilarity range and is defined as a vector of
thresholds A = [0, 1, ..., αmax] whose upper bound depends on the dissimilarity
measure d. Given a point x ∈ E marking a cell of a partition Pα ∈ ΠA(E), with
α ∈ A and assuming that |A| > 1, then for any other α′ ∈ A:

∀x ∈ E, if α′ < α ⇒ Cα′
(x) ⊆ Cα(x) ⇒ Pα′ � Pα. (7)

The relation � denotes a notion of order with respect to α ∈ A [19]. The family
of ordered partitions of E for the entire α dissimilarity range is defined as follows:

Definition 5. A partition pyramid of E assuming that |A| > 1, is a mapping
�A : E → ΠA(E) given by:

�A =
{
Pα=0,Pα=1, ...,Pαmax

}
| Pα′ � Pα, ∀ α′ < α with α′, α ∈ A. (8)

A pyramid level�A
α ∈ �A is a partition Pα of E, with α ∈ A. Note that the base

of the pyramid corresponds to the finest, and the tip to the coarsest partition of
E, with respect to the dissimilarity measure d.

Consider a variable j ∈ Jα, in which Jα ⊆ Z is an index set, employed to
address the α-CCs making up Pα. Given a point x ∈ E:

∃!j ∈ Jα : x ∈ Cα
j . (9)

This complies with the first condition of Def.1, i.e. each point belongs to a unique
cell of the partition, while the second condition follows, i.e.

⋃
j∈Jα Cα

j = E.
A partition pyramid is a multi-scale partition representation structure which

is often characterized by large redundancies. This is due to the persistence of
some α-CCs in more that one level of �A. To counter this, an index mapping of
α-CCs is introduced, that leads to a hierarchical representation configured with
strict inclusion.
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Fig. 2. Example of a 5-level α-partition hierarchy and pyramid (a). The union of all
nodes defines the pyramid structure. The red nodes alone are the resulting hierarchy.
The green nodes represent the redundancy of the pyramidal representation. Example
of a 2D pattern spectrum (b).

Definition 6. Let �A be an α-partition pyramid of a gray-tone image I, defined
for a dissimilarity measure d over a set of threshold values A. An α-partition
hierarchy �A is a family of ordered mappings �A

α : Jα → Kα with Kα ⊆ Jα,
given by:

�A=
{

�A
α=0, �A

α=1, ..., �A
αmax

}
| �A

α′≺ �A
α , ∀ α′ < α with α′, α ∈ A, (10)

and ∀α ∈ A \ 0 and ∀j ∈ Jα:

�A
α =

{
Cα

j |
(
Cα

j ∈ �A
α

)
∧
(
Cα

j �∈ �A
α−1

)}
. (11)

In words, each level of the hierarchy �A contains explicitly only those elements
of the corresponding pyramid level, that appear for the first time.

The α-partition hierarchy �A can be viewed as a lossless compression of an
α-partition pyramid. Each level �A

α can be restored as follows:

�A
α =

{ ∨

α′∈[0,...,α], j∈Jα′

Cα′

j | Cα′

j ∈ �A
}
, (12)

i.e. it is the set of all maximal Cα′
: α′ ≤ α, which further define a partition of

E. Fig. 2(a) shows an example of a five-level color-coded partition and hierarchy,
to differentiate between redundant and essential (unique) nodes.

5 Pattern Spectra

Pattern spectra are typically computed from a set of operators, ordered with
respect to some global variable, and an example is the morphological granu-
lometries. α-partition pyramids by contrast to regular connected granulometries,
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provide an order with respect to the local dissimilarity parameter α. To compute
the α-connected pattern spectra of a gray-tone image I, one needs to compute
the stack of all possible α-partitions.

Given any partition P of E with cells indexed by a variable j ∈ J , the u
entry or bin of the pattern spectrum is equivalent to the sum of the areas of all
partition cells with attribute measures contained within the bounds of u, i.e.:

(PSP(I))(u) =
∑

j:Bin(Pj)=u

area(Pj), (13)

in which “Bin” is the binning function described later, and “area” is the set area.
Extending (13) for an α-partition pyramid we arrive at:

(PS�A(I))(u) =
∑

α∈A

∑

j∈Jα:Bin(Cα
j )=u

area(Cα
j ). (14)

It can be seen that any α-CC that remains invariant for a limited range of
dissimilarity values, is accessed in each iteration of the inner sum. This type of
redundancy is typical for the pyramidal partition representation and an example
is shown in Fig. 2(a). The union of all nodes corresponds to �A, with A =
[0, 1, 2, 3, 4], and the green nodes represent the redundancy.

This, in the case of an α-partition hierarchy, also referred to as the α-tree [9],
is countered by introducing the multiplier term Δα, also known as component
lifetime or persistence.

Assume two nested α-CCs: Cαp ⊂ Cα with αp given by:

αp = ∨α′ ∈ A : (α′ < α) ∧ (Cα
j , Cα′

j′ ∈ �A). (15)

The component lifetime is defined as Δα = α − αp, and assuming a new index
set K derived from J , with k ∈ Kα, ∀ α ∈ A, the pattern spectrum computed
from the α-partition hierarchy is given by:

(PS�A(I))(u) =
∑

α∈A\0

∑

k∈Kα:Bin(Cα
k )=u

area(Cα
k )Δα. (16)

An example of a 2-D pattern spectrum is shown in Fig. 2(b). Each dimen-
sion matches a specific attribute [22] with the axes normalized based on some
mapping function. This, for the experiments that follow, is the simple area map-
per from [22]. After initializing the n-dimensional pattern spectrum matrix,
the binning function configured for each attribute separately, scales the com-
ponent attribute based on the chosen mapping function and identifies the bin to
which it contributes. The scaled contribution of each component, i.e. the term
“area(Cα

k )Δα” from (16), is accumulated to the energy counter of each bin. The
latter is gray level coded.

6 Applications

Pattern spectra have been used as feature vectors to describe image objects or
regions in both classification and regression problems. An example highlighting
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(a) (b)

(c) (d)

Fig. 3. Diatom ornament analysis: The original image in (a) with its pattern spectrum
at the top left corner. The attributes along the x and y-axis are non-compactness
and ω-range respectively. The image structures corresponding to bins (3,5), (4,5) and
(6, 5) ∪ (4, 6) ∪ (5, 6) are highlighted in images (b), (c) and (d) respectively with the
selected bins of the pattern spectra displayed at their top left corner.

the strength of this method in comparison to other descriptors, is in the classifi-
cation of diatoms from microscopy imaging [3].

The work in [22] reports on the performance of 2-D pattern spectra com-
puted based on the non-compactness and area attributes of connected compo-
nents. The method outperforms all others from [3] but reaches an upper bound
in classification success due to limitations in its descriptive power. The prob-
lem, that is addressed in [12], is essentially the inability of connected operators
configured with regular adjacency-based connectivity, to deal effectively with
component subregions that are more ’loosely’ connected. Operators configured
with partition-induced connectivity deal with this issue more effectively [12] and
yield reacher spectra. This is at the cost of a higher computational demand due
to the absence of nesting properties.

Following is a demonstration of a pattern spectrum computed based on the
non-compactness and total range (ω) attributes of α-CCs. Image (a) in Fig.3
shows a sample from the ADIAC database [3] with its pattern spectrum at the
top left corner. Images (b-d) show selected object features (diatom ornament and
contour fragments) that correspond to some indicative bins of the α-connected
pattern spectrum. We observe robust extraction of distinct features which sug-
gests a better descriptive power for the proposed method.

The second application concerns rubble detection and follows the basic
strategy from [10], only dealing with a selection of α-CCs instead of standard
connected components. In brief, the method can be summarized in two steps; the
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(a) (b)

(c) (d)

Fig. 4. Rubble detection based on selected image features from the α-connected pattern
spectrum. The original image in (a), its pattern spectrum (left) and selected bins (right)
in (b). The image features corresponding to the selected bins (c) and their color coded
spatial aggregation in (d).

accumulation of the first plane of the opening and closing instance of a DMP
vector field [13] configured with the area attribute [8] followed by spatial aggre-
gation by a Gaussian low pass filter.

In this example, an α-connected pattern spectrum is computed based on
the variance and area attributes. Rather than dealing with explicit attribute
classes we chose a range of spectral bins. For the size attribute the bins range
from the size corresponding to a quarter of the regular building size (esti-
mated empirically) up to its full size. The range of the variance attribute is
kept short since the rubble fragments are expected to be of poor texture. It is
only the local background that is highly textured. Image (a) of Fig. 4 shows a
sample of aerial, very high resolution imagery (approximately 15cm) of Port-
au-Prince after the earthquake in Haiti in January 12th 2010. The image is
courtesy of Google 2010 and is available at the Google Crisis Response web-site
at http://www.google.com/relief/haitiearthquake/imagery.html. Image

http://www.google.com/relief/haitiearthquake/imagery.html
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(b) shows the original α-connected pattern spectrum (top) and the selected bins
(bottom). Image (c) shows the features corresponding to the selected bins from
(b). Note that the color of each α-CC is the average of all 0-CCs it contains. The
result of a low pass Gaussian filter with a square kernel size of 41×41 in ther-
mal palette display is shown in image (d). The kernel size is set to match the
estimated length of the average building size, i.e. approximately 6.5m.

7 Conclusions

Constraining dissimilarity-based connectivity relations is a way of controlling the
leakage effect induced by connective criteria, discussed in Section 3. Constraints
were used to control the evolution of single-linkage components along a dissim-
ilarity range [19]. This approach however was shown to be limited to specific
attribute thresholds and does not allow interactivity. In this paper we presented
two hierarchically-ordered partition representation structures that map the se-
quence of progressive partitions along the dissimilarity range in the absence
of constraints. In this approach, the type and number of constraints and the
threshold value associated to each one separately, may be adjusted interactively.
Moreover, through the hierarchical representation, we retain information on the
evolution of the single-linkage independent on the threshold value. This was uti-
lized in the the computation of α-connected pattern spectra and two application
examples were given. We observed a high descriptive power of the proposed type
of spectra, which remains to be further verified by large scale experimentation.
Moreover, with both applications in the previous section using the slope as a
dissimilarity measure, investigating the suitability and usage of others such as
those presented in [4, 20] is an open challenge. The hierarchical partition rep-
resentation that was introduced suggests that a new tree-based representation
algorithm can be developed that would allow the rapid processing of large data-
sets. This is currently under development [9], while in future work we aim at
investigating the morphological-profile [13, 8] equivalent feature vectors directly
from α-hierarchies.
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Abstract. A dissimilarity measure between adjacent pixels of an image
is usually determined by the intensity values of these pixels and therefore
does not depend on statistics computed over the whole image domain.
In this paper, new dissimilarity measures exploiting image statistics are
proposed. This is achieved by introducing the notion of dissimilarity
function defined for every possible pair of intensity values. Necessary
conditions for generating a valid dissimilarity function are provided and
a series of functions integrating image statistics are presented. For exam-
ple, the joint probability of adjacent pixel values leads to the notion of
frequent connectivity while the notion of dependent connectivity relies on
the local mutual information. The usefulness of the proposed approach
is demonstrated by a series of experiments on satellite image data.

Keywords: Connective segmentation, Single-Linkage Clustering, Dis-
similarity Measures, Statistics, Mutual information.

1 Introduction

A connectivity relation between elements of an arbitrary set is an equivalence re-
lation producing a unique partition of this set. The partition cells are equivalence
classes that correspond to connected regions of maximal extent called connected
components. For example, the single linkage clustering [1] corresponds to a con-
nectivity relation where two objects are said to be connected if a sequence of
objects starting by one of these two objects and ending by the other one can be
found while ensuring that the dissimilarity measure between two successive ob-
jects of the sequence does not exceed a pre-defined dissimilarity threshold value.
Single-linkage applies directly to digital images [2]. In this case, the objects un-
der study are the pixels and it is assumed that non-adjacent pixels are infinitely
dissimilar. Typically, two pixels of a grey tone image are connected if there exists
a sequence of adjacent pixels (i.e., path) linking these pixels and such that the
grey level absolute difference between successive pixels of the path (i.e., weights
of the edges of the path) does not exceed a given threshold value [2, 3]. The
resulting connected components are sometimes called quasi-flat [4], lambda-flat
zones [5] or, more recently, α-connected components [6]. Note that the absolute
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difference measure corresponds to the most natural dissimilarity measure be-
tween adjacent pixels. In general, the use of a dissimilarity measure d leads to
dα-connected components, in which α is a given dissimilarity threshold value.

In this paper, new dissimilarity measures between pairs of adjacent pixels are
defined and exploited to define new connectivity relations. These dissimilarity
measures are derived from image statistics, making the derived image partitions
controlled by these statistics. Several techniques for defining suitable decision
functions are explored. Frequent connectivity is based on image statistics related
to the co-occurence of intensity values of adjacent pixels. Dependent connectivity
goes one step further by measuring the statistical dependence between adjacent
pixels using the concept of local mutual information. We demonstrate on a series
of experiments the usefulness of these approaches.

2 Preliminaries

Let I be a monochannel digital image and G = (V, E) an undirected graph with
vertex set V matching the image pixels and edge set E consisting of unordered
pairs of vertices indicating the adjacency relations between the image pixels (for
example, 4 or 8-connected graphs for 2D images on the square lattice, 6 or 18-
connected graphs for 3D images on the cubic lattice, and Delaunay graph for
images sampled at irregularly spaced points). A path P between two pixels p
and q in G is a sequence of n > 1 pixels 〈p = p1, . . . , pn = q〉 such that any two
successive pixels of the sequence are adjacent: {pi, pi+1} ∈ E for 1 ≤ i < n. The
image I assigns to each element of V (that is, the pixels), a non-negative integer
defining its intensity value (grey level).

The partition of a graph G = (V, E) into connected components relies on a
function associating a weight w to its edges. This function can be viewed as a
measure of the degree of dissimilarity between adjacent vertices. In this paper, we
consider dissimilarity measures obtained through a dissimilarity function defined
for every possible pair of intensity values.

Let I be the space of image intensity values. A dissimilarity function indexed
by the image intensity values is defined as any function d from I × I → R+

such that d(I(p1), I(p2)) = d(I(p2), I(p1)). This latter property is imposed by
the symmetry property of dissimilarity measures. The most natural dissimilarity
function is obtained by considering the absolute difference of the input intensity
values: dA(I(p1), I(p2)) = |I(p1)−I(p2)|. This function is illustrated in Fig. 1(a)
in the case of a byte image. Any other symmetric function may be considered such
as the complement of the latter function, i.e., dC(I(p1), I(p2)) = maxp∈V {I(p)}−
|I(p1)− I(p2)|, as displayed in Fig. 1(b).

Given a dissimilarity function d, the weight of an edge of the adjacency graph
underlying an image I is denoted by wd: wd({p, q}) = d(I(p), I(q)). Given a dis-
similarity threshold α, two distinct pixels p and q of an image I are dα-connected
if there exists a path going from p to q such that the weight wd between any
two successive pixels of this path does not exceed the value of the dissimilarity
threshold level α. In addition, to ensure the reflexivity property of an equivalence
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(a) dA(i, j) (b) dC(i, j)

Fig. 1. Two examples of dissimilarity functions indexed by the intensity values i and
j of two arbitrary adjacent pixels. a) The absolute difference of grey levels dA(i, j) =
|i − j|. b) The complement of the absolute difference function dC(i, j) = 255 − |i − j|,
where 255 is the maximal grey level.

relation, a pixel is always said to be dα-connected to itself. The dα-connectivity
being an equivalence relation, it induces a unique partition of the image support
into maximal connected regions called dα-connected components. Accordingly,
the dα-connected component of a pixel p is defined as the set of image pixels
that are dα-connected to this pixel. We denote this connected component by
dα-CC(p):

dα-CC(p) = {p} ∪ {q | ∃ P = 〈p = p1, . . . , pn = q〉,
d(I(pi), I(pi+1)) ≤ α, ∀ 1 ≤ i < n}.

(1)

When using the dissimilarity function based on the absolute difference of the
input pixel values dA, as originally proposed in [2], the resulting dA

a -connected
components are sometimes called quasi-flat zones [4], lambda-flat zones [5], or
α-connected components [6].

A fundamental property of the dα-connected components of a pixel is that
they form an ordered sequence (hierarchy) when increasing the dissimilarity
threshold value α:

dα1 -CC(p) ⊆ dα2 -CC(p), ∀α1 ≤ α2. (2)

This hierarchy is at the root of the greedy algorithm by Kruskal [7] for solving
the minimum spanning tree problem and at the very basis of the dendrogram
representation of the single linkage clustering [8].

Rather than using the notion of equivalence relation and path-based connec-
tivity, Serra [9, 10] proposes to study connectivity by introducing the notion of
connection and connective criterion. A connection C on an arbitrary non-empty
space Ω is any family of the power set of Ω such that (i) ∅ ∈ C, (ii) for all
x ∈ Ω, {x} ∈ C, and (iii) any family of elements Ci ∈ C such that ∩iCi �= ∅
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implies that ∪iCi ∈ C. Note that properties (i) and (ii) are analogous, respec-
tively, to the reflexivity and transitivity properties of an equivalence relation. A
Boolean criterion σ on the power set of Ω is then said to be connective if the ele-
ments of this power set for which the criterion is satisfied generate a connection.
Accordingly, the Boolean connective criterion underlying dα-connectivity is de-
fined as follows: σdα(Ci) = true if and only if for all p, q ∈ Ci there exists a path
〈p = p1, . . . , pn = q〉 such that d(I(pi), I(pi+1)) ≤ α for all i ∈ {1, . . . , n−1}. By
definition, σdα(Ci) is also true for every Ci reduced to a single pixel. Segmen-
tations expressed in terms of connective criteria are referred to as connective
segmentations [10].

3 Adaptive Connectivity

Generally, connectivity relations are independent of statistics computed over the
whole image definition domain. They are rather defined to model some class of
image, such as k-Lipschitz functions [10]. In this section, we present new connec-
tivity relations based on the definition of new dissimilarity functions exploiting
image statistics. Such connectivity relations induce partitions that are adaptive
to the image content.

3.1 Frequent Connectivity

Inspired by the analysis of transition frequencies between adjacent regions devel-
oped in [11], we propose to use Grey Level Cooccurrence Matrix (GLCM) [12] in
order to derive joint probability of adjacent pixels. The GLCM M of an image
I is obtained by:

M(i, j) =
∑

{p,q}∈E

max {�(I(p) = i, I(q) = j),�(I(q) = i, I(p) = j)}, (3)

where E is the set of edges defining the graph of image grid, and � is an indicator
function. By construction, the GLCM M is positive and symmetric so that it
defines a valid dissimilarity function. The GLCM M can be transformed into a
symmetric joint probability distribution defined over I2 by:

p(i, j) =
M(i, j)
|E| , (4)

where |E| is the number of edges which are contained in the graph of the image
grid. The joint probability distribution highlights frequent co-occurring grey val-
ues pairs and has been widely used in literature for characterizing textures [12].
The neighbor grey values appearing frequently indicate a high repetition of this
pattern in the image. We propose to define a dissimilarity where frequent co-
occurring intensities are similar. The frequent dissimilarity dF is defined by:

dF (i, j) = 1− p(i, j). (5)
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Having a threshold f , all the adjacent pixels having their frequent dissimilarity
greater than f are considered connected. The induced connected components
forming a segmentation of the image support are denoted by dF

f -CC.
An example of the dissimilarity function dF is given in Fig. 2(b). One can

observe, that this function behaves like grey level absolute difference dA (see
Fig. 1(a)), as close grey values are likely to happen. However, the frequent dis-
similarity tends to connect first the intermediate grey values, then the extremal
ones.

Due to the increasing property (2), the dF
f -CC form an ordered sequence when

increasing the threshold value f :

dF
f1

-CC(p) ⊆ dF
f2

-CC(p), ∀f1 ≤ f2. (6)

As mentioned previously, this property enables the definition of hierarchical seg-
mentation by increasing the threshold value.

3.2 Dependent Connectivity

In this section, one step ahead frequent connectivity is taken by analyzing the
statistics of adjacent grey levels. More than frequency, independence analysis
looks for statistical links between variables. Thus, the grey level pairs having
a high statistical link (dependence) are considered to be connected. In order to
analyze adjacent pixels dependence, we use the local mutual information function
as defined in [13, 14] and expressed by:

mi(i, j) = log
(

p(i, j)
p(i)p(j)

)

, (7)

where p(i) =
∑

j∈I p(i, j) and p(j) =
∑

i∈I p(i, j), p(i, j) being the joint distri-
bution expressed in (4). The function mi(i, j) locally measures the dependence of
adjacent grey levels i and j, by comparing the estimated joint distribution p(i, j)
to the corresponding independent joint distribution p(i)p(j). Thus, a high local
mutual information highlights a strong dependence between adjacent intensity
values. The dependent dissimilarity metric dD is then expressed by:

dD(i, j) = max
(k,l)∈I×I

{mi(k, l)} −mi(i, j). (8)

Such a definition ensures that dD is positive and an example of the dependent
dissimilarity function is given in Fig. 2(c). One can observe that the dependent
dissimilarity is also close to the absolute difference of grey values, while enabling
more connectivity for extremal image values.

Given a threshold m, the induced dependent connected components are de-
noted by dD

m-CC. They also form an ordered sequence when increasing the value
m because of the property (2).
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4 Results and Discussion

In this section, visual and quantitative analysis of the proposed dissimilarity
based segmentation are conducted. In the analysis, the given dissimilarity func-
tions and resulting connected components are compared to the dA

a -connected
components.

4.1 Visual Analysis of the dF and dD Dissimilarity Functions

The frequent and dependent dissimilarity functions derived from four different
images are displayed in Fig. 2. The images are subsets of very high resolution
remote sensing images. The dissimilarities depend on and adapt to the image
statistics, which vary significantly. However common effects are visible for each
image. While the frequent connectivity tends to assimilate the intermediate grey
values, the dependent connectivity tends to gather the extremal intensity values.
This last connectivity limits the connectivity between intermediate intensity
values which are in majority responsible for chaining through transitions (leakage
effect).

4.2 Visual Analysis of the dA, dF and dD Based Segmentations

To assess the impact of the chosen dissimilarities, the connected components
of the image displayed in Fig. 3 are computed for the absolute difference, fre-
quent and dependent dissimilarity functions. The image was acquired by the
very high resolution optical sensor QuickBird, and has a resolution of 60cm.
Suitable thresholds have been selected in such a way that all considered func-
tions have a similar number of connections in the image (i.e., similar sum of
probabilities over the true decision region). Comparing both dissimilarity func-
tions with the absolute difference (Fig. 4(a)), we observe that they are similar
in the sense that connections resides along the small differences between grey
values. However, the proposed dissimilarity functions vary the impact of the grey
value differences along the equal grey values line. In the frequent connectivity
case (Fig. 4(b)), the connectivity of black or white pixels is limited, while in the
dependent connectivity case (Fig. 4(c)), the connectivity of intermediate grey
values is limited. In this last case, for a sufficiently low threshold, connection
between white and black values appears. This phenomenon is due to the image
nature, where lot of strong edges exist. The frequent connectivity produces fewer
connected components (Fig. 4(e)), where one big connected component covers
the major image support. In between, dA

a -CC and dD
m-CC produce segmenta-

tions (Figs. 4(d)-4(f)) with similar numbers of connected components. Still the
dD

m-CC based partition produces more connected components than the dA
a -CC

based partition. Further examples are provided in Fig. 5, where four very high
resolution satellite images are considered. The same comments made above hold
for the four images containing varying information content.

From this visual analysis, one can argue that dependent connectivity reduces
chaining through ramps which produces coarse partitions for the following rea-
sons. The frequent connectivity suffers from chaining through ramps, since one
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(a) image I1 (b) dF (i, j) from I1 (c) dD(i, j) from I1

(d) image I2 (e) dF (i, j) from I2 (f) dD(i, j) from I2

(g) image I3 (h) dF (i, j) from I3 (i) dD(i, j) from I3

(j) image I4 (k) dF (i, j) from I4 (l) dD(i, j) from I4

Fig. 2. The frequent dF and dependent dD dissimilarity functions corresponding to the
images displayed in (a), (d), (g), and (j)
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Fig. 3. Very High Resolution optical panchromatic image of size 512×512 pixels ac-
quired by QuickBird sensor. Credit DigitalGlobe 2009.

(a) dA(i, j) ≤ a (b) dF (i, j) ≤ f (c) dD(i, j) ≤ m

(d) dA
a -CC (e) dF

f -CC (f) dD
m-CC

Fig. 4. The thresholded dissimilarity functions are displayed in (a), (b), (c) and they are
derived from the image represented in Fig. 3. The corresponding connected components
are displayed in (d), (e), (f), respectively.

big component is produced. Analyzing where connexions are favoured, it appears
that connections between intermediate grey values facilitate this effect. On the
contrary, the dependent connectivity is more robust to chaining through ramps
since it limits the connectivity between intermediate intensity values. From this
prospective, it seems that the dependent connectivity provides an interesting
alternative to the dA-connectivity.
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(a) image I1 (b) dA
a -CC of I1 (c) dF

f -CC of I1 (d) dD
m-CC of I1

(e) image I2 (f) dA
a -CC of I2 (g) dF

f -CC of I2 (h) dD
m-CC of I2

(i) image I3 (j) dA
a -CC of I3 (k) dF

f -CC of I3 (l) dD
m-CC of I3

(m) image I4 (n) dA
a -CC of I4 (o) dF

f -CC of I4 (p) dD
m-CC of I4

Fig. 5. Various satellite images with their corresponding segmentations based on dA,
dF , and dD dissimilarity functions.

4.3 Quantitative Analysis the dA, dF and dD Based Segmentations

In this section, a quantitative analysis of images components is made by cal-
culating the impact of the connectivity parameters on the number of connected
components. Increasing the connectivity parameter induces hierarchical segmen-
tations as described by (2). This hierarchical property was proven to be relevant
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Fig. 6. The evolution of the number of CC and their successive differences highlighting
the diversity of the hierarchical partitions

to define adapted connected components selection, through the definition of ad-
ditional constraints [15]. Representing the hierarchy as a tree, where each node
is a connected component obtained for some connectivity parameter, considering
only the connectivities proposed in this paper consists in performing horizontal
cuts in the tree. On the contrary, enabling additional constraints enables to per-
form adapted cuts in the tree. Therefore, having a high diversity of connected
components in the hierarchical tree is an advantage in order to obtain a de-
sired partition or to perform an optimization [16]. Indeed, the space of possible
partitions becomes larger as the diversity of connected components increases.
We propose to assess the diversity of the tree by evaluating the differences of
the number of connected components from one threshold to the successive one.
Then, a type of connectivity which produces large differences by slightly chang-
ing the connectivity parameter (a, f or m) is not diverse since it misses many
intermediate states. On the contrary, a type of connectivity which produces small
differences is interesting because it goes through intermediate states, which indi-
cates the existence of more connected components in the hierarchy. In Fig. 6(a),
the evolution of the number of connected components with the connectivity
parameter are displayed for the sets dA

a -CC, dF
f -CC, and dD

m-CC, where the con-
nectivity parameters a, f and m are normalized between 0 and 1. In Fig. 6(b),
the differences of numbers of CC are displayed. dA-connectivity produces the
biggest differences, highlighting a lower diversity than other connectivities. In
the case of dF -connectivity, chaining through transitions (leakage) was observed
previously, such that the partitions are composed of big components and many
small ones composed of single pixels. The slow variation of the number of dF

f -CC
is due to the connexion of these isolated pixels. Thus, dD-connectivity consti-
tutes a good compromise between the diversity of connected components and
the leakage effect.
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5 Concluding Remarks

We have presented new connectivity definitions in order to produce hierarchical
partitions of images. The proposed connectivity definitions are derived from the
statistics of the image, and are based on the analysis of adjacent pixels coocur-
rences. One type of connectivity considers the frequency of adjacent grey values,
while the second one makes use of the dependence of adjacent grey values. A
visual assessment of the various connectivities is performed on satellite images,
highlighting that dD

m-CC limits the single linkage chain effect. Then, a quantita-
tive analysis of the number of connected components shows the higher diversity
induced by the dependent connectivity, which makes it to be an interesting alter-
native to dA

a -CC. Finally, we plan to define new constrained connectivity based
on the dD

m-CC, trying to exploit the bigger diversity of the produced connected
components, and to compare the effectiveness of the method for mitigating chain-
ing through ramps with the methods described in [17].
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Abstract. We introduce a noise-tolerant segmentation algorithm effi-
cient on 3D multiscale granular materials. The approach uses a graph-
based version of the stochastic watershed and relies on the morphological
granulometry of the image to achieve a content-driven unsupervised seg-
mentation. We present results on both a virtual material and a real X-ray
microtomographic image of solid propellant.

Keywords: Granular media, granulometry, multiscale 3D segmentation,
stochastic watershed, constrained segmentation.

1 Introduction

The stochastic watershed segmentation was first introduced by Angulo and
Jeulin in [1]. The approach is based on using a large number of realizations
of random markers to build a probability density function (pdf) of contours,
starting from a standard watershed algorithm producing oversegmentations.

The stochastic watershed was proved to be efficient for unsupervised segmen-
tation [10][6]. The two parameters used for its construction are k, the number
of random markers used in each realization, and R, the number of realizations.
From the law of large numbers, the pdf converges when increasing R. The param-
eter k needs to be proportional to the number of desired regions in the segmented
image. Therefore, in the case of granular materials, k needs to be proportional
to the number of grains contained in the image, that can be automatically esti-
mated. In [6], the authors use the covariance for this estimation, deduced from
the average radius of the grains, and a Boolean model assumption [8].

For multiscale images, the covariance is not so efficient. In this paper, we
introduce a new approach for stochastic segmentation which relies on the full
granulometry of the image. Using morphological openings, this granulometry can
be automatically computed from the image and is used as a constraint during
iterations of segmentation steps.
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c© Springer-Verlag Berlin Heidelberg 2011



Stochastic Multiscale Segmentation Constrained by Image Content 133

2 Stochastic Segmentation

2.1 Stochastic Watershed

The first method introduced for computing the stochastic watershed is based
on a large number of realizations of random markers to estimate a pdf of con-
tours, or of surface boundaries in 3D. The random markers are generated with
an uniform distribution corresponding to a constant intensity. In the case of
granular materials, a constant background marker, extracted by an automatic
thresholding, is added to each set of random markers. For each set of markers, a
constrained watershed is computed. Then, the Parzen window is used to estimate
the pdf of contours.

For a good estimation of the stochastic watershed, 100 to 200 realizations are
required [1]. However, using λ-flat zones, a stochastic watershed segmentation
can be achieved with only 50 realizations [6]. This number is low, but the com-
putation of 50 watersheds is very time-consuming, especially on large 3D data
sets.

From the pdf, it is possible to obtain the segmentation. The first approach
uses this pdf as a gradient for a new watershed [1]. A more efficient approach
uses λ-flat zones to overcome the fact that the estimated pdf is not constant
over each branch of contour [6]. Illustration of the pdf of contours is on Fig. 1
(A). The resulting segmentation is illustrated on Fig. 2 (A).

(A) (B)

Fig. 1. (A) Pdf of contours on a simulated 3D material R1, estimated with 50 re-
alizations of a Poisson point process (slice). (B) Pdf of contours computed with a
graph-based approach (slice).

2.2 Graph-Based Stochastic Watershed

Computing a large number of watersheds from simulations provides good results
but is a slow process, mainly in 3D. A more efficient solution for computing
stochastic watersheds is to use a graph-based approach. Probability of bound-
aries is directly computed with a good approximation without the use of any
realisation [9,7].
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(A) (B) (C)

Fig. 2. (A) Stochastic watershed segmentation (slice). The λ-flat zones are used. A
few grains are over-segmented. Small grains are missing (B) Graph-based stochastic
watershed segmentation with a threshold of 0.5 on the probability (slice). A few over-
segmented grains, as well as small grains are missing. (C) Final granulometry-driven
multiscale segmentation result for the random material R1 (slice of a 3D image).

A first watershed is computed from the local minima of the gradient, as in
standard segmentation, but restricted to the complementary set of the back-
ground extracted by an automatic thresholding. For this purpose, the back-
ground is used as a marker. In the present case, a very strong oversegmentation
is obtained as a result of the presence of noise. From this watershed, an adja-
cency graph is constructed. Vertices of the graph are associated to each basin
of the watershed, connecting edges between adjacent regions. A vertex is asso-
ciated to the background too. Values are given to the vertices corresponding to
the volumes of the regions (or to the areas, in 2D). Each edge is labelled with the
minimum of the gradient function on the boundary between the corresponding
regions. From this valued graph, a minimum spanning tree is extracted [7]. Then
the regions in the minimum spanning tree are merged, starting with the edge of
lowest value. After each merging, the probability p of the boundary between the
corresponding regions is estimated using the following equation [9]:

p = 1− (1 − V1/V )k − (1 − V2/V )k + (1− (V1 + V2)/V ))k (1)

This is the probability of obtaining at least one random marker in each of the
two regions, knowing the volumes V1 and V2 of the two regions, the total volume
V of the image and the number of markers k. It is seen from equation 1 that
the probability p increases with the volume of the grain, that may cause a bias
towards largest grains if there is a wide distribution of sizes in the image.

After the merging of all the nodes in the original minimum spanning tree, the
probability of all the edges of the tree is known. The result is projected from the
tree on the graph and from the graph on the image.

This approach provides uniform probability on each part of boundary between
two regions, as illustrated on Fig. 1 (B). Therefore, the λ-flat zones are useless
and a simple threshold can be used for the segmentation Fig. 2 (B).
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3 Multiscale Image Segmentation

The multiscale image segmentation process is based on a simple idea: estimate
the full granulometry of the image, using morphological openings, then use mul-
tiple stochastic watersheds with different numbers of markers for each size, and
finally combine them to get a segmentation that is pertinent for each size of
grains. For achieving this goal, a hierarchy on the boundaries of the stochas-
tic watershed is required. Many hierarchical segmentation algorithms have been
studied, as the waterfalls [3] or the P algorithm [4]. Here we introduce an ap-
proach similar to the one used for the computation of the waterfall: the merging
of the watersheds basins using a minimum spanning tree [5].

3.1 Hierarchy on Boundaries

Each boundary is an edge in the adjacency graph. For a non-multiscale graph-
based stochastic watershed, a fixed threshold is efficient. So, a first approach
for constructing a hierarchy on the edges of the adjacency graph is to use a
threshold. All the edges with a probability less than a given value t are removed
from the graph. With t ∈ [0, 1], a complete hierarchy is obtained [9].

This approach is fast and easy to compute, but, for a large value of t the re-
maining edges are not exploitable as boundaries for a segmentation. The removal
of edges implies the removal of boundaries and therefore the merging of regions
in the images. This process changes the probability of the boundaries of the
remaining regions if we iterate the segmentation. This phenomenon is ignored
with a fixed threshold. As seen on Fig. 2 (B), some over-segmented grains will
disappear by a simple trheshold.

Working with a graph, it is possible to update the probability of the bound-
aries of the remaining regions at each edge deletion with the following iterative
algorithm [9]:

– While the MST has at least 2 vertices.

• In the MST, the edge e with the lowest probability is chosen.
• The edge e is deleted and the adjacent vertices are merged.
• The probability of the edges incident to the merged vertex is updated,

using Eq. 1 and the new volume of the vertex.

This leads to better hierarchy on boundaries. As seen on Fig. 3, with the thresh-
old approach some over-segmented grains disappear easily, while this problem is
solved with the merging algorithm.

3.2 Granulometry-Driven Multiscale Approach

In order to get a pertinent segmentation starting from a highly over-segmented
image, we can introduce constraints in the merging process. In the present case,
the first step of the approach is to estimate the full granulometry of the image,
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(A) (B) (C) (D)

(E) (F) (G) (H)

Fig. 3. (A) Probability density function of contours on a 3D material R1, computed
with a graph-based approach (detail of a slice). (B), (C), (D): hierarchy on boundaries
using increasing thresholds. (A), (E), (F), (G), (H): hierarchy on boundaries using the
merging algorithm, step 0 is (A).

Fig. 4. Input granulometry of the random material R1 and granulometry measured on
the thresholded image from morphological openings. On x axis, the radius, and on y
axis the volume fraction of grains with this radius (in percent).

using morphological openings. For fast computations, we use a rhombicuboc-
tahedron as structuring element and we work on the binarized (thresholded)
image. Gaussian noise, border effects and the shape of the structuring element
leads to a few errors on the granulometry, as seen on Fig. 4, but they will not
induce errors in the segmentation process.
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(A) (B) (C)

Fig. 5. The segmentation of the random material R1 (slice). Results for the class 1 on
steps 1 (A), 20 (B) and 40 (C).

Fig. 6. The main steps of the multiscale image segmentation process
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From the granulometry, a small number of classes are chosen. A good approach
for this choice is maximising the interclass variance. For our sample material R1,
we uses 3 classes: radius [13,18], radius [6,13] and radius [1,5]. The total volume of
the grains in each class will be denoted v(x). The number of grains in each class is
deduced from v(x) and is denoted n(x). It is used to generate the corresponding
number of markers in the calculation of the probability.

Then, the standard watershed is computed from the local minima of the gra-
dient. From this watershed, the adjacency graph is constructed and a minimum
spanning tree is extracted.

The first class is chosen. The stochastic watershed is computed with a number
of markers equals to n(1). In our 3D example (material R1), 417 markers are
needed. Based on this stochastic watershed, a first hierarchy on boundaries is
computed with the merging algorithm. For each step i of the hierarchy, the
granulometry of the corresponding segmentation is computed (vi(1)).

In the full hierarchy, there is a size step i∗ which minimises the difference
|vi(1) − v(1)|. In our example, i∗ = 40 (Fig. 11 and Fig. 5). This step is used
for the segmentation of the grains in the first class. All the segmented grains
are removed from the image and added to the background mask. The minimum
spanning tree is updated and the next class is chosen.

The same process is applied to all the classes. When no more class are left,
all the segmentations are combined together. This provides the final result il-
lustrated on Fig. 2 (C) and Fig. 12. The main lines of the multiscale image
segmentation process are summarized on Fig. 6.

4 Validation

4.1 Random Model

For the validation, we use a simple random model. We generate 7560 random
discrete spheres. The distribution of the radius of the spheres is fixed and is given

(A) (B)

Fig. 7. (A) Random material R1 with a strong Gaussian noise and a wide grain size
distribution (slice). (B) The binary mask for material R1 (slice), the threshold is cal-
culated via the maximization of the interclass variance.
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on Fig. 4. The centres of the spheres are uniformly distributed in a cubic volume
of size 300×300×300 with a rejection sampling algorithm (acceptance-rejection
method). Two spheres cannot overlap more than a given threshold (fixed to
2 voxels). Spheres have non-uniform grey values, and show a visible boundary
generating information in the gradient image. The volume fraction of the grains
on the sample is 0.432. A strong Gaussian noise is finally added. A slice of the
simulated material and of the corresponding binary mask is illustrated on Fig. 7.

4.2 Microtomographic Images

Our second sample is an X-ray microtomographic image provided by the CEA
Gramat. The image was generated at with a Skyscan 1172 high-resolution

Fig. 8. Image E1: a 3D X-ray microtomographic image of a fragmented granular ma-
terial and its binarization by maximisation of the interclass variance (slice)

Fig. 9. Morphological granulometry of the X-ray microtomographic image of a frag-
mented granular material and granulometry of the final segmented image. On x axis,
the diameter (μm), and on y axis the volume fraction of grains with this diameter.
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(A)

(B)

Fig. 10. Segmentation of the X-ray microtomographic image of a fragmented granular
material (slice). (A) Results for the stochastic watershed approach. (B) Results for the
granulometry-driven multiscale approach.

Fig. 11. Morphological granulometry of the random material R1 and granulometry
obtained at different steps of the hierarchy. The best result is step 40.

micro-CT. We are operating on a 954 × 243 × 243 subimage. It is a solid pro-
pellant sample with fragmented grains due to a mechanical impact. A voxel is
1.80μm. The original diameter of the grains is 400 μm, but there are many small
fragments. A slice is shown on Fig. 8. Results of the segmentation are illustrated
on Fig. 10 and Fig. 9, where it is clear that the multiscale approach overcomes
the standard stochastic watershed algorithm.

5 Conclusion

On both the simulated image and the X-ray microtomographic image, our mul-
tiscale approach provides a good segmentation (it is essential to use a “volume”
weighted granulometry, all our attempts with a ”number” granulometry being
unsuccessful, due to its inherent sensitivity to noisy data). On the simulation,
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there is no over-segmentation for large grains, and the small grains are present
as illustrated on Fig. 2 (C). On the microtomographic image, some of the large
grains are over-segmented, but most of the small fragments are present and the
results are better than the original stochastic watershed approach as illustrated
on Fig. 10.

The granulometry of the segmented image fits to the morphological granu-
lometry of the input images, since it was used as a constraint in the merging
process (Fig. 12 and Fig. 9).

This new segmentation technique, combining an iterative probability-based
merging of boundaries and a size distribution constraint, is very robust with
respect to the noise contained in the image, without the necessity to apply a
filter that would destroy the smallest grains. In addition, the segmentation is fully
non-parametric, since at every step the required parameters are automatically
deduced from the image.

Due to the graph approach, the process is much faster than the original
stochastic watershed, as summarized on Tab. 1.

Fig. 12. Morphological granulometry of the random material R1 and granulometry of
the final segmented image

Table 1. Computational cost of the stochastic watershed, the graph-based stochastic
watershed and our multiscale image segmentation approach. Times are give on a 3.00
GHz Pentium 4.

Algorithm Image Time

Stochastic Watershed Random material R1 1h 36m 36s
Propellant (microtomographic) 3h 9m 21s

Graph-Based Stochastic Watershed Random material R1 5m 11s
Propellant (microtomographic) 14m 9s

Multiscale Image Segmentation Random material R1 9m 22s
Propellant (microtomographic) 25m 7s
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Finally, it is possible to generalize the process to multi-criteria segmenta-
tion, using any other measurement tool as a constraint during the multiscale
segmentation.
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Abstract. The paper presents an effective and robust method of clas-
sifying binary patterns. It starts with classification of foreground pixels
of binary image into several spatial classes, which is performed using
morphological image processing. By performing this classification with
structuring elements of increasing sizes, the spatial class distribution
functions are produced. These functions are normalized and sampled in
order to obtain feature vectors of constant length that are invariant to
pattern translation, rotation and scaling. Such feature vectors are next
used to perform tree-based classification.

1 Introduction

In this paper, a method for recognizing binary patterns using morphological class
distribution functions and decision trees is presented. The method is based on
morphological classification. It allows extracting from the binary image pixels
belonging to different spatial classes consisting of pixels characterized by partic-
ular morphological properties. Depending on the class being detected, various
class extractors can be defined, based on morphological image processing opera-
tions. All the operators leading to extraction of spatial classes are using a single
parameter – the structuring element of morphological operators. By applying
structuring elements of increasing size when extracting spatial classes, class dis-
tribution functions can be obtained. They are expressing the dependence of the
number or ratio of pixels belonging to a given spatial class on the size of the
structuring element. The shape and characteristics of class distribution functions
depend on the pattern for which they are computed. In the method presented
in this paper, this function is normalized and sampled into a given number of
samples using cubic spline interpolation. Thanks to this procedure, the scale-
invariant feature vector of constant length is obtained. This trait, along with
translation and (under some conditions) rotation invariance, make these fea-
tures an effective tool for pattern recognition. In the proposed method, they are
used as the input for tree-based classification. Classification trees, apart from
their principal task – classification – allow also finding features that have a real
influence on the classification result. An additional pre-processing of the train-
ing set is proposed in this paper – the feature preselection. By analysing the

P. Soille, M. Pesaresi, and G.K. Ouzounis (Eds.): ISMM 2011, LNCS 6671, pp. 143–154, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



144 M. Iwanowski and M. Swiercz

scattering measure for all pattern classes, features that are characterized by low
in-class integrity are removed from this set. Training set with preselected fea-
tures is finally used to train the classification tree. This tree is tested using a
separate testing set.

The paper consists of 6 sections. In section 2, the idea and extraction method
of morphological spatial classes are described. Section 3 presents the class dis-
tribution functions and their sampling. Section 4 describes the decision tree
classification. In section 5, the test results are presented and finally, section 6
concludes the paper.

2 Morphological Spatial Classes

The classification task aims at assigning elements of the feature space into ap-
propriate classes consisting of elements similar one to another. The the first
application of mathematical morphology [6,7,9] to binary pattern classification
was described in [5]. It was focused on forest analysis based on forest masks com-
puted from remotely sensed images. Mathematical morphology tools were used
to classify forest regions into 7 spatial classes. The applications of this methodol-
ogy (called MSPA – morphological spatial patterns analysis) into forest pattern
detection was also described in [3]. In [1,2,4] more generic view on this methodol-
ogy was presented, allowing it to be applied to classify regions of various binary
patterns: electronic circuit boards, water masks and binary shapes of various
kinds.

...................... ......................

.11111...1111111111... .bbbbb...cccccbbbbb...

.11111........1111111. .baaab........baaabbc.

.11111111111111111111. .baaabddddddddbaaabbc.

.11111........11111... .baaab........baaab...

.11111..1.1111111111.. .baaab..e.ccccbaaabc..

.11111.11.....1111111. .bbbbb.ee.....bbbbbcc.

...................... ......................

Fig. 1. Binary pattern (left) and five classes (right): a - core, b – core boundary, c –
branches, d – corridors, e – isolated

The morphological spatial class of the binary image F is defined as a subset
of foreground pixels characterized by a particular spatial property. Depending
on the particular spatial class characteristics, various morphological operators
should be applied to extract it. The only parameter used in the class extraction
process is a structuring element B. In this paper we define the following set of
spatial classes:

1. Core – region consisting of foreground pixels that are farther from the bound-
ary of F than a distance implied by B. This class is obtained by means of
erosion operator: Ψcr(F, B) = F (B.
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2. Isolated – connected components of the input image that do not contain any
core pixel. This class is the residue of the morphological reconstruction of
input image with core regions used as markers: Ψis(F, B) = F \F�Ψcr(F, G).

3. Core boundary – region of pixels that are located inside the initial object
that do not belong to the core region and are not farther from the core than
the distance implied by B. This class can be obtained as a difference between
opening and erosion: Ψcb(F, B) = (F ◦B) \ (F (B) = (F ◦B) \ Ψcr(F, B).

4. Corridors – groups of pixels which are neither core nor core boundary and
which connect two disjoint core regions. A single object (connected compo-
nent of foreground pixels) can contain more than just one core region. A con-
nector between all cores of a single object that does not belong to core bound-
ary is a corridor. Contrary to core boundary pixels, the corridor pixels are in
a distance from the cores greater than implied by B. This class can be ob-
tained by means of anchored homotopic skeletonization [6] of the input image
with core pixels considered as anchor ones: Ψco(F, B) = SKH (F, Ψcb(F, B)),
where SKH(F, G) stands for the anchored homotopic skeleton of F with an-
chor pixels G.

5. Branches – groups of pixels which are neither core nor core boundary but
are attached to a single core region (dead-ends of pattern): Ψbr(F, B) =
F \ (Ψis(F, B) ∪ Ψcr(F, B) ∪ Ψcb(F, B) ∪ Ψco(F, B)).

The example of classification into five above classes for B equal to elementary
8-connected structuring element is shown on Fig. 2.

The result of classification strongly depends on the applied structuring ele-
ment B – on its shape and size. These parameters imply the form of the pixel
neighborhood considered. Consequently, they imply also the distance from a cen-
tral pixel of the structuring element to other pixels belonging to it. Depending on
the type of the structuring element various distance measures are considered. The
elementary structuring elements induces either city-block distance (4-connected
element) or max-norm distance (8-connected). Assuming that the distance from

Fig. 2. Class distribution functions of core, core boundary, branch and corridor for
test patterns: “lizard” (b) and “diamond” (c). Patterns are shown in (a).
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pixels belonging to B is not grater than one, as in the above case, the nota-
tion B(n) will refer to a larger structuring element, which contains pixels not
farther than n from the central pixel. B(n) is thus the neighborhood of radius
n. The structuring element B(n) can be defined in various ways. The simplest
(and fastest) is based on superposition by successive dilations of n elementary
structuring elements B(n) = B ⊕B ⊕ ...⊕B, where B stands for an elementary
structuring element. In order to get the neighborhood of radius n according to
the Euclidean distance the superposition by dilations cannot be used and the
structuring element B(n) have to be computed individually for every n. Another
possible choice of B(n) is the octagon-shaped element, that can be obtained by
alternate usage of 4- and 8-connected elementary ones.

3 Class Distribution Functions and Feature Extraction

The results of spatial pixel classification depends on the size n of the structuring
element B(n). Moreover this dependence differs from one binary pattern to an-
other. The classification of image pixels using the series of structuring elements
B(n) for increasing n allows obtaining the class distribution functions for each
class. They are defined as:

DCL(n) = |ΨCL(F, B(n))|, (1)

where |.| stands for the number of pixels of the argument and CL ∈
{cr, is, cb, co, br} refers to the spatial class. Class distribution functions of four
spatial classes (class isolated is not applicable in this case) of a test binary input
pattern is presented in Fig. 2. It shows that functions of different shapes are
noticeably different from one another.

The class distribution functions described above can be treated as an exten-
sion of granulometry. Granulometry by opening is equal to Dcr(n) +Dcb(n), by
opening by reconstruction to Dcr(n) + Dcb(n) +Dco(n) +Dbr(n).

The class distribution function defined by the Eq. 1 has some important prop-
erties. First, it depends on the form and size of the object(s) for which it is
computed (see Fig. 2). This property makes it suitable for recognizing binary
patterns. Second, it is always invariant to translations of objects within the im-
age – this comes directly from the obvious property of morphological operators.
Third, to some extent it is invariant to rotation. The extent depends on the type
of the structuring element B(n). For elementary 4- and 8-connected elements
it is invariant to rotations by π

2 , in case of octagonal element – by π
4 . In case

of an Euclidean disk – by any angle. Finally, the class distribution function is
not scale-invariant: scaling of the binary pattern implies scaling of the function
defined by Eq. 1. This can be, however, countered by the normalization and
sampling technique described further in this paper.
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Fig. 3. Class distribution functions of class branch (b) for different test patterns (a)

In order to get scale-invariance, at first, the normalization along “y” axis is
applied. It is obtained by dividing values of the function by a normalization
factor equal to the total number of foreground pixels of the input image F :

D′
CL(n) =

|ΨCL(F, B(n))|
|F | (2)

In Fig. 3, normalized distribution functions of the class branch for various
patterns are presented. It is worth noting at this point, that since class distri-
bution functions depend only on the number of pixels of a certain class but not
in any way on the position of these pixels within the image, it is possible to pro-
pose visually different shapes having highly similar class distribution functions
(an example case is presented in Fig. 4). This very rare case, however, did not
present itself during tests, in which shapes derived from physical objects were
used.

Pattern scale influences also another parameter – the range of sizes of the
structuring elements (“x” axis of the distribution function). The maximum ef-
fective value of n in Eq. 2 for which this function may change equals nMAX ,
which is the largest size of erosion such that F does not disappear completely1.
For all n > nMAX there are no more pixels belonging to the core class and
all pixels are classified as isolated. For all n ≤ nMAX , at least two classes for
each argument of the class distribution function always exist. Value nMAX de-
pends on the scale of a binary pattern. Assuming, for example, a binary pattern
enlarged twice, one can observe that – comparing distribution functions of the
original and the enlarged pattern – the latter has the same form as the former,
but is stretched along the “x” axis and nMAX is multiplied by 2. The values
of a distribution function cannot be thus considered as scale-invariant features
of patterns. Also, from the pattern recognition point of view, the feature vector

1 In case of F foreground consisting of a single connected component, this is the size
of erosion that produces ultimately eroded set.
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Fig. 4. Different shapes having a similar class distribution function: plane and abstract
shape (a), and their “branch” class distribution functions (b)

consisting of features taken from the class distribution functions should have
the same length independently from the range of structuring element sizes. This
condition is however not fulfilled in the current case.

In order to produce a feature vector of the constant length, the class dis-
tribution function is sampled into a given number of samples sCL. Due to the
fact that sampling may require the values of the distribution function for real
arguments, some interpolation is required. In the sampling method used in the
experiments, the cubic spline interpolation was applied. As a result of sampling,
the function defined by Eq. 2 of variable length is reduced to a given number
of samples sCL. The samples of distribution functions will be denoted using
upper index in brackets and put together into a feature vector of the class:
vCL =

[
D(1)

CL,D(2)
CL, ...,D(sCL)

CL

]
. An example of sampling is presented in Fig. 5.

Two normalized class distribution functions of variants of the same pattern
(”bird”) are shown in a way that ”x” axis was also normalized as: n′ = n

nMAX
.

In order to get a complete morphological signature of the pattern, the feature
vectors of all classes are grouped in a single feature vector of length s = scr +
sis + scb + sco + sbr:

v = [v(1), v(2), ..., v(s)] = [vcr,vis,vbc,vco,vbr] , (3)

where v(i) stands for the i-th element of the feature vector (i-th feature, always
v(i) ≡ D(j)

CL for certain j and CL). In case of patterns consisting of a single
connected component, there is no need to use class isolated since it would always
be empty. In such case, the feature vector of length s = scr + scb + sco + sbr is
equal to:

v = [v(1), v(2), ..., v(s)] = [vcr,vbc,vco,vbr ] . (4)
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Fig. 5. Sampling of the branch class distribution functions (b) of two different variants
of the “bird” pattern (a)

4 Tree-Based Classification

Classification (decision) trees [8] are graph structures where each node represents
a certain decision rule, involving a test based on values of one of more features
of the data set. These progressive tests divide the original dataset into disjoint
subset nodes with higher class uniformity than the parent node. The final sub-
sets which are not exposed to further divisions are called leaves and determine
the class association of a case belonging to such a node. The number of leaves
determines the tree size, while the number of edges between the root and the
most distant leaves informs about the tree depth.

In order to perform the classification task, tree growing process is needed. It
involves choosing the test conditions for each node, basing on a chosen quality
criterion, in order to achieve the highest possible pattern class2 uniformity in
child nodes. The essential component of the tree-growing process is a training
data set, i.e. a dataset, consisting of feature vectors of all pattern classes to
be recognized. Moreover, each pattern type should be represented by multiple
feature vectors computed for various pattern variations (also scaled, rotated,
with disturbed boundary etc.). Let k be the number of all pattern classes. The
set of feature vectors of all patterns in i-th pattern class is denoted as Vi. In
fact this will be a matrix such that columns refer to features, while rows – to
particular patterns of i-th type. In other words: Vi =

[
vT

i,1,v
T
i,2, ...,v

T
i,pi

]T , where
vi,j stands for the feature vector (Eq. 3) of j-th example of i-th pattern type,
pi is the total number of examples of i-th pattern type in the training set and
2 The notion of class is used in this paper in two meanings. Spatial class refer to the

set of foreground pixles of the pattern (e.g. core, branch, etc.), while pattern class –
to type of the pattern (e.g. “bird”,“spider”, etc.).
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Fig. 6. Sampled features, class core boundary (D(1)
cb , ...,D(11)

cb ) – without feature pres-
election (a), with feature preselction (b)

the upper index T stands for vector transposition. The whole training set is thus
defined as V = {V1, V2, ..., Vk}.

As it was pointed out earlier, normalized and sampled class distribution func-
tions, in general, are fairly invariant to rotation and scaling. However, under
certain conditions (for example, when using a structuring element that is highly
asymmetrical in respect to rotations), some features can show a level of unde-
sired in-class scattering and it is necessary to remove them from the feature
vectors, so that they are not used in the training of the decision tree. We call
this process feature preselection. As a measure of scattering, we use standard
deviation. A global threshold t is chosen to test it. Features with a standard de-
viation exceeding this threshold for at least one pattern type are removed from
the feature set. In other words, in further processing, only features of index l
that fulfill the below condition are kept:

√
√
√
√ 1

pi

pi∑

j=1

(
v
(l)
i,j −m

(l)
i

)2

< t , ∀i = 1, ..., k , (5)

where v
(l)
i,j stands for l-th feature of the j-th example of i-th pattern class, m

(l)
i

is the mean value of l-th feature in i-th pattern class. This guarantees that fea-
tures used in the decision tree learning, chosen as split points for the decision tree
present high in-class integrity and the classification result will not be influenced
by common, slight distortions of the processed patterns. This is demonstrated
in Fig. 6 showing two different shape classes, on features derived from the core
boundary pixel class. Samples D(3)

cb and D(10)
cb were removed from the feature set

due to excess scattering for shape “spider”, and sample D(7)
cb was removed due to

excess scattering for shape “bird”. Therefore, the following subset of the initial
samples of spatial class core boundary can be used in the decision tree growing:
{D(1)

cb ,D(2)
cb ,D(4)

cb ,D(5)
cb ,D(6)

cb ,D(8)
cb ,D(9)

cb ,D(11)
cb }. During the tree growing process,

the split criteria are chosen for each node to maximize class integrity in child
nodes after the division. There exist, however, some severe problems in decission
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tree learning, such as overfitting, which can cause the tree to become overly com-
plicated and unflexible. This phenomenon arises from the discrete and inherently
greedy nature of the tree-growing algorithms, trying to properly include every
data point into the tree structure, even if it is a statistically insignificant outlier.
In our method, due to feature preselection and elimination of the most likely
error-causing and outlier-influenced sections of the feature set, tree overfitting
does not present itself as a problem, so it is possible to obtain full, unpruned
trees with completely class-uniform leaves.

5 Results

Two rounds of testing were performed to evaluate the quality of classification.
In the first round, a classification tree was constructed to perform recognition of
binary shapes of 4 distinct pattern classes: “lizard”, “diamond”, “spider”, “bird”
(shown in Fig. 3(a)). A training set of 160 binary patterns was used, where each
pattern class was represented by 40 examples. The diversity of images within
each pattern class was high, as shown in Fig. 7. It is worth pointing out, that
the shapes differ from each other quite noticeably (compare the shape of the tail
between (a) and (c)). Morphological classification, distribution function normal-
ization and sampling were preformed, with sCL = 11 samples for every spatial
class CL. Since all patterns are represented by single connected components,
class isolated was not taken into account – the feature vector was created based
on the Eq. 4. The number of samples equal to 11 was enough to maintain the
main characteristics of the class distribution function in the feature set at a sat-
isfactory level. The preselection threshold for this round of testing was set to
0.035.

The tree-growing algorithm generated an output tree of size 4 and depth 3.
This tree is shown in Fig. 9. The division points were chosen as samples v(6),
v(13), and v(38). The samples forming the feature vector v are organized in the
following manner (spatial classes and samples): core - v(1), ..., v(11), branches -
v(12), ..., v(22), core boundary - v(23), ..., v(33), corridors - v(34), ..., v(44). There-
fore, samples belonging to spatial classes: core (v(6) ≡ D(6)

cr ), branch (v(13) ≡
D(2)

br ) and corridor (v(38) ≡ D(5)
co ) were chosen as decision tree splits. Tree

testing was performed to verify the quality of the classifier. The test set con-
sisted of 80 shapes, 20 for each of the shape types present in the training set

Fig. 7. Sample shapes for feature set generation: “bird1” (a), “bird2” (b), distorted
(c) and undistorted (d) shape “bird3”, distorted “bird1” (e)
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(“lizard”,“diamond”,“spider”,“bird”). The images were chosen basing on the
same criteria as with the training set: there were different natural shapes and
shapes derived from these natural shapes by means of scaling and rotation. This
set was tested against the obtained classification tree, and a 100% classification
accuracy was achieved. In this test scenario, the best class predictors turned
out to be the core, corridors and branch spatial classes. The distribution func-
tions for these pixel classes show a high diversity between the shapes, and their
characteristics are highly distinctive. It is therefore feasible to perform a pre-
analysis on smaller sets and construct a feature set consisting only of a subset
of pixel class samples to achieve good classification results for a specific pattern
composition.

A second test was performed on a larger set of shapes. This time patterns was
belonging to 8 classes: “bird”, “spider”, “diamond”, “lizard”, “plane”, “octopus”,
“hand” and “whale” (shown in Fig. 8).

Fig. 8. Sample shapes used for the second round of testing

The training set consisted of 320 images, where each class was represented
by 40 images derived from the basic shape by means of scaling and rotation
to achieve high in-class diversity. The test set consisted of 160 images, with 20
images representing each of the 8 shape classes. Distribution function calcula-
tion, feature extraction, preselection and tree growing were performed as in the
first round of testing, with sCL = 11 samples for every spatial class CL. The
preselection threshold was set to 0.135. Again, high accuracy of classification
was achieved, with 98.75% of shapes being properly attributed to their shape
class (two objects were improperly classified). The decision tree generated in the
second round of testing is presented in Fig. 10. This time, samples belonging to
the following spatial classes were used as decision tree splits: core (v(1) ≡ D(1)

cr ,

v(13) < 0.142

lizard

no

v(38) < 0.071

yes

v(6) < 0.214

no

bird

no

spider

yes

diamond

yes

Fig. 9. Decision tree structure with marked split points
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v(12) < 0.001

v(31) < 0.308

no

v(13) < 0.046

no

v(1) < 0.893

no

lizard

no

octopus

yes

v(2) < 0.750

yes

diamond

no

v(1) < 0.918

yes

bird

no

spider

yes

v(34) < 0.001

yes

octopus

no

v(1) < 0.898

yes

v(1) < 0.932

no

plane

no

lizard

yes

spider

yes

v(2) < 0.775

yes

whale

no

v(3) < 0.492

yes

plane

no

hand

yes

Fig. 10. Decision tree structure generated in the second round of testing

v(2) ≡ D(2)
cr , v(3) ≡ D(3)

cr ), branch (v(12) ≡ D(1)
br , v(13) ≡ D(2)

br ), core boundary

(v(31) ≡ D(9)
cb ) and corridor (v(34) ≡ D(1)

co ). Similarly to the first test, in the
second test scenario the shape classification was determined most heavily by the
core and branch spatial class distributions.

6 Conclusions

In the paper, the method for classifying binary patterns was proposed. It con-
sists of several steps and starts with classification of pixels belonging to binary
patterns into several spatial classes, which is performed using morphological
image processing. By performing this classification with structuring elements of
increasing sizes, the spatial class distribution functions are produced. These func-
tions are normalized and sampled in order to obtain feature vectors of constant
length that are invariant to translation, rotation and scaling of binary pattern.
Such feature vectors are next used to perform decision-tree classification. Prior
to proper decision-tree classification an additional step of feature preselection is
performed based on the training set. It allows removing from this feature set fea-
tures with high intra-class scattering, and in effect, makes the remaining features
more suitable for pattern class separation.

The tests confirm that the proposed method is a robust and effective tool for
binary pattern recognition. Furthermore, the method shows a level of flexibility
and, if required, can be optimized for a specific set of shapes to achieve better
performance and match accuracy.

As pixel class extraction from pictures containing the binary shapes is the
most time-consuming step of the classification task, in most cases it is possible
to narrow the analysis to a subset of pixel classes (for example, in the test sce-
nario presented in this paper, only three pixel classes proved relevant). Moreover,
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since pixel class extraction is a task that is limited in dependencies to the indi-
vidual picture processed, it can be performed in parallel by multiple instances
of the extracting program, running on a multi-core CPU or multi-processor ma-
chine. Morphological operations performed during feature extraction can also be
parallelized to a large extent, allowing for further reduction of processing time
on modern computer hardware.
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Object Descriptors Based on a List of

Rectangles: Method and Algorithm

Marc Van Droogenbroeck and Sébastien Piérard
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Abstract. Most morphological operators use a unique structuring el-
ement, possibly at different scales, to describe an object. In addition,
morphological algorithms are often restricted to 1D structuring elements,
combinations of 1D elements, or isotropic structuring elements (like cir-
cles), because of the lack of methods directly applicable to arbitrary
shaped 2D structuring elements. While these descriptors have proved
useful in the past, we propose an alternative that uses the list of maxi-
mal rectangles contained in a set X.

In particular, we focus on an opening that preserves large rectangles
contained in a set X and on its companion 2D algorithm that builds a
list of all the maximal rectangles that fit inside an arbitrary set X. This
list is the base of new descriptors that have been used successfully for
machine learning tasks related to the analysis of human silhouettes.

For convenience, we provide the C source code and a program of our
algorithm at http://www.ulg.ac.be/telecom/rectangles

Keywords: Opening, Granulometry, Algorithm, Rectangle.

1 Introduction

Tools for describing the shape of an object are useful for many applications, in-
cluding classification. In mathematical morphology, the numerous tools include
erosions, openings, skeletons, distance functions, etc. In that context, opening
and closing operators play an important role, mainly because of their useful prop-
erty of idempotence which is similar to the notion of ideal filter in linear filtering.
If the property and behavior of many openings (like morphological openings [7],
area openings [9], openings by reconstruction [6], or attribute openings [4]) are
well known to practitioners, their implementation might still be problematic,
mainly for multidimensional spaces. For example in the particular case of open-
ings with rectangles, it is common to decompose the structuring element as the
dilation of an horizontal line by a vertical line, and to apply the chain rule. While
this procedure is extendable to 3D objects, algorithms that rely on a decomposi-
tion impose a processing order and become less convenient for 2D granulometries
because intermediate results have to be stored.

From a practical point of view, we could classify binary openings in two fami-
lies: (1) the family of openings that compare a structuring element to the set X to
be interpreted (these openings are called morphological openings hereafter), and

P. Soille, M. Pesaresi, and G.K. Ouzounis (Eds.): ISMM 2011, LNCS 6671, pp. 155–165, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.ulg.ac.be/telecom/rectangles
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(2) the family of attribute openings. Unlike morphological openings, attribute
openings preserve the shape of a set X , because they simply test whether or not
a connected component satisfies some increasing criterion Γ , called attribute. An
example of valid attribute consists in preserving a set X if its area is superior
to λ or removing it otherwise. This is in fact the surface area opening [9]. More
formally, the attribute opening γΓ of a connected set X preserves this set if it
satisfies the criterion Γ :

γΓ (X) =

{
X, if X satisfies Γ,

∅, otherwise.
(1)

Morphological openings affect the shape of an object. Therefore, in order
to build a more descriptive shape analysis tool, they are often characterized
by a parameter k leading to granulometries (with some specific restrictions on
the shape of the structuring element) and granulometric functions or curves
that provide a numeric result increasing (or decreasing) with k. Likewise, if
attribute openings do not affect the shape of regions that are preserved (because
they preserve the entire connected component [4]), they can be parametrized
to provide a granulometric curve too. The underlying limitations are that it is
hard to build a two-dimensional granulometric function and that all information
about the location of an object in the image is lost with a granulometric curve.

In [8], we proposed an algorithm that computes a list of rectangles and derive
granulometric curves. The advantages of having a list of rectangles are twofold:
(1) it is simple to calculate granulometric curves once the list has been built
because the list gathers all the information needed for the granulometry, and (2)
it is possible to calculate, for each pixel, some statistics extracted from the list,
like the size of the largest rectangles comprising that pixel. Descriptors based on
a list of rectangles have proved successful for two classification tasks related to
the analysis of human activities; they were used for gait recognition in [3], and
for identifying human silhouettes in video scenes both in 2D [2] and in 3D [5].

In the following section, we illustrate our approach with one possible operator
computable directly from a list of rectangles and show how to use it to build a
granulometric curve. In Section 3, we describe an algorithm that computes the
list of rectangles contained in an arbitrarily shaped object X . Section 4 concludes
the paper.

2 Towards a Family Opening

2.1 Reminder

Consider the discrete space Z2. Given a set X ⊆ Z2 and a vector b ∈ Z2, the
translate Xb is defined as Xb = {x + b|x ∈ X}. Let us take two subsets X and
B of Z2. The dilation and erosion are respectively defined as

X ⊕B =
⋃

b∈B

Xb =
⋃

x∈X

Bx = {x + b|x ∈ X, b ∈ B}, (2)
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X (B =
⋂

b∈B

X−b = {p ∈ Z2|Bp ⊆ X}. (3)

Dilation and erosion are not inverse operators. If X is eroded by B and then
dilated by B, one may end up with a smaller set than the original set X . This
set, denoted by X ◦B, is called the opening of X by B and defined by X ◦B =
(X ( B) ⊕B. One useful property of openings is that a morphological opening
is the union of all the translate Bp included in X , that is

X ◦B =
⋃
{Bp |Bp ⊆ X} . (4)

2.2 Definition of a Family Opening

We define a parametric opening operator that encompasses all the rectangles
whose cardinality is larger or equal to k. In the following, we limit possible rect-
angles to rectangles whose sides are parallel to the x− y system coordinates; in
other words, all rectangles can be expressed as nH ⊕mV , where H and V are
horizontal and vertical segments respectively. We could also consider other di-
rections but the algorithm described in Section 3 then would have to be adapted.

The family opening of a set X by a family of rectangles whose cardinality or
area is larger or equal to k, denoted γk(X) hereafter, is defined by

γk(X) =
⋃
{R |#(R) ≥ k and R ⊆ X} , (5)

where #(R) denotes the cardinality of a rectangle R. This operator is the union
of openings by all the rectangles that meet the size constraint, #(R) ≥ k, there-
fore it is an opening , but it is not an area opening as not only the area but also
the shape is constrained. Note that we could use a different criterion to select
rectangles from the list. In [3] for example, the shape descriptor is based on the
histograms of all the rectangle widths and heights. A subset of all maximal rect-
angles was successively used to discriminate human shapes from objects shapes
in [2].

A granulometric curve is easily derived from γk(X). Granulometric curves
can be obtained by taking the cardinality of the reconstructed area with all
the rectangles that have a cardinality larger than a given threshold, which is
the area of γk(X). Fig. 1 draws these granulometric curves for some simple
binary shapes. To ease the interpretation, we have only displayed the values for
area threshold when they change the cardinality of the reconstructed area (we
have removed all the plateaus); it is also possible to interpolate the values to
smooth the curves. It is interesting to note for example that the overall shape
of the granulometric curves of a diamond and a circle are similar, but that gaps
are larger for a circle. Classification tools and machine learning techniques are
adequate to interpret the information provided by such granulometric curves,
for example to differentiate between several shapes.
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Fig. 1. Simple binary objects and their corresponding granulometric curves (obtained
by taking the area of the family opening γk(X) with respect to k)
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3 Description of an Algorithm That Builds a List of All
Maximal Rectangles Contained in a Binary Set X

While Vincent [10] proposed an efficient algorithm for computing 1D granulome-
tries, only a few algorithms are applicable to 2D spaces. Several authors proposed
variants that rely on the chain rule, which states that X((H⊕V ) = (X(H)(V
and that X ⊕ (H ⊕ V ) = (X ⊕ H) ⊕ V , to deal with rectangles, but we con-
sider that these algorithms are 1D in nature. For example, some decomposition
properties were used by Bagdanov and Worring in [1] to derive rectangular gran-
ulometries and interpret the similarity of document images. In [8], we proposed
a complex algorithm that computes two intermediate images containing all the
necessary information for granulometries by rectangles. While this algorithm is
efficient, the new algorithm described hereafter is much simpler and fast enough
for real-time applications.

3.1 The Principles

There are different ways to characterize rectangles and to build a list of rect-
angles that fit inside an object X . In the following, we concentrate on maximal
rectangles. By definition, if R is a maximal rectangle, then there is no R′ such
that R ⊂ R′ ⊆ X . Note that if we consider all the possible rectangles, including
the singleton (a rectangle degenerate to a single pixel), then for each location
x ∈ X , there is at least one maximal rectangle that contains x. Of course, there
might be more such rectangles.

A first subtle difference with the algorithm proposed in [8] is that we do not
impose that each rectangle contains at least one point not included in any other
rectangle of the list (this would lead to a minimal cover by rectangles). A second
difference is the way to find the rectangles and the association of a rectangle
with a reference point.

Before we define the notion of reference point, let us first remark that each
maximal rectangle touches the upper, lower, left, and right borders; otherwise the
rectangle would not be maximal. Our objective is to associate a unique reference
point for each rectangle, but we accept that rectangles share a common reference
point. By convention, we choose the reference point of a maximal rectangle to
be the lowest point of the rectangle that touches the left border of the object.

Our algorithm is built around the concept of reference point. But, because
we are not able to localize reference point in advance in an image, we introduce
another notion, which is that of candidate. Candidates of a set X are elements
of X that might be reference points of a maximal rectangle included in X . By
definition, candidates are located on the left border of the object. This does not
mean that all these points are reference points, but at least they are candidates.

The steps of our algorithm are then:

1. determine candidates, that is possible reference points,
2. search all the rectangles that could be associated to a candidate,
3. associate the maximal rectangle to a reference point if such a rectangle exists,

and add the rectangle to the list of maximal rectangles.
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A candidate is first selected during a scanning process of the image. A specific
rule applies to the detection of candidates. If a maximal rectangle contains two
candidates in the same column, the highest of the two candidates has to be ig-
nored because that candidate is not a reference point according to our definition.
Consequently, the downwards extension of a maximal rectangle rectangle start-
ing from a reference point is bounded by the next to left contour point located
beneath the reference point; this downwards vertical extension value is denoted
maxS hereafter (see Fig. 2 for a graphical illustration of maxS). This specific
rule eases the search for maximal rectangles.

The steps of our algorithm are illustrated on Fig. 2. The candidate is repre-
sented by a dark disk. We have put a horizontal line to denote the downwards
limit maxS. The respective drawings are described hereafter.

1. Suppose that we have detected a candidate located at (col , row). We con-
sider a first rectangle whose width is 1 and height is maximal. As the rectan-
gle is extendable to the right with the same height, this rectangle is discarded.

2. The first rectangle is then extended to the right to reach a width of 2. This
rectangle is maximal because it does not extend to the right, but it crosses
the lower limit as defined by maxS. We have to ignore this rectangle too
because the candidate is not the reference point for this rectangle. Depending
on the scanning order, this rectangle is discovered earlier (upwards column
scanning) or later (downwards column scanning).

3. We reduce the height of the rectangle and extend it to the right. This rect-
angle is maximal and its downwards extension is inferior or equal to maxS.
Therefore the candidate is indeed a reference point and we must add this
rectangle to the list.

4. The height of the third rectangle is reduced and the rectangle is extended
to the right. This rectangle is not maximal, therefore, it is also discarded.

5. Again, we extend the rectangle to the right. The resulting rectangle is max-
imal and does not cross the lower limit. It is therefore added to the list of
maximal rectangles.

6. Finally, we reduce the height of the fifth rectangle and extend it to the right.
Since this sixth rectangle touches the right border of the object on the row
row, it is maximal. Furthermore, it does not cross the lower limit. It is thus
also added to the list.

Note that we now have three maximal rectangles associated to the same reference
point located at (col , row). Therefore, the number of reference points is not an
upper bound of the number of maximal rectangles.

3.2 Implementation

Listing 1 provides a C implementation of our algorithm. Note that 50 lines of C
code suffice to compute the list! The function “ listRectangles” computes the list
of rectangles for an object represented by a 2D array of booleans named “object”.
This array has w columns and h rows. For each discovered maximal rectangle,
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Fig. 2. Steps to detect all the rectangles associated to a candidate (denoted by a disk
on the drawings)



162 M. Van Droogenbroeck and S. Piérard

Algorithm 1. An algorithm that detects all the maximal rectangles contained
in an object X represented by a binary image named “object [ w ][ h ]”.

1 void l i s tR e c t a n g l e s ( int w , int h , bool ob j e c t [ w ] [ h ] ) {
2
3 int dN [ w ] [ h ] ;
4 for ( int co l = 0 ; c o l < w ; ++ co l ) {
5 dN [ co l ] [ 0 ] = ob j e c t [ c o l ] [ 0 ] ? 0 : −1 ;
6 }
7 for ( int row = 1 ; row < h ; ++ row ) {
8 for ( int co l = 0 ; c o l < w ; ++ co l ) {
9 i f ( ! ob j e c t [ c o l ] [ row ] ) dN [ co l ] [ row ] = −1 ;

10 else dN [ co l ] [ row ] = dN [ co l ] [ row − 1 ] + 1 ;
11 }
12 }
13
14 int dS [ w ] [ h ] ;
15 for ( int co l = 0 ; c o l < w ; ++ co l ) {
16 dS [ c o l ] [ h − 1 ] = ob j e c t [ c o l ] [ h − 1 ] ? 0 : −1 ;
17 }
18 for ( int row = h − 2 ; row >= 0 ; −− row ) {
19 for ( int co l = 0 ; c o l < w ; ++ co l ) {
20 i f ( ! ob j e c t [ c o l ] [ row ] ) dS [ c o l ] [ row ] = −1 ;
21 else dS [ c o l ] [ row ] = dS [ c o l ] [ row + 1 ] + 1 ;
22 }
23 }
24
25 for ( int co l = w − 1 ; c o l >= 0 ; −− co l ) {
26 int maxS = h ;
27 for ( int row = h − 1 ; row >= 0 ; −− row ) {
28 ++ maxS ;
29 i f ( ob j e c t [ c o l ] [ row ]
30 && ( co l == 0 | | ! ob j e c t [ c o l − 1 ] [ row ] ) ) {
31 int N = dN [ co l ] [ row ] ;
32 int S = dS [ c o l ] [ row ] ;
33 int width = 1 ;
34 while ( c o l + width < w && ob j e c t [ c o l + width ] [ row ] ) {
35 int nextN = dN [ co l + width ] [ row ] ;
36 int nextS = dS [ c o l + width ] [ row ] ;
37 i f ( ( nextN < N ) | ( nextS < S ) ) {
38 i f ( S < maxS ) add ( co l , row − N , width , N + S + 1 ) ;
39 i f ( nextN < N ) N = nextN ;
40 i f ( nextS < S ) S = nextS ;
41 }
42 ++ width ;
43 }
44 i f ( S < maxS ) add ( co l , row − N , width , N + S + 1 ) ;
45 maxS = 0 ;
46 }
47 }
48 }
49
50 }

the function calls a callback function named “add” with four arguments: the top
left corner coordinates, the width, and the height. Note that, in this code, we
have arbitrarily chosen the column-major order.
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Some parts of the C code are commented hereafter.

– Lines 3 to 12. To optimize the search, we first compute the distance that
separates a pixel located at ( col , row ) to the upper border of the object.
The result is stored in the dN [ col ][ row ] data structure; the dN notation
stands for Distance to the North.

– Lines 14 to 23. Likewise, distances between ( col , row ) and the downwards
border is computed and stored in a specific data structure dS [ col ][ row ].
About half of the code is devoted to these simple search operations!

– Lines 25 and 27. This is the main loop on all the pixels and, inside the loop,
the current location is ( col , row ).
Ideally, only the border should be examined because reference points have to
belong to the border, but this supposes that the border of the object is known
prior to the scanning process. Note that the image is scanned upwards (line
27). This is an indirect consequence of our definition for reference points,
because this order eases the determination of maxS, as explained hereafter.

– Lines 29 to 30. We detect if a pixel is a candidate. Only pixels located on
the left border are candidates.

– Lines 31 to 44. All the maximal rectangles comprising ( col , row ) are
considered. The upper left corner of such a maximal rectangle, its width,
and its height are respectively ( col , row − N ), width, and N + S + 1.

– Lines 38 and 44. A rectangle is added to the list only if ( col , row ) is a
reference point. An efficient way to determine if a candidate is a reference
point uses the instructions of lines 26, 28, and 45. The scanning order helps
us to determine the distance between ( col , row ) and a reference point
located downwards in the same column, that is ( col , row + maxS ). This
distance is stored in a variable called maxS, which is initialized as if a pre-
vious virtual reference point was located outside the image (therefore maxS
is taken such that it is equal to h which is a value larger than the possible
values, at line 26). Indeed, ( col , row + h ) is located outside the image.
Once a candidate has been dealt with and before the algorithm moves to the
next row index upwards, maxS is set to 0 (line 45) which avoids redundant
rectangles in the list.

In the next two subsections, we discuss two issues related to the algorithm: the
maximal size of the rectangle list, in order to bound the memory needed to store
the list, and the complexity of the algorithm.

3.3 On the Number of Maximal Rectangles

We have seen that the number of reference points is not directly useful to deter-
mine a bound for the number of maximal rectangles contained in a binary set
X . However, for each maximal rectangle, the location ( col + width − 1 , row )
plays a particular role. It is located on the same row as the reference point and
it indicates the right edge of the rectangle. By construction, it is impossible for
two maximal rectangles to share this point. This observation allows us to derive
an important upper bound for the number of rectangles on an object.
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Property 1. The number of maximal rectangles contained in an object X is
bounded by the cardinality of X .

Consequently, the maximal memory footprint to store the list of rectangles is
bounded by storage size of one rectangle multiplied by the cardinality of an
object X , which in some cases might be as large as the image.

3.4 Run-Time Complexity Analysis

Let w × h be the size of the image, and A the cardinality (that is the area
expressed in pixels for discrete sets) of the object X . The overall run-time com-
plexity of our algorithm is O (wh). Here are the details:

– The processing cost for adding rectangles to the list (which is expressed
in the code by calling the function “add”) is O (A). This is derived from
Property 1.

– Precomputing dN and dS for each point inside X has a complexity ofO (wh).
– Likewise, detecting all candidates also takes O (wh).
– For each candidate and each value of width to be considered, deciding if the

rectangle is maximal plus computing the location and the size of this rect-
angle is achieved in constant time. Therefore, if dE is the distance between
the candidate and the right border of X , the complexity of these operations
is given by O (dE) for each candidate. As a conclusion, once the candidates
are known, computing the list of rectangles only takes O (A), where A is the
cardinality of X .

The combination of the complexity of all these steps leads to a complexity of
our algorithm given as O (wh). In practice and in our algorithm, the bottle-
neck originates from the computation of dN and dS, and the detection of all
candidates.

4 Conclusions

This paper presents methods that deal with rectangles to characterize the shape
of objects. These methods, that rely on the list of all the maximal rectangles
included into an arbitrarily shaped object X , offer an interesting alternative to
1D or isotropic descriptors. In addition, we propose an efficient algorithm that
computes this list. For convenience, we provide the C source code and a program
of our algorithm at http://www.ulg.ac.be/telecom/rectangles

From this list, it is possible to derive granulometric curves and many other
statistics. Some of these statistics were used successfully for gait recognition and
for the detection of human silhouettes. New opportunities that originates from
the possibility to determine local statistics (that is, statistics for each pixel) are
open for future works.
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Abstract. Ultimate Opening (UO) is a powerful operator based on nu-
merical residues. In a multi-scale framework, it analyzes an image under a
series of increasing openings. Contrasted objects are detected when they
are filtered out by an opening, generating an important residue. Grad-
ual transitions make this operator underestimate the contrast of blurred
objects. In this paper we propose a solution to this problem, integrat-
ing series of non-null residues. The resulting operator handles correctly
blurred boundaries, without modifying the behavior on sharp transitions.

Keywords: Numerical residues, ultimate opening, attribute opening,
image segmentation, mathematical morphology.

1 Introduction

Given an image I, a residual operator (r(I)) in Mathematical Morphology is
defined as the difference between two operators (Ψ and ζ) applied to the given
image I: r(I) = Ψ(I) − ζ(I). Morphological gradient, defined as the residue of
dilation and erosion (δ(I) − ε(I)), or top-hats, defined as the residue of the
image and its opening (I − γ(I)) or its closing (φ(I) − I) are residual op-
erators extensively used. The extension of residues to a family of primitives
Ψi and ζi is defined as the union of residues computed at different sizes i:
r(I) = ∪i (Ψi(I)− ζi(I)). Ultimate erosion is an example of this type of op-
erators. It is defined as the union of residues of erosions (Ψi = εi) and openings
by reconstruction (ζi = γrec): UltimateErosion(I) = ∪i [εi(I)− γrec

i (I)]. Ulti-
mate erosion is used for segmenting binary connected objects. Another example
is the skeleton: the union of residues of erosions and the corresponding openings
Skeleton(I) = ∪i [εi(I)− γi(I)]. The application of ultimate erosion or skele-
ton to binary images produces only one non-null residue (of index i) for each
pixel. The union of these residues is then straightforward. This is not the case
for gray level images. Thus, the extension of residual operators with a family
of primitives to gray level images has to deal with the combination of several
residues at different sizes for the same pixel. Beucher in [1] proposes to keep for

P. Soille, M. Pesaresi, and G.K. Ouzounis (Eds.): ISMM 2011, LNCS 6671, pp. 166–177, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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each pixel the maximum residue and the index i corresponding to the size lead-
ing to it. Thus, he defines the quasi-distance function as the maximum residue
between consecutive erosions (QuasiDistance(I) = maxi (εi(I)− εi+1(I))) and
the ultimate opening (UO) as the maximum residue between consecutive open-
ings (UltimateOpening(I) = max (γi(I)− γi+1(I))). Retornaz and Marcotegui
in [2] introduce ultimate attribute openings, based on attribute operators [3],
and Fabrizio [4] proposes an efficient implementation based on a max-tree rep-
resentation. Leite and Guimaräes propose an image filtering framework based
on residues by attribute, but requires a set of parameters (size or complexity) in
order to select which regions will be preserved [5].

(UO) is a powerful residual operator, able to segment generic images without
a priori size information. It has been successfully used for several applications:
granulometry of rocks [6], automatic text localization [2] and façade segmenta-
tion [7]. In this paper we focus on the behavior of this operator on gradual tran-
sitions and propose a solution to avoid underestimating the contrast of blurred
objects. This paper is organized as follows: section 2 reminds the ultimate open-
ing principle, section 3 analyzes the problem of gradual transitions and proposes
a solution to deal with blurred objects, section A explains the implementation
of the new operator, section 4 illustrates the performance of the new operator
and finally, section 5 concludes the paper.

2 Ultimate Opening

2.1 Ultimate Opening Definition

Following a multi-scale approach, UO analyzes the image while performing a
series of openings of increasing sizes: γλ(I), with λ = {0, 1, ..., N − 1} and N the
maximum opening size considered. The series of differences between consecutive
openings, named residues (rλ(I) = γλ(I) − γλ+1(I)), is computed. Each pixel
keeps two significant pieces of information:
– the maximal residue, Rθ(I) = maxλ(rλ(I)). It is the strongest change gen-

erated by an opening. An important structure is supposed to be filtered out
by this opening and the corresponding residue estimates its contrast.

– the size of the opening leading to the maximal residue qθ(I). If several open-
ings lead to the same maximum rλ(I) = Rθ(I), the largest λ among them
is chosen (as proposed in the UO definition [1]). qθ(I) is set at 0 for pixels
where all residues are null. This happens for the minimum of the image or
for objects larger than N, the largest opening size considered.

The definition of the UO is then written as:

Definition 1 (Ultimate opening [1]). The ultimate opening operator, θ, of
an image I is given by:

θ (I) : I
θ−→ (Rθ (I) , qθ (I)) (1)

where,
Rθ (I) = maxλ(rλ(I)) = maxλ (γλ(I)− γλ+1(I)) (2)
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qθ(I) =
{

max {λ + 1 | rλ(I) = Rθ(I)} Rθ(I) > 0
0 Rθ(I) = 0 (3)

where, (γλ)λ∈{0,1,...N} is an increasing family of openings.

Labeling qθ(I) we get a partial partition [8,9]: pixels are grouped in non inter-
secting segments that do not cover the whole domain (qθ(I) is set at 0 for pixels
where all residues are null).

Ultimate opening segments light objects in a dark background. In order to deal
with dark objects in a light background, an ultimate closing should be used. The
ultimate closing can also be applied to the gradient image, dealing with both
polarities at the same time. The use of a gradient image is not recommended for
images containing thin objects.

In this paper we focus on attribute openings. If not specified in the text, height
attribute (y-extent of connected components) will be used in the following.

2.2 Example of Application

Fig. 1 shows the ultimate height closing of a real image 1(a). The letters of the
image are not homogeneous. They are filled with a texture from another image.
Fig. 1(b) shows qθ(I) and Fig. 1(c) Rθ(I). In spite of the fact that the letters

(a) Original Image

(b) qθ(I) (size information) (c) Rθ(I) (contrast information)

Fig. 1. Ultimate Height Closing : (b) qθ(I), represented in false colors in order to see
the segmented regions and (c) Rθ(I)
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are textured, most of them are correctly segmented, because their texture is less
contrasted than the contrast between the characters and their background.

In order to understand this process, let us see the evolution with the series
of closings (characters are darker than their background) of two pixels inside
the same letter. Two pixels inside the first letter “N” of “GENERATION” are
randomly chosen. The series of values of these two pixels, after applying closings
of increasing sizes, are shown in blue dashed line in Fig. 2(a) and 2(b). The
corresponding residues (the derivative of the blue dashed curve) are illustrated
in green solid curves of Fig. 2(a) and Fig. 2(b). Residues for small closing sizes
correspond to the internal fluctuations of the letter. These residues are different
for different pixels of the same letter. However, both pixels have their highest
residue for a closing of size 83. This is because the letter is 82 pixels high, and
it is filtered out by a closing of size 83 (see Fig. 2(c) and Fig. 2(d)). The same
important residue is seen by all the pixels of the structure. Thus, ultimate closing
catches contrasted structures when they are filtered out, leading to interesting
segmentation results without a priori information.

(a) Pixel evolution (in blue dashed line)
and corresponding residues (in green
solid line) of a pixel inside “N”.

(b) Pixel evolution (in blue dashed line)
and corresponding residues (in green
solid line) of another pixel inside the
same “N”

(c) Closing of size 82 (d) Closing of size 83

Fig. 2. Intermediate images of Ultimate Height Closing

3 Gradual Transitions and Δ Ultimate Opening

Ultimate opening produces interesting segmentation results in very diverse situa-
tions. Nevertheless, it underestimates the contrast of blurred objects. Indeed, the
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(a) Original image

(b) Original pixel values of white line in
(a)

(c) Pixel value, residues and integrated
residues of a pixel inside letter “e”.

(d) Rθ (I) (e) RΔ
θ (I)

Fig. 3. Residues of a gradual transition (blurred objects)

boundary of a blurred object is a gradual transition. The contrast of the object
is then divided into several steps. The contrast associated by UO to the object
would be the largest of these steps, inevitably smaller than the real contrast of
the object. An example of this situation is shown in Fig. 3. Fig. 3(a) shows the
original image and Fig. 3(b) the profile of a horizontal line (superimposed in
white in Fig. 3(a)). The gray level value of the letters is about 160 while the
background value is about 10. The contrast of letters is then about 150. But the
contrast estimated by the UO is only about 20 (see Rθ in Fig. 3(d)). Fig. 3(c)
shows the pixel value evolution (in blue dashed line) of a pixel inside a letter,
with a series of increasing openings. The corresponding residues are shown in
green solid line. We can observe a series of non null residues for consecutive
opening sizes, corresponding to the gradual transitions of the blurred boundary.
In fact, transition regions are characterized by their small size. This is why small
residues appear for consecutive opening sizes. If we integrate the series of non
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(a) Rθ (I) (b) qθ (I)

(c) RΔ
θ (I) (d) qΔ

θ (I)

Fig. 4. UAO and ΔUAO comparison

Fig. 5. Transition zones, detected as those that benefit from the residues integration

null residues, assuming that they correspond to transition zones, we get a much
better contrast estimation. Red dashdotted line in Fig. 3(c) shows the integrated
residues. Fig. 5 shows which pixels benefit from the integration. We can see that
they are located in the boundary of the blurred objects.

This idea has been generalized to introduce the ΔUO, that integrates the
series of residues until finding a series of Δ null residues. For Δ = 0 we get
the classic UO, Δ = 1 integrates series of non-null residues, Δ = 2 integrates
series of residues separated by at least 2 consecutive null residues, and so on.
The larger Δ is, the larger transition zones can be.

Fig. 4(a) and Fig. 4(b) show Rθ and qθ of 3(a) while Fig. 4(c) and Fig. 4(d)
show RΔ

θ and qΔ
θ with height attribute openings, and Δ = 1. We can appreciate

a much better contrast estimation of ΔUAO.

4 Results

In this section we report several results, illustrating the performance of ΔUAO
with Δ = 1 in several complex images from the public ICDAR 2003 image
database [10]. In order to deal with both polarities ΔUAO is applied to image
I and to its inverse Ic. For each pixel, the polarity leading to a bigger residue is
kept (see Eq.4).
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Rθ (I, Ic) = max (Rθ (I) , Rθ (Ic))

qθ (I, Ic) =
{

qθ (I) Rθ (I) > Rθ (Ic)
qθ (Ic) otherwise

(4)

The gradient is not used in order to be able to detect thin objects.
Fig. 6 compares classical UAO with ΔUAO. For each image, the first row

shows the original image (on the left) and the classical UAO residue, according
to equation 4. The contrast of the selected structures is clearly underestimated.
In the second row, qΔ

θ (I, Ic) (on the left), represented in false colors in order to
see the segmented regions and its corresponding residual information RΔ

θ (I, Ic)
(on the right). Satisfactory results have been obtained in difficult situations:
complex background or illumination problems. Most letters have been correctly
segmented in qΔ

θ and their associated contrast in RΔ
θ corresponds to their real

contrast.

5 Conclusions

In this paper we analyze the behavior of ultimate opening on blurred objects and
see that it underestimates their contrast. We propose a solution, the Δ ultimate
opening, that integrates series of residues, getting a much better contrast esti-
mation. Moreover, ΔUO can be used as a detector of blurred contours, without
any additional parameter. They are defined as the set of pixels that benefit from
the integration.

We propose an efficient implementation of ΔUAO, as a simple modification
from the max-tree based UAO implementation.

Interesting segmentation results for text segmentation in generic images are
reported.

In the future, other criteria to combine residues can be studied. For exam-
ple, the region stability, stablishing some links with Maximal Stable Extremal
Regions [11]. We also intend to analyze the influence of the chosen attribute on
UAO result.
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A ΔUAO Implementation on Max-Tree

ΔUAO can be implemented easily and efficiently on a max-tree representation.
As explained in [4], UAO can be computed in a single tree traversal, from the
root to the leaves, with the following formula:

rλ (node) =
{

t(node)− t(parent) + rλ (parent) κ(parent) == κ(node)
t(node)− t(parent) otherwise

(5)
where node and parent are two linked nodes of the max-tree, t(node) the gray
level associated to node and κ(node) its corresponding attribute.

In order to implement ΔUAO, the condition (κ(parent) == κ(node)) is re-
placed by (κ(parent) − κ(node)) ≤ Δ in the previous equation. The reason for
that is the following: an opening of size κ(node)+1 will filter out the region
corresponding to the node, assigning to it the value of its parent. Thus, the
following opening producing a residue in this region would be the opening of
size κ(parent) + 1, that removes the parent node. Therefore, openings from size
κ(node)+2 to size κ(parent) (both included) will not modify the region, leading
to a series of κ(parent) − κ(node) − 1 null-residues. Given that, according to
ΔUAO definition, residues should be integrated until finding a series of Δ null
residues, the condition to this integration is set at (κ(parent) − κ(node) ≤ Δ).
The formula for rΔ

λ computation becomes:

http://algoval.essex.ac.uk/icdar/TextLocating.html
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rΔ
λ (node) =

{
t(node)− t(parent) + rΔ

λ (parent) κ(parent)− κ(node) ≤ Δ
t(node)− t(parent) otherwise

(6)
The pseudo-code for ΔUAO is shown in algorithm 1. RΔ

θ is computed from
rΔ
λ as explained in [4,12]. The process starts at the root node: RΔ

θ (root) and
qΔ
θ (root) are initialized to zero. Then, function ComputeNode is called for each

root child. ComputeNode function (see algorithm 2) computes rΔ
λ (node) and

compares it with RΔ
θ (parent). RΔ

θ (node) keeps the maximum value between
them: RΔ

θ (node) = max(rΔ
λ (node), RΔ

θ (parent)). qΔ
θ computation requires a par-

ticular attention. By definition it should be set at the size of the opening pro-
ducing the highest residue. But several openings contribute to RΔ

θ . Which size
should be chosen for qΔ

θ ? If RΔ
θ (parent) is higher than rΔ

λ (node), RΔ
θ (parent)

and qΔ
θ (parent) are propagated to the node (lines 14 and 15 in algorithm 2).

Otherwise, if rΔ
λ (node) becomes RΔ

θ (node), qΔ
θ (node) is set at:

– κ(node)+1, if the node does not belong to an integration series (isΔ is false)
or if node is the first node of the integration series when a maximal residue
is produced (isΔ is true but q propagation is false; lines 20 and 21).

– qΔ
θ (parent), until the end of the integration process (isΔ and q propagation

are both true; lines 18 and 19).

Thus, qΔ
θ is set at the largest opening size involved in the integration process,

when a maximum residue is produced. This size corresponds to the actual size
of the detected region.

An example of rΔ
λ computation, with Δ = 1, for a synthetic profile of Fig. 7a is

illustrated in Fig. 8. For the sake of simplicity, tree nodes are labelled with their
gray level value (which is obviously not the case in the software implementation).

– The residue of the root node (0) is initialized to zero: rΔ
λ (0) = 0. RΔ

θ (0) and
qΔ
θ (0) are also initialized to 0.

– Then, node 3 is processed: rΔ
λ (3) = rλ(3) = 3. No integration is performed,

since κ(3) − κ(0) = 10 − 8 = 2 > Δ. rΔ
λ (3) > RΔ

θ (0), then RΔ
θ (3) = rΔ

λ (3)
and qΔ

θ (3) = κ(3) + 1 = 9.
– After that, node 5 is processed: rΔ

λ (5) = rλ(5) = 2. No integration is per-
formed, because κ(5) − κ(3) = 8 − 6 = 2 > Δ. Since rΔ

λ (5) < RΔ
θ (3), RΔ

θ

and qΔ
θ are propagated from the parent (node 3) to the child (node 5):

RΔ
θ (5) = RΔ

θ (3) = 3 and qΔ
θ (5) = qΔ

θ (3) = 9.
– When computing rΔ

λ (7), rλ(7) should be added to rΔ
λ (5): rΔ

λ (7) = rλ(7) +
rΔ
λ (5) = 2 + 2, because κ(7)− κ(5) = 6 − 5 = 1 ≤ Δ. This residue is larger

than RΔ
θ (parent), then RΔ

θ (7) = rΔ
λ (7) and qΔ

θ (7) = κ(7) + 1 = 6. The
variable q propagation is activated for the rest of the integration series.

– This integration continues till node 9 (attributes have consecutive values:
from 6 to 3), leading to rΔ

λ (9) = 2 + 2 + 1 + 1 = 6. Thus RΔ
θ (8) = rΔ

λ (8) = 5
and RΔ

θ (9) = rΔ
λ (9) = 6.
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Algorithm 1. Compute Delta Ultimate Attribute Opening
1 ComputeΔUAO()

// Initialization

2 RΔ
θ (root) = 0

3 qΔ
θ (root) = 0

4 q propagation = 0
// Compute children

5 foreach child in Children(root) do
6 ComputeNode(child,root,q propagation)

Algorithm 2. Compute Node
7 ComputeNode(node,parent,q_propagation)

// Verify Δ attribute

8 isΔ = (κ(parent) − κ(node)) ≤ Δ

// Compute residue rΔ
λ (node)

9 if (isΔ) then
10 rΔ

λ (node) = t(node) − t(parent) + rΔ
λ (parent)

11 else

12 rλ(node)Δ = t(node) − t(parent)

// Compute RΔ
θ (node) and qΔ

θ (node)

13 if (RΔ
θ (parent) > rΔ

λ (node)) then
14 RΔ

θ (node) = RΔ
θ (parent)

15 qΔ
θ (node) = qΔ

θ (parent)

16 else
17 RΔ

θ (node) = rΔ
λ (node)

18 if (isΔ∧ q propagation) then

19 qΔ
θ (node) = qΔ

θ (parent)
20 else
21 qΔ

θ (node) = κ(node) + 1

// Compute children

22 foreach child in Children(node) do
23 ComputeNode(child,node,isΔ)
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(a) Profile (b) Profile + Max-
Tree

(c) RΔ
θ (d) qΔ

θ

Fig. 7. (a) Profile with graylevels (t) and attribute (κ), (b) Max-Tree. (c)-(d) ΔUAO
outputs

Fig. 8. ΔUAO on Max-tree
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Abstract. In order to face the various needs of users, user-driven seg-
mentation methods are expected to provide more relevant results than
fully automatic approaches. Within Mathematical Morphology, several
user-driven approaches have been proposed, mostly relying on the wa-
tershed transform. Nevertheless, Soille (IEEE TPAMI, 2008) has re-
cently suggested another solution by gathering puzzle pieces computed
as Quasi-Flat Zones (QFZ) of an image. In this paper, we study more
deeply this user-driven segmentation scheme in the context of video data.
Thus we also introduce the concept of Spatio-Temporal QFZ and propose
several methods for extracting such zones from a video sequence.

Keywords: Quasi-flat zones, video segmentation, segmentation
personalization.

1 Introduction

Following the increase of textual and then image data in personal databases and
Web repositories, we are currently facing the same evolution with video data.
Many video processing schemes or related use cases require a prior segmentation
to get the objects-of-interest to be further processed. However, the segmentation
of a given video is often not unique and depends on user needs. Thus it is
necessary to rely on a segmentation method able to provide a personalized result.

Video segmentation methods designed within the framework of Mathematical
Morphology may be clustered in two categories: automatic methods [2,4] which
do not require any user interaction (apart from parameter settings) and interac-
tive methods [6,7,8] (but also video extension of [10]) where the user has mainly
to draw some markers over objects-of-interest in order to drive the segmentation
process. Results returned by automatic methods are then not adapted to user
needs and often face the problem of over-segmentation. Interactive methods are
more time-consuming (from a user point of view) but provide a personalized
result. Another solution to solve the problem of segmentation personalization is
to provide an over-segmentation which will then be reduced by the user through
region merging in order him to obtain the expected segmentation. Image over-
segmentation may be achieved using flat zones [11] but it then results in an
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extreme over-segmentation. Quasi-Flat Zones have been introduced in order to
reduce this over-segmentation while keeping interesting properties of flat zones.
QFZ are based on a less restrictive criteria to build the regions, thus leading to
larger regions, while keeping a low computational cost and region borders able
to represent most of the frontiers between the objects-of-interest. Besides, Soille
[13] notices that QFZ are not really segmentation methods but rather methods
which split an image into puzzle pieces. Identifying the QFZ is then a prepro-
cessing step in an image segmentation process based on merging of puzzle pieces.
This merging may be driven by the user, thus solving the problem of segmenta-
tion personalization. Let us observe however that there is no definition of QFZ
for video sequences yet.

In this article, we recall the QFZ definition in the framework of logical predi-
cate connectivity introduced by Soille [12,15]. We then extend this definition to
video sequences, study how it can be applied to video segmentation personaliza-
tion and present some preliminary results to show its interest. Finally we give
some conclusions and indicate future research directions.

2 QFZ-Based Image Segmentation

2.1 Logical Predicate Connectivity

QFZ rely on the concept of α-connected paths. A path is said α-connected if all
paths between any pair of its pixels are Lipschitz-continuous, thus leading to the
following definition.

Given a neighbourhood N , a path P made of n pixels (p0, p1, ..., pn−1) is an
α-connected path (α-P) if and only if:

∀i ∈ [0, n− 2], pi ∈ N(pi+1) and |f(pi)− f(pi+1)| ≤ α (1)

We note α-P(p, q) the set of α-connected paths between p and q. This notion
let us define the most simple QFZ, i.e., α-connected zones [9] which will be noted
here α-CC. An α-CC is defined as:

α-CC(p) = {p} ∪ {Q | ∀q ∈ Q, α-P(p, q) �= ∅} (2)

The α-CC of a pixel p is then the set of pixels to which it is linked through an
α-connected path. Let us observe that flat zones are a particular case of α-CC
with α = 0. The α-CC have the following hierarchical property which will be
useful later in this paper:

∀α′ ≤ α, α′-CC(p) ⊆ α-CC(p) (3)

Segmenting an image into α-CC can result in an under-segmentation. If α is
set too high, it will lead to a chaining effect, which may even result on a single
QFZ for the whole image (it depends of course of the image under consideration
and the selected α value). In order to counter this problem, new QFZ definitions
based on α-CC have been elaborated. In a goal of unification of existing works,
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Soille and Grazzini [12,15] have proposed a theoretical framework called logical
predicate connectivity (we recall that a logical predicate P returns true when
the parameter satisfies the predicate, false otherwise). They define a new kind
of QFZ (noted (P1, ..., Pn)-CC here) which leads to QFZ satisfying all the n
logical predicates. Various predicates may be involved, for instance: global range
predicate which checks if the difference between minimal and maximal values of
pixels within a QFZ is below a threshold (ω); connectivity index which is the
ratio between the number of 2-pixels α-connected paths and the number of 2-
pixels paths within a QFZ. This predicate is verified if the index is higher than a
threshold (β). The (P1, ..., Pn)-CC thus consists in seeking, for each pixel p, the
largest α-CC satisfying all the predicates. Thanks to the property 3, we know
that if α′ < α then α′-CC(p) is a subset or equal to α-CC(p). When predicates
are not verified for a given value of α, we can use this property to decide to
decrement α in order to check if the predicates are verified for a lower value
and to loop until finding the maximal value of α for which all the predicates are
verified:

(P1, ..., Pn)-CC(p) =

∨
{

α′-CC(p)

∣
∣
∣
∣
∣

∀k ∈ {1, ..., n}, Pk (α′-CC(p)) = true

∀α” ≤ α′, ∀q ∈ α′-CC(p), Pk (α”-CC(q)) = true

}
(4)

This theoretical framework is adapted to methods ensuring the unicity prop-
erty. Indeed we are seeking the largest α′-CC verifying all logical predicates. It
is thus not possible to consider methods which do not provide a unique QFZ
segmentation. More than only a framework to unify existing definitions, the
(P1, ..., Pn)-CC also allows to elaborate new QFZ definitions. Three predicates
are currently used within the QFZ: local range (α), global range (ω) and con-
nectivity index (β). In the framework introduced by Soille and Grazzini, it is
possible to include predicates related to other features (perimeter, area, etc.)
but also to more complex descriptors (texture, gradient, etc.) as long as these
predicates fulfill the condition defined in Eq. (4).

Some clues to using QFZ in multivariate images have been given by Soille
[13]: α is assumed to be a vector with the same value in all components. Then, α
may be easily ordered through a total ordering (decrementing α = (3, 3, 3) gives
α = (2, 2, 2)). Global range predicate is processed similarly, and is true only if it
is verified marginally for all bands.

In the sequel of this article, we will denote by QFZ the colour QFZ built using
(P1, ..., Pn)-CC with only the global range predicate and a given α.

2.2 Filtering

QFZ suffer from the transition region problem. Transition regions are regions
between two objects where a staircase phenomenon occurs on edge pixel values.
This is due to the image discretization process and the subsequent value inter-
polation. This artefact leads to an over-segmentation near to the edges which
will then be made of tiny QFZ. Some solutions have been proposed to solve this
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problem. Soille and Grazzini [15] define transition regions as QFZ containing
only transition pixels. Every pixel which is not a local extremum is considered
as a transition pixel. All QFZ corresponding to transition regions are removed,
and remaining QFZ are enlarged using a region growing algorithm [1]. After the
removal of these regions, the amount of flat zones is reduced significantly. The
solution proposed by Soille and Grazzini does not depend of any parameter and
relies on a precise definition of a transition region. But from our experiments,
we have observed that many regions of a few pixels remain after applying their
strategy. These regions do not fit with the definition of transition regions, but
are still sources of a high over-segmentation. Thus, a more efficient and robust
filtering method is still lacking.

Other authors have proposed QFZ filtering methods using a QFZ minimal
area thresholding step. Angulo and Serra [3] suggest to merge QFZ character-
ized by an area lower than a given threshold with the most similar neighbouring
QFZ. With this method, no more transition region is present in the final seg-
mentation. Zanoguera [16] removes QFZ with an area below a given threshould
(thus including transition regions) before applying a Watershed transform to
enlarge remaining QFZ in areas where small QFZ have been removed. Soille
[14] proposes a filtering method based on an iterative increase of the minimal
area, followed at each iteration by both a region growing algorithm relying on
QFZ with area greater or equal to minimal area and an image simplification
algorithm. The simplified image will then be segmented into QFZ at the next
iteration. This process is repeated until filtered QFZ become stable. Crespo et
al. [5] deal with flat zones and propose a flat zones merging procedure. It con-
sists in selecting significant flat zones (according to different criteria) and expand
them by incorporating most similar adjacent non significant flat zones. Follow-
ing some ideas introduced in these methods, we have designed another filtering
method. It relies on the Seeded Region Growing (SRG) algorithm [1] but we
apply it on the QFZ rather than on the pixels (cf. fig 1). To do so, we consider
a minimal area threshold similarly to existing approaches. We set all QFZ with
an area greater or equal to this threshold as seeds for the SRG algorithm which
is applied on the region adjacency graph. We thus obtain a much more reduced
over-segmentation compared to the result obtained without filtering. The high-
est the area threshold is, the more reduced the over-segmentation is. But in the
same time, it is much more probable to obtain an under-segmentation of some
objects-of-interest. Our region growing being applied on QFZ rather than on
pixels, the proposed method requires only a low computational cost.

3 Extension to Video Data

3.1 Limits of a 3D Straight Extension

The most direct extension of QFZ to video sequences is to consider a video
sequence as a 3-D spatio-temporal cube. We can reuse the existing definitions,
thus changing only the neighbourhood considered (spatio-temporal rather than
purely spatial).
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Fig. 1. Our QFZ filtering method: a) original QFZ, b) removal of QFZ with area lower
than a given threshold, c) iteration #1 of SRG: QFZ 1 grows by incorporating pixels
from QFZ 3, d) iteration #2 of SRG: QFZ 1 grows by incorporating pixels from QFZ
4, e) iteration #3 (last) of SRG: QFZ 2 grows by incorporating pixels from QFZ 5

Computing the (P1, ..., Pn)-CC in 3D, we obtain a higher spatial oversegmen-
tation than in 2D. On the 15 frames of carphone sample (Fig. 3.a) for α = ω = 20
(we will use these values in the sequel), we obtain on average 4, 441CC per frame
in 2D vs. 6, 779CC per frame in 3D (55, 040CC on the full sample). Indeed, by
analysing the video sequences in 3D, the considered neighborhood contains more
pixels and therefore an α-CC contains more pixels (see chaining effect discussed
above). This naturally increases the risk of violating one of the considered pred-
icates. Thus, the largest α-CC satisfying all predicates is often produced with a
small α value. This leads to tiny QFZ of only a few pixels, while such QFZ are
unusable for video segmentation.

3.2 Sequential Processing of Spatial and Temporal Dimensions

As 3D approach is not suitable for video processing, we consider rather the 2D+t
approach. In this approach, we successively (and no more jointly) consider the
spatial and temporal dimensions, as illustrated in Fig. 2. We discuss here first
the spatial to temporal (2D + t) approach and then the temporal to spatial
(t + 2D) approach.

With the spatial to temporal approach, QFZ are first built on each frame
independently. Then they are considered as nodes of a graph which are valued
(here we consider the QFZ mean value). Edges are then introduced to tempo-
rally connect QFZ from successive frames and overlapping spatial coordinates.
Each edge is valued by the difference between related node values. The new QFZ
are the largest connected components of nodes whose connecting edges have a
value less or equal to α and which do not violate any predicate. We observe that
(P1, ..., Pn)-CC produced significantly fewer regions in 2D+ t (23, 926CC), thus
reducing the extreme segmentation we noted in 3D (55, 040CC). This can be
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Fig. 2. Video Quasi-Flat Zones production by separated processing of spatial and tem-
poral dimensions

explained by the distinct computing of the two dimensions (spatial and tempo-
ral). In 2D + t the first processing (spatial only) produces spatially wider QFZ
reducing the spatial over-segmentation. But, then the second processing (tem-
poral) introduces temporal over-segmentation. This is due to the predicate con-
straints: the regions being spatially more extensive, they are less homogeneous
and therefore may have significantly different mean values which will violate a
predicate during the temporal computing of (P1, ..., Pn)-CC.

With the temporal to spatial approach, QFZ are first built for each spatial
coordinate independently, according to the temporal dimension. After this tem-
poral processing, we therefore obtained an extreme spatial over-segmentation
since, for each frame, each pixel belongs to a different QFZ. Similarly to the
2D+ t case, we consider QFZ as nodes of a graph and apply the same process as
previously, but considering here the spatial dimension instead of the temporal
one. We note that (P1, ..., Pn)-CC produces fewer regions (16, 830CC) than the
2D + t approach due to a smaller temporal over-segmentation.

Let us observe that the (P1, . . . , Pn)-CC highlights an interesting phenomenon.
Due to their different order when processing spatial and temporal dimensions,
the approaches 2D+ t and t+2D induce different over-segmentations: a reduced
spatial but high temporal one for the former, and a higher spatial but reduced
temporal one for the latter. Nevertheless, both approaches provide better re-
sults than the 3D approach. Selection between 2D + t and t + 2D depends on
the video under consideration. It may seem better to use the first approach with
short videos of high-resolution, and to use the second for long videos of lower-
resolution. Finally, let us note that the spatial and the temporal processing are
both relying on (P1, ..., Pn)-CC, which guarantees the uniqueness of the result.
Thus they also ensure this fundamental property.

3.3 Filtering

The filtering methods presented in section 2.2 can be extended to video data. As
far as our method based on a minimum area threshold is concerned, adaptation
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depends on the chosen approach. For the 3D approach, we could trivially extend
the method and no longer consider a minimum area but a minimum volume.
However, if considering a minimum volume would be effective in the context
of truly three-dimensional images, it is not suitable for videos that are spatio-
temporal and not purely spatial. Indeed, assuming a minimum volume, a QFZ
having few pixels in a spatial area, but on many frames, would be kept despite
the fact it is probably not an object but a part of an object. Thus, we use a
threshold of minimum mean area, the mean area being computed as follows:

Amean =
# QFZ pixels

# frames where the QFZ is present
(5)

We filter the QFZ from approaches 2D + t and t + 2D in the same manner as
for the 3D approach, once the QFZ building is achieved.

Similarly to the image filtering, the oversegmentation is here strongly reduced.
Indeed, setting the threshold of minimum mean area to 10 pixels, we get 686CC
for 3D, 845CC for 2D + t and 378CC for t + 2D. In addition, we get few or no
under-segmentation, which makes obtained QFZ relevant for segmentation.

Filtering by minimum area threshold is very effective in reducing QFZ over-
segmentation in video sequences. We obtain a very substantial over-segmentation
reduction while maintaining the QFZ quality. By combining the definitions of
video QFZ and the filtering area, we obtain an effective method of video pre-
segmentation. This pre-segmentation can be used by QFZ merging methods to
obtain user-personnalized segmentation.

4 User-Driven Video Segmentation

Encountered in image segmentation, over-segmentation is even more present
when dealing with video segmentation. For instance, when processing the sample
carphone (Fig. 3.a) with the Predictive Watershed [4], we obtained about 2000
regions. This problem happens obviously also with segmentation by quasi-flat
zones: segmenting the same sequence by (P1, ..., Pn)-CC t+2D, with α = ω = 20
and a minimal area of 10 also provides an over-segmentation (378CC). Moreover,
the resulting segmentation is not personnalized. This drawback may be solved by
relying on user interaction. Such an interaction aims the user to both customize
the segmentation and reduce over-segmentation. User-driven segmentation is a
well-known principle in Mathematical Morphology. The main interactive mor-
phological tool for segmentation is the marker-based watershed [10]. It has been
developed for image segmentation but can be easily extended to video data.
There exists also some morphological methods dedicated to video data, such
as the method proposed by Gu and Lee [7] which relies on an initial interac-
tive segmentation of a frame by marker-based watershed. The propagation of
this segmentation to following frames is performed using motion estimation and
region tracking. It can be corrected by user interaction. Marcotegui et al. [8]
propose a segmentation tool based on an initial interactive frame segmentation.
This interactive segmentation is based on a multi-scale segmentation which is
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adapted to user needs by different tools: scale selection, region correction, re-
gion merging and marker drawing. The segmentation is propagated to the next
frames via a partition projection which allows user interaction. The watershed
from propagated markers method [6] is a more recent example. The first frame
is segmented using marker-based watershed. Markers are extracted from the
resulting segmentation and are propagated to the next frame by a motion esti-
mation method. The next frame is segmented by marker-based watershed using
the propagated markers. The user can modify the markers. In the context of
QFZ, as indicated by Soille [13], a user-driven segmentation may correspond to
the assembling of puzzle pieces.

We suggest a new principle for user-interactivity in video segmentation by
defining a QFZ segmentation guided by markers. First, a base QFZ segmenta-
tion is produced. Then, the user draws markers on the video data. Thus, he
customizes the segmentation by indicating his objects-of-interest. QFZ beneath
the markers are considered as the seeds of a Seeded Region Growing algorithm
[1]. The region growing will then merge the different QFZ according to their
distance in terms of color, which can be related to an α parameter in the QFZ
context. Since the user only see original video (and not QFZ), it is possible that
several markers are found over the same QFZ. In this case, we consider that
there are two possibilities: either the marker has been ill-drawed or the QFZ is
ill-segmented. Here, we assume that the user has well-drawn the marker and that
the QFZ has to be corrected. To do so, ill-segmented QFZ are partitioned using
Seeded Region Growing with the user’s markers as seeds. Thus, ill-segmented
QFZ are corrected: it both improves the accuracy of the initial over-segmentation
and solve the problem of having multiple markers over the same QFZ.

In order to evaluate the relevance of our proposal, we conducted some ex-
periments on the carphone sequence. We compared the (P1, ..., Pn)-CC 2D + t
and t + 2D methods to the Marker-Based Watershed known as the standard
interactive segmentation method of Mathematical Morphology. We also com-
pared interactive QFZ to the Seeded Region Growing involved in our method,
in order to show how our method benefits from such algorithm and what it
offers compared to a direct processing of Seeded Region Growing. In this per-
spective, we used three different settings of markers. First set of markers is just
few points drawn on the median frame (Fig. 3.b). The second set is composed
of heavy markers only drawn on the median frame (Fig. 3.c). The third and
last set contains heavy markers on frame 4, 8 and 11 (Fig. 3.d-f). The results
of these experiments are presented in Tab. 1. We denote here by precision the
ratio of well-segmented pixels (affected to the good region). We used four sets
of parameters (α, ω) for (P1, ..., Pn)-CC to evaluate the impact of parameter
settings (which have besides not been optimized). Let us observe that, what-
ever the markers used, our method always provides better results than the SRG.
This shows that our method by applying SRG on QFZ is better than a direct
computation of SRG on pixels. Concerning the comparison to marker-based wa-
tershed, the marker-based (P1, ..., Pn)-CC is able achieve better results on each
set of markers but only with appropriate parameter settings. Moreover, there is
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a b c

d e f

Fig. 3. Sets of markers on sequence carphone (a) frame 8 of extract from carphone
sequence, b) few points on frame 8, c) heavy markers on frame 8, def) heavy markers
on frame 4,8 and 11)

Frame 1 Frame 8 Frame 15

Fig. 4. Results of marker-based (P1, ..., Pn)-CC 2D+t (α = ω = 40,Amean = 10) using
different set of markers, (top) points on frame 8, (middle) heavy markers on frame 8,
(bottom) heavy markers on frame 4,8 and 11

no single parameter combination which achieves better results with all sets of
markers. But, if we exclude the first set of markers (few points in the middle
frame) which are clearly insufficient, we observe that (P1, ..., Pn)-CC t+2D and
α = ω = 30 produces the best results with both remaining sets of markers. How-
ever, like the other two interactive methods, the interactive QFZ segmentation
is very sensitive to the markers given by the user. This is illustrated by Fig. 4
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Table 1. Comparison of pixel segmentation precision with different markers (a) a few
points on the median frame, b) heavy markers one the median frame, c) heavy markers
on three frames)

Method Parameters Precision
(a) (b) (c)

(P1, . . . , Pn)-CC 2D + t α = ω = 10 0.837 0.982 0.981
(P1, . . . , Pn)-CC 2D + t α = ω = 20 0.841 0.987 0.989
(P1, . . . , Pn)-CC 2D + t α = ω = 30 0.851 0.981 0.989
(P1, . . . , Pn)-CC 2D + t α = ω = 40 0.882 0.987 0.989
(P1, . . . , Pn)-CC t + 2D α = ω = 10 0.899 0.968 0.970
(P1, . . . , Pn)-CC t + 2D α = ω = 20 0.828 0.979 0.984
(P1, . . . , Pn)-CC t + 2D α = ω = 30 0.814 0.988 0.993
(P1, . . . , Pn)-CC t + 2D α = ω = 40 0.837 0.986 0.988

Marker-Based Watershed 0.851 0.985 0.990

Seeded Region Growing 0.802 0.806 0.824

Table 2. Comparison of pixel segmentation precision between (P1, ..., Pn)-CC and
watershed from propagated markers

Method Parameters Precision

(P1, . . . , Pn)-CC 2D + t α = ω = 10 0.985
(P1, . . . , Pn)-CC 2D + t α = ω = 20 0.984
(P1, . . . , Pn)-CC 2D + t α = ω = 30 0.978
(P1, . . . , Pn)-CC 2D + t α = ω = 40 0.979
(P1, . . . , Pn)-CC t + 2D α = ω = 10 0.964
(P1, . . . , Pn)-CC t + 2D α = ω = 20 0.966
(P1, . . . , Pn)-CC t + 2D α = ω = 30 0.983
(P1, . . . , Pn)-CC t + 2D α = ω = 40 0.988

Watershed From Propagated Markers 0.983

which shows the results obtained by marker-based (P1, ..., Pn)-CC 2D + t with
parameters α = ω = 40 and Amean = 10 with the different sets of markers.

We also compared our method to a more recent method, the Watershed from
Propagated Markers [6], for which we used the binding of markers and the region-
based motion propagation. As the objective here was to compare our method
to a recent interactive approach in similar conditions (here the time required
for the user), we did not allow the marker correction by the user and marked
only the first frame. The results are given in Tab. 2 and show that marker-
based (P1, ..., Pn)-CC in these conditions can be more accurate than the Water-
shed from Propagated Markers depending on the parameter settings. It implies
that even if marker-based (P1, ..., Pn)-CC do not use motion information, its
computing by assembling spatio-temporal puzzle pieces allows to obtain results
comparable to other methods using motion estimation (e.g., [6]).
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5 Conclusion

In this paper, we proposed both an extension of QFZ to video sequences and an
interactive method for assembling these QFZ in order to build a user-personnalized
segmentation. The separate processing of spatial and temporal dimensions im-
proves the segmentation compared to a straight three-dimensional processing of
video data. The proposed method for assembling QFZ according to the user’s
needs is intuitive and provides good results compared to other existing methods.

Our future work will focus on a better validation of our method. We have
presented preliminary results in this paper, but the method needs a deeper eval-
uation on a larger dataset to assess its validity. We will also focus on improving
the markers. Indeed, the video is currently only marked before the processing.
However, it seems relevant to be able to correct markers (like what is done in
[6,7,8]) in order to iteratively improve the segmentation. Indeed the eventual
correction of some QFZ will improve the over-segmentation at each iteration.
Moreover, most of the computational cost of our approach is linked to the ini-
tial QFZ segmentation: the marker-based QFZ merging is very efficient because
it is performed on the QFZ adjacency graph. We also consider to apply video
QFZ on other data spaces, such as optical flow values instead of pixel values.
Moreover, we plan to improve the QFZ merging process by using other features
than only the color mean value. Finally, a comparative study must be achieved
to determine optimal parameter settings (α, ω and Amean) able to produce good
results on a wide variety of video sequences.

Finally, as our method is based on a graph reduction process, we would like to
design a machine learning scheme to understand how to perform segmentation
from this reduction process. The idea is here to perform first a learning of some
videos marked by the user and then to enable the system to segment unmarked,
but simply over-segmented with QFZ, video sequences.
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Abstract. An improved morphological estimation method of textural
elements based on the Primitive, Grain, and Point Configuration (PGPC)
texture model is proposed. The PGPC texture model has shown promis-
ing applications such as noise removal, texture modification, and tex-
ture synthesis. However, the estimation is not always successful since the
magnification process of the primitive to ensure the assumption that the
grains are homothetic does not always fit to each image. We propose in
this paper a novel estimation method introducing more flexibility into
homotheticity’s conventional assumption of the grains, and exploring a
suitable structuring element for the homothetic magnification process
of the primitive. Experimental results show that the proposed method
provides more representative grains than the conventional method.

1 Introduction

Texture analysis is an important and useful area of image processing [1]. For-
mal definitions of texture vary in the literature; one of the most common de-
scribes texture as being generated by one or more basic local patterns that are
repeated in a periodic manner over some image region [2]. Mathematical mor-
phology [3, 4, 5] is a popular method of texture analysis. In our previous study,
we proposed a model for texture description based on morphological operations,
called the Primitive, Grain, and Point Configuration (PGPC) texture model [6].
The PGPC model represents a texture as an image composed of regular or ir-
regular arrangements of objects, which are much smaller than the image. The
arranged objects, called grains, are derived from one or a few typical objects,
called primitives. The PGPC texture model is useful in applications such as
optimizing nonlinear filters for noise removal and texture modification [7, 8, 9].

Applying the PGPC texture model to practical texture analysis requires a
method of estimating a structuring element as the primitive, its homothetic
magnifications as the grains, and morphological skeletons as point configurations.

P. Soille, M. Pesaresi, and G.K. Ouzounis (Eds.): ISMM 2011, LNCS 6671, pp. 190–199, 2011.
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In our previous study, experiments with estimating these three parameters under
the PGPC model showed promising results [8, 10].

In the PGPC texture model, we denote nB as the n-times homothetic mag-
nification of a structuring element B,and is usually defined in the context of
mathematical morphology as

nB =
{

B ⊕B ⊕ . . .⊕B ((n− 1)− times of ⊕) (n > 0),
{0} (n = 0), (1)

where {0} denotes a single dot at the origin. The operation X ⊕ Y is called
Minkovski set addition of the sets X and Y , defined as follows:

X ⊕ Y = {x + y|x ∈ X, y ∈ Y }, (2)

The PGPC texture model represents a texture image X as

X =
N⋃

n=0

Bn ⊕ Φn, (3)

for nonempty Φn, where Bn denotes a grain, Φn is a point configuration — a set
indicating pixel positions for locating the grain nB.

We assume here that {0B, 1B, . . . , nB, . . .} are homothetic magnifications of
a small object B as defined in (1), and that Bn in (3) is equivalent to nB for
each n. In this case, B is the primitive, n is the size of the magnification, XnB

is regarded as the texture image composed only of the arrangement of nB.
Since the difference between the extents of nB and (n + 1)B is often too

large in the usual definition in (3), which leads to large gaps between grain
sizes. Thus, we redefined the magnification for the PGPC texture model in our
previous study as

nB =
{

B ⊕ C ⊕ . . .⊕ C ((n− 1)− times of ⊕) (n > 0),
{0} (n = 0), (4)

where C is a 2×2-pixel square SE.
The grain magnification method in (4) provides a convenient way of decreas-

ing the large difference of nB and (n+1)B, which make the details of the image
finer and less complicated. However, the fixed 2 × 2 square SE in the conven-
tional PGPC model expands in all four directions of the smaller grain. It does
not completely take into consideration individual variations of natural texture
images. This basic idea is slightly unnatural and limits the application of the
PGPC model.

In this paper, we present a modified version of the conventional PGPC model,
which not only focuses on the primitive but also extends the estimation to the
magnifications. The proposed method allows a flexible magnification of grains.
Experimental results of the proposed method indicate that this modification of
is more suitable for real texture analysis.
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2 Primitive and Grain Estimation Using Flexible
Magnification

We propose an improved primitive and grain estimation method, which replaces
the fixed SE C with estimated SEs for the magnifications. In other words, in the
iterative estimation process, we estimate the primitive and its magnifications
(grains) simultaneously. We redefine nB as follows:

nB =
{

B ⊕M1 ⊕ . . .⊕Mn ((n− 1)− times of ⊕) (n ≥ 1),
{0} (n = 0), (5)

where Mn is a flexible 4-pixel SE for size n magnification.
The proposed method is called “flexible” since the SE for size n magnification

is estimated from all possible candidates of 4-pixel shapes instead of a fixed
2×2 square in the conventional method. The conventional 2×2 square shape
provides even extensions in the horizontal, vertical and diagonal directions, while
the proposed method enhances only the optimal extension trend and, therefore,
estimates more representative grains.

The estimation method explores the SEs that minimizes an evaluation func-
tion of the fitness of SE by using simulated annealing. The estimation procedure
is:

1. Define an initial primitive B, a maximum size of magnification N and a
database containing 51 candidates of SE for magnification. The candidates
in the database covers all possible shapes of a 4-pixel, 8-connected convex
region.

2. Define QN as

QN = {M1, . . . , MN}, (6)

QN is the combination of SEs for magnification where IN is minimized,

IN =
N∑

n=0

(1 − A{XnB}
A{X} ), (7)

where A is the area of the operand if the operand is a binary image, and
the sum of pixel values if the operand is a grayscale image. XnB denotes
the opening of image X by structuring element B of size n magnified by
M1 . . .Mn. QN is selected from all the possible combinations of candidates
of SE.

3. Assign a modification of B to B′, where one pixel of B is randomly selected
and removed, and one pixel is added at an adjacent position which is also
randomly selected.

4. Calculate Q′
N and I ′N similarly as Step 2.

5. Compare IN and I ′N .
- If IN > I ′N , replace B with B′, and go back to Step 3.
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- If IN ≤ I ′N , preserve B with a probability P (IN , I ′N ) in order to avoid
reaching a local minimum, and go back to Step 3. P (IN , I ′N ) is defined as
follows:

P (IN , I ′N ) =
1

1 + exp( I′
N
−IN

T (i) )
, (8)

where i is the iteration index and T (i) is called “temperature” at the ith
iteration, defined as follows:

T (i) = 100× (0.98)i. (9)

It decreases along the progress of iteration.
6. Iterate Steps 3–5 by a sufficient number of times. B is the optimized primitive

and QN are the optimized SEs for grain magnifications.

3 Experimental Results

We used three 8-bit, 128 × 128 texture images [11], shown in Fig. 1 in the exper-
iments. The extent of primitive is fixed to 9 pixels in the following experiments.
Figure 1 (a) (straw) has strong diagonal directionality; Figure 1 (b) (brick) has a
trend of horizontal extension when the grain size increases; Figure 1 (c) (pellets)
contains isotropic disk-like grains.

(a) (b) (c)

Fig. 1. Target textures used in the experiments: (a) straw, (b) brick, and (c) pellets

A comparison between the proposed and conventional methods [7], shown
in Figs. 2–6, confirms that the proposed method provides more representative
primitives and grains than the conventional method.

As shown in Fig. 2, the proposed method successfully estimated the directional
primitive and its diagonal extension trend. The grains obtained by magnification
of flexible SEs closely resemble the original structures of Fig. 1 (a); however, the
grains derived by the conventional method became “fatter” after magnification,
and failed to preserve the original structure (Fig. 3).
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Figure 1 (b) contains two kinds of bricks: nearly square shape and horizontal
rectangular. The proposed method estimated a square primitive and two rect-
angular grains (Fig. 4), while the conventional method only estimated square
shapes, which do not resemble all the brick shapes (Fig. 5). Note that in Fig. 4
(h), there are significant dark strips between the horizontal bricks because the
grains of size-three do not fit in the smaller, nearly square bricks. However, the
estimated square primitive can represent those smaller bricks.

All the grains of Fig. 1 (c) are disk shaped. Under our experimental condition,
the magnifications by 2 × 2 square SE had better fitness than other shapes.
Thus, the proposed method has exactly the same experimental results as the
conventional method (Fig. 6).

The experimental results show that the opening image qualities obtained by
the proposed method are generally higher than those provided by the conven-
tional method. From the viewpoint of visual perception, the opening image by
the conventional method is quite blurred due to distortion of the grain shape
distorted by the fixed 2×2 square SE.

The size distribution functions F (n) of the proposed method and the conven-
tional method are compared in Table 1, which shows the fitness of the primitives
and grains to the original texture. A smaller F (n) value indicates higher fitness.

Table 1. Comparison of the size distribution functions F (n) between the proposed
method and the conventional method

proposed method conventional method
primitive grain one grain two primitive grain one grain two
(size-one) (size-two) (size-three) (size-one) (size-two) (size-three)

straw 0.0652 0.1026 0.1527 0.0910 0.1957 0.2822
brick 0.0435 0.1081 0.1637 0.0435 0.1069 0.3427
pellets 0.0131 0.0235 0.0361 0.0131 0.0235 0.0361

4 Application to Noise Removal

The proposed method can be applied to the optimization of morphological filters
for noise removal. Experiments for impulsive noise removal are shown in the
following in order to show experimentally the robustness of the proposed method
for the degradation of images in the primitive estimation. We employ the case
of impulsive noise since morphological filtering is known to be suitable for such
noise.

In our previous research [6,7,8,9,10,12], we adopted only the estimated primi-
tive as the SE for noise removal. However, any noise removal method is a trade-off
between preserving the signal and discarding the noise. When the noise ratio is
high, a smaller SE can retain more information; however, the efficiency of noise
removal is reduced. In this case, use of a larger grain might be more efficient
than the primitive.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 2. Experimental results of the proposed method with a straw texture: (a) selected
SE for size-two magnification, (b) selected SE for size-three magnification, (c) estimated
primitive, (d) size-two magnification (grain one), (e) size-three magnification (grain
two), (f) opening of the original texture by (c), (g) opening of the original texture by
(d), and (h) opening of the original texture by (e)

(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 3. Experimental results of the conventional method on a straw texture: (a) and (b)
square SE for size-two and three magnifications, (c) estimated primitive, (d) size-two
magnification (grain one), (e) size-three magnification (grain two), (f) opening of the
original texture by (c), (g) opening of the original texture by (d), and (h) opening of
the original texture by (e)



196 L. Yang et al.

(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 4. Experimental results of the proposed method on a brick texture: (a) selected SE
for size-two magnification, (b) selected SE for size-three magnification, (c) estimated
primitive, (d) size-two magnification (grain one), (e) size-three magnification (grain
two), (f) opening of the original texture by (c), (g) opening of the original texture by
(d), and (h) opening of the original texture by (e)

(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 5. Experimental results of the conventional method on a brick texture: (a) and (b)
square SE for size-two and three magnifications, (c) estimated primitive, (d) size-two
magnification (grain one), (e) size-three magnification (grain two), (f) opening of the
original texture by (c), (g) opening of the original texture by (d), and (h) opening of
the original texture by (e)
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 6. Experimental results of the proposed method on a pellet texture: (a) selected SE
for size-two magnification, (b) selected SE for size-three magnification, (c) estimated
primitive, (d) size-two magnification (grain one), (e) size-three magnification (grain
two), (f) opening of the original texture by (c), (g) opening of the original texture by
(d), and (h) opening of the original texture by (e)

(a) (b)

(c) (d) (e)

(f) (g) (h) (i)
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Fig. 7. An example of noise removal on texture “brick”: (a) original image, (b) cor-
rupted image, (c)-(e) noise removal by three magnifications of the proposed method,
(f)-(h) noise removal by three magnifications of the conventional method, and (i) MSE
values
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Figure 7 shows an example of noise removal using the estimated primitive
and grains on a brick image with a noise ratio of 60%. In this case, the size-
two magnification (grain one) is more suitable for noise removal. The proposed
method exhibits better noise removal performance than the conventional method
— the proposed method preserves more textural details while removing the
high rate noise in the target image. We will extend the proposed algorithm
by employing our method of multiple SE optimization [12] for multiprimitive
textures.

5 Conclusions and Discussion

The parameter estimation methods [6,7,8,9,10,12] only focused on the primitive
estimation and applied a 2 × 2 square SE for all magnifications. The improved
PGPC model, proposed in this paper, estimates the primitive and the grains si-
multaneously by selecting the best SEs for each magnification. The experimental
results show the effectiveness of the proposed method.

This improved model is easily utilized for applications of noise removal and
texture reconstruction. However, the extent of primitive is fixed to nine pixels
in the current study and SE is estimated from the original images. We will try
the experiments to estimate SEs directly from corrupted images by the method
in [7]. The optimization of primitive size will also be studied in the future.
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Abstract. An attribute opening is an idempotent, anti-extensive and
increasing operator that removes, in the case of binary images, all the
connected components (CC) which do not fulfil a given criterion. When
the increasingness property is dropped, more general algebraic thinnings
are obtained. We propose in this paper, to use criteria based on the
geodesic diameter to build algebraic thinnings for greyscale images. An
application to the extraction of cracks is then given to illustrate the per-
formance of the proposed filters. Finally, we will discuss the advantages
of these new operators compared to other methods.

Keywords: Geodesic attributes, diameter, elongation, tortuosity, thin-
nings, thickenings.

1 Introduction

A pre-processing step consists of filtering out the noise and the unwanted features
while preserving, as much as possible, the desired information. Mathematical
morphology [6], [9] is based on a set approach and classically uses structuring
elements (SE) to obtain information on the morphology of the objects. In [10]
and in [8], an overview of morphological filtering is presented. We notice that
simple openings and closings with square, disk or hexagon SEs, are often good
enough for the filtering task. However, if the structuring elements are able to
adapt their shapes and sizes to the image’s content, the noise reduction and
feature enhancement properties are even better (see for example [2] and [3]).
The openings and closings by reconstruction can also be considered as a part
of adaptive morphology. This leads Vincent [13] to propose area openings, and
more generally, Breen and Jones to introduce attributes openings [4].

Here, we start from Lantuéjoul and Maisonneuve’s work, [5], to introduce
new attributes based on the geodesic diameter. These attributes are particularly
useful to measure the length of thin structures. Many papers provide methods
to extract thin structures: morphological top hats, supremum of openings by
segments, path openings [11] but none of them has the flexibility of the method
proposed here.

This work is a part of an industrial project where our goal is to highlight
all the defects from metallic surfaces. These cracks are usually long, narrow and
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not necessarily straight. Standard filters often fail to extract them and these new
operators have been developed for this task. More generally, the framework of
this study is the detection of cracks.

This paper provides the background to construct algebraic thinnings based
on geodesic attributes. Sections 2 and 3 are a review of attribute thinnings
and geodesic binary attributes. Section 4 explains how to construct geodesic
attribute thinnings, whereas section 5 highlights some practical considerations.
Lastly, section 6 illustrates their interest through an application.

2 Background: Attribute Thinnings

2.1 Connected Components and Attributes

Let I : D → V be a binary image, with D ⊆ Z2 typically being a rectangular
domain and V the set of values: V = {0; 1}. The object X included in I is
X = {x ∈ D|I(x) = 1} and we denote Xc, the complementary set. We associate
to I, a local neighbourhood describing the connexion between adjacent pixels.
In this study, each pixel will be connected to its eight nearest neighbours. With
this 8-connectivity, we define {Xi} the set of the connected components of X .

An attribute operator is defined for all connected components Xi in the fol-
lowing way:

Attλ(Xi) =

{
Xi if Xi satisfies Cλ,
∅ otherwise.

(1)

with Cλ, a criterion parameterised by λ.

2.2 Attribute Thinnings

On the basis of the definition of the attribute operator, a filter ρAttλ , called an
attribute thinning, can be introduced:

ρAttλ(X) =
⋃
{Attλ(Xi), i ∈ I} (2)

Attribute thinnings are anti-extensive and idempotent (see [4] for the proof).
Moreover, if these operators are also increasing, they become attribute openings,
denoted γAttλ .

The dual transform of a thinning is called a thickening and is defined by
duality. In what follows, we restrict our study to thinnings as the computation
of thickenings is straightforward.

The non increasingness of these filters could cause some problems, especially
when we compute granulometries, ultimate thinnings or greyscale thinnings. In
the literature, some solutions have been proposed to solve these issues and we
will discuss this point when we will extend these operators to grey level images.
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2.3 Grey Level Operator

The extension of attribute thinnings to grey level images is not straightforward,
since these operators are not always increasing. First, we will talk about the
classical method for openings. Then, we will describe the procedure for thinnings.

The openings extend to the grey level domain in the usual way, by thresholding
the initial image to obtain N binary images (with N the number of grey levels
in the image). Thus, an opening in grey level may be constructed explicitly by
stacking the result of each binary opening, computed from each threshold of the
original image. With f an image, f : D → V with V = {0, . . . , N}, the grey
level attribute opening is given by:

(γAttλ(f))(x) = sup
{
h ∈ {0, . . . , N} |x ∈ γAttλ(Th(f))

}
(3)

where Th(f) stands for the threshold of f at value h. Throughout this paper,
this method will be referred as the “opening binary to grey extension” (OBGE).

For thinnings, at least two methods are available in the literature to construct
this extension. They are both presented by Breen and Jones, in [4].

The first one is a method which preserves the information for lower threshold
values, once the criterion is fulfilled. Then, it locates the threshold set that satisfy
the criterion. Hereafter, this extension is referred to as the “thinning binary to
grey extension” (TBGE), and this method has the favour of Breen and Jones.

However, another solution consist in applying exactly the same method as for
openings (See OBGE equation 3). Figure 1 (curve b), presents the result of a
greyscale thinning with the non increasing criterion: have a length equal to λ.
In this example, this criterion is fulfilled for a high threshold value whereas it
is not true for lower thresholds. The one-dimensional signal is truncated and
some edges are emphasised. Therefore, we have filtered out all the unwanted
information. Regarding curve c, this is a thinning using the TBGE method and
it behaves as a morphological reconstruction by dilation of the curve b.

A real example is presented in section 4.2 where we will discuss the conse-
quences of each method on the result.

Fig. 1. Example of a grey level thinning with the criterion: have a length equal to
λ: (a) initial signal, (b) result of the thinning using the OBGE method. (c) result of
the thinning using the TBGE method. This curve can be seen as the morphological
reconstruction by dilation of the thinned signal (curve b).
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3 Geodesic Attributes

From now on, an “object” will be a connected component. The following defini-
tions are valid in continuous or discrete contexts. In practice, as previously said,
computations are done in Z2, with an 8-connectivity. Hereafter, we will define
the geodesic attributes on an arbitrary object.

3.1 Geodesic Diameter

Lantuéjoul and Maisonneuve, in [5], asked a question: “What is the length of an
object?” The first idea is to measure the length of the segment between its end
points (Figure 2(a) and 2(b)); though, it is not a satisfactory definition, as this
segment is not always a path included within the object. Moreover, defining the
end points is not a trivial question. Another measurement can be considered:
the length of the set of points corresponding to a homothetic skeleton of the
object (Figure 2(c) and 2(d)). Since this is a part of the object, its length is
a more representative measurement. However, skeleton computation methods
are difficult to use. Fluctuations can be inserted when small modifications are
involved, especially when the objects have rough boundaries.

Fig. 2. (a) and (b): the length of the segment between its ends points. (c) and (d), the
measurement of its skeleton. These definitions are not always suitable.

Lantuéjoul and Maisonneuve use the notion of geodesic arcs, which are the
shortest paths between two points of an object. Let X be an object and x, y
two points from X . Figures 3(a) and 3(b) illustrate two paths between these two
points and their corresponding geodesic arc, whose length is written dX(x, y).
Thus, measuring the length of an object is measuring the length of its longest
geodesic arc (Figure 3(c)):

L(X) = sup
x,y∈X

dX(x, y) (4)

L(X) is the geodesic diameter of X and has mainly three advantages: it is a
general definition, as it is valid for every object. It is a robust definition, as a
small change in the shape of the object will cause, at most, a small change of the
measure of the geodesic diameter, if the topology of the object is not changed.
Finally, the computation of L(X) leads to other attributes such as the geodesic
elongation and the geodesic tortuosity.
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Fig. 3. (a), two paths between x and y; (b), geodesic arc between these two points;
(c), geodesic diameter of X

3.2 Geodesic Elongation

The geodesic diameter is the first available attribute and it gives a satisfactory
definition of the length of an object. However, we do not have many details on
its shape. By combining the length factor with the area of the CC, we do have
some information on its tendency to be elongated. The longer and narrower an
object is, the higher the elongation factor will be. On the contrary, any disk
will have a value of 1. The elongation factor, introduced in [5], is computed as
follows:

E(X) =
πL2(X)
4S(X)

(5)

where S(X) denotes the area of X . Note that this definition can naturally be
generalised to higher dimensions.

3.3 A New Geodesic Attribute: The Geodesic Tortuosity

We propose a new descriptor derived from the geodesic diameter: the geodesic
tortuosity. A pair of points {x, y} is called a pair of geodesic extremities of X if
and only if dX(x, y) = L(X). Note that some objects may have more than one
pair of geodesic extremities (ie. a disk). Let Ex(X) = {{x0, y0} , {x1, y1} , . . .} be
the set of geodesic extremities of X. Then we define LEucl(X) as the minimal
Euclidian distance between geodesic extremities:

LEucl(X) = min
(x,y)∈Ex(X)

‖x, y‖ (6)

The tortuosity is the ratio between the geodesic diameter and LEucl(X)
(Equation 7). The more twisted the object is, the higher its tortuosity will be.
On the contrary, any straight object will be valuated by 1.

T (X) =
L(X)

LEucl(X)
(7)

3.4 Geodesic Attribute Properties and Comments

All these attributes are rotation invariant. Moreover, the geodesic elongation
and tortuosity attributes are scale invariant. Other attributes could be derived
from the computation of the geodesic diameter; we can name one, which is
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(a) Input (b) L(X) > 80 (c) L(X) > 120

(d) E(X) > 5 (e) E(X) > 10 (f) T (X) > 1.5 (g) T (X) > 2

Fig. 4. Filtering result with geodesic attributes criteria Cλ: (a) initial image; (b) and
(c): geodesic diameter; (d) and (e): geodesic elongation; (f) and (g): geodesic tortuosity

scale and rotation invariant: the circularity attribute. It is, in fact, the inverse
of the geodesic elongation. In comparison, Urbach and Wilkinson, in [12] and
[14], used the moment of inertia instead of the geodesic diameter to compute
the elongation attribute. However, they are two very different attributes and the
geodesic diameter is, in our opinion, a better representation of the length of an
object.

4 Geodesic Attributes Thinnings

The main idea of this paper is to combine geodesic attributes with thinnings to
obtain a new powerful family of filters.

4.1 Binary Images

Figure 4(a) is a toy example where we can apply our different operators. It is a
set of objects which look like fibres and we want to filter out these objects, with
the following criteria:

– Suppress the particles whose geodesic diameter is smaller than 80 pixels in
Figure 4(b) and smaller than 120 pixels in Figure 4(c);

– Suppress the particles which are not elongated, i.e. whose geodesic elongation
is smaller than 5 in Figure 4(d) and smaller than 10 in Figure 4(e);

– Suppress all particles which are not tortuous, i.e. whose geodesic tortuosity
is smaller than 1.5 in Figure 4(f) and smaller than 2 in Figure 4(g).

Hence, we can characterise the shape of these structures with a good accuracy.
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4.2 Grey Level Images

Two methods have been presented in section 2.3, to extend this algorithm to
grey level images. Figure 5 shows the differences between these approaches. For
a segmentation task, using the OBGE method, yields the best results (Figures
5(b), 5(e) and 5(h)) since the tools are correctly isolated from the background
and a simple threshold often leads to the wanted segmentation. However, to
isolate all the filtered objects of the image, a top hat has to be computed on the
thinned image using the TBGE method.

(a) Input (b) L(f) > 130 (OBGE) (c) L(f) > 130 (TBGE)

(d) Input (e) E(f) > 16 (OBGE) (f) E(f) > 16 (TBGE)

(g) Input (h) T (f) > 6 (OBGE) (i) T (f) > 6 (TBGE)

Fig. 5. Filtering by geodesic attributes: diameter, elongation and tortuosity. The first
column is the initial image. For the second (resp. third) column, the extension for
greyscale image is the OBGE method (resp. TBGE method)), discussed in 2.3.
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We notice for the geodesic diameter, these two methods give exactly the same
result. Thus, this thinning based on the geodesic diameter behaves as an opening
for this image. This is due to the fact that most of the objects in figure 5(a) have
a convex shape.

The choice of the method will depend on our applications. In the follow-
ing, the OBGE method is used, as we want to isolate the cracks from the
background.

5 Practical Considerations and Optimisation

5.1 Computation of the Geodesic Diameter

The geodesic diameter has to be computed for every CC of every threshold
of the image. Hence, the complexity of this algorithm depends mainly on the
number and the area of these CCs. Maisonneuve and Lantuéjoul in [5] designed
an efficient parallel implementation for binary images to compute the geodesic
diameter in a hexagonal grid. Let Y be a set of emitting sources and X be
an object simply connected with Y a subset of X . The computation of L(X)
requires a propagation step from the emitting sources into X . If Y is correctly
chosen (e.g. the boundaries of the objects), the geodesic diameter would be
deduced from the last wave iteration. However, this algorithm does not support
holes; the CC has to be simply connected, otherwise the propagation wave would
never end, turning infinitely around the holes. This is a real limitation to the
use of this algorithm.

Classical attribute filters are often based on a tree representation, as presented
by Salembier et al. in [7]. However, we could not find a fast way to update the
geodesic diameter value, when a new pixel is added to a CC. Hence, the connected
component tree representation is not as efficient as for simple attributes (area,
width, height).

Then, we prefer using a direct implementation where the greyscale image is
converted into binary images. Each connected component is isolated using a
stack of pixels as container. Each pixel belonging to the boundary of the object
is a starting point to a region growing process in order to build a distance map.
The highest value of all the distance maps is the geodesic diameter.

5.2 Optimisation

A possible acceleration is available for the geodesic diameter and the geodesic
elongation thinnings. During, the region growing process, when the front wave
becomes larger than the attribute, it is useless to compute the real value of this
attribute. The criterion is passed, we keep the current connected component and
we can stop the propagation step. The time saved is huge (see table 1 and figure
6) but it does depend on λ.
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(a) Eutectic (b) Coffee (c) Grains3 (d) Macula (e) Relief (f) Retina2

Fig. 6. Images used to build table 1

Table 1. Running times for different images for a geodesic diameter thinning or thick-
ening with the OBGE method and for λ = 20. Timings are in seconds. Laptop com-
puter: Intel Core2 Duo T7700 @ 2.40GHz

Images Direct method Accelerated method (see 5.2)

Coffee (256 x 256 x 1-bit) 36 0.079
Eutectic (256 x 256 x 1-bit) 37 0.015
Grains3 (256 x 256 x 8-bits) 3650 5.4
Macula (256 x 256 x 8-bits) 3850 2.7
Relief (256 x 256 x 8-bits) 1024 0.99

Retina2 (256 x 256 x 8-bits) 1820 1.56

6 Results

The new operators have been applied to real images in the framework of our
project. Here, the geodesic attribute thinnings are used to detect long and narrow
structures. The proposed image, is a crack and we want to extract it (Figure
7(a)). We use and compare five different methods in order to do it:

– The supremum of openings by segments of size 10 pixels oriented every 2
degrees. Figure 7(b) presents the result and we see that, only the linear part
of the crack is preserved. This method is used to extract linear features, and
when a crack is not straight, this method is not efficient.

– An area opening of size 100 pixels (Figure 7(c)). Here we observe that the
noise is correctly filtered out. However, the circle structure is preserved, as
well as the compact noise which is larger than 100 pixels.

– A maximum path opening of size 100 pixels (Figure 7(d)). For each pixel,
the graph has 3 predecessors and 3 successors according to [1]. The result
is much better than the previous method. However, not all the branches of
the crack are extracted. When the path is too tortuous, this algorithm is not
able to follow the entire crack and fails to estimate its length.

– A geodesic diameter thinning of size 100 pixels yields a better result since
all the branches are correctly extracted (Figure 7(e)). This algorithm is a
connected operator. The tortuosity of the CCs has no influence over its
length.

– A geodesic elongation thinning of value 20 (Figure 7(f)). This method filters
out all the noise and offers a very efficient detection.
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(a) Input (b) Segments openings of size 10 pixels

(c) Area opening of size 100 pixels (d) Path openings of size 100 pixels

(e) Geodesic diameter thinning of size 100
pixels

(f) Geodesic elongation thinning of size 20

Fig. 7. Crack detection: to detect these thin structures, we use 5 different methods.
The geodesic attribute thinning yields the best detection.

7 Conclusion and Future Work

We have presented new attributes thinnings based on geodesic criteria. The
geodesic elongation, the geodesic diameter and the geodesic tortuosity are non
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increasing criteria which offer good filtering capabilities. Thus, the extraction
of long and elongated structures is easy and is made in an efficient way. It
offers more flexibility compared to other methods. Moreover, we can have a
representation of the elongation and the tortuosity, which is not possible with
path openings. An acceleration is proposed for thinnings based on the geodesic
diameter and the geodesic elongation. Therefore, these operators are fast enough
for many applications.

Speed up the computation of the geodesic diameter seems to be difficult.
However, we are working on the elaboration of a new strategy to approximate the
geodesic diameter with a high accuracy. In practice, we get very similar results
but the final algorithm is several time faster. In average, the running times are
divided by a factor of 20, compared to the accelerated method presented in 5.2.
Hence, the extension to 3D images will be straightforward. Future work will also
include granulometries and ultimate thinnings with geodesic attributes.
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Abstract. Development of spatially-variant filtering is well established
in the theory and practice of Gaussian filtering. The aim of the paper is
to study how to generalize these linear approaches in order to introduce
adaptive nonlinear filters which asymptotically correspond to spatially-
variant morphological dilation and erosion. In particular, starting from
the bilateral filtering framework and using the notion counter-harmonic
mean, our goal is to propose a new low complexity approach to de-
fine spatially-variant bilateral structuring functions. Then, the adaptive
structuring elements are obtained by thresholding the bilateral struc-
turing functions. The methodological results of the paper are illustrated
with various comparative examples.

1 Introduction

Let E be the Euclidean Rd or discrete space Zd (support space) and let T be a
set of grey-levels (space of values). It is assumed that T = R = R∪ {−∞, +∞}.
A grey-level image is represented by a function f : E → T , f ∈ F(E, T ), i.e., f
maps each pixel x ∈ E into a grey-level value t ∈ T : t = f(x). Given a grey-level
image, the two basic morphological mappings F(E, T ) → F(E, T ) are the dila-
tion and the erosion given respectively by δb(f)(x) = supy∈E (f(x− y) + b(y)),
and εb(f)(x) = infy∈E (f(x + y) − b(y)); where b ∈ F(E, T ) is the structuring
function which determines the effect of the operator. The other morphologi-
cal operators, such as the opening and the closing, are obtained as products
of dilation/erosion. The most commonly studied framework, which additionally
presents better properties of invariance, is based on flat structuring functions,
called structuring elements. More precisely, let B be a Boolean set defined at
the origin, i.e., B ⊆ E or B ∈ P(E), which defines the “shape” of the structur-
ing element, the associated structuring function is given by b(x) = 0 if x ∈ B
and b(x) = −∞ if x ∈ Bc (where Bc is the complement set of B). Hence, the
flat dilation and flat erosion can be computed respectively by the moving local
maxima and minima filters.

Standard formulation of morphological operators is translation invariant in
the space and in the intensity [11], i.e., the same structuring function b(x) (or
structuring element B) is considered for each point x of the image. A current
challenging topic in mathematical morphology is the construction of adaptive
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operators; i.e., structuring functions become dependent on the position or on
the input image itself. For a recent overview on the state-the-art on adaptive
morphology, the interested reader is invited to papers [15,18].

Aim of the paper. Development of locally adaptive filtering is well established
in the theory and practice of Gaussian filtering. The aim of this paper is to study
how to generalize these linear approaches in order to introduce adaptive non-
linear filters which asymptotically correspond to spatially-variant morphological
dilation and erosion. In particular, starting from the bilateral filtering and using
the notion of counter-harmonic mean, our goal is to propose a new low complex-
ity approach to define spatially-variant structuring functions (Section 2). After
thresholding, adaptive structuring elements are obtained which can be used to
compute spatially-variant dilation, erosion, opening and closing (Section 3). The
associated algorithms take advantage of the low computational complexity of
bilateral filtering.

Related work. Bilateral filtering [22] is a locally adaptive Gaussian convolu-
tion technique to smooth images while preserving edges, where the Gaussian
coefficients at a point are weighted by the intensity distance between its neigh-
bours. A recent systematic study on the theory and applications of bilateral
filtering can be found in [17]. In particular, bilateral filtering is a discrete fil-
ter equivalent asymptotically to Perona and Malik PDE equation [16,7]. The
construction of locally adaptive edge-preserving structuring elements has been
previously considered in the literature of mathematical morphology. The notion
of generalized geodesy [20] was proposed to introduce locally adaptive geodesic
neighbourhoods. Morphological amoebas [12] were proposed as a flexible discrete
approach to compute locally adaptive structuring elements. Morphological amoe-
bas have been basically considered for median filtering. In a recent study [28], it
has been established an interesting correspondence between the iterated amoeba
median filtering and the PDE of self-snakes. More recently, it has been intro-
duced in [10] a framework to compute adaptive kernels using geodesic distances
which generalizes the metric of morphological amoebas and adaptive geodesy.
But it is exclusively used for averaging edge-preserving smoothing. We should
remark that the adaptive neighbourhoods associated to distance propagation
in amoebas, or in generalized geodesy, involve a relatively high computational
complexity. The starting point of the adopted approach is the notion of counter-
harmonic mean [4]. In fact, the idea of using the counter-harmonic mean to
construct robust morphological-like operators, without the notions of supremum
and imfimum, was proposed in [23]. We have recently used in [1] the counter-
harmonic framework to generalize image diffusion in order to introduce iterative
nonlinear filters which effects mimic morphological dilation and erosion.

2 Counter-Harmonic Bilateral Filter

Canonic multiscale image analysis involves obtaining the various scales by linear
convolutions (i.e., low-pass filtering) of the original image. Hence, each output
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image pixel value is a weighted sum of its neighbours in the input images, where
the weights decrease with the spatial distance to the centre position. These
weights are usually given by a Gaussian kernel, which is also related to linear
diffusion. As a result, all neighbourhoods are uniformly blurred, including edges
and discontinuities.

Bilateral filter: spatially-variant convolution kernels. The rationale be-
hind the bilateral filtering is to apply a weighted average of nearby pixels which
depends on the distance but also on the difference in value with respect to the
centre. The bilateral filter of image f(x) is defined by the following normalized
convolution:

Υ (f)(x; k̃ηs,ηi) =

∫
E

f(y)kηs(‖x− y‖)kηi(|fρ(x)− fρ(y)|)dy
∫

E kηs(‖x− y‖)kηi(|fρ(x)− fρ(y)|)dy (1)

where the pair of width parameters defines the vector scale (ηs, ηi), with ηs is
the spatial (or size) scale and ηi the intensity (or tonal or range) scale; and
where kη(ξ) denotes the function kernel which imposes the smoothing weights of
both spatial and contrast effects. By homogeneity, it will be considered that the
spatial and intensity kernels are the same. The intensity distances are computed
from fρ(x), a median-filtered version of the initial image f(x) using a window
of size ρ × ρ pixels. Thus, in the bilateral filter, each neighbour is weighted by
a spatial component that penalizes distant pixels and an intensity component
that penalizes pixels with a different intensity. The combination by product of
both components ensures in Υ (f) that only nearby similar pixels contribute to
the final results. The fact of computing the intensity penalization from fρ(x), a
regularized version of the image, leads to a robust against noise estimator. The
latter principle is well known in nonlinear diffusion [7] and in the computation of
morphological amoebas (i.e., the “pilot” image [12]). For all the examples given
in this paper, we have fixed ρ = 3 pixels. This size of median filter (3 × 3)
is appropriate for most of images, including the noisy ones. In cases of severe
noise or with very structured images, this parameter could be adaptively se-
lected by choosing a large size, but this issue is beyond the scope of this paper.
As in spatially-invariant filtering, increasing the spatial parameter ηs smoothes
large features. As the intensity parameter ηi increases, the bilateral filter grad-
ually approximates spatially-invariant filtering, but if the value is too small, no
smoothing occurs. In the standard formulation of bilateral filtering, the kernel
is a Gaussian function (which provides least squares zero-order estimate of im-
age structure. However, for the nonlinearization case studied in this paper, we
propose to consider in detail three alternative kernels:

i) Gaussian kernel: kσ(ξ) = e
−ξ2

2σ2 ;
ii) Laplace kernel kβ(ξ) = e

−|ξ|
β ;

iii) Cauchy-Lorentz kernel kα(ξ) = 1

1+ ξ2

α2

.

Cauchy-Lorentz kernel is an intermediate function between the Gaussian and
Laplace kernels, and consequently it is sharper than the Gaussian kernel. Note
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also that as the convolution is normalized in the bilateral filtering, the corre-
sponding kernels do not require any additional normalization.

Counter-Harmonic generalization. According to the counter-harmonic para-
digm that we have introduced in [1], the following generalized bilateral filter is
proposed.

Definition 1. The counter-harmonic bilateral scale-space of order P using bi-
lateral kernel k̃ηs,ηi is defined as

Ψ(f)(x; k̃ηs,ηi ; P ) =

∫
E f(y)P+1kηs(‖x− y‖)kηi(|fρ(x)− fρ(y)|)dy
∫

E
f(y)P kηs(‖x− y‖)kηi(|fρ(x)− fρ(y)|)dy . (2)

By choosing P > 0 (resp. P < 0), Ψ(f)(x; k̃ηs ,ηi ; P ) leads to a scale-space of
pseudo-dilations (resp. pseudo-erosions), which filtering effects for a given pair
of spatial/distance scales (ηs, ηi) depend on the “nonlinearity order” of P , which
skews the bilateral weighted values towards the supremum or infimum value.

Fig. 1 depicts a comparative example of filtering the image “Owl” using the
counter-harmonic bilateral scale-space Ψ(f)(x; k̃ηs,ηi ; P ), using Gaussian kernel,
for a fixed spatial scale σs = 3 (windowed in a spatial support of 11×11 pixels).
The behaviour of bilateral filtering with respect to the value of σi is here well
illustrated: with high values, e.g., σi = 0.9, the result is similar to the spatially-
invariant Gaussian filter; σi = 0.1 is here a good trade-off to achieve the adaptive
effect of bilateral kernels. We observe also the effect of adaptive pseudo-dilations
when P > 0, for instance with P = 5: the spatially-variant dilation results
in a moving window max. on regular regions, but without distorting the main
edges. We notice that when P ↑↑, the bilateral pseudo-dilation converges to
the spatially-invariant flat dilation (P = +∞), losing the properties of local
adaptability. The terminology of “pseudo-dilation”, or more generally “pseudo-
morphological operators” is probably inappropriate: so many operators have been
published as pseudo-morphological ones, without any relation with the present
approach. However, due to the fact that the nonlinear filter Ψ(f)(x; k̃ηs,ηi ; P )
for P > 0 (resp. P < 0) is not extensive (resp. anti-extensive) and does not
commute with the supremum (resp. with the infimum), it cannot be considered
stricto sensu as a dilation (resp. erosion). But let us contemplate in detail the
asymptotic behaviour of the bilateral pseudo-dilations/erosion with respect to
P .

Limit statements and spatially-variant structuring functions. We can
study in particular the limit cases for P - 0 and P . 0.

Proposition 1. For a given pair of scale parameters (ηs, ηi), the limits of (2)
with respect to P exist and are given by

limP→+∞ Ψ(f)(x; k̃ηs,ηi ; P ) =

supy∈E

(
f(y) + 1

P
[log (kηs(‖x − y‖)) + log (kηi(|fρ(x) − fρ(y)|))])

(3)
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(a) Original (b) Dilation: P = +∞

(c1) σs = 3, σi = 0.9 (c2) σs = 3, σi = 0.9 (c3) σs = 3, σi = 0.9 (c4) σs = 3, σi = 0.9

P = 0 P = 5 P = 10 P = 20

(d1) σs = 3, σi = 0.1 (d2) σs = 3, σi = 0.1 (d3) σs = 3, σi = 0.1 (d4) σs = 3, σi = 0.1

P = 0 P = 5 P = 10 P = 20

Fig. 1. Comparison of pseudo-dilations of image f(x) “Owl” using the counter-harmonic
bilateral scale-space Ψ(f)(x; k̃ηs,ηi ; P ), using Gaussian kernel, for a fixed spatial scale
σs = 3 (windowed in a spatial support of 11× 11 pixels), two intensity scales σi = 0.9,
0.1 and three values of P > 0; besides the standard bilateral filtering (P = 0) and the
flat dilation (P = +∞) of size 11 × 11.

limP→−∞ Ψ(f)(x; k̃ηs,ηi ; P ) =

infy∈E

(
f(y) − 1

P
[log (kηs(‖x − y‖)) + log (kηi(|fρ(x) − fρ(y)|))])

(4)

Proof is not included by the limited paper length, but it is similar to that given
in [1]. Let us consider the asymptotic spatially-variant structuring function:

b̃(x; ηs, ηi; P ) =
1
P

[log (kηs(‖x− y‖)) + log (kηi(|fρ(x)− fρ(y)|))] =
1
P

bηs,ηi(x),

(5)
where bηs,ηi(x) = bηs(‖x−y‖)+ bηi(|fρ(x)−fρ(y)|). Hence, we observe that the
supremal convolution of Rel.(3) is exactly a spatially-variant dilation and the
infimal convolution of Rel.(4) is a spatially-variant erosion, where the structuring
function has been transposed.

This logarithmic connection, which appears here, between the linear and the
morphological system theory has been previously considered in the literature [5].
We notice also that, in these limiting cases, the counter-harmonic bilateral frame-
work involves a “normalization” by P of the original spatial and intensity ker-
nel scale parameters during unlinearization. This result is perfectly coherent
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with those obtained from totally different paradigms [9,27]. We notice that for
P = +∞ ⇒ σ̂s = +∞, i.e., the structuring function becomes flat, and hence we
obtain the flat dilation in a windowed spatial support. The classical case of the
parabolic structuring function as the morphological equivalent of the Gaussian
kernel is particularly known in the state-of-the art of mathematical morphol-
ogy: on the one hand, the parabolic (or more generally, quadratic) structuring
functions contain the unique rotationally symmetric structuring functions that
can be dimensionally decomposed with respect to the dilation [2]; on the other
hand, parabolic structuring functions are the eigenfunctions, which preserve their
shape, of the slope transform [8,13], which is the equivalent of Fourier transform
in the framework of mathematical morphology. However, to our knowledge, this
is the first time that the bilateral parabolic structuring, i.e.,

b̃σs,σi(x) = −‖x− y‖2
2σ2

s

− |fρ(x) − fρ(y)|2
2σ2

i

, (6)

appears in the literature. As we have already stated, the “normalization” in-
troduced by P in the counter-harmonic bilateral filtering involves a flattening
of the structuring function b̃(x; ηs, ηi; P ) when |P | increases and consequently,
the values of pseudo-dilation and pseudo-erosion for P - 0 and P . 0 tends
respectively asymptotically to a flat dilation and a flat erosion, which lose the
properties of adaptability.

At this point, we have the ingredients to carry on the study on bilateral
morphology by considering directly the dilation and erosion using the spatially-
variant morphological structuring functions, without the resource to the counter-
harmonic framework. Nevertheless, this alternative would immediately arrive
to a fundamental obstacle: how to calculate the reciprocal dilation of a given
erosion, in order to obtain the morphological opening/closing (as product of
erosion and dilation), which is a key point in spatially-variant morphology [19].
Hence, we prefer to continue our work following an alternative approach.

3 Bilateral Flat Morphological Operators

The purpose of this section is to introduce the construction of flat spatially-
variant morphology using thresholded adaptive structuring functions and a the-
oretically appropriate formulation of morphological operators.

Thresholding adaptive structuring function. By thresholding b̃ηs,ηi at a
fixed value τ , a neighbourhood shape is then obtained for each point x. The
binary set B(x), defining an adaptive structuring element, corresponds to a
truncated disk. Instead of using ηs as the input parameter to define the spatial
scale of the structuring element, we can fix a constant threshold, for instance
τ = −1, and then calculate ηs for a desired diameter of the disk d. To interpret
the penalization term, we can introduce a new parameter called critical con-
trast percentage Δ (%). This parameter is the value of |fρ(x)−fρ(z)| producing
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bηi(x) = −1 for a certain ηi, which can be therefore calculated. In summary, we
have the following definition.

Definition 2. Given an image f(x), the adaptive isotropic structuring element
at pixel x of diameter d and critical contrast percentage Δ is defined by

Bd,Δ(x) = {z ∈ E | bηs (‖x− z‖) + bηi (|fρ(x)− fρ(z)|) ≥ −1} , (7)

where the corresponding spatial and intensity scale parameters for the morpho-
logical Gaussian, Laplace and Cauchy-Lorentz kernels are respectively given by

σs =
d

2
√

2
; βs =

d

2
; αs =

d

2
√

1.718
; and σi =

1√
2

Δ

100
; βi =

Δ

100
; αi =

1√
1.718

Δ

100
.

Spatially-variant mathematical morphology. In mathematical morphology,
when the variation of a structuring function follows a law based on the data,
such as in our case where: x→ f(x) → Bd,Δ(x), the complement of the dilation
and of the adjoint opening cannot be theoretically calculated [19,25]. Then the
four basic operations must be expressed by using the datum of the structuring
function B(x) exclusively, without resorting to complement, or equivalently, to
reciprocal dilation. For the binary case, dilation and erosion are operations that
map a lattice P(E) into itself preserving both union and intersection. Since a set
X is the union of its singletons x, i.e. X = ∪{{x}|{x} ⊆ X}, and since dilation
commutes under union, this operation can be expressed as

δB(x)(X) = ∪{B(x)|x ∈ X} , (8)

where B(x) is the structuring element at point x. The expression of the erosion
can be drawn from adjunction as

εB(x)(X) = {z|B(z) ⊆ X} . (9)

The analytical representation of dilation δ by means of the structuring function
extends to the associated opening and closing, defined as

γB(x)(X) = ∪{B(x)|B(x) ⊆ X} (10)

and
ϕB(x)(X) = ∪{x|B(x) ⊆ ∪[B(x)|x ∈ X ]} . (11)

The geometrical meaning of γ(X) is the region of the space swept by all struc-
turing sets B(x) that are included in X . Extension to grey-level images can be
tackled from different approaches [3,25]. Here we adopted for the bilateral case,
a formulation based on binary processing the stack of cross-sections [19].

Examples. In Fig. 2 is provided a comparison of bilateral flat dilation and
bilateral flat closing, i.e., δBd,Δ(x)(f)(x) and ϕBd,Δ(x)(f)(x), with d = 11, of
image f(x) “Owl” with respect to different values of Δ, and using the mor-
phological Gaussian kernel (i.e., parabolic) for the spatially-variant structuring
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(a) Original (b) Flat dil. 11 × 11 (c) Flat clos. 11 × 11

(b1) Bil. flat parab. dil. (b2) Bil. flat parab. dil. (b3) Bil. flat parab. dil.
d = 11; Δ = 5 d = 11; Δ = 15 d = 11; Δ = 45

(c1) Bil. flat parab. clos. (c2) Bil. flat parab. clos. (c3) Bil. flat parab. clos.
d = 11; Δ = 5 d = 11; Δ = 15 d = 11; Δ = 45

Fig. 2. Comparison of bilateral flat dilation δBd,Δ(x)(f)(x) and bilateral flat closing
ϕBd,Δ(x)(f)(x), with d = 11, of image f(x) “Owl” with respect to different values of Δ,
and using the morphological Gaussian kernel (i.e., parabolic) for the spatially variant
structuring element. The results can also be compared with the standard spatially
invariant flat dilation δB(f)(x) and flat closing ϕB(f)(x).

element. It is observed in both cases the excellent adaptive behaviour of bilat-
eral spatially-variant operators with respect to the standard ones. For Δ = 5,
the main structural edges are preserved but an effect of dilation or closing is
produced in the regular zones. In the case of Δ = 15, a stronger morphological
filtering is observed, but the basic structures are still preserved. For high values
of critical contrast percentage, e.g., Δ = 45, the results obtained are already
quite similar to those of the spatially-invariant operators.
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(a) Original (b) Bilateral filt.

αs = 3; αi = 0.1

(d) Bil. flat parab. open. clos. (e) Bil. flat parab. clos. open. (f) Averaged (d) and (e)
d = 7; Δ = 5 d = 7; Δ = 5 d = 7; Δ = 5

Fig. 3. Comparison of image denoising using bilateral approaches: (a) original noisy
image f(x), (b) bilateral filtering (d) bilateral flat opening-closing (e) bilateral flat
closing-opening (f) averaged image of opening-closing and closing-opening. The (loga-
rithmic) Cauchy-Lorentz kernel has been used for the examples.

The last comparative example given in Fig. 3 deals with the problem of image
denoising by means of bilateral approaches, using (Log.) Cauchy-Lorentz kernel.
The latter kernel is a good compromise between the kernels of first (conical)
and second order (parabolic). We observe that the standard bilateral filtering
Υ (f)(x; k̃αs,αi) produces a nice restoration. In the framework of mathematical
morphology, the two products of an opening and a closing yield an interesting
operator, the averaged alternate filter, which presents skilful properties for de-
noising. We remark in the example that the averaged alternate filter of diameter
d = 7, using bilateral flat opening/closing, produces a filtered image which is
also quite satisfactory. In particular, the restored edges with the latter filter
are better enhanced than with the standard bilateral filtering of equivalent size.
This property of enhancement of structural edges is fundamentally intrinsic to
the flat morphological operators (based on max/min operations) with respect to
the linear operators (based on averaging operation).

Complexity. The complexity of a direct implementation for the computation
of the bilateral structuring functions is O(W ·N) where W is the effective size
of the spatial kernel and N is the total number of pixels of the image. Typically,
for the studied kernels, one can consider only the pixels in a square window
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of size 2ηs × 2ηs, and hence W ∝ (2ηs)2. The complexity can be reduced to
O(log W ·N) using a local histogram based algorithm [26]. In order to compare
with previous approaches, and according to the recent paper [10], the complexity
of the morphological amoebas is O(N · nω2 · log ω2) and for the geodesic time-
based neighbours is O(N · ω2 · log ω2), where n is the number of pixel graph
connectivity and ω is the value of distance which defines the geodesic size. The
computational advantage of bilateral structuring functions is natural since they
are based on a Euclidean distance whereas the amoebas are founded in geodesic
distances.

4 Conclusions and Perspectives

We have introduced in this paper the counterpart of bilateral filtering in the
framework of mathematical morphology operators. Our starting point has been
the notion of counter-harmonic filter, which provides a framework to explore the
nonlinearization of convolution-based filters.

The main contributions of the paper can be summarised as follows. We have
rediscovered the logarithmic connection between linear filters and the morpho-
logical ones, which allows us to propose the morphological equivalent to (locally
adaptive) bilateral weighting convolution kernel: the bilateral structuring func-
tions. We have considered, besides the Gaussian kernel, the use of a Laplace
kernel or a Cauchy-Lorenz kernel for bilateral filtering and the corresponding
logarithmic counterparts to define bilateral structuring functions. We have in-
troduced a low-complexity framework for flat spatially-variant filters using thesh-
olded adaptive structuring functions and a theoretical appropriate formulation
of operators.

The performance of first experiments illustrated the applicative interest of the
operators for adaptive nonlinear filtering. As mentioned above, a key point of
the methods discussed in the paper is their low-complexity in comparison with
other adaptive morphological frameworks.

From a theoretical viewpoint, the present work can be pursued into two main
directions. On the one hand, using the slope transform [8,13], an investigation
about the properties of the logarithmic Cauchy-Lorentz functions, with respect
to the parabolic families which are better known, and in particular on the be-
haviour of the iteration of dilations/erosions using these non-standard functions
can be achieved. On the other hand, the connection between the discrete oper-
ators and proposed here and the formulations of adaptive morphological opera-
tors [14,6] should be explored.
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Abstract. This paper is focused on adaptive viscous morphology in the
context of the General Adaptive Neighborhood Image Processing (GA-
NIP) approach [1,2]. A local adaptive neighborhood is defined for each
image point, depending on the intensity function of the image. These
so-called General Adaptive Neighborhoods (GANs) are used as adap-
tive structuring elements for Mathematical Morphology (MM) [1,3]. In
this paper, GAN-based viscous MM is introduced to adjust the filtering
activity to the image gray levels. The proposed GAN viscous morpholog-
ical filters are successfully applied on real application examples in image
restoration and enhancement.

1 Introduction

1.1 The General Adaptive Neighborhood (GAN) Paradigm

This paper deals with 2D intensity images, that is to say image mappings defined
on a spatial support D in the Euclidean space R2 and valued into a gray tone
range, which is a real number interval. The General Adaptive Neighborhood
paradigm has been introduced [4] in order to propose an original image repre-
sentation for adaptive processing and analysis. The central idea is the notion of
adaptivity which is simultaneously associated to the analyzing scales, the spatial
structures and the intensity values of the image to be addressed.

In the so-called General Adaptive Neighborhood Image Processing (GANIP)
approach [1,2], a set of General Adaptive Neighborhoods (GANs set) is identified
around each point in the image to be analyzed. A GAN is a subset of the spatial
support constituted by connected points whose measurement values, in relation
to a selected criterion (such as luminance, contrast, thickness, . . . ), fit within a
specified homogeneity tolerance. These GANs are used as adaptive windows for
further image transformations or quantitative image analysis.

The space of image (resp. criterion) mappings, defined on the spatial support
D and valued in a real number interval Ẽ (resp. E), is represented in a General
Linear Image Processing (GLIP) framework [5], denoted I (resp. C). The GLIP
framework I (resp. C) is then supplied with an ordered vectorial structure, using

P. Soille, M. Pesaresi, and G.K. Ouzounis (Eds.): ISMM 2011, LNCS 6671, pp. 224–235, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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the formal vector addition +̃� (resp. +�), the formal scalar multiplication ×̃� (resp.
×�) and the classical partial order relation ≥ defined as:

∀(f, g) ∈ I2 or C2 f ≥ g ⇔ (∀x ∈ D f(x) ≥ g(x)) (1)

The most frequently used framework is the Classical Linear Image Processing
(CLIP) framework where the vector addition and the vector multiplication are
the usual + and × operations, respectively. Additional GLIP frameworks have
been developed for non-linear images or imaging systems, such as the Logarithmic
Image Processing (LIP) framework [6].

1.2 GAN Sets

For each point x ∈ D and for an image f ∈ I, the GANs V h
m�(x) are subsets in

D. They are built upon a criterion mapping h ∈ C (based on a local measurement
such as luminance, contrast, thickness, . . . related to f), in relation with an
homogeneity tolerance m� belonging to the positive intensity value range E +� .
More precisely, V h

m�(x) is a subset of D which fulfills two conditions:

1. its points have a measurement value close to that of the point x : ∀y ∈
V h

m�(x) |h(y) −�h(x)|� ≤ m�, where −� and |.|� denote the considered
GLIP subtraction and GLIP modulus, respectively,

2. the set is path-connected (with the usual Euclidean topology on D ⊆ R2).

The weak GANs are thus defined as following:
∀(m�, h, x) ∈ E +� × C ×D

V h
m�(x) = Ch−1([h(x) −�m�,h(x) +�m�])(x) (2)

where CX(x) denotes the path-connected component (with the usual Euclidean
topology on D ⊆ R2) of X ⊆ D containing x ∈ D and h−1(Y ) = {x ∈ D; h(x) ∈
Y } for Y ⊆ E.

The definition of CX(x) ensures that x ∈ V h
m�(x) for all x ∈ D.

Figure 1 illustrates the GANs of two points computed with the luminance cri-
terion in the CLIP framework on a human retina image. The figure highlights the
homogeneity and the correspondence of the GANs with the spatial structures.

2 GAN Mathematical Morphology

In the litterature, several approaches have been investigated for defining adap-
tive morphological operators [7,1,8,9,10]. The basic idea in the General Adap-
tive Neighborhood Mathematical Morphology (GANMM) is to replace the usual
Structuring Elements (SEs) by GANs, providing adaptive operators and filters
[1,3].
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2.1 Adaptive Structuring Elements

More precisely, the Adaptive Structuring Elements (ASEs), denoted Rh
m�(x),

are defined as following:

∀(m�, h, x) ∈ E
+� × C ×D Rh

m�(x) =
⋃

z∈D

{V h
m�(z)|x ∈ V h

m�(z)} (3)

The GANs V h
m�(x) are not directly used as ASEs, because they do not satisfy

the symmetry property contrary to the Rh
m�(x): x ∈ Rh

m�(y) ⇔ y ∈ Rh
m�(x).

This symmetry condition is relevant for visual, topological, morphological and
practical reasons as explained in [4].

2.2 Adaptive Morphological Filters

The elementary operators of adaptive dilation and adaptive erosion are respec-
tively defined accordingly to the ASEs:
∀(m�, h, f) ∈ E +� × C × I

Dh
m�(f)(x) = sup

w∈Rh
m� (x)

f(w) (4)

Eh
m�(f)(x) = inf

w∈Rh
m� (x)

f(w) (5)

These two GAN-based operators, using adaptive structuring elements that
are computed on the input or pilot image h, define input-adaptive morphological

(a) original image f with
two seed points x and y
(white dots)

(b) GANs V f
10(x) and V f

10(y)

Fig. 1. The GANs of the two selected points of the original image (a) are homogeneous
(b) with the tolerance m = 10, with respect to the luminance criterion in the CLIP
framework



GAN Viscous Morphology 227

operators in the sense of [11]. So, they commute with suprema and infima and
form an adjunction. The proofs are given below.

Dh
m�(f ∨ g)(x) = sup

w∈Rh
m�(x)

f ∨ g(w)

⇔

⎛

⎝ sup
w∈Rh

m�(x)

f(w)

⎞

⎠ ∨

⎛

⎝ sup
w∈Rh

m�(x)

g(w)

⎞

⎠

⇔
(
Dh

m�(f)(x)
)
∨
(
Dh

m�(g)(x)
)

The proof is similar for the adaptive erosion.

Dh
m�(f) ≤ g ⇔ Dh

m�(f)(x) ≤ g(x)∀x ∈ D

⇔ sup
w∈Rh

m�(x)

f(w) ≤ g(x)∀x ∈ D

⇔ f(w) ≤ g(x)∀w ∈ Rh
m�(x), ∀x ∈ D

⇔ f(w) ≤ g(x)∀x ∈ Rh
m�(w), ∀w ∈ D

⇔ f(w) ≤ inf
x∈Rh

m� (w)
g(x)∀w ∈ D

⇔ f(w) ≤ Eh
m�(g)(w)∀w ∈ D

⇔ f ≤ Eh
m�(g)

Using this input image h means that the ASEs in two successive runs will have
the same shape, which results in the idempotence property in adaptive openings
and closings.

Then, several adaptive morphological filters can be defined by combination of
these two elementary adaptive morphological operators (opening, closing, alter-
nating filters, sequential filters, alternating sequential filters . . . ) [3]. The GAN
morphological operators satisfy several properties (increasing, adjunction, ex-
tensiveness, anti-extensiveness, commutativity with suprema or infima, idem-
potence, increasing with respect to m�, translation invariance, multiplication
compatibility) reported and proved in [1]. More particularly, in several and
important practical cases, these adaptive operators are connected [1,3], which
is an overwhelming advantage compared to the usual morphological ones that
fail to this property [12]. For example, the GAN opening and closing are con-
nected operators contrary to the classical opening and closing. Consequently,
such GAN morphological operators perform an efficient spatially-adaptive image
processing.

2.3 Classical vs. Adaptive Filtering

The GAN-based morphological filtering is more efficient than the classical mor-
phological filtering. Indeed, an image is smoothed while both preserving the
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(a) original image (b) Classical erosion (c) Classical dilation

(d) Adaptive erosion (e) Adaptive dilation

Fig. 2. Classical MM (using the centered disk of radius 3 as sliding window) vs. adap-
tive MM (using the GANs computed with the luminance criterion and the homogeneity
tolerance value m = 30 in the CLIP framework)

transitions and the regions of interest. In particular, this kind of filters is very
attractive for image restoration. A comparison of the classical and adaptive mor-
phological filters is proposed in Figure 2 where the processing is performed on a
human retinal image. The retinal vessels are rapidly damaged using the classical
filtering contrary to the adaptive filters. In addition, no blurring effects occur
with the GAN-based filtering.

3 GAN Viscous Mathematical Morphology

Gray tone MM could be defined from binary MM where the operator acts on
the level sets of the image to be processed (stack filtering). Those stack filters
can be extended to GAN-based viscous morphology, where the viscous notion
enables to adjust the filtering activity to the image gray tones.

3.1 Stack Filtering

Stack filters, introduced in [13], are defined by applying a specific boolean
operator to each threshold (level) of the gray tone image. They constitute a
very important class of rank order based filters. They generalize classical fil-
ters such as (weighted) median filters, morphological filters ... [14]. The stack
filtering principle is first briefly exposed before extending it within the GANIP
framework.
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A gray tone image f : D → Ẽ can be decomposed into its level sets Xt with
t ∈ Ẽ (the intensity value range of images):

Xt(f) = {x ∈ D; f(x) ≥ t} (6)

The gray tone image f can be naturally reconstructed from its level sets:

f =
∨

t

t.χt(f) (7)

where χt is the indicator function of Xt, namely:

χt(f)(x) =
{

1 if x ∈ Xt(f)
0 otherwise

Consider a binary operator ψ acting on the level sets associated to f , then the
stack filtering consists in the following transformation denoted Ψ :

Ψ(f) =
∨

t

t.ψ(χt(f)), ψ(χt(f))(x) =
{

1 if x ∈ ψ(Xt(f))
0 otherwise (8)

Such filters have to satisfy the stacking property: if the binary output images
are piled on top of each other according their threshold level, the result for each
point is always a column of 1’s with a column of 0’s on top. In this way, the
output image could be easily and quickly reconstructed. Note that this property
is satisfied when ψ is an increasing operator.

Of course, the filter ψ is just a Boolean kernel function operating within a slid-
ing window. It enables to generalize a large class of filters satisfying the threshold
decomposition architecture (i.e. filters commuting with any thresholding opera-
tion), such as median, max or min filters.

One can note that the classical filters process all level sets identically. On the
contrary, viscous operators [15,16] process the level sets at different scales. It
thus enables to define intensity-adaptive operators.

3.2 Classical Viscous Filters

A viscous filter is defined for a gray tone image f as:

Φ(f) =
∨

t

t.φt(χt(f)) (9)

where {φt}t, shortly denoted {φ} can be interpreted as a family of increasing set
operators, each operator φt being assigned to act on the gray level t. If the family
{φ} is decreasing, the reconstruction of the different filtered level sets is imme-
diate, since the stacking property is satisfied. In the case of a non-decreasing
family, the reconstruction is performed [10] by considering the lower or upper
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(a) upper envelope (b) lower envelope

Fig. 3. Two stacking schemes for defining viscous filters [10]. Full line: initial stack;
dotted line: filtered stack; bold line: final stack reconstruction. x denotes a position
within the image spatial support and t a gray level.

(a) original image (b) classical erosion (c) classical dilation

(d) viscous erosion (e) viscous dilation

Fig. 4. Classical (b,c) vs viscous (d,e) erosion and dilation of the original image (a)
using the function t �→ r(t) = 3 ∗ (t/256)3

envelope of the volume formed by the sets (Fig. 3). For example, the classical
viscous dilation and viscous erosion are defined respectively as [16]:

D{r}(f) =
∨

t

t.DBr(t)(χt(f)) (10)

E{r}(f) =
∨

t

t.EBr(t)(χt(f)) (11)

where DBr(t) and EBr(t) denote a classical dilation and erosion, respectively, with
a disk B of radius r(t), a function of the gray level t.
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Note that these two morphological operators do not define an adjunction in
the general case [10].

As an example, Figure 4 shows an illustration of a classical erosion acting on
a 8-bit image (with M = 256, the upper bound of the gray tone range) using a
disk or radius 3 vs. a viscous erosion with the function t �→ r(t) = 3 ∗ (t/256)3.
The upper envelope reconstruction is used since the family of viscous erosions
{EBr(t)}t is not decreasing.

Looking at the resulting images with the choice of the function r, points of
highest luminance are strongly transformed while points of lowest luminance are
left unchanged.

3.3 Adaptive Viscous Filters

Following the viscous notion, GAN-based viscous morphological filters can be
defined in varying the homogeneity tolerance value m� of the adaptive dilation
or erosion.

From a mathematical point of view, the adaptive viscous dilation and erosion
are then defined respectively as:

Dh
{m�}(f) =

∨

t

t.Dh
m�(t)(χt(f)) (12)

Eh
{m�}(f) =

∨

t

t.Eh
m�(t)(χt(f)) (13)

where m�(t) is the varying homogeneity tolerance, a function of the gray level
t.

These two GAN-based transforms are increasing operators (Dh
m�(t) and Eh

m�(t)

are increasing for all t). Nevertheless, (Dh
{m�}, E

h
{m�}) does not define an ad-

junction in the general case. To get this morphological duality, it is necessary to
introduce upper and lower transforms (Fig. 3) in the following way [10]:

D
h
{m�}(f) =

∨

t

t.

⎛

⎝
∨

s≥t

Dh
m�(s)(χs(f))

⎞

⎠ (14)

Dh
{m�}(f) =

∨

t

t.

⎛

⎝
∧

s≤t

Dh
m�(s)(χs(f))

⎞

⎠ (15)

E
h
{m�}(f) =

∨

t

t.

⎛

⎝
∨

s≥t

Eh
m�(s)(χs(f))

⎞

⎠ (16)

Eh
{m�}(f) =

∨

t

t.

⎛

⎝
∧

s≤t

Eh
m�(s)(χs(f))

⎞

⎠ (17)

The operators D
h
{m�} and Dh

{m�} (resp. E
h
{m�} and Eh

{m�}) coincide if and only

if the family t �→ Dh
m�(t) (resp. t �→ Eh

m�(t)) is decreasing. Since the couples
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(Dh
m�(t), E

h
m�(t)) define an adjunction for all t, the following products form a

GAN-based viscous opening and closing, respectively:

Oh
{m�}(f) = D

h
{m�} ◦ Eh

{m�}(f) (18)

Ch
{m�}(f) = Eh

{m�}(f) ◦D
h
{m�} (19)

As proposed in the classical case, an illustration (Fig. 5) of GAN-based vis-
cous filtering is shown and compared with the GAN-based classical filtering. The
filtering process is applied with the weak GANs using the luminance criterion
(h = f) within the CLIP framework. The homogeneity tolerance function for a
8-bit image (M = 256) is defined as t �→ m(t) = 30 ∗ (1− t/256)3. As previously
mentionned, the results first show that images are not damaged by blur using
these GAN-based filters. In addition, regarding the adaptive viscous filters, the
image regions are naturally transformed in accordance with the decreasing func-
tion t �→ m(t). Points with low luminance are largely transformed compared to
those with high luminance. Therefore, the combination of these two character-
istics (no blurring effects and controled filtering activity) provide efficient filters
for image processing where structures of interest have a specific intensity range.

(a) original image (b) GAN erosion (c) GAN viscous ero-
sion

(d) GAN dilation (e) GAN viscous dila-
tion

Fig. 5. GAN-based classical (b,d) vs viscous (c,e) dilation and erosion of the original
image (a). The viscous filtering is performed with the function t �→ m(t) = 30 ∗ (1 −
t/256)3.
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4 Application Examples

4.1 Image Background Subtraction

The first application example concerns the processing of a 8-bit image (M = 256)
coming from an in-situ cristallisation process of citric acids [17]. The specialists
want to get both the size and shape distributions of the different cristals. Then,
the cristals need to be segmented and characterized individually. For the segmen-
tation step, a preprocessing is needed such as proposed in [17]. Indeed, the image
background is not homogeneous. In the present paper, a background subtraction
process (Fig. 6) is proposed by applying a GAN-based viscous morphological fil-
tering using the function: t �→ m(t) = 30∗ (t/256)3. This function is used so that
the filter mainly acts on image points of high intensity. The image points of low
intensity are left unchanged.

(a) original image (b) GAN viscous dilation

Fig. 6. Background subtraction on a cristal image using the GAN-based viscous
dilation

The result shows that the image background is well processed without dam-
aging the size or shape of the cristals. Indeed, the filtering activity is specifically
focused on image structures of high luminance, i.e. the background. In this way,
the cristals could be more easily segmented and then characterized.

4.2 Image Enhancement

Another application of image contrast enhancement is also proposed in Figure 7.
A 8-bit image (M = 256) of retinal vessels is filtered with a GAN-based viscous
toggle filter using the function t �→ m(t) = 90 ∗ (t/256)5 in order to enhance the
image. From a mathematical point of view, this toggle filter is defined as:

κh
{m�}(f)(x) =

{
Dh

{m�}(f)(x) if Dh
{m�}(f)(x)− f(x) < f(x)− Eh

{m�}(f)(x)

Eh
{m�}(f)(x) otherwise (20)

where m�(t) = m�(M − t).
This figure shows that retinal vessels (high luminance) become brighter and

background regions (low luminance) become darker. So, the vessels are strongly
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(a) original image (b) GAN viscous toggle fil-
tering

Fig. 7. Image enhancement of human retinal vessels using the GAN-based viscous
toggle filter

highlighted compared to the background. In addition, this filter enables to getmore
homogeneous vessels due to the filtering activity (homogeneity tolerance values).
The resulting image is consequently enhanced and suitable for postprocessing.

5 Conclusion

In this paper, adaptive viscous morphology have been introduced in the context
of the General Adaptive Neighborhood Image Processing (GANIP) approach.
The resulting morphological filters show a high performance by processing an
image while preserving its regions without damaging its transitions. The com-
bination of GAN-based filtering and viscous morphology is particularly efficient
in the sense that the filtering is adaptive to the image spatial structures and
its activity is controled according to the image gray-tones. The theoretical ad-
vantages of these adaptive operators have been practically highlighted on real
application examples for background subtraction of cristal images and enhance-
ment of retinal vessel images. In addition, the computational cost of the GAN-
based morphological filters is relatively low. Indeed, the computation time of the
GAN-based morphological filters is about 20 seconds for a 256×256 image using
a Pentium IV (3 GHz/2 GB RAM) and the Matlab software.

Currently, the authors are working on the Logarithmic Adaptive Neighbor-
hood Image Processing (LANIP) [18] framework for viscous morphological fil-
tering.
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maluengo@die.upm.es

Abstract. The V1-region of the primary visual cortex performs contour
integration in the early mammalian visual system. The geometry of the
neural connections of the V1-region has been mathematically described
as a roto-translational continuous space. In this work, a bio-inspired
methodology for processing 2D images based on the V1-region neuro-
geometrical structure is proposed. The input image is first transformed
into the 3D roto-translational space. Then spatially-variant mathemat-
ical morphology operators using helicoidal structuring elements are ap-
plied in order to mimic the neural processing in the primary visual cortex.
Finally, the output is projected back to the 2D cartesian space. Some il-
lustrative straightforward applications of this methodology are presented
for contour-completion and object-occlusion 2D problems.

1 Introduction

One of the most fascinating properties of the mammalian visual system is its
capability for binding and segmenting incomplete patterns as illusory contours,
i.e. the famous Kanizsa triangle (see Fig. 1). The primary visual cortex is said to
play a fundamental role in the binding operation. Thus, replicating this behavior
can be extremely useful for image analysis methods [1,2,3]. Other bio-inspired
computer vision systems that mimic the first stages of the visual pathways -
computer retinas- have been used for edge detection [4] or motion estimation
[5]. Concerning the primary visual cortex, previous works of [6,7] have proposed
mathematical continuous models for the neural architecture of this region. Com-
puter simulations of neural activity using these models allow to extract illusory
contours in the same way that vision does. Furthermore, image processing filter-
ing techniques based on diffusion processes on this neural mathematical space
have been proposed [8]. The present article is inspired by the previous mathemat-
ical models of the functional architecture of the V1-region in the primary visual
cortex. The main idea is to propose a methodology that transforms a 2D image
into the 3D roto-translational space and process the data in this 3D space using
spatially-variant mathematical morphology. The neural connections are given
by helicoidal structuring elements, and neuron synchronization - that produces
the contour integration property - is replicated with a morphological filtering.
This methodology can be used to effectively approach contour-completion or
shape-occlusion image processing problems.
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2 Background

2.1 The Primary Visual Cortex and Its Geometrical Structure

The visual pathway starts in the photoreceptors of the retina, a layer of cells at
the back of the eye. The information leaves the eye by way of the optic nerve
and arrives at the primary visual cortex, at the back of the brain. The receptive
fields of the neurons in the early visual cortex (V1) characterize the response to
different light patterns coming from the visual field. This response is frequently
selective to oriented stimulus in a small region [9]. Horizontal connections be-
tween cells that join regions corresponding to receptive fields not overlapped in
the visual field, are in charge of facilitating the contour integration. An important
characteristic of the cortical design of V1 is the arrangement of its composing
cells (neurons) into orientation columns. One orientation column corresponds to
one point in the visual field and the coordinate along the column corresponds
to the orientation angle (see Fig. 2). The role of this arrangement is to facili-
tate communication between cells that have similar orientation preferences but
that are located in different visual field positions. There are several anatom-
ical and neurophysiological studies in cats, monkeys, etc. that show the long
range connections between cells of similar orientation preference. Furthermore,
in [10], it has been shown that these connections extend for a longer distance
along the ”good continuation” and less in the orthogonal direction. This idea of
perceptual binding has been previously described by the Gestalt’s psychologists
in the 50’s [11] and has been formalized as the associative field [12](see Fig. 1),
suggesting that a discontinued visual line will tend to be perceptually grouped
together if the different segments are aligned or follow a smooth curve. In [6],
a geometrical model of the column arrangement is proposed. The orientation
columns are considered as vertical fibres distributed over a retinotopic array.
Each point of the retinal field r = (x, y) ∈ 12 is associated with the fibration
s = dx

dy ∈ S1. Thus, the geometrical space associated with the cell column ar-
rangement is (12, S1), the roto-translational group [7]. In this organization, the
arrangement of neighbouring fibers ensures all orientations in nearby columns
are in a position to interact between them. When a signal arrives at the retino-
topic field, it passes to the visual cortex and the signal is converted into the
V1-column model: 12 → (12, S1). Afterwards, each cell acts as a single proces-
sor that interacts with its cell neighborhood regarding its geometrical context.

Fig. 1. (left) Kanizsa’s triangle. (right) Although both images have similar statistic
properties, we ”see” a continuous line on the left image.
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Fig. 2. From left to right. (1)Relationship between orientation columns and long range
horizontal connections revealed in optical imaging of tree shrew V1 region combined
with injection of biocytin tracer. Different colors represent the different orientation
columns. The white dots represent the region where an anatomical tracer is injected.
The black dots represent axonal terminals colored by this process. Long range inter-
actions tend to concentrate in cortical regions that share similar orientation speci-
ficity with the injection site. Shorter range interactions span other orientations, the
more orthogonal with the initial orientation, the shorter the interaction [extracted
from [10]]. (2) Schematic representation of column organization with longer horizontal
inter-columnar connections between iso-orientation cells. (3) Arrangement of preferred
orientations for columns in the (
2, S1) space. Cells in a plane with s = K have the
same preferred orientation. (4) Not all the arbitrary paths in the 3D volume of (
2, S1)
correspond to a continuous line in the retinotopic field (
2) [adapted from [6]].

When neurons process signals in such a space, contour integration based on the
concept of associative field emerges in a simple natural way.

2.2 Mathematical Morphology Basics

In the framework of digital grids, a binary image can be represented by a func-
tion f : Df → T , where Df is a subset of Z2 and T = {0, 1} is an ordered set.
Let B be a subset of Z2 and λ ∈ N a scaling factor. λB is called structuring ele-
ment (shape probe) B of size λ. The basic morphological operators are dilation
(δB(f(x)) = supy∈B{f(x − y)}) and erosion (εB(f(x)) = inf−y∈B{f(x − y)}).
A dilation by a structuring element λB can by obtained by iteration of the
unit structuring element B, hence δλB(f) = δ(λ−1)BδB(f) The two elementary
operations of erosion and dilation composed together give opening (γλB(f) =
δλB[ελB(f)]) and closing (ϕλB(f) = ελB [δλB(f)]), that filter out light and dark
structures from the images according to a predefined size λ and shape criterion
B. Although image processing applications using morphological operators com-
monly use euclidean-based structuring elements (disk or sphere), recent works
propose using different structuring elements in the same image, depending on
its contextual or geometric information [13,14,15,16]. In [17], we find a very in-
teresting work that deals with adaptive morphology for edge linking. Generally
speaking, the structuring element fixes the metric in the image space.

3 Mimicking Neural Processing with Morphological
Operators in the Neurogeometrical Space

0The processing chain of our model works as follows (see Fig. 3): first the input
image is lifted into the roto-translational space. Then morphologicaloperators
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Fig. 3. Processing workflow

mimicking the neural cell-to-cell interactions are performed according to position-
dependant structuring elements. The structuring elements are embedded in the
(�2, S1) space. Finally the image is projected back to the image space. This
processing can be seen as a filtering process and its properties depend on the
morphological operators performed in the roto-translational space.

3.1 Lifting Up Images: From (�2) to (�2, S1)

In the visual system, the signal acquired by photoreceptors in the retina is trans-
formed into an active pattern in the neural hypercolumn structure of the visual
cortex. Similarly, in our system, the signal passes from the image space f ∈ (�2)
to the roto-translational space f ′ ∈ (�2, S1). This procedure can easily be done by
means of morphological linear openings: f ′(x, y, s) = γB(s)(f(x, y)), where B(s)
corresponds to a line structuring element with a rotation angle of s (see Fig. 4).
Note that the process of lifting is inherently imperfect (due to the discretization of
the angle) and its precision should be carefully evaluated in future research [18].
For simplicity, in the examples showed in this article, a nearest neighbor approx-
imation has been used to calculate the segments rotated at different angles.

Fig. 4. A simple discrete configuration of (�2, S1) is illustrated. The S1 space is de-
composed into 4 possible orientations, {s0, s1, s2, s3}, associated respectively to a ro-
tation angle of {−45, 0, 45, 90} degrees. Lifted image is f ′(x, y, s) = γB(s)(f(x, y)),
s = {s0, s1, s2, s3}. On the left, the structuring elements B(s) associated to each level
of S1.

3.2 Structuring Elements in (�2, S1)

The structuring element (SE) associated with a position in the visual field r =
(x, y) and an orientation s models the connections of the neuron at position
p = (r, s) ∈ (�2, S1). These connections represent the possibilities allowed for
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a ”good continuation” from p (see Fig. 1). Thus, in each level corresponding
to an angle s, there exists a privileged direction associated with the horizontal
connections (see Fig. 2). Two points a(r, s) and b(r′, s) can be connected if r
and r′ are in the same straight line of orientation s. Two points a(r, s) and
b(r′, s + Δs), that are not collinear, can be connected if the admitted ”good
continuation” allows a turn of at least Δs. Consequently, the SE associated
with the position p is a partial helicoid whose rotation axis is perpendicular to
the plane �2. The helicoid rotation angle and its radius are fixed by the turn
admitted in the associative field. Globally, the connectivity of the (�2, S1) space
(equivalent to the neural wiring) is given by an SE which is position-invariant
for the SE’s defined over a plane s = K. Let St(r,s) be the SE in the position
p(r, s); so ∀r′ ∈ �2, St(r′,s) = St(r,s). The SE associated with an orientation s is
denoted Sts. As a result of the arrangement of orientation columns, Sts+Δs = Sts
rotated Δs. Therefore the SE is position-dependent and it turns when changing
the s coordinate (see Fig. 5). Note also that the support of the (�2, S1) space is
periodic along the s coordinate (the planes s = min and s = max are neighbors).
All of the paths in the (�2, S1) space produced by the lift of a 2D image whose
content is a continuous connected component, only correspond to a subset of all
the possible connected paths with euclidian metric in the 3D space of (�2, S1).
Minimal paths, calculated on the distance function obtained with the metric
fixed by the proposed SE’s, are equivalent to geodesics in the (12, S1) space.

Fig. 5. (top-left) Example of structuring element associated to the space (�2, S1),S1 =
{s0, s1, s2, s3} and its projection on the associative field. The ”good continuation”
admits a turn of 45 degrees. (bottom-left) The specific SE’s in function of the plane
{s0, s1, s2, s3} where they are located; in red the central point and in blue its neighbors.
(right) Labeling of connected elements using the proposed SE’s on the lifted image
displayed in the previous figure. Results are projected back to �2.

3.3 Morphological Neural Processing

The visual cortex is represented by the lattice points and its functionality mod-
eled with a type of simple neural network. Instead of starting from the classical
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approach where the state of each neuron is calculated in function of its entries,
i.e. ai(t + 1) = f(

∑
j aj(t)wji + θi), we chose a dual approach: what is the influ-

ence of one neuron on its neighborhood? In the simplest binary mode a neuron
propagates an excitatory signal by turning on all the neurons that are connected
to it (we denote Bi neurons connected with the axon of neuron i). By analogy, a
neuron propagates an inhibitory signal to its neighborhood by turning them off.
So the equations that describe the activity {0, 1} of a neuron ai over time are:
ai(t + 1) =

∨
j/i∈Bj

aj(t), and ai(t + 1) =
∧

j/i∈Bj
aj(t). The

∨
(max) equa-

tion describes the behavior of an excitatory signal propagation and the
∧

(min)
equation the inhibitory signal propagation. Each neuron is a pixel and ,in morpho-
logical terms, it is connected to its neighbors that correspond to the structuring
element associated with that pixel. Excitation and inhibition are also interpreted
in terms of morphology as dilation and erosion (see Fig. 6). Therefore the struc-
turing elements define the neural hardware of our system. There is a particularly
simple case in these terms,when the cable (ie. a neural fiber) between two cells is
bidirectional and therefore cells affected by cell i all affect cell i. These kinds of sys-
tems are associated with the symmetric and invariant with respect to translation
structuring elements, including segments, squares and hexagons. The simplified
equations for a system with these structuring elements are: ai(t+1) =

∨
j∈Bi

aj(t),
and ai(t+1) =

∧
j∈Bi

aj(t). Therefore, neural wires are completely defined by the
structuring elements associated to each position. The evaluation function of each
neuron is simplified to a max/min operation, in morphological terms, dilation and
erosion (note the iterative and synchronous character of the proposed model is a
simplified appoproach, opposed to the asyncronous firing and synchronization of
biological neurons in the brain). The mathematical function proposed to per-
form the contour integration is a closing. A morphological closing is composed
by a dilation and its dual erosion (ϕB(f) = εB[δB(f)]). If the image represents
a topographic surface, a morphological closing ϕ fills channels and lakes and
completes partially gulfs. If we interpret the closing sequentially over time in
the visual cortex lattice, the dilation models the propagation of an excitatory
signal from a single neuron to its neighbors. In case two near neurons are simul-
taneously activated, a nexus between those two neurons will be created - the
perceptive illusion of a line integrated between two points. When an isolated
neuron is activated, the sequence of dilations and erosions (=closing) will cause

Fig. 6. From left to right: (1) Schematic representation of helicoidal structuring element
(similar to DNA double helix organization). (2) Discrete SE with collinear size of 5
pixels. (3) Volume rendering and (4) cross-sections of the wavefront resulting in five
iterative dilations of the SE by itself.
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the neuron to return to its initial state. The output of the closing operator can
be considered as the stable response of the propagation of an excitatory signal
(See Fig. 7). Properties of closings can be interpreted as a high level behavior
of visual perception. Increasing: when vision performs the contour integration,
it creates contours but it does not make them disappear. Idempotent : regard-
less of how long we look at an object, this is not going to cause it to change
its shape. Translation invariance: this property is generally lost in the (�2, S1)
space defined with helicoidal structuring elements, as happens usually in the
spatially-variant morphological framework. However, when the translations are
made in the (�2) space before lifting up the image to (�2, S1), the output of
the closing operator remains invariant. That means that the translation invari-
ance works only for the subset of translations in (�2, S1) generated by lifting up
objects moved in (�2), corresponding to objects moving in the visual field.

Fig. 7. (top) Illustration of closing properties in a 2D example. Neurons which are next
to each other, ”synchronize” and fill the gap between themselves according with the
utilized structuring element (a square in this example). (bottom) Closing example in
(�2, S1) space, where S1 = {s0, s1, s2, s3} and the structuring elements are those of
Fig. 5. A pixel binding the gap between two objects with different orientations is added
after closing.

3.4 Projecting Back to the Image Space (�2)

In order to come back to the initial image space after performing the morpho-
logical closing in the (�2, S1) space, all the planes at different s levels should
be combined, i.e. f ′′(x, y) =

∨
∀s∈S f ′(x, y, s). However, for the sake of analysis

purposes, we may be interested in maintaining the roto-translation representa-
tion. For instance, it would allow us to have two different connected components
for two orthogonal crossing lines. In fact, it is this kind of representation that is
provided by the V1-region to other brain regions.

4 Application Examples

Hereafter, we present three examples that illustrate the potential applications
of transforming and processing 2D images in the roto-translational space. The
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Fig. 8. Example of basic helicoidal SE in a plane S=s. The preferred orientation in
this plane is fixed by the dotted axis. The SE is characterized by its size along the
preferred (collinear) orientation and the Δs corresponding to the differences of favored
orientations between two consecutive planes s and s+1. Scaled SE can by obtained by
dilating the basic helicoid SE by itself. A projection of the pixels at different orientations
belonging to this SE is shown in the lowest plane.

Fig. 9. Distance calculation on tangled line. (a) Input image; the red box is the be-
ginning of the line. (b) Input image lifted into the roto-translation space. Image size
is (348, 771, 90), the size of the line structuring element (SE) used to lift the image is
11 pixels and ΔS between the preferred orientations of two planes at s and s + 1 is
180/90 = 2 degrees. (c) Geodesic distance on (b), starting from the red-box location
(two different 3D views with the 2D projection in the lowest plane). Color code goes
from dark blue (dist= 0) to red (dist= max). (d) Projection of (c) into the 2D image
space.

unit helicoid SE used in the experiments is explained in Fig. 8. In the first
example (Fig. 9), the geodesic distance function in (�2, S1) is used to measure
the length of a continuous tangled line in 2D. Distance function on the cross-
roads is correctly computed when the angle formed by the two crossing lines is
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Fig. 10. Perceptual binding of crossing dotted lines. (a) Input image. (b) Input image
lifted into the roto-translation space (volume renderings and projection). Image size is
(98, 100, 45), the size of the line SE used to lift the image is 5 pixels and ΔS between
the preferred orientations of two planes at s and s + 1 is 180/45 = 4 degrees (2
different 3D views of the image). (c) Dilation of (b) by a helicoidal SE formed by
the dilation of a basic SE of collinear size of 7 pixels by itself. (d) Erosion of (c),
therefore (d) = ϕ(b) = ε[δ(b)], and labeling of connected components (parallel lines
were assigned the same label value). Note that all the original dotted lines are now
separated connected components. (e) Projection of (d) into the 2D image space (only
one color is showed in line crossings).
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Fig. 11. Main arteries extraction on coronary angiography. (a) Input image. (b) Top-
hat filtering of (a). (c) Grey tone homotopic thinning of (b). (d) Area opening of (c) .
(e) Threshold on (d); red-boxes are markers for branch reconstruction. (f) Image (e)
lifted into the roto-translation space; markers are represented as small thin vertical
cilinders. Image size is (400, 570, 90), the size of the line SE used to lift the image is
7 pixels and ΔS between the preferred orientations of two planes at s and s + 1 is
180/90 = 2 degrees. (g) Geodesic morphological reconstruction of (f) from markers,
(f) has been previously dilated two times by a basic helicoidal SE with a collinear size
of 14 pixels. (h,i) Reconstructed branches projected to image space and superposed to
(e) and (a).
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bigger than the turning allowed by the helicoidal structuring element, that is,
the connectivity rule in (�2, S1). The second (Fig. 10) illustrates with a syn-
thetic image how contour integration and disambiguation of occluded objects
can be approached by the closing operator in the roto-translation space. Ob-
ject labeling directly in (�2, S1) allows to easily separate superposed objects in
(�2). The last (Fig. 11) shows a short processing pipeline that identifies the two
main vessel trees in a coronary angiography using a reconstruction by dilation
operator. Note that, in the presented examples, several SE’s corresponding to
consecutive orientations are effetively the same due to the discretization of the
angle using a nearest neighbour approximation. That means that one pixel at a
certain positions migth have been lifted in several consecutive orientation planes
of the space (�2, S1). The question of how to use segments rotated by small
angles in a discrete grid is limeted by the segment length and should be deeply
explored by means of subpixel accuracy methods.

5 Discussion

We have presented an original bio-inspired image processing methodology that
mimics the functions of the early mammalian visual system by transforming a
2D image into a 3D roto-translational space and applying morphological op-
erators in this space. The neural wiring architecture of the V1-area of the vi-
sual cortex is replicated by helicoidal spatially-dependent structuring elements
and the contour integration property is performed as a morphological filtering.
The proposed methodology allows to efficiently approach contour-completion
and object-occlusion image processing problems with very reduced mathemat-
ical machinery. Several potential applications of this framework can be easily
envisaged, i.e. road tracking from satellite imaging or vessel extraction from
medical images acquired with projective techniques (i.e. X-ray). The goal of this
article is to propose and illustrate the use morphological operators in the roto-
translational space. However, future developments should deeply explore the use
of more complex morphological operators, different curvature-adapted helicoidal
structuring elements and the expansion for grey-level image processing. Overall,
this methodology can be used not only for mimicking the binding property of the
visual system, but it can also provide a bio-inspired framework for approaching
other image analysis problems.
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Joël van Neerbos1, Laurent Najman2, and Michael H.F. Wilkinson1

1Johann Bernoulli Institute, University of Groningen
joelvneerbos@gmail.com, m.h.f.wilkinson@rug.nl
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Abstract. In this paper we present a parallel algorithm for the topo-
logical watershed, suitable for a shared memory parallel architecture. On
a 24-core machine an average speed-up of about 11 was obtained. The
method opens up possibilities for segmentation of gigapixel images such
as found in remote sensing routinely.

1 Introduction

The watershed transformation is a popular tool for segmenting grey-scale images,
introduced by S. Beucher and C. Lantuéjoul [2]. It can be used to segment an im-
age into regions with similar grey values. Due to ever increasing image sizes, sev-
eral parallel algorithms have become available for different watershed paradigms
[9]. In contrast, no parallel algorithms for the topological watershed [1,3] are avail-
able. In the topological watershed framework, some of the grey-scale information
from the original image is preserved, which may be useful for further processing,
such as reconnection of corrupted contours. Also, this grey-scale information can
be used to determine the significance of watershed lines [7].

In this paper we present a parallel algorithm for the topological watershed on
shared-memory parallel machines. The algorithm is based on parallelizing each
of the stages of the sequential algorithm [4], and including a multi-pass stage
such as used in most parallel algorithms for the regular watershed [9].

We will first describe the topological watershed briefly, after which we describe
the parallel algorithm. Timing results are presented in Section 4, followed by the
conclusions.

2 Topological Watersheds

The topological watershed [1,3] was introduced to include grey level information
in the end result, in such a way that the significance of each watershed line is
preserved. Specifically, the topological watershed preserves the pass values [1,8],
i.e. the highest altitude of the lowest path between any two minima.

The pass value of two points in the image is related to a concept of separation
of the points. The points p and q are said to be k-separated if the following
conditions apply:
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(a) (b)

Fig. 1. Separation. (a) a digital grey-scale image; (b) lowest paths between three pairs
of pixels.

– There exists a path from p to q with maximum value k − 1
– There exists no path from p to q with a maximum value lower than k − 1
– Both p and q have a value lower than k − 1

A path that satisfies the first two conditions for some k is called a lowest path in
this paper. If a lowest path from p to q contains no value that is higher than both
p and q, then p and q are not separated, but are linked. Separation is illustrated
in Fig. 1. The top path in Fig. 1(b) connects two 5-separated pixels. The left
path connects pixels that are not separated (but linked). The right path connects
two 3-separated pixels.

In contrast to most watershed algorithms, topological watershed does not
produce a binary image, but a grey-scale image. Intuitively, grey values of the
pixels are obtained as follows:

– All pixels in a basin have the same grey value, namely the value of the
minimum from the input image that is contained within the basin.

– The values of the pixels on the watershed lines are as low as possible, without
changing the separation relations between the basins. If two pixels from
different basins were k-separated in the input image, they should still be
k-separated in the topological watershed of the image.

The generic algorithm for computing a topological watershed of an image F
proceeds by iteratively lowering some point satisfying a condition of destructibil-
ity until there is no more such points. More precisely, a point x is said to be
W-destructible for F (where W stands for Watershed) if its altitude can be low-
ered by one without changing the number of connected components of the level
set F [k] = {p ∈ E; F (p) < k}, with k = F (x). A map G is called a W-thinning
of F if it may be obtained from F by iteratively selecting a W-destructible point
and lowering it by one. A topological watershed of F is a W-thinning of F which
contains no W-destructible point.

Both the watershed and a topological watershed of the image from Fig. 1(a)
are shown in Fig. 2. Fig. 2(c) shows that the separated pixel pairs from Figure
1(b) are still respectively 5-separated and 3-separated. The third pair is not
shown as it was not separated.



250 J. van Neerbos, L. Najman, and M.H.F. Wilkinson

(a) (b) (c)

Fig. 2. Watershed and topological watershed: (a) watershed of Fig. 1(a); (b) topological
watershed of Fig. 1(a); (c) lowest paths between the separated pairs of pixels from
Fig. 1(b)

3 Parallel Implementation

To obtain a fast algorithm, we need to lower a W-destructible point not by 1
as in the generic algorithm, but as much as possible. Following the theoretical
results in [4], the lowest value to which a point can be lowered can be computed
from the Min-tree C(F ). This Min-tree, or component tree, can be obtained using
the parallel algorithm from [11]. Furthermore, the Min-tree allows one to easily
check if two points are separated. More precisely, the separation is related to the
altitude of the Lowest Common Ancestor (LCA) between two nodes of C(F ).
For efficiency, we need to perform preprocessing so that the LCA can be found
in constant time. This is done using the algorithm in [10]. After this we need
to lower all W-destructible pixels in the image to the value of their watershed
basin. A pixel is W-destructible if its value can be lowered without linking two
local minima into a single basin.

A key element of the algorithm is the function W-Destructible, which de-
termines to which grey level a pixel can be lowered in the output. This uses the
LCA value of neighbouring components of a the Min-tree. Because the function
W-Destructible is a local function, we can parallelize the topological watershed
algorithm for n threads simply by dividing the image into n tiles and assigning
one tile to each thread. An example division for a 2D image is illustrated in
Figure 3(a) and a division for a 3D volume is shown in Figure 3(d).

Problems arise when examining border pixels, because their neighbours in
other tiles can be changed at any time by their assigned threads, producing
incorrect results. We can solve these problems by letting each thread process
its tile in different stages, and synchronizing all threads after each stage. Each
tile is divided into sub-tiles, and a different sub-tile is processed in each stage.
The tiles are divided in such a way that no two adjacent sub-tiles need to be
processed at the same time.

Whether or not two sub-tiles are adjacent depends on the connectivity, as
shown in Fig. 3. Fig. 3(a) shows an image divided into 12 tiles for 12 threads.
With 4-connectivity, each tile should be divided into 2 sub-tiles, as shown in
Fig. 3(b). The dark sub-tiles represent the sub-tiles that are processed in the first
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 3. Tiling: (a) 2D image; (b) tiling for 4-connectivity; (c) same for 8-connectivity;
(d) 3D volume; (e) tiling for 6-connectivity; (f) same for 18-connectivity and (g) 26-
connectivity;

stage. Note that no two dark sub-tiles are neighbours of each other. However,
they would be neighbours with 8-connectivity, so 4 sub-tiles are used for 8-
connectivity, as shown in Fig. 3(c). Fig. 3(d) shows a 3D volume divided into
8 tiles for 8 threads. For 6-, 18- and 26-connectivity, 2, 4 and 8 sub-tiles are
needed, respectively. This is illustrated in Figures Fig. 3(e), (f) and (g). Again,
the dark sub-tiles represent the sub-tiles to be processed in the first stage.

A single application of the multi-stage algorithm suggested above is however
insufficient. For example, a certain pixel x may need to be lowered to the value
of some local minimum y to obtain a topological watershed of the input image.
However, if pixels x and y are part of different sub-tiles, it is possible that pixel
x will not get the value of y the first time its sub-tile is processed. Multiple
iterations may be needed to obtain the desired result, as in the case of regular
watersheds [9].

The sequential topological watershed algorithm [4] processes all pixels in an
order that is determined by a priority queue, built as preprocessing stage. In the
parallel implementation, this is done when the pixels are processed for the first
time, but visiting each pixel in every later iteration is not necessary. Instead,
we keep track of the pixels that have been changed, and only add those pixels
to the priority queue that are adjacent to pixels in other sub-tiles that changed
recently. For this purpose we will use the binary map pxChanged, that will store
for each pixel whether or not its value has changed recently. The use of this map
is illustrated in Fig. 4.

The parallel algorithm is distributed over two procedures: the procedure
InitializeQueue, which corresponds to the first part of the sequential algo-
rithm, and the procedure TopologicalWatershedTile. , which corresponds to
the second part. Both procedures are given below.
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Fig. 4. An example of a pxChanged map in an iteration after the first. The white
pixels in the four adjacent sub-tiles are pixels that are marked as ‘changed’ in the
pxChanged map. The pixels in the current sub tile that are adjacent to such a changed
pixel, marked with x in this figure, are added to the priority queue of the sequential
algorithm.

As its input, the InitializeQueue procedure needs the image F , the min-tree
C(F ) and the corresponding component map Ψ that associates to each point the
node it belongs to in C(F ). Additionally, it also needs the sub-tile T in which it
should operate, and the current state of the pxChanged map. If the pixel turns
out to be W-destructible, it is added to the priority queue with its priority set to
the level to which the pixel may be lowered. Also, this new level is stored in the
map K and a pointer to the component to which the pixel may be added is stored
in the map H . The pixel itself is not lowered yet. Thus, the output consists of
the priority queue L, the maps K and H , and the updated pxChanged map. The
queue L and the maps K and H are all local, but the map pxChanged is global,
and may be read and modified by other threads while this procedure is being
executed. However, each thread will only write in the part of the pxChanged map
that corresponds to its current sub-tile, and will only read in adjacent sub-tiles
that are processed in a different stage, so no conflicts emerge.

The algorithm starts by initializing the priority queue L in line 01. It then
proceeds by setting the pxChanged map to false for every pixel in sub-tile T .
If the procedure is run during the first iteration, then lines 04 to 08 are executed.
In the first iteration, L is initialized exactly like in the original sequential algo-
rithm from [4], apart from the fact that only the pixels within T are processed
instead of all pixels in F .

If the procedure is called after the first iteration, lines 09 to 18 are executed.
In these lines the algorithm checks all border pixels for changed neighbours, and
tests the pixels for W-destructibility if any changed neighbours are found. If a
pixel turns out to be W-destructible, it is added to the priority queue, and the
maps K and H are updated as before.

The second procedure, TopologicalWatershedTile, needs the same input as
the procedure InitializeQueue. The output consists of the updated image F ,
the updated pxChanged map, and the binary variable anyChanges. This variable
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Algorithm 1. Queue Initialization
Procedure InitializeQueue (Input F, C(F ), Ψ , T , pxChanged;
Output L, K, H , pxChanged)
01. For k From kmin To kmax − 1 Do Lk ← ∅
02. For All pixels p ∈ T Do pxChanged[p] ← false

03. If first iteration Then
04. For All pixels p ∈ T Do
05. c ← W-Destructible(F, p, C(F ), Ψ)
06. If c �= ∅ Then
07. i ← level of c; Li ← Li ∪ {p}
08. K(p) ← i; H(p) ← pointer to c
09. Else
10. For All border pixels p of T Do
11. addP ← false

12. For All neighbours q of p Do
13. If pxChanged[q] = true Then addP ← true

14. If addP = true Then
15. c ← W-Destructible(F, p, C(F ), Ψ)
16. If c �= ∅ Then
17. i ← level of c; Li ← Li ∪ {p}
18. K(p) ← i; H(p) ← pointer to c

anyChanges is used to quickly determine if any changes have occurred in the
sub-tile during the execution of this procedure.

The procedure TopologicalWatershedTile starts by initializing the value of
anyChanges. The function call on line 02 produces an initialized priority queue
L, as well as initialized maps K and H . The rest of the function is mostly the
same as the second part of the sequential algorithm. Line 08 is added, where
the pxChanged map and the anyChanges variable are updated. Also, a new
restriction is added to line 09, saying that only neighbours of p that lie within
the sub-tile T should be added to the priority queue.

With the procedure TopologicalWatershedTile implemented, we can now
define the main parallel algorithm: the procedure ParallelTW. As its input, it
needs the pixel mapping F , the Min tree C(F ) and the corresponding component
map Ψ . Because each thread will run this procedure independently, the global
map pxChanged needs to be provided to each thread as well. However, no initial
values need to be stored in it. Additionally, each thread is provided its identifier
id. The first thread gets id value 0, the second gets value 1 and so on. The
output of the procedure is the updated map F , that will contain the topological
watershed of the input image.

The algorithm keeps looping until a topological watershed of the input image
is found. In each iteration, the loop starting on line 02 is executed once by each
thread. Line 04 starts a loop that visits all stages. The number of stages is equal
to the number of sub-tiles assigned to each thread, as shown in Fig. 3. Line
05 then determines the location and dimensions of the sub-tile to be processed
by the current thread in the current stage. Some examples of the sub-tiles that



254 J. van Neerbos, L. Najman, and M.H.F. Wilkinson

Algorithm 2. The algorithm for a single tile
Procedure TopologicalWatershedTile (Input F, C(F ), Ψ , T , pxChanged;
Output F , pxChanged, anyChanges)
01. anyChanges ← false

02. InitializeQueue(F,C(F ), Ψ , T , pxChanged)
03. For k From kmin To kmax − 1 Do
04. While ∃p ∈ Lk Do
05. Lk = Lk\{p}
06. If K(p) = k Then
07. F (p) ← k; Ψ(p) ← H(p)
08. pxChanged[p] ← true; anyChanges ← true

09. For All neighbours q of p within T , with k < F (q) Do
10. c ← W-Destructible(F, q, C(F ), Ψ)
11. If c = ∅ Then K(q) ← ∞
12. Else
13. i ← level of c
14. If K(q) �= i Then
15. Li ← Li ∪ {q}; K(q) ← i
16. H(q) ← pointer to c

should be processed by each thread in the first stage are displayed in Fig. 3. In
the other stages the sub-tiles that are processed should have a similar pattern,
always assuring that no two adjacent sub-tiles are processed at the same time.

The topological watershed of the tile is then computed on line 06. If the
algorithm returns that there have been some changes, then this is stored for
the current thread in the (global) anyChangesThr array. After this, a standard
barrier function is called, that just waits until all threads have reached this
barrier and then lets all threads continue. This is done to ensure that no thread
will start with the next stage until all threads are done with the current one.

When all threads have finished processing all their sub-tiles, the first thread
will check if there have been any changes in any of the threads. If there have not
been any changes at all, a topological watershed has been found and all threads
will terminate. Otherwise, each thread will go to the next iteration by starting
again with the main loop from line 02.

3.1 Min-Tree Compression

Wilkinson et al. [11] described how to parallelize the computation of a min-tree.
Because the algorithm from [11] also deals with features of the min-tree that we
won’t use, its implementation is simplified somewhat. Basically, the sequential
algorithm is parallelized by letting multiple threads each compute the min-tree
of a different part of the input image, and merging the min-trees of the parts
afterwards. This algorithm uses a representation of the min-tree which is as
large as the image or volume itself, i.e. each pixel or voxel is a node, containing
a pointer to its parent. Only those nodes which have a parent with grey level
greater than its own are relevant to either filtering or the watershed computation.
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Algorithm 3. The parallel topological watershed algorithm
Procedure ParallelTW (Input F, C(F ), Ψ , pxChanged, id; Output F )
01. done ← false

02. While not done Do
03. anyChangesThr[id] ← false

04. For All stages s Do
05. T ← current sub-tile, based on id and s
06. TopologicalWatershedTile(F,C(F ), Ψ , T , pxChanged)
07. If anyChanges = true Then anyChangesThr[id] ← true

08. Barrier()
09. If id = 0 Then
10. anyChangesAtAll ← false

11. For All threads t Do
12. If anyChangesThr[t] = true Then
13. anyChangesAtAll ← true

14. Barrier()
15. If anyChangesAtAll = false Then done ← true

These nodes are called level roots. When the min-tree is built in parallel, not
all pixels of a given min-tree node directly point to the level root. This means
finding a level root is costly. Because the LCA algorithm inspects the level roots
often, we need to compress the tree in the sense that all parent pointers always
point to a level root, yielding what is referred to as a canonical representation
of the tree [6]. This reduces the computation time of the LCA algorithm. The
algorithm is shown in Alg. 4.

The procedure CompressTree needs a map F , a component tree C(F ) and a
corresponding component map Ψ as its input, as well as the identifier id of the
thread that executes it. The output of the procedure consists of the compressed
component tree and map. Function LevelRoot is used by CompressTree to ob-
tain the level roots, without ever writing in memory sections not assigned to the
current thread.

Algorithm 4. The Min-tree compression algorithm.
Function LevelRoot (Input c, F , C(F ))
01. If c = root(C(F )) ∨ F (c) �= F (parent(c)) Then
02. Return c
03. Else
04. Return LevelRoot(parent(c), C(F ), F )

Procedure CompressTree (Input F , C(F ), Ψ , id; Output C(F ), Ψ)
01. For All components c ∈ segment id of C(F ) Do
02. parent(c) ← LevelRoot(parent(c), F , C(F ))
03. For All pixels p ∈ segment id of F Do
04. Ψ(p) ← LevelRoot(Ψ(p), F , C(F ))
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4 Results

The implementation was tested on the following four different input images: (i) a
4000 × 4000 satellite image of an airfield, (ii) a 4000 × 4000 image in which each
pixel has a random grey value (iii) a 1000 × 1000 image with a spiral shaped
plateau, and (iv) an angiogram with dimensions 256 × 256 × 128. The spiral
image was chosen as a (near) worst-case scenario, in the same way as in [9].
The random noise image was another extreme case. The images are displayed in
Fig. 5.

All data sets were tested on a 4-socket, 6-core per sockets, AMD Opteron-
based machine with 128 GB of memory, using 1 to 24 threads, and various
connectivities (4 and 8 in 2D, 6, 18 and 26 in 3D). The memory is divided into
banks assigned equally to each processor sockets, but is accessible as shared
memory amongst all cores. Accessing memory of another processor socket does
incur a slight speed penalty. In all cases, each thread was initially assigned an
equal slice of the image or volume during the min-tree construction phase, as in
[11], and an equal tile as described in section in the remainder of the algorithm
as detailed above.

The previously existing sequential algorithm by Couprie et al. [4] and the
newly implemented parallel algorithm were run on the same machine with the
same input (the satellite image, with 4-connectivity using 1 thread) to compare
the two versions on a single core.

On the satellite image, we obtained a wall-clock time of 86.36 s at 4 connectiv-
ity, for a single thread. This dropped to 17.14 s at 8 threads, 9.71 s at 16 threads,
and 7.17 s at 24 threads. At 8 connectivity, all times rose, and the timings were
135.17 s at 1 thread, decreasing in a similar fashion to 12.04 s at 24 threads. The
noise image (at 4 connectivity) showed a very similar pattern, decreasing from
112.83 s on 1 thread to 11.95 s on 24 threads. The influence of connectivity was
most profound in the 3D case. At 6 connectivity, timings run from 73.18 s at 1
thread to 5.7 s at 24 threads. At 18 connectivity these figures rise to 214.71 s and
16.62 s respectively, increasing further to 359.22 s and 33.37 s at 26 connectivity.

As expected, the (smaller) spiral image behaved very differently, with timings
of 4.29 s on 1 thread, 1.71 s on 8, 1.58 s on 16, and increasing again at 24 threads

(a) (b) (c) (d)

Fig. 5. The four test input images. (a) shows a satellite image, (b) an image with
random pixel values, (c) an image with a spiral-shaped plateau and (d) an angiogram,
which is a 3D volume.
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Fig. 6. The overall behaviour of the algorithm: (a) The total speedups in the performed
tests, relative to the wall-clock time for a single thread with the same input; (b) the
contributions of the four stages to the total wall-clock time of the algorithm, when
computing the topological watershed for the satellite image with 4-connectivity.

(a) (b)

Fig. 7. The speedups of the four stages of the algorithm: (a) Top: min-tree construction,
bottom: tree compression; (b) Top: topological watershed computation, bottom: LCA
preprocessing

to 1.99 s. This is due to the increase in the number of iterations of the topological
watershed algorithm.

The overall behaviour is shown in Fig. 6. In Fig. 6(a) the diagonal line shows
the ideal speedup, the line at the bottom shows the speedup for the spiral image.
The line through the grey area shows the speedup for the satellite image with
4-connectivity, which is computed for each number of threads individually. The
grey area represents the results of the all tests, excluding for the spiral image.
The top and bottom of the grey area are defined as the average speedup of their
stage plus and minus the standard deviation, respectively.

In Fig. 6(b) we show the contributions of the four stages to the total wall-clock
time of the algorithm. The bottom layer represents the time consumed by the
construction of the min-tree, the second layer from the bottom represents the
time taken to compress the min-tree, the third layer shows the time it takes to
perform the preprocessing for the LCA, and finally the remaining layer on top
represents the time consumed by the final stage which produces the topological
watershed.
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The individual speedups are shown in Figure 7. The speedup of each stage is
represented by a black line and a grey area, where the line shows the speedup
of that stage when computing the satellite image with 4-connectivity. The cor-
responding grey area represents the results of the remaining tests as in Fig. 6,
again excluding the spiral image. The diagonal lines show the ideal speedup,
where the speedup is equal to the number of threads.

The construction of the component tree and the final stage that computes the
topological watershed parallelize quite well, while the tree compression and the
LCA preprocessing parallelize rather poorly. Fortunately, the tree compression
takes up only a small percentage of the total wall-clock time, even when 24
threads are used. However, this percentage will probably increase when more
threads are used. The LCA has a larger impact on the total wall-clock time of
the algorithm, and will cause the speedup of the total algorithm to decrease
more severely when using a larger number of threads.

Note however, that all speedups reported are relative to the wall-clock times
of the parallel algorithm using one thread. In practice, the previously existing
sequential implementation performs about 1.5 times faster than parallel algo-
rithm when only one thread is used. On two threads, the current algorithm has
the edge, albeit by a small margin. Further optimizations in the parallel algo-
rithm, for example by using a better tree compression method, may reduce this
difference.

5 Conclusions

This paper described a way to parallelize the computation of the topological
watershed. An implementation that was created according to this description
showed that a reasonably good speedup could be achieved while using up to 24
threads, and the trend in the results suggests that even better speedups may be
achieved when more than 24 threads are used.

The parallel implementation may be improved further by creating a more
compact min-tree in the min-tree construction or compressing it more in the tree
compression stage. For example, each node in the min-tree that has only one child
can be merged with that child, setting all pixels belonging to its component to
the grey level of its child, and setting the parent of its child to be the parent of the
node itself. This simple change could significantly reduce the LCA preprocessing
time, and may also improve the wall-clock time of the last stage where the
topological watershed is computed.

Better results may also be obtained by implementing the LCA preprocessing
more efficiently, especially the list ranking part (see [10]). A simple list ranking
algorithm was used in our implementation, while more sophisticated and better
performing algorithms already exist. A list ranking algorithm that parallelizes
better and has higher speedups, may significantly reduce the total wall-clock
time of the algorithm, especially when using larger numbers of threads.
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Furthermore, the image is now divided into tiles which are each processed
by their own thread. This division is only based on the image dimensions and
the number of threads, not on the contents of the image. Taking into account
the contents of the image, maybe in combination with the min-tree and com-
ponent map, while dividing the image among the threads may reduce the com-
munications needed between the different threads, which could lead to a faster
algorithm. We can also try other ways of tiling the image, following [5].

In short, there is still room for improvement in the parallel algorithm proposed
in this paper, but in its current form it can already be used to greatly speed
up the computation of the topological watershed, compared to the previously
existing sequential algorithm.
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Abstract. This paper presents an overview on the advances of water-
shed processing algorithms executed on GPU architecture. The program-
ming model, memory hierarchy and restrictions are discussed, and its
influence on image processing algorithms detailed. The recently proposed
algorithms of watershed transform for GPU computation are examined
and briefly described. Its implementations are analyzed in depth and
evaluations are made to compare them both on the GPU, against a CPU
version and on two different GPU cards.

1 Introduction

The watershed transform is a well known image segmentation tool, used to com-
pute connected components, generally out of the gradient of the input image.
Several algorithms exist to process the transform sequentially [4], [8], and since
the development of the first fast transforms, effort is put on research of par-
allel algorithms and architectures. This has led to the recent development of
techniques used on clusters [1] and FPGA [9].

The rise of GPU cards programmable for generic purposes, with low cost and
high computational power, and with a trend of improvement of the hardware
without severe changes to the architecture and programming model, has estab-
lished a new platform of interest. These features sets the direction of advances
on the watershed algorithms for improving performance, using the concepts and
definitions established on literature, exploring the architecture for the procedures
that best fit, and showing some new and revisited approaches [3], [13], [12].

This paper works on studying this architecture and the advances made on the
watershed processing and the algorithms that use it. The usage of such models
influences how the problems must be treated, algorithms designed and programs
implemented. The watershed transform is implemented on two forms: one with
four steps, with different levels of division of tasks, ranging from the neighbor-
hood to global processing; and one that uses only a neighborhood operation,
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switching values until the optimal solution is found and stabilizes. These dif-
ferent levels of decomposition are analyzed, and the implementation strategies
described.

This paper is organized as follows: Sec. 2 discusses the influence of the GPU
architecture on the development of image processing algorithms; Sec. 3 reviews
the literature of parallel watershed algorithms and discusses the two algorithms
evaluated in this work; Sec. 4 discusses in details the implementation of both
algorithms; Sec. 5 discusses the measurements made, and exposes the perfor-
mance obtained on two GPU cards and a CPU; and lastly, Sec. 6 presents the
conclusions drawn from this work.

2 Architecture Influence

Given many threads executing, each one having a small computing power, with
some shared resources and high bandwidth for communication, the GPU archi-
tecture is well suited for parallel algorithms of fine granularity, where each thread
will process one or a few pixels of the output image. Regarding the communica-
tion between threads, as they share a common memory, this area is used when
any kind of information needs to be transferred between them. Also, whenever
using GPU memory to communicate with the host CPU, there is a considerable
overhead on the copy operation that may degrade the speedup obtained.

As many image processing algorithms, the watershed transform processes a
neighborhood around every pixel. Also, as the blocks of threads divide the image
on sub-images that are loaded on shared memory, these must have a border
with the pixels from the adjacent blocks. This concept is illustrated on [7] as the
apron for each block. The apron is constituted such that blocks are processed
with overlapped data, with each block responsible for processing an area of the
image, but loading data from adjacent blocks.

The modern GPU architecture evolved to a point where there are several
forms of running programs on it, with the most noticeable frameworks and lan-
guages being CUDA and OpenCL, which are very similar to C and C++. Both
models provide access to the same memory model with similar instructions. The
programs developed for this work used CUDA, and the source codes are available
on the Internet at http://www.adessowiki.org

3 Parallel Watershed Algorithms

The watershed transform is a very data intensive task, that even with quasi-
linear algorithms is time-consuming. Since its introduction by Vincent and Soille
[10] effort is put on researching faster algorithms as well as parallel approaches.
An extensive survey on parallel approaches is given by Roerdink and Meijster
[8]. Since then, faster algorithms have been created, as well as new parallel
approaches [9], [1]. On the past few years, other parallel watershed algorithms
have been introduced, specifically for GPU architectures [3], [13], [12], using
different strategies, designed for the restrictions of the platform.

http://www.adessowiki.org
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This paper analyzes two algorithms: one inspired by the drop of water paradigm
and depth-search approaches, based on [12], named DW; and one based on cellu-
lar automata to process a shortest-path forest with sum cost function [3], named
CA. Both algorithms are tuned to better suit the architecture of modern GPUs.

The DW algorithm uses different steps of processing, which allows faster pro-
cessing of operations with different levels of data independence. These steps are
briefly: (i) identification of the neighbor with the lowest gray level for each pixel
(this corresponds to finding the downstream for each pixel, see [6], [8]); (ii) prop-
agation of the downstream of the plateau border pixels to inner pixels according
to the geodesic distance; (iii) labeling of regional minima by union-find; and
(iv) labeling of non-minima pixels by the path created to every minima. These
steps are organized and designed to maximize performance on a GPU architec-
ture. Step (i) processes each pixel independently, scanning the neighborhood for
the lowest gray level; step (ii) is the step less suited for parallelism, caused by
the need to uniformly calculate the geodesic distances, creating synchronization
barriers on the threads; step (iii) consists of labeling the regional minima pix-
els using the union-find strategy for merging connected components; step (iv)
consists on compressing paths from each pixel to the regional minima associated
with the path.

The CA algorithm is based on the algorithm of Ford-Bellmann to calculate a
shortest-path forest, using a single relaxing procedure, performed until conver-
gence of the solution. Therefore, the proposed implementation consists of a single
step, executed until stabilization of the solution. Nevertheless, for the CA algo-
rithm produce a correct watersheds transform, its cost function must be adapted
to consider the weight of each edge as the topographic distance [6]. Also, as this
function does not manage plateaus, either the image must be preprocessed by
lower completion, or the cost function must be further modified to consider the
lexicographic cost as a secondary component [5]. For greater adherence with the
original proposal, the lower completion is used prior to watershed execution.

4 Implementation Details

This section discuss the implementation of watershed algorithms on the SPMD
and SIMD models, considering the access to the memory layers of the GPU, that
constitutes the problem of communication between blocks. It is also presented
the methodology used for development, highlighting the border treatment, the
replication of data, and the data flow between memories.

The GPU memory model is hierarchically divided, and programs must con-
sider these different levels and its characteristics to take advantage of its features,
ultimately to reach the best performance. Using the CUDA framework, the code
that is executed on the GPU does not have access to the CPU RAM memory,
being an area of access exclusive of the host code. Therefore, for any processing
on the GPU, the data must be transferred between host (CPU) memory and
device (GPU) memory. The GPU global memory is the area writeable by the
CPU, and it also provides special access modes of texture and constant, which
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are cached and only readable by the device code. There are three other mem-
ory areas available to the device code: the registers, the local and the shared
memory. These memories have very limited size, but are located close to each
stream multiprocessor of the GPU, and provide high speed of access. Registers
and local memory are bound to the scope of each thread, whereas the shared
memory, with scope on the block, is used for cooperation and communication
between threads, with also a high speed access.

Based on the communication relations between different types of memory, the
host and device code that composes the watershed processing steps are modeled
to use as most as possible the shared memory area. Initially the image is loaded
by the host on a texture memory, and the neighborhood relation data on the
constant memory. As the blocks process parts of the image, it is loaded to the
shared memory. From this, the results are computed on registers, and finally
written on the global memory. This flow is used on all kernels of the algorithms
developed, except those that do not use a neighborhood relation, where the
global memory is used directly.

With the decomposition of the image on sub-images arises the problem of
management of the borders of each block, as each pixel demands data from the
neighbors that may be contained on another block, to complete its computation.
The strategy used is to load an overlapping area, called the apron, as described
on [11], [7], according to the neighborhood relation used. The borders values are
either the values of pixels of the adjacent block, or in the case of image borders,
a constant and predefined mask value is used.

The overlapping scheme, with borders loaded for every block by the device
code, is presented on Fig. 1. This scheme is divided on two phases: the first
one loads the data to the shared memory, while the second processes the shared
memory and stores the results back on global memory. The loading is performed
on blocks of BLOCK_TILE width and height, which corresponds to the size of
blocks of threads used on the CUDA device code invoking. The processing is per-
formed on fewer threads, on a block of REAL_TILE width and height, which
corresponds to the dimensions of the block of data that is actually processed,
without overlapping, ignoring border pixels.

4.1 Algorithm DW

The DW algorithm is based on the four steps described on Sec. 3 and exten-
sively detailed on [12]. To implement this algorithm, six programs of device code
(kernels) were created:

– donwstreamCalc: calculates the downstream for each pixel and then uses the
data already loaded on memory to propagate it to plateaus internal pixels,
until stability inside the block. This kernel is executed once and is associated
to the first and second steps of the algorithm.

– plateauPropagate: continues the propagation of the downstream to plateaus
internal pixels inside the block, respecting the geodesic distance to the bor-
ders. As the distance propagation may require block communication, this
kernel is invoked until stabilization and is associated with the second step.
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Fig. 1. Overlapping of data loaded on shared memory to process border pixels correctly.
It is used extra threads inside each block to load data, which are discarded and do not
perform the computation.

– mergeRegions : creates connected components with the minima pixels, using
the index as the reference for the group. The regional minima may spread
across different blocks, so this kernel is invoked until stability, paired with
the pathCompression kernel. This kernel is associated with the third step of
the algorithm.

– pathCompression: updates the reference of each pixel directly to the con-
nected component root. This avoids unnecessary memory accesses when
labeling the image and merges connected components that spread across
blocks. This kernel is associated with the third and fourth steps of the al-
gorithm. On the third step this is invoked until stabilization of the solution,
and only once for the fourth step.

– labelPixel : updates the label of each pixel, according to the reference of its
group. For regional minima processing, this connects minima that spread on
more than a single block, unifying the labels. This kernel is associated with
the third step of the algorithm.

– indexAdjust : updates the references matrix to allow the pathCompression
kernel to work on all pixels, rather than only on the regional minima, as a
preparation for the fourth step.



Advances on Watershed Processing on GPU Architecture 265

The minima and paths labeling problem is addressed in many ways on both
sequential and parallel algorithms, being a usual bottleneck, where common
strategies have not obtained success on the GPU [12]. For that matter, these steps
on the current approach are performed using the labeling algorithm of [2] , based
on a reference list for path compressing and representative propagation. This
algorithm is implemented through the kernels mergeRegions, pathCompression
and labelPixel presented before.

To better understand the bottlenecks of this algorithm, each kernel and API
call is timed, and a profile of the amount of time spent on each step is produced,
shown on Fig. 2. The first kernel executed, downstreamCalc, takes around 60%
of the total time of execution. This is expected, as this step calculates both the
downstream and solves small plateaus that are contained inside a block. The next
kernel invokes, for plateau propagation, take around 16% of the total time, with
8 calls, each with a smaller computation time, until stabilization. The regional
minima and catchment basin labeling are solved with a small percentage of the
total time, indicating an algorithm highly adapted for the task in parallel. The
first kernel may look as a severe bottleneck, compared to the second. However, it
was observed that this kernel solves many small plateaus, reducing the amount
of work to be done on the plateau propagation kernel.

Fig. 2. Percentage of the total execution time taken by each kernel and API call of the
DW algorithm

Clearly the division of the algorithm on steps described on Sec. 3 does not
match exactly the kernels described on this section, as these are designed to
minimize the amount of time consumed on memory copies and maximize the
processing on each pixel on a single call. However, those steps divide the problem
logically, leading to other solutions, such as the sequential algorithm that is used
on the comparisons of the next section. This implementation is also based on
the drop of water principle and is divided on the aforementioned steps, and is
not parallelized on CPU threads, thus running on a single core. The solutions
provided by both algorithms are equivalent and valid.
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4.2 Algorithm CA

The CA is based on the algorithm described on Sec. 3 and detailed on the work
of Kauffmann and Piche [3]. This algorithm, inspired on the algorithm of Ford-
Bellmann for calculating shortest-path forests with the sum path cost function,
iterates performing changes on the solution whenever a path of less cost is found,
until stabilization. To apply this concept on the watershed transform, the weight
of each edge of the inner graph must be associated with the topographical dis-
tance, as described by Meyer [6]. To address the issue of the cost on each edge
depending on the minimal value of the neighborhood, the implementation is
based on two kernels:

– initialization: initializes the cost for each pixel, depending on whether they
are a regional minima or not. Also, scans the neighborhood to store the mini-
mal value, necessary to compute the cost on each edge, during the processing
stage.

– iterate: process each pixel looking for paths of less cost. This kernel process
each block until stabilization of the sub-image solution, and also is invoked
as many times as necessary for stabilization of the whole image solution.

To use this algorithm, it is necessary to provide markers, either defined by the
user or the regional minima. However, as the kernel that propagates the solution
is invoked as many times as necessary, the greatest path on the inner graph will
bind the execution time. Thus, the performance is proportional to the ratio of
the area of catchment basins by the area of regional minima. To implement this
algorithm efficiently, the greatest improvement is the preprocessing of the cost,
which leads to several less memory accesses.

5 Performance Measurements

This section presents the experiments performed with the watershed algorithms
discussed on this paper, divided on three subsections: first, the algorithms are
measured and compared one against the other on the GPU; second, algorithm
DW is compared against a sequential implementation also based on the drop of
water principle; third the algorithm DW is timed on two different GPU cards,
to evaluate the impact of the evolution of hardware.

The hardware used is: an NVIDIA GTX 295 GPU card with 240 cores running
CUDA 2.30; an NVIDA GTX 470 GPU card with 448 cores running CUDA 3.20;
and a CPU AMD Phenom II X3 CPU of 2.6Ghz clock and 7.5Mb of cache with
4 GB of RAM. The measurements of GPU algorithm execution also consider
memory transfer from CPU to GPU. For the CA algorithm, the computation
of regional minima is discarded. This computation is not measured as it is out
of scope of this work and would implicate on an additional processing that may
not be useful if it is supplied markers obtained from other methods, such as
user input. The algorithms were run on the images lena, cameraman, peppers
and baboon. These images have different profiles, with varying number of re-
gional minima and extension of plateaus. The measurements were averaged, and
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the standard deviation presented indicates the variation on each image size.
The images were resized to 64x64, 128x128, 256x256, 512x512, 1024x1024 and
2048x2048.

5.1 GPU Comparison

This experiment intends to compare the algorithms DW and CA executing on
the GTX 295 card. Tab. 1 shows the average times obtained for each image size,
and the standard deviation (STD) for both algorithms. Clearly, the algorithm
DW produces results much faster and with smaller variation of time. The large
standard deviation observed for CA is a direct consequence of its single-step
propagation that will take as long to execute as the longer path on the image.

Table 1. Comparison of times of algorithm DW and CA running on GTX295

Image size Alg. DW (ms) STD Alg. CA (ms) STD
64x64 1.065 0.064 1.099 0.094

128x128 1.224 0.126 1.871 0.320
256x256 2.431 0.624 4.872 0.946
512x512 5.801 1.035 19.290 5.224

1024x1024 19.918 3.866 109.532 33.655
2048x2048 88.262 23.322 657.115 253.307

The data of Tab. 1 is also shown as a chart, on Fig. 3, where the difference of
times measured is better visualized. This chart presents the measured times in
milliseconds (ms) by the total number of pixels on the image.

The results of this experiment may also be compared with the results of the
algorithm of Wagner and Godehardt [13], which was executed on a GTX280,

Fig. 3. Chart comparison between algorithms DW and CA running on GTX295
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a card very similar to the GTX295. This comparison is possible only for the
1024x1024 image size, which has nearly the same number of pixels of the cube
of dimension 100 reported by the authors, with an execution time of 550ms.

5.2 GPU and CPU Comparison

This experiment compares the algorithm DW running on the GTX 470 card
against the CPU version. The measurements obtained on the executions are
shown on Tab. 2. The speedup calculated is the ratio of the CPU by the GPU
time. It is seen that for images smaller than 256x256, the speedup is less than
two, and given that the absolute times measured are very small, the usage of a
GPU algorithm may not prove useful. However, for images larger than that, the
speedup is increased up to 6.5, and the absolute times make this acceleration
even more useful, which can be seen on the chart of Fig. 4.

Table 2. Comparison of times between GPU GTX470 and CPU implementations

Image size GPU (ms) STD CPU (ms) STD Speedup
64x64 0.646 0.043 0.311 0.003 0.481

128x128 0.776 0.068 1.237 0.059 1.594
256x256 1.213 0.156 4.838 0.337 3.988
512x512 3.365 0.285 18.744 1.414 5.571

1024x1024 10.889 0.873 72.087 3.510 6.620
2048x2048 46.487 8.200 307.067 14.208 6.605

Fig. 4. Chart comparison of times between GPU and CPU implementations

5.3 GPU Evolution Comparison

This experiment intends to show how the evolution of GPU cards impact the exe-
cution of the same code. On Tab. 3 it is shown the execution times of the algorithm
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Table 3. Comparison of times between two different GPU cards

Image size GTX 295 (ms) STD GTX 470 (ms) STD Speedup
64x64 1.065 0.064 0.646 0.043 1.649

128x128 1.224 0.126 0.776 0.068 1.578
256x256 2.431 0.624 1.213 0.156 2.004
512x512 5.801 1.035 3.365 0.285 1.724

1024x1024 19.918 3.866 10.889 0.873 1.829
2048x2048 88.262 23.322 46.487 8.200 1.899

DW on both cards. The speedup is calculated as the ratio of the measurement on
the GTX 295 by the timing of GTX 470. The average of the speedup of the images
is 1.780. This might be associated with the increase of the number of cores from
240 to 448, which gives a ratio of 1.86. However, it must be noted that there are
several other improvements on the architecture of GTX 470, such as enhancing
cache capabilities and the operation of atomic functions.

5.4 Algorithm Scalability Comparison

This experiment focuses on how the algorithms DW and CA perform on the
same images, filtered to have less regional minima. To evaluate this, the four
images were used on the size of 512x512 and filtered to have different number
of regional minima, ranging from 562 to 24848. However, as the images have
different profiles, only the image Lena is used to show the effect of filtering,
as its results were the most affected. The times measured are presented on the
chart of Fig. 5. This chart shows the measured times by the number of regional
minima. This chart confirms the first experiment, that algorithm DW is faster
that algorithm CA, and shows that the algorithm DW is more stable, with

Fig. 5. Chart comparison of measured times by the number of regional minima on
image Lena of size 512x512
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most times bound between 10 and 20 ms, with a standard deviation of 4.4 ms,
while algorithm CA is bound between 20 and 50 ms, with a standard deviation
of 9.3 ms. The effect of severe variation of running time observed on algorithm
CA is not observed for every image tested. Nevertheless, such variation was not
observed for algorithm DW for any of the images.

6 Conclusion

This paper presented an analysis of modern watershed algorithms designed for
GPU architectures with some considerations on the implementation and de-
sign of such algorithms. The issues of implementing a parallel watershed algo-
rithm were discussed, and two implementations using the CUDA framework were
detailed.

On the performance measurements, three scenarios were used, comparing al-
gorithms on the GPU, the GPU against the CPU and GPU cards of different
configurations. The comparison on the GPU showed that having steps special-
ized for each task, and less dependence on stabilization produces faster results.
The comparison with the CPU showed that studies of GPU algorithms - i.e.
algorithms that use the SPMD model - may lead to reasonable speedups. The
comparison of evolution of cards showed that using the number of cores of a
board is a reasonable measure of normalization of times, and that the evolu-
tion of hardware may further reduce the execution times and restrictions that
currently exist.

Also, it has been observed that, because of the levels of speedup achieved,
especially when considering the evolution of the GPUs, the cost of implementa-
tion of these algorithms is rewarded. In fact, the usage of CUDA and/or OpenCL
technologies, with comprehension of the general architecture, enables the devel-
opment of programs that are not strictly bound to the hardware, and may run
on several cards with the benefits of speedup. As a consequence, future works
are seen on the investigation of more algorithms focused on the SPMD model,
with implementations not dependent on special hardware configuration and also
suitable for 3D volumes.
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Abstract. We study hierarchical segmentations that are optimal in the
sense of minimal spanning forests of the original image. We introduce
a region-merging operation called uprooting, and we prove that optimal
hierarchical segmentations are equivalent to the ones given by uprooting
a watershed-cut based segmentation. Based on those theoretical results,
we propose an efficient algorithm to compute such hierarchies, as well
as the first saliency map algorithm compatible with the morphological
filtering framework.

1 Introduction

We study some optimality properties of hierarchical segmentations ([19–21, 5, 23,
16, 8, 24, 2]) in the framework of edge-weighted graphs, where the cost of an edge
is given by a dissimilarity between two points of an image. Since the pioneering
work of [17, 15] stating an equivalence between hierarchies and minimum
spanning trees (MST), numerous hierarchical schemes rely on the construction
of such a tree. Its first appearance for classification in pattern recognition
dates from the seminal work of Zahn [31]. Its use for image segmentation was
introduced by Morris et al. [22] in 1986 and popularized in 2004 by Felzenswalb
and Huttenlocher [13]. Meyer was the first to explicitly use it in a morphological
context [19]. In mathematical morphology, hierarchies of watershed regions have
been proposed notably in [5, 23, 20] and reviewed in [21].

In this paper, we formalize, in the framework of edge-weighted graph,
a fundamental hierarchical scheme proposed in morphology. This formalism
allows us to prove strong properties linking hierarchical segmentations and
combinatorial optimality with respect to the original image (Th. 4 and 9). We
derive from those properties the first saliency algorithm proved to be correct,
establishing in particular its compatibility with morphological filtering (Th. 11).
In contrast, all previously proposed algorithms (e.g. [5, 23, 18]) are heuristic by
nature, and to date, no property on their result has been proved. With those
previous algorithms, counter-intuitive results are often obtained [26, 11].

After reminding basic notions in Section 2, hierarchies of minimum spanning
forests are presented in Section 3. Then, we formalize, in Section 4, a fundamental
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operation called uprooting that merges a marked region with one of its neighbors
linked by the cheapest cost. When applied sequentially on the weighted graph
of neighboring regions, the uprootings build a MST of this neighboring graph.
Intuitively, one can see that, if one starts from a minimum spanning forest
(MSF) rooted in the minima of the image (or, equivalently, from a watershed
cut [9]), then one builds a hierarchy of MSFs of the original image itself, the
last uprooting step yielding an MST of this original image. More surprisingly,
Th. 4 establishes that the two processes are equivalent. Hence, any MST of
the original image can be built from an uprooting sequence on a watershed
cut. Thus, watershed cuts are the only family of watersheds that allows us to
build hierarchical segmentations that are optimal with respect to the original
image, in the sense that they preserve the MST of the original image. Based on
those results, we give a detailed description of a fast uprooting algorithm that
allows MSF hierarchies to be computed. The time-complexity of this algorithm
is analyzed. Then, in Section 5, a quasi linear-time algorithm is proposed to
compute saliency maps from MSF hierarchies. The correctness of this algorithm
is established by Theorem 9. Finally, in Section 6, the compatibility between the
MSF hierarchies and a morphological filtering is established by an equivalence
result (Theorem 11).

2 Basic Notions

We define a (undirected) graph as a pair X = (V, E) where V is a finite set and E
is composed of unordered pairs of V , i.e., E is a subset of {{x, y} ⊆ V | x �= y}.
If X = (V, E) is a graph, each element of V is called a vertex or a point of X ,
and each element of E is called an edge of X .

Let X be a graph, the vertex set and edge set of X are denoted by V (X)
and E(X) respectively. The graph X is nontrivial whenever E(X) �= ∅, and it is
nonempty whenever V (X) �= ∅.

Let X and Y be two graphs. If V (Y ) ⊆ V (X) and E(Y ) ⊆ E(X), we say
that Y is a subgraph of X and we write Y � X . Let S be a set of graphs. The
supremum (resp. infimum) of S, denoted by �S (resp. �S), is the graph whose
vertex set and edge set are the unions (resp. intersections) of the vertex sets and
of the edge sets of the graphs in S: �S = (∪{V (X) | X ∈ S},∪{E(X) | X ∈ S})
(resp. �S = (∩{V (X) | X ∈ S},∩{E(X) | X ∈ S}) ). We also write X � Y and
X � Y for respectively �{X, Y } and �{X, Y }.

Let X be a graph. The graph X is connected if it cannot be partitioned into
two nonempty graphs, i.e., for any two nonempty graphs Y and Z, if Y �Z = X ,
then the graph Y �Z is necessarily nonempty. Let Y be a graph. We say that Y is
a connected component of X , or simply a component of X , if Y is a subgraph of X
that is connected and that is maximal for this property, i.e., for any connected
graph Z, if Y � Z � X , then we have necessarily Z = Y . The set of all connected
components of X is denoted by CC(X).

Important notation. Throughout this paper G = (V, E) denotes a nontrivial
connected graph.
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If S is a subset of V (resp. E), we denote by S the complementary set of S
in V (resp. E), i.e., S = V \ S (resp. S = E \ S).

Let S ⊆ E, we denote by δ•(S) the set of all vertices in V that belong to
an edge in S. Remark that (δ•(S), S) is a graph (see [12] for morphological
properties of δ•). This graph (δ•(S), S) is called the graph induced by S.

In the following, the sets of integers and real numbers are denoted by Z and R
respectively. Let i, j ∈ Z, we denote by [i, j] the set {k ∈ Z | i ≤ k ≤ j}.

We denote by F the set of all maps from E into R, and we say that any map
in F weights the edges of G.

Let F ∈ F . If u is an edge of G, the number F (u) is the altitude or weight
of u. Let k ∈ R, we denote by F [k] the set of edges of G whose weight (for F )
is less than or equal to k: F [k] = {u ∈ E | F (u) ≤ k}. The set of edges F [k] is
called the (lower) cross section of F at level k.

Let F ∈ F , and let X � G. We say that X is a connected component of F ,
or simply a component of F , if there exists an element k ∈ R such that X is
a component of the graph induced by F [k]. We denote by CC(F ) the set of all
components of F . The set CC(F ) is closely related to the component tree [28, 25]
of F , a tree widely used for filtering.

Let F ∈ F , and let X � G. The graph X is a minimum of F if X is a
component of F that does not strictly contains any component of F , i.e., for
any Y ∈ CC(F ), if Y � X , then we have necessarily Y = X . We denote by MF

the set made of the minima of F , and by MF its supremum: MF = �MF . This
notion of minima, as well as further presented notions, is illustrated in Fig. 1

Important notation. In the sequel of this paper, F denotes an element of F .
Therefore the pair (G, F ) is called an edge-weighted graph.

3 Minimum Spanning Forests Hierarchies

This section first presents the minimum spanning forests rooted in subgraphs
of G. This notion of a forest, which is useful for (seeded) image segmentation
(see e.g. [9, 10, 6]), is known to be equivalent to the one of minimum spanning tree
studied in combinatorial optimization. Then, hierarchies of minimum spanning
forests are introduced. Each such hierarchy induces a hierarchy of partitions
on V , which is thus optimal in the sense of rooted minimum spanning forests.

Let X � G. The weight of X (for F ), denoted by F (X), is the sum of the
weights of the edges in E(X): F (X) =

∑
u∈E(X) F (u). Let V ′ ⊆ V , we say

that X is spanning for V ′ if V (X) = V ′.

Definition 1 (rooted MSF). Let X and Y be two nonempty subgraphs of G.
We say that Y is rooted in X if V (X) ⊆ V (Y ) and if the vertex set of any

component of Y contains the vertex set of exactly one component of X.
We say that Y is a minimum spanning forest (MSF) rooted in X (with respect

to F ) if:

1. Y is spanning for V ;
2. Y is rooted in X; and
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Fig. 1. (a): A graph G and a map F whose minima are depicted in bold. (b):
A graph X0 ∈ MSF (MF ) represented in bold and its induced cut C0 = C(X0)
represented by dashed edges. (c,d): two bold graphs called respectively X1 and X2 such
that T = 〈X0, X1, X2〉 is both an MSF hierarchy for and an uprooting by 〈M1, M2〉
(where Mi is the minimum of F whose altitude is i); their induced cuts C1 = C(X1)
and C2 = C(X2) are represented by dashed edges. (e): The indicator of the uprooting U .
(f): The saliency map of the MSF cut hierarchy 〈C0, C1, C2〉.

3. the weight of Y is less than or equal to the weight of any graph Z satisfying
(1) and (2) (i.e., Z is both spanning for V and rooted in X).

The set of all minimum spanning forests rooted in X is denoted by MSF (X).

The above definition of rooted MSFs, which is illustrated in Fig. 1b, allows
the usual notions of graph theory based on trees and forests to be recovered. In
particular, if x is a vertex of V , it can be seen that any element in MSF (({x}, ∅))
is a minimum spanning tree of (G, F ), and that, conversely, any minimum
spanning tree of (G, F ) belongs to MSF (({x}, ∅)). In the following, by
convention, this remarkable set, which is made of all minimum spanning trees
of (G, F ), will also be denoted by MSF ((∅, ∅)).

A possible definition for watershed, called watershed cuts, follows the drop
of water principle. In [9], we have proved the equivalence between MSF rooted
in the set of minima and watershed cuts. In practice, watersheds from markers
are often computed, and subsets of minima of the original edge-weighted graph
constitute robust markers [3]. The next definition, illustrated in Figs. 1b, c, and
d, presents a notion of hierarchy of MSFs rooted in such subsets.

Definition 2 (MSF hierarchy). Let S = 〈M1, . . . , M�〉 be a sequence of
pairwise distinct minima of F and let T = 〈X0, . . . X�〉 be a sequence of subgraphs
of G. We say that T is an MSF hierarchy for S if:
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1. for any i ∈ [0, �], the graph Xi is an MSF rooted in �[MF \{Mj | j ∈ [1, i]}];
and

2. for any i ∈ [1, �], we have Xi−1 � Xi.

4 Uprootings and MSF Hierarchies

In this section, we formalize a simple transformation, called uprooting, that
allows a forest X rooted in a graph M to be incrementally transformed into
a forest Y rooted in a graph M ′ obtained by removing some components
of M . Through an equivalence theorem, we establish an important link between
the uprooting transform and the MSF hierarchies. This result allows efficient
algorithms for computing MSF hierarchies to be considered.

Let X be a subgraph of G that is spanning for V , and let x ∈ V . We denote
by CCx(X) the component of X whose vertex set contains x. Let V ′ ⊆ V , we
set CCV ′(X) = �{CCx(X) | x ∈ V ′}.

Let X ⊆ G, and let u = {x, y} ∈ E. The edge u is outgoing from X if u is
made of a vertex in V (X) and of a vertex in V (X). In the following, by abuse
of notation, we write X � {u} for the supremum of X and the graph induced
by {u}: X � {u} = (V (X) ∪ u, E(X) ∪ {u}).

Let X, Y , and M be three subgraphs of G such that X is spanning for V and
such that X �= Y . We say that Y is an elementary uprooting of X by M if there
exists an edge u of minimum weight among the edges outgoing from CCV (M)(X)
such that Y = X � {u}. We also say that Y is an elementary uprooting of X
by M if Y = X and if there is no edge outgoing from CCV (M)(X).

Definition 3. Let S = 〈M1, . . . , M�〉 be a sequence of pairwise distinct minima
of F . An uprooting by S is a sequence 〈X0, . . . , X�〉 of graphs such that:

1. X0 ∈MSF (MF ) ; and
2. Xi is an elementary uprooting of Xi−1 by Mi, for any i ∈ [1, �].

The following theorem, one of the main results of this paper, states an
equivalence property between MSF hierarchies and uprootings by sequences of
minima of the original map that weight the edges of the graph.

Theorem 4. Let S = 〈M1, . . . , M�〉 be a sequence of pairwise distinct minima
of F , and let T = 〈X0, . . . X�〉 be a sequence of subgraphs of G. The sequence T
is an MSF hierarchy for S if and only if the sequence T is an uprooting by S.

Any MSF hierarchy can be represented by a unique edge-weighed graph such
that a given threshold of this graph provides the associated level of the hierarchy.
More formally, let S = 〈M1, . . . , M�〉 be a sequence of pairwise distinct minima
of F , and let T = 〈X0, . . . , X�〉 be an uprooting by S. The indicator of T ,
denoted by IT , is the map from E into [0, � + 1] defined by:

- IT (u) = min{i ∈ [0, �] | u ∈ E(Xi)}, for any u ∈ E(X�); and
- IT (u) = � + 1, for any u ∈ E \ E(X�).

The notion of indicator of an uprooting is illustrated in Fig. 1e.
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Any uprooting has a unique indicator, and any two distinct uprootings have
distinct indicators. Hence, the indicator of an uprooting is sufficient to recover
all the elements of the uprooting: if T = 〈X0, . . . , X�〉 is an uprooting by a
sequence S = 〈M1, . . . , M�〉 of minima of F , then Xi is the graph induced by
the cross-section of IT at level i, (i.e., Xi = (δ•(IT [i]), IT [i]).

We are now ready to describe the uprooting algorithm, which by Theorem 4
allows the computation of MSF hierarchies. It inputs a sequence S =
〈M1, . . . , M�〉 of minima of F and outputs the indicator IT of an uprooting T =
〈X0, . . . , X�〉 by S. From a high level point of view, the algorithm can be
sketched, once a minimum spanning forest X relative to M has been computed,
by iterations of the following three region merging steps:

i Find the component C of X that contains Mi the next element in S.
ii Find a component C′ of X linked to C by an edge v of minimum weight
iii Merge the two components C and C′

Algorithm. Uprooting
Data: (V, E, F ): an edge-weighted graph;
X ← any element in MSF (MF );
A sequence S = 〈M0, . . . , M
〉 of pairwise distinct minima of F ;
Result: I , the indicator of an uprooting by S ;
i ← 0; ; /* Initialisation */1

foreach x ∈ E do2

MakeSet(x); L[x] ← MakeList();3

foreach u = {x, y} ∈ E do4

if u ∈ E(X) then I(u) ← 0;else I(u) ← � + 1;5

foreach u = {x, y} ∈ E(X) do6

x′ ← Find(x); y′ ← Find(y);7

if x′ �= y′ then Link(x′,y′);8

foreach u = {x, y} ∈ E \ E(X) do9

x′ ← Find(x); y′ ← Find(y);10

if x′ �= y′ then Insertx′(y′, u, F (u)); Inserty′(x′, u, F (u));11

while i < � do /* Incremental uprooting */12

i ← i + 1;13

Set x to any element of V (Mi); x′ ← Find(x);14

repeat15

(y, v, w) ← DeleteMinx′();16

y′ ← Find(y);17

until x′ �= y′ ;18

I(v) ← i;19

z ← Link(x′,y′); L[z] ← Meld(x′,y′);20

In order to ease the reading of the algorithm, let us first present the two main
data structures that are used.
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The structure C is a collection of disjoint subsets of V . Each set C in C is
represented by a unique element x of C, called the canonical element of C. In
the following, x and y denote two distinct elements of V . The collection C is
managed by three operations:

– MakeSet(x): add the set {x} to the collection C, provided that the
element x does not already belong to a set in C.

– Find(x): returns the canonical element of the set in C that contains x.
– Link(x, y): let Cx and Cy denote two sets in C whose canonical elements

are x and y respectively. Both sets are removed from C, their union C =
Cx∪Cy is added to C and a canonical element for C is selected and returned.

The structure L is a collection of n = |V | lists: L[x1], . . . ,L[xn], with V =
{x1, . . . , xn}. Each element of these lists is a triplet (x, u, w) such that x is a
vertex of G, u is an edge of G, and w is an element in R, called the weight
of the triplet. In the following, x and y denote two distinct elements of V , u
denotes an edge in E, and w an element in R. The collection L is managed by
four operations:

– MakeList(): returns an empty list.
– Insertx(y, u, w): adds the triplet (y, u, w) to the list L[x];
– DeleteMinx() returns and removes from L[x] a triplet of minimum weight.
– Meld(x, y): returns the list of the triplets of L[x] and of L[y] and suppresses

the lists L[x] and L[y].

When the algorithm terminates the map I is the indicator of an uprooting by
the input sequence S. Moreover, using Tarjan’s union find [29] and Fredman and
Tarjan’s Fibonnacci heap [14] algorithms to manage the collections C and L, the
overall complexity of the algorithm is O(|V | × α(|V |, |V |) + |E| × α(|E|, |V |) +
|E| log |E|), where α is a function which grows very slowly: for all practical
purposes α(m, n) is never greater than four. In other words, the complexity of
the algorithm is quasi O(|V |+ |E| log |E|) in the sense of Tarjan’s union find.

5 MSF Cut Hierarchy, Saliency and Connection Value

Until now, we have dealt with regions (components of forests). Let us now study
their “dual”, called cuts, that represent borders between regions.

Let X be a subgraph of G that is spanning for V . The (graph) cut induced
by X , denoted by C(X), is the set of all edges of G made of vertices of two
distinct components of X , i.e. C(X) = {{x, y} ∈ V | CCx(X) �= CCy(X)}.

Definition 5 (MSF cut hierarchy). Let X be a subgraph of G, and let C ⊆ E.
The set C is called an MSF cut for X (with respect to F ) if there exists an
MSF Y rooted in X, such that C is the cut induced by Y .

Let S = 〈M1, . . . , M�〉 be a sequence of pairwise distinct minima of F and
let T = 〈C0, . . . C�〉 be a sequence of subsets of E. We say that T is an MSF cut
hierarchy for S if:
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1. for any i ∈ [0, �], the set Ci is an MSF cut for �[MF \ {Mj | j ∈ [1, i]}]; and
2. for any i ∈ [1, �], we have Ci ⊆ Ci−1.

The following result asserts that there is indeed an equivalence relation
between MSF hierarchies and MSF cut hierarchies.

Property 6. Let S = 〈M1, . . . , M�〉 be a sequence of pairwise distinct minima
of F and let T = 〈C0, . . . C�〉 be a sequence of subsets of E. The sequence T is
an MSF cut hierarchy if and only if there exists an MSF hierarchy 〈X0, . . . , X�〉
such that C(Xi) = Ci, for any i ∈ [0, �].

The hierarchies presented above are hierarchical segmentations as defined in
[24]. Therefore, the MSF cuts belonging to a hierarchy can be “stacked” to
form a map that equivalently represents this hierarchy. Intuitively, such a map,
called a saliency map, weights the cuts with their “level of disappearance” in
the hierarchy. Hence, they are convenient for visualizing hierarchies.

Definition 7 (saliency map). Let S = 〈M1, . . . , M�〉 be a sequence of minima
of F and let T = 〈C0, . . . C�〉 be an MSF cuts hierarchy for S. The saliency map
of T , denoted by ST , is the map from E into [0, � + 1] defined by:

1. ST (u) = min{i ∈ [0, �] | u ∈ Ci}, for any u ∈ E \ C�; and
2. ST (u) = � + 1, for any u ∈ C�.

An illustration of the notion of saliency map is given in Fig. 1f.
Let H be any map and let k ∈ R, the set H [k] of the edges of G whose weight

(for H) is greater than k is called the upper cross section of H at level k.
Let T = 〈C0, . . . , C�〉 be an MSF cut hierarchy for a sequence S of minima

of F , and let H be a map from E into [0, � + 1]. It can be seen that H = ST if
and only if, for any i ∈ [0, �], the set Ci is the upper cross-section of H at level i.
Thus, the saliency map ST is an equivalent representation of the hierarchy T .

The altitudes of the passes between minima of the image play a fundamental
role in morphological filtering. In our framework, pass altitudes are called
connection values. In the following, we show their importance for computing
a saliency map from the indicator of an uprooting.

Let H ∈ F and let X ⊆ G. The altitude of X for H , denoted by Ȟ(X), is the
maximum value of an edge of X .

Definition 8 (connection value). Let H ∈ F , and let x and y be two points
of G. The connection value between x and y for H (in G) is the value ΥH(x, y) =
min{Ȟ(X) | X ∈ CC(F ) and {x, y} ⊆ V (X)}.

The connection value, for any map H , between any two points can be
computed in constant time (see [7]) from the (min) component tree (CC(H),�)
of H , provided a linear time preprocessing (see [4]). In other words, once
the component tree is built (see [25] for a quasi linear time algorithm) and
preprocessed (in linear time), computing the connection value between any
arbitrary pair of points can be done in constant time.

Hierarchical segmentations are in bijection with ultrametric watersheds [24].
The following theorem provides an analog result for MSF cut hierarchies.
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Theorem 9. Let S = 〈M1, . . . , M�〉 be a sequence of pairwise distinct minima
of F , and let H be a map from E into [0, � + 1]. The map H is the saliency map
of an MSF cut hierarchy for S if and only if there exists an uprooting T by S
such that, for any u = {x, y}, F (u) = ΥIT (x, y).

Hence, in order to know the value of an edge in a saliency map it is sufficient
to know the connection value between the two points linked by this edge for the
indicator of an uprooting by S. Thus, knowing the indicator of an uprooting
by S and its component tree, a saliency map can be computed in linear time,
i.e., one constant time operation per edge of G.

Figs. 2b,c, and d illustrates the use of this algorithm on the image of Fig. 2a.
The underlying graph is the one induced by the 4-adjacency relation whose edges
are weighted by a simple color gradient (maximum, over the RGB channels,

(a) (b)

(c) (d)

Fig. 2. Illustration of saliencies of watershed cuts (original picture (a) from koakoo:
http://blog.photos-libres.fr/)
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(a) (b): zoom on a part of (a)

Fig. 3. Illustration of saliencies of watershed cuts on a mesh provided by the French
Museum Center for Research and Restoration (C2RMF, Le Louvre, Paris)

of the absolute differences of pixel values). The minima are ordered thanks to
extinction values [30] related to dynamics, volume and color consistency, leading
to sequences S1, S2, and S3 of minima. The saliency maps of MSF hierarchies for
S1, S2, and S3 are rendered (up to an anamorphosis) in sub-figures b,c, and d,
respectively. Figs. 3 illustrates the use of the algorithm to segment a surface (i.e.,
a mesh) embedded in the 3D Euclidean space. The vertex set of the considered
graph is the set of triangles of the mesh, and its edge set is composed by the
pair of triangles that share a common side. The edges of this graph are weighted
by map which behaves like the inverse of the mean curvature of the surface
(see [27]). The minima are ordered thanks to volume extinction values and the
saliency maps of the induced MSF hierarchies is rendered up to an anamorphosis.

6 Hierarchy by Geodesic Reconstructions

A desirable compatibility property in the context of morphological filtering is
that any threshold of a saliency map is a watershed of the geodesic reconstruction
of the original map by the minima corresponding to the threshold level.
Theorem 11 below shows that the results of our algorithm do satisfy such a
compatibility property. It has to be noted that, in other frameworks (e.g., node-
weighted graphs), such a property is in general not guaranteed [26].

Let x ∈ V . We denote by CCx(F ) the set of all components of F whose vertex
sets contain x. Let V ′ ⊆ V , we set CCV ′(F ) = ∪{CCx(F ) | x ∈ V ′}.

Let V ′ ⊆ V . The geodesic reconstruction of F by V ′ is the map F ′ such that,
for any edge u in E, the value F ′(u) is the minimum altitude of a component
in CCV ′(F ) that contains u: F ′(u) = min{F̌ (X) | X ∈ CCV ′(F )}.
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Watershed from markers are classically defined through geodesic reconstruc-
tion (also called swamping or flooding). It is shown in [1] that reconstruction
plus MSF cut can be replaced by an MSF cut relative to the initial map.

Property 10 (from Theorem 6.3 in [1]). Let V ′ ⊆ V , let F ′ be the geodesic
reconstruction of F by V ′, and let C be a subset of E. If C is an MSF cut for MH

with respect to F , then C is an MSF cut for MH with respect to F ′.

The converse of Prop. 10 is, in general, not true. In fact, as long as a sequence of
nested partitions (i.e., a hierarchy) is involved, the MSF cuts of reconstructed
maps and the MSF cuts of the original maps are equivalent.

Theorem 11 (Compatibility). Let S = 〈M1, . . . , M�〉 be a sequence of
pairwise distinct minima of F . Let Gi denote �[MF \ {Mj | j ∈ [1, i]}],
and let Fi be the geodesic reconstruction of F by V (Gi), for any i ∈ [0, �].
Let T = 〈C0, . . . , C�〉 be a sequence of subsets of E such that Ci ⊆ Ci−1 for
any i ∈ [1, �]. Then, the two following propositions are equivalent:

1. for any i ∈ [0, �], the set Ci is an MSF cut for Gi with respect to Fi; and
2. for any i ∈ [0, �], the set Ci is an MSF cut for Gi with respect to F .

7 Conclusion and Perspective

In this paper, a classical morphological scheme for building hierarchical
segmentation is formalized. This formalism leads us to establish strong properties
linking hierarchical segmentations and combinatorial optimality in terms of
minimum spanning forests of the original image. Recent work of Couprie et
al. [6] link some schemes based on minimum spanning forests to global energy
minimization. Hence, a promising perspective is the investigation of hierarchical
schemes defined through energy minimization such as the one presented in [16].

The source code of the algorithms presented in this paper is available at:
http://www.esiee.fr/~info/sm
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Abstract. This article introduces the notion of component-hypertree,
which models the component-trees of an image at various connectivity
levels, and the relations of the nodes/connected components between
these levels. This data structure is then used to extend a recently pro-
posed interactive segmentation method based on component-trees. In
this multiscale connectivity context, the use of a component-hypertree
appears to be less costly than the use of several component-trees. Appli-
cation examples illustrate the relevance of this approach.

Keywords: Component-tree, segmentation, mask-based connectivity,
hypertree.

1 Introduction

The component-tree [13] is a graph-based structure which models some char-
acteristics of a grey-level image by considering its binary level-sets obtained
from successive thresholdings. It is particularly well-suited for the design of fast
segmentation methods [5,10], based on hypotheses related to the topology (con-
nectedness) and the specific intensity (locally extremal) of structures of interest.

In this context, a new segmentation method has been proposed recently by
Passat et al. [12]. For a given (manual) presegmentation, it computes the best
segmentation induced by the nodes of the image component-tree. By opposi-
tion to the standard component-tree approaches, based on attributes [16], this
“best segmentation” is here the one which minimises a cost function modelling
false positives/negatives between the manual approximate segmentation and the
proposed solution.

This method provides results for a given connectivity (in general, a connec-
tivity induced by the standard adjacencies on Zn). In order to also take into
account simultaneously several (richer) connectivities, and in particular mask-
based connectivities [11], an extension of this method is proposed. Based on
a component-hypertree, which models the component-trees of a same image at
various connectivity levels (induced by increasing masks), and the decomposi-
tion of each node/connected component in these successive component-trees,
it computes all the segmentation results induced by these connectivity levels.
� The research leading to these results has received funding from the French Agence
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This extension enables, in particular, to minimise the algorithmic time cost, by
comparison with a straightforward naive approach.

The article is organised as follows. In Section 2, a (short) state of the art
related to component-tree segmentation is described. In Section 3, the segmen-
tation method defined by Passat et al. [12] is recalled. Section 4, which contains
the contribution of this article, presents the notion of component-hypertree,
which provides a way to handle multiscale connectivity. It also describes how
the method described in Section 3 can be interfaced with component-hypertrees
to enable the segmentation of an image at various connectivity levels, in an ef-
ficient algorithmic fashion. In Section 5, experiments illustrate the behaviour of
this technique. Conclusions can be found in Section 6.

2 Previous Work

Component-trees have been involved in the development of several applications
related to image filtering and/or segmentation [11,19,18,8,1,9]. All these pro-
posed methods have been designed to detect the structures of interest by using
information related to the value of attributes stored at each node of the tree. In
such strategies, an attribute, or more generally a set of attributes [16], are chosen
according to the hypotheses related to the applicative context. These attributes
are assumed to model some characteristic properties of the structures of interest,
and can be used in different ways:

– the desired values of the attributes can be chosen by the user in order to
select the relevant nodes inducing the correct segmentation [11,19,18,1];

– these values can be determined by analysing the signature of the attributes
(i.e., their evolution with respect to the grey-level of the nodes) [5], possibly
in an automatic fashion [6];

– they can be learnt from examples, e.g., by providing a ground-truth charac-
terising the shape of the objects to detect [8], or by feeding a classification
process when the set of attributes becomes too large [9,17,4].

In such works, component-trees have been used for their ability to discriminate
nodes with respect to attributes, leading to automated/parametric methods.

It is however possible to directly use the component-tree structure by taking
advantage of the decomposition of the image into nodes/connected components
that it provides, in order to perform interactive segmentation. Methods based
on such an alternative strategy should compute a segmentation result, no longer
thanks to node attributes, but to a user-defined approximate result, which should
then be matched at best by a relevant set of nodes. To our knowledge, the
methodology proposed in the next sections is the first one based on this strategy.

3 Component-Tree Segmentation Method

3.1 Component-Trees

Let E ⊂ Zn (n ≥ 1) be a finite connected set (for a given adjacency relation).
Let V = [[⊥,!]] ∪ {−∞} with [[⊥,!]] ⊂ Z. A grey-level image is a function
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I : Zn → V such that I−1({−∞}) = Zn \ E. By abuse of notation, we will
implicitly restrict I to E, and note I : E → V , or I ∈ V E . We assume, without
loss of generality, that ! = max{I(x) | x ∈ E}.

The thresholding function Xv : V E → 2E (v ∈ V ) is defined by Xv(I) = {x ∈
E | v ≤ I(x)}. The cylinder function CX,v : E → V (v ∈ V , X ⊆ E) is defined
by CX,v(x) = v if x ∈ X and −∞ otherwise. An image I ∈ V E can be written
as I =

∨
v∈V

∨
X∈C[Xv(I)] CX,v where

∨
is the pointwise supremum for the sets

of functions, and C[ . ] is the set of the connected components of a set.
Let K =

⋃
v∈V C[Xv(I)] be the set of the connected components generated by

the thresholdings of I at all values v ∈ V . The component-tree of I is obtained
from the Hasse diagram of the partially ordered set (K,⊆).

Definition 1 (Component-tree). Let I ∈ V E be a grey-level image. The com-
ponent-tree of I is the rooted tree T = (K, L, R) such that:

(i) K =
⋃

v∈V C[Xv(I)] ;
(ii) L = {(X, Y ) ∈ K2 | Y ⊂ X ∧ ∀Z ∈ K, Y ⊆ Z ⊂ X ⇒ Y = Z} ;
(iii) R = sup(K,⊆) = X⊥(I) = E .

The elements of K (resp. of L) are the nodes (resp. the edges) of T . The node
R is the root of T . For any N ∈ K, we set ch(N) = {N ′ ∈ K | (N, N ′) ∈ L};
ch(N) is the set of the children of N . If ch(N) = ∅, we say that N is a leaf.

3.2 Problem to Solve

Component-trees can be used to develop segmentation procedures which consist
of determining a subset K̂ ⊆ K among the nodes of the component-tree T =
(K, L, R) of an image I : E → V . The binary result Is ⊆ E is then defined
as Is =

⋃
X∈K̂ X . A way to consider this segmentation problem is to search

the set of nodes K̂ ⊆ K which enables to generate a binary object being as
similar as possible to a target (e.g., a manual presegmentation). This issue can
be formalised as the resolution of the following optimisation problem

K̂ = arg min
K′⊆K

{
d
( ⋃

N∈K′

N, M
)}

(1)

where M ⊆ E is the (binary) target, and d is a (pseudo-)distance on 2E. An
intuitive solution for determining such a useful pseudo-distance is to consider
the number of false positives/negatives induced by X =

⋃
N∈K′ N with respect

to M
dα(X, M) = α.|X \M |+ (1− α).|M \X | with α ∈ [0, 1].

3.3 Segmentation Method

As the set K is finite, there exists a solution to Equation (1). The function
Fα proposed in Definition 2 enables to build a binary image whose connected
components form a set K̂ which is a solution of Equation (1) (see Proposition 3).
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Definition 2 ([12]). Let α ∈ [0, 1]. Let I ∈ V E. Let T = (K, L, R) be the
component-tree of I. Let M ⊆ E. Let ≺ ∈ {<,≤}. Let Fα : K → 2K and
cα : K → R+ be the functions recursively cross-defined, for all N ∈ K, by

{
Fα(N) = {N}
cα(N) = α.n(N, M)

if
α.n(N, M) ≺ (1− α).p∗(N, M) +

∑

N ′∈ch(N)

cα(N ′) (2)

and {Fα(N) =
⋃

N ′∈ch(N)Fα(N ′)
cα(N) = (1 − α).p∗(N, M) +

∑
N ′∈ch(N) cα(N ′)

otherwise, where p∗(N, M) = |(N \
⋃

N ′∈ch(N) N ′)∩M |, and n(N, M) = |N \M |.

Proposition 3 ([12]). We set Mα =
⋃

N∈Fα(E) N . Then, we have

dα(Mα, M) = cα(E) = min
K′⊆K

{
dα
( ⋃

N∈K′

N, M
)}

.

Proposition 4 ([12]). Fα(E) = C[Mα] (and thus Mα) can be computed with
the linear algorithmic complexity O(max{|K|, |E|}).

4 Component-Hypertree and Segmentation

Section 4.1 describes the connectivity framework considered in this work. In
Section 4.2, the notion of component-hypertree is introduced and discussed. In
Section 4.3, the way to model a component-hypertree in a compact fashion is
exposed, thus inducing a decrease in space cost. Section 4.4, describes how the
component-hypertree can be involved in the segmentation method of Section 3,
leading to a multiscale connectivity segmentation method1. Finally, Section 4.5
provides some properties which show that this way to introduce the component-
hypertree also leads to a decrease in time cost by comparison to the only use of
component-trees.

4.1 Mask-Based Connectivity

Two points of Zn are generally said to be adjacent if their “continuous analogues”
in Rn have a specific (non-empty) intersection. This leads to the standard notions
of 2n- and (3n−1)-adjacencies in Zn [7]. In this framework, connectivity derives
from a notion of path (i.e., a series of successively adjacent points in Zn) which
complies with the notion of path in Rn.

1 The approach presenting the strongest similarities with this work is probably the
one proposed by Soille in [15].
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A (morphological) alternative definition has been proposed with the notion
of second-generation connectivity [14]. This approach of connectivity has led, in
particular, to consider the notion of multiscale connectivity [2,3].

In the context of second-generation connectivity, mask-based connectivity [11]
proposes to use some masks in order to characterise connected sets. In the binary
case, by only considering masks which are either subsets or supersets of an image,
we derive from [11] the following definition.

Definition 5 (Mask-based connectivity). Let X ⊆ E. Let ω(X) ⊆ X (or
⊇ X) be a mask of X. The ω-connected components of X, noted Cω[X ], are
defined as follows:

– in the case ω(X) ⊆ X, the ω-connected components of X are:
• the connected components of ω(X); and
• the singleton sets {x} for any x ∈ X \ ω(X);

– and in the case ω(X) ⊇ X, the ω-connected components of X are:
• the sets X ∩ Y , for any connected component Y of ω(X).

In the sequel, for a given image I : E → V , we consider extensive (resp. anti-
extensive) masks Ω(I) : E → V , i.e., masks verifying I(x) ≤ Ω(I)(x) (resp.
I(x) ≥ Ω(I)(x)) for all x ∈ E. We call Ω-connected components of I, and we
note K the set of all the ω-connected components of Xv(I) induced by the
masks ω(Xv(I)) = Xv(Ω(I)), at all values v ∈ V .

We consider, in particular, the families of masks {Ωi(I)}u
i=t (t ≤ 0 ≤ u)

such that (i) Ωt(I) = CE,−∞, (ii) Ω0(I) = I, (iii) Ωu(I) = CE,�, and (iv)
Ωi(I) < Ωj(I) for any t ≤ i < j ≤ u. An example of such a family {Ωi(I)}2i=−2

is depicted for a 1-D image, in Figure 1. The mask-based connectivity proposed
in Definition 5 enables to generate such families of masks. Note however that,
without loss of generality, the sequel of the presented work remains valid for any
family of masks satisfying properties (i)–(iv), and in particular those induced
by alternative connectivities.

Typical examples of families of masks verifying these properties are those in-
duced by erosions/dilations (resp. openings/closings) (with a structuring element
containing 0Zn), e.g.:

. . . < εk(I) < . . . < ε(I) < I < δ(I) < . . . < δk(I) < . . .

. . . < δk ◦ εk(I) < . . . < δ ◦ ε(I) < I < ε ◦ δ(I) < . . . < εk ◦ δk(I) < . . .

We can, of course, build the (Ω-)component-tree of I induced by the Ω-
connected components of the successive level-sets of I. In particular, it can be
observed that any node N ∈ Ki of the Ωi-component-tree of I is partitioned into
(one or several) node(s) of the Ωi−1-component-tree of I.

4.2 Component-Hypertrees

We consider the definitions of Section 3.1, with the following modifications. An
image I is now considered as defined from Zn to V (but still with E = I−1(V \
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{−∞}) connected and finite). We also associate to I a mask image Ω(I) : Zn →
V satisfying the hypotheses of Section 4.1, i.e., verifying either Ω(I) � I or
Ω(I) � I. Under such conditions, the Ω-connected components of I enable to
generate an Ω-component-tree of I similar to the one described in Definition 1,
with the following differences: (i) Zn ∈ K, (ii) R = sup(K,⊆) = X−∞(I) = Zn.
All the properties previously stated for component-trees remain, however, valid.
(Note that for Ω(I) = I, we retrieve the “standard” component-tree, with only
one supplementary node which corresponds to a “super-root”.)

Definition 6 (Component-hypertree). Let I ∈ V Z
n

. Let {Ωi(I)}u
i=t (t ≤

0 ≤ u) be a set of mask images of I. The component-hypertree of I is the triplet
H = (H, L↓, L→) such that:

(i) H is the multiset2 defined by: H =
⋃u

i=tKi ;
(ii) ∀i ∈ [[t, u]], the subgraph of (H, L↓) induced by the subset of nodes Ki ⊆ H

is the Ωi-component-tree of I;
(iii) ∀v ∈ V , the subgraph of (H, L→) induced by the subset of nodes Sv =⋃

i∈[[t,u]] Cωi [Xv(I)] ⊆ H is the Hasse diagram of the partially ordered (mul-
ti)set3 (Sv,⊆). This subgraph can, in particular, be seen as a n-ary
partition-tree.

The component-hypertree related to Figure 1 is illustrated in Figure 2.

Remark 7. Since Ωt(I) = CE,−∞, we have Kt = {Zn} ∪ {{x} | x ∈ E}, i.e.,
the Ωt-component-tree is composed of a root Zn and |E| leaves corresponding
each one to a point in E (see right part of Figure 2). Since Ωu(I) = CE,�,
we have Ku = {Xv(I)}v∈V , i.e., the Ωu-component-tree is composed of the |V |
binary images corresponding to the successive thresholdings of I; in particular,
each node has exactly one child, except X�(I) (see left part of Figure 2).

Remark 8. A node N ∈ Ki can have several (distinct) decompositions in Ki−1

(this may happen since Ki, is not a multiset). In particular, a node N which
is a Ωi-connected component of Xv(I) for all v ∈ [[v−, v+]] ⊆ V can have up
to v+ − v− + 1 decompositions in Ki−1, at the same grey-levels. The nodes of
these decompositions form a set of (sub)trees of the Ωi−1-component-tree of I
(see Figure 2 for a node with two decompositions (red and green edges), and a
node with the same decomposition at values 2 and 3 (magenta edge)).

4.3 Simplification

Performing segmentation in the way of Section 3 consists of solving Equation (1),
i.e., of computing Fα(Zn), for all the Ω-component-trees (in order to allow the
user to define, by “connectivity tuning”, the most satisfactory result). Instead of

2 Several nodes of H which are the same subset of Zn can possibly refer to Ω�-
connected components of distinct Ω�-component-trees.

3 We set X ⊂ Y whenever X ∈ Ki, Y ∈ Kj are the same subset of Zn, with i < j.
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Fig. 1. A 1-D image I : Z → [[0, 3]]∪{−∞}, and a family {Ωi}2
i=−2 of mask images of I .

(a) I (in black); Ω2(I) = CE,2 (in blue); Ω1(I) (in green); Ω0(I) = I (in black); Ω−1(I)
(in magenta); Ω−2(I) = CE,−∞ (in red). (b–f) Black lines: connected components of
I ; black lines inside (filled and unfilled) colour boxes: Ω�-connected components of I
(from b to f: Ω2- to Ω−2-connected components).
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Fig. 2. Component-hypertree related to Figure 1. The set of nodes H is depicted by
the square boxes (their colour represent the threshold value at which they appear: from
black (0) to white (3), and dashed for −∞). The thick lines represent the edges of L↓,
while the thin lines represent the edges of L→. From left to right, we can observe the
five Ωi-component-trees for i from 2 to −2.
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Fig. 3. Simplified component-hypertree (obtained from Figure 2) related to Figure 1.
The numbers in nodes refer to the associated Ω�-connected components in Figure 1.
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processing these component-trees independently, we can compute Fα in a global
fashion in the component-hypertree (in particular, to avoid redundant work).

Based on this purpose, let us first state some remarks enabling to simplify
(i.e., factorise) a part of the component-hypertree data structure.

Remark 9. The root Zn, which appears u − t + 1 times in H (which role is
mainly to guarantee that each Ω-component-tree is actually a tree) only needs
to be represented once4.

Remark 10. Let Ni ∈ Ki, Ni−1 ∈ Ki−1 be the same subset of Zn, and the
subtrees of the Ωi- and Ωi−1-component-trees of root Ni and Ni−1, be identical.
From Definition 2, we have Fα(Ni) = Fα(Ni−1). Then, several successive Ω-
component-trees can share their similar “bottom” parts, thus reducing both space
and time complexity. In particular, this is true for the |E| singleton sets {x} (x ∈
E) which need only to be represented once (for instance in the Ωt-component-
tree).

By contrast, a node which appears in two successive Ω-component-trees must
be represented twice if its subtrees differ (which may modify their value of cα,
and thus Fα, see yellow parts of Figure 3 for examples of such nodes).

Remark 11. As stated in Remark 8, a node may have several decompositions.
However, from an algorithmic point of view, only one decomposition is necessary.
We should, in particular, preserve the decomposition which corresponds to the
finer subdivision of the node, i.e., the one composed by the nodes at the threshold
value v+ defined in Remark 8 (see the green edge in Figure 3, for an example).

From these remarks, a component-hypertree can be simplified to contain only
nodes which are computationally useful (see Figures 2 and 3).

Note that a simplified component-hypertree preserves its principal two speci-
ficities: (i) the subgraph of (H, L↓) induced by the subset of nodes K is the
Ω-component-tree, and (ii) the subgraph of (H, L→) induced by the subset of
nodes Sv corresponding to the Ω-connected components obtained at the thresh-
old value v provides a (deterministic) hierarchical decomposition of Xv(I) into
Ωi-connected components (for decreasing values of i).

4.4 Segmentation

The main purpose is now to compute Fα(Zn) for all the Ω-component-trees
of the component-hypertree. (Note that we restrict, in the sequel, our study to
α ∈ ]0, 1[, since the cases α = 0 or 1 can be treated in a more simple way.)

For any N ∈ H, we define the following notions. If Fα(N) = {N} (resp.
Fα(N) �= {N}), we say that N is on (resp. off ). Let d(N) be the set of nodes
D such that (N, D) ∈ L→, i.e., the nodes forming the coarsest partition of N in
4 From an algorithmic point of view, it needs not to be represented since we never

have Fα(Zn) = {Zn}, except in the useless case α = 0 and ≺ is ≤ (when α = 0, the
case ≺ is < should be considered, to get access to the smallest subset including M).
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H. Let d•(N) = {D ∈ d(N) | Fα(D) = {D}} and d◦(N) = d(N) \ d•(N) be the
subsets of d(N) composed of the nodes which are on and off, respectively. We
set {

δ+(N) = α.n(N, M)− (1 − α).p∗(N, M)−
∑

N ′∈ch(N) cα(N ′)
δ−(N) = cα(N)−

∑
D∈d(N) cα(D)

Property 12. If d(N) = ∅ ( i.e., N = {x} (x ∈ E) is a singleton node), then
we have Fα(N) = {N} if x ∈ M and ∅ if x /∈ M (see Definition 2). Moreover,
we straightforwardly have δ−(N) = 0 while δ+(N) = α if x /∈ M and α − 1 if
x ∈ M .

Property 13. In the case where d(N) �= ∅, it derives from the above definitions
that Equation (2) is equivalent to the following inequality

∑

D∈d(N)

δ+(D) ≺
∑

N ′∈ch(N)

δ−(N ′) (3)

Property 14. In the case where d(N) �= ∅, we have Fα(N) = {N} ( i.e., N is
on) if Equation (3) is true and Fα(N) =

⋃
N ′∈ch(N)Fα(N ′) ( i.e., N is off) if

it is false. It can also be proved that we have δ−(N) =
∑

D∈d◦(N) δ+(N) if N is
on, and

∑
N ′∈ch(N) δ−(N)−

∑
D∈d•(N) δ+(N) if N is off. Finally, we also have

δ+(N) =
∑

D∈d(N) δ+(D)−
∑

N ′∈ch(N) δ−(N ′).

From Properties 12–14, we obtain an algorithmic process to recursively com-
pute (in a “bottom-up/right-to-left” fashion) the sets Fα(Zn) in the component-
hypertree, by storing the values δ−, δ+ and performing (at most) one comparison
and a few additions at each node.

4.5 Optimisation

As stated in Section 4.3, the simplification of the component-hypertree data
structure provides a first way to decrease the cost of the computation of Fα.
Some supplementary optimisations derive from the following properties. (These
optimisations require a longer discussion which will be proposed in a further
issue.)

Property 15. When
∑

D∈d(N) δ+(D) ≺ 0 (which happens a fortiori, but not
necessarily, when all the nodes of d(N) are on), we have Fα(N) = {N}. Then,
we can avoid to compute Fα, δ− and δ+ for the nodes N ′ ∈ ch(N) and their
respective subtrees. However it may (sometimes) be necessary to compute lat-
ter δ− and δ+ for some of these unprocessed nodes, due to the (possible) non-
increasingness of Mα with respect to the increasingness of the mask images.

When the segmentations have been computed for a given α, the computation
of new segmentations, for another α, may require to process, once again (poten-
tially) all the nodes of the component-hypertree. However, we have the following
property.
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(a) I (α = 0.01) (b) Ω(I) = I (c) Ω(I) = (δ ◦ ε)(I)

(d) I (α = 0.06) (e) Ω(I) = I (f) Ω(I) = (δ2 ◦ ε2)(I)

(g) J (α = 0.02) (h) Ω(J) = J (i) Ω(J) = (ε ◦ δ)(J)

(j) J (α = 0.03) (k) Ω(J) = J (l) Ω(J) = (ε2 ◦ δ2)(J)

Fig. 4. (a,d) An image I . (b,c) Results with anti-extensive masks for α = 0.01. (e,f)
Results with anti-extensive masks for α = 0.06. (g,j) An image J . (h,i) Results with
extensive masks for α = 0.02. (k,l) Results with extensive masks for α = 0.03.
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Property 16 ([12]). Let 0 ≤ α1 < α2 ≤ 1. Then we have Mα2 ⊆Mα1 .

Its main consequence is the existence, for each node N , of a critical value αc

such that N is on iff α ≺ αc. Consequently, when a node N is switched on (resp.
off) during the processing of the component-hypertree, at a given value α, we
know that αc belongs to [α, 1] (resp. [0, α]). At each new process, the bounding
[α−

c , α+
c ] ⊆ [0, 1] of αc at each node can then be refined. In particular, this may

enable to avoid computation at several nodes, by only checking (in the favourable
cases) whether α ≺ α−

c or α �≺ α+
c .

5 Experiments

The method has been applied for segmentation of drop caps from ancient docu-
ments (provided by the Centre d’Études Supérieures de la Renaissance5). These
images are often noisy, which may lead to undesired connections, or disconnec-
tions when considering a standard connectivity.

In such cases, a “connectivity thresholding”, may lead to improved results,
thus justifying a multiscale connectivity approach. In particular, when erro-
neous connections appear with a standard connectivity (Figure 4(b,e)), discon-
nections can be obtained with anti-extensive filters (Figure 4(c,f)). Conversely,
when structures of interest are disconnected with a standard connectivity (Fig-
ure 4(h,k)), reconnections can be obtained with extensive filters (Figure 4(i,l)).
(Note that the filtered images Ω(.) have been computed with erosions and dila-
tions involving a 3× 3 cross structuring element.)

These examples are representative of the artifacts which may generally appear
in grey-level images, and the induced consequences when they are processed
by connected filtering techniques. The behaviour of the hypertree segmentation
method, qualitatively assessed here, can then be considered as relevant with
respect to the expected results.

6 Conclusion

A new data structure, the component-hypertree, has been presented. It mod-
els, in a compact fashion, several component-trees of a same image, induced
by second-order mask-based connectivity (or, possibly, by any other kind of
connectivity presenting similar properties). It may be seen, in particular, as a
contribution to the concept of multiscale connectivity.

An enriched version of a segmentation method relying on component-trees has
been proposed for this structure. It enables in particular to efficiently compute
the segmentation of an image for several connectivities. This approach, whose
relevance has been partially assessed here, by lack of space, will be described
and validated in a more detailed fashion in a further issue.

It will also be considered to improve this segmentation approach by autho-
rising the computation of results related to distinct (user-defined) connectivity
levels, depending on the position in the image.
5 http://cesr.univ-tours.fr
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Abstract. This paper presents a new streaming algorithm for 1-D morphological
opening and closing transformations on 2-D support. Thanks to a recursive com-
putation technique, the algorithm processes an image in constant time irrespective
of the Structuring Element (SE) size, with a minimal latency and very low mem-
ory requirements, supporting various input data types. It reads and writes data
strictly sequentially in the same (horizontal) scan order for both the horizontal
and vertical SE. Aforementioned properties allow an efficient implementation in
embedded hardware opening a new opportunity of a parallel computation.

1 Introduction

Within several last decades, the Mathematical Morphology (MM) [8] has not only
evolved into a distinguished theory, but it has also settled in useful and practical applica-
tions in a general image analysis, industry control, etc. One branch of these applications
is based on local feature detection, such as local texture orientation or granulometry [6].

The granulometry is a basic texture or random media analysis tool [5]. Traditionally,
it stems from iterative sieving of image elements through successively coarser sieves
obtaining a size distribution. A different approach was introduced by [10] who proposed
a dedicated algorithm to compute the size distribution directly. Obviously, these results
can be used as statistical descriptors in many modern applications based on machine
learning techniques.

The recent development of computer algorithms focuses on decreasing the number
of comparisons per pixel, which are evaluated sequentially, and therefore, have a large
impact on its performance, allocating a large amount of memory. On the other hand,
dedicated hardware systems have usually unlike limitations. The number of compar-
isons is not necessarily of such high importance because they can be evaluated in a
parallel way in, e.g., Field Programmable Gate Arrays (FPGA), Complex Program-
able Logic Devices (CPLD), or even in Graphic Processing Unit (GPU). These systems
are often more memory-limited in terms of the size and bandwidth than computers. In

P. Soille, M. Pesaresi, and G.K. Ouzounis (Eds.): ISMM 2011, LNCS 6671, pp. 296–305, 2011.
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order to comply to this restriction, we assume the strictly sequential input and output
data access as compulsory.

The paper is organized as follows: Section 2 outlines a brief overview of related
morphological algorithms. Section 3 is a reminder of the basic notion of morphological
transformations. Section 4 describes the main principle of the algorithm called Recur-
sive Peak Elimination. Section 5 presents the functional C implementation and a pseu-
docode of the algorithm. Finally, Section 6 presents performance results of computer
benchmarks and a comparison with other algorithms.

1.1 Novelty

We propose a new algorithm for morphological opening and closing with the following
properties. The algorithm processes an image strictly sequentially in horizontal scan
order with the minimal computation latency, which is inferred by the SE. The execu-
tion time is globally constant, independent of SE properties (size, orientation) and data
precision (from 8-bit integer to 64-bit double float), the worst-case of which is upper
bounded. Along with the very low memory requirements, which are much lower than
the mere size of the image to process, these features make the algorithm especially inter-
esting for time-critical and memory-limited hardware systems. Moreover, the sequential
C implementation of this algorithm can also compete with other common morphologi-
cal algorithms.

2 State of the Art

In this section, we present a basic overview of existing 1-D algorithms for morpho-
logical dilation/erosion that are used in computing openings and closings defined later
in this paper. The first fast and still the most popular dilation algorithm is van Herk
[3]. Although the computation complexity is independent of SE, it requires two passes:
causal and anticausal, which makes any stream processing difficult. Later, Gil and Kim-
mel [2] improved van Herk’s algorithm and reduced the number of comparison to only
1.5 per pixel. However, the computing latency depends on the SE size and the memory
requirements are increased.

In [4], Lemire proposed a fast, stream-processing algorithm for causal linear SE. It
also runs on floating-point data, has low memory requirements and zero latency. How-
ever, an intermediate storage of local maxima results in a random access to the input
data. This problem is solved in Dokladal and Dokladalova [1] who proposed a new
algorithm with very low memory requirements and zero latency. Recently, Morard et
al. [7] proposed an algorithm for 1-D closing in arbitrary orientation in constant time
using a stack for temporal storage of recent pixels. However, it uses a random access to
the input and output data, which is inconvenient for hardware implementation.

Another approach of the direct opening computation was published by Van Droogen-
broeck and Buckley [9]. They proposed an anchor based algorithm, where anchors are
these points of the input image that remain unaffected by corresponding operation. A
histogram is used for calculation that makes it dependent on the number of gray levels.
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3 Basic Notions

Let δB , εB: Z2 → R be a dilation and an erosion on grey-scale images, parameterized
by a structuring element B, assumed flat (i.e., B ⊂ Z2), contiguous and translation-
invariant, defined as

δB(f) =
∨

b∈B

fb ; εB(f) =
∧

b∈B̂

fb (1)

The hat ̂ denotes the transposition of the structuring element, equal to the set re-
flection B̂ = {x | −x ∈ B}, and fb denotes the translation of the function f by some
scalar b. The SE B is equipped with an origin x ∈ B.

Let ϕB , γB: Z2 → R be a closing and an opening on grey-scale images, parameter-
ized by a structuring element B, defined as

ϕB(f) = εB[δB(f)] ; γB(f) = δB [εB(f)] (2)

The closing and opening are dual transformations. Hereafter, our explanation is focused
on the opening with no deliberate reason. Notice that the same principles can be applied
to the closing in accordance to the duality property.

4 Principle of Algorithm

We describe the main principles of our algorithm in this section. In the beginning, we
observe the influence of the opening transformation to a 1-D signal so that we can easily
clarify the algorithm behavior afterwards.

At first, let us observe a behavior of the opening transformation (2) to a simple 1-D
signal in Fig. 1. The opening literally cut off the peaks narrower than the length of the
SE, hereafter referred to as L (the closing on the other hand fills the valleys narrower
than L). Remark here that γB is invariant to the translation of the SE B so γB is not
affected by the origin of B.

The proposed algorithm executes the peak cutting recursively, from the top down-
wards. Contrarily to the traditional composition (2), it handles image borders correctly
so the peak of the whole size of L is eliminated, see Fig. 1.

t t
Alg.1

SEf(t) f(t)

t

f(t) γB=δB(εB)SE

(a) (b) (c)

Fig. 1. Effects of opening and closing transformations on a 1-D signal: (a) opening cuts the peaks
off; (b) closing fills the valleys; (c) opening of an edge: our algorithm opens the signal by the full
length of the SE, L, compared to the conventional solution (2) that uses only the half of the SE
length.
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4.1 Recursive Peak Elimination

The Recursive peak elimination (RPE) is a part of the algorithm that manages the suc-
cessive removal of signal peaks. It is composed of two tasks. At first, the input signal
is continuously scanned in order to identify peaks. When a peak is encountered, the
second task of peak elimination is invoked. Remark that a point of an input signal f(x)
is a peak if both its very precedent and subsequent points are smaller, such as

f(x) > f(x− 1) and f(x) > f(x + 1). (3)

The algorithm recognizes 4 basic configurations, see Fig. 2, each of them affects the
algorithm behavior in a different way. Notice that Van Droogenbroeck [9] opening al-
gorithm has 6 configurations. All configurations can be divided into 2 groups; those that
characterize a peak ((a) and (b)), and those that do not ((c) and (d)).

t

f(t)

x+1xx-1t

f(t)

x+1xx-1 t

f(t)

x+1xx-1 t

f(t)

x+1xx-1
(a) (b) (c) (d)

Fig. 2. Four different pixel configuration for peak identification. Conf. (a) and (b) characterize a
peak, conf. (c) and (d) do not.

The peak identification process proceeds as follows. At first, f(x) is compared with
its precedent value f(x − 1). If f(x) < f(x − 1) (configuration (d)), the f(x) value
is not a peak. If not, the following value f(x + 1) is taken into comparison in the next
step. Then if f(x + 1) < f(x − 1) the f(x) value conforms to peak configuration (a);
else if f(x + 1) < f(x) and f(x + 1) > f(x − 1), the peak configuration (b) is en-
countered. Otherwise (f(x + 1) > f(x)), the point f(x) is recognized as configuration
(c), monotonously increasing function.

When a signal peak is identified, it is supposed to be removed by the peak elimination
task. Obviously, the value of a signal peak has no impact of the output signal, and
therefore, it can be immediately discarded out of the computation. The retrieved peak
value is then replaced by one of the two neighboring values in dependence on the peak
configuration. The f(x) is replaced by f(x− 1) in configuration (a), or by f(x + 1) in
configuration (b), respectively.

The flowchart of the whole RPE procedure is depicted in Fig. 3 a. The first step is
always the identification of a peak. In the case a peak is recognized, the elimination
task removes it. After the peak removal, the whole process will be repeated if, and only
if, the peak is of configuration (a). The reason is that a peak may span over more than
one pixel, and therefore, previous pixels must be tested on peak conditions as long as
configuration (a) is recognized. The RPE iterates over previous L pixels only.

The aforementioned method needs the input data to contain a zero value duplicity.
It means that two consecutive data samples must not have the same value (i.e., f(x) �=
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Fig. 3. (a) Flowchart of Recursive Peak Elimination. (b) Illustration of efficient data coding. Each
data plateau is represented by a single pair of {value, last position of plateau}

f(x+1)). In order to handle this condition, the input data are coded into pairs of {value,
last position of plateau} as it is depicted in Fig. 3 b. Hence, if f(x) = f(x + 1) in the
input data, the previously stored value of the plateau is discarded and replaced by the
later one. In this case, the RPE process is not necessary, and therefore, it is not issued
for current pixel f(x+1). Notice that if a plateau is a peak, it will be removed in a single
operation. The position also defines whether a pixel belongs to the SE that moves over
data.

5 Implementation

In this section we describe the C implementation of the proposed algorithm capable of
operating with horizontally- and vertically-oriented 1-D SE. In both cases, the input and
output data access is strictly sequential in the horizontal scan order (each line is read
from the left to the right, line by line). For the sake of simplicity, let us consider the
horizontal SE first.

The implementation uses the double-end FIFO (First In First Out) structure called
queue that serves as an elementary memory block to store the previously received val-
ues. It allows us to read and delete values from both ends of an ordinary FIFO.

The algorithm is composed of 2 parts. The first is an executive part that contains all
the necessary commands to process one input data sample and output one result data
sample according to the before mentioned principles. It manages the data-flow, borders
handling, and the whole computation itself. See Alg. 1 for a pseudocode listing. The
second one is an iterative, double for-loop part that is intended to call Alg. 1 for each
point of the input image the listing of which is obvious, and therefore, omitted. For
correct handling of borders, the input image area is extended by padding of size L in
the direction of the SE orientation. For example, considering SVGA image 800 × 600
px, horizontal SE 25 px, the image area for Alg. 1 is 825×600.

The single call of Alg. 1 proceeds as follows. At first, the large while-loop removes
the input data value duplicity, and executes the RPE. As it was described at section
4.1, it comprises of the peak identification using 4 configurations and the peak elim-
ination. The while condition F ≤ Q.back()[1] terminates the RPE when a non-peak
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Algorithm 1. Y ← 1D OPEN (F, rp, SE, Q)
Input: F - input signal sample f(rp); rp - actual reading position; L - SE size; Q -

pointer to actual Queue
Result: Y - sample of opening γ[f(t)](rp − L)
Data: Q - a Double-End Queue

Q.back()[] - access the last enqueued pair {F , rp}
Q.back(2)[] - access the second to the last enqueued pair {F , rp}

1 while F ≤ Q.back()[1] do
2 if F = Q.back()[1] then
3 Q.dequeue() ; // Dequeue constant value, prevent value duplicity
4 break ; // Exit while loop
5 else
6 if Q.back(2)[1]<Q.back()[1] then
7 if F < Q.back(2)[1] then
8 Q.back(2)[2] ← Q.back()[2] ; // Copy peak position, conf. (a)

9 Q.dequeue() ; // Peak elimination, conf. (b), (a)
10 else
11 break ; // Exit while loop, conf. (d)

12 Q.push({F , rp}) ; // Enqueue current sample
13 if rp = Q.front()[2] + L then
14 Q.pop() ; // Delete outdated value

15 if rp ≥ L then
16 return (Q.front()[1] ) ; // Return valid value
17 else
18 return ({}) ; // Return empty

configuration (c) (or possibly (d)) is encountered. The condition on line 2 retrieves the
last stored value from the queue if it is equal to the current sample to prevent the value
duplicity. The following condition on line 5 evaluates two previously stored pixels to
exclude configuration (d). If this condition is fulfilled, the last stored pixel is identified
as a peak. The peak is then retrieved by Q.dequeue() on line 9. The small exception is
configuration (a) that needs the peak position Q.back()[2] to rewrite the position of the
pixel Q.back(2)[2] whose value replaces the peak, see line 8.

After a potential peak is eliminated, the current pixel value is unconditionally pushed
into the queue along with actual reading position on line 12. The oldest stored pixel is
checked whether it has been stored in the queue for too long. This check is carried out
by comparing the stored reading position plus L with actual rp on line 13. Outdated
values are immediately deleted. The result of Alg. 1 is always the oldest stored value if
rp already exceeds L (code line 15).

5.1 Horizontal and Vertical Orientation

The algorithm described so far considers only horizontal SE due to the horizontal scan
fetches the input data in the same order as the algorithm needs. In order to use the
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vertical SE in the same way, all existing algorithms either use a vertical data scan or
transpose the image. Both result in increased memory usage and thus reduced perfor-
mance. We, on the other hand, modified the algorithm to work with a vertical SE in a
horizontal scan order instead.

With horizontal orientation, the algorithm reads the scan-ordered input image, pro-
cesses it according to Alg. 1, and outputs the scan-ordered results as soon as they are
available. An example of the image situation while processing the result of a transfor-
mation at the position [i,j] is shown in Fig. 4. The computation latency is defined as
a distance in the image between the actual input and output value, and it is kept at the
minimal value of L (see distance of columns k − i in Fig. 4).

On the other hand, the combination of the horizontal scan and the vertically oriented
SE disallows the computation in a single queue. Because the horizontal scan approaches
columns in a cyclic pattern (1, 2, .. N , 1 etc.), each column requires an independent
queue where the computation from the corresponding column is carried out separated
of each another. The executive Alg. 1 remains unchanged; the pointer to queue is its
input parameter. Fig. 4 depicts an image while outputting the result at the position [i,j].
Note that the latency is again defined by L (lines k−j), but it is further multiplied by the
width of the image N . Nevertheless, it is the minimal achievable latency considering
the orientations of the SE and the scan order.

1 i k N
1

tos: -3 -2 -1 0 tos: 1 2 3 4
j

Pixels stored in 
queue (amount = SE)

M

Pixels to be read 
& time offset

Output pixels & 
time offset

(a) Horizontal

1 i N
1

tos: -3 -2 -1 0
j

.  .  .
.  .  .

.  .  .
.  .  .

k
M tos: 1 2 3 4

.  .  .
.  .  .

(b) Vertical

Fig. 4. Input image when processing a pixel at location [i,j] with (a) a horizontal SE, and (b) a
vertical SE. × denotes the pixels to be read in next iterations, ◦ denotes the previously output
pixels.

The proposed algorithm targets the memory limitation. The only memory elements
are queues whose depth and amount are implied by the SE size L and image width N .
For example, let us consider an opening of 8-bit, SVGA image, i.e., 800×600 px by a
SE of 41 px. The queues occupy only 588 bits for horizontal, and 469 kbits for vertical
SE, respectively, compared to the mere size of the image 3.66 Mbits which is never
stored.

6 Experimental Results

We present the processing execution time benchmarks to illustrate the computational
complexity in this section. We used the g++ compiler with -O3 optimization flag. The
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measurements were performed on Intel Xeon E5620 @2.4GHz CPU, with 24 GB RAM
at 1333 MHz, running Linux. The time reported in tables below refers to the user CPU
time consumed by the respective algorithms. We use the mountain natural photo as a
testing image, originally introduced at [9], see Fig. 5.

Fig. 5. Natural photo testing image: mountain.

0.48 1.92 4.32 7.68 12 17.28

10
0

10
1

→ Image size [Mpx]

  800x600  

  1600x1200

  2400x1800

  3200x2400

  4000x3000

  4800x3600

→
 E

xe
cu

tio
n 

tim
e 

[s
]

Fig. 6. Execution time of opening versus the image size. Structuring element is vertical L =101
px.

At first, we evaluated the execution time benchmark with respect to the increasing
image size, see Fig. 6. The results demonstrate that the complexity of our algorithm is
linear with the image size. The second benchmark in Fig. 7 retains the same image size
and changes the length of the horizontal SE to show that the size of the SE L does not
affect the performance, observe the constant execution time values for L = 11 to 101
px. However, the execution time is dependent on the image content.

The same Fig. 7 also illustrates the comparison with other dilation/erosion algorithms
(naive, van Herk [3], Lemire [4], Gil and Kimmel [2], and Dokladal and Dokladalova
[1]) that form an opening by composition (2), and opening algorithm (Van Droogen-
broeck [9] and Morard et al. [7]). Our algorithm brings better results than other dila-
tion/erosion algorithms, but worse results than opening/closing algorithms. On the other
hand, neither Van Droogenbroeck nor Morard et al. can process streamed data due to
the random access to data. Van Droogenbroeck further uses a histogram that becomes
computationally very demanding with increasing number of grey levels.
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Fig. 7. Execution time of opening versus the size of the horizontal SE L. Natural photo 800 ×
600 px is used.

Table 1 presents the execution time for different images. The best result is achieved
with a constant image, which is not changed by opening {ϕBI = I | I = const., ∀B},
the most demanding image is that containing random noise.

Table 1. Execution time of opening versus the image type. Structuring element is horizontal or
vertical L =101 px; image size is 800 × 600 px.

Image type constant natural random noise

Execution time, horizontal SE [ms] 5.1 9.0 9.3
Execution time, vertical SE [ms] 5.2 10.6 12.4

The last experiment reveals the influence of the image data precision to the execution
time. The results suggest that although the performance is slightly lower for long integer
and floating point data formats, the absolute difference is not significant.

Table 2. Execution time of opening versus the data type. Structuring element is vertical segment
L =101 px; image size is 800 × 600 px.

Data type char short int long float double

Bit length 8 16 32 64 32 64
Execution time [ms] 10.7 10.5 10.6 11.6 11.3 11.9
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7 Conclusions

This paper deals with a new algorithm for 1-D morphological opening and closing trans-
formations with beneficial properties: The computational complexity is linear w.r.t. im-
age size and independent of the SE size. The operator uses strictly sequential access to
data in horizontal scan order for both vertical and horizontal SE. Along with the low
latency and low memory requirements, these features make algorithm suitable for di-
verse real-time HW application, as well as it brings good performance in the sequential
C implementation.

The future extension and undergoing work are two: 1) a rotation of the SE under ar-
bitrary angle enables another group of applications, such as dominant angle, orientation
distribution etc. 2) dedicated FPGA and GPU implementations taking advantage of the
proposed algorithm that is tailored just for this purpose. Such a system shall be able
to compute the whole (size, orientation) distribution during a single image scan with
minimal latency.
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Abstract. The new generation of very high resolution sensors in air-
borne or satellite remote sensing open the door to countless new applica-
tions with a high societal impact. In order to bridge the gap between the
potential offered by these new sensors and the needs of the end-users to
actually face tomorrow’s challenges, advanced image processing methods
need to be designed. In this paper we discuss two of the most promis-
ing strategies aiming at a hierarchical description and analysis of remote
sensing data, namely the Extended Attribute Profiles (EAP) and the Bi-
nary Partition Trees (BPT). The EAP computes for each pixel a vector
of attributes providing a local multiscale representation of the informa-
tion and hence leading to a fine description of the local structures of the
image. Using different attributes allows to address different contexts or
applications. The BPTs provide a complete hierarchical description of
the image, from the pixels (the leaves) to larger regions as the merging
process goes on. The pruning of the tree provides a partition of the image
and can address various goals (segmentation, object extraction, classifi-
cation). The EAP and BPT approaches are used in experiments and the
obtained results demonstrate their importance.

1 Introduction

Satellite and airborne remote sensing is currently undergoing a technical revo-
lution with the appearance and blooming development of very high resolution
sensors, the term resolution having the following three meanings:
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– Spatial resolution: Metric and sub-metric resolutions are now currently avail-
able for satellite remote sensing. A high spatial resolution opens the door for
very accurate geometrical analysis of objects present in scenes of study.

– Spectral resolution: After decades of use of multispectral remote sensing,
most of the major space agencies now have new programs to launch hyper-
spectral sensors, recording the reflectance information of each point on the
ground in hundreds of narrow and contiguous spectral bands. The spectral
information is instrumental for the accurate analysis of the physical compo-
nent present in one scene.

– Temporal resolution: Due to the launch of constellations of satellites and the
increasing number of operating systems, the temporal resolution between two
acquisitions over a given scene of interest has dramatically decreased. This
opens the door to the accurate monitoring of abrupt changes and to efficient
response in case of major disasters. Temporal phenomena with longer scales
may also be monitored.

The accurate analysis of remote sensing images is an important task for many
practical applications with high societal impact, such as precision agriculture,
monitoring and management of the environment, urban planning, natural haz-
ards and disasters management, security and defense issues. However, in order
to fully exploit the potential offered by the new generations of sensors and to
actually face all the emerging applications, advanced image processing methods
are required. As a matter of fact, most of the traditional processing algorithms
fail when the resolution increases significantly. For instance, statistical learning
becomes intractable with hyperspectral data because of the dimensionality of the
data. Similarly, while it was easy to classify urban versus non urban areas with
medium resolution data, very high resolution data enable the accurate classifi-
cation at the building scale, but this requires to completely redesign the whole
processing chain.

While the spectral information is usually used to perform a pixel-wise clas-
sification of the data based on the physical properties of the sensed materials,
extracting meaningful spatial information, characterizing the sensed landscape
in a complementary way with respect to the spectral signatures of the land cov-
ers, is a challenging task for an accurate analysis of the structures in the image.
Recently, Daya Sagar and Serra [1] underlined how the retrieval and characteri-
zation of the spatial information is a current challenge for geoscience scientists.
Due to the wide range of features related to the spatial domain, there are several
ways of characterizing this source of information. From a general survey of tech-
niques modeling the spatial information in remote sensing, one can notice that
there are different approaches for extracting the spatial information and corre-
spondent ways (with different levels of abstraction) for including the extracted
information in the processing chain aiming at the understanding of the image.
Roughly, it is possible to group the techniques in three approaches (ordered in-
creasingly according to the level of semantic introduced in the representation of
the scene):
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1. techniques aiming at modeling the spatial context at a pixel-level by looking
at the neighborhood of each pixel [2, Chap. 8],[3, Chap. 6],[4,5,6,7];

2. techniques based on segmentation that exploits the partition of the image
into regions by extracting spatial features that can describe the structures
in the scene [8, Chap. 5][9,10,11,12,13,14,15];

3. techniques working at the object level where also the thematic characteristics
and the relations between structures are taken into account [16,17,18,19,20].

It this scenario, Mathematical Morphology (MM) [21,22,23,24] holds a funda-
mental role since it provides a set of powerful tools for analyzing the spatial
domain.

In 2002, Soille and Pesaresi [25] identified the main applications in the con-
text of remote sensing image analysis that could be addressed by MM: i) image
filtering; ii) image segmentation and iii) image measurements. Thus, MM tools
permit to enrich the image analysis by including spatial information mainly at
pixel- and region-level, and, in the decade following this milestone paper, numer-
ous techniques involving MM for the analysis of remote sensing images have been
proposed. In particular, focusing the attention on very high resolution (VHR)
images, we highlight the consolidation of the role of connected operators [26,27]
as efficient filters for achieving a simplification of the image obtained by only
merging flat zones (i.e., avoiding the detriment of the geometrical features of the
regions unaffected by the transformation). Connected operators have gained pop-
ularity also due to the successful diffusion of Morphological Profiles (MPs) [9,28].
MPs are a multiscale decomposition of a grayscale image in a stack of filtered
images obtained by transforming the input scene with a sequence of opening and
closing by reconstruction filters (i.e., connected operators) based on structuring
elements (SEs) with fixed shape and increasing size. In [25] it was also fostered
that multiscale and multidirectional segmentation methods based on the concept
of MP were promising approaches since they could lead to a further exploitation
of MM tools in the remote sensing field. Accordingly, not only the multiscale
or multidirectional approaches have confirmed their suitability to the extraction
of the spatial information but furthermore, techniques performing more general
multilevel analyses have been proposed.

Moreover, with a further step forward on the path leading to the semanti-
cal understanding of the scene, hierarchical representations of structures in the
image have started to be successfully exploited[29,30]. In particular, the use
of Binary Partition Trees (BPT) [31] has been recently investigated in remote
sensing for various applications (segmentation, classification, object detection)
[32,33,34,35].

This paper is organized as follows. General considerations on the multilevel
and hierarchical approaches are given in the next section. Sec. 3 is devoted to the
presentation of the Attribute Profiles, a generalization of MPs based on attribute
connected filters. Sec. 4 is devoted to the presentation of Binary Partition Trees
and their use for the analysis of hyperspectral data. Finally, concluding remarks
are presented in Sec. 5.
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2 Multilevel Analyses and Hierarchical Representations
of the Scene

The intrinsic mixture of land covers in natural landscapes can lead to a very
complex imaged scene especially when dealing with dense urban areas and VHR
images. Multiscale approaches have proved to be suitable for extracting the
components relevant for the application, crawling the overwhelming informa-
tion given by the huge amount of details [36,10]. The MP leads to a multiscale
decomposition of the image (in bright and dark components) since it can be
seen as a sequential configuration of the scene with a progressively decreasing
amount of either bright or dark details [9]. Thus, by considering the behavior
of the grayscale value of each pixel as the size of the SE varies, it is possible to
extract information on the scale (i.e., size) of the objects in the image. Using
linear SEs with different directions (i.e., morphological directional profiles [25])
enables the characterization of the structures on the basis of their orientation
and length. Another recent development dealing with advanced morphological
directional operators applied to remote sensing data is the use of path opera-
tors for the detection of the road network on VHR remote sensing images [37].
With the presence of heterogeneous structures in the image, a multiscale or mul-
tidirectional approach is compulsory since an analysis carried out at a single
scale/direction would lead to a partial extraction of the spatial characteristic of
interest. However, apart from the scale and direction, other parameters can be
used for a more complete characterization of the objects in the scene (e.g., for
modeling the shape or texture). Extending the multiscale idea, if the image is
progressively simplified by performing a sequence of transformations with a vary-
ing parameter, it is possible to obtain a more general multilevel decomposition of
the image. Attribute filters [38] proved to be suitable for implementing this idea.
If applied in a sequence with fixed attribute and varying reference used in the
definition of the predicate we obtain Attribute Profiles (APs) [39,40], which can
be considered as a generalization of the MPs. By exploiting the use of attribute
filters in the AP structure, it is possible to perform a multilevel analysis (i.e.,
decomposition) of the image according to many possible characteristics (e.g.,
geometric, textural, spectral, etc.) due to the freedom in the definition of the
predicate. Moreover, according to the attribute, it is possible to extract features
on the scene whose significance is closer to the conceptual information that is
sought (e.g., the attribute area can better fit the general concept of size than
might the width of a SE).

In the framework of mathematical morphology, representations of an image
as a hierarchical tree structure of connected components have been proposed.
Examples of hierarchical structures are min- and max-trees [41], inclusion-trees
(or tree of shapes) [42] and binary partition trees (BPTs) [31].

Min- and max-trees are based on the region inclusion obtained by perform-
ing a threshold decomposition [43] of the image. Inclusion tree relies on the
saturation operator, which basically fills the holes in the regions. BPTs store
a hierarchical region-based representation in a tree structure. This provides a
hierarchy of regions at different levels of resolution to cover a wide range of
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applications. This generic representation, independently from its construction,
can be used in many different applications such as segmentation, classification,
indexing, filtering, compression or object recognition [31,35]. Depending on the
definitions of the used region model and the distance used to determine the or-
der of merging of regions, different BPTs can be constructed. Once a BPT is
constructed, providing a full hierarchical representation of the information, the
pruning step must be defined in order to either segment simplify the image or
to select one given node (object detection).

Recently, such structures have started to be exploited also in remote sensing,
mainly for image classification and segmentation [39,40,44,32,33,34,35,45,46].
The hierarchical representation of the images is not only useful for comput-
ing efficient algorithmic implementations of some MM operators [47] but can
give important information on the relations between the regions in the image,
since the nodes in the tree can refer to salient objects in the image.

3 Attribute Profiles and Extended Attribute Profiles

In this section we review the definition of a generalization of the concept of the
MP, i.e the Attribute Profile [40] and its extension for multichannel data, the
Extended Attribute Profile [44]. For a review of ten years of developments of the
MP, the reader is referred to [48].

3.1 Attribute Profiles

Attribute profiles were proposed in [40] for overcoming the limitation of the MP
to model other feature than the size of the objects. APs are based on attribute
filters [38] and thus, can process the image according to features such as the
contrast, texture, geometry, etc. Analogously to the MP, the AP operates either
on bright or dark component with attribute thinning and attribute thickening as
operators, respectively. The AP can be defined as a concatenation of a thickening
attribute profile, ΠφT ′ , and an thinning attribute profile, ΠγT ′ computed with
a generic ordered criterion T ′:

AP (f) =

{
Π

φT ′
λ
, λ = (n− 1 + i), ∀λ ∈ [1, n];

Π
γT ′

λ
, λ = (i− n− 1), ∀λ ∈ [n + 1, 2n + 1].

}

. (1)

With T ′ = {T1, T2, . . . , Tn} the set of ordered criteria, for Ti, Tj ∈ T ′ and j ≥ i,
the relation Ti ⊆ Tj holds. The family of criteria needs to be ordered for guaran-
teeing that the absorption property is fulfilled by the AP (condition that might
not be verified for non increasing predicates). The fulfillment of the absorption
property ensures the consistency of the derivative of the AP (DAP). Different
information can be extracted from the structures in the scene according to the
attribute and criterion considered in the filtering leading to different multilevel
decompositions of the image. Moreover, the computation of the APs, when based
on the min- and max-tree representation of the image, leads to an efficient im-
plementation of the multilevel filtering. In particular, an AP can be obtained
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by building up only once a max- and a min-tree for the thinning and thickening
transformations, respectively, and by performing each filtering of the sequence
as a different pruning of the tree.

3.2 Extended Attribute Profiles (EAP)

In [44] the AP was extended to multichannel images as proposed in [49]. Thus
the EAP is obtained by computing an AP on each of the c principal components
extracted from the original multichannel data (e.g., hyperspectral image):

EAP (f) = {AP (PC1), AP (PC2), . . . , AP (PCc)}. (2)

When considering different attributes, it is possible to stack in the same data
structure the EAP computed with each attribute, leading to the definition of
Extended Multi-Attribute Profile (EMAP) [44]:

EMAP (f) = {EAPa1(f), EAP ′
a2

(f), . . . , EAP ′
am

(f)} (3)

with ai a generic attribute and EAP ′ = EAP\{PC1, . . . , PCc} for avoiding the
multiple presence of the c principal components.

APs and EAPs were used for the thematic classification of panchromatic VHR
images [40] and hyperspectral images [44] proving that the extraction of different
spatial features can lead to greater accuracies in comparison with those obtained
by considering MPs and EMPs, respectively. In [50], the APs were considered
for change detection on VHR images showing promising results in providing a
characterization of the changes complementary to the one given by the classical
spectral analysis.

4 Binary Partition Trees for the Analysis of
Hyperspectral Data

Hyperspectral sensors collect multivariate discrete images in series of narrow and
contiguous wavelength bands. The resulting data sets enable the characterization
of regions based on their spectral properties. Conventional analysis techniques
have traditionally considered these images as an unordered array of spectral
measurements. In the last few years, the importance of the spatial information
considering, in particular, spatial correlation and connectivity in the image has
been proved. As previously mentioned, this information turns out to be essential
to interpret objects in natural scenes. Hence, hyperspectral analysis tools should
take into account both the spatial and spectral spaces. However, the number
of wavelengths per spectrum and pixel per image as well as the complexity of
handling spatial and spectral correlation explain why this approach is still a
largely open research issue.

Over the past decade, Binary Partition Trees have been used for various pur-
poses in various contexts for grey scale and color images. Due to the high di-
mensionality of the data, extending the use of BPTs to hyperspectral images is
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a very challenging issue. This has been recently investigated, as a way to provide
an abstraction from the pixel-spectrum-based representation[32]. Note that the
use of BPTs has also recently been investigated in the frame of polarimetric
SAR images filtering and segmentation [51]. This representation [31] hierarchi-
cally stores a region-based representation in a tree structure, as illustrated on
Fig. 1, and provides a hierarchy of regions at different levels of resolution to
cover a wide range of applications. This generic representation can be based on
an iterative region merging algorithm but requires a region similarity metric and
a region model. The region model MR specifies how regions are represented and
how to model the union of two regions. The merging criterion O(Ri, Rj) defines
the similarity between neighboring regions and hence determines the order in
which regions are merged. Working with hyperspectral data, the definition of
both concepts is not straightforward. Regarding the region model, a non para-
metric statistical model (a multi-dimensional histogram) is used [52]. This leads
to the definition of a robust distance between histograms taking into account the
correlation between bands. Different hyperspectral region models and similarity
metrics are presented and analyzed in [33] and a new merging strategy using a
new association measure depending on canonical correlations relating principal
coordinates is proposed in [35].
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Fig. 1. Example of BPT construction using a region merging algorithm

Once the BPT is constructed, a second step consists in designing a pruning
strategy meeting the goal of the addressed application. These two steps (con-
struction and pruning of the BPT) are separate: the construction is based on
the intrinsic information of the image, while the pruning should be related to
the application. A new pruning strategy aiming at the segmentation of hyper-
spectral images is proposed in [34]: the regions contained in the BPT branches
are studied by recursive spectral graph partitioning. The goal is to remove sub-
trees composed of nodes which are considered to be similar. To this end, affinity
matrices on the tree branches are computed using a new distance-based measure
depending on canonical correlations relating principal coordinates.
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4.1 Experimental Analysis

4.2 Experiments Based on APs and EAPs

In [40] the APs were used for extracting spatial features considered for the clas-
sification of two Quickbird panchromatic images acquired on the city of Trento
(Italy). The APs were computed with three attributes: i) area; ii) moment of in-
ertia [53]; and iii) standard deviation. The area attribute was chosen for modeling
the size of the structures in the image, the moment of inertia for extracting infor-
mation on the shape of the regions and the standard deviation was considered as
a descriptor of the spectral homogeneity of the objects. In the experiments, each
AP was firstly classified by a Random Forest (RF) classifier [54] separately and
then all the APs stacked together were considered. The use of different attributes
led to the extraction of complementary information from the scene leading to
increasing accuracies when considered in classification. In terms of classification
errors, a decrease in the kappa error up to 38% and 17% with respect to the
original panchromatic image and the MP, respectively was experienced when
considering the APs.

The EAPs were used in [44] for the classification of two hyperspectral images
acquired on Pavia. Four attributes were considered in the analysis by building the
four correspondent EAPs: i) area of the regions; ii) diagonal of the box bounding
the region; iii) moment of inertia; iv) standard deviation of the gray-level values
of the pixels in the regions. All the EAPs computed were also considered together
in the EMAP structure. A RF classifier was employed for classifying the features
extracted by the profiles. The inclusion of the spatial information led to an
increase in accuracy of up to 21.9% with respect to considering only the PCs
(spectral information only). In the experiments the use of the proposed EAPs
and EMAP led to an increase of overall accuracy up to about 12% over the
results obtained by considering the EMP. Particulars of the classification maps
obtained are shown in Fig. 2.

4.3 Experiments Based on BPTs

We present here some results dealing with segmentation, object detection and
recognition as these are important challenges in remote sensing images. The
automated selection of results in hierarchical segmentations combining spec-
tral/spatial information has been previously studied [30]. Despite of some in-
teresting results, problems regarding under and over-segmentation remained.
Adequately pruning BPT representations combining spectral and spatial fea-
tures can overcome some of these limitations.

We first provide an evaluation of the BPT pruning proposed in [34]. The ex-
periments have been performed using a portion of Pavia Center image from hy-
perspectral ROSIS sensor. The data contain 102 spectral bands. Fig. 3(a) shows
a RGB combination of three of them. The BPT is computed by the procedure
described in [34]. To evaluate the quality of the BPT pruning, we compare the
results obtained with a Min cut applied on the BPT against a trivial pruning
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Pavia data set. (a) True color composition; (b) Reference map. Details of the
classification maps obtained with a RF classifier and: (c) the PCs, (d) the EMP, (e) the
EAP with area attribute, and (f) the EMAP.
Thematic classes: trees, asphalt, bitumen, gravel, metal sheets, shad-
ows, meadows, self-blocking bricks, bare soil.

criterion based on the number of regions in the BPT following the merging se-
quence [33]. To evaluate the resulting partitions, the symmetric distance dsym

[55] is computed with the manually set ground truth (GT) shown in Fig. 3(b).
Fig. 3(c)(d) show the segmentation results obtained with the trivial and the
Mincut BPT pruning, respectively. In both cases, the partitions have 54 regions.
Comparing both results, the quantitative dsym and the visual evaluation cor-
roborate that the partition obtained by the advanced pruning is much closer to
the ground truth than the one computed with a simple stopping of the region
merging algorithm.

The second set of experiments is performed using a portion of a publicly avail-
able HYDICE hyperspectral image. After removing water absorption and noisy
bands, the data contain 167 spectral bands. Fig. 4(a) shows a RGB combination
of three of them. To evaluate the quality of the BPT construction (and not the
pruning strategy), we extract a segmentation result involving a given number
NR of regions by undoing the last NR − 1 mergings over the initial partition.
The result is compared with the classical Recursive Hierarchical Segmentation
algorithm (RHSEG), the similarity criterion used for RHSEG being SAM with
spectral clustering weight 0.1 [29,11]). The manually created GT is shown in
Fig. 4(b). Fig. 4(c)(d) show the segmentation results obtained with BPT and
RHSEG, respectively. In both cases, the resulting partitions involve 63 regions.
Again, the qualitative visual inspection and the quantitative evaluation assess
the interest of the BPT representation.

Finally, object detection and recognition is also considered. By combining sim-
ple shape descriptors (area, elongation of an oriented bounding box) with spec-
tral information (typical spectrum for one given class), one can select
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(a) Composed RGB (b) Ground Truth

(c) Pruning by number of regions (d) Min Ncut Pruning BPT

Fig. 3. (a) Pavia Center ROSIS RGB Composition, (b) Manually created Ground
Truth, (c) Partition extracted from the trivial pruning leading to dsym=40, (d) Parti-
tion computed with the proposed pruning leading to dsym=20

(a) Composed RGB (c) BPT, 63 regions (e) Extracted roads

(b) Ground Truth (d) RHSEG, 63 regions (f) Extracted buildings

Fig. 4. a) Urban HYDICE RGB Composition, (b) Manually created Ground Truth,
(c) Partition extracted from BPT leading to dsym =25, (d) Partition computed with
RHSEG [29] leading to dsym =70, Roads (e) and Buildings (f) detection based on BPT
representation

various nodes within the BPT [35]. Results of this object-oriented pruning are
presented on Fig. 4(e)(f) for the detection of roads and buildings, respectively.
These results are very promising and outperform standard pixel-wise spectral
classification [35]. Gathering connected pixels belonging to meaningful
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structures into specific nodes, the BPT again turns out to be extremely well
suited to the analysis of remote sensing data.

5 Concluding Remarks

Using airborne or satellite platforms, remote sensing is playing a key role in a
growing number of applications. The acquired images are more and more com-
plex: increased dimensionality in the case of hyperspectral data, increased com-
plexity of details in the case of images with very high spatial resolution. The
structures of interest in these images are of various scales and shapes. In order
to tackle the induced issues, multi-scale and hierarchical processing methods are
highly desirable. In this context, mathematical morphology provides a set of
extremely powerful tools, such as the attribute filters and the binary partition
trees. In this paper, we reviewed these strategies, pointing key features regard-
ing their use and extension to remote sensing data. Excellent performances have
been achieved on a variety of applications: segmentation, classification or object
detection and recognition.

Some open issues remain. We can cite a few of them: when dealing with one
specific application, how can one select the optimal set of attributes? Is there a
way to achieve scale invariant processing - over what range of scales? - in order
to increase the generality of the algorithms? Regarding the spectral dimension:
while it is now widely recognized that spatial-spectral approaches dramatically
increase the classification performances, the two dimensions (spectral and spa-
tial, respectively) are considered either sequentially or in parallel with a data- or
decision fusion step to merge them. Is there a way to take both dimensions into
account in a more intricate way? Are the norms and distances designed for the
case of hyperspectral data (typically with a few hundreds bands) robust when
the dimension drastically increases, as in the case of the ultra-spectral images
(typically a few thousands of bands)? Finally, we must underline that this paper
was mostly focused on optical data. Images formed using radar sensors (syn-
thetic aperture radar, polarimetric or interferometric data) are also increasingly
used and also require new developments. A few papers are already available,
but the problematic is quite different as the signal to noise ratio is significantly
lower than for optical data and the information about the physical nature and
geometry of the actual structures is much more difficult to access. There will
undoubtedly be more developments dealing with these data in the coming years.

References

1. Daya Sagar, B.S., Serra, J.: Spatial information retrieval, analysis, reasoning and
modelling. International Journal of Remote Sensing 31(22), 5747–5750 (2010)

2. Richards, J.A., Jia, X.: Remote sensing digital image analysis: an introduction.
Springer, Heidelberg (2006)

3. Miller, H., Han, J.: Geographic data mining and knowledge discovery. Chapman &
Hall/CRC data mining and knowledge discovery series. CRC Press, Boca Raton
(2009)



Hierarchical Analysis of Remote Sensing Data 317

4. Jhung, Y., Swain, P.: Bayesian contextual classification based on modified m-
estimates and markov random fields. IEEE Transactions on Geoscience and Remote
Sensing 34(1), 67–75 (1996)

5. Datcu, M., Seidel, K., Walessa, M.: Spatial information retrieval from remote-
sensing images. i. information theoretical perspective. IEEE Transactions on Geo-
science and Remote Sensing 36(5), 1431–1445 (1998)

6. Melgani, F., Serpico, S.: A markov random field approach to spatio-temporal con-
textual image classification. IEEE Transactions on Geoscience and Remote Sens-
ing 41(11), 2478–2487 (2003)

7. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classifi-
cation. IEEE Transactions on Systems, Man and Cybernetics 3(6), 610–621 (1973)

8. Jong, S., Meer, F.: Remote sensing image analysis: including the spatial domain. In:
Remote Sensing and Digital Image Processing, vol. 1. Kluwer Academic, Dordrecht
(2004)

9. Pesaresi, M., Benediktsson, J.A.: A new approach for the morphological segmen-
tation of high-resolution satellite imagery. IEEE Transactions on Geoscience and
Remote Sensing 39(2), 309–320 (2001)

10. Bruzzone, L., Carlin, L.: A multilevel context-based system for classification of
very high spatial resolution images. IEEE Transactions on Geoscience and Remote
Sensing 44, 2587–2600 (2006)

11. Tarabalka, Y., Benediktsson, J., Chanussot, J., Tilton, J.: Multiple spectral-spatial
classification approach for hyperspectral data. IEEE Transactions on Geoscience
and Remote Sensing 48(11), 4122–4132 (2010)

12. Tarabalka, Y., Benediktsson, J.A., Chanussot, J.: Spectral & spatial classification
of hyperspectral imagery based on partitional clustering techniques. IEEE Trans-
actions on Geoscience and Remote Sensing 47(8), 2973–2987 (2009)

13. Tarabalka, Y., Chanussot, J., Benediktsson, J.A.: Segmentation and classification
of hyperspectral images using minimum spanning forest grown from automatically
selected markers. IEEE Transactions on Systems Man and Cybernetics Part B:
Cybernetics 40(5), 1267–1279 (2010)

14. Tarabalka, Y., Chanussot, J., Benediktsson, J.A., Angulo, J., Fauvel, M.: Segmen-
tation and classification of hyperspectral data using watershed. In: Proc. IEEE
International Geoscience and Remote Sensing Symposium 2008, IGARSS 2008,
July 7-11, vol. 3, pp. III–652–III–655 (2008)

15. Gaetano, R., Scarpa, G., Poggi, G.: Hierarchical texture-based segmentation of
multiresolution remote-sensing images. IEEE Transactions on Geoscience and Re-
mote Sensing 47(7), 2129–2141 (2009)

16. Navulur, K.: Multispectral Image Analysis Using the Object-Oriented Paradigm.
CRC Press, Inc., Boca Raton (2006)

17. Blaschke, T., Lang, S., Hay, G.: Object-based image analysis: spatial concepts for
knowledge-driven remote sensing applications. Lecture notes in geoinformation and
cartography. Springer, Heidelberg (2008)

18. Nicolin, B., Gabler, R.: A knowledge-based system for the analysis of aerial images.
IEEE Transactions on Geoscience and Remote Sensing GE-25(3), 317–329 (1987)

19. Hay, G.J., Blaschke, T., Marceau, D.J., Bouchard, A.: A comparison of three image-
object methods for the multiscale analysis of landscape structure. ISPRS Journal
of Photogrammetry and Remote Sensing 57(5-6), 327–345 (2003)

20. Aksoy, S., Koperski, K., Tusk, C., Marchisio, G., Tilton, J.: Learning bayesian
classifiers for scene classification with a visual grammar. IEEE Transactions on
Geoscience and Remote Sensing 43(3), 581–589 (2005)



318 J.A. Benediktsson et al.

21. Serra, J.: Image Analysis and Mathematical Morphology. Theoretical Advances,
vol. 2. Academic Press, New York (1988)

22. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London
(1983)

23. Soille, P.: Morphological Image Analysis, Principles and Applications, 2nd edn.
Springer, Berlin (2003)

24. Najman, L., Talbot, H.: Mathematical Morphology. Wiley-ISTE (August 2010)

25. Soille, P., Pesaresi, M.: Advances in mathematical morphology applied to geo-
sciences and remote sensing. IEEE Transactions on Geoscience and Remote Sens-
ing 40, 2042–2055 (2002)

26. Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by
reconstruction. IEEE Transactions on Image Processing 4(8), 1153–1160 (1995)

27. Salembier, P.: Connected operators based on region-trees. In: Proc. 15th IEEE
International Conference on Image Processing, ICIP 2008, pp. 2176–2179 (2008)

28. Plaza, A., Benediktsson, J., Boardman, J., Brazile, J., Bruzzone, L., Camps-Valls,
G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Tilton, J., Trianni, G.: Ad-
vanced processing of hyperspectral images. Remote Sensing of Environment 113(1),
S110–S122 (2009)

29. Gualtieri, J.A., Tilton, J.: Hierarchical segmentation of hyperspectral data. In:
AVIRIS Earth Science and Applications Workshop Proceedings, pp. 5–8 (2002)

30. Plaza, A., Tilton, J.: Automated selection of results in hierarchical segmentations
of remotely sensed hyperspectral images. In: Proc.of IGARSS 2005 (2005)

31. Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for
image processing, segmentation, and information retrieval. IEEE Transactions on
Image Processing 9(4), 561–576 (2000)

32. Valero, S., Salembier, P., Chanussot, J.: New hyperspectral data representation
using binary partition tree. In: IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), pp. 80–83 (2010)

33. Valero, S., Salembier, P., Chanussot, J.: Comparison of merging orders and pruning
strategies for binary partition tree in hyperspectral data. In: 17th IEEE Interna-
tional Conference on Image Processing (ICIP 2010), pp. 2565–2568 (2010)

34. Valero, S., Salembier, P., Chanussot, J.: Hyperspectral image segmentation using
binary partition trees. Submitted to ICIP 2011, Brussels, Belgium (2011)

35. Valero, S., Salembier, P., Chanussot, J., Cuadras, C.: New binary partition tree
construction for hyperspectral images: Application to object detection. In: Proc.of
IGARSS 2011, Vancouver, Canada (2011)

36. Binaghi, E., Gallo, I., Pepe, M.: A cognitive pyramid for contextual classification
of remote sensing images. IEEE Transactions on Geoscience and Remote Sens-
ing 41(12), 2906–2922 (2004)

37. Valero, S., Chanussot, J., Benediktsson, J., Talbot, H., Waske, B.: Advanced direc-
tional mathematical morphology for the detection of the road network in very high
resolution remote sensing images. Pattern Recognition Letters 31(10), 1120–1127
(2010)

38. Breen, E.J., Jones, R.: Attribute openings, thinnings, and granulometries. Comput.
Vis. Image Underst. 64(3), 377–389 (1996)

39. Dalla Mura, M., Benediktsson, J.A., Waske, B., Bruzzone, L.: Morphological at-
tribute filters for the analysis of very high resolution remote sensing images.
In: Proc. IEEE International Geoscience and Remote Sensing Symposium 2009,
IGARSS 2009, vol. 3, pp. III–97–III–100 (July 2009)



Hierarchical Analysis of Remote Sensing Data 319

40. Dalla Mura, M., Benediktsson, J.A., Waske, B., Bruzzone, L.: Morphological at-
tribute profiles for the analysis of very high resolution images. IEEE Transactions
on Geoscience and Remote Sensing 48(10), 3747–3762 (2010)

41. Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for im-
age and sequence processing. IEEE Transactions on Image Processing 7(4), 555–570
(1998)

42. Monasse, P., Guichard, F.: Fast computation of a contrast-invariant image repre-
sentation. IEEE Transactions on Image Processing 9(5), 860–872 (2000)

43. Maragos, P., Ziff, R.: Threshold superposition in morphological image analysis
systems. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(5),
498–504 (1990)

44. Dalla Mura, M., Benediktsson, J.A., Waske, B., Bruzzone, L.: Extended profiles
with morphological attribute filters for the analysis of hyperspectral data. Inter-
national Journal of Remote Sensing 31(22), 5975–5991 (2010)

45. Alonso-Gonzalez, A., Lopez-Martinez, C., Salembier, P.: Filtering and segmenta-
tion of polarimetric SAR images with binary partition trees. In: IEEE International
Geoscience and Remote Sensing Symposium (IGARSS 2010), pp. 4043–4046 (2010)

46. Dalla Mura, M., Benediktsson, B., Bruzzone, L.: Self-dual attribute profiles for
the analysis of remote sensing images. In: Soille, P., Pesaresi, M., Ouzounis, G.K.
(eds.) ISMM 2011. LNCS, vol. 6671, pp. 306–319. Springer, Heidelberg (2011)

47. Wilkinson, M.H.F., Gao, H., Hesselink, W.H., Jonker, J.E., Meijster, A.: Concur-
rent computation of attribute filters on shared memory parallel machines. IEEE
Transactions on Pattern Analysis and Machine Intelligence 30(10), 1800–1813
(2008)

48. Dalla Mura, M., Benediktsson, J., Chanussot, J., Bruzzone, L.: The Evolution of
the Morphological Profile: from Panchromatic to Hyperspectral Images. In: Optical
Remote Sensing - Advances in Signal Processing and Exploitation Techniques.
Springer, Heidelberg (2011)

49. Benediktsson, J.A., Palmason, J.A., Sveinsson, J.R.: Classification of hyperspectral
data from urban areas based on extended morphological profiles. IEEE Transac-
tions on Geoscience and Remote Sensing 43(3), 480–491 (2005)

50. Falco, N., Dalla Mura, M., Bovolo, F., Benediktsson, J.A., Bruzzone, L.: Study
on the capabilities of morphological attribute profiles in change detection on VHR
images. In: Bruzzone, L. (ed.) Image and Signal Processing for Remote Sensing
XVI. Proceedings of SPIE, vol. 7830. SPIE, Bellingham (2010)

51. Alonso-Gonzalez, A., Lopez-Martinez, C., Salembier, P.: Filtering and segmenta-
tion of polarimetric sar images with binary partition trees. In: Proc. IEEE Interna-
tional Geoscience and Remote Sensing Symposium 2010, IGARSS 2010, Honolulu,
USA, pp. 4043–4046 (2010)

52. Calderero, F., Marques, F.: Region merging techniques using information theory
statistical measures. IEEE Trans. Image Processing 19, 1567–1586 (2010)

53. Hu, M.: Visual pattern recognition by moment invariants. IRE Transactions on
Information Theory 8(2), 179–187 (1962)

54. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
55. Cardoso, J., Corte-Real, L.: Toward a generic evaluation of image segmentation.

IEEE Trans. Image Processing 14, 1773–1782 (2005)



Self-dual Attribute Profiles

for the Analysis of Remote Sensing Images

Mauro Dalla Mura1,2, Jon Atli Benediktsson2, and Lorenzo Bruzzone1

1 Department of Information Engineering and Computer Science,
University of Trento, Via Sommarive 14 I-38123, Povo, Trento, Italy

dallamura@disi.unitn.it, bruzzone@ing.unitn.it
2 Faculty of Electrical and Computer Engineering, University of Iceland,

Hjardarhaga 2-6, 101 Reykjavik, Iceland
benedikt@hi.is

Abstract. The spatial relations are essential information that should
be considered when analyzing remote sensing images. Attribute profiles
(combinations of an anti-granulometry and a granulometry computed
with connected operators based on attributes) can be employed for the
modeling of the spatial information of the surveyed scene. In this paper
we propose self-dual attribute profiles which are attribute profiles com-
puted on an inclusion tree with self-dual operators. The proposed variant
of the attribute profile was effectively considered for the classification of
a very high geometrical resolution remote sensing image.

1 Introduction

In general, spatial features, such as borders, edges, discontinuities, surfaces,
shapes, etc. encode most of the semantic of the objects represented in an image.
Thus, spatial features are ones of the most relevant characteristics for image
understanding due to their perceptual relevance. With specific attention to the
remote sensing field, the spatial characteristics are probably the most informative
features when dealing with images of very high geometrical resolution (VHR).
Furthermore, if we consider images acquired by spaceborne optical passive sen-
sors, a dense sampling of the surveyed scene in the spatial domain (leading to
images with high geometrical resolution) limits the radiometric and spectral res-
olution of the acquired data due to the finite and relative low energy emitted by
the surface and captured by the sensor. In fact, to a high geometrical resolution
corresponds in general low radiometric and spectral resolutions and usually VHR
images are composed by only one spectral band (i.e., panchromatic bands). In
this scenario, the analysis of VHR imagery has to heavily rely on the spatial
characteristics since they embed most of the semantic information.

Approaches based on mathematical morphology have proved to be an effective
set of tools for including spatial information in the analysis of remote sensing
images [1]. In particular, connected operators [2] have shown to be appropriate
for the processing of VHR remote sensing images since they do not introduce
new discontinuities in the image (i.e., the borders of the objects in the scene
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are not distorted) [1,3,4,5,6,7]. In [3] Morphological Profiles (MPs) were intro-
duced for modeling the spatial information of the scene for segmentation. An
MP is a concatenation of an anti-granulometry and a granulometry computed
with connected operators such as opening and closing by reconstruction with
structuring element of fixed shape (in general square or disk) and increasing
size. Basically, the MP produces copies of the original image with an increas-
ing level of simplification obtained by merging progressively larger flat regions
performing a multiscale decomposition of the image. Applications of morpholog-
ical operators in a multiscale approach date back to pattern spectrum [8]. The
characterization of the spatial information obtained by the application of a MP
is particularly suitable for representing the multi-scale variability of the struc-
tures in the image but it is not sufficient to model other geometrical features
(e.g., shape descriptors). To avoid this limitation, the use of connected opera-
tors based on attributes computed on the regions of the image (i.e., attribute
filters [9]) instead of the conventional operators based on a structuring element
and the geodesic reconstruction was proposed in [4] leading to the definition of
Attribute Profiles (APs) as a generalization of the concept of MP. The applica-
tion of attribute filters in a multilevel architecture was also presented in [10]. The
AP, compared to an MP, is characterized by a greater flexibility on the definition
of the connected operator employed (i.e., due to the freedom in the selection of
the attributes), which permits to model other geometrical characteristics rather
than the size of the objects. Moreover, APs result also less demanding in terms
of computational complexity since they are based on a max-tree and min-tree for
the computation of a granulometry and an anti-granulometry, respectively. Min-
and max-tree are efficient hierarchical tree representations of the image [11,2].
The APs showed also interesting characteristics when extended to hyperspectral
images [6]. In greater details, analogously to [5], the APs were applied to the
first principal components extracted from a hyperspectral image, generating an
Extended Attribute Profile (EAP).

Since the APs are based on the application of either extensive or anti-extensive
operators, the multilevel simplification is either obtained on the bright or dark
components of the image. If a simultaneous simplification of bright and dark
regions is aimed, self-dual operators should be used. The application of self-
dual connected operators leads to an image simplification characterized by more
homogeneous regions with respect to the results obtained by extensive or anti-
extensive connected operators. In a remote sensing scene this effect can be use-
ful for flattening textured areas (e.g., agricoltural fields, vegetated areas, etc.)
or removing both dark and bright details. In [7] we investigated the effects of
Alternating Sequential Attribute Filters (ASAFs) obtained by the application of
attribute thinning and attribute thickening in an alternating sequential approach
on a VHR remote sensing image. The selection of different attributes with pro-
gressively stricter criteria (i.e., producing greater simplifications of the image)
showed how significantly different effects can be obtained on the image. However,
the alternating sequence of thinning and thickening operators is not a self-dual
operator since the filtering effect is biased by the operator that is applied first.
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Furthermore, the non approximated computation of ASAFs is computationally
very demanding.

In this paper we propose to use an inclusion tree for computing the AP in-
stead of the min-tree and max-tree as done in [4]. The inclusion tree is a tree
representation of an image which fuses both the min-tree and max-tree of the
image in a single data structure [12]. The main advantages for the use of an
inclusion tree for the computation of a profile relies on: i) the construction and
subsequent manipulation of a single representation of the image embedding the
min- and max-tree representation (requiring less resources in term of computa-
tional complexity and memory occupation); and ii) the capability of computing
extensive, anti-extensive or self-dual connected operators. In this paper we focus
on the latter aspect investigating Self-Dual Attribute Profiles (SDAPs) which
are APs based on self-dual connected operators for the classification of a VHR
remote sensing image.

The paper is divided into five sections. The next section recalls some back-
ground notions on the representation of the image as hierarchical tree of flat
regions. Section 3 presents the definition of the SDAPs. The experimental re-
sults are reported in Section 4. Finally, the conclusions are drawn in Section 5.

2 Representations of an Image as a Tree

Let us consider a discrete 2D image u that is a map from the discrete image
domain E ⊆ ZZ2 to ZZ. Since the codomain of u is ordered, the image can be
fully represented by its upper or lower level sets, which are defined as

[u ≥ λ] = {x ∈ E, u(x) ≥ λ}, [u < λ] = {x ∈ E, u(x) < λ}, λ ∈ ZZ.

Thus, upper and lower level sets are composed by binary images obtained by
thresholding the input image at all the values mapped by the function u. The
connected components extracted by the binarization of the input image related
to the upper or lower level sets can be grouped in the sets:

U(u) = {X : X ∈ CC([u ≥ λ]), λ ∈ ZZ} L(u) = {X : X ∈ CC([u < λ]), λ ∈ ZZ}

with CC(f) the connected components of the generic image f . If we consider u as
a function of the height (coded by the values of the codomain), the upper (lower)
level sets are obtained by slicing the topographic relief at different heights and
projecting the points with greater (lower) values than the thresholding height to
the plane at the given height. By varying the height of the plane, it can be seen
how connected components (i.e., regions of isolevel) can merge, enlarge, shrink,
split, appear or disappear according to the morphology of the elevation sur-
face. Among the connected components extracted by either the upper or lower
level sets (belonging to U(u) or L(u) respectively) there is an inclusion relation-
ship [12]. In greater details, any two components A, B ∈ U(u) are either nested
(A ⊆ B or B ⊆ A) or disjoint (A ∩ B = ∅). Analogous considerations can be
done for L(u). Due to the inclusion relations between the flat zones in the image,
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it is possible to associate a node of a tree to each connected component and rep-
resent the image as a hierarchical structure. The hierarchical tree representing
the components in U(u) (L(u)) and their inclusion relations is called max-tree
(min-tree) [11]. In the max-tree representation, the root node is the entire image
domain at the lowest grayscale value while the leaves of the tree are the regional
maxima. By duality, the min-tree can be obtained by generating the max-tree
on the complement of the image and shows as root the whole image at the high-
est grayscale value and as leaves the regional minima. Both min- and max-trees
are equivalent representations of the image. However, not all the components
present in U(u) are also present in L(u) and vice versa. For example, the top of
two peaks (i.e., regional maxima) in the image having the same height, will be
represented in the upper level set as two distinct components while in the lower
level set they will belong to the same component. A self-dual representation of
the connected components of an image called inclusion tree (or tree of shapes)
exists for continuous images [13]. When dealing with discrete images (as in this
work) different discrete connectivity rules have to be associated to minima and
maxima regions (e.g., 8- and 4-connectivity for the definition of the upper and
lower level sets, respectively [12]) leading to a quasi self-dual representation of
the image. If only one type of connectivity were used for computing the inclusion
tree, inconsistent results would be obtained since the notion of hole is not prop-
erly defined. We believe that the fact that the inclusion tree is not completely
self-dual does not affect the results for practical applications. For example, even
connected operators applied in an alternating sequence (providing a quasi self-
dual effect biased by which operator starts first in the sequence) proved to be
suitable for obtaining a simplification of the image [7]. The inclusion tree is also
a complete representation of the input image (i.e., it is possible to fully retrieve
the image from the tree). The inclusion relations between flat regions represented
in this tree structure is given by the saturation of the connected components.
The saturation is an operator that fills the holes of a component. With holes
of a connected component A are intended all those regions that belong to the
background of A but which are not connected to its border. A saturated region
(i.e., component with its holes filled) is also called a shape. Thus, according to
the operator of saturation, a component A can be considered as included in B
(regardless their relative graylevel difference) if A ⊆ B in U(u) or L(u). The
construction of the tree can be performed by an efficient algorithm called Fast
Level Set Transform (FLST) that starts from considering the regional extrema
(leaves of the tree) and progressively saturates the components until only a single
flat region (the root of the tree) is obtained [13]. The progressive saturation of
the components explains the inclusion relations on which the tree is constructed.
The inclusion tree is a more general representation of the image with respect the
max- and min-trees since comprehends both the U(u) and L(u) sets. Another
representation of the image as hierarchical tree of isolevel regions is given by
binary partition trees (BPTs) [14]. Since BPTs contain those connected compo-
nents considered more interesting according to the criterion involved during the
tree creation (e.g., homogeneity, size, contrast, etc.) they can enhance certain
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features (according to the criterion used) more than a min- max- or inclusion
tree. Connected operators can be efficiently computed on the trees generated
from the image [2]. The representation of the image as max-tree is useful for
performing anti-extensive connected operators (e.g., thinning). By duality, on
the min-tree can be computed extensive connected operators (e.g., thickening).
Self-dual connected operators can be obtained by considering an inclusion tree.
Moreover, since the inclusion tree stores both the components of the upper and
lower level sets, one can perform an anti-extensive or extensive transformation
by only considering the regions of the upper or lower level set, respectively.

Since connected operators modify an image only by merging its flat zones,
the filtering is performed on the hierarchical tree as a pruning. In general, the
tree is pruned by evaluating a binary predicate T on the nodes and removing
those that do not fulfill it. The predicate usually compares an attribute attr
computed on the pixels belonging to a connected component C (corresponding
to a node in the tree) and a given threshold value taken as reference λ: e.g.,
T = attr(C) ≥ λ. The attributes can be any measure computable on the regions
(e.g., area, volume, entropy, etc.).

If we consider a filtering done according to an increasing predicate (i.e., for
the connected components A and B holds that if T (A) = true then T (B) = true
with B ⊆ A) the connected operator obtained will also be increasing and the
pruning can be performed by removing entire branches (constituted by a node
and all its descendants) from the tree. If the predicate is non-increasing, then
different filtering rules can be applied in order to determine which nodes have
to be removed since the evaluated criterion could be fulfilled for certain nodes
but not for their descendants [2].

3 Self-dual Attribute Profiles

As a generalization of the concept of MP [3], the AP of an image u was defined
in [4] as:

AP (u)=
{
φTλL (u), φTλL−1 (u), . . . , φTλ1 (u), u, γTλ1 (u), . . . , γTλL−1 (u), γTλL (u)

}
,

(1)
with {Tλ} a set of L ordered predicates (i.e., Tλi ⊆ Tλk

, i ≤ k), and φ, γ thick-
ening and thinning operators, respectively. If we take into account the inclusion
tree, the AP can be obtained by considering in the filtering the components
belonging to the upper level set or lower level set for performing a thinning
or thickening, respectively. Moreover, the phase devoted to the construction of
the inclusion tree with the FLST implementation results faster and requires less
memory for storing the data than the construction of both a min- and max-
tree [12]. The use of an inclusion tree permits also to filter the image with
self-dual operators when the inclusion relations defined by the saturation of the
components are considered instead of those belonging to the upper or lower level
set. Self-dual operators are advisable for the processing of remote sensing images
when a simplification on both bright and dark structures is required.
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As an example of this dual effect, Fig. 1 shows the results obtained by fil-
tering a particular of a VHR remote sensing panchromatic image considering as
a predicate T = card(C) ≥ λ with card(C) the cardinality of the connected
component C with increasing values of λ. The filtering was computed on a

(a)

(b)

(c)

(d)

Fig. 1. Particular of the panchromatic band of 0.5 [m] resolution acquired by GeoEye-
1 image of Borgo Valsugana, Trento, Italy reported in Fig. 2(a). (a): Original image;
(b): Area closing (φTλ ); (c): Area opening (γTλ); (d): Grain filter (ρTλ). The values of
area taken as reference and used by all the three operators are λ = {50, 500, 1000, 2000}
(correspondent to images from left to right).
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min-, max- and inclusion tree. The operator obtained with the considered pred-
icate on a max-tree (min-tree) was basically an area opening (area closing).
When considering the inclusion tree, a self-dual operator (that is called grain
filter in [12]) was applied. The latter operator could be seen as a connected
opening in the shape-tree semilattice [15,16]. By analyzing the figure, it is pos-
sible to see how bright and dark details were preserved unaffected in the images
filtered with area closing and opening, respectively. For example the bright areas
on the roof (probably due to glares of roof windows, metal plates or solar cells)
of the building on the top of the image and bright small regions composing the
texture of the garden on the bottom right were completely preserved by the area
closing. Analogously, the shadows casted on the roof by the dormers and other
shaded regions on the vegetated area on the top of the image were unaffected by
all the openings. In comparison, the effect of the self-dual filter can be noticed
in the production of more homogeneous regions since both bright and dark com-
ponents were simultaneously filtered. For instance, the particulars on the roofs
were removed and the textured areas were completely flattened.

Analogously to the definition of the AP (1), it is possible to derive a formu-
lation of Self-Dual Attribute Profiles (i.e., APs built with self-dual operators):

SDAP (u) =
{
u, ρTλ1 (u), . . . , ρTλL−1 (u), ρTλL (u)

}
, (2)

with ρ the self-dual operator based on the predicate T , and being {Tλ} a set of L
ordered predicates. In contrast to APs, the SDAP is composed by L + 1 images
while the AP built with the same sequence of λs is made up of 2L + 1 images.

4 Experimental Analysis

In the experimental analysis, a VHR image acquired by GeoEye-1 over Borgo
Valsugana, a village close to the city of Trento, Italy, was considered for classifi-
cation. The data set is composed by a panchromatic band and four multispectral
(MS) pansharpened images (acquired on the visible and near infrared electro-
magnetic spectrum) of 400×400 pixels with a geometrical resolution of 0.5 m.
The Normalized Vegetation Index (NDVI) image was also generated for enhanc-
ing the vegetated areas. The NDVI is given by NIR−R

NIR+R with NIR and R the
bands acquired on the near infrared and red regions, respectively. The scene
presents heterogeneous residential buildings, roads and some vegetated areas.
Six thematic classes were identified in the image: Buildings, Roads, Trees, Mead-
ows, Shadows and Soil. A reference map of the coverage classes was generated
by visual inspection leading to a total of 67977 labeled pixels.

For including the spatial information in the analysis, an AP and a SDAP with
area attribute and 12 reference values (λ = {5, 25, 50, 100, 150, 200, 300, 500,
750, 1000, 2000, 3000 }) were computed on the panchromatic image. The AP
was computed using the implementation of the min and max-tree included in
the C++ Milena library [17] and the SDAP from an adaptation of the code for
the inclusion tree provided in the MegaWave2 toolbox1.
1 Available at http://megawave.cmla.ens-cachan.fr
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The data set was classified by 6 different classifiers: Linear Bayes Normal
classifier, Quadratic Bayes Normal classifier, Random Forest (RF), 3-Nearest
Neighbor, SVM with linear kernel and SVM with RBF kernel. Part of the labeled
samples of the reference image was considered for the training of the classifiers,
the rest was used for computing the classification accuracy, which was assessed
by the Overall Accuracy (OA) and the Kappa coefficient (κ). Two training sets
were considered taking for all the classes a total of the 1% (685) and 10% (6801)
of the reference samples.

The classification accuracies obtained by considering different features are re-
ported in Table 1. With 10% of the samples used for training, it can be seen that
considering the images of the SDAP as features and the RF as classifier outper-
formed in terms of overall accuracies the best results obtained by the spectral
features (MS + NDVI) and AP taken singularly of 0.25% and 2.34%, respec-
tively. By a visual inspection of the map correspondent to the best accuracy
obtained by the spectral features among all the classifiers (Fig. 2d) is possible
to notice that the vegetation was well classified (also separating meadows from
trees). However, roads and buildings were often mixed and the shapes of some

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. GeoEye-1 Borgo Valsugana data set. (a) Panchromatic band; (b) True color
composition of the pansharpened multispectral channels; (c) Map of the reference
samples. Classification maps (all taking the 10% of the reference samples as train-
ing) obtained by: (d) MS + NDVI and SVM with RBF kernel classifier (OA 86.23%);
(e) AP and RF classifier (OA 84.14%); (f) SDAP and RF classifier (OA 86.48%); (g)
MS + NDVI + AP and SVM with RBF kernel classifier (OA 93.45%); (h) MS + NDVI
+ SDAP and RF classifier (OA 93.50%). Thematic classes: buildings, roads,

trees, meadows, shadows, soil.
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objects were distorted (see the shadow of the building on the top left). In con-
trast to Fig. 2d, the maps obtained by the AP (Fig. 2e) and SDAP (Fig. 2f)
show less confusion between roads and buildings but the natural classes (i.e.,
soil, meadows and trees) were not correctly detected. Furthermore, Fig. 2f in
comparison to Fig. 2e shows more homogeneous regions (due to the use of self-
dual operators in the computation of the profile). When the spectral features are
considered along with the AP or SDAP, the best accuracies among all the exper-
iments were obtained. In particular, considering the training set as 10% and the
best obtained OAs, there was an increase of accuracy up to about 7% compared
to considering both the spectral features and the SDAP singularly and about
9% with respect to considering only the AP. A greater precision in detecting
buildings, roads and vegetation is also clear from the maps (Fig. 2g, 2h). When
comparing the best overall accuracies obtained by considering the AP against
the SDAP, both with the spectral features, similar results were obtained (with
a SVM with RBF kernel and a RF, respectively). However, the results obtained
with the SDAP slightly outperformed those achieved with the AP. Again, when
comparing Fig. 2g and 2h, the use of SDAP produced a less noisy map than
considering the AP. However, in Fig. 2h some shadows in the vegetated areas
were not correctly detected compared to Fig. 2g. Satisfactory results are also
obtained with a reduced training set (1% of the reference samples) confirming
the improvements given by using the SDAP.

Table 1. GeoEye-1 Borgo Valsugana data set. Classification accuracies obtained by
classifying conbinations of the spectral features (MS + NDVI), the AP and SDAP
with a linear (Lin.), quadratic (Quad.), random forest (RF), 3-nearest neighbor (3-
NN), SVM with linear kernel (SVM Lin.) and SVM with RBF kernel (SVM RBF)
classifiers. The best accuracies for each classifier and among all the experiments are
marked in bold and underlined, respectively.

Lin. Quadr. RF 3-NN SVM Lin. SVM RBF

Train 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10%

MS + NDVI (5 feats)

OA (%) 63.12 63.90 73.12 73.03 81.50 85.58 80.57 83.69 69.03 69.25 82.16 86.23
κ (%) 45.72 46.47 63.22 63.27 73.20 79.37 72.27 76.77 51.19 51.21 74.50 80.41

AP (25 feats)

OA (%) 62.23 63.34 37.45 22.83 77.35 84.14 71.23 80.29 66.22 67.94 76.15 83.71
κ (%) 41.44 43.12 24.28 12.64 66.85 77.05 58.24 71.55 51.98 51.96 65.91 76.43

SDAP (13 feats)

OA (%) 62.97 64.07 54.60 52.36 80.36 86.48 75.27 83.75 61.35 63.25 78.77 83.96
κ (%) 42.37 43.29 42.54 41.64 71.72 80.50 64.08 76.35 33.95 38.18 69.41 77.44

MS + NDVI + AP (30 feats)

OA (%) 77.85 78.86 44.30 29.40 87.57 92.58 84.66 90.51 85.95 88.68 88.53 93.45
κ (%) 68.54 70.26 30.30 17.62 82.06 89.37 78.19 86.50 80.30 84.13 83.71 90.68

MS + NDVI + SDAP (18 feats)

OA (%) 74.99 76.00 75.34 73.75 89.31 93.50 85.47 90.62 80.04 80.28 88.20 93.33
κ (%) 64.33 65.82 66.17 65.03 84.65 90.70 79.35 86.65 71.06 71.04 83.27 90.48
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5 Conclusions

In this paper we have proposed to compute Attribute Profiles on the inclusion
tree of the image instead of considering a min- and max-tree. The use of the
inclusion tree as structure representing the image contains the information of
both the min- and max-tree. Moreover, on the inclusion tree can also be com-
puted self-dual connected operators, which produce a greater simplification of
the image with respect to non dual filters since they operate simultaneously on
the bright and dark components of the image. Thus, we have derived the defi-
nition of Self-Dual Attribute Profiles as a version of the APs based on self-dual
operators.

In the experimental analysis carried out, we considered for classification a
remote sensing image acquired by GeoEye-1 with geometric resolution of 0.5 m
on an area close to Trento, Italy. An AP and a SDAP were computed on the
panchromatic band with area attribute and same values taken as reference in the
computation of the profile. The results obtained showed how including the AP
or SDAP as features in the classification of the spectral features greatly improves
the accuracies with respect to considering only the spectral information. The use
of the SDAP against the AP leads to better results in terms of accuracies in most
of the cases (also with a reduced training set). The greater accuracies were also
supported by the obtained maps showing regions classified more homogeneously.
The best overall accuracies among all the experiments were obtained by the
spectral features and the SDAP with a random forest classifier. The obtained
results proved that the use of the SDAP is effective for modeling the spatial
information of the scene even with a reduced number of features with respect to
considering the AP.
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Abstract. In this paper we provide an efficient parallel algorithm for re-
construction from markers, and multi-scale analysis through differential
morphological profiles, which are top-hat scale spaces based on openings
and closings by reconstruction. The new algorithms provide speed gain in
two ways: (i) through parallelism, and (ii) through more efficient re-use
of previously computed data. The best version of the algorithm provided
a 17× speed-up on 24 cores, over computation of the same algorithm on
a single core. Compared to the basic method of repeated reconstructions
by a sequential algorithm, a speed gain of 25.1 times was obtained.

1 Introduction

The Differential Morphological Profile (DMP) [3, 2] is a feature descriptor that
often finds usage in the classification and categorisation of man-made structures
in very high resolution (VHR) satellite image analysis. It is based on multiple
computations of openings and closings by reconstruction, at an increasing se-
quence of scales. Due to the large data bulk acquired and the need for rapid
analysis in cases of disaster response, parallel computation is essential, but is
not readily achieved [7]. In this paper we provide a parallel algorithm for the
DMP, based on the algorithm for attribute filters in [8], which is easily extended
to multi-scale computation. The contribution is twofold: (i) we parallelize re-
construction from markers, and (ii) we increase speed by building and interim
data structure known as the Max-Tree [4] once, and compute multiple recon-
structions from it, extending the work in [9]. The concurrent implementation
presented, tested on a 24-core system, achieves a speed-up of 17, and total speed
increase of 25.1 times compared to the straightforward computation on a single
core using repeated, sequential reconstruction.
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2 Differential Morphological Profiles

Let E be the definition domain of an arbitrary image f . The differential morpho-
logical profile (DMP) [3] of a point x ∈ E, is the concatenation of two vectors
that are perpendicular to the image plane, and in opposite direction with respect
to each other. They are called the differential opening and closing profiles of x,
each consisting of (I − 1) elements, where I is the number of scales.

Given an (I−1)-scales top-hat and bottom-hat scale space based on openings
and closings by reconstruction, the differential opening profile is given by:

ΔΠ(γρ(f))(x) =
((

γρ
λi−1

(f)−γρ
λi

(f)
)
(x) | λi > λi−1, ∀ i ∈ [0, 1, ..., I−1]

)
, (1)

in which γρ
λi

is the opening by reconstruction with a disk of radius λi and
γρ

λ0
(f) = f . The differential closing profile ΔΠ(ϕρ(f))(x) is defined analogously.

The differential morphological profile DMP of a point x is the 2(I − 1) long
concatenation (denoted by �) of ΔΠ(γρ(f))(x) and ΔΠ(ϕρ(f))(x), i.e.:

DMP(x) = ΔΠ(γρ(f))(x) �ΔΠ(ϕρ(f))(x). (2)

The set of DMPs for the entire E is referred to as the DMP vector field and
the two scale spaces, as the opening instance and closing instance of the DMP
respectively. An example DMP is shown in Fig. 1. The image on the top of (a)
is a tile extract from the panchromatic channel of a Quickbird Imagery c© Dig-
italGlobe Inc., 2007, distributed by Eurimage. It shows the military museum of
Istanbul, Turkey. The DMP vector field has also been used to define a segmenta-
tion scheme based on the morphological characteristics as in [3], which is often
used for the extraction of build-up in urban areas.

Let the multi-scale opening characteristic of a DMP at point x ∈ E be the
value :

MOC(x) = ∧
{

λ | Δ(γρ
λ(f))(x) = ∨ΔΠ(γρ(f))(x)

}
. (3)

Equation (3) states that MOC is the smallest scale λ associated to the max-
imal intensity difference of the DMP vector field at point x. The multi-scale
closing characteristic (MCC) is the complimentary scale space, defined either
as the MOC of the inverted image −f(x), or equivalently from the closing-by-
reconstruction top-hat scale space. The multi-scale leveling-like segmentation
(MSLS) into convex/concave/flat regions [3] is then defined as:

s(x) =

⎧
⎪⎨

⎪⎩

MOC(x) if ∨ΔΠ(γρ(f))(x) > ∨ΔΠ(ϕρ(f))(x), (4a)
MCC(x) if ∨ΔΠ(γρ(f))(x) < ∨ΔΠ(ϕρ(f))(x), (4b)
0 otherwise. (4c)

Note that instead of assigning the scale parameter λ on each output pixel, the
segmentation is often given by a three level output; 255 in case of convexity, 0 in
case of concavity and 128 in case of flatness. This segmentation scheme is often
used for the extraction of build-up in urban areas. As this is a point operation,
it is trivial to parallelize. Therefore, we did not time this particular phase of the
analysis.
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(a) (b)

Fig. 1. DMP vector field example: the original image tile at the top of (a), its 3-scale
DMP vector field (b) The bottom image in (a) shows the intensity field of the original
with two cross-sections; the first one to the viewer corresponding to the closing and
the second to the opening instance of the DMP vector field.

3 Parallel Computation

For the opening part of the DMP we first compute the marker images, by ero-
sions with exact Euclidean disks with the algorithm from [5]. This is parallelized
trivially by splitting the image into as many slices as there are processors, and
the algorithm is applied to each slice separately.

The second stage entails computing Max-Trees [4]. In a Max-Tree, each node
represents a connected component Xh(f) of grey-scale image f given by

Xh(f) = {x ∈ E | f(x) ≥ h}, (5)

with E the image domain. Because each component of Xh(f) is nested within
a larger component Xh′(f) with h′ < h, these components form a tree with
the image domain set as the root. It is the equivalent of the join tree used in
computation geometry [1]. An example is shown in Figure 2. Image (a) shows the
original signal, and three sets of peak components (colour coded) that correspond
to the decomposition scales or planes of the opening instance of the DMP vector
field. The radii of the structuring elements used to generate the three planes are
2, 3, and 5. Image (b) shows the Max-Tree of the input signal.

Reconstruction from markers can be computed by building such a Max-Tree,
and computing the maximum value of the marker within the image area cor-
responding to each node. Once the tree has been built, each node receives the
maximum marker level within its bounds as output value, unless it is larger than
the original value, in which case the node’s grey level is unchanged. The parallel
algorithm builds a forest of K Max-Trees, one for each disjoint section of the
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Fig. 2. A 1-D signal f (a) partitioned to 3 colour-coded planes of the opening instance
of the DMP vector field, and the corresponding Max-Tree (b)

image or volume, and combining the partial Max-Trees into a single one, whilst
maintaining the correct marker information [8].

In our implementation, we store the input image in an array f , and the marker
image, which will be double as the output image in an array out. As in [8], we
store the tree in an array of nodes node of the same size as the image. Thus each
pixel is considered a node in a tree. The parent field of each node contains the
index of each pixel’s parent. A separate index ⊥ is used to flag the fact that the
node is the root of the tree. Only those nodes n in the final tree, for which the grey
value f [n] differs from the parent grey value f [node[n].parent] are considered
valid Max-Tree nodes. These nodes, and the root node of the tree are referred
to as level roots or canonical elements of the components represented in the
tree. These level roots can be accessed using a function levroot(n) which returns
the level root of n, and Par(n) which returns the level root of node[n].parent.
Each node does require a boolean field valid, to indicate if it has already been
reconstructed, for the reconstruction phase of the algorithm.

The building phase of the algorithm is essentially the same as that of attribute
filters in [8]. The attribute management during the flooding stage of the algo-
rithm is modified, as shown in Alg. 1. Instead of maintaining a single attribute,
each node contains a vector of levels to which the node needs to be reconstructed.
In Alg. 1, set denotes the set of pixels on the boundary of the growing tree. This
is stored in a hierarchical queue. We can save memory by using the out array to
store this vector of reconstruction levels within a node. After the flooding stage,
the K trees are merged hierarchically as in [8], again with adaptation to the at-
tribute management, in particular in the connect procedure, required to correct
a single edge between two adjacent image sections. This adapted algorithm is
shown in Alg. 2.

The main difference lies in the filtering phase of the algorithm shown in Alg. 3.
For each node within our section we descend the tree, moving from level root to
level root, until a node w is found for which either (i) node[w].valid is true, (ii)
Par(w) has a marker grey value no smaller than its original; or (iii) Par(w) = ⊥.
In the first case w has been reconstructed previously, so its output value is
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Algorithm 1. The modified flooding algorithm for Max-tree construction. Pa-
rameter Vp indicates the section of the image owned by the current processor p,
numscales indicates the number of scales in the DMP, out contains the marker
images at input. At output, out contains the the correct reconstruction levels at
each scale in the canonical elements of each node.

procedure flood (Vp : Section ;var lev : Level ;var thismax : Level[ ] ; f : Image ;
var node : Max-Tree ; ;var out : DMP)

for all scales s do
maximum [s] := min(lev , thismax [s]);

end ;
while set[lev ] �= ∅ do

extract some p from set[lev ] ;
for all scales s do

maximum [s] := min(lev , max(maximum[s], out[s][p]));
end ;
for all neighbours q ∈ Vp of p do

if q /∈ set[fq] then
fq := f(q) ;
for all scales s do

childmax [s] := 0;
end ;
if lero[fq] = ⊥ then

lero[fq] := q ;
else node[q].parent := lero[fq] end ;
set[fq] := set[f(q)] ∪ {q} ;
while fq > lev do

flood(Vp, fq, childmax , f, node, out) end ;
for all scales s do

maximum [s] := min(lev , max(maximum[s], childmax[s]));
end ;

end
end

end ;
determine m maximal with m < lev ∧ (lero[m] �= ⊥ ∨ m = −∞) ;
node[lero[lev ]].parent := lero[m] ;
for all scales s do

thismax [s] := maximum[s];
out[s][lero[lev ]] := maximum[s];

end ;
lero[lev ] := ⊥ ;
lev := m ;

end ;

hm := f(xm) ; set[hm] := {xm} ; lero[hm] := xm ;
for all scales s do

maximum[s] := 0;
end;
flood(Vp, hm, maximum, f, node, out) .
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Algorithm 2. The modified connect algorithm.

procedure connect(x, y : Pixel ; f : Image ;var node : MaxTree)
for all scales s do maximum[s] := 0 ;end;
x := levroot(x) ; y := levroot(y) ;
if f(y) > f(x) then swap(x, y) end
while x �= y ∧ y �= ⊥ do

z := Par(x) ;
if z �= ⊥ ∧ f(z) ≥ f(y) then

for all scales s do
out[s][x] := min(f [x], max(out[s][x], maximum[s])) ; end;

x := z ;
else

for all scales s do
temp := min(f [x], max(out[s][x], maximum[s])) ;
maximum[s] := min(f [x], out[s][x]) ; out[s][x] := temp ;

end;
par[x] := y; x := y ; y := z ;

end
end
if y = ⊥ then

while x �= ⊥ do
for all scales s do

out[s][x] := min(f [x], max(out[s][x], maximum[s])) ; end;
x := Par(x) ;

end
end

end .

correct, in the second case w is reconstructed to the maximum of f [Par(w)] and
out[w], unless this is larger than f [w], in which case f [w] becomes the recon-
structed value. In the final case the marker image was empty, and zero is chosen
as the output value. In all cases the reconstruction value of w is propagated up
the tree.

We can use this adaptation of [8] to reconstruction from markers to compute
the DMP vector field by direct implementation of (2). However, this entails
repeated building of the same Max-Tree. Instead, we can maintain information
on multiple markers simultaneously in the Max-Tree, as shown in Alg. 1. Note
that as in the case of the original algorithm in [8], the current adaptation works
in any number of dimensions, simply by changing the neighbour relationship.
The complete algorithm can be summarized as follows:

– Compute all markers using parallel erosions and store each scale i in an
image out[i];

– Compute a single Max-Tree in parallel, maintaining the maximum marker
for all scales i for each node n in out[i][n];
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Algorithm 3. Concurrent implementation of the reconstruction phase. Image
out contains the maximum marker value within each level root of Max-Tree node
at input. At output, all valid fields in section Vp are set to true, and section Vp
of image out contains the reconstruction.

procedure MaxTreeReconstruct (Vp : Section;var node : Max-Tree;var out : Image)
for all v ∈ Vp do

if not node[v].valid then
w := v;
while Par(w) �= ⊥ ∧ not node[w].valid ∧ f [Par(w)] > out[Par(w)] do

w := Par(w);
end;
if node[w].valid then

val := out[w]; (∗ Reconstructed node found ∗)
else if Par(w) �= ⊥ then

val := out[w] ∨ f [Par(w)]; (∗ w is reconstructed ∗)
else (∗ marker was empty ∗)

val := 0;
end;

end;
for all u in root path from v to w inclusive do

if u ∈ Vp then
out[u] := val;
node[u].valid := true;

end;
end;

end;
end;

end.

– For all scales i
• Set all nodes to invalid indicating that they have not been filtered yet

(in parallel);
• Compute reconstruction (in parallel) for scale i, storing the result in

out[i];
– Compute differences between scales (in parallel);
– Output respective instance of DMP vector field.

Between the different stages a barrier is needed for synchronization of the threads,
and within the loop over the scales in the reconstruction phase, a barrier is needed
at each iteration. The multithreaded algorithm was implemented using mutexes
from the POSIX pthread library. The closing instance is computed by inverting
the image and repeating the first two stages.

The marker phase has a computational complexity of O(RmaxN/Np) with
N = X × Y the number of pixels, Np the number of processors, and Rmax the
maximum radius of the structuring elements. Complexity in terms of memory
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Algorithm 4. The improved reconstruction phase, with same parameters as
before, except for out. This now contains the maximum marker values for all
scales in the DMP within each level root of Max-Tree node at input. At output,
section Vp of DMP out contains the morphological profile.

procedure MaxTreeReconstruct (Vp : Section;var node : Max-Tree;var out : DMP)
for all v ∈ Vp do

if not node[v].valid then
w := v;
for all scales i increasing order do

while Par(w) �= ⊥ ∧ not node[w].valid ∧ f [Par(w)] > out[Par(w)] do
w := Par(w);

end;
ws[i] := w; (∗ temporary storage of for each scale ∗)
if node[w].valid then

for all scales j ≥ i do
val[j] := out[j][w]; (∗ Reconstructed node found ∗)
ws[j] := w;

end;
else if Par(w) �= ⊥ then

val[i] := out[i][w] ∨ f [Par(w)]; (∗ w is reconstructed ∗)
else (∗ marker was empty ∗)

for all scales j ≥ i do
val[j] := 0;
ws[j] := w;

end;
end;

end;
end;
u := v;
for all scales i increasing order do

repeat
if u ∈ Vp then

for all scales j < i do out[j][u] := f [u];end;
for all scales j ≥ i do out[j][u] := val[j]; end;
node[u].valid := true;

end;
u := node[u].parent;

until u = ws[i];
end;
if u ∈ Vp then (∗ Process ws[numscales − 1] ∗)

for all scales j < i do out[j][u] := f [u];end;
for all scales j ≥ i do out[j][u] := val[j]; end;
node[u].valid := true;

end;
end;

end;
end.
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is O(NpR
2
maxX + N) [5]. The computational complexity of the local Max-Tree

building phase is O(N(C +G)/Np), with G the number of grey levels, and C the
connectivity (4, or 8) [8]. The merging phase has a worst-case time complexity
O(XG log N log Np), and filtering has a complexity of O(NsN/Np), with Ns the
numer of scales [8]. Memory complexity of the Max-Tree part of the algorithm
is just O(N + NpG).

One concern in the above algorithm is the large number of barriers (one per
scale). Therefore, instead of performing a single reconstruction using Alg. 3, we
produced a second parallel algorithm which produces all reconstructions simul-
taneously. In this case, only two barriers are needed: one between the marker
computation and reconstruction phases, and one between the reconstruction and
scale-differencing. We pay for this by a more complex reconstruction algorithm,
as shown in Alg. 4. However, since this only traverses the Max-tree once, further
speed gains even on a single thread are expected.

The basis of the algorithm is the same, but we now descend the tree until a
reconstructed pixel in the largest scale (which means lowest grey-level) marker
has been reached. We need to maintain an array ws which holds the correspond-
ing values of w in the previous algorithm for each scale, and likewise for the
reconstruction value val.

Algorithm 5. Concurrent computation of the DMP, thread p.

process parDMP(p : ThreadID ; f : Image ;var node : Max-Tree ;var out : DMP)
find xm such that f(xm) ≤ f(x) ∀x ∈ V p;
hm := f(xm) ; set[hm] := {xm} ; lero[hm] := xm ;
for all scales s do

maximum[s] := 0;
end;
flood(Vp, hm, maximum, f, node, out);
var i := 1 , q := p ;
while p + i < K ∧ q mod 2 = 0 do

P (sa[p + i]) (∗ wait to glue with right-hand neighbor ∗) ;
for all edges (x, y) between V (p) and V (p + i) do

connect(x, y, f, node) ;
end ;
i := 2 ∗ i ; q := q/2 ;

end ;
if p = 0 then (∗ release the waiting threads ∗)

for i := 1 to K − 1 do V (sb[i]) end
else

V (sa[p]) (∗ signal left-hand neighbor ∗) ;
P (sb[p]) (∗ wait for thread 0 ∗)

end ;
MaxTreeReconstruct(Vp, node, out) ;

end.
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The complete algorithm for a single thread of the DMP is given in Alg. 5.
The first stage, up to and including the call to the flood function is the Max-tree
construction phase. After this, we enter the hierarchical merging stage, followed
by a simple call to the reconstruction function. Note that the implementation
of MaxTreeReconstruct of Alg. 4 is used in Alg. 5. The code for the complete
algorithm is available upon request.

4 Experiments

The first algorithm was tested on a very high resolution (VHR) satellite image
of Legaspi (Philippines). The image is a panchromatic tile of 8-bit resolution,
it consists of 5998 × 5998 elements (approx. 36MB), and it is of 0.6m × 0.6m
spatial resolution. The original was acquired on the 7th of November 2005 and is
courtesy of the original Quickbird Imagery @ DigitalGlobe, Inc; 2005 Distributed
by Eurimage. A resampled version of the original is shown in the tile of Fig. 4(a).
The machine used for timing both processes was a 2 Intel Xeon Quad-Core
X5470 (3,3GHz, 1.333MHz FSB) with a total of 16GB DDR2 Quad Channel
FBD system memory.

Computing a nine scale DMP using nine separate sequential reconstructions
takes 250.1 s on this machine, of which 132.3 s entails computation of the mark-
ers. We used markers computed from erosions by Euclidean discs of radius 1 to
256, in factor 2 increments. This is slower than more usual squares but guaran-
tees rotation invariance. The proposed algorithm takes 171.4 s on a single thread.
Because the gain is purely in the reconstruction phase, this means a threefold
increase in speed of reconstruction (118.1 vs 39.4 s).

The timing results are shown in Fig. 4. At 4 threads the computation time
drops to 53.48 s (speed up 3.2): 38.92 s for marker computation (speed-up 3.4),
and 14.56 s for reconstruction (speed up 2.7). The overall efficiency is 80%. At 8
threads the speed up is less impressive: 5.1 for the markers, 2.8 for reconstruc-
tion, 4.3 total. Overall speed gain with respect to separate computation of each
reconstruction is 6.26 overall (5.1 for the markers, and 8.5 for the reconstruc-
tions). The low speed-up on 8 cores of the reconstruction phase is certainly partly

(a) (b) (c) (d)

Fig. 3. A panchromatic Quickbird image of the city of Legaspi (a). Three indicative
planes of the opening instance of the DMP vector field for λi = 5, 25, 60 for i = 1, 2, 3,
in (b-d) respectively. λ in this case is the side length of a square structuring element.
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Fig. 4. Wall-clock time (left) and speed up (right) as a function of number of threads,
for a 5998 × 5998 image. Timings performed on an 8 core Intel Xeon system.
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Fig. 5. Timings for the new version of the algorithm with reduced number of barriers:
Wall-clock time (left) and speed up (right) as a function of number of threads, for a 1.2
GB image, for the new and old algorithms, for a 24-core AMD Opteron-based machine.

due to the many barriers, but the fact that the trivially concurrent marker com-
putation has an efficiency of 64% suggests that the front-side bus architecture is
leading to a memory band-width bottleneck.

For this reason, both algorithms were tested a 24-core Opteron-based machine
(4×6 cores) with 128 GB of memory on a 1.2 GB image obtained by repeatedly
tiling a 1500× 1500 satellite image of Haiti. The speed-up was determined for 1
to 24 threads, for both algorithms. What is evident from the results in Figure 5
is that reducing the number of barriers in the algorithm increases efficiency
dramatically. On a 24-core Opteron-based machine, we reach a speed up of more
than 17 on 24 threads, allowing multi-scale analysis of a 1.2 GB data set in just 6
minutes and 29 seconds, compared to a speed up of just under 6, and computing
time of 20 minutes, for the older algorithm. The single sweep of the Max-tree
used by the second algorithm also provides a modest increase in speed on a single
thread, requiring 1h 50m 34s, rather than 1h 57m 47s, or a 6.5% gain.
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5 Conclusions

In this paper we present an algorithm for parallel computation of both recon-
struction from markers, and the DMP. Speed-up up to 4 threads on the Intel
machine was good, beyond 4 the efficiency dropped off rapidly, in part due to
the FSB architecture which limits memory bandwidth, because even the marker
computation phase shows only 5.1× speed up on 8 cores. In the other phases,
synchronization issues played a part, as was shown in the tests on the AMD
Opteron machine. Reducing the number of barriers in the algorithm clearly in-
creases efficiency from 6 to 17 on a 24 core machine. The single sweep of the
Max-tree required by the latter algorithm reduces the computing time even on a
single core. Beyond these improvements, computation of markers might also be
improved by using the algorithm of Vaz et al. [6]. This would improve the speed
(if not the speed up) of the marker computation phase, which currently takes up
some 50 to 75% of the total computation time. As it stands, we obtain significant
gains in speed with respect to the original, sequential approach. Compared to
repeatedly computing reconstructions, the total speed-up is 25.1 on 24 cores.
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Abstract. The extraction of urban patterns from very high spatial res-
olution optical images presents challenges related to the size, the accu-
racy and the complexity of the data. In order to efficiently carry out this
task, a multiresolution hierarchical approach is proposed. It enables to
progressively segment several images (of increasing resolutions) of a same
scene, based on low level criteria. The process, based on binary partition
trees, is partially performed in an interactive fashion, and then automat-
ically completed. Experiments on urban images datasets provide encour-
aging results which may be further used for detection and classification
purpose.

Keywords: Hierarchical segmentation, multisource images, multireso-
lution, interactive/automated segmentation, partition-trees, remote sens-
ing, urban analysis.

1 Introduction

A new generation of sensors of submetric resolution has led to the production
of Very High Spatial Resolution (VHSR) images, and to an improved ability to
analyse urban scenes [12]. In particular, in such images, basic urban patterns
(e.g., individual houses, gardens, roads) are formed by different materials, while
complex ones (e.g., urban districts, urban blocks) generally contain different
kinds of basic patterns. Thus, all of them are not necessarily composed of homo-
geneous pixels (but are often hierarchically organised). These specific properties
of VHSR images lead to new challenges for human experts (since the size and the
complexity of the images make visual analysis a time consuming and error prone
task), and for image analysis tools (since those developed for lower resolutions
are generally designed to extract segments based on radiometric homogeneous
hypotheses).

In this context, and due to the importance to analyse VHSR images, it is then
useful to develop tools adapted to the extraction of complex patterns from such
data, and in particular (low-level) segmentation ones. Moreover, the availabil-
ity of data with a large range of spatial resolutions can enable the extraction
of potentially hierarchical patterns, especially when such data are provided by
different acquisition devices, providing complementary information at distinct
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radiometric bands. Such segmentation tools should allow the end-user to obtain
satisfactory results, at different levels (i.e., scales) of pattern extraction, with
minimal time (by automating the tasks which do not require human expertise),
minimal efforts (by reducing the parameters), and ergonomic interaction.

We propose to take advantage of the data available at several resolutions, and
to involve them in a hierarchical strategy which enables, at any given resolution,
the exploration of the whole structure of an urban scene. This approach, based on
the skills of the end-user, aims at using hierarchical segmentation (and especially
partition trees) to make the segmentation process as automated as possible.

The article, which is an improved version of the preliminary work described
in [8], is organised as follows. Section 2 provides a (non-exhaustive) state of
the art on hierarchical and multiresolution segmentation. Section 3 describes
the proposed segmentation method. Section 4 gathers experiments enabling to
assess the relevance of the approach. Conclusions and perspectives will be found
in Section 5.

2 Related Works

Efforts have been conducted to automatically extract features from satellite
images, in order to involve them into learning systems. This extraction, often
performed thanks to low-level processing, generally relies on radiometric homo-
geneousness hypotheses. This can lead to valid results for basic objects extraction
from High Spatial Resolution (HSR) images [2], but not for images (e.g., VHSR
ones) and/or objects of higher complexity [4]. A first way to extract complex
objects is by grouping several basic ones, using, for instance, a graph-based ap-
proach [3]. Such techniques, devoted to the first semantic level of complex objects
(e.g., complex buildings) can be improved by considering hierarchical strategies.

Hierarchical segmentation methods provide, as output, a series of partitions
of an image with an increasing (or decreasing) level of details. In the field of
remote sensing (and especially for HSR images), several techniques have been
proposed. In [11], compositions of opening and closing operations with struc-
turing elements of increasing sizes generate morphological profiles for any pixel,
enabling their characterisation. In [1], morphological profiles are enriched with
neighbourhood and spectral information. Another method, relying on region
connection calculus, can also be found in [6]. These approaches emphasise the
potential of hierarchical segmentation. However, these “pixel-based” methods
hardly take into account the intrinsic and semantic information of the images.
By opposition, “object-based” segmentation hierarchies provide several segmen-
tations of the same image at different levels of detail. Such hierarchies can be
built by following two opposite paths. In the top-down approaches, the process
starts from a coarse segmentation and successively refines the regions, as in [16],
where segmentation is treated as a graph partitioning problem. In the, more fre-
quent, bottom-up approaches, the finest segmentations are produced first, and
their regions are then merged, based on similarity criteria [10].
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In mathematical morphology, connected operators [15] may be used in a hi-
erarchical segmentation fashion by using, for instance, tree data structures. In
such structures, the nodes are associated with regions in the image whereas the
edges represent the inclusion relation. Notions such as component-tree [14] and
level-lines tree [9], potentially enable to perform hierarchical segmentation, by
enabling the fusion of flat zones. However, such structures strongly relying on
the image intensity and in particular on extremal values, the obtained segmented
components may be non relevant in the case of satellite images. By opposition,
the Binary Partition Tree (BPT) [13] reflects a (chosen) similarity measure be-
tween neighbouring regions, and models the hierarchy between these regions via
the tree structure. It has been used to extract complex objects from various
kinds of images [21,20]. A last approach, based on the constrained connectivity
paradigm, has been recently introduced in [17] and applied to process (V)HSR
images in [18]. The connectivity relation generates a partition of the image defi-
nition domain. Fine to coarse partition hierarchies are then produced by varying
a threshold value associated with each connectivity constraint. In the case of
remote sensing, these methods are limited by the spatial and spectral proper-
ties of the images. Indeed, complex objects appear in (V)HSR images too much
heterogeneous to be extracted in an ascendant way.

This justifies the use of multiresolution data to enhance the behaviour of hier-
archical ones for the extraction of such complex objects. Multiresolution methods
take advantage of the data available at several resolutions (from Medium Spatial
Resolution (MSR) to VHSR ones) [5], and involve them in a hierarchical strategy.
By analysing first the image content at a coarse resolution and then gradually
increasing this resolution, it is indeed possible to detect complex patterns while
avoiding the semantic noise induced by the details [19].

From these considerations, we propose a hierarchical segmentation method,
extending the BPT to deal with multiresolution images. It combines the advan-
tages of multiresolution strategies and the efficiency of the connected operators
approaches, in the context of the mapping of urban areas. It is based on inter-
active tree-cut segmentation (based on the skills of the end-user), automatically
reproduced on the remainder of the data. The method operates first on the low-
resolution data, extracting the global structure of the scene, and subsequently
enriches this description thanks to the high-resolution data. It aims, in particu-
lar, at understanding the scene in the same way as the human vision system.

3 Methodology

The proposed multiresolution approach (Section 3.2, Figure 2) combines two
methods: (1) a new (interactive) hierarchical segmentation process (Section 3.1,
Figure 1), and (2) a multiresolution clustering method [7] (Section 3.2.2, Fig-
ure 3), into an original iterative process. It is devoted to hierarchically segment
n images of a same scene, at various resolutions, from the lowest to the highest
one.
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Fig. 1. Interactive segmentation approach (see Section 3.1). In green: input/output.
In red: user interactions. In blue: automatic processing.

Fig. 2. Work-flow overview (see Section 3.2). In green: input/output.
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Fig. 3. Multiresolution clustering approach (see Section 3.2.2). In green: input/output.

3.1 Interactive Segmentation

The first contribution is an interactive segmentation approach, enabling to seg-
ment k images of same resolution and semantics, provided by the same sensor.
From the BPT of one image (Figure 1-①) and an interactive tree-cut of this BPT,
inducing a segmentation (Figure 1-②), the k− 1 other images are automatically
segmented, by reproducing a similar tree-cut in their own BPT (Figure 1-③).

3.1.1 Notations
Let E = [[0, dx − 1]]× [[0, dy − 1]] ⊂ N2. Let Vb = [[0, vb − 1]] ⊂ N. A (monovalue)
image is a function Ib : E → Vb which to each point x = (x, y) ∈ E of the scene,
associates a spectral intensity Ib(x) = v.

Let V =
∏s

b=1 Vb ⊂ Ns (s ≥ 2). A (multivalue) image is a function I : E → V
which to each point x = (x, y) ∈ E associates I(x) = v =

∏s
b=1 Ib(x).

A segmentation of an image I : E → V is a partition S = {Ri}n
i=1 (n ≥ 2) of

E.

3.1.2 Binary Partition Tree
The Binary Partition Tree (BPT) [13] is a hierarchy of regions created by a
merging algorithm that can make use of any similarity measure. Starting from a
given partition, this algorithm proceeds by (1) computing a similarity measure
for all pairs of neighbour regions, (2) merging the most similar pair of regions, and
(3) updating the similarity measures (iterating (2,3) until all regions are merged
into a single one). The BPT generation then relies on two main notions: the
region model (which specifies how regions are characterised), and the merging
criterion (which defines the similarity of neighbouring regions and, thus, the
merging order).

Region model. A region Ri is modelled here by (1) MRad
Ri

= 〈(vRi

bmin
, vRi

bmax
)〉sb=1,

where vRi

b�
are the extremal radiometric values of the b-th radiometric band of

I (i.e., Ib), and (2) MGeo
Ri

= (e(Ri), a(Ri)), where e(Ri) and a(Ri) are the
elongation and the area of (Ri), respectively. During the merging process, the
region model of two merged regions Ri, Rj is then straightforwardly provided by
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MRad
Ri∪Rj

= 〈(min{vRi

bmin
, v

Rj

bmin
}, max{vRi

bmax
, v

Rj

bmax
})〉sb=1 and MGeo

Ri∪Rj
= (e(Ri ∪

Rj), a(Ri) + a(Rj)).

Merging criterion. The basic merging criterion used in most of image segmen-
tation approaches is radiometric homogeneity. Here, we propose to rely on both
the increase of the ranges of the intensity values (for each radiometric band) and
on area and elongation of the regions in order to merge in priority objects which
do not structure the scene:

ORad(Ri, Rj) =
1
s

s∑

b=1

|max(vRi

bmax
, v

Rj

bmax
)−min(vRi

bmin
, v

Rj

bmin
)| (1)

OGeo(Ri, Rj) =
1
2
(e(Ri ∪Rj) + a(Ri ∪Rj)) (2)

The similarity measure between two neighbouring regions Ri and Rj is then

O(Ri, Rj) = α.ORad(Ri, Rj) + (1− α).OGeo(Ri, Rj) with α ∈ [0, 1] (3)

In practice, the closest the nodes are to the root, the less relevant ORad is.
Consequently, the weight α can be defined as a function depending directly on
the value of ORad (and decreasing when ORad increases). In particular, we have
experimentally set α = exp(−(ORad)2).

Elongation map. The proposed elongation map characterises the linear struc-
tures (roads, rivers, railways, etc.) which generally divide an urban scene into
(large) regions. Our purpose, here, is not to get the best elongation results, but
to be able to compute correct elongations with a low computational cost. This
map is computed as follows:

(1) for each pixel (considered as a seed), a series of region-growing segmentations
(based on radiometric intensity) is performed with an increasing tolerance;

(2) for each segmentation, a score is computed using the ratio width/length of
the best bounding box of the region (computed in several orientations);

(3) for each pixel, the best (i.e., the lowest) elongation value is assigned.

This approach presents an algorithmic cost bounded, for each pixel, by the area
of the neighbourhood where Step (1) is carried out (which, in practice, needs
not to be high). The computation of the elongation map is then globally linear
with respect to the size of E. Figure 4 provides an example of an elongation
map computed on a HSR image with a spatial resolution of 2.4 m and obtained
thanks to this heuristic strategy.

3.1.3 Automatic Tree-Cut Learning
Once the BPT built, a cut has to be chosen through the hierarchy. This can be
done by performing a thresholding on the similarity measure (called energy in
the sequel) related to the O function in the BPT (Equation (3)). Broadly speak-
ing, to each node of the tree an energy is attached (by saving for a node Ri, the
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(a) HSR image (b) Elongation map

Fig. 4. Elongation map computation. (a) HSR image with a spatial resolution of 2.4
m (QuickBird, c© DigitalGlobe Inc.). (b) Corresponding elongation map (elongated
structures in light grey, non-elongated ones in dark grey).

value of O required to create this node). A cut can then be easily extracted by
determining an adequate energy in a threshold-like fashion, thus preserving the
subtree formed by the nodes of higher value (with a possible refinement of one
or several branches). This first (manual) step is performed on one input image
among the k available ones (in red in Figure 1). It is then possible to automati-
cally reproduce this tree-cut operation to segment the k − 1 other images. This
is done by performing a similar tree-cut (i.e., with a same energy) in each one
of the k − 1 corresponding BPTs (in blue in Figure 1).

Without loss of generality, this approach can be applied on k images defined
on connected subsets of N2 (and not only rectangular ones). As a consequence,
it enables to segment several sub-parts of a same image. In particular, this is the
way it is used in the multiresolution approach described hereafter.

3.2 Multiresolution Strategy

The proposed multiresolution strategy is dedicated to hierarchically segment n
images of a same scene at various resolutions, from the lowest to the highest
one. In the classical case, three images are considered, namely a MSR (30–5m),
a HSR (3–1m) and a VHSR (less than 1m) image. The strategy (Section 3.2.1)
combines iteratively the previously described interactive segmentation approach
(Section 3.1) and a multiresolution clustering method [7] (Section 3.2.2). At each
resolution/step, the output of this process (a segmentation map) is embedded in
the next resolution image (using a correspondence map function) to be treated
as input of the next step. This process is iterated n times (one per image, from
low to high resolution). It provides as final output n segmentations (one per
considered image/resolution), hierarchically linked, enabling different scales of
interpretation.

3.2.1 Partitioning Strategy at a Given Resolution
At each resolution, the following partitioning strategy is applied. It takes as
input one (or more) family(ies) of subimages (with the same semantics). (For
instance, in Figure 2, the input used to process the image 2, is composed of
three semantic families: the yellow family (composed of two regions of urban
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areas), the green family (composed of four regions of urban vegetation), and the
blue one (composed of one region of water).) First, each family is processed,
individually, by the interactive segmentation method (Figure 2-①) generating a
segmentation result. (For each family, the user has only to provide one example
of tree-cut for a selected region (Section 3.1.3)). These segmentation results are
then combined to produce a whole segmentation map. Then, regions provided
by this segmentation are gathered into different clusters using a multiresolution
clustering method (Figure 2-② and Section 3.2.2) taking as input these regions
and the next resolution image. Finally, these classified segments are embedded in
the next resolution (Figure 2-③), forming, for each resulting class, a new family
of subimages which can be processed by following the same strategy.

3.2.2 Multiresolution Clustering [7]
This approach takes as input two multivalue images (I1 : E1 → V 1 and I2 :
E2 → V 2) of the same scene. The main idea is to fuse the information provided
by (1) the analysis of the lowest resolution regions of I1 (obtained by a seg-
mentation, Figure 3-①) and (2) the highest resolution semantic clustering of I2

(provided by a classical clustering method directly applied on the radiometric
values of the pixels, Figure 3-②), to obtain a final clustering result corresponding
to an intermediate level. For each region Ri of the lowest resolution segmented
image, an histogram is computed (Figure 3-③) taking into account the distribu-
tion of the pixels of Ri in terms of clusters in the highest resolution clustered
image. The final clustering result is computed by classifying (in an unsupervised
way, Figure 3-④) the regions of the lowest resolution segmented image using their
composition histograms. The method finally provides as output a clustering im-
age at an intermediate semantic level (i.e., a level corresponding to a resolution
between the ones of I1 and I2). This clustering is modelled by a label image
R : E1 → [[1, k]] which, to each point x of the scene (at the lowest resolution),
associates a class value R(x) among the k possible ones. For a more detailed
and formalized description of this approach, the reader may refer to [7].

4 Experiments and Results

4.1 Experiments

Experiments have been performed on a multiresolution set of satellite images,
presenting a part of the city of Strasbourg, France. These images present a
typical suburban environment with water surfaces, forest areas, industrial areas,
individual/collective housing blocks and agricultural zones. This set is composed
by (1) a single Spot-5 MSR (9.6m) multispectral image (Figure 5(a), 685 × 583
pixels) and by (2) a couple of QuickBird images composed by a HSR (2.4m)
multispectral image (Figure 5(b), 2 740 × 2 332 pixels) and a VHSR (60cm)
panchromatic one (Figure 5(c), 10 960 × 9 328 pixels).

To assess the efficiency of the proposed approach, several tests have been per-
formed to help end-users to extract a hierarchy of complex urban patterns (urban
districts, urban blocks, urban objects) from these data. At each step/resolution,
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(a) 1 pixel = 9.6m × 9.6m (b) 1 pixel = 2.4m × 2.4m (c) 1 pixel = 60cm × 60cm

(d) Districts level. (e) Block level. (f) Houses level.

(g) MSR segmentation. (h) HSR segmentation. (i) VHSR segmentation.

Fig. 5. (a–c) Satellite images of the same area (6 500m × 5 400m) with different spatial
resolutions: (a) MSR ( c© CNES–ISIS program), (b) HSR, (c) VHSR ( c© DigitalGlobe
Inc.). (d–f) Corresponding ground-truth maps. (g–i) Obtained segmentations: (g) MSR
segmentation, (h) HSR segmentation, (i) VHSR segmentation. A zoom (× 15) on a
same given area (the yellow one) is proposed for each image.
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the obtained regions have been classified (Figure 5(g–i)) in order to compare
them to certified ground-truth maps (Figure 5(d–f)) using the Kappa index.

4.2 Results

Step 1 has been applied on the MSR image to separate the largest structures
of the scene (e.g., urban districts, forest areas, water surfaces, etc.). After clas-
sification, the comparison between the classified resulting regions (Figure 5(g))
and the ground-truth map has shown a Kappa value of 0.77.

Step 2 has been applied on the HSR image to split these urban districts into
different large regions corresponding to: mixed urban districts, commercial or
industrial sub-districts, housing blocks, etc. After classification of the resulting
regions (Figure 5(h)), the Kappa value for the resulting partition was 0.81.

Step 3 has been performed on the VHSR image to extract “basic” urban ob-
jects (e.g., individual/collective houses, vegetations, streets/car parks, shadows,
etc.) from these urban blocks. Due to the unavailability of all the “class” in-
formation for the ground-truth map corresponding to the VHSR image (only
available for the building class, Figure 5(f)), the Kappa index has not been com-
puted. However, after classification of the resulting regions (Figure 5(i)), the
percentage of pixels (from the red cluster) matching with the building class was
84% and the percentages of false negatives and false positives were 7% and 16%.

4.3 Runtime

Table 1 provides the runtime and the memory usages for the segmentation of
the images. Experiments have been run on an Intel R© CoreTM2 Quad running
at 2.4 GHz with 8 GB of RAM.

As shown by the second column of Table 1, the extraction process is linear
with the size of the images. For instance, a HSR image which contains 16 times
more pixels than a MSR one, requires 16 times more operations and time to be
processed than a MSR one. Since the multiresolution clustering approach (which
is mainly based on a partitioning clustering) is linear through the data, we can
assume that the interactive segmentation approach is also linear through the
data. However, one can see that the memory consumption remains significant
when processing the VHSR images (third column of Table 1).

Table 1. Runtime and memory usage for the segmentation of the multiresolution
images

Image Extract Memory

(Size - pixels) Runtime (RAM)

MSR (685 × 583) 23.8 s 54 MB

HSR (2 740 × 2 332) 5 min 49 s 418 MB

VHSR (10 960 × 9 328) 1 h 13 min 2.47 GB
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5 Discussion and Perspectives

This article has presented an interactive hierarchical segmentation approach
based on binary partition trees and the first results obtained with this method-
ology on a multiresolution dataset. Experiments have shown that the quality of
the extracted urban patterns seems sufficient to further accurately perform both
classification or object detection. This seems to validate (1) the relevance of the
proposed method and (2) the soundness of the semi-automation of the photo-
interpretation approach. However, one can observe that some of the partition
results are composed of several regions matching with urban patterns and nu-
merous tiny regions forming linear structures and covering vegetation areas (in
particular for the MSR image, Figure 5(g)). These over-segmentation problems
are probably due to the spatial criteria used by the algorithm (the elongation
one) which does not consider the vegetation areas.

A main advantage of this method is to be parameter-free. Indeed, the only
significant parameter is actually the level of tree-cut, the effect of which can be
visually assessed by the user. Due to the pre-processing of the data structures, the
short computation times enable, in particular, to carry out several segmentations
to select the best one.

However, a weakness of this method is that the automation of the interactive
tree-cut approach is currently only based on the global energy of the nodes. The
next step of this work will then consist of finding a more robust way to reproduce
automatically the tree-cut approach in other images. In order to do so, it could
be possible to perform nodes matching based on nodes properties and structures.

In a next issue, the results obtained with this method will be fully assessed by
quantitative comparisons (using datasets provided by different sensors) and will
be compared to the results produced by other hierarchical region-based methods.
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Abstract. The open problem of the generalization of mathematical
morphology to vector images is handled in this paper using the paradigm
of depth functions. Statistical depth functions provide from the “deepest”
point a “center-outward ordering” of a multidimensional data distribu-
tion and they can be therefore used to construct morphological opera-
tors. The fundamental assumption of this data-driven approach is the
existence of “background/foreground” image representation. Examples
in real color and hyperspectral images illustrate the results.

Keywords: Multivariate Morphology, Depth function, Hyperspectral
Images.

1 Introduction

Mathematical morphology is a nonlinear image processing methodology based
on the application of lattice theory to spatial structures. It requires the defi-
nition of a complete lattice structure, i.e., the definition of an ordering among
the points to be analyzed. The extension of mathematical morphology to vector
spaces, for instance, color/multi/hyper/ultraspectral images, is neither direct
nor trivial because the pixels are vectors. An alternative way to approach the
problem of multi-channel morphology is to treat the data at each pixel as a
vector. Unfortunately, there is no unambiguous means of defining the minimum
and maximum values between two vectors of more than one dimension, and thus
it is important to define an appropriate arrangement of vectors in the selected
vector space. We refer keen readers to [2,3] for a comprehensive review of vector
morphology. To overcome the lack of natural ordering, the following four families
of ordering for multichannel samples have been identified in the literature [4,13].
The trivial approach consists in applying grayscale morphology techniques to
each channel separately, that has been called marginal morphology in the lit-
erature [18]. However, the marginal approach is often unacceptable in several
applications because, when morphological techniques are applied independently
to each image channel, analysis techniques are subject to the well-known prob-
lem of false colors [17]; that is, it is very likely that new spectral constituents

P. Soille, M. Pesaresi, and G.K. Ouzounis (Eds.): ISMM 2011, LNCS 6671, pp. 355–366, 2011.
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(not present in the original image) may be created as a result of processing the
channels separately. It is called marginal ordering (M-ordering). To strictly pre-
serve input vectors, the conditional ordering (C-ordering) approach, also known
as lexicographic ordering, is frequently used. The C-ordering is based on the
ordering of the components selected sequentially according to different condi-
tions or priorities. When all the components are used, the C-ordering is a total
ordering. The reduced ordering (R-ordering) which performs the ordering of vec-
tors according to some scalars, computed from a mapping of the vector onto
a different representation where the ordering is naturally defined, typically dis-
tances or projections onto a dimensionality reduced space (using for instance
the principal component analysis). For instance, Mahalanobis distance has been
employed in several works on multivariate morphology [1,7] but using a reference
set. The P-ordering, in the original description [4], is based on the partition of
the vectors into groups, such that the groups can be distinguished with respect
to rank or extremeness. Recently, other approaches using combinatorial tech-
niques and median/anti-median filters have been also used to construct ordering
[9,14]. There is however a problem of these latter approaches: the ordering is
locally depending on the values of the window, consequently it is not a par-
tial ordering for the set of vector values of the images, i.e., dilation(erosion)
obtained does not commute with the supremum(infimum) and the distributive
property is not valid. Finally, supervised ordering has shown be useful in the
analysis of high dimensional images [20,21]. In this paper, a P-ordering for pix-
els in multivariate images is presented. To the best of our knowledge, this is
the first approach which uses P-ordering to extend mathematical morphology in
multivariate image. The basic idea is to produce an ordering by using statistical
depth functions. Statistical depth functions provide from the “deepest” point a
“center-outward ordering” of multidimensional data. Therefore, the assumption
of the existence of background/foreground representation is required. Formally
we could express the assumption of background/foreground representation in this
way: Given a vector image I : E → Rd, the support space E has a decomposition
E = {EB, EF } such that EB ∩ EF = ∅ and card{EB} > card{EF }. Roughly
speaking, the assumption says: (1) The image has two main components: the
background and the foreground; (2) There are more pixels in the background
than in the foreground. We notice that there is not hypothesis about the mul-
tivariate or spatial distribution of the background I(EB) and the foreground
I(EF ). Following that idea, the aim of this paper is to introduce the depth
functions as a clever way to produce a data-driven ordering useful to produce
mathematical morphology operators. Fig. 1 shows a toy color image example I
and its depth function associated D(·; I). Thus, the ordering for two pixel vectors
is given by v1 < v2 ↔ D(v1; I) > D(v2; I). The paper is organized as follows.
Restricting ourselves to data in vector spaces, in Section 2 the statistical depth
functions definition is presented. Section 3 analyzes the application of ordering
using depth functions in the context of vector images and it presents some results
in color and hyperspectral images. Finally, Section 4 concludes the paper.
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(a) Original, I (b) Depth function of (a),
h(·) = D(·; I)

(c) Ordering induced by (b)

Fig. 1. Intrinsic ordering based on dichotomy background and foreground. v1 < v2 ⇔
D(v1; I) > D(v2; I)

2 Statistical Depth Functions

Depth functions for multivariate data have been pursued in robust and non-
parametric data analysis and inference. Depth functions assign to each point its
degree of centrality with respect to a data cloud or a probability distribution.
A depth function suitable for a distribution F in Rd, denoted by D(v; F), brings
out the non-central ranking of the vector v in Rd with respect to F. A number
of depth functions are available in the literature, for instance halfspace depth
[19], simplicial depth [10], projection depth [6], spatial depth [22], Mahalanobis
depth [23], etc. Roughly speaking, for a distribution F ∈ Rd, a corresponding
depth function D(v; F) could provide an F-based center-outward ordering of
point v ∈ Rd. Hence, D(v; F) is a function Rd → R. Depth-based methods are
completely data-driven and avoid strong distributional assumption. Moreover,
they provide intuitive visualization of the data set via depth contours for a low
dimensional input space. Analogous to linear order in one dimension, statistical
depth functions provide an ordering of all points from the center outward in a
multivariate data set, where the median is the “deepest” point in the data set.
This leads to center-outward ordering to points and to a description in terms of
nested contours. Let us start by a formal definition of a depth function.

Definition 1. A statistical depth function is a bounded nonnegative mapping
D(·; ·) : Rd × F → R satisfying

1. D(Av + b; FAv+b) = D(v; F) holds for any random vector v in Rd, any
d × d nonsingular matrix A, and any b ∈ Rd. That invariance to affine
transformation means, the depth of a vector v ∈ Rd should not depend on the
underlying coordinate system or, in particular, on the scales of the underlying
measurements.

2. D(θ; F) = supv∈Rd D(v; F) holds for any F having center θ. That means, for
any distribution having a unique “center”, the depth function should attain
maximum value at this center.

3. D(v; F) ≤ D(θ + α(v − θ); F) holds for any F having a deepest point θ
and any α ∈ [0, 1], i.e., as a point v ∈ Rd moves away from the “deepest
point” along any fixed ray through the center, the depth at v should decrease
monotonically.
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(a) (1 − ε)N(0, I) + εN(4, I) with ε = .02

(b) (1 − ε)N(0, I) + εN(4, I) with ε = .1

(c) (1 − ε)N(0, I) + εN(4, I) with ε = .4

Fig. 2. Random sample of a bivariate mixed gaussian distribution with different values
of contaminate rate ε. Columns correspond with Tukey Depth, Mahalanobis Depth,
Projection Depth and Spatial Depth. ε is the contaminate data rate.

4. D(v; F) → 0 as ||v|| → ∞, for each F, i.e., the depth of a point v should
approach to zero as its norm approaches infinity.

The four precedent properties are introduced and investigated for Liu in [10]. To
apply the statistical depth function paradigm in the mathematical morphology
context, we define the set of vector pixels V corresponding to a given vector
image I : E → Rd with n = card(E) pixels as the set V = {v1,v2, . . . ,vn},
where vi is a d-dimensional vector pixel of I. Thus, the function D(·; V) is called
a random depth function based on V according with [5]. Additionally, random
depth function should be permutation invariant, i.e. D(v; V) = D(v; Π(V)) for
all Π a permutation of the elements in V.

2.1 Halfspace Depth

Tukey [19] proposed a “Tukey-depth” and suggested its role in defining mul-
tivariate analogues of univariate rank and order statistics via depth-induced
“contours”.

Definition 2. The Tukey depth relative to V of a point v in Rd is defined as
the smallest number of data points in any closed halfspace with boundary through
v. This is also called the halfspace depth, and it can be written as

DT (v; V) = min
||u||=1

card{i;uTvi ≥ uT v}

where u ranges over all vector in Rd with ||u|| = 1, and card is the set cardinal.
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In the one-dimensional case, it is reasonable to order the point for a sample
V = {v1, . . . , vn} by using the one-dimensional halfspace depth

DT (v; V) = min{card{i; vi ≥ v}, card{i; vi ≤ v}}. (1)

Thus, the points are ordered following the decreasing order of the absolute value
of the difference between their percentiles and 50, and the deepest points are the
medians of V. Examples of halfspace depth function for some mixed gaussian
distribution are shown in Fig. 1. Roughly speaking, the maximum value of the
Tukey depth is a median under any linear projection from Rd to R.

2.2 Spatial Depth

Although both the sample mean and median of a data set are natural estimators
for the center of a distribution, the median is insensitive to extreme observations
while the mean is highly sensitive. A single contaminating point to a data set
can send the sample mean, in the worst case, to infinity, whereas in order to
have the same effect on the median, at least 50 percent of the data points must
be moved to infinity. Let s : R → {−1, 0, 1} be the sign function. For v ∈ R, the
difference between the number of observations on the left and right of v is given
by |

∑n
i=1 s(vi−v)|, then the sample median m satisfies |

∑n
i=1 s(vi−m)| = 0. A

generalized sign function for multidimensional data is the spatial sign function,
which is a map S : Rd → Rd given by

S(v) =
{

v/||v||, v �= 0;
0, v = 0.

where ||v|| =
√

vT v and 0 is the zero vector in Rn. With the spatial sign function,
the multidimensional sample median for V is a straightforward analogy of the
univariate version, i.e., it is the sample median m satisfies ||

∑n
i=1 S(vi−m)|| =

0. It is called the spatial median or the L1-median [22]. The concept of spatial
depth was formally introduced by Serfling [15] based on the notion of spatial
quantiles, as follows

Definition 3. For a multivariate cumulative distribution F on Rn, the spatial
depth of a point v ∈ Rd with respect to the distribution F is defined as

DS(v; F) = 1−
∣
∣
∣
∣

∣
∣
∣
∣

∫

S(w − v)dF(w)
∣
∣
∣
∣

∣
∣
∣
∣

Therefore, given set of vectors V the sample spatial depth is defined as follows

DS(v; V) = 1− 1
card(V ∪ {v})− 1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∑

w∈V

S(w − v)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(2)

Note that (2) has a range [0, 1]. The spatial median is a set of data points that
have the “deepest” depth 1. Indeed, the spatial depth provides from the “deep-
est” point a “center-outward” ordering of multidimensional data. Examples of
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spatial depth function for some mixed gaussian distribution are illustrated in Fig.
1. Unfortunately, the L1-median is not affine invariant (Property 1, Definition 1).
However, the spatial depth can be affine invariant if a suitable data-dependent
coordinate system is used, e.g., to replace S(w−v) throughout by S(A(w−v))
where A = Σ−1/2 for a suitable robust covariance-type matrix Σ based on data
[22].

2.3 Projection Depth

Introduced by Y. Zuo[23], it defines the outlyingness of vector v to be the worst
case outlyingness with respect to the one-dimensional scale functional in any
one-dimensional projection, that is,

Definition 4. The projection depth of v ∈ Rd with respect to V is defined as

DP (v; V) =
1

1 + sup||u||=1
|uT v−μ(Vu)|

σ(Vu)

,

where μ and σ are location and scale functionals and Vu denotes the value of
uT V = {uTv1, . . . ,uT vn}.

The outlyingness is the largest standardized deviation from the center among
all univariate projections. For robustness, μ and σ should be robust estimators,
for example, the median and the median absolute deviation (MAD). Projec-
tion depth for mixed gaussian distribution are illustrated in Fig. 1. For more
properties and details about projection depth, see [23].

2.4 Mahalanobis Depth

Zuo and Serfling [23] proposed the Mahalanobis depth as example of a function
with the desirable properties presented in the definition 1.

Definition 5. The Mahalanobis depth of v ∈ Rd with respect to V is defined
as

DM (v; V) =
1

1 + d2
ΣV

(v, μV)
,

where d2
ΣV

(v, μV) = (v−μV)T Σ−1
V

(v−μV), and μV and ΣV are any multivariate
location and covariance measures of the set of vectors in V.

The case with μV and ΣV being the mean and covariance matrix of V is the well-
known Mahalanobis distance. For these choices, DM (v; V) is not robust, and it
can fail to achieve the item 3 in the definition 1 for some family of theoretical
distribution, for example, a symmetric distribution. However, the sample version
satisfies all of the five desirable properties, as it has shown by Zuo and Serfling
[23].
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2.5 Practical Implementation

Statistical depth functions have interesting theoretical properties as it has been
intensively illustrated in previous subsections. They induce a data-driven or-
dering avoiding the assumption of some probability distribution. An example
is shown in Fig. 2 for the case of mixed gaussian distribution. The lack of ro-
bustness for the Mahalanobis depth is an important point to remark. Halfspace,
spatial and projection depth have higher robustness, i.e., they are preserving
the maximum value in the center of the largest distribution even with a large
percentage of contaminate data (ε in Fig. 2). Unfortunately, halfspace and pro-
jection depth require high computation time for an exact solution. This is more
or less reasonable if d = 2, but it becomes prohibitive even for d > 7 [11].
However, in most cases, the approximate computation by stochastic sampling
is fast and accurate enough for general applications. Therefore, we propose to
compute the maximum outlyingness among K1 random directions in Sd−1 the
d-dimensional unitary ball. We must choose K1 large enough to obtain stability
of the results. These issues are summarized in Table 1. The complexity of spatial
depth function is O(n2), where n = card(V). However it is relatively slow to
calculate in real images. In the practical examples, a random sequential sample
of size K2 denoted by V̂ is selected from V to calculate the spatial depth function
in reasonable time.

Table 1. Approximated version used in the experiments

Depth function Approximated Version Parameter

Half-space minu∈S card{i;uT vi ≥ uT v} K1 = card(S)

Projection supu∈S

|uT v−μ(Vu)|
σ(Vu)

K1 = card(S)

Spatial
∑

w∈V̂
S(w − v) K2 = card(V̂)

Mahalanobis Exact none

3 Morphology Using Statistical Depth Functions

The basic idea of our approach is to use a depth function to induce an h-ordering
in the vector space. That is an ordering based on a data-adapted function and
in such way that the interpretation of max and min operation in this lattice is

(a) I (b) DP (·; I) (c) DM (·; I) (d) δDP ,5S(I) (e) εDP ,5S(I)

Fig. 3. The lack of robust of depth Mahalanobis DM whereas projection depth DP

involves an ordering useful for dilations/erosions
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known a priori, because max values can be associated with “outlier” pixels in the
high-dimensional space and min are “central” pixels in Rd space. In this section,
fundamentals of complete lattices for Rd is reviewed. For a detailed exposition
on complete lattice theory in mathematical morphology refer to [12]. A space
L endowed with a partial order ≤ is called a complete lattice, denoted (L,≤) if
every subset H ⊆ L has both supremum (join)

∨
H and infimum (meet)

∧
H.

A minimum (smallest) n ∈ H is an element contained in all other elements of
H, that is, l ∈ H ⇒ n ≤ l. We denote the minimum of L by ⊥. Equivalently, a
maximum (largest) n in H is an element that contains every element of H, that
is, l ∈ H ⇒ l ≤ n. We denote the maximum of L by !. Let R be a nonempty set
and L a complete lattice. Furthermore, let h : R → L be a surjective mapping.
As it was defined in [8], we refer by ≤h as the h-ordering given by:

r ≤h r′ ⇔ h(r) ≤ h(r′), ∀r, r′ ∈ R

Note that ≤h preserves reflexivity (r ≤h r) and transitivity (r1 ≤h r2 and
r2 ≤h r3 ⇒ r1 ≤h r3 ) but is not a total ordering. Additionally, an equiva-
lence class is defined by L[z] = {r ∈ R|h(r) = z}. For multivariate images, as
color or hyperspectral ones, pixel values are vectors defined in Rd. Consequently
the main challenge to build complete lattice structures is to define a mapping
h : Rd → L, where L can be the lattice of the extended real line (R,≤) with
R = R

⋃
{−∞, +∞} and ≤ as the “less than or equal to” operation (the nat-

ural partial ordering). Once the family of orderings have been established, the
morphological vector operators are defined in the standard way. We limit here
our developments to the flat operators, i.e., the structuring elements are planar
shapes. Let I : E → Rd be a vector image. According to the previous develop-
ments, we consider that there exists a mapping h : Rd → L, furthermore the
composition of I and h will be h(I) : E → L. The functions from E onto L are
denoted by F(E,L), where E ⊂ Z2 is the support space of the image. The par-
tial ordering in lattice L is denoted ≤L. If L is a complete lattice, then F(E,L)
is a complete lattice too. We refer hD(·,I) as the ordering generated for a depth
function −D(·, I) (By a mild abuse of notation we write −D(·; I), but naturally,
the depth function is computed in the corresponding set V as it was presented in
Section 2). Morphological operators defined using hD(·,I) have the classical prop-
erties [18]. Under the assumption that the original image I : E → Rd has back-
ground/foreground decomposition, i.e., E = {EB, EF } such that EB∩EF = ∅ and
card{EB} > card{EF }, the ordering function hD(v) = −D(v, I) will be maxi-
mal at the foreground and minimal at the background. Therefore, the morpho-
logical operator can be interpreted taking into consideration that in this case low
values in L correspond to pixels close to the vector median or “background” and
high values coincide with vector outliers or “foreground”. It is important to re-
mark that given an image parametrized for its spatial support, IE : E → Rd and
a subset in its spatial support, Z ⊂ E, for instance IZ is a sector of IE , the depth
functions associated of both images are not equivalent, i.e, D(·; IE) �= D(·; IZ).
However, the local knowledge property [16] is preserved if and only if the depth
function is calculated using the whole available image in E. The erosion of an
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(a) I (b) (δ − ε)DM ,S(I) (c) (δ − ε)DP ,S(I) (d) (δ − ε)DT ,S(I)

(e) δDP ,4S(I) (f) εDP ,4S(I) (g) δDP ,8S(I) (h) εDP ,8S(I)

(i) I (j) (δ − ε)DM ,S(I) (k) (δ − ε)DP ,S(I) (l) (δ − ε)DT ,S(I)

(m) δDP ,4S(I) (n) εDP ,4S(I) (o) δDP ,8S(I) (p) εDP ,8S(I)

(q) I (r) (δ − ε)DM ,S(I) (s) (δ − ε)DP ,S(I) (t) (δ − ε)DT ,S(I)

(u) δDM ,4S(I) (v) εDM ,4S(I) (w) δDM ,8S(I) (x) εDM ,8S(I)

Fig. 4. Comparison of basic morphological operators using different depth functions.
Note that false colors are not introduced by proposed approach. Gradients are cal-
culated in depth function magnitude. (This figure should be viewed in color and by
zooming on a computer screen.)
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(a) I (b) εDP ,S(I) (c) δDP ,S(I)

(d) R+
6S(I) (e) R−

6S(I) (f) R+
10S(I)

(g) R−
10S(I) (h) R+

20S(I) (i) R−
20S(I)

(j) I (k) (δ − ε)DP ,S(I)

(l) R+
10S(I) (m) R−

10S(I)

(n) R+
20S(I) (o) R−

20S(I)

Fig. 5. Pavia University Hyperspectral Image (a-i). The original image has 610 × 340
pixels in 103 bands. Indian Pines Hyperspectral Image (j-o). The original image has
614 × 2678 pixels in 220 bands. Structure decomposition using residues of openings
(R+

λS) and closings by reconstruction (R−
λS), calculate in depth function magnitude.
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image I at pixel v ∈ Rd by the structuring element S ⊂ E using the h-depth
function is given by εD,S(I)(x) = {I(y) : I(y) = ∧hD [I(z)], z ∈ Sx}, where ∧hD is
the infimum according to the total ordering hD induced for the depth function
D. The corresponding adjunct dilation δD, is obtained by replacing the infhD

by the suphD
, i.e., δD,S(I)(x) = {I(y) : I(y) = ∨hD [I(z)], z ∈ Ŝx}, where Ŝ

is the reflected structuring element. In practice, the erosion shrinks the struc-
tures which have a spectrum close to the outlier pixels in the vector dimensional
space; “spatial peaks of spectra” thinner than the structuring element disappear
by taking the spectrum of neighboring structures with a spectrum values close
to the “background”. As well, it expands the structures which have a vector
value close to “foreground”. Dilation produces the dual effects, enlarging the
regions having a spectrum close to the outliers and contracting the background.
The other morphological operators are defined and interpreted as product of this
dilation and erosion. To illustrate the performance of our approach, we used the
Berkeley Segmentation Dataset (BSDS) for examples of color images process-
ing.Two examples for hyperspectral images are shown: (1) University of Pavia
is an urban area that was recorded by the ROSIS-03 optical sensor and it has
spatial dimensions of 610 by 340 pixels, with a spatial resolution of 1.3 meters
per pixel. (2) Indian Pine obtained by the AVIRIS sensor in 220 spectral bands
in the 400-250 nm range with 614×2678 pixels. In the experiments illustrated in
Figs. 3, 4, and 5, the structuring element λS is a disk of size λ, and the number
of random projections is K = 2000 for DP . An optimal parameter selection can
be done, however that is beyond the scope of this paper.

4 Conclusions

The paper proposed the statistical depth function as a powerful approach to
induce a vector ordering for multivariate images and consequently a framework
for unsupervised multivariate mathematical morphology. Indeed, it reaches a
good compromise between simplicity and effectiveness in cases where no prior
information is available for a supervised approach.
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Abstract. Historically, mathematical morphology has primarily focused
on the processing and analysis of two-dimensional image data. In this pa-
per, we survey a number of other areas where mathematical morphology
finds fruitful application, such as computer graphics and solid modeling;
path planning; filtering, segmentation and visualization of volume data;
or visual exploration of high-dimensional data. We also mention tech-
niques for accelerating morphological computations by using graphics
hardware (GPU computing).

Keywords: Constructive solid geometry, computational geometry, group
morphology, volume processing and visualization, high-dimensional data
exploration, GPU computing.

1 Introduction

Historically, mathematical morphology originated as a methodology for process-
ing and analyzing two-dimensional image data. However, its scope turned out to
be much wider, being applicable to general multi-dimensional data. In this paper
we review a number of such areas which go beyond the image analysis domain.
In constructive solid geometry, Minkowski operators are used for modelling and
visualization of 3D objects. Group morphology is applicable to path planning
and configuration space analysis. Morphological operators have been used for
transfer function design in volume rendering. Morphological pyramids and con-
nected morphological operators find application in multiresolution visualization
and filtering of (medical) volume data, while for volumetric segmentation mor-
phological active surface models have been proposed.

More recently, mathematical morphology has been applied in visual explo-
ration of high-dimensional data. For example, the watershed transform has been
adapted for fast reconstruction and visualization of brain networks; connected
filters are used for finding relevant subspaces in high-dimensional scientific data,
or for filtering tensor fields such as diffusion tensor imaging data. We also briefly
discuss recent techniques for accelerating morphological computations by using
graphics hardware (GPU computing).
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2 Computer Graphics and Computational Geometry

2.1 Computer Graphics

In computer graphics various techniques are used to synthesize realistic images
of real-world scenes. In Constructive Solid Geometry (CSG), composite solid
objects are formed by applying set operations (union, intersection and differ-
ence) to simple solids, such as spheres, blocks, or cylinders. Visualization of
these objects is possible by incorporating the CSG operations in the ray tracing
technique, which visualizes 3D objects by simulating the physical processes of
ray propagation, reflection and transmission [11, 13].

Various authors have found the Minkowski addition and subtraction operators
to be suitable tools in CSG [30, 40]. Other uses of Minkowski operations in shape
description and solid modeling were presented by Ghosh [12]. In special cases
the Minkowski addition reduces to the sweep representation (a special case of
translation surface) in solid modeling [11, 13].

A different approach was followed in [35]. Using a basic set of elementary
shapes, a decomposition was derived of a multiple Minkowski sum of any number
of objects, chosen from the basic set, into a union of standard primitives. This
union can then subsequently be visualized by standard CSG combined with
ray tracing; see Figure 1 for an example. The advantages of this method are
efficiency (once the decomposition has been carried out, the ray tracing process
is comparatively fast) and compactness of the representation.

projection
reference point

projection
plane

(a) (b) (c)

Fig. 1. (a): Set-up for ray tracing of a 3D scene. Visualization of the Minkowski sum
of: (b) two perpendicular circles, a quartic surface defined by the equation (x2 − y2 +
z2 + r2

z − r2
y)2 = 4x2(r2

z − y2); (c) two perpendicular flat discs [35].

2.2 Path Planning and Configuration Space Analysis

In path planning the problem is to find a path for an object, say a robot or a
car, moving in a space with obstacles. The problem falls apart into two distinct
subproblems [15]. First, the empty-space problem: find the allowed states of the
robot (moving object); second, the find-path problem: find a trajectory in the
empty space, subject to certain constraints.
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Morphological operations can be used to address the empty-space problem.
For robots with only translational degrees of freedom, one can find the allowed
positions of the (arbitrarily chosen) center of the robot by a standard erosion
of the space outside the obstacles, where the structuring element B is the robot
itself. Equivalently, one may perform the dilation by the reflected set B̌ of the
set of obstacles to find the forbidden positions of the center of the robot. This
is more efficient when the obstacle space is smaller than the space outside the
obstacles. If the robot has rotational degrees of freedom or rotating joints, the
framework of group morphology is appropriate.

Group morphology. The theory of group morphology deals with the construc-
tion of morphological operators on an homogeneous space (T,X ), where T is a
group acting transitively on X . For background, see Heijmans and Ronse [17, 38]
for the case of abelian symmetry groups, and Roerdink [31, 34] for the case of ar-
bitrary (abelian and non-abelian) symmetry groups; see also [19]. For example,
when X = Rd any appropriate group T may be chosen, such as the transla-
tion group, the motion group, the affine group, or the projective group, where
in each case the morphological operations of interest are invariant under the
corresponding group T.

As shown in [32], translation-rotation morphology, where T is the motion
group, is applicable to the empty space problem for robots with rotational de-
grees of freedom. Another application is the tailor problem, which concerns the
fitting of sets without overlap within a larger set [33].

An interesting approach to configuration space analysis and similar problems
was presented recently by Lysenko et al., who reformulated the framework of
group morphology in terms of group convolution algebras [27].

2.3 Shape Comparison and Symmetry Detection

Shape comparison is one of the fundamental problems of machine vision. For
the case of convex polygons and convex polyhedra shape similarity measures
have been studied based on Minkowski addition and inequalities related to the
Brunn-Minkowski theory [18, 47]. The same theory can be applied for symmetry
detection of convex polyhedra, see for example [48]. Also, group convolution
algebras have been applied for this purpose [27].

If one considers measures which are not only translation-invariant, but also
invariant under the group of orthogonal transformations, the direct computation
of similarity measures in the 3D case becomes very time consuming. In principle,
optimization should be performed for all possible positions of rotation axes and
rotation angles. As shown in [47], for certain measures based on (mixed) volume,
it is sufficient to consider only a finite number of “critical” rotations; see also
[1]. By using geometric inequalities in the slope diagrams of the polyhedra, the
set of relative orientations to be considered can be narrowed down, so that the
time complexity of O(n6) is reduced to O(n4.5) [37].
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3 Volume Processing and Visualization

Volume visualization, or volume rendering, is a technique which produces two-
dimensional image representations of three-dimensional data from different view-
points, using computer graphics techniques such as illumination, shading and
colour [16]. Two types of rendering are distinguished: (i) surface rendering, where
the volume is reduced to one or more isosurfaces S(c) : f(x, y, z) = c of a density
function f representing the boundary between materials; (ii) direct volume ren-
dering, which maps the volume data directly on the screen, with semi-transparent
effects (see Figure 2). Two volume rendering methods which are widely used in
medical imaging are X-ray rendering and maximum intensity projection (MIP).
Here one generates, for each pixel of the view plane, a ray through the data
parallel to the line of sight (i.e., perpendicular to the view plane), and assigns
either the average or the maximum data value encountered along this ray to the
pixel. Because of its computational simplicity and effectiveness, MIP is widely
used in the display of magnetic resonance angiography (MRA) and ultrasound
data.

Especially when interactive rendering rates are required (i.e., there must be a
fast response of the rendering system to actions of the user), volume rendering
is a very demanding problem when the sizes of the volume data are large. Two
general approaches are available for accelerating the involved computations.

– Special hardware. In this category we will briefly discuss general purpose
computation on graphics hardware.

– Special data structures. Hierarchical structures like wavelets or morphological
pyramids are of special interest here.

Fig. 2. Left: surface rendering of a frog data set with partially transparent sur-
faces corresponding to different tissues (data source: the VTK distribution [42]).
Right: direct volume rendering of tooth data (data source: the Volume Library
http://www9.informatik.uni-erlangen.de/External/vollib)

http://www9.informatik.uni-erlangen.de/External/vollib
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3.1 General Purpose Computation on Graphics Hardware

A recent development which has a major impact on interactive data processing
and visualization, is new programmable graphics hardware. The Graphics Pro-
cessing Unit (GPU), originally used for graphical tasks only, has evolved into
a so-called General Purpose GPU (GPGPU). The computing power of GPUs
is currently increasing at a faster pace than that of CPUs, so that the GPU
is now a major computational device for diverse applications, such as physics
simulations, neural networks, image processing and computer vision, graphics
and visualization, and even database sorting.

Initially, GPGPU applications, even though not concerned with graphics ren-
dering, did have to use the rendering paradigm, involving the use of textures.
As an example we mention the GPU-acceleration of elementary morphological
operators as pioneered in the nineties by Hopf and Ertl [20]. However, in 2006
NVidia introduced a programming environment called CUDA [25], which allows
the GPU to be programmed through more traditional means. At this moment a
dedicated programming effort is still required to develop algorithms that perform
efficiently on GPU hardware, but efforts are underway for automatic transfor-
mation of CPU programs into GPU counterparts [24].

3.2 Morphological Operators for Transfer Function Design

In volume rendering, one of the most difficult tasks is the process of classifica-
tion, that is, to determine for each voxel to what type of material, tissue, etc., it
belongs. Classification is usually done by using a transfer function that defines
the colour and opacity values of each voxel. These are then used when the values
of voxels along viewing rays are combined into a single pixel color. Finding a
suitable transfer function is often done by an interactive process which can be
very complicated and time consuming [16, Ch. 9]. To make this process more au-
tomatic, Lürig and Ertl [26] proposed multiscale morphological operators which
incorporate spatial neighbourhood information, as an alternative to traditional
transfer functions.

3.3 Morphological Pyramids for Multiresolution Visualization

For very large data sets, a multiresolution approach is an obvious choice, which
allows a quick visualization of reduced versions of the data that can be progres-
sively refined if needed. For maximum intensity projection (MIP), the transform
is nonlinear, so the standard linear multiresolution models based on wavelets
(see, e.g., [50]) are not applicable. Instead, the framework of morphological pyra-
mids as developed by Goutsias and Heijmans [14] can be used as the basis for
developing multiresolution algorithms for MIP; see [36] for a survey.

The multiresolution MIP algorithm can be summarized as follows. In the pyra-
mid analysis phase, which is a preprocessing step, a 3D morphological pyramid
of approximation and detail coefficients is computed by repeated morphologi-
cal filtering followed by downsampling. The original data at each level of the
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pyramid can be recovered by successive upsampling and morphological filtering
of higher-level data; this process is called pyramid synthesis. Particularly suit-
able for multiresolution MIP are dilation pyramids, where the filter operation
during synthesis is a dilation. For such pyramids, the MIP operation and the
pyramid synthesis work nicely together, in the sense that the maxima along the
line of sight can be computed first from pyramid data on a coarse level (where
the size of the data is reduced), after which a fast 2D morphological synthesis
operator is used to perform reconstruction of the projection image to full grid
resolution [36].

0

60

30 Error
(gray levels)

1% 5% 10% 100%

Fig. 3. Streaming MIP-splatting of the complete Visible Woman dataset (source:
http://www.nlm.nih.gov/research/visible) in a 800 by 2000 window. The render-
ing is shown at various quality settings (given as percentages of the total number of
detail coefficients). The second row shows a detail image for each quality setting, and
the third row shows the difference image in gray levels [23].

Several approaches based on pyramid schemes (all of the dilation-pyramid
type) were compared in [36]. The most efficient approach was found to be stream-
ing MIP-splatting. In this method, detail coefficients from all levels are jointly
resorted with respect to decreasing magnitude of a suitable error measure. In
the rendering phase, all resorted coefficients are projected successively, until a
desired accuracy is obtained. As shown in [36], streaming MIP-splatting out-
performs earlier methods based on morphological pyramids, both with respect
to image quality with a fixed amount of detail data, and in terms of a flexible
trade-off between approximation error and computing time.

http://www.nlm.nih.gov/research/visible
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Fig. 4. MIP rendering of the aneurysm data set (rotational b-plane X-ray scan, courtesy
Philips Research, Hamburg, Germany; http://volvis.org), filtered according to a
non-compactness criterion with value λ = 2.0 [51]

Streaming MIP-splatting on the GPU. A GPU implementation of the streaming
MIP algorithm was studied in [23]. The load and the dataset can be spread
over multiple graphics cards in a straightforward way, thereby achieving support
for large volume data with an almost optimal speedup. An example is given
in Figure 3. The method achieves interactive frame rates, ranging from 20-50
frames per second, depending on the allowed error.

3.4 Connected Operators for Combined Filtering and Visualization

Connected filters are based upon an axiomatic definition of connectivity within
a complete lattice framework [19, 43]. They are used to perform filtering based
on various shape and size attributes. A key property of connected filters is their
edge preserving nature. Connected filters can be efficiently computed by the
Max-tree data structure, in which the nodes represent connected components
for all threshold levels in a data set [41]. The basic Max-tree data structure
can be augmented by extensions that allow (i) direct volume rendering, (ii)
representation of the Max-tree on graphics hardware, and (iii) fast active cell
selection for isosurface generation. In all three cases, the Max-tree representation
can be used to change filter parameters interactively and visualize the result at
interactive rates [51]; see Figure 4 for an example.

3.5 Segmentation and Visualization by Active Surface Models

Segmenting images using active contour models (snakes) involves the evolution of
a curve or surface (i.e., an interface), subject to constraints derived from a given
input image or volume. State-of-the-art active contours are based on the level
set framework, which is able to handle complicated topologies of the underlying
shapes [46]. The evolving curve C(s) : [0, 1] → R2 is given by the zero level-
set at time t of a function φ(x, y, t) that satisfies an evolution equation of the
form ∂φ

∂t = F ||∇φ||. In the context of image segmentation, various formulations

http://volvis.org
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Fig. 5. Segmentation of multiple nested objects. Left, center : volume renderings of the
tooth data set (cf. Figure 2); right : the segmented constituent parts: the enamel, dentin
and root canal [21].

for the speed function F have been proposed. Traditionally F is set to some
function of the gradient image [6, 28], such that the active contour stops its
evolution whenever important edges in the input image are encountered. Chan
and Vese [7] used a minimum-variance criterion of the segmented regions. Their
active contour model leads to the evolution equation:

∂φ

∂t
=
{
μ · κ− ν + λ

[
(I − c2)2 − (I − c1)2

]}
||∇φ|| , (1)

which has to be solved for φ, with I the input image, κ the level set curvature,
c1 = average(I) in {φ ≥ 0} and c2 = average(I) in {φ < 0}. The first term in
Eq. (1) represents the curvature flow and minimizes the length of the curve,
the second term represents inwards motion at constant speed and minimizes the
area of the region, whereas the last term represents region competition by the
minimum-variance criterion.

As shown in [21], Chan and Vese’s minimum-variance model can be refor-
mulated within the context of discrete multi-scale morphology [29] as follows:

uk+1 = sgn
(
uk ∗ χBp + sgn(fk) (|Bp| − 1)

)
, (2)

where k is the discrete time (scale) parameter, sgn(x) = 1 if x > 0 and −1
otherwise, Bp is the unit ball w.r.t. the p-norm, χBp the characteristic function
of Bp, |Bp| the number of elements of Bp, and ‘*’ denotes linear convolution.
The ‘speed function’ fk is given by

fk = λ
(
(I − ck

2)
2 − (I − ck

1)2
)

+ α · sgn(uk ∗ χBp + β), (3)

where λ ≥ 0, α ∈ R and β ∈ Z.
By varying the free parameters in the definition of fk, various filters are ob-

tained, such as median filtering, local dilations and erosions, or open-close and
close-open filters. Both the PDE-based model and the discrete model were im-
plemented on the GPU in [21]. Experiments showed that the discrete model
produces results which are comparable to those of the continuous PDE model
based on level sets, while being almost two orders of magnitude faster. An ex-
ample is given in Figure 5, showing the segmentation of multiple nested objects.
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4 Visual Exploration of High-Dimensional Data

4.1 Reconstruction and Visualization of Brain Networks

Electroencephalography (EEG) is a method to measure the electrical activity
of the brain by means of electrodes attached to the scalp at multiple locations.
Synchronous electrical activity in different brain regions is generally assumed to
imply functional relationships between these regions. A measure for this syn-
chrony is EEG coherence, calculated between pairs of electrode signals as a
function of frequency.

Fig. 6. Functional Unit maps for multichannel EEG coherence visualization. Brain re-
sponses were collected from three subjects using an EEG cap with 119 scalp electrodes.
During a so-called P300 experiment, each participant was instructed to count target
tones of 2000 Hz (probability 0.15), alternated with standard tones of 1000 Hz (prob-
ability 0.85) which were to be ignored. After the experiment, the participant had to
report the number of perceived target tones. To each electrode a Voronoi cell in a
graph layout is associated and all cells belonging to a functional unit (FU) have a
corresponding color. Lines connect FU centers if the inter-FU coherence exceeds a sig-
nificance threshold. The color of a line depends on the inter-FU coherence. Shown are
FU maps for target stimuli data, with FUs larger than 5 cells, for the 1-3Hz EEG
frequency band (top row) and for 13-20Hz (bottom row), for three datasets [5].

A typical data-driven visualization of electroencephalography (EEG) coher-
ence is a graph layout, with vertices representing electrodes and edges represent-
ing significant coherences between electrode signals. A drawback of this layout
is its visual clutter when the number of electrodes is large. To reduce clutter,
ten Caat et al. [5] defined a so-called functional unit (FU) as a data-driven re-
gion of interest (ROI). An FU is a spatially connected set of electrodes recording
pairwise significantly coherent signals, represented in the coherence graph by a
spatially connected clique. Computing such cliques is very time-consuming: its
time complexity is O(3n/3), with n the number of vertices.
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As an alternative, a modified watershed method (time complexity O(n2 log n))
was developed, which merges basins representing FUs during the segmentation
process if they are spatially connected and if their union is a clique [5]. The
modified watershed method produces FU maps which are comparable to the
clique-based method, and is up to a factor of 105 faster for a typical setting with
128 EEG channels, thus making interactive visualization possible; see Figure 6
for an example. The method can also be extended to find averaged maps for
data-driven group analysis. The method was applied to mental fatigue [4] and
neurodegenerative disease [8].

4.2 Filtering and Visualization of Diffusion Tensor Imaging Data

Processing and visualization of tensor fields has become very important over the
last decade [49]. A prime application area is medical imaging, where magnetic
resonance diffusion tensor imaging (DTI) enables the in vivo exploration of the
structural organization of fibrous tissue, such as the brain or the heart. An
interesting feature of DTI is its ability to derive local information, such as the
amount of anisotropy in a single brain voxel; this can be visualized by tensor
glyphs [22], which represent iso-probability surfaces of the diffusion process (in
ordinary DTI these are ellipsoids oriented along the main fiber direction). In
addition, one can track fiber bundles from a selected brain area. This allows the
determination and visualization of structural connectivity between brain regions;
see Fig. 7 for an example [9].

For connectivity-based morphological filtering and visualization of tensor fields,
new developments in (hyper)connectivity, constrained and partial connectivity
are of current interest [3, 39, 44, 45, 52].

4.3 Finding Relevant Subspaces in High-Dimensional Data

Data sets in many scientific areas are growing to enormous sizes with high dimen-
sionality. Exploration of such large data spaces poses a huge challenge. Subspace
clustering is one among several approaches which have been proposed for this

(a) (b) (c) (d)

Fig. 7. Illustrative visualization of DTI fiber tracts. (a): Initial set. (b)-(d): Three ex-
ample stages of filtering, using the fractional anisotropy (FA) value of a DTI fiber tract
data set. With the growing filtering threshold for FA, more of the internal structure of
the data set is revealed [9].
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Fig. 8. Schematic diagram of the interactive search and exploration system of high-
dimensional data spaces [10]

purpose in recent years. This method detects subspaces of a high-dimensional
space which are potentially “relevant” or “interesting”, as defined by specific
criteria. The actual clustering can then be limited to the relevant subspaces.
Ferdosi et al. [10] recently proposed a subspace finding method based on con-
nected morphological operators. First a transformation is performed from the
high-dimensional parametric space to discrete image space where the data are
represented by a grid-based density field. Then connected operators are applied
on this density field that provides visual support for the analysis of the impor-
tant subspaces. The importance of a cluster is measured by a quality criterion
based upon the notion of dynamics [2]. The search for modes/local maxima is
done on the Max-tree representation of the density image [41]. For subspaces
of dimension higher than three, principal component analysis (PCA) is applied
and the first three principal components are used for subspace ranking.

During computation the user can interact with the system to improve the
results. In the result stage, three visualization toolkits are used that are linked
within a graphical user interface for in-depth exploration of the ranked subspaces;
see Figure 8, where the system is used in an astronomical application. Current
work involves the extension of this approach to large touch-sensitive displays,
which support collaborative research.

5 Conclusions

As is apparent from this brief survey, mathematical morphology is a very versa-
tile methodology, with applications ranging from image processing and computer
graphics to data visualization. Built on a solid mathematical foundation, it con-
tinues to find new theoretical directions such as (hyper)connected filters, as well
as important applications, including tensor imaging and high-dimensional data
exploration.
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Abstract. Surface reconstruction from a set of noisy point measure-
ments has been a well studied problem for several decades. Recently,
variational and discrete optimization approaches have been applied to
solve it, demonstrating good robustness to outliers thanks to a global
energy minimization scheme. In this work, we use a recent approach
embedding several optimization algorithms into a common framework
named power watershed. We derive a specific watershed algorithm for
surface reconstruction which is fast, robust to markers placement, and
produces smooth surfaces. Experiments also show that our proposed al-
gorithm compares favorably in terms of speed, memory requirement and
accuracy with existing algorithms.

Keywords: optimization, point measurements, Graph cuts, total
variation.

1 Introduction

This paper develops a watershed-based algorithm providing a global optimal
solution to the surface reconstruction problem from a set of scattered points.
Surface fitting is a challenging problem when dealing with data containing sparse
noise, gaps, and outliers. The set of points may be for example acquired by
several scans of an object (range scanning). In this context, regularization-based
methods have been shown to be robust when the points are lacking connectivity,
ordering information, and may be contaminated by noise. While there exist
numerous explicit surface extraction techniques that estimate the exact positions
of surface points, in this work we will focus on implicit surface representation.
Implicit surfaces may be represented by level sets (e.g. [29]) or binary partitions
(e.g. [23]).

Local methods for surface reconstruction including the MPU method [5] are
sensitive to noise, as shown in the experiments of [19]. Among the recent global
approaches, the Poisson method [20] and FFT-method [21] are more robust to
noise, however they require orientation information.
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The method of Jalba and Roerdink [19] makes it possible to avoid having to
estimate orientation information. This is achieved by computing approximations
of Coulomb potentials in a grid as an input for the convection method of [29].
We propose a different approach that allows us to perform a global optimization
of the surface reconstruction problem without requiring the computation of such
field as Coulomb potentials.

A generic optimization-based regularization formulation for shape fitting min-
imizes the total variation functional weighted by the distance function from the
set of points P . More generally, given two positive numbers p and q, we consider
an object indicator partition u solution of

min
u∈[0,1]

∫

Ω

w(z)p|∇u(z)|qdz

subject to u(z) = 0 ∀z ∈ Ωin,

and u(z) = 1 ∀z ∈ Ωout,

(1)

where Ωin is the set of labels inside the surface and Ωout is the set of labels
outside the surface. The weight function w is defined at every point z in a grid
as w(z) = dP (z), where dP (z) is the distance map from the points. When p
is finite and q = 1, Eq. (1) leads to a binary solution u [27]. A solution can
be deduced in the discrete setting using e.g. the network flow technique [12],
also known as Graph cuts [4]. Augmenting path max flow implementations are
fast and efficient in 2D but memory consuming as the connectivity increases,
for instance in 3D. Lempitzky and Boykov [23] have overcome this problem by
limiting the size of the search for a solution in the grid while still guaranteeing
a global optimum. However their solution is based on restrictive assumptions
assuming that the data points are provided with an estimate of the surface
orientation. Furthermore, at low resolution, results exhibit metrication artifacts
and look blocky, so a high resolution is essential for getting smooth results using
the Graph cuts method.

We propose a watershed-based approach in order to provide a way to quickly
obtain smooth surfaces at a high resolution without any need to pre-estimate
the surface orientation. Recently, Couprie et al. introduced the power watershed
method [10,8], which can be seen as an anisotropic discretization of (1) with
p → ∞ and q = 2. Although this technique was introduced in the context of
image segmentation, the authors described how the method could be used as an
optimization method for various functionals in [9]. In the present paper we show
that the power watershed method of Couprie et al. is well-suited to address the
surface reconstruction problem. The idea of using watersheds for surface recon-
struction from a set of points is quite natural. It can be seen as a an extension of
the classical “coffee bean” segmentation example, where a watershed is applied
on a filtered distance function to separate overlapping convex objects [3].

For further comparison, we also propose in this paper to examine a well-known
weighted isotropic discretization of (1) (for q = 1) known as “Total Variation”
(TV). We mention that there exist other TV-based approaches developed to
overcome metrication artefacts, e.g. [28,15]. However, due to space constraints,
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further comparison with these techniques will be the subject of future work.
Finally, we will also show that our algorithm compares favorably with existing
surface reconstruction algorithms [2,5,21,20,19].

2 Method

For solving the surface reconstruction problem, we first place the points cloud
onto a regular grid. Our method aims to label the nodes of the grid as an indicator
of the object to reconstruct. Since the power watershed is defined on a graph,
we begin by casting the surface reconstruction problem formulation in discrete
terms.

A graph consists of a pair G = (V, E) with vertices v ∈ V and edges e ∈
E ⊆ V × V with cardinalities n = |V | and m = |E|. An edge, e, spanning two
vertices, vi and vj , is denoted by eij . We define an edge set corresponding to
a 4 or 8-connected lattice (or 6-, 18- or 26-connected in 3D). A weighted graph
assigns a (typically non-negative and real) value to each edge called a weight.
The weight of an edge eij is denoted by w(eij) or wij . A plateau is a maximal
set of connected edges with identical weight.

Given foreground F and background B node values (also called seeds), and
p, q two real positive values, the energy presented for binary segmentation in [8]
is a discretization of (1) given by

min
x

∑

eij∈E

wp
ij |xi − xj |q

s.t. x(F ) = 1, x(B) = 0.

(2)

In this energy, x is a labeling indicating the foreground and background mem-
bership. The edge values wij can be interpreted as weights enforcing a regular-
ization of the contours, such that any (usually unwanted) high-frequency content
is penalized in x. The definition of the weights for surface reconstruction from a
set of points P is based on the construction of a discrete distance map dP , in a
grid bounding the set of points.

wij = min (dP (i), dP (j)) , (3)

where dP (i) is the discrete Euclidean distance between the node i and the set of
points P . We recall that exact Euclidean discrete distance map may be obtained
in linear time using the algorithm of Hirata [17], and that high-quality ordered
algorithms also exist [25] . The background seeds may simply correspond to the
frame, or bounding box of the lattice. The foreground seeds can be given by
the maxima of the distance function that are not connected to the frame. The
distance map may be previously filtered, for example using an attribute filter to
obtain more robust markers [6,24].

As we illustrate in the remainder, the energy defined in (2) essentially forces
x to remain smooth within the object, while allowing it to vary quickly close
to point clusters near the boundary of the object. The data constraints enforce
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fidelity of x to a specified configuration, taking the values zero and one as the
reconstructed object indicator. Observe that the values of x may not necessarily
be binary when the value of q is strictly greater than one, which is a positive
point for the surface reconstruction problem as we will further explain in this
work.

The different values of p and q lead to different algorithms for optimizing the
energy. When the power of the weight, p, is finite, and the exponent q = 1,
we recover the Graph cuts energy which can be optimized by a max flow algo-
rithm. When q = 2, we obtain a combinatorial Dirichlet problem also known
as the Random walker problem [16]. As described in [8,10], when the expo-
nent p tends toward infinity, the cut obtained when minimizing the energy is a
watershed cut [11], which has been shown to be equivalent to Maximum Span-
ning Forests [11] (MSF). Furthermore, an algorithm is presented to optimize the
unique watershed that optimizes the energy for q = 2 and p → ∞. The power
watershed (PW) algorithm is recalled in Algorithm 1.

Algorithm 1. Power watersheds algorithm p →∞, q = 2
Data: A weighted graph G(V, E) comprising known labels x(B), x(F ).
Result: A labeling x solution of (2).
while any node has an unknown label do

Find a maximal subgraph S ∈ G composed of edges of maximal
weight;
if S contains any nodes with known x then

Find xS minimizing (2) for q = 2 on the subset S;
Consider all xS values produced by this operation as known;

else
Merge all of the nodes in S into a single node, such that when the
value of x for this merged node becomes known, all merged nodes
are assigned the same value of x and considered known;

This set of parameters q = 2 and p →∞ is particularly interesting:

1. The power watershed algorithm has a well-defined behavior in the absence
or lack of weight information (presence of plateaus). An example is shown
at Figure (1).

2. The worst-case complexity of the power watershed algorithm in the case
p →∞ is given by the cost of optimizing (2) for the given q. In the best-case
scenario (all weights have unique values), the power watershed algorithm has
the same asymptotic complexity as the algorithm used for a MSF computa-
tion (quasi-linear) (See [7] for more details). In practical applications where
the plateaus have a size less than some fixed value K, then the complexity of
the power watershed algorithm matches the quasi-linear complexity of the
standard watershed algorithm.
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Fig. 1. (a) Three dots in a 4 × 5 lattice. (b) Associated lattice weighted by a distance
map from the dots according to (3) and squared, with Foreground and Background
seeds. Note that only the ordering of the weights counts in the power watershed al-
gorithm, thus the squared distance map can be used directly and produces the same
solution as if the weights in (3) were used. (c) First steps of the power watershed algo-
rithm to optimize (2) in the case q = 2 and p → ∞. Nodes having a maximum weight
are merged. (d) A plateau of weight 2 (in green) including different seeded nodes is en-
countered. The Random walker algorithm is applied to label the nodes on the plateau.
(e,f) New plateaus of weight 1 and 0 are encountered, the Random walker algorithm is
applied, (g) Final labeling x solution of (2). The isocontour is represented in red.

Although the PW algorithm is fast, it can be further accelerated for the spe-
cific case of weight defined according to a distance map (3). Given the foreground
and background seeds, we define a narrow band S as the set obtained by thresh-
olding the distance map dP with the the smallest threshold TS such that the
connected components are divided between at least an interior (foreground) and
an exterior (background). We then compute the PW only on this incomplete
distance map, which saves both time and memory. In practice, it is possible to
avoid computing an exact distance map on the full grid, using for instance an
ordered algorithm propagating from the point cloud [25].

Recall that the exterior seed is connected to the frame of the image, so this is
a simple unambiguous connectivity criterion. Applying PW on S is guaranteed
to provide the same (unique) global optimizer of the energy as the solution on
the full grid, because the connectivity criterion ensures this computation yields a
Jordan curve (2D) or surface (3D) separating foreground and background seeds
and passing through only already-computed distance values. Performing the PW
computation on the full map would not change this result because no distance
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weight would be lowered, and so no new surface with a lower weight could be
found on this full map. Conversely, thresholding the distance map at a lower
value than TS would change the result, as any Jordan curve or surface separating
foreground and background seeds and computed on this map would necessarily
cross some nodes where the distance map had not been computed. Note this does
not mean that this thresholding criterion is necessary and sufficient for optimal
computation and least memory usage, as an adaptive threshold depending on
the local point density could be used instead. However, we leave it as future
work to find a better criterion than the simple global threshold.

3 Results and Comparative Evaluation

3.1 Comparison with Graph Cuts and Total Variation

We now demonstrate the performance of the power watershed algorithm for
surface reconstruction with respect to two graph-based methods discretizing the
energy defined in equation (1), namely the weighted total variation (TV) and
the Graph cuts (GC) method.

Our first experiment consists of finding a contour fitting sparse and noisy
dots in a 2D plane. Figure 2 compares the result of TV minimization, the Graph
cuts result, a maximum spanning forest result, and the result obtained with
power watershed algorithm (q = 2, p → ∞). We observe that all resulting
contours are excluding outliers. The Graph cuts results demonstrate that this
algorithm is less sensitive to noise, but the contours are blocky because the
obtained object indicators are binary. We note that a post-processing step for
producing a smooth isosurface from such a binary object reconstruction has
recently been proposed by Lempitzky [22]. The TV contour is the smoothest
one, which may be an unwanted effect for rendering details in surfaces. Thus, the

(a) Total variation
result

(b) Graph cuts
result

(c) Max Spanning
Forest result

(d) Power watershed
result

Fig. 2. Comparison of surface reconstruction from a set of points in 2D, using the total
variation method, Graph cuts, a maximum spanning forest algorithm and finally the
power watershed algorithm
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(a) (b) (c)

Fig. 3. Power watershed results obtained from points clouds. (a) Total size of scans :
362272 points, Grid size : 234×297×301. (b) Number of scans used : 341072 points, Grid
size : 275×276×668 (c) Total size of scans : 2748318 points, Grid size 382×270×171.

σ = 0 σ = 0.003 σ = 0.005
Error = 0 Error = 2.7× 10−3 Error = 4.0× 10−3

Fig. 4. Power watershed results obtained from noisy points clouds, corrupted by Gaus-
sian noise of variance σ. The error was computed as the average distance between the
obtained isosurface points to the original point cloud. The error is given in percentages
of the diagonal of the bounding box of the data points.
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(a) TV (122 s) (b) TV (301 s) (c) TV (950 s) (d) PW (32 s)

Fig. 5. Robustness to seed quantity: this figure shows slices of solutions obtained for
reconstructing the bunny surface, obtained on a grid of size 251 × 248 × 195, using
different seeding strategies. The interior seed is colored in red, and the background seed
in blue, and resulting isolines in green. (a,b,c) : Results obtained with TV minimization,
and (d) Result obtained with Power Watershed.

TV method requires us to adapt the parameter p in the exponent of the weights
to the desired smoothness of the surface. The maximum spanning forest result
passes through most points and the contour looks noisy. The power watershed
result demonstrates good performance for fitting the dots, while avoiding both
blocky contours and noise. This good performance is due to the presence of
interwoven plateaus in the distance map. During the execution of the algorithm,
the Random walker (RW) algorithm is called several times around the dots,
resulting in a smooth output x. An isocontour or isosurface computation at
the 0.5 level is thus providing smooth contours compared to the binary results
obtained with Graph cuts or maximum spanning forests.

Figure 3 shows surfaces reconstructed from noisy scanned dot sets using the
power watershed (PW) algorithm. We used the coordinates of points acquired
from scans of several 3D shapes (bunny, Buddha) from the Stanford database
available online [1] In our experiments, we embedded those points in 6-connected
grids. Quantitative comparisons for the fitting quality are difficult because not all
data points are required to be part of the surface. However, we show in Figure 4
that the power watershed method is producing reasonable results even if the
point cloud is corrupted by Gaussian noise. We also compared our results to the
results obtained using TV minimization and Graph cuts at Figure 6. We can
observe that the surface obtained with the Graph cuts method is quite blocky.
Using the same rendering method to render the output x minimizing the power
watershed energy, the power watershed algorithm obtains a smoother surface
showing significantly more details. Figure 5 shows that the power watershed
method performs well even with a small amount of seeds. In contrast, the total
variation method requires a large amount of seeds placed close to the searched
surface.

3.2 Computation Times and Memory Requirements

In our comparisons, we used the C++ software library of Lemptitzky and Boykov
available online which implements the touch-expand algorithm that minimizes
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(a) (b) (c)

Fig. 6. Grid size : 234 × 297× 301. (a) Total variation minimization result, (b) Graph
cuts result, (c) power watershed result. Isosurfaces at 0.5 have been extracted on all
results, and were downsampled by 2 to render the surfaces.

the GC energy. For that purpose, the touch-expand algorithm calls a max flow
algorithm on a partial graph, a band around the points which is extended when
the solution touches the boundary of the band. We also compare to a fast TV-
based solver often called split-Bregman algorithm [14] but identical in principle
to the Alternating Direction Method of Multipliers [13,26]. This TV solver is im-
plemented in C and may be called from Matlab. Finally, we also implemented the
PW method in C. Computation times of the compared algorithms for the bunny
and Buddha data sets are provided on Table 1. The three methods have large mem-
ory requirements when applied to the full grid. However, the graph cuts and power
watershed banded methods are less memory intensive. For the bunny dataset, the
touch-expand algorithm optimizing the Graph cuts energy only needs to allocate
3.6% of the full grid size. The solution space for the bunny dataset is much larger
for our power watershed algorithm and reaches 33% of the full grid, because some
points are widely spaced out. Thus, on this image, the touch expand algorithm
is faster than the power watershed method. However, points clouds may require
a more extensive expansion of the research area for the Graph cut touch expand
method. For example, in the Buddha dataset, 8.75% of the grid size is needed for
computing the Graph cuts solution. In such cases, the power watershed approach
is much faster. The TV approach has currently no guarantee to produce a global
optimum when called on a banded graph, so the TV algorithm was implemented
only on a full grid. On the Buddha dataset for example, given a 207× 505× 207
grid, the TV-based method requires 3G of RAM.
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Table 1. Timing experiments (in seconds) using an PC with a 3GHz Intel dual-
core processor and 2G of RAM. The memory requirements are given in Mega Octets,
and the computation times in seconds. Note that the seeds used are different for the
three methods. For TV and PW, the seeds are imposed as hard constraints and are
located far from the point cloud (see Fig. 5). The GC touch expand method uses soft
constraints seeds computed from the normals given in input with the point cloud. We
observe that Graph cuts are fast when the point cloud configuration does not require
to expand the research area too much, like in the Bunny case (3.6%). However in the
Buddha example, there is a need for a larger expansion, where the real complexity of
the Graph cut algorithm become visible.

Point Method Grid Grid Peak Time Time /
cloud size used memory Nb voxels
Bunny GC 234× 257× 301 3.6% 212 9 1.4× 10−5

Bunny PW 234× 257× 301 31% 1180 51 9.1× 10−6

Bunny TV 195× 248× 251 100% 900 122 1.0× 10−5

Buddha GC 276× 671× 277 8.7% 850 253 5.6× 10−5

Buddha PW 276× 671× 277 16% 1500 52 6.3× 10−6

3.3 Comparison with Some Other Approaches

Following the quantitative information given in [19], we compare the perfor-
mances of power watershed for the Stanford bunny reconstruction with different
methods [2,5,21,20,19]. All these methods, including the power watershed, recon-
struct a surface close to the Bunny set of dots, with an error comprised between
2×10−4 and 6×10−4. In terms of computation time, the Power Crust method [2]
is about 10 times slower, and the Poisson method [20] 3 times slower than our
PW approach. Although the FFT [21], MPU [5] and Hoppe et al [18] methods are
fast, the FFT method suffers from large memory requirements limiting the grid
resolution, and Hoppe et al and MPU methods produces artifacts in the presence
of noise (See [19]). The method of Jalba and Roerdink [19], based on Coulomb
potentials, uses 4 times less memory than our power watershed method, but is
5 to 10 times slower on a CPU and is still slower using a GPU. Furthermore
our PW is more flexible in the choice of the markers. In our experiments, the
amount of markers is not very large as shown in Fig. 5, but a strategy using
larger seeds could be employed to reduce the size of the solution space and the
computation time.

4 Conclusion

The power watershed method can be used to efficiently produce surfaces fitting
noisy measurements. Contrary to standard watershed algorithms and the Graph
cuts approach, the unique solution provided by the power watershed is not bi-
nary, resulting in the reconstruction of both smooth and detailed surfaces. In
addition, this method is fast and not limited by large memory requirements,
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when using a restriction of the solution space. Finally, in comparison with other
methods, our power watershed is robust to seed placement, and requires fewer
parameters to be set. In practice, when using the power watershed method,
close-fitting markers are not as mandatory as in other methods. Future work
will follow several directions: memory and computation times improvements are
still achievable, in particular by improving the touch-expand idea used in the
Graph cuts optimization and adapting it for power watershed. The power wa-
tershed energy could also be modified to add some priors to the reconstructed
surface, such as local orientation. Finally, we hope to demonstrate the efficiency
of the power watershed technique for solving related problems such as multiview
reconstruction.
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Abstract. Printability, the capability of a 3D printer to closely repro-
duce a 3D model, is a complex decision involving several geometrical
attributes like local thickness, shape of the thin regions and their sur-
roundings, and topology with respect to thin regions. We present a
method for assessment of 3D shape printability which efficiently and
effectively computes such attributes. Our method uses a simple and ef-
ficient voxel-based representation and associated computations. Using
tools from multi-scale morphology and geodesic analysis, we propose
several new metrics for various printability problems. We illustrate our
method with results taken from a real-life application.

Keywords: Geodesic analysis, Top-hat transform, 3D printability.

1 Introduction

Recent advances in 3D printing technology have made it possible to create faith-
ful replicas of 3D models with increasingly higher resolutions, wider ranges of
materials, higher printing speeds, and lower costs. High-quality, low-cost 3D
printing is now available for personal users, e.g. through online services [12].

However, these advances have also created new challenges. Printer resolution
limitations introduce several differences between input models and output ob-
jects, e.g., in order of gravity: small layers of the surface being peeled, thin shape
parts being fully removed, and shape break-up in several parts due to narrow
connections. Currently, such defects are detected largely by manual inspection.
This is not scalable for online printing services faced with thousands of mod-
els uploaded per day. What is needed is an automatic printability assessment
method.

In this paper, we present a framework for 3D printability assessment. We
analyze known defects which occur during printing and propose several metrics
to detect and measure their criticality. We next compute these metrics fully
automatically, but also allow users to tune parameters in order to select what is
critical when printing a given model on a given printer. As 3D printing technology

P. Soille, M. Pesaresi, and G.K. Ouzounis (Eds.): ISMM 2011, LNCS 6671, pp. 393–404, 2011.
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works in a raster fashion, we implement our proposed metrics using a voxel-based
approach relying on multi-scale morphology and geodesic analysis. For maximal
performance, we use a GPU implementation based on NVidia’s CUDA.

The structure of this paper is as follows. In Section 2, we overview 3D printing
basics and related work in shape thickness measurement. Section 3 presents
the several stages of our printability assessment framework and related metrics.
Section 4 presents results obtained on 3D models from a real-life 3D printing
process. Section 5 discusses our method. Section 6 concludes the paper with
future work directions.

2 Related Work

3D printing technology constructs a model layer by layer, in a process similar
to voxelization. The main critical element here is the shape’s local thickness t:
Shape details thinner than the so-called printer resolution τ result in empty
voxels, which can lead to the problems named in Sec. 3. Hence, local thickness
detection is a necessary (but as we shall see, not sufficient) part of printability
assessment.

Several methods address thickness measurement. Hildebrand et al. define local
thickness t at a point p in a 3D shape S, given by a set of voxels Ω ⊆ R3, as the
diameter of the largest inscribed ball B centered at x that contains p [3], i.e.,

t(p) = 2 max({r |p ∈ B(x, r) ⊂ Ω,x ∈ Ω}), (1)

with r the radius of ball B. Dougherty et al. implement the above by evaluating
the distance transform D(S) over the skeleton (or medial axis) of S and marking
all points p ∈ Ω with the maximum of D|Ω [3]. However, this method requires
a robust and exact medial axis transform, which is prohibitively expensive for
large voxel models.

Yezzi et al. compute thickness between surface pairs by minimal-length surface-
to-surface paths using a PDE-based approach [14]. While this method is rela-
tively fast (12 seconds for a 2563 voxel dataset), its extension to higher-genus
models is not evident. An overview of voxel-based thickness estimation in med-
ical applications is given in [11].

Mesh-based methods for thickness computation have been proposed by Lam-
bourne et al. [5]. However, they typically require a clean mesh with no self-
intersections, do not offer a volumetric object representation (which is essential
for subsequent printability assessments), are more complex to implement, and
are only shown to work well on relatively simple shapes. Many engineering tools
measure the so-called wall thickness [4]. However, all such tools we are aware of
work only for models consisting of few relatively large, simple, surfaces separated
by clear edges.

Considerable work exists in the area of topology-accurate 3D shape digitiza-
tion, e.g. [13]. However, our problem is different: given a digitization process not
under our control (the 3D printer), and a specific set of quality criteria (mainly
thickness-related), we must assess whether a given polygonal model fullfils these
criteria under the given digitization.
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3 Printability Assessment

Printability assessment supplements thickness estimation with additional con-
straints. A 3D shape is printable when the removal of its thin regions (which do
not print) do not create critical topological or geometrical changes, as follows
(see also Fig. 1):

– disappearance of salient detail, or spikes, e.g. the mouse’s tail or whiskers;
– disconnection of large shape fragments by removal of so-called bridges, e.g.,

the mouse’s thin arms;
– creation of large holes, also called tunnels, e.g., center of sandal’s sole.

spikes

bridge

hole

Fig. 1. Printability critical events: spikes, bridges, and holes (see also Fig. 5)

Filling of small object regions such as holes of interstices due to printer dis-
cretization is not seen as a problem in 3D printing practice, as such details are
few in typical 3D shapes on the printing market. Also, filling does not cause parts
of the object to break off or disappear, which is seen as the largest problem.

Following discussions with a market-leading 3D printing service provider [12],
we learned that an effective printability assessment method should be able to
detect and measure all above-mentioned events related to spikes, bridges, and
holes for a shape of arbitrary topological and geometric complexity and given
printer resolution. Secondly, the criticality of events should be quantifiable. Intu-
itively, this should match the visual salience of these events. Finally, the method
should be automatic and efficient, i.e., handle thousands of models a day on
a PC computer. According to their experience, no such ready-to-use method
exists.

We next present a method that efficiently and effectively implements the above
requirements. Fig.2 shows our computational pipeline.

3.1 Voxelization

First, we transform the polygonal 3D input shape S into a binary voxel model.
We use the method of Nooruddin and Turk [9], based on an optimized imple-
mentation of binvox [7], which delivers high performance and can handle any
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voxelization thin region
detection

voxel
classification

component
analysis

3D mesh
model

3D voxel
model

thin
regions

connected
components

printability
metrics

Fig. 2. Thickness assessment pipeline

closed mesh, including self-intersecting ones (see Sec. 4). The output is a binary
volume consisting of the shape Ω (foreground) and its complement, the back-
ground, Ω = R3 \ Ω. The voxelization resolution used in practice exceeds that
of the 3D printer, so small potential errors caused by the voxelization methods
should have no effect on our assessment.

3.2 Thin Region Detection

Given a user-defined thickness τ (equal to the printer resolution), we next detect
the locally thin areas Θ of Ω. This can be formulated as a top-hat transform in
the context of multi-scale morphology [1,6], as follows.

Given the set Ω ⊆ R3, its distance transform with respect to the ||·||2 (Eu-
clidean) norm is defined as

D(Ω)(x) ≡
∧

y∈Ω

||x− y||2 . (2)

Note that the distance transform of a shape can be computed both inside, re-
spectively outside, of a particular shape, by inverting the roles of Ω and Ω in
Eq. 2, as inferred from the context of use.

The 3D unit ball B associated to the norm is

B ≡ {x ∈ R3 | ||x||2 ≤ 1}.

The multi-scale set dilation and erosion of Ω by B at scale s are given, respec-
tively, by

δB(Ω, s) ≡ Ω ⊕ sB

εB(Ω, s) ≡ Ω ( sB.

We detect locally thin areas Θ of the shape Ω using a multi-scale (set) top-hat
transform at scale s = τ , i.e.,

Θ(Ω, τ) = Ω \ δB(εB(Ω, τ), τ). (3)

The erosion in Eqn. (3) removes border elements, narrow spikes and bridges
connecting the main object structures. Dilating the resulting set reconstructs the
borders of the object, but not the other removed structures. Finally, taking the
set difference between Ω and the smoothed (opened) object, the thin structures
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are effectively extracted. By setting τ to the printer resolution, we thus detect
the unprintable parts, e.g. the blue areas in Fig. 3.

Since thresholding the distance transform D(Ω) at levels s > 0 yields multi-
scale dilations of Ω by balls sB of radius s, i.e.,

δB(Ω, s) = {x ∈ R3 |D(Ω)(x) ≤ s} (4)

and similarly,
εB(Ω, s) = {x ∈ R3 |D(Ω)(x) ≥ s}, (5)

one can express Θ from (3) using (4),(5) as

Θ(Ω, τ) = Ω \ Tl(D(Th(D(Ω), τ)), τ) (6)

where Th and Tl are the sets obtained by thresholding at level τ its (function)
argument and by keeping only values higher and lower than τ , respectively.

The dilation replaces corners and edges from the eroded shape with spherical
caps, respectively edge-swept cylindrical surfaces of radius τ , a well-known result
from mathematical morphology. Practical observation shows that this rounding
closely follows the actual behavior of 3D printers due to small deviations of the
printer head of the order of the machine resolution.

Unlike other approaches (see Sec. 2), our thin-area estimator(Eq. (3)) can be
very efficiently computed due to the result in Eq. (6), using a fast and exact
method for computing the Euclidean distance transform (see Sec. 5). As an
example, Fig. 5 e shows the volume-rendered distance transform of the rabbit
model - blue indicates small distances, while red indicates large distances from
the model’s surface.

3.3 Voxel Classification

As already outlined, not all thin regions are equally critical for printability. Equa-
tion 3 does not distinguish between topological or geometric shape properties
besides local thickness. For example, sharp edges would be classified as thin,
while their removal amounts to limited rounding (Sec. 3.2), which is acceptable.
Area or volume-based aggregated metrics are not sufficient for discrimination,
i.e., a shape with significant small-scale noise would yield thin regions with cu-
mulative large area and/or volume, the removal of which would not significantly
alter the shape. What is needed, is the detection and analysis of salient spikes,
holes, and bridges.

To detect and analyze such events, we next classify the voxels into four cate-
gories (Fig. 3): thin (T ), rump (R), interface (I) and boundary (B), as follows1:

R = Ω \Θ

I = {x ∈ Θ | ∃y ∈ n6(x),y ∈ Ω,y /∈ Θ}
B = {x ∈ Θ | ∃y ∈ n6(x),y ∈ Ω}
T = Θ \ (B ∪ I),

1 We recommend viewing the figures in this paper in full color.
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where n6(x) denotes the 6-connected voxel neighbors of x. In a post-processing
step, we next mark all I voxels with no B or T neighbors as R. This removes one-
voxel-thick ’interface shells’, i.e. thin surface-like voxel sets, which are tangent
to rump, but not to thin regions, and thus have no further use in the printability
assessment. Finally, we compute the thin (T ) 26-connected components. For
each component Ci, we store its I, T , and B voxels, boundary area AB

i , and
volume Vi. Also, for each Ci, we compute and store the 26-connected interface
components Iij as well as their areas AI

ij . For robust area estimation on voxel
surfaces, we use the fast estimator proposed by Mullikin and Verbeek [8].

B1

B2

R

I2
1

I2
2

I1

T1

T2

thin regions

thick regions

slice x slice y slice z

Before classification After classification

Fig. 3. Voxel classification into thin (T=blue), rump (R=red), interface (I=cyan), and
boundary(B=green). Bottom: slices from actual voxel model in Fig. 1 left).

For example, the shape in Fig. 3 (top) has two thin regions, a spike and
a bridge; the spike has one interface, while the bridge has two. Thin region
classification is done by topological analysis: Bridges have several interfaces,
|{Iij}j | > 1; spikes have an interface of genus zero; and holes have an interface of
genus larger than zero. This information is important in assessing the printability
metrics presented next.

3.4 Printability Metrics

We now describe two metrics which are computed on the thin components re-
sulting from the voxel classification (Sec. 3.3) to assess a shape’s printability.

Area-based metric. Spikes, bridges, and holes share one common property:
they are thin, elongated, structures, which connect to the rump by small-size
interfaces. The visual salience of such a structure Ci can be encoded as the
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ratio of their (total) boundary area AB
i =

∑
j AB

ij and interface areas AI
i =

∑
j AI

ij , i.e., μA(Ci) = AB
i /AI

i . This metric has several desirable properties.
First, it marks large removed structures with small interfaces (connections to
rump), e.g. the ears of the mouse in Fig. 1, as more critical. This matches
practical 3D printing insight: large structures are visually more salient, and the
smaller their interfaces are, the higher the chance is that a 3D printer will not
manage to render such connections, or that such connections will be mechanically
fragile – an important property for the lifetime of printed shapes. Secondly, it
treats spikes, holes, and bridges uniformly, without the need of a full-shape
connectivity analysis. Computing μA from the classification results (Sec. 3.3) is
straightforward.

L

l

2τ

τ
τ

L

μ
Α
=     2Lτ     = 4/π

(2πτ/4)L μ
G
=        τ       = 4/π

(2πτ/4)/2
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Α
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    L
    l μ

G
=        l        = 4/π 

(2πτ/4)/2     τ
    l

a) b)

2
τ/2
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μ
Α
≥                       = 2/π
    L 2π(τ/2)/2

    L τ

Lτ

τ/2

Fig. 4. Printability metrics: edge (a); 2D view of spike on edge (b); thin hole (c); Thin
areas are gray and rump areas are yellow respectively

The adimensional area-based metric μA is intuitive to interpret. For spikes,
since interfaces are locally spherical (Sec. 3.2), μA is lower bounded by 1, when
round shape parts are considered asymptotically thin for τ → 0. For right-angle
edges, μA = 4/π, i.e. the ratio of the area of two rectangles sharing the edge and
having one side of length τ and the area of a quarter-cylinder (Fig. 4 a). Sharper
spikes, which we want to detect, yield larger μA values. Near-constant cross-
section spikes of length l, e.g., the mouse’s tail or whiskers in Fig. 1 have μA of
the order of l/τ , since AI is of the order of τ2. This allows one to easily threshold
μA to get all thin, elongated features longer than a given l. For bridges, consider
a bridge component Ci having n branches j = 1 . . . n of boundary and interface
areas AB

ij and AI
ij , respectively, so μA =

∑
j wj(AB

ij/A
I
ij), where wj = AI

ij/A
I
i .

Hence, a bridge’s metric is the sum of its branches’ area metrics weighted by
their interface sizes. For holes, μA is lower bounded by 2/π, i.e. the ratio of
a surface component of constant thickness 2τ and perimeter L and a cylinder
surface of radius τ and length L (Fig. 4 c).

Geodesic length metric. However effective, the area-based metric will fail
detecting certain complex unprintable structures. Imagine a thin cylindrical fil-
ament of radius τ and length l touching the edge of a cube of size L (Fig. 4 b).
The thin region T (gray in Fig. 4 b) contains the filament and all edges of the
cube, hence,
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μA =
2πτl + 12(2τL)

12(2πτ/4)L
=

1
3

l

L
+

4
π

. (7)

If L is much larger than l, μA → 4/π, the right-angle edge metric, so we miss the
unprintable filament. Note that this only occurs if the filament and cube edges
form a single component, otherwise the filament retains its separate, large, μA

value.
To solve this problem, we introduce a different metric, μG, based on geodesic

lengths. For a given component,

μG =
maxx∈B,y∈I ||(x  y)||2
maxx∈∂I,y∈I ||(x  y)||2

, (8)

where (x  y) ⊂ ∂Ω is a geodesic path on the shape surface ∂Ω = B∪I between
points x and y.

The adimensional metric μG measures the eccentricity of a component. For
right-angle shapes, μG = μA = 4/π. Long spikes have high μA values. For the
filament-and-cube shape, μG = (4/π)(l/τ), i.e., the value of μA for a right-angle-
shape times the filament’s eccentricity l/τ . For bridges, μG reflects half of the
length of the longest interface-to-interface geodesic path, which is useful, as such
branches are the likeliest to break after printing. For holes, μG equals the hole’s
surface diameter divided by the hole’s wall thickness, which intuitively marks
large-area, thin, regions as most critical.

We efficiently compute μG using the distance transforms D(∂I)|B and D(∂I)|I
restricted to the voxels of B and I, respectively. These are nothing that the
application of distance transforms in 3D voxel space on the voxel sets of B and
I from the sites-set ∂I respectively. Note that, implementation-wise, ∂I is also
included in B.

The maximum values of D|B and D|I give the maximal geodesic lengths from
∂I to all points in B and I, respectively. Since these distance transforms are
computed on 3D surfaces rather than volumes, we cannot use volumetric distance
transforms (see Sec. 5). Instead, we use the exact Euclidean TFT method [10],
as it is simple to implement and can handle curved voxel surfaces. Any other
fast, exact distance transform on curved voxel surfaces can be equally used.
The Euclidean TFT is O(N log N) for a surface of N voxels. For typical B
and I surfaces in a 5123 voxel volume, a CPU-based Euclidean TFT takes a
few seconds. As an example, Fig. 5 c shows the geodesic distances for the thin
fragments of the mouse model. The tail’s tip (red) sticks out as being the furthest
point from the body.

4 Results

Figure 5 shows several results computed on a MacBook Pro laptop with 4 GB
RAM and a GeForce 8600M GT card with 512 MB RAM. The models range
from a few thousand to over hundred thousand polygons, and clearly contain
non-trivial geometry and topology. All models are voxelized at 2563 resolution.
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a) classification c) geodesic distanceb) area metric μI d) geodesic metric μG

e) rabbit (distance transform, classification, rump components, area metric μA, and geodesic metric μG)

f) bars (classification)

i) rotor (classification)

l) logo (classification, area metric μA, and geodesic metric μG)

g) bars (area metric μA) h) bars (geodesic metric μG)

j) rotor (area metric μA) k) rotor (geodesic metric μG)

m) sandal (area metric μA)

n) sandal (geodesic metric μG)

Fig. 5. Printability assessment results on complex models in the 3D printing industry
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The classification (using the same colormap as in Fig. 3) and and metric val-
ues (using a blue-to-red colormap) are rendered composited with the original
polygonal surface (in gray). We see that the classification accurately detects
thin regions, even in complex cases. For example, the mouse’s torso is largely
green, since the model is here actually not full, but consists of a thin shell – see
Fig. 3 bottom. The area metric marks the ears as the most critical thin compo-
nents. Indeed, these have a very large area but very small interfaces. However,
compared to the ears, the tail is much less important, as it has a relatively small
area compared to its interface. The geodesic metric also finds the ears as critical,
but also finds the tail, which is thin and very elongated. A similar phenomenon
occurs for the ’bars’ model (Fig. 5 f-h). Here, the long vertical spike (marked
with a stippled line) is clearly detected by the geodesic metric. For the rotor
model (Fig. 5 i-k), the area metric identifies fragments of the rotor’s outer edge
(red in Fig. 5 j) as most critical. Note that these are bridges, and their removal
would change the rotor’s blade topology, i.e. disconnect its blades. The geodesic
metric finds the four inner attachment parts (red Fig. 5 k) as most critical, as
they are the most elongated thin regions to get removed. For the ’logo’ model
(Fig. 5 l), the two metrics identify critical fragments similarly. Finally, the sandal
model shows how genus 0 and genus 1 thin regions (the sandal tip and heel, re-
spectively) are captured, and that both the area and geodesic metric have values
which do not depend on the thin region’s genus, which desirable for user setting
of the critical metric value.

The area metric captures critical fragments of large surface area, while the
geodesic metric captures fragments of large elongation. The two are different,
but equally critical, printability problems. In practice, we found that marking
those fragments as printing problems, which are found critical by either metric,
to be a robust and good solution to our overall assessment goal.

We validated the relevance of these results, i.e. the fact that the regions
detected as critically thin for 3D printing by our algorithm would indeed create
problems in actual 3D printing production in practice. Although the validation
only involved domain experts looking at our results and not physical printing, the
outcome was positive: our method identifies regions which a domain specialist
would also mark as critical.

5 Discussion

Printability assessment. Our method is able to capture all top-level print-
ability requirements (Sec. 3) by means of two simple, adimensional metrics. The
metrics work uniformly for all types of events (spike and bridge removal and
hole creation) on all geometric and topological configurations we could test on
around 100 models used in 3D printing production. The entire method has only
two parameters: the printer resolution τ and the desired, critical-event detection
threshold for the used metrics. For now, the method can be used in a semi-
automatic manner: the algorithm processes a set of shapes, identifies those with
printability problems, and displays them (with highlighted problems as in Fig. 5)
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for further human inspection. Although not fully automatic, this is a major step
forward as compared to the current procedure where users can only see the
original 3D shapes.

Scalability. The most expensive step of our method, the thin region detection
(Sec. 3.2), is implemented by adapting the recent CUDA-based distance trans-
form (DT) of Cao et al. [2]. On our platform (Sec. 4), this step takes under 2
seconds for 2563 voxels. Since Eqn. 6 uses only distance transforms and thresh-
olding operations, we can safely extrapolate the timings from [2] for a Tesla
C1060 card to our case, i.e. 0.7 seconds (5123 voxels) and 5.8 seconds (10243

voxels). Since we work in voxel space, polygon count for the input model does
not affect these values. Apart from thin region detection, all other steps are of
negligible costs (seconds) and thus implemented on the CPU in C++.

Our current CUDA implementation requires 8 bytes GPU memory per voxel,
i.e. 128 MB for 2563 voxels, 1 GB for 5123 voxels, and 8 GB for 10243 voxels.
Current 1 GB cards thus allow measuring printability of objects of 10 cm size
at the resolution of 100/512 7 0.2 mm, which is in line with the practical re-
quirements for 3D printability assessment. It is, however, possible to improve on
this by using the slice-based DT computation refinement sketched in [2], which
allows volumes up to 81922 voxels per slice to be handled with only 512 MB
with a small performance loss.

Precision. All distances we compute (CUDA DT for the thin regions and Eu-
clidean TFT for the geodesic length metric) are exact. This is essential as small
errors may assess a printable object as unprintable or conversely, which is unac-
ceptable by the users.

Limitations. Voxelization resolution is currently the main limitation. Critical
events smaller than one voxel will be missed. For example, the mouse’s whiskers
are not captured by the 2563 voxel grid used in Fig. 5. However, as outlined
above, this problem is directly solved by using graphics cards which can hold
larger voxel volumes.

6 Conclusions

We have presented a solution for the task of automated assessment of 3D print-
ability. For this, we combine a fast and robust method for thin region detection
based on distance fields with two new application-specific metrics that uniformly
treat all critical printability defects (spike and bridge removal and hole creation)
and effectively capture critical events such as large surfaces having thin con-
nections and elongated fragments. The entire pipeline requires only two user
parameters: the printer resolution and maximal criticality of admitted defects,
the latter which is an adimensional threshold value with intuitive border val-
ues. Our current implementation was tested in actual production runs at a 3D
printing company and is currently forming the basis of an actual production tool
for large-scale 3D printability assessment. In the future, we plan to extend our
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method in directly assessing 3D printability on mesh models, for optimal per-
formance and accuracy, and also to design new metrics to capture more refined
printability problems, such as specific topological and geometrical configurations
in combination with specific material properties. Next, we plan to use our method
in other application areas where shape thickness measurements are needed, such
as 3D metrology for CAD/CAM and engineering.
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Abstract. We compare two tree-based, hierarchical representations of
volumetric gray-scale images for data-driven image filtering. One repre-
sentation is the max-tree, in which tree nodes represent connected com-
ponents of all level sets of a data set. The other representation is the
watershed tree, consisting of nodes representing nested, homogeneous
image regions. Region attribute-based filtering is achieved by pruning
the trees. Visualization is used to compare both the filtered images and
trees. In our comparison, we also consider flexibility, intuitiveness, and
extendability of both tree representations.

Keywords: attribute filtering, max-tree, watershed, waterfall tree.

1 Introduction

Hierarchical, region-based representations of scalar images have been thoroughly
studied, see [1,17,18,19] and references therein. Most methods rely on a tree rep-
resentation, whose nodes represent regions of aggregated pixels, at different rep-
resentation scales. In the scalar case, the initial partition (of regions) from which
the tree is built, is given by the set of flat zones [17] or regional maxima/minima
[5,18] of the input image, or by an initial over-segmentation [1], through the
morphological watershed transform [4,16].

Such image representations offer many advantages over traditional, pixel-
based representations [5,17,18,19], e.g., they are much more efficient, as the
number of regions is much smaller than the number of original pixels [17]. Ma-
nipulating such representations can be done very efficiently, so that interactive
segmentation becomes possible [1,9,10,11].

In this paper, we compare two tree-based, hierarchical representations of 3D
gray-scale images for data-driven image filtering. The first representation we con-
sider is the so-called max-tree [18] data structure, in which tree nodes represent
connected components of all level sets of a data set. The second representation
is what we call the watershed tree, consisting of nodes representing nested, ho-
mogeneous image regions. Image filtering is achieved by first computing region
attributes and comparing them with a user-provided threshold value. Then, those
tree nodes representing regions for which the attribute value is smaller than the

P. Soille, M. Pesaresi, and G.K. Ouzounis (Eds.): ISMM 2011, LNCS 6671, pp. 405–416, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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threshold are deleted, and the corresponding image regions are merged, so that
effectively, image filtering or simplification is achieved. To support the filtering
task, various shape and size region descriptors were implemented. The resulting
filtered 3D images and trees are visualized for comparing flexibility, intuitiveness,
and extendability of both tree representations

2 Background

Let M ⊆ R3 be the volume domain, and f : M → R the gray scale volume.
Implicitly, we assume the existence of some neighborhood graph on M. Let
X ⊆ M be a subset of M. Set X is connected when for each pair (x0, xn) of
points in X there exists a path of adjacent points in X that joins x0 and xn.
A connected component of X is a connected set C(X) which is maximal in size.
A flat zone Lh at level h of f is a connected component C(Xh(f)) of the level
set Xh(f) = {p ∈ M | f(p) = h}. A regional maximum Mh at level h is a flat
zone which has only strictly lower neighbors. A peak component Ph at level h is
a connected component of the threshold set Th(f) = {p ∈M | f(p) ≥ h}.

2.1 Watershed Tree

A watershed tree is a hierarchical representation obtained by merging homoge-
neous regions of f , similar to the ’Live surface’ method in [1]. However, unlike [1]
we use the waterfall method [4] to group similar regions. Accordingly, our method
starts with an initial partitioning of f into regions, computed by the watershed
transform [4,16], applied to the gradient-magnitude image g of f . Then, regions
are successively merged, based on a combined similarity and homogeneity cri-
terion. The watershed tree itself encodes the nesting of the regions, due to the
merging process. Thus, the leaves of the tree represent the initial partitioning of
f . Internal nodes represent regions obtained by merging the regions correspond-
ing to their children. The root node represents the entire image support M. The
tree-construction process is largely based on the fast, greedy algorithm in [8] for
computing waterfalls.

The watershed tree represents a set of regions at different scales, and can be
regarded as a hierarchical, region-based representation of f . Clearly, the tree does
not encode all possibilities for merging regions belonging to the initial partition,
but merely the most useful merging steps. Thus, both the merging order and
the region model upon which the tree-construction process relies [17] have to be
carefully chosen.

The region model of region Ri ∈ M is given in our method by the mean
value Ri of f restricted to voxels in Ri. During the merging process, the mean
value of the resulting region, corresponding to a parent node, is updated to
reflect the union of the regions spanned by its child nodes. The merging order
prioritizes regions which are both similar and homogeneous, and it is determined
by Student’s two-sample, T-square statistic

t2 =
Ni Nj

(
Ri −Rj

)2

Ni σ2
i + Nj σ2

j

(1)
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where Ni = |Ri| and σ2
i is the variance of gray values in Ri. If the region model

is updated during the merging process, the merging order is also recomputed.

2.2 Max-Tree Data Structure

A max-tree is a tree data structure where the nodes represent sets of flat zones
of f . Specifically, a max-tree node Ck

h at level h, indexed by k, represents one
or more flat zones at gray level h contained in a single peak component at the
same level. Accordingly, the region model of a region Ri, corresponding to a
flat zone Lh, is simply given by h. The merging order is given by the nesting of
peak components at successive gray levels in f . Leaf nodes of the tree represent
regional maxima of f , internal nodes represent flat zones at decreasing gray
levels, whereas the root node represents the flat zones at the smallest gray level
of f . Note that since a single max-tree node may represent multiple flat zones,
it is impossible to distinguish among the corresponding image regions. Further,
both the region model and merging order are fixed and dictated by the nesting
of the peak components of f .

The dual tree structure is called a min-tree, and it can be obtained by con-
structing a max-tree of −f . The component-tree [5] is essentially the same as a
max-tree (min-tree) in that it also represents the connected components of all
level sets, yet in a more redundant way.

The max-tree can be constructed by a recursive flooding procedure that makes
use of a hierarchical FIFO queue to process the voxels in correct order [18], or
by relying on Tarjan’s union-find algorithm [3,14].

2.3 Attributes

Once a tree is constructed, various shape or size attributes of the regions rep-
resented by the tree nodes can be computed. In principle, any attribute can be
used. For computational reasons, however, it is advantageous to have attributes
that can be computed incrementally, requiring only one traversal of the tree [21].

Volume: The most straightforward increasing attribute is the volume

V (R) = |R|, (2)

which is simply the number of voxels of region R.
The following attributes are all based on the moment-of-inertia tensor I(R)

of region R, and its eigenvalues λ1(R), λ2(R), and λ3(R), assumed to be sorted
in decreasing order of magnitude. Tensor I is essentially the covariance matrix of
R multiplied by the number of voxels in R, see [21] for details of its computation
and the derivation of the following attributes:

Non-compactness: This scale-invariant attribute has been proposed in [22] for
vessel-enhancement filtering, and it is defined as

N (R) = (Tr I(R))/V 5/3(R). (3)
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Elongation: Intuitively, λ1(R) describes the length of the major axis of the
ellipsoid representation of I(R). Elongated regions will therefore have a high
value of the ratio

E(R) = |λ1(R)/λ2(R)|. (4)

Flatness: Flat regions are characterized by a small value of λ3(R) in comparison
to the other two eigenvalues. Such regions have a high value of the ratio

F(R) = |λ2(R)/λ3(R)|. (5)

Sparseness: A region is sparse when its expected volume, given its principal
axes, is large in comparison to its actual value. This is expressed by

S(R) = πd1d2d3/(6V ), (6)

where di(R) estimates the length of the principal axis corresponding to λi.

3 Filtering and Simplification

In general, there are two approaches for simplifying a tree representation [17,19]:
(i) pruning and (ii) non-pruning strategies. Filtering is governed by a criterion in-
volving shape or size attributes, such as defined above. Tree filtering is a pruning
strategy, if the filtering criterion is increasing [19]. However, since most (shape)
attributes are non-increasing, in general, filtering becomes a non-pruning strat-
egy. Thus, in the latter case it makes sense to speak about filtering rules, see
below and [17,19].

In the filtering step, the attribute of each tree node is assessed against the fil-
tering criterion, i.e., each node attribute’s value is compared to a given threshold
τ . If its attribute value is smaller than τ , the node does not meet the criterion
and is labeled accordingly. Pruning of the tree branches can then be done with
different, simple strategies, such as [18,20]

– The max rule: branches are pruned from leaves up to the first ancestor that
has been labelled for preservation.

– The min rule: branches are pruned from leaves up to the last ancestor that
has been labelled for removal.

– The direct rule: simply removes a node, and merges its members with the
node of the first ancestor that has been labelled for preservation.

– The subtractive rule: as the direct rule, but lowers the gray levels of surviving
descendants of removed nodes to preserve local background contrast.

Any of the filtering strategies above can be used to simplify a max-tree, and thus
to filter the input image. For the watershed tree, only the first three strategies
are meaningful. The subtractive rule implicitly assumes that an ordering of flat
zones (i.e. by gray levels) is available, which is not the case for the watershed
tree constructed from an initial partitioning of the gradient image g.

An additional means for image filtering through the watershed tree is what we
call level selection – a pruning strategy which performs a cut at the same depth
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τd, along each path from leaf to root. Accordingly, all nodes on the leaf-side of
the cut are collapsed onto the last surviving ancestors along the root-side of the
cut. Both the watershed-tree and the volume rendering views (see Section 4) are
updated to reflect the cut. At any depth τd, level selection can be regarded as a
region-based clustering method, using a simultaneous region similarity and ho-
mogeneity criterion. Note that in the max-tree case, level selection would simply
become a (less useful) thresholding operation. Further, since (shape) attribute
values may vary widely, as regions in the watershed tree merge, some stabiliza-
tion is achieved by combining level selection with tree filtering. That is, first a
depth d is selected, and then the resulting, pruned watershed-tree is filtered us-
ing the most conservative strategy, namely the max rule. Throughout this paper
we use this combined strategy to filter the watershed tree.

4 Visualization

We use direct volume rendering to visualize the 3D images. Conceptually, this
technique works by casting a viewing ray perpendicular to the view plane from
each pixel in the image into the volume. This ray is then sampled at regular
intervals, and the samples are composited to yield a final color for the pixel.
We implemented this rendering process by making use of texture mapping hard-
ware [6] available on standard graphics cards.

Material properties, such as color and opacity, are assigned to voxels by a
transfer function (TF). We have implemented a standard TF and propose a new
tree-based TF. The standard TF simply maps the gray value corresponding to
the region model of the given tree to a color value from a heated body color
map, which ranges from black, via red and yellow, to white. The tree-based
TF colors entire regions in the volume data, which are encoded in the tree
by subtrees. At initialization, each tree node is assigned a random color. The
attribute value is then inspected along the path from leaf to root: if the change
in normalized attribute value between parent and child is above some threshold,
the node is flagged. After processing all paths, the color values of the flagged
nodes are propagated through the tree, i.e., a node is given the color of its parent
unless it is flagged itself. For both TFs, the opacity is assigned from the gradient
magnitude [7] to emphasize borders between regions.

The trees themselves are also visualized; the nodes of a tree are positioned by
a radial layout algorithm [2]. The root node forms the center of the drawing, and
the other nodes are arranged on concentric circles around the root. The depth
of the tree determines the number of circles required to lay out the entire tree.
Each subtree is allocated a sector of the circle proportional to its size, in which it
is laid out. In the drawing, the size of a node is proportional (logarithmically) to
the volume of the region associated with it, and the color of a nodes corresponds
to the color assigned by the TF.
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Table 1. Description of the data sets

Foot Piggy bank Tooth Angiogram
256 × 256 × 256 256 × 256 × 180 256 × 256 × 161 186 × 246 × 124

MT WT MT WT MT WT MT WT

Nodes 279513 534083 19752 121189 133316 405612 332169 678977
Leaves 112223 327199 14038 75953 90501 246124 129670 410663
Depth 256 15 256 13 254 16 256 15
Branching 68.82 2.60 4.38 2.70 4.61 2.52 1.04 2.45

5 Data-Driven Comparison

We use a number of volumetric data sets available publicly1: Foot, Piggy bank,
Tooth, all CT scans, and Angio, an MR angiogram. Table 1 shows dimensions
and initial visualizations of these data sets.

A structural comparison of both trees in given in Table 1. We consider the total
number of nodes, the number of leaf nodes, the depth, and the average branching
factor. The branching factor per level is computed by Nl/Nl+1, where l denotes
the level and N the number of nodes at that level. The average branching factor
is then simply the average of the branching factors of all levels. As can be seen in
the table, the number of internal nodes and leaf nodes in both trees is strongly
data dependent: the noisy data sets have considerably more nodes than the
Piggy bank. The max-tree has a depth that is always equal to the number of
gray levels present in the input data. The watershed tree is considerably less
deep, because of the different region model. The average branching factors show
that the watershed tree has a more or less constant branching factor. This is in
contrast to the max-tree, for which these numbers vary substantially, suggesting
that a max-tree is much less regular than a watershed tree.

The Foot contains bones (bright objects) inside soft tissue (lower gray values),
and it is surrounded by background noise. Removal of noise and also soft tissue
can be easily achieved by both the max-tree and the watershed tree. Figure 1
shows results obtained with the Elongation criterion, and the resulting simplified
trees. Since the max-tree encodes flat zones at each gray level, many branches are
long, and they remain long also after filtering. Note that the layout is unevenly
distributed due to a high branching factor near the root node, which leaves little
space for the rest of the tree. The simplified watershed tree is more compact,
which makes it easier to visually relate image objects to subtrees.

1 sources: volvis.org and www9.informatik.uni-erlangen.de/External/vollib

volvis.org
www9.informatik.uni-erlangen.de/External/vollib
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(a) (b)

Fig. 1. Foot data set filtered with the Elongation criterion, and colored by the tree-
based TF. (a) Max-tree, τ = 8.3, direct rule. (b) Watershed tree, τ = 7.4, τd = 6.

(a) (b) (c)

Fig. 2. Piggy bank data processed with the watershed tree. (a) Flat criterion, τ = 9.8,
τd = 5. (b) Flat criterion, τ = 20, τd = 5. (c) Sparseness criterion, τ = 10.2, τd = 4.

The Pig consists of a hard material mounted on a wooden support. The inside
contains a number of chocolate coins. There is almost no noise. The watershed
tree does well at exposing the coins by filtering this data with the Flat criterion
at a low threshold, see Fig. 2(a). At a higher threshold the coins disappear and
only the support remains, see Fig. 2(b). Figure 2(c) shows that the Sparseness
criterion can be used to remove all objects except the pig shape itself. The max-
tree also manages to expose the coins using the Flatness criterion, and remove
the objects surrounding them. This is shown in Fig. 3(a). Some coins have been
removed, however, because they are connected to other objects, and do not fulfill
the Flatness criterion. The max-tree holds most coins in separate branches, which
is why the tree-based TF manages to color them differently. In the watershed
tree, all coins are merged into one node. By using the Elongation criterion and
max-tree filtering, two small springs in the Piggy bank’s belly could be exposed
(Fig. 3(b)), which was not possible with the watershed tree.
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(a) (b)

Fig. 3. Piggy bank processed with the max-tree. (a) Flatness criterion, τ = 15, sub-
tractive rule. (b) Elongation criterion, τ = 5.5, subtractive rule.

(a) (b)

Fig. 4. Angiogram processed by (a) Max-tree, Non-compactness criterion, τ = 2.5,
subtractive rule and (b) watershed tree, Sparseness criterion, tau = 41.7, τd = 9

The Angiogram is very noisy, and the main purpose of filtering is to remove
this noise, while retaining the shape of the blood vessels. The Non-compactness
criterion in combination with max-tree filtering works very well for this purpose,
as has been shown previously [22]. A result is shown in Fig. 4(a). The watershed
tree can clearly not deal well with small structures, and only the large vessels
can be retained, see Fig. 4(b).

The Tooth is quite challenging due to the high level of noise, which is very
dense and present at high gray levels. The tooth itself consists of different ma-
terials, a very hard (bright) top, a hard (darker) body, and softer (even darker)
material in the roots. Filtering the noise is achievable with the max-tree using
the Flatness criterion and a subtractive filtering rule, see Fig. 5(a). Also, keeping
the bright top can be done with the Non-compactness criterion, see Fig. 5(b).
Separating the dark object inside the roots is not possible. The watershed tree
is better at separating these structures from each other by some pruning and
filtering with the Flatness criterion at various levels, see Fig. 6.

The min-tree can be used to obtain the dark object inside the roots, including
the hard top and other parts, by considering the gradient magnitude image
instead of the original image. This min-tree has 120,373 nodes, 96846 leaves, a
depth of 255, and a branching factor of 1.07. A Sobel filter was used to compute
smooth gradients. An example is shown in Fig. 7(a), in which the top part and
soft root materials can be separated with the Flatness criterion. Figure 7(b)
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(a) (b)

Fig. 5. Tooth processed by the max-tree. (a) Flatness criterion, τ = 1.8, subtractive
rule. (b) Non-compactness criterion, τ = 0.4, subtractive rule.

(a) (b) (c) (d)

Fig. 6. Tooth processed by the watershed tree. The Flatness criterion was used to
produce simplified results. (a) τ = 2.1, τd = 8. (b) τ = 2.1, τd = 7. (c) τ = 4.8, τd = 8.
(d) τ = 6.1, τd = 8.

(a) (b)

Fig. 7. Tooth gradient magnitude processed by the min-tree. (a) Flatness criterion,
τ = 3.4, subtractive rule. (b) Non-compactness criterion, τ = 0.4, subtractive rule.

shows that the Non-compactness criterion can separate some more structures,
though not as clearly as the watershed tree. We also experimented with min-
trees constructed from the gradient-magnitude images of the other data sets, and
achieved mostly worse results than with the original images. This means that
features that could be extracted from the original data could not be extracted
from the gradient-magnitude images.
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6 Discussion

We have taken a data-driven approach for comparing the watershed tree and
max-tree, two hierarchical representations for volumetric gray-scale images. The
time complexity of constructing both representations is in principle the same,
but the max-tree is faster to construct, because simpler and less computations
are required.

Considering the representation, the max-tree has a fixed region model and
merging order. Since the merging is strictly from high to low gray value in the
max-tree, dark regions nested within light regions cannot be represented (this
would require a min-tree). To some extent, this can be remedied by considering
a gradient magnitude image, rather than the original image, because this type of
nesting problem does not occur. However, the gradient is susceptible to noise, so
some regularization is required. This may lead to loss of information, however,
as we have seen in our experiments. The watershed tree is more flexible with
respect to both region model and merging order, so the nesting problem does
not occur at all. However, small regions cannot be represented well, due to the
unreliability of computing region similarity for such small regions (cf. Eq. (1)).
Since the merging process is greedy, errors made at the leaf level propagate
through the tree, and undesirable merging may occur.

Simplification of the max-tree can only be done by attribute-based filtering,
but it is flexible concerning the pruning strategies. In particular, the subtractive
rule is attractive in that it allows for preservation of local contrast; there is no
equivalent strategy for the watershed tree. An additional pruning method for the
watershed tree is level selection, a form of region-based clustering, which cuts the
tree at some depth and collapses the deeper nodes onto the surviving ancestors.
In the max-tree, level selection becomes a trivial thresholding operation.

The watershed tree is a more intuitive representation than the max-tree. In
the latter one, nodes correspond to peak components, and a node may represent
multiple flat zones (‘regions’) that are not connected at that gray level. Also,
the visualizations of the trees showed that max-trees are very unbalanced, which
makes interaction with them difficult and correspondence between image region
and subtree more difficult to understand.

Extension to more complex data types, such as vector-valued and tensor data,
is possible with a watershed tree, because of the flexibility of region model and
merging order. For the max-tree, however, it is not clear how to deal with non-
scalar data, because a total ordering on the image elements would be required
for constructing the tree. Some initial results have been obtained on color im-
ages [13,15].

In this paper, we have presented an initial comparison of two tree-based
image representations. Our comparison has focused on practical aspects, such
as flexibility, intuitiveness, and extendability of the max-tree (covering also
min-tree and component-tree) and watershed tree. In future work, we plan to
consider additional comparison criteria, and will include other tree structures
known in the literature, such as the binary partition tree [17] and the level-line
tree [12]. The binary partition tree uses criteria similar to those we use with the
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watershed tree to merge regions, yet the merging order differs, which results in
larger and more complex trees. This tree may be able to better represent small
regions than the watershed tree. A level-line tree (or inclusion tree) provides the
basis for self-dual operators, and can be constructed by combining a min-tree
and a max-tree. This tree can handle dark regions nested inside bright ones or
vice versa simultaneously, in contrast to either the min-tree or the max-tree.
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Abstract. This paper describes methods for vessel segmentation based
on optimal paths. First, we recall a suitable algebraic framework for
the optimal path problem on graphs through Path Algebra. We detail
several popular models used for vessel segmentation and point out their
limitations. Secondly, we present an extension of paths algebra which
allows to solve constrained dynamic path problems. As examples, we
detail an optimal path model with curvature constraints and one with
dynamic time dependent costs.

Keywords: Optimal path, paths algebra, vessel segmentation.

1 Introduction

Optimal path is a popular technique used in many different areas of image pro-
cessing and particularly for thread-like object segmentation. A nice theoretical
framework for solving optimal path on graphs is given with path algebras [1].
Such an algebraic framework has already been used in the context of morpho-
logical segmentation by the watershed transform [2]. Path algebra unifies a large
number of optimal path problems and furnishes the power of linear algebra meth-
ods for solving, understanding and designing optimal path models. In the first
section of this paper, we use this framework to present several popular optimal
path techniques used in the context of vessel segmentation. Unfortunately direct
extensions of these techniques, including non-local path constraints, cannot be
correctly handled in this framework. In such cases, appearing for instance in cur-
vature dependent optimal path, a richer algebraic structure has to be introduced.
This extension is the focus of the last part of the paper.

2 Optimal Paths on Graphs and Path Algebra

This section defines the notions of graph and some important related algebraic
structures [1].

Definition 1 (Edge Weighted Graph). An edge weighted graph G is a triplet
G = (V, E, W ). The elements v ∈ V are called vertices and the elements e ∈ E ⊂
{{i, j}, i, j ∈ V, i �= j} are called edges. W is a mapping of the edges E into R+.
For each edge e(i,j) of G, w(i,j) = W (e(i,j)) is called the weight of e(i,j).

P. Soille, M. Pesaresi, and G.K. Ouzounis (Eds.): ISMM 2011, LNCS 6671, pp. 417–428, 2011.
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Definition 2 (Path). A path π(i,k) is a sequence of edges: π =
(e(i,j), e(j,l)..., e(m,k)). π(i,k) is called a path from i to k. The set of all paths
from i to k is denoted Π(i,k). We also write a path π(i,k) as a sequence of nodes
π = (i, j, ..., k), setting implicitly that for each pair of consecutive nodes, there
exist an edge in G.

Definition 3 (The Shortest Path Problem). The shortest path problem be-
tween two nodes s and t consists in finding a path π∗

(s,t) such that the sum of
edges weights

∑

e(i,j)∈π∗
(s,t)

(w(i,j)) is minimal.

The shortest path can be easily solved in the case of non-negative edge weights
with Dijkstra’s algorithm [3]. In the following, we move this path optimization
problem in an algebraic framework in order to generalize and set limitations of
what can be optimized on paths. Path algebra provides a very powerful theoret-
ical framework because the shortest path becomes a solution of a linear equation
in such spaces.

Definition 4 (Monoid (Semi-group)). Let M be a set and ⊕ a binary op-
eration on M . (M,⊕, ε) is a monoid, if ⊕ is associative and ε is its identity
element: ∀a ∈M, ε⊕ a = a⊕ ε = a.

Definition 5 (Dioid (Semi-ring)). A dioid D, written (D,⊕,⊗, ε, γ), is an
algebraic structure following the properties:

1. (D,⊕, ε) is a commutative monoid. The identity element ε of ⊕ is called the
zero of the dioid.

2. (D,⊗, γ) is a monoid. The element γ is called the unit element of the dioid.
3. The operation ⊗ is distributive with respect to the operation ⊕, and ε is an

absorbing element for ⊗:

∀(a, b, c) ∈ D3, a⊗ (b ⊕ c) = (a⊗ b)⊕ (a⊗ c) ,
∀(a, b, c) ∈ D3, (b⊕ c)⊗ a = (b⊗ a)⊕ (c⊗ a) ,
∀a ∈ D, a⊗ ε = ε⊗ a = ε .

(1)

Definition 6 (Path Algebra). A path algebra (P,⊕,⊗, ε, γ), is an algebraic
structure with the properties:

1. (P,⊕,⊗, ε, γ) is a dioid,
2. the operation ⊕ is idempotent: ∀a ∈ P, a⊕ a = a .

Proposition 1 (The Natural Order). The relation a ≺ b ≡ (a ⊕ b = a) is
an order in the monoid (P,⊕, ε) if the law ⊕ is idempotent.

The path algebra contains an order relation that allows to define the notion of
minimizer over elements of P . In such spaces, the length of a path π is computed
as L(π) =

⊗

e(i,j)∈π
w(i,j). Dijkstra’s algorithm [3] can be slightly modified to find
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optimal paths in such spaces by rewriting Bellman’s optimality principle in the
framework of path algebra:

L(π∗
(s,j)) =

⊕

j∈Γ (i)

(L(π∗
(s,i))⊗ wi,j) , (2)

where Γ (i) is the set of neighbors of the node i. This formula points out that the
optimal path π∗

(s,j) can be found locally from the knowledge of π∗
(s,i) and edge

weights wi,j .

Algorithm 1. Dijkstra’s Algorithm
Require: Graph G, Vertex s, ≺, ⊗, ε, γ
Ensure: Predecessor Map PredMap, Distance Map Distmap

for all v in G: Distmap[v] := ε; PredMap[v] := v; color[v] := WHITE; end for
Distmap[s] := γ ; INSERT(Queue,s,Distmap[s]); color[s] = GRAY ;
while Queue is not empty do

u := EXTRACT-MIN(Queue)
for all vertex v adjacent to u do

if (w(u,v) ⊗ Distmap[u]) ≺ Distmap[v] then
Distmap[v] := (w(u,v) ⊗ Distmap[u]); PredMap[v] := u;
if color[v] = WHITE then

color[v] := GRAY ; INSERT(Queue, v, Distmap[v]);
else

if color[v] = GRAY then
DECREASE PRIORITY(Queue, v);

end if
end if

end if
end for

end while

2.1 Models of Optimal Paths Used for Vessel Segmentation

We have now at our disposal a theoretical background for understanding and
computing optimal paths. Numerous methods have already been proposed in
the literature to encode vessel trees as a set of optimal paths. Popular existing
methods for vessel segmentation are mainly based on an optimal path between
two points. Several refinements also consider an extra dimension that encodes the
radius of the vessels, anisotropic metric to ensure smooth path variations, sub-
pixel accuracy using the fast marching method instead of graph based algorithms,
and heuristics to encode the vessel smoothness and appearance. A review of these
methods can be found in [4].

We consider now that a ”vesselness” function Vd : �n → [0, 1] is given [5]. In
the following examples, we study several methods in order to extract a vessel
tree or a particular vessel from given points lying on a vessel. We work on a
graph G = (V, E, W ), where V is the set of pixels, E ⊆ V × V is the set of
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neighbors pixels. Assuming that Vd is high when the underlying point is likely
to be a vessel, we consider the following edge weights:

∀e(i,j) ∈ E, w(i,j) = (1−max(Vd(i), Vd(j))) . (3)

Additionally to this simple scalar edge weight map, an anisotropic metric can
also be taken into account if the main direction of the vessels is known:

∀e(i,j) ∈ E, w(i,j) =
√

γT
i,jT (i)γi,j , (4)

where γi,j =
−−−−→
(j − i) is the vector representing the displacement from i to j.

w(i,j) represents here the cost of traveling from i to j on a domain where the
underlying metric tensor T (i), aligned with the vessel axis, is supposed to be
constant.

Optimal L1 Path: The first classical use of optimal paths consists in computing
a shortest path according to the L1 norm, where L1(π) =

∑

e(i,j)∈π
(w(i,j)). This for-

mulation corresponds to optimal paths in the path algebra (R+∪{+∞}, min, +).

A well known limitation of L1 optimal path is the shortcut problem. When the
searched path is relatively long, the path selection process is sensitive to small
edge weight variations. The optimal path can thus locally cross edges of large
weights corresponding to non-vessel regions.

Optimal L∞ Path: In order to avoid the shortcut problem, a popular
technique consists in computing an optimal path according to the L∞ norm,
where L∞(π) = max

e(i,j)∈π
(w(i,j)). This model corresponds to optimal paths in

(R+ ∪ {+∞}, min, max). In this case, the shortest path tree is also a minimum
spanning tree.

The optimal L∞ path is very sensitive to the quality of the weight map. In many
practical situations with noisy or unperfect weight map, the L∞ model fails to
extract correctly the vessel tree. This limitation is called the leakage problem.

Optimal Path with ”Oblivion”: An interesting trade-off between the L1 and
L∞ models has been proposed in [6]. In this model, the path length is computed
as:

Lα(π(i,j)) =
kl∑

t=0

αtw(j−t,j−t−1) , α ∈ [0, 1] , kl = L0(π(i,j)) . (5)

where L0(π(i,j)) is the number of edges of the path π(i,j).
This definition presents several advantages, compared to the L1 norm: long

paths are less sensitive to shortcuts because the path length is highly de-
pendent on the last edge weights of the path. Compared to the L∞ norm,
the proposed measure is less sensitive to leakage because edge weights are
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summed up on a large range. The algebraic structure representing this model is
(R+ ∪ {+∞}, min,⊕α), where ⊕α is defined by:

Lα(π(i,j))⊕α w(j,m) = w(j,m) +
kl+1∑

t=1

αtw(j−t−1,j−t−2) . (6)

Unfortunately (R+ ∪ {+∞}, min,⊕α) is not a path algebra, since the order
relation ≤ is not compatible with ⊕α:
(
Lα(π(i,j)) ≤ Lα(π′

(i,j))
)

�
(
Lα(π(i,j))⊕α w(j,m) ≤ Lα(π′

(i,j))⊕α w(j,m)

)
.

(7)
Adding an edge to a path may decrease its length, which creates this incompat-
ibility.

Since (R+ ∪ {+∞}, min,⊕α) is not a path algebra, Dijkstra’s algorithm can
only give a rough approximation of the optimal path. Moreover the incompati-
bility of ≤ and ⊕α makes the computation of optimal path intractable.

Optimal Path with Quasi Local Constraints, model 1: An interesting
property of Dijkstra’s algorithm is that the predecessor of a given node along
the optimal path is kept in memory. This information can be used in order to
add dynamic constraints depending on the last traversed edges. In the present
model, edge weights of the graph are dynamically updated during the execution
of Dijkstra’s algorithm such that the length of a path is computed as:

Lκ(π(i,j))⊕κ w(j,m) = L1(π(i,j)) + w(j,m) + κk(m, j, ..., j − k) , (8)

where κk(m, j, ..., j − k) is a penalty measured from the k predecessors of the
node j along π(i,j). A possible constraint can for instance be computed from the
tortuosity of the path:

κk(i, i− 1, ..., i− k) = 1− d(i, i− k)
k

, (9)

where d(i, j) is the Euclidean length between i and j. Contrary to the previous
model, Lκ and ≺ are here compatible. The idea to change dynamically the edge
weights depending on the current growing paths is very useful in order to include
prior knowledge, predictors and local constraints on the path. A large number
of models can be built from this template.

Dijkstra’s algorithm using dynamic cost updates can unfortunately not pro-
duce paths minimizing the Lκ model because the model is not local but depends
on a certain number of edges along the path. In other words, Bellman’s optimal-
ity principle cannot be used at the local scale of a single edge of the graph.

Partial Conclusion: The path algebra provides one framework for solving
many different optimal path problems. Unfortunately, as soon as non-local mea-
sures are added in the path model, solutions provided by the classical Dijkstra’s
algorithm are sub-optimal. The next section aims at proposing an extension of
the path algebra framework that solves this limitation.
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2.2 A Framework for Constrained Optimal Path

As pointed out earlier, optimal paths based on non-local measures cannot al-
ways be computed with Dijkstra’s algorithm (or with other algorithm such as
fast marching). We consider now a kind of time parametrization along paths
leading to trajectories. The computation of an optimal trajectory is not the
same problem, since it includes a notion of motion along a path. We introduce
thus a new algebraic structure that will handle this difference.

We associate to each edge e(i,j) a transition cost function h(i,j) giving the
arrival time tj to node j when starting at time ti from a node i: tj = h(i,j)(ti) .
Starting from a given node s at time ts, we search the minimum amount of time
needed to reach another node i. Such a problem, where the weight of an edge
is time dependent cannot be studied in the path algebra framework unless all
functions h(i,j) have a simple analytic formulation. We introduce thus another
algebraic structure that permits to solve this problem. Let us define (S, H,⊕, ∗)
where:

– the set S is a node state set having an internal associative and commutative
operation ⊕. In other words, S is associated to a commutative monoid, its
neutral element is denoted ε. This set S contains information embedded in
the nodes of the graph and plays the role of the phase space of a dynamical
system.

– The set H is a transition set, a set of application of S into S. We also suppose
that: {

h(a⊕ b) = h(a)⊕ h(b) ∀h ∈ H, a ∈ S, b ∈ S .
h(ε) = ε ∀h ∈ H .

(10)

H is the thus the set of endomorphisms of (S,⊕). The ”identity” endomor-
phism is denoted e.

– The operation ⊕ on S induces an operation ⊕ on H defined by (h⊕ g)(a) =
h(a) ⊕ g(a) (∀h ∈ H, g ∈ H, a ∈ S) . Its neutral element is denoted h′

which associates for all a ∈ S the neutral element ε ∈ S. We have thus:
(h⊕ h′) = (h′ ⊕ h) = h (∀h ∈ H) .

– We consider in H a second law denoted ∗ defined by h ∈ H, g ∈ H, h ∗ g =
g ◦ h , where ◦ is the composition of applications. ∗ is an intern operation, is
associative, and admits the unit endomorphism e as neutral element. More-
over, ∗ is distributive with the law ⊕. It admits h∗ as an absorbing element:

{
(g ∗ h∗)(a) = h∗(g(a)) = ε ∀a ∈ S, g ∈ H .
(h∗ ∗ g)(a) = g(h∗(a)) = g(ε) = ε ∀a ∈ S, g ∈ H .

(11)

(H,⊕, ∗) is a dioid of endomorphisms. From a computational point of view, this
formulation is problematic because the node state set S may be infinitely large
and in numerous applications endomorphisms and their compositions are only
known through their action on the elements of S. Nodes of the graph will not
only be associated to a single distance value, but will encode several arrival times
from several different paths hypothesis. The node state set will be as large as
the range taking into account to compute the path length.
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A generalization of Dijkstra’s algorithm can be developed in the case where
there exist at least a total pre-ordering ∝ on S which is compatible with ⊕ and
such that h(i,j)(ti) ∝ ti [1]. The algorithm pseudo code is given below.

Algorithm 2. Generalized Dijkstra’s Algorithm
Require: Graph G, Vertex s, ≺, ⊗, ε, γ
Ensure: Node States E

for all v in G: Ev := ε; end for
Es = γ ; X1 = ∅ ; X2 = {s} ;
while X2 	= ∅ or X1 	= V do

Select i ∈ X2 such that (Ei ∝ Ej), ∀j ∈ X2

if i 	∈ X1 then
X1 = X1 ∪ i; X2 = X2 \ i;

end if
if X1 	= V then

for all vertex j adjacent to i do
Compute E′

j = Ej ⊕ h(i,j)(Ei);
if E′

j 	= Ej then
X2 = X2 ∪ j;

end if
Ej = E′

j ;
end for

end if
end while

A major difference of this generalized algorithm, compared to the classical
one, is that a node enters the queue every time that its state changes, and not
only if its distance decreases. An intuitive point of view of this property is that
the set X2 of queued nodes is not limited to a thin narrow band but can be
arbitrarily large.

Optimal Path with Dynamic Time Costs: A first example of dynamic time
dependent optimal path is described in [1] in the context of a financial investment
program. The idea behind this model is to promote paths growing sufficiently
fast and on the other side freezing paths growing slowly. In this model, the path
length will thus be dependent on the number of edges traversed so far.

If T is the maximum possible number of edges along a path, we define
the nodes state set S as the set of vectors of size (T + 1) in R+ ∪ {+∞}. If
a = (a0, ..., at) and b = (b0, ..., bt) are two node states, we define d = a ⊕ b =
(min(a0, b0), ..., min(ai, bi), ..., min(at, bt)) . We define the transition function h
by: ⎧

⎨

⎩

h(i,j)(a) = b .
with b0 = +∞
and bt = at−1 + αt−1w(i,j) for t = 1, ..., T

(12)
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The path length is then computed as min(at)
0≤t≤T

and the total pre-ordering ∝ on S

is defined by:

(a0, ..., aT ) ∝ (b0, ..., bT )⇔ min(at)
0≤t≤T

≤ min(bt)
0≤t≤T

. (13)

The node state set contains here different paths arrival times corresponding to
paths of different length. The size of this state set may be very large since it is
as large as the number of edges of the longest path in the graph.

This model can be seen as a formalization of the propagation freezing method
described in [7], which permits to optimize the number of visited nodes during
the search of an optimal path. This model is interesting in the context of vessel
segmentation since the path propagation is optimized and limited to vessel areas.

Optimal Path with Quasi Local Constraints, model 2: We are now able to
solve the example of constrained optimal path according to the Lκ model. Note
that this problem was already studied in [8] and also used for image segmenta-
tion in [9,10]. Since local edge weights cannot encode path curvature, the idea
of these previous works was to construct a ”lifted” graph, where edge weights
encode curvature of a set of neighbor edges of the original graph. Optimal paths
with curvature constraints are then computed with the classical L1 norm in this
lifted graph. The drawback of the method is that the lifted graph size grows
exponentially with the number of adjacent edges taken into account. In fact,
this method was only used in the case of curvature constraints computed from
pairs of edges. In the present framework, such a lifted graph does not have to
be explicitly computed. Instead of the lifted graph, the different path hypothesis
configurations are encoded in the node states.

Let |Cl| be the number of configurations of possible adjacent edges of length l.
We associate to each node i, a state set Ei of size |Cl|. Ei will encode the actual
distance of the node i for each possible configurations of its predecessors. The
state set Ek

i represents the distance of the node i with predecessors corresponding
to the kth possible configuration. Considering that the node j can be attained
from a node i according to the kth configuration of predecessors, the transition
cost hi,j is defined by:

Ek
j ⊕ h(i,j)(Ek

i ) = min
(

Ek
j , Ek

i + w(i,j) + κk(i, j, ..., j − k))
)

. (14)

where κk is the curvature corresponding to the kth configurations of predecessors
of j. The distance of the node j to the source s is obtained as min(Ek

j )
0≤t≤|Cl|

, leading

to the total pre-ordering ∝ presented in the previous example. The special case
of curvature constraints can thus correctly be handled in this framework.

The presented Lκ model is an interesting alternative to the construction of a
”lifted” graph [9,10] and provides the same results. The explicit construction of
a lifted graph is here not necessary, but one has still to encode for each node a
state set which may also be memory consuming. Moreover this model can also
be altered to find approximate optimal paths by limiting explicitly the size of
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the node state set, i.e. the number of possible configuration hypothesis taken
into account to compute the optimal path as described in [8].

3 Results

Fig. 1 compares the distance map and the associated optimal paths obtained
from several models presented previously. In fig. 2, we illustrate the differences

(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) Distance map with L∞ norm and (d) extracted path overlaid on Vd. (b)
Distance map with curvature constraints (model 2) and (e) extracted path. (c) Distance
map with time constraints and (f) extracted path.

(a) (b) (c)

Fig. 2. (a) Shortest path with L1 norm. (b) (Sub-)Optimal path with curvature con-
straints, model 1. (c) Optimal path with curvature constraints, model 2.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Left coronary artery tree segmentation. (a-b) Original computed tomography
angiography. (c-d) Extracted vessel tree obtained from a minimal spanning tree (L∞
model) rooted on the left coronary ostium. Gray surface indicates the space explored by
the algorithm until all searched vessels are reached. (e-f) Extracted vessel tree obtained
from the shortest paths with ”oblivion”. Gray surface indicates the space explored by
the algorithm until all searched vessels are reached.
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between the unconstrained and the curvature constrained models. Shortest L1

path can locally present spurious trajectories whereas the constrained model 1
is very smooth but is composed of small straight steps. On the contrary, the
curvature constrained model 2 is not sensitive to any of these limitations and
furnishes the global optimizer of Lκ.

Fig. 3 illustrates an application of optimal paths to the extraction of the left
coronary artery tree. In this example, we compare the L∞ and the Lα (optimal
path with ”oblivion”) optimal path models computed from user defined start
and end points. This example highlights the practical efficiency of the Lα model.
Whereas both models permit to extract correctly the searched vessel tree, the Lα

model permits to minimize the number of voxels analyzed during the execution
of Dijkstra’s algorithm. This property is very important in practical applications
since the size of the explored space is directly correlated to the computation time.

4 Conclusion

Path algebra is a powerful theory which provides one single framework for solving
many different problems. The extension of this methodology to dynamic time
dependent costs is also very useful in order to design new optimal path models
for the segmentation of vessels. Future work will concentrate on applications of
these models for complex vasculature vessel network segmentation.

The adaptation of this framework for general objects segmentation is also
in our focus. Many morphological filtering and segmentation process, such as
watershed segmentation [2], amoebas filtering [11], the image foresting transform
[12], or geodesic image segmentation [13], heavily relies on the computation of
a distance transform and associated optimal paths. The extension of classical
optimal paths to non-trivial dynamic and time dependant models gives new
means to design efficient solutions adapted to each particular application.
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28660 Boadilla del Monte (Madrid), Spain
nbeliz@infomed.dia.fi.upm.es

2 Department of Pathology, General Hospital of Ciudad Real
C/ Tomelloso s/n, 13005 Ciudad Real, Spain

3 Department of Radiology, Facultad de Medicina
Ciudad Universitaria, 28040, Madrid, Spain

Abstract. The segmentation of medical images poses a great challenge
in the area of image processing and analysis due mainly to noise, com-
plex background, fuzzy and overlapping objects, and non-homogeneous
gradients. This work uses the so-called locally constrained watershed
transform introduced by Beare [1] to address these problems. The shape
constraints introduced by this type of flexible watershed transformation
permit to successfully segment and separate regions of interest. This type
of watershed offers an alternative to other methods (such as distance
function flooding) for particle extraction in medical imaging segmenta-
tion applications, where particle overlapping is quite common. Cytology
images have been used for the experimental results.

Keywords: Image segmentation, image analysis, watershed, locally con-
strained watershed transform, medical images, cytology.

1 Introduction

In this paper, we are concerned with the segmentation of medical images. At
present the semi-automatic or automatic analysis of medical images has be-
come a fundamental tool in medicine[2]. For example: high resolution images
of cancer cells can be used to determine the progression of cancer cells mi-
gration, indicating the invasion of cancer cells and cancer metastases [3], and
the count of cells can help to diagnosis diseases [4]. As shown in [5,6,7,8], with
the advancement of the new technologies is more common that hospitals have
new technologies for testing and other assessments. This need for medical tools
has generated a new line of research that include multiple disciplines (doctors,
computer scientists, physicists, etc.) with the objective of effective analysis and
management of biomedical data. The watershed transform is a well-known tool
for segmentation of medical imaging [9,10,11]. The locally constrained watershed
introduced by Beare [1] provides a great flexibility to control how shapes are ex-
tracted. Shape criteria can be added so that the gradient flooding that occurs
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in watershed methods is controlled. The technique possesses some characteris-
tics found in other region based segmentation approaches, like geodesic active
contours [12] and classical Partial Differential Equations (PDEs) [13,14]. As will
be shown, the locally constrained watershed can successfully segment particles
in some particularly difficult situations. This is especially relevant in medical
image analysis, where precision is of high importance. We apply in this work
the locally constrained watershed transform to biomedical images, particularly
cytology images. These types of images often show fuzzy and overlapping ob-
jects, as well as non-homogeneous gradients. There are other methods that can
also solve the problems caused by overlapping objects [15,16] and by touching
edges are [17,18]. However, the aim of this work is to study the properties and
capabilities of the locally constrained watershed transform in cytology imaging,
especially in cases where the input image is directly segmented without prior pre-
processing. The rest of this paper is structured as follows: Section 2 comments
cytology imaging and its relevance. Section 3 treats the main points regarding
the locally constrained watershed transform. Section 4 shows the application of
the locally constrained watershed transform to cytology images and discusses
some experimental results. Finally, Section 5 concludes the paper.

2 Cytology Imaging

2.1 Pleural Fluid Imaging

A cytology examination of pleural fluid (pleural fluid cytology) is a laboratory
test that detects cancerous cells in the pleural space, the area that surrounds
the lungs [19]. The test is performed by inserting a needle into the pleural space
to draw off a sample of pleural fluid (the procedure is called thoracentesis). The
sample of fluid is examined under the microscope for the presence of abnormal
cells. About 75% of malignant pleural effusions are secondary to lung cancer,
breast cancer and lymphoma. It is estimated that about 50% of patients with
bronchial cancer and 40 to 50% of patients with disseminated breast cancer
have a pleural effusion in the course of its evolution. Pleural metastases can also
cause other primary tumors, such as ovarian carcinomas, sarcomas, melanomas,
cervical cancer, cancers of the digestive tract, bladder, etc.

2.2 Papanicolau Smear Imaging

Papanicolau Smear (pap smear) is a medical test that uses five degrees to classify
the cells of a cervix-vaginal cytology according to its degree of malignancy. In
the test of Papanicolau, samples of cells of the vagina and the neck of the uterus
are observed under the microscope. It allows to see cellular variations based
on the hormonal cycle, if infections exist, and most important, the detection of
malignant cells before tumors are pronounced. This test is able occasionally to
detect the 95% of the cancers of the vaginal neck of the uterus, as well as others
such as ovarian and endometrial cancers (although the reliability is smaller here).
This test has radically changed the prognosis of women with cervical cancer.
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3 Locally Constrained Watershed Transform

The main segmentation method in mathematical morphology [20,21,22] is the
watershed transform [23]. The watershed transform is a segmentation technique
that floods an input image gradient, which is considered as a topographic relief.
The result of this process is a division of the input image in catchment basins,
whose separation lines (watersheds) are the contours of the regions. The locally
constrained watershed transform introduced by Beare [1] permits incorporation
of constraints on the border of regions. Such region constraints1 are imposed by
using a cost function that depends on a shape (a structuring element). In the
following, we will briefly focus on the foundations of how the region constraints
are incorporated (please refer to [1] for a complete description and treatment of
the method). A number of region segmentation techniques are able to include
boundary constraints. In some cases those boundary constraints are essential for
the satisfactory application of algorithms in real images. Energy minimization
based methods of region segmentation, such as those using classical PDEs, are
able to constrain border curvature. This is done by including a viscosity term in
the energy function that modifies the rate of curve evolution. Careful selection
of this term is often a critical factor in practical applications of these methods.
There has also been some work on other types of boundary constraints in tra-
ditional region growing contexts. One method modifies the image gradient by
applying a closing. It is based on a geophysical model in which a fluid is sub-
jected to a variety of pressure [24]. A second method models the growing region
as a polygon with the maximum edge length as the controlling parameter[25].
A technique called watersnakes demonstrates the energy minimization nature
of the conventional watershed transform and includes border related terms ex-
plicitly by using a cost function [26]. Another approach within the watershed
framework that can incorporate constraints is [27,28].

The locally constrained watershed transform introduced by Beare [1] provides
a mechanism for higher level knowledge to be included in a conventional region
growing framework. The particular higher level knowledge is the requirement
that borders of regions should be, in some sense, smooth at all times during
the growing process. This makes it possible to stabilize the growing process by
preventing region leaks. This type of watershed considers how leaks may occur
in the context of the watershed transform from the point of view of the physical
model (gradient flooding) from which it was derived. This locally constrained
watershed associates a cost to paths of translations of structuring elements, the
so-called Minkowski paths.

Fig. 1 shows a step in a Minkowski path where the structuring element is a
disk. Let B denote a structuring element, and let Bp symbolize B placed at pixel
p (i.e., p is the origin of B). The cost of the Minkowski path of adjacent pixels
π = (p0, p1, . . . , p�) is then given by:

T̂ π
f =

�−1∑

i=0

ĉost(f, Bpi , Bpi+1), (1)

1 Each region (catchment basin) can have, if desired, each own particular constraint.
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where ĉost(f, Bpi , Bpi+1) measures the cost of translating the structuring el-
ement from pixel pi to pi+1 in an image f . In the cost function of the locally
constrained watershed, an auxiliary function, a summary function is used that
is also a parameter of the method, along with the structuring element. Let us
consider in the following the translation of a shape from pixel p to pixel q, which
determines a translation vector t = q− p. If we define

DSp(B, t) = Bp+t\Bp, (2)

then the cost of moving the shape B from p to q is:

ĉost
′
(p, q) = max {Φ(DSp(B, t)) − Φ(DSp−t(B, t)), 0}, (3)

where Φ denotes a summary function that “summarizes” pixel values as a single
value (a scalar). In the case where the size of the structuring element is a single
pixel, the model is equivalent to the standard watershed transform. When the
size is greater than one the region is constrained to be a union of the selected
structuring element translated. The brief description above has commented one
of the key ideas of the locally constrained watershed, the Minkowski cost, and
also the two constraints that are associated to the image regions: (a) the shape
(structuring element), and (b) the summary function. Such constraints will ap-
pear in the next section that discusses some experimental results. As summary
functions, we will use the max and mean functions.

For instance, Fig. 2 provides a simple synthetic example that illustrates the
capabilities of the locally constrained watershed to restrict the gradient flood-
ing by using shape constraints. Fig. 2(a) displays an “idealized” situation where
two structures touch. As will be shown in the next section, there exist numer-
ous of such situations in cervical cytology images. First, we use the markers
in Fig. 2(b) to extract both circles. Fig. 2(c) shows the result of the standard
watershed transform. The locally constrained watershed can prevent the gradi-
ent flooding from the marked circle at the right to the one at the left (where
there is no gradient wall) by introducing a shape constraint (particularly, a disk-
shaped structuring element); both marked circles are successfully extracted in
Fig. 2(d). The problem observed in Fig. 2(c) can be addressed, with the tradi-
tional watershed, by using, for example, the distance function [17]. The locally

Fig. 1. A step in a Minkowski path



Cytology Imaging Segmentation 433

(a) (b)

(c) (d)

Fig. 2. A synthetic example of a segmentation of shapes with touching edges. (a)
Original image. (b) Markers to extract for both circles. (c) Watershed transform result
using (b) as markers. (d) Locally constrained watershed transform result using (b) as
markers.

constrained watershed offers another alternative solution for particle extraction
in medical imaging segmentation applications, where particle overlapping is quite
common.

4 Experimental Results and Discussion

We have used images from “Hospital General de Ciudad Real” obtained using a
scanner Aperio Scanscope XT (objective: 40×, resolution 0.25 microns per pixel,
numerical aperture: 0.70). The images used are part of a set of 32 images. Of
those, a subset of 24 presented the typical problems already mentioned (like
overlapping, united cell membranes and incomplete gradient information) often
found in medical images. Six cases have been selected and displayed in this paper.
No preprocessing has been applied to the images prior to the computation of the
morphologic gradient.

Fig. 3(a) shows a quite common situation in cytology: a cell that is out of focus,
along with the other cells that are close enough to touch their cell membranes.
Fig. 3(b) shows the successful outcome of the locally constrained watershed
transform using a disk of radius 2 as a structural element, another disc of radius
1 for the background, and function Φ = max. The locally constrained watershed
transform adequately separates the object of interest of the image.

The cell that we want to segment in Fig.4(a) is blurred and is located besides
another one, causing a weak gradient between the two cells. By using the locally
constrained watershed transform we can prevent the leaks between the objects
in the flooding process. The following configuration has been used in Fig.4(a): a
disk-shaped structuring element with radius = 2 for both the object and for the
background, and Φ = max as cost function.
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(a) (b)

Fig. 3. (a) Original pleural fluid image with markers in the cell and in the background
(size: 800×600). (b) Zoom of the locally constrained watershed transform result (cell
regions constrained using a disk with radius = 2 and Φ = max). Note: the zoom image
size in (b) is 300×200.

(a) (b)

Fig. 4. (a) Original pleural fluid image with markers in the cell and in the background
(size: 800×600). (b) Zoom of the locally constrained watershed transform result (cell
regions constrained using a disk with radius = 2, background using a disk with radius
= 2 and Φ = max).

(a) (b)

Fig. 5. (a) Original pap smear image with markers in the two cells. (b) Zoom of the
locally constrained watershed transform result-cell regions constrained using a disk
with radius = 2, background using a disk with radius = 1 and Φ = max.



Cytology Imaging Segmentation 435

(a) (b)

Fig. 6. (a) Original pap smear image with markers in the cell and in the background.
(b) Zoom of the locally constrained watershed transform result (cell regions constrained
using a disk with radius = 2, background using a disk with radius = 1 and Φ = max).
Note: the zoom image size in (b) is 300×200.

(a) (b)

(c) (d)

Fig. 7. (a) Original pap smear image with markers in the cell and in the background
(size: 800×600). (b) Zoom of the watershed transform result. (c) Zoom of the locally
constrained watershed transform result (cell regions constrained using a disk with ra-
dius = 2, using a disk with radius = 1, and Φ = max). (d) Zoom of the locally con-
strained watershed transform result (cell regions constrained using a disk with radius
= 1, and Φ = mean). Note: the zoom image size in (b) and(c) is 300×200.

In image Fig. 5(a) we can observe that the edges of the two cells that we
want to segment are touching. The The locally constrained watershed obtains
a suitable segmentation using a structuring element to constrain the gradient
(Fig. 5(b)).



436 N. Béliz-Osorio et al.

The example displayed in Fig. 6 is a similar case. Again, the shapes constraints
of the locally constrained watershed can successfully extract the desired structure
in Fig. 6(b).

In the case of Fig. 7(a), we can observe the effect that the locally constrained
watershed summary function can have to refine a segmentation result. Fig. 7 (b)
shows the result of the standard watershed transform. The locally constrained
watershed successfully separates the marked cell (see Fig. 7(c) and 7(d)). In this
example, two different summary functions have been used: Φ = max (in Fig. 7(c))
and Φ = mean (in Fig. 7(d)). We can see that the use of the Φ = max summary
function produces somewhat irregular boundaries (Fig. 7(c)) and leaves some
small portions of the target cell out (some parts of the background-cell gradient
walls are quite weak). On the other hand, the summary function Φ = mean
obtains a result with smoother edges (Fig. 7(d)).

5 Conclusion

In this paper we have applied the locally constrained watershed transform to
segment cells in cervical cytology images. Results show that this type of water-
shed can successfully segment particles in difficult situations where there exist
overlapping structures and the gradient is non-homogeneous. Thus, the locally
constrained watershed transform offers a flexible and robust alternative that
appropriately addresses this type of situations.
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Abstract. Stochastic modeling of a material microstructure is in gen-
eral composed of multiple steps. First, geometric properties of the sample
are measured by image analysis. Second, an appropriate stochastic model
is chosen and model parameters are estimated from the geometric prop-
erties. Third, additional characteristics are computed on the data set and
on realizations of stochastic models to evaluate the quality of the fitting.
In this article, we show how to measure geometric properties of a fiber
system, estimate parameters for two different fiber models, and evaluate
the realizations with orientation covariance and tortuosity of the fibers.
The considered stochastic models are the newly developed bended fiber
model, composed of a force-biased packing of ball chains, and the clas-
sical cherry-pit cylinder model. We show the advantages and limitations
of both methods.

Keywords: Stochastic Modeling, Fiber Reinforced Composites, Fiber
Separation, Parameter Estimation, Orientation Covariance.

1 Introduction

Fiber reinforced composites gain an increasing interest for industrial applications
as the enclosure of aircrafts, boats and cars. Macroscopic properties of these ma-
terials are highly influenced by the geometry of the microstructure, in particular
by the fiber directions. Physical properties can be optimized by adapting the
parameters of the structural geometry. To this end, we need a realistic stochas-
tic model including the main parameters for the fiber structure and taking into
account the natural variability of the system. The realizations will be used as
input in some simulation software of physical properties. We hope to optimize
the microstructure with respect to their physical properties (for instance elas-
tic moduli or thermal conductivity), changing the parameters of the stochastic
model.
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Fiber reinforced composites demand a stochastic model creating a non over-
lapping system composed of fibers with cylindrical cross sections and a low level
of bending. The aim of this paper is to adapt the force-biased fiber packing [3]
to a data set of a glass fiber reinforced composite and compare the realizations
to those of a standard cylinder model.

The stochastic model for bended fibers represents fibers as ball chains. Ran-
dom walks are used to initialize an overlapping system of bended fibers. A force-
biased packing arranges the fibers such that they become non overlapping. This
model can achieve high volume fractions up to approximately 72%.

Model parameters, as radius, volume fraction and orientation distribution,
can be estimated directly from the original CT image [1]. Approximation of fiber
length and curvature requests a separation of single fibers, which is applicable in
the case of glass fiber reinforced composites with moderate fiber volume fraction
and sufficient resolution [2].

For the evaluation of the models, we introduce a new method: the orientation
covariance, which indicates the dependence of orientations in two image points
with respect to their distance. We can interpret the covariance as a measure of
local alignment. Moreover, the covariance yields the distance where fiber orienta-
tions become independent. Some studies of correlations of orientations between
vectors are available in the literature ([9],[8], [7] and [12]). They are dedicated
on statistics between a pair of unit vectors on a circle for the planar case, or on a
sphere for the tridimensional case. None were proposed for the characterization
of a random vector field, as is done in the present paper in quite a different
and novel way. The statistical tools available in the literature are based on the
standard correlation matrix between coordinates of the random vector.

We compare the bended fiber model to the classical approach of a cylinder
model. Finally, advantages and limitations of both models as well as their fields
of application are discussed.

2 Methods

Modeling fiber reinforced composites includes a set of methods: an appropriate
stochastic model, estimators of the model parameters, and evaluation methods
applicable to the real and the virtual material. First, we roughly explain the
stochastic model presenting fibers as ball chains and being able to produce dense,
hardcore systems of bended fibers. To estimate fiber parameters, we are making
use of the single fiber separation presented in [2]. This segmentation results in a
reconstruction of the fibers as ball chains and is therefore highly qualified for the
parameter estimation, which is necessary for adapting the model. Estimators for
those model parameters are presented.

To compare real and virtual material, we developed the orientation covari-
ance, a modification of the classical covariance in image processing (see [18,
p. 532]). Instead of evaluating the correlation of the binary image with respect to
coordinate distance, we evaluate the correlation of the fiber orientations in fore-
ground pixels. This approach can be applied to a segmented fiber system with the



Stochastic Modeling of a Glass Fiber Reinforced Polymer 441

information of local orientation, as resulting e.g. from the algorithm introduced
in [1]. Furthermore, we are comparing the tortuosity (see [6] and [16]) of the
fibers, which will be measured on the separated fibers.

2.1 Fiber Model

The stochastic model considered in this paper is based on ball chains, initi-
ated from a random walk and packed to a hardcore system with a force-biased
approach. A fiber in the stochastic model is presented as a sequence of balls

P = {p1, . . . , pl} with pi = (xi, μi, ri) ∈ �3 × S2 ×�+, (1)

consisting of the coordinate of the ball center xi ∈ �3, an orientation μi ∈ S2

and a radius ri ∈ �+. The orientation describes the local fiber orientation and
the radius describes the local fiber radius. The main fiber orientation is chosen
from a global orientation distribution defined for the system. We propose the
β-distribution (see [17] or [15]) with a global parameter β ∈ �+\{0}. For β = 1
it results in the uniform distribution on the sphere, for β → 0 the distribu-
tion concentrates on the z-axis and for β → ∞ the orientations are distributed
isotropically in the xy-plane.The probability density function of the β orientation
distribution is

p(θ, φ|β) =
β sin θ

4π(1 + (β2 − 1) cos2 θ)3/2
, (2)

where (θ, φ) are the polar coordinates of the orientation μ0 ∈ S2.
A ball chain is created by a random walk starting from a random point in a

cubic window with periodic boundary conditions. The orientation assigned to the
first ball μ1 is initiated with the main fiber orientation, chosen from the global
orientation distribution. The orientation assigned to the i-th ball is distributed
with the multivariate von Mises-Fisher distribution (see [10], [11] and [4]). The
parameters of this distribution are two preferred directions and their reliability
parameters κ1 and κ2. In our case, the preferred directions are the main fiber
orientation μ1 and the last chosen orientation μi−1. The level of bending is
defined by the reliability parameters. The probability density function for the
orientation distribution of the i-th ball is

f(μi|μ1, κ1, μi−1, κ2) = c(μ1, κ1, μi−1, κ2) eκ1μT
1 μi+κ2μT

i−1μi . (3)

The factor c(x1, κ1, x2, κ2) serves for the normalization, such that the integral
over S2 is equal to 1. The normalization factor ist

c(x1, κ1, x2, κ2) =
|κ1x1 + κ2x2|

2π(e|κ1x1+κ2x2| − e−|κ1x1+κ2x2|)
. (4)

The radius ri could be chosen from any distribution, in this paper we have
chosen a fix radius for the system. The coordinates of the i-th ball are then
defined by xi = xi−1 + ri

2 μi. This approach defines a overlapping system of
bended fibers.
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In a second step, we apply a force-biased approach, to achieve a hardcore
configuration of the fiber system. Force-biased algorithms on spheres were in-
troduced in [14] and statistically analyzed in [5]. The forces in our approach
were inspired by the energy reducing models known from molecular dynamics
[14] and describe the necessary displacement of the balls to relax the system.
They do not act like mechanical forces. The algorithm works stepwise: In every
step, forces are calculated according to the recent configuration and the balls
are displaced with respect to their forces. Two kinds of forces are applied to the
ball centers: repulsion and recover forces. The repulsion force arises in case of
a fiber overlap and displaces the balls to an independent position. The recover
force maintains the fiber structure. It keeps the distance and the angles between
a ball and its neighbors, allowing only small deviation. The force conserving
distances simulates springs between neighbor ball centers. The angle force sim-
ulates open springs between neighbor connections, which allows straightening of
the fiber, but preserves fibers to bend in a clew. Both recover forces are provided
with an initiating friction, which assures the stabilization of the packing process.
The new configuration at the end of one step is defined by the displaced ball
centers according to the sum of all forces.

2.2 Parameter Estimation

The separation of single fibers [2] results in a system of ball chains like the
simulated one. We describe the configuration of the fiber system by

P = {p1,1, p1,2, . . . , p1,l1 , p2,1, . . . , pn,ln} (5)

with pj,i = (xj,i, μj,i, rj,i) ∈ �3×S2×�+. The fiber index is indicated with j and
the balls in one fiber are ordered by the index i. Parameters for the stochastic
model can be directly measured from this reconstructed microstructure. The
estimation of the mean radius is evident. The mean fiber length is estimated
from the sum of all fiber lengths divided by half the visible ends, excluding the
cuts at image borders.

l̂(P ) =
2

#(visible ends)

n∑

j=1

lj∑

i=2

|xj,i − xj,i−1| (6)

The global fiber orientation distribution is determined by the parameter β,
for which there are nowadays no estimators available. Still, it can be numerically
approximated from the log-likelihood function:

ml(β) = n ln β − n ln(4π)− 3
2

n∑

j=1

ln(1 + (β2 − 1) cos2 θj), (7)

for θj the angle between the j-th mean fiber orientation μ̄(P, j) =
pj,lj

−pj,1

|pj,lj
−pj,1| ∈ S2

and the global mean fiber orientation μ̄(P ), which can be derived by the main
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inertia axis of the set of all mean fiber orientations and their inverse: M(P ) =
{μ̄(P, j),−μ̄(P, j) | j = 1, . . . , n}.

To estimate the curvature parameters κ1 and κ2, we study first the classical
von Mises-Fisher distribution, which yields the relation (� being the mathemat-
ical expectation):

�
[
‖μ− μ̂‖2

]
=

2
κ

+ 2(1− eκ + e−κ

eκ − e−κ
). (8)

with the second term disappearing for κ → ∞. Already for κ > 2 the second
term is negligible. The parameter κ can be numerically approximated from the
empirical evaluation of

�
[
‖μ− μ̂‖2

]
=

1
n

n∑

i=1

2(1− cos θi). (9)

The problem in estimating the parameters for the multivariate von Mises-Fisher
distribution (mvMF) is the fixation of μ1, while μi−1 is varying during the pro-
cess. Thus, for each realization of the von Mises-Fisher distribution parameters
have changed. A fix mvMF distribution can be described as a classical von
Mises Fisher distribution with a single reliability parameter κ = |κ1μ1 + κ2μ2|.
For several realizations of mvMF with fix κ1, μ1, κ2, μ2 and known μ1, μ2 the
estimator for κ would be trivial, and therefore κ1 and κ2 could be derived from
the linear combination κμ = κ1μ1 + κ2μ2. Instead the random walk realizes
Xi ∼ mvMF(κ1, μ1, κ2, μi−1). Thus, we achieve single realizations for varying
distributions. Still, we can define variances to each preferred direction μ1 and
μi−1 as:

Var1(X) =
1

n− 1

n∑

i=2

‖μi − μ1‖2 and Var2(X) =
1

n− 1

n∑

i=2

‖μi − μi−1‖2. (10)

Simulations show that

κ1 ≈ 1/Var1 and κ2 ≈ 2/Var2 for κ2/κ1 > 2. (11)

We are aware of the limitation of this estimator and that it can just be seen as a
first guess of the parameters. Still, it is a measure of the curvature of the fiber.
If we achieve similar measure values for the real and the virtual material, we can
conclude that the model fitting is successful.

2.3 Measurements to Evaluate Realizations

The classical covariance ([19, pp.72], [18, pp. 532] and [13]) is defined on a
stationary random set B ⊂ �3 as the probability that an arbitrary point x and
its translation x + hv are part of the set B. We can define the covariance with
the following formula:

CovB(h, v) = �[�B(0)�B(hv)], for v ∈ S2 and h ∈ �. (12)
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For a binary image b : W ⊂ �
3 → {0, 1}, we define B as the set of foreground

points B = {x ∈ W | b(x) = 1} and estimate the covariance as average over all
image points x ∈ W : CovB(h, v) = 1

‖W‖
∑

x∈W �B(x)�B(x + hv). The covari-
ance is also known as normalized geometric covariogramm [13]. It evaluates the
similarity of the indicator function on two points depending on their distance h
in direction v. The covariance function starts at 1 for h = 0 and converges to
the squared volume fraction for h → ∞. From the evolution of the covariance
function we can interpret the mean width of objects in a given direction and the
existence and size of clusters. Comparison of covariance functions for different
directions gives indications on the anisotropy of the microstructure.

The covariance can be applied to different characteristics by replacing the
indicator function. In particular, the covariance of local fiber orientations can be
defined on the scalar product of two orientations as follows:

Covo(x, x + hv) = �[(o(x)o(x + hv))2 | �B(x)�B(x + hv) = 1], (13)

where o : W → S2 is the local orientation map. By equation (13), we estimate
a scalar, namely the conditional expectation of the square of the scalar product
between two vectors located in x and in x+hv, knowing that the two points are
in the set of interest. For a stationary random field of orientations, the covariance
does not depend on the point x and can be written as

Covo(h, v) = �[(o(0)o(hv))2 | �B(0)�B(hv) = 1], . (14)

In the sequel of the paper, we assume stationarity. In that case, the covariance
is estimated from the spatial average of the scalar product over the location of
x in the image: Covo(h, v) = 1

‖W∗‖
∑

x∈W∗(o(x)o(x + hv))2 with W ∗ = {x ∈
W | �B(x)�B(x + hv) = 1}.

It turns out, that this scalar equals the average of cos2 α, α being the angle
between the two vectors o(x) and o(x + hv). The squared cosine is one for equal
orientations and drops down to zero for orthogonal orientations. The conditional
expectation assures that only foreground points are taken into account. Other-
wise, the curve would be a mixture of the classical covariance and the orientation
covariance. The orientation covariance starts at 1 for h = 0 and converges to 1/3
for h →∞ in an isotropically distributed fiber system (see appendix).

In contrary to the classical statistics on spherical data, the covariance also
takes into account the spatial arrangement of the information. It can reveal
local alignment and global anisotropy in the orientation distribution. It can be
applied directly on data sets with the results from local orientation analysis as
well as to realizations from the stochastic modeling. Therefore, it serves as a
quality measure of the reconstructed material. Using the square of the scalar
product enables a fast estimation by fast Fourier transform of the covariance
of orientations for any separation hv. This is an advantage when dealing with
images, which was not the scope of earlier statistical studies on populations of
vectors.



Stochastic Modeling of a Glass Fiber Reinforced Polymer 445

In order to evaluate the bending of the fibers, we observe an additional char-
acteristic: the tortuosity, which is defined as the ratio between geodesic fiber
length and the distance of start and end point:

T̂ (Pj) =
∑lj

i=2 |xj,i − xj,i−1|
|xj,1 − xj,lj |

. (15)

For totally straight fibers (cylinders) the tortuosity is equal to 1. The higher the
bending, the higher the tortuosity.

3 Application

For the adaptation of the stochastic fiber model, we have chosen a glass fiber
reinforced polymer for which the single fiber separation was successfully applied.
Fig. 1 shows a surface rendering of the binarized microstructure and realizations
of the models. The fiber system shows only a low level of bending. The fitting of
the bended fiber model is challenging in this case, as the deviation for the local
bending tends to zero. Nevertheless, it is possible to trim the model to such a
low bending and the model is unique in respecting all the measured geometric
properties in a hardcore fiber systems.

We approximate the model parameters from the system of separated fibers
according to the given estimators and create a realization of the bended fiber
model respectively. Alternatively, we choose the cherry-pit cylinder model with
RSA packing. With the given fiber length it is not possible to create a non
overlapping cylinder system with the requested density. Overlapping conditions
are lowered to a softshell-ratio of 0.7, meaning only the cores of the fibers with
a radius of 30% of the real fiber radius are non overlapping. This reduction is a
violation against the condition of hard glass fibers. Such a perturbation is not
realistic for the given material. This is the first limitation of RSA cylinder models:
long fiber systems can be realized only with a very low volume fraction and
there exist far denser materials than the treated one, which requests 14.2% fiber
volume fraction only. The second limitation concerns the edge treatment. The

Table 1. Estimation Results for real data sets and models

Parameters Symbol Image Bended Fiber Cylinders

Volume Fraction VV 0.142041 0.143878 0.141475
Mean Radius R̄ 5.32035 5.32035 5.32035

Mean Length L̂ 836.846 841.868 836.846
Mean Orientation μ̂ (0.08, 0.09, 0.99) (0.097, 0.087, 0.99) (0.026, 0.067, 0.997)

Beta Estimate β̂ 0.227 0.207 0.224
Kappa1 Estimate κ̂1 56.8593 35.5017 ∞
Kappa2 Estimate κ̂2 356.694 395.628 ∞
Tortuosity T̂ 1.01188 1.0152 1
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(a) GRP Data Set

(b) Cylinder Model (c) Bended Fiber Model

Fig. 1. Modeling of glass fibre reinforced polymer. Surface Rendering of real data set
and realizatons of stochastic models.

simulation of physical properties often requires periodic edge treatment. This
condition cannot be realized for long cylinders in a small cutout, as cylinders
tend to overlap themselves. The created realizations of the bended fiber and
the cylinder model are shown in Fig. 1. The parameter estimation is given in
Table 1 as well as the tortuosity as additional characteristic to evaluate the
realizations. The bended fiber model fits well the true tortuosity. For straight
cylinders, the tortuosity will naturally always equal one, which is too low in the
present application.

The orientation covariance (Fig. 2) shows a local alignment of the fibers from
the slow decrease in the first steps. In the present case, the asymptotic value of
the experimental orientation covariance is close to 0.6. Furthermore, the eleva-
tion of the curve in z direction indicates the preference of this fiber direction.
The asymptotic behavior of the experimental covariance reaching their sill for
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Fig. 2. Orientation Covariance for real data set and models. The model diagrams also
include the difference in the orientation covariances to the real data set.
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a finite range, is consistent with the stationarity assumption used in this study.
We observe a similar shape for the curves in the cylinder model, but the level
stays slightly too high for long distances. The local alignment of the bended
fiber model fits the one of the real material, but local fiber directions are dif-
fering from the mean direction too fast. This causes the early decrease of the z
direction curve compared to the real material. Furthermore, the relatively slow
decrease of the z direction curve in the real material (compared to those in the
virtual material) indicates probably a local clustering of directions. Such a clus-
ter behavior has not yet been incorporated in the stochastic models. The bended
fiber model probably includes local alignment of the fibers, but only for higher
volume fractions. In a system with 14% volume fraction, fibers has too much
freedom in their arrangement.

Furthermore, we assume that a single global orientation distribution is not
suited well for this application. Instead of measuring a single concentration pa-
rameter β, one should try to adapt a mixture of β-distributions to the measured
orientation distribution. Similarly every estimated mean parameter could be re-
placed by a distribution.

The low sensitivity of the covariance to a slight curvature of the fibers is
reflected in the similarity of the two curves obtained for the simulation of cylinder
and bended fiver models. The distinction between the two morphologies requires
additional information, such as local curvature measurement. The parameters
κ1 and κ2 in Table 1, as well as the tortuosity, reflect this distinction.

4 Conclusion

We presented the fitting of stochastic models to a fiber reinforced composite by
parameter estimation and evaluated the created realization with the tortuosity
and the orientation covariance. The advantages and limitations of both consid-
ered models are worked out. Bended fiber models need some more modification
to create low-level bended fibers like present in the glass fiber reinforced compos-
ite. Cylinder models failed to give a non overlapping system of such long fibers,
even if the requested volume fraction is quite low.

Perspectives are to extract information about fiber bending directly from the
orientation covariance and the tortuosity. This would render the error-prone
separation of single fibers obsolete. In particular for the case of carbon fiber
reinforced composites, single fiber separation is very difficult.
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Appendix: Convergence of Orientation Covariance

The orientation covariance Covo(h, v) = �[(o(0)o(hv))2 | b(0)b(hv) = 1] con-
verges for h →∞ to the covariance of two independent random vectors x, y ∈ S2

distributed with the orientation distribution of the fiber system. In the case of
isotropic orientation distribution, the orientation covariance converges to the
same value for all x ∈ S2. Thus, we can assume x = (0, 0, 1)T without loss of
generality. Let θ and φ be the angles of the polar coordinates of y. The prob-
ability density function for the isotropic distribution is: f(θ, φ) = 1

4π sin θ. The
convergence of the orientation covariance for isotropic orientation distribution
can be solved with partial integration as follows:

Covo(h, v) h→∞−−−−→ �[(xy)2] = �[((0, 0, 1)T y)2] = �[cos2 θ] (16)

=
∫ 2π

0

∫ π

0

cos2 θ
1
4π

sin θ dθ dφ (17)

=
1
2

∫ π

0

cos2 θ sin θ dθ (18)

=
1
2

(

(− cos3 θ)|π0 −
∫ π

0

2 cos θ sin θ cos θ dθ

)

(19)

=
1
2

(

2− 2
∫ π

0

cos2 θ sin θ dθ

)

(20)

From (18)=(20) follows
∫ π

0 cos2 θ sin θ dθ = 2
3 and therefore Covo(h, v) h→∞−−−−→ 1

3 .
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Abstract. In this paper the use of morphological connected filters are
studied for segmenting sheet- and thread-like cracks in images of shale
rock. A volume formed from a stack of 2-D X-ray images is processed
using 3-D attributes. The shape-preserving property of these filters pro-
vides accurate segmentation results while the use of rotation-invariant
attributes allow robust and computationally efficient segmentation of
cracks at all orientations. The results obtained using shape and size at-
tributes are provided and discussed. The research presented here is part
of a project with geologists to provide tools for automated segmentation
and analysis of features of interest in various types of rock.

1 Introduction

Accurate crack segmentation is a key factor for petrophysical properties pre-
diction from microtomograms. An aspect ratio (thickness-to-length ratio) of
the cracks is important for choosing suitable parameters for effective medium
models which are generally employed to obtain elastic properties of rocks, e.g.,
[2, 7, 8, 11]. Crack volume and surface roughness is crucial for analysis of stress
dependency of elastic properties of rocks [12, 18] and even more important for
understanding of their geomechanical response on stress like Mohr-Coulomb fail-
ure criterion, e.g., [16]. The exact 3-D shape of the crack is central to determine
tortuosity which is a vital parameter in elastic conductivity, hydraulic perme-
ability and poroelastic simulations [1, 3, 9]. The length and connectivity of the
cracks and their number in a characteristic volume allows determination of frac-
tal dimension of crack distribution and its percolation. e.g., [22]. The results of
segmentation based on advanced image analysis methods presented in this study
are a first and essential step to multi-scale quantitative analysis of petrophysical
properties of rock from 3-D images.

Connected operators [5, 13, 14] are a commonly-used set of tools from the
field of mathematical morphology [17, 20] for filtering [27], segmentation [19],
and classification [23, 24] of features in 2-D and 3-D images. Besides being com-
putationally efficient they are shape-preserving. In the case of binary images this
means that they can either remove or preserve a connected component entirely

P. Soille, M. Pesaresi, and G.K. Ouzounis (Eds.): ISMM 2011, LNCS 6671, pp. 451–460, 2011.
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but they cannot change its contours other than by merging it entirely with an-
other connected component. This property also holds in the gray-scale case with
respect to flat zones.

Operators that do not modify contours allow accurate segmentation of features
of interest in images. In this paper these operators are used to automatically
segment cracks in shale rock as part of a project with geologists to provide
methods to characterize images of various kinds of rocks obtained with different
imaging modalities. The performance of the method presented here is evaluated
using a 3-D volume formed from 500 slices of 400x500 pixels.

The proposed method to automatically segment these cracks in shale rock uses
attribute-based connected filters [13, 27]. To detect these cracks, which vary in
shape between sheet-like and thread-like, we use a non-compactness[27] attribute
and two attributes based on the lengths of the axes of a best-fit ellipsoid. Below
the theory behind our method will be discussed first.

2 Theory

In the following discussion, image X is defined as a subset of the image domain
M ⊂ Rn (in this paper n = 3). The ith connected component of X is denoted by
CX

i , where i runs over some index set I. A connected component in the level set
Vh(f) = {x ∈M|f(x) = h} at level h of a gray-scale image f is known as a flat
zone. At each gray level there may be multiple flat zones, which are denoted by
Lk

h(f), with k some index variable. Similarly, a peak component P k
h (f), where k

runs over some index set If
h , is defined as the kth connected component of the

threshold set Th(f) of image f which is defined as

Th(f) = {x ∈M|f(x) ≥ h}. (1)

In this paper a grain will refer to a connected component in the binary and to
a peak component in the gray-scale case.

A popular subset of connected operators are attribute filters [4] which preserve
or remove grains based on whether the corresponding attribute values satisfy
some criteria. The area opening [26] is an attribute filter with the criterion that
the value of the area attribute must be at least λ pixels. For gray-scale images,
attribute filters can be computed in a flexible and versatile way using tree-based
representations [10, 13] of the flat zones in the input image. A computationally
efficient algorithm for tree-based connected operators that is used in this paper
is the Max-tree[13].

A Max-tree is a tree structure where node Nk
h represents peak component P k

h

in the image. For any two nodes Nk1
h1 and Nk2

h2 corresponding to the two peak
components P k1

h1 and P k2
h2 the following holds:

P k2
h2 ⊂ P k1

h1 ⇐⇒ h2 > h1 ∧Nk1
h1 is an ancestor of Nk2

h2 (2)

and
P k1

h1 = P k2
h2 ⇐⇒ k1 = k2 ∧ h1 = h2 (3)



Segmentation of Cracks in Shale Rock 453

Filtering an image using the Max-tree involves three phases:

1. Construction: The Max-tree is constructed from the input image. Various
efficient algorithms for this have been proposed [10, 13]. The algorithm used
in this paper involves a recursive flooding procedure and a hierarchical FIFO
queue as proposed by Salembier et al. [13].

2. Filtering: Nodes with attribute values that do not satisfy the criterion are
marked for removal and are assigned a different gray value while all other
nodes remain unchanged. This will be discussed in more detail below.

3. Restitution: In a single pass each pixel of the output image is assigned the
intensity value of the corresponding node in the Max-tree.

The attributes and criteria used during the filtering phase can be increasing
(such as area) or non-increasing (such as perimeter). In the latter case, a node
that does not satisfy the criterion might have descendants that do satisfy the
criterion. In those cases a strategy is needed to determine which nodes will be
removed while maintaining a valid tree structure. Salembier et al. [13] described
four strategies: Min, Direct, Max, and Viterbi while Urbach and Wilkinson [25]
proposed the Subtractive rule. These strategies decide to remove a node Nk

h

with attribute value A(P k
h ) and criterion A(P k

h ) ≥ λ (and preserve otherwise)
as follows:

Min: A node Nk
h is removed if A(P k

h ) < λ or if one its ancestors is removed.
Max: : A node Nk

h is removed if A(P k
h ) < λ and it has no remaining descendants.

Viterbi: The preservation and removal of nodes is considered as an optimization
problem. For details the reader is referred to Salembier et al. [13].

Direct: A node Nk
h is removed if A(P k

h ) < λ, in which case its pixels are lowered
in intensity to its highest ancestor that meets the criterion.

Subtractive: Similar to Direct rule, but this strategy also lowers by the same
amount all the descendants of Nk

h .

3 Method

The cracks we want to segment in a 3-D volume of shale rock are recognizable
as thin sheet- or thread-like structures with a lower intensity value than the
average intensity of their rough-textured surroundings. Unfortunately, the in-
tensity value of these cracks is not constant and similar intensity values are also
abundantly present elsewhere in the volume, thus, a simple thresholding of the
3-D volume (or on the 2-D slices) will not yield good results. As the segmented
cracks will be used for numerical analysis to characterize properties of the rock
samples, each crack should be detected and segmented accurately. A variety of
methods have been studied in the literature (such as [15]) for detecting thin
structures in 2-D and 3-D. The method proposed here is based on connected
filters as their shape-preserving property will give us very accurate segmenta-
tions. Furthermore, the use of rotation-invariant attributes avoids the need for
computationally expensive probing at each and every orientation in 3-D.
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Considering the 2-D slices of our 3-D shale rock volume, such as shown in
Fig. 1 we can recognize cracks as thin “vessel”-like structures. As 2-D image
processing is still more common than 3-D and visual inspection on screen so
much easier, it seems obvious to try to detect cracks using 2-D algorithms and
then combine the results afterward. Unfortunately, this yields poor segmentation
results as pixels that belong to the same crack might appear fractured in 2-D
and can even appear as singleton pixels. Therefore, the slices are considered as a
single 3-D volume and the Max-tree with 3-D attributes is used as an attribute
filter to segment the cracks.

The proposed method uses three attributes: non-compactness, length of the
major axis, and the ratio of the lengths of the major and minor axes. The first is
the 3-D equivalent of Hu’s first moment invariant [6] and is normalized so that
it has the minimum value of 1 for a perfect sphere and higher values as features
become less compact. For the computation of this attribute and for the lengths
of the axes we follow the computations as described by Westenberg et al. in [27].
They also describe the following two useful ratios:

elongation: E(C) = |d1(C)
d2(C)

| (4)

and
flatness: F (C) = |d2(C)

d3(C)
|, (5)

with d1, d2, and d3 being the lengths of the major, mid, and minor axis
respectively.

As the cracks appear to have sheet-like shape we considered using the flatness
ratio as attribute. A closer inspection of the cracks present in the volume made
clear that these cracks vary in size and shape between sheet-like and thread-like.
If instead the ratio between d1 and d3 would be used as attribute, it would have
higher values for features that have large d1 and d2 and a small d3 (sheet-like)
or that have large d1 but small d2 and d3 (thread-like). This would also detect
features with a mid-range value for d2. Let us refer to this ratio as the crack
attribute.

The third attribute we use is the length of the major axis d1, which, un-
like the non-compactness and crack attributes, is an increasing attribute. The
crack attribute is the most significant of the three used to segment cracks. Non-
compactness is very effective in detecting elongated structures even when they
are curved and in removing all compact features. Defining a minimum length
for the major axis excludes those that are too short to be considered a crack,
regardless whether they are elongated or compact features.

4 Existing Methods

Existing methods were evaluated besides the proposed method. The easiest and
most straight-forward approach to segment the cracks would be to use just simple
thresholding such that the pixels with gray levels corresponding to cracks become
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foreground pixels while all other pixels become background pixels. Unfortunately,
as can be seen in Fig. 1 the gray levels representing cracks are also dominant
elsewhere in the volume.

A sophisticated method for finding linear features (such as cracks) in 2-D
images was proposed by Sun and Vallotton [21]. It was originally developed to
accurately trace neurite outgrowth. Although it works only for the 2-D case we
could use it by segmenting the linear features (in our case cracks) in each of the
2-D slices separately and then combining the results into a 3-D volume afterward.
As it can be assumed that a crack is present in a number of consecutive slices with
similar size, shape, and position, we could turn this method into a “pseudo 3-D”
approach where after the individual slices are segmented, only those segmented
features are considered cracks that are present in multiple consecutive slices and
with similar size, shape, and position. Given the output images Yi created by
Sun and Vallotton’s method, we tried this “pseudo 3-D”-approach by computing
the following steps for each output slice Yi (for 0 ≤ i ≤ 499):

1. Create a binary mask slice Mi by dilating the corresponding slice Yi with a
15x15 rectangular S.E.

2. Compute Ri = minj=i+5
j=i−5 Mi.

3. Compute Zi = Yi AND Ri.

The resulting slices Zi will only contain those features that exists in multiple
consecutive slices in Yi. The dilation with a rectangular S.E. is used to allow slight
changes to the size and/or position of cracks between consecutive slices. This
approach was very good at locating all the cracks as even the faintest cracks were
detected. However, Sun and Vallotton’s method cannot deal adequately with
the large range of widths of the cracks that can be simultaneously present in a
single slice. Furthermore, it introduced some curly artefacts as it tried to connect
pieces of cracks obstructed by noise or some small feature. Our conclusion here
is that robust and high quality crack segmentation results for Shale rock are
only possible when true 3-D approaches are used as pieces of cracks often appear
disconnected in a single 2-D slice but are connected in the 3-D case. Furthermore,
note that cracks do not always have to be aligned perpendicular to the orientation
of the slices and that a top or bottom of a crack might appear anything but
elongated.

5 Experiments

The segmentation performance of our method was evaluated using an 8-bit gray-
scale 400x500x500 volume that was constructed from 500 2-D slices. The cracks
were segmented by using the Max-tree with subtractive rule on the 6-connected
volume. The results obtained by using the following parameters can be seen
for slice 439 in Fig. 1: non-compactness ≥ 2.0, d1 ≥ 40, and |d1/d3| ≥ 14.
Preprocessing the volume with a Gaussian blur with σx = 0.5, σy = 0.5, and
σz = 1.0 resulted in a bit smoother, visually more appealing segmentation result
with a minor overall improvement in the segmentation accuracy. The latter can
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slice from input volume segmentation segmentation
without preprocessing with Gaussian blur

Fig. 1. Effect of preprocessing input volume with a Gaussian blur before applying crack
segmentation method

slice 425 slice 430 slice 435 slice 440

Fig. 2. Four 2-D slices from input volume (top row) and the corresponding slices from
the output volume with the segmentation results (bottom row)

be explained by realizing that a very mild blur does suppress noise which affects
the segmentation process as this noise can cause small gaps in cracks or cause
non-related small features appear to be connected to a crack. Smoothing should
however be limited to low amounts to ensure the characteristics of the cracks
are not changed. Because of these advantages this mild Gaussian blur was used
for preprocessing in the remainder of this paper.
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Fig. 3. Slice 440 from input volume (top) and the segmented cracks (bottom)
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The filtered results were binarized by applying a threshold Th(g) with h = 4
on the filtered output image g. This threshold value was chosen to remove noise
and random features that are (almost) invisible and should thus be rejected.

Fig. 2 shows four slices of the input volume that are in close proximity of
each other and the corresponding slices of the segmented result. Besides the
accuracy of the segmentation results these slices also illustrate how features seen
in a single slice as small as a dot can actually be part of a large crack and thus
require the 3-D approach used here for crack segmentation. A section of the last
of these four slices with the corresponding result image is shown enlarged in Fig.
3. Finally, the volume rendered segmentation results of the whole volume can be
seen in Fig. 4.

Although the experimental validation would certainly benefit if we would have
had access to more samples of Shale rock, the consistency of the segmentation
results of our method throughout the whole volume gives some indication of
the robustness and quality of the proposed method. The method was tested for
several sets of parameter values with different values for: the attribute thresh-
olds and the binarization thresholds and with and without Gaussian smooth-
ing. All sets of parameter values with value close to the ones discussed before
gave results similar to those presented in this paper. No improvement was no-
ticed if 26-connectivity was used instead of 6-connectivity. By inspecting a few
slices out of the volumes computed using each of these parameter sets, the best
few were selected and the volume-rendered visualizations of these were then

Fig. 4. Volume rendered segmentation result
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carefully inspected manually by a domain expert assessing the quality, accuracy,
and completeness of the segmented cracks.

6 Conclusions

A method for the application of crack segmentation in shale rock was presented.
Morphological attribute filters with one size and two shape attributes were used.
As we are unaware of any previously existing manually or automatically seg-
mented results a quality assessment is limited at this point to visually inspecting
the 3-D volume rendered result and individual slices of that same result. For a
quantitative assessment of the quality of the segmentation results a ground truth
would be needed. While a ground truth can be created relatively easily manually
for 2-D images, doing this for even a single 400x500x500 volume would pose a
rather challenging problem especially as voxel-level accuracy would be needed.
As this method was developed due to a lack of a suitable existing method we
are unaware of any existing method to do this automatically. We hope to obtain
and use more 3-D rock samples to improve our assessment of the quality and
robustness of the proposed method as well as the versatility of the proposed
method for segmentation of other features in rock samples.

Evaluating the segmentation results slice by slice is limiting as many small
and compact features that do not look like cracks clearly do belong to a crack
when these areas are inspected in the 3-D volume rendered output. In the volume
currently used, all cracks that we are aware of were detected by the proposed
method while no false detections were spotted in the volume rendered result:
both established by manual inspection by a domain expert. The segmented and
binarized volume look very convincing when rendered in 3-D, unfortunately the
same cannot be said when volume rendering is attempted on the input volume
(either unprocessed or after inverting it) where the cracks have gray values that
are also common in their heavily textured surroundings. This prevents an easy
visual comparison between input and result.
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Abstract. Microstructure in graphite nodules plays a fundamental role
in mechanical properties in cast iron. Traditional measures used to study
spheroid graphite are nodules density, nodularity, volume fraction and
mean size. However, sometimes these parameters do not permit a good
characterization of the microstructure since they do not allow the dis-
crimination of different regions. In fact, other measures such as size and
spatial distributions enable a better understanding of mechanical prop-
erties that can be obtained either by altering certain processing variables
or through various heat treatments. In the present paper a method to
characterize graphite nodules microstructure based on the connectivity
generated by dilations is introduced. This approach, which takes into
account size and spatial distributions of graphite, permits to relate the
microstructure of graphite nodules with the wear behavior.

Keywords: Connectivity, Spatial and size distributions, Granulometry,
Graphite nodules, Ductile cast iron, wear.

1 Introduction

It is well-known that the concept of connectivity plays an important role in image
processing, particularly, its wide application in image segmentation and filtering.
This concept inspired to Matheron and Serra to propose a new approach purely
algebraic for Boolean lattices known as connectivity classes [12].

This new notion of connectivity overcomes some limitations of the traditional
connectivity (formalized in topological or graph-theoretic frameworks), that re-
stricts the type of objects to which it can be applied. Intensive work has been
done on the study of this notion. Some recent studies dealing with this subject
have been carried out in ([1,2,5,10,11,13,14,17,19], just to mention a few. In the
present paper we are interested in the second generation of connectivity, partic-
ularly in that generated by dilations [1,2,10,12,13]. The main goal in the present
work is to show the use of the connectivity generated by dilations to characterize
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the microstructure of ductile cast irons. Nowadays, ductile cast irons have been
widely applied in the industry due to the low manufacturing cost, mechanical
properties and easy fabrication.

The microstructure of ductile cast iron (frequently referred to as nodular or
spheroid graphite iron) is characterized by the presence of spherical graphite
particles or nodules throughout the material that nucleate on small inclusions
during the solidification.

Most of published researches for ductile cast iron were devoted to study the mi-
crostructure, principally graphite nodules. Between the different measures used
to characterize the microstructure, the nodule density, nodularity, volume frac-
tion and mean nodule size, are traditional parameters in the characterization
of the microstructure of ductile cast iron [6,8]. On the other hand, there are
research works which have demonstrated that the relationship of the mechanical
properties can be estimated by the size and shape of nodules [3,7,9,16,18]. Nev-
ertheless, these works only study mean size, shape and density of nodules but
not their spatial and size distributions.

The interest of the present paper is focused on the study of a ductile cast
iron of an automobile part shown in Fig. 1. Particular attention is given to three
regions of the mechanical part; two thick and one thin wall regions. Since the thin
region cools faster than the thick regions it is expected to find some difference
between the microstructure of regions that permits us to relate it with wear
parameters.

This paper is organized as follows. One first gives a brief review of some
morphological filters and the connectivity classes notion in Section 2. In Section
3 a study of the traditional parameters to characterize graphite nodules and the
granulometry concept are used to correlate the microstructure with the wear
behavior. Finally, in Section 4 one proposes the use of connectivity generated
by dilations to understand better the relationships between spatial and size
distributions and the wear behavior.

2 Some Basic Concepts of Morphological Filtering

2.1 Basic Notions of Morphological Filtering

Basic morphological filters in MM (mathematical morphology) [4,12,15] are the
morphological opening γμB and the morphological closing ϕμB with a given
structuring element μB, where B represents the elementary structuring element
containing its origin; B̌ is its transposed set (B̌ = {−x : x ∈ B}) and μ is a scale
parameter. Thus, the morphological opening and closing are given, respectively,
by equation (1):

γμB(f) = δμB̌(εμB(f)) ϕμB(f) = εμB̌(δμB(f)) (1)

where the morphological erosion εμB and dilation δμB are expressed by εμB(f)(x)
=
∧
{f(y) : y ∈ μB̌x} and δμB(f)(x) =

∨
{f(y) : y ∈ μB̌x}.

∧
is the inf operator

and
∨

is the sup operator.
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Fig. 1. (a) Automobile industry part, (b), (c) and (d) Images corresponding to regions
A, L, and S

2.2 Connectivity Classes

One of the most interesting concepts proposed in MM is the notion of connec-
tivity class. Let E be a non-empty space and P(E) the set of all subsets of E. In
MM a connection, or connected class [12] on E is a set family C ⊆ P(E) that
satisfies the three following axioms

i/ ∅ ∈ C, ii/ x ∈ E ⇒ {x} ∈ C,

iii/ {Xi, i ∈ I} ⊆ C and
⋂

Xi �= ∅ ⇒
⋃

Xi ∈ C

An equivalent definition to the connected class is the point connected opening
expressed by the following theorem:

Theorem 1. (Point connected opening) The datum of a connected class C on
P(E) is equivalent to the family {γx, x ∈ E} [12] of the so called ”point connected
opening” such that

iv/ for all x ∈ E, we have γx(x) = {x},
v/ for all A ⊆ E, x, y in E, γx(A) and γy(A) are equal or disjoint,
vi/ for all A ⊆ E and for all x ∈ E, we have x /∈ A⇒ γx(A) = ∅

An interesting connectivity can be built by means of dilatation [10,12,13]. Let C
be a connectivity class in P(E) with connectivity opening γx. Assume that δ is
an extensive dilation on P(E), then,

Cδ = {X ∈ P(E) : δ(X) ∈ C} (2)

is a connectivity class with C ⊆ Cδ , and the corresponding connectivity openings
are given by
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γδ
x(X) = γx(δ(X))

⋂
X (3)

The example in Fig.2 illustrates this connectivity. At dilation 11 in Fig. 2(b)
the output set is composed of two connected components of Cδ11 , whereas at dila-
tion 32 in Fig. 2(c) the output set is composed of only one connected component
of Cδ32 . Figures 2(d) and (e) illustrate the opening γδ

x(X) = γx(δ(X))
⋂

X .

     

(a)                     (b)                    (c)                     (d)                   (e) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. (a) Original image X with 4 connected components of C, (b), (c) Output
images after dilation sizes 11 and 32,respectively, (d) Connected component γx(δ(X)),
(e) Connected component of Cδ11

3 Graphite Nodules Characterization by Size Criterion

In the present section the wear behavior in a ductile cast iron of an automobile
part is investigated. The study is focused on the use of traditional parameters
and size distribution. It is known that the graphite, inside the metal matrix of
the cast iron, behaves as a lubricant, then the wear resistance increases when
the percentage of carbon also increases. However, this is not the only parameter
involved in wear resistance as we will see below. To carry out the study, first,
some wear tests were made on the mechanical part using a pin-on-disk tribometer
CSM Instruments. Next, a set of representative images of the three regions,
referred to as A, L, S, were acquired (20 samples were analyzed by each region).
Two regions with the same thickness (A and S ) and a thinner region (L) were
selected as illustrated in Fig.1(a). Table 1 shows the wear results of the three
regions to which the microstructure parameters of the samples will be related.
Since region S had a minimum wear it was used as a reference to determine the
wear percentage of the other regions.

3.1 Traditional Parameters

Traditional measures used to study spheroid graphite are nodularity, nodules
density, volume fraction and mean size. Currently, the computation of the nodu-
larity is based on how approximated the nodules shape to a circle are. For
instance, a region of graphite is less nodular when the shape of the graphite
nodules does not tend to be a circle. Even though there exist several mea-
sures to compute circularity, the most used one is the shape factor given by
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Sf = 4Π · Area/Perimeter2. However, better results are obtained when using
the conditional bisector as proposed in [8]. Once the circularity of nodules is
determined, the nodularity is computed by Nod = (CountCN/CountN)× 100,
where CountN and CountCN are all the nodules and the spheroidal nodules,
respectively. On the other hand, the density of nodules, which is defined as the
number of nodules per unit area, is frequently used as an estimator of the nod-
ule spatial distribution. However, this is a poor estimator since it is clear that
spatial distribution is a more complex parameter as we will see below. Finally,
the volume fraction is given by V f = NA/TA, where NA is the nodule area
and TA the total area (nodule area and matrix area). Table 1 shows the values
of different parameters. Particularly, observe the percentages of nodularity for
the three regions. On the one hand, it is observed that the nodularity of the
three regions is good (greater than %80). On the other hand, by taking into
account the nodularity values of the regions, the smallest value belongs to the
region S and the greatest one to the region L. Contrarily, the region L has a
greater wear than region S. Thus, even though nodularity is frequently used in
characterizing graphite nodules microstructure, in the present study the shape of
nodules does not play a main role. Between the other parameters, it is observed
in Table 1 that the volume fraction of the three regions is very similar, showing
that the amount of graphite is the same for the three regions. Thus, the percent-
age of graphite, inside the metal matrix, does not also play a main role in the
wear resistance. Similarly, the mean size of nodules also has practically the same
value for the three regions, then the effect in the wear behavior is neglected. The
unique parameter which shows a correlation between wear and microstructure
is the nodules density. Regions A and S with the same thickness and less wear,
contain more nodules than the region L. Nevertheless, it is interesting to note
that even if region L contains less nodules per unit area than regions A and S,
the volume fraction and the mean size is practically the same. Then, the gran-
ulometry of region L must have a substantial difference with those of regions A
and S.

Table 1.

Region Nod/Area %Nodularity %Volume fraction Mean size (μm) Wear(%)

S 279 86.11 13.82 14.94 Reference
A 275 92.11 14.85 15.11 12
L 200 93.56 14.78 14.34 33.5

3.2 Size Distribution of Graphite Nodules

Let us study in this section the size distribution of nodules using the important
concept of granulometry [12].

Definition 1. A family of openings {γμi}, where μi ∈ {1, 2, . . . n}, is a gran-
ulometry if for all μi, μj ∈ {1, 2, . . . n} and for all function f , μi ≤ μj ⇒
γμi(f) ≥ γμj (f)
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Fig. 3. Granulometries corresponding to regions A, L, and S

Since there exists overlapping between some graphite nodules, a granulometry
by morphological openings using disks as structuring elements was computed.
Figure 3 shows the granulometric curves of the three regions. One observes that
the granulometries of regions A and S are similar. Particularly, regions A and S
contain larger nodules than region L, whereas region L has a greater percentage
of intermediate size nodules. According to these results and those of the volume
fractions of table 1 it can be assumed that it is not the amount of graphite
nodules which plays the main role as lubricant but the size of nodules.

4 Size and Spatial Distributions of Graphite Nodules
Based on Connectivity by Dilations

4.1 Multiscale Connectivity

Recently, Braga-Neto and Goutsias [1,2] have investigated the connectivity no-
tion in a multiscale framework. Between the different proposals, the authors
introduced the connectivity measure as an approach to quantify the degree of
connectivity of an object and showed that this approach is equivalent to con-
nectivity pyramids. A particular and interesting case of connectivity pyramid
or connectivity measure is that generated by dilates. Let E = Z2 and a lattice∑

= {−R ,−(R−1), ..., 0} where R a positive integer. Consider a structuring el-
ement σB ∈ C and containing the origin. Then, equation 4 define a connectivity
pyramid.

C(σ) = {X ∈ P(E) : δ|σ|B(X) ∈ C} (4)

with σ = −R,−(R− 1), ..., 0.
Thus, using these concepts, the set X in Fig. 2(a) is disconnected for σ < 32

and connected for σ ≥ 32. However, if the set X is classified in C(32), nothing can
be said about the connectivity for the set at dilation 11 (connected components
in C(11). This is a main drawback since, for example, even though there exists
a great difference between the sets in Figs. 4 (a) and (b), both are classified as
connected components in the class C(21). Particularly, considering the spatial
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Fig. 4. Connected components. (a), (b) Both sets are connected components of Cδ21 ,
(c), (d), (e) Mean clusters of Cδ5 , Cδ10 , Cδ15 .

distribution of particles, it is observed that the set in Fig. 4(a) is composed of
an array of equidistance particles, while the one in Fig. 4(b) contains a set of
different distances between particles. Then, the idea to characterize connectivity
consists in classifying a set according to the evolution of connected components
when a sequence of dilations is applied. For instance, in Fig. 2, before the set X
becomes a connected component of the class C(32), it has two connected compo-
nent of the class C(11). A good representant of these connected components is
any of them since both have the same area. In our practical problem, one takes
at each dilation σ the mean connected component at this connectivity C(σ). The
images in Figs. 4(c)-(e) show some class representant at dilations 5, 10 and 15
(clusters with area value closest to the mean value).

4.2 Axisymmetric Unit Cells Model

Nodules spatial distribution in spheroid cast irons plays a fundamental role not
only for studying the stress distribution but also to understand other mechanical
properties. Then, the main goal in this section is focused on the use of a well-
known model, frequently applied to study mechanical properties in ductile cast
iron, in order to understand the wear behavior. In fact, the nodular cast iron
material system well suits to the scheme of repetitive unit cells (see Fig. 5(a)),
because graphite nodules embedded in the ferrous matrix are quite uniformly
distributed. Thus, the nodular cast iron microstructure is now idealized as a
periodic array of alternating, equally spaced, graphite nodules. This kind of
approach is called axisymmetric unit cells model. In order to characterize the
spatial distribution of nodules, this model is used as a reference (an ideal spatial
distribution model) to which other spatial distributions are compared. To do
that, it is assumed that more dispersed is the distribution of distances the worse
the spatial distribution is. The images in Figs. 5(b) and (c) were obtained from
the axisymmetric unit cells model in Fig. 5(a) by introducing between the objects
two and four distances, respectively. Therefore, these images (Figs. 5(b) and (c))
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Fig. 5. (a) Axisymmetric unit cells model, (b), (c)Images with three and five distances
between the objects, respectively, (d) Curves of mean clusters of images (a), (b),(c)

have three and five distances between the objects. Now, in order to compare both
structures of Figs. 5(b) and (c) with the axisymmetric unit cells model in Fig.
5(a), the mean cluster area is computed. The following procedure is made. A
sequence of dilations from size 0 to size M is carried out, and at each dilation,
the area of the mean cluster is computed. At this point is important to note
that for a dilation size smaller than 15 the mean cluster in Figs. 5(a)-(c) is the
same and corresponds to the area of the elementary particle (disk), whereas for
a dilation size greater than 41 the mean cluster value is also the same, but in
this case, it corresponds to the complete area of the objects. In Fig. 5(d) the
curves of the mean cluster values for the three images are illustrated. Observe
that the curve in gray color, corresponding to the image in Fig. 5(b), is closer to
the curve in black color of the axisymmetric unit cells model distribution image
in Fig. 5(a).

This model was applied to the region A, L and S to determine the spatial
distribution behavior of graphite nodules. Curves of mean clusters of regions A
and S, in Fig. 6, are similar and different from the curve of the region L. However,
all curves have some similarities, particularly, they are comparable inside two
intervals; between 0 and 14 μm , and after 33.6 μm. This means, on the one hand,
that the smallest nodules distance of three regions is more or less the same (14
μm) and the mean cluster size corresponds approximately to the nodule mean
size. On the other hand, for the largest distance (33.6 μm), the mean cluster of
three regions is also very similar and the mean cluster size, in this case, is related
to the volume fraction. As it was already shown in Section 3, these values, nodule
mean size and volume fraction, are practically the same for the three regions.
Therefore, three regions can be established; a) one zone before distances smaller
than 14 μm where the mean cluster keeps up a correspondence with the mean
nodule value, b) a region between 14 and 33.6 μm where the mean cluster value
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Fig. 6. (a), (b), (c) and (d) Clusters at dilation 0, 5, 8 and 11, (e) and (f) Curves of
mean clusters of regions A, L and S

increases approximately in a linear way, and c) a region after 33.6 μm where the
stability is reached. The behavior of three regions gives us some information of
solidification rate. First, there is an homogeneity between thin and thick regions
of the mechanical part since all samples have, more or less, the same minimum
distance between nodules. On the other hand, the linear behavior in the second
zone of the curves also describes an homogeneity behavior since the mean cluster
size increases uniformly. The linear approximations in this zone for the regions
A and S are 10.3e3 · |σ|−160.7e3 and 10.5e3 · |σ|−161.3e3, respectively, whereas
that of the region L is 8.3e3 · |σ| − 137.4e3. Region A and S have greater slopes
than L as it is the case in the wear behavior (see Table 1) where the region A
and S present a greater resistance to the wear than region L. Thus, the nodules
cluster, which integrates size and nodules distance, takes the main role in the
wear behavior. In fact, since curves of regions A and S have greater slopes than
the curve of region L, then these regions contain greater clusters than region L.

5 Conclusion

In the present work, spatial and size distributions have been studied in order to
characterize the microstructure of graphite. We have shown that the nodularity,
volume fraction and mean size do no play a main role in the wear behavior. Only
the nodule density correlates with the wear percentage, but it does not strictly
explains the lubricating effect of nodules. Contrarily, spatial and size distribu-
tions gave us interesting information about the tribological behavior of nodules
in a ductile cast iron. Whereas a granulometry study has shown that the size
of nodules is an important parameter to understand the lubricanting behavior,
a study of the spatial homogeneity of nodules better explains this behavior. In-
deed, clusters generated by dilations, that takes into account both concepts, size
and spatial distributions, seem to be the main geometrical structures to better
understand the wear resistance.
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Sébastien Lefèvre1 and Vincent Claveau2

1 VALORIA Laboratory, University of South Brittany. Address: VALORIA Lab,
Campus de Tohannic, BP 573, 56017 Vannes Cedex, France

sebastien.lefevre@univ-ubs.fr
2 IRISA-CNRS. Address: IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

vincent.claveau@irisa.fr

Abstract. Mathematical Morphology (MM) offers a generic theoretical
framework for data processing and analysis. Nevertheless, it remains es-
sentially used in the context of image analysis and processing, and the
attempts to use MM on other kinds of data are still quite rare. We believe
MM can provide relevant solutions for data analysis and processing in
a far broader range of application fields. To illustrate, we focus here on
textual data and we show how morphological operators (here the mor-
phological segmentation using watershed transform) may be applied on
these data. We thus provide an original MM-based solution to the the-
matic segmentation problem, which is a typical problem in the fields of
natural language processing and information retrieval (IR).

More precisely, we consider here TV broadcasts through their tran-
scription obtained by automatic speech recognition. To perform topic
segmentation, we compute the similarity between successive segments
using a technique called vectorization which has recently been introduced
in the IR field. We then apply a gradient operator to build a topographic
surface to be segmented using the watershed transform. This new topic
segmentation technique is evaluated on two corpora of TV broadcasts on
which it outperforms other existing approaches. Despite using very com-
mon morphological operators (i.e., the standard Watershed Transform),
we thus show the potential interest of MM to be applied on non-image
data.

1 Introduction

Mathematical Morphology (MM) has led to many successes in image analysis
and processing. But its theoretical framework is much more general, and one
can wonder why MM stays almost unknown in other fields, while it is expected
to provide robust and efficient data analysis tools. In this paper, we address
this issue and show that MM may provide very relevant solutions to problems
encountered with non-image data. More precisely, we focus on topic segmentation
which is a common problem of (Multimedia) Information Retrieval (IR) and
Natural Language Processing.
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Topic segmentation is of high interest in Multimedia IR. Indeed, it is needed
to perform automatic structuring of TV streams, a keystone for every processing
of such streams, which is still done manually in national archive agencies like
the French INA. A way to obtain this structuration is to first transcribe the
audio tracks of the TV streams into textual data, and then perform the topic
segmentation from textual data to split the streams into semantic units (e.g.,
reports).

In this paper we address the problem of topic segmentation of textual data in
this applicative framework using mathematical morphology. To do so, we show
that topic segmentation and image segmentation have common characteristics
(Sec. 2). From this observation we build a topic segmentation method based on
the watershed transform. Moreover, we suggest to build the topographic sur-
face from which the watershed lines are identified using a gradient computation
method adapted to the problem under consideration, and thus consider here
a vectorization-based gradient approach inspired from recent advances in IR
(Sec. 3). Experiments performed on two TV broadcast corpora are presented
and discussed (Sec. 4). Finally, Sec. 5 concludes this work and provides future
research directions.

2 From Image to Text: Links between Morphological and
Topic Segmentation

2.1 Morphological Segmentation

Mathematical morphology is both a rich theoretical framework and a complete
toolbox of efficient and robust tools for solving image analysis and processing
problems. Among these problems, image segmentation aims to split the input
image into a set of uniform regions given a predefined uniformity criterion (in-
tensity or colour, texture, etc.) and is a preprocessing step required by many
computer vision tasks. The most famous morphological method for image seg-
mentation is certainly the watershed transform, even if connective segmentation
has gathered great interest recently.

We recall very briefly the principle of watershed-based segmentation [10]. The
image I to be segmented is first represented as a topographic surface. Watershed
lines identified on this surface are then associated to region frontiers resulting
from the segmentation process. This relatively simple principle led to various
paradigms, and we consider here the flooding approach. It simulates the pro-
gressive flooding of the surface starting from its local minima, and builds some
dams to avoid merging water from two different catchment basins. At the end of
the process, dams correspond to the watershed lines or, in other words, to the
region frontiers.

Most often, this approach is not directly applied on the image I to be seg-
mented, since it would then seek for frontiers of high intensity (watershed lines)
separating areas of lower intensity (catchment basins). Before applying the seg-
mentation, an image transform is rather performed as a preprocessing in order
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to highlight values of edge pixels and to lower pixel values in homogeneous ar-
eas. Among the transforms which may be involved, an image gradient (noted
∇I hereafter) is usually computed to enhance transition areas (which generally
correspond to object frontiers). Various gradient computation methods exist; the
most famous ones rely on a convolution with a weighted local mask to measure
the dissimilarity within the neighbourhood of each pixel. The choice of the trans-
form to be applied before the segmentation is of high importance, since it will
directly influence the segmentation result produced by the watershed method.
Indeed, gradient computation methods are often very sensitive to noise, and
they often produce many local minima. Since each local minimum is associated
to a new catchment basin, and thus to a new region in the image, watershed
segmentation most often faces the problem of oversegmentation.

In order to reduce oversegmentation, several strategies may be considered:
defining a robust gradient, including some oversegmentation reduction steps in
the process (e.g., by merging basins or regions), or setting the predefined num-
ber of regions with markers which define the initial catchment basins [7]. These
strategies may be supervised or not, respectively leading to user/knowledge-
based and automatic methods. A supervised approach for morphological seg-
mentation has been recently introduced in [3]. It relies on a fuzzy classifica-
tion of the input multipsectral image, and suggests among other contributions
to compute the gradient on class membership values associated to each pixel
rather than original multispectral pixel values in the input image. Regions built
by this method are thus composed of neighbouring pixels which share the same
similarities to user-predefined classes, but not necessarily the same values in
the input image. This method has been shown to reduce the oversegmentation
phenomenon by considering a more robust data representation space. Later in
this paper, we will inspire from this principle to transpose the morphological
segmentation to the problem of topic segmentation.

2.2 From Image to Text

The analogy between image and text segmentation can be drawn very simply.
The pixel is the base element in the image and is described by its greylevel or
color/multispectral values. Its equivalent in texts is the sentence (or sometimes
the paragraph) which is described by the words it contains.

In our framework of video segmentation, our texts are obtained from auto-
matic transcription. These transcriptions are not composed of sentences but of
utterances (sequence of words spoken between two breaths or silences) identified
by a timestamp. These utterances are the minimal units of the text (i.e., they
are equivalent to image pixels) and topic breaks will be sought between them.

Besides, our texts are flows of utterances. They are then represented as 1-
D signal, while images are most often 2- or 3- dimensional. However, nothing
prevents the watershed technique to be applied on a single dimension. Thus
our approach relies on a gradient computed on the sequence of utterances, and
topic breaks are identified using the watershed transform. Gradient computation,
which is a key step of the segmentation process, is detailled in Sec. 3. The
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watershed technique used here is the standard one described previously. We
have only included a gradient smoothing step to remove irrelevant local minima.

3 Gradient Computation Using Vectorization

3.1 Vectorization Principles

Vectorization is an embedding technique which aims to project any similarity
computation between two documents (or one document and one request in the
context of IR) in a vectorial space. It has been introduced and experimented in
a standard IR scenario [2] where it has shown to provide both a low complexity
and accurate results. We recall here its main principles.

Its principle is relatively simple. For each document of the considered collec-
tion, it consists in computing with an initial similarity measure (eg. standard
similarity measure used in IR), whatever it is, some proximity scores with m
pivot-documents. These m scores are then gathered into a m-dimensional vector
representing the document (cf. Fig. 1).

Comparing two documents (or a document and a request) can then be per-
formed in a very standard way in this vectorial space (e.g., using a L2 distance).
Many algorithms are available to compute or approximate very efficiently such
distances.

More formally, we note Vect(D,P , Sim) the vector representing the docu-
ment D built from the initial similarity measure Sim on pivot-documents P .
For instance, Vect(D, [P1, P2, P3], TF.IDF/cosine) is a 3-dimensional vector; its
first component is the similarity score between the document D and the pivot-
document P1 returned by a system using TF.IDF representation associated to
the cosine distance measure (which corresponds to a very standard way to com-
pute similarities in the IR field; TF and IDF respectively stand for Term Fre-
quency and Inverse Document Frequency [8, for details]), and so on for the next
components.

Fig. 1. Vector design from pivot-documents
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3.2 Properties

It is important to notice that vectorization results in a change of the representa-
tion space, contrary to existing works consisting rather of a dimension reduction
or a distance approximation (e.g., [1]). This space transform offers several nice
properties which will be discussed here.

The first interest of this embedding is to reduce complexity when the ini-
tial similarity computation may be computationally expensive (e.g., some graph
comparison computations used in complex IR systems). In a IR context, vectors
associated with each document may be built offline, and when a request has to
be processed, we only need to compute its similarity with the m pivot-documents
rather than to do it with all documents in the collection. This property is nev-
ertheless not useful in the context of a segmentation task.

The second nice property comes from the fact that two documents will be
considered as similar if they are similar to the same pivot-documents. This indi-
rect comparison, or second-order affinity, let us compare two textual documents
which do not share any common word. This property will be helpful in our seg-
mentation task. Indeed, it will solve the problem brought by the lack of repetition
between utterances. This problem is particularly noticeable when the segments
to be compared are of short duration (i.e., they will contain less words, and thus
will share only a few words in common in the best case, and no common words
in the worst case).

3.3 Usage

A gradient is computed between each utterance. In other words, we compute the
similarity using the vectorization principle between previous and next utterances.
Let us note that we do not compare only the previous to the next utterance,
but we also consider the n previous ones vs. the n next ones (similarly to text-
tiling, a common approach for topic segmentation).

In experiments described in the following section, the initial similarity measure
used in the vectorization process is a L2 distance associated with a weighting
of utterances by

√
TF . It means that we first represent each breath group by

a sparse vector in which each dimension represent a word; the value for this
dimension is the square root of the number of occurrences of the word in the
breath group. The same is done for the pivot document. The distance between
the breath group vector and the pivot vector is computed with a L2 distance;
the resulting value forms one of the dimension of the new vector.

Similarly to some image gradient computation methods (e.g., Sobel), we give
more importance to close utterances and less importance to utterances which
are far to the candidate edge. This is ensured through a simple convolution with
a kernel (e.g., Gaussian kernel). Let us notice that the way the convolution is
applied depends on the way the documents are represented in the initial model
of similarity computation. With the vectorial representation used in our exper-
iments, this convolution is simply taken into account: when computing

√
TF ,

the occurrence of a word counts for one in the breath group which is the closest
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from the candidate edge, but counts for less when considering an occurrence
from a breath group further of the candidate edge. In practice, a linear penalty
is applied. From now we will write Cprev(i) (respectively Cnext(i)) the result of
the convolution operator applied on utterance i and those which are preceding
(respectively following) it.

Formally, the gradient is thus defined by:

∇(i) = L2(Vect(Cprev(i− 1),P ,
√

TF/L2), Vect(Cnext(i),P ,
√

TF/L2))

Pivot-documents we are using are simply sequences of utterances built from
random splits of the considered broadcast. While each utterance is associated to
a vectorial representation, we can observe than the gradient in each utterance
results in a scalar value. Thus there is no need to use multivariate morphology
and to adapt the watershed algorithm.

Fig. 2 shows an example of a vectorization-based gradient computed on a
sample of one of our corpora (see below). We can observe that the signal con-
tains local minima and thus needs a smoothing step. As indicated previously, we
involve a smoothing step to remove such minima and help the watershed seg-
mentation process. Resulting segmentation is provided in Fig. 3. The considered
sample contains 4 segments (ground truth is shown in green full line; detected
edges by our system using watershed transform are given in dotted lines). Utter-
ances are represented by their starting time. For a given time index, the higher
the smoothed gradient is, the more important the dissimilarity between previous
and next groups is. In other words, significant local maxima of gradient values
indicate a topic break. Nevertheless, local maxima are not sufficient to identify
topic breaks. Indeed, we cannot make any assumption regarding the segment
length. Extraction of local maxima by signal analysis with a sliding window is
then inappropriate. Moreover, such an approach would have lack of robustness.

4 Experiments

4.1 Experimental Data

Our experiments are performed on two French TV broadcast corpora for which
the topic segmentation is of high interest. The first corpus is a set of 60 TV
news of the France 2 channel (called News further). Each of these sample has
been broadcasted in the beginning of 2007 and is 40 minutes long. The second
corpus is made from TV reports: 12 samples of Envoyé spécial (2008, 2 hours
long each), and 16 Sept à huit (2008, 1 hour long each). This corpus is called
Reports in the following experiments.

These corpora [4] have different properties in terms of number and duration of
topic segments. Thus, it allows us to evaluate robustness of topic segmentation
methods. The News corpus contains 1180 segments while the Reports corpus
only contains 140 segments.

The reference segmentation (i.e., ground truth) has been independently built
by a user who was not involved in the design of a topic segmentation system.
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Fig. 2. Effect of the filtering step: gradient vs. starting time of utterances
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Fig. 3. Illustration of segmentation process: filtered gradient vs. starting time of
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Since there is no consensus on the topic definition in the IR or NLP fields, it has
been considered here that a topic change occurs for each report change. Despite
this assumption being not always valid (in particular in the News corpus in which
several successive reports may be considered as related to the same topic), it is
relevant since it corresponds to an actual and well-defined applicative need.

4.2 Data Preprocessing

Audio tracks of these two corpora have been automatically transcribed using the
speech recognition system IRENE [6]. This system has been initially designed for
transcribing radio broadcasts for which it produces a Word Error Rate of about
20%. In our context of transcribing TV broadcasts, it is very probably higher
due to the more noisy environment we have to face. Transcriptions are finally
part-of-speech tagged using TreeTagger1, and only names, verbs, and adjectives
are kept and stemmed.

4.3 Results

Recall, precision, and F1-measure are used as quality measures to evaluate our
proposed method. We consider that a segment edge is correct as soon as it is
located in the close neighbourhood (less than 10 seconds) of a reference frontier.
In order to show the relevance of our contribution, we compare the results ob-
tained by our MM-based method to those (when available) produced by several
existing systems on the same corpora: the system from Utiyama and Isahara
[9] relying on a Hidden Markov Model (we use the implementation from [4]),
and the best results obtained from the system of [4]. We also provide results
obtained by a self-implementation of text-tiling [5] in which we use the same
data preprocessing and the same watershed-based segmentation framework. The
only difference is the way the gradient is computed (i.e., without vectorization),
which can be here written:

∇(i) = cosine(TF-IDF(Cprev(i− 1)), TF-IDF(Cnext(i)))

The text-tiling approach aims to find topic breaks where lexical coherence
between previous and next text blocks is linked to a significant local minimum.
That is why we have derived a watershed-based implementation by considering
the inverse of the lexical coherence measure as the topographic surface to be
used in the watershed process.

Table 1 shows results obtained on both corpora. In both cases, we can observe
that our system provides better performances than existing systems. In order to
better understand the interest of using MM for topic segmentation, we compare
more deeply the approach introduced in this paper and our own implementation
of text-tiling. Both are based on the Watershed transform but they differ
on the gradient computation method. We rely here on a vectorization technique

1 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
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Table 1. Performances of topic segmentation systems on News and Reports corpora

News corpus Reports corpus
method Precision Recall F1-Measure Precision Recall F1-Measure

Utiyama [9] - - 59.44 - - 51.09
Guinaudeau [4] - - 61.41 - - 62.92
text-tiling[5] 44.17 41.97 43.04 59.32 60.93 60.12

proposed 67.47 61.6 64.4 77.38 69.65 73.31

rather than a cosine measure combined with a TF-IDF representation (a common
approach in IR). The superiority of our approach is particularly observable on
the News corpus, since this corpus contain very short segments, thus making
the direct computation of the gradient as done in text-tiling unreliable. In
other words, the straight application of morphological operators may be of lower
interest. It is much more relevant to adapt the morphological process to the
data under consideration, e.g. here to use an appropriate gradient computation
method.

5 Conclusion

In this paper, we aim to show that Mathematical Morphology can be successfully
applied on non-image data. To do so, we consider the topic segmentation problem
faced in the fields of information retrieval and natural language processing. We
show the parallel which can be driven between topic and image segmentation.
From this parallel we were able to introduce a new topic segmentation method
based on morphological segmentation using the watershed transform. The results
are appealing and strongly suggest that Mathematical Morphology would benefit
to many fields and not only to image analysis and processing.

Moreover, we have included in this approach a vectorization-based gradient
computation method. The experiments we have made lead to the expected con-
clusion that Mathematical Morphology should not be straightly applied to tex-
tual data. Indeed, it is more relevant to adapt some steps of the morphological
data processing scheme to the data under consideration. More precisely, the vec-
torization technique used here is of great help to face the lack of repetitions
between utterances, which is an important problem when topic segments are
quite short. Applying such a gradient on the input signal, using similarity to
given samples (here the pivot-documents), is not new in the field of watershed-
based image segmentation. In a previous work [3], we have already suggested to
build the topographic surface through a gradient computation made on probabil-
ity maps obtained from a supervised image classification. The regions produced
by this method are then composed of neighbouring pixels sharing the same sim-
ilarities to predefined classes rather than similarities in the initial multispectral
image space. A full adaptation of this strategy to textual data will result in
defining highly reliable pivot-documents (which would be more discriminative
than the random ones used in this article by the vectorization technique).
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As we briefly recalled in Sec. 2, there exist other techniques leading to a better
segmentation result. In particular, future work will consider the intelligent mor-
phological segmentation paradigm. In complement to the definition of a relevant
image transform to build the topographic surface, the markers could also be
of great interest. Besides, marker-based watershed segmentation of textual data
may be a way to involve the user in the process if required. Moreover, we also
consider hierarchical morphological segmentation schemes to build a multiscale
topic segmentation result. This could be of great interest for the Multimedia IR
community.
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