


Lecture Notes in Computer Science 6731
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Jorma Laaksonen Timo Honkela (Eds.)

Advances in
Self-Organizing Maps

8th International Workshop, WSOM 2011
Espoo, Finland, June 13-15, 2011
Proceedings

13



Volume Editors

Jorma Laaksonen
Aalto University School of Science
Department of Information and Computer Science
00076 Aalto, Finland
E-mail: jorma.laaksonen@aalto.fi

Timo Honkela
Aalto University School of Science
Department of Information and Computer Science
00076 Aalto, Finland
E-mail: timo.honkela@aalto.fi

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-21565-0 e-ISBN 978-3-642-21566-7
DOI 10.1007/978-3-642-21566-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011928559

CR Subject Classification (1998): F.1, I.2, D.2, J.3, H.2.8, I.4, I.5

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

The 8th Workshop on Self-Organizing Maps, WSOM 2011, was the eighth event
in a series of biennial international conferences that started with WSOM 1997
at the Helsinki University of Technology.

WSOM 2011 brought together researchers and practitioners in the field of
self-organizing systems, with a particular emphasis on the self-organizing map
(SOM). When academician Teuvo Kohonen was conducting his pioneering work
with a small number of colleagues in the 1970s and 1980s, the prospects of
neural network research were not widely acknowledged. The main focus was
on artificial intelligence research based on symbol manipulation methodologies.
As notable exceptions, Teuvo Kohonen as well as Stephen Grossberg, Shun-
ichi Amari and Christoph von der Malsburg continued their efforts regardless
of criticism that was often based on short-sighted interpretations of the book
Perceptrons published in 1969 by Marvin Minsky and Seymour Papert.

For a long time, and regrettably also often these days, the term neural net-
works was considered to be synonymous with multilayer perceptrons. However,
multilayer perceptrons have given ground to more advanced forms of supervised
learning including support vector machines. Actually, among the three classic
neural network paradigms – multilayer perceptrons, Hopfield nets and SOMs –
only the last one has remained in a strong position. The persistent interest in
the SOM algorithm can perhaps be explained by its strength as an unsupervised
learning algorithm and by its virtues in analyzing and visualizing complex data
sets.

Presently, research on artificial neural networks is a well-established scien-
tific discipline and an area of technological development with a large number of
applications. Artificial neural network research can be divided into three main
strands: (1) explicit modeling of biological neural circuits and systems, (2) neu-
rally inspired computing, and (3) statistical machine learning research that has
mostly abandoned its biologically inspired roots. This classification cannot be
considered clear-cut, but rather a continuum. In his banquet keynote talk at
the IJCNN 2007 conference, Michael Jordan emphasized the importance of the
neural network research for its role in facilitating the path to current statis-
tical machine learning research. Obviously, the biological inspiration helped in
abandoning some restricting assumptions that were commonly held in classic
statistical computing.

There are hundreds of different kinds of variants of the basic SOM algo-
rithm, each typically proposing some advantage by giving up an aspect of the
original formulation, such as computational efficiency, capabilities in visualiza-
tion, implementational simplicity or biological relevance. In general, the SOM
has inspired a lot of methodological research and provided a tool for a large
number of real-world cases.



VI Preface

The WSOM 2011 event covered the results of research in theory and method-
ology development as well as selected examples of applications. When applica-
tions of the SOM are considered, it is good to keep in mind that the thousands
of uses of the SOM in different fields of science are usually reported in the spe-
cific fora of each discipline. Moreover, the commercial projects based on the
SOM are typically not reported publicly, but there are many indications that
the entrepreneurial use of the SOM and its variants in data analysis, knowledge
management and business intelligence is widely spread.

The technical program of WSOM 2011 consisted of 36 oral or poster pre-
sentations – by a total of 96 authors – that highlighted the key advances in
the area of self-organizing systems and more specifically in SOM research. We
warmly thank all the authors of the contributed papers. We also gratefully ac-
knowledge the contribution of the plenary speakers. The plenary presentations
were given by Barbara Hammer (University of Bielefeld, Germany) and Teuvo
Kohonen (Academy of Finland and Aalto University, Finland). The event cele-
brated the 30th anniversary of the first report in which Kohonen presented the
basic principles of the SOM, and the 10th anniversary of the 3rd edition of his
book Self-Organizing Maps. We also celebrated that the number of SOM-related
scientific papers has reached approximately 10,000.

We warmly thank the highly respected international Steering and Program
Committees whose roles were instrumental for the success of the conference.
The Program Committee members and the reviewers ensured a timely and thor-
ough evaluation of the papers. We are grateful to the members of the Executive
Committee. In particular, the experience of Olli Simula as the Local Chair and
the skillful efforts of Jaakko Peltonen as the Publicity Chair contributed greatly
toward the success of the event.

WSOM 2011 was co-located with the ICANN 2011 conference. We wish to
thank the organizers of ICANN 2011, especially General Chair Erkki Oja, Lo-
cal Chair Amaury Lendasse and Finance Chair Francesco Corona. The smooth
collaboration with them facilitated the success of WSOM 2011. Last but not
least, we would like to thank Springer for their co-operation in publishing the
proceedings in the prestigious Lecture Notes in Computer Science series.

The organizers had a chance to welcome the participants to the new but
prestigious Aalto University School of Science. Namely, from the beginning of
2010, the 100-year-old university changed its name and form. Three universities,
Helsinki University of Technology, Helsinki School of Economics, and University
of Art and Design Helsinki, merged into Aalto University which became the
second largest university in Finland.

April 2011 Timo Honkela
Jorma Laaksonen
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Topographic Mapping of Dissimilarity Data

Barbara Hammer1, Andrej Gisbrecht1, Alexander Hasenfuss2,
Bassam Mokbel1, Frank-Michael Schleif1, and Xibin Zhu1

1 CITEC centre of excellence, Bielefeld University, Germany
2 Computing Centre, TU Clausthal, Germany

Abstract. Topographic mapping offers a very flexible tool to inspect
large quantities of high-dimensional data in an intuitive way. Often, elec-
tronic data are inherently non-Euclidean and modern data formats are
connected to dedicated non-Euclidean dissimilarity measures for which
classical topographic mapping cannot be used. We give an overview
about extensions of topographic mapping to general dissimilarities by
means of median or relational extensions. Further, we discuss efficient
approximations to avoid the usually squared time complexity.

1 Introduction

Electronic data sets are increasing rapidly with respect to size and dimensional-
ity, such that Kohonen’s ingenious self organizing map (SOM) has lost none of
its attractiveness as an intuitive data inspection tool: it allows humans to rapidly
access large volumes of high dimensional data [20]. Besides its very simple and
intuitive training technique, the SOM offers a large flexibility by providing simul-
taneous visualization and clustering based on the topographic map formation.
As a consequence, application scenarios range from robotics and telecommuni-
cation up to web- and music-mining; further, the self-organizing map is a widely
used technique in the emerging field of visual analytics because of its efficient
and robust way to deal with large, high-dimensional data sets [19].

The classical SOM and counterparts derived from similar mathematical ob-
jectives such as the generative topographic mapping or neural gas [23,3] have
been proposed to process Euclidean vectors in a fixed feature vector space. Of-
ten, electronic data have a dedicated format which cannot easily be converted
to standard Euclidean feature vectors: biomedical data bases, for example, store
biological sequence data, biological networks, scientific texts, textual experiment
descriptions, functional data such as spectra, data incorporating temporal de-
pendencies such as EEG, etc. It is not possible to represent such entries by means
of conventional feature vectors without loss of information, many data being in-
herently discrete or compositional. Rather, experts access such data by means
of dedicated comparison measures such as BLAST or FASTA for biological se-
quences, alignment techniques for biological networks, dynamic time warping
for time series, etc. From an abstract point of view, dissimilarity measures or
kernels which are suited for the pairwise comparison of abstract data types such
as strings, trees, graphs, or functions are used.

J. Laaksonen and T. Honkela (Eds.): WSOM 2011, LNCS 6731, pp. 1–15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 B. Hammer et al.

Already almost 10 years ago, Kohonen proposed a very intuitive way to ex-
tend SOMs to discrete data characterized by dissimilarities only [21]: instead
of mean prototype positions in a Euclidean vector space, neuron locations are
restricted to data positions. The generalized median serves as a computational
vehicle to adapt such restricted neurons according to given dissimilarity data.
This principle can be extended to alternatives such as neural gas, and it can
be substantiated by a mathematical derivative from a cost function such that
convergence of the technique can be proved [8]. Depending on the characteristics
of the data set, however, the positional restrictions can lead to a much worse
representation of the data as compared to the capabilities of continuous updates
which are possible in a Euclidean vector space.

As an alternative, specific dissimilarity measures can be linked to a nonlinear
kernel mapping. Kernel versions of SOM have been proposed for example in
the contribution [30] for online updates and [4] for batch adaptation; in both
cases, the standard SOM adaptation which takes place in the high-dimensional
feature space is done implicitly based on the kernel. Kernelization of SOM allows
a smooth prototype adaptation in the feature space, but it has the drawback
that it is often not applicable since many classical dissimilarity measures cannot
be linked to a kernel. For such cases, so-called relational approaches offer an
alternative [15]: prototypes are represented implicitly by means of a weighting
scheme, and adaptation takes place based on pairwise dissimilarities of the data
only. This principle has already been used in the context of fuzzy clustering [17];
in the past years, it has been successfully integrated into topographic maps such
as SOM, neural gas, or the generative topographic mapping [15,14].

Both principles, median extensions of SOM or relational versions, have the
drawback of squared time complexity due to their dependency on the full dissim-
ilarity matrix. Since the computational costs of specialized dissimilarities such as
alignment for strings or trees can be quite time consuming, the main computa-
tional bottleneck of the techniques is often given by the computation of the full
dissimilarity matrix. For this reason, different approximation techniques have re-
cently been proposed which rely on only a linear subset of the full dissimilarity
matrix and which reduce the computational effort to an only linear one. Two
particularly promising techniques are offered by the Nyström approximation,
on the one hand, which can be transferred to dissimilarities as shown in [13].
On the other hand, if a computation of the dissimilarities can be done online,
patch processing offers a very intuitive and easily parallelisable scheme which
can even deal with non i.i.d. data distributions [1]. This way, efficient linear time
processing schemes for topographic mapping of dissimilarity data arises.

In this contribution, we define topographic mapping based on cost functions
first. Afterwards, we introduce two different principles to extend the techniques
to dissimilarity data: median and relational clustering. Both methods can be
substantiated by mathematical counterparts linking it to cost functions and
pseudo-Euclidean space, respectively. We conclude with technologies which allow
to speed the topographic mapping up to linear time complexity.



Topographic Mapping of Dissimilarity Data 3

2 Topographic Mapping

Prototype based approaches represent data vectors x ∈ R
n by means of pro-

totypes w1, . . . , wN ∈ R
n based on the standard squared Euclidean distance

d(x, wi) = ‖x− wi‖2 (1)

The receptive field of prototype wi is determined by the characteristic function

χi(x) =
{

1 if d(x, wi) ≤ d(x, wj) for all j
0 otherwise (2)

Given a finite set of data points x1, . . . , xm, the quantization error

Eqe =
1
2

∑
i,j

χi(xj)d(xj , wi) (3)

offers one quality measure for a prototype-based representation of data. Popular
learning schemes such as k-means clustering or vector quantization are directly
based on this cost term, which is optimized by means of an online gradient tech-
nique (vector quantization), or a batch approach (k-means), respectively [9]. The
cost function can be interpreted as a limit case of statistical data modeling by
means of a mixture of Gaussians where the centers are located at prototype po-
sitions. Batch learning results as a limit case of an EM optimization scheme of
the data log likelihood in this setting [2]. Although the quantization error con-
stitutes one of the most popular measures to evaluate unsupervised clustering,
it is often not sufficient in practical applications due to several aspects: it suffers
from numerical problems due to the multi-modality of the cost function and its
sensitivity to noise and outliers. In addition, further functionalities are often re-
quired in application scenarios such as the possibility to visualize the prototypes
and to inspect relations between prototypes. Both problems are addressed by
topographic mapping.

The Batch SOM. Topographic mapping integrates a neighborhood structure
of the prototypes into the model. This way it achieves both, a better robustness
with respect to local optima, outliers, and noise in the data as well as enhanced
functionality due to the explicit neighborhood relations of the prototypes. In
essence, topographic mapping takes place by matching a neighborhood topology
of the prototypes and the topology which is inherent in the data distribution; as
a consequence, the prototypes together with their neighborhood structure can
be interpreted as compressed representation of the data set and its topological
structure. Concrete topographic mapping technologies differ in the way how the
neighborhood structure is defined.

Neural gas (NG) as proposed by Martinetz relies on a data optimum topology
which is inferred directly from the data [23]. The popular SOM imposes a fixed
predefined neighborhood defined by a regular lattice topology, typically a two
dimensional lattice in Euclidean or hyperbolic space [20,26]. This way, not only
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a neighborhood structure is inferred but it can also directly be visualized on the
computer screen. Since data and lattice topology need not coincide, topological
mismatches can occur unlike in NG. The original SOM does not possess a cost
function in the continuous case and its mathematical investigation is quite de-
manding, see e.g. [18,20,7]. A slight variation of the definition of the receptive
fields as compared to (2), however, enables the derivation from a cost function
very similar to (3)

ESOM =
1
2

∑
i,j

χ∗
i (xj)

∑
k

exp(−nd(i, k)/σ2)d(xj , wk) (4)

where nd(i, j) refers to a priorly fixed neighborhood structure of the prototypes,
e.g. their distance in a predefined two dimensional lattice, and the characteristic
function of the receptive fields χ∗

i (xj), unlike (2), is measured via the averaged
distances

∑
k exp(−nd(i, k)/σ2)d(xj , wk). Online adaptation iteratively adapts

the winning prototype and its neighborhood towards a given data point, while
batch adaptation iterates the following two computations

compute χ∗
i (xj) for all i, (5)

adapt wk :=

∑
i,j χ∗

i (xj) · exp(−nd(i, k)) · xj∑
i,j χ∗

i (xj) · exp(−nd(i, k))
(6)

It has been shown in [6] that this procedure converges in a finite number of steps
towards a local optimum of the cost function. The convergence is very fast such
that a good initialization is necessary to avoid topological mismatches as pointed
out in [10]. For this reason, typically, an initialization by means of the two main
principal components takes place, and the neighborhood σ is annealed carefully
during training.

The GTM. The generative topographic mapping (GTM) can be seen as a
statistical counterpart of SOM which models data by a constraint mixture of
Gaussians [3]. The centers are induced by lattice positions in a low dimen-
sional latent space and mapped to the feature space by means of a smooth
function, usually a generalized linear regression model. That means, proto-
types are obtained as images of lattice points vi in a two dimensional space
wi = f(vi) = Φ(vi) ·W with a matrix of fixed base functions Φ such as equally
spaced Gaussians in two dimensions and a parameter matrix W . Every pro-
totype induces an isotropic Gaussian probability with variance β−1 which are
combined in a mixture model using uniform prior over the modes. For training,

the data log likelihood
∑

j ln 1
N ·∑i

(
β
2π

)n/2

exp
(
−β

2 d(xj , wi)
)

is optimized by
means of an EM approach which yields to linear algebraic equations to determine
the parameters W and β. As batch SOM, GTM requires a good initialization
which is typically done by aligning the principal components of the data with
the initial images of the lattice points. The smoothness of the mapping f , i.e. the
number of base functions in Φ, determines the stiffness of the resulting topologi-
cal mapping. Unlike SOM which focuses on the quantization error in the limit of
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small neighborhood size, this stiffness accounts for a usually better visualization
behavior of GTM, see e.g. Fig. 1. It can clearly be seen that GTM respects the
overall shape of the data manifold while SOM pushes prototypes towards data
centers, leading to local distortions. A better preservation of the manifold shape
can also be obtained using ViSOM instead of SOM [29], albeit this technique is
not substantiated by a global cost function such as GTM.

3 Median Clustering

Often, data are not given as vectors, rather pairwise dissimilarities dij =
d(xi, xj) of data points xi and xj are available. Thereby, the dissimilarity need
not correspond to the Euclidean metric, and it is not clear whether data xi

can be represented as finite dimensional vectors at all. In the following, we refer
to the dissimilarity matrix with entries dij as D. We assume that D has zero
diagonal and that D is symmetric.

Median SOM. This situation causes problems for classical topographic map-
ping since a continuous adaptation of prototypes is no longer possible like
in the Euclidean case. One solution has been proposed in [21]: prototype lo-
cations are restricted to the positions offered by data points, i.e. we enforce
wi ∈ {x1, . . . , xm}. In [21] a very intuitive heuristic how to determine prototype
positions in this setting has been proposed based on the generalized median. As
pointed out in [8], it is possible to derive a similar learning rule from the cost
function of SOM (4): Like in batch SOM, optimization takes place iteratively
with respect to the assignments of data to prototypes (5) and with respect to
the prototype positions. The latter step does not allow an explicit algebraic for-
mulation such as (6) because of the restriction of prototype positions; rather,
prototypes are found by exhaustive search optimizing their contribution to the
cost function:

wk = argminxl

⎧⎨⎩∑
i,j

χ∗
i (xj) exp(−nd(i, k)/σ2)d(xj , xl)

⎫⎬⎭ (7)

In the original proposal [21], the summation is restricted to the neighborhood,
and possible candidates xl are restricted to data points mapped to the vicinity
of prototype wk. This can be seen as an efficient approximation of the above
optimization in particular for small neighborhood range. The choice of (7) has
the advantage that convergence of the technique in a finite number of steps can
be guaranteed since the algorithm optimizes the cost function of SOM (4) for
restricted prototype locations [8].

In complete analogy, batch neural gas can be extended to dissimilarity data
by means of the generalized median and the respective cost function. For GTM,
a transfer is not possible in general because it is not possible to define a smooth
mapping from a continuous latent space to the discrete space of known data
points characterized by pairwise dissimilarities.
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Evaluation. One important drawback of median approaches is given by the
computational complexity: compared to linear time complexity for standard Eu-
clidean topographic mapping, the effort increases to squared complexity due to
the necessity of an exhaustive search for every optimization step of the proto-
types (7). This can be partially accelerated by means of different techniques
such as block summing and branch and bound techniques (see e.g. [16]); due to
the dependency of the cost function on all pairwise dissimilarities, every exact
technique must inherently be quadratic, however.

Another problematic issue concerns the initialization of median SOM, and its
limited capability of smooth updates as compared to standard Euclidean ver-
sions. Unlike the Euclidean SOM, an initialization of the map in the direction
of the main principal components is hardly possible since only a discrete data
space is at our disposal. Due to the rapid convergence of batch techniques, this
causes the severe risk that the topographic mapping gets stuck in local optima.
Further, as compared to Euclidean settings, less flexibility of the prototypes is
available which can cause worse solutions as compared to continuous settings.
Tab. 1 shows the results of the techniques for the chromosome data set, a bench-
mark from cytogenetics [22]. It consists of 4200 images of chromosomes from
22 classes. Since the overall shape is the relevant feature to discriminate dif-
ferent chromosomes, the images cannot easily be compared based on Euclidean
distance. Alternatively, images are described by strings which characterize the
thickness of the chromosomes which are oriented according to their lengths. Im-
ages are compared by aligning these strings, i.e. a non-Euclidean dissimilarity
results. Since a labeling is available, the number of the chromosomes, an evalua-
tion of the results can be done by posterior labeling of the prototypes according
to their receptive field. The test set accuracy which results from a repeated
cross-validation is reported.

Obviously, median SOM yields worse results as compared to continuous vari-
ants such as relational SOM, which we will explain in the next section. Further,
it can be observed that the topological constraint of SOM by the priorly fixed
lattice leads to worse results as compared to NG. Interestingly, the accuracy of
median techniques is not caused by the restricted representation ability of me-
dian clustering, rather numerical problems occur due to the restricted flexibility
while optimizing the cost function. This observation is substantiated by the re-
sult of affinity propagation (AP) as shown in Tab. 1. AP constitutes an exemplar
based clustering scheme which is derived from the quantization error by means
of a representation of this cost function as factor graph, and an approximate
optimization by means of the max-sum algorithm [12]. Unlike median SOM or
median NG, an inherently smooth adaptation process which adapts the likeli-
hood of the data points of becoming an exemplar takes place for AP, resulting
in an increased classification accuracy albeit the final solution is represented in
terms of data exemplars just as median clustering. AP, however, does not involve
any topology such that no topographic mapping is obtained.
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Table 1. Classification accuracy on the test set obtained by repeated cross-validation
and different clustering techniques on the chromosome data, the numbers refer to (num-
ber of patches / k for k-approximation) for patch processing and (fraction of landmarks)
for the Nyström approximation

median SOM median NG AP relational SOM relational NG relational GTM

0.72 0.82 0.9 0.92 0.93 0.92

patch AP patch RNG Ny RNG patch RGTM Ny RGTM Ny RGTM
(40/10) (0.01) (10/5) (0.01) (0.1)

0.76 0.88 0.93 0.87 0.88 0.55

4 Relational Clustering

As discussed above, the discrete nature of median clustering causes a severe risk
to get trapped in local optima of the cost function. Hence the question arises
whether a continuous adaptation of prototypes is possible also for general dissim-
ilarity data. A general approach to extend prototype-based clustering schemes
to general dissimilarities has been proposed in [17] in the context of fuzzy clus-
tering, and it has recently been extended in [15,14] to batch SOM, batch NG,
and GTM.

Assume that the dissimilarities dij stem from unknown data in an unknown
high dimensional feature vector space, i.e. dij = ‖Φ(xi) − Φ(xj)‖2 for some
feature map Φ. Assume that prototypes can be expressed as linear combinations
wi =

∑
j αijΦ(xj) with

∑
j αij = 1. Then, distances can be computed implicitly

d(wi, xj) = [Dαi]j − 1
2
· αt

iDαi (8)

It has been shown in [15] that this equation also holds if an arbitrary symmetric
bilinear form induces dissimilarities in the feature space rather than the squared
Euclidean distance.

Relational SOM. This observation offers a way to directly transfer batch SOM
and batch NG to a general symmetric dissimilarity matrix D. As explained e.g.
in [15], there always exists a vector space together with a symmetric bilinear
form which gives rise to the given dissimilarity matrix. This vector space need
not be Euclidean since some eigenvalues associated to the bilinear form might
be negative or zero. Commonly, this is referred to as pseudo-Euclidean space
where the eigenvectors associated to negative eigenvalues serve as a correction
to the otherwise Euclidean space. For this vector space, batch NG or SOM can
be applied directly in the vector space, and using (8), it can be applied implicitly
without knowing the embedding, because of two key ingredients:

1. an implicit representation of prototype wi in terms of coefficient vectors αi,
2. Equation (8) to compute the distance in between a data point and a

prototype.
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Since prototypes as computed by batch NG or SOM can be written as convex
combination of data points, and since the update of a prototype depends on
the distance only and it decomposes into updates of the coefficients, NG and
SOM can be immediately transferred to this setting. So-called relational SOM
(RSOM) is given by the iteration of the following steps:

compute d(wi, xj) based on Equation (8) (9)
compute χ∗

i (xj) based on these values (10)

adapt [αk]j :=
∑

i χ∗
i (xj) · exp(−nd(i, k))∑

i,j χ∗
i (xj) · exp(−nd(i, k))

(11)

Note that this procedure is equivalent to an implicit application of SOM in the
pseudo-Euclidean embedding space. It is independent of the concrete embedding
and gives the same results if an alternative embedding is used. Further, it is
equivalent to standard SOM if a Euclidean embedding of data exists. For general
dissimilarities, it constitutes a reasonable extension of SOM to the general case
with continuous updates of prototypes.

This procedure, however, has one drawback: although it constitutes an exact
implementation of SOM in pseudo-Euclidean space, it is no longer clear that
the procedure offers an optimization of the corresponding SOM cost function
in the embedding space. This is due to the fact that batch SOM itself does
not necessarily optimize the cost function in non-Euclidean space; rather, the
mean value might constitute a saddle point of the quantization error if data
are non-Euclidean. In fact, the quantization error of one receptive field is no
longer a convex cost function in the general setting and its optimization is NP
hard [27]. Regarding this complexity, the choice (11) can be seen as a reasonable
efficient compromise which optimizes the data representation within a receptive
field with respect to the positive eigendirections of the underlying bilinear form.
See the work [15] for more discussions and experiments concerning this issue. It
turns out that the choice (11) hardly deteriorates the value of the cost function
in practical applications.

Relational GTM. In a similar way, NG can be directly extended to arbitrary
dissimilarity data, yielding relational NG (RNG). Similarly, GTM can be ex-
tended based on the key observation (8) since also for GTM, prototypes can
be chosen as linear combinations of data with coefficients summing up to one.
Using Lagrangian functions, it can be proved that this is automatically fulfilled
for standard GTM [14]. To realize the approach efficiently, the low dimensional
latent space is directly mapped to the space of coefficients, see [14]. For relational
GTM (RGTM), however, an interpretation by means of a stochastic model is
not always clear due to the fact that distances can become negative in pseudo-
Euclidean space. For such settings, an interpretation as density values is not
obvious; in addition, numerical problems can occur. In the publication [14], this
setting is investigated and the feasibility of the approach is demonstrated in
several real life examples.
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Fig. 1. Visualization of the protein data set incorporating 226 proteins in 5 classes
using RSOM (left) and RGTM (right); labels are determined by posterior labeling
according to majority vote of the receptive fields

Evaluation. As for the standard Euclidean counterpart, relational GTM tends
to display data in a way more suitable for direct data visualization, since less dis-
tortions take place if a reasonable number of base functions is used. One example
is shown in Fig. 1. Here protein sequences from different families are compared
using an evolutionary distance [24]. In total, 226 globin proteins with 5 different
classes are depicted. In both visualizations, the clusters separate according to
the a priori known classes. For the RSOM, the prototypes cover the data space
with many data being located at the map boundaries, while RGTM widely keeps
the internal arrangement due to its stiffness.

In Tab. 1, relational topographic mapping is compared to median approaches,
evaluating the techniques in a repeated cross-validation considering the classifi-
cation accuracy on the test set for the chromosomes benchmark data. As can be
seen from the results, the larger flexibility offered by continuous prototype adap-
tation in relational topographic mapping leads to an improvement of almost 20%
for SOM and almost 10% for NG, arriving at a slightly better value than AP.
This fact can be explained by the much simpler numerical optimization of the
techniques if a more flexible continuous prototype adaptation is possible instead
of only discrete steps. Albeit convergence of relational topographic mapping is
not strictly guaranteed (since saddle points might be chosen instead of local
optima in case of negative eigenvalues of the corresponding pseudo-Euclidean
embedding), divergence never occurred in practical problems.

5 Efficient Approximations

Both median and relational clustering suffer from a quadratic time complexity
as compared to linear complexity for their vectorial counterparts. In addition,
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relational clustering requires linear space complexity since it stores prototypes in
terms of coefficient vectors representing the relevance of every data point for the
respective prototype. This fact makes the interpretability of the resulting map
difficult since it is no longer easily possible to inspect prototypes in the same
way as data points. Further, the quadratic time complexity makes the methods
infeasible already for medium sized data sets. Different heuristics have recently
been proposed in this context to speed up median and relational clustering.

Patch approximation. Patch processing constitutes a very simple approach to
derive a finite space linear time method based on a prototype based technique.
It has been proposed in [1] in the context of the application of NG for streaming
data, and, interestingly, it even gives good results if data are not i.i.d. The main
idea is to process data consecutively in patches of fixed size. The prototypes
counted with multiplicities according to their receptive fields represent all already
seen data, and they are included as regular points counted with multiplicities in
the next patch. This way, all information is taken into account either directly or
in compressed form in the succeeding clustering steps.

If transferred to dissimilarity data, this approach refers to a linear subset of
the full dissimilarity matrix only: only those dissimilarities are necessary which
correspond to a pair of data in the same patch, further, distances of prototypes
representing the previous points and data points in a patch are used. In conse-
quence, an only linear subpart of the full dissimilarity matrix is used this way.
Since it is not known a prior which prototypes are used for the topographic
mapping, however, the method requires that dissimilarities can be computed in-
stantaneously during the processing. For real life applications this assumption is
quite reasonable; e.g. biological sequences can be directly stored and accessed in
a data base; their pairwise comparisons can be done on demand using sequence
alignment.

Median clustering can directly be extended in a similar way. Unfortunately,
such as median topographic mapping itself, it suffers from local optima due to
the limited prototype flexibility. In [31], a corresponding extension of affinity
propagation is proposed. Due to problems of AP to deal with multiple points,
however, the result is worse as compared to AP for the full data set, see Tab. 1.

Patch approximation for relational approaches. For relational clustering
a direct extension of the patch approach is not possible because prototypes are
presented indirectly by referring to the data points. This way, eventually, every
prototype refers to all data, i.e. all pairwise dissimilarities have to be known
to compute distances in between prototypes and data. In the approach [15], a
simple though efficient heuristic is proposed. A prototype is approximated by a
fixed number of data points k which are closest to the prototype. These data
points are taken to represent the already seen information in compressed form
for a new patch. Depending on the value k and the number of patches, a different
approximation quality is obtained. Tab. 1 displays the result of relational NG
and relational SOM when using patch clustering. As can be seen from the results,
a mild degradation of the accuracy (less than 5%) can be observed due to the
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information loss. The method turns out to be rather robust with respect to the
choice of the approximation quality k and the patch size. Further, it can deal
with data which are not accessible in an i.i.d. fashion.

Nyström approximation. As an alternative, the Nyström approximation has
been introduced as a standard method to approximate a kernel matrix in [28].
It can be transferred to dissimilarities as presented in [13]. The basic principle
is to pick M representative landmarks in the data set which give rise to the
rectangular sub-matrix DM,m of dissimilarities of data points and landmarks.
This matrix is of linear size, assuming M is fixed. It can be shown (see e.g. [13])
that the full matrix can be approximated in an optimum way in the form

D ≈ Dt
M,mD−1

M,MDM,m (12)

where DM,M is induced by an M×M eigenproblem depending on the rectangular
sub-matrix of D. Its computation is O(M3) instead of O(m2) for the full matrix
D. The approximation (12) is exact if M corresponds to the rank of D. It is
possible to integrate the approximation (12) in such a way into the distance
computation (8) such that the overall effort is only linear with respect to m.
This way, a linear approximation technique for relational clustering results. See
[13] for detailed formulas.

Evaluation. The quality of the result depends very much on the approxima-
tion quality of (12), i.e. landmarks should induce a representative dissimilarity
matrix. In consequence, the technique is not suited for data which are not i.i.d.
For representative landmarks, however, the result can be quite good, as can be
seen in Tab. 1: an approximation of the full dissimilarity matrix using only 1%
of the data as landmarks deteriorates the result not at all for RNG, and by only
4% for RGTM. Interestingly, the result can severely be influenced by the choice
of the landmarks: for RGTM, if we pick 10% of the data as landmarks, the clas-
sification accuracy decreases by nearly 40%. This can be associated to the fact
that a highly skewed representation of the dissimilarity matrix is obtained in
this case due to the characteristic of the eigenvalue profile of the corresponding
dissimilarity matrix. Unlike patch processing, it is fixed a priori which parts of
the dissimilarity matrix are relevant for the Nyström method. In consequence,
this technique is suited if the dissimilarity matrix D is available a priori, but
access to entries of D and the topographic mapping are costly.

Computational effort. As a final demonstration of the feasibility of the ap-
proach to deal with realistic data sets, we show the result of a visualization
experiment in line with the early work of Kohonen for median clustering [21]:
RGTM is used to visualize a portion of the Swiss-Prot data base containing
protein sequences [5]. Swiss-Prot constitutes a high quality data base of known
protein structures which are manually curated. Together with automatically gen-
erated further data sets of sequences, it forms a part of one of the most popular
publicly available data bases of known protein sequences. We select a subset of
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roughly 11000 sequences according to 32 different functional classes characterized
by functional labels as stored in the Prosite data base (see the reference [11] for
the ExPASy proteomics server where protein data bases as well as functions e.g.
for pairwise alignment are provided). Typically, protein sequences are compared
using alignment techniques. We rely on the FASTA algorithm (with default pa-
rameters) which offers a linear time approximation of exact sequence alignment
by linear programming (the latter has squared complexity) to compute sequence
similarity.

This example consists a medium sized application of the technique to a real
life data set – we are working on an extension to a larger portion of the Swiss-
Prot data set. Since data base retrieval and data inspection is very important
in this context, it would be interesting to obtain a tool to visualize and inspect
large portions of the data bases, and to obtain an efficient retrieval method e.g.
by means of a compressed representation by prototypes. Using the RGTM tech-
nique, a reasonable visualization and arrangement of the data can be obtained.
RGTM with Nyström approximation with 100 landmarks yields the visualization
as shown in Fig. 2. Prototypes are posteriorly labeled by majority vote based
on the Prosite labeling of the data in the receptive field. 19 out of 32 classes are
visible on the map this way; one can clearly see that the largest classes arrange
in a topology preserving fashion on the map, i.e. an inspection of the relative
arrangement of these classes according to their similarity becomes possible.

This data set is of medium size, such that the speedup in time and space
efficiency of the Nyström approximation becomes apparent. In the given exam-
ple, assuming double precision, about 500 Megabyte are necessary to store the
full dissimilarity matrix as compared to about 4.5 Megabyte for the dissimilar-
ities referred to by the Nyström approximation. Since the number of necessary
landmarks does not depend on the number of data but the underlying rank of
the dissimilarity matrix, it can be expected that the same number of landmarks
gives reasonable results also for larger data sets. In consequence, using 100 land-
marks and assuming a standard RAM of 12 Gigabyte, this would allow to store
the required dissimilarities of almost 30 million data points as compared to only
30 thousand if the full dissimilarity matrix is required. For the considered data
set, the computational speedup is determined by two factors: the speedup due
to the smaller number of necessary dissimilarities which are computed, and the
speedup due to the smaller effort to compute the responsibilities in RGTM. Both
computations are reduced from squared time complexity to a linear one.

For the considered data set, the speedup to compute the required part of the
dissimilarity matrix accounts for a factor 55, while training RGTM is about a
factor 25 faster for the Nyström technique as compared to the exact version. In
numbers, referring to a standard desktop PC (Intel Xeon QuadCore 2.5 GHz),
this reduces the computation time for the dissimilarity matrix from more than
eight days to less than two hours, and the training time for RGTM from about
one day to less than an hour. Extrapolating this behavior and assuming the
same number of landmarks, training RGTM on a standard desktop PC would
be possible for at most 30 thousand data points leading to a training time of
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Fig. 2. Around 10000 protein sequences compared by pairwise alignments are depicted
on a RGTM trained with the Nyström approximation and 100 landmarks. Posterior
labeling displays 19 out of the 32 classes defined by Prosite for this data set in a
topology preserving manner.

more than a week (disregarding the computation of the dissimilarity matrix
which would need more than two month on a single PC) and it would work at
the limit of the available RAM, while the Nyström approximation could deal
with two million data points in the same time and it would use only a fraction
of the available RAM.

6 Conclusions

We have presented an overview of topographic mapping of dissimilarity data
by means of median and relational clustering. Interestingly, popular techniques
such as SOM, NG, or GTM can be extended this way, opening the way towards
modern data analysis tools for general data formats described in terms of pair-
wise dissimilarities only. For large data sets, the squared complexity caused by
the size of the dissimilarity matrix makes the techniques infeasible already for
medium sized data sets. We have presented two techniques to arrive at efficient
linear time approximations which offer state of the art linear techniques to deal
with large data sets.
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Abstract. Contextual SOMs of Chinese words have been constructed in
this work. Differing from previous approaches, in which individual words
were mapped onto the SOM, in this work histograms of various word
classes or otherwise defined subsets of words were formed on the SOM
array. It was found that the words are not only clustered according to
the word classes, but joint or overlapping clusters of words from different
classes can also be formed according to the role of the words as sentence
constituents. A further new effect was found. When the histograms were
formed using test words restricted to certain intervals of word frequen-
cies, the histograms were found to depend on the frequency, and the
corresponding partial clusters were often very compact.

1 The Method

The contextual SOMs [1], [2], [3] are used to represent relationships between
local contexts (groups of contiguous words) in text corpora, believed to reflect
semantic properties of the words. A local context relates to and is labeled by
its central word, called the target word. It has been found earlier that the SOM
can be used to map words linguistically in such a way that the target words of
different word classes are mapped into separate areas on the SOM on the basis
of the local contexts in which they occur.

The local context around a particular target word can be defined in different
ways. In early works it was made to consist of the target word itself, indexed
by its position i in the corpus, and of the preceding and the subsequent word
to it, respectively. In this work, in order to take more contextual information
into account, the contexts were defined to consist of five successive words. In
computation they were represented by the coding vectors ri−2, ri−1, ri, ri+1,
and ri+2, respectively.

In order to minimize the effect of the word forms on the context structures,
and to concentrate on the pure word patterns, i.e., combinations of the words,
without paying attention to the writing forms, one ought to select representations
for the words that are mutually as uncorrelated as possible. To that end, the
coding vectors can be defined, e.g., as high-dimensional Euclidean vectors with
normally distributed random elements. A typical dimensionality of these vectors
is on the order of a few hundred. In this way, the representation vectors of
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any two words are approximately orthogonal and can be regarded as almost
uncorrelated.

For a statistical analysis, the so-called averaged contextual feature x(w) for
each unique word w in the text corpus can be defined as the vector

x(w) = avgi(w)([ri−2 ri−1 ri ri+1 ri+2]) , (1)

where avgi(w) means the average over all positions i in the text corpus, on the
condition that the contextual feature relating to position i belongs to word w
(i.e., on the condition that ri is the random-vector representation of word w).

When constructing a contextual SOM, the averaged contextual feature vectors
are used as the training data.

Differing from previous approaches, in which individual test words were
mapped onto the SOM, in this work histograms of various test word classes
or otherwise defined subsets of words will be formed over the SOM array. Thus,
the testing of the SOM, i.e., the mapping of selected subsets of target words
onto the SOM is carried out using similarly defined averaged feature vectors as
input vectors, but averaging the input vectors only over the words w of a partic-
ular subset (such as general adjectives) or words that occur in the corpus only
a specified number of times.

One particular problem encountered in this simple context analysis is that the
words in most languages are inflected, and in languages such as Latin, Japanese,
Hungarian, Finnish, etc,. the linguistic roles of the words are also indicated by
many kinds of endings. One simple method is to treat every word form as a
different word. Another method would be to reduce each word to its base form
or word stem, whereby, however, some semantic information is lost.

Nonetheless there also exist languages such as Chinese, where the words are
not inflected at all, and which would then be ideal for the context experiments.
Since nowadays there are available large Chinese text corpora that are provided
with linguistic analysis of the words used in them, it was possible to construct
the contextual SOMs automatically on the basis of this information only [4], [5].

The text corpus used in this work, called the MCRC (Modern Chinese Re-
search Corpus) [6] is an electronic collection of text material from newspapers,
novels, magazines, TV shows, folktales, and other text material from modern
Chinese media. In our experiment it contained 1,524,121 words provided with
classification of the words into 114 classes (of which 88 were real linguistic classes,
while the rest consisted of punctuation marks and nonlinguistic symbols). This
corpus was prepared by one of the authors (Hongbing Xing).

A further notice is due. In order to utilize the information of the contexts
maximally, only pure contexts (which did not contain any punctuation marks or
nonlinguistic symbols) were accepted to these experiments. In this way, however,
a substantial portion of the text corpus was left out of the experiments. Notice
that if the target word has a distance of less than five words from these specific
symbols, the five-word contexts could not be formed. Nonetheless the original
corpus was so large that the remaining amount of text (488,878 words) was still
believed to produce statistically significant results.
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The size of the original lexicon used in this work was 48,191. The number of
words actually used, restricting to pure contexts only, was 27,090.

The patches of the SOM array were selected as hexagonal, and the size of the
array was relatively small, 40 by 50, in order to save memory but still to be able
to discern the cluster structures on it.

In earlier works the dimensionalities of all of the random-code vectors of the
words were always taken as equal. A new idea in this work was to select the
dimensionality as a function of the relative position of the word within the local
context. The dimensionality of the target vector ri was selected as 50. The
dimensionalities of ri−1 and ri+1 were taken equal to 200, and those of ri−2 and
ri+2 equal to 100, respectively. In this way, the different words within the context
have different statistical weights in the matching of the input vector with the
SOM weight vectors. The above dimensionalities, based on many experiments,
were chosen experimentally to roughly maximize the clustering accuracy, under
the restriction that the total dimensionality of the feature vectors x(w) could
still fit to the Matlab programs, especially to the SOM Toolbox used in the
computations.

In order to write a great number of variable scripts for this rather large exper-
iment, the Matlab SOM Toolbox [7] was used. However, the calibration of the
numerous SOMs was based on dot-product matching, for which both the source
data and the SOM vectors (prototypes) were normalized.

The batch training procedure of the Matlab SOM Toolbox was applied. The
neighborhood function used in it was Gaussian. First, a coarse training phase,
consisting of 20 training cycles was used. During it, the effective radius parameter
of the neighborhood function decreased linearly from 6 to 0.5. The topological
ordering occurred during this phase. After it, a fine tuning phase was applied.
During it, the effective neighborhood radius stayed constant, equal to 0.5. It has
been shown recently [8] that if this kind of learning with constant neighborhood
is used, the batch training algorithm will usually converge in a finite number of
cycles. In the present application this kind of fine tuning was continued until
no changes in the map vectors took place in further training. This occurred in
about 70 cycles.

2 Preliminary Clustering Results

In Fig. 1 we have the histograms of four main linguistic classes of the words in the
MCRC corpus (restricting to local contexts that do not contain any punctuation
marks or other nonlinguistic symbols).

Some clusters may look rather broad, but one has to realize three facts: 1.
Due to competitive learning, the SOM is always trying to utilize the whole array
optimally, so any cluster that contains a large number of elements will look wide.
2. As will be seen later, the diffuse zones usually consist of much narrower partial
clusters. 3. It will further be shown in this work that the clusters of some word
classes also depend on the frequencies of the words they contain. If one would
select to the vocabulary only words that, e.g., exceed a certain frequency limit,
one would obtain much sharper clusters.



Contextually Self-Organized Maps of Chinese Words 19

F
ig

.
1
.
H

is
to

g
ra

m
s

o
f
a
ll

a
d
je

ct
iv

es
,
n
o
u
n
s,

v
er

b
s,

a
n
d

a
d
v
er

b
s

in
th

e
M

C
R

C



20 T. Kohonen and H. Xing

Fig. 2. Clustering of all attributive pronouns

Fig. 3. Clustering of all adverbial idioms

In Fig. 2 and Fig. 3 we show two smaller clusters of specific word classes
that are located close to the area of the adjectives. Consider first the cluster of
attributive pronouns. If the words, as believed, are clustered in the contextual
SOM according to their role as sentence constituents, then the adjectives that
coincide with the attributive pronouns obviously represent attributive adjectives.
On the other hand, the adjectives that coincide with the cluster of the adverbial
idioms apparently have an adverbial nature, respectively.

3 Effect of Word Frequency on Clustering

A new effect found in this study is that when the histograms are formed using
words restricted to certain intervals of word frequencies, they will depend on the
frequency and be more compact.
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3.1 General Adjectives

First we show the frequency effect by four histograms of general adjectives. In
Fig. 1, all of the adjectives were mapped onto the top of the SOM into a relatively
narrow zone, while one could discern certain substructures in their distribution.
In Fig. 4 we now have four subplots (with word frequencies of 1 to 10, 10 to 100,
100 to 1000, and 1000 or more in the text corpus, respectively). One can clearly
see that the linguistic nature of the subsets of words selected to each histogram
changes gradually. Some of the adjectives in all frequency ranges are clustered
very tightly at the left side of the map and thus seem to have an adverbial nature,
whereas the more frequently used adjectives at the top-right obviously act in the
role of an attribute. The rest of the adjectives located along the top of the map
have other, variable linguistic roles.

One particular caution may be necessary, when looking at the graphics of the
histograms. In order to be able to compare histograms that contain very different
total numbers of hits, one usually normalizes the intensities of the images. The
Matlab graphics does this automatically, unless other options are specified. Then,
however, the clusters in low-intensity images may be overemphasized and should
not be compared directly with clusters in the other images.

3.2 General Nouns

The class of the general nouns, differing from the class of all nouns shown in
Fig. 1, does not contain any names of persons or places, or nouns of time.

The effect of word frequency on the general nouns is even more surprising than
that on the general adjectives. From Fig. 5 we see that the general nouns that
occur with the lowest frequencies (1 to 10), and whose number in the corpus is
also the highest, have a very broad distribution. Compared with Fig. 1, however,
the differences are not very large in this range. On the other hand, in the range
of 10 to 100 of word frequencies, the centroid of the histogram has already moved
to the right and upwards. In the range of 100 to 1000 of word frequencies, most
of the nouns are clustered into three very compact subsets close to the upper
right corner, and one compact cluster at the bottom. In this range of frequencies
the nouns may have only fewer definite semantic roles, whereas the roles of the
more rare nouns are more vague. The fourth histogram in Fig. 5 as well as in Fig.
4 contain so few words that it is difficult to draw any conclusions from them.

In all of the above partial diagrams of general nouns. there is a salient empty
oval region in the middle, where the verbs, according to Fig. 1, are located.

3.3 Verbs

Verbs without objects. In many languages, this category of verbs is called the in-
transitive verbs, while in some other languages (like Chinese and French) the term
verbs without objects is used. In Fig. 6, the least frequently (1 to 10 times) used
verbs have a fuzzy cluster on the top-left. This cluster coincides with that of the
predicative idioms (not shown in this publication but in [4]), and so this cluster
of verbs is believed to represent verbs used as the so-called center of predicates.
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The other verbs without objects are clustered mainly in the middle, where the
nouns have an empty space.

Verbs followed by nouns. This category would be called the transitive verbs in
some other languages. The noun subsequent to the verb forms a very close con-
text with the former, and so one might expect that this correlation should also
be reflected in the contextual SOM. Indeed, almost independent of the word fre-
quency, the histograms in Fig. 7 are clustered into the middle of the empty space
in the distribution of the nouns. It seems that the locations of these clusters have
been automatically fitted to the locations of the surrounding nouns.

The correlation coefficient of the histogram of the verbs without objects and
that of the verbs followed by nouns is 0.2514, indicating that their linguistic
roles are different.

3.4 General Adverbs

The general adverbs are mainly located in the histograms along the border be-
tween the nouns and the verbs (Fig. 8). They have only relatively few clusters
in fixed places, showing that there are only few main types of adverbs, and their
contexts depend very little on word frequency.

3.5 Other Classes

As mentioned earlier, there were 88 linguistic classes into which the words of the
MCRC were divided. Histograms of some of them can be found in [4] and [5].

The numerals are clustered very compactly around the lower left corner of
the SOM, and this cluster does not depend on word frequency.

The conjunctions, on the other hand, have histograms scattered randomly
over the area of the SOM, showing that they do not correlate with the text.

The pronouns are projected into areas occupied by the other word classes. In
Fig. 2 we saw the mapping of the attributive pronouns. The pronouns used as
subjects or objects have histograms similar to those of the nouns, confirming that
it is the role of the words as sentence constituents rather than their linguistic
class that is reflected in the contextual SOMs.

The verbs, in general, are clustered into a round area in the middle of the
SOM. An exceptional subset of verbs is formed by those 1035 verbs used as
the core of a noun phrase. Independent of their frequency, they are mapped
compactly into the lower right corner of the SOM, indicating that these verbs
occur so tightly with the other words in the noun phrases that the latter words
determine the location of the cluster on the SOM.

4 Discussion

Differing from previous approaches to the contextual SOMs, in which individual
words were mapped onto the SOM array, in this work histograms of various word
classes or otherwise defined subsets of words were formed over the array.
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In addition to being among the first works in which contextual SOMs have
been constructed for the Chinese language, this study contains two new results.
First, it has been found that the target words, on the basis of their local contexts,
are not only clustered according to the main linguistic classes. It seems that the
role of the words as sentence constituents defines their location more closely in
the contextual SOM. Second, the histograms have also been found to depend on
the frequencies of the words selected for testing. In some cases, e.g., for nouns and
adjectives (the histograms of which were the most diffuse ones) this dependence
is strong, whereas for some other word classes it is much weaker.

One simple explanation of the frequency dependence that comes into mind
is that the MCRC corpus used in this work is very heterogeneous. It contains
texts from very different areas written by different people. The vocabularies of
the different parts, especially the sets of nouns and adjectives used in them have
probably very different word frequencies. Conversely, when the word frequencies
during testing are restricted to certain intervals, these words correlate closest
with certain parts of the corpus, and thus with the specific topic and writer. It
would be very interesting to compare the present results with those produced by
one author only and dealing with a well-defined topic area, preferably written
in a traditional style.

On the other hand, it is also thinkable that the contexts in which especially
the nouns and the adjectives are used have transformed with time, and frequent
usage accelerates this transformation. One fact that supports this assumption is
that a histogram as a function of word frequency often changes gradually in the
same direction (cf. Figs. 4 and 5).

In the contextual SOM, the selection of the random-vector representations for
the words may have an effect on the exact form of the SOM, due to statistical
variations in the matching of the random vectors. These statistical variations
could be eliminated for the most part if one were able to use representation
vectors with extremely high dimensionalities, for which supercomputers would
be needed.

The main message of the work in presentation is that the word frequencies
probably have an important role in all of the contextual-SOM experiments and
should be taken into account when picking up words from the lexica for testing.

The two main conclusions derivable from the work in presentation are thus: 1.
If one wants to produce contextual maps in which the word classes are well seg-
regated, one may select a vocabulary that contains only the most regular words,
i.e., only words that have their frequency above a certain limit, and discard the
very rare words, as usually also has been done in previous experiments. 2. If
all of the occurring words are taken into account, however, one is able to see
intriguing transformations of the word classes as a function of the frequency of
usage of the words, as demonstrated in this work.
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Abstract. We explored the use of Self Organizing Map (SOM) to as-
sess the problem of efficiency measurement in the case of health care
providers. To do this, we used as input the data from the balance sheets
of 300 health care providers, as resulting from the Italian Statistics Insti-
tute (ISTAT) database, and we examined their representation obtained
both by running classical SOM algorithm, and by modifying it through
the replacement of standard Euclidean distance with the generalized
Minkowski metrics. Finally, we have shown how the results may be em-
ployed to perform graph mining on data. In this way, we were able to
discover intrinsic relationships among health care providers that, in our
opinion, can be of help to stakeholders to improve the quality of health
care service. Our results seem to contribute to the existing literature in at
least two ways: (a) using SOM to analyze data of health care providers is
completely new; (b) SOM graph mining shows, in turn, elements of inno-
vations for the way the adjacency matrix is formed, with the connections
among SOM winner nodes used as starting point to the process.

Keywords: SOM, Network Representation, Efficiency, Health Care
Providers.

1 Introduction

In an ideal world the health system should be effective, and it should be efficient,
i.e. it should be able to achieve the specified outcomes in a way to maximise ac-
cess, outputs and outcomes within the available resources. In the real world,
however, this does not happen. Just to make an example, looking at the situ-
ation of Italy, health care expenditure plays a crucial impact into the financial
resources of the country; nevertheless our health care system is lesser efficient
than others, and it is not easy to explain why. In particular, the basic difficulty
is to find a common platform to compare efficiency of health systems, because of
their intrinsic complexity, and of certain ambiguity in what does efficiency itself
consist and how to measure it.

For what it concerns the complexity of health systems, a quite recent study
of the Australian National Health and Hospitals Reform Commission [10] found
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low relation between efficiency and the level of health spendings, thus suggesting
that rather than increasing expenditures, regulatory efforts should be addressed
on different allocation of the existing resources.

With respect to the ambiguity of the definition of efficiency and to the way to
measure it, there are at least two issues we can point on. The first one relates to
the method used to generate efficiency scores. Most commonly used techniques
include Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis
(SFA) [9]; there is a huge literature devoted to compare them, and to evaluate
their statistical properties [5], [13]. The second major area of research uses either
DFA or SFA to examine efficiency in a single area of health care production: [4]
focused on hospitals; [11] on pharmaceutical industry, and [3] on long term care,
just to cite some.

Within such framework, the main contributions of this work may be briefly
summarized as follows:

– we focused on the case of Italy, and, being aware of the need for the country
to control health care costs, we examined the balance sheets data of 300
health care providers that receive total or partial public fundings;

– we run our analysis using Self Organizing Maps (SOMs): since, to the best
of our knowledge, this is a first time application in the health care sector, we
mainly addressed our efforts to the application of classic SOM algorithm.
As unique concession to more sophisticated analysis, due to the high di-
mensionality of the dataset, we explored the convenience to train SOM with
similarity measures other than the Euclidean one, such metrics being chosen
among Minkowski norms [17]:

||X ||p =

(∑
i

|Xi|p
) 1

p

, for p ∈ R+. (1)

We have then analized how the clustering capabilities of SOM are modified
when both prenorms (0 < p < 1), and ultrametrics (p >> 1) are considered.

– As final step, we selected the best performing SOM, and we analyzed the
connections among the winner nodes, thus obtaining an adjacency matrix
that has been the starting point for a network representation of health care
providers. We have used it to retrieve more information about their efficiency,
and to suggest some economic interpretations of the results.

This paper is therefore organized as follows: Section 2 briefly describes the
problem we focused on, and the data we have considered in the study; Section
3 provides a glimpse on the literature that deals on the alternatives to standard
Euclidean metric, and then illustrates the changes carried on SOM algorithm
to use it with norms derived from (1). Section 4 illustrates the details of our
simulations, and discusses the results we have obtained. Section 5 concludes.

2 Problem Statement and Data Description

The Italian health system assumes that health services can be provided both by
public and private structures, the former essentially totally funded.
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Here the term public identifies two kind of structures: Aziende Sanitarie Lo-
cali (ASL) and Aziende Ospedalierie (AO). The main difference between the
two enterprises stands in the fact that while AO are generally single structures
(namely: hospitals), ASL, on the other hand, are more composite, since, by defi-
nition of law, they can include more than one local (regional, district, municipal)
units that provide health care to citizens.

According to the more recent reform statements of the public health sector,
ASL and AO are required to act like autonomous units to control their financial
flows. This means that:

(i) Each unit of the system should exhibit capabilities concerning the manage-
ment of economic and financial flows.

(ii) The efficiency of each unit does not only depend on factors of technical type
(such as quality of the provided health service, innovation, satisfaction of
the final consumer), but also by more strictly financial factors.

(iii) The capability of the whole system to maintain satisfying levels of solvency
and efficiency depends, in turn, on those of every component of the system
(ASL and AO), and on their capability to interact one to each other.

The efficiency of the system becomes therefore something that include in a
broad sense the bare management of financial variables: for this reason we have
analyzed the balance sheets of 300 public enterprises (ASL and AO), as resulting
from the more recent Italian Statistics Institute (ISTAT1) database. The goal was
to retain information that might help to monitor the actual level of efficiency
of the National Health System, and, eventually, to find some suggestions to
improve it.

The data under examination were arranged into two different aggregation
levels: regional, and by single unit. Since Italy is organized into twenty regional
districts (as resulting from Table 1), we managed twenty files, and within each of
them, a variable number of financial statements of public health care providers
operating into the region itself.

Every unit is identified by a string code whose first part is the region ID, and
the second part is a number varying from 101 to 999. For instance, PIEM101
identifies the first ASL of Turin in Piedmont, while VEN112 is associated to
the ASL of Venice, and so on. The records in the balance sheet, on the other
hand, are organized according to the principles of the International Accounting
Standards (IAS2), so that they capture the financial flows of each single unit.
Examples of such flows are given by fundings (from public institutions or from
private organizations), inflows deriving from the provision of health services, or
costs and liabilities, for an overall number of 164 variables.

If we examine the data in the traditional accounting way, we should move
to set apart from the balance sheet those variables that are generally employed
to calculate financial ratios, but we decided to behave differently, for at least
two reasons. The first one is that although financial ratios should accomplish to

1 www.istat.it
2 http://www.ifrs.org/Home.htm

www.istat.it
http://www.ifrs.org/Home.htm
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Table 1. Name of Italian Regional Districts, and the ID associated to them throughout
the paper

Name ID Name ID

Abruzzo ABR Aosta Valley VDA
Apulia PGL Basilicata BAS
Calabria CAL Campania CAM
Emilia–Romagna EMROM Friuli–Venezia Giulia FRI
Lazio LAZ Liguria LIG
Lombardy LOM Marche MAR
Molise MOL Piedmont PIEM
Sardinia SAR Sicily SIC
Trentino–Alto Adige TNT–BZ Tuscany TOSC
Umbria UMB Veneto VEN

simplification purposes, the number of ratios that can be built from the balance
sheet does not sensitively differ from the number of records in the balance sheet
itself. A more technical explanation of our choice comes by looking to the pec-
ularity of data we are considering. Both ASL and AO, in fact, are enterprises
almost uniquely devoted to provide health care services, so that the greater part
of the records we can read in their balance sheet pertains costs and inflows re-
lated to such specific activity; on the other hand, the accounting literature does
not provide proper financial ratios that can be able to capture such specificity.

As a result, we decided to consider all the available data from the financial
statements of ASL and AO, thus obtaining an input matrix of dimensions 300×
164, where each row represents either ASL or AO with their 164 normalized
determinants.

3 The SOM Algorithm and the Curse of Dimensionality

In recent years a number of contributions questioned (mostly from the theoretical
point of view) on the relevance of the Euclidean norm, when it is used to deal with
data embedded into high–dimensional spaces [7]. The problem is that it might
make pairwise distances more similar than effectively they are; this, in turn,
might lead to regrettable inconvenients, especially in cases where the distance
among various patterns is the fundament for more complex content retrieval
tasks [1]. Being aware of such curse of dimensionality, [2] focused on the analysis
of the concentration in the alternatives to the standard Euclidean norm, and
stressed the attention on the family of generalised Minkowsky norms:

||X ||p =

(∑
i

|Xi|p
) 1

p

. (2)

Here p is a strictly positive real value (fractional norms). Using the family de-
fined by (2), [2] observed that nearest neighbour search is meaningless in high-
dimensional spaces for integer p values equal or greater that two (the so called
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ultrametrics). Those results are general, in the sense that they hold also when p
takes positive real values. In addition, [8] outlined that the optimal distance could
depend on the type of noise on the data: fractional norms should be preferable
in the case of colored noise, while in the case of Gaussian noise, the Euclidean
metrics should be more robust than fractional ones. More recently, [17] gave also
proof that, in contrast to what expected, prenorms (0 < p < 1) are not always
less concentrated than higher order norms. Finally, [14] and [15] provided evi-
dence that the use of both prenorms and ultrametrics can be noteworthy, when
dealing with financial data.

We considered such debate of particular interest for our study, since we need
to manage input patterns embedded into a very high–dimensional space: we are
primarily concerned to test if the performances of SOM may take advantage
from changes in the adopted similarity measures.

To do this, we needed to modify the SOM procedure in a proper way. In
practice, the plain SOM uses a set of q neurons, (arranged either on a strip or
into a 2D rectangular or hexagonal grid) to form a discrete topological mapping
of an input space embedded into a n–dimensions space (n >> 2). At the start
of the learning, all the weights are initialised at random. Then the algorithm
repeats the following steps: we will refer to the case of a mono–dimensional
SOM, but the layout presented can be easily generalized to higher dimensional
grids.

If x(t) = {xj(t)}j=1,...,n ∈ R
n is the input item presented at time t to a map

M having q nodes with weights mi(t) = {mi,j(t)}j=1,...,n ∈ R
n, (i = 1, ..., q), i∗t

will be claimed the winner neuron at step t iff:

i∗t = argmini∈M

⎛⎝∑
i∈M

n∑
j=1

|xj(t) − mi,j(t)|p
⎞⎠1/p

, p ∈ N . (3)

Where p is the distance parameter. More common choices for p include p = 1
(Manhattan or city block distance), and p = 2 (Euclidean distance).

Once the leader has been identified according to (3), the correction of nodes
in the map takes place; if Ni∗(t) is the set of neurons in the map belonging to
the neighbourhood of i∗ (in a topological sense), then:

mi(t + 1) = mi(t) + hi∗,i(t)[x(t) − mi(t)] . (4)

Where hi∗,i(·) is an interaction function, governing the way the nodes adjust in
relation to the winning neuron on the grid: most common shapes for h include the
constant function, and the Gaussian function [12]. After iterating such procedure
over a number of epochs, the map should tend to a steady organized state, and
neighbouring neurons should represent similar inputs. The degree of organization
reached by the map can be checked by means of convergence indexes, such as
the quantization error [18]: in this way, the learning procedure is stopped once
a proper convergence threshold level is reached.

In accordance to the studies presented in [2] and [17], we have then examined
various extensions of the standard Minkowski metrics appearing as argument in
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(3), and we trained SOM accordingly. In particular, we have relaxed (3), allowing
p to assume real positive values, to include both ultrametrics (p >> 1), and
prenorms (0 < p < 1). Obviously changes affected all the procedures involving
the use of the Euclidean metric as similarity measure, including, for instance,
the search for best matching units and the evaluation of quantization error.

4 Simulations and Discussion of the Results

We run simulations considering values of p in the range [0.5, 10] sampled at step
0.5 for an overall number of twenty alternative p values. For each of them we
trained a bunch of 100 plain SOMs with rectangular grid topology, and dimen-
sions varying from 5×5 to 21×21, isolating the SOM with best performances in
terms of quantization error. For every value of p such ideal SOM tends to exhibit
very closer topology grid dimensions (around 12× 12.) Our next move was then
to choose among the best performing SOMs the most representative one. In this
task we considered both the level of the quantization error, and the organization
of SOM nodes. Figure 1 provides a look at the four most significant results.

One can immediately note the concentration effect for p > 2 (Figure 1(c) and
1(d)): the blank parts of the maps are the only ones where winner nodes are
placed. This is a common feature to all SOMs trained with p >> 2. Concentra-
tion was less evident for p < 2; in such case, however, the advantage of using p
values other than two was not as higher (with respect to the quantization error)
as to justify the replacement of p = 2. We then concluded that, at least in our

(a) p=0.5 (b) p=2

(c) p=5 (d) p=10

Fig. 1. Distance matrix with map units size for the four best performing SOMs



36 M. Resta

(a) (b)

Fig. 2. From left to right: U–matrix (2(a)) and Best Matching Units –BMUs– (2(b))
for the best SOM trained with p = 2. It may be noticed the sparsity of BMUs

case, despite of the size of the embedding dimension, plain SOM trained with
the standard Euclidean norm still remains the best choice.

However, focusing on the case of p = 2 (see Figure 2), we noticed that, despite
of the overall good performance of SOM in terms of quantization error, the
winner nodes were too much sparse, to our purposes. We then decided to move
one step further, and we analized the connections among winner nodes (Best
Matching Units –BMUs) to build the related adjacency matrix. In practice, we
used SOM to perform graph mining like in [6], but with the difference that
we acted directly on the connections of SOM BMUs. The algorithm we used
is similar to that introduced in [16] to build Planar Maximally Filtered Graph
(PMFG), with changes involving the way distances among BMUs are evaluated:
where [16] uses correlation, here we used (1), with the p value as selected in the
previous stage of the procedure (in our case: p = 2.)

As a result, we obtained a representation of SOM nodes connections like the
one shown in Figure 3. Although the representation need to be interpreted with
certain care, the graph allowed us to extract some notable information. First
of all, the twelve clusters that now clearly emerge from the SOM exhibit quite
distinct features: we are going to discuss the more significant ones. Clusters 1 and
2 are characterized by lower overall positive revenues, and higher specific (i.e.
related to the provision of health care services) costs, cluster 3 is the one with
both the highest revenues from medical activity, and the lowest taxation costs;
clusters 4 and 9 are those which invest more on employees training. On the other
hand, cluster 5 groups enteprises which have received lower public fundings: it is
not very surprising to discover that this cluster is associated to the lowest level
in the value of production. In the balance sheet this variable generally monitors
the enterprise overall inflows: the (quite trivial) lesson we can learn from this
cluster is then that its members seem not able to manage financial inflows others
than public fundings. Cluster 8 is in the opposite situation of cluster 5, receiving
the highest level of public fundings, but despite of it, its members were not able
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Fig. 3. Graph mining on SOM

to reach the best financial results. Finally, cluster 11 exhibits the best financial
flows among those not specifically related to the health care provision.

Another interesting remark relates to the composition of clusters: clusters are
not territorial homogeneous, i.e. they generally group ASL and AO from different
regions; a partial exception to this rule is provided by cluster 2 that includes
53% of units from the region Emilia Romagna (EMROM). This could be of
particular importance, because it points on the existence of financial differences
among public health care providers belonging to the same region. This, in turn,
suggests that greater efficiency could be reached by operating on the allocation
of public fundings at regional level.

Finally, the organization of clusters provides information at technical level
too, suggesting that wraparound grid topologies (either toroidal or cylindric)
could reach more satisfying results.

5 Conclusion

In this paper we discussed an application of Self Organizing Map (SOM) to as-
sess the efficiency of health care providers. To do this, we examined by means
of SOM the data of the balance sheet of 300 italian health care providers that
receive public fundings. Since, to the best of our knowledge, this is a first–time
application in the health care sector, we mainly addressed our efforts to the ap-
plication of classic SOM algorithm. As unique concession to more sophisticated
analysis, due to the high dimensionality of the dataset we explored the conve-
nience to train SOM with similarity measures other than the Euclidean one,
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the metrics being chosen among Minkowski norms, as defined in [17]. We then
trained 20 blocks of SOM each of 100 maps, characterized by various grid topol-
ogy size, and by different distance metrics. The SOM performances were checked
focusing on the quantization error, variously evaluated according to the metric
in use. We obtained the best results with both SOM trained with the standard
Euclidean metric and with those trained through prenorms. In this latter case,
however, the gains in terms of quantization error were not as significant as to
justify the leaving of the Euclidean metric. In addition, we found that the infor-
mation provided by SOM were too much sparse to be significant to our purposes,
and we then moved one step further, using the map best matching units to build
an adjacency matrix that has been then starting point to a graph mining pro-
cess. This task was particularly proficient, since it allowed us to retain a number
of information about the efficiency condition of the health system in Italy. In
particular, we observed that more than increasing health care expenditures, a
succesfull move could be that to potentiate the integration among regions, and
the allocation of existing funds inside the regions themselves. Moreover, from
the technical point of view, the clusters organization we obtained suggests the
direction for further experiments: we could probably get better and more refined
results using a different grid topology, like the cylindric or the toroidal one.
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Abstract. The Self-organizing map (SOM) has been widely used in financial 
applications, not least for time-series analysis. The SOM has not only been 
utilized as a stand-alone clustering technique, its output has also been used as 
input for second-stage clustering. However, one ambiguity with the SOM 
clustering is that the degree of membership in a particular cluster is not always 
easy to judge. To this end, we propose a fuzzy C-means clustering of the units 
of two previously presented SOM models for financial time-series analysis: 
financial benchmarking of companies and monitoring indicators of currency 
crises. It allows each time-series point to have a partial membership in all 
identified, but overlapping, clusters, where the cluster centers express the 
representative financial states for the companies and countries, while the 
fluctuations of the membership degrees represent their variations over time. 

Keywords: Self-organizing maps, fuzzy C-means, financial time series. 

1   Introduction 

The Self-organizing map (SOM), proposed by Kohonen [1], has been widely used in 
industrial applications. It is an unsupervised and nonparametric neural network 
approach that pursues a simultaneous clustering and projection of high-dimensional 
data. While clustering algorithms, in general, attempt to partition data into natural 
groups by maximizing inter-cluster distance and minimizing intra-cluster distance, the 
SOM performs a clustering of a slightly different nature. The SOM can be thought of 
as a spatially constrained form of k-means clustering or as a projection maintaining the 
neighborhood relations in the data. In the early days of the SOM, information 
extraction was mainly facilitated by visual analysis of a U-matrix, where a color code 
between all neighboring nodes indicates their average distance [2]. The SOM has, 
however, not only been utilized as a stand-alone clustering technique, its output has 
also been used as input for a second stage of two-level clustering. Lampinen and Oja 
[3] proposed a two-level clustering by feeding the outputs of the first SOM into a 
second SOM. Further, Vesanto and Alhoniemi [4] outperformed stand-alone 
techniques using a two-level approach with both hierarchical agglomerative and 
partitional k-means clustering algorithms. Minimum distance and variance criteria have 
also been proposed for SOM clustering [5–7]. 
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However, one ambiguity with the SOM clustering is that the degree of membership 
in a particular cluster is not always easy to judge. In some cases, it might be beneficial 
to judge the degree to which a particular area of a cluster differs from the rest of the 
cluster, and what its closest match among the other clusters is. To this end, we apply 
fuzzy C-means (FCM) [8] clustering on the units of the SOM grid. The FCM algorithm 
allows each unit to have a partial membership in all identified, but overlapping, 
clusters. This enables sensible representation of the real world filled with uncertainty 
and imprecision. The model is not only expected to provide an adequate clustering, but 
also to enable easily interpretable visualizations of the evolution of cluster 
memberships over time. As the crispness of the data cannot be known a priori, the 
FCM clustering presents information on the overlapping of the clusters, be they crisp 
or fuzzy, while still always enabling comparisons between data points. We apply FCM 
clustering to two previously presented SOM models for financial time-series analysis: 
financial benchmarking of companies [9] and monitoring indicators of currency crises 
[10]. In this paper, such as in Liu and Lindholm’s [11] stand-alone FCM clustering, the 
cluster centers express the representative financial states for the companies and 
countries, while the varying membership degrees represent their fluctuations over time. 
The results indicate that fuzzy clustering of the SOM units is a useful addition to visual 
monitoring of financial time-series data. 

The paper is structured as follows. Section 2 discusses fuzzy clustering of the 
SOM. In Section 3, the two-level clustering is applied on financial time series. 
Section 4 concludes by presenting our key findings and future research directions. 

2   The Two-Level SOM-FCM Model 

The SOM is a non-parametric artificial neural network utilizing a competitive 
learning method first developed in [1]. The network of neurons consists of an input 
layer and an output layer. The number of neurons in the input layer equals the 
dimensions of the data, while the output layer is a topological grid. The SOM 
algorithm used in this paper is described here briefly – for further reference, see [12]. 

The training process starts with an ordered (e.g., principal component analysis) or 
random initialization of the reference vectors. The training algorithm has two steps: 
(1) finding the best-matching units (BMUs) and (2) adjusting the reference vectors. 
The first step compares, using the Euclidean distance, each input data vector xj (where 
j=1,2,…,N) with the network's reference vectors mi (where i=1,2,…,M) to find the 
best match mb, 

ij
i

bj mxmx −=− min , (1)

such that the distance between the data vector xj and the BMU mb is less than or equal 
the distance between xj and any other reference vector mi. Then the second step adjusts 
each reference vector mi with the sequential updating algorithm [12, p. 111]: 

[ ])()()()()1( )( tmtxthtmtm ijibii −+=+ , (2)

where t is a discrete time coordinate and )( jibh  a neighborhood function. The reference 

vectors can also be updated using the batch algorithm, which projects all xj to their mb 
before each mi is updated [12, p. 138]. 
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The units of the map can further be divided into clusters of similar units. Instead of 
dividing the units into crisp clusters, we employ the FCM algorithm, developed by 
[13] and improved by [8], for assigning a degree of membership of each unit in each 
of the clusters. The FCM algorithm implements an objective function-based fuzzy 
clustering method. The objective function μJ  is defined as the weighted sum of the 

Euclidean distances between each unit and each cluster center, where the weights are 
the degree of memberships of each unit in each cluster, and constrained by the 
requirement that the sum of memberships of each point equals 1: 
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where ( )∞∈ ,1μ  is the fuzzy exponent, uik is the degree of membership of reference 
vector mi (where i=1,2,…,M) in the cluster center ck (where k=1,2,…,C, and 1<C<M), 

and 
2

ki cm −  is the squared Euclidean distance between mi and ck. It operates 

through an iterative optimization of μJ  by updating the membership degree uik: 
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where s are the iteration steps, and by updating the cluster centers ck: 
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The algorithm proceeds as follows. First, the cluster centers are initialized 
randomly. Thereafter, each reference vector is assigned a membership grade in each 
cluster. Then the so-called Picard iteration through Eq. (4) and Eq. (5) is run to adjust 
the cluster centers and the membership values. The iterations will stop when the 
minimum amount of improvement between two consecutive iterations is less than a 
small positive number ε  or after a specified number of iterations. 

We use 0001.0=ε  and a maximum of 100 iterations. The improvement criterion 
ε  is small enough to ensure no possible significant improvements of the possibly local 
optima, while we never reached 100 iterations. The extent of overlapping between the 
clusters is set by the fuzzy exponent μ . When 1→μ , the fuzzy clustering converges 
to a crisp k-means clustering, while when ∞→μ  the cluster centers tend towards the 
center of the data set. Several experiments were performed to set the μ - and c-values. 

3   Applications of SOM-FCM for Financial Times Series Analysis 

3.1   The Financial Benchmarking Model 

The financial benchmarking model was created to perform longitudinal financial 
performance benchmarking of international pulp and paper companies. The model 



 Fuzzy Clustering of the SOM: Some Applications on Financial Time Series 43 

consisted of seven financial ratios for the years 1995–2003, for a total of 78 pulp and 
paper companies. The ratios included were operating margin, return on equity, and 
return on total assets (profitability ratios), equity to capital and interest coverage 
(solvency ratios), quick ratio (liquidity ratio), and receivables turnover (efficiency 
ratio). The model is presented in detail in Eklund et al. [9] and validated in Eklund  
et al. [14]. 
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Fig. 1. The financial benchmarking model 

The model was created in SOM_PAK 3.1, using randomly initialized reference 
vectors and sequential training, and visualized in Nenet 1.1. Histogram equalization 
[15] was used to preprocess the outlier-rich and heavily non-normally distributed 
financial ratios. The map consists of a 9 x 7 lattice, divided into eight clusters 
representing different aspects of financial performance, and can be found in Fig. 1. In 
the figure, the five largest pulp and paper companies according to net sales in 2003 
are displayed. The notations are as follows: International Paper = IP, Gerogia Pacific 
= GP, Stora Enso = SE, Kimberly-Clark = KC, and Weyerhaeuser = WH. The feature 
planes of the map are displayed at the top of the figure. The map is roughly ordered 
into high profitability on the right hand side of the map, high solvency and liquidity in 
the middle and upper right hand side of the map, and high efficiency in upper right 
hand side, as well as lower and upper left hand sides of the map. Generally speaking, 
the best in class companies are in clusters A and B, and poorest in clusters G and H. 
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3.2   Fuzzy Clustering of the Financial Benchmarking Model 

The reference vectors from the financial benchmarking model were used as input for a 
second–level clustering. Several experiments were performed, varying the μ -value 

(between 1.0 and 3.0) and the c-value (between 3 and 9). Based upon these 
experiments, an μ -value of 2.0 provided the best visual interpretability of the map, 

introducing a fuzziness degree large enough to show relationships between clusters, 
but not large enough to completely eliminate cluster borders. The c-value was set as 
8, in accordance with the originally identified number of clusters on the map. 
However, different c-values were tested, including a three cluster model that roughly 
divided the companies into good, average, and poor performers. Eight clusters were in 
this case used in order to be able to assess this clustering in terms of the original 
model. 

Cluster 1

0.00 0.31 0.62 0.93

Cluster 2

0.00 0.31 0.62 0.94

Cluster 3

0.00 0.30 0.59 0.88

Cluster 4

0.00 0.30 0.59 0.89

Cluster 5

0.00 0.30 0.60 0.89

Cluster 6

0.00 0.30 0.60 0.89

Cluster 7

0.00 0.31 0.62 0.93

Cluster 8

0.00 0.31 0.62 0.93   

Cluster 1

0.01 0.26 0.50 0.74

Cluster 2

0.01 0.28 0.56 0.83

Cluster 3

0.02 0.22 0.42 0.61

Cluster 4

0.01 0.25 0.48 0.71

Cluster 5

0.02 0.17 0.31 0.46

Cluster 6

0.02 0.26 0.50 0.74

Cluster 7

0.01 0.27 0.54 0.81

Cluster 8

0.01 0.27 0.53 0.79 
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Fig. 3. FCM clustering of the benchmarking model with an μ -value of 2.0 and c-value of 8 

Fig. 2 shows a SOMine 5.1 visualization of the nodes’ cluster membership degrees 
for (a) an μ -value of 1.8 and (b) 2.2. It clearly shows the higher crispness of the 

clusters in (a) vis-à-vis the higher fuzziness of (b). The right map in Fig. 3. shows the 
nodes’ cluster membership degrees for the chosen μ -value of 2.0, while the left shows 

a defuzzification using maximum memberships. It shows that most of the clusters of 
the FCM model coincide with the clustering of the original map. For example, the best 
in class clusters (A and B in Fig. 1) largely coincide with clusters 1 and 2 in Fig. 3., 
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only partially overlapping each other and not really any other clusters. The poorest 
clusters (F, G, and H) are also quite clearly identifiable as clusters 6, 7, and 8 in Fig. 3. 
The only cluster not identifiable is cluster D, which forms a part of cluster 3 in Fig. 3. 
The nodes in cluster D thus seem to display similarity to nodes in clusters C, E, and to 
a degree, cluster F. When using Ward’s [16] clustering on the map in Fig. 1, cluster D 
does indeed merge with cluster C, indicating a slightly twisted map. This is a 
complement to other methods, such as Sammon’s mapping, for testing map 
twistedness. Further, the FCM clustering shows that cluster E is split into two groups 
largely based upon liquidity (quick ratio), clusters 4 and 5. 
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Fig. 4. Membership degrees for the five largest P&P companies in 2003 

Fig. 4 shows the cluster membership degrees of the top five pulp and paper 
companies. The figures depict that the cluster memberships of the most stable 
companies (KC, best) and (IP, poorest) are high (membership of ca 0.8), while the 
companies that shift between clusters show low membership values (ca 0.6 or less). 
Further, Fig. 4 shows that the clusters on the left and the right border of the map 
overlap to a lesser degree than the clusters in the middle, such as the data point for 
Weyerhaeuser in 1999. In this particular case, the membership degree does not exceed 
0.2 for any of the clusters, indicating no predominant cluster over others. This is 
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indeed informative when judging the certainty to which the financial performance of a 
company is categorized to a cluster. To incorporate this type of uncertainty, 
defuzzification using a threshold on the above utilized maximum-membership method 
might be advantageous. 

3.3   The Currency Crisis Model 

The currency crisis model was created for visual monitoring of currency crisis 
indicators, as is done in [17] on general economic and financial variables. The model 
consisted of four monthly indicators of currency crises for 23 emerging market 
economies from 1971:1–1997:12. The indicators were chosen and transformed based 
on a seminal early warning system created by IMF staff [18]. The indicators included 
were foreign exchange reserve loss, export loss, real exchange-rate overvaluation 
relative to trend and current account deficit to GDP. This model is, however, 
conceptually different from the benchmarking model. Each data point has a class 
dummy indicating the occurrence of a crisis, pre-crisis or tranquil period. A crisis 
period is defined to occur when exchange-rate and reserve volatility exceeds a 
specified threshold, while the pre-crisis periods are defined as 24 months preceding a 
crisis. The class labels were associated with the model by only affecting the updating 
of the reference vectors (batch version of Eq. 2), not the choice of the BMU (Eq. 1). 
Thus, the main purpose of the model is to visualize the evolution of financial indicators 
to assist the detection of vulnerabilities or threats to financial stability. The model is 
presented in detail in Sarlin [10] and a model on the same data set is evaluated in terms 
of out-of-sample accuracy in Sarlin and Marghescu [19]. Moreover, a stand-alone 
FCM clustering has been applied on a close to similar data set in [20]. 

The model was created and visualized with Viscovery SOMine 5.1, using the two 
principle components for initializing the reference vectors and the batch updating 
algorithm. The contribution of each input is standardized using columnwise 
normalization by range. However, the effects of extremities and outliers are not 
eliminated, since a crisis episode is per se an extreme event. The map consists of 137 
output neurons ordered on a 13 x 11 lattice, divided into four crisp clusters 
representing different time periods of the currency crisis cycle. The units were 
clustered using Ward’s [16] hierarchical clustering on the associated variables. The 
map, with a projection of indicators for Argentina from 1971–1997, and its feature 
planes are shown in Fig. 5. The map is roughly divided into a tranquil cluster on the 
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 Fuzzy Clustering of the SOM: Some Applications on Financial Time Series 47 

right side of the map (cluster D), a crisis cluster in the upper-left part (cluster C), and a 
slight early-warning and a pre-crisis cluster in the lower-left part (cluster B and A). 

3.4   Fuzzy Clustering of the Currency Crisis Model 

Similarly as for the benchmarking model, the reference vectors from the crisis model 
were used as input for a second–level clustering, whereafter the membership degrees 
and the defuzzification is visualized in SOMine. The same experiments were 
performed, varying the μ -value (between 1.0 and 3.0) and the c-value (between 3 
and 9). For those models, μ ={1.8,2.0,2.2} give the best results; higher fuzzy 
exponents give non-smooth memberships, while lower give roughly crisp 
memberships. However, as for the benchmarking model, an μ -value of 2.0 provided 
the best visual interpretability. The c-value was first set as 4 (Fig. 6), in accordance 
with the originally identified number of clusters on the map, but later adjusted to 3 
(Fig. 7). The concern with the 4-cluster model is that the cluster termed Early warning 
does not directly contribute to the currency crisis cycle. Although it would, of course, 
be informative to have an Early warning cluster, the cluster is quite small and borders 
the pre-crisis cluster both between the tranquil cluster (as desired) and the crisis 
cluster (as not desired). In Fig. 8, where the vertical dotted lines represent crisis 
episodes, the fluctuations of indicators for Argentina are shown using both models. 
This exercise confirms that the Early warning cluster is a less influential cluster that 
does not add real value to the analysis of the currency crisis cycle. Thus, the 3-cluster 
model is utilized for assessing the fluctuations in the data. 

Argentina experienced three crisis episodes during the analyzed period. As shown in 
Fig. 8, the first crisis in 1975 was preceded by high membership values in the pre-crisis 
cluster, whereafter the memberships in the crisis and subsequently the tranquil cluster 
dominated. The membership values before, during, and after the crisis episode in 1982  
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Fig. 8. Membership degrees for Argentina in the 4 and 3 cluster models 

similarly characterized a currency crisis cycle. The pre-crisis period for the crisis 
episode in 1990 is, on the other hand, characterized by abnormal memberships that 
vary between the tranquil and the crisis cluster, and does thus not resemble the 
generalization of this model. Further, indications of the out-of-sample crisis episode in 
1999 are given already from 1992 onwards. 

As evaluating the SOM model’s accuracy is not the concern of this paper, and has 
been done previously, the focus is on the added value of the membership values. The 
fuzzy clustering in this application is rather crisp, as a comparison of the data points 
for 1972 and 1982, for example, indicates. The conditions in 1972 and 1982, 
respectively, are projected into different sides of the border between the pre-crisis and 
the tranquil cluster, while still having high memberships in their respective cluster 
centers. The crispness is, however, something that cannot be known a priori. 
Although the clustering is to some extent non-overlapping, the differences within 
each cluster and between each data point still indicate fluctuations in the conditions. 

4   Conclusions 

This paper addresses an ambiguity of the SOM clustering; the degree of membership in 
a particular cluster. To this end, FCM clustering is applied on the units of the SOM 
grid, allowing each data point to have a partial membership in all identified, but 
overlapping, clusters. The FCM clustering is applied to two previously presented SOM 
models for financial time-series analysis. Using FCM clustering, the cluster centers 
express the representative financial states for the companies and countries, 
respectively, while the varying membership degrees represent fluctuations of their 
states over time. The results indicate that fuzzy clustering of the SOM units is a useful 
addition to visual monitoring and representation of financial time series. However, the 
clustering still needs to be objectively validated. For this task, there exist cluster 
validity measures, such as [21–22]; however, this is left for future work. 



 Fuzzy Clustering of the SOM: Some Applications on Financial Time Series 49 

Acknowledgments 

We acknowledge Academy of Finland (grant no. 127656) and Lars och Ernst Krogius 
forskningsfond for financial support. The views in this paper are those of the authors 
and do not necessarily reflect those of the European Central Bank. 

References 

1. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological 
Cybernetics 66, 59–69 (1982) 

2. Ultsch, A., Siemon, H.P.: Kohonen’s self organizing feature maps for exploratory data 
analysis. In: Proceedings of the International Conference on Neural Networks, pp. 305–
308. Kluwer, Dordrecht (1990) 

3. Lampinen, J., Oja, E.: Clustering properties of hierarchical self-organizing maps. Journal 
of Mathematical Imaging and Vision 2(2–3), 261–272 (1992) 

4. Murtagh, F.: Interpreting the Kohonen self-organizing feature map using contiguity-
constrained clustering. Pattern Recognition Letters 16(4), 399–408 (1995) 

5. Kiang, M.Y.: Extending the Kohonen self-organizing map networks for clustering 
analysis. Computational Statistics and Data Analysis 38, 161–180 (2001) 

6. Vesanto, J., Sulkava, M.: Distance Matrix Based Clustering of the Self-Organizing Map. 
In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 951–956. Springer, 
Heidelberg (2002) 

7. Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Transactions on 
Neural Networks 11(3), 586–600 (2000) 

8. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum 
Press, New York (1981) 

9. Eklund, T., Back, B., Vanharanta, H., Visa, A.: Using the Self-Organizing Map as a 
Visualization Tool in Financial Benchmarking. Information Visualization 2, 171–181 
(2003) 

10. Sarlin, P.: Visual monitoring of financial stability with a self-organizing neural network. 
In: Proceedings of the 10th IEEE International Conference on Intelligent Systems Design 
and Applications, pp. 248–253. IEEE Press, Los Alamitos (2010) 

11. Liu, S., Lindholm, C.: Assessing the Early Warning Signals of Financial Crises: A Fuzzy 
Clustering Approach. Intelligent Systems in Accounting, Finance & Management 14, 179–
202 (2006) 

12. Kohonen, T.: Self-Organizing Maps. Springer, Berlin (2001) 
13. Dunn, J.C.: A Fuzzy Relative of the ISODATA Process and its Use in Detecting Compact, 

Well-Separated Clusters. Cybernetics and Systems 3, 32–57 (1973) 
14. Eklund, T., Back, B., Vanharanta, H., Visa, A.: Evaluating a SOM-Based Financial 

Benchmarking Tool. Journal of Emerging Technologies in Accounting 5, 109–127 (2008) 
15. Guiver, J.P., Klimasauskas, C.C.: Applying Neural Networks, Part IV: Improving 

Performance. PC AI Magazine 5, 34–41 (1991) 
16. Ward, J.: Hierarchical grouping to optimize an objective function. Journal of the American 

Statistical Association 58, 236–244 (1963) 
17. Resta, M.: Early Warning Systems: an approach via Self Organizing Maps with 

applications to emergent markets. In: Proceedings of the 18th Italian Workshop on Neural 
Networks, pp. 176–184. IOS Press, Amsterdam (2009) 



50 P. Sarlin and T. Eklund 

18. Berg, A., Pattillo, C.: What caused the Asian crises: An early warning system approach. 
Economic Notes 28, 285–334 (1999) 

19. Sarlin, P., Marghescu, D.: Visual Predictions of Currency Crises using Self-Organizing 
Maps. Intelligent Systems in Accounting, Finance and Management (forthcoming, 2011) 

20. Marghescu, D., Sarlin, P., Liu, S.: Early Warning Analysis for Currency Crises in 
Emerging Markets: A Revisit with Fuzzy Clustering. Intelligent Systems in Accounting, 
Finance and Management 17(2–3), 143–165 (2010) 

21. Bezdek, J.C.: Cluster validity with fuzzy sets. Cybernetics 3, 58–73 (1974) 
22. Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Transactions on Pattern 

Analysis and Machine Intelligence 13(8), 841–847 (1991) 
 



Self Organizing Maps as Models of Social
Processes: The Case of Electoral Preferences

Antonio Neme1,2,3, Sergio Hernández2,3, and Omar Neme4

1 Adaptive Informatics Research Centre, Aalto University,
Konemiehentie 2, Espoo, FIN

aneme@cis.hut.fi
2 Complex Systems Group, Autonomous University of Mexico City

San Lorenzo 290, Mexico City, MEX
3 Centre for Complex Sciences, National Autonomous University of Mexico, MEX

sergiohz@c3.unam.mx
4 School of Economics National Polytechnic Institute, Plan de agua Prieta 66

Mexico City, MEX
oneme@ipn.mx

Abstract. We propose the use of self-organizing maps as models of so-
cial processes, in particular, of electoral preferences. In some voting dis-
tricts patterns of electoral preferences emerge, such that in nearby areas
citizens tend to vote for the same candidate whereas in geographically
distant areas the most voted candidate is that whose political position is
distant to the latter. Those patterns are similar to the spatial structure
achieved by self-organizing maps. This model is able to achieve spatial
order from disorder by forming a topographic map of the external field,
identified with advertising from the media. Here individuals are repre-
sented in two spaces: a static geographical location, and a dynamic po-
litical position. The modification of the later leads to a pattern in which
both spaces are correlated.

Keywords: Self-organizing maps; electoral preferences; social sciences
and computational models.

1 Introduction

Self-organizing maps (SOM) have been widely applied in several fields, covering
visualization [1], time series processing [2], and many others. Here, we propose
its use not as a data analysis tool, but as a model of social processes. SOM is, at
the end, an algorithm, and in that sense, is not different from other models for
social sciences, that are also algorithms. The field of statistical physics has been
very productive in proposing models for a wide variety of social phenomena [3].
In that sense, we propose the use of SOM as a model of a specific phenomenon,
that of electoral preferences.

Electoral preferences of individuals are dynamic. They may be influenced by
the opinion of other voters, the perception they have from candidates, as well as
from factors like propaganda from the media, and several other issues. Although
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citizens tend to vote for those candidate or political parties that reflects more
sharply their own ideas, these perceptions may be modified. Electoral preferences
have been extensively studied from different angles [3,4,5]. Here, we present a
model of a special case of electoral preferences based on SOM.

In some voting districts, there is a correlation between geographical space and
the perceived political position of the candidate they voted for. In some cases,
whole adjacent regions of cities or countries tend to vote for the same political
party or candidate while other, possibly distant regions, tend to vote for other
candidates, with a perceived different political position (see fig. 1-a).

One issue that seems to be a fundamental factor in the dynamics of electoral
preferences is the impact of the media [6]. Specifically, we refer to the propaganda
from the parties and candidates aiming to influence the decision of voters. One
way to model this influence is as follows. A party or candidate is described by
a point in a high dimensional space, the political position space. This space is
defined by several political issues, such as public health, education, foreign affairs,
labor issues, environmental policies, etc. Each party is defined by a vector with
the relevant political issues. Each voter has an opinion over the same issues,
defined by a vector that summarizes his/her political position. Opinion vectors
from voters are susceptible of being modified.

Fig. 1. a) Voting in Mexico. Gray level codes voting percentages for two parties, rep-
resented by white and black. North Mexico presents darker levels than those in south
Mexico. b) SOM formation for four input vectors and three dimensions. It is observed
that in the final map the most distant vectors are located at opposite locations.

When a political party presents an advertising in the media voters may react to
it. The main assumption here is that the voters whose political position is closer
to the political position that describes the party, will react and modify their
opinion in order to get even closer to the position of the party. At the same time,
these voters will act as active voters or promoters, affectig other voters within
their neighborhood and modify as well their opinion to get closer also to that of
the political party. The area of influence of these active voters tend to decrease
with time as effect of habituation to active voters [3]. At the end of the process, it
is observed that certain regions tend to vote for a certain candidate while distant
regions tend to vote for a very different, politically speaking, candidate (see fig.
1-a). The model explains the spatial patterns in which electoral preferences form
clusters, known as topographic maps. Although such patterns may be explained
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by demographic factors, may also be explained at the light of both, the exposure
to an external field (media), and a self-organizing process. The described process
is similar to the map formation in SOM.

Voting is a major feature of democratic regimes. For that, it has attracted
the attention of the scientific community to study deeply its dynamics. It has
been studied from several perspectives, including democratic debates and opinion
forming models [3], neighborhood influence from similar voters in the Sznajd
model, voting through opinion shift [4], and many others. Electoral preferences
are an example of opinion dynamics, widely studied from the social sciences
but also from the mathematical-based sciences. Several ideas are common in
all models. First, political position of voters is susceptible of being influenced.
Second, the aspects that voters take into account for voting are measurable.
Third, in some models, the dynamics are internal, that is, opinions are driven
only by the actual opinion of some voters. However, in other models, such as in
[7,8], the internal opinion dynamics are subject to external influences. The idea
behind the external influence is that it is possible to affect some of the voters in
order to shift their electoral preference toward some desired option.

SOM has been used as a tool to elucidate patterns in data. A less studied side
of SOMs are its capabilities of modeling dynamical systems. By this, we mean it
may model certain processes. We intend to use the SOM as a model of a social
process. We do not intend to use it as a data analysis tool. That is, we propose
the use of SOM as a dynamical system model to study a social phenomena,
the spatial pattern formation in some electoral processes. These patterns are
associated to patterns observed in SOM.

We are interested in the topographic map formation, a particular case of spa-
tial patterns. A topographic map (TM) is a global structure in a low-dimensional
physical media, which is an approximation of the distribution shown by the in-
put stimulus from the multidimensional input space or structure of the external
field. In a TM, high-dimensional input vectors that are similar are mapped to
close regions in the map, while other, distant vectors are mapped to farther ar-
eas. A TM is that in which topology of the input vectors are preserved in the
lattice [9]. In a TM, there is a correlation between geographical space and an
abstract space, that in this contribution corresponds to the political position
space. Voting distribution over a city or country may be the approximation of
the distribution of perceived political positions from candidates or parties.

2 The Model

It is important for the social sciences scholars to discover why some specific pat-
terns in the electoral preferences appear. In particular, studying the mechanisms
and dynamics that allow the appearance of TM-related maps over voting dis-
ticts is a case that has attracted the attention. In this contribution, we study
the relevance of external stimulus (media) and the influence voters receive from
their peers in order for those patterns to appear. We study those influences with
the self-organizing map as a model of electoral preferences.
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The SOM is a model of neural connections with the capability of producing
organization from disorder [1]. One of the main properties of the SOM is the
ability to preserve in the output map those topographical relations present in
the input data [1]. This attribute is achieved through the transformation of an
incoming analogical signal of arbitrary dimension into a discrete low-dimensional
map (usually one or two-dimensional), and by adaptively transforming data in a
topologically ordered fashion [1]. Each input data is mapped to a unit or neuron
in the lattice, to the one with the closest weight vector to the input vector,
or best matching unit (BMU). The SOM preserves neighborhood relationships
during training through the learning equation (1), which establishes the effect
that each BMU has over any other neuron.

The SOM structure consists, generally, of a two-dimensional lattice of units.
Each unit n maintains a dynamic weight vector wn which is the basic structure
for the algorithm to lead to map formation. The dimension of the input space is
considered in the SOM by allowing weight vectors to have as many components
as features in the input space. Variables defining the input space, and thus, the
weight space, are continuous. Weight vectors are adapted accordingly to:

wn(t + 1) = wn(t) + αn(t)hn(g, t)(xi − wn(t)) (1)

where α(t) is the learning rate at epoch t, hn(g, t) is the neighborhood function
from BMU g to unit n at epoch t and xi is the input vector. The neighborhood
decreases monotonically as a function of distance and time [10,11]. Neighborhood
is equivalent to a dynamic coupling parameter. In this work, we applied the so-
called bubble neighborhood in which units farther than a given distance do
not update their weight vector. The SOM preserves relationships in the input
data by starting with a large neighborhood and reducing it during the course of
training [1].

The SOM algorithm is divided in three stages. 1. Competition: The best
matching unit (BMU) g is the one whose weight vector is the closest to the
input vector x: BMU = arg ming ||x − wg|| 2. Cooperation: The adaptation is
diffused from the BMU g to the rest of the units in the lattice through the
learning equation (1). 3. Annealing: The learning parameter and neighborhood
are updated.

The map formed by the algorithm is a topographic one. The output map
is an approximation of the vectors distribution in the input space. We are not
interested in mapping multidimensional signals to a low dimensional space and
study the topographic relations, as it is done in several other applications, for
example the case of study of parliamentary elections in [13]. We are mainly
interested in the spatial pattern of the units when exposed to the input signals
or stimulus.

In this model, each unit corresponds to a voter or group of voters within a
geographic static area. Units are susceptible of being affected and also influence
other units. Although real individuals move around over the city, the discussions
about political issues are mainly present within their neighbors, which makes it
equivalent to static location. The weight vector associated to each unit is the
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position of voters with respect to the relevant political issues, that is, the weight
vector defines the position of voters in the political position space. The variables
that define this space are continuous and voters may occupy any region on this
multidimensional space.

When a BMU affects neighbors, all issues are equally modified accordingly to
eq. 1, that is, the position of the affected units is shifted in all dimensions. Also, as
the neighborhood function is discrete (bubble), all units within its neighborhood
are equally affected. The competition stage is interpreted as the assignment of
resources from parties or candidates to those possible voters which may act
as promoters. The cooperation stage summarizes the electoral campaign as the
influence from promoters or active voters in order to modify the political position
of their neighbors. The annealing stage reflects the habituation or refractoriness
from voters to the influence of promoters.

When an input stimulus (advertising) is presented, it only affects a single unit.
The affected unit corresponds to the BMU in the SOM and this unit will affect
its neighbors in order to attract them in the feature space. The feature space
corresponds to the political position of both, individuals and parties. So the
advertising affects a whole area through the most influenced individual (BMU),
regardless of the previous political position of affected units.

The process of self-organizing is iterative and as the neighborhood that BMUs
affect tend to zero, the weight vectors reach a steady state. This convergence
may represent a TM, if some conditions are satisfied (see fig. 2). First, the
initial neighborhood area should be sufficiently large. Second, the neighborhood
function should decrease in both, time and space [11,12]. Third, enough epochs
should occur [1].

Each unit i has its own weight vector wi, that defines the opinion of a group
of neighbor voters to the relevant issues considered in voting. The position of
each party k is defined by the vector pk. Citizens will vote for that candidate or
party to whom they are closer in the space of the considered issues. That is, an
unit i is said to vote for party j that:

j = argmin
k

|wi − pk| (2)

The position a unit has over each item is continuous and defined in the range
[0, 1]. The items that voters may consider as relevant are the position of the
political parties with regard to a vector of political issues. At the same time,
parties are defined in the political space by their own position to those aspects.
Parties that have a similar position will be represented as closer points in the
feature space, while parties with opposite positions will be defined by distant
points. Political parties tend to attract as many voters as possible by modifying
voters position’s towards their own position. Parties are coded as input vectors:
the political position of each one is defined as a vector. A party from the right-
most wing could be coded as [0, ..., 0] and a party from the left-most wing is
[1, ..., 1]. In general, parties do not change their position.

In the seminal work of Schelling [14], agents move towards an available location
in which the perceived comfort is better than that in the present location. Agents
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do not change their opinions, but their location, which leads to a segregation
pattern through displacements in geographical space. In the cultural model of
Axelrod [15], agents change their opinions (culture) by means of interaction
dictated by homophilia and in a stochastic fashion. In this model, cultures or
regions of similar individuals are formed, and segregation is observed. In this
model culture is defined by discrete variables, and there is a comparison between
an individual’s opinion and that of their neighbors. In the model we present,
there is not a comparison between an individual and her neighbors in order to
interact.

Table 1 shows the interpretation of SOM’s parameters and attributes in the
context of electoral preferences models. The area BMUs affect is decreasing as
a function of space and time. Voters have limited presence and resources, which
constraint them to promote candidates in distant regions from their own geo-
graphical position for a long time. These corresponds to the neighborhood of a
BMU. Also, voters decrease their presence as time goes by, which is equivalent
to the decreasing neighborhood as a function of time: voters become refractory
to active voters as a function of time. Neighborhood function summarizes the
mobility of voting promoters, as they may be visiting other areas, but they will
stop visiting distant ones as time elapses.

Table 1. Control parameters and variables in the electoral preferences model and its
equivalence in SOM

θ Equivalence in SOM Description
w Weight vector Political position of voters
P Number of input vectors Number of political parties or candidates
H Initial neighborhood area Area of influence of voters
E Number of epochs Political campaigns duration
d Input space dimension Number of political issues considered
ρ Avg. distance between input vectors Average difference of opinion among parties
δ Minimum distance between input vectors Minimum of political differences
ψ Maximum distance between input vectors Maximum of political differences
γ Avg. initial distance between neighbor units Avg initial diffences among neighbors
Pi Input vector i Political position of party i
fi No. of copies of each input vector i Number of advertising of party i per day
α Learning parameter Permeability of voters
Vi Initial number of units closer to Pi No. of supporters of Pi at the beginning
B Number of BMUs for each input vector No. of active voters for each party

The ρ, δ, and ψ parameters refer to the distribution of input vectors. ρ is
defined as the average Euclidean distance between all pairs of input vectors:
ρ = 1/P

∑
i�=j d(wi, wj). These three parameters summarize the political options

and are a measure of how radical those positions are.
The control parameter fi is associated to the amount of advertisement per

party per day. A political party is defined by its position to d political issues.
The position of party i is Pi, a point in the d−dimensional space. Not all the fi
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copies are exactly the same: each of the fi issues is modified by a random small
value σ. The interpretation is that each advertising emphasizes some issues while
others are put aside, at the time that some vote voters may get confused about
the message or misinterpret some aspects. The set of all fi defines the input or
stimulus space SOM will form a low-dimensional topographic map of that space.

Although there are several observable parameters, we are interested only in
one of them: the quality of the topographic map, i.e, how well the maps are
formed. The topographic error (TE) is a measure of the quality of the map and
is defined as the average number of input vectors whose BMU and second-BMU
are not contiguous [9].

In the SOM only one unit is selected as BMU. However, there are a number of
variations in which the BMU is not unique [16], and all BMU act simultaneously
to modify their neighbors. Here, we included this variation to give the model
more plausibility, as a given party may have more than a single active promoter.

The order parameter TE should be featured by the control parameters. It
has been stated that good maps (low TE) are achieved if initial neighborhood
is large enough and decreasing with time and space, otherwise, local order may
be achieved but global order does not emerge, when the initial configuration is
random. There are not analytical results about the conditions to achieve good
maps [17,1], even though some results are known for very specific cases[17,12].
Thus, we ran a set of experiments in order to characterize the topographic map
formation as a function of the control parameters.

In the experiments initial weight vectors are random, which corresponds to
a situation in which supporters are randomly distributed in the city. A number
of P parties tends to attract as many voters as possible in order to win the
elections. Voters are exposed to advertising from the media for a period of E
epochs and each party i presents to the voters fi advertisings per day.

3 Results

To study the electoral preferences dynamics and its organization, a hypothetical
city is defined as a lattice of units. It is also analyzed the topological organization
achieved as a function of external stimulus (input vectors), but also by means
of internal constraints, such as the size of the neighborhood units affect. The
external stimulus are defined as the advertising the media presents to voters and
those voters that are the closest to the advertising will react to them. Several
hundred thousands of maps were formed varying the parameters in table 1.
Parameters were randomnly sampled following flat distributions. Figures 2 show
the TE as a function of some of the control parameters.

We applied mutual information to determine the relevance of each parameter
and TE. It has been identified as a good correlation measure as it is able to find
non-linear relations between data [18]. It is defined as the amount of information
between possible states of two possible correlated systems X and Y . Mutual
information between the parameters in table 1 and TE are shown in fig. 2.
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Fig. 2. TE as a function of some control parameters in table 1 for lattice size 20× 20.
Mutual information between the parameter and TE is shown. Ranges were discretized
in 100 intervals. It is shown the average I(X; Y ) for the lattice sizes considered, as well
as the maximum and minimum I(X; Y ). X corresponds to TE whereas Y corresponds
to the studied parameter.

From fig. 2-a), it is observed that, as established by analytical results and nu-
merical explorations [17,9], TE decreases as the duration of the process
increases. Also (fig. 2-b), as established by theory [1], the tendency is that the
larger the initial neighborhood area, the lower the TE. TE is also a decreasing
function of the number of political issues considered by voters (fig. 2-c). This
is explained by the fact that the more dimensions defining the input space, the
easier is to modify the unit’s weight vector to unfold and approximate the high-
dimensional input vectors [1]. These three parameters have been widely studied,
so our simulations in these three parameters adjusted to the established theory
and numerical findings.

Besides the results that are predicted by the theory, such as the decreasing
TE with time, neighborhood and dimension of input space, other results not
previously identified were obtained. We proceed to explain such findings.

In its original version, SOM works with one BMU for input vector. In our
model, B ≥ 1 simultaneous BMUs are present for each input vector. A novel
finding is that TE decreases as the number of BMUs increases, with exception
of B = 2. The more the number of promoters per input vector, the more likely
for a TM is to form (fig. 2-g).

As a function of initial average political differences among neighbor voters (γ),
TE presents an interesting curve. γ is defined as 1/N2

∑
∀i�=j d(wi, wj), where

d(a, b) is the Euclidean distance between weight vectors a and b. When these
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differences are small, or very large, TE tends to be large. This is interpreted as
if individuals are very similar, then the map is unable to unfold and represent
the input vectors over the lattice. If political positions are too radical, then the
TM is not likely to appear (fig. 2-d).

There is a tendency towards low TE as the average distance between parties
increases, except for very distant vectors (fig. 2-e). In electoral terms, the more
distant the position of political parties, the easier it gets to the voters to polarize
and thus, form a TM. The number of candidates or parties P is the parameter
with the highest influence over TE (I(X ; Y ) = 1.88). TE is a measure of order
as it establishes for each input vector if its two most similar units are adjacent
in the lattice. It may happen that for r input vectors (r ≤ P ) the second most
BMU is not adjacent to the first, which increases TE. If r = 0 then TE = 0,
while if r = P , then TE = 1. If P is even, then it may happen that exactly half
of the input vectors are not properly mapped, that is TE = 0.5, otherwise, r is
not even (TE �= 0.5). TE may take values of 1/P × i, 0 ≤ i ≤ P (fig. 2-f).

TE is characterized by the parameters (γ, ρ). In fig. 2-h it is observed that
low TE are achieved if ρ is high but not maximum and at the same time γ
is approximately half the maximum distance (0.5, as it is normalized). Mutual
information between the compound system X = (γ, ρ) and Y = TE is 1.49.

4 Conclusions

We propose here the use of self-organizing map (SOM) as a model to study voting
processes under the constraints of permeability of voters, influence from parties
through an external field, and a decreasing influence from vote promoters. We
related parameters and variables in SOM with electoral issues and processes. We
have given evidence that the same mechanism that leads to self-organization in
SOM may, help to explain the patterns in electoral processes.

In previous models, electoral results over voting districts are not viewed as
topographic maps, but at most, as segregation states. Here, we have proposed
that electoral results may resemble topographic maps if some constratints are
observed. As in every model, the explanation power is limited by the assump-
tions supporting it. Thus, we present our model as a possible explanation of
the observed spatial patterns in some electoral districts under the circumstances
here detailed.

In the model, the final results of electoral processes is dictated by the influence
between voters, and the external influence of the media. We propose that the
election results are guided by the political position of the contenders and the
number of their advertising, subject to initial distribution of political preferences
of voters. The media exerts a non-linear influence in the spatial pattern formation
of voting. For a topographic map to appear, the duration of political campaigns
should be large enough. The higher the number of aspects that are considered
by voters, the more likely a topographic map is to emerge. If at the beginning
voters have more or less the same opinion, or population is radicalized, then it
is unlikely that topographic maps will emerge.



60 A. Neme, S. Hernández, and O. Neme

References

1. Kohonen, T.: Self-Organizing maps, 3rd edn. Springer, Heidelberg (2000)
2. Barreto, G., Araujo, A.: Identification and control of dynamical using the self-

organizing map. IEEE Transactions on Neural Networks 15(5), 1244–1259 (2004)
3. Galam, S.: The dynamics of minority opinions in democratic debates. Physica

A 336, 46–62 (2004), doi:10.1016/j.physa.2004.01.010
4. Pabjan, B., Pekalski, A.: Model opinion forming and voting. Physica A 387, 6183–

6189 (2008), doi:10.1016/j.physa.2008.07.003
5. Costa, R., Almeida, M., Andrade, S., Moreira, M.: Scaling behavior in a propor-

tional voting process. Phys. Rev. E. 60, 1067–1068 (1999)
6. Tuncay, C.: Opinion Dynamics Driven by Leaders, Media, Viruses and Worms. Int.

J. of Modern Physics C 18(5), 849–859 (2007)
7. González-Avella, J., Cosenza, M., Tucci, K.: Nonequilibrium transition induced by

mass media in a model for social influence. Phys. Rev. E 72 (2005)
8. Mazzitello, K., Candia, J., Dossetti, V.: Effects of Mass Media and Cultural Drift

in a Model for Social Influence. Int. J. Mod. Phys. C 18, 1475 (2007)
9. Villmann, T., Der, R., Herrmann, M., Martinetz, T.: Topology preservation in

self-organizing feature maps. IEEE Tr. on NN. 8(2), 256–266 (1997)
10. Flanagan, J.: Sufficiente conditions for self-organization in the SOM with a decreas-

ing neighborhood function of any width. C. of Art. NN. Conf. pub. 470 (1999)
11. Erwin, E., Obermayer, K., Schulten, K.: Self-organizing maps: Ordering, conver-

gence properties and energy functions. Biol. Cyb. 67, 47–55 (1992)
12. Erwin, E., Obermayer, K., Schulten, K.: self-organizing maps: stationary states,

metastability and convergence rate. Biol. Cyb. 67, 35–45 (1992b)
13. Niemelä, P., Honkela, T.: Analysis of parliamentary election results and socio-

economic situation using self-organizing map. In: Príncipe, J.C., Miikkulainen, R.
(eds.) WSOM 2009. LNCS, vol. 5629, pp. 209–218. Springer, Heidelberg (2009)

14. Schelling, T.: Micromotives and Macrobehavior. W. W. Norton (1978)
15. Axelrod, R.: The dissemination of culture. J. of Confl. Res. 41, 203–226 (1997)
16. Schulz, R., Reggia, J.: Temporally Asymmetric Learning Supports Sequence Pro-

cessing in Multi-Winner Self-Organizing Maps. Neural Comp. 16(3), 535–561
(2004)

17. Flanagan, J.: Self-organization in the one-dimensional SOM with a decreasing
neighborhood. Neural Networks 14(10), 1405–1417 (2001)

18. Celluci, C., Albano, A., Rap, P.: Statistical validation of mutual information cal-
culations. Phys. Rev. E 71, 66208 (2005)



EnvSOM: A SOM Algorithm Conditioned on the

Environment for Clustering and Visualization

Seraf́ın Alonso1, Mika Sulkava2, Miguel Angel Prada2,
Manuel Domı́nguez1, and Jaakko Hollmén2

1 Grupo de Investigación SUPPRESS, Universidad de León, León, Spain
saloc@unileon.es, manuel.dominguez@unileon.es

2 Department of Information and Computer Science, Aalto University School of
Science, Espoo, Finland

mika.sulkava@tkk.fi, miguel.prada@tkk.fi, Jaakko.Hollmen@hut.fi

Abstract. In this paper, we present a new approach suitable for analysis
of large data sets, conditioned on the environment. Mainly, the envSOM
algorithm consists of two consecutive trainings of the self-organizing map.
In the first phase, a SOM is trained using every available variable, but
only those which characterize the environment are used to compute the
winner unit. Therefore, this phase produces an accurate model of the
environment. In the second phase, a new SOM is initialized appropri-
ately with information from the codebooks of the first SOM. The new
SOM uses all the variables for winner selection. However, in this case the
environmental variables are kept fixed and only the remaining ones are
involved in the update process. A model of the whole data set influenced
by the environmental conditions is obtained in this second phase. The
result of this algorithm represents a probability function of a data set,
given the environment information. Therefore, it could be very useful in
the analysis of processes which have close dependencies on environmental
conditions.

Keywords: Self-organizing maps, variants of SOM, environmental con-
ditions, envSOM, data mining, pattern recognition.

1 Introduction

Many variants of SOM appeared in the literature [1]. The aims of these ap-
proaches comprise improvements in clustering, visualization, accuracy of the
model, computation time, etc. For instance, it is possible to define different neigh-
borhood functions, change the winner searching process, and introduce some a
priori information about classes or states. An overview of the main ideas which
can be used to modify the standard SOM is presented in [2].

These variants have brought great advantages for data analysis, but, so far,
none of them has been focused on the data analysis conditioned on the environ-
ment. It is well known that environmental conditions influence strongly most of
the real processes and systems. Furthermore, it is generally desirable to compare
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data from different processes whose environmental conditions are the same. For
these reasons, a new algorithm, the envSOM, is proposed in this paper. It still
captures the behavior of the processes, but takes into account the model of the
environment.

This paper is structured as follows: In Section 2, several approaches related
to the envSOM are reviewed briefly. In Section 3, the envSOM algorithm and its
two phases are explained in detail. Two examples used to test the algorithm are
described in Section 4. Also, the results obtained using the envSOM are shown
there. Finally, the conclusions are drawn in Section 5.

2 Similar Approaches

Several approaches, already presented in the literature, are described below.
Although they have some similarities with the proposed algorithm, they also
have essential differences.

In the Supervised SOM [3], the main idea is to modify the traditional unsu-
pervised SOM into a supervised algorithm by adding information about class-
identity in the learning process. For that purpose, the input vectors, x = [xs, xu],
consist of two different parts. The first one, xs, corresponds to the input data
and the second one, xu, is related to the class of the sample [4]. In order to vi-
sualize the map, the second part is pruned out. Classification is enhanced using
this method since the second part is the same for input vectors of the same class.
It could be necessary to weight the values of the second part to achieve a better
accuracy in the classification. The proposed envSOM algorithm does not depend
on a class-identity variable, but the input vectors comprise two rather different
parts, the environmental variables and the others.

The Tree-Structured SOM (TS-SOM) consists of several traditional SOMs or-
ganized hierarchically in several layers, i.e., a pyramid-like structure is obtained
where the lower SOMs are larger [5,6]. Firstly, training will take place at the
higher levels. Codebooks from these SOMs are kept fixed and then, the training
continues at the subsequent layers according to the hierarchy. The differences ap-
pear in both search and update steps. The winner searching process is performed
on the units at the same layer and the neighbors on the higher level according to
the hierarchy. In the update step, only the units at the same layer are updated,
keeping fixed the units at the higher level. Therefore, this variant is computa-
tionally quite inexpensive whereas the envSOM comprises two consecutive SOM
trainings.

The PicSOM algorithm is based on several TS-SOMs [7]. It was proposed
for retrieving images similar to a given reference image from a database. A
separate TS-SOM is used for each kind of feature vectors extracted from the
images (color, texture and shape). The responses from individual TS-SOMs are
combined automatically according to user’s preferences. The PicSOM approach
provides a robust method for using a set of image maps in parallel. The envSOM
algorithm also uses a set of special variables (characterizing the environment) to
cluster data.
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In the Layering SOM, a SOM is trained for each individual layer to achieve
better results in the field of exploratory analysis. In this sense, a growing hier-
archical SOM has been presented in [8]. That work explains a dynamic model
which adapts its architecture in the training process and uses more units where
more input data are projected. The major benefits of this approach are the re-
duction of training time due to the concept of layers, the possibility to discover
a hierarchical structure of the data, the improvement of cluster visualization by
displaying small maps at each layer and the preservation of topological similari-
ties between neighbors. This algorithm allows us to visualize data in detail, but
the models obtained are not conditioned on the environment.

The self-organizing map has also been used for time series processing in the
form of the Temporal SOM. In order to exploit the temporal information, SOM
needs to be enabled with a short-term memory, which can be implemented, e.g.,
through external tapped delay lines or different types of recurrence. Several of
these extensions are reviewed in [9,10]. In our approach, no short-term memory is
explicitly implemented, but it is usually advisable to introduce time information
in the model to analyze the temporal evolution, together with the environment.

3 The envSOM Algorithm

The purpose of this work is to develop an algorithm suitable for extracting and
analyzing information from large data sets, but considering the environmental
information such as weather variables, atmospheric deposition, etc. The envSOM
approach consists of two consecutive phases based on the traditional SOM [2].
Some slight variations have been introduced in each phase. The winner searching
process in the first phase and the update process in the second one have been
modified appropriately in order to achieve the desired result. In our experiments
the learning rate decreases in time and the neighborhood function is implemented
as Gaussian in both phases. However, other functions could be used as well.

The proposed envSOM algorithm has the advantageous features of the tradi-
tional SOM. Likewise, it reaches spatially-ordered and topology-preserving maps.
It also provides a good approximation to the input space, similar to vector quan-
tization, and divides the space in a finite collection of Voronoi regions. The main
innovation of this algorithm is that it reflects the probability density function
of data set, given the environmental conditions. Therefore, it can be useful from
the point of view of environmental pattern recognition and data comparison,
conditioned on these patterns. On the contrary, it should be noted that it will
be more expensive computationally compared to the traditional SOM, since two
learning phases are needed. Furthermore, it requires knowledge of the environ-
mental variables which influence the behavior of the process, characterized by
the remaining variables. The envSOM approach will be explained in detail below.

3.1 The First Phase

In the first phase of the envSOM algorithm, a traditional SOM is trained using all
variables. The initialization can be either linear along the greatest eigenvectors or
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random, depending on the user’s preference. It is necessary to know in advance
which are the environmental variables, since only these variables will be used
for computing the winner neurons. For this reason, the other variables must be
masked in the winner searching process. Similarly to the traditional SOM, the
winner c is selected using equation 1.

c(t) = argmin
i

‖x(t) − mi(t)‖ω , i = 1, 2, . . . , N (1)

where x represents the current input and m denotes the codebook vectors. N and
t are, respectively, the number of the map units and the time. The difference
is that a binary mask is always used to indicate which variables are used for
computing the winner. As usual, if the Euclidean norm, ‖◦‖, is chosen, the winner
will be computed using equation 2, where ω is the binary mask and k is a
component or variable.

‖x(t) − mi(t)‖2
ω = ω‖x(t) − mi(t)‖2 =

∑
k

ωk [xk(t) − mik(t)]2 (2)

The mask, ω, is a k-dimensional vector whose values ωk are 1 or 0, depending on
if the component corresponds to an environmental variable or not. The update
rule has not been modified and therefore, it is similar to the traditional SOM.

The result obtained from this phase will be a map where only the compo-
nents related to the environment are organized. The remaining components do
not affect the organization. The aim of this phase is to achieve a model which
represents the environment in the best possible way. Moreover, the values of
the remaining components will be used for initialization in the second phase. It
should be remarked that although this initialization seems completely random,
it has proven to be good and the values lie in the range of the variables.

3.2 The Second Phase

In the second phase of the envSOM algorithm, a new traditional SOM is trained
using all variables. It will be initialized using the codebooks from the first phase
SOM. Thanks to this appropriate initialization, a fast convergence of the algo-
rithm is reached and an accurate model which defines the environment will be
used in the second phase. It should be noted that environmental components
have been already organized in the first phase of the envSOM. Therefore, values
from the codebooks of first SOM are a good starting point for the second phase.

In this case, every component will take part equally in the winner computation
and no mask will be applied. Unlike the first phase, the update process is now
slightly modified. As environmental variables are already well organized, it is only
required that the remaining variables are updated properly. For this reason, a
new mask is introduced in the update rule and equation 3 will be used in this
case. The mask, Ω, is a k-dimensional vector which takes binary values Ωk, i.e.,
0 if it corresponds to an environmental variable and 1 otherwise. k is the number
of components or variables.

mi(t + 1) = mi(t) + α(t)hci(t)Ω[x(t) − mi(t)] (3)
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At the end of this phase, all variables will be organized properly. The learning
rate, α(t), and the neighborhood function, hci(t), are not modified so that a
value decreasing in time and a Gaussian function could be used, respectively,
like in the traditional SOM. The purpose of this phase is to reach a good model
of the whole data set, given environmental information.

4 Experiments and Results

Two kinds of experiments have been planned in order to test the envSOM algo-
rithm. First, an artificial data set based on binary patterns is created. It allows
us to check the clustering property of the algorithm. Then, a simulated data set
characterizing climate and carbon flux in several ecosystems is studied. It allows
us to check the usefulness of the algorithm with more realistic data and compare
the behavior of carbon in different ecosystems, given environmental conditions.

Matlab software has been used to make the experiments and the SOM Toolbox
[11] has been modified to implement the necessary changes, such as a new mask
in the update process.

4.1 A Toy Example

An artificial data set with structured data has been used to test the envSOM
algorithm. The data set consists of 16000 samples and 4 variables (X1, X2,
X3, X4). It contains all binary patterns from (0, 0, 0, 0) to (1, 1, 1, 1), i.e.,
the numbers from 0 to 15 in binary system. A low level of noise (10%) has been
added to the variables. Each binary pattern is equally represented by a set of 1000
samples. There are 16 different patterns, so the envSOM algorithm should find
16 clusters in this data set. The choice of this data set is justified by the simple
structure of the data, which facilitates the visualization and understanding of
the results from the algorithm.

First, a traditional SOM was trained using this input data set. The number of
epochs in the training should be high enough in order to guarantee a complete
organization. A number over 500 epochs was chosen. The dimensions of SOM
were 16× 20 (320 units). A Gaussian function was selected as the neighborhood
function and a value decreasing exponentially in time as the learning rate. The
SOM should be able to divide the data into 16 clusters and allows us to visualize
them, for instance, by means of the U-matrix representation. The results from
the traditional SOM can be seen in Figure 1. After the training, the U-matrix
yields a clear visualization of the binary patterns. Note that each component has
been organized in a random way, as it is shown by the component planes. If a
new traditional SOM is trained using another data set Y, also based on binary
patterns, i.e., (Y1, Y2, Y3, Y4), the organization of the four components will
probably be completely different. Thus, it will be very difficult to make a good
comparison between the results from both data sets, X and Y.

When there are environmental conditions in the data set, it can be desirable
that these components define the organization of the map. In this case, it is
supposed that X1 and X2 are the environmental variables and X3 and X4 are
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Fig. 1. Component planes and U-matrix of traditional SOM for binary patterns. Black
color corresponds to values of 0 and white color to 1.

Fig. 2. Component planes and U-matrix of envSOM algorithm after the first phase of
learning

Fig. 3. Component planes and U-matrix of envSOM algorithm after the second phase
of learning

features of the data set to be analyzed and compared. The envSOM algorithm
consists of two consecutive SOMs as mentioned above. The parameters of both
SOMs are the same as in the traditional SOM (500 epochs, 320 units, Gaussian
neighborhood function and learning rate decreasing exponentially).

In the first phase, only X1 and X2 variables are used to compute the winner
neurons and all variables are updated. The results of the first phase can be seen
in Figure 2. As expected, the organization is only performed on variables X1 and
X2 since X3 and X4 do not take part in the winner computation. Therefore, the
U-matrix only represents four patterns corresponding to possible combinations
of variables X1 and X2.

In the second phase, all four variables are used in the winner computation,
but X1 and X2 are kept fixed whereas X3 and X4 are updated. At the end
of this phase, the data set is organized as depicted in Figure 3. In this case,
the 16 patterns can be clearly distinguished in the U-matrix in a similar way
to the traditional SOM. Moreover, the organization of the map conditioned on
X1 and X2, i.e., the environmental variables, is achieved. It can be said that
the envSOM algorithm represents the probability function of data, given the
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environmental variables. A comparison of quality of the traditional SOM and
the proposed algorithm has been done. The mean quantization error is 0.1364
for the traditional SOM and 0.1717 for the envSOM.

If an envSOM is trained using another binary data set, e.g., Y (Y1, Y2,
Y3, Y4), components Y3 and Y4 will be conditioned on the first ones, Y1 and
Y2, as expected. The organization of the maps from data sets X and Y can
be different and therefore the comparison is difficult. However, the result after
the first phase of the envSOM with the data set X can be used to organize Y3
and Y4 in the same way that X3 and X4, respectively. Now, it will be very
easy to compare the results from both data sets, X and Y. Furthermore, when
components Y1 and Y2 are the same as X1 and X2 because they represent
the common environmental conditions, the first phase of the envSOM can be
trained jointly with the variables X1, X2, X3, X4, Y3, Y4. The second phase of
the envSOM can be carried out with an individual SOM for each data set or
one SOM containing all variables from both data sets. The first approach can
be applied in any case but, whenever the number of variables and data sets is
low enough, the second approach will provide similar results. In those cases, the
second choice might be preferred, since it requires fewer computations.

4.2 O-CN Example

A more realistic scenario for presenting the performance of the envSOM approach
was performed by analyzing data containing environmental characteristics and
simulated gross primary production (GPP, the amount of carbon sequestrated in
photosynthesis) of different ecosystems in Europe. The SOM has been previously
used for analysis of carbon exchange of ecosystems in, e.g., [12,13]. The GPP
estimates used in this study has been generated by the O-CN model [14,15].
The model is developed from the land surface scheme ORCHIDEE [16], and
has been extended through representation of key nitrogen cycle processes. O-
CN simulates the terrestrial energy, water, carbon, and nitrogen budgets for
discrete tiles (i.e. fractions of the grid cell) occupied by up to 12 plant functional
types (PFTs) from diurnal to decadal timescales. The model can be run on any
regular grid, and is applied here at a spatial resolution of 0.5×0.5. Values of the
model input variables: air temperature, precipitation, shortwave downward flux,
longwave downward flux, specific humidity, and N deposition and simulated GPP
from 1996 to 2005 were used in this example. These values were analyzed for four
PFTs: temperate needle-leaved evergreen forests (TeNE), temperate broadleaved
seasonal forests (TeBS), temperate grasslands (TeH), and temperate croplands
(TeH crop).

The envSOM algorithm was compared with the traditional SOM in this exam-
ple. First, four traditional SOMs were trained for four PFTs using environmen-
tal data and GPP estimates. As example, the component planes and U-matrices
of SOMs of two PFTs, temperate broadleaved seasonal forests and temperate
grasslands, are shown in Figures 4 and 5. The organization of the two maps
characterizing the two PFTs is very different from each other, so it is very
laborious to compare them. If one tries to compare the magnitudes of GPP in
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Fig. 4. Component planes and U-matrix of traditional SOM for temperate broadleaved
seasonal forests

Fig. 5. Component planes and U-matrix of traditional SOM for temperate grasslands

Fig. 6. Component planes and U-matrix of envSOM algorithm for four PFTs

different PFTs connected to a certain combination of environmental variables,
spotting the corresponding locations on the maps is not straightforward. The
organization of the SOMs of the two PFTs not shown was also different from
the other PFTs. The four PFTs were used to train an envSOM with six environ-
mental variables and four GPPs. In the first phase, the environmental variables
(air temperature, precipitation, shortwave downward flux, longwave downward
flux, specific humidity, and N deposition) were used for training. In the second
phase, the variables affected by the environment, i.e., four GPPs were trained.
Figure 6 shows the obtained component planes and the U-matrix.

When using envSOM for comparing the PFTs as shown in Figure 6, the com-
monalities and differences in the connections between environmental variables and
GPP can be spotted with ease among the PFTs. The qualitative behavior of the
PFTs seems to be rather similar, i.e., relatively high and low GPP values are
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usually found in the same regions of the map and are thus, connected with sim-
ilar environmental conditions. This similarity between the PFTs was expected.
However, the absolute values of GPP are different. There are also some differences
visible between the PFTs. E.g., the map units with the highest precipitation have
very low GPP values for all PFTs except the temperate croplands. In addition,
the area in the lower left part of the map associated with relatively high temper-
ature, shortwave and longwave downward fluxes, low precipitation and high GPP
in temperate needle-leaved evergreen forests, temperate grasslands, and temper-
ate croplands contains very low values of GPP in temperate broadleaved seasonal
forests. The reason for these differences may be different spatial distribution of
the PFTs and that some spatially correlated confounding factors have an effect on
GPP. More detailed investigation of the reasons behind the differences might be a
topic of a future study.

5 Conclusions

In this paper the envSOM algorithm, which is conditioned on the environment
was introduced. It consists of two phases based on the traditional SOM. The
envSOM has similar features to the traditional SOM in clustering and visualiza-
tion, although it adds an innovation very useful for finding patterns conditioned
on the environment in large data sets. The main innovation of the envSOM is
that it represents the data set given the environmental conditions. Therefore,
the algorithm is suitable for data analysis of real processes strongly influenced
by the environment. On the contrary, it is slightly more expensive computa-
tionally, since two consecutive SOMs are trained. The proposed algorithm has
been satisfactorily tested using a binary data sets and environmental data and
simulated carbon flux estimates of four plant functional types. This algorithm
yields similar results in a round of different trainings with the same data set.
The environmental variables are always organized in a similar way and the oth-
ers are conditioned on the first ones. Incremental training is possible using the
envSOM, i.e., new features or even data samples could be added to the training
later, while keeping the environmental variables the same.

Acknowledgments. We thank Sönke Zaehle for providing us with the O-CN
data for this study and insightful comments regarding the analysis of the data.
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Abstract. A powerful method in knowledge discovery and cluster ex-
traction is the use of self-organizing maps (SOMs), which provide adap-
tive quantization of the data together with its topologically ordered
lower-dimensional representation on a rigid lattice. The knowledge ex-
traction from SOMs is often performed interactively from informative
visualizations. Even though interactive cluster extraction is successful,
it is often time consuming and usually not straightforward for inexperi-
enced users. In order to cope with the need of fast and accurate analysis
of increasing amount of data, automated methods for SOM clustering
have been popular. In this study, we use spectral clustering, a graph
partitioning method based on eigenvector decomposition, for automated
clustering of the SOM. Experimental results based on seven real data
sets indicate that spectral clustering can successfully be used as an auto-
mated SOM segmentation tool, and it outperforms hierarchical clustering
methods with distance based similarity measures.

1 Introduction

The self-organizing maps (SOMs) provide topology preserving mapping of high-
dimensional data manifolds onto a lower-dimensional rigid lattice. This enables
informative SOM visualization of the manifold, which can be used for interac-
tive cluster extraction. Various SOM visualization schemes (see [1,2] and refer-
ences therein) have been proposed; two of which stand out: U-matrix [3] (which
shows Euclidean distances between SOM neighbors on the grid) and CONNvis
[2] (which draws detailed local data distribution as a weighted Delaunay graph
on the grid). However, the interactive process for cluster extraction from SOM
visualization often requires practiced knowledge to evaluate visualized SOM in-
formation and hence is difficult for inexperienced users, and time consuming
even for the experienced users. Therefore, automated SOM segmentation meth-
ods, which are generally hierarchical agglomerative clustering (HAC) schemes
with different distance measures, have been proposed. Centroid linkage is con-
sidered in [4] with SOM lattice neighborhood, in [5] with a gap criterion; Ward’s
measure is used in [6]; a recent similarity measure based on distance and density
(proposed in [7]) in [8]. These approaches accurately extract the clusters when
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they are well separated; however, they may be inefficient for extracting complex
cluster structures. Another approach [9] uses a recursive flooding of a Gaussian
surface (Clusot surface) constructed based on pairwise distances and receptive
field sizes of SOM prototypes. However, the resulting partitionings are similar
to that of k-means clustering. A recent approach [10] also uses HAC method but
with a similarity measure (CONN linkage) based on weighted Delaunay graph of
SOM units, which represents detailed local data distribution. It is shown in [10]
that CONN linkage is very successful, when the SOM units are dense enough.

A clustering method, becoming more popular due to its high performance
and easy implementation, is spectral clustering, which is a graph partitioning
approach based on eigenvector decomposition (see [11] and references therein).
Due to its advantageous properties, such as extraction of irregular-shaped clus-
ters and obtaining globally optimal solutions [12,13], we propose to use spectral
clustering as an automated SOM segmentation method. A preliminary use of
spectral clustering for SOM segmentation was considered in [14], but specifically
for data categorization to obtain semantically meaningful categories. Here, our
experimental results on seven real data sets show that spectral clustering pro-
duces better partitionings compared to the ones obtained by other methods in
this study. Section 2 briefly explains the spectral clustering, Section 3 discusses
experimental results on the data sets and Section 4 concludes the paper.

2 Spectral Clustering

Spectral clustering methods [11,15,16] depend on relaxed optimization of graph-
cut problems, using a graph Laplacian matrix, L. Let G = (V, S) be a weighted,
undirected graph with nodes V representing n points in X = {x1, x2, . . . , xn} to
be clustered and edges defined by n × n similarity matrix S, where sij is often
described using (Euclidean) distance, d(xi, xj), between xi and xj , as

sij = exp(−d2(xi, xj)
2σ2

) (1)

with σ as a scale parameter determining the pairwise similarities. Let D be
the diagonal matrix denoting the degree of n nodes where di =

∑
j sij . Then

L = D − S. It is shown in [15] that the use of eigenvector decomposition of the
normalized Laplacian matrix

Lnorm = D−1/2LD−1/2 = D−1/2(D − S)D−1/2 = I − D−1/2SD−1/2 (2)

can achieve an approximate solution to the normalized cut. Ng et al. [16] ex-
tend the solution to extract k groups using the k eigenvectors of Lnorm[16] =
D−1/2SD−1/2 with the k highest eigenvalues, by the following algorithm:

1. Calculate similarity matrix S using ( 1), diagonal degree matrix D, and
normalized Laplacian Lnorm[16]

2. Find the k eigenvectors {e1, e2, . . . , ek} associated with the k highest eigen-
values {λ1, λ3, . . . , λk}
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3. Construct the n × k matrix E = [e1e2 . . . ek] and obtain n × k matrix U by
normalizing the rows of E to have norm 1, i.e. uij = eij√∑

k e2
ik

4. Cluster the n rows of U with the k-means algorithm into k clusters.

Selection of correct scale parameter σ is important for accurate partitioning.
σ can be set manually or can be selected among many values which achieves
least distorted partitioning of U [16]. Alternatively, a local scaling parameter σi

for each node can be calculated based on the k nearest neighbor distance [17],

σi = d(si, sk), sk : the kth nearest neighbor of si (3)

to automatically set σ from intrinsic data details, and to reflect local statistics.
Detailed information on spectral clustering can be found in [11,12].

3 Experimental Results

The spectral clustering method as an automated SOM segmentation method, were
evaluated using three synthetic data sets from [18], six benchmark data sets from
UCI machine learning repository [19], and a large data set, Boston remote sens-
ing test bed, used in [20]. This remote sensing data set can be downloaded from
http://techlab.bu.edu/resources/data view/boston remote sensing testbed/. We
compared the performance of the spectral clustering to the performances of the
hierarchical agglomerative clusterings with different linkages based on distances
(average linkage, centroid linkage, Ward’s measure) and with a linkage based on
local data distribution (CONN linkage), and to the performance of the k-means
clustering. In our experiments, the number of clusters for each data set is assumed
to be known. For calculation of local σi in (3), k = 7 is used.

We obtained the SOMs by Matlab SOMtoolbox, using a rectangular lattice,
Gaussian neighborhood, sequential learning and long training. We used one grid
structure (10x10) for synthetic data sets, two different grids (5x5 and 10x10) for
small UCI data sets, and four sizes (10x10, 20x20, 30x30 and 40x40) for medium
or large sized data sets. Due to the randomness in the spectral clustering and
in the k-means clustering, each SOM is clustered 50 times by these methods,
and clustering accuracies (percentage of the correctly clustered samples) are
calculated by averaging over these 50 runs. Contrarily, the partitioning obtained
by hierarchical agglomerative clustering methods is unique for each SOM. In
addition, since the SOM learning has also randomness (due to the initialization,
random selection of samples in training), experiments were repeated 10 times to
obtain 10 different SOMs for each data set and for each grid size, and average
accuracies were calculated. The average accuracies are given and discussed below.
We note that the statistical variances of the accuracies are not provided due to
the fact that they have insignificant differences among clustering methods.

3.1 Synthetic Data Sets

Figure 1 shows the synthetic data sets (Lsun, Wingnut, Chainlink) used in the
study. Despite a few number of clusters with clear separation among them, clus-
tering of these data sets is challenging due to their specific properties: Lsun has
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two rectangular clusters close to each other and a spherical cluster; Wingnut
has varying within-cluster density distributions; whereas Chainlink has clusters
which are linearly inseparable. For all these data sets, the best partitionings
are achieved by CONN linkage [10], where similarities are defined by detailed
local density distribution, with average accuracies very close to 100% (Table 1).
Spectral clustering with optimal σ is the runner up for the three data sets, and
produces significantly better partitionings than k-means and hierarchical clus-
tering with distance based linkages, despite the challenges in these data sets. The
use of local σ, however, achieves accuracies similar to the accuracies of k-means.
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Fig. 1. Three synthetic data sets in [18]. The cluster labels of the data samples are
shown by different symbols. (a) Lsun (b) Wingnut (c) Chainlink.

Table 1. Accuracies for SOM clustering of synthetic data sets in [18]. SC is spectral
clustering, SC1 is with optimal σ (σ is 0.3, 0.1, 0.2 for Lsun, Wingnut, and Chainlink
respectively), SC2 is with local σ; whereas average, centroid, Ward and CONN rep-
resent different (dis)similarity measures used in hierarchical agglomerative clustering.
The best accuracy for each data set is shown in boldface.

# of # of SOM clustering method

Data set samples clusters SC1 SC2 k-means average centroid Ward CONN

Lsun 400 3 98.2 84.00 81.22 87.75 91.30 95.20 99.58

Wingnut 1016 2 98.57 95.76 95.94 96.72 98.25 95.08 99.91

Chainlink 1000 2 95.38 67.61 66.73 75.78 78.10 78.48 97.82

3.2 Data Sets from UCI Machine Learning Repository

We used six data sets from UCI machine learning repository [19]. Three of
them (Iris, Wine, Breast Cancer Wisconsin) are relatively small. Iris has 150
4-dimensional samples equally distributed into 3 groups; Wine data set has 178
13-dimensional samples (59, 71, 48 samples in 3 classes respectively); and Breast
Cancer Wisconsin has 699 9-dimensional samples grouped into two classes (be-
nign or malignant). The other three data sets (Image Segmentation, Statlog,
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Table 2. Accuracies for SOM clustering of UCI data sets with small sizes [19]. SC2
is spectral clustering with local σ. The best accuracy obtained for each SOM size is
shown in boldface and the best accuracy for each data set is underlined.

# of # of SOM clustering method

Data set samples clusters SOM size SC2 k-means average centroid Ward CONN

Iris 150 3
5x5 57.11 85.92 78.40 76.40 88.00 83.07

10x10 88.92 84.57 83.27 83.80 86.60 57.27

Wine 178 3
5x5 61.80 67.43 66.52 66.52 70.00 69.72

10x10 69.54 68.62 61.01 59.94 65.84 45.84

Breast
699 2

5x5 95.50 95.06 94.90 94.90 94.90 96.14

Cancer-W 10x10 96.16 95.90 95.82 95.74 95.68 84.39

Table 3. Accuracies for SOM clustering of UCI data sets with medium sizes [19]. SC2
is spectral clustering with local σ. The best accuracy obtained for each SOM size is
shown in boldface and the best accuracy for each data set is underlined.

# of # of SOM clustering method

Data set samples clusters SOM size SC2 k-means average centroid Ward CONN

2391 7

10x10 51.94 51.06 45.63 42.18 53.63 61.26

Segmen- 20x20 55.96 52.40 36.71 29.21 53.08 34.26

tation 30x30 54.39 51.99 29.67 29.03 53.13 41.73

40x40 54.06 52.30 28.97 28.96 52.01 21.47

Statlog 6435 6

10x10 58.54 62.44 61.49 53.60 69.19 68.96

20x20 73.34 63.52 53.89 52.88 56.41 69.01

30x30 73.94 63.75 52.90 51.64 60.53 58.71

40x40 73.91 63.84 53.72 51.39 62.50 29.32

Pen Digits 10992 10

10x10 50.36 64.03 62.96 62.44 67.66 73.70

20x20 66.61 65.25 64.33 59.81 64.82 74.40

30x30 66.76 66.36 62.84 59.91 67.73 70.55

40x40 68.01 66.86 64.70 56.53 68.67 20.08

Pen digits) are of medium sizes. Segmentation has 2310 samples with 19 features
grouped into 7 classes, Statlog has 6435 samples with 4 features divided into 6
classes, and Pen Digits has 10992 samples with 16 features in 10 classes. Further
details on the data sets can be found in the UCI machine learning repository.

Table 2 and Table 3 show the resulting accuracies for SOM clustering of these
data sets. Out of these six data sets, spectral clustering with local σ produces the
best partitioning for three of them (Iris, Breast Cancer Wisconsin and Statlog),
CONN linkage for two data sets (Segmentation, Pen digits) and Ward’s measure
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for one data set (Wine). Even though it may be possible to achieve better par-
titioning by using the optimum σ for each data set, it requires multiple runs to
find the optimum value unique for each data set. However, even the use of local
σ in spectral clustering often outperforms other methods (in this study) using
distance based similarity measures.

3.3 Boston Remote Sensing Data Set

This data set describes a remotely sensed area with 360x600 pixels, resulting
in 216000 samples, where each sample has 41 features. There are eight classes:
beach, ocean, ice, river, road, park, residential, industrial. 29,003 samples, which
are labeled as one of the eight classes, represent the ground truth information to
be used in the accuracy assessment. The performance of spectral clustering with
local σ is quite high (93.83%), outperforming all other methods in the study.

Table 4. Accuracies for SOM clustering of Boston data set used in [20]. SC2 is spectral
clustering with local σ. The best accuracy obtained for each SOM size is shown in
boldface and the best accuracy for each data set is underlined.

# of # of SOM clustering method

Data set samples clusters SOM size SC2 k-means average centroid Ward CONN

Boston 216000 8

10x10 53.95 88.81 88.69 90.32 92.54 87.02

20x20 93.82 92.17 91.48 92.97 90.17 87.81

30x30 93.32 92.35 92.05 93.56 91.67 90.28

40x40 93.39 92.41 93.06 93.38 92.28 89.13

3.4 Computational Complexity

Spectral clustering has a time complexity of O(n3) and a space complexity of
O(n2) [12], where n is the number of patterns (SOM prototypes in this study) to
be clustered. In contrast, k-means clustering has a time and space complexity of
O(nkl) (l is the number of iterations) and O(k), whereas HAC methods have a
time and space complexity of O(n2 log n) and O(n2) respectively [21]. Moreover,
with recent efficient algorithms [22], time complexity of HAC methods can be re-
duced to O(n2). However, due to the fact that spectral clustering often produces
relatively more accurate partitioning (as shown above), its greater computational
complexity is hardly a concern in clustering the SOM, since the number of SOM
prototypes is usually chosen as at most a couple of thousands.

4 Conclusions

In this paper we used spectral clustering as a SOM segmentation method. The
SOM produces a topology preserving mapping, while its spectral clustering pro-
duces eigenvector decomposition of the distance based similarity matrix of SOM
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units, which is another mapping. This method extracted clusters accurately, even
in the case of nonlinear separation boundary. It also outperformed hierarchical
agglomerative clustering and k-means clustering, for SOM clustering of the data
sets used in this study. The success of two consecutive mapping indicates that
SOMs may be used as an initial vector quantization method to make spectral
clustering able to partition large data sets where it is not possible to use spectral
clustering due to its computational complexity.
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2. Taşdemir, K., Merényi, E.: Exploiting data topology in visualization and clustering
of Self-Organizing Maps. IEEE Transactions on Neural Networks 20(4), 549–562
(2009)

3. Ultsch, A.: Self-organizing neural networks for visualization and classification. In:
Lausen, O.B., Klar, R. (eds.) Information and Classification-Concepts, Methods
and Applications, pp. 307–313. Springer, Heidelberg (1993)

4. Murtagh, F.: Interpreting the Kohonen self-organizing map using contiguity-
constrained clustering. Pattern Recognition Letters 16, 399–408 (1995)

5. Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Transac-
tions on Neural Networks 11(3), 586–600 (2000)

6. Cottrell, M., Rousset, P.: The Kohonen algorithm: A powerful tool for ana-
lyzing and representing multidimensional quantitative and qualitative data. In:
Cabestany, J., Mira, J., Moreno-Dı́az, R. (eds.) IWANN 1997. LNCS, vol. 1240,
pp. 861–871. Springer, Heidelberg (1997)

7. Halkidi, M., Vazirgiannis, M.: A density-based cluster validity approach using
multi-representatives. Pattern Recognition Letters (6), 773–786 (2008)

8. Wu, S., Chow, W.: Clustering of the self-organizing map using a clustering validity
index based on inter-cluster and intra-cluster density. Pattern Recognition (37),
175–188 (2004)

9. Brugger, D., Bogdan, M., Rosenstiel, W.: Automatic cluster detection in Kohonen’s
SOM. IEEE Transactions on Neural Networks 19(3), 442–459 (2008)
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Abstract. We propose a functional relevance learning for learning vec-
tor quantization of functional data. The relevance profile is taken as a
superposition of a set of basis functions depending on only a few param-
eters compared to standard relevance learning. Moreover, the sparsity
of the superposition is achieved by an entropy based penalty function
forcing sparsity.

Keywords: functional vector quantization, relevance learning, informa-
tion theory.

1 Introduction

During the last years prototype based models became one of the widely used
paradigms for clustering and classification. Thereby, different strategies are pro-
posed in classification. Whereas support vector machines (SVMs) emphasize the
class borders by the support vectors while maximizing the separation margin,
the family of learning vector quantization (LVQ) algorithms is motivated by
class representative prototypes to achieve high classification accuracy. Based on
the original but heuristically motivated standard LVQ introduced by Kohonen
[3] several more advanced methods were proposed. One key approach is the gen-
eralized LVQ (GLVQ) suggested by Sato&Yamada [10], which approximates
the accuracy by a differentiable cost function to be minimized by stochastic gra-
dient descent. This algorithm was extended to deal with metric adaptation to
weight the data dimensions according to their relevance for classification [1]. Usu-
ally, this relevance learning is based on weighting the Euclidean distance, and,
hence, the data dimensions are treated independently leading to large number
of weighting coefficients, the so-called relevance profile, to be adapted in case of
high-dimensional data. If the data dimension is huge, as it is frequently the case
for spectral data or time series, the relevance determination may become crucial
and instable. However, functional data have in common that the vectors can be
seen as discrete realizations of functions, i.e. the vectors are so-called functional
data. For those data the index of the vector dimensions is a representative of the
respective independent function variable, i.e. frequency, time or position etc. In
this sense the data dimensions are not longer uncorrelated.
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The aim of the relevance learning method here is to make use of this interpre-
tation. Then, the relevance profile can be also assumed as a discrete representa-
tion of a relevance function. We suggest to approximate these relevance functions
as a superposition of only a few basis functions depending on a drastically de-
creased number of parameters compared to the huge number of independent
relevance weights. We call this algorithm Generalized Functional Relevance LVQ
(GFRLVQ). Further, we propose the integration of a sparseness criterion for
minimizing the number of needed basis functions based on an entropy criterion
resulting in Sparse GFRLVQ (S-GFRLVQ).

The paper structure is: After a short review of the GLVQ and GRLVQ schemes
we introduce the GFRLVQ followed by S-GFRLVQ. The experiment section
shows the abilities of the new algorithms for illustrative data sets.

2 Functional Relevance Learning for GLVQ

In this section we first briefly review standard relevance learning in GLVQ.
Thereafter, we turn over to the functional aspect of relevance learning.

2.1 Relevance Learning in GLVQ – GRLVQ

As mentioned before, GLVQ is an extension of standard LVQ based on an energy
function E approximating the accuracy. Given a set V ⊆ R

D of data vectors v
with class labels xv ∈ C = {1, 2, . . .C}, the prototypes w ∈ W ⊂ R

D with
class labels yj (j = 1, . . . , N) should be distributed in such a way that they
represent the data classes as accurately as possible. In particular, the following
cost function is minimized

E (W ) =
1
2

∑
v∈V

f (μ (v)) with μ (v) =
d+ (v) − d− (v)
d+ (v) + d− (v)

(1)

where f is a monotonically increasing function usually chosen as sigmoidal
or the identity function. The function μ (v) is the classifier function where
d+ (v) = d (v,w+) denotes the distance between the data vector v and the clos-
est prototype w+ with the same class label yw+ = xv, and d− (v) = d (v,w−)
is the distance to the best matching prototype w− with a class label yw− dif-
ferent from xv. The similarity measure d (v,w) is supposed differentiable with
respect to the second argument but not necessarily to be a mathematical dis-
tance. More general similarity measure could be considered. One possible choice
is the standard Euclidean distance or its weighted counterpart

dλ (v,w) =
D∑

i=1

λi (vi − wi)
2 (2)

with relevance weights restrictions

λi ≥ 0 and
∑

i

λi = 1. (3)

The vector λ is called relevance profile.
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Learning in GLVQ of w+ and w− is done by stochastic gradient descent1

learning with respect to the cost function E (W ) according to

∂SE (W )
∂w+

= ξ+ · ∂d+

∂w+
and

∂SE (W )
∂w− = ξ− · ∂d−

∂w−

with ξ+ = f ′ · 2·d−(v)

(d+(v)+d−(v))2
, ξ− = −f ′ · 2·d+(v)

(d+(v)+d−(v))2
and f ′ denotes the first

derivative of f . Relevance learning in this model can be performed by adaptation
of the relevance weights again by gradient descent learning:

∂ES (W )
∂λj

= ξ+ · ∂d+
λ

∂λj
+ ξ− · ∂d−λ

∂λj
. (4)

The respective algorithm is named Generalized Relevance LVQ – GRLVQ [1].
Yet, in this model the relevance weights as well as the vector components are
treated independently as it is the natural way in the Euclidean distance or their
weighted variant.

2.2 Functional Relevance Learning

As we have seen, the data dimensions are handled independently in GRLVQ.
This leads to a huge number of relevance weights to be adjusted, if the data
vector are really high-dimensional which is the case in many applications. For
example, processing of hyperspectral data frequently requires the consideration
of hundreds or thousands of spectral bands; time series may consist of a huge
number of time steps. This huge dimensionality may lead to unstable behav-
ior of relevance learning in GRLVQ. However, if the data vectors are discrete
representations of functions, relevance learning can make use of this functional
property to reduce the number of parameters in relevance learning.

More precisely, we assume in the following that data vectors v = (v1, . . . , vD)T

are representations of functions vi = v (ti). Then the relevance profile can be
interpreted as a function λ (t) with λj = λ (tj), too. In the recently proposed
generalized functional relevance LVQ (GFRLVQ) [12], now the relevance function
λ (t) is supposed to be a superposition λ (t) =

∑K
l=1 βlKl (t) of simple basis

functions Kl depending on only a few parameters with the restrictions βi ≥ 0
and

∑K
l=1 βl = 1. Famous examples are Gaussians or Lorentzians:

Kl (t) =
1

σl

√
2π

exp

(
− (t − Θl)

2

2σ2
l

)
and Kl (t) =

1
ηlπ

η2
l

η2
l + (t − Θl)

2

Now, relevance learning takes place by adaptation of the parameters βl, Θl,σl and
ηl, respectively. For this purpose, again a stochastic gradient scheme is applied.
For an arbitrary parameter ϑl of the dissimilarity measure d we have

∂SE

∂ϑl
= ξ+ · ∂d+

∂ϑl
+ ξ− · ∂d−

∂ϑl

1 Here, the stochastic gradient operator ∂SE(W )

∂w± is carried out by taking the gradient
∂f(μ(v))

∂w± for a stochastically chosen v according to the data distribution P (V ).
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Using the convention tj = j we get in the case of Gaussians for the weighting
coefficient βl, the center Θl and the width σl for

∂d (v,w)
∂βl

=
1

σl

√
2π

D∑
j=1

exp

(
− (j − Θl)

2

2σ2
l

)
· (vj − wj)

2 (5)

∂d (v,w)
∂Θl

=
βl

σ3
l

√
2π

D∑
j=1

(j − Θl) · exp

(
− (j − Θl)

2

2σ2
l

)
· (vj − wj)

2 (6)

∂d (v,w)
∂σl

=
βl

σ2
l

√
2π

D∑
j=1

(
(j − Θl)

2

σ2
l

− 1

)
· exp

(
− (j − Θl)

2

2σ2
l

)
· (vj − wj)

2(7)

whereas for the Lorentzian we obtain

∂d (v,w)
∂βl

=
1
π

D∑
j=1

ηl

η2
l + (j − Θl)

2 (vj − wj)
2 (8)

∂d (v,w)
∂Θl

=
βl

π

D∑
j=1

2ηl (j − Θl)(
η2

l + (j − Θl)
2
)2 (vj − wj)

2 (9)

∂d (v,w)
∂ηl

=
βl

π

D∑
j=1

(j − Θl)
2 − η2

l(
η2

l + (j − Θl)
2
)2 (vj − wj)

2 (10)

After β-update a renormalization is necessary to ensure the restrictions (3).
Instabilities may occur if the center locations Θl, Θk become very similar for
l �= k. To avoid this phenomena a penalty term

PR =
K∑

l=1

K∑
m=1

exp

(
− (Θm − Θl)

2

2ξlξm

)

is added to the cost function (1), which now reads as EGFRLV Q = E (W )+εrPR

with a properly chosen penalty weight εR > 0. For Gaussian basis functions
we set ξk = σk, and for the Lorentzians we take ξk = ηk. The penalty can
be interpreted as a repulsion with an influence range determined by the local
correlations ξlξm. The resulting additional update term for Θl-learning is

∂P

∂Θl
=

K∑
m=1

(Θm − Θl)
ξlξm

exp

(
− (Θm − Θl)

2

2ξlξm

)

leading to a minimum spreading of the basis function centers Θl. Analogously,
an additional term occurs for the adjustemts of the ξl according to ∂PR

∂ξl
, which

has to be taken into account for the update of σk and ηk for Gaussians and
Lorentzians, respectively.
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3 Sparse GFRLVQ – The S-GFRLVQ Model

In the GFRLVQ model the number K of basis functions can be freely chosen so
far. Obviously, if the K-value is too small, an appropriate relevance weighting
is impossible. Otherwise, a K-value too large complicates the problem more
than necessary. Hence, a good way to choose K is needed. This problem can
be seen as sparseness in functional relevance learning. A common methodology
to judge sparsity is the information theory. In particular, the Shannon entropy
H of the weighting coefficients β = (β1, . . . , βK) can be applied. Maximum
sparseness, i.e. minimum entropy, is obtained, iff βl = 1 for exactly one certain
l whereas the other βm are equal to zero. However, maximum sparseness may
be accompanied by a decreased classification accuracy and/or increased cost
function value EGFRLV Q.

To achieve an optimal balancing, we propose the following strategy: The cost
function EGFRLV Q is extended to

ES−GFRLV Q = EGFRLV Q + γ (τ) · H (β) (11)

with τ counting the adaptation steps. Let τ0 be the final time step of the usual
GFRLVQ-learning. Then γ (τ) = 0 for τ < τ0 holds. Thereafter, γ (τ) is slowly
increased in an adiabatic manner [2], such that all parameters can immediately
follow the drift of the system. An additional term for βl-adaptation occurs for
non-vanishing γ (τ)-values according to this new cost function (11):

∂ES−GFRLV Q

∂βl
=

∂EGFRLV Q

∂βl
+ γ (τ)

∂H

∂βl
(12)

with ∂H
∂βl

= − (log (βl) + 1). This term triggers the β-vector to become sparse.
The adaptation process is stopped, if the EGFRLV Q-value or the classification
error shows a significant increase compared to that at time τ0.

4 Experiments

We tested the GFRLVQ for the classification of two well known real world spec-
tral data sets obtained from StatLib and UCI: The Tecator data set, [11], consists
of 215 spectra obtained for several meat probes. The spectral range is between
850nm−1050nm wavelength (100 spectral bands). The data are labeled according
to the two fat levels (low/high). The Wine data set, [8], contains 121 absorbing
infrared spectra of wine between wavenumbers 4000cm−1−400cm−1 (256 bands)
split into 91 training and 30 test data. The data are classified according to their
two alcohol levels (low/high) as given in [5].

For the Tecator data we started the simulations with 10 Gaussians to describe
the relevance profile and trained the model using GFRLVQ. The achieved accu-
racy was above 88%. Thereafter the penalty term γ (τ) in (11) and accordingly
in (12) is continuously increased in an adiabatic manner such that the system is
pushed to become sparse. As depicted in Fig.1, the increasing the penalty term
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Fig. 1. Time development of the S-GFRLVQ for the Tecator data. In the beginning
there are 10 Gaussian basis functions with weighting coefficients βl obtained from usual
GFRLVQ. Increasing the penalty term γ (τ ) · H (β) leads to sparsity in the β-vector
(top, βl-weights in dependence of the increasing sparsity weight γ (τ ) through learning
time τ ). If the sparsity constraint does not dominate, a high accuracy is still available.
If the sparsity becomes too high, accuracy significantly drops down (bottom).
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Fig. 2. top: Tecator data; bottom: Resulting relevance profiles: solid – at the end of
usual GFRLVQ, dashed – at the maximum sparseness without significant accuracy loss,
dotted – maximum sparseness (i.e. only one single remaining basisfunction).
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Fig. 3. The same as in Fig.1 but now for the Wine data set. In this example 15
Lorentzians are taken as basis functions.
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Fig. 4. top: Wine data; bottom: Resulting relevance profiles: solid – at the end of
usual GFRLVQ, dashed – at the maximum sparseness without significant accuracy
loss, dotted – maximum sparseness (i.e. only one single remaining basis function).
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γ (τ) ·H (β) leads to a sparsity in the weighting β while a high accuracy is still
achieved in the beginning of the optimization. If the sparsity becomes dominat-
ing, the accuracy significantly drops down, which is the case in this example for
less than three non-vanishing basis functions. The resulting relevance profiles are
displayed in in Fig.2. One can clearly observe the decrease in structural richness
with increasing sparsity. The relevance profiles for the Tecator data are in nice
agreement with the results found in [9]. In particular, the dominating relevance
area between the bands 25 and 55, corresponding to wavelengthes 850nm–890nm,
is also suggested to be important for classification in previous investigations [5].

For the Wine data set 15 Lorentzians were taken in the beginning GFRLVQ-
learning phase. As one can observe in Fig.3, after a short stabilization phase
the accuracy significantly decreases when 5 weighting coefficients are converged
to zero with a further loss of accuracy the more weighting coefficients tend to
become zero, too. The respective relevance profiles can be found Fig.4. For the
Wine data set earlier findings are also justified. The influence of the data bands
130 – 230, corresponding to wavenumbers between 2000cm−1 and 1000cm−1

seems to be class distinguishing [4],[5]. Another, relevant range for differentiation
is 3700cm−1–3200cm−1, which is weakly taken in shape only for the full set of 15
basis functions. For optimum sparseness this areas is indicated as not relevant
and for the maximum sparseness completely ignored.

5 Conclusion

We propose the Sparse GFRLVQ for optimal model generation with respect to
functional relevance learning. Functional relevance learning supposes that data
are representations of functions such that the relevance profile can be assumed
as a function, too. This allows the description in terms of a superposition of basis
functions. Sparsity is judged in terms of the entropy of the respective weight-
ing coefficients. The approach is demonstrated for two exemplary data sets with
two different kinds of basis functions, Gaussians and Lorentzians whereas for
the similarity measure the weighted Euclidean distance was used, for simplicity.
Obviously, the Euclidean distance is not based on a functional norm. Yet, the
transfer of the functional relevance approach to real functional norms and dis-
tances like Sobolev norms [15], Lee-norm [6,7], kernel based LVQ-approaches [14]
or divergence based similarity measures [13], which carry the functional aspect
inherently, is straight forward and topic of future investigations.
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Abstract. We propose relevance learning for unsupervised online vec-
tor quantization algorithm based on stochastic gradient descent learning
according to the given vector quantization cost function. We consider
several widely used models including the neural gas algorithm, the Hes-
kes variant of self-organizing maps and the fuzzy c-means. We apply
the relevance learning scheme for divergence based similarity measures
between prototypes and data vectors in the vector quantization schemes.

Keywords: vector quantization, relevance learning, divergence learning.

1 Introduction

Machine learning algorithms for unsupervised vector quantization (VQ) com-
prise a broad variety of models ranging from statistically motivated approaches
to strong biologically realistic models. The main task is to describe given data
in a faithful way such that the main properties of the data are preserved as most
as possible by a set of few prototypes. These properties could be the probability
density [28], the shape of data in sense of possibly non-linear principle compo-
nent analysis (PCA), [23],[25], or visualization skills like in topology preserving
mapping [30] or the usual reconstruction error. For the different goals several
approaches exist [35], whereby we have further to differentiate according to the
type of adaptation: Batch methods use all the data at the same time whereas
online models adapt incrementally. Usually, the Euclidean distance is used in
all these models. Yet, modern methods also include non-standard dissimilarity
measures like functional norms [17], Sobolev norms [33], kernel based approaches
[32], or divergences [31].

Relevance learning introduced for supervised learning vector quantization [10]
and its generalization, the so-called matrix learning [26], were recently extended
to unsupervised batch learning in topographic mapping [1]. Relevance or matrix
learning weights and correlates the data dimensions to achieve better classifica-
tion results in supervised learning and the signal to noise ratio in unsupervised
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models. For unsupervised VQ the method of relevance learning is strongly related
to local PCA learning [18],[19],[21],[27].

For high-dimensional data standard techniques the curse of dimensionality
causes further difficulties and more specifically designed approaches are required
[4]. In case of spectral data or generalizations thereof, divergences as dissimi-
larity measure between data and prototypes maybe an appropriate alternative
to standard dissimilarity measures to address the specificity of data and, thus,
decrease the influence of the curse of dimensionality [31].

In this paper we propose divergence based unsupervised vector quantization
in combination with relevance learning. For this purpose we demonstrate the
idea with three different popular vector quantizers: the neural gas [20], the Hes-
kes variant of the self-organizing map [11],[15] and, the fuzzy-c-means (FCM)
[9]. As exemplary real world data examples we use spectral data measured by a
NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) for earth sur-
face investigation and spectral data obtained from the normalized multi-scale
bending energy of leaf shapes.

2 The Vector Quantization Models

In general, vector quantization comprises unsupervised methods for data com-
pression of vectorial data v ∈ V ⊆ R

n with probability density P by prototypes
w ∈ W ⊂ R

n. The similarity between data vectors v and prototypes w is judged
in terms of a dissimilarity measure d (v,w) frequently taken as the Euclidean
distance. Yet, more advanced dissimilarity measures, not necessarily supposed
to be a mathematical distance, can be applied. If the underlying cost function

EV Q =
∫

P (v) · L (v, W, d (v,w)) dv (1)

of the vector quantization algorithm is minimized by stochastic gradient learn-
ing with respect to w, the used dissimilarity measure has to be assumed as a
differentiable functional with respect to w. L (v, W ) are local costs differing for
the several algorithms.

A robust alternative to the classical c-means algorithm is the neural gas (NG)
[20] with local costs

LNG (v, W, d (v,w)) =
∑
i∈A

hσ (i,v, W )
2C (σ, N)

d (v,wi) (2)

with the neighborhood function hσ (i,v, W ) = exp
(

−ki(v,W )
2σ2

)
, whereby

ki (v, W ) yields the number of prototypes wj for which d (v,wj) ≤ d (v,wi)
holds. C (σ, N) is a normalization constant, and A is the index set of W .
After training the vector quantization assignments Ψs (v) are set to one iff
s (v) = argmin

i∈A
d (v,wi) and zero elsewhere realizing a winner-take-all decision.



92 M. Kästner et al.

T. Heskes introduced a variant of the self-organizing map (SOM), originally
proposed by T. Kohonen [15], such that the SOM-model is based on local costs

LSOM (v, W, d (v,w)) = Ψs(v) (v) · er (W,v) (3)

with local errors

er (W,v) =
∑
r′∈A

hrr′d (v,wr′) and s (v) = arg min
r∈A

er (W,v) (4)

where hrr′ = exp
(

−dA(r,r′)
2σ2

)
and dA (r, r′) denotes some dissimilarity measure

in the index space A, which is equipped with a topological structure for SOMs.
The assignments Ψr (v) are one iff r = s (v) and zero elsewhere but here based
on the local errors (4).

The standard fuzzy c-means (FCM) was originally developed by Dunn [9]
and improved by Bezdek [3]. Its local costs are given as

LFCM (v, W, d (v,w)) =
1
2

∑
i∈A

(Ψi (v))m
d(v,wi) , (5)

where Ψi (v) are the fuzzy assignments, and the exponent m determines the
fuzziness commonly set to m > 1. For m → 1 the clustering becomes crisp.
Frequently, the fuzziness is chosen as m = 2.

Minimizing each of these cost functions by stochastic gradient descent learning
or batch mode algorithms realizes the respective vector quantization algorithm
distributing the prototypes in the data space.

3 Divergences as Dissimilarity Measure for Spectral Data
and Relevance Learning

So far we have not discussed any specific choice of the dissimilarity measure
d (v,w). Frequently the Euclidean distance is used. To improve the performance
in SOM and NG, recently the distance measure

dΛ (v,w) = (v − w)T Λ (v − w) (6)

has been suggested, with a positive definite matrix Λ to be adapted by gradient
descent learning [1], and reducible to an Euclidean distance if Λ is decomposable
into Λ = ΩTΩ [5]. For a diagonal Λ the classical relevance learning is obtained.

Processing spectral data vectors using the Euclidean distance may not be ap-
propriate. Specific dissimilarity measures for densities or positive functions as well
as generalizations thereof, as spectral data are supposed to be, are (generalized)
divergences [8],[22],[31]. The idea of relevance learning can also be applied to di-
vergences weighting the spatial range [31]. Here we focus to the most prominent
examples (generalized) Kullback-Leibler-Divergence DGKL (v||w), (generalized)
Rényi-divergence DGR

α (v||w), the γ-divergence Dγ (v||w), and the η-divergence
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Dη. These read for relevance weighted arguments ṽ = λ◦v and w̃ = λ ◦w in the
discrete case as

DGKL (ṽ||w̃) =
∑

i

λivi log
(

vi

wi

)
− (λivi − λiwi) (7)

DGR
α (ṽ||w̃) =

1
α − 1

log

(
1 +

∑
i

[
λiv

α
i w1−α

i − α · λivi + (α − 1)λiwi

])
(8)

Dγ (ṽ||w̃) = log

⎡⎢⎣
(∑

i (λivi)
γ+1
) 1

γ(γ+1) ·
(∑

i (λiw)γ+1
) 1

γ+1

(∑
i (λi)

γ+1 viw
γ
i

) 1
γ

⎤⎥⎦ (9)

Dη (ṽ||w̃) =
∑

i

(λivi)
η + (η − 1) · (λiwi)

η − (λi)
η
η · vi · w(η−1)

i (10)

and λ ◦ v denotes the Hadamard product between the relevance vector λ and
v [31]. It should be noted that Dη becomes the quadratic Euclidean distance
for η = 2. Further, both DGR

α and Dγ converge to DGKL in the limit α → 0
and γ → 0, respectively. The divergence Dγ for γ = 1 is the Cauchy-Schwarz-
divergence DCS [24].

Relevance learning by stochastic gradient learning in the above mentioned
vector quantization algorithms can be performed by taking for a presented data
vector v during learning the respective derivatives

λt ∼ −∂L (v, W, D (ṽ||w̃))
∂λt

=
∂L (v, W, D (ṽ||w̃))

∂D (ṽ||w̃)
∂D (ṽ||w̃)

∂λt

for a considered divergence D [31].
In case of high-dimensional spectra the number of relevance weights λi is

huge and may cause instable behavior. To prevent these instabilities, func-
tional relevance learning was recently proposed. In this approach the relevance
profile vector λ is replaced by a function λ (t) assumed as a superposition
λ (t) =

∑K
l=1 βlKl (t) of simple basis functions Kl depending on only a few

parameters with the restrictions βi ≥ 0 and
∑K

l=1 βl = 1. Well-known examples
are Gaussians or Lorentzians:

Kl (t) =
1

σl

√
2π

exp

(
− (t − Θl)

2

2σ2
l

)
and Kl (t) =

1
ηlπ

η2
l

η2
l + (t − Θl)

2 (11)

Now, relevance learning takes place by adaptation of the parameters βl, Θl,σl

and ηl, respectively [29].

4 Experiments

4.1 Data

Leave shape data: The leave form dataset originates from a study of nine
genotypes and their shape characteristics of Arabidopsis thaliana (L.) Heynh
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published in [2]. It is well known that gene networks as well as environmental
cues control leaf shapes in a highly orchestrated manner. In order to clarify the
role of genes involved in leaf development, precise description, quantification
and categorization of leaf phenotypes e.g. leaf shapes is vital. Two wild type and
seven mutant lines were used: col-0, ws-2, angustifolia (an), elongata1 (elo1-1),
gpa1-1 and gpa1-2 variants, jagged1 (jag1), rotendufolia3 (rot-3) and serrate
(se). Each condition held between 14 and 24 samples. Leaves were fixed at 28
days after sowing and carefully flattened while keeping the leaf margin intact.
Images of flattened leaves were taken using a CCD camera mounted on a stereo-
microscope at 13, 919 DPI and stored as 8-bit grey value bitmap. Fig.1a shows
two examples per line as polygons created by the shape quantification procedure
described below. Leaves were segmented from the background by a grey value
threshold and a Canny edge detector was used to create the boundary trace.
A point distribution model (PDSM) was then fitted by an Active Contour [13].
Then a plane curve was created through spline interpolation and 500 points in
total sampled by arc length parametrization. The shape was aligned with its
longest extension along the y-axis and the base was cut where the petiole has
increased by 40% from its average width. As shape description we used the nor-
malized multi-scale bending energy (NMBE) [7]. A contour is convoluted with a
Gaussian function of increasing sigma thereby smoothing the curve continuously
leading to contours of lower details (see Fig.1b). At each scale, the normalized
shape curvature is calculated, squared and integrated along the curve leading to
the bending energy per scale, additionally a log is applied. As shape descriptor

Fig. 1. (a) Two wild types (col-0, ws-2) and seven mutations of Arabidopsis have
been used. (b) For the curvegram, a contour is continuously smoothed with Gaussians
of increasing sigma; (c) the log-normalized multi-scale bending energy as the shape
descriptor for different genotypes, depicted are mean and standard deviation per scale.
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Fig. 2. Visualization of data (top) and the inverse variance (bottom) of the frequencies
for leaf shape data (left) and AVIRIS data (right)

the bending energy has a number of advantages: it is invariant to rotation, trans-
lation, and through the normalization with the perimeter also invariant to shape
scaling. The bending energy results from elasticity theory and provides a means
for expressing the amount of energy that is needed to transform the contour of
a specific shape into its minimum-energy state, namely, a circle with the same
perimeter as the original object. For shapes related to real objects, such as bio-
logical shapes (e.g. membranes, neurons, organs), the bending energy provides a
particularly meaningful physical interpretation in terms of the energy that has
to be applied in order to produce or modify specific objects [36,7].The bending
energy profile or curvegram [7] serves as input vector to the vector quantization
methods. In Fig.1c the mean profiles for two exemplary genotype are depicted.
For this paper, 25 different scales with a minimum scale of 0.01 and maximum
scale of 0.5 are used.

Remote sensing data: The remote sensing data set is the publicly available
Indian Pines data from NASA Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) consisting of 145×145 pixels [16]. AVIRIS acquires data in 220 bands
of 10nm width from 400 − 2500nm. For this data set 20 noisy bands can be
identified (104 − 108, 150− 163, 220) due to atmospheric water absorption and,
therefore, safely be removed [6]. We did not use the knowledge about the 16
identified classes because of unsupervised learning. The data sets are visualized
in Fig.2 .

4.2 Validity Measures

Although we are not focussing on clustering rather than representation by vector
quantization we compare the solutions for the different algorithms and diver-
gences by cluster validity measures to show the improvement obtained by rele-
vance learning. The used measures should not make explicit or implicit use of the
properties of the Euclidean distance. Further, we applied two different measures
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reflecting the fact that clustering is an ill-posed problem and, therefore, different
measures emphasize different aspects. Yet, they all have in common that they
judge compactness and separability. We selected two measures, which are appli-
cable to fuzzy (FCM) as well as to crisp (NG, SOM) vector quantization, the
modified SV F−index [37]:

SV F (V, W ) =
S
C =

∑
i∈A avgD (w̃i)∑

i∈A maxv∈V ((Ψi (v))m · D (ṽ||w̃i))
(12)

where avgD (w̃i) = 〈D (w̃j||w̃i) + D (w̃i||w̃j)〉j∈A denotes the mean distance
value of other prototypes to w̃i. The value S estimates the separation whereas
C appraises the compactness. The second measure is the modified fuzzy index
introduced by Xie & Beni [34]:

XiB =
∑

i∈A

∑
v∈V (Ψi (v))m · D (ṽ||w̃i)

1
#A

∑
i∈A (avgD (w̃i))

2 . (13)

The higher the SV F - and the lower the XiB-value are for a chosen divergence
D, the better results are achieved.

Table 1. SV F - and XiB-Index for leaf shape (top) and the AVIRIS-dataset (bottom)
with the different methods

SVF XiB
NG SOM FCM NG SOM FCM

Euclid no rel. 0.538 0.090 9.442 1.575 1.933 0.123
with rel. 0.688 0.219 10.424 1.212 1.266 0.119
func. rel. 0.235 1.057

Cauchy- no rel. 1.472 0.330 9.108 0.908 1.274 0.162
Schwarz with rel. 2.011 0.350 9.870 0.608 1.102 0.147
div. func. rel. 0.312 1.224

Kullback- no rel. 1.499 0.238 11.537 0.460 1.545 0.125
Leibler with rel. 1.856 0.255 11.270 0.608 1.497 0.140
div. func. rel. 0.339 1.082

Rényi no rel. 1.760 0.235 8.997 0.467 1.661 0.149
div. with rel. 2.384 0.245 10.116 0.415 1.514 0.149
(α = 2) func. rel. 0.348 1.112

Euclid no rel. 0.152 0.029 6.624 0.727 1.549 0.170
with rel. 0.176 0.049 1.407 0.504 0.855 0.170
func. rel. 0.082 0.670

Cauchy- no rel. 0.138 0.047 0.3091 0.330 1.952 0.1691
Schwarz with rel. 0.125 0.135 0.3496 0.240 1.811 0.2738
div. func. rel. 0.136 0.986

Kullback- no rel. 0.258 0.034 3.791 0.320 1.800 0.169
Leibler with rel. 0.336 0.036 3.809 0.240 1.633 0.168
div. func. rel. 0.036 1.622

Rényi no rel. 0.258 0.046 4.052 0.266 1.042 0.168
div. with rel. 0.349 0.038 4.005 0.205 1.803 0.170
(α = 2) func. rel. 0.036 1.914



Relevance Learning in Unsupervised Vector Quantization 97

4.3 Experimental Results

We applied all three algorithms NG, SOM, and FCM with m = 2 to both
data sets with and without relevance learning using 20 prototypes for each al-
gorithm. We used the quadratic Rényi-divergence DGR

2 , the η-divergence Dη

for η = 2 (Euclidean distance), the Cauchy-Schwarz divergence DCS and the
Kullback-Leibler-divergence DGKL. Additionally, we performed functional rele-
vance learning for the SOM scheme. All settings are trained as usual in online
vector quantization, i.e. by decreasing learning rate until convergence, and adi-
abatic relevance adaptation [14]. The results are depicted in Tab.1, whereby
value variances (10-fold cross validation) are at least two relative magnitudes
lower.

We observe that for low-dimensional leaf shape data NG and SOM show con-
sistently an improvement by relevance learning. Further, according to the better
XiB- and SV F -values, NG is superior to SOM in general as expected according
to well-known earlier findings [20]. FCM also profits from relevance learning

Fig. 3. Relevance profiles obtained according to the different divergences and algo-
rithms for both data sets leaf shape (left) and AVIRIS data (right): NG - solid, SOM
- dotted (functional relevance), FCM - dashed
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except for the Kullback-Leibler-divergence DGKL.1 This inconsistent behavior is
strengthened in case of the high-dimensional AVIRIS spectra yielding weak re-
sults for all dissimilarity measures. This could be related to the instable behavior
of FCM [12]. Yet, NG and SOM generally benefit both from relevance learning
also for the high-dimensional AVIRIS data. Again, the NG has an advantage in
performance as awaited. Another point to be mentioned is that functional rele-
vance learning for SOM yields a further improvement such that one can expect
a similar behavior for the other algorithms too, but this is left for future inves-
tigations. On the other hand, all algorithms generate similar relevance profiles,
i.e. indicating similar spectral ranges as important for high vector quantization
performance, see Fig.3. Moreover, these relevance profiles look similar to the
inverse variance profile of the data sets, see Fig.2 . This behavior is in agreement
with the theoretical results published in [1] and [21].

5 Conclusions

In this article we propose relevance learning for unsupervised online vector quan-
tization using weighted divergences as dissimilarity measure. We demonstrate
that generally an improvement of the performance can be expected. However,
the behavior seems to be sensitive (at least) to the algorithm of choice. Fur-
ther, difficulties may arise in case of high-dimensional data because in that case
the number of parameters to be optimized (relevance weights) becomes huge. In
the light of the SOM results, here functional relevance learning could offer an
alternative [29].
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Abstract. The aim of this work is to discover the principles of learning a group
of dynamical systems. The learning mechanism, which is referred to as the Learn-
ing Algorithm of Multiple Dynamics (LAMD), is expected to satisfy the fol-
lowing four requirements. (i) Given a set of time-series sequences for training,
estimate the dynamics and their latent variables. (ii) Order the dynamical sys-
tems according to the similarities between them. (iii) Interpolate intermediate
dynamics from the given dynamics. (iv) After training, the LAMD should be
able to identify or classify new sequences. For this purpose several algorithms
have been proposed, such as the Recurrent Neural Network with Parametric Bias
and the modular network SOM with recurrent network modules. In this paper,
it is shown that these types of algorithms do not satisfy the above requirements,
but can be improved by normalization of estimated latent variables. This con-
firms that the estimation process of latent variables plays an important role in the
LAMD. Finally, we show that a fully latent space model is required to satisfy the
requirements, for which purpose a SOM with a higher-rank, such as a SOM2, is
best suited.

1 Introduction

The focus of this work is to develop learning algorithms that enable us to deal with a
group of dynamical systems. More precisely, the aim of this work is to discover com-
mon principles shared by Learning Algorithms of Multiple Dynamics (LAMD), which
have the ability to learn, represent, estimate, quantize, interpolate, and classify a class
of dynamics. The LAMD is a useful tool when the system dynamics changes depending
on the context or the environment. In particular, autonomous intelligent robots need an
LAMD with excellent performance, because such robots are required to act in various
environments, and to deal with various objects in a variety of ways.

For this purpose, modular network architectures have often been adopted. One of the
representative architectures is MOdular Selection And Identification for Control (MO-
SAIC) proposed by Wolpert & Kawato [1]. Sometimes a SOM is combined with the
modular network. Minamino et al. applied a SOM with recurrent neural network mod-
ules (RNN-SOM) to the humanoid QRIO, providing QRIO with the capability of multi-
schema learning [2]. Minatohara & Furukawa developed the Self-Organizing Adaptive
Controller (SOAC) [3,4] based on the mnSOM [5]. SOMAR also belong to this type
[6]. In some cases, Jordan’s plan unit [7] has been adopted as an alternative to the mod-
ular network architecture. Tani developed the Parametric Bias (PB) method based on
Jordan’s plan unit and applied it to multi-schema acquisition tasks for robots [8].

J. Laaksonen and T. Honkela (Eds.): WSOM 2011, LNCS 6731, pp. 101–110, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Despite the fact that these algorithms seem to have yielded some success, little
attention has been paid to the problems often encountered by these algorithms, such
as learning instability, calculation time, confusion, and the interference of memories.
The reason these problems have not been exposed is that robotic tasks are too com-
plicated for theoretical analysis, while toy problems are often too simple to elucidate
them. Ohkubo & Furukawa showed that these problems occur regularly even in ordi-
nary learning tasks, and naive algorithms are only effective in limited cases, such as
toy problems [9,10]. To make matters worse, the risk of such problems seems to in-
crease when the system possesses latent variables, e.g., internal state variables. These
are common in the case of dynamical systems.

In this paper we report that conventional naive algorithms do not work adequately
in learning tasks of multiple dynamics. We also point out the importance of latent vari-
able estimation, which should be carried out carefully so that the latent variables are
consistent for all dynamics.

2 Requirements of the Learning Algorithm of Multiple Dynamics

First, let us clarify what we expect from the Learning Algorithm of Multiple Dynam-
ics (LAMD). Suppose that we have a set of sequences, i.e., time-series data, X =
{x1(t), . . . , xN(t)}. Then, we expect the LAMD to learn these N sequences and represent
their dynamics. In other words, we expect the LAMD to estimate the dynamics (e.g.,
input-output relations or differential/difference equations) and reproduce the given N
sequences without the noise component. The simplest way to achieve this is to prepare
N independent learning architectures of single dynamics, and to train them separately.
In this situation, we do not encounter any problems of instability, interference, confu-
sion, and so on. However, we would hesitate to call such an architecture the LAMD,
of course, because we cannot do anything more than what can be done with a learning
algorithm of single dynamics. Therefore, we implicitly expect the LAMD to have some
additional abilities associated with multi-dynamics, such as interpolation, quantization,
identification, etc. Consequently the LAMD is required to have a measure of difference
or similarity between two dynamics or time-series.

Now let us consider a typical case dealt with by the LAMD shown in Fig. 1. In this
case the dynamics is assumed to be represented by a difference equation

z(t + 1) = f (z(t); θ) , (1)

Observable
Variable

Observable
Variable

Observable
Variable

Latent
Variable
Latent

Variable
Latent

Variable

Internal
Signal

Internal
Signal

Internal
Signal

Fig. 1. Time-series generation model in a framework for learning of multiple dynamics
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which is modified by the internal signal θ. Here, z(t) is the state variable consisting of
an observable part x(t) and latent (unobservable) part y(t), i.e., z(t) = (x(t), y(t)). (In
this paper, the sequence of the latent variable y(t) is called a ‘latent sequence’). It is
also assumed that the internal signal θ alters the dynamics continuously, so that similar
values of θ produce similar dynamics. Using this model, a set of training sequences
can be obtained in the following way. First, a set of internal signals Θ = {θ1, . . . , θN } is
randomly generated (the prior distribution p(θ) can be defined, if needed), and fn(z) �
f (z; θn) is obtained for each θn. Then, a time-series is generated for each θn using the
difference equation zn(t + 1) = fn (zn(t)). (External noise ε(t) can be added to z(t) if
necessary). Finally a set of sequences X = {xn(t)} are observed, while {θn}, {yn(t)}, and
the function set { fn(z)} are all hidden from the LAMD.

With this framework, the LAMD is expected to satisfy the following requirements.

Requirement 1: The LAMD learns the dynamics of the training sequences X = {xn(t)}
and thus needs to estimate the function set { fn(z)} and the set of latent sequences
{yn(t)}.

Requirement 2: The LAMD measures the distances or similarities between the given
sequences, and orders them. Thus, the LAMD needs to estimate the internal signal
{θn} and to sort the sequences by θn.

Requirement 3: By giving an intermediate θ, the LAMD represents the intermediate
dynamics between given sequences.

Requirement 4: If a new sequence xnew(t) is given after training has finished, the
LAMD classifies it, and allocates it to the appropriate position between the training
sequences. Thus, the LAMD needs to identify the internal signal θnew of the new
sequence.

We define those algorithms satisfying the above four requirements as the LAMD in this
paper. Note that the LAMD refers to a theoretical concept of multi-dynamics learning
rather than a particular algorithm. There can be various implementations of the LAMD,
and the aim of this paper is to discover the common principles of the LAMD.

3 Conventional Methods

3.1 Representative Architectures

To implement the LAMD using a neural network, there are two major approaches (Fig.
2). One is a modular network structure such as SOM with RNN modules or with autore-
gressive (AR) modules. The modular network SOM with RNNs (RNN-mnSOM) shown
in Fig. 2(a) is representative of this approach [11]. In the RNN-mnSOM, every nodal
unit of the SOM is replaced by an RNN module, and the location of the winner (i.e.,
the best matching module of the given sequence) in the feature map space represents
the control signal θ. This approach is sometimes referred to as the local representation,
because each dynamics is represented separately in an RNN module.

The other approach is to use Jordan’s plan unit [7]. A representative architecture is
the recurrent network with parametric bias (RNNPB), shown in Fig. 2(b) [8]. RNNPB
is a variation of the multi-layer perceptron (MLP) with recurrent connections, and the
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k-th RNN module

(a) (b)

Fig. 2. Conventional learning algorithms of multiple dynamics. (a) RNN-mnSOM. (b) RNNPB.

input-output relation is modified by additional bias units called parametric bias. The
parametric bias vector (i.e., the set of parametric bias values) represents the internal
signal θ, which is determined by a back-propagation algorithm. This approach is re-
ferred to as the distributed representation, because the representation of the dynamics
is distributed across the network.

3.2 Naive Algorithm

Though the appearance of these two architectures is quite different, in essence the two
approaches have much in common.

1. For each training sequence, the least error node (e.g. RNN-module), or the least
error parametric bias vector becomes the winner of the sequence.

2. The winner and its neighbors are trained to represent the dynamics of the train-
ing sequence. In the RNN-mnSOM, the neighbors are determined explicitly by the
neighborhood function, whereas in the RNNPB they are determined implicitly by
the sigmoid curve of the neurons.

3. As a result, the network is trained by a set of sequences, which are mixed with the
weights determined by the neighborhood. That is, for a particular θ (i.e., each RNN-
module or each parametric bias vector), the network is trained so as to minimize
the weighted sum of the square error of multiple training sequences.

In this paper, algorithms using this strategy are called naive algorithms. In the case of
the RNN-mnSOM, this naive algorithm is formulated as follows. Let x̂k

n(t) be the output
of the k-th RNN module. Then, the square error between the given sequence xn(t) and
the output of the k-th module x̂k

n(t) is given by

Ek
n =

1
2

T∑

t=1

‖xn(t) − x̂k
n(t)‖2. (2)
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The winner module and the estimated internal signal are expressed as

k∗n = arg min
k

Ek
n (3)

θ̂n = θ
k∗n . (4)

Here, θk denotes the coordinates of the k-th module in the feature map space. Using the
neighborhood function, the learning coefficients are determined for every module.

ak
n =

exp
[
−‖θk − θ̂n‖2/2σ2

]

∑
n′ exp

[
−‖θk − θ̂n′ ‖2/2σ2

] (5)

Finally, the connection weight wk of each RNN module is updated by a back-
propagation algorithm (more precisely, the back-propagation through time algorithm)
as follows.

Ek =

N∑

n=1

ak
nEk

n (6)

Δwk = −η∂E
k

∂wk
= −η

N∑

n=1

ak
n
∂Ek

n

∂wk
(7)

Thus, the entire objective function becomes

E =
K∑

k=1

Ek =

K∑

k=1

N∑

n=1

ak
nEk

n. (8)

Note that this objective function is for the update process of the RNN modules, and is
not the objective function for self-organization.

3.3 What Is the Problem?

In the naive algorithm presented above, users expect the intermediate dynamics to be
represented by minimizing the weighted sum of the square errors. Thus, the update
process described in (7) determines whether the algorithm works as expected. Unfor-
tunately, this naive algorithm fails to satisfy user expectations. To ascertain what the
problem is, let us consider the simplest situation, in which we only have one RNN
module and two training sequences. The task of the RNN module is to represent the
intermediate dynamics of two training sequences. In this case, the naive algorithm be-
comes

Δw = −η
(
1
2
∂E1

∂w
+

1
2
∂E2

∂w

)
. (9)

For simulation, training sequences were generated by the Hénon map,
⎧⎪⎪⎨⎪⎪⎩

xn(t + 1) = 1 − anx2(t) + y(t)

yn(t + 1) = bxn(t),
(10)
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Fig. 3. Single RNN is trained by two time-series of a Hénon map with different parameters,
a = 1.4 and a = 1.0. The gray surface of each panel represents the dynamics expressed by the
RNN, while the black surface represents the desired dynamics when an intermediate parameter
is used, i.e., a = 1.2. (a) The result of the naive algorithm. The RNN represents both training
dynamics (a = 1.0 and a = 1.4) within the same network. (b) The result of the natural algorithm.
The RNN succeeds in representing the intermediate dynamics.

where xn(t) and yn(t) are the observable and latent variables, respectively. To generate
x1(t) and x2(t), a1 = 1.4 and a2 = 1.0 were used. Thus, the task of the RNN is to
estimate the dynamics with parameter a = 1.2. The result, illustrated in Fig. 3(a), shows
that the RNN represents both training dynamics simultaneously, but does not represent
the intermediate dynamics.

One may be suspicious of why a single RNN can represent two dynamics simultane-
ously, instead of representing the intermediate dynamics. The reason is the arbitrariness
of the latent variable estimation. To reproduce a training sequence, it is allowed to
transform y(t) in scale and bias. For example, if the latent variable y(t) is transformed as
y′(t) = αy(t)+ β, it is easy to modify the difference equations so as to produce the same
x(t). It is also possible to transform y(t) by a monotonic nonlinear function. Therefore,
the latent sequence estimation is an ill-posed problem. This fact allows the network
to represents two dynamics simultaneously. Suppose that y(t) is always positive, i.e.,
y(t) > 0, when the RNN represents x1(t), whereas y(t) < 0 for x2(t). Then the RNN can
represent both dynamics within a single architecture by segregating the latent variable
regions. Obviously this case minimizes the square error for both training sequences. It
is also worth stressing that no training data for the intermediate dynamics is given to
the RNN.

4 Natural Algorithm for LAMD

4.1 Improvement of Naive Algorithm

As pointed out above, the arbitrariness of the latent variable estimation causes the prob-
lem. Though it is rather a heuristic improvement, let us first try to fix the problem by
the following ad hoc modifications.

Modification 1: In the winner module k∗n, the estimated latent variable is normalized
so that its probability density is almost equal for all training sequences. One of the
easiest ways is to normalize the latent sequence, so that the maximum and minimum
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of ŷ∗n(t) are both ±1. The weight connections of the winner module also need to be
compensated so as to produce the same output.

Modification 2: The normalized latent sequence of the winner module is shared by all
modules. Thus, the estimated latent sequences in the non-winner modules are all
rejected, and they are replaced by the winner’s latent sequence.

Modification 1 makes the probability density p(ŷk
n) consistent for all training sequences,

i.e., independent of n, whereas Modification 2 makes ŷk
n consistent for all modules,

i.e., independent of k. This modified algorithm is hereafter referred to as the natural
algorithm.

Simulation results for the natural algorithm using a Hénon map are shown in Fig.
3(b). Using the natural algorithm, the network succeeds in representing the intermediate
dynamics. Again it is worth noting that there is no training data for the intermediate
dynamics.

4.2 RNN-mnSOM and RNNPB with the Natural Algorithm

To compare the naive and natural algorithms, both algorithms were programmed into
an RNN-mnSOM and RNNPB. To investigate the difference, time-series of simple har-
monic waves were used for simulation. The difference equation is given by

(
xn(t + 1)
yn(t + 1)

)
=

(
cosωn sinωn

− sinωn cosωn

) (
xn(t)
yn(t)

)
, (11)

where xn(t) and y(t) denote the observable and latent sequences, respectively. The pa-
rameters used for the training sequences were ωn = 0.8, 1.0, 1.2, 1.4, while other values
between 0.7 and 1.5 were used for the test.

The tasks for the RNN-mnSOM and RNNPB were set as follows: (i) learn four train-
ing sequences, (ii) sort them into a one-dimensional parameter space, and (iii) inter-
polate between the dynamics of the training sequences. To achieve these, the RNN-
mnSOM was given 7 RNN modules with a one-dimensional feature space, while the
RNNPB had 1 parametric bias unit.

Fig. 4 gives the results for the RNN-mnSOM and RNNPB. In both cases, the naive
algorithm failed to order the given sequences, while the natural algorithm succeeded.

5 What Is Required in Learning of Multiple Dynamics?

As observed above, consistent estimation of latent variables seems to be vitally impor-
tant, and appears to be the common principle in the LAMD. In this section we attempt
to outline the theory underlying the LAMD.

To discuss this issue, we first need to define the distance measure that governs the
task. The most natural would be to use the distance measure in function space. Thus,
the distance between two dynamics is defined as follows.

L2( f1, f2) �
∫
‖ f1(z) − f2(z)‖2 p(z)dz (12)

=

∫
‖ f1(x, y) − f2(x, y)‖2 p(x, y)dxdy (13)
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Fig. 4. Results for RNN-mnSOM (a) (b) and RNNPB (c) (d) with Naive and Natural algorithms,
respectively

Here, f1 and f2 are the difference or the differential equations of the two dynamics. It is
necessary to emphasize that the aim of the architecture is to deal with a set of dynamics
which can be defined by a set of difference or differential equations. Therefore the
distance between equations is more essential than the distance between observed time
sequences. In (13) p(z) = p(x, y) is the probability density function of the state variable.
If the probabilities of the observable and latent variables are assumed to be independent,
then (13) becomes

L2( f1, f2) =
∫
‖ f1(x, y) − f2(x, y)‖2p(x)p(y)dxdy. (14)
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Fig. 5. A map of weather dynamics organized by a SOM2. Weather trajectories during one week
for 153 cities are indicated in the winner node.

It is also worth stressing that the density function p(x, y) should be common for all
fn(x, y), otherwise the distance cannot be defined. As mentioned above, the latent vari-
able estimation suffers from the arbitrariness problem, and the PDF p(y) changes de-
pending on the modules and the sequences. This is why consistent estimation of the
latent variable in the natural algorithm is necessary.

Though the above heuristic natural algorithm for the RNN-mnSOM and RNNPB
performed well in the simulations, the algorithm still has difficulty in more practical
cases. One of the reasons is that the probability density of the observable variable p(x)
also depends on the internal parameter θ in many cases. Furthermore, they are usually
high dimensional vectors distributed in a nonlinear subspace in a high dimensional data
space. In such cases, a simple normalization of each component of x is not enough,
because each component is not usually independent to others. Therefore, we need a
true natural algorithm that can be derived theoretically, rather than heuristically.

Now let us consider the case in which p(x, y) depends on the internal parameter θ.
Furthermore, x(t) is supposed to be distributed nonlinearly in a high-dimensional space.
In such a case, the dynamics is formulated as follows.

ξ(t + 1) = f (ξ(t)) (15)

z = (x, y) = g(ξ; θ) (16)
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Here, ξ is the low-dimensional intrinsic state variable that governs the class of dynam-
ics, and the mapping from intrinsic state to actual variables is supposed to be modified
by θ. In other words, an intrinsic dynamics for ξ(t) exists, and the observation is altered
by the context or the environment. Obviously this formulation includes the previous
simple cases. By applying embedded theory, (16) is equivalent to

z̃(t) � (x(t), x(t − 1), . . . , x(t − L + 1)) (17)

z̃(t) = g̃(ξ; θ). (18)

Therefore, such a class of dynamics can be described by a homotopy g̃(ξ; θ). Thus, what
we need is an algorithm for self-organizing homotopy learning. The best suited solution
for this purpose is a ‘SOM of SOMs’, that is, a SOM2, which is an extension of the self-
organizing map to a homotopy [12]. The SOM2 represents the intrinsic state by a set of
‘fibers’ and the entire class of dynamics is represented by a fiber bundle.

A map of dynamics organized by a SOM2 is shown in Fig. 5. This is a map of weather
dynamics for 153 cities in Japan. The SOM2 succeeds in representing and ordering the
weather dynamics for the given cities.

6 Conclusion

In this paper, we discussed what is required for learning of multiple dynamics, and
pointed out the importance of the natural algorithm. Currently, the SOM2 is the best
solution, but a theoretical derivation has not yet been done. This remains a future work
for us.
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Abstract. In this paper, the author proposes a growing neural network
based on an online Gaussian mixture model, in which mechanisms are
included for growing Gaussian kernels and finding topologies between
kernels using graph paths. The proposed method has the following ad-
vantages compared with conventional growing neural networks: no per-
manent increase in nodes (Gaussian kernels), robustness to noise, and
increased speed of constructing networks. This paper presents the the-
ory and algorithm for the proposed method and the results of verification
experiments using artificial data.

Keywords: Growing Neural Networks, Gaussian Mixture Model,
Graph, Online.

1 Introduction

A growing neural network (GNN), such as the Growing Neural Gas (GNG) [1],
represents the topology of data with a graph network using online-learning data
vectors input sequentially. Finding the topology of input data vectors is impor-
tant in various applications, such as object recognition, character recognition,
structure recognition, and so on. It is expected that a GNN could be used in the
learning system for a mobile robot, since the GNN can find the topology of data
dynamically using online learning.

In the past, various algorithms for GNNs have been proposed. However, all
these algorithms build the graph network directly from observed data vectors. In
other words, the graph networks built by conventional GNNs do not represent
the generative model of the observed data. Conventional GNNs are prone to
the following problems: sensitivity to noise, generation of redundant nodes, and
having the learning results depend heavily on the learning parameters.

The aim of this work is to develop an algorithm for the GNN from the perspec-
tive of a generative model. In this paper, an algorithm for the GNN based on an on-
line Gaussian Mixture Model (GMM) is proposed; henceforth, this
proposed method is referred to as the “GGMM: Growing GMM”. The GMM rep-
resents a probability density function (PDF) combining multiple Gaussian ker-
nels. Thus, the GMM builds the generative model represented by the PDF. The
GGMM is extension of the GMM that includes the following mechanisms: online

J. Laaksonen and T. Honkela (Eds.): WSOM 2011, LNCS 6731, pp. 111–120, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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learning, growing of Gaussian kernels and finding topologies between kernels using
graph paths.

This paper discusses the theory and an algorithm for the GGMM. In addi-
tion, results of experiments comparing the GGMM with three typical GNNs
(Growing Neural Gas, Evolving SOM [2], and Self-Organizing Incremental Neu-
ral Network [3]) are presented.

2 Framework and Theory

The proposed method, the GGMM, performs three processes concurrently: (1)
online parameter estimation of the GMM, (2) controlling the generation of Gaus-
sian kernels using an information criterion, and (3) generation of a path repre-
senting the topology between kernels and updating the path’s strength. First,
a framework for the proposed method is presented, and then each of the above
processes are explained in turn.

2.1 Framework

The framework of tasks to which the proposal method will be applied, is given
below.

– Sequentially-observed data vectors cannot be stored in memory.
– The appropriate number of Gaussian kernels is unknown. (In the first stage

of learning, the number of kernels is one.)
– The parameters (mixing parameter, and mean and covariance matrices) of

each kernel are unknown.
– The class information for data vectors is unknown.
– Noise is added to the data vector.

Under the above conditions, processes to find the generative model of the input
data and generate the paths are performed simultaneously in online learning.

2.2 (1) Online GMM

The GMM is widely known as a nonparametric approach for estimating the
probability density function and represents the probability density function with
a mixture of multiple Gaussian kernels.

Now, at time t, let a d-dimensional data vector xt be observed. Then, in the
GMM composed of K kernels, the probability density function p (xt) is described
as

p (xt) =
K∑

k=1

πkN (xt; μk, Σk) ,

k∑
k=1

πk = 1 , (1)

where

N (xt; μk, Σk) =
1

(2π)d/2 | Σk |1/2
exp

{
−1

2
(xt − μk)T Σ−1

k (xt − μk)
}

. (2)
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Here, the Gaussian kernel is represented by a normal probability distribution
N (xt; μk, andΣk). πk is the mixing parameter of the k-th kernel. Moreover,
μk, Σk are the mean and covariance matrices, respectively, in the k-th Gaussian
kernel.

Online Parameter Estimation

In online parameter estimation for an online GMM, the extremum of the objec-
tive function

L(πk, μk, Σk) = log

{
K∑

k=1

πkN (xt; μk, Σk)

}
− λ

(
K∑

k=1

πk − 1

)
, (3)

defined using Lagrange’s method for undetermined multipliers, is found by the
hill climbing method. Updating expressions for each parameter are defined as
follows:

μnew
k = μold

k + ε (Σold
k )−1γk(xt)

{
xt − μold

k

}
, (4)

Σnew
k = Σold

k +
1
2

ε γk(xt)(Σold
k )−1

{
(xt − μnew

k )(xt − μnew
k )T (Σold

k )−1 − I
}

,

(5)

πnew
k = πold

k + ε

{
γk(xt)
πold

k

− 1
}

. (6)

Here, ε is a learning rate, such that 0 < ε < 1.0. Moreover, γk(xt) is the posterior
probability (responsibility) defined as:

γk(xt) =
πold

k N
(
xt; μold

k , Σold
k

)
∑K

k′=1 πold
k′ N

(
xt; μold

k′ , Σold
k′

) . (7)

2.3 (2) Generation of Gaussian Kernel Using Information Criterion

Typical information criteria include Akaike’s Information Criterion (AIC) [4]
and the Bayesian Information Criterion (BIC) [5]. In this paper, AIC is used
to generate the Gaussian kernel, since . The choice of information criterion is
not important, as the difference in learning results using the AIC and BIC is
negligible. The AIC is defined as:

AIC(K) = −2 ln l(K) + 2 C(K) . (8)

Here, K, L(K), and C(K) are the number of kernels, the maximum likelihood in
K kernels, and the degrees of freedom of the model, respectively. In the GMM,
the number of kernels is chosen to maximize AIC(K). In other words, the number
of kernels is determined so that the maximum likelihood is given by as few kernels
as possible. Generally, in the GMM, the number of kernels is controlled offline
using all the input data. However, the GGMM controls the generation of the
kernel from a single observed data vector in online learning.
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Next, the mechanism for the online-generation of the kernel using the AIC
is explained. Suppose that data vectors x1, x2, ..., xT−1 have been observed at
time T −1. Now, at time T , let a new input data vector xT be observed. At this
time, a new kernel is generated if AIC(K + 1) > AIC(K), that is,

ln l(K + 1) − ln l(K) > C(K + 1) − C(K) (9)

is implemented. l(K + 1) is the likelihood of the GMM, in which a new kernel
has been added. Here, l(K + 1) and l(K) are expressed as:

l(K) =
T∏

t=1

pK(xt), (10)

l(K + 1) =
T∏

t=1

pK+1(xt) . (11)

However, it is impossible to calculate Equation (11), since previously processed
input data cannot be stored in this framework (see Section 2.1). Therefore,
Equation (11) is evaluated approximately using a current input data vector xT .
The approximate evaluation of Equation (11) is computed as

ln pK+1(xT ) − ln pK(xT ) > C(K + 1) − C(K) + 1 . (12)

The derivation of Equation (12) is described below.

Derivation of Equation (12)

Let the probability density function pK+1(x) at the addition of a new kernel be
defined as follows:

pK+1(x) =
K∑

k=1

π′
kN (x; μk, Σk) + πK+1N

(
x; μK+1, ΣK+1

)
. (13)

Here, let π′
k = (1 − τ)πk where 0 < τ < 1. Moreover, the initial values of

parameters, πK+1, μK+1, and ΣK+1 in the new kernel are given by

πK+1 = τ, μK+1 = xT , ΣK+1 = αI , (14)

where α is an arbitrary invariable.
The following equation is derived from Equations (11) and (13):

l(K + 1) =
T∏

t=1

{
K∑

k=1

π′
kN (xt; μk, Σk) + πK+1N

(
xt; μK+1, ΣK+1

)}
. (15)

Here, in the second term on the right-hand side, suggested that the contribution
of foregone input data xt, t = 1, 2, ..., T −1 can be ignored. Then, Equation (15)
can be approximated as:
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l(K + 1) �
{

T−1∏
t=1

(
K∑

k=1

π′
kN (xt; μk, Σk)

)}
pK+1(xT ) (16)

=

{
T−1∏
t=1

(1 − τ)

(
K∑

k=1

πkN (xt; μk, Σk)

)}
pK+1(xT ) (17)

=

{
T−1∏
t=1

(1 − τ) pK(xt)

}
pK+1(xT ) (18)

= (1 − τ)T−1 l(K)
pK(xT )

pK+1(xT ) . (19)

Therefore,

l(K + 1)
l(K)

� (1 − τ)T−1 pK+1(xT )
pK(xT )

. (20)

Finally, Equation (12) is derived by taking the logarithm of both sides of Equa-
tion (20). Here, when T � 1,

(T − 1) ln (1 − τ) � −1. (21)

Therefore, it is possible to control the generation of the kernel using only the
current input data.

2.4 (3) Generating and Updating the Path

The GGMM simultaneously generates paths between the existing kernels and the
new kernel. These paths represent the topology between the data distributions
on the Gaussian kernels. In addition, a strength, which can be decreased or
increased with learning, is associated with each path.

The Mahalanobis distance between kernels is used to generate and update the
path. If the Mahalanobis distance between kernels is small, then the probability
that data vectors are distributed between these kernels is high. Thus, the prob-
ability that each kernel belongs to the same class is high. By contrast, if the
Mahalanobis distance between kernels is large, the probability that each kernel
is independent is high. Thus, the strength of the path represents the statistical
distance between kernels. Next, the underlying theory for “generating the path”
and “updating the path” are explained.

Generating the Path

A path is generated between the additional kernel and both the first and second
winner kernels, where the first and second winner kernels, k∗ and k∗∗, are defined
as:

k∗ = arg min
k

γk(xT ) ∀k, (22)

k∗∗ = arg min
k

γk(xT ) ∀k /∈ k∗ . (23)
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In the first generation of the path, the initial strength of the path is set according
to the following definitions. Here, the notations for the variables are given as
follows. Suppose that s(K + 1, k∗) and s(K + 1, k∗∗) are the strengths of the
paths between K + 1 and k∗, and K + 1 and k∗∗, respectively. In addition, the
Mahalanobis distance between μK+1 and μk∗

on the additional kernel K + 1 is
expressed as dK+1,k∗

K+1 . Then, the following equations describe the initial strength
of the path.

s(K + 1, k∗) = β

⎛⎝ 1(
dK+1,k∗

K+1 + dK+1,k∗
k∗

)
/2

⎞⎠ (24)

s(K + 1, k∗∗) = β

⎛⎝ 1(
dK+1,k∗∗

K+1 + dK+1,k∗∗
k∗∗

)
/2

⎞⎠ (25)

β is an arbitrary parameter, such that 0 < β < 1.0.

Updating the Path

A necessary and an unnecessary path are highlighted by updating the strength
of the path through learning. All paths connected to the first winner kernel are
updated using the equation below.

s(k∗, k′)new = (1 − β)s(k∗, k′)old + β

⎛⎝ 1(
dk∗,k′

k∗ + dk∗,k′
k′

)
/2

⎞⎠ (26)

Thus, the strength of the path represents the expected value of the reciprocal of
the Mahalanobis distance between the kernels.

3 Algorithm

The algorithm for the GGMM consists of four processes: (1) evaluation process,
(2-A) generation process, (2-B) update process, and (3) deletion process.

The following processes are repeated during learning.

(0) Initial Process

The initial number of kernels is 0. When the first observed data vector x1 is
given, the first kernel composed of the initial parameter in Equation (14) is
generated.

(1) Evaluation Process

The probability density function pK(xt) in Equation (1) and the assumed prob-
ability density function pK+1(xt) in Equation (13) are calculated from the ob-
served data vector xt. Next, whether to generate a new kernel is determined by
Equation (12). If Equation (12) is true, then go to (2-A), the generation process.
If Equation (12) is false, then go to (2-B), the update process.



Growing Graph Network Based on an Online Gaussian Mixture Model 117

(2-A) Generation Process

In this process, a new kernel is generated. The initial parameters of the new
kernel are set according to Equation (14). Next, paths are generated between
the additional kernel and both the first and second winner kernels, using Equa-
tion (25). Go to (3) when the above process terminates.

(2-B) Update Process

The parameters of the generated kernels are updated by Equations (4), (5),
and (6). Next, the paths connected to the first winner kernel are updated by
Equation (26). Furthermore, if the first and second winner kernels are not con-
nected, a new path is generated between their kernels. Go to (3) when the above
process terminates.

(3) Deletion Process

A kernel whose mixing parameter is close to 0 is deleted. In this work, a kernel
that falls below the threshold parameter is also deleted. This kernel deletion is
performed at each learning step.

Furthermore, the strength of path that falls below the threshold parameter is
deleted. In this work, the threshold parameter is 1/7, which is the reciprocal of
the Mahalanobis distance 7, since the strength of path represents the expected
value of the reciprocal of the Mahalanobis distance between kernels. It is recom-
mended that the threshold is determined according to the tasks. This deletion
is performed at intervals.

Return to (1) if a data vector is observed. Otherwise, the learning is complete.

4 Simulation

In this simulation, the proposal method is compared with three typical GNNs
(GNG, ESOM, and SOINN).

The Swiss roll data, shown in Fig. 1, were used as artificial data for the
simulation. Data vectors are distributed on two spirals. Two kinds of Swiss roll
data (Type 1, Type 2), differing with respect to the width of noise as shown in
Fig. 1 were used, with a total of 10000 data vectors.

It is difficult to evaluate each method within the same framework, since the
behavior of the learning parameters is different for each method. Therefore, in
this simulation, the parameters for each method were set so that two spiral graph
networks could be generated for Type 1 data. For both Type 1 and Type 2 data,
the learning parameters for each GNN were the same.

The learning results obtained from data vectors of Type 1 for each GNN are
shown in Fig. 2. Similarly, the learning results for Type 2 data are shown in
Fig. 3. According to the results for Type 1 data, all methods can successfully
represent two spiral graph networks. By contrast, in the results for the GNG,
SOINN, and ESOM with Type 2 data, the spiral data distribution cannot be
represented, since some nodes are allocated to noise. It is difficult to obtain the
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Fig. 1. Two types of Swiss roll data

GNG SOINN

ESOM GGMM

Fig. 2. Results for Type 1 data

desired results using those methods, for which the probability density functions
of the data distributions cannot be estimated. Additionally, with the Type 2
data, the GNG, ESOM, and SOINN cannot generate two spiral graph networks
no matter how the parameters are adjusted. By contrast, the GGMM successfully
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GNG SOINN

ESOM GGMM

Fig. 3. Results for Type 2 data

formed graph networks, in which the two spirals were well separated. Moreover,
in several-time experiments, almost the same results were obtained, since the
influence of the parameters of the GGMM on the result is small. In addition,
since the number of nodes in the GGMM does not increase permanently, almost
the same results were obtained in the several-time experiments.

These results confirm that the proposed method yields stable learning results
and is more robust to noise than conventional GNNs.

5 Summary

In this paper, the author proposed a growing neural network based on an online
type Gaussian mixture model, which includes mechanisms to grow Gaussian
kernels and find topologies between kernels using graph paths. In the simulation,
the proposed method obtains stable learning results, and is more robust to noise
than conventional GNNs. It is expected that the proposed method can be applied
as the fundamental algorithm in a system where a cognitive model is developed
from dynamically input sensor data in mobile robots. In a past work, the Self-
Evolving Modular network (SEEM) was proposed as a method for multi-dynamic
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learning in mobile robots. The SEEM increases the number of modules and
represents two or more dynamics. It is anticipated that this proposed method
can be applied as the backbone algorithm of the SEEM. In the future, author
aim to derive more theoretically consolidated GNN algorithms based on Bayesian
estimation.
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José Everardo B. Maia1, Guilherme A. Barreto2, and André Lúıs V. Coelho3
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Abstract. An extension of a recently proposed evolutionary self-
organizing map is introduced and applied to the tracking of objects in
video sequences. In the proposed approach, a geometric template consist-
ing of a small number of keypoints is used to track an object that moves
smoothly. The coordinates of the keypoints and their neighborhood rela-
tions are associated with the coordinates of the nodes of a self-organizing
map that represents the object. Parameters of a local affine transforma-
tion associated with each neuron are updated by an evolutionary algo-
rithm and used to map each template’s keypoint in the previous frame
to the current one. Computer simulations indicate that the proposed ap-
proach presents better results than those obtained by a direct method
approach.

Keywords: Self-organizing neural networks, evolutionary algo-
rithms, object tracking, video sequences.

1 Introduction

Visual tracking is the act of consistently locating a region in each image of a
video sequence that matches the given object [8]. It is a critical step in many
machine vision applications such as surveillance [2], driver assistance systems [9],
remote sensing, defense systems [1], human-computer interactions [6].

In this paper, we propose a novel strategy that consists in using simple repre-
sentations for the patch centered on keypoints and computationally efficient mea-
sures of matching to compare patches. For this purpose, we build a self-organizing
map on the object model image with the nodes located in the keypoints using
distance and the neighborhood relations to connect them. The neighborhood
relations imposed by the topographic map impose constraints that prevent the
drift of the points in successive iterations. In our approach the quality of a solu-
tion considers the matching of all patches and also the correlation of distances
between points in the center of each patch.

J. Laaksonen and T. Honkela (Eds.): WSOM 2011, LNCS 6731, pp. 121–130, 2011.
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The remainder of this paper is organized as follows. In Section 2 and its
subsections the problem is defined and the proposed approach is introduced.
In Section 3 the simulation results are presented and discussed. The article is
concluded in Section 4.

2 The Proposed Approach

Firstly, we need to define the reference, current and candidate templates. Let
I = {I0, I1, .., Ii} be a sequence of indexed images and T0, .., Ti are gray-level
intensities of templates defined on these images. The template (or patch) defined
in the first frame, T0, is referred to as the reference template (or the reference
patch). When tracking from frame i to frame i + 1, we refer to frame i as the
current frame, and the template within this frame, Ti, as the current template.
The frame i + 1 is referred to as the target frame, and a template within this
frame, Ti+1, as a candidate template.

The Sum of Squared Differences (SSD) is used as a measure of matching
between templates. Let x ∈ T0 be a feature point in the corresponding template.
Thus, the problem of finding a transformation parameter vector p between T0

and Ti is formulated using SSD as

p̂ = argmin
p

∑
x∈T0

[Ti(x′) − T0(x)]2 = arg min
p

∑
x∈T0

[Ti(w(x,p)) − T0(x)]2 , (1)

where x′ = w(x,p) is the projection of the feature point x ∈ T0 onto the current
frame i. The SSD-based tracking problem can thus be stated as the task whose
goal is to select and track feature points from images I0 to Ii+1. Assuming that
the transformation w(x, p̂) from frame 0 to the current frame i is known, the
problem reduces to finding an increment Δp for the transformation parameter
vector between Ti and Ti+1 through an iterative method that solves

Δp̂ = argmin
Δp

∑
x′∈Ti

[Ti+1(w(x′, Δp)) − Ti(x′)]2 , (2)

By function composition, we find the whole transformation imposed to the
feature point x ∈ T0 from frame 0 (reference) to frame i + 1 (target): x∗ =
w(x′, Δp̂)◦w(x, p̂), where the feature point x′ belongs to the current frame i (i.e.
x′ ∈ Ti). The transformation w : R2 → R2 is the warp function corresponding
to a transformation whose parameters are specified in p. Usually, it is given by
an affine transformation x′ = Ax + b, defined as(

x′

y′

)
=
(

s · cos(θ) s · sin(θ)
−s · sin(θ) s · cos(θ)

)(
x
y

)
+
(

bx

by

)
(3)

where the matrix A ∈ R
2×2 accounts for rotations and scaling, since θ is an

angle of rotation and s is a scale factor, while x = (x, y), x′ = (x′, y′) and
b = (bx, by) denote respectively the original positions, the transformed ones and
a translation vector.
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Fig. 1. (a) A kite-shaped template with 5 patches and 8 distance links. (b) Typical
aspects that a kite-shaped template can assume during the tracking problem.

We assume that the object is executing a smooth movement whose evolution
from one frame to the next is represented by affine transformations whose pa-
rameter vectors p = (bx, by, θ, s). This condition is approximately satisfied when
the object is rigid, the camera is stationary and the object’s movement is slow
relative to the video frame rate such that location, scalar velocity and direction
of motion of a given point change little from one frame to the next.

2.1 Object Representation

We tackle the tracking problem as a problem of matching detected keypoints
between successive frames. By keypoint we denote a point in an image that
is sufficiently different from its neighbors so that it can be easily distinguished
from other similarly extracted points in the same or another image. It is assumed
that a small neighborhood is also moving together with the point and therefore
a small image patch around the point, called model patch, can be considered for
analysis.The keypoints are manually marked by the user on the object image in
the first frame.

By taking the keypoints selected as vertices, a template in the form of an
undirected graph (or grid) is built to represent the object (see Figure 1a). A
planar grid is built by establishing links between some of the keypoints, which
impose significant constraints on the geometric appearance of the object. Al-
though the links can be arbitrary, distances and neighborhood relations between
the keypoints should be considered to define the links. The vertices of the tem-
plate can then be interpreted as the coordinates of a non-regular grid defining a
self-organizing feature map (SOFM) that represents the object. The weight vec-
tors of each node in the output grid are updated by an evolutionary algorithm
and used to locate the object in a frame by frame basis. For this example, we
defined five keypoints (hence, five patches) and eight links to build the SOFM.
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Note that for the standard SOM network [3], the output grid is regular, in the
sense that it has a well-defined geometric structure, e.g. rectangular, cylindrical
or toroidal, and the coordinates of the nodes are located at equally-spaced po-
sitions, so that the distances between neighboring coordinates are equal. In the
proposed approach, the coordinates of the nodes correspond to the position of
the chosen keypoints, which do not need to be equally-spaced one from another.
The only constraint is that, once the coordinates of the keypoints have been
chosen, the neighborhood relations between them should be preserved.

Figure 1b shows typical aspects and positions that the ‘kite’-shaped template
shown in Figure 1a can assume when subjected to affine transformations. This
synthetic template is used in one of our experiments to represent the object to be
tracked. In the next section, we summarize the theory of the evolutionary self-
organizing neural network model used by the proposed object tracking algorithm.

2.2 The Evolutionary Self-Organizing Map (EvSOM)

EvSOM is a recently-proposed evolutionary algorithm for topologically ordered
map formation [4]. For its description, we use the following notation: N is the
number of neurons, P is the input space dimension, L is the number of data
samples, wj ∈ R

P , j = 1, ..., N , is the weight vector of the j-neuron in a fixed
output array, wi is the weight vector of the winning neuron and xl ∈ R

P is the
l-th input vector.

The central idea of EvSOM is the optimization of a fitness function comprised
of the linear combination of the Quantization Error (QE) and the Pearson Cor-
relation Coefficient (PCC):

Fitness(W̃) = α · PCC(W̃) − β · QE(W̃), (4)

where W̃ = {w1, ...,wN} denotes the whole set of weight vectors, and the pa-
rameters α, β ∈ [0, 10] weigh the relative importance of the indices with respect
to each other. The QE index assess how good is the map in providing a compact
representation of the original data set. Mathematically, QE is defined as

QE(W̃) =
1
L

L∑
l=1

∥∥xl − wi(xl)

∥∥ , (5)

where i(xl) is the winning neuron for pattern vector xl, being determined as

i(xl) = argmin
∀j

{‖xl − wj‖} (6)

where ‖ · ‖ denotes the euclidean norm.
Since (rm, rn) are the coordinates of pairs of nodes in the output grid and

(wm,wn) are the corresponding pairs of weight vectors, the PCC index is the
cross-correlation of the distances between nodes in the output space, d(rm, rn),
and the distances between weight vectors in the input space, d(wm,wn). Math-
ematically, we have
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Search region   − keypoints frame i

  − keypoints frame i+1

j−th model patch

Fig. 2. Region search for candidate patches in the vicinity of a model patch

PCC(W̃) =
∑N

m=1

∑N
n=1 d(rm, rn)d(wm,wn)
(N − 1)SrSw

, (7)

where Sr and Sw are respectively the standard deviations of {d(rm, rn)} and
{d(wm,wn)}, m, n = 1, ..., N .

The larger the value of PCC, the higher the correlation between distances
in the output space, d(rm, rn), and distances in the input space, d(wm,wn).
The smaller the value of QE, the better the quantization of the input space. By
reversing the sign of the QE index, this multi-objective optimization problem
reduces to the maximization of the single index PCC.

The evolutionary algorithm comprises the following conventional steps [5]. In
the next section a variant of the EvSOM algorithm is developed and applied to
the tracking problem.

2.3 Object Location and Representation Updating

We introduce an object tracking algorithm that uses a variant of the EvSOM
algorithm to update the object template. A parameter vector is associated with
each node of the output grid which projects the corresponding model patch in the
current frame i onto the target frame i + 1. A possible strategy for evolutionary
search for a solution to the problem of tracking is to search for the best fitness
in some range of values within the parameter vector space p.

The input to each tracking stage is the updated template resulting from the
previous stage. This template indeed defines the EvSOM topology, i.e. the key-
points correspond to the coordinates rj , j = 1, ..., N , of the nodes comprising
the EvSOM output grid (see Subsection 2.2). The weight vector wj = pj =(
b
(j)
x , b

(j)
y , θ(j), s(j)

)
represents the parameters of an affine transformation that

projects the coordinates of the j-th keypoint in the current frame onto
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the next frame. The coordinates of the projected keypoints correspond to the new
coordinates of the nodes comprising the output grid of the EvSOM for the next
frame.

At the first stage, the algorithm selects a set of candidate patches at each
keypoint. These candidate patches are randomly searched in the current frame
(i.e. frame i) in the vicinity of the j-th model patch of the frame i (see Figure 2).
Thus, for a template with N keypoints, the result of the search process is N sets
of candidate patches. It is worth pointing out that the first stage of the proposed
algorithm aims at transforming the search space into a discrete set of candidate
solutions. For a ‘candidate solution’ we mean a set of new node coordinates for
the EvSOM, which is equivalent to new positions for the template keypoints.

The maximum number of candidate patches per keypoint is a prespecified
value. Additionally, each candidate patch and the corresponding model patch
must satisfy a measure of matching whose value must be smaller than a given
threshold λth. Just as an example, assuming that the number of candidate
patches per keypoint is M (all of them satisfying the required measure of match-
ing), then for N keypoints there are MN potential solutions.

At the second stage, the proposed procedure for dealing with the joint task
of locating the object and updating its representation consists in evolving one
EvSOM per frame. For the initial frame (i.e. frame 0), the keypoints of the
manually selected initial template defines the coordinates of the nodes of the
EvSOM for the frame 0. From frame 1 onwards, we initialize the coordinates of
the nodes of the EvSOM for the frame i+1 with the coordinates of the nodes of
the EvSOM for the frame i. At each frame, the complete set of candidate patches
defines a discrete search space within which the best solution is searched for.

By evolving the EvSOM for the frame i we mean finding, using an evolu-
tionary algorithm, the optimum weight vector of the j-th node that encodes the
parameters of the affine transformation that maps the coordinates of that node
from frame i to frame i + 1. It is worth mentioning that learning the mappings
from the keypoints of frame i to the keypoints of frame i + 1 is equivalent to
locating (or tracking) the moving object.

In order to evaluate the degree of similarity between regions in two images,
a measure of matching between the reference patch and a candidate patch is
required by the fitness function. In this paper, we use a SSD-related index,
defined as

SSD =
∑

k

∑
j

[Ti+1(k, j) − Ti(k, j)]2 , (8)

where Ti+1(k, j) and Ti(k, j) are, respectively, the intensities of gray levels in the
target and current templates. By introducing the SSD index into the EvSOM
fitness function, we get

Fitness(W̃) = α · PCC(W̃) − β · SSD(W̃). (9)

In a sum, the goal of the EvSOM-based tracking algorithm is to determine
iteratively the candidate template which represents better the evolution of the
object from the current frame to the target frame. The mapping is determined by
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jointly optimizing the SSD index and the PCC index. In this paper, the PCC
index is a measure of correlation for the distances among neighborhood interest
points of the two images. The pseudo-code of the proposed EvSOM-based track-
ing algorithm is given below. In this algorithm the parameters FITbest, FITmax

and Gmax denote, respectively, the best fitness value for the current generation,
the maximum fitness value found until the current generation and the maximum
number of generations.

Algorithm 1. EvSOM-based tracking algorithm
1: Set i = 0. Then, manually extract a template with N keypoints and L links. This

is the updated template for the frame 0.
2: for all frame i + 1 do
3: Set the number of EvSOM nodes equal to the number of keypoints of the up-

dated template in frame i, with the coordinates of the keypoints assigned as the
coordinates rj of the nodes in the output grid, following the topological con-
straints established by the distance links. Then, set the EvSOM weight vectors
to wj = pj = (0, 0, 0, 1), j = 1, 2, ..., N ;

4: Perform a random search in the neighborhood of the j-th node, in order to find
a set Cj containing at most Mj candidate patches which must satisfy SSDj ≥
λth, for j = 1, ..., N . The neighborhood of the j-th node is defined as Δpj =

(Δb
(j)
x , Δb

(j)
y , Δθ(j), Δs(j)). For the k-th candidate patch associated with the j-th

node, store its transformation vector p
(j)
k and its SSD

(j)
k value, for k = 1, ..., Mj

and j = 1, ..., N .
5: Build the initial population of candidate templates by randomly taking a candi-

date patch from each set Cj , j = 1, ..., N , and assessing its fitness.
6: while FITbest ≤ FITmax and generation ≤ Gmax do
7: Generate the offspring and compute the fitness values;
8: Build the next population and assess its fitness;
9: end while

10: To avoid template drift, update each pj , j = 1, ..., N , by solving Eq. (1) through
the hill-climbing algorithm.

11: Compute the transformations w(rj ,pj) = w
(
rj , b

(j)
x , b

(j)
y , θ(j), s(j)

)
, compute the

resulting RMSE and present the solution.
12: end for

A major feature of the proposed algorithm is that it takes into account in a
very natural, inherent way the topological constraints of the template used for
tracking the object of interest. This is not easily done by traditional tracking
methods, as mentioned in the introduction. It becomes natural for the proposed
algorithm because it is based on a topology-preserving self-organizing neural
network. These topological constraints are taken into account via the PCC index
included in the fitness function shown in Eq. (9). If such topological constraints
are not present, the algorithm does not work suitably. This can be easily verified
if one removes the PCC index from the fitness function and tries to optimize the
SSD index solely.

As we emphasized in the 3rd paragraph of the Section 2.2, the grid of nodes
comprising the EvSOM-based tracking algorithm is a non-regular one, unlike
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e.g. the regular grid of Kohonen map, since the distances from one node to the
others need not to be equal. However, the links between the nodes do define
their neighborhood (i.e. topological) relationships, and must be preserved, i.e.
maintained as the tracking proceeds.

In order to diminish the template drift effect due to the accumulated error in
each stage, we solve Eq. (1), for each pj , through the hill-climbing search with a
fixed number of iterations Nhc. The resulting template is then considered as the
updated template. Finally, since the components of the weight vector wj = pj ,
j = 1, ..., N , are real numbers, for the coordinates of the keypoints in the image
to assume only integer values, we have to quantize and interpolate the values of
the coordinates of the projected keypoints to the closest integer values.

3 Results and Discussion

In order to evaluate the performance of the proposed EvSOM-based approach
in object tracking we have carried out experiments with three video sequences
(one artificially generated film and two real-world films). Due to lack of space,
we report only results on the experiment with one of the real-world films1. We
compare the performance of the proposed approach with the direct tracking
method described in [7].

For all the experiments to be described in the next sections, the fitness func-
tion parameters were set to α = β = 1, since the PCC and SSD indexes are
rescaled to the range [0, 1]. For the computation of RMSE values, the ground-
truth for reference trajectories of the object of interest were manually estab-
lished. All the reported experiments were developed in Matlab, version R2009a,
running under Microsoft Windows Vista, in a desktop PC with an Intel Core 2
Duo processor, clock of 1.8GHz and 4GB RAM.

We used a real-world film with 362 frames, which is publicly available2. Each
frame in this film has 512×512 pixels. The parameters of the proposed algorithm
are the following: Δp = ([−15, 15] , [−10, 10], [−5, 5], [0.98, 1.02]), N = 5,
M = 32 and λth = 0.20. Model and candidate patches are of size 21 × 21 pixels
for all the experiments reported in this section.

Figure 3 shows a sequence of four frames of the film, within which a rectangle
delimits the region corresponding to the decision of the algorithm on the location
of the object of interest (a cork). The initial template for the used film is shown
in the frame 000 (upper row). It is worth emphasizing that the object of interest
experiences changes in the illumination level along its motion. In spite of these
changes in illumination, the EvSOM-based algorithm is able to track the object
successfully.

Figure 4 shows the performances of the proposed approach in RMSE values
compared to the performance of a direct tracking method. One can note that the
proposed approach outperformed the direct method in average. The proposed

1 For the interested reader, the other two video sequences and corresponding results
are available upon request.

2 website: http://esm.gforge.inria.fr/ESMdownloads.html

http://esm.gforge.inria.fr/ESMdownloads.html
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frame 000 frame 075 frame 150 frame 200

Fig. 3. Sequence of 4 frames showing the object of interest being tracked. Upper row:
changes in the associated template. Lower row: estimated object’s positions.
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Fig. 4. Evolution of the RMSE values between true and estimated keypoints for the
real-world clip used in the object tracking experiment.

method achieved an average RMSE value of 3.92 with standard deviation of
3.11, while the direct method achieved an average RMSE value of 4.54 with a
standard deviation of 3.63. A conclusion that can be draw from these results is
that structural information, present in the EvSOM-based approach but not in
the direct tracking method, indeed improves the tracking performance.

The processing time for one run of the proposed algorithm, implemented in a
non-optimized Matlab code, is 46ms (excluding the loading time of the images),
which is quite remarkable. This can be explained by the fact that, at each run of
the algorithm, the initial solution for the template position is already close to the
final solution since the frame rate is much higher than the object speed. With a
suitable code optimization those processing times can be diminished further.
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4 Conclusions

An extension of the EvSOM [4] was developed and applied to object tracking.
The main characteristic of the proposed approach is the inclusion of geometric or
topological constraints in the determination of parameters of affine transforma-
tions that map template keypoints from one frame to the next one. Simulation
results using a real-world film have shown that the proposed approach consis-
tently outperformed a direct tracking method.
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Abstract. We proposed the methodology of introducing topographic
component to conventional clustering measures for the evaluation of the
SOM using external criteria, i.e., class information. The topographic
measure evaluates clustering accuracy together with topographic con-
nectivity of class distribution on the topology space of the SOM. The to-
pographic component is introduced by marginalization of basic statistics
to the set-based measures, and by a likelihood function to the pairwise-
based measures. Our method can extend any clustering measure based
on set or pairwise of data points. The present paper examined the topo-
graphic component of the extended measure and revealed an appropriate
neighborhood radius of the topographic measures.

Keywords: clustering measure, topology, neighborhood function.

1 Introduction

Self-Organizing Map (SOM)[5] has a capability to capture data distribution
within the feature space and simultaneously map it into a low-dimensional repre-
sentation. The SOM has been applied as a visual data mining tool in various fields
such as support for exploratory analysis for a vast amount of documents[7,1],
economics and medical data, and monitoring and failure diagnosis of industrial
instruments[2] and among others[8].

However, the fundamental issue when using SOM as a visual data mining tool
is evaluation of effectiveness of the visualization result. The most of researches
evaluate the result on the basis of domain knowledge by users or domain experts.
This kind of subjective evaluation cannot evaluate how much accurately desired
visualization is formed on the map.

Here, the major properties of SOM are: 1. Quantization by prototype vec-
tors which can be considered as centroids of micro clusters and 2. Topology
preservation of neighbor connectivity of data points within the feature space.
There exists internal/external quantitative criteria for the evaluation of the SOM
learning result:

Internal criteria. The measures that use internal criteria evaluate how much
data distribution is caught accurately in the feature space. As for such mea-
sures, quantization error and various topographic errors[4,3,9] are proposed.
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However, the internal criteria cannot evaluate category/class distribution on
the visualized map, i.e., user’s perspective.

External criteria. The measures that use external criteria evaluate how ac-
curately the correct/desired clusters are formed onto the map. There are
various clustering measures based on class label, but the conventional clus-
tering measures do not consider topology among the clusters. Very few works
introduce topographical evaluation into a clustering measure, e.g., entropy-
based measure[6].

Against above problem, we have proposed the methodology introducing into
conventional clustering measures topographic connectivity of class distribution
on the topology space of the SOM by utilizing a neighborhood function[2]. The
extended measure can evaluate clustering accuracy and simultaneously topo-
graphic connectivity. The entropy-based measure proposed in [6] is limited to
entropy, whereas our method can apply any conventional clustering measures.
This paper studied the topographic component of the extended measure and
revealed the existence of an appropriate neighborhood radius.

2 Topographic Measure Based on External Criteria

There are two types of clustering measures, namely set-based and pairwise-based
measures. These two types of measures can be extended in a different manner.

2.1 Extension of Set-Based Clustering Measures

First, the way to extend set-based clustering measures[10] such as cluster purity,
class F-measure1 and entropy is described in this section.

Fig. 1 shows a learned one-dimensional SOM as an example. The neighbor
data with class label are assumed to be assigned to each neuron node by the
winner, i.e., the best matching unit. Here, a set of neighbor data corresponds to
a micro cluster. In addition, topology of these micro clusters are assumed to be
obtained by the SOM learning.

In general, it is better that samples of the same class are in neighbor and that
the different classes are in distant on the map. The measure should evaluate this
property. By considering topology of micro clusters, neighbor class distribution
should be taken into account to the degree of certain class contained in a micro
cluster. That is, data points of the same class in the neighbor clusters should be
high weight, whereas that of the distant clusters should be low weight.

Based on above concept, let Nt,i be the number of samples with class t ∈ T
in the ith cluster Ci ∈ C. Ni denotes the number of samples in cluster Ci. Also
N denotes the total number of samples. These basic statistics Nt,i, Ni, and N
are weighted by neighbor clusters as follows:

1 Normally, a set-based F-measure is simply called F-measure, but in this paper we
call it class F-measure in order to distinguish from pairwise F-measure.
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Fig. 1. Extension of a set-based clustering measure on the topology space of the SOM.
The basic statistics are weighted by the neighborhood function.
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{N ′
t,i| ∀t, i} is a neighbor class distribution that is calculated by a weighted

summation of the original class distribution over the topology space, {N ′
i | ∀i} is

a neighbor data distribution that is given by a summation of the neighbor class
distribution over classes, and N ′ is a total volume of neighbor data that is given
by a summation of the neighbor data distribution over all the micro clusters.
The neighborhood function hi,j is used as marginalization weights in the same
manner as in the learning phase, but to introduce topographic connectivity of
class distribution over the topology space as shown in Fig. 1. Any monotonically
decreasing function is available, e.g., typically the Gaussian function:

hi,j = exp
(
− ||ri − rj ||

σ2

)
, (4)

where r is a coordinate of a neuron within the topology space, and σ(> 0) is
a marginalization (neighborhood) radius. Note that the size of marginalization
radius is not nesessary to use the same neighborhood radius in the SOM learning.

Then, topographic cluster purity, class F-measure, and entropy are defined by
using the marginalized statistics of eq. (1), (2), and (3) as follows:

topographic Cluster Purity (tCP)

tCP(C) =
1

N ′
∑

Ci∈C

max
t∈T

N ′
t,i. (5)
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The original purity is an average of the ratio that a majority class occupies
in each cluster, whereas in the topographic purity a majority class is deter-
mined by neighbor class distribution {N ′

t,i}.

topographic Class F-measure (tCF)

tCF(C) =
∑
t∈T

Nt

N
max
Ci∈C

F (t, Ci), (6)

F(t, Ci) =
2 · Prec(t, Ci) · Rec(t, Ci)
Prec(t, Ci) + Rec(t, Ci)

, (7)

where Prec(t, Ci) = N ′
t,i/N

′
i and Rec(t, Ci) = N ′

t,i/N
′
t. The original F-

measure is a harmonic average of precision and recall among class sets and
cluster sets. The extended precision indicates a separation degree of differ-
ent classes in a cluster and its neighbors, and the extended recall indicates
density of the same class over topology space.

topographic Entropy (tEP)

tEP(C) =
1
|C|

∑
Ci∈C

Entropy(Ci), (8)

Entropy(Ci) = − 1
log N ′

∑
t∈T

N ′
t,i

N ′
i

log
N ′

t,i

N ′
i

. (9)

The original entropy indicates the degree of unevenness of class distribu-
tion within a cluster, whereas the extended entropy includes unevenness of
neighbor clusters.

2.2 Extension of Pairwise-Based Clustering Measures

Second, this section describes an extension of pairwise-based clustering measures
[11]. Table 1 shows a class/cluster cross table of data pairs, where t(i) denotes
the class of data point xi, c(i) denotes the micro cluster that is the best matching
unit of xi, and a, b, c, d are the number of data pairs where xi and xj do or do
not belong to the same class/cluster.

Here, we introduce likelihood(c(i) = c(j)) indicating the degree that a data
pair xi and xj belongs to the same cluster instead of the actual number of data
pairs. The likelihood is given by topological distance of the winner neurons of
the data pair as illustrated in Fig. 2(a). The same neighborhood function by

Table 1. Cross table of pairwise classification

t(i) = t(j) t(i) �= t(j)

c(i) = c(j) a b

c(i) �= c(j) c d
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(a) Distance of data pair on a topology
space

(b) Likelihood function

Fig. 2. Extension of a pairwise-based clustering measure. A likelihood function is in-
troduced to represent the degree that the data pair belongs to the same micro cluster.

eq. (4) is available for the likelihood function (Fig. 2(b)). Then, a, b, c and d are
replaced by summation of the likelihoods as follows:

a′ =
∑

{i,j|t(i)=t(j)}
hc(i),c(j), (10)

b′ =
∑

{i,j|t(i) �=t(j)}
hc(i),c(j), (11)

c′ =
∑

{i,j|t(i)=t(j)}

(
1 − hc(i),c(j)

)
= a + c − a′, (12)

d′ =
∑

{i,j|t(i) �=t(j)}

(
1 − hc(i),c(j)

)
= b + d − b′. (13)

With these extended a′, b′, c′ and d′, the topographic pairwise accuracy and
pairwise F-measure are defined as follows:

topographic Pairwise Accuracy (tPA)

tPA(C) =
a′ + d′

a′ + b′ + c′ + d′
. (14)

The original pairwise accuracy is a ratio of the number of pairs that the
same class belong to the same cluster or different class belong to the dif-
ferent cluster to all of the pairs. Whereas, the topographic PA is a degree
that the same class belong to the neighbor cluster or that the different class
belong to the distant cluster.

topographic Pairwise F-measure (tPF)

tPF(C) =
2 · P · R
P + R

, (15)
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where P = a′/(a′ + b′) is a precision that is a ratio of the same class among
each cluster, and R = a′/(a′+c′) is a recall that is a ratio of the same cluster
among each class. The original pairwise F-measure is a harmonic average of
the precision and the recall. Whereas, the topographic PF is based on a
degree that the data pairs belong to the same cluster.

2.3 Neighborhood Function

For the neighborhood function for the marginalization and the likelihood, any
monotonically decreasing function hi,j ≥ 0 is available such as a Gaussian or a
rectangle function same as in the learning of the SOM. Note that the extended
measures are exactly the same as the original measures when hi,j = δi,j (δ is
the Kronecker delta). As for shape of class distribution, our measure has no
assumption in the original feature space, but has assumption in the topology
space by the shape of the neighborhood function.

And, the neighborhood radius affect to the degree of marginalization and like-
lihood. Fig. 3 illustrates that the extended measure evaluates individual clusters,
that is the original values, as the marginalization radius becomes zero. On the
contrary, as the radius becomes larger, the finite topology space is smoothed
by almost the same weights, all micro clusters are treated as one big cluster.
The optimal radius depend on class distribution and function of the evaluation
measure. The way to find the optimal radius is described in the next section.

Fig. 3. Example of effect of the marginalization. The larger radius is the smoother the
values over connectivity of the nodes.

3 Properties of the Topographic Measures

3.1 Datasets

For the evaluation of property of the proposed topographic measure, we prepared
two classes of two dimensional synthetic data, where 300 data points for each
class were generated from different Gaussian distributions (Fig.4(a)).
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(a) Data distribution (b) Captured by SOM

Fig. 4. Two dimensional synthetic data. The data points were generated from two
Gaussian distributions; N(μ1, 1) and N(μ2, 1), where μ1 = (0, 0) and μ2 = (3, 0).

Also well-known open datasets2 were used as real-world data: Iris data (150
samples, 4 attributes, 3 classes), Wine data (178 samples, 13 attributes, 3 classes),
and Glass Identification data (214 samples, 9 attributes, 6 classes).

3.2 Experimental Condition

We employed the batch type SOM in which Gaussian function was used as a
neighborhood function together with decreasing strategy of the neighbor radius.
The neurons was set to 10 × 10 regular grid of the most standard setup. Also
the Gaussian function by eq. (4) was employed for the neighborhood function
of the topographic measures. Then, the evaluation values of each measure were
averaged over 100 runs to avoid dependency of initial random values of the
prototypes.

3.3 Topographic Component

In order to evaluate the topographic component of the measure, we prepared a
SOM with random topology that is generated after the learning of SOM by ex-
changing assignment of set of neighbor data randomly, while preserving elements
of neighbor data (Fig. 5). This procedure destroys the topographic connectivity,
while preserving micro clusters.

Assuming the topology of data distribution is preserved in some degree by
the SOM learning, the topographic component is defined by the difference be-
tween the evaluation values for the standard SOM with topology preservation
(Fig. 5(a)) and for the SOM with random topology (Fig. 5(b)). We assume the
neighborhood radius that maximizes the topology component is the appropriate.

3.4 Effect of Neighborhood Radius

Synthetic Data. Fig. 6 shows the evaluation values of the topographic mea-
sures for the synthetic data. The larger value is the better except entropy.

2 http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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(a) after the SOM learning (b) SOM with random topology

Fig. 5. The way to calculate the topogoraphic component. The component is calculated
by difference of the values between (a) topology preservation and (b) random topology.

(a) tCP (b) tCF

(c) tEP (d) tPA (e) tPF

Fig. 6. The evaluation values of the topographic measures for the synthetic data with
changing the neighborhood radius

Firstly, the standard SOM with topology preservation provides always bet-
ter value than SOM with random topology where topographic connectivity is
destroyed. This means that the proposed topographic measures evaluate both
clustering accuracy and topographic connectivity.

Secondly, as the neighborhood radius becomes close to zero, the extended
measure evaluates individual micro clusters without topographic connectivity.
Whereas, as the radius becomes larger, the extended measure treats whole data
as one big cluster as mentioned before. Therefore, the solid and the broken lines
gradually become equal as the radius becomes close to zero or becomes much
larger.

Thirdly, the topographic component has a monomodality against the radius
in all measures, since there exists an appropriate radius to the average class dis-
tribution. Since the topographic measure is a composition of clustering accuracy
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(a) tCP (b) tCF

(c) tEP (d) tPA (e) tPF

Fig. 7. Topographic components of the topographic measures for real-world data

and topographic connectivity, the radius that gives the maximum value to SOM
(topology preservation) does not always match with the maximum value of topo-
graphic component. Therefore, the topographic component should be examined
to find the appropriate radius. Also the appropriate radius depends on function
of the measure such as purity, F-measure, or entropy. This means that the user
should use different radius for each measure.

Real-World Data. Also for real-world data, there exists an appropriate radius
(Fig. 7). However, the appropriate radii depend on the number of classes and
the class distribution, not only depend on the function of a measure. This result
indicates that depending on a measure and a dataset, a user should use different
radius that gives the maximum volume of topographic component.

4 Conclusion

We proposed the topographic measures using external criteria (class informa-
tion) for the evaluation of the SOM as a visual data mining tool. Our method
introduces the topographic component to set-based and pairwise-based cluster-
ing measures by utilizing the neighborhood function. Since our method extends
the basic statistics, any set-based or pairwise-based clustering measures can also
be extended. Then, the present paper clarified the properties of the topographic
measures using synthetic and real-world data. The experiments revealed the ex-
istence of an appropriate neighborhood radius. A user should use an appropriate
radius depending on a measure and a dataset. As for future works, we should
develop an easier way to find an appropriate radius, also should examine a usage
of the proposed measure when comparing different result of SOMs.
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Abstract. In the article, the influence of neighboring functions and learning 
rates on self-organizing maps (SOM) has been investigated. The target of a self-
organizing map is data clustering and their graphical presentation. Bubble, 
Gaussian, and heuristic neighboring functions and four learning rates (linear, 
inverse-of-time, power series, and heuristics) have been analyzed here. The 
learning rate has been changed according to epochs and iterations. A 
comparative analysis has been made with three data sets: glass, wine, and  
zoo. The quantization error has been measured in order to estimate the SOM 
quality.  

Keywords: self-organizing map (SOM), learning rates, neighboring functions, 
quantization error. 

1   Introduction 

The self-organizing maps (SOM) as a type of artificial neural networks are commonly 
used for data clustering and visualization. It is important to research SOMs, because 
they are applied in various areas such as ecology, military, medicine, engineering, etc. 
For example, in the medicine area, SOM can be useful for analyzing breast cancer 
data sets that can help medics to make decisions [1]. Self-organizing maps can be 
combined with dimensionality reduction methods as a multidimensional scaling [2], 
[3], [4], [5], [6]. There the number of dimensions of the neurons winners obtained by 
SOM is reduced to two by multidimensional scaling and presented in a plane. It is 
important to train SOM so that the neurons winners correspond to the data analyzed 
as faithfully as possible. 

The results of SOM depend on some initialization and learning parameters. In this 
article, three neighboring functions (bubble, Gaussian and heuristic [7]) and four 
learning rates (linear, inverse-of-time, power series and heuristic [7]) are investigated. 
In the training process, learning rates can be changed in two ways (epochs and 
iterations). The dependence of these ways on the results is researched, too. The 
quality of SOM is commonly estimated by quantization and topographic errors. The 
main goal of the research is to estimate dependences of learning parameters on  
the results obtained by SOM in the sense of quantization error. Experiments have 
been carried out with three data sets: glass, wine, and zoo. 



142 P. Stefanovič and O. Kurasova 

2   Self-Organizing Maps 

2.1   Principles of Self-Organizing Maps 

An artificial neural network is a mathematical model of the biological neuron system. 
A self-organizing map (SOM) is one of mostly analyzed unsupervised models of 
neural network. First time, it was described by Finn scientist Teuvo Kohonen in 1982. 
Consequently sometimes they are called Kohonen map or networks. The model takes 
an important place in science and it is one of the most popular research objects to 
date. The main target of the SOM is to preserve the topology of multidimensional 
data, i. e., to get a new set of data from the input data such that the new set preserved 
the structure (clusters, relationships, etc) of the input data. The SOM are applied to 
cluster (quantize) and visualize the data. The self-organizing map is a set of nodes, 
connected to each other via a rectangular or hexagonal topology. SOM of rectangular 
topology is presented in Fig. 1. Here a circle represents a node. The connections 
between the inputs and the nodes have weights, so a set of weights corresponds to 
each node. The set of weights forms a vector , 1,..., , 1,...,ij x yM i k j k= =  that is 

usually called a neuron or a codebook vector, where xk  is the number of rows, and 

yk  is the number of columns. Commonly SOM is called a self-organizing neural 

network. The dimension of the codebook vector is the same as that of the number of 
inputs [9]. When we have a SOM, we can describe a concept of the neighboring rank. 
All neurons adjacent to a given neuron Mc can be defined as its neighbors of the first 

rank ( 1c
ijη = ), then the neurons adjacent to first-order neighbor, excluding those 

already considered, as neighbors of a second rank ( 2c
ijη = ), etc. Neighboring ranks of 

the marked (grey) node are presented in Fig. 1. 

 

Fig. 1. Two-dimensional SOM (rectangular topology) 

A self-organizing map (neural network) is learned by an unsupervised manner. The 
learning starts from the components of the vectors ijM  initialized at random or by  

the principal components. If n-dimensional vectors mXXX ,...,, 21  are needed to map, 

the components of these vectors 1 2, ,..., nx x x  are passed to the network as the inputs, 

where m is the number of the vectors, n is the number of components of the vectors. 
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At each learning step, an input vector { }mp XXXX ,...,, 21∈  is passed to the neural 

network. The vector pX  is compared with all neurons ijM . Usually the Euclidean 

distance between this input vector pX  and each neuron ijM  are calculated. The 

vector (neuron) Mc with the minimal Euclidean distance to pX  is designated as a 

winner. All neurons components are adapted according to the learning rule: 

))()(()()1( tMXthtMtM ijp
c
ijijij −+=+  (1)

Here t is the number of iterations, )(thc
ij  is a neighboring function, c is a pair of 

indices of the neuron winner of vector pX . The learning is repeated until the 

maximum number of iterations is reached. Here we face with two notions: training 
iteration and epoch. One iteration is part of the training process, when one input 
vector is passed to the network and the neurons are changed. An epoch is part of the 
training process, when all vectors of the training data set from 1X  to mX  are passed to 

the network once. An epoch consists of m iterations. 

2.2   Neighboring Functions and Learning Rates 

The neighboring function )(thc
ij  influences the training result. So it is important to 

choose a proper function [8], [9]. We can use various neighboring functions, but 
bubble (2) and Gaussian (3) functions are usually used. 
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Here )(tα  is a learning rate, and it depends on the number of iterations, cN  is the 

index set of neighboring nodes around the nodes with indices c [4]. The parameter c
ijη  

is the neighboring rank of ijM . The functions )(tα  and )(tc
ijη  are monotonically 

decreasing functions. Two-dimensional vectors cR  and ijR  consist indexes of cM  

and ijM  (number of rows and columns). The indexes show a place of the neuron-

winner cM  of vector kX  and the recalculated neuron ijM  in SOM.  

The learning rate )(tα  can be selected in various ways. As usual the functions 

should be decreasing. Usually, linear (4), inverse-of-time (5), and power series (6) 
functions are used [10]. 
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One more heuristic neighboring function [7] is used in the investigation. The 
neighboring function (7) is monotonically decreasing. 
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⎛ −+= 01.0,

1
max

T

tTα . (8)

Here T is the number of epochs (iterations), t is the order number of a current epoch 

(iteration), c
ijη  is the neighboring rank between neurons cM  and ijM . The neurons 

ijM  are recalculated in each epoch, if the inequality (9) is valid. This condition is 

applied in all the cases analyzed. 

]1),max([ yx
c
ij kkαη ≤  (9)

Often two training phases (rough and fine tuning) are used, but in this investigation 
the training is not divided into two phases. 

After the SOM network has been trained, its quality must be evaluated. Usually 
two errors (quantization and topographic) are calculated. Quantization error QEE  (10) 

shows how well neurons of the trained network adapt to the input vectors. QEE  is the 

average distance between data vectors pX  and their neuron-winners )( pcM . 

 

Fig. 2. Iris data set in 6x6 SOM: bubble (left) and Gaussian (right) neighboring functions are 
used 
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A way to estimate the quality of the trained SOM is to examine u-matrix 
representation on SOM. However it is difficult to notice a difference of two maps, 
trained with different parameters (Fig. 2). System “NeNet” [11] is used to create  
the maps. Quantitative measures allow us to estimate the quality of the SOM 
definitely. 

3   Experimental Results 

3.1   Data Set Analyzed 

Three data sets are used in the experimental investigation. The glass data set was 
collected by a scientist, which wanted to help criminalists to recognize glass slivers 
found [12]. Nine-dimensional vectors 21421 ,...,, XXX  are formed, 

where ),...,,( 921 iiii xxxX = , 214,...,1=i . Nine features are measured: 1x  is a 

refractive index, 2x  is sodium, 3x  is magnesium, 4x  is aluminum, 5x  is silicon, 6x  

is potassium, 7x  is calcium, 8x  is barium and 9x  is iron. 

The wine data set consists of the results of chemical analysis of wine grapes 
grown in the same region in Italy but derived from three different cultivars. The 
analysis determined the quantities of 13 constituents found in each of the three types 

of wines. Thirteen-dimensional vectors 17821 ,...,, XXX  are formed, where 

),...,,( 1321 iiii xxxX = , 178,...,1=i . Thirteen features are measured: 1x  is alcohol, 2x  

is malic acid, 3x  is ash, 4x  is alcalinity of ash, 5x  is magnesium, 6x  is total phenol, 

7x  is flavanoid, 8x  is nonflavanoid phenol, 9x  is proanthocyanin, 10x  is color 

intensity, 11x  is hue, 12x  is OD280/OD315 of diluted wines, 13x  is proline. 

The third data set is zoological (zoo). The data set consists of 16 boolean values. 
Sixteen-dimensional vectors 9221 ,...,, XXX  are formed, where 

),...,,( 1621 iiii xxxX = , 92,...,1=i . Sixteen features are measured: 1x  is hair, 2x  is 

feathers, 3x  is eggs, 4x  is milk, 5x  is airborne, 6x  is aquatic, 7x  is a predator, 8x  is 

toothed, 9x  is a backbone, 10x  is breathes, 11x  is venomous, 12x  is a fin, 13x  is legs, 

14x  is a tail, 15x  is domestic, and 16x  is catsize. 

3.2   Dependence of Results on the Learning Parameters 

The SOM with three neighboring functions (2), (3), (7) and learning rates (4), (5), (6), 
(8) are implemented in Matlab. To find a tendency how much different parameters 
affect the SOM training results, 72 experiments are carried out (three data sets, three 
neighboring functions, four learning rates, and two ways of changes of learning rates 
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(by epochs and iterations)). The map size is set [10×10]. During the experiments, the 
number of epochs ranged from 10 to 100 by step 10. Each experiment is repeated 10 
times with different initial values of neurons ijM . The averages of quantization error 

(10) and their confidence intervals are calculated. In the training process, the neurons 

ijM  are recalculated, if inequality (9) is valid. 

The results of the glass data set are presented in Fig. 3 and Table 1. In figures, only 
the numbers of epochs are presented. The number of epochs multiplied by the number 
of data items m corresponds to the number of iterations. For the glass data set 
(m=214), 10 epochs equal to 2140 iterations, 20 epochs equal 4280, etc. The worst 
results in the sense of quantization error are obtained, if learning rate (4) is used. In 
this case, the way, when the number of epochs is used in changes of the learning rate, 
gives better results in the sense of quantization error comparing with the results, 
obtained when the number of iterations is used in changes of the learning rate. When 
we use learning rate (5), Gaussian function (3) gives the best results, independent of 
the ways of changes of learning rates (by epochs or iterations). Learning rates (6) and 
(8) give the best results with the Gaussian function, but heuristic neighborhood 
function (7) with epochs also gives good results.  

The confidence intervals of the averages of quantization errors are computed for 
each set of epochs (10, 20,…, 100). The margins of errors of the confidence intervals 
are averaged. Due to the limit of article length, only the averages of the margins of 
errors are presented in Table 1. We see that the margins of errors are small enough for 
all the learning rates and neighboring functions. So the averages of quantization 
errors, presented in Fig. 3, are informative. 

Table 1. Averages of the margins of errors (confidence probability 0.95) for the glass data set. 
),...,,( 921 iiii xxxX =  

By iterations By epochs Learning 
rate Bubble Gaussian Heuristic Bubble Gaussian Heuristic 
(4) 0.006666 0.003382 0.005402 0.001805 0.002275 0.002394 
(5) 0.001688 0.001734 0.001670 0.001457 0.001563 0.001412 
(6) 0.001696 0.001531 0.001724 0.001980 0.001788 0.001830 
(8) 0.001576 0.001557 0.001644 0.001516 0.001451 0.002090 

 
 
The same experiments were done with the wine data set. The results are illustrated 

in Fig. 4. If we use learning rate (4), all the neighboring functions, when the learning 
rate is changed according to epochs, give the smallest quantization error. The training 
with learning rate (5) shows that the smallest quantization error is obtained by the 
Gaussian function, independent of the ways of changes of learning rates (by epochs or 
iterations). Just like in the case of the glass date set, the results with learning rates (6) 
and (8) are similar.  
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Fig. 3. The averages of quantization errors, obtained using the glass data set (learning rates, 
computed by formulas (4), (5), (6) and (8)) 

Table 2. Averages of the margins of errors (confidence probability 0.95) for the wine data set 

By iterations By epochs Learning 
rate Bubble Gaussian Heuristic Bubble Gaussian Heuristic 
(4) 0.003059 0.007191 0.002645 0.001359 0.001491 0.002169 
(5) 0.001658 0.001251 0.001517 0.001736 0.001284 0.001646 
(6) 0.001527 0.001333 0.001507 0.001894 0.001521 0.001428 
(8) 0.001756 0.001333 0.001499 0.001919 0.001358 0.001875 

 
 
The averages of the margins of errors of the confidence intervals for the wine data 

set are presented in Table 2. The margins of errors are small, too. We can see that the 
largest margins are obtained, if the Gaussian function and learning rate (4) are used, 
and the learning rate is changed according to iterations. The smallest margins are 
obtained when the Gaussian function is also used, but with learning rate (5). 

The third data set analyzed is zoo. The results are presented in Fig. 5 and Table 3. 
If learning rate (4) is used, the same results as with other data sets are achieved 
(Fig. 5). All neighboring functions yield smaller quantization errors, if the learning 
rates are changed according to epochs. In the case of learning rate (5), the best result  
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Fig. 4. The averages of quantization errors, obtained using the wine data set (learning rates 
computed by formulas (4), (5), (6) and (8)). 

is got by Gaussian functions the same as before (according to epochs and iterations). 
If we use Gaussian function (iterations and epochs) and the heuristic function 
(epochs) with learning rate (6), we can get small quantization errors, too. In the last 
case (learning rate (8)), we get the best result, if the Gaussian function is used, 
independent of the ways of changes of learning rates. 

As we see in Table 3, the margins of errors of the confidence intervals of  
the averages of the quantization error are small enough, too. This fact shows that  
the averages, computed using the observed values, differ from the mathematical 
expectation.  

Table 3. Averages of the margins of errors (confidence probability 0.95) for the zoo data set 

By iterations By epochs Learning 
rate Bubble Gaussian Heuristic Bubble Gaussian Heuristic 
(4) 0.146629 0.039484 0.019839 0.017873 0.018802 0.021137 
(5) 0.015246 0.01074 0.012951 0.018137 0.011479 0.013805 
(6) 0.016417 0.013867 0.016969 0.021211 0.012662 0.014427 
(8) 0.018691 0.010864 0.014641 0.016278 0.010541 0.014487 
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Fig. 5. The averages of quantization errors, obtained using the zoo data set (learning rates, 
computed by formulas (4), (5), (6) and (8)) 

4   Conclusions 

The experimental results have showed that the smallest quantization error is obtained, 
if neighboring Gaussian function and nonlinear learning rates are used. The changes 
of learning rates according to epochs or iterations do not influence the results 
obtained. The bubble neighboring function yields the worst result for all the data sets 
analyzed. In order to get good results, the heuristic function can be helpful, too, but 
only if the learning rates are changed according to epochs. The smallest quantization 
errors are achieved with inverse-of-time, power series and heuristic learning rates. 
Learning rate (4) (linear) gives large quantization errors, if learning rates are changed 
according to iterations. It is purposeful to use another way (according to epochs) of 
changes of this learning rate. 

The research has shown that the neighboring function, the learning rate and the 
way of changes of the learning rate influence the SOM results in the sense of 
quantization error. So it is important to choose the proper training parameters for 
different data sets. If we do not know which parameters to select, the best way is to 
choose the Gaussian function and a nonlinear learning rate.  

In the future, it is purposeful to analyze how the learning parameters and 
neighboring functions affect the generalization capability of the SOM, i. e., how well 
the trained SOM describes the data not used in training. 
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Abstract. In this paper, we introduce the Gamma Growing Neural Gas (γ-GNG)
model for temporal sequence processing. The standard GNG is merged with a
context descriptor based on a short term memory structure called Gamma mem-
ory. When using a single stage of the Gamma filter, the Merge GNG model is
recovered. The γ-GNG model is compared to γ-Neural Gas, γ-SOM, and Merge
Neural Gas, using the temporal quantization error as a performance measure.
Simulation results on two data sets are presented: Mackey-Glass time series, and
Bicup 2006 challenge time series.

1 Introduction

Several extensions of self-organizing feature maps (SOMs) [1] for dealing with pro-
cessing data sequences that are temporally or spatially connected, such as words, DNA
sequences, time series, etc. [2],[3],[4] have been developed. In [5] a review of recur-
sive self-organizing network models, and their application for processing sequential
and tree-structured data is presented. An early attempt to include temporal contexts in
SOMs is the Temporal Kohonen Map (TKM) [6], where a neuron output depends on
the current input and its context of past activities. In Recursive SOM [3],[7],the SOM
algorithm is used recursively on both the current input and a copy of the map at the
previous time step. In addition to a weight vector, each neuron has a context vector
that represents the temporal context as the activation of the entire map in the previous
time step. This kind of context is computationally expensive, since the dimension of the
context vectors is equal to the number of neurons in the network.

In the Merge SOM (MSOM) [2] approach, the context is described by a linear com-
bination of the weight and the context of the last winner neuron. This context represen-
tation is more space efficient than the one used for the Recursive SOM model, because
in MSOM the dimensionality of the context is equal to the data dimensionality [4]. As
the MSOM context does not depend on the lattice architecture, it has been combined
with other self-organizing neural networks such as Neural Gas (NG) [8] and Growing
Neural Gas (GNG) [9], yielding the Merge Neural Gas (MNG) [10] and the Merge
Growing Neural Gas (MGNG) [11], respectively.

In our previous work we have added Gamma filters [12] to SOM and NG, yielding
the γ-SOM [13] and γ-NG models [14], respectively. We have shown that the gamma
filter variants of SOM and NG are generalizations that include as particular examples

J. Laaksonen and T. Honkela (Eds.): WSOM 2011, LNCS 6731, pp. 151–159, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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the MSOM and MNG models, when the filter order is set to one. In this paper, we add
gamma filters to GNG, to produce the γ-GNG model. We compare the performance of
γ-GNG with those of the γ-SOM and γ-NG models, using the temporal quantization
error as a metric. Results are shown on two data sets: the Mackey-Glass time series and
the Bicup 2006 time series.

2 Gamma Context Model

The Gamma filter [12,15] is defined in the time domain as

y(n) =
K∑

k=0

wkck(n)

ck(n) = βck(n − 1) + (1 − β)ck−1(n − 1) (1)

where c0(n) ≡ x(n) is the input signal and y(n) is the filter output, and w0, · · · , wK , β
are the filter parameters. The β ∈ (0, 1) parameter provides a mechanism to decou-
ple depth (D) and resolution (R) from filter order. Depth measures how far into the
past the memory stores information, a low memory depth can hold only recent infor-
mation. Resolution indicates the degree to which information concerning the individual
elements of the input sequence is preserved. The mean memory depth for a Gamma
memory of order-K becomes [16],[17],

D =
K

(1 − β)
(2)

and its resolution is
R = 1 − β.

As a consequence, depth and resolution can be adjusted in Gamma memories by simply
changing β. The Gamma delay operator G(z) represents the transfer function using z-
transform of a single filter stage

G(z) =
(1 − β)
(z − β)

. (3)

Eq. (3) can be described as a leaky integrator, where β is the gain of the feedback loop.
The recursive rule for context descriptor of order-K can be derived directly from the
transfer function (3), as follows:

Ck(z) = G(z)Ck−1(z) =
1 − β

z − β
Ck−1(z)

which can be rearranged as

Ck(z) = (1 − β)z−1Ck−1(z) + βz−1Ck(z). (4)

By using the inverse Z-transform, the recursive expression (1) is obtained.
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Let N = {1, . . . , M} be a set of neurons. Each neuron has associated a weight vector
wi ∈ �d, for i = 1, . . . , M , obtained from a vector quantization algorithm. The Gamma
context model associates to each neuron a set of contexts C =

{
ci
1, c

i
2, . . . , c

i
K

}
, ci

k ∈
�d, k = 1, . . . , K , where K is the Gamma filter order. Given a sequence s, the context
set C is initialized at zero values. From eq. (2) it can be seen that by increasing the filter
order, K, the Gamma context model can achieve an increasing memory depth without
compromising resolution.

Given a sequence entry, x(n), the best matching unit, In, is the neuron that minimizes
the following distance criterion,

di(n) = αw

∥∥x(n) − wi
∥∥2

+
K∑

k=1

αk

∥∥ck(n) − ci
k

∥∥2
(5)

where the parameters αw and αk, k ∈ {1, 2, . . . , K} control the relevance of the dif-
ferent elements. To compute the recursive distance (5) every context descriptor in the
different filtering stages is required. These contexts are built by using Gamma memo-
ries. Formally, the K context descriptors of the current unit are defined as:

ck(n) = βc
In−1
k + (1 − β) c

In−1
k−1 ∀k = 1, . . . , K (6)

where c
In−1
0 ≡ wIn−1 and at n = 0 the initial conditions cI0

k , ∀k = 1, . . . , K are set
randomly. When K = 1, the context used in the merge models is recovered. There-
fore, Merge SOM and Merge NG reduce to particular examples of γ-SOM and γ-NG,
respectively, when only a single Gamma filter stage is used (K = 1).

Because the context construction is recursive, it is recommended that αw > α1 >
α2 > · · · > αK > 0, otherwise errors in the early filter stages may propagate through
higher-order contexts.

2.1 γ-GNG Algorithm

The γ-GNG algorithm is a merge between GNG and the Gamma context model. For
the GNG model we use the implementation proposed in [11], which incorporates a
node insertion criterion based on entropy maximization. In the following we extend
Andreakis’s GNG implementation to incorporate γ filters. Neuron ith has associated a
weight vector, wi, and a set of contexts, ci

k, for k = 1, · · · , K .

1. Initialize randomly two weights wi, and set to zero their respective contexts, ci
k,

for k = 1, · · · , K , i = 1, 2. Connect them with a zero age edge and set to 0 their
respective winner counters, wcounti.

2. Present input vector, x(n), to the network
3. Calculate context descriptors ck(n) using eq. (6)
4. Find best matching unit (BMU), In, and the second closest neuron,Jn, using eq. (5)
5. Update the BMUs local winner count variable: wcountIn = wcountIn + 1
6. Update the BMU’s weight and contexts using the following rule

wi = εw(n) · (x(n) − wi
)

(7)

ck
i = εw(n) · (ck(n) − ck

i
)
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Update neighboring units (i.e. all nodes connected to the BMU by an edge) using
step-size εc(n) instead of εw(n) in eq. (7).

7. Increment the age of all edges connecting the BMU and their topological neighbors,
aj = aj + 1.

8. If the BMU and the second closest neuron are connected by an edge, then set the
age of that edge to 0. Otherwise create an edge between them.

9. If there are any edges with an edge larger than amax then remove them. If after this
operation, there are nodes with no edges remove them.

10. If the current iteration n is an integer multiple of λ, and the maximum node count
has not been reached, then insert a new node. The parameter λ controls the number
of iterations required before inserting a new node. Insertion of a new node, r, is
done as follows:
(a) Find node u with the largest winner count.
(b) Among the neighbors of u, find the node v with the largest winner count
(c) Insert the new node r between u and v as follows,

wr = 0.75wu + 0.25wv (8)

ck
r = 0.75ck

u + 0.25ck
v

(d) Create edges between u and r, and v and r, and remove the edge between u
and v

(e) Decrease the winner count variables of nodes u and v by a factor 1 − α̃, and
set the winner count of node r as follows,

wcountu = (1 − α̃) × wcountu (9)

wcountv = (1 − α̃) × wcountv (10)

wcountr = wcountu

11. Decrease winner count variables of all nodes, j = 1, · · · , J by a factor 1 − β̃,

wcountj = (1 − β̃) × wcountj (11)

12. Set n → n + 1
13. If n < L go back to step 2, where L is the cardinality of the data set.

Typically, α̃ = 0.5 and β̃ = 0.0005.

3 Experiments

Experiments were carried out with two data sets: Mackey-Glass time series and Bicup
2006 time series1. The parameter β was varied from 0.1 to 0.9 with 0.1 steps. The
number of filter stages K was varied from 1 to 9. Training in γ-GNG is done in a single

1 Available at Times Series Data Library
http://www.robjhyndman.com/TSDL/data/bicup2006.dat

http://www.robjhyndman.com/TSDL/data/bicup2006.dat
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stage, during 1 epoch for Mackey-Glass time series and 200 epochs for Bicup time
series. Parameters αi are fixed, and decayed linearly with the context order as follows:

αi =
K + 1 − i∑K
k=0(k + 1)

, i = 0 . . .K (12)

with αw ≡ α0. The parameters used in (7) were set as εw = 0.05, εc = 0.0006.
After convergence of the algorithm, each neuron will have associated a receptive field
defined as the mean input sequence that triggers its selection. With the aim of measuring
performance, a time window of 30 past events is defined. The size of this window does
not affect the function of the model, and it is used for monitoring purposes only. The
temporal quantization error (TQE) [3] is used as a performance criterion. TQE measures
the average standard deviation of signals within the receptive field of each neuron in the
grid for a certain past input. This generates a curve of quantization error versus the
index of past inputs.

3.1 Mackey-Glass Time Series

Figure 1 illustrates the Mackey-Glass time series, which is the solution of the differen-
tial equation dx

dt = bx(t) + ax(t−d)
1+x(t−d)10 , for a = −0.2, b = −0.1, and d = 17. 150,000

points were taken from this time series.
The SOM grid size was set as 10 × 10, with a total number of 100 neurons. Figure

2 shows the temporal quantization error for Merge GNG (K = 1), γ-GNG (K = 9),
γ-NG (K = 9), and γ-SOM (K = 9). The best result obtained for each algorithm is
displayed in Figure 2. It can be observed that the family of γ-filter algorithms largely
outperformed Merge GNG (K = 1) in terms of TQE, for any value of the index of past
inputs greater than 3. For very few lags, e.g. 0 lags, the best quantization is obtained
when considering only the magnitude of the data samples, without taking into account
temporal contexts. But for more than 3 lags, the temporal contexts help to produce a
much better temporal quantization than Merge GNG. All γ-filter variants show a similar
TQE for less than 15 past inputs. γ-GNG achieves a slightly better TQE for more than
15 past inputs than γ-NG and γ-SOM. Fig. 3 shows two-dimensional projections of
the resulting temporal vector quantization using principal component analysis (PCA)
for the Mackey-Glass time series. The dots correspond to neurons, and the links are
created by running the time series and connecting the closest neurons.

Fig. 3 shows the projection obtained with a) γ-NG (K = 9), b) γ-GNG (K = 9),
c) γ-SOM (K = 9) and d) Merge-GNG (K = 1). These projections illustrate clearly
the cyclic nature of the Mackey-Glass time series. The Merge GNG projection is much
more noisy than the projections obtained with the three γ-filter algorithms.
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Fig. 1. Mackey-Glass time series
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Fig. 2. TQE for Mackey-Glass time series using Merge GNG (K = 1), γ-GNG (K = 9), γ-NG
(K = 9),and γ-SOM (K = 9)

(a) γ-NG (b) γ-GNG

(c) γ-SOM (d) Merge-GNG

Fig. 3. PCA projection of temporal vector quantization results for Mackey-Glass time series,
using a) γ-NG (K = 9, β = 0.1), b) γ-GNG (K = 9, β = 0.3), c) γ-SOM (K = 9, β = 0.3),
and d) Merge-GNG (K = 1, β = 0.6)
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3.2 Bicup 2006 Time Series

The Bicup time series contains the number of passenger arrivals at a subway bus ter-
minal in Santiago, Chile, every 15-minute interval between 6:30 hours and 22:00 hours
for the period March 1-21, 2005. As the behavior of passengers is completely different
during the weekends, we trimmed the data by discarding the weekends. Figure 4 shows
the Bicup 2006 time series without the weekends.

The SOM grid was set to a 10×10 array, with a total number of 100 neurons. Figure
5 shows the temporal quantization error for Merge GNG (K = 1), γ-GNG (K = 8),
γ-NG (K = 9), and γ-SOM (K = 8). The parameter β was varied between 0.1 and 0.9
with steps of 0.1, and the best value for each algorithm is displayed in Figure 5. The
family of γ-filter algorithms largely outperformed Merge NG (K = 1) in terms of TQE,
for any value of the index of past inputs greater than 0. All γ-filter variants display a
similar TQE behavior. γ-NG achieves a slightly better TQE than γ-GNG and γ-SOM
for more than 10 past inputs.

Fig. 6 shows two-dimensional projections of the resulting temporal vector quantiza-
tion using PCA for the Bicup 2006 time series. The dots correspond to neurons, and the
links connect the closest neurons determined by running the time series. Fig. 6 shows
the projection obtained with a) γ-NG (K = 9), b) γ-GNG (K = 8), c) γ-SOM (K = 8)
and d) Merge-GNG (K = 1). These projections show that there are some interesting
periodicities in the Bicup 2006 time series. The Merge GNG projection is clearly more
noisy than the other three γ-filter based projections.
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Fig. 4. Bicup 2006 time series

Fig. 5. TQE for Bicup 2006 time series using Merge GNG, γ-NG, γ-GNG, and γ-SOM



158 P.A. Estévez and R. Hernández

(a) γ-NG (b) γ-GNG

(c) γ-SOM (d) Merge-GNG

Fig. 6. PCA projection of the temporal vector quantization obtained for Bicup 2006 time series,
using a) γ-NG (K = 9) ,b) γ-GNG (K = 8), c) γ-SOM (K = 8), and d) Merge-GNG (K = 1).

4 Conclusion

A γ-filter version of GNG has been implemented, and compared with γ-NG and γ-SOM
models using the temporal quantization error as performance metric. The so-called γ-
GNG model is a generalization of the Merge GNG model, where the latter corresponds
to the particular case when a single context is used (gamma filter of order one). It
has been shown empirically using two time series that by adding more contexts the
temporal quantization error tends to diminish. Although the TQE performance of γ-
GNG is similar to those of γ-NG, the former has the advantage of being a much faster
algorithm. In addition, in γ-GNG there is no need of having two stages of training as
usually done in γ-NG and γ-SOM algorithms.
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Abstract. In this article, we present an analysis of the impact of nutri-
tion and lifestyle on health at a global level. We have used Self-organizing
Maps (SOM) algorithm as the analysis technique. SOM enables us to
visualize the relative position of each country against a set of the vari-
ables related to nutrition, lifestyle and health. The positioning of the
countries follows the basic understanding of their status with respect to
their socioeconomic conditions. We have also studied the relationships
between the variables supported by the SOM visualization. This analy-
sis presents many obvious correlations but also some surprising findings
that are worth further analyses.

1 Introduction

The overall relationship between unhealthy diet and deteriorating health is ob-
vious and generally well understood. Establishing this relationship from data
may lead us to further identify the severity of the relationship concerning differ-
ent specific aspects, and to take appropriate corrective actions. Moreover, these
types of analyses can be used to create social awareness regarding the strong im-
pact of certain nutrition on the health of individuals and thus promoting overall
health and wellbeing in the society. The technical report series 916 of World
Health Organization explains that the rapid industrialization, in the previous
decade, has affected the health and nutrition especially in the developing coun-
tries, which has resulted in “inappropriate dietary patterns, decreased physical
activities and increased tobacco use, and a corresponding increase in diet-related
chronic diseases, especially among poor people” [1]. The report also states that
existing scientific evidence has helped in identifying the role of diet in controlling
various diseases. However, the evidence is contradicting at times [1].

A possible way to study correlations of different elements of nutrition and
lifestyle with the diseases could be to focus on the eating and drinking trends
in different parts of the world. The patterns of nutrition intake vary to a great
extent in different regions of the world. As this is also true in the case of the
prevalence of various diseases. The connections between the nutrition intake and
health can be further examined (see e.g. [2]). Volkert [2] studies the nutrition and
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lifestyle of elderly people in Europe and finds out that these vary widely even
within Europe. Volkert continues to state that the elderly in the south consume
more vegetables, grains, fruit, lean meat and olive oil whereas relatively more
milk products are consumed in the northern European countries. These kind of
findings are particularly interesting because a deeper analysis of world-wide eat-
ing trends and prevalence of diseases may enable us to identify the regions where
some improvements in terms of changing eating habits are essential to promote
wellbeing. In our research, we have carried out a similar investigation where we
can clearly identify large differences in nutrition intake at the global level. Thus,
we can group different regions of the world depending on nutrition intake profiles
of each region. We have also explored the links between the prevalence of certain
diseases in various countries and citizens′ diet in those countries. The dataset,
that we have used for our analysis, contains more than one hundred nutrition,
lifestyle and health indicators in 86 countries. The dataset has been obtained
from Canibais e Reis [3], with FAO (Food and Agriculture Organization) [4],
WHO (World Health Organization) [5] and British Heart Foundation [6]. as the
main sources of the data.

In order to inspect the aforementioned aspects of our research, sophisticated
analysis techniques are required since the dimensionality of data is large owing
to a lot of health, lifestyle and nutrition related features. For this reason, we
have used Self-Organizing Maps (SOM) algorithm, a well-known data analysis
and visualization technique, to mine interesting correlations. SOM is a suit-
able means to create an ordered representation of high-dimensional data. The
method reduces the complexity of the data and reveals meaningful relationships
by mapping the data into an intuitive two-dimensional space. This also helps in
understanding dependencies between variables in the data. In our analysis, we
have used SOM for a countrywide grouping of the data or data subsets. For in-
stance, SOM enables us to visually perceive the groups of countries based on the
spread of different diseases or the intake of certain nutrition elements. SOM also
helps in visualizing the relationships between different food items and diseases.

Section 2 provides a brief introduction of SOM and the dataset. Section 3
presents the results of experimentations on the data and finally Section 4 con-
cludes the paper.

2 Method and Data

This section first describes in brevity different features of the dataset and then
sheds some light on the technical and mathematical details of SOM.

2.1 Nutrition, Lifestyle and Health Database

The dataset under investigation is comprised of statistics that can be divided
into three categories namely health, diet and lifestyle. The first category contains
information such as obesity prevalence, incidence of tuberculosis, mortality rates
and related variables in different countries. The dietary information includes the
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consumption of proteins, sugar and milk products, and various other compo-
nents of nutrition (see a subset shown in Fig. 1). The lifestyle category provides
information related to the drinking and smoking habits etc. This categorization
has helped us, as shown in section 3, to group different countries based on the
similarity of food consumption and the spread of diseases.

Nutrition Argentina China Ethiopia Finland ... USA

Protein (g/day) 94 82 54 102 ... 114
Fats (g/day) 100 90 20 127 ... 156
Carbohydrates (g/day) 477.5 450.5 366 399.75 ... 426
Animal Products (kcal/day) 823 644 96 1164 ... 1045
Animal Fats (kcal/day) 72 46 13 131 ... 116
Bovine Meat (kcal/day) 342 27 29 90 ... 115
Butter, Ghee (kcal/day) 28 1 5 78 ... 40
Cheese (kcal/day) 90 1 0 164 ... 149
Eggs (kcal/day) 24 74 1 32 ... 55
Fats, Animals, Raw (kcal/day) 42 44 7 17 ... 75
Fish, Seafood (kcal/day) 10 35 0 59 ... 28
Freshwater Fish (kcal/day) 1 20 0 14 ... 5
Honey (kcal/day) 1 1 4 4 ... 4
Meat (kcal/day) 475 440 44 497 ... 451
Milk - Excluding Butter (kcal/day) 222 30 33 438 ... 390
Milk, Whole (kcal/day) 127 28 27 218 ... 199
Mutton & Goat Meat (kcal/day) 8 15 6 2 ... 3
Offals, Edible (kcal/day) 17 10 3 4 ... 3
Pelagic Fish (kcal/day) 1 0 0 34 ... 7
Pigmeat (kcal/day) 34 343 0 348 ... 132
Poultry Meat (kcal/day) 83 51 2 53 ... 197
Vegetal Products (kcal/day) 2135 2296 1761 1978 ... 2708
Alcoholic Beverages (kcal/day) 67 150 12 183 ... 102
... ... ... ... ... ... ...

Fig. 1. A selection of nutrition-related data

2.2 Self-Organizing Maps

Self-organizing Maps (SOM) is an unsupervised learning algorithm, often refered
to as an artificial neural network, that models input patterns in a dataset as an
ordered collection of model vectors [7]. The self-organizing map is famous as an
effective visualization methods, with which high-dimensional input data can be
reduced to 2-dimensional data space that can be interpreted and perceived more
easily. SOM has been used in many real world problems ranging from analysis
of complex data sets to monitoring of large industrial processes [8,9].

In Self-organizing Maps, the output layer of neurons is usually arranged in a
2-dimensional lattice structure. Each input vector in the input space is connected
to each neuron in the output space through a synaptic weight connection which
is initialized arbitrarily and learned or updated during the learning process.
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The result of the learning process is a particular topological arrangement of the
neurons in the output layer. The learning mechanism of SOM consists of three
main processes, namely competitive process, co-operative process and adaptive
process. These three processes combined can be called the learning algorithm of
SOM [7].

The experiments in this work have been conducted using the SOM Toolbox
Matlab package [10].

3 Analysis and Results

Our analysis on the data is twofold. In the first phase, we visualize the distribu-
tion of countries on the 2-dimensional space of SOM, based on the consumption
of different nutrients. This explains how countries group with each other regard-
ing the intake of nutrition. The second phase of the analysis shows relationships
between the nutrition variables as well as between the nutrition variables and
diseases.

3.1 Nutrition Analysis

For the world-wide nutrition analysis, 50 nutrition variables were selected as an
input for the SOM algorithm. The groups shown on the SOM map (see Fig. 2) are
based on the commonality of consumption of these nutrients in all 86 countries.

Fig. 2. A map of nutrition variables with an illustration of division of larger geograph-
ical groups
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Fig. 3. Component distributions of fats and animal products

In Fig. 2, the structure of clusters on the map is illuminated by the visualiza-
tion of distances in the original high-dimensional space. The shades of red color
indicate large distances in the original space whereas shades of blue refers to
relatively shorter distances. The visualization is interesting since the groups of
countries on the SOM map appear to have a close resemblance with the region-
wise grouping of countries on the globe. This possibly explains the fact that
people living in different regions of the world have common preferences for cer-
tain foods when compared with others. We have annotated the SOM map by
making virtual group boundaries. However, this demarcation is not fully cor-
rect since some countries fall in the group of those countries that are not their
geographical neighbors. Interesting exceptions include Egypt, Iran and Turkey
appearing in the group of North African countries. Moreover, Israel appears in
the group of South European countries, and Jamaica in South America. These
kind of exceptions are because of the resemblance in eating trends.

We have also performed similar analyses by combining various disease, lifestyle
and nutrition variables. The maps of disease and lifestyle variables (disease map
is shown in section 3.3) show various similar groups. For example, groups of
various South Asian and European countries can be identified (see section 3.3).

3.2 Correlation Analysis

In this section, we present the correlation analysis of variables or components of
data in the form of different component maps. The component maps are shown

Fig. 4. Component distributions of common food products
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Fig. 5. Relationship between the intake of sugar and sweeteners (kcal/day) and the
mean total cholesterol value (mg/dl) in men and women

on the gray scale where the dark shades represent low values and lighter shades
represent high values of variables.

The correlation between fats and animal products (see Fig. 3) is significant
since it shows strong correlations on both high and low values. This explains the
fact that high consumption of fats in European countries is strongly correlated
with high consumption of animal products. Similarly, low consumption of fats
in some East African and South Asian countries is strongly correlated with low
consumption of animal products.

Another component map of nine commonly used food constituents is shown
in Fig 4. The map clearly shows strong correlations on relatively low values/
consumption of coffee, cheese, butter, wine, eggs, potatoes, starch and wheat
products in various parts of the world.

Disease-Food correlation. Another important aspect of our research was to
explore the connection between food and health. For this reason, we studied the

Fig. 6. SOM analysis of disease variables
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relationships between some disease-related components and food constituents.
An interesting finding, shown in figure5, indicated a clear correlation between
high consumption of sugar or sweeteners and a prevalence of cholesterol in men
and women. This result appears to be an important finding from the health point
of view (see also [11,12]).

3.3 Disease Analysis

In addition to the nutrition-based analysis, we have also analyzed the prevalence
of different diseases in all 86 countries. The disease dataset includes prevalence
of heart diseases in men and women, obesity in both genders, cholesterol and
many others. The analysis leads us to conclude that countries, like in nutrition-
based analysis in section 3.1, tend to fall in the same cluster in which their
geographical neighbors reside. The SOM map of disease dataset (see Fig. 6)
clearly shows some South Asian countries in the top right corner whereas much
of the Europe is clustered in the bottom right.

4 Conclusion

The results obtained using SOM analysis provide a good understanding of the
data by not only showing the underlying correlations within different food com-
ponents but also between food components and diseases.

The study also shows the significance of machine learning techniques in order
to infer useful information from different eating and drinking trends in a popu-
lation. Moreover, deeper analyses performed on richer datasets may bring forth
information that can be used for the societal and individual wellbeing.
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Abstract. Cities are instances of complex structures. They present sev-
eral conflicting dynamics, emergence of unexpected patterns of mobility
and behavior, as well as some degree of adaptation. To make sense of
several aspects of cities, such as traffic flow, mobility, social welfare, so-
cial exclusion, and commodities, data mining may be an appropriate
technique. Here, we analyze 72 neighborhoods in Mexico City in terms
of economic, demographic, mobility, air quality and several other vari-
ables in years 2000 and in 2010. The visual information obtained by
self-organizing map shows interesting and previously unseen patterns.
For city planners, it is important to know how neighborhoods are dis-
tributed accordingly to demographic and economic variables. Also, it is
important to observe how neighbors geographically close are distributed
in terms of the mentioned variables. Self-organizing maps are a tool suit-
able for planners to seek for those correlations, as we show in our results.

Keywords: Self-organizing maps, urbanism, data mining, urban
analysis.

1 Introduction

Cities are complex structures defined by several processes and variables [1]. Ur-
ban planers, as well as policy and decision makers, are urged to understand those
processes and variables in order to seek for patterns that allow them to proper
planing. Several methodologies have been applied, such as those derived from
statistics [2], and others derived from the mathematical and computational mod-
eling [3]. A third tool is that of data mining, in which algorithms are presented
with (possibly) high-dimensional data and structures and patterns are identified.
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In an effort to make sense of those variables and phenomena, data visualization
may be a relevant task.

Almost 80% of the population of developed countries live in urban areas,
whereas almost 50% of the population is urban in some developing countries
[2]. In the cities, several dynamics are encountered, such as traffic flows and
jams, pollution, crime, innovation processes, cultural activities and several oth-
ers. Also, the distribution of the population over the city is not neither random
nor completely regular. The attributes of the population, such as age distribution
and educational level, are important for city planners in order to make correct
decisions and future modifications, such as new schools, hospitals and streets.

Regions in a city may be quantified accordingly to several variables. For spe-
cialists, it is relevant to identify those regions that presents similar descriptions,
and also, to identify the heterogeneity of certain geographic areas. Visualization
of those high-dimensional regions is a basic step for planers in order to make
sense of the dynamics and attribute distribution [4].

Data visualization in the urban context has widely applied, as in, for example
[5], where authors apply self-organizing maps to predict new areas in which cities
will be expanded to. Also, in [6], self-organizing maps are applied to generate
urban meshes. Data visualization in the urban modeling and planing contexts
is relevant for better decisions and understanding of the underlying dynamics.
Traditional tools such as principal component analysis, multidimensional scaling,
and others lack of some of the major attributes of certain non-linear mappings.
Thus, in this contribution, we base our analysis and data visualization describing
regions of a city on the self-organizing map.

Our contribution continues as follows. In section 2 we describe the general
aspects of urban modelling and urban data analysis. In section 3 we present the
specific case of study and briefly describe the self-organizing map, emphasizing
its features for data visualization. We also present the results of applying the
self-organizing map to visualize urban data, and in section 4 we present some
conclusions.

2 Urbanism and Urban Data

Cities and its constituent regions may be quantified in terms of relevant variables.
Each region is associated to a feature vector, and from there, data visualization
techniques may be applied. We define in this section the fundamental variables
that define city areas.

For city planners and policy makers, it is important to distinguish between
two major attributes of cities: physical aspects and human-related aspects [7].
The first group refers to variables that take into account the street topology and
the distribution of different services as well as of pollution indicators. Examples
of these variables are the number of streets, avenues, turnovers, traffic lights,
number of schools in a determined region, pedestrian bridges, the number of
offices and industries in the area, the number of communicating streets to major
avenues, and the average concentration of pollutant in the last month.
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We define a neighborhood as a region of blocks that share the same admin-
istrative instance. This is of course an artificial division, but is defined as the
basic structure within cities. Each neighborhood is defined by an attribute vec-
tor. The variables defining the high-dimensional space are now specified. This
first group of variables describes not only the distribution of public services and
facilities, but also the street network topology, which is fundamental for a proper
traffic flow over the city. Two of the most frequent variables are the number of
nodes and edges of a street graph. Edges are defined as sub-sections of streets
that connect two nodes, and nodes are defined as squares, intersections between
streets and dead ends. These variables characterize the possible traffic flow pat-
terns within the neighborhood studied [8]. Also in this group of variables are
the pollution conditions. The main pollutant considered in health analysis are
CO, O3, NO, NO2, SO2, among others. These pollutant are defined in terms
of the average concentration during a given period of time, and the number of
measures that exceeded the maximum safe level.

The second group of variables accounts for the description of inhabitants in a
determined region. Examples of these variables are the average income, educa-
tional level, average number of individuals living in the same household, number
of trips generated in a traffic district (generally weighted by the population in
the neighborhood), number of attracted trips to a given region, the percentage
of houses with proper services, and the proportion of individuals with social se-
curity (see Fig. 1-b). The age distribution is also relevant, as well as the gender
distribution. Hereafter, we refer to the urban space as the space generated by
all these variables (groups one and two).

Cities are dynamic in several ways. Citizens get older, new ones are born,
pollution may be controlled, new streets are to be built, new schools may be
constructed, or old houses may be demolished in order for new buildings to be
constructed. All these processes are difficult to be observed at once by traditional
tools, but are very relevant for urban planners.

Megalopolis, defined as cities with more than 10 million inhabitants, are the
result of several growing processes [1,2]. Although there is not a formal theory
of city growth and development, there are some general patterns more or less
accepted by the majority of specialists. In the first process, growing occurs from
several isolated urban spots. Small towns and settlements tend to growth by
diffusion-related mechanisms and eventually, the free areas will be covered. These
small towns are mainly ancient settlements that have suffered from demographic
stress and migration from other areas. Also, these small areas may be industrial
complexes or administrative facilities that tend to attract edifications towards
their vicinity.

The second process for city growth is the planification of completely new set-
tlements, more or less nearby to already existing settlements. These settlements
are in general planed as to be self-inclusive, that is, to include schools and other
facilities as to minimize the necessity of traveling outside its limits, other for dis-
placement to work areas. The third process is related to the formation of poor
or very poor areas, the so called satellite cities or slums [9]. These settlements
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are formed by people attracted to the city that can not afford to live in already
established neighborhoods. These settlements tend to be isolated from the major
streets, with poor or non-existing facilities.

In the next section, we describe the project of analyzing urban data from
several neighborhoods in a Megalopolis. The neighborhoods are described by
the already defined variables.

3 The Study Case

In this project we analyze urban data of Mexico City, from three major databases
[10,11,12]. We have two major interests in studying that data. First, we seek to
identify both, neighborhoods with similar urban features and the urban hetero-
geneity of certain regions. Second, we intend to visualize the evolution of certain
neighborhoods from the urban point of view. We compared 72 neighborhoods
in two different stages: years 2000 and 2010. We selected those neighborhoods
because they are within a distance of up to 1km from a major public transport
system established in 2004, so we may, as a side effect, study the impact of it over
its surroundings. The mentioned public transport system is an instance of the
so-called Bus Rapid Transit (BRT), which consists of a high-capacity bus and
an exclusive lane, running over a major avenue that crosses the city from south
to north for more than 24km. In year 2000, the BRT was not yet implemented,
so we have data of the previous situation in the surroundings neighborhoods.

The neighborhoods we considered in this study vary in size from just a few
blocks to up to one hundred, and from 950 inhabitants to up to 25,000. However,
there are other variables that are relevant, besides of the obvious ones that
relate to size, the already defined variables that constitute the urban space (see
Fig. 1-b). The total population of the 72 neighborhoods is 554,590 in 2000 and
551,390 in 2010.

Based on the seminal work by Kaski and Kohonen [13], in which self-organizing
maps were applied to study the world poverty distribution accordingly to sev-
eral variables, we propose the use of SOM to study not only the distribution
of instances (neighborhoods here after), but also their evolution on the high-
dimensional space. By evolution, we refer to how each neighborhood has modified
its own variables in two different times (2000 and 2010).

The self-organizing map is a non-linear projection with the capability of shown
in a low-dimensional discrete space the data distribution found in the high-
dimensional feature space [14]. One of the main properties of the SOM is the
ability to preserve in the output map those topographical relations present in
the input data [14]. This attribute is achieved through the transformation of an
incoming analogical signal of arbitrary dimension into a discrete low-dimensional
map and by adaptively transforming data in a topologically ordered fashion
[15]. Each input data is mapped to an unit in the lattice, to the one with the
closest weight vector to the input vector, or best matching unit (BMU). The
SOM preserves neighborhood relationships during training through the learning
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equation (1), which establishes the effect that each BMU has over any other
neuron. The two-dimensional SOM is a map from �d → N2.

The SOM structure consists of a two-dimensional lattice of units referred to
as the map space. Each unit n maintains a dynamic weight vector wn which is
the basic structure for the algorithm to lead to map formation. The dimension
of the input space is considered in the SOM by allowing weight vectors to have
as many components as features in the input space. Variables defining the input
space, and thus, the weight space, are continuous. Weight vectors are adapted
accordingly to:

wn(t + 1) = wn(t) + α(t)hn(g, t)(xi − wn(t)) (1)

where α(t) is the learning rate at epoch t, hn(g, t) is the neighborhood function
from BMU g to unit n at epoch t and xi is the input vector. The neighborhood
function is to be decreasing with time and distance for proper map unfolding.

With the aim to visualize how neighborhoods are distributed in the high-
dimensional space, SOMs were constructed. We made use of software SOM-
PACK, available at www.cis.hut.fi/research/som_lvq_pak.shtml. Fig. 2 shows
the U-matrix [16]. It is indicated the id of the neighborhood followed by the label
that identifies the year (00 or 10 for 2000 and 2010). The gray levels represent
the similitude of the surrounding cells, and are useful to identify the clusters
formed by the SOM.

Fig. 1. The 72 neighborhoods contemplated in this study (a). It is shown the general
geographic location. The area of polygons representing neighborhoods is proportional
to the square of the population in the neighborhood. The variables included in the
analysis (b).
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Fig. 2. U-matrix for SOM. The 72 neighborhoods are shown for years 2000 (00) and
2010 (10).

There are several clusters identified by the SOM and highlighted by the U-
matrix method. They are labeled A - M. Neighborhoods in cluster A are very
poor areas, slums, with poor urban services and poor inhabitants. They are
located in the southern part of the studied region. Streets in those neighborhoods
are only a few and mainly insufficient to even be represented by a connected
graph. Area B is geographically close to neighbors in area A, but have a different
description. They are modern neighborhoods, with less than 25 years and there
is a high concentration of physicians and researchers working in the nearby
hospitals and at the university. Area C is related to wealthy neighbors, with
high living standards. The nature of neighbors in this region is that of original
settlements (5, 31) and of recent urban constructions (14, 16, 22, 29). Areas B
and C are formed by neighborhoods in the south part of the city.

Cluster D is also formed by wealthy neighborhoods, but it includes some from
the middle-south and middle-north part of the city. They are mainly modern
neighborhoods with adequate urban planning, which includes wide avenues and
streets, and several facilities are found in the neighborhood or in the surround-
ings, with good public transport in the surroundings, including metro stations.
Clusters E- G consists of relatively new neighbors, with several apartment build-
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ings and close to hospitals and several schools and the university in the surround-
ings. They are geographically located to the middle-south area of the city.

Clusters H and I includes neighborhoods in the central area and in the north-
ern part of the city. They are similar not only in that they are wealthy neighbors,
but also in that the street topology, traffic conditions and air pollution are more
or less equivalent. CO levels are high in neighbors within these clusters. Cluster
J includes residential neighborhoods within the vicinity of industrial complexes,
with medium and working classes, although with several facilities. Finally, clus-
ters K and L are new urban settlements, with good street planning and in general,
are among the neighborhoods with the highest standards in Mexico City.

In order to interpret the results, it is important to keep in mind that two
factors are being considered simultaneously. The first one is that the studied
neighborhoods are situated along a main avenue that crosses Mexico City from
south to north for almost 30km, served by a major public transport system.
The analysis of the SOM of these neighborhoods is important as it shed light
about similar features and patterns among the city. The first important aspect
we observe is that neighbors geographically close to each other tend to have more
or less similar positions in the urban space (see also Fig. 1). However, this is not
always the case. Neighborhood 5, an original town from where city had growth
in the last century, is a wealthy region. The neighborhoods around it (12, 6, 7)
are considered poor regions. Also, the differences are not only in the economic
sense: the street topology of both regions is different (see Fig. 3).

The second aspect is that each neighborhood is represented by two instances:
its description, accordingly to the relevant urban variables, in year 2000 and in
year 2010. So, in the same map we found two instance of each neighborhood. The
distribution of these two instances is a visualization of how different a neighbor-
hood is in 2010 compared to how it was in year 2000. That is, we can visualize
the evolution of each neighborhood in two periods at the time that we visualize
how each neighborhood is placed in the urban space with respect to other neigh-
borhoods. In general, ten years is a short period of time to observe significant
changes in a city.

In general, it is observed that neighborhoods tend to stay more or less the
same, at least in a ten-year period. There are, however, some interesting coun-
terexamples. Neighborhood 14, a residential area with several apartment build-
ings, has shifted its position towards a cluster of neighborhoods with higher
standards. Also, no neighborhood seems to be attracted to clusters defining
poor neighborhoods. However, several instances have not abandoned its poverty
condition (neighborhoods 1, 3, 6, 7, 10, ...).

In Fig. 3 it is shown the planes for some of the considered variables. A plane
indicates in gray levels over each unit the average value of a certain variable
of the vectors mapped to that unit. In the first plane (starting at top left),
it is shown the distribution for the percentage of households with at least one
car. Also, plane 6 shows the percentage of population of each neighborhood
that earns 10 or more basic salaries. It is observed a similitude between these
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Fig. 3. Planes for some of the considered variables. Gray level indicates the correspond-
ing value of the plane. Light tones indicate higher values.

two planes, which clearly indicates that people with good salaries can afford to
buy cars.

Another interesting and previously undetected fact is that neighborhoods with
the highest percentage of educational level are not the neighborhoods whose
inhabitants earnt the highest salaries, which is in contradiction with what is
observed in, for example, the United States [17] (see planes 6 and 9 in Fig 3).

On the side of urban traffic and pollution issues, a few facts are also of interest
for urbanists, and were previously undetected. Plane 8 shows the number of
street connecting the neighborhood to a major avenue. By comparing this plane
with plane 1, it is observed that neighborhoods whose inhabitants have more
cars are less connected that neighborhoods whose inhabitants have fewer cars.
This, of course, is a cause of traffic jams. This finding express the fact that
neighborhoods with several cars will present higher traffic problems not only
because there are more cars but also because there are less streets to leave
(enter) the neighborhood.

Plane 1 and plane 12 show that neighborhoods with more cars tend to be less
connected, that is, less street are connecting the neighborhood with itself. This
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is confirmed by the fact that many of the neighborhoods with households with
more cars tend to present more traffic problems [18].

Plane 4 shows the number of generated trips from a neighborhood to another
one. It is included in this variable both trips to work and trips for social reasons.
This variable is important for urbanist and traffic oficials to propose new or
additional routes. By comparing this plane with plane 9, it is observed that in
those neighborhoods with lower level of education people tend to travel more
outside their own neighborhood. From here, it may be inferred that people with
higher levels of education tend to live near their jobs.

4 Discussion and Conclusions

In order to make sense of data from different fronts related to urban settlements
and inner processes and phenomena, we applied the self-organizing maps. The
visualizing capabilities of the self-organizing map were very helpful in identifying
some patterns and correlations. We analyzed several neighborhoods within the
vicinity of a bus rapid transit, based on several dozens of demographic, economic,
environmental and topological variables, and we were able to find some clusters.
Those clusters group neighbors with similar descriptions so interesting patterns
may be identified.

The ability to visualize simultaneously clusters and their correlation as in the
U-matrix and planes, is important to seek for relevant patterns. In the case of
urban data, it may lead to the discover of relevant information. In this project,
we identified some hidden patterns, previously undetected. Also, we have been
able to detect clusters of similar neighborhoods and also.

Visualization of high-dimensional data is a first step for urban planners to
make sense of the city and its inner displacements and processes. Self-organizing
maps are a good alternative at least in the data visualization and data inspection
tasks.
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Abstract. In recent years, a variety of visualization techniques for vi-
sual data exploration based on self-organizing maps (SOMs) have been
developed. To support users in data exploration tasks, a series of software
tools emerged which integrate various visualizations. However, the focus
of most research was the development of visualizations which improve the
support in cluster identification. In order to provide real insight into the
data set it is crucial that users have the possibility of interactively inves-
tigating the data set. This work provides an overview of state-of-the-art
software tools for SOM-based visual data exploration. We discuss the
functionality of software for specialized data sets, as well as for arbitrary
data sets with a focus on interactive data exploration.

1 Introduction

Self-organizing maps (SOMs) [1] have been widely employed for data exploration
tasks in the last decade. Their popularity is especially due to the ability of cre-
ating low-dimensional, topology preserving representations of high-dimensional
data. Visualizations of these representations help the user to understand the
distribution of data elements in the feature space. In recent years, a variety of
visualization techniques have been developed which support users in the identi-
fication of clusters and correlated data. Most of these visualizations have been
included in software tools which provide different means to analyze and explore
the data set.

The active research area of visual analytics early identified the need to interact
with data visualizations. Interactive data exploration is relevant in every domain
where users want to gain insight into the data. Interaction techniques allow users
to mentally connect visual elements with actual data. The application of such
techniques may result in a deeper understanding of the visualization and allow
a goal-oriented analysis of the data.

Most current SOM-based visualizations focus on cluster formation, contribu-
tion of variables (features) to these clusters, and homogeneity of clusters. How-
ever, to gain insight into the data, interaction with the clustered data is crucial.

J. Laaksonen and T. Honkela (Eds.): WSOM 2011, LNCS 6731, pp. 178–187, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The selection of feature vectors and investigation of data linked to these feature
vectors can improve the visual data exploration task. Additionally, more infor-
mation may be transported through such interactive visualizations than single
static visualization are capable of.

This paper presents a short overview of SOM-based visualization techniques
and evaluates existing SOM-based software tools regarding their application to
visual interactive data exploration. We summarize the results in order to provide
a reference for interactive tools. We conclude with the discussion of the current
state-of-the-art software tools.

2 SOM-Based Visualization Techniques

Most SOM-based visualization techniques focus on cluster identification. In the
following, we give an overview of such visualizations for SOMs.

Ultsch proposed the U-Matrix [2], which can be displayed by color coding the
distances between neighboring map units. The resulting representation allows
an effective cluster identification. Ultsch also propose several extensions to the
U-Matrix visualization. The P-Matrix [3] visualizes data densities and distances
for map units. The U*-Matrix [4] combines the P-Matrix and the U-Matrix.
This results in an advanced highlighting of clusters. Merkl et al. [5] developed a
cluster connection visualization where connections between neighboring units are
drawn inside clusters only and small distances are highlighted. Smoothed data
histograms [6] use contours to display areas of equal data density. Neighborhood
graphs [7] connect map units if the data is close in feature space, as well as in
the resulting map. Poelzlbauer et al. [8,9] created vector field visualizations. An
arrow which points in the direction of the cluster center is displayed for each map
unit, resulting in a smooth vector field which can be well interpreted for cluster
identification. The orthogonal representation creates a borderline representation,
thereby displaying cluster boundaries. Tasdemir et al. [10] extended the usual
SOM visualization with a connectivity matrix. Map units which are the first
and second best matching unit (BMU) for any feature vector are connected. The
width of the connecting line is increased with the number of feature vectors for
which this applies. This visualization not only highlights homogeneous clusters
with high BMU connectivity and dense data areas but also reveals distortions
and topological errors in the map. This visualization is mentioned to provide
a complete overview, it is, however, not implemented in any of the discussed
tools. Latif et al. [11] proposed a sky-metaphor visualization. In contrast to
other visualization techniques not only the map units are displayed. Instead,
individual feature vectors are displayed and their position is adapted according
to their similarity with neighboring units. This visualization is beneficial since
the mapping to BMUs is often coarse and fails to distinguish the differences of
individual feature vectors mapped onto the same units. Vesanto [12] described
several SOM-based visualizations, like data histograms, adapting the position of
map units relative to each other according to the accuracy of map units with
data samples, and component planes. Data histograms visualize the number of
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feature vectors which are projected onto a map unit (as BMU), either utilizing
the size of the unit, color coding, or a three dimensional plot where the height of
each bar indicates the number of feature vectors. Although these visualizations
focus on the identification of clusters, Vesanto additionally discusses visualization
techniques which focus on data analysis. Response surfaces, for example, display
the relative goodness of all units for the data set (using color coding) and thereby
provide information about the quality of the map. Component planes allow the
investigation of individual variables of codebook vectors by color coding their
influence on the U-Matrix visualization.

Mayer et al. [13] developed visualizations for coloring map units based on
category labels of the feature vectors (class visualization). The category labels are
provided by the ground truth data. Rauber et al. [14] developed a visualization
which also displays labels for clusters, however, no ground truth data is required.
Instead, the feature variable which is primarily responsible for the assignment
of a feature vector to a specific map unit is used as the label. This visualization
aims to provide users with a better understanding of the map topology. We
will summarize such techniques as class histograms in the remainder of this
work. Neumayer et al. [15] introduced the metro map metaphor which extends
component planes by connecting the lowest and highest values in each plane. The
resulting lines are combined in one diagram. This visualization is especially useful
for investigations of high-dimensional data sets where the analysis of individual
component planes becomes unfeasible.

3 Criteria

Dzemyda et al. [16] conducted a comparative analysis of six software tools for
SOM-based visual data exploration, with a focus on the interpretability of pro-
vided visualizations. Their conclusion was that insight might best be gained by
using several such tools. Although this recommendation seems unfeasible, it is
not surprising, since the analysis focused only on different visualizations and
accordingly found advantages and disadvantages for all of them.

In contrast, we evaluate SOM-based software tools for the use in visual in-
teractive data exploration tasks. Our criteria focus on interaction, since it is a
key component and allows users to explore data, as well as their correlations
and properties, in detail. We will base our discussion of tools on Keim’s visual
analytics mantra [17]: analyze first – show the important – zoom, filter and an-
alyze further – details on demand. In other words, visualizations should provide
users with interaction techniques that allow selection of data subsets, zooming,
filtering, and displaying detailed information, as well as appropriate diagnostics
and statistics.

We propose the following criteria for the assessment of the software tools
discussed in Section 4:
– Data preprocessing. The common input for data exploration tools are feature

vectors in a specific data format. The software should provide methods to pro-
cess the input data before SOM training. Data preprocessing routines should
at least provide functionality for data centering and data normalization.
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– Visualizations. Section 2 gives an overview of SOM visualization techniques.
Different visualizations allow different interpretations and as such are im-
portant for users to gain insight. The software should provide several state-
of-the-art visualizations. In other words, does the software provide sufficient
methods for analyzing and displaying important aspects?

– Visualization of data. Feature vectors are connected to some arbitrary origi-
nal data. In case of images, texts or motion trajectories it is favorable to have
the original data displayed. Visualizations of original (or raw) data provide
a good overview of the data distribution and quality of the resulting map.

– Interaction with the map. The topological structure of the SOM is a funda-
mental detail of the algorithm. Interaction techniques for low-dimensional
map topologies are beneficial for the understanding of high-dimensional fea-
ture space projections. Map interaction should provide basic zoom and fil-
tering methods, like showing the data distribution of a specific category or
with a specific data property.

– Interaction with the data. Although the input for the SOM learning algorithm
are feature vectors, they are connected to specific data. Showing details on
demand not only refers to displaying feature vectors, but also to reveal the
actual data. Interaction with the data refers to the possibility of display-
ing features or original data, as well as to the possibility of modifying or
rearranging the data.

– Interaction with visualization. To leverage visualizations users should be able
interact with them. The basic form is the interactive adaption of visual-
ization parameters, e.g. switching between U-Matrix and component plane
visualizations or adapting thresholds.

– Labeling data. The tool should provide the possibility of labeling data. Label-
ing data is a critical criteria for users who want use the SOM for annotation
purposes.

All investigated tools behave differently and provide different levels of interaction
and visualization. To provide a basis for our discussion we assign the following
values in the evaluation (see Table 1). If a tool does not provide the given func-
tionality we assign the none (-) label for that tool, if it provides basic methods
that partly fulfill the criteria, we assign the basic (◦) label. If a tool implements
one or more advanced solutions for a criteria, we assign the advanced (+) label.

4 Tools for SOM-Based Interactive Data Exploration

This section gives an overview of existing software for SOM-based visual data
exploration. To provide a clear structure we divided the software tools into two
categories: tools developed for the investigation of specialized data sets and tools
for the exploration of arbitrary data.

4.1 Special Purpose Tools

A variety of SOM-based systems were developed for the exploration of special
data sets, e.g. image data or gene expression data. The following list of (aca-
demic) tools provides an overview of such systems and gives a description of their
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purpose and functionality. A summarization of the visualization techniques pro-
vided by each tool and an assessment of their interactivity is given in Table 1.

VALT, Heidemann et al. [18,19]. This system was developed for the purpose of
labeling image data in an augmented reality (AR) scenario. The image data is
clustered with a SOM and the map is displayed to the user with one representa-
tive image per unit. Users may select and assign labels to map units or individual
images. The U-Matrix can be displayed in the background of the map.

Moehrmann et al. [20]. Similar to VALT but optimized for use on desktop com-
puters. Image data is clustered with a SOM using arbitrary features. A zoomable
user interface (UI) is used to display the SOM in two levels of detail (map units
and all images for a BMU). Class labels can be assigned to map units or indi-
vidual images.

Schreck et al. [21]. SOM-based visualization of time-series data. The system is
optimized for the application to time-dependent data and integrates techniques
to automatically identify interesting candidate views. Selection of map units
is possible, as well as displaying the component planes for them. The system
includes a U-Matrix visualization, color coding of quantization errors and nearest
neighbor connections. Users may merge or expand units, as well as edit, create
or delete them. The layout of the map may also be rearranged to better suit the
users’ expectations. The time-dependent data is displayed as a two-dimensional
trajectory.

Torkkola et al. [22]. They propose the use of SOM-based visualizations for mining
gene expression data. The map can be color coded according to the value of
individual components (i.e. one component plane). It is, however, not obvious
whether the selection of a component can be performed interactively. Users may
set thresholds to identify clusters in the SOM. A basic degree of interactivity
with the map is given with the possibility of zooming into areas of interest. Users
may thereby investigate the data in detail (given as line plots).

Kanaya et al. [23,24]. Software tool developed for exploratory analysis of gene
expression data. No data preprocessing is included in the software. It provides
data histograms, component planes, as well as a comparison map which high-
lights differences between two component planes. This visualization is of interest
for this special data set since components refer to individual experiments. The
applicability of this visualization to other data sets is unknown. Feature vectors
can be investigated in detail by selecting a unit in the visualization.

4.2 Analytical Purpose Tools

In contrast to specialized tools, a variety of systems exist which were developed
for visual data exploration on arbitrary data sets. The following list summa-
rizes these tools and gives an overview of their functionality and interaction
techniques:

SOM toolbox for Matlab [25]. Extensive toolbox for Matlab with focus on SOM
calculation. Provides data preprocessing, U-Matrix, component planes, and class
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histograms. The interaction is mainly command-line based. There are a few
dialogs which are useful for beginners, one of which allows the adjustment of
visualization parameters. However, no direct interaction with the visualization
is possible, since the visualization is recalculated and displayed in a new window.
The usual interaction with maps is provided, i.e. zooming and rotating. Selection
of map units or interaction with the data is not possible. Another tool that could
be discussed here is R-project with its packages for SOM visualizations. However,
regarding its functionality and its command-line interface it is on one level with
the Matlab SOM toolbox. It provides only static visualizations and no degree of
interactivity except via command-line. It will therefore not be included in the
detailed discussion.

SOMVis [26]. Extends the SOM toolbox for Matlab with basic interactions like
zooming, rotating and adding labels and arrows to the map. Labels are attached
to the map only, not to units. Selection of map units is possible, but the only
information that can be displayed for selected units is their position. There are a
lot of options for configuring the visualizations. However, visualizations are not
interactively adapted but recalculated.

Java SOMToolbox [27]. Provides basic interactions with the map, like zooming
and rotating. The selection of map units is possible. Labels can be manually
added to the visualization but cannot be attached to units. It is possible to
display cluster labels which show details about the feature vectors inside this
cluster. However, actual interaction with the data is not possible. The visualiza-
tion may be adapted by choosing different color schemes, displaying/hiding clus-
ter boundaries, or selecting units according to their value ranges on component
planes. This toolbox utilizes most of the visualization introduced in Section 2.

Peltarion Synapse [28]. This software is not focused on SOMs but provides some
standard SOM visualizations. A dialog is available for configuring the visual-
izations with options like show U-matrix, show component planes, or map size.
Selection of units or clusters is possible. Different views are linked, thereby en-
abling users to identify selected regions in other visualizations. As units are
selected, additional information, like number of units, number of data vectors,
as well as minimum, maximum, and average values per component are displayed.
Viewing and editing feature vectors is possible. Assigning labels to units is pos-
sible by manually editing the class component of a feature vector. Regarding the
visualizations, configuration of parameters is possible via dialogs.

Viscovery SOMine [29]. This workflow-based software is available in a basic edi-
tion and in an expert edition. It includes extensive data preprocessing abilities,
like the extraction of new features, data transformation, and outlier removal.
Zooming the map is restricted to five zoom levels and only available for com-
ponent planes. Component planes may be rearranged or hidden. Selection of
individual units or clusters is possible, as well as selecting units according to
value ranges of components. The actual data for selected clusters can be inves-
tigated in a table like arrangement. Viewing data for one map unit is possible
by manually modifying the clustering. A basic labeling functionality is available
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Table 1. Summarization of the visualization techniques and interaction possibilities
provided by all data exploration tools. The interaction criteria are judged as -(not
available), ◦(basic functionality), and +(advanced functionality). Visualizations are not
judged by their quality. The basic sign (◦) indicates the availability of a visualization.
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Data preprocessing ◦ + ◦ ◦ ◦ ◦ - - - - -

Interaction with map + + + - ◦ ◦ ◦ ◦ ◦ ◦ ◦
Interaction with data - ◦ ◦ - ◦ ◦ - - - ◦ -

Interaction with visualization + ◦ ◦ - ◦ ◦ ◦ ◦ ◦ - -

Label assignment - ◦ ◦ - - - + + - - -

Data visualization ◦ ◦ ◦
Data histograms ◦ ◦ ◦ ◦ ◦ ◦ ◦
Class histogram ◦ ◦ ◦ ◦ ◦ ◦
Cluster connections ◦
Clustering ◦ ◦ ◦ ◦ ◦ ◦
Component planes ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Metro map ◦ ◦
Neighborhood graph ◦ ◦
U-Matrix ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
U*-matrix ◦ ◦
P-Matrix ◦ ◦
Response surfaces ◦ ◦ ◦
Sky-metaphor visualization ◦
Smoothed data histograms ◦ ◦
Vector fields ◦ ◦

for codebook vectors only. The whole software is focused on cluster investigation
and therefore does not provide many visualizations. The expert edition, which
we did not evaluate, seems to provide additional functionality which allows the
context-sensitive display of data vectors for selected units.

VisiSOM [30]. A commercial software for SOM-based data exploration which
provides only basic (2D and 3D) visualizations. Codebook vector data (com-
plete, or individual component values) can be displayed on an additional axis
for selected map units. Additionally, feature vector data is displayed in a list
below the visualization and is updated if the selection is modified.
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5 Discussion

As seen in the previous section, the tools can be divided in two classes: special
purpose tools and analytical purpose tools. Special purpose tools like Heidemann
et al., Moehrmann et al., or Schreck et al. provide advanced interaction tech-
niques which are optimized for the exploration of specific data sets. However,
only few visualizations are available. This results from the fact that both, image
and time-series data, can be displayed well and is easy to grasp for users in
its natural form. Additional advanced cluster visualizations would not provide
much benefit. In contrast, gene expression data is much more generic due to its
abstract nature. These tools apply a lot of advanced visualizations but lack in
interactivity, although the investigation of different experiments could probably
be performed more efficiently with appropriate techniques.

Analytical purpose tools, like Java SOMToolbox and the SOMVis extension
for Matlab, provide various visualizations for standardized input data. Addition-
ally, visualizations may be adapted to better suit the users’ purpose through the
user interface or via command line. Viscovery SOMine and Peltarion Synapse
provide linked views which allow users to investigate several visualizations at
once, thereby supporting the identification of correlations. Both systems provide
good interaction techniques for the map and the visualizations, but only very ba-
sic interaction with the data. Although SOMine allows the assignment of labels
to codebook vectors, it is not possible to identify incorrectly projected feature
vectors. In contrast, Synapse allows the manual editing of class attributes in the
feature vector but does not support the assignment of labels to whole clusters.
It is difficult for analytical purpose tools to display the actual underlying data.
Such visualizations require special models and optimizations and one can hardly
implement visualizations for all possible applications. However, interactive or
embedded data visualizations are essential for extensive data exploration tasks
and special tasks, like image or text labeling.

Most tools allow basic interaction with the maps, but only few provide ad-
ditional information depending on the level of detail. For example, labels are
displayed without consideration of the current zoom level which leads to vi-
sual clutter. Instead, labels for whole clusters could be displayed in a low zoom
level and as the zoom is increased labels could be displayed more detailed, for
codebook vectors or, in a very high zoom level, for individual data vectors. A
major advantage for visual data exploration would be the possibility to augment
the visualization with customizable information. Instead of displaying class la-
bels, individual components could be of interest. It is possible to display such
components in many tools but not depending on the level of detail.

In our opinion the focus of research in the area of visual SOM-based data
exploration has to shift from the development of slightly advanced visualizations
for cluster identification to the development of interactive user interfaces with
the aim to support users in their exploration task. Although it could be argued
that the visual analytics research area is responsible for such developments we
believe that the development has already begun to head for the direction of visual
analytics with the realization of sophisticated visualizations. The evolution of
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SOMs to an interactive data exploration tool will have a positive influence on
other areas like human computer interaction, since SOMs are rather intuitive.
Given adequate interaction techniques this fact could be exploited to greatly
simplify the learning phase and reduce the initial barrier for non-expert users.

6 Conclusion

Recent developments in the area of visual data exploration with SOMs has fo-
cused on the improvement of visualizations for cluster detection or detection of
correlations. However, special purpose tools have been developed which provide
sophisticated interaction techniques which were optimized for specific tasks, like
labeling images. Although various software tools exist which allow visual ex-
ploration of arbitrary data sets, the interaction techniques are in a very basic
stadium. We believe that the focus of future research has to shift from the de-
velopment of further cluster visualizations to the development of sophisticated
interaction techniques for arbitrary data. SOM-based visual data exploration
can be performed intuitively and is therefore especially of interest for non-expert
users from other domains.
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Abstract. A structured 3D SOM is an extension of a Self-Organizing Map from 
2D to 3D where a structure has been built into the design of the 3D map. The 
3D SOM is a 3x3x3 cube, with a distinct core cube in the center, and 26 
exterior cubes around the center. The structured SOM mainly uses the 8 corner 
cubes among the 26 exterior cubes. Used to build a music archive, the SOM 
learning algorithm is modified to include a four-step learning and labeling 
phase. The first phase is meant only to position the music files in their general 
locations within the core cube. The second phase is meant to position the music 
files in their respective corner cubes. The third phase is meant to do a fine 
adjustment of the weight vectors in the core cube.  The fourth phase is the 
labeling of the map and the association of music files to specific nodes in the 
map. Through the embedded structure of the 3D SOM, a precise measure is 
developed to measure the quality of the resulting trained SOM (in this case, the 
music archive), as well as the quality of the different categories/genres of music 
albums based on a novel measure of the attraction index and the fidelity of 
music files to their respective music genres. 

Keywords: Self-Organizing Map, 3D map, music archive, SOM quality, 
fidelity measure. 

1   Introduction 

Self-Organizing Maps [1] are artificial neural networks that translate high dimensional 
input data into a low dimensional representation, in usually a 2D planar map. The 
benefit of using 2D visualization is that it is easy to visualize the relationship among 
the cells of the map [2]. By employing a technique such as U-Matrix [3], the clusters 
formed can be spotted and inspected visually. 

The 2D SOM has been used in various types of applications, one of which is the 
use of the SOM as a music archive. For example, [4] uses a 2D SOM to organize a 
music collection. In visualizing the map, a metaphor of a geographic map is employed 
wherein islands represent musical genres. Islands signify the presence of songs while 
water signifies the absence of songs. To interact with the system, the system would 
need to click around the map. Another application using a 2D SOM is described in 
[5], where various hardware interfaces were used to navigate the 2D SOM. Among 
the hardware interfaces, included are an eye-tracker, wii-mote, iphone and desktop 
controllers. 
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A research which utilized a 2D SOM but provided a 3D visualization of the map is  
described in [6]. Similar to the work described in [4], a metaphor of a geographic map 
was used to visualize the organized map. However, a 3D virtual landscape was 
employed wherein the height of an island signals the number of songs associated to 
the cluster. To navigate through the map, a gamepad interface is used. Indeed, a SOM 
can in fact be rendered in 3D but the difficulty is that that viewing the 3D SOM would 
require rotating, zooming or moving 3D models to actually determine the relationship 
among the map units. 

In this paper, we present a variant of SOM which is a structured SOM that 
organizes high-dimensional data into a 3D map. The 3D SOMhas an embedded 
structure that then paves the way for measuring the quality of the SOM organization. 
Section 2 discusses the design of a structured SOM while Section 3 illustrates a 
practicaluse of the structured SOM as a music archive. Section 4 discusses the 
concept of an attraction index and fidelity measure which are used to gauge the 
quality of the 3D SOM. Section 5 gives the conclusion. 

2   Design of a Structured SOM 

A structured SOM is a 3D map that uses a rectangular lattice and is represented as a 
3x3x3 cube, much like a Rubik’s cube. The 3D SOM has 27 sub-cubes of the same 
size. In our experiments, each sub-cube is a 3D map with 9x9x9 nodes. In structured 
SOMs, we assign categories to each of the exterior cubes to be specialized maps for 
each of the categories. The core cube at the center takes care of combining together in 
one 3D map all the input files from all possible categories. For the experiments that 
we will discuss in this paper, we only used the 8 exterior cubes at the corners which 
we refer to as corner cubes. Figure 1 shows their location in the 3D map. The 8 
corner cube positions were assigned to specific categories, based on an initial training 
of the core cube.  

Figure 2 illustrates the four-step supervised training and labeling of a structured 
SOM. The supervised training of the core and corner cubes pre-supposes that there is 
a labeled training set, where each input element has an accompanying category label. 
The first phase of training involves the supervised training of the core cube, followed  
 

 

Fig. 1. Corner cube positions in a structured SOM 
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by the training of the corner cubes, then again the training of the core cube, then 
finally the labeling of the corner and core cubes. The initial supervised training of the 
core cube assigns the general positions of the input files in the map, which would be 
refined later. The training of corner cubes then positions the input files in their 
respective corner cubes, according to their category labels. The second training of the 
core cube (third phase) is designed to fine-tune the weights of the node vectors in the 
core cube, since the initial training phase was just meant for a rough representation by 
the core cube node vectors of the various interrelationships of the items in the input 
dataset.  

The training parameters used for the three training phases are quite different, with 
learning rates being high during phase 1 (α = 0.75) and being much lower during 
phase 3 (α = 0.10), while the number of training cycles is only 10,000 in phase 1, but 
50,000 in phase 3. The supervised training of core and corner cubes is essentially like 
the usual unsupervised training of regular SOM, except that the best-matching-unit 
for a given input element is constrained to be from among the pre-assigned nodes that 
correspond to the accompanying category label. As for the adaption of the weights of 
node vectors, the learning rule and the Gaussian function for the diminishing effect of 
the learning rate within the neighborhood of the best matching unit follow the usual 
learning mechanism of self-organizing maps. 

 

Fig. 2. Training of a structured SOM 

Because of the nature of the learning mechanism of self organizing maps where all 
other nodes in the map are updated (but at decreasing learning rates as the distance of 
the node to the best-matching unit increases), the core cubealso gets trained during 
supervised training of the corner (exterior) cubes. Consequently, by the collective 
influences of all the corner cubes, the core cube gets to represent the inter-
relationships of the various data elements of the entire data set. 

We tested the use of structured SOMs by using an artificial dataset of animal data, 
each represented by binary features. In the animal data set, there are 10 animal 
categories, namely amphibians, birds, fish, reptiles, cnideria, crustaceans, mollusks, 
and insects. Mammals and special animals (e.g. bats as mammals that fly, platypus 
that has characteristics of mammals and birds, ducks as birds that swim, whales as 
mammals that swim in the ocean)  were used to do experiments on the core cube.  

Following the usual implementation of self-organizing maps, the unknown 
category of certain animals can be identified by computing the distance of the input 
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vector to each of the node vectors of the core/corner cube. The label of the nearest 
node (best matching unit) would be the identified class/category of the unknown 
animal. 

With the structured SOM set-up, there are nodes in the core cube that straddle 
along the boundaries between two or more classes or categories, somewhere mid-way 
between two or three corners. These nodes would correspond to input items that have 
multiple categories, such as animals that have traits that make them look both 
mammal and bird, or both fish and mammal, or perhaps songs that are partly hip-hop, 
partly reggae, and maybe partly rock. 

 
a)                                                                            b) 

Fig. 3. a) training of structured SOM using an animal dataset b) distribution of “special 
animals” in the core cube that has been trained with an animal dataset of 8 different 
classes/categories of animals 

Figure 3a shows a screenshot of the structured SOM that has been trained using an 
animal dataset. We had only loaded the trained core cube with the set of special 
animals. Figure 3b is a zoomed-in display of the core cube of Figure 3a, with labels 
on the spheres to identify the various special animals and how they are positioned vis 
à vis the different categories assigned to the eight corner cubes. Duck, rheas and 
grebes are pulled towards the fish corner which is why these birds are positioned a 
little away from the birds corner. As for the bat, it is positioned near the birds corner. 
With regard to the flying fish, it is positioned between fishes and insects. Since most 
of the insects in the data set have the ability to fly, the flying fish is being pulled by 
the insects corner (less by the bird corner) since the flying fish has more features that 
are shared with insects than with birds as far as the features we used were concerned. 

3   Interactive 3D Music Organizer 

We used the structured SOM as a music archive and trained the 8 corner cubes with 
music files from 8 music categories or genres, namelyblues, classical, country, disco, 
hip-hop, jazz, reggae and rock. One genre is assigned to one corner cube. As 
explained earlier, the corner cube’s node vectors get updated (along with the node 
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vectors of nearby nodes in the core cube) only when a music file from that particular 
genre is selected during training. The labeled training set has music files from all the 
8 genres and the sequence of music files for training is completely random. 

Interactive 3D Music Organizer (i3DMO) is one instance of the structured SOM 
that performs content-based organization of a music collection following the training 
and labeling scheme of structured SOMs. It provides a 3D visualization of the map, 
with zoom-in and zoom out functions, rotations, probes to the interior of the cube, etc.  

The application provides a media player functionality that enables playback of 
songs and managing of playlists. The music data set used by the application is 
composed of songs with extracted music features. The music features were retrieved 
by performing a specialized extraction process that relies on applications using digital 
signal processing to extract a song’s content.  

The feature extraction and selection method is a fairly lengthy and elaborate 
process, using various statistical techniques to select pertinent features. In particular, 
each music file (song) was divided into 10-second segments and the first and last 
segments were discarded. The features were computed for each of the segments and 
then the mean and standard deviation of each feature was computed. For a given 
feature, all segments whose extracted feature value deviates from the mean by more 
than 1 standard deviation were discarded. After further segment filtering, the 
remaining valid segments were used to compute for the average feature value for each 
feature and for each song. Once all these were computed, Weka [8] was used to filter 
out the redundant features (i.e. features that were highly correlated). From an initial 
list of about 692 possible features culled from the literature, specifically MusicMiner 
[9] and jAudio [10], the list was finally trimmed down to less than 70. This was the 
basis for building a corpus of 1,000 songs, with 10 genres, of 10 albums per genre and 
10 songs per album.  

The map is visualized as 3x3x3 cube, with a light grey border to establish the 
boundaries of the sub-cubes. Inside each sub-cube (whether a corner cube or a core 
cube), a node is represented by a sphere if there is a song associated to the node. The 
color of the sphere depends on the assigned color of the song’s genre. If the songs 
assigned to a given node belong to different genres, there will be rectangular 
horizontal strips of different colors on the surface of the sphere to denote the other 
genres. Figure 4 displays a visualization of the music archive as a 3x3x3 cube. Note 
the core cube in the middle with all the songs of all genres, and the corner cubes 
loaded with just the songs of their assigned genres (as distinguished by the color). 

In Figure 4, there are 10 genres in the music collection. Eight (8) out of the 10 
genres are assigned to the corner cubes of the structured SOM. The 2 genres which 
are not assigned to a corner cube are metal and pop music genres, which were used for 
various experiments on the core cube. It must be stressed here that the genres of the 
songs included in the dataset were based on the genre tags from well-known, 
authoritative websites that classify songs according to genres. 

In the i3DMO application, placing the mouse cursor over a sphere displays a pop-
up window which contains the song information. In addition, a song from the list of 
songs associated to the node/sphere is randomly selected and a short playback is heard 
to allow the user to determine the kind of music associated to the sphere. An external 
hardware interface was taken into account in the design of the structured SOM. The 
hardware interface should allow a user to position his fingers in his personal space to  
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Fig. 4. Visualization of the music collection 

interact with the SOM. By pointing at a specific location in the 3D space around the 
user, a corresponding node or cluster can be selected. Then, commands can be issued 
by performing hand gestures. The primary objective of this interface is to enable a 
visually impaired individual to interact with the 3D SOM [11]. With this kind of 
interface, a visually impaired user need not “see” the map, but can just interact with 
the space around it, guided by audio cues, a huge part of which would be the 
samplings or short playbacks that the user hears when pointing at different positions 
(corresponding to spheres) in the 3D space around. 

4   Measuring the Quality of the 3D Map 

Self-Organizing Maps have been traditionally used as an unsupervised learning 
model, and since the input vectors do not have assigned labels, and the membership to 
clusters of nodes on the map had not been as crisp, very little work have been carried 
out to measure the quality of the trained SOM other than [12] and [13] – compared to 
other supervised learning models of other types of neural networks. In other words, if 
we use the trained SOM as a music archive, it is not straightforward to figure out 
whether songs that are associated with specific nodes in the map should in fact be 
associated to those nodes and not to other nodes in the map. Is there a notion of 
“quality of the trained SOM” that we can use to evaluate a given SOM, vis à vis a 
given data set?  

The design of the structured SOM, as proposed here, lends itself naturally to a 
novel way of evaluating the quality of the resulting SOM organization. We measure 
the quality of the SOM through what we refer to here as the attraction index of a 
given music filetowards a specific category. In our current music archive application, 
we measure the attraction index of the music files of all songs per music genre, and 
we compare the average attraction index of each of the genres.  

For the whole music archive, with all 8 genres combined, we can also compute for 
the fidelity measure that evaluates the degree by which music files that are of a given 
identified genre have been in fact assigned to their proper music genres or categories. 
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The fidelity measuref(k) of category k is the average attraction index to category k of 
all music files that belong to category k.  

More formally, the attraction index, denoted by att-index (i, k) of music file i to the 
core cube corner assigned to category k is defined as follows: 
 

1.0   –    dist (bmu (i), corner (k))                                          (1) 
                                                                      r √3 
 
where dist is the Euclidean distance between two points in 3D Cartesian space, bmu(i) 
is the x,y,z position of the best matching unit to input i in the map, corner (k)  is the 
x,y,z position of the corner assigned to category k, and r is the number of nodes in 
each of the x, y, or z dimension of the core cube.  

Figure 5 depicts the attraction index of a specific music file to each of the eight (8) 
corners of the core cube. Unless a music file really sounds as if it is a blend of all 
types of genres, we expect music files to be positioned relatively nearer to a specific 
corner, or perhaps somewhere in between two corners. In figure 5, the corner with a 
red oblong depicts the pre-assigned corner for the genre of the music file. 

reggae

rock

blues classical

country

disco

hip-hop

jazz

 

Fig. 5. The attraction index of a music file vis à vis the corners of the core cube 

As defined above, the attraction index att-index (i,k) ranges in value from 0 to 1, 
with a value of 1 signifying that the input element i is associated with the very corner 
node that is assigned to category k, and a value 0 signifying that the input element is 
associated to the corner directly opposite the correct or desired corner. Table 1 lists 
the average attraction indices by music genre. The average attraction indices by 
music genre were based on 10 independent runs. For each run, 50% of the music files 
were  randomly chosen to train the music archive, while the remaining 50% were used 
to compute for the attraction indices after loading them into the core cube.  

In the ideal scenario, the average attraction index for a given category k must be 
highest for the corner associated with the same category k. These are the average 
attraction indices along the right diagonal of Table 1. These average attraction indices 
along the diagonal are what we refer to as the fidelity measure. Note from Table 1 that 
for all music genres, the highest average attraction indices per row (or for a given 
music genre) are precisely those on the diagonal of Table 1. We have made various 



 Design of a Structured 3D SOM as a Music Archive 195 

other experiments and it is clear that this is not always the case – and would depend 
on the type of training employed, the training parameters used, as well as the over-all 
“quality” or sometimes “complexity” of the input dataset. 

Table 1. Average attraction index per music genre relative to specific music genres  

Average Attraction Indices 

Genre Blues Classical Country Disco 
Hip-
hop Jazz Reggae Rock 

Blues 0.8271 0.5311 0.3576 0.2298 0.5347 0.5270 0.3657 0.3643 

Classical 0.5300 0.8138 0.5184 0.3563 0.3564 0.3710 0.2299 0.5257 

Country 0.4375 0.5583 0.7494 0.4887 0.2810 0.5184 0.3564 0.3847 

Disco 0.2464 0.3645 0.4795 0.7929 0.3922 0.3391 0.5191 0.5400 

Hip-hop 0.5188 0.3618 0.2217 0.3632 0.8423 0.3475 0.5306 0.5427 

Jazz 0.5067 0.3836 0.5400 0.3866 0.3535 0.7806 0.5086 0.2632 

Reggae 0.4128 0.2823 0.3841 0.5234 0.5401 0.5280 0.7371 0.3861 

Rock 0.3437 0.5107 0.3724 0.5486 0.5079 0.2370 0.3654 0.8056 
 
 
The fidelity measuref(k) is the averageattraction index of all music files belonging 

to category k vis à vis the corner associated with category k. Table 2 gives the mean m 
and standard deviation s of the attraction indices for all the music files in the 
collection. Table 2 further shows the standard scores, or z-values, for each of the 
genres. The z-values are computed as the difference between the fidelity measure of a 
given genre g and the mean m of all attraction indices to g for all music files, divided 
by the standard deviation s. The standard score measures the positive or negative 
deviation from the mean in terms of number of standard deviations from the mean. 

Table 2. Raw and standard fidelity measure of each music genre 

Genre Fidelity Measure m s z-value 

Blues 0.8271 0.4788 0.2000 1.74 

Classical 0.8138 0.4767 0.1911 1.76 

Country 0.7494 0.4526 0.1800 1.65 

Disco 0.7929 0.4604 0.2012 1.65 

Hip-hop 0.8423 0.4769 0.1941 1.88 

Jazz 0.7806 0.4561 0.1936 1.68 

Reggae 0.7371 0.4512 0.1780 1.61 

Rock 0.8056 0.4762 0.1887 1.74 
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Music genres with high z-values for the fidelity measures have music files that are 
closest to the corner of the core cube assigned to their genre, as compared to music 
files belonging to other genres. The z-value of the fidelity measure is a more accurate 
measure of the true “fidelity” of the music files belonging to a given genre. In  
Table 1, we can see that the disco genre has a slightly higher raw fidelity score than 
jazz, but the jazz music genre has in fact a higher z-value (“standardized” fidelity 
measure).Of all the music genres, hip-hop yielded the highest fidelity measure, while 
reggae had the lowest fidelity measure. 

5   Conclusion 

A SOM is usually a regular 2D rectangular or hexagonal lattice where nodes that are 
spatially close in the 2D map are associated with input elements that are similar in the 
input environment. It is, however, feasible to design a SOM as a 3D map, and the 
learning algorithm remains virtually the same. 

We presented a 3D SOM that is used as a music archive. More important than just 
extending the SOM from 2D to 3D, we have a built-in structure in the design of the 
3D map in such a way that we distinguish between eight (8) corner cubes and  
the core cube in the center and that each corner cubehas an assigned music genre. We 
have had to alter the learning algorithm by having a three-step learning phase 
followed by a labeling and music loading phase. The training phases are supervised, 
and target both the corner cubes and the core cube.  

Through the embedded structure of the 3D SOM, we also presented a novel way of 
measuring the quality of the resulting trained SOM (in this case, the music archive), 
as well as the quality of the different categories/genres of music albums based on a 
measure of the attraction index and the fidelity measure of music files vis à vis their 
respective music genres.  
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Abstract. Influenza A viruses cause a significant threat to public health as 
highlighted by the recent introduction of the swine-derived H1N1 virus 
(pandemic H1N1/09) into human populations. Pandemics were primarily 
initiated by introduction from animal sources and successive adaptation among 
humans through human-to-human transmission. We established a sequence 
alignment-free clustering method “BLSOM”, which can analyze and compare 
all influenza A virus genome sequences on one map. Separation according to 
host animal, subtype and epidemic year could be efficiently visualized. Notably, 
H1N1/09 strains have oligonucleotide and codon compositions clearly distinct 
from those of seasonal human flu strains. This enabled us to make inferences 
about directional changes of H1N1/09 sequences in the near future and to list 
codons and oligonucleotides with the potential of reduction in H1N1/09 
sequences. The strong visualization power of BLSOM also provides 
surveillance strategies for efficiently detecting potential precursors to pandemic 
viruses. 

Keywords: influenza A virus, self-organizing map, oligonucleotide frequency, 
codon usage. 

1   Introduction 

One of the most important issues for informatics studies of virus genomes, 
particularly of influenza viruses, is the prediction of genome sequence changes that 
will be hazardous. We have developed a novel informatics strategy to predict a 
portion of sequence changes of influenza A virus genomes, by focusing on the 
pandemic H1N1/09 strains [1] as a model case. The phylogenetic analysis based on 
sequence homology searches is a well-established and an irreplaceably important 
method for studying genomic sequences. However, it inevitably depends on 
alignments of sequences, which is potentially error-prone and troublesome especially 
for distantly related sequences. This difficulty becomes increasingly evident as the 
number of sequences obtained from a wide range of species, including novel species, 
increases dramatically because of the remarkable progress of the high-throughput 
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DNA sequencing methods. To address the difficulty and complement the sequence 
homology searches, we here report an alignment-free clustering method that could 
analyze far more than 100,000 sequences simultaneously, on the basis of Self-
Organizing Map (SOM) [2,3]. SOM is known to be a powerful clustering method, 
which provides an efficient interpretation of complex data using visualization on one 
plane. We have previously developed a modified SOM (batch-learning SOM: 
BLSOM), which depends on neither the data-input order nor the initial conditions, for 
studying oligonucleotide frequencies in vast numbers of genomic sequences [4,5]. 
When we constructed BLSOMs for oligonucleotide frequencies in fragment 
sequences (e.g., 10 kb) from wide varieties of species, sequences were self-organized 
according to species; BLSOMs could recognize and visualize species-specific 
characteristics of oligonucleotide composition. Here, we have analyzed influenza A 
viruses, including those of the pandemic H1N1/09 [1,6,7], and developed a widely 
applicable strategy for predicting directional sequence changes of zoonotic virus 
genomes. 

2   Methods 

A total of 43,831 virus sequences analyzed in Fig. 1A were obtained from the DDBJ 
GIB-V web site (http://gib-v.genes.nig.ac.jp/), and a total of 42,800 sequences derived 
from 5,350 influenza A virus strains were obtained from the NCBI Influenza Virus 
Resource (http://www.ncbi.nlm.nih.gov/genomes/FLU/).  

BLSOM program was obtained from UNTROD Inc. (y_wada@nagahama-i-bio. 
ac.jp), witch developed the program under collaboration with our group.  

3   Results and Discussion 

3.1   BLSOMs Constructed with almost all Available Virus Sequence 

To test the clustering powers of BLSOM for large numbers of sequences from a wide 
variety of virus genomes, we initially constructed BLSOM with tetranucleotide 
frequencies in all 1-kb fragment sequences (199,067 sequences) from 43,828 virus 
genomes available from GIB-V[8]. Lattice points that contained sequences from one 
phylogenetic family were indicated in color, and those that included sequences from 
more than one family were indicated in black (Fig. 1a). A major portion was colored, 
showing a major portion of sequences to be self-organized according to phylotype; 
86% of lattice points had sequences from one phylotype. Tri-BLSOM, as well as Tri- 
and Tetra-BLSOMs with 0.5-kb sequences (ca. 400,000 sequences), also showed a 
clear clustering according to phylotype with a slight reduction (approximately 5% 
reduction) of the separation (data not shown). Notably, no information in regard to 
phylotype was given during the BLSOM calculation and half a million sequences 
could be analyzed.  

3.2   BLSOMs Constructed with Oligonucleotide Composition in Influenza a 
Virus Sequences 

We next analyzed influenza A virus sequences available from NCBI[9]. Viruses are 
inevitably dependent on many host factors for their growth, but have to escape from  
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Fig. 1. BLSOMs for virus genome sequences. (a) Tetranucleotide BLSOM (Tetra) for 1-kb 
sequences (199,067 sequences) from 43,828 virus genomes. Lattice points containing 
sequences from a single phylotype were indicated in a color representing the phylotype. A 
major portion of the map was colored, showing a major portion of sequences was self-
organized according to phylotypes. (b) Influenza, Tetra. Lattice points containing sequences 
from one host were indicated in a color representing the host: avian strains (1948 strains), 
human H1N1/09 strains (167 strains), other human strains (2788 strains), swine strains 
(249 strains), equine strains (68 strains), and strains from other hosts (130 strains). Human; 
human subtype was specified in a color representing the subtype (H1N1, H1N1/09, H3N2, 
H5N1, others). Avian; avian subtype was specified in a color representing the subtype (H5N1, 
H5N2, H6N1, H7N2, H9N2, others). A minor human territory representing H1N1/09 was 
indicated with an arrow. (c) Influenza, Codon; BLSOM was constructed for synonymous codon 
usage in 34,376 genes from 4297 strains, and lattice points were specified as described in b. 
Occurrence levels of three codons were indicated with different levels of two colors, pink 
(high) and green (low); intermediate in achromo. (d) Influenza, Di; BLSOM was constructed 
for dinucleotide composition, and lattice points were specified as described in b. (e) 
Retrospective time-series changes for human subtype strains on Codon-BLSOM. H1N1 and 
H3N2 strains in the specified time period were shown by these colors, and other human strains 
were in gray. A zone for H1N1/09 or equine was additionally marked to help to recognize the 
position in Codon-BLSOM in c.  

For color picture, refer to http://trna.nagahama-i-bio.ac.jp/WSOM2011/WSOM2011_Fig1.pdf 
 
 



 A Novel Bioinformatics Strategy to Predict Directional Changes 201 

antiviral host mechanisms such as immunity, interferon and RNA interference[10-12]. 
To search for possible host-dependent characteristics of virus sequences, di-, tri- or 
tetranucleotide frequencies within the whole sequence in eight genome segments of 
5350 influenza A strains were summed up for each strain, and BLSOM was 
constructed with the summed frequency for each strain (Tetra-BLSOM in Fig. 1b). 
Lattice points containing strains isolated from one host species were indicated in a 
color representing the host and those including strains isolated from more than one 
host were in black. Without information of host, strains isolated from avians (red) or 
humans (green) were clustered (self-organized), forming a large continuous territory. 
This shows existence of host-specific characteristics of oligonucleotide composition. 
A minor human territory (dark green, arrowed in Fig. 1) appeared, which was 
separated from the major human territory and surrounded by avian and swine (sky 
blue) territories. This minor territory arrowed was composed of the pandemic 
H1N1/09 strains, which have resulted from genetic reassortment between the recently 
circulating swine H1 viruses in North America and the avian-like swine viruses in 
Europe[6,7].  

To investigate virus subtypes, lattice points that contained human viruses of one 
subtype on the Tetra-BLSOM were specified with one color representing the subtype 
(“Human” panel in Fig. 1b). Seasonal human H1N1 (cyan) and H3N2 (blue) strains 
were clearly separated from each other. In contrast to the compact minor territory of 
H1N1/09 (dark green), human H5N1 (red) strains were rather scattered within the 
avian territory (achromic in the “Human” panel). This reflects that most of human 
H5N1 strains were the result of direct infections from avians to humans[11], and 
therefore, they should have characteristics of avian viruses. We next marked lattice 
points containing sequences from one avian subtype by one color (“Avian” panel in 
Fig. 1b). Some avian strains (e.g., H5N1 isolated in Russia, H5N2 in Minnesota, 
H6N1 in Taiwan, H7N2 in New York, and H9N2 in Israel) were in a closer proximity 
to swine and H1N1/09 territories than human H5N1 strains already known (data not 
shown). These strains had oligonucleotide compositions more similar to those of 
human and/or swine viruses than the known human H5N1 strains. This similarity at a 
strain level is of particular interest with regard to infection powers in swine and 
human populations, if these strains invade swine and/or human populations. A very 
minor portion of avian strains were located within swine territories, representing 
strains resulting from direct infection from swine. BLSOM could effectively visualize 
these strains directly introduced from other hosts, even analyzing large numbers of 
strains. 

3.3   BLSOMs Constructed with Codon Composition 

Synonymous codon choice sensitively reflects constraints imposed on genome 
sequences and thus provides a sensitive probe for searching for molecular 
mechanisms responsible for the constraints; e.g., codon third position G+C% and 
tRNA composition in microorganisms[13-16]. We previously found that BLSOM 
efficiently detects species-specific codon-choice patterns of microorganisms, resulting 
in self-organization of genes according to species[17]. Furthermore, in genes 
horizontally transferred relatively recently, codon choice reflected primarily that of 
the donor, but not the recipient genome. We constructed BLSOM for codon usage in 
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influenza A virus genes (Fig. 1c). Human (green) and avian (red) territories were 
clearly separated from each other. Notably, human H1N1/09 strains (dark green, 
arrowed) were again separated from the major human territory and surrounded by 
avian and swine (sky blue) territories. The Codon-choice pattern of newly invading 
viruses should be close to that of the original host viruses, at least for a period 
immediately after the invasion. Because viruses depend on many cellular factors, 
codon choice will most likely shift during infection cycles among humans towards the 
pattern of seasonal human viruses. If so, the direction of sequence changes of 
H1N1/09 over time especially in the near future is predictable, so far as judged from 
codon usage and possibly from oligonucleotide frequency. 

3.4   Codons and Oligonucleotides Diagnostic for Host-Specific Separation 

BLSOM provides a powerful ability for visualizing diagnostic codons or 
oligonucleotides that contribute to self-organization of sequences according to host. 
The frequency of each codon at each lattice point was calculated, sorted according to 
the frequency, and represented at different levels in colors[17]. Transitions between 
the high (pink) and low (dark green) levels often coincided with host territory 
borders, and examples of codons diagnostic for host separation were presented  
(Fig. 1c). When we focus on all diagnostic cases, which were listed in Table 1, one 
tendency was observed; G- or C-ending codons were more favorable in the avian 
territory than the human. The G+C% effect was most apparent in two-codon boxes, 
witch are composed of two synonymous codons. This was also observed for many 
codons in four- or six-codon boxes, but there were exceptional cases, such as GCA 
and UUG (Table 1), indicating the presence of other constrains.  

Table 1. Preferred codons and oligonucleotides in avian or human viruses  

 

Notably, for many diagnostic codons, human H1N1/09 had the avian-type 
preference (Fig. 1c and Table 1). In Table 1, to specify the codon preference in 
H1N1/09, codons preferred in H1N1/09 by comparison with seasonal human viruses 
were indicated in red within the column for codons preferred in avian viruses, and 
codons not preferred in H1N1/09 were specified in green within the column for 
codons preferred in seasonal human viruses. Adaptation of codon choice to cellular 
factors and environments (e.g., host body temperature) may be a process for invading 
viruses to establish continuous infection cycles among humans and to increase viral 
fitness. We hypothesize the codon choice in H1N1/09 will change towards the pattern 
commonly found in seasonal human viruses. Removal of unfavorable codons can be 
attained by not only synonymous, but also nonsynonymous changes, and the rate of 
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nonsynonymous and thus amino-acid substitution of viral genes is known to be often 
accelerated around antigenic sites[11,18]. If the unfavorable codons in seasonal 
viruses witch were judged by codon BLSOM and specified in red in Table 1, are 
clustered in certain regions in the H1N1/09 genome, probability of sequence change 
in the regions is thought to be elevated; and this can be tested in the near future 
because of the high mutation rate of influenza A viruses[18].  

In Fig. 1d, dinucleotide BLSOM was presented along with three examples of 
diagnostic dinucleotides for host-specific separation, and all diagnostic di-, tri- and 
tetranucleotides for the host-specific separation were summarized in Table 1. Two 
tendencies were found. 1) G- and C-rich oligonucleotides were more favorable in 
avians than in humans: G+C% effect. 2) AG and GA dinucleotides were more 
favorable in avian than in human. Most of diagnostic di- and trinucleotides could be 
explained by these rules, but there were various exceptional cases for tetranucleotides 
(e.g., CGCG, GGCC, GGGG preferred in human), indicating the presence of other 
effects than the two rules. Notably, H1N1/09 strains have characteristics of avian, 
rather than of human, strains. Oligonucleotides that were preferred in avian and 
H1N1/09 but not in seasonal human strains and thus have the potential for reduction 
in H1N1/09 in the near future were specified in bold letters (Table 1). Searches for 
unfavorable codons and oligonucleotides within antigen binding regions, antiviral 
drug-binding sites and sites affecting virus virulence will provide valuable 
information to predict possible H1N1/09 descendant sequences presenting potential 
hazards. 

3.5   Retrospective Time-Series Changes Visualized for Human Viruses 

Invader viruses will change their sequences on balance between a stochastic process 
of mutations and selection pressure derived from various constraints, including those 
from host. To examine the feasibility of predicting directional sequence changes of 
invader viruses, retrospective time-series changes in all influenza A virus sequences 
available may provide useful information, and thus were visualized on Codon-
BLSOM (Fig. 1e). H1N1 (cyan) or H3N2 (blue) strains that were isolated before 
1980 were located around the border between the human and avian territories, and no 
pandemic descendants invaded the avian territory (achromic). If human viruses had 
changed their sequences solely as stochastic processes, pandemic descendants of 
some years might deeply invade the avian territory by crossing over the initial 
pandemic zone. Absence of such invasion indicated a directional pressure during the 
course of establishment of seasonal strains at least soon after a new pandemic. 

3.6   Segments Separately Analyzed 

At the onset of a new pandemic, reassortment of virus genome segments in a certain 
host (e.g., swine) and successive invasion of the new reassortant into the human 
population were often essential [6,7,11,18]. Therefore, we next analyzed sequences 
derived from the eight virological segments separately. The length of the shortest 
segment (Segment 8) is approximately 0.8kb, and therefore, enough clustering power 
can be expected based on the result in Fig. 1a. Tetra-BLSOMs for eight segments were 
presented in Fig. 2a. Clear clustering according to host was observed for all segments,  
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Fig. 2. Tetranucleotide BLSOMs for eight genome segments. (a) Gene product name was listed 
along with the segment number. Lattice points were marked as described in Fig. 1b, and thus a 
zone for human H1N1/09 was in dark green. (b) Examples of subtype of avian virus 
segments that were in close proximity to human and/or swine territories were marked in green 
or blue for specifying the geographical areas where the avian strains were isolated: H7N2 in the 
segment 2 and H5N2 in the segment 4 isolated in New York (NY), H5N2 in the segment 4 
isolated in Minnesota (MN), H6N1 in the segment 6 isolated in Taiwan and Hon Kong (HK), 
and H9N2 in the segment 6 isolated in Wisconsin (WI) and Hon Kong (HK). Other avian 
sequences were in gray and sequences from other hosts were in achromo, but a zone for human 
H1N1/09 was additionally marked to help to recognize the position in a.  

For color picture, refer to http://trna.nagahama-i-bio.ac.jp/WSOM2011/WSOM2011_Fig2.pdf 

and this was true also for Di-, Tri- and Codon-BLSOMs (data not shown). Segment 2 
of H1N1/09 (dark green) was in close proximity to the human (green) territory, but 
some other segments (e.g., segments 1 and 3) were within the avian (red) territory. 
This similarity of the oligonucleotide composition of H1N1/09 with that of human, 
swine or avian viruses was consistent with that found with conventional phylogenetic 
studies[6,7]. Importantly, more than 5000 sequences could be characterized and 
visualized on one map, supporting efficient knowledge discovery.  

In Fig. 2b, we noted avian strains that were in close proximity to human and/or 
swine territories along with the geographical information of places where the strains 
were isolated. Identification of avian- or swine-virus segments whose oligonucleotide 
and codon compositions were closely related to those of humans should be valuable 
for predicting candidate strains that may cause pandemics. By summarizing 
potentially hazardous segments, we can specify avian strains that will come to 
resemble human or swine strains with reassortment of only a few segments. This type 
of information should be valuable for gaining new perspectives on systematic 
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surveillance of viruses presenting potential hazards. BLSOM can efficiently discern 
such hazardous strains and segments utilizing its strong visualization power. 
Characterization of host-specific codon- and oligonucleotide-composition may also 
provide novel information to aid the design of vaccine candidate strains or of strains 
with high growth rates for supporting high yield vaccine production.  
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Abstract. Bilingual aphasia is of increasing interest because a large
and growing proportion of the world’s population is bilingual. Current
clinical research on this topic cannot provide specific recommendations
on which language treatment should focus in a bilingual aphasic indi-
vidual and to what extent cross-language transfer occurs during or after
rehabilitation. This paper describes a SOM-based model of the bilingual
lexicon, and reports on simulations of impairment and rehabilitation in
bilingual aphasia. The goal is to create computational methods that can
complement clinical research in developing a better understanding of
mechanisms underlying recovery, and that could be used in the future to
predict the most beneficial treatment for individual patients.

Keywords: Bilingualism, Aphasia, Lexicon, Neural network, SOM.

1 Introduction

Aphasia is the partial or complete loss of language function due to brain damage,
most commonly following a stroke. In bilinguals, aphasia can affect one or both
languages, and during rehabilitation and recovery, the two languages can interact
in complex ways. Current research on bilingual aphasia has only begun to inform
us about these interactions. At the same time, a better understanding of language
recovery in bilinguals is badly needed to inform treatment strategies. Decisions
like the choice of a target language for treatment affect the outcome in ways
that are currently unpredictable, and the optimal treatment strategy is thought
to depend on many factors, including how late the second language was learned
and the degree of impairment in either language [26].

The problem of choosing the right treatment approach is of considerable prac-
tical importance: Over half the world’s population today is bi- or multilingual
[1,6], making bilingual aphasia at least as common as its monolingual counter-
part. Moreover, treatment is most effective during a limited time window, and
resources available for treatment are often limited. As the proportion of bilin-
guals in the world increases, so will the potential benefits of more targeted and
effective treatment.
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Current clinical research faces considerable difficulties in providing the nec-
essary insight. Too many factors contribute to the outcome of rehabilitation,
including which first and second languages (L1 and L2) the patient speaks, the
second-language age of acquisition (AoA), the relative pre-stroke competencies,
and the relative impairments in both languages. The large number of possible
combinations of these factors, and thus of possible treatment scenarios, makes
it impractical to examine treatment effects clinically in a systematic way.

In this situation, computational modeling can be a useful tool to comple-
ment and guide clinical research. Neural network-based models of impairment
and recovery can be used systematically to simulate treatment scenarios and to
predict outcomes. These predictions can then inform clinical research, which in
turn provides data to validate the model.

This paper reports on recent progress in work that follows this approach. A
model of the bilingual human lexicon based on self-organizing maps is trained
and then lesioned in order to model lexical access in bilinguals before and after
the onset of aphasia. The model is matched to, and compared with, human sub-
ject data collected from a group of aphasic patients. Additionally, a simulation
of language-based treatment is developed, and is used to investigate a range of
treatment scenarios. The treatment simulation makes testable predictions, and
could ultimately be used to simulate treatment for individual patients, and to
predict the most beneficial treatment strategy in each specific case.

2 Lexical Access and Bilingual Aphasia

The mental lexicon, i.e. the storage of word forms and their associated mean-
ings, is a major component of language processing. Lexical access is frequently
disturbed in aphasia, and naming impairments are especially common, where
patients have trouble recalling words or naming objects (anomic aphasia). The
mental lexicon of bilinguals is considerably more complex than that of mono-
linguals, and the way in which multiple language representations can develop,
coexist, and interact in the human brain has an important bearing on our un-
derstanding of naming impairment in bilingual aphasia.

Current theoretical models of the bilingual lexicon generally agree that bilin-
gual individuals have a shared semantic (or conceptual) system and that there
are separate lexical representations of the two languages. However, the models
differ on how the lexica interact with the semantic system and with each other.

The concept-mediation model [25] (Fig. 1a), proposes that both the first (L1)
and the second-language lexica directly access concepts. In contrast, the word-
association model assumes that second-language words (L2) gain access to con-
cepts only through first-language mediation (Fig. 1b). Empirical evidence [18]
suggests that the word association model is appropriate for low-proficiency bilin-
guals and concept mediation model for high-proficiency bilinguals. As an expla-
nation, De Groot [7] proposed the mixed model (Fig. 1c), where the lexica of
a bilingual individual are directly connected to each other as well as indirectly
(by way of a shared semantic representation). This model was further revised
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with asymmetry by Kroll & Stewart [19] (Fig. 1d). The associations from L2 to
L1 are assumed to be stronger than those from L1 to L2, and the links between
the semantic system and L1 are assumed to be stronger than those between the
semantic system and L2.

Fig. 1. Theoretical models of the bilingual lexicon. All four theories assume a shared
semantic system with language specific representations in L1 and L2. The most recent
theory (d) includes connections between all maps, with connections of varying strength
depending on the relative dominance of the two languages. This theory is used as the
starting point for the computational model.

A second important issue is whether activation of the semantic system spreads
to both lexica or only within that of the language being used. The prevailing
theory suggests that lexical access is target-language nonspecific [4], although
this view is controversial [5]. A third issue is the extent to which proficiency in the
two languages and the age at which they are acquired (AoA) affect lexical access.
There is evidence that language proficiency, and not AoA, primarily determines
the nature of semantic processing [8].

These issues are of central importance to our understanding of the mechanisms
underlying the benefits of language-based treatment in aphasia. Specifically, a
kind of treatment that can improve word-finding skills in anomic aphasia is nam-
ing treatment, where patients are asked to identify objects or activities shown
in pictures [2]. In bilinguals, this treatment can occur in either language, and
if lexical access in one language indeed co-activates the other language as well,
then that language may be able to recover even if it is not actively used in treat-
ment. The literature on such cross-language transfer is sparse, but several case
studies suggest that is does occur [15,27], although under what circumstances
is currently not known. The computational model described in the next chapter
can simulate cross-language transfer, and can potentially help shed light on this
and other issues relevant to treatment and recovery.

3 Modeling Approach

Although the physiological structure and location of the lexicon in the brain are
still open to some debate, converging evidence from imaging, psycholinguistic,
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L1 phonetic map (English) L2 phonetic map (Spanish) 

Shared semantic map 

Fig. 2. The DISLEX model is structured after the theoretical model in Fig. 1d. Three
SOMs, one each for semantics, L1, and L2, are linked by associations that enable the
model to translate between semantic and phonetic symbols, simulating lexical access
in bilingual humans.

computational, and lesion studies suggests that the lexicon is laid out as one
or several topographic maps, where concepts are organized according to some
measure of similarity [10,3,28].

Self-organizing maps (SOMs; [16,17]) model such topographical structures,
and are therefore a natural tool to build simulations of the lexicon. SOM models
have been developed to understand e.g. how ambiguity is processed by the lexicon
[22], how lexical processing breaks down in dyslexia [23], and how the lexicon is
acquired during development [21].

The foundation for the bilingual model used in the present work is DISLEX,
a computational neural network model initially designed to understand how
naming and word recognition take place in a single language [22,23], and later
extended to study first language learning [21]. For the purpose of this study,
DISLEX was extended to include a second language [24]. The resulting compu-
tational model, shown in Fig. 2, reflects the revised model by Kroll and Stewart
(1994; Fig. 1d): Its three main components are SOMs, one for word meanings,
and one each for the corresponding phonetic symbols in L1 and L2. Each pair of
maps is linked by directional associative connections that enable network activa-
tion to flow between maps, allowing the model to translate between alternative
semantic and phonetic representations of a word.

The organization of the three maps and the associations between them are
learned simultaneously. Input symbols are presented to two of the maps at the
same time, resulting in activations on both maps. Each individual map adapts
to the new input using standard SOM training with a Gaussian neighborhood.
Additionally, associative connections between the maps are adapted based on
Hebbian learning, i.e. by strengthening those connections that link active units,
and normalizing all connections of each unit:

a′
ij =

aij + α θiηi θjηj∑
k(aik + α θiηi θkηk)

,

where aij is the weight of the associative connection from unit i in one map to
unit j in the other map, and ηi is the activation of unit i. The neighborhood
function θi is the same as for SOM training. As a result of this learning process,



Bilingual Aphasia 211

when a word is presented to the semantic map, the resulting activation is prop-
agated via the associative connections to the phonetic maps, and vice versa. In
this way, DISLEX can model both comprehension and production in both L1
and L2.

Note that the L1 and L2 maps have direct connections between them as well,
which creates a possible alternative path for the flow of activation between the
semantic map (S) and either phonetic map. For example, activation may flow
S→L1 directly, but also S→L2→L1.

Importantly, such indirect flow of activation between maps can potentially
simulate and explain how treatment in one language can benefit the other. For
example, if the lexicon is presented with input symbols for S and L1, those maps
and the connections between them can be adapted using the method described
above. However, in addition, the L2 map is activated indirectly, and that acti-
vation can be used to train its associative connections as well. How beneficial
this “indirect training” is for L2 may depend on several factors, including the
strength and quality of the connections between L1 and L2. The computational
experiments reported below will examine this model of cross-language transfer
in detail.

The input data used for training the model is based on a list of 300 English
nouns gathered for previous studies of naming treatment in aphasia (e.g. [9,14]).
The words were translated into Spanish by a native speaker. Semantic repre-
sentations are vectors of 261 binary semantic features such as “is a container”,
or “can be used as a weapon”. These features were encoded by hand, and the
resulting numerical representations were then used to train the semantic map.

Phonetic representations are based on phonetic transcriptions of English and
Spanish words, which were split into spoken syllables, and padded such that the
primary stress lined up for all words. The individual phonemes comprising each
syllable were represented as a set of phonetic features like height and front-ness
for vowels, and place, manner, etc. for consonants [20], similar to the method
used in previous work based on DISLEX [23]. Phonetic representations consisted
of 120 real-valued features for English and 168 for Spanish.

The semantic and phonetic maps of all models were a grid of 30x40 neurons.
All learning rates, both for maps and associations, were set to 0.25. The variance
of the Gaussian neighborhood was initially 5, and decreased exponentially with
a halflife of 150 training epochs. Training always lasted 1000 epochs; the number
of randomly selected English and Spanish words trained during each epoch was
controlled by two “exposure” parameters.

Second-language AoA was simulated by starting training for the L2 phonetic
map and its associative connections as soon as the neigborhood size fell below a
specific threshold. For example, a thresholds of 0.7 resulted in training beginning
at epoch 425, and a treshold of 5.0 meant it started at epoch 1.

The resulting models generally have well-organized semantic and phonetic
maps. Their naming performance, measured as the percentage of semantic sym-
bols that are translated correctly into their phonetic equivalents, is close to 100%
(98% for English, 97% for Spanish) for a wide range of combinations of AoA and
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Fig. 3. A DISLEX model trained on the
subset of input words with the “can be a
weapon” feature. Map activations during
a naming task are shown, flowing from
the semantic (left) to the English (top
right) and Spanish (bottom) maps. Train-
ing in Spanish was delayed, leading to a
poorly organized map. In this way, the
model approximates AoA effects.

exposure. However, as expected, for very low exposure and/or very late AoA, the
performance decreases. This is consistent with human language learning, where
performance on second-language naming tests tends to be very good, unless the
AoA is very late, or exposure to L2 is very limited [11]. As an example, Fig.
3 shows a DISLEX system that was trained on a subset of the input data to
make the maps easier to visualize. Semantic and L1 maps reflect semantic and
phonetic similarity well. In contrast, the L2 map is poorly organized due to the
effect of very late acquisition.

4 Computational Experiments

The method to simulate the effects of different levels of exposure and AoAs
outlined above was then used to create a number of DISLEX models that were
individually tailored to match a group of bilingual patients suffering from aphasia
following a stroke. The first step in creating these models was to train DISLEX
to match the patients’ premorbid state, including naming performance in both
Spanish and English, AoA, and exposure data.

Eighteen of the patients were native Spanish speakers, with English AoA
varying from from birth to 35 years. One was a native English speaker (AoA 20
years). Premorbid levels of naming performance, AoA, and relative exposure to
Spanish vs. English were collected from all patients, and were used to determine
the way in which each patient model was trained. The available patient data
on language exposure only specified relative exposure (e.g. 30% Spanish, 70%
English); the absolute amount of exposure was therefore adjusted (retaining the
correct ratio) such that the resulting model fit naming performance best.

Fig. 4 shows the language performance of the resulting best-fit models for
each patient. Bars show the model’s performance; small triangles are the target
data, i.e. the human pre-stroke English and Spanish performance. In most cases
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(∼80%), the model is able to match the premorbid language performance (in
addition to AoA and relative exposure) of patients well. Why DISLEX sometimes
did not achieve a good fit is not clear in all cases. Interestingly, however, at least
in one case (#19), the model identified irregular patient data in this way.

Excluding the patients without a matching DISLEX model, the remaining
16 premorbid models were then used to simulate damage to the lexicon leading
to bilingual aphasia. In order to simulate the brain lesion caused by a stroke,
the models were damaged by adding varying levels of Gaussian noise to the
associative connections between the semantic and phonetic maps.

This model of stroke damage was motivated by several known constraints
on the mechanisms by which strokes cause aphasia; for example, word com-
prehension is often relatively spared in aphasia, which could not be simulated
in DISLEX using damage to semantic or phonetic maps. Additionally, recent
evidence points to white matter damage in anomic aphasia [12,13].

Fig. 5 shows how increasing levels of noise damage affect the naming perfor-
mance of the patient models. The bars on the left side of each plot show the
same data as in Fig. 4, i.e. the performance of the undamaged model. Moving
from left to right in each plot, the damage increases. Red and green lines show
the resulting naming performance in English and Spanish respectively. The ver-
tical position of the triangles pointing left show the patients post-stroke naming
performance in English and Spanish, i.e. the performance the damaged models
need to match in each case.

By adjusting the amount of damage for English and Spanish separately, each
patient’s post-stroke naming performance can always be matched, as shown in
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Fig. 4. Modeling the pre-stroke state of bilingual aphasics. The performance of
best-fit DISLEX models in English (red/dark bars) and Spanish (yellow/light
bars) is compared to patient data (small triangles). The models were trained
with the same relative exposure as patients to both languages; AoAs were
simulated by variably delaying L2 training. The models are generally able
to match the patient data well, providing a basis for simulations of stroke
damage.
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Fig. 5. The effect of damage to the associative connections on naming performance.
Patients are numbered as in Fig 4; bars on the left show the same pre-stroke (undam-
aged) models shown in Figure 4. Moving from left to right in each plot, lesion damage
increases, and performance in both languages drops. Triangles pointing left indicate
human post-stroke (aphasic) performance, which can in most cases be matched using
approximately equal damage to both languages (dashed vertical lines), suggesting that
stroke damage is modeled realistically.

the figure. Interestingly, however, in all but three cases (81%), the patient’s
post-stroke performance can be simulated by damaging English and Spanish
connections equally. This is consistent with the type of impairment seen in apha-
sia patients, which usually, but not always, affects both languages equally. An
interesting prediction of the model is that less proficient languages are more
vulnerable to damage than highly proficient ones. This is clearly visible e.g. in
models #1, 3, and 12.

In the future, these individual models will be used to investigate and pre-
dict treatment effects in human patients. As a first step towards this goal,
DISLEX simulations for a range of 64 different treatment scenarios were created,
which differed in L1 (English/Spanish), AoA (early/late), exposure to L1 and
L2 (low/high), damage to L1 and L2 (low/high), and treatment language (En-
glish/Spanish). Treatment was simulated by retraining a subset of the original
input words in the treatment language. Associative connections of the untreated
language were also trained, using indirect activation in the way described in
Section 3.

Fig. 6 illustrates the clearest prediction of this model of treatment: If one
language is damaged more than the other, training the less damaged language
benefits the more damaged language, but not vice versa. Surprisingly, all other
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Fig. 6. Effects of treatment language on outcome in the model. In the scenario shown,
English is L2 (early AoA), exposure to both languages is low, and English is damaged
more than Spanish. The model predicts that treating the less damaged language (in
this case Spanish) benefits the more damaged language, but not vice versa.

factors, including relative proficiency and AoA, have little or no effect on cross-
language transfer in the model. Moreover, the current model predicts that treat-
ing one language should benefit the other in the majority of training scenarios
independent of treatment language. However, damage in the model was only
applied to semantic→phonetic connections, and damage to other connections,
which may be common in humans, may prevent this in many cases. Future
work will investigate such additional damage, which will lead to further testable
predictions.

5 Discussion and Future Work

In this paper, a bilingual version of DISLEX, a SOM-based model of the human
lexicon, was used to simulate impaired lexical access and the effects of language-
based treatment in patients with bilingual aphasia. The model was trained and
then lesioned to simulate lexical access before and after the onset of aphasia.
Human subject data collected from real aphasic patients were used to demon-
strate that the model can account for AoA and exposure effects, and that brain
damage underlying aphasia can be simulated with a simple noise lesion. Ad-
ditionally, a simulation of language-based treatment was applied to a range of
possible treatment scenarios, and used to predict how the choice of treatment
language affects the outcome.

The model makes sevaral testable predictions. First, the effects of noise dam-
age on naming accuracy suggest that in most cases, the brain damage underlying
aphasia, not just the impairment, is close to equal for both languages. Second,
it predicts that the weaker language, whether it is the first or second, is less
resistent to damage than the stronger one. Finally, and most interestingly, the
treatment model predicts that using the less damaged language for treatment
benefits the more damaged one, but not vice versa.

In future work, the treatment simulation will be applied to the individual pa-
tient models, and the results will be compared with the real treatment outcomes.
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If validated in this way, the model could be used to meaningfully predict the ben-
efits of different treatment approaches, and could ultimately contribute to the
development of optimized treatment strategies tailored to individual patients.
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Abstract. The Self-Organizing Map (SOM) is widely applied for data cluster-
ing and visualization. In this paper, it is used to cluster Gaussians within the 
Hidden Markov Model (HMM) of the acoustic model for automatic speech rec-
ognition. The distance metric, neuron updating and map initialization of the 
SOM are adapted for the clustering of Gaussians. The neurons in the resulting 
map act as Gaussian clusters, which are used for Gaussian selection in the rec-
ognition phase to speed up the recognizer. Experimental results show that the 
recognition accuracy is kept while the decoding time can be reduced by 70%. 

Keywords: SOM, Speech recognition, Gaussian clustering, Gaussian selection. 

1   Introduction 

The Self-Organizing Map (SOM) is a widely applied neural model for data analysis 
and especially for clustering. Its algorithms are comprehensively formulated in [1]. 
The SOM already attracted interests of the researcher in speech recognition as a vec-
tor quantization method to classify speech features, e.g. [20] and [21]. Research that 
used the SOM to cluster the Hidden Markov Models (HMM) in speech recognition is 
described in [15]. The author directly treated the parameters of the HMMs as the input 
features to the SOM. In this paper, SOM is used for clustering Gaussians of the acous-
tic model for automatic speech recognition.  

In a HMM based state-of-the-art Large Vocabulary Continuous Speech Recogni-
tion (LVCSR) system [6], there are typically over twenty thousand Gaussians. During 
the decoding phase, i.e. at recognition time, all the Gaussians need to be evaluated 
given a 39 dimensional observation vector, which is renewed every 10 milliseconds. 
Hence evaluation of Gaussians is one of the most time-consuming tasks for the recog-
nizer. However, given the observed feature vector, only a small subset of Gaussians 
dominate the likelihood of the states of the HMM, while the rest are unlikely. To 
speed up the decoding, vector quantization based Gaussian selection ([7] [10] [11]) 
was proposed to exclude unlikely Gaussians from evaluation. Here, cluster Gaussians 
are computed and assigned likelihoods by the decoder. Only the member Gaussians 
belonging to those likely clusters are evaluated. The clustering method in the previous 
research is hard K-Means. SOM, as a soft clustering technique, is closely related to  
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K-Means [3]. It is formed of neurons located on a regular, usually low dimensional 
grid. The neurons are connected to adjacent neurons usually by a Gaussian neighbor-
hood function preserving the topological properties of the input space. The weights of 
each input training vector (in our case an input Gaussian) for updating the neurons or 
codebook is determined by the neighborhood function and the map topology. The 
output neurons then define cluster Gaussians which can be assigned likelihoods, 
hence indicating if their cluster members are likely to score well in their turn and if 
spending computer time on their evaluation is useful or not. 

Figure 1 shows an example of the unified distance matrix [4] of a 2-dimensional 
hexagonal SOM of Gaussians. The matrix visualizes the distance between adjacent 
neurons. A dark coloring corresponds to a large distance. The distance metric between 
neurons will be explained in the next section. The input Gaussian and the output neu-
rons are expressed in the spectral domain. The connected gray and black cells form 
the boundaries of distinct regions on the map. Sample spectra of the vowel /@:/, /i:/, 
/u:/, /N:/, /z/ in IPA are plotted on the map. While the mapping serves the primary 
goal of clustering of Gaussians in this paper, it also has a diagnostic value in engi-
neering acoustic models. Furthermore, research such as [19] claims that the SOM 
provides an interaction to assist speaker to optimize their pronunciation.  

 

Fig. 1. Unified distance matrix [4] of a SOM plotted by SOM Toolbox [18]. The input Gaus-
sians and output neurons are expressed in the spectral domain. Sample spectra of five vowels 
are plotted on the map: Given a frame of spectral features, the likelihood of every neuron is 
calculated and the one with highest likelihood is marked as the best matching unit of the feature 
vector. The size of the markers indicates the hit rate of the spectral features on a particular 
neuron. 

The rest of the paper is organized as follows: section 2 introduces the SOM train-
ing procedure and the adaptations to the algorithms to order Gaussians; section 3 
describes our scheme of Gaussian selection using the SOM. Section 4 shows the ex-
perimental settings and results. In the last section, conclusions are drawn and future 
work is proposed. 
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2   Training a SOM of Gaussians 

The SOM in our work has a two-dimensional hexagonal topology and is trained in a 
batch mode, i.e. updating all the neurons or clusters after presenting all training data. 
Our training data are the N Gaussians of the acoustic model of the speech recognizer, 
henceforth called member Gaussians. Further suppose there are M neurons. The proc-
ess for the batch ordering is: 

1     Initialize the map to a principal linear sub- 
      manifold. 
2     For training episode t from 1 to T 
        For the nth member Gaussian, n from 1 to N 
2.a       Find its best matching neuron c(n) 
2.b       For the mth neuron, m from 1 to M 
           Calculate the neighborhood function g(n,m,t) 
2.c   Update the codebook 
             
The neighborhood function in step 2.b has the expression: 
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where rm denotes the coordinates of the mth neuron on the SOM, β(t) is the neighbor-
hood radius which decays with the training episode t. 

The algorithm within each step in the above pseudo code should be adapted to 
handle the self organizing of Gaussians. Algorithm adaptations for map initialization 
in step 1, the distance metric between the input training data (member Gaussians) and 
the output neurons (cluster Gaussians) in step 2.a and the codebook estimation in step 
2.c will be covered in the section 2.1 and 2.2. 

2.1   Distance Metric and Neuron Estimation 

The Symmetric Kullback-Leibler Divergence (SKLD) is commonly used to measure 
the distance between a particular input member Gaussian and every neuron in step 
2.a. If p and q are multivariate Gaussians, their SKLD is: 
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 The estimation of neurons is based on the approach in [9], where a method for 
finding the centroid of a set of Gaussians is derived. In their work, the centroid is the 
Gaussian that minimizes the sum of SKLD to each of the set members. In our work, 
we extend the results of [9] by minimizing the weighted within-cluster mean SKLD 
for the mth neuron: 
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In step 2.b, equation (3) is minimized given the N member Gaussians and their cor-
responding weights, g(n,m,t), to update one of the M neurons. Hence the formula to 
re-estimate the mean of the mth neuron is: 
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Matrix B is constructed to facilitate the re-estimation of the covariance matrices for 
the neurons: 
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Suppose the member Gaussians are d-dimensional, then B has d positive and d 
symmetrically negative eigenvalues. Then a 2d by d matrix V is constructed whose 
columns are the d eigenvectors corresponding to the positive eigenvalues. V is parti-
tioned in its upper halve U and lower halve W: 
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It can be seen from equation (4) and (6) that the procedure of estimating the neu-
rons given the weights g(n,m,t) is iterative. The calculation of the mean depends on 
the previously calculated covariance and vice versa. The exit criterion is the conver-
gence of mean SKLD defined in equation (3). The choice of the initial values is intro-
duced in section 2.2. 

2.2   Map Initialization 

The purpose of step 1 in the pseudo code is to obtain faster or even better ordering 
convergence. A global Gaussian (or a single-neuron map) is calculated by averaging 
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the entire set of member Gaussians. Then the mean and covariance matrix of the 
global Gaussian are updated using equation (2) to (9) for several iterations till the 
mean SKLD in equation (3) is converged. Principal Component Analysis (PCA) is 
applied on the covariance matrix to find the first two principal eigenvectors e1, e2 and 
eigenvalues, λ1, λ2. The square roots of the two principal eigenvalues are used to de-
termine the height h and width l whose product is the size of the code book, M. Then 
the map is spanned linearly along the directions of the two principal components, i.e. 
the means of the (x,y)th neurons are initialized as (rxl/ 2λ )e2 +(ry.h/ 1λ )e1, where rx 
and ry are the hexagonal coordinates on the map. The initial values of the covariance 
matrices are simply assigned with the average values over all member Gaussians’ 
covariance matrices.  

3   VQ Based Gaussian Selection Using SOM  

Evaluation of Gaussians is one of the computationally intensive tasks in an HMM 
based LVCSR system. It typically consumes 40% to 70% of the total recognition time 
without any pruning approaches. Many methods of Gaussian selection emerged to 
reduce the number of Gaussians to be calculated during decoding. They can be classi-
fied as axis indexing based methods and VQ-based methods ([10] [11]). The former 
quickly locates the observation based on the indices which are already created in the 
training phase then decide which Gaussian is selected [13] or removed [14]. The latter 
evaluates the cluster Gaussians and selects only the member Gaussians belonging to 
those cluster Gaussians having high likelihoods during decoding [10] [11]. Other than 
Gaussian selection, the VQ based techniques can also be used for sub-space Gaussian 
clustering [8], which is a different idea to speed up the recognizer. 

Our SOM-based Gaussian selection method utilizes the VQ-based methods. 
Whether a particular member Gaussian is selected is determined by a short list of 
neurons and the neuron-member Gaussian mapping table, as explained below. 

3.1   Constructing the Short List of Neuron Selection 

The motivation of Gaussian selection is that only a small portion of Gaussians domi-
nate the likelihoods of the states of the HMM per frame, and are worth evaluating. 
The SOM consisting of connected neuron Gaussians preserves the topology of the 
input Gaussian space, i.e. only small regions of neurons on the map dominate the 
likelihoods of the entire map. In practice, around 80% of the neurons are negligible 
due to their close-to-zero likelihoods. The posterior probabilities of the remaining 
20% neurons are calculated from their likelihoods and sorted. The list is then trun-
cated further to the length such that 95% of the posterior probability mass is included, 
i.e. the length of the short list is the smallest j such that: 
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where the exponent α is introduced to compensate for unmodeled correlations and 
will indirectly control the number of selected Gaussians. p(Gk|O) denotes the posterior 
probability of cluster Gaussian k. In figure 2, the neurons labeled by “1” in the neuron 
selection table appear in the short list. 

3.2   Mapping Member Gaussians to Neurons 

The neuron-member Gaussian mapping table in figure 2 carries the “softness” of the 
SOM clustering. Each member Gaussian can be assigned to maximally 6 neurons, 
namely the first through 6th best matching units on the map. The neurons with SKLD 
greater than the multiplication of a pruning factor θ and the SKLD of the best match-
ing unit are pruned from the mapping table. On average 3.6 neurons are retained for 
each member Gaussian. As shown in figure 2, a member Gaussian is selected if at 
least one of the neurons to which it belongs is activated in the neuron selection table. 

Keeping a single neuron Gaussian per member Gaussian in the Gaussian mapping 
table certainly excludes more member Gaussians from being calculated, but it is 
found to degrade the recognition accuracy. The result is listed in table 1 as Single 
Mapping SOM. 

4   Experiments 

Speech recognition experiments were conducted on the Aurora4 [12] large vocabulary 
database, which is derived from the WSJ0 Wall Street Journal 5k-word dictation task. 
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Fig. 2. Decision on the selection of a member Gaussian. During decoding, whether a member 
Gaussian is selected is determined by the neuron-member Gaussian mapping table and the 
neuron selection list (“1” indicates that the corresponding Gaussian is selected). The mapping 
table determines to which neurons the member Gaussian belongs. The recognizer then checks 
the mapping table and will evaluate the member Gaussian only if any of those neurons is se-
lected. 
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The test set is the clean-condition subset containing 330 utterances from 8 different 
speakers. 

4.1   Experiment Settings 

The acoustic model is trained using the clean-condition training set which contains 
7138 utterances from 83 speakers, which is equivalent to 14 hours of speech data. All 
recordings are made with the close talking microphone and no noise is added. The 
speech spectra, its first and second order derivatives are transformed into 39 dimen-
sional MIDA (Mutual Information based Discriminant Analysis [16]) features and 
further decorrelated to ensure the model can use diagonal covariance Gaussians. 
There are 4091 tied states, or senones, and they share 21087 Gaussians. A bigram 
language model for a 5k-word closed vocabulary is provided by Lincoln Laboratory. 
The decoding is done with a time-synchronous beam search algorithm and the detail 
can be found at [17]. The recognizer was launched on a PC installed with Dual Core 
AMD Opteron Processor 280, whose main frequency is 2.4 GHz. Only one core is 
activated for the testing. 

4.2   The SOM 

The two dimensional hexagonal SOM is trained using SOM Toolbox [18] with the 
21087 MIDA diagonal covariance Gaussians as input. The map size is 26 by 20, i.e. 
520 neuron Gaussians are in the map. The covariance matrices of the output neurons 
are constrained to be diagonal as well. A rough training phase with only 6 iterations 
of ordering is carried out first to prevent the map from topological defects [5], then 
followed by a fine ordering with 24 iterations. 

Though the convergence of the typical SOM is not strictly proved in higher-than-
one-dimensional case theoretically [5], the mean SKLD is observed monotonously 
decreased during ordering process in the experiment.  

4.3   Experiments Using Other Approaches 

Two additional approaches, namely the K-Means and a HMM-based method, are 
implemented to compare with the SOM. 

K-Means uses the following cost function: 
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Here the softness of the clustering is controlled by γ. The number of clusters M is 520. 
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An alternative approach to acquire clusters is to train them using the data. A com-
pact HMM containing 520 Gaussians is trained using the same training data as the full 
HMM containing the member Gaussians. It shares the same structure of tied states as 
the full model. These 520 Gaussians are used as the cluster Gaussians. An extra 
Viterbi segmentation pass after the training is carried out to set up the association 
table between the member Gaussians and the cluster Gaussians: each speech frame is 
hence assigned to a HMM state. The association count between the dominating mem-
ber Gaussians of that HMM state and the dominating cluster Gaussian is then incre-
mented by 1. This association table is used as the cluster-member Gaussian mapping 
table after a proper truncation, i.e. per member Gaussian keeping only the cluster 
Gaussians with the highest association count (3.6 cluster Gaussians on average).  

4.4   Experimental Results 

Table 1 shows the experimental results of the Gaussian selection using different ap-
proaches of Gaussian clustering, which are compared with the baseline system where 
none of the Gaussians are pruned during decoding. The percentage of calculated 
Gaussians is the ratio between the number of calculated Gaussians (including both 
neurons and selected member Gaussians) and 21087. The baseline is a 2.2×realtime 
system. We achieve a 0.67×realtime system using the SOM, thus 70% recognition 
time is saved while the Word Error Rate (WER) is even lower than the base line. The 
K-Means approach yields lower WER than the SOM, but calculates more Gaussians. 
The single mapping SOM, where only one neuron Gaussian is kept per member 
Gaussian in the mapping table, looses accuracy while reducing 1.2ms CPU time per 
frame, is not preferable. The HMM-based method cannot improve the performance 
but is slower than the SOM. The associated indexing based approach of Gaussian 
selection, called Fast Removal of Gaussians (FRoG) [14], of the recognizer [17] is 
also tested. It only calculated about 5% of the member Gaussians, but required 
1.2×realtime. 

The Gaussian selection systems based on the SOM, K-Means and data-driven ap-
proach also helps to reduce the beam search time because it removes unlikely Gaus-
sians which dominate the unlikely states, hence the confusion among the different 
search paths is reduced. 

Table 1. Word Error Rates and CPU time of SOM Gaussian selection on Aurora 4 

CPU Time  
WER Gaussian Calculation 

(ms/frame) 
Beam Search 
(ms/frame) 

%Gaussian 
calculated 

SOM 6.76% 1.8 4.9 7% 
Single Mapping SOM 7.02% 1.4 4.1 4% 

K-Means 6.65% 2.4 5.1 11% 
Data driven 6.82% 2.2 5.2 9% 

FRoG 6.82% The CPU time per frame is12ms in total ≈5% 
No Gaussian Selection 6.87% 15.3 6.7 100% 
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5   Discussion and Future Work 

SOM algorithms which are capable of ordering and clustering Gaussians are imple-
mented, tested and proved valid by experimentation. They showed effective to selec-
tively evaluate Gaussians in an automatic speech recognizer, resulting in competitive 
speed-ups.   

The SOM algorithm we used can be interpreted as a soft K-Means with decreasing 
learning rate. As both K-Means and SOM have a multitude of variants, and the differ-
ence of the performance of the SOM and K-Means in our experiments are marginal, it 
is hard to decide which method is superior. K-Means and SOM can be the substitute 
of each other. However, SOM provides an insightful visualization of the space of 
Gaussians, which can facilitate analyzing and engineering the acoustic models for 
speech recognition.  

In our SOM-based Gaussian selection, the evaluation of neurons is inevitable. 
There are few hundreds of neurons that need to be evaluated additionally over the 
member Gaussians. However, not all of these evaluations are worthwhile, because 
only small regions of neurons in the short list are likely. Watanabe et al. [10] pre-
sented a tree structure of Gaussians (i.e. clusters of clusters) where the search for 
likely clusters is narrowed down at the top levels of the tree, hence it can reduce the 
number of cluster Gaussians to be calculated. A similar idea could be implemented 
using the hierarchical SOM (also known as the growing SOM or GSOM) [2][21] to 
quickly locate the likely regions hierarchically. This could be an extension of our 
work in the future. 
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Abstract. In Natural Language Processing, large annotated data sets
are needed to train language models using supervised machine learning
methods. To obtain such labeled data sets, time consuming manual an-
notation is required. To facilitate this process, we propose a SOM-based
approach: The SOM sorts the data through unsupervised training, map-
ping the space of linguistic features to a 2D-grid. The grid visualization is
used for efficient interactive labeling of the data clusters. In addition, the
interactive SOM visualization allows computational linguists to explore
the topology of the feature space and design new features.

Keywords: self organizing maps, coreference resolution, annotation, vi-
sualization, natural language processing, feature engineering.

1 Introduction

Supervised machine learning tasks require large amount of training data. Espe-
cially in Natural Language Processing (NLP) it is common that people annotate
data to create a training data set. Although optimized annotation tools exist, it
still is expensive and time consuming. In this paper we present an approach to
speed up the annotation process by using self-organizing maps (SOMs) [1].

Besides data annotation, computational linguists require tools which support
the understanding of the feature space of the underlying model and data. SOM-
based visualizations help the experts to explore the feature space and to under-
stand how the features influence the machine learning methods. The analysis
motivate the design of new features which may be better suited to separate the
linguistic data.

There are many different data sets which require a speed up of the annota-
tion process and many research areas where exploration of the feature space is

J. Laaksonen and T. Honkela (Eds.): WSOM 2011, LNCS 6731, pp. 228–237, 2011.
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valuable. Although we focus on coreference resolution, the proposed approach
is suitable for many other data sets. In short, coreference resolution is the task
of identifying the entities to which noun phrases in a text refer (see Section 2).
Annotators need a full understanding of the text and a basic level of linguistic
knowledge in order to annotate a text with coreference information. Thus, espe-
cially in the coreference resolution case, the creation of the training data sets is
time consuming.

Coreference resolution is an active research area and one of the most challeng-
ing topics in NLP. Applications like information retrieval, machine translation,
text summarization, and question answering, all benefit from coreference res-
olution to create better results. Coreference resolution is typically solved with
supervised machine learning methods. Current quality metric scores, even with
state of the art methods, are still low compared to the desired quality. To im-
prove the quality metric scores, these methods require a large amount of samples
for the training.

We combine SOMs with visualizations and interaction techniques to support
the annotation task and the exploration of the feature space. We make exten-
sive use of component planes (CPs) to show relevant areas in the SOM. We
added interactions, like multiple node selection, interactive component planes
alternation, and data visualization for annotation purposes. Interaction enables
researchers to explore the feature space. This helps computational linguists to
identify areas in the SOM where coreferent data is not clearly separable. The
researcher is able to utilize this information for the design of new features which
can better solve a specific problem.

SOMs have been employed for visualizations in NLP before. One popular ex-
ample of SOMs in NLP is WEBSOM [2], where similar documents are clustered
together. Another application can be found in the lexical domain [3], where
the authors used different SOMs to simulate the language acquisition of chil-
dren. In our case we focus on linguistic data – plain texts and coreferences. Our
visualization and annotation approach is similar to the methods described by
Heidemann et al. [4] and Moehrmann et al. [5], where SOMs are used to clus-
ter and label images. Instead of showing images in the SOM, we use text-based
visualization for coreference data.

2 Data and Features

A SOM [1] is an unsupervised machine learning method and easy to visualize. It
is a neural network where neurons (or nodes) are connected to each other by a low
dimensional topology. The coherence between the low dimensional map and high
dimensional data enables a creation of intuitive visualizations. In the following
we describe the linguistic data and the features we use to create high dimensional
feature vectors. These features are used in the training and visualization of the
SOM. We will also show, how we use component planes of features for exploration
and annotation purposes.
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2.1 Data

The data we are working with are plain texts. Plain texts contain entities or
objects (e.g. persons, locations, organizations, things, etc.) and are called noun
phrases. Simplifying slightly, a noun phrase is a group of words in a sentence that
can be replaced by a noun, another noun phrase, or pronoun. For example the
house or my small house that my father built when I was a kid can be replaced
by the pronoun it. Coreference means that the two noun phrases of the link can
replace one another without changing the meaning of a sentence. The two noun
phrases are disreferent, the opposite of coreferent, if by replacing they change
the meaning of a sentence. In the domain of coreference resolution such a pair
of two noun phrases is called a link. A link has a label that contains information
about its co-/disreference status.

In some cases coreference is simple to determine. It is easy to determine that
the expressions ([Michael] Jordan) and (Jordan) in the example in Figure 1
are coreferent, because one is a substring of the other. Intuitively two different
names (like Jordan and Wizards) are likely not coreferent. For human readers the
coreference status of (the Washington Wizards) with the previously mentioned
entity (The Wizards) is easy to resolve. Although, if the first noun phrase would
only consist of (The Washington team), we (as human readers) would need to
know that the Wizards team is located in Washington. Otherwise, the text should
contain that information elsewhere. To resolve a pronoun like (he) we also need
the context to decide that it refers to (Jordan).

(The Wizards) may not want ([Michael] Jordan), but the head of the expan-
sion team says (Jordan) could run operations there, if (he) wants to. [. . . ] After
playing the last two seasons with (the Washington Wizards), Jordan said he
expected to return to the front office .

Fig. 1. A slightly modified example for coreference from the Ontonotes corpus [6]

The research in the area of coreference resolution mainly focuses on machine
learning methods. The research on visualization, feature space exploration, or
annotation is a very recent activity in the domain. Elango et al. [7] present a
survey on coreference resolution and Clark et al. [8] give a good overview on
state of the art coreference problems and solutions.

2.2 Features

Computational linguists use feature extraction methods [9] to process each link
and create a high-dimensional feature vector. We extracted many linguistic fea-
tures inspired by Ng and others [10,11,12]. From the extracted features we con-
struct a feature vector for every link. These feature vectors are used as input
for the training of the SOM. In the following we describe only a subset of the
features we use for training.
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(a) First noun p. pronoun singular(b) Second noun p. pronoun plural

(c) Head word match (d) Wordnet Distance

(e) Grammatical Number (f) Semantic class

High Low

Weight Value

Fig. 2. Component planes for selected features on the graph-based U-matrix visualiza-
tion. Component planes help the user to identify clusters of links with desired features,
like the pronoun feature of a noun phrase in a link (2a and 2b). The user also utilizes
component planes to identify strong coreference features (high values in figures 2c and
2d) and strong disreference features (low values in figures 2e and 2f). The size of the
nodes represent the number of feature vectors assigned to that node.
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The Head Match feature uses the head word of a noun phrase. The head is
calculated as the last word in the first noun cluster in the noun phrase. Alterna-
tively, it is the last word of the noun phrase if it does not contain a noun cluster
[13]. The feature checks if the head words of both noun phrases are identical.

Wordnet [14] is a database for word senses and semantic relations between
them. The Wordnet Distance feature is the normalized symmetric difference
distance [15] of hypernym sets (semantic relations) for both noun phrases, also
known as the Jaccard coefficient. All hypernyms of the head words of both noun
phrases are retrieved for the calculation. This value represents how the two noun
phrases relate semantically.

The Grammatical Number and Semantic Class features checks if the two noun
phrases in a link agree in grammatical number and semantic class respectively. A
disagreement is a strong indicator for disreference. The semantic class in our data
consists of seven categories: Person, Organization, Location, Facility, Vehicle,
Weapon and Geo-Political Entity.

The pronoun features return whether one of the noun phrases of a link is
a pronoun and its grammatical number. In Figure 2 we show only two such
features: first noun phrase is a singular pronoun and second noun phrase is a
plural pronoun.

3 Interactive Visualization

The SOM provides multiple visualizations from which the user is able to interpret
the data distribution. We developed an interactive user interface which utilizes
visualizations based on the well-known unified distance matrix (U-matrix) [16].
The U-matrix is intended as an intuitive representation of distances between
nodes, with high U-matrix values indicating large distances between neighboring
nodes in feature space. A common approach to visualize the U-matrix is to
display cells for both nodes and edges. In contrast, our visualization treats the
U-matrix as a graph. The color of the edges represent the euclidean distance of
the neighboring nodes according to the map topology. The nodes represent the
actual map units in the topology grid and the size is used to display the number
of feature vectors assigned to this node.

In our work we focus on the component planes of the U-Matrix [17]. Com-
ponent planes color nodes based on weight values of nodes in a single codebook
vector component. Component planes allow the visualization of the influence of
a single feature on the cluster formation. Through component planes users get a
fast overview of which features dominate which regions of the SOM. In Figure 2
high influence of a feature for the projection of data vectors is displayed in red,
low influence in blue.

In addition to the U-matrix-based SOM visualizations, we also experimented
with a number of alternatives: the P-matrix (a probability density estimation in
a map unit), the U*-matrix (a combination of U-matrix and P-matrix), distribu-
tion of weight influence (a bar or pie chart for a map units weight values similar
to component planes), and PCA projection of the map. We did not find any
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Fig. 3. Using the component plane for the head match feature 2c annotators can select
the influential nodes and inspect or annotate the contents of the node in a text-based
visualization

advantages of these visualizations regarding annotation and feature engineering
compared to the U-matrix.

Interaction is the key element in the coreference annotation task. We created
UI elements for the configuration of the SOM. This provides computational lin-
guists with a fast and easy method to try different SOM calculations. Switching
interactively between CPs of the U-Matrix helps users to identify interesting ar-
eas. These areas contain valuable information which users utilize for annotation.
Multiple node selection allows users to inspect the data of several nodes in the
SOM and CP. For selected nodes we immediately visualize the coreference data
in a different view (Figure 3). We also support easy annotation of nodes. The
annotation of a node results in the annotation of data elements in that node.

4 Applications

There are only a few software tools for coreference annotation. These tools use
only a text-based visualization for coreference information. The best known gen-
eral purpose tool for computational linguists is the GATE framework [18]. The
coreference annotation module of GATE [19] provides a link visualization based
on plain text. Another tool for coreference annotation is MMAX2 [20]. MMAX2
utilizes plain text and HTML for visualization. MMAX2 visualizes coreference
information with edges between the noun phrases in the text.

Both tools can utilize extensions for coreference resolution ([19] for GATE and
BART [21] for MMAX2). These extensions use a coreference resolution model,
which is based on supervised machine learning methods and supports users in
the annotation process by highlighting confidence values for coreferences.

In contrast to the GATE framework and BART+MMAX2 annotation tools,
we rely on human pattern recognition of coreferences without using supervised
machine learning methods. We use interactive SOMs, which visualize feature
space of the coreference data and allow a systematic annotation of the data. Such
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an annotation approach is valuable in two domains. First, in many non-English
languages, which do not have enough labeled data to train supervised methods,
our SOM-based method may help to acquire coreference annotations. Second,
supervised methods are trained on specific texts, like news articles. Therefore
these methods degrade on texts from other domains, like books or reports. Here,
SOM is independent of the domain, because of its unsupervised learning method.

Our software enables computational linguists and annotators to gain insight
into the coreference feature space and allows several methods for annotation. In-
teraction is a key property in our approach and we developed interactive methods
to assist the users in their tasks.

The main motivation for the development of the tool comes from the wish to
better understand the coreference feature space and the need to annotate large
data sets. We present three applications for this tool: feature space exploration,
feature engineering, and annotation. However, our method is not limited to coref-
erence data. Computational linguists may use the approach for many different
tasks where data is described by linguistic feature vectors, like in the areas of
information retrieval, parsing, text classification, and machine translation.

4.1 Feature Space Exploration

Utilizing our approach, computational linguists are able to investigate which
links are assigned to a node by selecting that node. In addition, with already
annotated text and data, the user can directly see which links are coreferent
or disreferent. The user can then color-code the nodes of the map with the
proportion of dis- and coreferent data.

Usually, data clusters are created by the influence of one or more features.
Features responsible for the formation of the cluster can be identified using the
component planes. Computational linguists can utilize the coreference informa-
tion from annotated links to gain insight how well a feature contributes to the
separation of the data.

The component plane of one feature, a simple head match, is shown in
Figure 2c. High values (red) show a high influence of the head match feature
in the upper right corner of the map. Head match is a good indicator for coref-
erence and users may find many coreferences in such a cluster.

Figure 2d shows the component plane of the Wordnet distance feature. Again,
high values have a red color and one can conclude, that some links in the Wordnet
cluster may be coreferent. Although the Wordnet component plane and head
match component plane (Figure 2c) are similar one can find a cluster in the
lower right corner of the map (Figure 2d). This cluster contains links with noun
phrases that have a high semantic relation, but do not match in head words.
Such noun phrases are interesting for text analysis. There are blue areas in the
map for which the Wordnet distance value is undefined. This is the case if no
Wordnet relations were found for the noun phrase – a common value if the words
are both proper names. The same deduction technique also can be used to detect
disreferent feature vectors. Depending of the features, such data can be found in
clusters where the feature has high or low influence.
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Interactive feature space exploration via the component planes enables com-
putational linguists a fast judgment of how well the map has clustered the data.

4.2 Feature Engineering

The feature space exploration gives a good insight into how well the features
are suited for the SOM. Computational linguists can identify clusters of nodes
where the separation of the data is not clear. With annotated data, the nodes can
be color-coded according to the proportion of coreferent links they contain, as
mentioned above. The nodes also can display the number of co- and disreferent
data.

In some regions expert users may find mixed nodes which contain coreferent
links, but have some disreferent links as well. Using component planes, they
are able to inspect such difficult cases. This indicates that new features should
be developed to better separate coreferent and disreferent links. Computational
linguists can inspect these nodes and view the corresponding noun phrases and
surrounding text. This allows the experts to understand what the noun phrases
have in common and why they were assigned to the same node. E.g. Figures
2a and 2b show clusters where the expert will find links where one of the noun
phrases is a pronoun. Such clusters have high weight values in the corresponding
component plane. Pronouns are often difficult to resolve, because of the lack of
advanced features. The data in the nodes can inspire computational linguists to
design new and better features.

Additionally, our tool allows a recalculation of a new SOM with links in
nodes selected by expert users. The computational linguists can also change the
features for the links and use a subset of available features or add new features.
The new SOM calculation sometimes results in a different, better ordering of
the links.

4.3 Annotation

The annotators use the U-Matrix, component planes and additional text-based
visualizations (Figure 3) for links to label the data. The component planes re-
veal good clusters of only coreferent (Figures 2c and 2d) and disreferent (Figures
2e and 2f) links. For new, unlabeled data annotators can apply the same SOM
and inspect previous clusters but with the new data. After learning where to
find good coreferent and good disreferent clusters, annotators are able to effi-
ciently annotate the links in these clusters. The SOM and component planes
allow a systematical approach for annotation. From the component planes, an-
notators can identify regions of nodes with links which have the same or similar
properties. E.g. the combination of the component planes in Figures 2a and 2b
show regions where one of the noun phrases is a pronoun. The annotator can
then use these nodes to focus on the coreference resolution of pronouns. The
most valuable links for computational linguists are links which are difficult to
resolve. Annotators may learn from computational linguists and feature engi-
neers (as discussed previously) which regions contain nodes with coreferent and
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disreferent links. Annotators are then able to label the links in that regions with
a high precision, thus creating high quality annotations of difficult links.

5 Conclusion

In this work, we presented an approach which uses self-organizing maps to help
computational linguists to gain insight into the feature space. A key feature of
the proposed method is the interaction with the SOM and the underlying data.
Our approach is general, but we focus on the currently active research area of
coreference resolution.

In coreference resolution SOMs allow the computational linguists to identify
good indicators for coreferent and disreferent data. Our interactive exploration
approach helps to understand how the features influence data separation and
create clusters. Our method also helps computational linguists to find nodes and
clusters of difficult-to-resolve data. For such data they can design new features
which may improve the data separation. Such features may not only improve
clustering of links in the SOM, but also enhance the quality scores of other
supervised learning methods used by computational linguists.

The efficient annotation of large amounts of data with linguistic informa-
tion is a major challenge in NLP. Large sets of annotated data are required to
train supervised machine learning methods. The quality of the annotation data
is extremely important since it will decrease the classification performance of
supervised machine learning methods otherwise.

We presented the application of SOMs for annotation purposes. Interaction
and visualization plays a major role in this task. We use the U-Matrix, compo-
nent planes, and interactive methods for annotation of the SOM and the data.
SOMs present two key properties for annotations. First, the annotators can fo-
cus on the labeling of data with similar properties. The clusters and component
planes of the SOM show the annotators regions where they can find data with
desired features. Second, the annotators can focus on labeling data for which
supervised machine learning methods are not able to easily find a solution. Such
data is highly valuable in the training of linguistic models.

References

1. Kohonen, T.: The Self-Organizing Map. Proceedings of the IEEE 78(9), 1464–1480
(1990)

2. Kaski, S., Honkela, T., Lagus, K., Kohonen, T.: WEBSOM - Self-Organizing Maps
of Document Collections. Neurocomputing 21, 101–117 (1997)

3. Li, P., Farkas, I., MacWhinney, B.: Early lexical development in a self-organizing
neural network. Neural Networks 17(8-9), 1345–1362 (2004)

4. Heidemann, G., Saalbach, A., Ritter, H.: Semi-Automatic Acquisition and La-
belling of Image Data Using SOMs. In: European Symposium on Artificial Neural
Networks, pp. 503–508 (2003)

5. Moehrmann, J., Bernstein, S., Schlegel, T., Werner, G., Heidemann, G.: Optimizing
the Usability of Interfaces for the Interactive Semi-Automatic Labeling of Large
Image Data Sets. In: HCI International, Springer, Heidelberg (to appear, 2011)



SOMs and Coreference Resolution 237

6. Pradhan, S.S., Hovy, E., Marcus, M., Palmer, M., Ramshaw, L., Weischedel, R.:
OntoNotes: A Unified Relational Semantic Representation. In: International Con-
ference on Semantic Computing, pp. 517–526 (2007)

7. Elango, P.: Coreference Resolution: A Survey. In: Technical Report, University of
Wisconsin Madison (2005)
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Abstract. The Self-Organising Map has been frequently employed to
organise collections of digital documents, especially textual documents.
SOMs can be employed to analyse the content and relations between
the documents in a collection, providing an intuitive access to large
collections.

In this paper, we apply this approach to analysing documents from
the Internet platform WikiLeaks. This document collection is interesting
for such an analysis for several aspects. For one, the documents con-
tained cover a rather large time-span, thus there should also be an quite
divergence in the topics discussed. Further, the documents stem from a
magnitude of different sources, thus different styles should be expected.
Moreover, the documents have very interesting, previously unpublished
content. Finally, while the WikiLeaks website provides a way to browse
all documents published by certain meta-data categories such as creation
year and origin of the cable, there is no way to access the documents by
their content. Thus, the SOM offers a valuable alternative mean to pro-
vide access to the content of the collection by their content.

For analysing the document collection, we employ the Java SOMTool-
box framework, which provides the user with a wealth of analysis and
interaction methods, such as different visualisations, zooming and pan-
ning, and automatic labelling on different levels of granularity, to help the
user in quickly getting an overview of and navigating in the collection.

1 Introduction

Self-Organising Maps (SOMs) enjoy high popularity in various data analysis
applications. Due to its interesting properties, the SOM has been used in several
applications to automatically organise documents in a digital library by their
content. Examples of text document organisation with the SOM include the
WEBSOM project [3], where the contents of a newsgroup collection containing
a million of articles were clustered on the map, or the SOMLib digital library
system, which has been applied to various collections, such as news texts [1].

Organising the content of textual documents, aided by fitting mechanisms to
visualise the structures and to label the map, allows for an intuitive approach
to explore the contents of a previously unknown collection. The SOM provides
a two-dimensional knowledge map interface to the collection, where users can
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quickly identify sets of related or distinct documents. Labelling methods function
as an aid in identifying the topics of these groups of documents.

We apply this technique to the collection of diplomatic cables published by
the Internet Platform WikiLeaks. These documents are comparable to longer
newspaper articles, in both length, writing style, and information content. The
collection is rather diverse in several aspects. It is diverse in temporal origin,
with the single documents being authored in a span of several years to decades.
Secondly, the documents were authored by many different authors, albeit from
the same profession and country of origin; still, they exhibit different styles of
writing. Moreover, the documents cover topics from different regions all over the
world.

There are several ways to browse the collection on the WikiLeaks website – by
creation year, by origin, and also by tag. While the latter seems most promising
to access documents of a certain topic, they are in fact rather unusable for that
purpose: there is a total of 590 tags, most of them are non-obvious 3-4 letter
acronyms. Only some of the tags contain e.g. names of people. Thus, other means
of organising the collection are necessary. The Self-Organising Map provides a
valuable means to organise the documents by their content, and present these
to the user in a way that they can on the one hand quickly get an overview of
the topics in the collection, and one the other hand efficiently navigate through
the single documents.

The remainder of the paper is structured as follows. In Section 2 we briefly
describe the SOM framework employed. Section 3 then provides details on the
WikiLeaks diplomatic cable collection, and the feature extraction method em-
ployed. In Section 4 we then present an analysis of the collection’s content.

2 SOM Framework

We employ the Java SOMToolbox framework1, developed at the Vienna Univer-
sity of Technology. Besides the standard SOM learning algorithm, the framework
includes several implementations and modifications to the basic algorithm, such
as the Growing Grid or the Growing Hierarchical Self-Organising Map (GH-
SOM). The core of the framework is an application that supports the user in an
interactive, exploratory analysis of the data organised by the map training pro-
cess. This application allows for zooming, panning and selection of single nodes
and regions among the map.

To facilitate the visual discovery of structures in the data, such as clusters,
a wealth of approximatively 15 visualisations are provided. The visualisations
utilised in the experiments later in this paper are now described briefly.

The unified distance matrix, or U-Matrix [9], is one of the earliest, and most
popular visualisations of the SOM. It aims at visualising cluster boundaries in the
SOM grid. It is calculated as the input-space distance between the model vectors
vectors of adjacent map units. These distances are subsequently displayed on the

1 http://www.ifs.tuwien.ac.at/dm/somtoolbox/

http://www.ifs.tuwien.ac.at/dm/somtoolbox/
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map by colour-coding. Figure 1 depicts an U-Matrix with a grayscale colour map,
where lighter shades of grey indicate high distances, and thus cluster boundaries.

The objective of Smoothed Data Histograms[5] (c.f. Figure 2(a)) is to uncover
the clusters in the data through an estimation of the probability density of the
data on the map. They build on the basic principle of an hit histogram, but
they rather rely on a smoothed data histogram which is computed by not only
increasing the histogram of the best-matching unit of an input vector, but up to
s additional units.

Gradient Fields [6] aims at visualising cluster structures of a SOM, while using
a special analogy for the markers utilised in the method. The rationale is that
many persons with engineering background are not familiar with colour-coded
maps as used e.g. in the U-Matrix, while they are generally familiar with the
concept of vector fields. The gradient is displayed on the map with one arrow per
unit, with the length and direction of each arrow indicate the location of cluster
centres. The arrows at large form a smooth vector field. The arrows are computed
based on the model vectors, the map topology, and a neighborhood kernel. Each
arrow ai for a map unit is obtained by computing weighted distances between
the units model vector and all other model vectors, which are then aggregated
and normalised.

The Thematic Classmap visualisation [4] shows the distribution of meta-data
labels or categories attached to the data vectors mapped on the SOM. It colours
the map in continuous regions in such a way that the regions reflect the dis-
tribution and location of the categories over the map, similar as e.g. a political
map does for countries. The method is based on a segmentation of the SOM grid
using Voronoi diagrams. A Voronoi diagram of a set of Points P = p1, . . . , pn

partitions a plane in exactly n Voronoi regions, each being assigned to one point
p ∈ P , so that all the points in a region are closest to pi. Applied to SOMs, the
plane is the visual representation of the map, and the number of regions is equal
to the number of units with at least one data item mapped onto. Units with
no data items will be split by the algorithm to become parts of other, adjacent
regions. The voronoi cells are then coloured according to the categories attached
to the data mapped onto the units in each voronoi cells. Details on the colouring
can be found in [4].

To assist the user in interpreting the content of the SOM, we automatically
generate labels for the map. We employ the LabelSOM method [7], which assigns
labels to the units of the SOM describing the features of the data items mapped
onto them. The method utilises the quantisation error of the vector elements.
The quantisation error(qik

) is the sum of the distances for a feature k between
the node’s weight vector mi and the input vectors xj mapped onto the node.
A low quantisation error thus characterises a feature that is similar in all input
vectors to the weight vector, which is assumed to be a descriptive feature. To
eliminate features that have low quantisation error due to not being present on
that node, i.e. having zero values, we require the mean value of the feature to
be above a certain threshold.
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As the SOM does not generate a partition of the map into separate clusters,
a clustering of the units is applied to identify the regions in the map computa-
tionally. Of advantage are hierarchical algorithms, which result in a hierarchy of
clusters the user can browse through, allowing different levels of granularity; the
framework provides the Ward’s linkage [2] and several other linkage methods.
Having clusters or regions identified, the framework also provides labelling of
these entire regions. Making use of the properties of the hierarchical clustering,
we can also display two or more different levels of labels, some being more global,
some being more local.

Even though labelling the map regions assists the user in quickly getting a
coarse overview of the topics, labels can still be ambiguous or not conveying
enough information. Thus, the framework also employs Automatic Text Sum-
marisation methods to provide a summary of the contents of the documents of
interest, allowing the user to get a deeper insight into the content. The sum-
marisation can either be on single documents, documents from a certain node, a
cluster, or from a user-selected set of nodes or documents. Different summarisa-
tion algorithms are provided; the user can also specify the desired length of the
summary.

3 Collection

The WikiLeaks diplomatic cable collection2 is composed of United States em-
bassy cables, allegedly “the largest set of confidential documents ever to be re-
leased into the public domain”. The cables date from the 1960s up until February
2010, and contain confidential communications between 274 embassies in coun-
tries throughout the world and the State Department in Washington DC.

The cables are released subsequently, thus currently a subset of 3,319 doc-
uments is available. The subset contains cables originating from 165 different
sources (embassies, consulates and other representations), and covers mostly the
last few years. Details on release year and origin of the dataset are given in
Table 1.

It can be noted that a rather large portion of approximatively 12% of the
cables were issued by the embassy in Tripoli. A large numbers of documents also
originates from Brazil (10.4%, including the cables from the consulates in Sao
Paolo and Rio de Janeiro), and Iceland (8.6%). Countries where the USA are
involved in military actions, such as Afghanistan or Iraq, have not been published
yet in large quantities, thus distinguishing this collection from the Afghan and
Iraq war diaries published earlier by WikiLeaks.

To obtain a numeric representation of the document collection for our exper-
iments, we used a bag-of-words indexing approach [8]. From the resulting list of
65,000 tokens, the features for the input vectors were selected according to their
document frequency, skipping stop-words, as well as too frequent (in more than
50% of the documents) and too infrequent (in less than 1% of the documents)
terms. This resulted in a feature vector of approximately 5,500 dimensions for
2 http://wikileaks.ch/cablegate.html

http://wikileaks.ch/cablegate.html


242 R. Mayer and A. Rauber

Table 1. Cablegate document collection as of February 2011

(a) Documents per year

period documents
1960s & 1970s 6
1980s 6
2000-2002 11
2003 24
2004 100
2005 167
2006 292
2007 378
2008 684
2009 1270
2010 434

(b) Document origin

Origin Documents
Libya 406
Brazil 351
Iceland 290
Spain 202
Secretary of State 158
The Netherlands 146
France 122
Russia 93
Egypt 81
Afghanistan 77
UK 75
Pakistan 59
China 58

each document, which formed the basis of the maps subsequently trained. The
values of the of the vector are computed using a standard tf × idf weighting
scheme [8], which assigns high weights to terms which appear often in a certain
document (high tf value), and infrequent in the rest of the document collection
(high idf value), i.e. words that are specific for that document.

4 Experimental Analysis

We trained a map of the size of 35 × 26 nodes, i.e. a total of 910 nodes for
the 3,319 text documents. Due to the uncertain legal situation of the Wikileaks
documents, we have to refrain from publishing any quotes from the cables, or
other details, in this paper.

After inspection of the initial map, it became obvious that the map was dom-
inantly organised along the origin of documents. The reason is that most cables
describe events in the country the embassies are located in, thus the names of
such countries are too predominantly represented. Thus, for having a more topic-
oriented map, we decided to remove the most frequent country names from the
feature vector. While this step influences the content of cables that might talk
about foreign countries, this side-effect seems acceptable.

The U-Matrix visualisation of this map is depicted in Figure 1. However, on
this data set, only a few local boundaries become apparent. The existence of
smaller, interconnected clusters is also confirmed by the Smoothed Data His-
tograms, which visualises density in the map, in Figure 2(a). Figure 2(b) shows
the Vector Fields visualisation, where the arrows point towards local cluster
centres. These clusters overlap very well with a clustering of the weight (model)
vectors of the map, with the clustering for 40 target clusters being superimposed
in the same illustration. It can be observed that especially the centre area does
not seem to have a clear cluster centre.
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Fig. 1. U-Matrix of the Cablegate SOM

(a) (b)

Fig. 2. Smoothed Data Histograms (a) and Vector Fields (b) visualisations

The Thematic Classmap visualisation depicted in Figure 3 shows the distri-
bution of the origin of the cables. It can be observed that the SOM manages to
separate the classes very well, especially on the edges of the map. Overlapping
areas are mainly found in the centre of the map, which has previously been iden-
tified as an area without a clear cluster centre, and on the upper-left corner. It is
often those areas, where the external classification scheme contradicts the topical
similarity, which are the most interesting to uncover unexpected relations.

Figure 4 finally shows the Cablegate map with 40 clusters, each of which has two
labels assigned, using the LabelSOM method described in Section 2. The display
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Fig. 3. Thematic Class Map showing the origin of the cables

Fig. 4. Clustering of the map, with 40 clusters and two topic labels each
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of labels on regions helps to quickly get an overview on the contents of the map,
and where to find them. We will describe some of the regions in detail now.

The upper-left corner of the map prominently features diplomatic cables dis-
cussing nuclear programs, both of Iran and North Korea, and related issues, such
as sanctions and the role of the International Atomic Energy Agency (IAEA).
As this is a topic which involves international diplomacy on a large scale, also
the sources of origin mentioning the topic are manifold – from the secretary of
state and embassies of countries involved into the UN proceedings to cables from
the UN representation in Vienna, seat of the IAEA. Topics also dealt with in
this area of the map are weapons and the military in general.

The cluster on the central upper edge of the map features reports on the
Russian-Georgian war in 2008, and other topics related to Russia. The neigh-
bouring cluster, holding messages mostly about energy such as oil and gas, also
features Russian politics, and Russian companies, as well as cables from other
countries, such as Venezuela, Nigeria, and Libya. The cluster right next to it,
in the top-right corner, then deals with further topics concerning the North-
African country (‘gol’ stands for government of Libya). One topic is for example
the diplomatic crisis between the country and Switzerland, which resulted in
Switzerland refusing Schengen-Visa.

To the left of this, towards the centre of the map, are two clusters with reports
on Iceland, one of them identified by the names of the former prime minister
Geir Haarde and the former minister for foreign affairs, Ingibjörg Gísladóttir,
who had to step down from office due to the financial crisis hitting Iceland in
2008. The other cluster deals with reports on the Icelandic banks, which suffered
intensely from the crisis.

In the lower-centre of the map, a large area is dedicated to topics regarding
Brazil. These are dealing with ethanol and other biofuels, which Brazil is a major
producer of. Other topics include the defense sector (Nelson Jobim serves as the
Minister of Defense). On the left, two clusters deal with other South American
issues, namely Bolivian politics, or the crisis between Colombia and Venezuela,
reported by cables from both countries. Another topic in that region is the
Venezuelan president Hugo Chavez.

Towards the left, certain documents talking about Afghanistan are located.
Several of them deal with drugs, while others talk about the involvement of the
UK and Spain in the war. Just above that, cables report on Taliban activity,
and the situation in Pakistan, as well as cables from India about the attacks
in Mumbai, which are linked to terrorists in Pakistan. The region right of that,
towards the centre of the map, generally gathers cables from many different
sources, all talking about terrorism and criminal activities, without a major
topic dominating.

Another interesting arrangement of documents can be found on the left-centre
area, which features the previously mentioned documents from Iran and closely
to it also Sweden. Many of the documents in the cluster about Sweden deal
with the Swedish stance towards the sanctions against Iran due the nuclear
programme of the latter.
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5 Conclusions

In this paper, we presented a case study for analysing text documents with Self-
organising Maps. We employed a framework that provides extensive support in
visualisations that uncover structures in the data, and other methods which help
to quickly communicate the contents of the collection as a whole, and certain
parts in particular, such as labelling on cluster level. With such an analysis tool,
the user is able to rapidly get on overview on the interesting areas on the map-
ping, and gets access to the collection. This approach clearly exceeds the means
available on the WikiLeaks website, which comprise of category-based browsing,
but lack means to communicate the topics of the collection and exploring the
collection by its content.

As the collection of cables is growing on a daily basis, an online version of
the map is available at http://www.ifs.tuwien.ac.at/dm/, being regularily
updated.
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Abstract. We present a selection of results produced in a project called
Media Map. The project aims at developing an intuitive user interface
to a library information system containing data on projects and publi-
cations. The user interface is a two-dimensional visual display created
with the Self-Organizing Map algorithm. The map has been computed
using the hierarchical self-organizing map, and a specific graphical design
supports the visualization and use of the map interface. In the design,
there are specific iconic representations for the projects, publications and
persons displayed on the map. The novel aspects in this WEBSOM-type
of document map are that the texts on the map are written in different
languages, and there are different types of textual objects mapped on
the same map. The interlingual mapping is based on applying machine
translation on non-English documents. Even when the translation is not
fully correct, the approach works well when large enough proportion of
relevant terminology has become translated.

Keywords: Self-Organizing Map, text mining, machine translation, li-
brary information system, publication map, project map, person map,
WEBSOM, PicSOM.

1 Introduction

In this article, we present intermediate results from a project called Media Map
in which the use of the Self-Organizing Map (SOM) as an interface to a multi-
faceted academic library collection is demonstrated. First, we discuss the back-
ground for this work and introduce several projects of related work. We continue
by presenting the data and methods used and showing the experimental results
with the emphasis on describing the basic concept and providing information
on the overall system. We do not, however, aim to evaluate each of the sub-
components systematically. This will constitute a future task which includes, for
instance, a quantitative analysis of the performance of applying machine trans-
lation in content vector creation (see e.g. [1]) as well as qualitative usability and
quantitative performance and evaluations (see e.g. [14,19]).
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1.1 Self-Organizing Map for Information Retrieval

The basic alternatives for information retrieval are (1) searching using keywords
or key documents, (2) exploration of the document collection supported by or-
ganizing the documents on some manner, and (3) filtering. The keyword search
systems can be automated rather easily whereas document collections have tra-
ditionally been organized manually. The organization is traditionally based on
some (hierarchical) classification scheme, and each document is usually assigned
manually to one class.

In the WEBSOM method (see e.g. [2,5,8]), the Self-Organizing Map algo-
rithm [6] is used to map documents onto a two-dimensional grid so that related
documents appear close to each other. The WEBSOM automates the process
of organizing a document collection according to the contents. It does not only
classify the documents, but also creates the classification system based on the
overall statistics of the document collection.

The PicSOM content-based visual analysis framework1 (see e.g. [11,12,17] is
based on using relevance feedback with multiple parallel SOMs. It has been
developed and used for various types of visual analysis, including image and
video retrieval, video segmentation and summarization. It has also served as the
implementation platform for the experiments described in this paper.

1.2 Our Approach

In this article, we present a method that follows the basic WEBSOM approach
for creating document maps with the following three main novel developments.
First, we present a method for creating maps of multilingual document collec-
tions in which the documents with similar semantic contents are mapped close
to each other regardless of their language. In our experiment, we have English
and Finnish documents. Second, the map calculation is conducted with a Tree-
Structured Self-Organizing Map (TS-SOM) algorithm [9]. Third, we have devel-
oped a design interface for the specific purpose of retrieval and exploration of a
database of three different types of entities — people, projects, and publications
— in the area of design, media and artistic research.

Our objectives have been three-fold:

– to provide a map as an overview of the contents of an academic research
database,

– to design an attractive and informative visualization of the map, and
– facilitative information retrieval from the database regardless of the language

used in the documents.

1.3 Related Work

The SOM is widely used as a data mining and visualization method for complex
numerical data sets. Application areas include, for instance, process control,
1 http://www.cis.hut.fi/picsom

http://www.cis.hut.fi/picsom
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economical analysis, and diagnostics in industry and medicine (see e.g. [18]).
The SOM has also been used to visualize the views of candidates in municipality
elections [4], or the items provided by museum visitors [15]. A variant has been
developed in which the shape of the SOM is modified so that it coincides with
some well-known shape like the country of Austria [16].

The WEBSOM method for text mining and visualization has been used for
various kinds of document collections including conference articles [13], patent
abstracts [8], and competence descriptions [3].

2 Data and Methods

2.1 Data

ReseDa2 is the public web-based research database of the Aalto University School
of Art and Design. It is designed to support the school’s research, assist the
administration of research activities and give them wider visibility. In general,
ReseDa provides information on the school’s research activities, its expertise,
and artistic activities related to art, design, and media.

Table 1 details what kinds of data fields are contained in each of ReseDa’s
three record types relevant for our experiments. In practice, we started by col-
lecting data on total of 94 projects described by abstracts in either English or
Finnish. From the project data we then extracted the identifiers of all involved
persons resulting in a set of 101 people. Starting from these people, we finally
collected their publications whose abstracts were available in ReseDa in either
English of Finnish.

The last type of entities involved in our studies are units (such as departments
and institutions) with which the projects and publications are associated. In
the current data, there were seven units that had more than ten projects and
publications. While the data retrieval was one directional, i.e., from projects
to people and from people to publications, and from those to the units, we also
maintained the reverse mappings in the opposite directions as depicted with solid
and dashed lines in Fig. 1. The quantities of the collected data are summarized
in Table 2.

Table 1. ReseDa database record types and their contents used in the experiments

Publications Projects People

publ-id proj-id person-id
publ-title proj-title person-name
publ-abstract proj-abstract person-publs
publ-people proj-people
... ... ...

2 http://reseda.taik.fi

http://reseda.taik.fi
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projects publications

units

people

Fig. 1. The link relations between the ReseDa record types

Table 2. The counts of the ReseDa record types used in the experiments

Document category English translated

Publications 293 9
Projects 66 28
Persons 101 n/a

2.2 Content Vectors from Multilingual Documents

In our pilot data set, the smallest number of words in the publications is 14 and
largest 711. The average number of words is 99.9 with the standard deviation of
90.0. The corresponding numbers for the projects are 27, 867, 117.4 and 156.4.
This indicates that the data is skewed, i.e., for many publications there are only
a short description.

In order to generate a list of relevant terms, a frequency count of all uni-
grams, bigrams and trigrams was calculated and sorted in a decreasing order
of frequency. Altogether 4934 + 23063 + 32919 = 60916 term candidates were
available. Among these, the words and phrases appearing at least 5 times were
considered. Finally, in the manual selection 268 single words such as “adaptive”,
“advertising”, and “aesthetic”, 66 bigrams like “augmented reality”, “cultural
heritage”, “design process”, and 16 trigrams including “digital cultural heritage”,
“location based information”, and “research based design” were included in the
terminology. These 350 terms were used in the encoding of the 497 text docu-
ments into document vectors.

The average number of terms in the project descriptions was 21.6 and for
publications 16.6. The persons were represented as a concatenation of the pub-
lications and projects in which they have been involved. Therefore, the average
number of terms for persons, i.e., 44.1 is considerably higher than any of the
other two. Unlike persons, each of whom is represented with one text document
obtained by concatenation, the departments and other units are represented as
collections of their associated projects and publications.

Google Translate3 was used in the translation. The terms found in the transla-
tions was 10.6 when the number of words in translation was 77.5, i.e. lower than
for publications or projects. Only a small number (34) of Finnish words were not

3 http://translate.google.com

http://translate.google.com
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translated. Among them, 4 words were misspelled, and the rest 30 were typi-
cally inflectional word forms of rare or newly invented words or compounds such
as “palvelukehityskin” (even the service development), “julistemaalareiden” (of
the poster painters), “innovaatiokoneistosta” (from the innovation machinery)
or “kunnollisuudesta” (from decency).

2.3 Document Map Creation

In creating the document maps from the content vectors, we used the hierarchi-
cal, Tree-Structured Self-Organizing Map algorithm [9] that is extensively used
in the PicSOM content-based image retrieval system [10,11]. The hierarchical
structure of TS-SOM drastically reduces the complexity of training large SOMs,
thus enabling scalability of the approach into much larger document collections.
The computational savings follow from the fact that the algorithm can exploit
the hierarchy in finding the best-matching map unit for an input vector.

3 Document Maps

In the following, we describe different kinds of maps produced in the Media Map
project. We also present the basic interface design and some design questions
when a number of people, projects, publications and organizational units are
projected on a map.

3.1 Term Distributions

An elementary analysis of a document map is to study how the different terms
are organized on the map. This can be done simply by observing the component-
wise distribution of values of the SOM weight vectors. Figure 2 illustrates the
distributions of the four most common terms — design , media, art and learning
— existing in our data. We can see that these terms are quite orthogonal to each
other in our material as they appear clearly in non-overlapping map areas. The
areas are also mostly contiguous for all of these terms except for learning.

3.2 Class Distributions

The aim of the Media Map project has been to place the researchers and their
publications and projects on a map in a way that the topology reflects the
similarity of the content of the activities. A secondary aim has been to study
how well such a mapping also maintains the characteristics of the associated
research units. These two questions are addressed in the following.

Figure 3 displays how one researcher’s publications (n = 20) and projects
(n = 7) are mapped on the document map. The locations of the documents
have been indicated with impulses that have then been low-pass filtered in order
to amplify the visibility of spatial topology of the data. The most significant
U-matrix [20] distances are illustrated with horizontal and vertical bars. In this
researcher’s case, Fig. 3 shows that his projects and publications occupy separate,
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Fig. 2. Occurrences of the words design (top left), media (top right), art (bottom left)
and learning (bottom right) on the document map

Fig. 3. Distributions of one person’s projects (top left) and publications (top right) on
the document map. Also the person’s own location (bottom left) and the union of the
previous three distributions (bottom right) are shown.

but closely situated map areas, and our method maps the researcher himself in
a map location close to both areas.

The distribution of publications and projects associated with four research
units are shown in Fig. 4. It can be seen that the activities of the units appear
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mostly in non-overlapping map areas, but that the units’ distributions are not
unimodal. The Media department has the largest number of publications and
projects and this is reflected in that unit’s relatively largest area. Comparing
this figure with the two previous ones, some observations can be made. First, as
the names of the research units match quite accurately with the most common
terms in Fig. 2, also the term and activity distributions are pairwise somewhat
similar. Second, the activities of the researcher in Fig. 3 seem to fall inside the
activities of the Media department, and this could be expected as the researcher
actually is a staff member of that unit.

Fig. 4. Distributions of four units’ activities on the document map. The units are
Design (top left), Media (top right), Art (bottom left) and Visual culture (bottom
right).

3.3 Map Interface Design

Figure 5 shows an example of the planned map interface designed specifically for
the Media Map project. Similarly to Figs. 3 and 4, the location of persons is also
in this figure indicated as a specific point on the map whereas the departments
and other research units occupy larger areas on the map, respectively. For the
persons, an icon is used and other icons exist for publications and projects. As
can be seen, the areas of the research units have been planned to be coded with
colors that can be overlaid without losing clarity. The figure shows that there
exist a slider and control arrows on the left hand side of the map for zooming
and panning of the map.

Even though Fig. 5 has still been created by a designer (H.T.), we already
have the necessary mechanisms for creating similar illustrations automatically.
An open issue is still how zooming into a specific area of the document map could
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gradually reveal more and more details of the data. In this manner, the highest-
level view would show only information on the research unit level, the mid-level
views could show objects and activities on the person level, and only the most
detailed view would display data on particular projects and publications. Also
different kinds of connections between the entities would be illustrated on the
map on different zoom levels.

Fig. 5. An example of the interface design of the Media Map

An important design question related to the data to be presented is the way
how the items in each category (people, projects, publications and units; see
Fig. 1) are visualized. It is natural to represent each individual document as one
location on the map (even though it would be possible to find multiple locations
for multi-topic documents, see [7]). In our case, each person is represented as
a combination of the articles that he or she has written. Our solution is thus
to visualize a person as one location on the map. The same solution is in use
when projects are considered. However, it would be possible to show all locations
where the articles written by a person (or published by a project) are located.
This would possibly endanger the readability of the map. On the other hand, it
is a natural choice to represent organizational units as the smoothed areas where
the articles written by the employees of and the projects hosted by the unit are
located.

4 Conclusions and Discussion

We have presented a selection of preliminary results of a project that creates an
interface to a library collection in the area of art, design and media research.
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Central research and development themes are related to the multilinguality, ver-
satility and interlinked structure of the document collection. There are docu-
ments in English and in Finnish concerning projects, publications and people
in the database. We have presented a methodology to create document maps in
this kind of basic setting and a map interface design that is meant to support
information exploration and search.

In the future work, we plan to extend the database to cover all schools of
the Aalto University, i.e., schools of Chemical Technology, Economics, Electrical
Engineering, Engineering, and Science, in addition to the School of Art and
Design involved in the current pilot. This will increase the size of the database
considerably because there are more than 300 professors at the Aalto University
and the number of people in the academic staff exceeds 2000. Also, we will
implement automatic incorporation of the designed user interface elements and
facilitate on-line use of the created maps with zooming, panning and clickable
links to the original on-line data.

The map interface provides an alternative view to researchers’ research areas
and their results in contrast with the traditional classification systems that only
slowly adapt to the developments in research topics and methods. It is important
to note that creative inventions often include introduction of new concepts that
do not fit into the existing classification systems. If this aspect is not properly
taken into account, and the semantic processing in information infrastructures
for research are based on some rigid standards, the innovation activities may
even slow down. We believe that the Self-Organizing Map provides a viable
alternative and efficient solution for organizational information management.
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Abstract. Neural clustering algorithms show high performance in the
general context of the analysis of homogeneous textual dataset. This is
especially true for the recent adaptive versions of these algorithms, like
the incremental growing neural gas algorithm (IGNG) and the label max-
imization based incremental growing neural gas algorithm (IGNG-F). In
this paper we highlight that there is a drastic decrease of performance of
these algorithms, as well as the one of more classical algorithms, when
a heterogeneous textual dataset is considered as an input. Specific qual-
ity measures and cluster labeling techniques that are independent of the
clustering method are used for the precise performance evaluation. We
provide variations to incremental growing neural gas algorithm exploit-
ing in an incremental way knowledge from clusters about their current
labeling along with cluster distance measure data. This solution leads
to significant gain in performance for all types of datasets, especially for
the clustering of complex heterogeneous textual data.

1 Introduction

Most of the clustering methods show reasonable performance on homogeneous
textual dataset. However, the highest performance on such datasets are gener-
ally obtained by neural clustering methods [6]. The neural clustering methods
are based on the principles of neighbourhood relation between clusters, either
they are preset (fixed topology), like the “Self-Organizing Maps” also named
SOM [4], or dynamic (free topology), like static “Neural Gas” (NG) [10] or
“Growing Neural Gas” (GNG) [3]. As compared to usual clustering method, like
K-means [9], this strategy makes them less sensitive to the initial conditions,
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which represents an important asset within the framework of data analysis of
highly multidimensional and sparse data, like textual data.

The most known neural clustering method is the SOM method which is based
on a mapping of the original data space onto a two dimensional grid of neurons.
The SOM algorithm is presented in details in [4]. It consists of two basic pro-
cedures: (1) selecting a winning neuron on the grid and (2) updating weights of
the winning neuron and of its neighbouring neurons.

In the NG algorithm [10], the weights of the neurons are adapted without any
fixed topological arrangement within the neural network. Instead, this algorithm
utilizes a neighbourhood ranking process of the neuron weights for a given input
data. The weight changes are not determined by the relative distances between
the neuron within a topologically pre-structured grid, but by the relative dis-
tance between the neurons within the input space, hence the name “neural gas”
network.

The GNG algorithm [3] solves the static character of the NG algorithm bring-
ing out the concept of evolving network. Hence, in this approach the number of
neuron is adapted during the learning phase according to the characteristics of
the data distribution. The creation of the neurons is made only periodically (each
T iteration or time period) between the two neighbour neurons that accumulated
the most important error for representing the data.

Recently, an incremental growing neural gas algorithm or (IGNG) [11] has
been proposed by Prudent and Ennaji for general clustering tasks. It represents
an adaptation of the GNG algorithm that relaxes the constraint of periodical
evolution of the network. Hence, in this algorithm a new neuron is created each
time the distance of the current input data to the existing neuron is greater than
a prefixed threshold σ. The σ value is a global parameter that corresponds to
the average distance of the data to the center of the dataset. Prudent and Ennaji
have proved that their method produces better results than the existing neural
and the non-neural methods on standard test distributions.

More recently, the results of the IGNG algorithm have been evaluated on
heterogeneous datasets by Lamirel & al. [6] using generic quality measures and
cluster labeling techniques. As the results have been proved to be insufficient for
such data, a new incremental growing neural gas algorithm using the cluster label
maximization (IGNG-F) has been proposed by the said authors. In this strategy
the use of a standard distance measure for determining a winner is completely
suppressed by considering the label maximization approach as the main winner
selection process. Label maximization approach is more precisely detailed in [6].
One if its important advantage is that it provides the IGNG method with an
efficient incremental character as it becomes independent of parameters.

In this paper we present several variations of IGNG-F approach based on
combination of distance based criteria and cluster label maximization. We also
use generic quality measures like Micro-Precision, Micro-Recall,Cumulative
Micro-Precision and cluster labeling techniques for cluster evaluation. In the
next section, we throw some light on these clustering quality measures. The
third section provides a detailed analysis of the various adaptations of the
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IGNG-F approach. Following which we present the results of our experiments on
2 different datasets of highly different complexity. The results on both datasets,
especially on the most complex heterogeneous dataset, reflects the disadvantages
of IGNG-F algorithm and other former neural clustering algorithms as compared
to our new adaptations.

2 Clustering Quality Evaluation

An inherent problem of cluster quality evaluation persists when we try to com-
pare various clustering algorithms. It has been shown in [5] that the inertia
measures, or their adaptations [1], which are based on cluster profiles are often
strongly biased and highly dependent on the clustering method. A need thus
arised for such quality metrics which validate the intrinsic properties of the nu-
merical clusters. We have thus proposed in [5] unsupervised variations of the
recall and precision measures which have been extensively used in IR systems
for evaluating the clusters.

For such purpose, we transform the recall and precision metrics to appropriate
definitions for the clustering of a set of documents with a list of labels, or proper-
ties. The set of labels Sc that can be attributed to a cluster c are those which have
maximum value for that cluster, considering an unsupervised Recall−Precision
metric [7]1. The greater the unsupervised precision, the nearer the intentions of
the data belonging to the same cluster will be with respect to each other. In a
complementary way, the unsupervised recall criterion measures the exhaustive-
ness of the contents of the obtained clusters, evaluating to what extent single
properties are associated with single clusters.

Global measures of Precision and Recall are obtained in two-ways. Macro-
Precision and Macro-Recall measures are generated by averaging Recall and
Precision of the cluster labels at the cluster level, in a first step, and by averaging
the obtained values between clusters, in a second step. Micro-Precision and
Micro-Recall measures are generated by averaging directly Recall and Precision
of the cluster labels at a global level. Comparison of Macro measures and Micro
measures makes it possible to identify heterogeneous results of clustering [8].

It is possible to refer not only to the information provided by the indices
Micro-Precision and Micro-Recall, but to the calculation of the Micro-Preci-
sion operated cumulatively. In the latter case, the idea is to give a major in-
fluence to large clusters which are most likely to repatriate the heterogeneous
information, and therefore, by themselves, lowering the quality of the resulting
clustering. This calculation can be made as follows:

CMP =

∑
i=|cinf |,|csup|

1
| ¯Ci+|2

∑
c∈ ¯Ci+,p∈Sc

|cp|
|c|∑

i=|cinf |,|csup|
1
¯Ci+

(1)

1 The IGNG-F algorithm uses this strategy as a substitute for the classical distance
based measure which provides best results for homogeneous datasets [6].
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where Ci+ represents the subset of clusters of C for which the number of
associated data is greater than i, and:

inf = argminci∈C |ci|, sup = argmaxci∈C |ci| (2)

3 Various Adaptations of IGNG-F

The major problem IGNG-F faces in the case of heterogeneous datasets is that it
can associate a data with labels completely different from the ones existing in the
prototypes. This leads to strong decrease in performance in such case as labels
belonging to different clusters are clubbed together. So to cope with this problem
we propose three important variations of IGNG-F approach as mentioned below.

3.1 IGNG-Fv1

We use a distance based criteria to limit the number of prototypes which are
investigated for a new upcoming data point. This allows to set a neighbourhood
threshold and focus for each new data point which is lacking in the IGNG-F
approach. It is similar to using the sigma parameter of IGNG, the only difference
being the criteria is user oriented and can be varied in accordance. Generally, we
see that there is a particular value of this criteria that can be used as threshold,
beyond which all the prototypes are selected within the neighbourhood.

3.2 IGNG-Fv2 and IGNG-Fv3

Similarly to IGNG-Fv1, we use here a distance based criteria to define a neigh-
bourhood threshold for a new data point. An important variation is that the
F -measure which is to be computed with an added data point must not con-
sider the new labels issued from the upcoming data. The new labels are the
ones which were not taking part in the list of labels of a prototype before “aug-
menting” this prototype with the upcoming data (refer to [6]). This operation
concerns all the prototypes that have been selected as potential winners for the
new data point. This strategy will avoid to associate to a prototype data with
labels that are completely different from the one exiting in this prototype and
prevent the formation of heterogeneous clusters. We modify the step of calcula-
tion of labeling influence of the input data on the existing prototypes as proposed
in IGNG-F algorithm: in the F − Max or label maximization approach of this
algorithm a label is attached to the prototype which has maximum F -measure
for that label. However, in our case if there is more than one maximizer proto-
type we temporarily attach the label to all the maximizers. Considering now the
behaviour of the algorithm, when there is an increase of F -measure produced on
some selected prototypes by an upcoming data, we choose the winner prototype
according to the formula:

Kappa = ΔL−Fx(P1) × SL(P1) − EucDist(P1, x)
criteria × att1

(3)
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By doing so we try to maximize the increase in F -measure (Δ) along with
maximizing the number of shared labels (SL()) between the challenger prototype
(P1) and the current data point (x). We also make use of an additional Euclidean
distance (EucDist()) based measure between the prototype profiles and the up-
coming data point profile. The lower is the distance, the higher is the probability
of the data point being associated to the prototype. The criteria variable is the
same as that used for limiting the neighbourhood size in IGNG-Fv1. It is used so
as to keep Kappa value non-negative. The att1 variable is a general attenuation
factor whose role is to reduce the dominance of the Euclidean distance and have
nearly equal contribution from Δ F -measure, shared labels (SL()) and distance
between challenger prototype (P1) and upcoming data point(x) (it has been set
to 10 in our experiments).

The IGNG-Fv3 version is very similar to the IGNG-Fv2. The only difference is
that the Cosine similarity is substituted to the Euclidean distance in the Kappa
measure.

4 Datasets Description

For the experimental purpose we use 2 different datasets of highly different
complexity, namely the Total-Use and the Lorraine datasets.

The Total-Use dataset consisted of 220 patent records related to oil engineer-
ing technology recorded during the year 1999. This dataset contains information
such as the relationship between the patentees, the advantages of different type
of oils, what are the technologies used by patentees and the context of exploita-
tion of their final products. Based on the information present in the dataset,
the labels belonging to the datasets have been categorized by the domain ex-
perts into four viewpoints or four categories namely Patentees, Title, Use and
Advantages.

The task of extracting the labels from the dataset is divided into two elemen-
tary steps. At the step 1, the rough index set of each specific text sub field is
constructed by the use of a basic computer-based indexing tool. At the step 2, the
normalization of the rough index set associated to each viewpoint is performed
by the domain expert in order to obtain the final index sets. In our experiment,
we solely focus on the labels belonging to the Use viewpoint. Thus, the resulting
corpus can be regarded as a homogeneous dataset as soon as it covers an elemen-
tary description field of the patents with a limited and contextual standardized
vocabulary of 234 keywords or labels spanning over 220 documents.

The Lorraine dataset is build up from a set of bibliographic records resulting
from the INIST PASCAL database and covering all the research activity per-
formed in the Lorraine region during the year 2005. The structure of the records
makes it possible to distinguish the titles, the summaries, the indexing labels and
the authors as representatives of the contents of the information published in
the corresponding article. In our experiment, the research topics associated with
the labels field are solely considered. As soon as these labels cover themselves a
large set of different topics (as far one to another as medicine from structural
physics or forest cultivation, etc . . . ), the resulting experimental dataset can be
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considered as a highly heterogeneous dataset. The number of records is 1920. A
frequency threshold of 2 is applied on the initial label set resulting in a descrip-
tion space constituted of 3556 labels. Although the keyword data do not come
directly from full text, we noted that the distribution of the terms took the form
of a Zipf law (linear relation between the log of the frequencies of terms and the
log of their row) characteristic of the full text data. The final keyword or label
set also contains a high ratio of polysemic terms, like age, system, structure,
device, etc . . .

5 Results

For each method, we do many different experiments letting varying the number
of clusters in the case of the static methods and the neighbourhood parameters
in the case the incremental ones (see below). We have finally kept the best
clustering results for each method regarding to the value of Recall-Precision
F -measure and the Cumulative Micro-Precision.

We first conducted our experiments on the Total-Use dataset which is homoge-
neous by nature. Figure 1 shows the Macro-F -Measure, Micro F -Measure and
the Cumulative Micro-Precision(CMP ) for the dataset. The number of clus-
ters represents the actual number of non-empty clusters among the total number
of clusters used for clustering the dataset. We see that the Macro F -Measure
and Micro F -Measure values are nearly similar for the different clustering ap-
proaches. However, the CMP value shows some difference. We see that for the
SOM approach more than half of the clusters are empty. The NG and GNG
algorithms have good Macro and Micro F -Measure but lower CMP than the
IGNG approaches (except IGNG-Fv1).

In the case of the IGNG-Fv1 method, there is a maximum difference between
the Macro F -measure and the Micro F -measure. This difference clearly illus-
trates the presence of unbalanced or degenerated clustering results including some
noisy clusters of large size. Hence, big noisy clusters cannot be detected by the
Macro F -measure as soon as they coexist with smaller relevant ones. This phe-
nomenon is also illustrated by the low value of the CMP measure which we use
as a central index for determining the best clustering quality. For IGNG-Fv1, the
value of CMP is extremely low signifying that the properties (i.e. the labels) are
unable to distinguish the different clusters efficiently, although we have high CMP
values for IGNG and IGNG-F. The lower number of average label per document
results in normalized label vectors for Total-Use dataset that are far apart from
one another as in comparison to other datasets. This would signify higher dis-
tance between similar documents which can be one of the reasons for poor result
of IGNG-Fv1. We see that the best results are obtained for IGNG-Fv2 which uses
the neighbourhood criteria and Kappa based selection procedure for winning neu-
rons. The dataset is homogeneous by nature, so it is possible to reach such high
precision values. Thus small, distinct and non-overlapping clusters are formed.

The standard K-Means approach produces the worst results on the first dataset.
Furthermore, we leave out neural NG method for our next experiments because
of its too high computation time.
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Fig. 1. Clustering quality results of various algorithms on Total-Use homogeneous
dataset

Even if it embeds stable topics, the Lorraine dataset is a very complex het-
erogeneous dataset as we have illustrated earlier. In a first step we restricted
our experiment to 198 clusters as beyond this number, the GNG approach went
to an infinite loop (see below). A first analysis of the results on this dataset
shows that most of the clustering methods have huge difficulties to deal with it
producing consequently very bad quality results, even with such high expected
number of clusters, as it is illustrated in Figure 2 by the very low CMP values.
It indicates the presence of degenerated results including few garbage clusters
attracting most of the data in parallel with many chunks clusters representing ei-
ther marginal groups or unformed clusters. This is the case for K-Means, IGNG,
IGNG-Fv1 methods and at a lesser extent for GNG method.

This experiment also highlights the irrelevance of Mean Square Error (MSE)
(or distance-based) quality indexes for estimating the clustering quality in com-
plex cases. Hence, the K-Means methods that got the lowest MSE practically
produces the worth results. This behaviour can be confirmed when one looks
more precisely to the cluster content and the cluster size distribution for the
said method, or even to the labels that can be extracted from the clusters in
an unsupervised way using the expectation maximization methodology that is
described in section 2. Hence, cluster label extraction permits to highlight that
the K-means method mainly produced a “garbage” cluster with very big size
that collects more than 80% of the data and attracts (i.e. maximizes) many
kinds of different labels (3234 labels among a total of 3556) relating to multiple
topics. Conversely, the good results of the IGNG-Fv2 method can be confirmed
in the same way. Indeed, label extraction also shows that this latter method
produces different clusters of similar size attracting semantically homogeneous
labels groups. In addition, those groups clearly figure out the main research top-
ics of the dataset that might also be identified by looking up to the different
PASCAL classification codes which have been initially associated to the data by
the analysts.

The CMP value for GNG approach was surprisingly greater for 136 clusters
than for 198 clusters. Thus, increasing the expected number of clusters is not
helpful to the method to discriminate between potential data groups in the
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Fig. 2. Clustering quality results of various algorithms on Lorraine heterogeneous
dataset

Lorraine dataset context. At the contrary, it is even lead the method to increase
its garbage agglomeration effect. For higher number of clusters the GNG method
does not provide any results on this dataset because of its incapacity to escape
from an infinite cycle of creation-destruction of neurons (i.e. clusters).

The only consistent behaviour is shown by SOM and IGNG-Fv2 methods.
The grid constrained learning of the SOM method seems to be a good strategy
for preventing to produce too bad results in such a critical context. Hence, it
enforces the homogeneity of the results by splitting both data and noise on the
grid. The best results on this complex heterogeneous dataset are obtained with
IGNG-Fv2 method. It is mainly because of the use of neighbourhood criteria for
limiting the selection of prototypes and most importantly because of the choice
of winner neuron based on the Kappa measure. It highlights the importance of
taking into account the combination of maximum number of the shared labels
with an upcoming data point, the maximum positive increment in F -measure
and also consider the distance between the current prototype and the new data
point.

We run a test for the cumulative Micro-Precision for IGNG-Fv2 and IGNG-
Fv3 as they are similar in nature and differ only in the measure of similarity
used. We found that as we increase the number of clusters beyond 198 clusters
the actual peak value for the two methods are reached. For the other IGNG
algorithms the results were not as efficient as for IGNG-Fv2 and IGNG-Fv3. For
these two algorithms we allow the label to be associated to more than one winner
neuron (cluster), the same label might thus belong to many different clusters.
So when we perform an analysis on the clusters obtained by the two approaches,
we see that there are 82 coherent clusters having more than 10 documents with
each cluster having < 50 labels associated to it i.e. on an average 5 labels per
document, significantly < 8.99 (global label average). From Figure 3, we observe
that for the IGNG-Fv2 the maximum CMP value occurs at 290 clusters (0.25)
while for IGNG-Fv3 the maximum CMP value occurs at 286 clusters (0.248).
They follow very similar trends for large number of clusters though IGNG-Fv3
reaches high CMP value more consistently than IGNG-Fv2. Thus, they are able
to much more appropriately cluster this highly complex dataset.
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Fig. 3. Cumulative Micro-Precision vs Total Clusters for IGNG-Fv2 & IGNG-Fv3
algorithms on Lorraine dataset

6 Conclusion

Neural clustering algorithms show high performance in the usual context of the
analysis of homogeneous textual dataset. This is especially true for the recent
adaptive versions of these algorithms, like the incremental neural gas algorithm
(IGNG). Nevertheless, this paper highlights clearly the drastic decrease of per-
formance of these algorithms, as well as the one of more classical non neural
algorithms, when a very complex heterogeneous textual dataset is considered
as an input. Specific quality measures and cluster labeling techniques that are
independent of the clustering method are used for performance evaluation. One
of the main contributions of our paper has been to propose incremental growing
neural gas algorithm exploiting knowledge issued from clusters current labeling
in an incremental way in combination with the use of distance based measures.
This solution led us to obtain very significant increase of performance for the
clustering of textual data. Our IGNG-Fv2 approach is the most stable approach
for the different datasets. It produces high quality clusters for each dataset un-
like the other neural and non-neural approaches which have highly varying on
the datasets. In our experiment the use of stable evaluation methodology has
certainly represented a key point for guaranteeing the success of our approach.
In the near future, we would like to enhance the approach by taking into con-
sideration all the data points for clustering. We also aim at finding appropriate
strategy to split the largest cluster and would like to adapt our enhanced label
maximization similarity principles to several other clustering algorithms.
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Abstract. In this paper the SOM is used in an exploratory analysis of
transfer phenomena from first language (L1) to the second language (L2)
related to word/lexical stress. The basic hypothesis tested is whether
the parameterization of the speech signal of the learner’s utterances by
standard signal processing techniques, such as Linear Predictive Coding
(LPC), used to encode the input of the network results in efficient cat-
egorization of speakers by the SOM. Preliminary results indicates that
the combination LPC+SOM is indeed able to produce well-defined clus-
ters of speakers that possess similarities regarding the transfer of stress
patterns among Brazilian students in learning English as a foreign lan-
guage.

Keywords: Self-organizing map, word/lexical stress, linear predictive
coding, U-matrix.

1 Introduction

Connectionist models have been playing an important role in language devel-
opment in several areas, such as lexical and pronoun acquisition, syntactic sis-
tematicity, language disorder modeling and prosodic analysis [16, 17, 20], just
to mention a few. Most of these works are based on feedforward or recurrent su-
pervised neural network architectures [4, 6, 8, 11], such as the MLP and Elman
networks, but self-organizing neural network models have also been used as the
primary linguistic model [9, 10, 13, 14, 18, 19].

For example, Li and co-workers [13, 14] simulated the lexical acquisition in
infants using a self-organizing neural network model. The main objective of
the research was to use the properties of topographic preservation of the Self-
Organizing Map (SOM) [12] to study the emergence of linguistic categories and
its organization throughout the stages of lexical learning. The model captured
a series of important phenomena occurring in children’s early lexical acquisition
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and had significant implications for models of language acquisition based on
self-organizing neural networks.

Also using the SOM, Gauthier et al. [10] studied whether and how children
could learn prosodic focus directly from input continuous speech. The authors
explored how the focus could be learned from acoustic continuous signals in
Mandarin, which were produced with co-occurring lexical tones and by various
speakers. The results of this study showed that neural networks can develop
unsupervised groupings of specific focus from the continuous dynamic speech
signal, produced by various speakers in various lexical tone conditions, which
may eventually lead to the acquisition of the prosodic focus.

Of particular interest to the current paper is the lexical stress, one of the most
important prosodic elements. The stress in English has multiple functions rang-
ing from an emphatic role, through the contrastive power to indicate syntactic
relationships between words and word parts, such as the oppositions of pairs of
noun and verb words, e.g. (OBject, obJECT), (DEsert, deSERT), (CONflict,
conFLICT), etc.

In Brazilian Portuguese (BP) there is a tendency the trisyllabic and poly-
syllabic nouns be paroxytone. Trisyllabic and polysyllabic verbs in BP suffer a
tendency to be oxytone. There is another trend: that of trisyllabic and polysyl-
labic adjectives in BP are paroxytone. According to some studies in the area of
phonology of interlanguage [1, 2, 3, 15, 21], the lexical stress is most responsible
for cases of language transfer, i.e. the influence of the predominant accent of L1
(first language) in L2 (second language) learning.

Despite some previous works involving the connectionist modeling of prosodic
features for language development and identification [4, 6, 10], to the best of
our knowledge, there has been no systematic investigation nor an exploratory
analysis of transfer phenomena from L1 to L2 related to word/lexical stress
by means of connectionist model, such as the SOM. Furthermore, we are not
aware of studies on the application of artificial neural networks to investigate
how the knowledge of Brazilian learners of English is organized in relation to the
acquisition of early L2 stress and transference of stress pattern from L1 to L2.

From the exposed, this article aims to investigate whether and how the SOM
network is able to build well-defined groups (clusters) of speakers that possess
similarities regarding the transfer of stress patterns among Brazilian students
in learning English as a foreign language. The ultimate goal of this research
is to use the SOM as a tool to evaluate the proficiency level of students. The
basic hypothesis tested is whether the parameterization of the speech signal of
the learner’s utterances by standard signal processing techniques, such as Linear
Predictive Coding (LPC), for encoding the input of the network is efficient in
the categorization of speakers.

The remainder of the paper is organized as follows. In Section 2 we briefly
describe the SOM, the corpus and the speech parameterization technique used
in this research. The results of computer simulations and comments about them
are presented in Section 3. The paper is concluded in Section 4.



A SOM-Based Analysis of Early Prosodic Acquisition 269

2 Methods

2.1 The Self-Organizing Map

In what follows, a brief description of the original SOM algorithm, introduced
by Kohonen [12], is given. Let us denote mi(t) ∈ R

p as the weight vector of
the i-th neuron in the map. After initializing all the weight vectors randomly or
according to some heuristic, each iteration of the SOM algorithm involves two
steps. First, for a given input vector x(t) ∈ R

p, we find the current winning
neuron, i∗(t), as follows

i∗(t) = argmin
∀i

{‖x(t) − mi(t)‖}. (1)

where t denotes the iterations of the algorithm. Then, it is necessary to adjust the
weight vectors of the winning neuron and of those neurons in its neighborhood:

mi(t + 1) = mi(t) + η(t)h(i∗, i; t)[x(t) − mi(t)], (2)

where 0 < η(t) < 1 is the learning rate and h(i∗, i; t) is a Gaussian weighting
function that limits the neighborhood of the winning neuron:

h(i∗, i; t) = exp
(
−‖ri(t) − ri∗(t)‖2

2σ2(t)

)
, (3)

where ri(t) and r∗i (t), are respectively, the positions of neurons i and i∗ in a pre-
defined output array where the neurons are arranged in the nodes, and σ(t) > 0
defines the radius of the neighborhood function at time t. To guarantee conver-
gence of the algorithm, η(t) and σ(t) decay exponentially in time according to
the following expressions:

η(t) = η0

(
ηT

η0

)(t/T )

and σ(t) = σ0

(
σT

σ0

)(t/T )

, (4)

where η0(σ0) and ηT (σT ) are the initial and final values of η(t) (σ(t)).
The incremental learning process defined by Eqs. (1 ) and (2) can often be

replaced by the following batch computation version which is usually faster.

1. Initialize the weight vectors mi, ∀i.
2. For each neuron i, collect a list of all those input vectors x(t), whose most

similar weight vector belongs to the neighborhood set Ni of neuron i.
3. Take as the new weight vector mi the mean over the respective list.
4. Repeat Step 2 a few times until convergence is reached.

Steps 2 and 3 of the batch SOM algorithm need less memory if at Step 2 one only
make lists of the input vectors x(t) at those neurons that have been selected for
winner, and at Step 3 we take the mean over the union of the lists that belong
to the neighborhood set Ni of neuron i.

In addition to usual vector quantization properties properties, the resulting
ordered map also preserves the topology of the input samples in the sense that
adjacent input patterns are mapped into adjacent neurons on the map. Due to
this topology-preserving property, the SOM is able to cluster input information
and spatial relationships of the data on the map.
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2.2 Input Corpus and Data Representation

The corpus of this research is composed of interview recordings with 30 students
(learners) of a higher education institution in the city of Fortaleza, federal state
of Ceará, aged between 18 and 25, all Brazilians, of both genders, who have
never traveled to an English-speaking country until the time of interview. It was
decided to allocate the 30 participants in five different levels of development,
using the criterion of length of exposure to language. Based on this fact, number
of classroom hours accumulated in the discipline of English language obtained
through interviews and questionnaires completed by participants was established
as a circumstantial criterion of classification and organization of the individuals.

The participants’ utterances were recorded in the software SoundForge (ver-
sion 5.0) in WAV audio files at a sampling rate of 44.1 KHz with 16-bit resolution,
single channel (mono). After this phase, each word representing the lexical item
to be investigated (e.g. object, separate, desert, etc.) was manually segmented
with the help of a phonetician using the same software.

As the speech signal cannot be directly used to feed the network because it
contains thousands of samples, which would make their processing very slow, and
also for being very noisy, which makes it extremely difficult to extract knowledge,
the solution is to represent it numerically with a set of coefficients obtained from
the application of mathematical techniques such as linear prediction coefficients
and mel-cepstral coefficients, with the speech signal divided into multiple frames.
Thus, the speech signal of the learners is numerically represented by coefficient
vector sets computed using the PRAAT software [5].

2.3 Speech Signal Parametrization (Feature Extraction)

The process of feature extraction of the speech signal is a crucial step in the
connectionist approach to pattern classification and clustering. This step consists
in applying standard signal processing techniques to the original speech signal in
order to convert it to more suitable compact mathematical representation that
permits the identification of a given utterance by a connectionist model.

Linear predictive coding (LPC) is a signal processing technique widely used for
the parametrization of the speech signal in several applications, such as speech
compression, speech synthesis and speech recognition [7]. Roughly speaking, the
LPC1 technique represents small segments (or frames) of the speech signal by the
coefficients of autoregressive (AR) linear predictors. For example, if the speech
signal has 500 frames, it will be parameterized by a set of 500 coefficient vectors.
To assure stationarity, each frame usually has a short duration (∼ 10-30ms).

The set of LPC coefficient (LPCC) vectors associated with the utterance of
a given word are then organized along the rows of a matrix of coefficients. For
1 LPC coefficients can extract the intensity and frequency of the speech signal. These

two characteristics are closely associated with the prosodic element “accent”. In
English, the stress is the junction of three perceptual factors interrelated: 1) quantity
/ length (measured in ms) related to the size of the syllable, 2) intensity (measured
in dB) related to amplitude and 3) height (measured in Hz), i.e., the value of higher
F0 in an utterance.
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example, if 500 coefficient vectors generated, one vector for each frame, the
corresponding matrix of coefficients has 500 rows. The number of columns of
this matrix is equal to order of the AR predictor used in the LPC analysis. The
matrices of coefficients are then used to train the SOM.

2.4 SOM Training and Data Visualization

Four simulations were ran with parameters that varied according to the need
to adjust to the phenomenon in question. The experiments were design in order
to verify whether the network could organize (discriminate) learners depending
on the transference of stress pattern from L1 to L2 are detailed below. When
applied to the problem of interest, the simulation process of the SOM and the
analysis of results of the training involves the following steps:

1. Startup and training (learning) of the network;
2. Evaluation of the quality of the map using the quantization error (QE) and

topological error (TE);
3. Generation of the U -matrix and labeled map after each training run;
4. Validation of clusters through the Davies-Bouldin index (DB);
5. Tabulation of the data for all outcome measures of network performance (the

quantization error and topological error).

All simulations were conducted using a two-dimensional hexagonal SOM, with
hexagonal neighborhood structure, Gaussian neighborhood function, random ini-
tiation of weights and batch learning. For all the experiments we simulated a
5×5 SOM, for 250 epochs (50 for rough training, 200 for fine tuning) with initial
and final neighborhood of 4 and 1, respectively. The maximum numbers of clus-
ters used by the DB index was set to 10. These specifications proved adequate
to treat the phenomena in question. The SOM toolbox [23] was used to run all
the experiments to be described.

As mentioned in the Subsection 2.3, every word uttered by a speaker generates
a coefficient matrix. In order to identify this speaker in a posterior analysis of the
results, it is necessary to label the data (row) vectors in that matrix as belonging
to that particular speaker. For this purposes, an alphanumeric label is appended
to each row vector in an additional column. Finally, the text files containing
labeled data related to the utterance of a specific word for all the speakers are
concatenated into a single file.

It is noteworthy that in addition to the label that identifies the speaker, other
labels can be associated with a given coefficient matrix of that speaker. For
instance, a second label can identify the linguistic category in which the word
pronounced is inserted. This Multi-Label (ML) Analysis is introduced in this
paper with the goal of determining which labeling is more appropriate to the type
of parameterization used. In other words, ML analysis can help inferring which
linguistic properties of the speech signal are encoded in the LPC coefficients.

Finally, the U -matrix [22] is used as a tool to visualize the clusters formed
during the learning process.
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Fig. 1. U-matrix revealing the formation of two major groups, one probably related to
speakers who transfer the stress pattern and the other to speakers who do not transfer

3 Results and Discussion

This simulation aims at investigating whether the SOM would be able to organize
the speakers in clusters, according to the process of transferring the stress pattern
of Brazilian Portuguese into English. All the 30 speakers were asked to utter 30
different English sentences containing situations where certain words of interest
act sometimes as a verb or as a noun. In this paper, we report only the results
obtained for the sentence ‘I object to going to a bar’, where the word of interest
is the verb ‘obJECT’. The full corpus is available to the interested reader upon
request.

Three types of graphics were generated after SOM training: U-Matrix, labeled
map (majority rule) and clustered map. The U-matrix and the clustered map
requires no labeled data to be constructed. The labeled map is more useful
for our purposes if labeled data are available since labels may provide a better
understanding of speakers’ organization as a function of their linguistic abilities.
It is worth pointing out that all the SOM computations are performed using
unlabeled data, i.e. it runs totally in an unsupervised way. The labels are used
only in the analysis of the results.

Two criteria were followed for labeling purposes. At first, the speakers’ labels
carry no information about errors in L2 stress, i.e., the transfer pattern of L1 to
L2. In this case, the data from a given speaker is labeled by a number indicating
his/her formal education level in L2 studies (i.e. period in an English course)
and his/her order in the interview process. For example, the label ‘608’ denotes
a speaker in the 6th semester ranked 8th in the list of individuals interviewed for
this research. The second labeling criterion added the characters “er” to the label
when a speaker misses the pronunciation, i.e. when he/she transfers the pattern
from L1 (Brazilian Portuguese) to L2 (English). For example, the label ‘203er’
denotes a speaker in the 2nd semester, ranked 3rd in the interview sequence and
who missed the pronunciation.
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Table 1. DB index values for different values of K

K = 2 K = 3 K = 2 K = 3 K = 2 K = 3 K = 2 K = 3 K = 10

0.4306 0.8494 0.6018 0.6100 0.7914 0.6484 0.7520 3.1829 11.3072

Fig. 2. Labeled map associated to the U-matrix shown in Figure 1, confirming the
expectation of two major groups of students, one containing mainly individuals who
transfer the BP stress pattern and one that does not transfer

Fig. 3. Clustered map suggesting the existence of two well-defined clusters, according
to Davies-Bouldin index
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Figures 1 to 3 illustrate the obtained results. Errors in the pronunciation of
this word occur when it is pronounced as a noun (OBject), instead of a verb
(obJECT). For each speaker, the speech signal segment corresponding to the
word “Object” is manually selected and parameterized by the LPC method. The
order of the AR predictor for this experiment was set to 10 and the duration of
each frame was set to 25ms.

The resulting U-matrix is shown in Figure 1. By analyzing this figure one
can clearly see the signs of formation of two clusters: a larger group (the one
with prototypes closer to each other - in blue in the figure) and a smaller group
(the one with prototypes more separated from each other - in different colors
in the figure). Based on the a priori analysis of the frequency of occurrence of
the labels provided by the phonetician, the larger group probably is the one
containing the individuals who transfer the primary stress. This hypothesis can
only be confirmed by analyzing the labeled map shown in Figure 2.

Neuron labeling is carried out by the majority rule, i.e. the neuron inherits
the label that occurs most frequently among the data vectors (LPCC vectors)
mapped to that neuron. The labeled map confirms the hypothesis of two groups
raised by the U-matrix. The neurons whose labels include the characters “er”
are located below the solid line separating the map into two parts.

It is worth noting that this clear separation of students was carried out in an
unsupervised way by the SOM using solely the information provided by the LPC
coefficients, i.e. the network organizes the students by similarity between their
feature (LPCC) vectors only. No a priori linguistic knowledge was used during the
feature extraction process nor the SOM training. Label information was indeed
provided by an expert but it is used only for the purpose of interpretation of the
trained map.

The clustered map in Figure 3 adds corroborating evidence to the results
provided by the labeled map and the U -matrix concerning the emergence of two
well-defined groups. Clustering of the SOM was carried out using the K-means
algorithm, varying K from 1 to 10, following the approach proposed in [23]. The
optimal value for K, according to the DB index, was Kopt = 2 (see Table 1).

4 Conclusion

The preliminary results presented in this paper can serve as a starting point
to demonstrate that an unsupervised neural network can be useful to visualize
the cluster formation of prosody-related linguistic phenomenon, in this case, the
transference of lexical stress. We started from the assumption that the param-
eterization of the speech signal through the LPC coefficients would be effective
in the categorization of speakers for prosodic features.

The segregation of the map in regions of well-defined clusters suggested that
the learners were grouped by similar phonetic-acoustic features. According to the
rounds of experiments, it was confirmed that the network discriminated speakers
according to prosodic features and organized them according to similarities on
these characteristics. Importantly, within these two large groups (the group that
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transfers the BP stress pattern and what does not transfer) there can be sub-
groups (subclusters) which, when closely examined in isolation, might reveal
rich information for the linguistic analysis of learner’s utterances as well as to
contribute to understanding the organization of the data set. We are currently,
developing experiments to analyze these subgroups.

Further tests are to be made and with more results, we hope to perfect the
proposed SOM-based methodology and use it in the future as a tool for deter-
mining the language proficiency level classification in foreign languages.
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Abstract. With electronic data increasing dramatically in almost all ar-
eas of research, a plethora of new techniques for automatic dimensionality
reduction and data visualization has become available in recent years.
These offer an interface which allows humans to rapidly scan through
large volumes of data. With data sets becoming larger and larger, how-
ever, the standard methods can no longer be applied directly. Random
subsampling or prior clustering still being one of the most popular solu-
tions in this case, we discuss a principled alternative and formalize the
approaches under a general perspectives of dimensionality reduction as
cost optimization. We have a first look at the question whether these
techniques can be accompanied by theoretical guarantees.

1 Introduction

Numerous data visualization techniques and dimensionality reduction tools have
been proposed in the last years which help humans to rapidly scan through large
volumes of data relying on the astonishing cognitive capabilities of humans for
visual perception [9,18,16,7,19]. These visualization tools offer flexible interfaces
to the data in diverse areas such as robotics, medicine, the web, biology, etc.,
where electronic data sets as well as their complexity and dimensionality have
increased dramatically in the past years. The problem of dimensionality reduc-
tion and data visualization is essentially ill-posed, such that a variety of different
methods which impose different constraints on the visualization task has been
proposed: Spectral dimensionality reduction techniques such as LLE [12], Isomap
[15], or Laplacian eigenmaps [3] rely on the spectrum of the neighborhood graph
of the data. They preserve important properties of this graph and lead to a
unique algebraic solution. Many of these methods rely on very simple affinity
functions such as Gaussians such that their results can be flawed. By using more
complex affinities, techniques such as Isomap [15] or maximum variance unfold-
ing [20] can partially avoid this problem at the prize of higher computational
costs. Nonlinear methods often have the drawback of local optima albeit showing
probably more appropriate results, see e.g. [6,16,5,19].

Visualization being an ill-posed problem, its formal evaluation is a matter of
ongoing debate. While an evaluation is eventually not possible outside the given

J. Laaksonen and T. Honkela (Eds.): WSOM 2011, LNCS 6731, pp. 277–287, 2011.
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context, a few formal evaluation measures of dimensionality reduction have been
proposed in the last years which quantify aspects which are universally important
for data visualization. Essentially, the evaluation measures quantify in how far
the notion of neighborhood coincides in the original data space and the projection
space, yielding explicit formulas by means of trustworthiness and continuity, the
co-ranking matrix, or an information retrieval point of view, for example [19,10].
This perspective even gives rise to new visualization techniques since it is possible
to directly optimize the given evaluation measure [19]. Naturally, the respective
formalization heavily biases the methods such that these evaluation measures
can only serve as one indicator for the appropriateness of the maps.

With data sets getting larger and larger, quite a few problems arise for di-
mensionality reduction methods: on the one hand, the techniques are no longer
feasible, their processing time often scaling quadratically with respect to the
number of data. In addition, it is often not reasonable at all to map all given
data points at once since the corresponding projection would be overloaded –
the projection plane being completely filled with points in the limit of large data
sets. Due to this fact, a simple heuristic is often used in such cases: a subset is
picked either randomly or based on general principles (such as clustering) and
this subset is subsequently projected with the dimensionality reduction tech-
nique (see e.g. [19]). If additional points are considered, they are projected using
out-of-sample extensions which often require additional effort (in some cases,
they are not directly given at all). While reasonable, this procedure is rather ad
hoc and it is not clear in how far it can be substantiated by formal guarantees.

In this contribution, we formalize dimensionality reduction as cost optimiza-
tion, including different popular techniques such as LLE, MDS, Isomap, or t-
SNE. Within this general framework, we formalize the principle of subsampling
and out of sample extensions as a way to find a dimensionality reduction map-
ping of the full data space by means of an implicit mapping. As an alternative,
we propose a general principle to extend dimensionality reduction tools to obtain
an explicit dimensionality reduction mapping with fixed prior shape. Dimension-
ality reduction with prior clustering can be seen as a special case of this setting,
more complex functions such as e.g. locally linear functions being possible. This
general framework has two consequences: we can generically consider out-of-
sample extensions, which are given explicitly assuming an explicit mapping, and
one can formally access the generalization ability of the models.

2 Dimensionality Reduction as Cost Optimization and
Out-of-Sample Extensions

First, we shortly review a few popular dimensionality reduction methods. and
put them into a general framework of cost optimization. In general, dimension
reduction maps data points R

N � xi → yi ∈ R
2. Corresponding distances are

denoted as dX (xi, xj) for the original manifold, and dE(yi, yj) for the projec-
tion space. Usually, dE is chosen as the Euclidean distance, while dX (xi, xj) is
sometimes picked in more general form.
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Multidimensional Scaling. Multidimensional scaling (MDS) preserves dis-
tances by minimizing EMDS =

∑
ij wij(dX (xi, xj) − dE(yi, yj))2 with Eu-

clidean distances, where the weights wij can be chosen appropriately, e.g.
wij = 1/dX (xi, xj) [9]. Optimization can take place by a gradient descent.

Isomap. Isomap [15] substitutes the Euclidean distance dX by the geodesic
distance as an approximation of the true manifold distance.

Locally Linear Embedding. Locally linear embedding (LLE) [12] first ex-
presses local topologies by reconstructing a data point by its local neighborhood
(denoted by i → j): minimize

∑
i(x

i − ∑
i→j wijx

j)2 with
∑

wij = 1. After-
wards, projections preserve the local linear relationships in a least squares sense:
minimize

∑
i(y

i − ∑
i→j wijy

j)2 with
∑

yi = 0 and YtY = n.

Laplacian Eigenmaps. Laplacian eigenmaps [3] also start with a local neigh-
borhood graph and weight pairwise connections wij using the heat kernel. Pro-
jection is based on the eigendirections of the smallest eigenvalues larger than 0
as computed in the generalized eigenvalue problem given by the corresponding
graph Laplacian. This is equivalent to minimizing

∑
i→j wijdE(yi, yj)2 with Eu-

clidean distance, under the constraint YtDY = 1 and YtD1 = 0, where D is
the degree matrix and Y refers to the matrix of coefficients.

Maximum Variance Unfolding. Maximum variance unfolding (MVU) [20]
also uses a neighborhood graph. It finds projections yi such that the variance of
the projection is maximized, i.e.

∑
ij dE(yi, yj)2 is maximum subject to a preser-

vation of neighbors, i.e. dE(yi, yj) = dX (xi, xj) for all neighbored points xi and
xj , and the normalization

∑
yi = 0. This can be reformulated as a convex prob-

lem by considering the variables (yi)�y instead. Further, an exact solution need
not exist such that, possibly, slack variables have to be introduced.

Stochastic Neighbor Embedding. Stochastic neighbor embedding (SNE)
[6] defines probabilities

pj|i =
exp

(
−dX (xi,xj)2

2σi

)
∑

k �=i exp
(

−dX (xi,xk)2

2σi

) and qj|i =
exp

(−dE(yi, yj
)2∑

k �=i exp (−dE(yi, yk)2)

with Euclidean distances as default. Then it optimizes the Kullback-Leibler di-
vergence ESNE = −∑

ij pj|i log pj|i
qj|i

, where bandwidths σi are determined based
on the so-called perplexity which determines the number of neighbors of a given
point. A gradient descent is used for the optimization.

T-distributed Stochastic Neighbor Embedding. t-distributed SNE (t-
SNE) [16] slightly modifies the SNE cost function and uses a distribution in
the embedding space with long tails, student-t. Its cost function is Et−SNE =∑

i

∑
j pij log

(
pij

qij

)
where pij = pj|i+pi|j

2n symmetrizes the conditional probabil-
ities, n denoting the number of data points, and
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qij =
(1 + dE(yi, yj)/ς)−

ς+1
2∑

k �=l(1 + dE(yk, yl)/ς)−
ς+1
2

is given by student-t with parameter ς = −1, for example. Optimization takes
place by means of a gradient method.

Neighborhood Retrieval Visualizer. The neighborhood retrieval visualizer
(NeRV) is derived from an information retrieval point of view, yielding, with a
specific choice of the neighborhoods, the symmetric cost term

ENeRV = −λ
∑
ij

pj|i log
pj|i
qj|i

− (1 − λ)
∑
ij

qj|i log
qj|i
pj|i

with probabilities as for SNE and a weighting parameter λ ∈ [0, 1] [19]. Simi-
larly, t-NeRV generalizes t-SNE by considering the alternative symmetric pair-
wise probabilities pij and qij just as t-SNE in the original and projection space
in the symmetric version of the Kullback-Leibler divergence.

A General View. These methods obey one general principle: characteris-
tics of the data x are computed and projections y are determined such that
the corresponding characteristics of the projections coincide with the character-
istics of x as far as possible, fulfilling possibly additional constraints or ob-
jectives to achieve uniqueness. I.e. we compute characteristics char(x), then
projections y are determined such that error(char(x), char(y)) becomes small.
Thereby, the methods differ in the way how data characteristics are defined and
computed and how exactly the similarity of the characteristics is defined and
optimized.

Table 1 summarizes the properties of the optimization methods under this
point of view. Naturally, the methods severely differ with respect to the way in
which optimization takes place: in some cases, the characteristics can be directly
computed from the data (such as distances), in others, an optimization step is
required (such as local linear weights). In some cases, the optimization of the
error measure can be done in closed form (such as for Laplacian eigenmaps), in
other cases, numerical optimization is necessary (such as for t-SNE).

3 Dimensionality Reduction for Large Data Sets

Many of the above methods depend on pairwise distances, such that their effort
scales quadratically with the number of data. This makes them infeasible for
large data sets. In addition, even linear techniques (such as e.g. presented in [4])
become infeasible for large data sets such that sublinear or even constant time
techniques are required. Further, it usually does not make sense to project all
data, the projection plane being almost completely filled with points. For this
reason, often, simple random subsampling is used and the projections of just a
subsample of the full data set are shown, see e.g. the overviews [18,19].
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How can these results of a random subsample be used to inspect the full data
set? One possibility is to add additional points on demand by means of out-of-
sample extensions of the techniques. The general view as presented above offers
a very easy way to describe the principle of out-of-sample extensions which are
built on top of fixed dimensionality reduction mappings of a subset S of all
data: Assume, the projections yi of data xi ∈ S are fixed. A further point x
can be mapped to coefficients y by optimizing error(char(x), char(y)) whereby
the coefficients yi for elements in S are kept fixed. Depending on the method at
hand, an explicit algebraic solution or numeric optimization are possible.

Assuming a deterministic optimization method for simplicity, this is essen-
tially a way to determine a function of the full data space to the projection
space f : R

N → R
2 by means of an implicit formula: a data point x is mapped

to the coefficients which minimize the cost function as specified above. Depend-
ing on the method at hand, f might have a complex form and its computation
might be time consuming, albeit properties such as piecewise differentiability
and smoothness follow from the smoothness of the cost function.

Explicit Dimensionality Reduction Mapping

We can avoid the computational complexity and complex form of such implicit
function f by the definition of an explicit dimension reduction mapping f : R

N →
R

2, xi → yi = f(xi) with priorly fixed form. The formalization of dimensionality
reduction as cost optimization allows to immediately extend the techniques to
this setting: function parameters can be optimized according to the objective
as specified by the respective dimensionality reduction method. That means, we
fix a parameterized form fW : R

N → R
2 with parameters W . This function

can be given by a linear function, a locally linear function, a feedforward neural
network, etc. Then, instead of coefficients yi, the images of the map fW (xi) are
considered and the map parameters W are optimized such that the costs

error(char(x), char(fW (x)))

become minimal. This principle leads to a well defined mathematical objective
for the mapping parameters W for every dimensionality reduction method as
summarized above. The way in which optimization takes place is possibly dif-
ferent as compared to the original method: while numerical methods such as
gradient descent can still be used, it is probably no longer possible to find closed
form solutions for spectral methods.

We can train a dimensionality reduction mapping for only a random sub-
sample S of the data, providing an explicit out-of-sample extension for all data
points by means of the explicit mapping. Hence this technique offers a constant
time inference of a dimensionality reduction mapping provided S has fixed size.

In the literature, a few dimensionality reduction technologies with explicit
mapping of the data can be seen as instantiations of this principle: Locally
linear coordination (LLC) [14] extends locally linear embedding (LLE) by as-
suming locally linear dimensionality reduction methods, e.g. local PCAs, and
glueing them together adding affine transformations. The additional parameters
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are optimized using the LLE cost function. Parameterized t-distributed stochas-
tic neighbor embedding (t-SNE) [17] extends t-SNE towards an embedding given
by a multilayer neural network. The network parameters are determined using
back propagation on top of the t-SNE cost function.

Supervised Locally Linear t-SNE Mapping

Here, we include one preliminary example to demonstrate the feasibility of the
approach. We use t-SNE as dimensionality reduction method, and a locally linear
function fW induced by prototypes. We start with locally linear projections of
the data obtained by means of a supervised prototype based method, in our case
matrix learning vector quantization with rank two matrices [13,4]. These give
us locally linear projections xl �→ pk(xl) = Ωkxl − wk with local matrices Ωk

and prototypes wk. Further, we obtain responsibilities rlk of mapping pk for xl,
given by the receptive fields. Then a global mapping can be defined as

fW : xl �→ yl =
∑

k

rlk(Lk · pk(xl) + lk) ,

using local linear projections Lk and local offsets lk to align the local pieces. The
parameters Lk and lk are determined using the t-SNE cost function.

Obviously, since we start from a supervised clustering, the resulting function
is biased towards good discriminative properties. We compare the results of this
technique to several state of the art supervised dimensionality reduction tools as
reported in [19] on three benchmarks from [1,8] (see also [19]). For all settings,
we use only a fraction of about 10% for training, extending to the full data set
by means of the explicit mapping (unlike the results as reported in [19] which
evaluate on a subset of the data only). The obtained classification accuracy by
means of nearest neighbor classification is reported in Fig. 1, showing that the
method leads to excellent results.
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Dimensionality Reduction and Clustering

Sometimes, large data sets are treated by prior clustering instead of random
subsampling, whereby clusters are defined by receptive fields of prototypes. Sub-
sequently, the cluster centers are projected to low dimensions. This procedure
can be seen as a special case of the general framework as proposed above: for
clustering, the function fW is locally constant, whereby, depending on the type
of clustering, the local pieces are given by receptive fields of prototypes; hence,
assuming cluster centers wi and projections y(wi), the function has the form

fW (x) �→ y(wi) where ‖x − wi‖2 is minimum.

Usually, the clustering is done separately from the dimensionality reduction.
The general view as introduced above proposes a slightly optimized version:
rather than optimizing only the projections y(wi), also the cluster centers could
be adapted according to the general costs. One drawback of this proposal is
given by the fact that assignments of data points to clusters are discrete such
that simple gradient techniques are no longer applicable. A test of alternative
optimization technique in this setting is the subject of ongoing work.

4 Generalization Ability

By treating dimensionality reduction as cost optimization, it is possible to extend
dimensionality reduction techniques to large data sets based on a subsample S:
either in terms of an implicit embedding function induced by posterior out-of-
sample extensions, or in terms of an explicit embedding function with fixed form
which parameters are optimized using S. In both cases, we obtain an embedding
function f based on S which extends to arbitrary points x in terms of an implicit
or explicit mapping. This allows the application to large data sets since the
learning of the mapping itself is constant time, assuming a fixed size of S.

Now the question occurs whether this procedure can be substantiated by
mathematical guarantees. The essential property which should be guaranteed is
the generalization ability: assumed the mapping is satisfactory for the training
set S, do we have any guarantees that it behaves well for arbitrary x? taken
according to the same probability as S? That means we have to ensure that
the quality measure for all data is good assumed it is good for a given finite
subsample used to determine the mapping parameters.

Recently, some work on a formal evaluation of dimensionality reduction has
been proposed [10,19]. These evaluation measures rely on the measurement of
local neighborhoods and their preservation while projecting the data. As such
they are not directly suited as evaluation measures for a function since they rely
on a finite sample only. Further, it is not clear whether they can adequately
capture essential properties of a mapping f , see e.g. for problems when they are
used to evaluate clustering [11].

As pointed out in [10], one objective of dimensionality reduction is to preserve
the available information as much as possible. In consequence, the possibility to
reconstruct the points xi from their projections yi can act as valid evaluation
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measure. A drawback of this evaluation measure is that, usually, an explicit
mapping and the reconstruction of data are not given for dimensionality reduc-
tion techniques which offer embedding coordinates for a finite data set only.
Assuming a dimensionality reduction mapping f : X → E is given, an explicit
formalization of this error measure becomes possible: the reconstruction error is

E(P ) :=
∫
X
‖x − f−1(f(x))‖2P (x)dx

where P defines the probability measure according to which the data x are
distributed in X and f−1 constitutes an approximate inverse mapping of f , an
exact inverse in general not existing. Thus, this objective allows us to evaluate
dimensionality reduction mappings. In practice, of course, the full data manifold
is not available, but a finite sample set only. In this case, the empirical error can
be computed

Ên(x) :=
1
n

∑
i

‖xi − f−1(f((xi)))‖2

for a given data set S = {x1 . . . , xn}. Now, a good generalization ability of a
dimensionality reduction method can be formalized as the empirical error Ên(x)
being representative for the true error E(P ) for the dimensionality reduction f .

This setting can be captured in the classical framework of computational
learning theory, as specified e.g. in [2]. We can adapt Theorem 8 from [2] to our
setting: We consider a fixed function class

F : X → E
from which the dimensionality reduction mapping is taken. Note that, in every
case as specified above, the form of the embedding function can be fixed: either
it is given explicitly, e.g. as locally linear function or by means of a clustering, or
it is given implicitly by means of a local optimum of a cost function. We assume
without loss of generality, that the norm of the input data and its reconstructions
under mappings f−1 ◦ f , f−1 denoting the approximate inverse of f ∈ F , are
restricted (scaling the data priorly, if necessary), such that the reconstruction
error is induced by the squared error, which is a loss function with limited
codomain

L : X × X → [0, 1], (xi, xj) �→ ‖xi − xj‖2

Then, as reported in [2] (Theorem 8), assuming i.i.d. data according to P , for
any confidence δ ∈ (0, 1) and every f ∈ F the following holds

E(P ) ≤ Ên(x) + Rn(LF ) +

√
8 ln(2/δ)

n

with probability at least 1 − δ where

LF := {x �→ L(f−1(f(x)), x) | f ∈ F}
and Rn refers to the so-called Rademacher complexity of the function class.
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The Rademacher complexity constitutes a quantity which, similar to the Vap-
nik Chervonenkis dimension, estimates the capacity of a given function class. We
do not include its exact definition, rather, we refer to [2]. Note, however, that the
Rademacher complexity of reasonable function classes (such as piecewise con-
stant, piecewise linear functions, or polynomials of fixed degree) can be limited
by a term which scales as n−1/2, as long as the function class does not have
infinite capacity e.g. due to an unlimited number of free paramters (e.g. polyno-
mials with unbounded degree). See [2] for structural results and explicit bounds
for e.g. linear functions, and e.g. [13] for explicit bounds on piecewise constant
functions as induced by prototype based clustering. This result implies that the
generalization ability of dimensionality reduction mappings is usually guaran-
teed since the Gaussian complexity of the class LF can be limited for reasonable
choices of the mapping function F . It remains a subject of future research to
find explicit and good bounds. for concrete F as occur in standard methods.

5 Conclusion

We have introduced a general way to formalize dimensionality reduction which
includes different general techniques to extend dimensionality reduction to large
data sets: subsampling and out-of sample extensions by an implicit mapping,
the training of an explicit mapping based on a subsample, or clustering and
projection as a special case thereof. We demonstrated the feasibility for one
preliminary example, and included first steps towards a formalization of the
generalization ability of these approaches.
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Abstract. Several techniques have been put forward to describe char-
acteristics of a Self-Organizing Map by depicting them on its output
grid. These techniques form artificial landscapes, which are also called
spatializations. Until now, relatively few methods exist for displaying
distinct input vectors on the output grid. Those who exist either do not
show patterns in the distribution of the input vectors or do not observe
the spatial metaphors implied by the spatializations. This paper pro-
poses an attempt to fill this gap. An approach is introduced where the
input vector placement can be influenced by two parameters. The place-
ment technique is tested with two data sets and analyzed through visual
inspection. The results show that the approach can both indicate pat-
terns in the input data as well as observe the spatial metaphors of the
spatializations. It thereby allows for a meaningful combination of these
visualization forms.

Keywords: Self-Organizing Maps, Input Vector Placement, Spatializa-
tion, Spatial Metaphor.

1 Introduction

Self-organizing maps (SOMs) are neural networks which are frequently used for
the clustering and linear quantization of large, high-dimensional data sets [1].
An outstanding characteristic of a SOM is its ability to display its results visu-
ally. Since a topological order is defined over the codebook vectors, they can be
depicted as cells of an output grid. Thus a SOM allows that after the computa-
tional part of the data mining a visual analysis of the results can take place. This
is one of the main reasons why numerous tools and techniques for visualizing
various characteristics of a SOM have been developed. Mostly, they display an
additional color coded value on the cells of the SOM output grid. For example, a
u-matrix shows the distances between the various codebook vectors [2]. Dark val-
ues indicate large average distances between adjacent codebook vectors, bright
values stand for small distances. Such small distances between codebook vectors
indicate clusterings of input vectors. When a u-matrix is displayed, the bright

J. Laaksonen and T. Honkela (Eds.): WSOM 2011, LNCS 6731, pp. 288–297, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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and dark values often resemble valleys and hills1. Clusters are then expected to
appear in the valleys, which are separated by hills. Therefore, a u-matrix also is
a spatialization.

A spatialization is a graphic representation of information using spatial meta-
phors. Such a spatial metaphor is a cognitive relationship between a spatial and
a non-spatial property [3,4]. Spatial metaphors have proven to be intuitively un-
derstandable [5]. When a landscape metaphor is used, information is presented in
the form of a 2- or 3-dimensional landscape. A landscape metaphor is composed
of several other spatial metaphors, such as the distance-dissimilarity metaphor.
This metaphor obeys the first law of geography that ”everything is related to
everything else, but near things are more related than distant things” [6]. In the
case of 3-dimensional landscapes, such as the u-matrix, also a height-metaphor is
employed, since the information is communicated through the visual impression
of a relief. But also other SOM visualization techniques like component planes
[1] or p-matrices [7] make use of such metaphors in order to communicate their
information. The SOM output grid itself is an example for a 2D-landscape, since
it maps codebook vectors which are similar in input space close together on
the output grid [8,9]. These characteristics have led to an increased attention
of the SOM in the GIScience Community. Several publications deal with the
application of methods for spatial analysis on SOMs [10].

Whilst much effort has been undertaken to develop visualization techniques
to describe the characteristics of a SOM and therefore its underlying data set,
relatively few attempts have been made to depict the input data vectors on the
output grid. However, for several applications it is helpful to provide a link back
to the input data. For example, SOMs can be used to visualize large archives of
data like, e.g., scientific papers [11]. In such archives, similar papers are mapped
to similar Best Matching Units (BMUs). Such library SOMs often use u-matrices
to make it easier for the user to find clusters of codebook vectors. This approach
is less useful when the input vectors, i.e., the scientific papers, are not mapped
onto the output grid. Often this limitation has been overcome by instead linking
the codebook vectors back to the input data or to other visualization forms.

In section 2, several prior attempts to visualize input vectors on a SOM output
grid are introduced. In section 3, an approach is presented to position input
vectors in such a way that they conform to the landscape metaphor of a SOM.
This approach is tested against two data sets by a visual inspection of their u-
matrices. The tests are presented in section 4 and discussed in section 5. Section
6 concludes the paper.

2 Related Works

One of the earliest attempts to visualize input vectors on a SOM output grid
was the usage of a SOM with more codebook vectors than input vectors [9].
1 Please note that this assignment of gray values is reversed in some u-matrices. Such

a color coding is also used for grayscale geographic maps. For reasons of legibility,
in this paper valleys are bright and hills are dark.
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The training of the SOM would cause some of the codebook vectors to adopt
the values of one of the input vectors, whilst some codebook vectors would not
be the BMU for any input vector. These empty grid cells would then indicate
inter-vector distances. This attempt has the obvious disadvantage of not being
compatible with other visualization techniques. Also, both the clustering and
linear quantization capability of the SOM get lost.

In [11], the input vectors are placed randomly in the vicinity of their BMU.
This placement technique has the advantage that the depiction of the input
vectors complies with the spatial metaphors used by other visualization tech-
niques. When, e.g., a BMU is located in the valley of a u-matrix, also the input
vectors are located in this valley. They are quickly visible as members of the
corresponding cluster. However, since the placement of the input vectors is ran-
dom, inter-input vector distances are meaningless, thus the first law of geography
is violated. The placement therefore might trick an analyst into believing that
there exist relationships between input vectors which actually do not exist.

A third input vector placement method is the weighted response placement
[12]. In this technique, not only the BMU but all codebook vectors are considered
in the process of determining a position for a distinct input vector. For a m*n-
SOM, the position px of a distinct input vector x is

px =
m∑

i=1

n∑
j=1

Ri,j(x)oi,j (1)

where oi,j is the position of a codebook vector wi,j on the output grid. This
position is the center of the output grid cell associated with the codebook vector.
Ri,j(x) is the response of wi,j to x and is given by

Ri,j(x) =
g(qi,j)Nc(i, j)∑m

k=1

∑n
l=1 g(qk,l)Nc(k, l)

, i ∈ [1, m], j ∈ [1, n] (2)

where c is the BMU and Nc(j) is a neighborhood function around c. The pur-
pose of the neighborhood function is to indicate which codebook vectors should
be considered. g(qi,j) is a weighting function decreasing monotonically in the
interval between 0 and 1 and qi,j is the quantization error for a codebook vector
wi,j . The weight function indicates to which degree the codebook vectors should
be included into the calculation. Both the neighborhood and the weighting func-
tion will decrease with increasing distance from the BMU.

In [12] the neighborhood around the BMU was kept very broad and included
codebook vectors from all over the grid in the calculation process. Although in
the result the inter-input vector distances were preserved in the output space and
patterns of the input data became visible, the input vectors were often positioned
between several well matching units. When this approach was combined with a
u-matrix, input vectors were often not placed in the valleys or ridges associated
with their respective BMUs, thus hurting the landscape metaphor.

This attempt showed similarities to other methods from multi-dimensional
scaling like Sammon’s Mapping [13], where high-dimensional vectors are mapped
onto 2-dimensional output grids.
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3 Outline of the Input Vector Placement Approach

The previous section conveys that there is yet no technique which positions input
vectors in such a way that that their depictions form a coherent spatialization
with other techniques as, e.g., u-matrices and at the same time indicate patterns
in the distribution of input vectors. Therefore the aim of this section is to find
a method to position the vectors in such a way that (a) the relational distances
amongst them are mostly preserved but (b) they will not be placed far away
from their respective BMUs on the output grid.

Since the approach from [12] allows for the alteration of both its neighborhood
and weighting function, not a completely new method was developed. Instead,
various parameter combinations of the weighted response placement approach
with different data sets were tested and the results were analyzed visually.

Before the analysis began, some slight alterations of the approach were per-
formed. The weighting function was changed to

g(x, wi,j) = exp (−‖ x − wi,j ‖
r

)2 (3)

for an input vector x and a codebook vector wi,j . This applies a parameter
r which can be altered by the analyst. Small values of r will lead to smaller
weights for codebook vectors which are far away from the input vectors, while
large values will cause that they receive larger weights.

Maybe even more crucial is the definition of the neighborhood function. The
attempt presented here is to either include a codebook vector completely or not
at all. This is achieved by including the best matching unit and the units in its
surrounding. The neighborhood function is therefore defined as

Nc(i, j) =

{
1, if wi,j ∈ Nhc(k)
0, else

(4)

where Nhc(k) is the set of codebook vectors around the BMU c to be con-
sidered. The parameter k is used to control how many neighbors to include.
For k = 0, only the BMU is considered. For k = 1, the BMU and its immedi-
ate neighbors are used. For k = 2, also the immediate neighbors of the BMU’s
immediate neighbors are included, and so on.

4 Tests

For testing, the input vectors were not merely placed on SOM output grids, but
on u-matrices. There are two reasons for doing this: First, since the u-matrix
employs a height metaphor, the spatialization is an extension of the SOM grid
landscape. Any placement which forms a coherent spatialization with the u-
matrix will do so as well with the plain output grid. Second, in this manner the
point clusterings can be compared to the clusterings indicated by u-matrix val-
leys. The test itself consisted of examining whether (a) the input vector position
distributions formed meaningful patterns and (b) the placement of the input
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Fig. 1. Various placements of input vectors of the Chainlink data set on a u-matrix for
its SOM

vectors corresponded to the landscape metaphor of the u-matrix. This would be
the case when input vector clusters would be placed in u-matrix valleys.

The placement technique was tested against two different SOMs: one with
artificial data, one with real-life data. In both cases, the input vector values were
normalized onto the interval between 0 and 1 before the SOMs were created. Both
SOMs have hexagonal topologies. The sizes of the grids were chosen such that the
total number of codebook vectors would be roughly about 5 ∗√n where n is the
number of input vectors. The ratio between the grid dimensions corresponds to
the ratio between the two largest eigenvectors in the input data. This procedure
is also applied in the SOM toolbox [14]. By altering the parameter r of the weight
function and the parameter k of the neighborhood function, various position sets
for the input vectors were derived.

The first SOM was created for the artificial Chainlink data set from the Fun-
damental Clustering Problem Suite (FCPS) [15]. Here, the input vectors are
arranged as two clearly separated, but not linearly separable clusters. These two
clusters form two intertwining rings in three-dimensional space. The SOM for
this data set is a 13*12 SOM. The results for neighborhoods up to k = 4 and
weights up to r = 0.3 are displayed on a u-matrix in figure 1.

The u-matrix shows explicit hills and valleys. The input vectors are mostly
placed in those valleys. When the neighborhood k is set to 1, only the immediate
topological neighbors of the BMU are considered and the input vectors will be
placed in the area around the codebook vector. When r is increased, the position
values of the input vectors with the same BMU become very similar. The third
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Fig. 2. Various placements of input vectors of the WHO data set on a u-matrix for its
SOM. Circles are drawn around the input vectors of Ghana and Sudan.

depiction in the top row almost indicates the positions of the codebook vectors—
at least for those which are not too close to the border of the grid. The placements
in the bottom row show the effect of a large neighborhood value. In all depictions
of that row, some of the input vectors are not only placed on a u-matrix hill, but
seem to merge with input vectors from other valleys. Whilst this indicates that
the clusters form rings in input space, it does not harmonize with the landscape
laid out by the u-matrix. Also, note that in the most-right depictions the input
vectors seem to be drawn to the center of the map. This is because the centroid
of the included codebook vectors shifts towards the map center for increased
values of k.

Arguably the best placements are given by the four depictions with k ∈ [2, 3]
and r ≤ 0.2. In these depictions, the input vectors are clearly placed in the
valleys of the u-matrix and at the same time form patterns.

The second set consists of data from the World Health Organization (WHO)
[16]. It is comprised of 192 states with a total of 10 variables (population growth
rate, total population, total urban population, male child mortality, female child
mortality, cases of tuberculosis, male adult mortality, female adult mortality,
neonatal mortality, and average life expectancy). The SOM for this data set is a
14*5 SOM. The results for neighborhoods up to k = 4 and weights up to r = 0.3
are displayed on a u-matrix in figure 2.

The u-matrix shows two salient valleys, one in the southeast (valley 1) and
one to the west (valley 2). About half of the input vectors have been mapped to
valley 1. It consists mainly of European states, but also of several states from
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South America, Eastern Asia, and the Middle East. 23 African states plus Haiti
were placed in valley 2. Whilst not as clearly designated as a valley by the u-
matrix, the vector placement shows a third big accumulation to the northwest of
valley 1. The input vectors clustered in this valley (valley 3) are a blend of states
from Eastern Europe, several small island states, Southern Asia, and Egypt.

Again, for k = 1 the vectors are placed close to the positions of their BMUs.
For r = 0.1 the input vector placements do not show patterns—the only remark-
able event is the alignment of the input vectors from valley 3 towards valley 1.
The several individual cases scattered all over the map do not change their po-
sitions. In all depictions, the two eastern clusters meet when k = 3. This also
means that the input vectors are not located in their respective valleys, but are
placed on top of hills, thereby violating the rules of the landscape metaphor.

In valley 1 the input vectors form sub-clusters. Input vectors placed in the
northern part of valley 1 consist mainly of European states. This north-south
divide is visible best for k = 1 or r ≤ 0.2. In some of the depictions (best visible
for k = 3 and r = 0.2) also a divide between the eastern and western part
becomes apparent. In the eastern part, mainly states from Western Europe can
be found, whilst the western part consists of many Eastern European states.
Between valley 2 and valley 3 a large plain is situated which is separated by a
chain of hills from the valleys. Distinct input vectors which are placed on the
hills between the plain and valley 3 for k = 1 are located closer to either the
plain or valley 3 when k is increased. In this context, note the two input vectors
close to the bottom of the map (Ghana and Sudan, emphasized in figure 2 by
circles) which lie in the middle between the plain and the valley, but show a
tendency towards the plain for k ≥ 2 and r ≥ 0.2. The input vectors placed
in valley 2 do not show any distinguishable patterns, but clearly form a cluster
within the valley for r ≥ 0.2 and k ≥ 1.

It is also apparent that the patterns of the input vectors in valley 1 seem to
dissolve for k = 4. For this increased neighborhood, the clusters start to merge
and to move away from the valley. Also, the input vectors wander away from the
borders to the middle of the map.

Arguably the best depiction is delivered by the map with k = 2 and r = 0.2.
Here, input vectors with BMUs within the same valley form sub-clusters, but
are not placed on hills or get mixed up with input vectors with BMUs from
other valleys. Also, most hills are actually void of input vectors. Therefore, the
landscape metaphor of the u-matrix is observed here.

5 Discussion of the Results

From these results, it can be seen that already small neighborhoods can cause
placements of input vectors on hills and therefore violations of the landscape
metaphor. A neighborhood of k = 1 will cause the input vectors to be placed
around its BMU. The vectors will only be comparable to vectors with the same
BMU, but not to others, even when their BMUs are topological neighbors.
One reason for this is that of the seven codebook vectors which are used for



Considering Spatialization Aspects When Positioning Input Vectors 295

the calculation of the position of an input vector, only four are used for input
vectors from adjacent BMUs.

When k = 2, 19 codebook vectors are used for the position calculation, and 14
of them are also used for the calculation of an input vector with a neighboring
BMU. This ratio converges to 1 with an increasing k, but the amount of shared
codebook vectors for k = 2 is sufficient to show similarities or dissimilarities
between input vectors from different BMUs.

Another issue is the centering effect: When the neighborhood is increased,
input vectors tend to be placed at the center of the map. A way to prevent this
might be to assign extra weights to codebook vectors at the borders. However,
this would also lead to an unjustifiedly strong accentuation of those codebook
vectors and therefore distort the input vector distribution. Due to these findings,
a neighborhood of k ∈ [2, 3] seems preferable.

When r is increased, the calculated positions for input vectors with the same
BMU become similar. This effect is alleviated when the neighborhood k is also
increased. The distribution of the input vectors starts to show patterns then.
However, some of the input vectors with BMUs placed in valleys are then po-
sitioned on hills. A striking difference in the performances of the two data sets
is that for r = 0.1 the SOM for the Chainlink data showed a clear alignment
of the input vectors, whilst except for the input vectors in valley 3 in the SOM
for the WHO data set input vectors with different BMUs did not seem to form
some sort of pattern. Patterns most clearly emerged for r = 0.2.

For the Chainlink data set, the actual pattern (two intertwined rings) was
known and clearly distinguishable. Therefore it could easily be seen that the in-
put vectors aligned in a way that resembled this pattern from input space. Doing
so was harder for the WHO data set, because the underlying distribution was not
known. However, also this data set showed patterns: Inter-differences between
distinct input vectors or groups of vectors became apparent and sub-clusters lo-
cated in valleys were indicated. Also, the placement of input vectors emphasized
valley 3, which would not have been so easily to distinguish by merely inspecting
the u-matrix. The distances between different input vectors or groups of input
vectors have proven here to tell about the underlying distribution in input space.
This means that for certain parameter combinations the spatial metaphor was
obeyed and applied successfully. Of course, the parameter combinations which
worked best here might not be the optimal solutions for other SOMs. The trial of
other combinations is therefore encouraged; especially when one is dealing with
data sets which are very different from those presented in this work.

6 Conclusion

In this paper an approach was presented to position input vectors on a SOM
output grid in such a way that they can form a coherent spatialization with other
SOM visualization techniques. This approach rests upon the weighted response
placement [12]. The aim was to make alterations to this placement technique so
that the placement of the input vectors was parameterized through a neighbor-
hood function and a weighting function. These functions determine the influence
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of the various codebook vectors on the calculation of a distinct input vector’s
position. Different parameter combinations were applied and the input vectors
were placed on the u-matrices of SOMs for two different data sets, one with
artificial and one with real-life data. The resulting placements were inspected
visually. It was shown that with a considerate choice of parameters combina-
tions of the two visualization forms could be achieved in which (a) the input
vector distributions on the output grid formed patterns and (b) input vector po-
sition clusters were positioned in the valleys of u-matrices. This means that the
landscape metaphor employed by the u-matrix and consequently by the SOM
output grid was observed. In some cases, the explanatory power of the u-matrix
was complemented by the input vector placements, since the distributions also
allowed for the visual detection of sub-clusters within u-matrix valleys.

It should be noted that inter-input vector distances are not necessarily pre-
served. Especially when there are non-linear relationships in the data, codebook
vectors with similar values might be placed on faraway places on the map. Since
only topologically close codebook vectors are considered for the computation,
the relationship between similar input vectors can not be seen when their BMUs
are situated at differing regions of the grid. If, however, similar codebook vectors
are topologically close, different input vectors are placed at different locations
and dissimiliarities between them become visible in the form of spatial distances.

Until now, only a visual analysis of the results has been performed. Since these
results were promising, it seems appropriate to continue with a systematic study.
To do so, special measures are needed in order to quantify the performance of
various parameter combinations. These could include distances between input
vector positions, comparisons between distances in input and output space, or
the u-height at an input vector’s position.

The spatialization-aware placement of input vectors allows for the application
of algorithms for spatial analysis. For instance, buffers can be drawn around in-
put vectors to detect similar data items. Also, other visualization techniques
than u-matrices might be used. When the vector placement technique is com-
bined with, e.g., component planes, this could serve for the estimation of missing
values in the input data. These examples form only a part of potential future
work.
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Abstract. Aircraft engines are designed to be used during several tens
of years. Ensuring a proper operation of engines over their lifetime is
therefore an important and difficult task. The maintenance can be
improved if efficient procedures for the understanding of data flows pro-
duced by sensors for monitoring purposes are implemented. This pa-
per details such a procedure aiming at visualizing in a meaningful way
successive data measured on aircraft engines and finding for every pos-
sible request sequence of data measurement similar behaviour already
observed in the past which may help to anticipate failures. The core of
the procedure is based on Self-Organizing Maps (SOM) which are used
to visualize the evolution of the data measured on the engines. Rough
measurements can not be directly used as inputs, because they are in-
fluenced by external conditions. A preprocessing procedure is set up to
extract meaningful information and remove uninteresting variations due
to change of environmental conditions. The proposed procedure contains
four main modules to tackle these difficulties: environmental conditions
normalization (ECN), change detection and adaptive signal modeling
(CD), visualization with Self-Organizing Maps (SOM) and finally mini-
mal Edit Distance search (SEARCH). The architecture of the procedure
and of its modules is described in this paper and results on real data are
also supplied.

1 Introduction

During the flights, some on-board sensors measure many parameters related to
the behavior (and therefore the health) of aircraft engines. These parameters
are recorded and used at short and long terms for immediate action and alarm
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generation, respectively. In this work, we are interested in the long-term moni-
toring of aircraft engines and we want to use these measurements to detect any
deviations from a “normal” behavior, to anticipate possible faults and to facili-
tate the maintenance of aircraft engines. This work presents a tool that can help
experts, in addition to their traditional tools based on quantitative inspection
of some relevant variables, to easily visualize the evolution of the engine health.
This evolution will be characterized by a trajectory on a two-dimensional Self-
Organizing Map. Abnormal aging and fault will result in deviations with respect
to normal conditions. The choice of Self-Organizing Maps is motivated by several
points:

– SOMs are useful tools for visualizing high-dimensional data onto a low-
dimensional grid;

– SOMs have already been applied with success for fault detection and predic-
tion in plants and machines (see [8] for example).

This article follows another WSOM paper [3] but contains necessary material
(and possibly redundant) to be self-contained. It is organized as follows : first, in
Section 2, the data and the notations used throughout the paper are presented.
The methodology and the global architecture of the proposed procedure are
described in Section 3. Each step is defined and results on real data are given in
Section 4.

2 Data

Measurements are collected on a set of I engines. On each engine i ∈ {1, . . . , I},
ni measurements are performed successively flight after flight; there is thus no
guarantee that the time intervals between two measures are approximately equal.
Each observation is denoted by Zij , where i ∈ {1, . . . , I} is the engine number
and j ∈ {1, . . . , ni} is the flight number.

Each vector Zij contains two kinds of variables: those which are strictly
related to the behavior of the engine (fuel consumption, static pressure, ...),
and those which are related to the environment (temperature, altitude, ...). Let
the p engine variables be denoted by Y 1

ij , . . . , Y
p
ij and the q environmental vari-

ables by X1
ij , . . . , X

q
ij . Each observation is therefore a (p + q)-vector Zij , where

Zij = [Yij , Xij ] =
[
Y 1

ij , . . . , Y
p
ij , X

1
ij , . . . , X

q
ij

]
. The variables at disposal are listed

in Table 1. There are p = 5 engine variables and q = 15 environmental variables.
The dataset contains measurements for approximately one year of flights and
I = 91 engines, that leads to a global dataset with

∑91
i=1 ni = 59407 (p + q)-

dimensional observations.

3 Methodology

The goal is to build the trajectories of all the engines, that is to project the
successive observations of each engine on a Self-Organizing Map, in order to
follow the evolution and to eventually detect some “abnormal” deviation. It is
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Table 1. Variables names, descriptions and type

Name Description Type Binary

aid aircraft id
eid engine id
fdt flight date

X1
ij temp temperature environment

X2
ij nacelletemp nacelle temperature environment

X3
ij altitude aircraft altitude environment

X4
ij wingaice wings anti-ice environment �

X5
ij nacelleaice nacelle anti-ice environment �

X6
ij bleedvalve bleed valve position environment �

X7
ij isolationleft valve position environment �

X8
ij vbv variable bleed valve position environment

X9
ij vsv variable stator valve position environment

X10
ij hptclear high pressure turbine setpoint environment

X11
ij lptclear low pressure turbine setpoint environment

X12
ij rotorclear rotor setpoint environment

X13
ij ecs air cooling system environment

X14
ij fanspeedi N1 environment

X15
ij mach aircraft speed environment

Y 1
ij corespeed N2 engine

Y 2
ij fuelflow fuel consumption engine

Y 3
ij ps3 static pressure engine

Y 4
ij t3 temperature plan 3 engine

Y 5
ij egt exhaust gas temperature engine

not valuable to use the rough engine measurements: they are inappropriate for
direct analysis by Self-Organizing Maps, because they are strongly dependent on
environment conditions and also on the characteristics of the engine (its past, its
age, ...). The first idea is to use a linear regression for each engine variable: the
environmental variables (real-valued variables) and the number of the engines
(categorical variable) are the predictors and the residuals of these regressions can
be used as standardized variables (see [3] for details). For each engine variable
r = 1, . . . , p, the regression model can be written as:

Y r
ij = μr + αr

i + λr
1X

1
ij + . . . + λr

qX
q
ij + εr

ij (1)

where αr
i is the engine effect on the rth variable, λr

1, . . . , λ
r
q are the regression

coefficients for the rth variable, μr is the intercept and the error term εr
ij is the

residual.
Figure 1 presents for example the rough measurements of the corespeed feature

as a function of time (for engine 6) and the residuals computed by model (1).
The rough measurements seem almost time-independent on this figure, whereas
the residuals exhibit an abrupt change which is linked to a specific event in the
life of this engine. This simple model is therefore sufficient to bring to light inter-
esting aspects of the evolution of this engine. However, the signals may contain
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Fig. 1. (a) Rough measurements of the corespeed variable as a function of time for
engine 6, (b) residuals of the same variable and for the same engine using a simple
linear model with the environmental variables and the engine indicator as predictors
(see Table 1).

ruptures, making the use of a single regression model hazardous. The main idea
of this work is to replace model (1) by a new procedure which deals with the
temporal behavior of the signals. The goal is therefore to detect the ruptures and
to use different models after each rupture. This new procedure is composed of
two modules. The first module (Environmental Conditions Normalization, ECN)
aims at removing the effects of the environmental variables to provide standard-
ized variables, independent of the flight conditions. It is described in section
4.1. The second module uses an on-line change detection algorithm to find the
above mentioned abrupt changes, and introduces a piecewise regression model.
The detection of the change points is done in a multi-dimensional setting taking
as input all the normalized engine variables supplied by the ECN module. The
Change Detection (CD) module is presented in Section 4.2. As a result of these
first two steps, the “cleaned” database can be used as input to a Self-Organizing
Map with a “proper” distance for trajectories visualization. The third module
(SOM) provides the “map” on which the trajectories will be drawn. Finally, en-
gine trajectories on the map are gathered in a trajectory database which can be
accessed through a SEARCH module, which use a dedicated Edit Distance to
find similar trajectories. This four-steps procedure is summarized in Figure 2.

4 Description of the Four Modules

4.1 Environmental Conditions Normalization - ECN

The first module aims at removing the effects of the environmental variables.
For that purpose, one regression model has to be fitted for each of the p en-
gine variables. As the relationship between environmental and engine variables
is complex and definitively not linear, the environmental variables can be sup-
plemented by some non-linear transformations of the latter, increasing the num-
ber of explanatory variables. Interactions (all the possible products between two
environmental variables), squares, cubes and fourth powers of the non binary en-
vironmental variables are considered. The number q of predictors in the model



302 E. Côme et al.
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Fig. 2. Global architecture of the health monitoring tools

is therefore a priori equal to (11 + 4) ∗ (11 + 4 − 1)/2 = 105 for the interactions
variables and 11 ∗ 4 + 4 = 48 for the power of the continuous variables and the
binary variables leading to a total of q = 153 predictors. This number is cer-
tainly too large and some of them are clearly irrelevant due to the systematic
procedure used to build the non-linear transforms of environmental variables. A
LASSO criterion [4] is therefore used to estimate the regression parameters and
to select a subset of significant predictors. This criterion can be written using
the notations from Section 2 for one engine variable Y r, r ∈ {1, . . . , p} as :

βr = arg min
βr∈Rq

I,ni∑
i,j=1

(
Y r

ij −
q∑

l=1

βr
l X l

ij

)2

,
q∑

l=1

|βr
l | < Cr (2)

The regression coefficients are penalized by a condition which forces some of
them to be null for a well chosen value of Cr. The LARS algorithm [4] is used
to estimate all the solutions of the LASSO criterion (2) for all possible values
of Cr. The optimal value of Cr with respect to the prediction error estimated
by cross-validation (with 20 blocs) is finally selected. Another possibility could
be to use BIC criterion instead of cross validation procedure to pick up the best
model. The number of selected predictors and the coefficient of determination
R2 are listed in Table 2 for all engine variables. Engine variables are well ex-
plained by the proposed models as attested by the high value of the coefficients
of determination.

A qualitative inspection of the model results was also carried out with the help
of engine experts. The regularization path plot (as shown in Figure 3) is very

Table 2. Number of selected predictors and coefficients of determination for all engine
variables

corespeed fuelflow ps3 t3 egt

nb vars 25 43 31 30 41
R2

obs 0.9875 0.9881 0.9773 0.9636 0.8755
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Fig. 3. Regularization path for the fuelflow variable: regression coefficients evolution
with respect to Cr. The more significant explanatory variables are given and the best
solution with respect to cross-validation is depicted by a vertical line.

interesting from the point of view of the experts, because it can be compared
with their previous knowledge. Such a curve clearly highlights which are the
more relevant predictors and they appear to be in very good adequateness with
the physical knowledge on the system.

In summary, the first preprocessing module (ECN) provides p = 5 standard-
ized engine variables denoted by Sr = [Sr

ij , i ∈ {1, . . . , I}, j ∈ {1, . . . , ni}], with
r ∈ {1, . . . , p}, which are the residuals of the selected regressions. They are in-
dependent of environmental conditions but still contain some significant aspects
such as linear trends and abrupt changes at specific dates. We therefore propose
to use an on-line Change Detection algorithm (CD) together with an adaptive
linear model to fit the data.

4.2 Change Detection - CD

To take into account the two types of variation (linear trend and abrupt changes),
we implement an algorithm based on the ideas from [5] and [7]. The solution is
based on the joint use of an on-line change detection algorithm to detect abrupt
changes and of a bank of recursive least squares (RLS) algorithms to estimate
the slow variations of the signals. The algorithm works on-line in order to allows
projecting new measurements on the map as soon as new data are available.The
method can be described as follows:

1) One RLS algorithm is used for each one of the p standardized engine
variables to recursively fit a linear model. For each r ∈ {1, . . . , p}, for each
engine i ∈ {1, . . . , I} and at each date l, one has to solve the following equation:

(αr
il, β

r
il) = arg min

α∈R,β∈R

l∑
j=1

λ(l−i)(Sr
ij − (βj + α))2, (3)

where λ is a forgetting factor. The estimates αr
il and βr

il are respectively the
intercept and the slope of the linear relationship. These estimates are then used
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Fig. 4. Change detection results for two engines, (a) engine 2, (b) engine 41. Alarms
are depicted by vertical lines, input signals are shown in light gray and signal estimates
F r using RLS are depicted by a black line. One figure (with respect to egt) is bigger
than the others to present more clearly the RLS estimate of the signal.

to define the variables εr
il = Sr

il − (βr
ill + αr

il), which do not contain anymore the
slow variations of the signals.

2) These values are concatenated in a vector εl = [ε1
l , . . . , ε

p
l ], which is then

used in a multi-dimensional Generalized Likelihood Ratio (GLR) algorithm [1]
to detect the abrupt changes of the signals. The GLR algorithm is a sequential
test procedure based on the following model:

εk ∼ Np(θ(k), Σ), ∀k > 0,

where Np(θ(k), Σ) is the multivariate normal distribution with variance Σ and

mean θ(k) =

{
θ ∈ Θ0 = {||θ|| < ro} if k < t0,
θ ∈ Θ1 = {||θ|| > r1} if k ≥ t0.

, (r0 < r1 are given constants).

3) Finally, when an alarm is sent by the GLR algorithm, all the RLS algo-
rithms are re-initialized. The results supplied by this algorithm are the following:

– the alarm dates supplied by the multi-dimensional GLR algorithm;
– cleaned signals estimated by the RLS algorithm;
– slopes and intercepts estimated by the RLS algorithm.

Figure 4 presents the obtained results for two engines. One abrupt change was
found for the first engine and 3 for the second one; all of them seem to be
reasonable and a comparison between estimated alarm dates and recorded real
events of the engine life have confirmed this fact. The estimated signals are also
shown on these two figures. For more information on this aspect of the analysis
process see [2]. From now, the observations corresponding to each flight are
Fil = [F 1

il, . . . , F
p
il], where F r

il = βr
ill + αr

il are the results of the transformations
of the raw data performed by the first two modules (ECN and CD).
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22

low value of corespeed
high value of others engine variables
abnornal state

End of the trajectory

Request

Trajectories after the 3 best matching points

(a) (b)

Fig. 5. (a) Trajectories of engine 22 on the map. The sizes of the dots are proportional
to the measurement date: smallest dots correspond to recent measurements, larger dots
to older measurements. (b) Pieces of similar trajectories found using the edit distance
(details are given in section 4.4)

4.3 Self-Organizing Maps - SOM

The cleaned signals Fil provided by the previous two modules are then used as
input to a SOM for visualization purpose. To project the observations we use
a [20 × 20] SOM implemented with the Matlab toolbox [9] and with defaults
settings for the learning rate. Since the variables F r

il are correlated, a Maha-
lanobis distance is used to whiten the data. A classical learning scheme is used
to train the map. Figure 5 (a) presents one example of engine trajectories on
the map, which clearly have different shapes. For the studied engine, available
maintenance reports inform us that this engine suffers from an deterioration of
its high pressure core. This fault is visible on the map at the end of the trajec-
tory: the engine which was projected on the middle north of the map during a
large part of its trajectory, suddenly moves towards the north-west corner of the
map. This area of the map furthermore corresponds to abnormal values of the
engine variables.

4.4 Similar Trajectory Matching - SEARCH

One of the final goal of the proposed tool concerns clustering and prediction
of engine trajectories or pieces of engine trajectories. For this end, we have to
define a proper distance between pieces of trajectories, which can be of different
lengths. Before projection on the map, pieces of trajectories were sequences of
R

p-vectors, but as soon as measurements are projected, they can be described
by sequences of integers corresponding to the units where measurements are
projected. Such sequences will be denoted by T = [k1, . . . , kL] and as they take
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their values in a finite set {1, . . . , U} (where U is the number of units), we will
call them strings. The difficulty comes from the fact that the strings can have
different lengths. Such a problem has been already investigated in other fields
and one classical solution is to use Edit Distance, which is commonly used for
approximate string matching [6].

To compare two strings, Edit Distance uses a cost function. This function
gives individual cost for each unitary operation such as: suppression, addition or
substitution. The cost of a sequence of operations O = [o1, o2, . . .] is simply equal
to the sum of all the unitary costs, so: cost(O) =

∑
t cost(ot). Then, the Edit

Distance between two strings de(T, T ′) is defined as the minimal cost among all
sequences of operations that fulfill the constraint O(T ) = T ′. Such a distance can
be tuned to our end by carefully choosing unitary costs. We may in particular
use the map topology to define meaningful substitution costs, by setting the cost
of the substitution k ↔ k′ to the distance between unit k and unit k′ on the
map. With such a choice, we will take benefit of the fact that close units on the
map can be exchanged with a small cost. Suppression and insertion costs are
equal to the average of all the pairwise distances between units of the map.

With such a distance one can build classes of pieces of trajectories using
hierarchical clustering. But this distance can also be used to supply clues on the
possible future evolution of one trajectory. To perform such a task, the following
method is proposed. Let T be a piece of engine trajectory:

1. compute the Edit Distance between T and all the pieces of engine trajec-
tories recorded in the fleet database [T1, T2, . . .] (all these distances can be
computed efficiently using dynamic programming [6]);

2. search for matching pieces Tx such that de(Tx, T ) < η, where η is a given
threshold;
Note that these pieces are parts of already observed engine trajectories,
which were recorded in the fleet database so that their evolutions after the
matching points are therefore known, the third step uses this property.

3. look at the pieces that are just after the matching pieces. That gives an idea
about the possible futures of T and enables the computation of probabilities
of different types of maintenance events if the fleet database is connected to
the maintenance database which recorded all the failures and maintenance
operations performed on the fleet. We hope that it will be a useful tool to
anticipate failures.

Figure 5 (b) presents preliminary results obtained using such an approach, T
was built using the last 50 points of an engine trajectory. During this time
period, this engine stays in the same unit. We show in Figure 5 (b) the pieces
of trajectories that occurred after the 3 best matching points found in the fleet
database using the proposed Edit Distance. These possible futures for T seem
to be reasonable. Further works concern the connection with the maintenance
database to perform a quantitative analysis of the results.
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5 Conclusion

The method proposed in this paper is an nice tool to summarize and repre-
sent the temporal evolution of an aircraft engine health flight after flight. The
regression approach used to deal with the problem of environmental condition
normalization (ECN) seems to be effective, even if other model selection methods
such as the BIC criterion could be investigated in further works to reduce the
number of selected variables. The joint use of an adaptive algorithm to estimate
signal evolution (RLS) and of a change points detection method (GLR) is also
an interesting solution to deal with the non-stationary of the signals and to clean
them (GLR module). Finally, Self-Organizing Maps (SOM) can be used to show
the engine health evolution in a synthetic manner and to provide codes for syn-
thetic representation of trajectories, that enables the development of predictive
analysis tools (SEARCH module).
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Abstract. A new classification method is proposed with which a multidimen-
sional data set was visualized. The phase distance on the spherical surface for 
the labeled data was computed and a dendrogram constructed using this dis-
tance. Then, the data can be easily classified. To this end, the color-coded clus-
ters on the spherical surface were represented based on the distance between 
each node and the labels on the sphere. Thus, each cluster can have a separate 
color. This method can be applied to a variety of data. As a first-example, we 
considered the iris benchmark data set. A boundary between the clusters was 
clearly visualizible with this coloring method. As a second example, the veloc-
ity (first derivative) mode of a Plethysmogram pulse-wave data set was ana-
lyzed using the distance measure on the spherical surface. 

Keywords: Spherical Surface SOM, Colored Clustering, Distance Measure-
ment, Boundary decision. 

1   Introduction 

There is a clear benefit in utilizing spherical Self-Organizing Maps for classifying 
multidimensional data [1], [2] and [3]. The discontinuation at the 4 borders and 4 
corners of a 2D planar map affect the results obtained after the learning process [4]. In 
the spherical Self-Organizing Maps, these discontinuations don’t happen. The case 
where the phase relationship between the data points is most clear and precise is on a 
spherical surface. In the spherical Self-Organizing Maps this relationship can be ex-
ploited for constructing the cluster, and next the dendrogram. To delineate the clus-
ters, the boundary needs to be improved by a manual operation. It is important to 
draw the boundary on the map, precisely and correctly. This is necessary in order to 
realize a maximally correct classification at a later stage, when the clusters are as-
signed to classes, using class labels. The method of learning vector quantization 
(LVQ) [4] is proposed as a way of determining the cluster boundary automatically. 
With this method, it is necessary to choose a learning parameter. 

A new classification method was proposed with which the multidimensional data 
can be visualized [1] and [2]. There, a phase distance on the spherical surface for the 
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label data was computed and the dendrogram was created by the range distance calcu-
lation among the labels. Here, a color classification of groups of nodes forming a data 
cluster on the spherical surface, using labeled data points, was carried out by consid-
ering the distance between the unlabeled node and the labeled data point. The method 
can be applied to a variety of data. In this paper, the first example considered is the 
iris benchmark data set [5] and [6]. In a second example, the distances among the 
labels were used to classify Plethysmogram pulse-wave data. 

2   Algorithm  

Previously in [1] and [2], we have used the Iris benchmark as an example for classifi-
cation. It consists of data from 50 of vergicolor (abbreviation ver), 50 of verginica 
(abbreviation gnc), 50 of setosa (abbreviation set), together forming the iris data [5] 
and [6]. At this time, a spherical surface was transformed up to the Griff value 1 (ref. 
[1] and [2]) emphasizing the U-matrix [7] which shows the boundaries between the 
clusters, where by the Griff value 0 a spherical surface is given, however, in the Griff 
value 1, the position of the maximum distance (the darkest part) is kept the radius 1 
and the minimum (the brightest part) is 0, as shown in Fig. 1(a) (the Griff operation is 
detailed in ref. [1] and [2]). After transforming the sphere by the Griff value 1, a den-
drogram was drawn using the group average-method like Fig. 1. In Fig. 1, the den-
drogram near ver_23 and the spherical surface, with the Griff value 0, are shown in 
(a) and (b), respectively. The dendrogram is drawn mainly near ver_23 of the red 
character, but the boundary, decided from the dendrogram, is a dotted line, and the 
actual one should be a solid line. 

The following strategy was proposed in order to decide on a correct boundary auto-
matically. Using labeled data, it was examined which node of the group of ver, gnc or  
 

 

Fig. 1. (a) After a spherical surface was transformed to the Griff value 1, as explained in Fig. 3 
of  ref. [2], the dendrogram on the left was constructed by the group average-method. (b) When 
the spherical surface was returned to the full sphere using the Griff value 0, the solid line is the 
boundary that should be pulled out of the label, but the boundary became as shown with the 
dotted line, corresponding to the dendrogram on the right (from Fig. 6 of the ref. [2]). 
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set was near to each one of the 642 nodes that compose the spherical surface in Fig. 1. 
The same procedure was used for constructing the dendrogram of Fig. 1. In other words, 
a spherical surface was transformed based on the Griff value 1. In the procedure, the 
distances between the unlabelled nodes and all the labeled ones were calculated and 
then, the node was assigned to the group of the label that was the nearest. Thus, all 642 
nodes were divided into three groups that are either ver, gnc or set. The 3 data points, 
from a total of 9, were taken out from the ver, gnc and set data. Then, 51 data of 42 
nodes of 42 face pieces on the sphere and the 9 iris data were used. Then, a polyhedron 
was transformed using the same procedure as in Fig. 1, i.e. with the Griff value 1. A 
dendrogram was constructed by the group average-method and shown in Fig. 2. The 
nodes that are in the neighborhood to the ver, gnc or set belong to these groups respec-
tively. There are some nodes that are far from the labels. These are for example, nodes 
31, 36, 38. There, when the dendrogram was traced, two gnc and three ver belong to 
these nodes 31, 36 and 38. In the same way, 35, 40, 20, 22, 23, 24, 41, 25, belong to set 
when the same dendrogram is traced. Also, all three data points of gnc, and all three of 
ver are connected through the root of the dendrogram. Here, we examined how the nine 
labels can be assigned to each of the 42 nodes by searching the nearest label data of 
each node. The method is named as All label algorithm. As shown in Fig. 2, by the 
method, the former nodes belonged to set, ver, set, respectively. Then, the latter nodes 
belonged to set, ver, set, gnc, set, set, ver, gnc, respectively. Thus, the nodes of 31 and 
38 belong to set. They are different from those by the dendrogram. Also, the nodes of 
40, 22, 41, and 25 belong to ver, gnc, ver and gnc, respectively. They are different from 
set group which would be expected from the dendrogram. The results are indicated in 
the bottom of Fig.2, either ver, gnc, or set.  

 

Fig. 2. The obtained dendrogram is shown with 42 nodes and 9 labels, where the nodes far from 
the labeled data are assigned by the All label algorithm and the group is shown in the bottom. 
Unlabelled nodes in the bottom are of course classified with the nearest label. For example, 
node 0 is classified as ver and the 19 is set and so on. 
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Fig. 3. A total 51 of iris 9 data and 42 nodes were pasted onto a 42 face map 

As shown in the bottom of the dendrogram in Fig. 2, the nodes seem to be separately 
identified in the dendrogram by this All label algorithm. The label group of the identi-
fied node could be pasted onto 42 face map. It was possible to color like in Fig. 3 and 
then, a smooth boundary was obtained as shown. Because of this, the number of the 
nodes was increased to 642. The algorithm was verified on the data of the iris 150 
data points. 

The node groups (Nos. 31, 36, 38, and 35, 40,  20, 22, 23, 24, 41, 25 on the  denn-
drogram), which were on the far left from labels in the dendrogram, as shown in Fig. 
2, are judged to be close to a variety of labels. The reason is described below. First, a 
group is made with the group average-method among the nearest ones. The result is 
due to what makes the group bigger than another. All these nodes are near the 
boundaries. If theses are examined, they are judged different from the dendrogram, as 
they are near a variety of labels as shown in the bottom of Fig. 2.  

3   Application to Iris Benchmark Data Set 

The above-mentioned node coloring algorithm was applied to the iris benchmark data 
set [5] and [6]. This is the cluster sorting problem using all 150 data points taking 
each 50 data points from the virginica, setosa and vergicolor categories, respectively. 
In this problem, the boundary between setosa and the other two categories is  
very clear. However, it is an extremely difficult problem to find a boundary between 
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vergicolor and virginica. The result after 500 learning epocks for 642 nodes is shown 
in Fig. 4(a). In this example, the boundary between set(setosa) and ver(vergicolor) is 
very smooth as shown in Fig. 4(a). However, in this benchmark problem, it is difficult 
to distinguish between ver(vergicolor)_19 and gnc(virginica)_20. It is also difficult to 
distinguish ver_23 and ver_24 from gnc. As shown in Fig. 4(b), the boundary be-
tween ver_19 and gnc_20 is clearly separated. The boundary between two ver labels 
of ver_23 and ver_24, and gnc groups are clearly indicated by color in Fig. 4(b). It is 
a mathematically difficult problem to draw the boundary. When looking at the result 
of adding colors on the spherical surface, it will be possible to draw a more smooth 
boundary such as (a) between the set and the ver group, if ver_23 and ver_24 are read 
as belonging to the gnc group, thus different from the ver group. In Fig. 5, an un-
known sample UK_3 was projected on the spherical surface. From Fig. 5(a) showing 
a usual SOM analysis, it can be understood that UK_3 is riding on the U-matrix, [7]. 
Under the present condition, it can't be decided whether UK_3 belongs to set or ver. 
However, Fig. 5(b), which is colored by our technique, shows that UK_3 is near 
set_44. Thus, it is in the group of ver based on the boundary between the colors. 

 

Fig. 4. (a) When the iris data is used for training, during 500 epochs, a spherical 642 node map, 
a smooth boundary can be drawn between set(setosa) and ver(vergicolor). (b) For the ver and 
gnc groups, as shown in (b), it was possible to draw the boundary between ver_19 and gnc_20 
which are very close to each other. ver_23 and ver_24 are projected into the gnc group like a 
peninsular. There, a clear boundary was found as shown in (b). 

Incidentally, in Fig. 6(a), SOM learning is performed during 50 epochs for a 642 
spherical surface node map. In the iris benchmark problem, the boundary of ver and 
gnc is always arguable. Therefore, the set was excluded and only ver and gnc were 
used for the experiment. The samples of ver and gnc were projected on the spherical 
surface. Then, the boundary was drawn on the spherical surface [8]. At the same time, 
the boundary was also colored, as shown in Fig. 6. The boundary agrees almost with 
the coloring boundary. It should be understood that the coloring boundary is finer 
than the line boundary. 
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Fig. 5. (a) An unlabeled data point UK_3 (surrounded in the red square in (a) and in the white 
square in (b) was projected on the spherical surface. In ordinary SOM learning, UK_3 is on the 
line of the U-matrix [7] as shown in (a). There, it can't be found whether UK_3 belongs to ver 
or set. However, it can be found that UK_3 belongs clearly to ver from (b). 

 

Fig. 6. The boundary between ver and gnc groups is shown by the line from b0T to b4. (a) The 
part of the line boundary from b0T to b2 . (b) The line boundary from b2 to b4 (ref. [8]). 

4   Range Distance Calculation  

In a spherical surface SOM, the phase can be displayed topologically more directly 
than with a planar SOM. The velocity pulse wave, which was obtained by the differ-
entiation of the volume (original) plethysmogram pulse-wave [9], was used for the 
analysis. When the velocity pulse wave is differentiated, the wave is called the accel-
eration plethysmogram [9]. More than one corrugated velocity pulse waves are shown 
in Fig. 7(a). This bundle of waves is arranged for 1 period and they are divided into 
100 divisions. However, the position where the height value of each corrugated wave 
first became 0 was cut down to see a pulse wave change. The cut down wave was also 
divided into 100 divisions. Then, the rate at which the magnitude became 0 within 1 
period was added as another dimension. 
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Fig. 7. (a) The bundle of corrugated velocity pulse waves in 1 period. (b) The position where each 
corrugated wave height value of the figure (a) became 0 first was cut out. Also, it was divided in 
100 steps. Then, the rate data where the wave height became 0 in 1 period was added. 

 

Fig. 8. (a) The distance among all labels from label G1111_1 of the first data in the dendrogram 
(No.1 enclosed with the square box) using the blossom tool [10] was measured and it is shown 
in (b). (b)The distances were arranged in ascending order. In (b), there is a big discontinuous 
point at label G2_519. (c) This time, all the distances which started from label G2_519 were 
measured and (d) they were shown in ascending order. As shown in (d), the distances are dis-
tributed with equal intervals. Then, the labels were put into all intervals. For (d), since it is 
obvious that there are much more people in the health region, the labels were then relabeled as 
indicated by the (arrowed) right hand-side labels. 
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Fig. 9. The relabeled 6 groups, named A to F in Fig. 8(d), are shown 

The 683 data of 101 dimensions that was prepared were used for learning a spherical 
surface SOM. The data waves were classified into six groups from A to F, as shown in 
Fig. 9. The procedure is shown in Fig. 8. The classification from the A to F group is 
already carried out in (a) and (c) of Fig. 8. There, the distance measurement was accom-
plished by the procedure which was shown in [1] and [2]. The procedure supported by 
the tool is described in Fig. 8(a). The first label G1111_1 of the dendrogram that is 
searched in begins as No.1 (enclosed with the square box). Then, the label is put in 
Label1 as No.2 (enclosed with the square box). Then, "Save selected" in the Fig. 8(a) 
was chosen as No.3 (enclosed with the square box). All the distances among G1111_1, 
itself and the other 683 label data in total were measured and saved as a csv file. When 
the obtained distances were arranged in ascending order, a large discontinuous jump 
happens in G2_519 position (Fig. 8(b)). Therefore, the distances from the (G2_519) 
point to all other labels were recalculated and the procedure which is similar to Fig. 8(a) 
is shown in (c). The obtained distances can be arranged once again in ascending order 
and as a result Fig. 8(d) is obtained. A large discontinuous jump like Fig. 8(b) doesn't 
occur as shown in Fig. 8(d). Approximately all equal discontinuous steps are obtained 
and shown in Fig. 8(d). It is divided into 6 groups named as A-F starting from the bot-
tom. However, the group with the largest number of people was considered temporarily 
as the waves coming from the health people. D was read as A. The A label was read in 
descending order starting from that point. The obtained corrugated wave group is shown 
in Fig. 9. Since the A group grew many corrugated waves, the display was divided into 
A1 and A2. As for the first A group, the waves are falling steeply. We also observe that 
the corrugated waves are falling more gently for the F group.  

5   The Conclusions 

The coloring of the nodes comprising a spherical surface was performed by measur-
ing the distance between the node and all labels on the transformed polyhedron. The 
result was used as a way to decide on the boundary when considering the case of 
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cluster classification. The method is regarded as All label algorithm. The size of the 
node, which composes a spherical surface, in order to verify this algorithm, was re-
duced to 42. In this way, the boundary based on the coloring was confirmed. Next, the 
number of nodes was increased to 642. Our technique to decide on the boundary be-
tween the cluster groups, using the coloring of each node, was applied to and ana-
lyzed for the case of the iris benchmark problem [5] and [6]. For this problem, the 
number of epochs for learning the spherical maps was increased from the usual 50 to 
500 epochs. In the past, the boundary between ver_19 and gnc_20 was not clear. By 
the present method, however, the boundary became clear. Then, there is a problem 
with the lower precision used in the past for this benchmark problem. For example, 
ver_23 and ver_24, overhang like a peninsular in Fig. 4(b) compared with the smooth 
boundary between set and ver of Fig. 4(a). If ver can be read as gnc, it should be pos-
sible to draw a smooth boundary like Fig. 4(a). Also, there is an unknown sample 
UK_3 which is near set_44 of setosa (set) in Fig. 5(a). It was found that this UK_3 
belonged to the ver group by using the node coloring method.  

With the usual planar SOM, the segregation of the clusters is in principle possible. 
However, when considering the distances between the labels, a sphere was trans-
formed into a polyhedron. For this case, the distance calculation among the labels was 
performed and the result was displayed (see Fig. 8). We observed a distance disconti-
nuity among the groups like Fig. 8(d). Large bundles of corrugated wave, which don't 
have any labels, were classified successfully. By the node coloring method, the cluster 
decision boundary became visible and was correctly estimated, as discussed above. 
Detailed information on the cluster classification was obtained by the distance meas-
urement applied to the transformed polyhedron. Thus, a more quantitative evaluation 
became possible, as was demonstrated on the cluster groups. As other demonstration, 
the chain-link benchmark problem [11] of the three-dimensional data was also exam-
ined in the appendix. This is a very suitable problem for the blossom tool [10] of the 
three-dimensional visualization. Finally, we thank Prof. M. V. Hulle of K. U. Leuven 
for kind reading and correcting the manuscript and Prof. T. Kohonen of Academy of 
Finland for kind reading and giving useful comments to the manuscript.  
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Appendix 

 

Fig. 10. (a) chain-link problem [11] where two links 1 and 2 are crossing perpendicularly in 3 
dimensional spaces. (b) The input data 3D of (a) are learned by the spherical SOM of blossom 
[10]. The boundary between 1 and 2 are indicated by darkened U-matrix which is endlessly 
continuous and never crossing. 

 

Fig. 11. (a) The Griff-value is increased from 0 (Fig.10(b)) to this 0.5, where U-matrix are 
emphasized and they are endlessly continuous and never crossing. (b) Fig.10(b) is colored by 
the All label algorithm. Then, it is easy to find the boundary of this two cluster problem. 
Fig.10(b) and Fig.11(a),(b) given by the cluster SSOM are displayed all in the same position. 
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Abstract. Air pollution in big cities is a major health problem. Pol-
lutants in the air may have severe consequences in humans, creating
conditions for several illness and also affect tissues and organs, and also
affect other animals and crop productivity. From several years now, the
air quality has been monitored by stations distributed over major cities,
and the concentration of several pollutants is measured. From these data
sets, and applying the data visualization capabilities of the self-organized
map, we analyzed the air quality in Mexico City. We were able to detect
some hidden patterns regarding the pollutant concentration, as well as
to study the evolution of air quality from 2003 to 2010.

1 Introduction

Pollutants are any substances that affect the normal cycle of any vital process
or degrade infrastructure [1]. The sources of pollutants are several and well iden-
tified. Pollutants may be originated from human actions, but also from natural
events. Among the former it can be listed the incomplete combustion of organic
combustibles in cars, the end products from industrial reactors, and dust and
minerals from construction sites [2].

Air pollution affects several regions all over the planet, and mainly impact
major cities, in which has been reported to be a major problem of health for the
last 30 years. Several respiratory illness have been reported to be a consequence of
high levels of pollutants [3]. In Mexico City, during the years 2000 and 2008, more
than 100,000 deaths were caused directly or indirectly from bad air conditions,
and almost one million visits to the hospital were attributed to pollutants [4,5].
It is expected that if the tendency continues, more than four millions of related
illness will be reported by 2020 [6] Also, air pollutants impact directly in other
animals and in green areas and in harvest productivity [1].

Among the most dangerous pollutants is carbon monoxide (CO), that affects
blood oxygenation as it reacts with hemoglobin and may lead to severe health
problems and in many cases to death. Nitrogen oxides (NO) and dioxide (NO2)
are also dangerous air pollutants, as they decrease lung function and increase the
risk of acute bronchitis. Ozone (O3) is also a pollutant relevant for health issues,
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Fig. 1. Time series for O3. It is shown the concentration for one station in Mexico City
for year 2009, as well as the concentration for one day. Also, the Fourier spectrum is
presented. Two frequencies are visible: a 24-hour period and a weekly period.

as it takes part in reactions that lead to the so-called smog. Sulfide dioxide (SO2)
is also constantly monitored as it is a precursor of acid rain which affects crops
and some edifications. Lead (Pb) may impact nervous connections and cause
blood and brain disorders [1]. Finally, particulate matter (PM), also called fine
particles, lower than 10 micrometers are also considered as pollutant as they
affect the lungs. In general, PM are identified as PM2.5 for radius lower than
2.5 micrometers and in PM10 for radius less than 10 micrometers [7].

Air quality is affected by several variables, among the obvious the presence
of pollutants, but also the wind and atmospheric conditions as well as traffic
conditions. In particular, the case of the urban area of Mexico City and its
surroundings is a complicated one, as the specific conditions of altitude, wind
patterns, high population density, and traffic issues seem to be particularly ad-
verse for air quality [7].

Pollutants concentration levels may vary in daily basis, but also may be sub-
ject of other influences. Fig. 1 shows the O3 concentration for one day, one month
and one year, as well as its Fourier spectrum. Trying to find patterns in just one
time series may be achievable, but trying to make sense from several time series,
as well as to try to identify patterns and correlations among them may require
special tools.

As a part of a research group focused in studying the air quality in Mex-
ico City, we have analyzed multidimensional data consisting of air pollutants
measured every hour in several monitoring stations distributed over the most
polluted areas in Mexico City. From these measures, we have been working in
finding patterns in the data, and in this contribution, we describe some of them.
In section 2 we briefly describe the self-organized map and its capabilities for
data analysis. Then, in section 3 we present the application of SOM for visual-
ization of air pollutants, and in section 4 we present some conclusions.

2 Data Visualization

We define the air quality vector for a given time as the average concentration
of NO2, NO, O3, SO2, CO, Pb, PM25, and PM10 and the number of times
each of these pollutants exceeded the norm. Thus, the space has 16 dimensions
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as there are eight pollutants and two statistics are considered for each one of
them. Italic font refers to the average pollutant concentration (NO2), whereas
the pollutant with a bar over it refers to the number of times it exceeded the
safe level over the specified period (NO2). Monitoring and visualization of all
air quality data is not a straightforward task. Several pollutants have to be
analyzed simultaneously and correlations and general patterns are to be found
in data. The chemistry of air in polluted environments, although well studied,
is still under development [2]. Thus, for environmental and health officials to
make sense of data, automatic tools for data analysis and multidimensional data
visualization are required.

As a support tool for data visualization, we applied the self-organizing map
(SOM), as a consequence of its outstanding capabilities for high-dimensional
data visualization, which are well above those presented by other techniques
[8,9]. The SOM preserves neighborhood relationships during training through
the learning equation (1), which establishes the effect that each best matching
unit (BMU) has over any other neuron.

The SOM structure consists of a two-dimensional lattice of units referred to
as the map space. Each unit n maintains a dynamic weight vector wn which is
the basic structure for the algorithm to lead to map formation. The dimension
of the input space is considered in the SOM by allowing weight vectors to have
as many components as features in the input space. Variables defining the input
and weight spaces are continuous. Weight vectors are adapted accordingly to:

wn(t + 1) = wn(t) + α(t)hn(g, t)(xi − wn(t)) (1)

where α(t) is the learning rate at epoch t, hn(g, t) is the neighborhood function
from BMU g to unit n at epoch t and xi is the input vector. SOM has been
widely applied as a data visualization tool as a consequence of its capabilities in
computing high-order statistics [9], which is translated in a two-dimensional map
that is a good approximation of the distribution observed in the high-dimensional
space.

SOMs have been applied in the air quality domain as for example, [12] in
which authors classify monitoring stations accordingly to pollutant levels. Here,
we are interested in study the evolution of pollutant concentration in Mexico
City, considering several levels of resolution.

3 Results

Since 1986, a governmental law established an agency focused on air quality mon-
itoring. From that agency, several monitoring stations measure the concentration
of air pollutants [7]. The full list of contaminants that are now monitored was
started in 2003. Prior to that year, only a subset of pollutants was measured
and not all pollutants were monitored in all stations. That is the reason we
started our analysis only with data from 2003. Every year is represented by a
16-dimensional vector, as there are 8 major pollutants, and for each one of them,
the average yearly concentration as well as the number of measures that the safe
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Fig. 2. U-matrix for air pollution map for years 2003 - 2010 in Mexico City. Each
year is represented by a 16-dimensional vector, as there are eight pollutants. For every
pollutant, its average for the whole year and all stations was considered, and also the
number of times the measure exceeded the safe level.

Fig. 3. Air pollution map for all months from January 2003 to November 2010. Each
month is again represented by a 16-dimensional vector, and no geographic information
in included. Codes are: J-January, F-February, M-March, A-April, Y-May, U-June, L-
July, G-August, S-September, O-October, N-November, D-December, plus the year in
two digit format.

level threshold was exceeded are considered. All variables are normalized and
all are supposed to have the same relevance, so no additional preprocessing was
considered. Fig. 2 shows the U-matrix [11] for the eight years analyzed. It is
observed that year 2003 is in a well-defined cluster, and it makes sense, as that
year was particularly polluted [7].

We start with a coarse-grain analysis, in which each year is represented by a
single vector with 16 components, considering the average over all stations and
months. Then, we increase the detail and each month is now defined by a vector,
so we have 12×8−1 vectors (December 2010 is not considered). At the same time,
we consider the case in which data is differentiated by monitoring station. Each
one of the 10 stations is represented by the average pollutant concentration over
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Fig. 4. Air pollution map for all stations for years 2003 to 2010. Each pair station-year
is a 16-dimensional vector.

each year, so this time we have 10 × 8 vectors. At the lowest level, each hour of
every day is represented by an 8-dimensional vector, in which each component is
the concentration of each one of the pollutants measured at that hour, on average
over all available monitoring stations. In all cases, maps were generated with the
SOM PAK, available at http://www.cis.hut.fi/research/som_lvq_pak.shtml.

In fig. 3 it is presented the map for all months since January, 2003. It is
observed some seasonality, as some months tends to be in the same cluster, as
for example, December tends to be clustered at the upper left corner (D-03, D-04,
D-05). Those three years presented bad air quality conditions in general, and the
weather and traffic conditions of that month are proper for high concentration
of pollutants. The cluster at the upper left corner contains the months with the
highest concentrations and highest measures exceeding the norm. It is observed
that other months in 2003 were also mapped to that area. Seasonality is also
observed in other months, such as May (Y-06, Y-07, Y-08, Y-09, Y-10). The
months with better air quality tend to be those in the late spring and in summer.
Those months are mapped to the bottom right corner, and it is observed that
June (U), July (L), August (G), and September are mainly located there.

In fig. 4 it is presented the u-matrix for the map for air pollution from year
2003 to 2010, but now, vectors are composed by measures for the specified mon-
itoring station and years. In this scheme, we have intrinsic geographic informa-
tion, which may be helpful to seek for patterns in data. For these experiment,
only 11 stations were considered, as the rest of them (ten more) does not mea-
sure all considered pollutants. So we have 11×8 vectors. In this map, the vectors
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Fig. 5. Planes for NO2 (a), NO2 (b), NO (c), NO (d), CO (e), CO (f), O3 (g), O3
(h), and SO2 (i) for the map shown in fig. 4. Gray level indicates the corresponding
value of the plane. Light tones indicate higher values.

Fig. 6. Air pollution and weather conditions map for all months from January 2003 to
November 2010. Each month is represented by a 19-dimensional vector, as the previ-
ously cited 16 variables (pollutants) are included, plus air temperature, wind speed, and
wind direction. Codes are: J-January, F-February, M-March, A-April, Y-May, U-June,
L-July, G-August, S-September, O-October, N-November, D-December.
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Fig. 7. Planes for NO2 (a), NO (b), CO (c), O3 (d), SO2 (e), PM10 (f), PM2.5 (g),
Pb (h), temperature (i), wind speed (j), and wind direction (k) for the map shown in
fig. 6. Gray level indicates the corresponding value of the variable. Light tones indicate
higher values.

corresponding to the poorest air quality are located in the cluster at the bottom
left corner, and the gray levels surrounding that cluster show a heavy border.
Stations A and M recorded the highest pollutant concentration during 2003 and
2004. Station A is situated in a residential area, with several avenues and streets,
with a heavy traffic flow, whereas station M is situated in downtown, in an area
with one of the highest population density in the city.

Interestingly, neither of the two stations A and M is located near to an in-
dustrial area, but stations L and E are. As SO2 has as one of its sources some
industrial processes, it is not a surprise that the concentration of that pollutant
is very high in stations L and E, mainly for years 2003 and 2004. In 2002, a major
modification in the environmental law urged industries to incorporate new air
quality controls. As it was not an immediate process, 2003 and 2004 were still
very high in some pollutant concentrations, as that of SO2.

Fig. 5 show some of the variables (average pollutant concentration and number
of measures higher to the safe level). It is observed that light areas tend to be
located at the lower left corner, with the exception of O3 and O3.

In fig. 6 we consider an additional variable in data. Besides the air pollutants,
we included the wind conditions (speed and direction) as well as temperature.
Now, each input vector has 19 components, as it contains the 16 mentioned
variables plus the average air temperature, the average wind speed and the wind
direction. As expected, the map is slightly different from map 3, as now some
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Fig. 8. U-matrix for the SOM for all hours in 2010 (December not included). Each
hour of the year was represented by an 8−dimensional vector, with each component
associated to the pollutant concentration measured during that hour, on average over
all available monitoring stations. The label indicates the day number, starting with
Jan, 1st, as day 0, and the hour of the day. Hours are numbered from 0 to 23.

weather conditions are considered. However, from the planes in fig. 6, some
interesting patterns have been identified.

Temperature has been associated to pollutant levels [2]. In one hand, high
temperatures favors the presence of O3. This seems to be detected by the SOM,
as shown in plane i in fig. 6 and plane d. Wind speed is also important for air
quality, as it may disperse pollutants. Those months in which air speed is high
tend to present lower concentrations of NO2 and PM2.5

At the highest level of detail, input vectors are related to pollutant measures
for each hour. Under this scheme, we have at most 24 × 365 vectors, each with
eight components, one for each pollutant concentration for that hour. Each com-
ponent is then the average measure over all available stations during that hour.
Fig. 8 shows the U-matrix for the SOM of of all hours for 2010, except for those
of December. Fig. 9 is the U-matrix for all hours in 2009, but it is only shown
the month for hours in July (7) and in December (11). Those two months were
selected as, at least in 2009, they were very different regarding air quality. Hours
with the highest concentrations are clustered in the lower left corner, and the
U-matrix shows a heavy border. It is observed that several measures from De-
cember are placed there, whereas none of the measures of July are clustered in
that zone.
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Fig. 9. U-matrix for SOM for all hours in 2009. Only labels for July (6) and December
(11) are shown. In the bottom left corner, the hours with the highest pollutant measures
are clustered and in fact, correspond the so called thermic inversion. It is observed that
only measures of December are there, as the cold temperatures present in that month
in Mexico City tend to favor pollutant concentrations. In contrast, almost all measures
in July tend to be very low, and many of them are clustered at the upper right corner.

With the SOM capabilities for data visualization, it is possible to identify
some patterns otherwise obscure.

4 Discussion and Conclusions

Air pollution is a multifactorial phenomenon, not entirely understood so far.
Withe the help of visualization tools, such as the SOM, some hidden patterns
may become evident. SOM is a very efficient tool for visualization of multidi-
mensional data, as it is able to identify high-order statistical relations in data.

Here, we have presented the study of air pollutants in Mexico City through
self-organizing maps. Due to the visualizing capabilities of SOM, we have been
able to visually correlate some environmental variables, such as pollutant levels
and weather conditions. Also, we identified the overall evolution patterns for air
pollutants from years 2003 to 2010.
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Abstract. We propose an approach to the determination of class borders on a 
SOM with non-equal class distributions. Our approach treats the class distribu-
tion as a variance-covariance matrix. The class distribution is expressed by a 
variance-covariance matrix and its decision border between the classes is  
determined from input data by using the eigenvalues and the corresponding ei-
genvectors of the matrices. Using the iris dataset of Fisher, it is shown that our 
approach allows the effect of non-equal class distributions on the decision bor-
ders to be successfully visualized in a qualitative and comprehensible manner. 

Keywords: Decision border, Self-Organizing Map, Non-equal class distribu-
tions, Variance-covariance matrix, Visualization. 

1   Introduction 

The Self-Organizing Map (SOM) is a powerful tool for exploring huge amounts of 
multi-dimensional data. The SOM by Kohonen [1] is a kind of neural network algo-
rithm that projects high dimensional data onto a low dimensional space. In the tradi-
tional SOM algorithm, however, the “border effect” problem have been pointed out, 
and several spherical SOMs based on a geodesicdome [2] or a toroidal SOM have 
been proposed as a remedy. To show its potential effectiveness, the spherical SOM 
has been applied to clustering. For instance, Tokutaka et al. [3] proposed a highly 
accurate cluster analysis using the spherical SOM.  

On the other hand, there is a proposal [4] for the interpretation of information on 
the map. However, the U-matrix [5] has been mainly used in the traditional SOM and 
the spherical SOM. In the U-matrix, the Euclidean distance between nodes is ex-
pressed by a gray level. Therefore, it is difficult to decipher the information of the 
class distributions or the borders when the shading due to the U-matrix changes con-
tinuously. Tokutaka et al. [3] converted the shade of the U-matrix to the distance and 
obtained a dendrogram to perform a classification based on distances. They recom-
mended analyzing the dendrogram and the graphical object on the polygon surface 
interactively to eliminate misclassifications. In the discussion of their cluster analysis, 
they used boundaries that were artificially drawn. When discussing the dendrogram, 
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however, it is crucial that the class boundary is decided accurately because the preci-
sion of the computed class boundaries controls the accuracy of the cluster analysis. 
Generally, it is difficult to depict the class borders of multi-dimensional data, however 
the projection capability of the SOM of multi-dimensional data will allow the class 
borders to be successfully visualized. Therefore, there exists a necessity for a method 
accurately drawing the decision borders on the SOM.  

To achieve the above goal, we have proposed two methods for determining the 
class decision borders [6]. The proposed methods mainly covered the case of equal 
class distributions, but it is vital that the class boundary is decided as accurately as 
possible. Therefore, we especially propose an approach to deal with the case of non-
equal class distributions in this paper. 

2   Methods and Procedures for Decision Borders on the SOM 

2.1   Decision Border with Equal Class Distributions  

Now, assume that there are two data points on the SOM. One of them is located at the 
center part of the class distribution, and the other is located near the class boundary. 
The latter will have an overwhelmingly larger influence than the former on the deci-
sion of the class border. Therefore, it is reasonable to approximate the class borders 
from the input data close to the boundary on the SOM [6]. 

Let us select a pair of feature vectors X and Y on the SOM as shown in Fig.1. They 
are of a different class (class A and class B) and are placed at the nearest boundary. 
Symbols of open diamond stand for class A and those of open square stand for class 
B, and points of open circle should be selected on the border. The feature vectors are 
assumed to be m-dimensional and vector X = (x1, x2, … , xm) belongs to class A and 
vector  Y = (y1, y2, … , ym) belongs to class B. 

Let us consider the case of determining point D = (d1, d2, … , dm) of an arbitrary 
feature vector on the boundary from the feature vectors X and Y.  

Assume that the two class distributions are almost equal, the point D on the bound-
ary should be selected to satisfy the condition that the summation S of k  and l  is the 

minimal value, where k  is the square value of the distance between D and X, and l is 
the square of the distance between D and Y. 
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Fig. 1. Decision border and feature vectors X and Y on the spherical SOM: Open diamond 
nodes are class A and open square nodes are class B. Open circle nodes are the calculated ones 
on a border and a close circle node is the point D. The dotted line is a part of the borderline. 

2.2   Decision Border with Non-equal Class Distributions 

When a class distribution is considered, we assume that the class distribution can be 
expressed by using a variance-covariance matrix. When the two variance-covariance 
matrices U and V of the class A and class B, respectively, are defined as equation 
(4), then equation (1) is enhanced to equation (5) as follows. 
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The point D on the boundary should be selected to satisfy the condition that the sum-

mation T of 2
1M and 2

2M is the minimal value, with 2
1M is the square value of the 

distance between D and X, and 2
2M is similarly the square of the distance between D 

and Y. 
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In order for T to be a minimal value, it is necessary to satisfy the simultaneous equa-
tions obtained by differentiating equation (6) with respect to d1, d2, … , dm. However 
directly differentiating equation (6) with respect to 

id  complicates the handling of the 

expression. Thus the calculation is done after 1−U and 1−V in equation (6) are diago-
nalized by using the eigenvalues and the corresponding eigenvectors.  

TTT )()()()( DYBQQDYDXAPPDX 11 −−+−−= −−                         (7) 

Here A and B are matrices whose elements on the diagonal are composed of the 
eigenvalues of 1−U and 1−V , respectively, and P and Q  are matrices whose elements 

are composed of the eigenvectors of 1−U and 1−V respectively: 
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Differentiating T in equation (7) with respect to '
id , we conclusively get: 
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Here '' , ii xd and '
iy are defined respectively by the following equations: 
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We can see that the equation coincides with equation (3), when two eigenvalues are 
equal in equation (9).  

2.3   Procedure for Determining Decision Border 

When the probabilistic relation between a feature vector and the class distribution is 
uncertain, it is difficult to obtain the decision borders. Then it is necessary to ensure 
that the map contains the information of the distribution of the feature vectors. The 
SOM is the easiest method to obtain such a map.  

After obtaining the spherical SOM as shown in Fig.1, the following three steps are 
repeated for determining the decision borders with the equal class distributions. 

Step 1 
A number of candidates on the spherical SOM are selected from the data sets near 
the boundary. 

Step 2 
The distances between candidates are calculated and a pair of data points with the 
minimum distance is determined. 

Step 3 
Point D on the boundary is selected from the pair by equation (3). 

After some points on the boundary are calculated by repeating step 1 through 3, a 
borderline is drawn. In Step 1, candidates in the class A and class B are selected ac-
cording to equation (12) among the datasets.  

.)/)(exp(,)/)(exp( 22 εε ≺≺ RR BA μyμx −−−−                            (12) 

where Aμ and Bμ stand for vectorial reference points of each class, and R stands for a 
parameter  (The value within the range from 0.01 to 0.1 is usually used as a value of R 
for the retrieval.). The vectorial reference points are chosen from the node located at the 
center part of the classes. ε is a threshold value. In Step 1 candidates for the decision 
borders are usually selected among the boundary dataset. If necessary, nodes of SOM or 
other dataset can be chosen. They are selected on the basis of the distance between 
candidates. Meanwhile, when the decision borders are determined with the non-equal 
the class distributions, then it is necessary to calculate the variance-covariance matrices 
of each class, their eigenvalues and the corresponding eigenvectors before beginning the 
step (1) of the procedure for the decision borders. In the step (3) point D on the bound-
ary should be selected from the pair by using equation (9) instead of equation (3). 

3   Experiments and Results  

3.1   Dataset for Analysis 

The benchmark dataset for analysis is described: the iris dataset of Fisher [7] is a  
well known benchmark data and consists of three classes (setosa, virginica,  
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vergicolor).The number of objects in each class is 50. The data is 4-dimensional and 
the attributes are the sepal length and width and the petal length and width. The label 
of each class data on the SOM or in the figures is shown with a brief symbol. Setosa, 
vergicolor and virginica classes are represented respectively by set_n, ver_n, and 
gnc_n: for example, the first data of virginica is described as “gnc_1”. 

 

Fig. 2. Selection of candidates (R = 0.01, Aμ  = (0.4820, 0.3311, 0.6063, 0.5829), ε = 0.0092) 

3.2   Result with Equal Class Distributions  

We used the software of blossom [8] as the spherical SOM analysis tool to analyze 
the datasets. For the iris data, the points from b0 to b4 on the spherical SOM were 
calculated by repeating steps 1 through 3 for the combination of two versicolor data-
sets (ver_23, 34) and five virginica datasets (gnc_9, 17, 24, 27, 35). The calculated 
points form the borderline near the four data sets, versicolor19, 23, 38 and vir-
ginica20, were misclassified in the cluster analysis using the spherical SOM [3]. Fig.2 
shows how the candidates were selected based on equation (12) when node b0 on the 
boundary was determined. 

We adopted the candidates among the nodes that were contained within the left 
side region from the point CR. In this figure the slope of the value calculated by  
equation (12) changed significantly at this point CR. Fig.3 shows the results of the 
projection of the calculated values onto the spherical SOM. In this figure, gnc_20 was  
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Fig. 3. A borderline pictured in the vicinity of gnc_20. A short dashed oval line is the line to 
facilitate the finding out gnc_20 and not the borderline. 

misclassified as a vergicolor class by the cluster analysis using the spherical SOM. 
We can see from this figure that the borderline can be successfully expressed in the 
ambiguous shade region of the U-matrix.  

3.3   Result with Non-equal Class Distributions 

Table 1 lists the eigenvalues and the corresponding eigenvectors obtained from the 
variance-covariance matrices of the each class when the class distributions are ex-
pressed by using the variance-covariance matrices. 

The maximum eigenvalue is that of setosa class and the minimum eigenvalue is 
that of vergicolor. From the result of this eigenvalues and equation (9), one can see 
that the magnitude of the effect of the non-equal class distributions on the decision 
borders depends on the eigenvalues and that the magnitude of the effect is the largest 
in the setosa class, the next largest in the vergica class and the least in the verginica 
class. Hence one can also see that the decision border between the vergica and vergi-
color classes will be shifted toward the verginica side. 

Fig.4 shows the decision borders determined with our approach on the polygon 
surface. The solid decision border with the nodes from b0 to b4 was determined by 
using equations (10) and (11) from the feature vectors which have been obtained with 
equation (3). The dotted decision border with nodes from b0T to b4T was determined 
by using equations (10) and (11) from the data which have been obtained based on the 
coordinate system proposed in [6]. The solid decision border in blue color with the 
nodes from Q0 to Q4 was determined obtained by using equations (9), (10) and (11) 
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from the feature vectors. When comparing the decision borders determined with the 
three methods, the values of three of the five nodes, b0T, b3T and b4T, on the deci-
sion border are a very good match with the corresponding values of b0, b2 and b3, but 
the other ones of the nodes, b1T and b4T, do not match with the correspond values of 
b1 and b4. 

Table 1. Eigenvalues and the corresponding eigenvectors of each iris data class 

 1λ  
2λ  

3λ  
4λ  

Setosa 22.441 10.414 4.904 0.047 
Virginica 19.856 2.314 2.107 0.022 

Vergicolor 6.677 1.734 1.084 0.011 
 

W1 W2 W3 W4 
-0.011 -0.062 0.945 -0.322 
0.082 -0.119 -0.325 -0.935 
-0.920 0.372 -0.027 -0.119 

Setosa 
(set) 

0.383 0.919 0.032 -0.094 
 

W1 W2 W3 W4 
0.171 -0.852 0.025 0.493 
-0.139 0.148 -0.914 0.351 
-0.695 0.209 0.364 0.584 

virginica 
(ver) 

0.685 0.455 0.177 0.540 
 

W1 W2 W3 W4 
0.444 -0.078 -0.753 0.479 
-0.243 0.909 0.145 0.306 
-0.726 0.370 -0.103 0.571 

vergicolor  
(gnc) 

0.465 0.176 0.633 0.593 

 
On the other hand, the solid decision border with the nodes from Q0 to Q4 was 

mapped in a different region. The reason why the nodes from Q0 to Q4 were mapped 
in a different region is that some of input data remap out of phase on the polygon 
surface. Therefore some pairs of candidates with the non-equal class distributions 
should be reselected to decide the decision borders regardless to candidates selected 
in the equal class distributions. 

Fig.5 shows two decision borders determined from some pairs of candidates with 
the non-equal class distributions by using our approach. As can be seen from this 
figure, the part of the decision border along the nodes from R0C to R4C shifts from 
the part of the decision border along the nodes from R0+ to R4+ even thought the part 
of the decision border along the nodes from R5C to R6C has slightly inverse ten-
dency. This fact gives evidence in support of the fact that the magnitude of deviation 
from the decision border with equal class distributions depends on the magnitude of 
eigenvalues with the variance-covariance matrix of each class. 
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Fig. 4. A band of decision borders were obtained with equation (9) 

The nodes from b0 to b4 on the polygon surface were calculated with the feature data, the 
nodes from b0T to b4T were calculated by using the coordinate system of [6] and the nodes 
from Q0 and Q4 were calculated by using equation (9). 

 
Fig. 5. Two decision borders were obtained with equation (9) 

The solid decision border with the nodes from R0c to R6c was determined by using equation 
(9) and the dotted decision border with nodes from R0+ to R6+  was calculated when two 
eigenvalues are equal in the equation (9).   
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4   Conclusions 

We have proposed an approach which approximates the decision borders on a spheri-
cal SOM with non-equal class distributions. The magnitude of the effect on the deci-
sion borders with the non-equal class distributions depends on the magnitude of the 
eigenvalues, especially maximum eigenvalue, of the variance-covariance matrices. 
Using the iris dataset of Fisher, we confirmed that our approach allows the magnitude 
of the effect on the decision borders to be successfully and qualitatively visualized.  
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Abstract. In this paper we study how the Self-Organizing Map (SOM)
can be used in analysing the structure of semantic concepts in visual
data. We investigate two data sets with concept labels provided by hu-
mans, and unlabelled data for which we utilise automatically detected
concept membership scores by using models trained on a labelled data
set. By arranging the concept memberships of visual objects as com-
ponents of a vector, they can be used as the feature space for training
a SOM. A visual and qualitative analysis of the SOM distributions of
different concepts is augmented with a quantitative analysis based on
measuring the Earth Mover’s Distance between the vector distributions
on the 2D SOM surface. In particular we study the PASCAL VOC 2007
and TRECVID 2010 databases, which are two large image and video
data sets.

Keywords: Self-Organizing Map, Earth Mover’s Distance, concept de-
tection, high-level features, image and video databases, visualisation.

1 Introduction

In this paper we study how the Self-Organizing Map (SOM) [2] can be used
in analysing the structure of semantic concepts in visual data, in particular in
the PASCAL VOC 2007 and TRECVID 2010 data sets. We compare how the
a priori ground-truth concept data available in the training material and the
a posteriori concept detections extracted from the testing material of the two
databases behave in the mapping.

Early content-based image and video retrieval systems relied on measuring
similarity solely using low-level visual features automatically extracted from the
objects. However, such generic low-level features are often insufficient to dis-
criminate content well on a higher conceptual level required by humans. This
“semantic gap” is the fundamental problem in multimedia retrieval.

In recent years, high-level features, or semantic concepts have emerged as a
partial answer to this problem. The main idea is to create semantic represen-
tations by extracting intermediate semantic levels (events, objects, locations,
people, etc.) from low-level visual features using machine learning techniques.
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For example we can train detectors for semantic concepts such as “image con-
taining a cat” or “video depicting an explosion or fire”, which can then be used
as building blocks for higher level querying into the database.

The accuracy of current state-of-the-art concept detectors can vary greatly
depending on the particular concept and on the quality of the training data. Still,
it has been observed that even concept detectors with relatively poor accuracy
can be very useful in supporting high-level indexing and querying on multimedia
data [1].

The rest of the paper is organised as follows. In Section 2 we explain the main
idea of self-organising semantic concept vectors and how they can be analysed.
Section 3 describes our experiments with two commonly used visual databases
that are provided with semantic concepts and corresponding labelled examples.
Conclusions are drawn in Section 4.

2 Self-Organisation of Semantic Concepts

In our experiments, each database is divided into a training set with a given
ground truth of known concept members (labelled images or videos), and a
test set for which concept membership is unknown. By training detectors on
the known memberships we generate probability estimates of the corresponding
concept membership of the test set objects. In this way the concept memberships
are boolean in the training set (e.g. an image either depicts a cat or not), while
the test set has probabilistic membership values (e.g. this image contains a cat
with the probability 0.8). In this paper, we take the concept detectors as given.
We use state-of-the-art detectors based on a fusion of Support Vector Machine
(SVM) detectors on low-level visual features.

The ground truth labels and the concept detector outcomes give us two ways
of analysing the semantic concepts of a database. A Self-Organizing Map can be
trained either on the {0, 1} values of the training set or the [0, 1] probabilities
from the test set. Given a set of objects (e.g. images) x1, . . . , xN , and concepts
C1, . . . , CK , we can construct a concept vector for the object xi:

ci =

⎛⎜⎝ pi,1

...
pi,K

⎞⎟⎠ , (1)

where pi,j ∈ [0, 1] is the concept membership score of object xi in concept Cj ,
often interpreted as the probability of the object belonging to the given concept.
Thus, such a concept vector specifies concisely the concept membership of a
given object to all concepts in the used concept vocabulary.

In the next step, we train Self-Organizing Maps using the concept vectors
of the database objects as input. Such concept vectors will be contain only 1’s
and 0’s in the training set where we have labelled data, but will be in the range
[0, 1] in the test set where we have detector outcomes. Because of the different
types of input, we have trained two SOMs for each database, one for the training
set, and one for the test set. Looking at the organisation of the training set can
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give us insight in how concepts are correlated and the 2D relations can give us
important clues to how the concepts group together into larger patterns.

A map of size M ×M has model vectors m1, . . . , mM2 , and if we take the j’th
component of each model vector m1,j , . . . , mM2,j we get a 2D distribution over
the map surface for the concept Cj . Comparing such distributions between differ-
ent concepts can provide insight into the semantic organisation of the database.
While studying the organisation of the test set is less certain — since we only
have estimated probabilities with quite varying accuracy — it may still be useful
for analysing the overall organisation of the data set.

In addition to visually and qualitatively inspecting the concept distributions
on the SOM surface we also wish to make a more quantitative analysis. In
particular the “closeness” of concepts on the maps might be interesting. The
different component distributions of the SOM model vectors represent different
concepts, and thus the closeness of concepts could be estimated by calculating the
distance between these distributions arranged as vectors — with short distances
indicating semantically close concepts.

We first considered Euclidean distance between the component vectors, but
this would not take into account the 2D organisation of the SOM map. Two
distributions might be close by on the map but still be orthogonal. To take into
account the 2D distribution of concepts on the map we instead decided to use
the Earth Mover’s Distance (EMD) [5] to calculate their dissimilarity. The EMD
measures the minimum cost of turning one distribution into the other, where in
this case the cost is the value that needs to be moved times the Euclidean
distance over the 2D map surface. We used the C implementation for EMD1

provided by the authors of [5].

3 Experiments

In the following subsections we present the resulting SOM maps for two different
visual databases. For training the SOMs and processing the databases we have
used the content-based retrieval and analysis framework PicSOM [4]. PicSOM by
default uses Tree-Structured SOMs (TS-SOMs) [3] in which successively larger
SOM layers are trained by fixing the previous layer and restricting the best-
matching unit (BMU) search to the neighbourhood of the unit beneath the
BMU in the previous layer. For our purpose, this gives us the advantage that we
can visualise the SOM spatial surface at different levels of detail, by looking at
different layers of the TS-SOM.

3.1 VOC 2007

The Pascal VOC 2007 database2 contains almost 10,000 images with a training
set of 2,500, evaluation set of 2,500 and test set of about 5,000 images. We used
the training set and the test set to generate two Self-Organizing Maps. The

1 http://ai.stanford.edu/~rubner/emd/default.htm
2 http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html

http://ai.stanford.edu/~rubner/emd/default.htm
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html


Analysing the Structure of Semantic Concepts 341

training set (ground truth) test set (detector outcomes)

Fig. 1. SOM-based concept organisation of VOC 2007

training set is pre-labelled into 20 concepts; images may belong to 1 or more
concepts. The concept detectors of the test set were simple SVM models on
ColorSIFT (opponent colour space) histogram features [6] calculated from the
images. We trained TS-SOMs with three layers of sizes 4×4, 16×16, and 64×64.

The trained SOMs are visualised in Figure 1, in the left column the training
set (based on the labelled ground truth) and in the right column the test set
(based on the detector outcomes). The top row shows the second surface layer
(size 16 × 16), where each model vector is labelled with the image that has the
closest concept vector. Not surprisingly the test set is much more evenly spread
out, while the training set — with its boolean-valued vector components — is
more sparse.

The concept distributions on the bottom-most TS-SOM layers are shown in
the bottom row of Figure 1. The images are simply plots of the model vector
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components, e.g. the first image, Aeroplane is a plot of the first component of
each model vector. The gray scale values of the images are scaled so that white
corresponds to 0.0 and black to 1.0. As can be expected, the training set concepts
show mostly black and white, while the test set covers more of the gray scale.

At this point it should be noted that the two maps were trained separately and
were initialised randomly. Thus the concepts are in general located at different
regions in the training and test set SOMs. It can however be seen that the
distributions are similar, e.g. the concept Train has three nodes in both data
sets, but located at different points due to the random initialisation.

It is also interesting to note, especially while looking at the concept ground
truth distributions (bottom left in Figure 1) how different concepts relate. E.g.
the two classes of domestic pet animals, Cat and Dog, have a similar structure
with two separate nodes in their distributions. The two distributions partially
overlap over the two concepts which indicates some co-occurrence.

Other interesting phenomena can be found as well, e.g. that all forms of land-
based transport have at least a partial presence in the lower right corner. Bicycle,
Bus, Car, Motorbike and even Train have strong clusters there. Interestingly the
Bus block seems to be like a “piece of a puzzle” that fits right into the larger
distribution of the Car concept. On closer investigation it can be seen that they
have a thin slice of common units which cause the areas to coincide on the map.

Also concepts, Bottle and DiningTable partially overlap, since a bottle can
probably often be found on a dining table, and Sofa has overlaps with both of
the two concepts. Also TVMonitor overlaps partially with Sofa. Furthermore
Bird and Aeroplane seem to share the upper right corner, partially with Boat.
Apparently these concepts sometimes co-occur.

The same phenomena are mostly repeated in the SOM based on the detector
outcomes as well (bottom right in Figure 1), e.g. the two overlapping nodes of
Cat and Dog. It is also clear that there is more of a visual organisation in the map
based on the concept detectors, e.g. there are bluish images, often depicting the
sky in the middle left border of the second layer map. This effect is because the
concept detectors are trained on the visual features of the objects. The concept
detectors are really indicating which images in the test set have the same visual
features as those in the training set belonging to a particular class. It tries to
learn which are those discriminating visual features in the training set. These
may or may not generalise to the test set.

To get a more quantitative measure of the similarity of the concept distri-
butions, we calculated the Earth Mover’s Distance (EMD) between all concept
pairs — excluding the concept Person which covers more than half of the map
area (its a priori probability is 43%). Table 1 shows the 10 closest and 10 most
distant concepts from the ground truth in the training set, while Table 2 shows
the same, but calculated from the detector outcomes in the test set. The differ-
ence in EMD compared to the two closest concepts respectively the two farthest
concepts are shown as percentages in the adjoining column.

The EMD ordering corresponds well with our intuitive understanding, and
with the concept distributions shown in Figure 1. For the ground truth-based
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Table 1. EMD comparison of concepts by the ground truth in VOC 2007

10 closest concepts 10 most distant concepts

Sofa – TVMonitor Bird – DiningTable
Chair – TVMonitor +9.2% Bus – Chair –5.1%
Chair – DiningTable +18.2% Bird – Chair –6.1%

PottedPlant – Sofa +20.9% Bus – Cat –6.3%
PottedPlant – TVMonitor +21.8% Car – Chair –9.1%

Chair – Sofa +29.0% Bus – DiningTable –10.3%
Bottle – PottedPlant +30.3% Car – DiningTable –12.3%

DiningTable – Sofa +31.2% Car – Cat –13.6%
Bus – Car +33.7% Bird – Sofa –14.3%

Bottle – Sofa +35.3% Bird – Cow –14.3%

Table 2. EMD comparison of concepts by detector outcomes in VOC 2007

10 closest concepts 10 most distant concepts

Chair – Sofa Train – TVMonitor
Bottle – DiningTable +51.8% Aeroplane – DiningTable –3.5%

Sofa – TVMonitor +127.7% Sofa – Train –4.1%
DiningTable – PottedPlant +179.6% Aeroplane – Sofa –4.5%

Chair – TVMonitor +193.2% Aeroplane – TVMonitor –5.7%
Bottle – PottedPlant +243.7% Cat – Motorbike –5.8%

Cat – Dog +249.4% DiningTable – Train –6.3%
Chair – PottedPlant +266.3% Chair – Train –6.8%
Chair – DiningTable +325.5% Aeroplane – Chair –7.4%
Bird – Dog +409.0% Aeroplane – Bottle –7.4%

results most concepts seem to be related to indoors domestic scenes, such as
Sofa, TVMonitor and PottedPlant which are commonly found together in a
living room, and Chair and DiningTable which are common in dining rooms.
We also see Bus and Car which, as stated in the visual investigation of the
maps, are close but overlap only a little. These are commonly seen in street
scenes, but overlap only seldomly in the images of the database. However, they
do overlap some times and the neighbourhood smoothing of the SOM algorithm
causes the two distributions to appear nearby on the map.

The closest concepts based on the detector outcomes (Table 2) are similar,
except for Cat and Dog and Bird and Dog. Especially the latter pair is quite
interesting, and might be explained by the fact that both birds and dogs are
often depicted outdoors with visually similar surroundings. Also it can be seen
that for some reason the distance grows much steeper in the test set than in the
training set, as shown by the percentage column.

The most distant concepts based on EMD are also not surprising, however
here there are larger differences between the training and test sets. Especially
Aeroplane seems to be distant from most other concepts, which might be ex-
plained by aeroplanes often being shown with a blue sky as a background, thus
being visually very distinct from other images. This has an effect in the test
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set, since it is based on concept detectors trained on low-level visual features, in
particular a colour-based one in this case.

3.2 TRECVID 2010

One of the tasks in the annual TRECVID video retrieval evaluation [8] is to de-
tect the presence of predefined high-level features (HLFs) [9] in broadcast videos
that are already partitioned into shots. Our research group has participated since
2005, and in this paper we use the database from TRECVID 2010.

The TRECVID 2010 video data is taken from the Internet Archive collection3.
A total of 130 concepts are provided, and the ground truth was specified by a
collaborative annotation process among the participants4. The training data set
contains about 120,000 video shots (200 hours) and the test set about 150,000
video shots (200 hours). Some videos did not belong to any concept and were
dropped for these experiments.

As concept detectors we used our own developed for the TRECVID 2010
competition [7]. These are based on fusion of SVM detectors based on SIFT
and ColorSIFT features calculated from a dense sampling of different spatial
partitions of the key frame images extracted from the video shots. We trained
TS-SOM with four layers of sizes 4 × 4, 16 × 16, 64 × 64 and 256 × 256. The
SOM for the training set is visualised in Figure 2, the test set in Figure 3.
Both figures show the second 16× 16-sized layer with image labels representing
the model vectors, and below that are the component distributions of selected
concepts. The 10 closest and 10 most distant concept pairs measured by Earth
Mover’s Distance are shown in Table 3 for the ground truth and in Table 4 for
the detector outcomes.

In the training set we can see that there are several larger clusters of concepts,
e.g. suburban scenes form a large group close to the centre. Here we find e.g
the concepts Building, Car, Road, Streets, Suburban and Vehicle. Also Outdoor
overlaps this area. Pairs of these concepts also occur many times in the list of 10
closest concepts. The situation is similar with the detector outcomes (test set),
but now these concepts occupy the lower right corner and are naturally more
spread out. Another cluster covered by the Outdoor concept is in the upper left
corner in the training set, e.g. Landscape, Plant, Trees and Vegetation. Again, in
the test set, they are placed differently, in the middle of the bottom edge.

Looking at most distant concept pairs, it is not so strange that Fem.Face-
Closeup (female human face closeup) is distant from other concepts, since a
closeup image tends to fill the image with only one object excluding the pos-
sibility of finding other concepts. Again we find that the pair-wise distances
grow more rapidly in the test set. Curiously, the concept Canoe is very distant
from other concepts, probably because it is very rare – only 11 examples in the
training set.

3 http://www.archive.org/
4 http://mrim.imag.fr/tvca/

http://www.archive.org/
http://mrim.imag.fr/tvca/
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Fig. 2. TRECVID2010, training set (ground truth)

Table 3. EMD comparison of concepts by the ground truth in TRECVID 2010

10 closest concepts 10 most distant concepts
Road – Streets Charts – Fem.FaceCloseup

Walking – WalkingRunning +21.9% ComputerTVScreens – Fem.FaceCloseup -3.2%
Anchorperson – Reporters +32.4% Fem.FaceCloseup – Maps -4.0%

Car – GroundVehicles +42.0% Charts – Face -9.2%
RoadwayJunction – Streets +48.1% Face – Maps -9.9%

Car – Constr.Vehicles +51.5% Fem.FaceCloseup – OverlaidText -10.1%
DemoProtest – PeopleMarching +59.3% Fem.FaceCloseup – Laboratory -10.7%

Highway – RoadwayJunction +70.8% Beards – Landscape -12.0%
Road – RoadwayJunction +85.5% Landscape – MalePerson -12.3%

GroundVehicles – Motorcycle +87.3% Maps – SinglePerson -12.6%
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Fig. 3. TRECVID2010, test set (detector outcomes)

Table 4. EMD comparison of concepts by detector outcomes in TRECVID 2010

10 closest concepts 10 most distant concepts
Car – Vehicle Canoe – Celeb.Entert.

GroundVehicles – Vehicle +40.6% Canoe – Singing -0.5%
Outdoor – Swimming +483.8% Desert – Singing -0.8%
Outdoor – Stadium +651.7% Canoe – Entertainment -0.8%
Outdoor – Trees +654.0% Celeb.Entert. – Desert -0.9%

Beards – Face +684.9% Desert – InstrumentalMusician -1.0%
Constr.Vehicles – Vehicle +817.7% BoatShip – Celeb.Entert. -1.2%

Adult – AsianPeople +1018.7% Desert – Entertainment -1.3%
FemalePerson – Teenagers +1375.6% Canoe – InstrumentalMusician -2.0%

Walking – WalkingRunning +1886.3% BoatShip – Singing -2.1%
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4 Conclusions

In this paper we have analysed the structure of semantic concepts in visual
databases using Self-Organizing Maps. By constructing semantic vectors out
of the labelled data, or using automatically extracted concept probabilities we
can generate a self-organised 2D mapping of the concept space. In particular,
we investigated two large-scale visual databases, the VOC 2007 image dataset
and the video collection used in TRECVID 2010. We showed that interesting
relationships can be found using visual analysis of the SOM surfaces, and also by
measuring the similarity of the concept vector components. By using the Earth
Mover’s Distance the measure can also take into account the 2D organisation in
the map.

While a simple correlation analysis of the concept labelling might yield par-
tially similar results, we believe that the 2D organisation of the SOM provides
a unique advantage. For example higher-level groupings of concepts are imme-
diately visible on the map surface. The hierarchy of the TS-SOM might be used
to further advantage here, by looking more closely at how the concepts merge
when going upwards to smaller layers. This may be a fruitful topic for future
research.
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Abstract. We propose the algorithm of CGH (Computer Generated
Hologram)-SOM, in which SOM can organize the 3D information of
objects on the map, using Fresnel hologram as memories of the units.
The performance of CGH-SOM is also examined by experiments. Fres-
nel Hologram, which is conventionally implemented on photographic dry
plates, can record the 3D information of an object, and can be used to
recognize 3D objects. In the algorithm, we implemented Fresnel holo-
gram as Computer Generated Hologram, which virtually simulates the
photographic processing in the computer.

1 Introduction

Holograms are widely used for 3 dimensional(3D) data processing. For examples,
3D object displays, memories of 3D objects and hologram sheets are conventional
applications[1][2]. In this paper, Computer Generated Hologram (CGH)[3] is
used for the representations of 3D objects, and also applied to the recognition of
3D objects. In the conventional method of 3D object processing, the 3D objects
are interpreted as the set of surfaces, edges and vertices, and the interpreted
information is used for processing. Using CGH, the raw data of the points on
the object, which can be obtained from 3D laser scanner or the results of the
processing of 3D stereo camera, are directly used for processing. The computa-
tional costs of CGH may become large, and yet, it can be accelerated by SIMD
processing in CPU or GPU, because the computation of CGH is simple numer-
ical calculations. The recognition of 2D objects using CGH was reported in [4].
In our research, CGH is extended to the recognition of 3D objects.

In this paper, we propose a Self Organizing Map(SOM) which is composed of
the CGH planes. Self Organizing map is the feed forward type neural network
which consists of 2 layers, competitive layer and input layer without hidden
layers. The learning method is unsupervised learning. After learning, SOM can
map the multi-dimensional data on the 2 dimensional plane. CGH-SOM is a
SOM which learns CGH of 3D objects in the units. After learning, the learned

J. Laaksonen and T. Honkela (Eds.): WSOM 2011, LNCS 6731, pp. 348–356, 2011.
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Fig. 1. Calculation of Fresnel CGH

3D objects can be mapped on the 2 dimensional plane and the resulting map
can be used for the clustering and the recognition of 3D objects. The matching
result between CGH and 3D objects is given as image data. The index to evaluate
the image data is defined for introducing the metric among the objects. Some
experimental results are shown using the artificial 3D objects and the actually
measured data obtained from 3D laser scanner. Especially for the scanned data,
sampling is required for hologram processing because too large number of points
are obtained from the laser scanner and the difference of Z coordinates of scanned
data affects the matching of hologram. For this purpose, the conventional SOM
is applied to select the constant number of the points.

2 Hologram

Hologram is the record of the interference patterns of reflected beam of the
object and reference beam. Hologram can record 3D information of the object,
because it can record both amplitudes and phases. Additionally,the record of the
hologram is highly redundant, so the recorded information can be retrieved even
if some part of hologram is missed, and multiple holograms can be superposed
in a hologram.

In the optical system, the hologram is recorded in the photographic dry plate.
In optical information processing systems, hologram can be recorded in the high
density liquid crystal panel. In this paper, we use the Computer Generated
Hologram(CGH), which is virtually implemented in the computer. CGH can
simulate all processes related to the holograms without using optical systems
with changing the parameters.

2.1 Fresnel Hologram

To process the 2D information, Fourier Transform hologram can be applied. For
processing 3D information, Fresnel Transform (FT) hologram [5] is required to
handle depth information. The Fresnel CGH I(x0, y0) projected on the plane
z = 0 from point source of light located at (x2, y2, z2) is calculated by the
following equation where a1 and a2 are amplitudes of reference beam and object
Beam respectively, and α is incidence angle of reference beam.
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I(x0, y0, 0) = |R2 + O2|2

= a2
1 +

a2
2

z2
2

+
2a1a2

z2
cos[k{ (x0 − x2)2 + (y0 − y2)2

2z2

−(x0cosαx1 + y0cosαy1) + z2}] (1)

A 3D object is represented by the set of point source of light, and the summation
of CGHs calculated for all points becomes CGH of the object.

2.2 Matched Filtering Using Fresnel Hologram

Fig.2 shows the schematic representation of matched filtering using Fresnel holo-
gram. The object beam is Fourier transformed by the laser beam from lens, and
projected on the Fresnel hologram. The projected beam is diffracted by Fresnel
hologram. If the beam matches with the information on hologram, parallel beam
is emitted as reference beam and converges to correlation spot by lens.

Computing in CGH, the beam projected on the hologram is computed as the
Fresnel transform of the object beam, and calculated as follows. The object is
sliced in Z-axis direction, and at each zi, the distribution of the object beam is
given as gi(x0, yo). Assume that the transfer function of point of light is given
as fi(xi, yi) at (xi, yi) on hologram. Then, the Fresnel transform of gi(x0, yo) is
given as follows where F denotes the Fourier transform.

Fig. 2. Matched Filtering

Fig. 3. Fresnel Transform of Input Object
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Fig. 4. Matching result for same 3D objects Fig. 5. Matching result for different 3D
object

ui(xi, yi) = g(x0, y0) ⊗ fzi(xi, yi) (2)
= F−1[F [g(x0, y0)] · F [fzi(xi, yi)]] (3)

The projected beam is calculated summing the uis for all slices located at zi. The
diffracted beam is calculated by simply multiplying each pixel values of project
beam and hologram, and the matching result projected on the screen is given
as the inverse Fourier transform of the multiplied image. Fig.4 and Fig.5 show
the results of CGH processing. Both figures show the pixel values as the hight.
When input object matches with the object recorded in the hologram, correlation
spot with extreme peak value is observed in the matching area. The position
of the correlation spot depends on the parameters ( beam angles, position of
object, etc.) and shapes of object, and yet it will appear in a small area if the
parameters are almost the same. The small values observed in the center of
the image are transmitted beam. When the input object does not match, small
peaks are observed in the matching area. To evaluate the matching results, the
following two indexes are defined, where Ma is matching area.

– Maximum pixel value in matching area

Pmax = max
P∈Ma

P (4)

– Difference of the maximum pixel value and average value

Pdif = Pmax − PMa (5)

Pmax can not be absolutely evaluated, and Pdif depends on the value of Pmax.
Thus, these indexes are integrated as follows.

– Integrated index
Pm = Pmax/Pdif − 1 (6)

The smaller value of Pm represents the better matching result.
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3 CGH Self Organizing Map (CGH-SOM)

We are developing the 3D object database using holograms in our laboratory.
As the extension of this system, CGH-SOM is proposed. CGH-SOM is the self
organizing map which is composed of the units using CGH as memories. The
learning algorithm is almost the same as that of conventional SOM with batch
updates.
CGH-SOM Algorithm

Step1 : Preprocessing of 3D object data
For each Object Data Di, calculate the Fresnel hologram Hi and Fresnel
transform Fi used in matching process according to the equations (1) and
(3) respectively.

Step 2 : Initialization of the map
For each unit Uij on the map, generate the initial Fresnel hologram hij which
is transformed from N random points of light sources.

Step 3: Matching
Match the holograms on the map and Fresnel transform of object data.
For each hij , for each Fk, generate the matching image F (hij ∗ Fk), and
calculate Pmaxij

k and Pdiff ij
k using the equations (4) and (5) respectively.

Step 4: Finding winner
For each object Dk, find the winner unit W ij

k using the matching results
Pmaxij

k , Pdiff ij
k and Pmij

k .
Step 5: Updating the units

For each winner W ij
k , update the hologram hij and its neighbors using the

following equation.

hij = hij + ηfn(d)(Hk − hij) (7)

where η is learning coefficient and fn(d) is the neighboring function.

Repeat Step 3 - Step 5 by decreasing the size of neighbors and learning coefficient
in pre-defined iterations

In step 1, the Fresnel hologram and Fresnel transform of the objects are
computed before applied to SOM because the computational costs are very large.
In step 2, because the random bitmap patterns do not matches any input data,
the holograms which are generated from random point of light sources are used
as initial patterns. In step 3, the input object data is matched with the holograms
on the map based on the matching method of hologram processing. In step 4
and step 5,standard equation of SOM can be applied for updating holograms
on the map, because the holograms can be superposed by simply summing the
holograms.

4 Experimental Results

4.1 Experimental Results Using Artificial Objects

In this subsection, the experimental results using artificial objects are shown. At
first, the objects which are shown in Fig. 6 are given as input data. The size
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Fig. 6. Input data of artificial object 1-cylinder, 2-cone, 3-quadrangular pyramid, 4-
hemisphere, 5-square column

Fig. 7. CGH-SOM for artificial object 1-
cylinder, 2-cone, 3-quadrangular pyramid,
4-hemisphere, 5-square column

Fig. 8. Retrieved images from CGH-SOM
for artificial object

of map is 5x5 and the number of iterations is 30. Fig.7 shows the map. Each
number on the map denotes the number of the object which is the closest to
the hologram associated to the unit. Each gray unit denotes the winner unit
to which a object is mapped. Each object is clustered separately on the map.
The map is organized using the metric in hologram space, so the similarity
may not compatible with human sense. Fig.8 shows the images retrieved from
the holograms learned on the map. The retrieved images are not clear because
small amount of the superposes of the holograms may causes the big affection
to retrieved images. However, the features of the objects, such as the shape of
base plain, can be observed in the images and the images which are labeled same
numbers look like similar. Fig. 9 shows the distribution of the Pm which is the
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Fig. 9. Distribution of Pm on the map left-object 1, right-object 2

Fig. 10. CGH-SOM for cones changing the radius(R) and hight(H)

similarity index between the holograms on the units and objects. These indexes
become small for the units which are labeled as the object 1 and object 2 shown
in Fig.7. The objects are clustered well based on the index Pm.

Next, the experiment was made changing the parameters of same object(cone).
The radius of base plain and hight are changed to 20, 23 and 26. Fig.10 shows the
results. All of the objects are clustered separately, and mapped on the different
units.

4.2 Experimental Results Using Scanned Data

Next, we made experiments using scanned data form 3D laser scanner. 3D laser
scanner generate 5000-9000 coordinates of surface points of the scanned object.
The computational cost using all data for hologram processing becomes very
large. For this problem, we used conventional SOM to reduce the number of
points. Using the scanned data as input vectors, the coordinates data (x, y, z)
are organized on the map. To eliminate the effect of randomness, the coordinates
on the initial map are taken uniformly from x-y plane which includes the center
of mass of the object, and batch learning algorithm is applied. Fig.11 shows the
original scanned data and reduced data of the object cone, and Fig.12 shows the
reduced data of other scanned objects. The map size is 25x25, so the number of
points of reduced data is 645. The scanned data is uniformly reduced, and the
feature of the object remains enough. Additionally, the matching result of CGH
is heavily affected by changes of the values of Z coordinates. For this problem, the
algorithm of SOM is modified as to generate discrete values of multiple number
of Ds = 2 for Z coordinate.
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Fig. 11. The original scan data of cone and the reduced data by conventional SOM
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Fig. 12. The reduced data by conventional SOM (cube, halfpipe, pyramid, half spheral)

Fig. 13. CGH-SOM for scanned object 1-
cone, 2-cube, 3-halfpipe, 4-pyramid, 5-half
spheral

Fig. 14. Retrieved images from CGH-SOM
for scanned object

Five Objects shown in Fig.11 and Fig.12 were used for training the map. Fig.13
and Fig.14 show the results. Using scanned data, the objects are also mapped
separately on the map. Next, we made the experiment of object recognition. In
this experiment, we used Supervised Pareto learning SOM[6]. Pareto learning
SOM can integrate multiple objective functions in the learning process. As the
objective functions Pmax and Pdif in equations (5) and (6) are used, and the
category of each object is used for supervised learning. Two data are scanned
for each object and the scanned data is different in each measurement. The 1st
scanned data for each object are used for learning and the 2nd scan data are
used for test. The experiments are made with changing the size of the map used
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Table 1. Experimental results for object recognition O:success X:fail

10x10 15x15 20x20 25x25 30x30 All(Raw)

cone X X X O O X
cube O O O O O X
halfpipe O O O O O O
pyramid O O O O O X
spheral O O O O O O

for reducing the scanned data. Table 1 shows the result. Using the map sized
10x10, 15x15 and 20x20 for reduction, the objects except the cone are recognized
successfully, and yet cone can not be recognized. Using the map sized 25x25 and
30x30 for reduction, all objects are recognized successfully. Using the all raw
data, only two objects are recognized because of the changes of Z coordinates in
each scan data.

5 Conclusion

We proposed the Computer Generated Hologram SOM (CHG-SOM) for map-
ping 3D objects on the 2 dimensional plane. The 3D objects were successfully
mapped using the metrics in the hologram space. Further research remains in
order to make CGH-SOM applicable as a practical system in the following as-
pects. One, the matching method of CGH should be reconsidered because CGH
matching is too rigid to guarantee its generalization ability. Two, the learning
method of the units by CGH-SOM should be reconsidered. A superposed holo-
gram, resulting from simply adding holograms, may match an incorrect object
accidentally. Three, the computing cost of CGH SOM is high. If we use GPU
computing in CGH-SOM, we can reduce the cost; we can do so significantly if we
apply the optical computing method which uses laser beam and the hologram
displayed on the liquid crystal display.

References

1. Yu, F.T.S., Lu, X.J.: A real-time programmable joint transform correlator. Opt.
Commun. 52, 10–16 (2000)

2. Orihara, Y., Klaus, W., Fujino, M., Kodate, K.: Optimization and application of
Hybrid level binary zone plates. Appl. Opt. 40(32), 5877–5885 (2001)

3. Dallas, W.J.: Computer-Generated Holograms. Digital Holography andThree Dimen-
sional Display, pp. 1–49. Springer, Heidelberg (2006), doi:10.1007/0-387-31397-4 1

4. Yu, F.T.S., Jutammulia, S.: Optical pattern recognition. Cambridge Univ. Press,
New York (1998)

5. Tudela, R., Mart N-Badosa, E., Badosa, A., Labastida, I., Vallmitjana, S., Juvells,
I., Carnicer, A.: Full complex Fresnel holograms displayed on liquid crystal devices.
Journal of Optics A: Pure and Applied Optics 5, 189–194 (2003)

6. Dozono, H., Nakakuni, M.: Application of Supervised Pareto Learning Self Orga-
nizing Maps to Multi-modal Biometric Authentication (in Japanese). IPSJ Jour-
nal 49(9), 3028–3037 (2008)



Analysing the Similarity of Album Art with
Self-Organising Maps

Rudolf Mayer

Institute of Software Technology and Interactive Systems
Vienna University of Technology, Austria

Abstract. Digital audio has become an ubiquitously available medium,
and for many consumers, it is the major distribution and storage form
of music, accounting for a growing share of record sales. However, han-
dling the ever growing size of both private and commercial collections
becomes increasingly difficult. Users are often overwhelmed by the seem-
ingly countless number of music tracks available. Computer algorithms
that can understand and interpret characteristics of music, and organ-
ise and recommend them for and to their users can thus be of great
assistance.

Therefore, a magnitude of research projects has been devoted in the
last decade to automatically to make the sound characteristics of music
machine interpretable, to e.g. allow for automatic categorisation of music,
or to recommend track which are similar to the ones a user likes.

However, music is an inherently multi-modal type of data, and in-
creasingly also other modalities of music have attracted interest from
the community. The analysis of song lyrics and other textual data, such
as websites or biographies associated with artists, together with social
network data, has probably attracted most research in this area.

Album covers are another dimensionality characteristic to the music
– they are often carefully designed by artists to convey a message con-
sistent with the music and image of a band. Studies have shown that
customers use album cover art as a visual cue when browsing music in
regular record stores. We thus present a study on similarities in album
covers, and their relations to certain styles and genres of bands. To this
end, we employ Self-Organising Maps together with various visualisation
techniques to automatically organise a music collection, and compare the
results obtained when using both features from the music and the album
covers.

1 Introduction and Related Work

Motivated by the vast spread of music in digital formats, Music Information
Retrieval (MIR) has become a very important field to aid private and commer-
cial users to organise their music collections. Important tasks are for instance
automatic categorisation to organise music into predefined genres or moods, rec-
ommendation of music similar to a certain song (similarity retrieval), or the
development of novel and intuitive interfaces to large music collections. A com-
prehensive overview of the research field is given in [12].
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A strong focus on music’s primary mode, the sound of a song, can be seen
from the research in the last decade. A number of methods to extract descrip-
tive features from the audio signal and to capture information such as rhythm,
speed, amplitude or instrumentation have been proposed, ranging from low-level
features describing the power spectrum to higher level ones. However, also other
modalities associated with music have increasingly been employed for common
MIR tasks.

Several research teams have been working on analysing textual information,
often in the form of song lyrics and a vector representation of the term infor-
mation contained in other text documents; an early example is a study on artist
similarity via song lyrics [8]. Other cultural data is included in the retrieval
process e.g. in the form of textual artist or album reviews [1].

The study in [2] suggests that ‘an essential part of human psychology is the
ability to identify music, text, images or other information based on associa-
tions provided by contextual information of different media’. It further suggests
that a well-chosen cover of a book can reveal it’s contents, or that lyrics of a
familiar song can remind one of the song’s melody. Album covers are gener-
ally carefully designed for specific target groups, as searching for music in a
record shop is facilitated by browsing through album covers. There, album cov-
ers have to reveal very quickly the musical content of the album, and are thus
used as strong visual clues [3]. Due to well-developed image recognition abilities
of humans, this task can be performed very efficiently, much faster than listen-
ing to excerpts of the songs. This motivates and increased utilisation of this
modality.

A multi-modal approach to query music, text, and images with a special
focus on album covers is presented in [2]. In [5], a three-dimensional musical
landscape via a Self-Organising Map is created and applied to small private
music collections. Additional information like web data and album covers are
used for labelling; album covers should facilitate the recognition of music known
to the user. The covers are however not use in the SOM training itself.

The Self-Organising Map has also been applied to image data in the PicSOM
project [6], for Information Retrieval in image databases, incorporating methods
of relevance feedback.

In this paper, we want to empirically validate the hypothesis that album covers
can provide cues to the type of music. We therefore organise a music collection
with Self-Organising Maps using both music features and image features, and
analysing the way the album covers are organised over the map. We investigate
whether musical similarity and a similarity in the album cover art are correlated,
and whether albums can really give a clue on the music they represent.

The remainder of this paper is structured as follows. Section 2 gives a brief
outline over the SOM framework and visualisations employed, while Section 3
will introduce the feature sets employed to describe our music collection. Our
experiments are then detailed in Section 5, before we conclude in Section 6.
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2 SOM Framework

We employ the Java SOMToolbox framework1, developed at the Vienna Uni-
versity of Technology, which provides methods for training SOMs. It further
comprises an application for interactive, exploratory analysis of the map, allow-
ing for zooming, panning and selection of single nodes and regions among the
map. The application also allows to display digital images on top of the map
grid, thus it can easily be used to visualise the album covers.

To facilitate the visual discovery of structures in the data, such as clusters,
a wealth of approximatively 15 visualisations are provided, among them the U-
Matrix [14] and Smoothed Data Histograms[13]. The former indicates distances
between SOM nodes by colour-coding, and thus hints on cluster boundaries,
while the latter visualises density in the data, also indicating clusters as nodes
with high density. We also utilise the Thematic Classmap visualisation [9]. It
which shows the distribution of meta-data labels or categories attached to the
data vectors mapped on the SOM, by colouring the map in continuous regions,
similar as e.g. a political map does for countries. To this end, it performs a
Voronoi tessellation of the map space, and assigns colours to each Voronoi region
to indicate how much a class contributes to the data items in that region.

To provide a partition of the map into separate clusters, the framework pro-
vides several clustering algorithms that can be applied on the vectors of the
SOM nodes, such as Ward’s linkage [4] algorithm.

3 Feature Sets

To obtain a vector representation of the music collection, we employ on the one
hand methods that extract descriptive features from the audio snippets, as well
as methods to extract features capturing information from the album covers.

3.1 Audio Features

The following descriptors are extracted from a spectral representation of an audio
signal, partitioned into segments of 6 sec. Features are extracted segment-wise,
and then aggregated for a piece of music computing the median (for RP and
RH, see below) or mean (for SSD, see below) from multiple segments.

We describe the feature extraction algorithms very briefly, please refer to the
references for further details.

Rhythm Patterns. The feature extraction process for a Rhythm Pattern (RP) is
composed of two stages. First, the specific loudness sensation on 24 critical fre-
quency bands is computed through a Short Time Fast Fourier Transform (FFT).
The resulting frequency bands are grouped according to the Bark scale, and suc-
cessive transformation into the Decibel, Phon and Sone scales takes place. This
results in a psycho-acoustically modified Sonogram representation that reflects
1 http://www.ifs.tuwien.ac.at/dm/somtoolbox/

http://www.ifs.tuwien.ac.at/dm/somtoolbox/
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human sound perception. In the second step, a Discrete Fourier Transform is ap-
plied to this Sonogram, resulting in a spectrum of loudness amplitude modulation
per modulation frequency for each critical band. After additional weighting and
smoothing steps, a Rhythm Pattern exhibits magnitude of modulation for 60
modulation frequencies on the 24 critical bands [7].

Rhythm Histogram. A Rhythm Histogram (RH) aggregates the modulation am-
plitude values of the critical bands computed in a Rhythm Pattern, and is thus
a descriptor for general rhythmic characteristics in a piece of audio [7].

Statistical Spectrum Descriptor. The first part of the algorithm for computation
of a Statistical Spectrum Descriptor (SSD), the computation of specific
loudness sensation, is equal to the Rhythm Pattern algorithm. Subsequently at
set of statistical values (mean, median, variance, skewness, kurtosis, min and
max) are calculated for each individual critical band. SSDs therby describe fluc-
tuations on the critical bands; they capture both timbral and rhythmic informa-
tion. In a number of evaluation studies, SSD have often shown to be superior for
musical genre classification tasks [7].

3.2 Image Features

Colour Histogram. This feature set computes the distribution of pixel values in
the RGB colour space. For each colour channel, a histogram of values (from 0 to
255) is computed from all pixels in the image. To reduce the dimensionality, we
employed binning of the values. 128 bins for each channels were determined as
a good value through experimental evaluation in classification tasks. Thus the
total dimensionality of such a feature vector is 384 dimensions.

Color Names. Colour names [16] are a level of abstraction on top of a colour
histogram – the colour space is divided in the 11 basic colours black, blue, brown,
gray, green, orange, pink, purple, red, white and yellow. Each pixel is associated
with one of these colours, and then, as before, a histogram of values for the whole
image is computed. This feature vector thus has eleven dimensions.

SIFT – Bag of Visual Words. Scale Invariant Feature Transform is a local feature
descriptor which is invariant to certain transformations, such as scaling, rotation
or brightness. The algorithm extracts interesting points in an image, which can
then be used to identify similar objects. The points usually lie on high-contrast
regions of the image, such as object edges. We utilise the algorithm presented in
[15], which utilises a Harris corner detector and subsequently the Laplacian for
scale selection. We created a 1024 dimensional codebook (Bag of Visual Words),
capturing the relative distribution of the SIFT features.

4 Collection

Music information retrieval research in general suffers from a lack of stan-
dardised benchmark collections, being mainly attributable to copyright issues.
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Nonetheless, some collections have been used frequently in the literature. These
were howeber not usable for the study in this paper, as none of these collec-
tion comes with a complementary set of album covers, and additionally most
collections either miss information about song title and artist, or are royalty
free music from relatively unknown artists – for both cases, automated fetching
album covers from the web is not feasible.

Therefore, we composed our own test collection containing both audio snip-
pets and album covers, by crawling data from the webshop amazon.com, which
provides rich information for their music shop. Considering the best-selling list
from several different genres, for each album (or maxi-single) found, we down-
loaded the cover, and the 30 second audio snippet of the first song. We thereby
skipped entries for which either the cover was of too poor quality (below 400×400
pixels), or the 30 second song snippets was missing. Amazon organises the con-
tents of it its music shop into 25 top-level genres, with many sub-categories;
songs may, and frequently are, assigned to multiple genres. We aimed at select-
ing rather diverse and non-overlapping genres, to achieve distinctive styles in
the cover art, and thus chose genres such as ’Goth and Industrial Rock’, ’Rap
and Hip-Hop’, ’Reggae’, ’Country’, ’Electronic’, ’Classical music’ and ’Blues’.
Overall, the collection comprises more than 900 songs.

5 Experimental Analysis

We trained maps of the size 22×18 nodes, i.e. a total of 352 nodes, with each
of the audio features. From a manual inspection, the map trained with SSD
features seems to provide the best arrangement of music according to the authors
perception, superior to RP and RH features.

This map is depicted in Figure 1, with the result of a clustering of the nodes
superimposed on the map lattice.

It can be observed that the classical music (indicated by light-grey colour) is
separated rather well from the other genres, being mostly located in the upper-
right corner. This area also matches the boundary detected via the clustering of
the map nodes using the Ward’s linkage method. Gothic and Alternative rock
music, indicated in green, is mostly located in the lower-left corner, though a few
pieces are distributed on other areas as well. These pieces are mostly slow songs,
using a lot of instrumentation found also in e.g. classical music, such as violins,
and therefore most of these mapping patterns appear logical from a musical
point of view. Reggae music (red) can be mostly found in the upper-left corner
and upper-centre, often together with Hip-Hop (blue), with which it shares a lot
of rhythmic and tempo characteristics. Jazz/Blues (dark-grey), which borrows
many styles from other genres, is organised in a number of smaller, but in itself
rather consistent, clusters. The distribution of these clusters all over the map
is motivated by the nature of this genre, which is a confluence of several music
traditions, and has incorporated many aspects of popular music. Electronic music
(pink) shows no clear pattern, distributed in small groups all over the map.

In Figure 2, a Smoothed Data Histogram (SDH) visualisation of this map
is depicted, with the ’Islands of Music’ [13] metaphor, where islands represent
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Fig. 1. Distribution of genres over the map with SSD audio features. Clusters obtained
via Ward’s linkage clustering of the nodes is indicated by white lines.

areas with high density. It can be seen that the arrangement of different genres
correlates to some degree with the SDH, such as in the area of high-density in
the upper right, which represents the cluster of classical music.

For a more detailed inspection, Figure 3 depicts 24 nodes in the upper-right
corner of the map, the area containing mostly classical music; this section of
the map contains a total of 64 songs. To indicate the genre, the class visuali-
sation [9] from Figure 1 is also used in this illustration, using the same colours
as background for the different genres as in Figure 1. On a first glance, there
seems to be a certain coherence between the album covers. The most striking
shared characteristics between the classical music album covers seems to be the
frequent use of photos of people, in some cases the artists themselves, in other
cases the musician interpreting the piece of music. These album covers generally
follow a rather simple pattern for the background, consisting of few colours, and
none or few objects. Many of the albums also simply feature a completely white
background. The album covers on the top-edge of the figure mostly belong to the
electronic genre; most of them share very similar instrumentation as the classical
pieces, mostly the use of a piano or flutes. However, the album art seems to differ
quite strongly, with a stronger use of dark colours, and more complex themes.

We can make similar observations for areas with Jazz and Country music,
such as the area on the lower-right of the map, shown in Figure 4(a). Again,
most of the covers feature portraits of the artists; however, there is a slightly
different pattern in the background, using more darker colours, and thus allowing
a subtle differentiation between the previous examples. Similar observations can
be made for many Reggae songs.



Analysing the Similarity of Album Art with Self-Organising Maps 363

Fig. 2. Smoothed Data Histograms of the map with SSD audio features

Fig. 3. Album covers in the cluster of classical music (SSD audio features, top-right
corner)

A cluster with songs from the Gothic and Alternative Rock genre is shown in
Figure 4(b). Out of a total of 13 covers, only six show people, and in most cases,
these portraits are heavily altered and appear more artificial. Noteworthy is also
the use of many dark and flashy colours, which create a dark appearance.

While other areas of the map do not show that clear patterns, it can be
concluded that at least to a certain degree, musical similarity as determined by
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(a) Country, Jazz and Classical (b) Gothic and Alternative Rock

Fig. 4. Album covers in the map with SSD audio features

(a) Color names (b) SIFT features

Fig. 5. Music maps trained on the image features from the album covers

the SSD audio features and the vector projection of the SOM also coincides with
some similarity in album cover art.

When organising the map with the image features, we build again on the
assumption that album covers carry some clues about the music characteristics,
and thus similar music should be located in neighbouring regions of the map.
However, when using the simple features such as colour histograms or color
names, the latter being depicted in Figure 5(a), this assumption is not fulfilled.
While the organisation of album covers along the colour properties gives a nice
overview, this arrangement does not match with the genres they belong to, as
can be seen in Figure 5(a). There is basically no region in the map that shows a
continuous area of similar music. We can thus conclude that for an interface to
music, simple features such as the ones derived from colours are not sufficient.

Figure 5(b) depicts a section of a map trained with the SIFT BoV features.
This section holds covers that, with a very few exceptions, depict people; further,
most of the songs are from the Hip-Hop genre. It could thus be concluded that
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SIFT BoV features can be useful to detect shapes of faces, which we identified
earlier as an important aspect for several genres. We can also observe in some
other areas that these features are very well working on depicting outliers, mostly
albums with very complex cover art. However, similar observations as for the map
with color names hold true – the features don’t seem to be able to capture the
complex similarities in the covers very well.

Finally, we applied the method described in [11], which allows for a analytical
comparison of SOMs. It enables to identify differences in mappings obtained
by different SOM trainings, by indicating which data items are mapped closely
together in both maps. It can also be used to compare two maps trained on
different features, for example on the music and song lyrics, as in [10]. Applying
this method to the maps trained with the album cover features and the ones
extracted from the music, we notice only a very small percentage of matches in
the two different mappings – most of the songs that were mapped together in
the music SOM are mapped to divergent areas in the album cover SOM.

6 Conclusions

We performed an analysis of the similarity of album art and the music they
represent. To this end, we extracted audio features from the music, and image
features from the album covers, and trained a set of SOMs with it. The SOM
trained with the audio features revealed that in a number of cases, the musical
similarity of the music is also reflected in the album covers, e.g. by the use of
portraits or rather abstract objects, and also partly by the colours. The maps
trained with the image features could, however, only reconfirm some of these
similarities, when using the SIFT features to describe the visual content.

We thus conclude that while there is potential in using album covers for
music information related tasks, there is a need for more powerful image feature
descriptors. Such descriptors could be face detectors, more advanced use of points
of interest features, and a combination of these features into a single descriptor.
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Côme, Etienne 298
Cottrell, Marie 298

Domı́nguez, Manuel 61
Dozono, Hiroshi 348

Eklund, Tomas 40
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