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Preface

This volume contains the papers presented at the Multiple Classifier Systems
Workshop, MCS 2011, held in Naples, Italy, during June 15–17, 2011. Being the
tenth in a well-established series of meetings providing an international forum for
discussion of issues in multiple classifier system design, the workshop achieved its
objective of bringing together researchers from the diverse communities (neural
networks, pattern recognition, machine learning and statistics) working on this
research topic.

From more than 50 submissions, the Program Committee selected 36 papers
to create an interesting scientific program. Papers were organized into sessions
dealing with classifier combination and classifier selection, diversity, bagging and
boosting, combination of multiple kernels, and applications, especially in the
computer security field. The workshop program and this volume were enriched
by two invited talks given by Shai Avidan (Tel Aviv University, Israel), and
Nicolò Cesa-Bianchi (University of Milan, Italy).

This workshop would not have been possible without the help of many in-
dividuals and organizations. First of all, our thanks go to the members of the
MCS 2011 Program Committee and to the reviewers, whose expertise was in-
strumental for selecting contributions that could characterize the progress made
in the field over the last years and could aspire to chart its future research. The
management of the papers, including the preparation of this proceedings volume,
was done by the EasyChair conference management system.

A special thank goes to the members of the Local Organizing Committee,
Francesco Gargiulo, Emanuela Marasco, Claudio Mazzariello and Vincenzo Pad-
uano for their valuable contributions to the organization, and their availability
to solve the practical problems arising during the preparation of MCS 2011. We
also want to thank Giorgio Fumera who managed the MCS website.

This workshop was organized by the Department of Computer and Systems
Engineering of the University of Naples Federico II, Italy, the Center for Vision,
Speech and Signal Processing, University of Surrey, UK, and the Department of
Electrical and Electronic Engineering of the University of Cagliari, Italy.

This MCS edition was included in the list of events celebrating the bicente-
nary of the School of Engineering of the University of Naples Federico II. We
thank the International Association for Pattern Recognition (IAPR) and the Ital-
ian group of researchers affiliated to the IAPR (GIRPR) for endorsing MCS 2011.

We finally wish to express our appreciation to our financial sponsors: Nettuno
Solutions, Ericsson Telecomunicazioni and the AIRobots European Project – 7FP.

June 2011 Carlo Sansone
Joseph Kittler

Fabio Roli
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Ensemble Methods for Tracking and

Segmentation (Abstract)

Shai Avidan

School of Electrical Engineering,
Tel-Aviv University,

Tel-Aviv 69978, Israel
avidan@eng.tau.ac.il

http://www.www.tau.ac.il/avidan

Abstract. Ensemble methods offer an elegant way of training an en-
semble of weak classifiers into a strong classifier through the use of the
AdaBoost algorithm. In this abstract we discuss two extensions of Ad-
aBoost and demonstrate them on two problems in the field of Computer
Vision. The first, termed Ensemble Tracking, extends AdaBoost in the
temporal domain and adapts it to the problem of tracking an object in
a video sequence. The second, termed SpatialBoost, extends AdaBoost
in the spatial domain and adapts it to the problem of interactive image
segmentation.

In the case of Ensemble Tracking, we consider tracking as a binary
classification problem, where an ensemble of weak classifiers is trained on-
line to distinguish between the object and the background. But because
of real-time constraints we can only train one weak classifier per frame
and can not maintain an ensemble of more than a limited number of weak
classifiers. We propose an online extension of AdaBoost, the Ensemble
Tracker, that constantly, and efficiently, combines this stream of weak
classifiers into a strong classifier, without going beyond the bound on
the number of weak classifiers.

In the case of SpatialBoost we show how to extend AdaBoost to incor-
porate spatial reasoning and demonstrate it on the problem of interactive
image segmentation. The user marks some of the pixels as positive and
negative examples and then lets the algorithm label the rest of the pixels.
Simply training AdaBoost on the appearance of the labeled pixels and
using it to label the unlabeled pixels yields unsatisfactory results. This
is because AdaBoost lacks spatial reasoning. But in fact, we know that
nearby pixels should, quite often, have the same label. To this end we
introduce spatial reasoning in the form of weak classifiers that attempt
to infer pixel label from the pixel labels of surrounding pixels, after each
boosting iteration. SpatialBoost combines these spatial weak classifiers
with the appearance based weak classifier to give superior results.

Taken together, these extensions demonstrate the flexibility of en-
semble methods, and the ways in which they can be modified to account
for special properties of images and video. We conclude by sketching a
number of possible extensions to this line of work.

C. Sansone, J. Kittler, and F. Roli (Eds.): MCS 2011, LNCS 6713, p. 1, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Ensembles and Multiple Classifiers:

A Game-Theoretic View

Nicolò Cesa-Bianchi

DSI, Università degli Studi di Milano, Italy

1 Aggregating Strategies

The study of multiple classifier systems is a fundamental topic in modern ma-
chine learning. However, early work on aggregation of predictors can be traced
back to the Fifties, in the area of game theory. At that time, the pioneering
work of James Hannan [11] and David Blackwell [2] laid down the foundations
of repeated game theory. In a nutshell, a repeated game is the game-theoretic
interpretation of learning. In games played once, lacking any information about
the opponent, the best a player can do is to play the minimax strategy (the best
strategy against the worst possible opponent). In repeated games, by examining
the history of past opponent moves, the player acquires information about the
opponent’s behavior and can adapt to it, in order to achieve a better payoff than
that guaranteed by the minimax strategy.

Years later, Volodya Vovk [18] and Tom Cover [7,8] in Information Theory,
Nick Littlestone and Manfred Warmuth [15] in Computer Science, and others
in different fields, re-discovered, and greatly extended, these results by viewing
the repeated game as a problem of strategy aggregation with a changing pay-
off structure. This gave rise to the paradigm of prediction with expert advice,
in which an aggregating strategy combines the predictions of a number of base
strategies (the experts) in a sequential prediction game. The kind of guarantees
one can prove are game-theoretic. For examples, there exists a (simple) random-
ized aggregating strategy that, on any sequential classification problem and for
any set of N base classifiers, guarantees an average mistake rate that converges
to that of the best base classifier at rate

√
T ln N , where T is the number of

prediction steps [5].
In the last fifteen years, researchers in learning theory started to recognize the

game-theoretic nature of certain learning results, such as the Perceptron conver-
gence theorem [16], and developed a research program devoted to the cross-
fertilization between game theory and machine learning. In the game-theoretic
analysis of Perceptron, one combines features (the experts, in the game-theoretic
view) with the goal of achieving the performance of the best linear combination
of features on the observed data sequence (whose labels correspond to the moves
played by the opponent). This paradigm of online linear learning allowed to an-
alyze many gradient descent algorithms for classification and regression, such as
p-norm Perceptrons [10], Winnow [14], the Widrow-Hoff rule [6], Ridge Regres-
sion [1,17], and others.

C. Sansone, J. Kittler, and F. Roli (Eds.): MCS 2011, LNCS 6713, pp. 2–5, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Ensembles and Multiple Classifiers 3

Although online learning algorithms are not multiple classifier systems, they
naturally generate an ensemble of classifiers, or predictors: the online ensemble.

2 Online Ensembles

Online ensembles connect online learning to statistical learning theory. Namely,
these ensembles allow to operate and analyze online algorithms in statistical
scenarios, where the learner uses a training set to construct a classifier or re-
gressor with small statistical risk. When run on a training set of examples, an
online linear algorithm considers one example at a time. At step t, the algorithm
evaluates, on the t-th training example, the current linear model built on the
previous t− 1 examples (call the resulting loss the online loss). Then, the linear
model is possibly updated, reflecting the information acquired by observing the
t-th example. The online ensemble is the collection of linear models generated
by the online algorithm in a pass on the training set. Now, assuming the training
set is a statistical sample, the theory of large deviations implies that with high
probability the average risk on the online ensemble is close to the average online
loss. Moreover, online analysis can be used to bound the average online loss in
terms of the empirical risk of the best linear model, which is in turn close to its
true risk. This implies that a typical element of the online ensemble has a risk
that can be bounded in terms of the risk of the best linear model [4].

3 Multikernel and Multitask Online Learning

Besides considering the ensemble of models generated by online algorithms, one
can investigate directly the possibilities offered by an ensemble of online learners.
A first example is multikernel learning, where K instances of an online kernel-
based classifier (e.g., a kernel Perceptron) are run simultaneously, each in its own
reproducing kernel Hilbert space. The weights of the K instances are linearly
combined to compute the aggregated prediction. Online learning theory (more
precisely, mirror descent analysis) prescribes that the linear coefficients be the
components of the gradient of a certain norm, or potential, applied to the sum
of past loss gradients. Using a certain family of norms, (2, p) group norms, it
can be proven that the system has a good online performance (on any individual
data sequence) whenever there exists a good fixed multikernel linear classifier
with a sparse vector of linear coefficients [13,12].

A second example is when each instance in the multiple classifier system is
trained on a possible different classification problem. Here the idea is to have
these instances interact, in order to exploit possible similarities among the tasks
being solved. This is done as follows: whenever a single instance is updated
(because a new example for the associated task is observed), then the update is
shared among other instances, where the degree of sharing is ruled by a graph
representing a priori knowledge about potential task similarities. This shared
update can be described as a kernel. Hence, the whole system can be analyzed
as a kernel Perceptron, with a bound on the number of mistakes that holds for
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any individual data sequence and depends on the closeness in Euclidean space
of the best linear classifiers for all tasks [3].

4 Conclusions

These are just a few examples of the many possibilities of applying online learn-
ing, and other game-theoretic techniques, to the field of multiple classifier sys-
tems. We hope to have enthused the reader into looking at them in more detail.
As a final remark, we recall that one of the most celebrated ensemble method,
AdaBoost, is exactly equivalent to a repeated game in the framework of predic-
tion with expert advice [9]. This equivalence provides an elegant game-theoretic
analysis of AdaBoost.
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Anomaly Detection Using Ensembles

Larry Shoemaker and Lawrence O. Hall

Computer Science and Engineering, University of South Florida, Tampa, FL 33620-5399
Tel.: (813)974-3652, Fax: (813)974-5456
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Abstract. We show that using random forests and distance-based outlier parti-
tioning with ensemble voting methods for supervised learning of anomaly de-
tection provide similar accuracy results when compared to the same methods
without partitioning. Further, distance-based outlier and one-class support vec-
tor machine partitioning and ensemble methods for semi-supervised learning of
anomaly detection also compare favorably to the corresponding non-ensemble
methods. Partitioning and ensemble methods would be required for very large
datasets that need distributed computing approaches. ROC curves often show sig-
nificant improvement from increased true positives in the low false positive range
for ensemble methods used on several datasets.

Keywords: outliers, anomalies, random forests, data partitioning, ROC curves.

1 Introduction

Anomaly detection, also known as outlier detection, deals with finding patterns in data
that are unusual, abnormal, unexpected, and/or interesting [7]. Anomalies are important
because they translate to significant information that can lead to critical action in a wide
variety of application domains, such as credit card fraud detection, security intrusion
detection, insurance, health care, fault detection, and military surveillance. Some of
the challenges presented by anomaly detection include imprecise boundaries between
normal and anomalous behavior, malicious actions that make anomalies appear normal,
evolution of normal behavior, different application domains, lack of labeled data, and
noise. Researchers have applied concepts from statistics, machine learning, data mining,
information theory, and spectral theory to form anomaly detection techniques [7,19].

Accurate data labels that denote normal or anomalous behavior usually require man-
ual effort by a human expert and can be too expensive to acquire for many applications.
In addition, labeling all possible types of anomalies that can arise in an evolving do-
main can be difficult. Based on the type of data labels available, there are three modes in
which anomaly detection techniques can operate. They are supervised, semi-supervised,
and unsupervised anomaly detection modes [7].

In supervised mode, a training dataset with labeled instances for the normal and
anomaly classes is assumed. Typically, a predictive model is built for normal vs.
anomaly classes using the training data. Then the model is used to predict the class
of unseen data. Since the anomaly class is almost always rare, the imbalanced data
distribution problem must be addressed.

C. Sansone, J. Kittler, and F. Roli (Eds.): MCS 2011, LNCS 6713, pp. 6–15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In semi-supervised mode, it is assumed that the training data has labels only for the
normal class. A model is built for the normal class, and the model is used to identify
anomalies in the test dataset. In unsupervised mode, no labeled training data is required.
The only assumption made is that normal instances appear much more frequently than
anomaly instances in the test data [7]. If this assumption is not valid, a high false alarm
rate results.

Ensemble methods improve class accuracy by combining the predictions of mul-
tiple classifiers. Requirements for improved accuracy include having independent (or
only slightly correlated) base classifiers that perform better than random guessing [20].
Breiman’s random forest (RF) algorithm [6] is an ensemble method specifically de-
signed for decision tree classifiers. One popular random forest method initially uses
bagging or bootstrap aggregating to repeatedly sample with replacement from a dataset
using a uniform probability distribution [20]. Another method of injecting randomness
into each base decision tree, grown using each bag of training data, is to randomly
select only some of the features as tests at each node of the decision tree. There are
different ways of determining the number of features selected, but one commonly used
is log2 n + 1 given n features. Random forests weighted (RFW) predictions are based
on the percentage of trees that vote for a class. The motivation for using this ensemble
technique stems from the inherent speed benefit of analyzing only a few possible at-
tributes from which a test is selected at an internal tree node. The accuracy of random
forests was evaluated in [3] and shown to be comparable with or better than other well-
known ensemble generation techniques. It is more impervious to noise than AdaBoost,
a commonly used boosting ensemble method [20].

A recent intrusion detection approach used feature subsets and a modular ensemble
of one-class classifiers chosen for different groups of network services, with false alarm
rates and detection rates tuned for best ensemble performance [12]. Good results were
shown for the KDD Cup 1999 dataset. A multiple classifier system for accurate payload-
based anomaly detection also used an ensemble of one-class classifiers and focused
on ROC curve results at low false alarm rates [18]. Another one-class classification
approach combined density and class probability estimates [14].

Ensemble approaches for anomaly detection are explored and compared to some ex-
isting anomaly detection approaches. Random forests and distance-based outlier ensem-
ble methods for supervised learning of anomaly detection are compared to traditional
methods on the same datasets. Further, one-class support vector machines and distance-
based outlier ensemble methods for semi-supervised learning of anomaly detection are
compared to non-ensemble methods.

2 Datasets

In order to compare our ensemble based anomaly detection approaches to other ap-
proaches on the same dataset, we selected the same modified KDD Cup 1999 data
subset used in [16,1]. The unmodified dataset “includes a wide variety of intrusions
simulated in a military network environment”[2]. The full dataset, a 10% subset of the
dataset, a full test dataset, and three different 10% subsets of the full test dataset are
available from the UCI KDD Archive [2]. The KDD Cup 1999 10% test dataset with
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corrected labels is the one modified and used as in [16,1]. This dataset with 311,029
data records and five classes was modified to include only the normal class and the U2R
intrusion attack class, which was considered the outlier or anomaly class. The modified
KDD U2R dataset has 60,593 normal and 246 intrusion (outlier) data records. Table 1
shows the modified dataset characteristics, as well as those of a second modified KDD
dataset with 60,593 normal and 4166 probe intrusion attack class (outlier) data records
for additional testing. We also used the same two modified ann-thyroid datasets, and the
same five modified shuttle datasets used in [16,1].

Table 1. Dataset characteristics

Modifications Size # of features Outliers

made continuous discrete # of % of

KDD U2R vs. normal 60,839 32 9 246 0.40%

KDD probe vs. normal 64,759 32 9 4,166 6.43%

Ann-thyroid 1 vs. normal 3,251 6 15 73 2.25%

Ann-thyroid 2 vs. normal 3,355 6 15 177 5.28%

shuttle 2 vs. normal 11,491 9 0 13 0.11%

shuttle 3 vs. normal 11,517 9 0 39 0.34%

shuttle 5 vs. normal 12,287 9 0 809 6.58%

shuttle 6 vs. normal 11,482 9 0 4 0.03%

shuttle 7 vs. normal 11,480 9 0 2 0.02%

3 Experiments

Anomaly detection, also known as outlier detection, deals with finding patterns in data
that are unusual, abnormal, unexpected, and/or interesting [7] (see Section 1). In these
experiments the outlier examples are the selected minority class of the dataset as de-
scribed below.

As discussed in Section 2, we used the same modified KDD U2R dataset, the two
modified ann-thyroid datasets, and the five modified shuttle datasets used in [16,1],
which include only the normal class and one other minority class, considered as the
outlier or anomaly class. Each dataset was randomly split into two groups a total of
30 times, with each group used as a train/test set for 60 total trials as in [16,1]. In
order to investigate ensemble approaches to outlier detection for these datasets, and to
compare the results to those in [16,1], each group was also partitioned into 20 stratified
partitions (each partition had about the same number of positive instances and about the
same number of negative instances) for testing on the other group of the random data
split. This basic process was repeated for 30 different random splits.

The first group of experiments included using supervised outlier detection meth-
ods on the data in one data group or on partitions of that group to determine outliers in
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the other data group. The outlier detection methods included random forests weighted
(RFW) [6] and distance-based outlier (DBO) methods [4]. The accuracy of random
forests was evaluated in [3] and shown to be comparable with or better than other well-
known ensemble generation techniques. Here, the number of random features chosen
at each decision tree node was log2 n + 1 given n features. RFW predictions are based
on the percentage of trees that vote for a class. First RFW with 250 trees was trained
on all of the data (without partitioning) in one group and then used to test all of the
data in the remaining group. Breiman used random forests with 100 trees [6], while a
later study used 1000 trees [3]. We chose 250 to achieve more accurate results than the
established number of 100 without incurring the additional computational costs of 1000
trees, which might not necessarily prove beneficial in our experiments.

The random split was intended to duplicate the methods used in [16,1], and did not
limit each group to the same number of examples. RFW with 250 trees was trained on
the data in each training partition and tested on all of the test data in the other group.
This simulates distributed data that can’t be shared; a more difficult problem. We also
trained an ensemble of 250 random forests on the data in each of the 20 partitions.
The weighted votes from each partition’s RFW ensemble for each test example were
averaged for the final vote. The RFW weighted votes (scores) were sorted with the
most likely to be an outlier first, for determining the ROC AUC.

The above train/test experiments were repeated using the distance-based outlier
(DBO) algorithm except that the training data in all cases was used as the reference
set of neighbors for determining the average distance from each test instance to its five
nearest neighbors [4]. DBO was chosen as the conventional outlier method for com-
parison with RFW and for investigating DBO’s ensemble performance. DBO is a state
of the art approach to outlier detection that is reasonably fast, efficient, and flexible,
being recently modified for streaming data [17]. The software implementation of DBO
was ORCA, which is a method for finding outliers in near linear time [4]. Continuous
features were scaled to zero mean and unit standard deviation. The distance measure
used for continuous features was the weighted Euclidean distance, and for discrete fea-
tures was the weighted Hamming distance. The number of outliers was specified as the
number of test instances, so that as many test instances as possible were given outlier
prediction scores. Unlike RFW, the ground truth training labels were not used for train-
ing, only for the stratified partitioning. The DBO outlier prediction scores were used
instead of the corresponding RFW scores above. These prediction scores rated each
test instance’s likelihood of being an outlier based on the average distance from its five
nearest neighbors in the reference training set. Those instances with a higher average
distance were given a higher score to reflect the increased likelihood of being outliers.

The second group of experiments included using semi-supervised outlier detection
methods on the data in each group or in partitions of that group to determine outliers
in the other group. This was done for the same random splits of data that were used for
the supervised group of experiments. However, only examples of the normal class were
used for training. The outlier detection methods included distance-based outlier (DBO)
and one-class support vector machines [15]. DBO was chosen for these experiments for
direct comparison to its performance in the first group of supervised learning experi-
ments. Each test was repeated by swapping the training and the test group. First DBO
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used all of the data in the training group as a reference set of neighbors for determining
the average distance from each test instance to its five nearest neighbors. Then DBO
used the data in each test partition as the reference set to choose neighbors. The LIB-
SVM software implementation of one-class support vector machines [8] was modified
so that one-class decision values were output for use in determining ROC curves and
AUC. The radial basis function was used with the default settings, including values of
0.5 for nu and 1 divided by the number of features for gamma.

4 Evaluation Metrics

Receiver operating characteristics (ROC) graphs are commonly used in machine learn-
ing and data mining research to organize and visualize the performance of classifiers,
especially for domains with skewed class distribution and unequal classification costs
[11]. For two class problems, a classifier is a mapping from instances to predicted
classes, positive or negative. Some classifier models only predict the class of the in-
stance, while others produce a continuous output or score, to which different thresholds
may be applied. The true positive (TP) rate (detection or hit rate) and the false positive
(FP) rate (false alarm rate) are determined below [20].

TP rate =
Positives correctly classified

Total positives
(1)

FP rate =
Negatives correctly classified

Total negatives
(2)

The TP rate is plotted on the Y axis and FP rate is plotted on the X axis in ROC
graphs. Notable points in ROC space include the lower left point (0,0), which represents
the classifier never predicting positive for any instance, and (1,1), which represents
the classifier always predicting positive for any instance. Another point of interest is
(0,1) which represents perfect classification, with no FPs or FNs. Average or random
performance lies on the diagonal from (0,0) to (1,1). An ROC curve is constructed by
sorting test instances by the classifier’s scores from most likely to least likely to be a
member of the positive class [11]. Each classifier score establishes a point on the ROC
curve and a threshold that can be used to classify instances with scores that are above
that threshold as positive, otherwise as negative. Since there may be cases of classifiers
assigning equal scores to some test instances with possibly different ground truth class
labels, all equal classifier scores are processed by an ROC algorithm before establishing
a new ROC point. This reflects the expected performance of the classifier, independent
of the order of equally scored instances that reflect the arbitrary order of test instances.

An ROC curve is a two-dimensional representation of expected classifier perfor-
mance. If a single scalar value is desired to represent expected classifier performance, it
can be determined as the area under the ROC curve, abbreviated AUC [13,5,11]. Since
random guessing produces the diagonal from (0,0) to (1,1) and an AUC of 0.5, a re-
alistic classifier should have an AUC greater than this. The AUC is equivalent to the
probability that its classifier will rank a randomly selected positive instance higher than
a randomly selected negative instance [11]. This feature is equivalent to the Wilcoxon
test of ranks [13,11]. If an area of interest is less than that of the full curve, the areas
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under the parts of the curves of interest may be used instead for comparing classifier
performance.

When considering an average ROC for multiple test runs, one could simply merge
sort the instances together by their assigned scores into one large set, and run an ROC
algorithm on the set. In order to make a valid classifier comparison using ROC curves,
a measure of the variance of multiple test runs should be used [11]. One valid method is
vertical averaging, which takes vertical samples for fixed, regularly spaced FP rates and
averages the corresponding TP rates. For each ROC curve, the maximum plotted TP rate
is chosen for each fixed FP rate. This point is used in individual ROC curves to calculate
the AUC, and thus is also used for averaging multiple curve AUCs. If no TP rate has
been plotted for the fixed FP rate, the TP rate is interpolated between the maximum TP
rates at the FP rates immediately before and immediately after the fixed FP rate. The
mean of the maximum plotted TP rates for all curves at each fixed FP rate is plotted
and confidence intervals of each mean can be added by drawing the corresponding
confidence interval error bars [11]. These are calculated as shown below [10,9].

Standard deviation (SD) =

√
∑(X −M)2

n−1
(3)

Standard Error (SE) =
SD√

n
(4)

Confidence Interval (CI) = M± t(n−1) ·SD (5)

where X in this case is a TP rate for the selected FP rate, M is the mean of the TP rates
for the selected FP rate, n is the number of trials, and t(n−1) is a critical value of t.

5 Results

Table 2 shows the supervised ROC AUC results for random forests weighted (RFW) and
for distance-based outlier (DBO) methods. The U2R RFW no partitioning mean AUC,
shown in Table 2, is 0.9976 which is very close to 1.0 or perfect classification. The U2R
RFW 20 of 20 partition mean AUC for is 0.9985 which is almost identical to the above
result. The DBO outlier prediction scores were used instead of the corresponding RFW
scores above. The lowest DBO mean KDD U2R AUC is 0.9692 for the DBO using
all training data without partitioning as the reference set of neighbors. The DBO mean
KDD U2R AUC for the 20 partition vote is 0.9850 which is only 0.0135 less than the
RFW mean AUC. For comparison, the feature bagging method of outlier detection in
the results of [16,1] yielded an AUC of 0.74 (± 0.1) for the KDD U2R dataset, so our
approach is a big improvement. Feature bagging results for the ann-thyroid 1 and ann-
thyroid 2 datasets were 0.869 and 0.769 in [16], which were also lower than our RFW
results.

Figure 1 shows the U2R modified KDD Cup 1999 ROC vertically averaged curves
using DBO with unpartitioned and 20 partitions of training data. Confidence bars are
shown for the 99% confidence region of the ROC mean. The curve is only shown for
the FP rate of 0.0 to 0.2 by 0.01 steps since both curves are very close to a detection rate
of 1.0 for a FP rate of 0.2 to 1.0. The mean AUC for DBO using 20 partitions is 0.9850,
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Table 2. Average supervised results

Dataset Method Mean ROC AUC

Partitioning

none 20 20 − none

KDD U2R RFW 0.9976 0.9985 0.0009

KDD U2R DBO 0.9692 0.9850 0.0158

KDD probe RFW 1.0000 0.9999 −0.0001

KDD probe DBO 0.9060 0.9431 0.0371

Ann-thyroid 1 RFW 0.9993 0.9982 −0.0011

Ann-thyroid 1 DBO 0.9554 0.9634 0.0080

Ann-thyroid 2 RFW 0.9996 0.9956 −0.0040

Ann-thyroid 2 DBO 0.7751 0.7508 −0.0243

Shuttle 2 RFW 1.0000 0.9997 −0.0003

Shuttle 2 DBO 0.9903 0.9674 −0.0229

Shuttle 3 RFW 0.9946 0.9912 −0.0034

Shuttle 3 DBO 0.9880 0.9740 −0.0140

Shuttle 5 RFW 1.0000 1.0000 0.0000

Shuttle 5 DBO 0.8166 0.9871 0.1705

Shuttle 6 RFW 0.9828 0.9827 −0.0001

Shuttle 6 DBO 0.9995 0.9995 0.0000

Shuttle 7 RFW 0.6341 0.6325 −0.0016

Shuttle 7 DBO 0.9993 0.9994 0.0001

RFW: random forests weighted; DBO: distance-based outlier.

ROC: receiver operator characteristics; AUC: area under curve.

which is higher than 0.9692 with unpartitioned data, as shown in Table 2. The results
for the other datasets show that partitioning with ensemble voting results are typically
very close to those using unpartitioned methods. RFW typically outperforms DBO.

Table 3 shows the semi-supervised ROC AUC results for one-class support vector
machine (SVM) and distance-based outlier (DBO) methods when only examples of
the normal class were used for training. The DBO results show that partitioning with
ensemble voting results are typically very close to those using unpartitioned methods.
Figure 2 shows how the SVM 20 partitions detection rate is higher than the SVM no
partitions rate for the initial low false alarm rate of the KDD U2R dataset. The SVM
results show that partitioning and ensemble voting is either very close or superior to
those without partitioning. DBO used in a one-class or semi-supervised setting typi-
cally outperforms supervised DBO for no partitions, while 20 partitions depends on the
dataset tested.
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Fig. 1. Modified KDD Cup U2R ROC curves for DBO using 20 partitions and without partition-
ing on the training group. Curves are vertically averaged over both groups of 30 random splits.
Confidence bars are shown for the 99% confidence region of the ROC mean.
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Fig. 2. Modified KDD Cup U2R ROC curves for SVM using 20 partitions and without partition-
ing on the training group. Curves are vertically averaged over both groups of 30 random splits.
Confidence bars are shown for the 99% confidence region of the ROC mean.
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Table 3. Average one-class results

Dataset Method Mean ROC AUC

Partitioning

none 20 20 − none

KDD U2R SVM 0.9850 0.9873 0.0023

KDD U2R DBO 0.9860 0.9866 0.0006

KDD probe SVM 0.9971 0.9968 −0.0003

KDD probe DBO 0.9964 0.9946 −0.0018

Ann-thyroid 1 SVM 0.7420 0.9710 0.2290

Ann-thyroid 1 DBO 0.9659 0.9553 −0.0103

Ann-thyroid 2 SVM 0.4241 0.7188 0.2947

Ann-thyroid 2 DBO 0.8043 0.7201 −0.0842

Shuttle 2 SVM 0.6570 0.9918 0.3348

Shuttle 2 DBO 0.9923 0.9671 −0.0252

Shuttle 3 SVM 0.8534 0.9974 0.1440

Shuttle 3 DBO 0.9924 0.9714 −0.0210

Shuttle 5 SVM 0.9997 0.9989 −0.0008

Shuttle 5 DBO 0.9984 0.9986 0.0002

Shuttle 6 SVM 0.9991 0.9997 0.0006

Shuttle 6 DBO 0.9996 0.9996 0.0000

Shuttle 7 SVM 0.9721 0.9993 0.0171

Shuttle 7 DBO 0.9993 0.9994 0.0001

SVM: support vector machine; DBO: distance-based outlier.
ROC: receiver operator characteristics; AUC: area under curve.

6 Conclusion

An exploration of partitioning with ensembles for use in anomaly detection shows that
for both supervised and semi-supervised learning categories, some of the existing ap-
proaches can often be improved significantly by employing ensembles. Partitioning and
ensemble methods would be required for very large datasets that cannot fit in one mem-
ory and require distributed computing approaches. The normal method of comparing
anomaly (outlier) detection approaches is by comparing the areas under each approach’s
receiver operating characteristic (ROC) curve. ROC curves for ensemble methods ap-
plied to the datasets here often show significant improvement from increased true posi-
tives in the low false positive range.
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Abstract. Over the last decade learning to rank (L2R) has gained a
lot of attention and many algorithms have been proposed. One of the
most successful approach is to build an algorithm following the ensemble
principle. Boosting is the key representative of this approach. However,
even boosting isn’t effective when used to increase the performance of
individually strong algorithms, scenario when we want to blend already
successful L2R algorithms in order to gain an additional benefit. To ad-
dress this problem we propose a novel algorithm, based on a theory
of nonlinear monotonic ensembles, which is able to blend strong base
rankers effectively. Specifically, we provide the concept of defect of a set
of algorithms that allows to deduce a popular pairwise approach in strict
mathematical terms. Using the concept of defect, we formulate an opti-
mization problem and propose a sound method of its solution. Finally,
we conduct experiments with real data which shows the effectiveness of
the proposed approach.

1 Introduction

Learning to rank (L2R) has become a hot research topic over the last decades.
Numerous amount of methods previously applied to regression and classification
have been adapted to L2R. Specifically, one can categorize all L2R algorithms
into three big categories: pointwise (reduction of L2R to regression) [4, 8]; pair-
wise (reduction of L2R to classification) [5, 2, 7, 13, 9]; and listwise (direct opti-
mization) [3, 16, 12].

One of the most popular approach that has been applied in all three categories
is boosting [5,10]. Thus, weak rankers are trained sequentially and then they are
blended in a linear composition. It is a common knowledge that boosting allows
to combine hundreds of base algorithms and isn’t inclined to overfitting [10].
However, boosting isn’t effective if we want to build an ensemble from a small set
of already strong algorithms. Particularly, one cannot build a boosted ensemble
over SVM properly. Different methods was developed to cope with this problem
and build small ensembles effectively [14, 6]. We adapted methods from [14]
to L2R domain and in this paper we propose a novel algorithm solving the
L2R problem within a nonlinear monotonic ensemble framework. Monotonic
ensembles have expanded the existing variability of ensemble learning methods
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and allowed to effectively blend a small set of individually strong algorithms.
For instance, in our experiments the size of an ensemble varied from 4 to 7 base
rankers. Moreover, the algorithm in question is built on a strict mathematical
foundation, theoretically consistent with the internal structure of L2R problem
and allows to induce pairwise approach merely from theoretical constructions
instead of heuristic speculations.

1.1 The Learning to Rank Problem

The L2R problem can be formalized as follows. There is an ordered set of ranks
Y = {r1, . . . , rK} and a set of queries Q = {q1, . . . , qn}. A list of documents
Dq = {dq1, . . . , dq,n(q)} is associated with each query q ∈ Q, where n(q) is the
number of documents associated with the query q. A factor ranking model is
admitted, i.e. each query-document pair (q, d), d ∈ Dq is represented by the
vector of features xqd =

(
f1(q, d), . . . , fm(q, d)

) ∈ R
m. Thus, the training set is

S = {xqd, r(q, d)}, q ∈ Q, d ∈ Dq,

where r(q, d) ∈ Y is the corresponding correct relevance score for a (q, d) pair.
The objective is to build a ranking function A : R

m → Y that maximizes a
performance measure on the training set and has a good generalization ability.

2 Our Method: MonoRank

2.1 Nonlinear Monotonic Ensemble: Underlying Theory

Monotonicity constraints often arise in real world machine learning tasks. For
example, we can observe such constraints in a credit scoring task where the ob-
jective is to build an algorithm that will classify applicants given their responses
to questionnaires (e. g. the bigger annual household income and value of property
the more probably a customer will pay a loan back). Generally speaking, mono-
tonicity constraints can arise in any task where the factor model is admitted,
and the order on targets is in agreement with the order on ordinal features [11].

Another application of this principle is to impose monotonicity constraints
not on features but on base algorithms predictions [14, 6]. It is very natural to
construct an ensemble of base predictors according to the following principle:
if output of a predictor is higher for an object, provided that outputs of other
predictors are the same, then the output of the entire ensemble must be also
higher for this object. This implies that the aggregating function is to be mono-
tonic. Obviously, linear blending meets the monotonicity restriction if only all
the weights are nonnegative. In this paper we use nonlinear monotonic aggregat-
ing functions and argue that monotonicity is a more natural and less restrictive
principle than the weighted voting, especially for L2R domain.

Let Ω = R
m be an object space of query-document feature vectors, according

to general factor ranking model; X and Y be partially ordered sets, B be a set
of base algorithms b : Ω → X , X is referred to as an estimation space (predic-
tions of base algorithms) and Y as an output space (labels, responses, relevance
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scores). A training set of object–output pairs {(xk, yk)}�
k=1 from Ω×Y and a set

of base algorithms b1, . . . , bp induces a sequence of estimation vectors {uk}�
k=1

from Xp, where uk =
(
u1

k = b1(xk), . . . , up
k = bp(xk)

)
.

Let us define an order on Xp: (u1, . . . , up) ≤ (v1, . . . , vp), if ui ≤ vi for all
i = 1, . . . , p. If vectors u, v ∈ Xp aren’t comparable we will denote it as u ‖ v.
If u �= v and u ≤ v, then u < v. A map F : Xp → Y is referred to as monotonic,
if u ≤ v implies F (u) ≤ F (v) for all u, v ∈ Xp.

Monotonic ensemble of base algorithms b1, . . . , bp with monotonic aggregating
function F is a map a : Ω → Y defined as a(x) = F

(
b1(x), . . . , bp(x)

)
, ∀x ∈ Ω.

If base algorithms are fixed, then learning of a monotonic function F from
data can be stated as a task of monotonic interpolation. Given a sequence of
vectors {uk}�

k=1 from Xp and a sequence of targets {yk}�
k=1 from Y , one should

build such a monotonic function F that meets the correctness condition

F (uk) = yk, k = 1, . . . , �. (1)

Definition 1. A pair (i, j) is defective for the base algorithm b, if b(xi) ≥
b(xj) and yi < yj. A set of all defective pairs of b will be denoted as D(b). A
set D(b1, . . . , bp) = D(b1)∩ · · · ∩D(bp) will be called cumulative defect of a set
of base algorithms (b1, . . . , bp). Similarly, a pair is clean if b(xi) < b(xj) and
yi < yj. We will use C(b) and C(b1, . . . , bp) for that analogously.

Directly from this definition it can be derived that for p = 1 a monotonic func-
tion F exists iff D(b) = ∅. Thus, the number of defective pairs |D(b)| can play
a role of a quality measure for a base algorithm b. By definition, the cumu-
lative defect D(b1, . . . , bp) consists of those defective pairs on which all base
algorithms fail. So, if we build the next base algorithm bp+1 so that it yields
the right order bp+1(xi) < bp+1(xj) on pairs (i, j) from the cumulative defect,
then D(b1, . . . , bp, bp+1) = ∅ and a monotonic function F satisfying the condi-
tion (1) exists. It is worth mentioning that artificial “emptyfication” of defect
(for example, by taking two base algorithms with inverted predictions) won’t
give practically useful results (generalization ability will be poor). Instead, base
algorithms should be trained in succession so that they all be individually strong
and latter base algorithms corrected predictions of former ones. From practical
point of view we need to analyze a defect of an ensemble D(F (b1, . . . , bp)), but
not a defect of a set of base algorithms. The next two statements from [14] show
the relationship between the sets D(F (b1, . . . , bp)) and D(b1, . . . , bp).

Lemma 1. For each p-ary monotonic aggregating function F , D(F (b1,. . ., bp))⊇
D(b1,. . ., bp).

Theorem 2. The cumulative defect D(b1, . . . , bp) is empty iff there exist a
monotonic aggregating function F such that D(F (b1, . . . , bp)) = ∅.

From the statements above it can be derived that if we build a set of base algo-
rithms with zero defect, then we will gain a correct, on a training set, algorithm.
The stronger statement on convergence is valid [14], i.e. we need only a finite
number of steps (base algorithms) in order to build a correct algorithm.
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From this, an iterative strategy of building a monotonic ensemble follows.
In order to minimize the size p of a composition the choice of the next algo-
rithm bp+1 should be guided by the minimization of the number of defective
pairs produced by all preceding base algorithms:

bp+1(xi) < bp+1(xj) : (i, j) ∈ D(b1, . . . , bp). (2)

However, the correctness condition (1) is too restrictive and may result in
overfitting (generalization might be poor). The trick is to stop iterations earlier
using a stopping criterion like a degradation of quality on a validation set.

Similar to arching and boosting algorithms, we propose to enrich the opti-
mization task (2) with weights in order to add more flexibility to our model.

bp+1(xi) < bp+1(xj) with wij : (i, j) ∈ D(b1, . . . , bp), (3)

where wij is a weight of a defective pair (i, j). So, the task is to find the heaviest
consistent sub-system of inequalities. In Section 2.2 we restate this problem in
terms of quality functional and analyze its properties, crucial for L2R.

2.2 The Algorithm

Inspired by outstanding performance of monotonic ensembles on classification
problems [14,6], we applied the notion of monotonic aggregation to L2R problem
and developed an algorithm for it. The algorithm is referred to as MonoRank
and the pseudocode is presented in Algorithm 1.

Let us briefly go over all key stages of the algorithm and then we will discuss
each stage in detail. First, we train the first base algorithm using the entire
training set (line 3). Then we reweigh pairs (line 8) according to the strategies
discussed in the Section 2.4. It is worth noting that a monotonic aggregating
function isn’t needed after the first step, because we have only one base algo-
rithm. Then using updated weights we train the second base algorithm (line 3).
Here, all pairs are used but weights already aren’t uniform. Having built two base
algorithms, we train a monotonic aggregating function in R

2 (lines 4-6), accord-
ing to the logic we describe in Section 2.5. Then we compute current ensemble
performance on a validation set and save it for future reference (line 7). Then
the process is repeated: we reweigh pairs based on a current cumulative defect,
train the next base algorithm and then fit a monotonic aggregating function.
Stopping condition (line 9) is determined by performance of the algorithm on
an independent validation set, standard criterion in machine learning research.

The problem (3), restated as a minimization of a quality functional Q with
base algorithms b1, . . . , bp fixed, will look like:

Q(b1, . . . , bp, bp+1) =
∑
q∈Q

∑
(d,d′)

wqdd′
[
bp+1(xqd) ≥ bp+1(xqd′)

] → min
bp+1

, (4)

where (d, d′) are all documents from Dq such that (qd, qd′) ∈ D(b1, . . . , bp). Note
that in L2R task the indices i, j from (3) become qd, qd′ respectively, and only
those documents d, d′ are comparable that corresponds to the same query q.
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Algorithm 1. MonoRank pseudocode
Input: training set S = {xqd, r(q, d)}, q ∈ Q, d ∈ Dq ;

δ — number of unsuccessful iterations before stop;
Output: nonlinear monotonic ensemble of rankers MT (xqd) of size T ;
1: initialize weights wqdd′ = 1, q ∈ Q, d, d′ ∈ Dq ;
2: for t = 1, . . . , n do
3: train base ranker bt(xqd) using weights {wqdd′};
4: get predictions bt(xqd) of bt on a training set S;
5: monotonize

{(
b1(xqd), . . . , bt(xqd)

)
, r(q, d)

}
;

6: build a composition Mt(xqd) of size t;
7: T = argmin

p : p≤t
Q(Mp);

8: update {wqdd′} using Mt;
9: if t − T ≥ δ then

10: return MT ;

In classification and regression tasks special efforts are to be made to reduce
the pairwise criterion Q to usual pointwise empirical risk [14]. In L2R such tricks
are needless as long as base rankers can be learned directly from Q minimization;
this is the reason why monotonic ensembles fit so well to L2R.

2.3 Adaptation of Base Rankers for Usage in Monotonic Ensemble

Now we will briefly discuss ways to modify existing L2R algorithms with the
objective to use them effectively later in a monotonic ensemble. The general
idea is to define weights on pairs of query-document feature vectors and hence
guide the learning process accordingly. In RankSVM we only have to add weights
wqdd′ whenever we come across slack variables in the objective function. Rank-
Boost already contains weight distribution over the set of document pairs q ∈ Q,
d, d′ ∈ Dq, which is by default uniform. Weights wqdd′ can also be easily inserted
in FRank [13] and RankNet [2].

2.4 Reweighing Strategies

Now let us discuss the initialization of weights wqdd′ for algorithms described
above in order for them to form a strong and diversified set of base rankers.
Particularly, below we will describe various reweighing strategies.

1. The weight for a defective pair equals one. The weight for a
nondefective pair equals zero. This is the most natural strategy that is in-
duced from the general theory of monotonic aggregating functions and can also
be referred to as the defect minimization principle. If we train the next base
algorithm using only defective pairs, we will minimize the number of base al-
gorithms and reach the state of empty cumulative defect. Thus, according to
theorem 2, we will be able to build a monotonic function on predictions of base
rankers. However, this approach has a significant shortcoming. If we train our
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base algorithms only using defective pairs the generalization ability of the entire
algorithm will be poor and hence it won’t be practically applicable.

2. The weight for a defective pair is nonzero. The weight for a
nondefective pair equals zero. According to our experiments it doesn’t allow
to gain any rise in quality and only increases the complexity of the model.
Our conclusion is in agreement with conclusions made in related research for
classification [6].

3. The weight for a defective and clean pair is nonzero. The weight
for an incomparable pair is zero. Then the strategy will look like:

wqdd′ =

⎧⎪⎨⎪⎩
wD(t), (qd, qd′) ∈ D(b1, . . . , bp);
1, (qd, qd′) ∈ C(b1, . . . , bp);
0, otherwise,

This is the most successful strategy according to our experiments. Moreover,
this strategy combines the defect minimization principle and complete cross-
validation minimization that characterizes the generalization ability of the entire
algorithm [15]. In this case the weight for a clean pair equals one. And the weight
wD(t) for a defective pair may depend on iteration t = 1, . . . , T . Particularly, it
may increase from iteration to iteration in order to lead the training algorithm
to turn out the defect on these pairs. We used wD(t) = 2t−1 in our experiments.

2.5 Monotonic Aggregating Function

In this section we present the core part of our approach — how to blend base
rankers b1, . . . , bp with a nonlinear monotonic aggregating function F (b1, . . . , bp).
We will build our algorithm so as to minimize the quality functional induced by
the cumulative defect |D(b1, . . . , bp)|. To begin with, we describe general con-
structions inherent to regression and classification following [14], and then turn
to analysis of structures specific for ranking. It is worth noting that we don’t
impose any constraints on a set of base rankers while learning them. Therefore,
according to the theorem 2 monotonic function F might not exist, because a
sequence of base predictions might not be monotonic. To cope with this problem
we use monotonization based on isotonic regression [1]. Given a nonmonotonic
sequence {(uk, yk)}�

k=1, where uk ∈ R
p is a vector of base algorithms predictions

and yk ∈ R is the corresponding target, monotonization algorithm finds {y′
k}�

k=1

minimizing
∑�

i=1(y
′
k − yk)2 subject to y′

i ≤ y′
j for all (i, j) such that ui ≤ uj .

So, let us have a monotonic sequence {(uk, yk)}�
k=1. The task is to build a

monotonic function F that meets the correctness condition (1).

Definition 2. For any vector u ∈ R
p denote its upper and lower set respectively

by M� = {v ∈ R
p : u ≤ v} and M� = {v ∈ R

p : v ≤ u}.
Consider a continuous function μ : R

p → [0, +∞) nondecreasing by any argu-
ment. For example, one can take μ(x) =

∑p
i=1 xi or μ(x) = max{x1, . . . , xp}.
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Definition 3. For any vector u ∈ R
p denote the distance from u to an upper

and lower set of a vector ui respectively by

r�
i = μ

(
(u1

i − u1)+, . . . , (up
i − up)+

)
,

r�
i = μ

(
(u1 − u1

i )+, . . . , (up − up
i )+
)
,

where (z)+ = z if z ≥ 0 and (z)+ = 0 if z < 0.

Now let us define functions h�(u, θ) and h�(u, θ) that estimate the distance
from a vector u ∈ R

p to a nearest vector from upper and lower sets:

h�(u, θ) = min
i : yi>θ

r�
i (u), h�(u, θ) = min

i : yi≤θ
r�
i (u).

Then, define a relative distance from a vector u to the union of all upper sets:

Φ(u, θ) =
h�(u, θ)

h�(u, θ) + h�(u, θ)
, where u ∈ R

p, θ ∈ R. (5)

The first two functions can be used immediately for two-class classification.
Specifically, an object is prescribed to the first class if h�(u, θ) > h�(u, θ) and
to the zero class otherwise, where θ can be any number in (0, 1), e. g. θ = 1

2 .
The third function is a regression stair that equals 0 on a union of lower sets,
equals 1 on a union of upper sets, and is a continuous, monotone non-decreasing,
piecewise bilinear function in between.

Theorem 3. Let {(uk, yk)}�
k=1 be a monotonic sequence, and a set {yk}�

k=1

is sorted in ascending order. Then the function F : R
p → R defined below is

continuous, monotone non-decreasing, and meets the correctness condition (1).

F (u) = y1 +
�−1∑
k=1

(yk+1 − yk)Φ(u, yk)

Learning to rank. At first, it is worth noting that due to the structure of the
training set comparable documents are only those which are associated with the
same query. Another distinction from the above cases is that we don’t really need
to meet the correctness condition (1) in the case of ranking. The only constraint
to meet is to keep the right ordering of documents on the training set.

Provided that documents associated with different queries aren’t comparable
at all, the quality functional can be rewritten as the sum of functionals, counting
defect only for a particular query. We will denote the defect of the entire algo-
rithm with the aggregating function F on a query q as Qq(F ). Then the optimal
aggregating function F must be a solution for a minimization problem∑

q∈Q

Qq(F ) → min
F

.

To give an approximate but computationally efficient solution to this hard prob-
lem we propose to use an averaging heuristic. We solve |Q| problems separately:

Fq = arg min
F

Qq(F ), q ∈ Q.
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Fig. 1. Monotonic aggregating function
for ranking with 2 base algorithms

Fig. 2. Texture of the surface of mono-
tonic function from the left figure

Then we define an aggregating function F by averaging all F ′
q:

F =
∑
q∈Q

F ′
q. (6)

where F ′
q is a normalized to [0, 1] function Fq

|Dq| . Here we use normalization with
the value equal to |Dq| to avoid bias towards queries with the large number of
associated documents. Obviously, the function F is monotonic being the sum of
monotonic functions. We call a set of base rankers, trained following the logic
described above, together with the monotonic aggregating function described in
this section as a nonlinear monotonic ensemble for learning to rank.

We provide a few pictures of a monotonic aggregating function for ranking,
built according to the theory described above. Due to the large number of queries
in a training set and hence due to averaging, the monotonic function from the
fig. 1 looks like a plane. However, having changed the scale one can observe
a complicated texture of the surface, fig. 2. According to our experiments in Sec-
tion 3.3 the increase in quality takes place directly thanks to this tiny asperities.
It is also interesting to notice that asperities appear only above the diagonal.
This can be explained as follows. We use strong base rankers, like RankBoost
and RankSVM, that’s why their predictions are highly correlated (nevertheless,
we can blend them effectively) and lie along the diagonal.

3 Experimental Results

3.1 Yahoo! LETOR 2010 Challenge Dataset

This is a dataset provided by Yahoo! company for L2R competition. There are
34815 query-document pairs and 1266 unique queries. Relevance grades are dis-
crete from range [0, 4]. Each query-document pair is described by a vector with
575 components. We used 5-fold cross validation to calculate the performance of
algorithms. As a base algorithm for MonoRank we used RankBoost. The results
are reported in table 1 and in a graphical form in fig. 3.
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Table 1. Yahoo! LETOR 2010 results

Metric MonoRank RankBoost RankSVM

NDCG@1 0.8149 0.8029 0.8057

NDCG@3 0.7783 0.7424 0.7711

NDCG@5 0.7754 0.7692 0.7678

NDCG@10 0.7973 0.7935 0.7949

Table 2. OSHUMED LETOR 3.0 results

Metric MonoRank RankBoost RankSVM

NDCG@1 0.5231 0.4632 0.4958

NDCG@3 0.4602 0.4555 0.4207

NDCG@5 0.4500 0.4494 0.4164

NDCG@10 0.4337 0.4302 0.4140

Fig. 3. Performance on Yahoo! LETOR Fig. 4. Performance on OSHUMED

3.2 OSHUMED LETOR 3.0 Dataset

This is a dataset from LETOR repository1, prepared by Microsoft Research Asia.
There are 16140 query-document pairs and 106 unique queries. Relevance grades
are discrete from range [0, 2]. There are 36 features. In order to guarantee the
consistency of algorithms comparison, we used evaluation scripts from LETOR
project. The results are reported in table 2 and in fig. 4.

3.3 Experiment Analysis

Now we will briefly discuss the key interesting feature of the monotonic surface
we built. Having seen the fig. 1 one might think why we should use so complex
construction to blend base rankers. Why couldn’t we just use a simple linear
combination of base rankers? Of course, this is a reasonable speculation but we
have set an experiment to test the hypothesis. We approximated our “wavy”
surface with a hyperplane by the least squares method and evaluated the per-
formance on a Yahoo! LETOR 2010 dataset. The results are in table 3.2

Table 3. Comparison of “wavy” monotonic aggregating function with its linear ap-
proximation

Metric MonoRank MonoRank-linearized

NDCG@1 0.8149 0.8106

NDCG@3 0.7783 0.7735

NDCG@5 0.7754 0.7720

NDCG@10 0.7973 0.7898

1 http://research.microsoft.com/en-us/um/beijing/projects/letor/
2 Same results was observed on OSHUMED dataset.
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4 Conclusion

In this paper we proposed a new algorithm for L2R problem, following the en-
semble principle. The algorithm is referred to as MonoRank and employs the
theory of nonlinear monotonic ensembles in ranking model building. The core
of the algorithm are nonlinear monotonic aggregating functions that enable to
blend strong algorithms effectively. The algorithm is based on sound mathemat-
ical constructions that are aligned with the popular pairwise approach for L2R.
According to computational results MonoRank shows high accuracy in ranking
and outperforms existing algorithms, like RankBoost and RankSVM.
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Abstract. Recently, ensemble techniques have also attracted the atten-
tion of Genetic Programing (GP) researchers. The goal is to further im-
prove GP classification performances. Among the ensemble techniques,
also bagging and boosting have been taken into account. These tech-
niques improve classification accuracy by combining the responses of dif-
ferent classifiers by using a majority vote rule. However, it is really hard
to ensure that classifiers in the ensemble be appropriately diverse, so as
to avoid correlated errors. Our approach tries to cope with this prob-
lem, designing a framework for effectively combine GP-based ensemble
by means of a Bayesian Network. The proposed system uses two different
approaches. The first one applies a boosting technique to a GP–based
classification algorithm in order to generate an effective decision trees en-
semble. The second module uses a Bayesian network for combining the
responses provided by such ensemble and select the most appropriate
decision trees. The Bayesian network is learned by means of a specifi-
cally devised Evolutionary algorithm. Preliminary experimental results
confirmed the effectiveness of the proposed approach.

1 Introduction

In the last years, in order to further improve classification performance, ensem-
ble techniques [11] have been taken into account in the Genetic Programming
(GP) field [8]. The GP approach uses the evolutionary computation paradigm to
evolve computer programs, according to a user-defined fitness function. When
dealing with classification problems, GP–based techniques exhibited very inter-
esting performance [12]. In this context, the decision tree [14] data structure is
typically adopted since it allows to effectively arrange in a tree-structured plans
the set of attributes chosen for pattern representation. Successful examples of
ensemble techniques applied to GP can be found in [1] [5]. In [7], bagging and
boosting techniques have been used for evolving ensembles of decision trees. In [4]
a novel GP–based classification system, named Cellular GP for data Classifica-
tion (CGPC), has been presented. Such approach, inspired by cellular automata
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model, enables a fine-grained parallel implementation of GP. In [5], an extension
of CGPC based on the use of two ensemble techniques is presented: the first
technique is the Breiman’s bagging algorithm [11], while the second one is the
AdaBoost.M2 boosting algorithm by Freund and Schapire [11]. The experimen-
tal results presented in these papers show that CGPC represents an effective
classification algorithm, whose performance have been further improved using
ensemble techniques. In this framework, it is generally agreed that a key issue is
to ensure that classifiers in the ensemble be appropriately diverse, so as to avoid
correlated errors [11]. In fact, as the number of classifiers increases, it may hap-
pen that a correct classification provided by some classifiers is overturned by the
convergence of other classifiers on the same wrong decision. This event is much
more likely in case of highly correlated classifiers and may reduce the perfor-
mance obtainable with any combination strategy.Classifier diversity for bagging
and boosting have been experimentally investigated in [10,9]. The results have
shown that these techniques do not ensure to obtain sufficiently diverse classi-
fiers. As regards boosting, in [9] it has been observed that while at first steps
highly diverse classifiers are obtained, as the boosting process proceeds classifier
diversity strongly decreases.

In a previous work [2] an attempt to solve this problem has been made by
reformulating the classifier combination problem as a pattern recognition one,
in which the pattern is represented by the set of class labels provided by the
classifiers when classifying a sample. Following this approach, the role of the
combiner is that of estimating the conditional probability of each class, given
the set of labels provided by the classifiers for each sample of a training set.
In this way, it is possible to automatically derive the combining rule through
the estimation of the conditional probability of each class. It it also possible to
identify redundant classifiers, i.e. classifiers whose outputs do not influence the
output of the combiner: the behavior of such classifiers is very similar to that of
other classifiers in the ensemble and they may be eliminated without affecting
the overall performance of the combiner, thus overcoming the main drawback of
the combining methods discussed above. In [3] a Bayesian Network (BN) [13] has
been used to automatically infer the joint probability distributions between the
outputs of the classifiers and the classes. The BN learning has been performed
by means of an evolutionary algorithm using a direct encoding scheme of the BN
structure. Such encoding scheme is based on a specifically devised data structure,
called Multilist, which allows an easy and effective implementation of the genetic
operators.

In this paper we present a new classification system that merges the two
aforementioned approaches. We have combined the BoostCGPC algorithm [5],
which produces a high performing ensemble of decision tree classifiers, with the
BN based approach to classifier combination. Our system tries to exploit the
advantages provided by both techniques and allows to identify the minimum
number of independent classifiers able to recognize the data at hand.

In order to assess the effectiveness of the proposed system, several experiments
have been performed. More specifically, four data sets, having different sizes,
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number of attributes and classes have been considered. The results have been
compared with those obtained by the BoostCGPC approach using a weighted
majority vote combining rule.

The remainder of the paper is organized as follows. In Section 2 the BN based
combining technique is presented. In Section 3 the architecture of the proposed
system is described. In Section 4 the experimental results are illustrated, while
discussion and some concluding remarks are eventually left to Section 5.

2 Bayesian Networks for Combining Classifiers

The problem of combining the responses provided by a set of classifiers can be
also faced considering the joint probability p (c, e1, ..., eL), where ei represents the
response of the i–th classifier and c is the class to be assigned to the sample taken
into account. The problem of computing the joint probability p (c, e1, ..., eL) may
be effectively solved by using a Bayesian Network (BN). In particular, in [2], a
BN has been used for for combining the responses of more classifiers in a multi
expert system.

A BN is a probabilistic graphical model that allows the representation of
a joint probability distribution of a set of random variables through a Direct
Acyclic Graph (DAG). The nodes of the graph correspond to variables, while
the arcs characterize the statistical dependencies among them. An arrow from
a node i to a node j has the meaning that j is conditionally dependent on i,
and we can refer to i as a parent of j. For each node, a conditional probability
quantifies the effect that the parents have on that node. Once the statistical
dependencies among variables have been estimated and encoded in the DAG
structure, each node ei is associated with a conditional probability function
exhibiting the following property:

p( ei | paei , ndei) = p( ei | paei ) (1)

where paei indicates the set of nodes which are parents of node ei, and ndei

indicates all the remaining nodes. This property allows the description of the
joint probability of a set of variables {c, e1, . . . , eL} as follows:

p (c, e1, . . . , eL) = p ( c | pac )
∏

ei∈E

p ( ei | paei ) (2)

It is worth noticing that the node c may be parent of one or more nodes of
the DAG. Therefore, it may be useful to divide the ei nodes of the DAG in two
groups: the first one, denoted as Ec, contains the nodes having the node c among
their parents, and the second one, denoted as Ec, the remaining ones. With this
assumption, Eq. (2) can be rewritten as:

p (c, e1, . . . , eL) = p ( c | pac )
∏

ei∈Ec

p ( ei | paei )
∏

ei∈Ec

p ( ei | paei ) (3)
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Fig. 1. An example of a BN. The DAG structure induces the factorization of the joint
probability p(c, e1, e2, e3, e4, e5) = p(e3|c)p(c|e4, e5)p(e5|e1, e2)p(e1)p(e2)p(e4). In this
case Ec = {e3}, Ec = {e1, e2, e4, e5} and hence ĉ = arg max

c∈C
p(e3|c)p(c|e4, e5).

Since the third term in Eq. (3) does not depend on c, Eq. (6) assumes the form:

ĉ = arg max
c∈C

p(c, e1, . . . , eL) = argmax
c∈C

p ( c | pac )
∏

ei∈Ec

p ( ei | paei ) (4)

For instance, the BN reported in Fig. 1 considers only the responses of the ex-
perts e3, e4 and e5, while the experts e1 and e2 are not taken into account. Thus,
this approach allows to detect a reduced set of relevant experts, namely the ones
connected to node c, whose responses are actually used by the combiner to pro-
vide the final output, while the set Ec of experts, which do not add information
to the choice of ĉ, are discarded.

Using a BN for combining the responses of more classifiers requires that both
the network structure, which determines the statistical dependencies among vari-
ables, and the parameters of the probability distributions be learned from a
training set of examples. The structural learning, is aimed at capturing the rela-
tion between the variables, and hence the structure of the DAG. It can be seen as
an optimization problem which requires the definition of a search strategy in the
space of graph structures, and a scoring function for evaluating the effectiveness
of candidate solutions. A typical scoring functions is the posterior probability
of the structure given the training data. More formally, if D and Sh denote
the training set and the structure of a candidate BN, respectively, the scoring
function to be maximized is the likelihood of D given the structure Sh. Once
the DAG structure Sh has been determined, the parameters of the conditional
probability distributions are computed from training data.

The exhaustive search of the BN structure which maximizes the scoring func-
tion is a NP-hard problem in the number of variables. This is the reason why
standard algorithms search for suboptimal solutions by maximizing at each step
a local scoring function which takes into account only the local topology of the
DAG. Moving from these considerations, we have proposed an alternative ap-
proach in which the structure of the BN is learned by means of an Evolutionary
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Fig. 2. A multilist (right) and the encoded DAG’s(left)

algorithm, using a direct encoding scheme. The algorithm is based on a specif-
ically devised data structure for encoding DAG, called multilist (ML), which
consists of two basic lists. The first one, called main list, contains all the nodes
of the DAG arranged in such a way that source nodes occupy the first positions,
and sink node, the last ones. Moreover, nodes having both incoming and out-
going arcs are inserted in the main list after their parents. To each node of the
main list is associated a second list called sublist, representing the outgoing con-
nections among that node and the other nodes in the DAG. More specifically, if
si is the sublist associated to the i− th element of the main list, then it contains
information about the outgoing arcs possibly connecting the i− th element and
the other elements following it in the main list, ordered according to the position
of such elements. Since an arc may be present or not, each element of a sublist
contains a binary information: 1 if the arc exists, 0 otherwise (see figure 2).
This ML data structure allows an easy and effective implementation of genetic
operators. Moreover, since the above definition ensures that a ML intrinsically
represents a DAG structure, the application of such operators always produces
valid offspring.

As regards the genetic operators, we have defined two mutation operators
which can modify a ML in two different ways. The m mutation changes a ML
by swapping two elements of the main list, whereas the s mutation adds and/or
deletes one or more arcs in a sub list.
The m–mutation performs a permutation on the elements of the main list, but
leaves unchanged the connection topology of the ML. This mutation consists of
two steps:

(i) randomly pick two elements in the main list and swap their positions.
(ii) modify sublist elements in such a way to restore the connection topology as

it was before the step (i).

It is worth noticing that the m–mutation generates a new ordering of the vari-
ables, which modifies the directions of the existing arcs in the DAG, but preserves
dependencies between variables. If we consider the DAG in figure 2, for instance,
the swap between the second and the fourth node in the main list changes only



A Bayesian Approach for Combining Ensembles of GP Classifiers 31

the directions of the arcs connecting the couples of nodes (1, 5) and (5, 2). This
operator is applied according to a predefined probability value pm.

The s–mutation, instead, modifies the values of the sublist elements. For each
element of the sublists, ps represents the probability of changing its value from
0 to 1, or vice versa. Thus the effect of this operator is that of adding or deleting
arcs in the DAG. Such an operation is applied with probability ps. Further details
about ML data structure and the genetic operators can be found in [3].

The evolutionary algorithm starts by randomly generating an initial popu-
lation of P individuals. Afterward, the fitness of each individual is evaluated
by computing the scoring function. At each generation, the best e individuals
are selected and copied in the new population in order to implement an elitist
strategy. Then, the tournament is used to select (P − e) individuals and the m
and s mutation operators are applied to each selected individual according to
the probabilities pm and ps, respectively. Finally these individuals are added to
the new population. This process is repeated for ng generations.

3 System Architecture

The proposed system consists of two main modules: the first one builds an ensem-
ble of decision tree classifiers (experts); the second one implements the combining
rule that produces the final classification result of the whole system.

The first module, called BoostCGPC, builds decision tree [14] using a Genetic
Programming (GP) technique [8], which is an evolutionary computation-based
technique able to evolve computer programs according to a user-defined fitness
function. The output ensemble is learned by implementing a modified version
of the algorithm AdaBoost.M2 [6]. Such an implementation allows to run the
algorithm on distributed memory parallel computer, making the system able to
deal with large data sets. Further details about this algorithm can be found
in [5].

The second module uses the approach described in the previous section for
combining the responses provided by the classifiers making up the ensemble built
in the first module. More specifically, let us denote with N the number of classes
to be discriminated, with L the number of decision tree classifiers included the
ensemble and with E = {e1, . . . , eL} the set of responses provided by such clas-
sifiers for a given input sample. Let us assume that such responses constitute the
input to the combiner module. In this module, the combining technique operates
as a “higher level” classifier, working on a L-dimensional discrete-valued feature
space, which is trained by using a supervised learning procedure. This proce-
dure requires to observe both the “true” class label c, and the set of responses
provided by the classifiers for each sample of a training set, in order to estimate
the conditional probability p(c|e1, . . . , eL). Once this conditional probability has
been learned, the combiner evaluates the most probable class ĉ of an unknown
input sample, given the expert observations, as follows:

ĉ = arg max
c∈C

p (c|e1, ..., eL) (5)
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where C is the set of classes. Considering the definition of conditional probability
and omitting the terms not depending on the variable c to be maximized, Eq.
(5) can be rewritten as:

ĉ = arg max
c∈C

p (c, e1, ..., eL). (6)

that involves only the joint probabilities p (c, e1, ..., eL). This problem may be ef-
fectively solved by using a Bayesian Network, according to the approach outlined
in the previous section.

Note that the devised system recognizes unknown samples using a two–step
procedure: (i) the feature values describing the unknown sample are provided to
each of the ensemble classifiers built by the BoostCGPC module; (ii) the set of
responses produced is given in input to the BN module. Such module labels the
sample with the most likely class, among those of the problem at hand, given
the responses collected by the first module 1. Note that, for some samples, the
BN is not able to assign them a label. This case occurs when two or even more
classes are equally likely. In this case, the unknown sample is labeled using the
majority vote rule, applied to the first module responses.

4 Experimental Results

The proposed approach has been tested on four data sets: Census, Segment,
Adult and Phoneme. The size and class distribution of these data sets are de-
scribed in Table 1. They present different characteristics in the number and type
(continuous and nominal) of attributes, two classes versus multiple classes and
number of samples. In particular, Census and Adult, are real large data set con-
taining census data collected by the U.S. Census Bureau. The Segment contains
image data. Finally, the Phoneme data set contains data distinguishing between
nasal and oral vowels. For each data set, two statistically independent sets of
equal size, have been built randomly splitting the samples of each class. The first
set has been used for training, while the second set for the test.

All the experiments were performed on a Linux cluster with 16 Itanium2
1.4GHz nodes each having 2 GBytes of main memory and connected by a Myrinet

Table 1. The data sets used in the experiments

datasets attr. samples classes

Adult 14 48842 2

Census 4 299285 2

Phoneme 5 5404 2

Segment 36 2310 6

1 Note that the second step does not require any further computation with respect to
the Majority Voting rule. In fact, it only needs to read tables storing class probabil-
ities.
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high performance network. As regards the boostGCPC algorithm, it has been run
on five nodes, using standard GP parameters and a population of 100 individuals
for node. The original training set has been partitioned among the nodes and
respectively 5 and 10 rounds of boosting, with 100 generations for round, have
been used to produce respectively 25 and 50 classifiers on 5 nodes. It is worth
to remember the algorithm produce a different classifier for each round on each
node.

All results were obtained by averaging over 30 runs. For each run of the
BoostCGPC module, a run of the BN module has been carried out. Each BN run
has been performed by using the responses, on the whole training set, provided
by the classifiers learned in the corresponding BoostCGPC run. The results on
the test set has been obtained by first submitting each sample to the learned
decision trees ensemble. The ensemble responses have been then provided to the
learned BN. Finally, the BN output label has been compared with the true one
of that sample.

The results achieved by the our approach (hereafter BN-BoostCGPC) have
been compared with those obtained by BoostCGPC approach, which uses the
Weighted Majority rule for combining the ensemble responses. The comparison
results are shown in Tab. 2. The second column shows the ensembles (25 or
50 classifiers), while the columns 3 and 6 shows the training set errors of the
BoostCGPC and BN-BoostCGPC, respectively. Similarly, the columns 4 and 7
show the test set errors of the BoostCGPC and BN-BoostCGPC, respectively.
The columns 5 and 8 contain the number of classifiers actually used by both
approaches. It is worth noticing that for the BoostCGPC approach such number
equals the number of classifier making up the ensemble (25 or 50). The BN-
BoostCGPC, instead, uses only the classifiers that are directly connected to the
output node in the DAG.

In order to statistically validate the comparison results, we performed the
two–tailed t–test(α = 0.05) over the 30 carried out runs. The values in bold in
the test set error columns highlight, for each ensemble, the results which are
significantly better according to the two–tailed t–test. The proposed approach
achieves better performance on the majority of the considered ensembles while,

Table 2. Comparison results

Datasets ens.
BoostCGPC BN-BoostCGPC

Train Test # sel. Train Test # sel.

Adult
25 15.90 16.94 25 15.85 16.28 3.4
50 16.88 18.23 50 16.55 16.99 3.8

Segment
25 11.82 12.69 25 10.82 11.68 2.9
50 10.39 12.06 50 10.34 11.99 2.9

Phoneme
25 16.41 18.87 25 17.70 19.23 3.2
50 16.90 20.04 50 17.23 19.51 7.8

Census
25 8.81 8.89 25 5.14 5.27 4.3
50 8.88 9.07 50 5.27 5.37 3.9
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in the remaining cases, the performance are comparable. It is also worth noticing
that the most significant improvements have been obtained on Adult and Census
data sets, which are the largest ones among those considered. This result is due
to the fact that larger data sets allow the BN learning process to better estimate
the conditional probabilities to be modeled. Finally, is worth to remark that the
results of our system are always achieved by using only a small number of the
available classifiers.

5 Conclusions and Future Work

We presented a novel approach for improving the performance of derivation tree
ensembles, learned by means of a boosted GP algorithm. The approach consists
of two modules, the first one uses a boosted GP algorithm to generate ensembles
of decision trees. The second module, instead, employs Bayesian networks to
effectively combine the responses provided by the ensemble decision trees.

The experimental results have shown that the proposed system further im-
proves the performance achieved by using the boosted GP algorithm. Moreover,
such performances are obtained by using a reduced number of classifiers. Fi-
nally, the presented approach seems to be particularly suited to deal with very
large data sets. Future work will include testing on several ensembles, having a
different number of classifiers. Furthermore, larger data sets will be taken into
account, to further investigate the capability of the presented system to deal
with very large data sets.
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Abstract. During the last years, there has been an increasing interest
in applying the multiple classifier framework to the domain of structural
pattern recognition. Constructing base classifiers when the input pat-
terns are graph based representations is not an easy problem. In this
work, we make use of the graph embedding methodology in order to
construct different feature vector representations for graphs. The graph
of words embedding assigns a feature vector to every graph by counting
unary and binary relations between node representatives and combining
these pieces of information into a single vector. Selecting different node
representatives leads to different vectorial representations and therefore
to different base classifiers that can be combined. We experimentally
show how this methodology significantly improves the classification of
graphs with respect to single base classifiers.

1 Introduction

A multiple classifier system tries to combine several base classifiers in such a
way that the resulting classification performance improves the accuracy rates of
the underlying individual classifiers [1]. A common way to build base classifiers
for further combination is by randomly selecting different subsets of features
and training classifiers on those subsets [2]. By feature subset selection one is
usually able to obtain classifiers with enough diversity, in terms of their dis-
criminative power. Such procedures can be rather easily implemented and have
been widely studied for statistical feature vectors. However, when it comes to
graph based representations, the construction of single base classifiers has not a
straightforward solution.

Based on the idea of feature subset selection, just a few works aiming at
constructing multiple classifier systems for graph based representations have
been proposed. While for feature vectors the idea is to select a subset of features,
for graph representations the way to proceed is to construct base classifiers by
selecting subgraphs of the training graphs. For instance, in [3] the authors are
able to define different classifiers by randomly removing nodes and their incident
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edges from the graphs. This methodology has the problem that the need arises of
comparing several instances of labelled graphs, which makes the combination of
multiple classifiers a highly complex task. In [4], a more efficient way is proposed
by decomposing a set of labelled graphs into several unlabelled subgraphs based
on their labelling information. All these subgraphs are compared one by one
with respect to different labels which create different base classifiers. Finally, in
[5], in order to build several base classifiers, the authors claim for the beneficial
use of full graphs instead of just subgraphs. They transform labelled full graphs
into different unlabelled graphs by removing information from the nodes and
re-weighting the edges based on the linked nodes’ information. Although the
graphs are altered, the topology is preserved and several base classifiers can be
constructed.

The main drawback of all the approaches described above is that they neces-
sarily need to work in the graph domain when comparing graphs and, therefore,
the base classifiers to be used are restricted to be of the kNN type. In this work
we adopt another approach to construct several base classifiers for graph based
representations. We embed every graph into different vector spaces in such a
way that several feature vectors are associated to every graph. From these sets
of feature vectors, different based classifiers can be trained and then combined
under any of the common statistical combination frameworks. The idea is some-
what similar to the one in [6] where the authors transform a graph into a feature
vector by computing edit distances to a predefined set of prototypes. As a result,
for these vectors, more complex learning machines such as SVMs are used. Then,
by using different sets of prototypes, the authors create different populations of
vectors leading to several base classifiers that can be combined.

Besides the work of [6], other examples of graph embeddings can be found in
the literature. For instance, in [7], the authors approach the problems of graph
clustering and graph visualization by extracting different features from an eigen-
decomposition of the adjacency matrices of the graphs. In [8], the nodes of the
graph are embedded into a metric space and then the edges are interpreted as
geodesics between points on a Riemannian manifold. The problem of matching
nodes to nodes is viewed as the alignment of the resulting point sets. Finally,
in [9], to solve the problem of molecules classification, the authors associate a
feature vector to every molecule by counting unary and binary statistics in the
molecule; these statistics indicate how many times every atomic element appears
in the molecule, and how often there is a bond between two specific atoms.

In this paper, we propose to extend the idea of [9] to the case of graphs
with continuous attributes and, as in [6], describe ways of constructing different
feature vector representations for every graph. In the next section we define the
way of transforming a node labelled graph into a feature vector by means of the
Graph of Words Embedding. Then, in Section 3, we formally recall some basic
concepts from the field of multiple classifiers systems and describe how we can
derive different vector representations of graphs for their further combination.
In Section 4, we describe and discuss the experimental results that have been
obtained. Finally, Section 5 concludes the article.
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2 Graph of Words Embedding

Although the embedding of graphs into vector spaces provides a way to ap-
ply statistical pattern analysis techniques to the domain of graphs, the existing
methods still suffer from the main drawback that the classical graph matching
techniques also did, this is, their computational cost. The Graph of Words Em-
bedding tries to avoid these problems by just visiting nodes and edges instead
of, for instance, travelling along paths in the graphs, computing edit distances
or performing the eigen-decomposition of the adjacency matrix. In this section
we first briefly explain the motivation of this approach and then formally define
the procedure.

2.1 Motivation

In image classification, a well-known image representation technique is the so-
called bag of visual features, or just bag of words. It first selects a set of feature
representatives, called words, from the whole set of training images and then
characterizes each image by a histogram of appearing words extracted from the
set of salient points in the image [10].

The graph of words embedding proceeds in an analogous way. The salient
points in the images correspond to the nodes of the graphs and the visual de-
scriptors are the node attributes. Then, one also selects representatives of the
node attributes (words) and counts how many times each representative appears
in the graph. This leads to a histogram representation for every graph. To take
profit of the edges in the original graphs, one also counts the frequency of the
relation between every pair of words. The resulting information is combined with
the representatives’ histogram in a final vector.

2.2 Embedding Procedure

A graph is defined by the 4-tuple g = (V, E, μ, ν), where V is the set of nodes,
E ⊆ V ×V is the set of edges, μ is the nodes labelling function, assigning a label
to every node, and ν is the edges labelling function, assigning a label to every
edge in the graph. In this work we just consider graphs whose node attributes
are real vectors, this is, μ : V → R

d and whose edges remain unattributed, this
is, ν(e) = ε for all e ∈ E (where ε is the null label).

Let P be the set of all node attribute vectors in a given dataset of graphs
G = {g1, . . . , gM}. From all vectors in P we derive n representatives, which
we shall call words, in analogy to the bag of words procedure. Let this set of
words be V = {w1, . . . , wn} and be called vocabulary. Let furthermore λ be the
node-to-word assignment function λ(v) = arg minwi∈V d(μ(v), wi), this is, the
function that assigns a node to its closest word. Before assigning a vector to
each graph, we first construct an intermediate graph that will allow us an easier
embedding. This intermediate graph, called graph of words g′ = (V ′, E′, μ′, ν′)
of g = (V, E, μ, ν) ∈ G with respect to V , is defined as:
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Fig. 1. Example of the graph of words embedding. The graph on the left is assigned
to the vector on the right by considering the vocabulary V = {R, Y, G, B}. Nodes 1
and 5 are assigned to the R word, 2 and 3 to the B word and 4 to the G word. Note
that none is assigned to the Y word. The histogram of words is considered as well
as the adjacency matrix. The resulting vector is the concatenation of both types of
information.

– V ′ = V
– E′ is defined by: (w, w′) ∈ E′ ⇔ there exists (u, v) ∈ E such that

λ(u) = w and λ(v) = w′

– μ′(w) = | {v ∈ V |w = λ(v)} |
– ν′(w, w′) = | {(u, v) ∈ E | λ(u) = w, λ(v) = w′} |.
Once the graph of words is constructed, we easily convert the original graph

into a vector by combining the node and edge information of the graph of words,
by keeping both the information of the appearing words and the relation between
these words. We consider the histogram

φV
a (g) = (μ′(w1), . . . , μ′(wn)). (1)

and a flattened version of the adjacency matrix of the graph of words A = (aij),
with aij = ν′(wi, wj):

φV
b (g) = (a11, . . . , aij , . . . , ann), ∀ i ≤ j (2)

The final graph of words embedding is the concatenation of both pieces of infor-
mation,

ϕV(g) = (φV
a (g), φV

b (g)). (3)

In Figure 1, there is an example of the graph of words procedure for a simple
vocabulary of size equal to 4.

2.3 Vocabulary Selection and Dimensionality Reduction

The final configuration of the vectors after the embedding clearly depends on
the set of words that have been chosen and this fact is what will actually give
us different and diverse vector representations of the graphs. In this paper we
decided to use the kMeans algorithm in order to build the vocabulary. The
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initialization points of the clustering under kMeans are usually taken randomly.
In our case, in order to avoid uncertainty in the results, we chose to start by
selecting uniformly distributed points over the range of node attributes. The way
we proceed is by first selecting the median vector of P and then adding at each
iteration the point which is furthest away from the already selected ones. This is
done until a predefined number of words is obtained, and repeated for a different
number of words each time. Each of the different sets of representatives obtained
by the kMeans algorithm will provide us with a different vector representation
of graphs, and thus with a different base classifier.

Another important issue of the graph of words configuration is the quadratic
increase of its dimensionality with respect to the vocabulary size. To avoid spar-
sity problems and to reduce problems that arise from having to deal with such
high dimensional vectors, in this article we have applied Kernel PCA [11] in
conjunction with the RBF kernel to the original vectors. More details of the di-
mensionality reduction procedures applied to graph of words embedded vectors
can be found in [12].

3 Multiple Classifiers for Graph of Words Embedding

Let us review in this section a few important concepts from the domain of
multiple classifier systems and then present their application to the graph of
words embedding.

3.1 Multiple Classifier Methods

In [13], the authors originally put together various classifiers under the following
taxonomy, based on the output information they are able to supply. The first
level of classifiers, called the abstract level, outputs a unique label for every
pattern to be classified. The combination of such classifiers is usually done by
voting strategies, which assign the final decision based on the plurality of votes
of all the available classifiers [1]. The second level, the rank level, outputs a
ranked list of labels for every pattern. Borda Count is the common methodology
to combine these rankings. The rankings from all classifiers are combined by
ranking functions assigning votes to the classes based on their positions in the
classifiers’ rankings. The final decision is taken as the minimum of the sum of
these rankings. Finally, the measurement level, outputs a set of confidence values
defining the degree of belongingness to each class. Bayesian combinations are
commonly used by which different rules (product, sum, mean, etc.) are applied
to the confidences of each class [14]. Finally, non-Bayesian combinations can also
be applied such that a weighted linear combination of classifiers is learnt using
optimization techniques [15].

3.2 Multiple Classifiers for Graph of Words Embedding

Summarizing what we have explained so far, we represent a set of graphs by
vectors using the graph of words embedding. A set of node attribute representa-
tives is chosen and unary and binary statistics of each graph are computed and
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combined in a single histogram representation. This representation lets us train
an SVM, or any other classifier. By selecting sets of representatives of different
size we are able to create a population of vectors of different dimensionality. In
this article, we have chosen vocabulary sizes from only 2 words up to 100 words,
obtained a set of 99 different vector representations for every graph. Thus, a dif-
ferent base classifier can be trained for every different choice of the vocabulary
size, giving the possibility of building ensembles of classifiers under the common
statistical combination frameworks.

It seems reasonable to follow this direction since every choice of the vocabulary
is giving a semantically different representation of the graphs. For instance, a
vocabulary including just a few words would express global relations between the
nodes of the graphs, while a large vocabulary would describe the input graphs
in terms of their local structure.

3.3 Classifier Selection

An important issue that deserves our attention is the question of how to build the
final ensemble from the available classifiers. In this article, we have addressed this
problem by a simple forward selection strategy [1]. From the set of N classifiers
that we have available, we will construct N ensembles. The first ensemble will
be constituted by one classifier, the second by two classifiers, etc., until the last
ensemble that is going to be the ensemble of all classifiers that we have trained.
These ensembles are iteratively build by, first, taking the best single classifier
as the first ensemble, and then adding to the k-th ensemble the classifier that
best fits the previous ensemble, in terms of the accuracy of the combination on
a validation set. As a result, the final ensemble that is applied to the test set is
the one with the highest accuracy rate.

4 Experimental Results

The main objective in this work is to evaluate the improvements obtained from
the combination of several classifiers with respect to the accuracy of the individ-
ual ensemble members. In this section, we describe the graph datasets we have
been working with, provide a description of the experimental setup, and present
the results that have been obtained.

4.1 Databases

We have chosen three different datasets from the IAM Graph Database Repos-
itory [16], posing classification problems on both synthetic and real data. The
Letter Database represents distorted letter drawings. Starting from a manually
constructed prototype of every of the 15 Roman alphabet letters that consist
of straight lines only, different degrees of distortion are applied. Each ending
point of a line is represented by a node of the graph and attributed with its
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(x, y) coordinates. The second graph dataset is the GREC Database, which rep-
resents architectural and electronic drawings under different levels of noise. In
this database, intersections and corners constitute the set of nodes. These nodes
are attributed with their position on the 2-dimensional plane. Finally, the Fin-
gerprint Database consists of graphs that are obtained from a subset of the
NIST-4 fingerprint image database [17] by means of particular image processing
operations. Ending point and bifurcations of the skeleton of the processed im-
ages constitute the (x, y)-attributed nodes of the graphs. Each of these datasets
is split into a training set, a validation set and a test set.

4.2 Experimental Setup

As already said before, for every graph in the datasets described above, we have
constructed several vector representations with the graph of words embedding
methodology using different vocabulary sets. More precisely, the vocabulary size
is chosen to be from only 2 words up to 100, leading to 99 different vectorial rep-
resentations. Each of these sets of vectors is reduced using kPCA, the parameters
of which are properly optimized using the validation set.

Then, a single base classifier for each vocabulary size is trained. Support Vec-
tor Machine [18] is an important learning machine that lately has been gaining
significant attention due to its good results on real data. The main idea of the
method is to separate classes using hyperplanes in the implicit Hilbert space of
the kernel function in use. We have used the implementation described in [19],
which provides a way to extract outputs on the three different levels that have
been described in Section 3.1. Here again, the kernel functions, their associated
parameters and the SVM’s own parameters have been tuned using the validation
set.

In Figure 2(a), we show the accuracy rates of the single SVM classifiers on
the validation set for the Fingerprint dataset. Every classifier is based on a
different vocabulary of different size (represented on the horizontal axis), and
we can see how the different SVM classifiers lead to different results, supporting
the assumption of diversity of the representation of the different graph of words
configurations. The goal of this paper, and of the MCS methodology in general,
is to outperform the best of these individual base classifiers.

With regards to the combination rules that have been used, we have worked
with the voting combination strategy for the first level of classifiers, with the
Borda Count for the second, with the product and the mean rules in the Bayesian
combination framework, and with the IN and the DN approaches in the case of
the Non-Bayesian methodology (the former has a closed optimal solution, while
the latter is optimized by numerical minimization).

In Figure 2(b), we show the effect of the classifier selection strategy on the
validation set of the Fingerprint database. The different combination strategies
of the three different classifier levels are shown in the figure. As expected, the
tendency is an increasing performance with just a few classifiers, and then, once
more and more classifiers are added to the combination, the accuracy rates go
down, leading to worse results than with the best single classifier alone.



Multiple Classifiers for GOW Embedding 43

0 20 40 60 80 100
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

(a) Single Classifiers

0 20 40 60 80 100
0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91
Majority
Borda Count
Bayes product
Bayes mean
IN
DN

(b) Multiple Classifiers

Fig. 2. Results on the validation set for the Fingerprint dataset. (a) Classification rates
of the single classifiers. On the horizontal axis the number of words in the vocabulary
set is shown. (b) Combination of all single classifiers after classifier selection. On the
horizontal axis we show the number of classifiers in the combination. The vertical axis
shows the classification rate of the combination. Note that the maximum on (a) is the
starting point on (b).

4.3 Results on the Test Set

Once the system and all the associated parameters are properly selected using
the validation set, we take the best performing ensemble and test it on the test
set of the three databases. In Table 1, we show the results. The table is split into
single and multiple classifiers. On the single classifier part we show the results of
the best of the single SVMs that we have trained on our resulting graph of words
embedded vectors. For the multiple classifiers, we show the results for voting,
Borda Count, the product rule in the case of Bayesian combination and the IN
solution for the Non-Bayesian one. The mean rule and the DN strategies lead to
lower recognition rates (yet statistically non-significant) and this is the reason
why they are not shown.

In the case of the Letter dataset the results of the different combinations do
not show a significant improvement over the reference system. The combination
of classifiers for the Borda Count methodology and the Bayes combination is
obtaining better results than the single classifier, but not statistically significant
ones. It even happens that the combination of classifiers gets lower results than
the single base classifier (non-Bayes methodologies). This is obviously due to the
fact that the final configuration of the system is chosen as the one that gives
the best results on the validation set and this configuration does not necessarily
lead to the best result on the test set.

On the other hand, we can see that the improvements obtained on the Fin-
gerprint and GREC databases are all significant, no matter which combination
strategy is chosen. Obviously, the different configurations of the graph of words
vectors are sufficiently diverse to learn different characteristics of the graphs
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Table 1. Results on the test set for different classifiers (accuracy rates in %). kPCA-
SVM is the best SVM classifier on the reduced graph of words vectors. Multiple Clas-
sifiers results are also shown for the different combination strategies. The number of
classifiers for the optimal combination is shown in parenthesis. The best result on each
dataset is shown bold face.

Single Classifier Multiple Classifiers

Database kPCA-SVM Voting Borda C. Bayes Non-Bayes

Letter 98.8 98.8 (4) 99.2 (5) 99.2 (4) 98.4 (2)
GREC 93.7 99.0 (33) � 98.6 (3) � 98.6 (7) � 99.0 (5) �
Fingerprint 80.8 83.1 (18) � 82.9 (14) � 83.9 (7) � 83.6 (31) �

� Statistically significant improvement over the single classifier (Z-test using α = 0.05).
◦ Statistically significant deterioration over the single classifier (Z-test using α = 0.05).

and to obtain important improvements over the reference system. In partic-
ular, for the GREC database and the Non-Bayes combination, the members
of the best ensemble are the graph of words configurations of vocabulary size
{19, 39, 5, 2, 49} (in order of decreasing importance), while for the case of the Fin-
gerprint dataset and the Bayes combination they are {69, 24, 71, 67, 73, 19, 77}.
The variety of these sizes supports the idea that using different configurations of
the proposed methodology is a way to properly discover semantically different
information content among the graph structures.

5 Conclusions

In this article we have presented a novel way to construct combinations of several
classifiers for graph-based representations of patterns. Every graph is embedded
into different vectorial spaces by means of the graph of words embedding. Every
different selection of the vocabulary set in the graph of words leads to a different
vectorial representation and thus to a different base classifier. The individual
SVM base classifiers have been combined using several standard methods for
classifier combination and a forward selection strategy. Experiments have shown
significant improvements on two out of three datasets.

Since the methodology seems suitable for improving the classification rates
on graph classification problems, future work will consider other vocabulary
selection methods, which could lead to other base classifier to further enrich the
ensembles of classifiers.
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Abstract. We consider the problem of online classification in nonsta-
tionary environments. Specifically, we take a Bayesian approach to se-
quential parameter estimation of a logistic MCS, and compare this
method with other algorithms for nonstationary classification. We com-
ment on several design considerations.

1 Introduction

There have been many studies which show that combining the outputs of a num-
ber of classifiers can result in better classification performance than using a single
classifier. Popular examples of such methods include Bagging [1], Boosting [13]
and Random Forests [2], and there is much current research in the area. However,
many of the algorithms assume that the population of interest is not changing
over time, and that a set of observations from this population is available on
which the classification algorithm can be trained. In practice, many populations
do change over time and so the assumption of stationarity is not always reason-
able. Therefore, it is natural to wonder if the success of MCSs for stationary,
batch learning problems can be extended to dynamic online learning problems.

This problem has already been approached in several different ways, and [7]
gives a good overview of current methods. In this paper we propose a model-
based method for combining the outputs of a number of component classifiers,
and for sequentially updating the classification rule as new observations become
available. In the language of [7], the algorithm we propose is a “dynamic com-
biner” - changes in the population are modelled by updating the parameters of
the combining rule, and the component classifiers remain fixed. The only restric-
tion we place on the component classifiers is that they must output an estimate
of the conditional class distribution, not only a class label.

We present our model in Section 2, then in Section 3 discuss how this model
can be used to implement classification. In Section 4 we compare the performance
of the suggested algorithm to other algorithms for dynamic classification on two
simulated examples.

2 A Dynamic Logistic Model for Combining Classifiers

We assume that the population of interest consists of K classes, labelled 1, . . . , K.
At some time t an observation xt and label yt are generated according to the
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joint probability distribution Pt(Xt, Yt). Given an observation xt, we denote the
estimate output by the ith component classifier of Prob{Yt = k|xt} by p̂i(k|xt),
for k = 1, . . . , K and i = 1, . . . , M , where M denotes the number of component
classifiers.

Our final estimate of Prob{Yt = k|xt} is obtained by combining the compo-
nent classifier outputs according to the multiple logistic model

p̂t(k|xt) =
exp(βT

t ηk(xt))∑K
j=1 exp(βT

t ηj(xt))
, k = 1, . . . , K, (1)

where βt = (βt1, βt2, . . . , βtM ) is a vector of parameters, the ith component of
ηk(xt), ηki(xt), is a function of the output of the ith component classifier, and
η1(xt) = 0 for all xt. Changes in the population are modelled via changes in the
parameters βt. It can be seen that this model is a dynamic generalised linear
model, as defined by [16].

Similar models have been used for binary classification by [12] and [10], how-
ever rather than combine the outputs of a number of classifiers they used the
raw inputs xt in place of η(xt).

Before the classifier can be implemented, there are three steps to be taken:

1. a set of component classifiers must be determined;
2. the form of the functions ηk(·) must be specified; and
3. an algorithm for updating the weights must be chosen.

In this section we comment on the first two points, and make suggestions for
point 3 in Section 3.

2.1 Choosing the Component Classifiers

As has been documented for other MCSs, the choice of component classifiers
is absolutely vital to the performance of an implementation of this model. If
the component classifiers are all very similar, then the MCS is unlikely to be
sufficiently flexible to discriminate well in all future scenarios. This suggests that
the component classifiers should be relatively diverse compared to a stationary
scenario, to increase the range of decision boundaries that can be represented at
any future time. If there is prior knowledge about the extent of change expected,
then this can be used when training the component classifiers. In the absence of
prior knowledge, a reasonable strategy may be to train component classifiers on
small, random subsets of available data, or else to use artificial data to generate
a wider range of classifiers.

2.2 Specification of the ηk(·)
The form of the functions ηk(·) was deliberately unspecified in the general for-
mulation of the model. Using different forms is likely to result in models with
different properties, and apriori there is no reason to suggest that one form will
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dominate all the others in terms of classification performance. However, some
choices seem more sensible than others, and in this paper we suggest two options:

1. ηki(xt) = p̂i(k|xt) − p̂i(1|xt), i = 1, . . . , M and (2)

2. ηki(xt) = log
(

p̂i(k|xt)
p̂i(1|xt)

)
, i = 1, . . . , M. (3)

Both options allow ηki(xt) to take either positive or negative values, which means
that the probabilities p̂(k|xt) in equation (1) can take all values in (0, 1) even
if the parameters are constrained to be non-negative. This allows us to consider
non-negativity constraints on the parameters, which would not be appropriate
if we defined ηki(xt) = p̂i(k|xt), for example. It is also interesting to note that
at any time t, if (2) is used then the decision boundary is equivalent to that for
the weighted averaging rule with weights given by βt (or equivalently weights
cβt, c > 0). If all the component classifiers are trained by linear discriminant
analysis, then using (3) constrains the decision boundary of the final classifier
also to be linear [14].

2.3 General Applicability

As with other dynamic combiners (an MCS in which the classifiers are fixed
but the combining rule is updated over time [7]), we do not expect this model
to perform universally well. If the population changes too much from what is
expected when training the component classifiers then the model (1) will not
necessarily be very accurate for any value of the parameters. However, given
that the changes are not too severe, this model should be equally suited to slow
and rapid changes providing that the method used for updating the parameters
is appropriate.

3 Algorithms for Parameter Updating and Classification

In this section we propose methods for implementing a classifier based on the
model introduced in Section 2, assuming that the functions ηk(·) and the com-
ponent classifiers are already specified. Firstly we discuss the classification rule,
and then suggest how this can be implemented.

3.1 The Predictive Approach to Classification

Many model-based methods for classification estimate the parameter values di-
rectly, and then plug these estimates in to the model to produce a final clas-
sification. However, for classification problems we are typically more interested
in estimating the conditional class distribution than the parameters themselves.
Therefore, we follow the predictive approach to classification which produces
estimates of the conditional class distribution and deals with uncertainty about
the parameters by averaging over all possible values. Specifically, suppose that
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at time t − 1 our knowledge about the parameters βt−1 is summarised by the
posterior distribution p(βt−1|z1:t−1), where

z1:t−1
�= {(x1, y1), (x2, y2), . . . , (xt−1, yt−1)}.

After having received an observation xt we are interested in the probabilities

p̃(Yt = k|xt, z1:t−1) =
∫
βt

p(Yt = k, βt|xt, z1:t−1)dβt, k = 1, . . . , K

=
∫
βt

p(Yt = k|xt, βt)p(βt|z1:t−1)dβt, k = 1, . . . , K, (4)

where p(βt|z1:t−1) can be expressed as

p(βt|z1:t−1) =
∫
βt−1

p(βt|βt−1)p(βt−1|z1:t−1)dβt−1. (5)

We will use p̃(k|xt) to denote p̃(Yt = k|xt, z1:t−1). To evaluate (5) the posterior
distribution p(βt−1|z1:t−1) is assumed known from time t− 1, and we also need
information about p(βt|βt−1). Assuming for now that we have this information,
(5) can then be substituted into (4), which can be evaluated by using the model
(1) to specify the probabilities p(Yt = k|xt, βt).

In order to calculate the expression p(βt|βt−1) in (5), we must specify a model
for how the parameters change (or “evolve”) over time. Following [16], we model
the parameter evolution according to a Gaussian random walk:

βt = βt−1 + ωt, (6)

where ωt ∼ N(0, Vt). With this assumption we then have all the information
needed to compute (4) and hence the probabilities p̃(k|xt), k = 1, 2, . . . , K. Hav-
ing calculated these probabilities, we classify xt to the class with the largest
value of p̃(k|xt), so

ĉ(xt) = argmaxk p̃(k|xt). (7)

Suppose that we then observe the true label yt. We can update the distribution
of βt according to the relationship

p(βt|z1:t) ∝ p(yt|xt, βt)p(βt|z1:t−1), (8)

where p(βt|z1:t−1) is given by (5), and p(yt|xt, βt) by (1). This classification and
updating process can then be repeated for each new observation.

3.2 Implementation

In order to simplify implementation of the prediction and updating procedure
above, it is assumed that the parameter evolution variance matrix Vt = vtI,
where I is the identity matrix. This is a common assumption in dynamic mod-
elling (see for example [5], [12] and [6]). Under this assumption, the rate of change
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of the parameter corresponding to each component classifier is assumed to be
equal. vt can be thought of as a “forgetting” parameter - a larger value of vt im-
plies that the parameter values are more likely to change by a large amount from
one time point to the next, thereby reducing the influence of previous observa-
tions. If vt is too large, then the extra noise in the parameter evolution will lead
to added classification error. If vt is too small, then the updating process may
not be able to track the true changes in the parameter values. The performance
of the classifier is quite sensitive to the specification of this parameter.

In general, the integrals in (4) and (5) can not be evaluated exactly. In [14]
we considered the use of a Gaussian updating procedure to approximate the
integrals in (4), and also a method for implementing dynamic generalised models
given in [15]. However, we found that using Sequential Monte Carlo (SMC)
techniques allows more flexibility and is easily applicable to both binary and
multi-class classification. Further, using SMC it is easy to model the evolution
of vt over time. We again use a Gaussian random-walk model

vt = vt−1 + νt, νt ∼ N(0, qt), (9)

and assume that qt = q, a constant which must be specified in advance. This
allows the algorithm to adaptively alter the variance of the parameter evolution
over time, and so dynamically adjust to periods of slow and rapid change. Al-
though q must be specified in advance, the performance of the algorithm tends
to be more robust to misspecification of q than to v.

SMC is computationally intensive, and as a result can only cope with relatively
low-dimensional parameter spaces, i.e. with relatively few component classifiers.
For the simulations presented in section 4 we used three component classifiers and
1000 particles to represent the corresponding 4D parameter space {β1, β2, β3, vt}.
To maintain the same density of the particle approximation with 20 component
classifiers would require 100021/4 ≈ 5.6 × 1015 particles! It may be reasonable
to assume that only a few component classifiers will be required at any time, in
which case the dimensionality problem could be addressed by using appropriate
methods of regularisation. However, for this paper we used a simple SIS/R filter
following the algorithms contained in [4].

The mean and variance of β0 can be initialised based on knowledge of how
the component classifiers were trained, and any prior information. There is no
need for a training set on which to initialise the algorithm. However, there is
an identification problem with specifying the mean of β0, because the decision
boundary produced by the model (1) with parameters β is equivalent to that
produced with parameters cβ, for c > 0. However, this feature means that the
algorithm can adapt to misspecified parameter evolution variance - if q is too
large compared to β0, for example, then the parameter values will “inflate” over
time to bring this into balance.

4 Experimental Comparison

In this section we show the results of applying the SMC implementation of our
method (which we label as DLMCS, for Dynamic Logistic Multiple Classifier
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System) to two artificial examples. We compare the performance to several other
methods for dynamic classification, namely Winnow [9], oLDC with adaptive
learning rate [8] and a naive online adaptation of the Learn++.NSE algorithm
[11].

The online adaptation of Learn++.NSE differs from the original algorithm in
the way that new batches of training data are obtained. Every w observations
a new classifier is trained on a batch consisting of the previous w observations,
rather than on a set of i.i.d. observations. To distinguish between this implemen-
tation and that for which it was originally intended, we refer to this algorithm
as oLearn++.NSE.

4.1 Methods

100 observations from the population at time t = 0 are used as a training set.
Bootstrap samples of this data are used to train the component classifiers for the
DLMCS algorithm and for Winnow. This training data is also used to initialise
the oLDC algorithm, and to train the initial classifier for oLearn++.NSE.

For each of 5000 independent runs the training data is generated, algorithms
initialised and the errors of the classifiers recorded at each time point. These
errors are then averaged to produce an estimate of the error rate of each classi-
fication algorithm at every point in time.

To set the tuning parameters of the algorithms we took a naive approach,
and assumed no prior knowledge of the type of population change which might
occur. The tuning parameters were therefore set to values reported as resulting
in a generally good performance. No attempt was made to dynamically alter the
value of these parameters over time, although such a scheme is likely to improve
performance for some scenarios. For Winnow, the parameter α was set to 2.
The window-width parameter w for oLearn++.NSE was set to w = 10, and the
parameters of the sigmoid function were set to a = 0.5 and b = 10.

For all examples we specified ηk(·) as in equation (3). The SMC algorithm
was implemented using 1000 particles with a re-sampling threshold of 500, the
prior distribution of v was N(0.01, 0.002) and q was set to 0.001. 20 component
classifiers were used for Winnow and only three for the SMC algorithm, due to
computational constraints. The size of the bootstrap samples used to train the
component classifiers of the Winnow and DLMCS algorithms was equal to 8 -
chosen to be reasonably small to encourage “diversity” amongst the component
classifiers, in the hope that some of the component classifiers would be relevant
to later scenarios. All component classifiers were linear discriminant classifiers,
trained using the lda function in the R library MASS. To measure the importance
of selecting appropriate component classifiers, we also implemented the DLMCS
model using three component classifiers which were near-optimal at times t =
0, t = 100 and t = 200. This classifier is labelled as DLMCS∗. Because the
component classifiers were trained on bootstrap samples, in all cases the prior
mean of β0 was set to M−11, where M is the number of component classifiers.
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4.2 Datasets and Results

We compare the performance of the algorithms on two synthetic examples: slow
and sudden change. For both scenarios we have two Gaussian populations in R

2.
The mean of class 1 is stationary and centered on (0, 0). For the slow change
example, the mean of class 2 is initially at (2, 2) and drifts to (2,−2) at a constant
rate over 200 time steps. For the sudden change example the mean of class 2
is initially at (2, 2), then switches to (2,−2) after 70 time-steps, then switches
back to (2, 2) after 140 time-steps. Both classes have covariance matrix equal to
the identity. The optimal decision boundary is therefore linear.

The average error rates of the classification algorithms for the scenarios of
slow and sudden change are shown in Figures 1 and 2 respectively. For the
slow change scenario shown in Figure 1, there seem to be two groups of algo-
rithms. Those that do the best are oLDC, DLMCS∗ and oLearn++.NSE, whilst
the performance of Winnow and DLMCS are substantially worse1. This can
be explained by the fact that the poorly performing algorithms were those for
which the component classifiers were trained on data only from time t = 0. The
performance of oLearn++.NSE is significantly better because by adding new,
relevant classifiers there is always at least one classifier reasonably well suited to
the current population. The good performance of DLMCS∗ demonstrates that
the DLMCS algorithm is hampered not by the parameter updating algorithm,
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Fig. 1. Average error rates for the different algorithms under slow change

1 All pairwise differences in the total cumulative error are significantly different at the
5% level, as shown in Table 1.
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Fig. 2. Average error rates for the different algorithms under rapid change

but rather by the component classifiers. It should also be noted that in these ex-
amples oLDC and the DLMCS algorithms have the advantage that they produce
linear decision boundaries, whereas Winnow and Learn++.NSE will not. How-
ever, the results are similar to those for non-linear scenarios (not shown). It is
also interesting that for the first 150 time-steps the DLMCS algorithm performs
worse than the Winnow algorithm. This may be because Winnow uses 20 com-
ponent classifiers, whereas DLMCS has only three. Both DLMCS and DLMCS∗

took about 10 time-steps to ‘burn-in’, indicating that the prior specifications
were not optimal.

The results for the scenario of sudden change, shown in Figure 2, display a sim-
ilar pattern. Most algorithms perform similarly for the first 70 time-steps. When
the population suddenly changes, those algorithms capable of adapting to the
new scenario do so - firstly DLMCS∗ followed by oLDC and then oLearn++.NSE.
This again demonstrates that, conditional on an appropriate choice of component
classifiers, the DLMCS algorithm can adapt relatively quickly to sudden changes
in the population. For the final 70 times-steps the algorithms again adjust to the
change, but interestingly all perform worse than on the original 70 time-steps,
perhaps because the information provided by the training set at t = 0 has been
forgotten. Results from a comparison of the total cumulative error2 show that
oLearn++.NSE, Winnow and DLMCS perform comparably, but not as well as
DLMCS∗ or oLDC.

2 In general, if adjustment to either rapid change or stationarity is of primary impor-
tance then it may be more appropriate to compare a weighted cumulative error.
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Table 1. Average rank and critical difference (CD) for pairwise testing of a difference
between the total cumulative error of any two algorithms at the 5% level of significance
and using the Nemenyi test (per [3]). Differences which are not significantly different
to zero are shown in bold.

oLDC oLearn++.NSE Winnow DLMCS (DLMCS∗) CD

slow 1.61 2.81 3.82 4.28 2.48 0.086
sudden 2.15 3.70 3.70 3.75 1.70 0.086

5 Discussion and Conclusions

We have proposed a method of combining classifier outputs and dynamically
updating the way the outputs are combined to produce a classification. Ex-
periments have shown that this can be used to produce an effective algorithm
for non-stationary classification. Although not the focus of this paper, this al-
gorithm could also be used for online learning in stationary environments (by
setting v = 0). For example, with an appropriate choice for the function ηk(·)
(such as in equation (2)), the method we have presented can be seen as a method
for online weighted averaging.

However, the method we propose is not an out-of-the-box classifier. The per-
formance of the algorithm, as with other dynamic combiners, is heavily depen-
dent on the choice of component classifiers. If the population change does not
move the decision boundary outside the region of competence of the compo-
nent classifiers, then the algorithm is capable of tracking change. When this
condition is met, we have shown that this algorithm is competitive with other
dynamic MCS algorithms. However, if the population changes considerably from
that which was expected at the time the component classifiers were chosen, then
algorithms such as oLearn++.NSE which continually update the set of compo-
nent classifiers are likely to perform better. Hence the algorithm presented in this
paper is likely to be best suited to seasonal or small changes in the population.

Future work will look more closely at the choice of component classifiers, and
incorporating shrinkage into the Sequential Monte Carlo algorithm to remove
the influence of irrelevant classifiers and reduce the effective dimensionality of
the parameter space. This may include the possibility of combining this model
with a heuristic for updating the component classifiers, or using previous data
to tune the value of the variance parameters v or q.
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[3] Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7, 1–30 (2006)

[4] Doucet, A., Godshill, S., Andrieu, C.: On sequential Monte Carlo sampling meth-
ods for Bayesian filtering. Statistics and Computing 10, 197–208 (2000)



A Dynamic Logistic Multiple Classifier System for Online Classification 55

[5] de Freitas, J.F.G., Niranjan, M., Gee, A.H.: Hierarchical Bayesian models for
regularization in sequential learning. Neural Computation 12, 933–953 (2000)

[6] Højen-Sørensen, P., de Freitas, N., Fog, T.: On-line probabilistic classification with
particle filters. Neural Networks for Signal Processing X, 2000. In: Proceedings of
the 2000 IEEE Signal Processing Society Workshop, vol. 1, pp. 386–395 (2000),
citeseer.ist.psu.edu/322567.html

[7] Kuncheva, L.I.: Classifier ensembles for changing environments. In: Roli, F., Kit-
tler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 1–15. Springer,
Heidelberg (2004)

[8] Kuncheva, L.I., Plumpton, C.O.: Adaptive learning rate for online linear discrim-
inant classifiers. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Geor-
giopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS,
vol. 5342, pp. 510–519. Springer, Heidelberg (2008)

[9] Littlestone, N.: Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning 2, 285–318 (1998)

[10] McCormick, T.H., Raftery, A.E., Madigan, D., Burd, R.S.: Dynamic logistic re-
gression and dynamic model averaging for binary classification (submitted)

[11] Muhlbaier, M.D., Polikar, R.: An ensemble approach for incremental learning in
nonstationary environments. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007.
LNCS, vol. 4472, pp. 490–500. Springer, Heidelberg (2007)

[12] Penny, W.D., Roberts, S.J.: Dynamic logistic regression. In: International Joint
Conference on Neural Networks, IJCNN 1999, vol. 3, pp. 1562–1567 (1999)

[13] Schapire, R.: The strength of weak learnability. Machine Learning 5, 197–227
(1990)

[14] Tomas, A.: A Dynamic Logistic Model for Combining Classifier Outputs. Ph.D.
thesis, The University of Oxford (2009)

[15] West, M., Harrison, J.: Bayesian Forecasting and Dynamic Models, 2nd edn.
Springer Series in Statistics. Springer, Heidelberg (1997)

[16] West, M., Harrison, P.J., Migon, H.S.: Dynamic generalized linear models and
Bayesian forecasting. Journal of the American Statistical Association 80(389),
73–83 (1985)

citeseer.ist.psu.edu/322567.html


Ensemble Methods for Reinforcement Learning

with Function Approximation

Stefan Faußer and Friedhelm Schwenker

Institute of Neural Information Processing, University of Ulm, 89069 Ulm, Germany
{stefan.fausser,friedhelm.Schwenker}@uni-ulm.de

Abstract. Ensemble methods allow to combine multiple models to in-
crease the predictive performances but mostly utilize labelled data. In
this paper we propose several ensemble methods to learn a combined pa-
rameterized state-value function of multiple agents. For this purpose the
Temporal-Difference (TD) and Residual-Gradient (RG) update methods
as well as a policy function is adapted to learn from joint decisions. Such
joint decisions include Majority Voting and Averaging of the state-values.
We apply these ensemble methods to the simple pencil-and-paper game
Tic-Tac-Toe and show that an ensemble of three agents outperforms a
single agent in terms of the Mean-Squared Error (MSE) to the true val-
ues as well as in terms of the resulting policy. Further we apply the same
methods to learn the shortest path in a 20 × 20 maze and empirically
show that the learning speed is faster and the resulting policy, i.e. the
number of correctly choosen actions is better in an ensemble of multiple
agents than that of a single agent.

1 Introduction

In a single-agent problem multiple agents can be combined to act as a commit-
tee agent. The aim here is to rise the performance of the single acting agent.
In contrast to a multi-agent problem multiple agents are needed to act in the
same environment with the same (cooperative) or opposed (competitive) goals.
Such multi-agent problems are formulated in a Collaborative Multiagent MDP
(CMMDP) model. The Sparse Cooperative Q-Learning algorithm has been suc-
cessfully applied to the distributed sensor network (DSN) problem where the
agents cooperatively focus the sensors to capture a target (Kok et al. 2006 [6]).
In the predator-prey problem multiple agents are predators (one agent as one
predator) and are hunting the prey. For this problem the Q-learning algorithm
also has been used where each agent maintains its own and independent Q-table
(Partalas et al. 2007 [7]). Further an addition to add and to remove agents dur-
ing learning, i.e. to perform self-organization in a network of agents has been
proposed (Abdallah et al. 2007 [8]).

While the Multi-Agent Reinforcement Learning (MARL) as described above
is well-grounded with research work only little is known for the case where mul-
tiple agents are combined to a single agent (committee agent) for single-agent
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problems. One reason may be that RL algorithms with state-tables theoreti-
cally converge to a global minimum independent of the initialized state-values
and therefore multiple runs with distinct state-value initializations result to the
same solution with always the same bias and no variance. However in Ensemble
Learning methods like Bagging (Breiman 1996 [3]) the idea is to reduce vari-
ance and to improve the ensemble’s overall performance. Sun et al. 2009 [5]
has studied the partitioning of the input and output space and has developed
some techniques using Genetic Algorithms (GA) to partition the spaces. Multiple
agents applied the Q-Learning algorithm to learn the action-values in subspaces
and have been combined through a weighting scheme to a single agent. However
extensive use of heuristics and the need of much computation time for the GA
algorithm makes this approach unusable for MDPs with large state spaces. In a
more recent work (Wiering et al. 2008 [9]) action-values are combined resulting
by multiple independently learnt RL algorithms (Q-Learning, SARSA, Actor-
Critic, etc.) to decide about the best action to take. As Q-Learning tend to
converge to another fixed point than SARSA and Actor-Critic the action-value
functions therefore have a different bias and variance.

A Markov Decision Process (MDP) with a large state space imposes several
problems on Reinforcement Learning (RL) algorithm. Depending on the number
of states it may be possible to use RL algorithm that save the state-values in
tables. However for huge state-spaces another technique is to learn a parameter-
ized state-value function by linear or nonlinear function approximation. While
the state-values in tables are independent on each other, the function approx-
imated state-values are highly dependent based on the selection of the feature
space and may therefore converge faster. In an application to English Draughts
(Fausser et al. 2010 [10]) which has about 1031 states the training of the pa-
rameterized state-value function needed about 5, 000, 000 episodes to reach an
amateur player level. Although a parameterized state-value function with simple
features can be learnt, it may not converge to a global fixed point and multi-
ple runs with distinct initial weights tends to result in functions with different
solutions (different bias and large variance) of the state-values.

Our contribution in this paper is to describe several ensemble methods that
aim to increase the learning speed and the final performance opposed to that
of a single agent. We show the new derived TD update method as well as the
new policy to learn from joint decisions. Although we use parameterized state-
value functions in order to deal with large state MDPs we have applied the
methods to more simple problems to be able to compare performances. Our
work differs from others that we are combining multiple agents for a single agent
problem and by our general way of combining multiple state-values that enables
to target problems with large-state spaces. It can be empirically shown that
these ensemble methods improves the overall performance of multiple agents for
the pencil-and-paper game Tic-Tac-Toe as well as for several mazes.
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2 Reinforcement Learning with Parameterized
State-Value Functions

Assume we want to estimate a smooth (differentiable) state-value function V π
θ (s)

with its parameter vector θ where V π
θ (s) ≈ V ∗(s), ∀s using the TD Prediction

method (Sutton & Barto 1998 [1]). Starting in a certain state st we take an
action at defined by a given policy π, observe reward (signal) rt+1 and move
from state st to state st+1. For this single state transition we can model the
Squared TD Prediction error (TDPE) as follows:

TDPE(θ) =
[
rt+1 + γVθ(st+1) − Vθ(st) | st+1 = π(st)

]2
(1)

The aim is to minimize the above error by updating parameter vector θ. Applying
the gradient-descent technique to the TDPE this results in two possible update
functions. The first one being Temporal-Difference learning with γV (st+1) kept
fixed as training signal:

ΔθTD := α
[
rt+1 + γVθ(st+1) − Vθ(st) | st+1 = π(st)

]
· ∂Vθ(st)

∂θ
(2)

and the second one being Residual-Gradient learning (Baird 1995 [2]) with vari-
able γVθ(st+1) in terms of θ:

ΔθRG := −α
[
rt+1 +γVθ(st+1)−Vθ(st) | st+1 = π(st)

]
·
[
γ

∂Vθ(st+1)
∂θ

− ∂Vθ(st)
∂θ

]
(3)

In both equations α > 0 is the learning rate and γ ∈ (0, 1] discounts future state-
values. Now suppose that policy π is a function that chooses one successor state
st+1 out of the set of all possible states Ssuccessor(st) based on its state-value:

π(st) := argmax
st+1

[
Vθ(st+1) | st+1 ∈ Ssuccessor(st)

]
(4)

It is quite clear that this simple policy can only be as good as the estimations of
Vθ(st+1). Thus an improvement of the estimations of Vθ(st+1) results in a more
accurate policy π and therefore in a better choice of a successor state st+1. An
agent using this policy tries to maximize its summed high-rated rewards and
avoids getting low-rated rewards as much as possible. The optimal state-value
function V ∗(s) is:

V ∗(s) = E

{ ∞∑
t=0

γtrt+1|so = s

}
(5)

While a parameterized state-value function can only approximate the optimal
state-values to a certain degree it is expected that a function approximation of
these state-values result in faster learning, i.e. needs less learning iterates than
learning with independent state-values. Furthermore different initializations of
the weights θ may result in different state-values after each learning step.
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3 Ensemble Methods

Suppose a single-agent problem is given, e.g. finding the shortest path through
a maze. Given a set of M agents {A1, A2, . . . , AM} each with its own nonlinear
function approximator, for instance a Multi-Layer Perceptron (MLP), and either
TD updates (2) or RG updates (3) to adapt the weights then it is possible
to independently train the M agents or to dependently train the M agents
in terms of their state-value updates and their decisions. Irrespective of the
training method the decision of all M agents can be combined as a Joint Majority
Decision:

πV O(st) := argmax
st+1

[ M∑
i=1

Ni(st, st+1)
]

(6)

where Ni(st, st+1) models the willingness of agent i to move from state st to
state st+1:

Ni(st, st+1) =

{
1, if πi(st) = st+1,

0, else
(7)

Policy πi(st) is equivalent to equation (4) but with a subfix to note which agent,
i.e. which function approximator to use. The state-values of all agents can be
further combined to an Average Decision based on averaging the state-values:

πAV (st) := argmax
st+1

[ 1
M

M∑
i=1

Vθi(st+1) | st+1 ∈ Ssuccessor(st)
]

(8)

Here Vθi(st+1) is the state-value of agent i using the weights θi of this agent.
Summed up three policies, namely πs(st) (4), πV O(st) (6) and πAV (st) (8) are
available to decide about the best state-value where only the last two ones include
the state-values of the other agents in an ensemble, i.e. perform a joint decision.
One way of constructing a RL ensemble is to independently train the M agents
and to combine their state-values for a joint decision using one of the above
described policies after the training. Another way is to use the joint decision
during the learning process. For this case it may be necessary to add some noise
to the policies to keep agents (state-value functions) diverge. Another suggestion
is to have different starting state positions for each agent in the MDP resulting
in a better exploration of the MDP.

3.1 Combining the State-Values

While joint decisions during the learning process implicitly updates the state-
values of one agent dependent on the state-values of all other agents M − 1
it can be another improvement to explicitely combine the state-values. Assume
agent i is currently in state st and based on one of the policies described in
the last section moves to state st+1 and gets reward rt+1. Independent on the
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choosen policy the state-values of the successor state st+1 of all agents M can
be combined to an Average Predicted Value:

V AV (st+1) =
1
M

M∑
i=1

Vθi(st+1) (9)

As the weights of the function approximators of all agents differ because of di-
verse initialization of the weights, exploration, different starting positions of the
agents, decision noise and instabilities in the weight updates it is expected that
the combination of the state-values results in a more stable and better predicted
state-value. Now this single state-transition can be modelled in a Squared Av-
erage Predicted TD Error (ATDPE) function including the Average Predicted
Value instead of one state-value of this single agent i:

ATDPE(θi) =
[
rt+1 + γ

1
M

M∑
j=1

Vθj (st+1) − Vθi(st) | st+1 = π(st)
]2

(10)

By gradient-descent of the ATDPE function like we have done in section 2 with
the TDPE function this formulates a new combined TD update function:

Δθi
CTD := α

[
rt+1 + γV AV (st+1) − Vθi(st) | st+1 = π(st)

]
· ∂Vθi(st)

∂θi
(11)

as well as a new combined RG update function:

Δθi
CRG := −α

[
rt+1 + γV AV (st+1) − Vθi(st) | st+1 = π(st)

]
·
[ 1
M

γ
∂Vθi(st+1)

∂θi
− ∂Vθi(st)

∂θi

]
(12)

With one of the above update functions the agents learn from the average pre-
dicted state-values. Theoretical this can be further combined with one of the
prior described joint decision policies. Using the simple single-decision policy
(4) this results in an interesting ensemble where each agent decides based on
their own state-values but learns from the average predicted state-values. For
this case less noise for the decision functions are required as the agents mainly
keep their bias. With one of the joint policies, i.e. Joint Majority Decision (6)
or Average Decision (8) all agents perform joint decisions and learn from the
average predicted state-values.

As the combined update functions and the policies for joint decisions only
need some additional memory space to save the state-values of all agents and this
memory space is far lower than the memory space of the function approximator
weights they can be ignored in memory space considerations. Therefore training
an ensemble of M agents takes M times memory space and M times computation
time of a single agent.
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Fig. 1. Empirical results of different ensemble methods applied to five 20 × 20 mazes.
Measured are the number of states that are correctly choosen by the resulting policy
where left the agents have learnt from joint decisions and right the agents have learnt
from joint decisions and averaged state-values.

4 Experiments and Results

To evaluate the behaviour of the ensemble methods described in the last sections
we have performed experiments with the pencil-and-paper game Tic-Tac-Toe
and several mazes. For fair evaluations we have performed multiple runs where
we have given the same seed for the pseudo random number generator for all
ensemble methods to ensure that the weights of the parameterized state-value
function have been identically initialized. For example if we have performed 2
testruns then we have given seed1 for all evaluated methods in the first testrun
and seed2 �= seed1 in the second testrun. The given values are the averaged
values of the multiple runs.

4.1 Maze

In the maze-problem an agent tries to find the shortest path to the goal. For our
experiments we have created five 20 × 20 mazes each with randomly positioned
100 barriers. A barrier can be horizontally or vertically set between two states
and does not fill out a whole state. Each maze has one goal where the goal po-
sition is about upper-left, upper-right, lower-left, lower-right or in the middle of
the maze. An agent receives a reward of 1 if he moves to a goal and a reward of 0
otherwise. From each state there are up to 4 possible successor states. The agent
cannot move over a barrier or outside the maze. We have applied the Breadth-
first search algorithm (Russel & Norvig 2002 [12]) to calculate the true state
values and the optimal policy. For the experiments we have designed M = 5
agents where each of the agent has an own 2-layer MLP with 8 input neurons,
3 hidden neurons and one output neuron. The input neurons are coded as follows:
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1. x position, 2. y position, 3. 20 − x, 4. 20 − y, 5. 1 if x ≥ 11 otherwise 0, 6.
1 if x ≤ 10 otherwise 0, 7. 1 if y ≥ 11 otherwise 0, 8. 1 if y ≤ 10 otherwise 0.
For all evaluations the agents had the following common training parameters:
(combined) TD update, α = 0.01, γ = 0.9, epsilon-greedy exploration strategy
with ε = 0.3, tangens hyperbolicus (tanh) transfer functions for hidden layer and
output layer and uniformly distributed random noise between ±0.05 for joint
decisions. Each agent has an own randomly initialized start-state and maintains
its current state. If one agent reaches a goal or exceeds to reach the goal within
100 iterations then he starts at a new randomly initialized start-state.

The results of an ensemble of five agents compared to a single agent with values
averaged over 10 testruns and 5 mazes can be seen in figure 1. Comparing the
ensemble methods in terms of the number of states that are correctly choosen
by the resulting policy the methods with joint decisions are better than the
methods learning from joint decisions and average predicted state-values. Even
more a simple combination of five independently trained agents (5 agents single
decision curve) seem to be the best followed by a combination of five dependently
trained agents with Joint Majority Voting decisions. All ensemble methods learn
faster and have a better final performance than a single agent within 30, 000
iterations.

4.2 Tic-Tac-Toe

The pencil-and-paper game Tic-Tac-Toe is a competitive 2-player game where
each player marks one of maximum nine available spaces turnwise until one
player either has three of his own marks horizontal, vertical or diagonal resulting
in a win or all spaces are marked resulting in a draw. Tic-Tac-Toe is has 5477
valid states excluding the empty position and starting from the empty position
the game always results in a draw if both player perform the best moves. For
our experiments we have designed M = 3 agents where each of the agent has
an own 2-layer MLP with 9 input neurons, 5 hidden neurons and one output
neuron. One input neuron binary codes one game space and is −1 if the space
is occupied by the opponent, 1 if the space is occupied by the agent or 0 if the
space is empty. The weights of the MLP are updated by the (combined) RG
update function. A reward of 1 is received if the agent moves to a terminal state
where he has won and receives a reward of 0 otherwise, i.e. for a transition to a
non-terminal state and to a terminal state where he has lost or reached a draw.
For all evaluations the agents had the following common training parameters:
α = 0.0025, γ = 0.9, epsilon-greedy exploration strategy with ε = 0.3, tangens
hyperbolicus (tanh) transfer functions for hidden layer and output layer and
uniformly distributed random noise between ±0.05 for joint decisions.

Each agent learns by Self-Play, i.e. uses the same decision policy and state-
values for an inverted position to decide which action the opponent should take.
Irrespective of the ensemble methods all agents learn episode-wise and start from
the same initial state (the emtpy position). To calculate the true state-values and
the optimal policy we have slightly modified the Minimax algorithm (Russel &
Norvig 2002 [12]) to include the rewards and the discounting rate γ.
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Fig. 2. Empirical results of different ensemble methods applied to Tic-Tac-Toe. The
first two figures show the Mean-Squared Error (MSE) to the true state-values. The next
two figures show the number of best states that are choosen by the resulting policy,
higher values are better. The last two figures compare the MSE to the true state-values
(left) and the number of best states (right) of an ensemble of three agents to a single
agent.
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The results of an ensemble of three agents compared to a single agent with
values averaged over 10 testruns can be seen in figure 2. Examining the MSE to
the true values, an ensemble with three agents with single independent decisions
and learning from average predicted state-values reaches the lowest error. During
the first 100, 000 training episodes the MSE is almost always lower than the MSE
of a single agent with three times the training episodes. This is especially true for
the first ≈ 20, 000 and the last ≈ 40, 000 iterations. All other ensemble methods
perform better than a single agent except the three agents that learnt from joint
Majority Voting decision but have not learnt from the Average Predicted state-
values. Maybe lowering the noise for the joint decision would result in better
MSE values for this case. Comparing the number of best states that are choosen
by the resulting policy, all ensembles without exception are performing better
than a single agent. Consider that Tic-Tac-Toe has 4520 non-terminal states.

5 Conclusion

We have described several ensemble methods new in its aspect to be integrated
into Reinforcement Learning with function approximation. The necessary exten-
sions to the TD and RG update formulas have been shown to learn from average
predicted state-values. Further the policies for joint decisions such as Majority
Voting and Averaging based on averaging the state-values have been formulated.
For two applications, namely Tic-Tac-Toe and five different 20 × 20 mazes we
have empirically shown that these ensembles have a faster learning speed and
final performance than a single agent. While we have choosen simple applica-
tions to be able to unifiy the measure of the performances, we emphasize that
our ensemble methods are most useful for large-state MDPs with simple feature
spaces and MDPs with small number of hidden neurons. Such application to a
large-state MDP to further evaluate these ensemble methods may be done in
another contribution.
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Abstract. This paper proposes a method for constructing ensembles
of decision trees: GRASP Forest. This method uses the metaheuristic
GRASP, usually used in optimization problems, to increase the diversity
of the ensemble. While Random Forest increases the diversity by ran-
domly choosing a subset of attributes in each tree node, GRASP Forest
takes into account all the attributes, the source of randomness in the
method is given by the GRASP metaheuristic. Instead of choosing the
best attribute from a randomly selected subset of attributes, as Random
Forest does, the attribute is randomly chosen from a subset of selected
good attributes candidates. Besides the selection of attributes, GRASP
is used to select the split value for each numeric attribute. The method
is compared to Bagging, Random Forest, Random Subspaces, AdaBoost
and MutliBoost, being the results very competitive for the proposed
method.

Keywords: Classifier ensembles, Bagging, Random Subspaces, Boost-
ing, Random Forest, decision trees, GRASP.

1 Introduction

Classifier ensembles [1] are combinations of several classifiers which are called
base classifiers or member classifiers. Ensembles often give better results than
individual classifiers. The kind of ensemble most often used is the homogeneous
ensemble, in which all the base classifiers are built using the same method. In
these ensembles, the diversity is commonly forced by training each base classi-
fier with a variant of the training data set: Bagging [2] uses different random
samples of the training set, Random Subspace [3] uses different subsets of at-
tributes, AdaBoost [4] and Multiboost [5] adaptively change the distribution of
the training set based on the performance of the previous classifiers, this way,
the instances more difficult for the previous classifiers have a higher probability
of being in the next training sample. Other methods, like Random Forest [6],
increase the randomness by combining the sampling of the training set with the
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random selection of subsets of attributes in each node of the tree. This way, in
each node, the splits only consider the selected subset of attributes. In [7], they
use a very simple technique to randomize the election of the split among the
twenty best split in each node. Recently, the method called Random Feature
Weights [8] proposes to use all the attributes, but with different probabilities
of being considered in the splits that depend on a weight associated to the at-
tribute. To assure the diversity, the weights are randomly generated for each tree
in the ensemble.

Decision trees are frequently used as base classifiers because they are efficient
and unstable, that is, small changes in the training set or in the construction
method will produce very different classifiers.

The algorithms for building decision trees are top-down methods. In the root
of the tree they use all the instances to find which attribute is the best to split
the instances in two subsets assigned to two new nodes1, children of the root
node. This process is recursively repeated in each new node till a stop criteria
is verified. The best attribute is determined in each node by evaluating a merit
function. Some common split criteria are: Information Gain and Gain Ratio [9],
or Gini Index [10]. In this paper the merit function used is Gain Ratio.

The meta heuristic GRASP (Greedy Randomize Adaptive Search Procedure)
[11,12], a widely used strategy in optimization problems, has been recently used
in [13] to modify the way the attribute is selected in the process of building a
binary decision tree. The controlled randomness introduced by GRASP is able
to build less complex trees without affecting the accuracy.

This work takes as starting point the idea used in [13], extends it using GRASP
also in the selection of the split value for each attribute, and combining these
trees in the construction of an ensemble, the GRASP Forest. Using GRASP in
the selection of the split values gives an extra level of randomness that helps in
increasing the diversity in the ensemble. This increased diversity compensates
the loss in accuracy of the individual trees, improving in overall the ensemble
accuracy.

The rest of the paper is organised as follows. Next section describes the pro-
posed method. Section 3 describes the experiments and the results. Finally, Sec-
tion 4 gives the conclusions and presents some future lines of research.

2 Method

Usually, to built a decision tree we have a training dataset D, several attributes
a1, a2, . . . , an and a merit function f(ai, D) that gives a value to the i-th at-
tribute. One of the most used merit function is Information Gain defined as

Gain(D, a) = Entropy(D) −
∑

v

|Dv|
|D| Entropy(Dv) (1)

where D is the data set, a is the candidate attribute, v indicates the values of
the attribute and Dv is the subset of the data set D formed by the examples,
1 If the attribute ai is nominal, they create a new branch for each possible value of ai.



68 J.F. Diez-Pastor et al.

Table 1. Backpack problem (weight limit of the backpack: 10 weight units)

Ratio
Element Weight Value Ratio Value/Weight

1 10 11 1.10
2 6 9 1.50
3 4 1 0.25

where a = v. The entropy is defined as

Entropy(D) =
c∑

i=1

−pi log2(pi) (2)

where c is the number of classes and pi the probability of class i.
The GRASP method [11,12] is a iterative process, each iteration has two steps:

1. Build an initial solution using a method that is greedy, random and adaptive.
2. Local search from the built solution trying to improve it.

With each iteration the best found solution is updated and the process ends
when a stop condition is reached.

As the building method is greedy, random and adaptive, every time a new
element is added to the solution, instead of choosing the best possible element,
one is randomly chosen from a short list of good candidates called the Restricted
Candidate List (RCL). This list is created with those items whose values are close
enough to the value of the best item. This closeness is defined by a percentage α
of the best value. The idea behind GRASP is that the best solution in each step
does not always lead the process to the global optimal solution of the problem. A
good example is the backpack problem, for example, given 3 objects with weights,
values and ratios (value/weight) shown in table 1 and a backpack capacity 10, is
necessary to select a subset of them that fits in the backpack and that maximizes
the value. A greedy method would take in each step the element with best
possible value-weight ratio: first element 2, then element 3, with total value of
10; however, the best solution would have been to choose the element 1 that
improves by one the previous solution.

The content of the RCL is defined as:

RCL = {i : V aluei/Weighti ≥ αRatiomax + (1 − α)Ratiomin}
If α = 1 the list would have only one element, the element chosen by the

greedy procedure; if α = 0 the list would have all possible elements and the
selection would be totally random.

In the work described in this paper, from GRASP we only use the construction
of the solution by a greedy, random and adaptive procedure. Greedy, as the
construction of trees is greedy by nature, random due to the random selection
of attributes and split points, and adaptive because depending on the maximum
and minimum gain ratio of the attributes the number of these considered for
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selection is different for each node. The aim is to increase the randomness in the
process of building the base classifiers.

The method GRASP Forest (see Algorithm 1) works by using Algorithm 2 to
create L decision trees that are added to the ensemble.

Algorithm 1: GRASP Forest
Input: Dataset DT , set of attributes Attributes, size of ensemble L, value α

between 0 and 1 to control the level of randomness
Output: Ensemble of decision trees
for l = 1 to L do

GTree ← TrainDecisionTree (DT ,Attributes, α)
Add GTree to the ensemble;

end

The way the trees are built is similar to the traditional algorithms. In each
node, the merit function is evaluated for the m attributes. With these values a
list of candidates is created from which the attribute to be used in the node is
chosen. Note that with α = 1 this algorithm would choose the same attribute as
a traditional method, with α = 0 the selection of the attribute is totally random.

Algorithm 2: TrainDecisionTree (for numeric attributes)
Input: Dataset DT , set of attributes Attributes, value between 0 and 1 to

control the level of randomness α
Output: Tree
if Attributes is empty or number of examples < minimum allowed per branch
then

Node.label = most common value label in examples
return Node;

else
for j = 1 to m do

model [j]← GraspSplit (DT ,Attributes,j,α)
end
maxGain ← Max(model.gain); minGain ← Min(model.gain)
List ← {j = 1, 2, . . . , m| model [j].gain ≥ αmaxGain + (1 − α)minGain}
Randomly choose jg ∈ List; Att = jg, splitPoint = model [jg ].splitPoint
Dl ← {x ∈ DT |xijg ≤ splitPoint}; Dr ← {x ∈ DT |xijg > splitPoint};
Node.son[0] = TrainDecisionTree (Dl,Attributes, α);
Node.son[1] = TrainDecisionTree (Dr,Attributes, α);

end

Algorithm 3 shows how the idea of GRASP is also used in the process of
choosing the splitting point for numeric attributes. The normal way of selecting
the splitting point would be to find the point that maximizes the merit function
value (in this work Gain Ratio). However, in GraspSplit, we again create a list
of good candidates, with all points with value higher than a minimal value
determined by α, and one of them is randomly chosen and returned together
with its merit function value.
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Thus, the randomness in each node is both in selecting the attribute and in
the choice of the splitting point within that attribute. With α = 1, the generated
tree is the same as with a traditional algorithm2. With α = 0 the generated tree
will be completely random as it happens in Extremely Randomized Trees [14].

Algorithm 3: GraspSplit
Input: Dataset DT , set of attributes Attributes, attribute index j, value α

between 0 and 1 to control the level of randomness
Output: model
/* Compute values for all possible split point and their index */

infoGain ← List of all possible split info gains
infoGainIndex ← List of all possible split indexes
maxGain ← Max(infoGain); minGain ← Min(infoGain)
List ← {j = 1, 2, . . . , m|infoGain[j] ≥ αmaxGain + (1 − α)minGain}
Randomly choose jg ∈ List
model.gain = infoGain [jg ], model.splitPoint = infoGainIndex [jg ]
return model

3 Results

The proposed method was implemented in the Weka library [15] by modifying
J48, the Weka implementation of C4.5 [9] in conjunction with Random Commit-
tee3. The rest of decision trees and other ensembles are from this library. The
size of the ensembles was set to 50. Since, when using trees in ensembles, we are
interested in increasing diversity, we validate our method with low values of α,
from 0.1 to 0.5. We compare our method with the following ensembles, whose
settings are the default parameters of Weka unless otherwise indicated:

1. Bagging [2].
2. Boosting: AdaBoost.M1 [4] and Multiboost [5]. In both version the variants

with resampling and reweighting were used (in the tables represented with
S and W). For Multiboost the approximate number of subcommittees was
10.

3. Random Subspaces [3]: with two different configurations, with 50% and 75%
of the original set of attributes.

4. Random Forest [6]: three different configurations, random subsets of at-
tributes of size 1, 2 and base 2 logarithm of the number of attributes in
the original set.

2 Except in the case of multiple attributes with the same value of the merit function,
the traditional algorithm will always choose the same, according to the method of
calculating the maximum, the version using GRASP will choose randomly between
them, and similarly in the case of the splitting points.

3 A Random Committee is an ensemble of randomizable base classifiers. Each base
classifier is built using the same data but a different seed for the generation of ran-
domness. The final predicted probabilities are simply the average of the probabilities
generated by the individual base classifiers.
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Table 2. Summary of the data sets used in the experiments. #N: Numeric features,
#D: Discrete features,#E: Examples, #C: Classes.

Dataset #N #D #E #C

abalone 7 1 4177 28
anneal 6 32 898 6
audiology 0 69 226 24
autos 15 10 205 6
balance-scale 4 0 625 3
breast-w 9 0 699 2
breast-y 0 9 286 2
bupa 6 0 345 2
car 0 6 1728 4
credit-a 6 9 690 2
credit-g 7 13 1000 2
crx 6 9 690 2
dna 0 180 3186 3
ecoli 7 0 336 8
glass 9 0 214 6
heart-c 6 7 303 2
heart-h 6 7 294 2
heart-s 5 8 123 2
heart-statlog 13 0 270 2
heart-v 5 8 200 2
hepatitis 6 13 155 2
horse-colic 7 15 368 2
hypo 7 18 3163 2
ionosphere 34 0 351 2
iris 4 0 150 3
krk 6 0 28056 18
kr-vs-kp 0 36 3196 2
labor 8 8 57 2
led-24 0 24 5000 10
letter 16 0 20000 26
lrd 93 0 531 10

Dataset #N #D #E #C

lymphography 3 15 148 4
mushroom 0 22 8124 2
nursery 0 8 12960 5
optdigits 64 0 5620 10
page 10 0 5473 5
pendigits 16 0 10992 10
phoneme 5 0 5404 2
pima 8 0 768 2
primary 0 17 339 22
promoters 0 57 106 2
ringnorm 20 0 300 2
sat 36 0 6435 6
segment 19 0 2310 7
shuttle 9 0 58000 7
sick 7 22 3772 2
sonar 60 0 208 2
soybean 0 35 683 19
soybean-small 0 35 47 4
splice 0 60 3190 3
threenorm 20 0 300 2
tic-tac-toe 0 9 958 2
twonorm 20 0 300 2
vehicle 18 0 846 4
vote1 0 15 435 2
voting 0 16 435 2
vowel-context 10 2 990 11
vowel-nocontext 10 0 990 11
waveform 40 0 5000 3
yeast 8 0 1484 10
zip 256 0 9298 10
zoo 1 15 101 7

For all ensembles, both pruned and not pruned trees were used as base classi-
fiers, except for Random Forest, because pruning is not recommended in this case
[6]. Binary trees were used for two reasons, first, this was the kind of trees used in
[13], second, in the case of nominal attributes, the use of GRASP metaheuristic for
selecting the splitting point is only possible for binary trees (in a non-binary tree, a
node that uses a nominal attribute has as many children as nominal values, and it
is not necessary to create the list of splitting points since only one splitting point is
possible). For Random Forest, that does not work with binary nodes, we used the
preprocessing described in [10], where nominal attributes with k values are trans-
formed into k binary attributes. It could have been possible to optimize the value
of α of our method by using a validation data subset or internal cross-validation,
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Table 3. Wins, ties and losses; the comparison of the ensembles with binary and with
non-binary trees is shown (U: unpruned trees, P: pruned trees)

Method All Significative (0.05)
V T L V T L

Bagging (P) 17 35 10 3 59 0
Bagging (U) 15 39 8 3 59 0
AdaBoost-W (P) 16 34 12 2 60 0
AdaBoost-W (U) 15 36 11 2 60 0
AdaBoost-S (P) 18 35 9 2 60 0
AdaBoost-S (U) 15 34 13 2 60 0
MultiBoost-W (P) 13 36 13 3 59 0
MultiBoost-W (U) 14 37 11 2 60 0
MultiBoost-S (P) 12 37 13 2 60 0
MultiBoost-S (U) 16 34 12 2 60 0
Random Subspaces 50% (P) 18 36 8 0 62 0
Random Subspaces 50% (U) 17 35 10 0 62 0
Random Subspaces 75% (P) 20 35 7 3 59 0
Random Subspaces 75% (U) 17 36 9 2 60 0
Random Forest K = log numAtt 42 2 18 3 59 0
Random Forest K = 1 24 4 34 0 62 0
Random Forest K = 2 34 1 27 1 60 1

but this would not have been fair for the other methods, besides we were interested
in analysing the global effect of α.

Before comparing the new method, to check that the good results of GRASP
Forest over the other ensembles are not due to the use of binary trees degrading
their performance, we compared the other ensembles using binary and non binary
trees. In Table 3 the wins, ties and losses are shown both total and with a 0.05
significance level for the corrected t paired Student test [16] using 5 × 2 cross
validation [17] and the same 62 datasets used in the next experiments. We can
see that the performance is slightly better when the base classifiers are binary
trees. Anyway, the results with binary trees are clearly not worse, so the use of
binary trees in the comparison of these ensembles with GRASP forest is fair.

Finally, we did the comparison with our method. The experiments were per-
formed using 5×2 cross validation, over 62 data sets from the UCI repository [18]
(see table 2). Table 4 shows the results as an average ranking [19]4. Various con-
figurations for the parameter α obtained favourable results compared to most
traditional ensembles.

Figure 1 shows average rankings for different configurations of GRASP forest:
using GRASP for both the attribute and splitting point selection, using GRASP
only for attribute selection, using pruned trees as base classifiers, using not

4 For each dataset, the methods are sorted according to their performance. The best
method has rank 1, the second rank 2, and so on. If several methods have the same
result, they are assigned an average value. For each method, its average rank is
calculated as the mean across all the datasets.
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Table 4. Ensemble methods sorted by average rank (U: unpruned trees, P: pruned
trees)

Method Ranking

1 GRASP Forest α = 0.2 (U) 10.0645161290323
2 GRASP Forest α = 0.3 (U) 10.4838709677419
3 RandomForest K = log numAtt 11.1129032258065
4 GRASP Forest α = 0.4 (P) 11.1935483870968
5 GRASP Forest α = 0.3 (P) 11.3306451612903
6 GRASP Forest α = 0.4 (U) 11.4274193548387
7 GRASP Forest α = 0.1 (U) 11.5887096774194
8 MultiBoost-S (P) 11.9435483870968
9 MultiBoost-S (U) 12.3467741935484

10 GRASP Forest α = 0.5 (U) 12.7661290322581
11 GRASP Forest α = 0.2 (P) 12.8548387096774
12 GRASP Forest α = 0.5 (P) 13.2177419354839
13 AdaBoost-S (P) 13.3709677419355
14 MultiBoostAB-W (U) 13.6290322580645
15 RandomForest S = 2 13.6370967741935
16 MultiBoostAB-W (P) 13.6451612903226
17 GRASP Forest α = 0.1 (P) 13.6532258064516
18 AdaBoost-S (P) 13.6774193548387
19 AdaBoost-W (P) 14.3145161290323
20 AdaBoost-W (U) 15.1209677419355
21 Random-Subspaces-50% (U) 15.4435483870968
22 RandomForest K = 1 16.5806451612903
23 Random-Subspaces-50% (P) 17.1854838709677
24 Bagging (P) 17.7903225806452
25 Bagging (U) 18.0483870967742
26 Random-Subspaces-50% (U) 20.7096774193548
27 Random-Subspaces-75% (P) 20.8629032258064

pruned trees as base classifiers, and using 11 different values of α between 0 and
1. The ensemble size was 50. On the left, the average rankings are calculated
from all ensemble configurations, 44 in total (2 variants of GRASP × 2 different
base tree classifiers × 11 values of α). On the right, the average rankings are
calculated for each size of the ensemble and for six different methods.

It is possible to appreciate how, in general, the ensembles that use GRASP in
the two steps of the tree construction, both attribute and split point selection,
get better results both with prune and not pruned trees. The global optimum
for α is around 0.2, the point from which the increase in diversity does not
compensate the lost in accuracy of the individual trees in the ensemble. As well,
for ensembles with few base classifiers, the best results are obtained with trees
with low randomness (α = 0.5), but as the size of the ensemble increases, the
trees with the best rankings are those with higher level of randomness (α = 0.2
and α = 0.3).
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Fig. 1. Left : Average rankings in function of α and four different GRASP Forest con-
figurations: (1) and (2) using GRASP only to choose the attribute, (3) and (4) using
GRASP both for attribute and splitting point selection; (1) and (3) using pruned
trees as base classifiers, (2) and (4) using not pruned trees as base classifiers (average
rankings calculated from all 44 configurations). Right : Average rankings for different
ensemble sizes and six different methods, Random Forest with K = log numAtts and
GRASP Forest with five different α values and unprunned trees (GRASP used both
for attribute and splitting point selection).

4 Conclusion and Future Lines

GRASP is a metaheuristic strategy widely used for optimization problems, re-
cently it has been used for the construction of trees less complex than the ones
built with deterministic algorithms. In this paper, we propose an evolution of
the use of this metaheuristic in the construction of trees that is used to increase
the diversity of ensembles. The results are favourable compared with traditional
ensembles.

There are several future research lines. This paper presents a method that
injects randomness into two steps in the construction of the tree: in the choice of
the splitting attribute and in the selection of the splitting point within that at-
tribute. In this work, the parameter that determines the randomness is the same
for both steps, a line of future work will be to study how the performance of the
method could be affected if independent values are used in these steps. Another
aspect to consider is the performance of this new method in combination with
traditional ensembles. Rather than considering these methods as competitors
against which to measure the GRASP Forest, consider them as allies that the
GRASP Forest could improve.

We have shown that when the average ranking is calculated as a function of
α, there is a kind of global optimum. However, this does not mean that a value
of α could optimally work for all data sets. In [13] is stated that intermediate
values of α improve the accuracy of the trees in simple databases and high values
improve the accuracy in complex databases. Another line of future work could be
to carry out an exhaustive study of what is the effect of the value of α in terms
of different meta-features [20] or complexity measures [21] for several datasets.
This way, this knowledge could be used in the algorithm to adaptively choose
the value of α taking into account the characteristics of the dataset.
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Last but not least, we would like to work on adapting GRASP Forest for
regression problems.
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Abstract. Ensembles of decision trees are considered for imbalanced
datasets. Conventional decision trees (C4.5) and trees for imbalanced
data (CCPDT: Class Confidence Proportion Decision Tree) are used as
base classifiers. Ensemble methods, based on undersampling and over-
sampling, for imbalanced data are considered. Conventional ensemble
methods, not specific for imbalanced data, are also studied: Bagging,
Random Subspaces, AdaBoost, Real AdaBoost, MultiBoost and Rota-
tion Forest. The results show that the ensemble method is much more
important that the type of decision trees used as base classifier. Rotation
Forest is the ensemble method with the best results. For the decision tree
methods, CCPDT shows no advantage.

Keywords: Imbalanced data, Decision Trees, Bagging, Random Sub-
spaces, Boosting, Rotation Forest.

1 Introduction

A dataset is imbalanced if the proportion of the classes is rather different. Con-
ventional classification methods are usually biased towards the classes with more
examples. Hence, several specific methods have been proposed for this type of
data [1].

One of the approaches for dealing with imbalanced datasets is to modify the
construction method of a classifier, in a way that this imbalance is taken into
account. There are some variants of decision trees for imbalanced data [2,3].

Decision trees are among the most used methods as base classifiers for ensem-
ble methods. They are unstable [4], this is useful for obtaining diverse classifiers.
Moreover, they are fast [5], this is convenient because in ensemble methods many
classifiers are constructed and used for classification.

Given that decision trees are good candidates for base classifiers and that
there are decision tree methods for imbalanced data, ensembles of these trees
can be used to tackle imbalance problems. This work explores the performance
of ensembles of these decision trees. In principle, any ensemble method could be
used, even if it is not specifically designed for imbalanced data, because the base
classifier already deals with this issue.
� This work was supported by the Project TIN2008-03151 of the Spanish Ministry of
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Some ensemble methods, like Boosting, can work well with imbalanced data,
although they are not designed specifically for this problem [6]. If the base clas-
sifiers are biased in favour of the majority class, there will be more errors in the
minority class, so its examples will have more weight than the examples of the
majority class in the next iterations.

Other approach for dealing with imbalanced datasets is modifying the dataset.
There are two main approaches: undersampling the majority class and oversam-
pling the minority class [7,8,1]. These methods lead immediately to ensembles:
each base classifier is trained with a different random sample. Undersampling
and oversampling have been combined with other ensemble methods, such as
Boosting and Random Subspaces [7,6,9].

The rest of the paper is organised as follows. Next section describes the used
methods: base classifiers and ensembles. Section 3 describes the experiments and
the results. Finally, Section 4 presents the conclusions.

2 Methods

2.1 Decision Trees

Let tp, fp, tn, fn be, respectively, the number of true positives, false positives,
true negatives and false negatives. The Information Gain, as used in C4.5, for a
two-class problem and a binary split can be defined using the relative impurity
(Imp) as in [3,10]:

InfoGainC4.5 = Imp(tp + fn, fp + tn)
−(tp + fp) ∗ Imp

(
tp

tp+fp , fp
tp+fp

)
−(fn + tn) ∗ Imp

(
fn

fn+tn , tn
fn+tn

)
where Imp(p, n) is defined as −p log p − n log n.

In CCP (Class Confidence Proportion) decision trees (CCPDT ), the main
idea is to use true positive and false positive rates (tpr and fpr) instead of the
number of examples of each type (tp and fp). In these trees, the used measure
is [3]:

InfoGainCCP = Imp(tp + fn, fp + tn)
−(tpr + fpr) ∗ Imp

(
tpr

tpr+fpr , fpr
tpr+fpr

)
−(2 − tpr − fpr) ∗ Imp

(
1−tpr

2−tpr−fpr , 1−fpr
2−tpr−fpr

)
If several attributes give a gain similar to the maximum gain, one of them is

selected according to their Hellinger distance [3,2]. This distance is based on the
square root difference of tpr and fpr (|√tpr−√

fpr|) instead of their proportion,
as used in CCP.

CCPDT can also be pruned. The used method is based on Fisher’s exact
test [3].

In [3] CCPDT obtains favourable results when compared against C4.5, CART,
HDDT (Helliger Distance Decision Tree) [2] and sampling methods [11].
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2.2 Ensemble Methods

In Bagging [4], each base classifier is trained with a random sample, with re-
placement, of the original training dataset. The size of the sample, by default, is
the same as the original dataset. Some examples could appear several times in
the sample, while other could be excluded.

In Random Subspaces [12], the base classifiers are trained using all the training
examples but in a random subspace. That is, using only a random subset of the
features.

AdaBoost [13] is an iterative method. The training examples are assigned
a weight, initially the same. The base classifiers are constructed taking into
account these weights. The weights are adjusted during training: misclassified
examples are given greater weights. So, in the next iteration, they will be more
important and the next classifier will put more effort in their classification. The
base classifiers also have weights, better classifiers have greater weights. The
predictions are obtained using a weighted vote.

Real AdaBoost [14] is a variant of AdaBoost. The difference is that it takes
into account the probabilities assigned by the base classifier to the different
training examples, instead of only considering whether the prediction is correct
or not.

MultiBoost [15] is a variant of AdaBoost, the modification is based on Bag-
ging. The ensemble is formed by several sub-committees. These sub-committees
are constructed using AdaBoost. When a sub-committee is constructed, example
weights are assigned a random value using the continuous Poisson distribution.
These are the initial weights for the next sub-committee.

Random Undersampling [8,6] is a technique for dealing with imbalanced data.
The examples of the majority class are sampled, while all the examples of the
minority class are used.

SMOTE [16] is an oversampling method. Synthetic examples of the minority
class are generated by randomly selecting a minority example and one of its
nearest neighbours, and choosing a point in the segment that connects both.

In Rotation Forest [17,18], each base classifier is trained on a rotated dataset.
For transforming the dataset, the attributes are randomly split in groups. In each
group, a random non empty subset of the classes is selected, the examples of the
classes that are not in the subset are removed. From the remaining examples,
a sample is taken that is used to calculate PCA. All the components from all
the groups are the features of the transformed dataset. All the examples in the
original training data are used for constructing the base classifier, the selection
of classes and examples is used to calculate the PCA projection matrices (one
per group), but then all the data is transformed according with these matrices.
The base classifier receives all the information available in the dataset, because
all the examples and all the components obtained from PCA are used.

Rotation Forest is not designed for imbalance data. Although the base clas-
sifier could deal with imbalance, this imbalance is not taken into account when
rotating the dataset. In this method, for each attribute group, a non-empty sub-
set of the classes is selected. For a two-class imbalanced problem, this subset
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can be formed by the minority class, the majority class, or both. The imbal-
ance is only present in the subset with the two classes. We propose a balanced
version of Rotation Forest. When a subset of classes is formed by two classes,
the majority class is undersampled. The size of this sample is the number of
examples in the minority class. Note that this undesampling is only done for
calculating the principal components, the base classifier is trained with all the
training examples.

3 Experiments

3.1 Datasets

Table 1 shows the datasets used in the study. All of them are two-classes datasets.
Most of them are from the UCI repository [19]. The source for the rest is shown
in the table.

Table 1. Characteristics of the datasets

Dataset Examples Attributes Minority References
Numeric Nominal percentage

adult 48842 6 8 23.93 [19]
breast-w 699 9 0 34.48 [19,9]
breast-y 286 0 9 29.72 [19,9]
credit-g 1000 7 13 30.00 [19,9]
ecg1 200 304 0 33.50 [20]
fourclass2 862 2 0 35.61 [3,9]
haberman 306 3 0 26.47 [19]
heart-s 123 5 8 6.50 [19]
heart-v 200 5 8 25.50 [19,9]
hypo 3163 7 18 4.77 [19,9]
laryngeal23 692 16 0 7.66 [21]
musk-2 6598 166 0 15.41 [19]
phoneme4 5404 5 0 29.35 [3,9]
pima 768 8 0 34.90 [19,3,9]
sick 3772 7 22 6.12 [19]
svmguide12 3089 4 0 35.25 [22,3,9]
tic-tac-toe 958 0 9 34.66 [19,9]
wafer1 1194 1188 0 10.64 [20]

1: http://www.cs.cmu.edu/~bobski/pubs/tr01108.html
2: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
3: http://www.bangor.ac.uk/~mas00a/activities/real_data.htm
4: http://www.dice.ucl.ac.be/neural-nets/Research/Projects/ELENA/databases/REAL/phoneme/

http://www.cs.cmu.edu/~bobski/pubs/tr01108.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.bangor.ac.uk/~mas00a/activities/real_data.htm
http://www.dice.ucl.ac.be/neural-nets/Research/Projects/ELENA/databases/REAL/phoneme/
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3.2 Settings

Weka [23] was used for the experiments. The results were obtained using 5×2
folds stratified cross validation. Ensembles were formed by 100 decision trees.
The number of considered methods is 56: 4 decision tree configurations that are
considered as individual methods and as base classifiers for 13 ensemble methods.
Default options from Weka were used, unless otherwise specified.

The decision trees were constructed using J48, Weka’s implementation of
C4.5 [24], and CCPDT [3]. For both methods, trees with and without prun-
ing were considered; they are denoted as (P) and (U). For the 4 configurations
Laplace smoothing [3] was used on the leaves.

For Random Subspaces, two subspace sizes were considered: 50% and 75%
of the original space size. Reweighting and resampling [13] were considered for
AdaBoost, Real AdaBoost and MultiBoost. In the former, denoted with the
suffix -W, the base classifiers are constructed with weighted examples. In the
latter, denoted with the suffix -S, the base classifiers are constructed with a
sample from the training data. This sample is obtained according to the weight
distribution of the examples. For MultiBoost, the number of sub-committees is
10 and each sub-committee is formed by 10 decision trees.

For undersampling, the sample size was the number of examples of the mi-
nority class. For SMOTE, the number of artificial examples of the minority class
was the original number of examples in the minority class, that is, the number of
examples is doubled. The resulting dataset can also still be imbalanced, but less
than the original. Artificial data is less reliable than the original data, it could be
detrimental to have more artificial examples than real examples for the minority
class. The amount of artificial data could be optimized for each dataset, but this
would increase substantially the computation time. Other considered methods
also have parameters that could be optimized, optimizing the parameters for one
of the method would require optimizing the parameters from all the methods.

3.3 Results

Average ranks [25] were used for summarizing the results. For each dataset, the
methods are sorted according to their performance. The best method has rank
1, the second rank 2, and so on. If several methods have the same result, they
are assigned an average value. For each method, its average rank is calculated
as the mean across all the datasets.

Table 2 shows the average ranks obtained from the accuracies of the different
methods for the different datasets. Table 3 shows the average ranks, obtained
from the areas under the ROC curves (AUC) [26]. The values of these average
ranks are organized in matrices, where the row indicates the ensemble method
and the column indicates the base classifier. The average value for each ensemble
(row) and base classifier (column) is also shown in the tables. The ensemble
methods are sorted according to these averages.

For both tables, the differences among the averages of the base classifiers are
much smaller than the differences among the averages of the ensemble methods.
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Table 2. Average ranks, using the accuracy as the performance measure

Ensemble J48 CCPDT Average
(U) (P) (U) (P)

Balanced Rotation Forest 12.33 13.11 12.42 15.75 13.40
Rotation Forest 12.31 13.72 14.53 15.61 14.04
MultiBoost-W 20.36 25.61 21.36 24.69 23.01
MultiBoost-S 19.53 27.22 20.42 26.36 23.38
AdaBoost-W 22.92 25.25 23.86 24.81 24.21
Bagging 24.42 27.03 23.33 28.69 25.87
AdaBoost-S 22.56 28.75 23.58 28.64 25.88
RealAdaBoost-S 25.28 28.17 23.17 30.75 26.84
RealAdaBoost-W 27.19 29.47 26.53 26.39 27.40
Random Subspaces-75% 29.31 32.64 29.97 35.22 31.78
Random Subspaces-50% 30.97 31.06 33.44 36.89 33.09
SMOTE 36.78 42.81 33.64 41.17 38.60
Single 42.53 46.14 36.14 43.92 42.18
Undersampling 48.39 49.39 48.11 51.39 49.32

Average 26.78 30.03 26.46 30.73

Table 3. Average ranks, using the AUC as the performance measure

Ensemble J48 CCPDT Average
(U) (P) (U) (P)

Balanced Rotation Forest 7.28 9.50 9.39 10.72 9.22
Rotation Forest 7.94 9.44 9.22 11.06 9.42
Bagging 17.11 22.78 17.72 24.33 20.49
Undersampling 18.72 24.22 18.72 27.75 22.35
Random Subspaces-50% 21.19 18.81 29.39 25.81 23.80
SMOTE 24.50 28.83 24.39 31.33 27.26
Random Subspaces-75% 25.44 24.75 31.64 29.42 27.81
AdaBoost-W 33.67 30.89 30.61 29.83 31.25
AdaBoost-S 32.94 35.11 34.39 35.72 34.54
RealAdaBoost-W 33.44 38.78 34.00 36.61 35.71
RealAdaBoost-S 34.72 38.17 34.06 38.17 36.28
MultiBoost-W 38.64 38.64 38.67 35.14 37.77
MultiBoost-S 38.83 38.58 35.58 38.14 37.78
Single 41.25 42.94 46.94 50.11 45.31

Average 26.84 28.67 28.19 30.30
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Hence, an interesting conclusions is that the selection of the ensemble method
is much more important than the selection of the decision tree method. Trees
without pruning have a better average than trees with pruning.

The comparison of CCPDT with J48 gives mixed results. For accuracy, the
best average (across all the ensemble methods) is for CCPDT without pruning
(although the difference is very small), but for AUC it is J48 without pruning.
If we consider single trees, CCPDT is clearly better than J48 for accuracy but
clearly worst for AUC.

Tables 2 and 3 have in common the two ensemble methods in the top rows:
Balanced Rotation Forest and Rotation Forest. The difference between the bal-
anced version and the normal version is very small. There is a wide gap between
the average ranks of the Rotation Forest methods and the other methods. More-
over, the average ranks of the different variants of Rotation Forest (balanced or
not, pruned or not, J48 or CCPDT) are always better than the average ranks of
all the variants of all the other methods.

As expected, the average ranks for single trees are among the worst, although
for accuracy it is better than undersampling. The remaining methods have dif-
ferent positions in the ranks for the accuracy and the AUC.

According to the Nemenyi test [25], “the performance of two classifiers is
significantly different if the corresponding average ranks differ by at least the
critical difference”. For 18 datasets, 56 configurations and a confidence level of
α = 0.05, the value of this critical difference is 21.99. Hence, the best configura-
tion (balanced Rotation Forest, unpruned J48) is significantly different from all
the configurations based on Boosting and single trees, but not from the remain-
ing configurations. It must be noted that this test is conservative, can have little
power and adjust the critical difference for making comparisons among all the
pairs of classifiers [25]. Hence, it can be adequate for comparing few classifiers
using many datasets, but in this experiment the situation is the opposite. On
the other hand, “average ranks by themselves provide a fair comparison of the
algorithms” [25].

Figure 1 shows a scatter plot with these average ranks. Smaller values are
better, methods that appear at the bottom-left have handled the imbalance
well. Several groups can be identified:

– Boosting variants: they have better average ranks for accuracy than for AUC.
Their positions in the ranks are very uniform. For AUC, the 6 variants are in
consecutive positions, they are the worst ensemble methods, only single trees
have worst results. For accuracy, they are not in consecutive positions but
only Bagging is among them. Excluding Rotation Forests and single trees,
MultiBoost is the best method for accuracy but the worst for AUC.

– Bagging and Random Subspaces: they have better average ranks for AUC than
for accuracy. After Rotation Forest, Bagging is the best method for AUC.

– SMOTE and Undersampling: these are ensemble methods specific for imbal-
anced problems. They are among the worst for accuracy, but they are much
better for AUC. Nevertheless, Bagging has better average ranks than these
methods.
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Fig. 1. Average ranks for the ensemble methods, according to the AUC and Accuracy

4 Conclusions and Future Work

The performance of several ensemble methods using decision trees as base clas-
sifiers have been studied over 18 imbalanced datasets. Accuracy and AUC have
been used as performance measures.

Two types of decision trees have been considered: J48 (Weka’s implementation
of C4.5) and CCPDT (a specific method for imbalanced datasets). Some of the
considered ensemble methods are not specific for imbalanced data: Bagging,
Random Subspaces, AdaBoost, MultiBoost and Rotation Forest. The specific
methods are based on undersampling and SMOTE. Moreover, a balanced version
of Rotation Forest was also considered.

One of the conclusions of this study is that the ensemble method is much more
relevant than the type of tree used as base classifier. The decision tree method
for imbalanced data does not give better results than the standard decision tree
method. Generally, it is better to use trees without pruning.

The ensemble method with the best results is Rotation Forest. According
to the average ranks, the balanced version has better results than the original
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version, but the difference is very small. The original version handles class imbal-
ance better than the other methods, including specific methods for imbalanced
data.

This work has not considered combinations of different ensemble methods.
Some of these combinations have been previously considered: Boosting and
SMOTE [7], Boosting and undersampling [6], Random Subspaces and SMOTE
or undersampling [9] . . . Comparing these combinations with Rotation Forest
and combining other ensemble methods with Rotation Forest will be considered
in future work.

Acknowledgements. We wish to thank the developers of Weka [23] and
CCPDT [3]. We also express our gratitude to the donors of the different datasets
and the maintainers of the UCI Repository [19].
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Abstract. This paper introduces a novel splitting criterion parametrized
by a scalar ‘α’ to build a class-imbalance resistant ensemble of decision
trees. The proposed splitting criterion generalizes information gain in
C4.5, and its extended form encompasses Gini(CART) and DKM split-
ting criteria as well. Each decision tree in the ensemble is based on a
different splitting criterion enforced by a distinct α. The resultant en-
semble, when compared with other ensemble methods, exhibits improved
performance over a variety of imbalanced datasets even with small num-
bers of trees.

1 Introduction

Imbalanced datasets are pervasive in real-world applications, including fraud
detection, risk management, text classification, medical diagnosis etc. Despite
their frequent occurrence and huge impact in day to day applications, many
standard machine learning algorithms fail to address this problem properly since
they assume either balanced class distributions or equal misclassification costs
[10]. There have been various approaches proposed to deal with imbalanced
classes, including: over/undersampling [13], [17], SMOTE (synthetic minority
oversampling technique), cost-sensitive [15], modified kernel-based, and active
learning methods [1], [8].

Several authors have tried to theoretically address the nature of the class im-
balance problem [3], [11], [18]. Their results suggest that the degree of imbalance
is not the only factor hindering the learning process [10]. Rather, the difficulties
reside with various other factors such as overlapping classes, lack of representa-
tive data, small disjuncts etc, that get amplified when the distribution of classes
is imbalanced. In this paper, we approach the imbalanced learning problem by
combining multiple decision trees. If these different “base” classifiers can focus on
different features of the data and handle complex objectives collaboratively, then
an ensemble of such trees can perform better for datasets with class imbalance.

Breiman had observed that the most challenging classification problem is how
to increase simplicity and understanding without losing accuracy [16]. Also, it
has been shown that a small variety of strong learning algorithms are typically
more effective than using a large number of dumbed-down models [9]. So a second
goal is to build robust, imbalance-resistant ensembles using only a few classifiers.

While many ensemble trees induce diversity using random selection of features
or data points, this paper proposes a novel splitting criterion parametrized by
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a scalar α. By varying α, we get dissimilar decision trees in the ensemble. This
new approach results in ensembles that are reasonably simple yet accurate over
a range of class imbalances.

We briefly summarize the main contributions of this paper here:

1. We introduce a new decision tree algorithm using α-divergence. A generalized
tree induction formula is proposed, which includes Gini, DKM, and C4.5
splitting criteria as special cases.

2. We propose a systematic ensemble algorithm using a set of α-Trees covering
a range of α. The ensemble shows consistent performance across a range of
imbalance degrees. The number of classifiers needed in the method is far less
than Random Forest or other ensembles for a comparable performance level.

Related Work. Several approaches try to tackle the imbalanced learning prob-
lem by oversampling or generating synthetic data points in order to balance the
class distributions [14]. An alternative is to employ cost-sensitive methods that
impose different misclassification costs. Even though these methods have shown
good results, their performance depends on heuristics that need to be tuned to
the degree of imbalance.

Ensemble methods generally outperform single classifiers [5], and decision
trees are popular choices for the base classifiers in an ensemble [2]. In recent
years, the Random Forest has been modified to incorporate sampling techniques
and cost matrices to handle class-imbalance [6]. Though this modified Random
Forest shows superior performance over other imbalance-resistant classifiers, its
complexity increases too.

Some of the earlier works such as [4] by L. Breiman investigate various splitting
criteria - Gini impurity, Shannon entropy and twoing in detail. Dietterich et
al [7] showed that the performance of a tree can be influenced by its splitting
criteria and proposed a criterion called DKM which results in lower error bounds
based on the Weak Hypothesis Assumption. Karakos et al proposed Jensen-
Rényi divergence parametrized by a scalar α as a splitting criterion [12], but the
determination of the“best” α was based on heuristics.

This paper applies a novel splitting criterion(α-divergence) to ensemble meth-
ods to solve the class imbalance problem with a small number of base trees.
Decision trees based on distinct α values possess different properties, which in
turn increases diversity in the ensemble.

2 Preliminaries

α-Divergence. Decision tree algorithms try to determine the best split based
on a certain criterion. However, the “best” split usually depends on the char-
acteristics of the problem. For example, for some datasets we might want ‘low
precision’-‘high recall’ results and for some the other way around. For this to be
resolved it’s better to have a criterion that can be adapted by easy manipulation.
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Our metric, α-divergence, which generalizes KL-divergence [19], easily achieves
this feat.

Dα(p||q) =

∫
x αp(x) + (1 − α)q(x) − p(x)αq(x)1−αdx

α(1 − α)
(1)

where p, q are any two probability distributions and α is a real number. Some
special cases are:

D 1
2
(p||q) = 2

∫
x

(
√

p(x) −
√

q(x))2dx (2)

lim
α→1

Dα(p||q) = KL(p||q) (3)

D2(p||q) =
1
2

∫
x

(p(x) − q(x))2

q(x)
dx (4)

Equation (2) is Hellinger distance, and equation (3) is KL-divergence.
α-Divergence is always positive and is 0 if and only if p = q. This enables
α-divergence to be used as a (dis)similarity measure between two distributions.

Splitting Criterion using α-Divergence. The splitting criterion function of
C4.5 can be written using α-divergence as :

I(X ; Y ) = lim
α→1

Dα(p(x, y)||p(x)p(y)) = KL(p(x, y)||p(x)p(y)) (5)

where p(x, y) is a joint distribution of a feature X and the class label Y , and
p(x) and p(y) are marginal distributions. To maintain consistency with the C4.5
algorithm, a new splitting criterion function is proposed as follows:

Definition 1. α-Divergence splitting criterion is Dα(p(x, y)||p(x)p(y)), where
0 < α < 2.

Note that α = 1 gives the information gain in C4.5.
Using this splitting criterion, a splitting feature is selected, which gives the

maximum α-divergence splitting criterion.

Constructing an α-Tree. Using the proposed decision criterion the decision
tree induction follows in algorithm 1. Let us call this new tree as α-Tree. In
algorithm 1 ‘Classify’ can be either ‘majority voting’ or ‘probability approxi-
mation’ depending on the purpose of the problem. This paper uses ‘probability
approximation’ as ‘majority voting’ might cause overfitting for the imbalanced
data. The effect of varying α will be discussed in Section 4.2.
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Algorithm 1. Grow Single α-Tree
Input: Training Data (features X1, X2, ..., Xn and class Y ), α ∈ (0, 2)
Output: α-Tree
Select the best feature X∗, which gives the maximum α-divergence criterion
if (no such X∗) or (number of data points < cut-off size) then

return Classify(Training Data)
else

partition the training data into m subsets, based on the value of X∗

for for i = 1 to m do
ith child = Grow Single α-Tree ( ith partitioned data, α)

end for
end if

3 Properties of α-Divergence Criterion

Properties of α-Divergence. If both p(x, y) and p(x)p(y) are properly defined
probability distributions, then the above α-divergence becomes:

Dα(p(x, y)||p(x)p(y)) = EX [Dα(p(y|x)||p(y))]. (6)

Consider two Bernoulli distributions, p(x) and q(x) having the probability of
success θp, θq respectively, where 0 < θp, θq < 1/2. Then the α-divergence from
p(x) to q(x) and its 3rd order Taylor expansion w.r.t. θp is:

Dα(p||q) =
1 − θp

αθq
1−α − (1 − θp)α(1 − θq)1−α

α(1 − α)
(7)

≈ A(θp − θq)2 + B(α − 2)(θp − θq)3 (8)

where A = 1
2 ( 1

θq
+ 1

1−θq
), B = 1

6 ( 1
θq

2 − 1
(1−θq)2 ) and A, B > 0. Then, given

0 < α < 2 and θp > θq, the 3rd order term in equation (8) is negative. So by
increasing α the divergence from p to q increases. On the other hand if θp < θq

the 3rd order term in equation (8) is positive and increasing α decreases the
divergence. This observation motivates proposition 1 below. Later we describe
proposition 2 and its corollary 1.

Proposition 1. Assume that we are given Bernoulli distributions p(x), q(x) as
above and α ∈ (0, 2). Given θq < 1/2, ∃ ε > 0 s.t. Dα(p||q) is a monotonic
‘increasing’ function of α where θp ∈ (θq, θq + ε), and ∃ ε′ > 0 s.t. Dα(p||q)
is a monotonic ‘decreasing’ function of α where θp ∈ (θq − ε′, θq). (Proof. This
follows from equation (8).)

Proposition 2. Dα(p||q) is convex w.r.t. θp. (Proof. 2nd derivative of equation
(7) w.r.t θp is positive.)

Corollary 1. Given binary distributions, p(x), q(x), r(x), where 0 < θp <
θq < θr < 1, Dα(q||p) < Dα(r||p) and Dα(q||r) < Dα(p||r). (Proof. Since
Dα(s(x)||t(x)) ≥ 0 and is equal if and only if s(x) = t(x), using proposition 2,
corollary 1 directly follows.)
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Effect of varying α. Coming back to our original problem, let us assume that
we have a binary classification problem whose positive class ratio is θc where
0 < θc � 1/2 (imbalanced class). After a split, the training data is divided into
two subsets: one with higher (> θc) and the other with lower (< θc) positive
class ratio. Let us call the subset with higher positive class ratio as positive, and
the other as negative subset. Without loss of generality, suppose we have binary
features X1, X2, ..., Xn and p(y = 1|xi = 0) < p(y = 1) < p(y = 1|xi = 1) and
p(xi) ≈ p(xj) for any i, j. From equation (6) the α-divergence criterion becomes:

p(xi = 1)Dα(p(y|xi = 1)||p(y)) + p(xi = 0)Dα(p(y|xi = 0)||p(y)) (9)

where 1 ≤ i ≤ n. From ‘proposition 1’ we observe that increase in α increases
Dα(p(y|xi = 1)||p(y)) and decreases Dα(p(y|xi = 0)||p(y)) (lower-bounded by 0).

(9) ≈ p(xi = 1)Dα(p(y|xi = 1)||p(y)) + const. (10)

From ‘corollary 1’, increasing α shifts our focus to high p(y = 1|xi = 1). In other
words, increasing α results in the splitting feature having higher p(y = 1|xi = 1),
positive predictive value (PPV) or precision. On the other hand reducing α results
in lower Dα(p(y|xi = 1)||p(y)) and higher Dα(p(y|xi = 0)||p(y)). As a result,
reducing α gives higher p(y = 0|xi = 0), negative predictive value (NPV) for the
splitting features.

The effect of varying α appears clearly with an experiment using real datasets.
For each α value in the range of (0, 2), α-Tree was built based on ‘sick’ dataset
from UCI thyroid dataset. α-Trees were grown until ‘3rd level depth’, as fully-
grown trees deviate from the above property. Note that this analysis is based on
a single split, not on a fully grown tree. As the tree grows, a subset of data on
each node might not follow the imbalanced data assumption. Moreover, the per-
formance of a fully grown tree is affected by not only ‘α’, but also other heuristics
like ‘cut-off size’. 5-fold cross validation is used to measure each performance.
Averaged PPV and NPV over 5-cv are plotted in Figure 1.

By varying the value of α we can control the selection of splitting features.
This is a crucial factor in increasing ‘diversity’ among decision trees. The greedy
nature of decision trees means that even a small change in α may result in a
substantially different tree.

(a) PPV vs. α (b) NPV vs. α

Fig. 1. Effect of varying α. Dotted lines are linearly regressed lines.
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Note that the above analysis is based on Taylor expansion of α-divergence that
holds true when p(y|xi) ≈ p(y), which is the case when datasets are imbalanced.
This property may not hold if p(y|xi) differs a lot from p(y).

Connection to DKM and CART. The family of α-divergence naturally
includes C4.5’s splitting criterion. But the connection to DKM and CART is not
that obvious. To see the relation between α-divergence and the splitting functions
of DKM and CART, we extend the definition of α-divergence (equation (6)) as
follows:

Definition 2. Extended α-divergence is defined as EX [Dα(p(y|x)||q(y))] where
q(y) is any arbitrary probability distribution.

Definition 2 is defined by replacing p(y) with any arbitrary distribution q(y),
which serves as a reference distribution. The connection to DKM and CART is
summarized in the following two propositions:

Proposition 3. Given a binary classification problem, if α = 2 and q(y) =
(1
2 , 1

2 ) then the extended α-divergence splitting criterion gives the same splitting
feature as the Gini impurity criterion in CART. (Proof. See Appendix A.)

Proposition 4. Given a binary classification problem, if α = 1
2 and q(y) =

p(ȳ|x) then the extended α-divergence splitting criterion gives the same splitting
feature as the DKM criterion. (Proof. See Appendix A.)

CART implicitly assumes a balanced reference distribution while DKM adap-
tively changes its reference distribution for each feature. This explains why
CART generally performs poorly on imbalanced datasets and DKM provides
a more skew-insensitive decision tree.

4 Bootstrap Ensemble of α-Trees

In this section, we propose the algorithm for creating an ensemble of α-Trees.
The BEAT (Bootstrap Ensemble of Alpha Trees) algorithm for an ensemble
of k trees is illustrated in Algorithm 2. Observe that the parameters (a, b) for
Beta distribution and the number of trees are design choices. The parameters
(a, b) can be chosen using a validation set.

Algorithm 2. Bootstrap Ensemble of α-Trees (BEAT)

Input: Training Data D (features X1, X2, ..., Xn and class Y ) and parameters (a, b).

for for i = 1 to k do
Sample α/2 ∼ Beta(a, b).
Sample Di from D with replacement (Bootstrapping).
Build an α-Tree Ci from Di using algorithm 1.

end for
for for each test record t ∈ T do

C∗(t) = Avg(C1(t), C2(t), ..., Ck(t))
end for
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BEAT uses Bootstrapping when making its base classifiers. Like other Bagging
methods, BEAT exhibits better performance as the number of trees in BEAT
increases. The test errors of BEAT and Bagged-C4.5 (C4.5B) are shown in Figure
2 (a). The experiment is performed based on ‘glass’ dataset from UCI repository.
The ‘headlamps’ class in the dataset is set as positive class, and the other classes
are set as negative class (13.5% positive class ratio). 5×2 cross validation is used.
The performance of BEAT is comparable with C4.5B.

As the value of α affect the performance of α-Tree, the parameters (a, b), which
determine the distribution of α, change the performance of BEAT. Misclassifi-
cation rate generally doesn’t capture the performance on imbalanced datasets.
Although the misclassification rate of BEAT doesn’t vary much from C4.5B,
the improvement can be seen apparently in ‘precision’ and ‘recall’, which are
crucial when dealing with imbalanced datasets. This property is based on the
observation in Section 3, but the exact relationship between the parameters and
the performance is usually data-dependent. Figure 2 (b) shows the averaged ‘f-
score’ result based on the same ‘glass’ dataset. Unlike the error rate result, the
f-scores of BEAT and C4.5B show clear distinction. Moreover the resultant av-
erage ROC curves of BEAT (Figure 2 (c), (d)) changed as the parameters (a, b)
change. The ability to capture different ROC curves allows great flexibility on
choosing different decision thresholds.

(a) Error rate vs. Number of Trees (b) F-score vs. Number of Trees

(c) ROC curves (d) ROC curves

Fig. 2. Properties of BEAT. ROC curves are measured using 30 α-Trees.
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Experimental Evaluation. All the datasets used in this paper are from the
UCI Repository. Datasets with multiple classes are converted into 2-class prob-
lems. 5×2 cross validation instead of 10-fold cross validation is used due to highly
imbalanced data. Aside from the stated modifications each dataset is used “as is”.

A comparative evaluation of BEAT with C4.5, C4.5B, and Balanced Random
Forest (BRF) [6], was performed. All trees are binary/fully grown and 30 base
trees are used. No prunning is applied, and for features having more than 2
categories, dummy coding scheme is used to build a binary tree. Table 1 reports
the average f-score over 5 × 2 cross validation. For BRF, the number of random
attributes are fixed to 2 (m = 2). BRF generally needs more number of base
classifiers to perform stably.

Table 1. F-score results on real datasets. Parameters (a, b) of BEAT are indicated in
the parenthesis. The test errors are shown in the parenthesis below f-scores. Although
BRF has the highest f-score in ‘wpbc’ dataset, BRF records the highest error rate
among ensemble trees. C4.5B and BEAT show comparable test errors, but BEAT
outperforms in f-scores.

Dataset C4.5 C4.5B BRF BEAT(1,1) BEAT(1,3) BEAT(3,1)

glass 0.756 0.846 nan 0.868 0.84 0.865
(6.0%) (3.7%) (4.3%) (3.7%) (4.2%) (3.6%)

allhypo 0.901 0.956 0.644 0.958 0.96 0.956
(Thyroid) (1.5%) (0.69%) (7.7%) (0.67%) (0.63%) (0.69%)

allhyper 0.57 0.711 0.434 0.715 0.689 0.728
(Thyroid) (2.2%) (1.5%) (6.6%) (1.4%) (1.5%) (1.4%)

sick 0.826 0.871 0.580 0.866 0.876 0.866
(Thyroid) (2.1%) (1.5%) (8.5%) (1.6%) (1.5%) (1.6%)

allrep 0.74 0.869 0.413 0.876 0.870 0.884
(Thyroid) (1.6%) (0.83%) (8.8%) (0.84%) (0.82%) (0.76%)

wpbc 0.293 0.387 0.434 0.425 0.355 0.315
(Breast Cancer) (33.7%) (22.3%) (31.7%) (22.3%) (22%) (23.6%)

page blocks 0.791 0.860 0.746 0.863 0.865 0.858
(4.3%) (2.7%) (6.8%) (2.7%) (2.7%) (2.9%)

5 Concluding Remarks

In this paper, we presented the BEAT approach incorporating a novel decision
criterion parametrized by α. Experimental results show that BEAT is stronger
and more robust for imbalanced data, compared to other tree based ensemble
methods.

Even though our algorithm gives consistent results for various cases, a joint
optimization hasn’t been achieved yet with respect to the parameters (a, b) and
the number of trees. Moreover, the extended α-divergence criterion needs to be
further investigated as well.
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A CART, DKM and α-Divergence

Gini. Assume a binary classification problem, y ∈ {0, 1} and binary feature
x ∈ {0, 1}. Since for choosing a best feature x the distribution of y is fixed, we
can derive the following equation:

Gini =
∑

y

p(y)(1 − p(y)) −
∑

x

p(x)
∑

y

p(y|x)(1 − p(y|x)). (11)

= EX [
1
2
−
∑

y

p(y|x)(1 − p(y|x))] + const (12)

∝ EX [D2(p(y|x)||q(y))] (13)

where q(y) = (1
2 , 1

2 ). Equation (13) follows from equation (4). Linear relation
between the Gini splitting formula and α-divergence completes the proof.

DKM. Assuming the similar settings as in Appendix A, the splitting criterion
function of DKM is:

DKM =
∏
y

√
p(y) −

∏
x

p(x)
∏
y

√
p(y|x) (14)

= EX [
1
2
−
∏
y

√
p(y|x)] + const (15)

∝ EX [D 1
2
(p(y|x)||q(y))] (16)

where q(y) = p(ȳ|x). Equation (16) follows from equation (2). Linear relation
between the DKM formula and α-divergence completes the proof.
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Abstract. The goal of one-class classification is to distinguish the target
class from all the other classes using only training data from the target
class. Because it is difficult for a single one-class classifier to capture all
the characteristics of the target class, combining several one-class clas-
sifiers may be required. Previous research has shown that the Random
Subspace Method (RSM), in which classifiers are trained on different
subsets of the feature space, can be effective for one-class classifiers. In
this paper we show that the performance by the RSM can be noisy, and
that pruning inaccurate classifiers from the ensemble can be more effec-
tive than using all available classifiers. We propose to apply pruning to
RSM of one-class classifiers using a supervised area under the ROC curve
(AUC) criterion or an unsupervised consistency criterion. It appears that
when the AUC criterion is used, the performance may be increased dra-
matically, while for the consistency criterion results do not improve, but
only become more predictable.

Keywords: One-class classification, Random Subspace Method, Ensem-
ble learning, Pruning Ensembles.

1 Introduction

The goal of one-class classification is to create a description of one class of ob-
jects (called target objects) and distinguish this class from all other objects, not
belonging to this class (called outliers) [21]. One-class classification is particu-
larly suitable for situations where the outliers are not represented well in the
training set. This is common in applications in which examples of one class are
more difficult to obtain or expensive to sample, such as detecting credit card
fraud, intrusions, or a rare disease [5].

For a single one-class classifier it may be hard to find a good model because of
limited training data, high dimensionality of the feature space and/or the prop-
erties of the particular classifier. In one-class classification, a decision boundary
should be fitted around the target class such that it distinguishes target ob-
jects from all potential outliers. That means that a decision boundary should
be estimated in all directions in the feature space around the target class. Com-
pared to the standard two-class classification problems, where we may expect
objects from the other class predominantly in one direction, this requires more
parameters to fit, and therefore more training data.

C. Sansone, J. Kittler, and F. Roli (Eds.): MCS 2011, LNCS 6713, pp. 96–105, 2011.
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To avoid a too complex model and overfitting on the training target data, sim-
pler models can be created that use less features. In the literature, approaches
such as the Random Subspace Method (RSM) [10]) or feature bagging [12] are
proposed. In RSM, several classifiers are trained on random feature subsets of
the data and the decisions of these classifiers are combined. RSM is expected to
benefit in problems suffering from the “curse of dimensionality” because of the
improved object/feature ratio for each individual classifier. It has been demon-
strated that combining classifiers can also be effective for one-class classifiers
[21,20]. RSM is successfully applied to a range of one-class classifiers in [12,13,1].

Although it was originally believed that larger ensembles are more effective, it
has been demonstrated that using a subset of classifiers might be better than the
using the whole set [24]. A simple approach is to evaluate L classifiers individually
according to a specified criterion (such as accuracy on the training set) and select
the Ls (Ls < L) best classifiers (i.e. prune the inaccurate classifiers). Pruning
in RSM has been shown to be effective for traditional classifiers [4,18], however,
to apply this to one-class classifiers, one faces the problem of choosing a good
selection criterion. Most criteria require data from all classes, but in the case
of one-class classifiers one assumes a (very) poorly sampled outlier class. This
paper evaluates two criteria for the pruned RSM: the area under the ROC curve
(AUC) [2], which uses both target and outlier examples, and the consistency
criterion, using only target data [22].

In Sect. 2, some background concerning one-class classifiers and RSM is given.
The pruned random subspace method (PRSM) is proposed in Sect. 3. In Sect. 4,
experiments are performed to analyze the behavior of the PRSM compared to the
basic RSM and other popular combining methods. Conclusion and suggestions
for further research are presented in Sect. 5.

2 Combining One-Class Classifiers

Supervised classification consists of approximating the true classification func-
tion y = h(x) using a collection of object-label pairs X = {(x1, y1)..., (xN , yN )}
(x ∈ R

d) with an hypothesis h, and then using h to assign y values to previ-
ously unseen objects x. Let us assume there are two classes, i.e. y ∈ {T, O}. A
traditional classifier needs labeled objects of both classes in order to create h,
and its performance suffers if one of the classes is absent from the training data.
In these situations one-class classifiers can be used. A one-class classifier only
needs objects of one class to create h. It is thus trained to accept objects of one
class (target class) and reject objects of the other (outlier class).

A one-class classifier consists of two elements: the “similarity” of an object to
the target class, expressed as a posterior probability p(y = T |x) or a distance
(from which p(y = T |x) can be estimated), and a threshold θ on this measure,
which is used to determine whether a new object belongs to the target class or
not:

h(x) = δ(p(y = T |x) > θ) =

{
+1, when p(y = T |x) > θ,

−1, otherwise,
(1)



98 V. Cheplygina and D.M.J. Tax

where δ is the indicator function. In practice, θ is set such that the classifier
rejects a fraction f of the target class.

Estimating p(y = T |x) is hard, in particular for high-dimensional feature
spaces and low sample size situations. By making several (lower dimensional)
approximations of h and combining these, a more robust model can be obtained.
Assume that s(x) maps the original d-dimensional data to a ds-dimensional
subspace:

s(x; I) = [xI1 , xI2 , ..., xIds
]T (2)

where I = [I1, I2, ..., Ids ] is the index vector indicating the features that are
selected. Typically, the features are selected at random, resulting in RSM [10].

When in each of the subspaces a model hi(s(x; Ii)) (or actually pi(y =
T |s(x; Ii))) is estimated, several combining methods can be used [11] to combine
the subspace results. Two standard approaches are averaging of the posterior
probabilities (also called mean combining):

p̃(y = T |x) =
1
L

L∑
i=1

pi(y = T |s(x; Ii)) (3)

or voting, i.e.:

p̃(y = T |x) =
1
L

L∑
i=1

I(pi(y = T |s(x; Ii)) > θi) (4)

In Table 1, the average AUC performances are shown of a combination of
Gaussian models (such that p(y = T |x) in (1) is modelled as a normal distri-
bution) for three datasets, which are described in more detail in Sect.4. The
number of subspaces L is varied between 10 and 100, and the combining rule
is varied between averaging (mean), product, voting and maximum of posterior
probabilities. The subspace dimensionality ds is fixed at 25% of the features.

As can be observed, RSM is able to significantly outperform the base clas-
sifiers, but this improvement is quite unpredictable, i.e. we cannot directly see
what parameters are needed to achieve the best performance. In particular, a
larger value of L does not always lead to increased performance. In fact, the
optimal number of subspaces L differs across the datasets (L = 25 for Concor-
dia, L = 10 for Imports, L = 50 for Sonar). The best combining method also
depends on the dataset, however, we observe that mean produces better results
than voting in most situations. Furthermore, the subspace dimensionality ds also
can affect performance of RSM [6], in fact, values between 20% and 80% can be
found in literature [1,13]. In our experiments, 25% gave reasonable performances
overall, so this value is fixed for the rest of this paper.

3 Pruned Random Subspaces for One-Class Classification

A successful classifier should have good performance and be predictable in terms
of how its parameters influence its performance. It should be possible to choose at
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Table 1. AUC performances (×100, averaged over 5 times 10-fold cross-validation) of
the RSM combining Gaussian classifiers on three datasets. “Baseline” indicates per-
formance of a single Gaussian classifier on all features. Two parameters of RSM are
varied: combining rule (rows) and number of subspaces L (columns). Results in bold
indicate performances not significantly worse (α = 0.05 significance level) than the
best performance per column.

Number of subspaces L
Data Baseline Comb. rule 10 25 50 75 100

Concordia 3 92.1 mean 91.2 94.5 93.9 94.0 93.8
product 90.9 94.0 93.5 93.4 92.6

vote 89.9 93.7 93.4 93.6 93.4
maximum 90.2 93.7 93.5 93.4 93.4

Imports 74.0 mean 78.0 73.7 71.2 69.6 68.8
product 78.3 73.5 71.6 67.5 65.6

vote 78.7 77.0 74.5 72.8 72.7
maximum 75.6 76.3 76.0 75.2 74.3

Sonar 63.0 mean 65.8 65.1 65.9 65.6 65.5
product 65.8 65.1 64.5 62.6 61.7

vote 62.6 63.2 64.5 65.1 64.7
maximum 64.1 65.1 64.6 64.0 64.4

least some of the parameters beforehand, rather than trying all possible param-
eter combinations, as in Table 1. Based on our observations, the only parameter
that can be chosen with some certainty is the combining rule, as it performs rea-
sonably in most situations (although other combining methods might be compa-
rable). However, it is more difficult to choose a value for the number of subspaces
L because of its noisy effect on the performance.

It appears that RSM produces subspace classifiers of different quality. In some
subspaces, the distinction between the target and outlier objects is much clearer
than in others. Averaging is sensitive to such variations [16], thereby causing
the performance of the whole ensemble to vary significantly. By excluding the
less accurate classifiers, the performance of the ensemble should stabilize. In this
case, the choice for the number of subspaces is less critical and less prone to
noise in the subspace selection.

Therefore we propose PRSM, a pruned version of RSM. The implementation of
PRSM is shown in Algorithm 1. The essential difference with the RSM is visible
in the second to last line. Instead of combining all subspace results, PRSM only
uses the best Ls outcomes. In order to find the best subspaces, the subspaces
should be ranked according to an evaluation measure C.

We use two different evaluation measures particularly suitable for OCCs: AUC
[2] and consistency [22]. The AUC is obtained by integrating the area under the
Receiver-Operating-Characteristic curve, given by (εt, 1 − εo) pairs, where εt is
the error on the target class and εo is the error on the outlier class, as shown
in (5). Because the true values of εt and εo are unknown, in practice, the AUC
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Algorithm 1. PRSM Algorithm
Input: Training set X, base classifier h, number of classifiers L, number of selected

classifiers Ls, subspace dim. ds, subspace criterion C, combining method M
Output: Ensemble E

for i = 1 to L do
Ii ← RandomSelectFeatures(X,ds)
scorei ← CrossV alidate(X,h, Ii, Ls, C)

end for
I ← rankByScore(I, score)
h ← Train(X, h, I1:Ls )
return E ← Combine(h, M)

is obtained by varying f , estimating the (ε̂t, 1− ε̂o) pairs using a validation set,
and integrating under this estimated curve.

AUC = 1 −
∫ 1

0

εo(εt) dεt. (5)

The consistency measure indicates how consistent a classifier is in rejecting
fraction f of the target data. It is obtained by comparing f with ε̂t, an estimate
of the error on the target class:

Consistency = |ε̂t − f | (6)

The AUC measure is chosen for its insensitiveness to class imbalance, which
may often be a problem in one-class classification tasks. However, to obtain
the AUC both ε̂t and ε̂o are needed, which means that the validation set must
contain outliers. Therefore, pruning using AUC is not strictly a one-class method
and the performance estimates might be more optimistic than in the pure one-
class setting. On the other hand, to obtain the consistency measure only ε̂t is
required, which means no outlier information is used.

Using a validation set has another implication: there may be too little data
to use a separate validation set. An alternative is to do the evaluation using
the training set as in [4]. However, this is not possible for classifiers which have
100% performance on the training set, such as 1-NN. In our implementation, we
perform 10-fold cross-validation using the training set to evaluate the subspace
classifiers. After ranking the classifiers, they are retrained using the complete
training set.

4 Experiments

In this section, experiments are performed to analyze the behavior of the PRSM
compared to the basic RSM and other combining methods. First, the PRSM is
compared with RSM with respect to the absolute performance and the stability
or predictability. Next, the PRSM is compared to other classifiers across a range
of datasets. We use the base classifier and RSM, Bagging [3], and AdaBoost [19]
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ensembles of the same base classifier. A separate comparison is performed for
each base classifier. For the comparison, we use the Friedman test [9] and the
post-hoc Nemenyi test [14], as recommended in [8].

Table 2. List of datasets. NT and NO represent the numbers of target and outlier
objects, d stands for dimensionality.

Dataset NT NO d Dataset NT NO d

Arrhythmia 237 183 278 Prime Vision 50 150 72
Cancer non-ret 151 47 33 Pump 2 × 2 noisy 64 176 64
Cancer ret 47 151 33 Pump 1 × 3 noisy 41 139 64
Concordia 2 400 3600 256 Sonar mines 111 97 60
Concordia 3 400 3600 256 Sonar rocks 97 111 60
Glass 17 197 9 Spambase 79 121 57
Housing 48 458 13 Spectf normal 95 254 44
Imports 71 88 25 Vowel 4 48 480 10
Ionosphere 225 126 34 Wine 2 71 107 13

All experiments are performed in Matlab using PRTools [17] and the Data De-
scription toolbox [7]. In [21], several strategies for deriving one-class classifiers
are described. In this paper we consider three typical examples: the Gaussian
(Gauss), Nearest Neighbor (1-NN), and k-Means one-class classifiers. Gauss is
a density method, which fits a normal distribution to the data and rejects ob-
jects on the tails of this distribution. 1-NN is a boundary method, which uses
distances between objects to calculate the local densities of objects, and rejects
new objects with a local density lower than that of its nearest neighbor. k-Means
is a reconstruction method, which assumes that the data is clustered in k groups,
finds k prototype objects for these groups, and creates a boundary out of the
hyperspheres placed at these objects.

Several datasets are used from the UCI Machine Learning Repository [23],
and have been modified in order to contain a target and an outlier class [15].
Furthermore, an additional dataset, the Prime Vision dataset, provided by a
company called Prime Vision1 in Delft, The Netherlands, is used. A summary of
the datasets is included in Table 2. All the datasets have relatively low object-to-
feature ratios, either originally or after downsampling (in case of Prime Vision
and Spambase datasets).

In Fig. 1, a comparison between PRSM+AUC (PRSM using the AUC cri-
terion), PRSM+Con (PRSM using the consistency criterion) and RSM for the
Concordia digit 3 dataset is shown. For varying number of subspaces L the AUC
of the combined classifier is presented. We use ds = 64 (that is 25% of the fea-
tures) and compare the performances of RSM with Ls classifiers to PRSM with
Ls classifiers out of L = 100.

1 http://www.primevision.com
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Fig. 1. The AUC (on test set) for varying number of subspaces for RSM, PRSM+AUC
and PRSM+Con for the Concordia digit 3 dataset (top) and for the Imports dataset
(bottom). From left to right: Gauss, 1-NN and k-Means base classifiers.

The results indicate that both PRSM+AUC and PRSM+Con are less noisy
and their performances are more predictable with a varying L. For PRSM+AUC,
optimal performances are achieved using just a small subset of Ls = 10 sub-
spaces, whereas for PRSM+Con, larger values such as Ls = 50 are better. These
values are fixed for the further experiments. However, in terms of absolute per-
formance, only PRSM+AUC is able to significantly outperform the standard
RSM. PRSM+Con sometimes has a lower performance than the baseline clas-
sifier, and is never performs significantly better than the unpruned RSM with
L = 100 subspaces.

Next, RSM, PRSM+Con and PRSM+AUC are compared to the baseline
classifier, and a few standard ensemble approaches, namely Bagging [3] and
AdaBoost [19]. In Bagging, L = 100 bootstrapped versions of the training set X
are generated, a base classifier is trained on these bootstrapped training sets, and
the combined classifier is the average (as in (3)) of the L trained base classifiers.
In AdaBoost, new training sets are iteratively generated by reweighing objects.
Objects that are often misclassified get a higher weight, and are thus more likely
to be selected in a training set. The combined classifier uses voting.

The results of the comparison are shown in Table 3. A key observation is that
overall, the classifiers have comparable performance, however, there is no overall
winning classifier. For some datasets, such as Glass, it is often best to just use the
base classifier as no ensemble is able to improve on this performance. This can
be explained because this dataset is very small (only 17 training target objects),
and fitting a more complex classifier than the base classifier just overfits on the
training data.

Surprisingly, also AdaBoost does not perform very well. AdaBoost is originally
developed to boost two-class classifiers by reweighing training objects. In these
experiments, the base classifier is a one-class classifier, trained to describe the
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Table 3. AUC performances (×100) of the base classifier and ensemble methods for
the Gauss, 1-NN and k-Means base classifiers. PRSc indicates the PRSM using the
consistency criterion, PRSa indicates the PRSM using the AUC criterion. Bag means
bagging, and AB means AdaBoost. Results in bold indicate the best (or not significantly
worse than best) performances per dataset.

Data Base RSM PRSc PRSa Bag AB Data Base RSM PRSc PRSa Bag AB

Gauss

Arr 75.6 78.0 77.8 79.4 75.5 50.0 PV 89.4 88.3 88.1 89.8 90.2 50.6
Canc1 50.2 53.6 53.4 52.8 51.1 52.8 Pump1 94.8 83.1 83.8 92.3 88.5 50.0
Canc2 62.4 60.9 59.6 65.7 61.0 52.8 Pump2 91.8 84.0 86.2 98.2 82.6 50.0
Conc2 83.6 87.0 86.3 91.3 82.5 51.5 Sonar1 65.7 64.1 63.5 70.4 65.2 54.6
Conc3 92.1 93.8 93.2 96.4 91.2 51.8 Sonar2 62.2 64.7 65.0 69.1 62.4 54.1
Glass 86.2 74.7 73.3 78.3 85.1 70.0 Spam 81.5 79.1 78.7 85.5 77.1 61.1
House 88.1 84.1 84.3 91.3 88.0 73.7 Spect 94.5 88.3 88.4 88.8 94.9 88.5
Impor 72.6 68.5 71.0 80.3 73.8 70.0 Vow4 99.1 95.6 94.5 96.2 99.1 96.7
Ion 96.5 96.9 97.0 97.3 96.4 87.4 Wine 94.4 92.9 90.4 96.4 94.3 90.1

1-NN

Arr 73.8 75.5 75.3 78.1 73.8 69.4 PV 88.0 88.7 88.5 90.9 87.9 86.2
Canc1 52.6 53.2 53.1 53.5 53.4 51.8 Pump1 77.3 76.0 76.3 82.0 76.9 77.2
Canc2 55.8 57.6 58.0 68.3 56.2 57.5 Pump2 78.5 77.2 76.9 84.4 77.9 72.1
Conc2 69.7 80.3 80.4 88.9 68.7 64.0 Sonar1 67.8 68.8 68.2 78.5 66.5 59.2
Conc3 83.7 87.2 86.6 94.6 82.8 78.1 Sonar2 72.2 72.3 72.4 74.6 70.7 63.3
Glass 72.8 73.7 72.5 74.5 69.9 62.5 Spam 56.7 60.5 60.8 74.7 53.4 53.2
House 87.5 94.7 94.8 94.7 83.7 83.4 Spect 95.4 95.6 95.8 95.9 95.2 87.3
Impor 85.6 86.5 86.3 92.4 80.2 77.3 Vow4 99.4 99.2 99.1 99.5 99.1 97.6
Ion 95.9 96.1 96.1 97.3 96.3 90.2 Wine 87.1 91.7 90.5 94.0 88.2 92.6

k-means

Arr 74.0 75.2 75.3 77.1 74.4 65.3 PV 86.5 88.2 88.1 89.6 86.8 84.4
Canc1 51.1 51.7 51.9 51.0 52.0 46.4 Pump1 71.6 72.6 72.3 79.3 71.0 63.6
Canc2 56.2 58.6 57.6 63.9 56.5 56.8 Pump2 66.8 69.5 69.4 79.2 68.8 66.2
Conc2 60.8 69.8 69.5 80.9 59.6 50.0 Sonar1 61.8 63.6 63.8 67.3 61.0 55.1
Conc3 79.9 81.9 81.5 89.5 79.9 69.8 Sonar2 65.9 67.4 67.4 71.1 65.7 61.2
Glass 70.1 73.9 72.5 74.9 69.6 69.0 Spam 50.6 53.7 54.0 71.5 50.2 52.7
House 83.4 93.5 92.5 94.2 82.5 87.2 Spect 84.5 87.2 87.4 87.8 85.8 84.1
Impor 65.0 72.3 73.1 83.4 63.2 68.2 Vow4 95.7 98.5 98.2 97.9 98.3 98.1
Ion 96.3 97.3 97.3 97.7 97.3 97.3 Wine 86.6 92.5 91.7 94.7 87.4 89.8

Table 4. Results of the Friedman/Nemenyi test. F stands for F -statistic, Signif. for
any significant differences, CV for critical value and CD for critical difference.

Base clasf. Tests Ranks

F CV Signif.? CD Base RSM PRSc PRSa Bag AB

Gauss 16.12 2.32 Yes 1.78 2.78 3.72 3.89 1.61 3.44 5.56
1-NN 32.99 2.32 Yes 1.78 3.94 2.89 3.17 1.06 4.44 5.50
k-Means 40.38 2.32 Yes 1.78 4.83 2.33 2.61 1.44 4.50 5.28
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target data. Errors on the target class are generally weighted more heavily than
errors on the outlier class. This results in a heavy imbalance in the sampling of
the two classes, and consequently in poorly trained base classifiers.

In most situations, PRSM+AUC outperforms the other ensemble methods,
and the base classifiers. The improvement is not always very large, but for some
datasets it is quite significant, for instance, for the Arrhythmia, Imports, Spam-
base, and the Concordia datasets. These are often the high-dimensional datasets.
A noticeable exception is the Ionosphere dataset. Here, the base classifiers al-
ready perform well, and the improvement achieved by the ensembles is modest.

The results of the statistical tests are shown in Table 4. For each base classifier,
the F -statistic value indicates there are any significant differences between the
classification methods. Significant differences are found if F is larger than a
critical value (2.33 in this case) which depends on the number of datasets (18)
and classifiers (6) in the experiment. If this is the case, the Nemenyi test can
be used to compare any two classifiers. A significant difference between two
classifiers occurs when the difference in classifier ranks is larger than the critical
difference for the Nemenyi test, 1.77 in this case.

RSM is only significantly better than the base classifier for k-Means and
even worse than the base classifier for Gauss. PRSM+Con produces worse (but
not significantly worse) results than RSM for all three base classifiers. On the
other hand, PRSM+AUC is significantly better than RSM for Gauss and 1-
NN. Bagging and AdaBoost perform poorly in general, except for Gauss where
Bagging is slightly better than RSM.

5 Conclusions

In this paper, we investigated the effect of pruning on Random Subspace en-
sembles on the Gaussian, Nearest Neighbor, and k-Means one-class classifiers.
Experiments show that pruning improves the predictability of the outcomes, but
does not always improve the classification performance. Pruning using the area
under the ROC curve shows a significant improvement over the standard ensem-
ble. The number of subspaces that is required for good performance is very low:
10 out of 100 subspaces is often already showing optimal performance. Pruning
using the consistency criterion, based on only target objects, however, is not able
to improve the results. This suggests that additional information in the form of
extra outlier objects, has to be used in order to improve performance.

Our results suggest that combining a few accurate classifiers may be more
beneficial than combining all available classifiers. However, pruning can only be
successful if an appropriate evaluation criterion is selected. We demonstrated
that the area under the ROC curve is a succesful criterion, however, it requires
the presence of outliers. A succesful criterion in the absence of outliers requires
further investigation.
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Abstract. In this work, a new method for one-class classification based
on the Convex Hull geometric structure is proposed. The new method
creates a family of convex hulls able to fit the geometrical shape of the
training points. The increased computational cost due to the creation of
the convex hull in multiple dimensions is circumvented using random pro-
jections. This provides an approximation of the original structure with
multiple bi-dimensional views. In the projection planes, a mechanism for
noisy points rejection has also been elaborated and evaluated. Results
show that the approach performs considerably well with respect to the
state the art in one-class classification.

Keywords: Convex Hull, Random Projections, One-Class Classifica-
tion.

1 Introduction

Many problems in Pattern Recognition can be solved efficiently by exploiting the
geometrical structure of the problem itself, providing an intuitive understanding
of the solution. In that framework, the convex hull geometric structure has al-
ways been considered a powerful tool in geometrical pattern recognition ([1],[2]).
The convex hull of a set of points is defined as the smallest polytope containing
the full set of points. In recent researches, Bennet et al.([3],[4]) show that there
exists a geometrical interpretation of the Support Vector Machine (SVM) related
to the convex hull. Finding the maximum margin between two classes is equiva-
lent to find the nearest neighbors in the convex hull of each class when classes do
not overlap. This intuitive explanation provides an immediate visualization of
the main concepts of SVM from a geometrical point of view. Nevertheless, using
the convex hull in real applications is limited by the fact that its computation
in a high dimensional space has an extremely high cost. Many approximations
circumventing this complexity have been proposed in the context of SVM related
algorithms. For instance, Takahashi and Kudo [5] use the convex hull as a max-
imum margin classifier. They approximate the facets of the convex hull where
the support planes are present by a set of reflexive support functions separating
one class from the other ones. Pal and Bhattacharya [6] propose a self-evolving
two-layer neural network model for computing the approximate convex hull of a
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set of points in 3-D and spheres. The vertices of the convex hull are mapped with
the neurons of the top layer. Mavroforakis and Theodoridis [7] introduce the no-
tion for Reduced Convex Hull based on the geometric interpretation of SVM,
formalizing the case when classes are not separable. Recently, convex hulls have
been also used for enhancing the performance of classifiers. Zhou et al. [8], use
a convex hull for reducing the number of training examples. A SVM trained on
the boundary samples of each class convex hull maintains the same classification
performance as if it has been trained using the entire training set.

On the other side, one-class classification problems arise where only data of a
target class are available without counterexamples [9]. Effective one-class classifi-
cation strategies are based on density estimation methods and boundary methods.
Gaussian Model, Mixture of Gaussian Model and Parzen Density Estimation are
density estimation methods widely used. Density estimation methods work well
when there exists a-priori knowledge of the problem or a big load of data is avail-
able. Boundary methods only intend to model the boundary of the problem disre-
garding the underlying distribution. Well known approaches to boundary methods
are k-Centers and NearestNeighborsMethod. The state of the art in one-class clas-
sification is represented by Support Vectors Data Description where the minimum
hypersphere containing all the data is computed in a multidimensional space. For
a complete review of one-class classification methods, refer to [10].

In this work, a parametrized family of functions based on the convex hull
geometric structure is proposed for modeling one-class classification problems,
following the approach of boundary methods. The computational limitation de-
rived from high dimensional problems is bypassed by approximating the multi-
dimensional convex hull by an ensemble of bi-dimensional convex hulls obtained
by projecting data onto random planes. In those planes, computing the convex
hull and establishing whether points belong to the geometric structure are both
well known problems having very efficient solutions [11]. Additionally, a robust
alternative is studied. In that approach, robustness to outliers1 is provided com-
puting the final bi-dimensional convex hull using a family of convex-hulls created
using a subsampling strategy.

Random Projections are based on the idea that high dimensional data can be
projected into a lower dimensional space without significantly losing the struc-
ture of the data [12]. Random projections and high dimensional geometry lie at
the heart of several important approximation algorithms [13]. Blum [14] reports
that projecting data down to a random subspace and solving the learning prob-
lem on that reduced space yield comparable results to solving the problem in the
original space. Rahimi and Recht [15] use also random projections for building
a weighted sum of linear separators. In their work, the authors show that under
certain conditions using random projections is equivalent to use the kernel trick.
At the same time, random projections provide a faster decaying of the testing
error rate with respect to standard AdaBoost.

1 In the present work, no-target points are defined as points that do not belong to the
one-class classification target class. Outliers points are points that are numerically
distant from the rest of the data in a class.
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This paper is organized as follows. In Section 2, the proposed one-class clas-
sification method based on approximate convex hull is described in detail. In
Section 3, validation process and parameters setting are described and experi-
mental results reported. Finally, in Section 4, we discuss results and conclude.

(a) (b)

Fig. 1. (a) Expansion of the Approximate Convex Hull (ACH): starting from the center
C of the original convex hull, vertices can be expanded using the parameter α. The
innermost convex hull represents the expansion for a negative value of α –a contraction
–, the outermost convex hull represents the expansion for a positive value of α; (b)
Projections in ACH : the original tri-dimensional convex hull is approximated by several
random projections. A point is outside of the convex hull if there exists at least one
projection in which the point is outside of the projected convex hull.

2 Approximate Convex Hull Functions Family for
One-Class Classification

One-class classification methods can be solved by modeling the boundary of the
set of points defining the problem. The Convex Hull (CH) of a set of points is the
minimal convex set containing all the points. The convex hull provides a good
tool for delimiting the target class. In this setting, the one-class classification
task is reduced to the problem of knowing if test data lie inside or outside
the hull. This basic notion of convex hull is used for defining the parametric
family as follows. Let S = {xi} ∈ �d be the dataset representing the class to be
approximated, and V ⊆ S a set of k vertices defining a convex hull.

Definition 1. Given vi ∈ CH(S), i ∈ {1, .., k}, the parametric family of con-
vex hulls depending on a scalar α and a center C ∈ �d is given as a set of
convex hulls with vertices defined by vα

i = vi + α(vi − C).

The parameter α allows to enlarge or contract the hull with respect to the
center C. In the context of classification, α allows to adjust the operating point
in the Receiver Operating Characteristic curve. It is a constant value for the
multidimensional convex hull. In Figure 1(a), examples of positive and negative
expansions of factor α are shown.
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The creation of the convex hull is computationally intensive. In general, the
computational cost of a d-dimensional convex hull over N data examples is
O(N �d/2�+1). This cost is prohibitive in time and memory and, for the classifi-
cation task, only checking if a point lies inside the convex hull is needed. Our
approximation strategy consists in approximating the d-dimensional convex hull
with a set of t bi-dimensional projections of the data. Convex hulls are computed
on those planes and testing points are checked to belong to every projected bi-
dimensional convex hull. If a projection exists where the testing point is found
outside of the bi-dimensional convex hull, then the point does not lie inside the
original d-dimensional convex hull. Figure 1(b) shows an example of a 3D con-
vex hull with a test point outside the hull and three candidate projection planes
randomly chosen. At the bottom of the figure it may be observed that in two of
those projections the projected test point is outside the projected convex hull.
Table 1 describes the pseudo-algorithm for creating the Approximate Convex
Hull (ACH) and testing if a point lies inside the hull. For checking if a point lies
inside a CH , the ray casting algorithm or many other methods can be used [11].

Table 1. Approximate Convex Hull Family

– Create ACH(α,C):
Given a training set S ∈ Rd, where d is the number of features
Given a number of Projections t

1.For j = 1..t
2. P j = randmatrix() % Create a Normal Random Matrix
3. Sj = (P j)T S % Project data onto the Random Space
4. {vi} = ConvexHull(Sj) % Return vertices V j

i

5. {V j
i } = {vi + α(vi − C)}, i ∈ {1, . . . , K}

Return: {V, P}

– Test:
Given a point x ∈ Rd;
Given a set of t Convex Hulls and Random Matrices {V, P}

1.For j = 1..t
2. xj

p = (P j)T x
3. If xj

p /∈ {V j
i }

4. Return: OUTSIDE
Return: INSIDE

This approach has great advantages from both computational and memory
storage point of view. On one hand, given a training set of N examples, the
computational cost of building the convex hull in a bi-dimensional space is
O(N log N) [11]. Let K be the number of points defining the convex hull. The
memory needed for storing the convex hull is K << N . The cost of testing if a
point lies inside or outside the convex hull is O(K). Thus, if we use t projections
the final computational cost for building the Approximate Convex Hull Family
is O(tN log N) and the test cost O(tK).
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Table 2. Approximate Robust Hull Family

– Create ARH(α,C):
Given a training set S ∈ Rd, where d is the number of features
Given a number of Projections t, a number of sampling rounds N ,SN = ∅

1.For j = 1..t
2. P j = randmatrix() % Create a Normal Random Matrix
3. Sj = (P j)T S % Project data onto the Random Space
4. For k = 1..N
5. Sj

k = Sample(Sj) % Get a sampling from Xp

6. SN = SN ∪ Sj
k

4. {vi} = ConvexHull(SN) % Return vertices vi

5. {V j
i } = {vi + α(vi − C)}, i ∈ {1, . . . , K}

Return: {V, P}

2.1 Approximate Robust Hull Family for One-Class Classification

A question that needs to be addressed when using a convex hull is its robustness
with respect to outliers. Convex hulls are very sensitive to outliers. The presence
of outliers can heavily influence the definition of the boundary and, consequently,
the classification process. In order to reduce the influence of outliers, a robust
convex hull built on repeated samplings of the original dataset is proposed.
Similar to bagging [16], this sampling improves classification models in terms
of stability and classification accuracy. It reduces variance and helps to avoid
overfitting.

The modification resides in the training step, where data are sampled sequen-
tially for N rounds of sampling. The final convex hull is built on the points given
by the union of all the sampling rounds. The sampling strategy automatically
reduces the influence of the elements on the boundary, allowing to define a core
set of examples of the training set. The algorithm for the Approximate Robust
Hull(ARH) is shown in Table 2. There are no changes in the testing part.

2.2 On the number of Projections in ACH/ARH

The number of projections is a critical parameter for both methods. In order to
get an empirical estimation of the number of projections needed for the convex
hull to be effective, the following experiment has been performed. A set of 100.000
random points are generated on a d-dimensional hypersphere surface of radius
R. A test point outside the hypersphere is set at relative distance d/R. The
experiment evaluates the number of projections needed for finding one in which
the point is found outside of the projected convex hull, when varying the relative
distance of the test point with respect to the sphere. The experiment has been
repeated 100 times for different values of the dimensionality. The outcomes of
the experiments are reported in Figure 2 for (a) dimension 5, (b) dimension 10,
(c) dimension 50 and (d) dimension 100. In the figures, we see that as the relative
distance of the test point increases, the number of random projections needed for
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(a) (b)

(c) (d)

Fig. 2. Whisker plots for the distribution of the number of projections needed to find
the test point outside of a hypersphere with dimension (a) 5, (b) 10, (c) 50, (d) 100

finding it outside of the projected hull decreases. Moreover, as the dimensionality
increases, the number of random projections also increases. Observe that very
close points require a large number of projections. This effect could increase the
computational burden of our approach. However, there is a synergistic effect in
the proposal that mitigates this initial drawback. Using a negative value for the
parameter α, one can arbitrarily reduce the size of the convex hull. Observe that
a small decrease in α increases the relative distance in 1+|α|

1−|α| and thus the number
of projections needed can be drastically reduced without hindering the overall
performance. This preliminary empirical results jointly with the exposed effect
require a further study from theoretical point of view.

3 Validation and Results

In this section, ACH and ARH have been compared with different one-class
models on several dataset from UCI machine learning repositories [17]. Datasets
contain two or more classification problems, depending on the number of classes.
One-class problems have been obtained using only one class as target class. Data
from all the other classes have been considered no-target class and have not been
used in the training step. For each target class, training and testing have been
separated using a 2-folds split. The process is repeated 10 times and results
averaged. The list of datasets used is shown in Table 3. In the table, classes used
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for one-class problems are listed with their cardinality. An identification number
is also reported to reference datasets along the section. All the experiments have
been performed using PR-Tools Toolbox [18] and its extension for one-class
classification DD-Tools.

Table 3. List of One Class Problems

Id Dataset Targets Elements Id. Dataset Targets Elements

1,2 Tic-Tac-Toe 1,2 626,332 17,18 Ionosphere 1,2 126,225
3,4 Sonar 1,2 97,111 19,20,21 Wine 1,2,3 59,71,48
5,6 Monks-1 1,2 272,284 22,23,24 Glass 1,2,3 70,76,68
7,8 Monks-2 1,2 300,301 25,26,27 Iris 1,2,3 50,50,50
9,10 Monks-3 1,2 275, 279 28,29,30 Ecoli 2,7,8 53,77,143
11,12 Haberman 1,2 225,81 31,32,33 Yeast 3,5,6 463,429,44
13,14 Pima 1,2 500,268 34,35,36 Yeast 7,8,10 163,51,244
15,16 Breast 1,2 238,445 37,..,47 Vowel 1,..,11 90 for each class

Comparison Methods. The proposed method has been compared with
Gaussian model, Mixture of Gaussians (MoG), Parzen Density Estimation (PDE),
k-Centers(kC), k-Nearest Neighbor (k-NN), k-Means(kM), Support Vector Data
Descriptor (SVDD) and Minimum Spanning Trees (MST).

Evaluation Metrics. Classification methods can be evaluated on the base
of ROC curve, representing the percentage of true positive accepted versus the
false positive accepted and, in particular, using the Area Under ROC Curve
(AUC). For evaluating the performance of ACH and ARH, the ROC curve has
been computed using the expansion parameter α.

Parameters Setting. In the comparison methods, for Gaussian estimation,
MoG, k-Centers, k-Means and SVDD, the optimal parameters have been chosen
using 2-folds cross validation on the training set, varying the parameter between
1 and 10. For k-NN, the value of k has been found using its own optimization
routine. For PDE and MST, no optimization parameters are needed. For ACH,
the number of random projections is a parameter of the method. In the exper-
iments, the number of random projections has been set to 75 and the number
of subsamplings in the robust counterpart to 7. The sampling factor has been
arbitrarily set to 50%. It is important to note that the method is very stable
and small changes in these parameters slightly change the results.

Results on UCI Datasets.2 Results obtained are shown in Figure 3. The
numbers on the X-axis represents the Id as shown in Table 3. Whiter color
represents higher AUC. Last two rows represent ACH and ARH performance.
From the figure, it seems that there exists a group of problems where the perfor-
mance of the proposed methods clearly improves the AUC with respect to the
other methods. In Table 4, the counts of win, ties and losses are reported for
each method. Both ACH and ARH are significantly better than the compared
methods with probability p > 0.02, according to two-tailed signed test.

2 Numerical results with mean value and standard deviation are available at
http://www.maia.ub.es/∼oriol/Personal/downloads.html
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Fig. 3. AUC obtained with One-Class Classification Methods on UCI datasets. Whiter
color represents bigger area. The last two lines represent the ACH and ARH methods.

Table 4. Counts of Wins,Ties,Losses for the Compared Methods

Gauss Mog PDE kC kM kNN MST SVDD ACH ARH

Gauss - 9/2/36 14/2/31 19/0/28 8/3/36 16/1/30 16/1/30 6/1/40 1/1/45 2/0/45

Mog 36/2/9 - 44/1/2 39/0/8 37/1/9 44/1/2 44/1/2 27/2/18 8/4/35 13/2/32

PDE 31/2/14 2/1/44 - 26/0/21 18/1/28 20/14/13 19/14/14 13/1/33 3/0/44 3/1/43

kC 28/0/19 8/0/39 21/0/26 - 18/0/29 21/0/26 20/0/27 11/0/36 3/0/44 3/0/44

KM 36/3/8 9/1/37 28/1/18 29/0/18 - 29/1/17 29/1/17 16/2/29 3/1/43 4/0/43

kNN 30/1/16 2/1/44 13/14/20 26/0/21 17/1/29 - 8/23/16 12/1/34 3/0/44 3/1/43

MST 30/1/16 2/1/44 14/14/19 27/0/20 17/1/29 16/23/8 - 13/1/33 2/0/45 2/0/45

SVDD 40/1/6 18/2/27 33/1/13 36/0/11 29/2/16 34/1/12 33/1/13 - 5/0/42 5/0/42

ACH 45/1/1 35/4/8 44/0/3 44/0/3 43/1/3 44/0/3 45/0/2 42/0/5 - 36/9/2

ARH 45/0/2 32/2/13 43/1/3 44/0/3 43/0/4 43/1/3 45/0/2 42/0/5 2/9/36 -

Discussion. Results obtained on real problems show that there exists a sig-
nificant difference between the performance of the proposed methods and the
other ones. MoG and SVDD provide also very good performance with respect to
the majority of the methods, except with ACH and ARH. In particular, results
show that ACH performs much better than ARH. This fact could be surprising
at first glance and it is possibly due to the characteristics of the datasets used.
In order to show the effectiveness of ARH with respect to ACH, both methods
have been compared on a specific toy problem. Both ACH and ARH have been
trained on a bi-dimensional Gaussian distribution having two significant outliers.
The number of projections has been set to 10 and the number of samplings to 7.
No-target points have been created generating points outside a sphere of radius
3.5 built around the Gaussian distribution. An example of training set is shown
in Figure 4(a). Both ACH and ARH have been tested on a separate testing set,
generated in the same manner, without the two outliers. The experiment has
been performed ten times and results averaged. ROC curves obtained are shown
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in Figure 4(b). For ACH, the mean AUC obtained is 0.961. For ARH, the mean
AUC obtained is 0.993. This situation proves that the robust procedure adopted
in the creation of ARH is really useful in the presence of significant outliers.

(a) (b)

Fig. 4. (a) Artificial Gaussian dataset with two outliers. (b) Roc Curves for ACH and
ARH.

4 Conclusions

In this work, a new method for one-class classification, the Approximated Con-
vex Hull Family is proposed. The method is based on a family of parametrized
convex hulls able to fit the target geometric shape by expanding the original
convex hull created on the training set. The limitation due to the computation
of high dimensional convex hulls is overcome using random projections. Indeed,
the multidimensional convex hull is projected down to bi-dimensional planes,
randomly selected. In those planes, creating a convex hull and testing if a point
lies inside the hull are well known problems in computational geometry. Exper-
iments show that the number of projections needed for ensuring if a point lies
inside or outside the convex hull depends on the dimensionality of the problem
and the distance of the point from the boundary. A slight modification of the
method, the Approximated Robust Hull Family, allows to weaken the presence
of outliers in the target distribution. The modified method uses a robust convex
hull, built with a bagging-like strategy.

Both methods perform significantly better than most one-class classification
methods on the wide majority of the problems considered. In addition, a toy
problem proves the effectiveness of the Approximated Robust Hull Family in
the presence of outliers.

Though both proposed methods perform well on the wide majority of the
problems taken into account, future research lines are directed to extending the
methods for non convex shapes, providing an even more general framework. Fi-
nally, the low computational and memory storage requirements allow both pro-
posed methods to be used in devices having limited resources. Future research
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lines are also directed to exploit these potential capabilities with an implemen-
tation of the proposed methods in embedded systems and mobile phones with
application to activity recognition and user verification.
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Abstract. Kernel combination is meant to improve the performance of single
kernels and avoid the difficulty of kernel selection. The most common way of
combining kernels is to compute their weighted sum. Usually, the kernels are as-
sumed to exist in independent empirical feature spaces and therefore were com-
bined without considering their relationships.

To take these relationships into consideration in kernel combination, we pro-
pose the generalized augmentation kernel which is extended by all the single
kernels considering their correlations. The generalized augmentation kernel, un-
like the weighted sum kernel, does not need to find out the weight of each kernel,
and also would not suffer from information loss due to the average of kernels.

In the experiments, we observe that the generalized augmentation kernel usu-
ally can achieve better performances than other combination methods that do not
consider relationship between kernels.

1 Introduction

The selection of kernel functions, the model, and the parameters, is one of the most diffi-
cult problem of designing a kernel machine. Recently, an interesting development seeks
to construct a good kernel from a series of kernels. Most approaches in the literature aim
to derive a weighted sum kernel, and the main concern is to find out the weight of each
kernel [2,4,6,8,9,10,13,18,19]. In [10], semi-definite programming (SDP) was used to
optimize over the coefficients in a linear combination of different kernels with respect
to a cost function. The optimization worked in a transductive setting, and therefore all
the information of training and testing patterns was required in the process. To prevent
over-fitting, the search space of possible combined kernel matrices is constrained by
bounding the kernel matrices with a fixed trace. If kernel target alignment is used as the
cost function, this method could be seen as a generalization of the kernel matrix learning
method in [7]. Instead of learning the combined kernel matrix in a transductive setting,
hyperkernel methods [18] directly learned the combined kernel function in the inductive
setting by minimizing a regularized risk functional. In these optimization methods, not
only the cost function and constraints were considered, much effort was also spent to
speed up the optimization procedure. These methods mainly focus on finding the best
weight of each kernel, and then perform the weighted sum of these kernels in order to
derive a combined kernel. In these settings, local information is easily averaged out, and
therefore these methods might suffer from information loss and the abilities of single

� We acknowledge financial support from the FET programme within the EU FP7, under the
SIMBAD project (contract 213250).
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kernels also become weaker. For example, if the dataset has varying local distributions,
different kernels will be good for different areas. Averaging the kernels of such a dataset
would lose some capability to describe these local distributions.

To unfold the local characteristics of data, [11,12,21] all proposed to augment s
kernels of size m × m into a kernel of size (s × m) × (s × m). These methods all put
the original kernel matrices on the diagonal. The main difference is on the off-diagonal.
The methods proposed in [12,21], which we name as the augmented kernel in short,
only put zeros on the off-diagonal due to lacking of knowledge about the cross terms.
In this case, it implies that different kernels live in the different subspaces and there is no
interaction between these subspaces. Also, the empirical feature functions of different
kernels are unrelated. This is a rather constrained assumption, and does not provide
much flexibility. These cross terms are however, defined in [11] as the inner product of
square roots of kernel functions to meet the mercer condition [3,7,10,20]. Unfortunately,
one can only derive the square root of a kernel function if the function is self-similar.
Therefore, the only adoptable kernel for computing the composite kernel proposed in
[11] is the Radial Basis function (RBF). Moreover, the cross terms of composite kernels
are very similar to the product of two RBF kernels and therefore usually results in
very small values. In most cases, it is very much the same as putting zeros on the off-
diagonal.

In this work, we propose a method to augment single kernels into a generalized
augmentation kernel by considering the cross terms on the off-diagonal and these cross
terms can be derived from any type of kernel. It duplicates empirical feature functions
on the off-diagonal with scaling parameters which indicate how related the empirical
feature functions from two different kernels should be. This scaling parameter also
allows us to smoothly vary between the original augmented kernel and the direct sum
kernel, and therefore we can have a generalized description of multiple kernels and
enlarge the searching space of the optimal solution. The experimental results suggest
that the generalized augmentation kernel usually can find a better solution than the sum
kernel, the composite kernel and the augmented kernel.

The rest of the paper is organized as follows. In Section 2, the overview of support
vector machine is recaped. The direct sum of kernels and the augmented kernel and
their empirical feature spaces are described in Section 3, respectively. Our proposal
for constructing the generalized augmentation kernel from single kernels is given in
Section 4. Simulation results are presented in Section 5. Finally, a conclusion is given
in Section 6.

2 Overview of Support Vector Machine

For convenience, we introduce the support vector classifier with d input variables xi1,
xi2, . . ., xid for 2-class problem with class labels +1 and −1 in this section. xi and yi

represent ith input datum (a vector) and its corresponding class label [20,3]. Extension
to multi-class problems can be achieved by training multiple support vector machines.
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To control both training error and model complexity, the optimization problem of
SVM is formalized as follows:

minimize
1
2

< w,w > +C

n∑
i=1

ξi,

subject to < w · xi > +b ≥ +1 − ξi, for yi = +1
< w · xi > +b ≤ −1 + ξi, for yi = −1

ξi ≥ 0, ∀i. (1)

By using Lagrange multiplier techniques, Eq.(1) could lead to the following dual opti-
mization problem:

maximize
∑n

i=1 αi −
∑n

i=1

∑n
j=1 αiαjyiyj < xi,xj >,

subject to
∑n

i=1 αiyi = 0, αi ∈ [0, C]. (2)

Using Lagrange multipliers, the optimal desired weight vector of the discriminant hy-
perplane is w =

∑n
i=1 αiyixi. Therefore the best discriminant hyperplane can be de-

rived as

f(x) =<

n∑
i=1

αiyixi,x > +b = (
n∑

i=1

αiyi < xi,x >) + b, (3)

where b is the bias of the discriminant hyperplane.

2.1 Empirical Feature Function of Kernels

In Eq.(3), the only way in which the data appears is in the form of dot products, that
is < xi,x >. The discriminant hyperplane is thereby linear and can only solve a lin-
early separable classification problem. If the problem is nonlinear, instead of trying to
fit a nonlinear model, the problem can be mapped to a new space by a nonlinear trans-
formation using a suitably chosen kernel function. The linear model used in the new
space corresponds to a nonlinear model in the original space. To make the above model
nonlinear, consider a mapping φ(x) from the input space into some feature space as

φ : R
d → H. (4)

The training algorithm only depends on the data through dot products in H, i.e. on
functions of the form < φ(xi), φ(xj) >. Suppose a kernel function K defined by

K(xi,xj) =< φ(xi), φ(xj) >, (5)

is used in the training algorithm. Explicit knowledge of φ is thereby avoided. The dot
product in the feature space can be expressed as a kernel function. Similar to Eq.(3)
in linear problems, for a nonlinear problem, we will have the following discriminant
function

f(x) =
n∑

i=1

αiyiK(xi,x) + b. (6)
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3 Sum Kernel and Augmented Kernel

Most kernel combination methods try to average out the kernel matrices in one way
or another [10,1,9,8,14,18]. Suppose s original kernels are given as K1, K2, ..., and Ks

with size m×m and the empirical feature functions of these kernels are φ1(x), φ2(x)...,
and φs(x). Combining kernels by summing up all the kernels is equivalent to taking the
Cartesian product of their respect empirical feature spaces. And weighing the kernels
is the same as scaling the empirical feature spaces. To make use of all the local charac-
teristics of each single kernel, the augmented kernel is proposed in [12,21], which is of
the form

K1

⊕
K2

⊕
· · ·
⊕

Ks =

⎛⎜⎜⎜⎝
K1 0 · · · 0
0 K2 · · · 0
...

...
. . .

...
0 0 · · · Ks

⎞⎟⎟⎟⎠
s×m,s×m.

(7)

A direct sum kernel is with m coefficients while the augmented kernels is with s × m
coefficients. Therefore, every object in every kernel can contribute during the training
for augmented kernel.

(a) (b)

(c) (d)

Fig. 1. Geometrical interpretation of (a) the empirical feature space of K1 (b) the empirical fea-
ture space of K2 (c) the empirical feature space of K1 + K2 (d) the empirical feature space of
K1

⊕
K2

By augmenting the empirical feature functions of kernels into one matrix X⊕ as

X⊕ =

⎛⎜⎜⎜⎝
φ1(x) 0 · · · 0

0 φ2(x) · · · 0
...

...
. . .

...
0 0 · · · φs(x)

⎞⎟⎟⎟⎠
s×m,s×m,

(8)
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one can show that the augmented kernel obeys the mercer theorem by taking the inner
product of X⊕ , that is XT⊕X⊕ = K1

⊕
K2

⊕ · · ·⊕Ks.
Figure 1 is the illustration of the empirical feature spaces of direct sum kernel and the

augmented kernel. From Figure 1(c) and Figure 1(d), we can see that instead of 4 objects
as in the empirical feature spaces of the individual kernels and the direct sum kernel,
there are duplicated objects (in total 8) in the empirical feature space of the augmented
kernel. However, the augmented kernel assumes that all the empirical feature functions
φ1(x), φ2(x)..., and φs(x) are independent and uncorrelated. Therefore objects only
live in their subspaces, and that is why we see two clear vertical and horizontal sets of
objects in Figure 1(d). All the objects are therefore only allowed to be on the coordinates
and the rest of the space is completely empty.

4 Generalized Augmentation Kernel in Multiple-Kernel Spaces

The augmented kernel assumes that the empirical feature spaces of kernels are all inde-
pendent and uncorrelated. However, this assumption is not necessarily true, especially
if kernels of the same type but different shapes are selected to combine. To combine
kernels which are not necessarily uncorrelated, we first define the space which is ex-
panded by these empirical feature functions to be the multiple-kernel space. In this
space, the main components are not only these empirical feature functions but also the
relationships among them. In the multiple-kernel space, the empirical feature functions
are duplicated on the off-diagonal with scaling parameters which indicate how related
the empirical feature functions from two different kernels should be. Thus, the multiple-
kernel space X⊗ is in the following form:

X⊗ =

⎛⎜⎜⎜⎝
r11φ1(x) r12φ1(x) · · · r1sφ1(x)
r21φ2(x) r22φ2(x) · · · r2sφ2(x)

...
...

. . .
...

rs1φs(x) rs2φs(x) · · · rssφs(x)

⎞⎟⎟⎟⎠ (9)

with size s × m, s × m and rij is a parameter indicating how related φi(x) and φj(x)
is. For simplicity, we assume that r11, r22, ..., and rss are all equal to 1, and rij is
equal to rji, for all i, j. By taking the inner product of X⊗ , we can therefore define the
generalized augmentation kernel K1

⊗
K2

⊗ · · ·⊗Ks as

⎛⎜⎜⎜⎝
r11r11K1 + · · · + rs1rs1Ks r12r11K1 + · · · + rs2rs1Ks · · · r1sr11K1 + · · · + rssrs1Ks

r11r12K1 + · · · + rs1rs2Ks r12r12K1 + · · · + rs2rs2Ks · · · r1sr12K1 + · · · + rssrs2Ks

...
...

. . .
...

r11r1sK1 + · · · + rs1rssKs r12r1sK1 + · · · + rs2rssKs · · · r1sr1sK1 + · · · + rssrssKs

⎞⎟⎟⎟⎠
with size s × m, s × m. Therefore the size of the generalized augmentation kernel ma-
trix is (s×m)×(s×m) while the sizes of the original kernel matrices are m×m. After
the construction of the generalized augmentation kernel matrix, the support vector ma-
chine can proceed the learning of support vectors and their corresponding coefficients.
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Fig. 2. Geometrical interpretation of the empirical feature space of K1

⊗
K2 with r11 = 1,

r22 = 1, r12 = 0.5, and r21 = 0.5 given the empirical feature spaces of K1 and K2 as in
Figure 1(a) and Figure 1(b)

Both training and testing objects have to be replicated as the generalized augmentation
kernel matrix is s times larger than the base kernels.

The geometrical interpretation of the generalized augmentation kernel is given in
Figure 2. By setting the degree of correlation between the empirical feature functions
of two kernels as 0.5, the duplicated objects, unlike in the augmented kernel, can now
position in different parts of the space as well. This obviously enlarges the searching
space of optimal solutions for support vector machines. Moreover, the parameter rij al-
lows us to smoothly vary between the original augmented kernel (r = 0) and the direct
sum kernel (r = 1). Note that the generalized augmentation kernel is not necessarily
the same as the direct sum kernel when r = 1. The generalized augmentation kernel
will be composed of duplicated direct sum kernels and therefore it might find a different
optimal SVM classifier than the direct sum kernel.

5 Experimental Results

In this section, we compare the experimental results obtained by our generalized aug-
mentation kernel with those of other kernel combination methods and a classifier combi-
nation method. The kernel combination methods include the augmented kernel [12,21],
the direct sum kernel and the composite kernel [11]. The Fisher learning rule is used to
derive the classifier combiner. One synthetic dataset and 7 benchmark datasets
[15,16,17] are used in the experiments. To test whether the generalized augmentation
kernel is more capable of describing data with different local distributions than the other
kernel or classifier combination methods, two of the 8 datasets used in the experiments
are with different local distributions, and the other 6 datasets are regular real datasets.
The single kernel and the combined kernel SVM classifiers in the experiments are im-
plemented with LIBSVM [5] and the classifier combiners are built with PRTOOLS
[17]. In every experiment, two RBF kernels are constructed, and kernel combination
and classifier combination methods were used to combine these kernels or classifiers.
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5.1 Experiment 1: Data with Varying Local Distributions

Spiral and sonar datasets are used in experiment 1. The SVM parameter C is set to 1 in
all experiments to obtain a reasonable number of support vectors. The spiral dataset is a
synthetic 2-dimensional dataset with 400 data patterns in 2 classes as shown in Figure 3.
The sonar dataset contains information of 208 objects, 60 attributes, and two classes,
rock and mine. The attributes represent the energy within a particular frequency band
integrated over a certain period of time. In all the experiments, the dataset is randomly
split into training and testing datasets with 80% and 20% ratio. For both datasets, two
RBF kernels are built and different methods are used to combine these two kernels in
each experiment. The results are averaged over 500 experiments. The sigma’s of these
single RBF kernels are assigned heuristically in the following way. The smallest sigma
is the average distance of each data pattern to its nearest neighbor. The largest sigma is
the average distance of each data pattern to its furthest neighbor.
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Fig. 3. Distribution of the spiral dataset
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Fig. 4. Experiment results of (a) spiral dataset, and (b) sonar dataset with single kernels, general-
ized augmentation kernel, augmented kernel, composite kernel and the Fisher combiner



Generalized Augmentation of Multiple Kernels 123

The results for both single kernel classifiers, kernel combination methods and clas-
sifier combination methods with spiral dataset and sonar dataset are in Figure 4(a) and
Figure 4(b), respectively. For these two datasets, the sum kernel, the augmented ker-
nel and the composite kernel all have very similar performances. The Fisher classifier
combiner is much better than kernel combination methods except for the generalized
augmentation kernel under the situation that a high correlation factor is assigned during
the construction of the generalized augmentation kernel. This suggests that the classi-
fier combiner is more preferable than kernel combination methods when data is with
varying local distributions, especially if the empirical feature spaces of the combined
kernel is assumed to be uncorrelated.

5.2 Experiment 2: Benchmark Data

Six real world datasets [15,16,17] as shown in Table 1 with the number of features, ob-
jects and classes, are used to have a more general investigation in experiment 2. The SVM
parameter C is set to 1 in all experiments to obtain a reasonable number of support vec-
tors. In all the experiments, the dataset is randomly split into training and testing datasets
with 80% and 20% ratio. For all datasets, two RBF kernels are built with the heuristic
mentioned above and different methods are used to combine these two kernels in each ex-
periment, and the results are the averages of 500 repeated experiments. The results of all
single kernel classifiers, kernel combination methods and classifier combination meth-
ods with all datasets are shown in Table 2. The results of the generalized augmentation
kernel with different values of the cross term parameter r are given in Table 3.

Table 1. Benchmark datasets

dataset biomed IMOX auto-mpg heart iris wine
# features 5 8 6 13 4 13
# classes 2 4 2 2 3 3
# objects 194 192 398 297 150 178

Table 2. Results of single kernels, augmented kernel, direct sum kernel, composite kernel and the
Fisher combiner

datasets
method biomed IMOX auto-mpg heart iris wine

average error rate of 500 experiments
single kernel 1 0.1245 0.0788 0.1704 0.3828 0.0692 0.2610
single kernel 2 0.1336 0.0794 0.1497 0.3041 0.0365 0.3147

direct sum kernel 0.1206 0.0587 0.1418 0.3346 0.0423 0.2803
augmented kernel 0.1362 0.0607 0.1396 0.3258 0.0402 0.2684
composite kernel 0.1362 0.0608 0.1396 0.3259 0.0402 0.2684
fisher combiner 0.1318 0.0893 0.1737 0.4242 0.0750 0.2622
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Table 3. Results of the generalized augmentation kernel with different values of the cross term
parameter r

datasets
cross term parameter r biomed IMOX auto-mpg heart iris wine

average error rate of 500 experiments
0 0.1362 0.0607 0.1396 0.3258 0.0402 0.2684

0.2 0.1263 0.0576 0.1375 0.3370 0.0396 0.2491
0.4 0.1231 0.0524 0.1365 0.3388 0.0388 0.2435
0.6 0.1196 0.0458 0.1435 0.3339 0.0381 0.2377
0.8 0.1222 0.0449 0.1456 0.3416 0.0423 0.2390
1 0.1189 0.0443 0.1513 0.3580 0.0367 0.2316

From Table 2 and Table 3, we can see that given the right value to the parameter r, the
generalized augmentation kernel can perform better than the best kernel combination (in
bold) in all the datasets. Nevertheless, these r values seem to be dependant on the dataset
and therefore there is a need to choose a good value beforehand. Also in these datasets,
the classifier combiner is in general worse than the kernel combination methods.

6 Conclusions

In this study we proposed a method to construct the generalized augmentation kernel
with multiple kernels. With the replication of empirical feature functions and adding a
scaling factor to influence the correlation between kernels, we give more flexibility in
positioning the duplicated objects in the combined empirical feature space.

However, this scaling factor, also called the cross term parameter, seems to be de-
pendant on the dataset, and therefore it is more beneficial if this parameter can be well
chosen before the process of learning. So far, we only choose the optimal parameter
based on testing results and this is not really a practical solution. Moreover, our exper-
iments only use two kernels so far in order to have a better insight on the cross term
parameter. It is necessary, however, to include experiments with more kernels later on.
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Abstract. It is commonly the case in multi-modal pattern recognition
that certain modality-specific object features are missing in the training
set. We address here the missing data problem for kernel-based Support
Vector Machines, in which each modality is represented by the respective
kernel matrix over the set of training objects, such that the omission of
a modality for some object manifests itself as a blank in the modality-
specific kernel matrix at the relevant position. We propose to fill the
blank positions in the collection of training kernel matrices via a vari-
ant of the Neutral Point Substitution (NPS) method, where the term
”neutral point” stands for the locus of points defined by the ”neutral
hyperplane” in the hypothetical linear space produced by the respective
kernel. The current method crucially differs from the previously devel-
oped neutral point approach in that it is capable of treating missing
data in the training set on the same basis as missing data in the test set.
It is therefore of potentially much wider applicability. We evaluate the
method on the Biosecure DS2 data set.

1 Introduction

It is well-established that the classification performance of modality-specific
classifiers can be improved by combining several different object-representation
modalities within a single pattern-recognition procedure. This fusion may be
performed at the early or late stage. In the former case of early fusion [1,2], the
growing overall dimensionality of the object representation with increasing the
number of modalities can be reduced by incorporating some form of modality-
selection within the final classification procedure [3,4], thereby eliminating the
danger of over-fitting. Such modality-selectivity is correlated with the general-
ization performance of the training process, so that, if performed ideally, the
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recognition system user is free to include object-representation modalities with-
out constraint.

This freedom creates a new difficulty – the greater the number of modalities
employed for comprehensive object representation, the more likely is the omission
of some modality-specific feature in the available data.

The problem of missing features has been intensively studied in the pat-
tern recognition literature. However, the aspect of combining diverse pattern-
recognition modalities makes special demands on the method of handling blanks
in object information.

In [1], three levels of fusing several biometric modalities are compared:

– sensor level, when what is fused are signals acquired immediately from sen-
sors forming different initial object representations;

– classifier score level, that presupposes fusion of scores of multiple classifiers
as preliminary decisions made from different modalities to be combined;

– decision level, implying fusion of final decisions made separately by single
classifiers on the basis of each modality.

Practically all known methods of compensating for missing data tacitly ad-
dress the latter two levels of combining modalities [5,6] and boil down to replac-
ing the missing features via some surrogate values or designing a fusion classifier
for all possible combinations of observable features.

At the same time, it is noted in [1] that the sensor level of fusing modalities can
potentially yield better results if it is possible to find an appropriate algorithm for
combining signals of incomparable physical type. One such algorithm is given in
[2] under the assumption that a kernel-based methodology is utilized to obtain a
recognition rule for each particular modality, for which a discriminant hyperplane
is specified in the linear space associated with each modality. In this case, the
kernel trick [11,12] transforms the problem of combining diverse modalities with
missing data into that of appropriately treating blanks in the modality-specific
kernel matrices when fusing them into a unified matrix.

Two types of incomplete data samples are to be distinguished – those in the
training set, during the classifier learning stage, and those in the test set, when
the classifier is already operational.

For the latter case, it was proposed in [8] to adopt the neutral point sub-
stitution (NPS) method originally developed in [7] as a means of kernel-based
combining of disjoint multi-modal training data, i.e., when only one feature is
known for each object. Important advantages of the NPS method are that it is
implicitly incorporated into the SVM training framework and it is free from the
necessity of inventing any heuristic surrogates for replacing the missing data. It
is shown in [8] that the omission of features of the given object at the testing
stage is theoretically equivalent, in the case of completely disjoint data sets, to
the sum-rule fusion of classifiers within the available modalities [9].

However, the NPS method of treating missing object representations does
not lend itself, in its original version, to immediate extension to the training
stage (except in the degenerate case of completely disjoint data). The purpose
of this paper is to fill in this gap while retaining the advantages of a strictly
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mathematical approach to the missing-data problem for the case of training sets
with a more typical density of blanks.

As the data source for experiments, we use the publicly available biometric
database Biosecure DS2 [10].

2 Inferring a Modality-Specific Kernel-Based Classifier
from an Unbalanced Training Set

2.1 Modality-Specific Kernel Functions

Let each real world object ω ∈ Ω be represented by several characteristics
(features) measured by respective sensors in sensor-specific scales xi(ω) : Ω →
Xi, i ∈ I, where I = {1, . . . , n} is the set of sensors. It is typical in the practice
of data analysis that the signals of the initial sensors are of different physical na-
tures and hardly lend themselves to joint treatment. We keep in this paper to the
kernel-based approach to combining arbitrary object-representation modalities
under the basic assumption that a modality-specific kernel function Ki

(
x′

i, x
′′
i

)
is defined in the output scale of each particular sensor [2].

A kernel is a symmetric two-argument function Ki

(
x′

i, x
′′
i

)
: Xi×Xi→R, which

forms a positive semidefinite matrix
[
Ki

(
xi(ωj), xi(ωl)

)
; j, l = 1, ..., m

]
for each

finite collection of objects {ωj, j =1, ..., m} [11]. Any kernel Ki

(
x′

i, x
′′
i

)
embeds

the scale of the respective sensor Xi into a hypothetical linear space Xi⊆ X̃i, in
which the null element and linear operations are defined in a particular way [12]:

φi ∈ X̃i, x′
i + x′′

i : X̃i × X̃i → X̃i, cxi : R × X̃i → X̃i.

The role of inner product is played by the symmetric kernel function itself, which
is inevitably bilinear Ki

(
α′x′

i + α′′x′′
i , xi

)
= α′Ki

(
x′

i, xi

)
+ α′′Ki

(
x′′

i , xi

)
.

The major convenience factor of the kernel-based approach to data analysis is
its ability to provide the constructor of a data-analysis system with the possibil-
ity of working with objects of arbitrary nature in unified terms of linear functions
f(ω)=f(xi(ω)) : Ω→Xi→Y, where Y is any desired linear space. More strictly,
the carrier of kernel-specific linear functions is not the feature scale Xi itself, but
rather its linear closure Xi⊆ X̃i→Y.

However, it should be kept in mind that X̃i is thus a hypothetical linear space
deriving from the kernel trick, in contrast to its observable subset Xi ⊆ X̃i which
is the output scale of a particular sensor associated with its respective feature
xi(ω) ∈ Xi relating to the set of real-world objects ω ∈ Ω.

In particular, to determine a scalar linear function fi(x) : X̃i → R, it is
enough to specify a direction element (vector, in linear-space terms) ai ∈ X̃i

and a numerical threshold bi ∈ R, then the function will be expressed by the
formula fi(x|ai, bi) = Ki(ai, x)+bi. The equation fi(x|ai, bi) = Ki(ai, x)+bi = 0
defines a hyperplane which dichotomizes the hypothetical linear space X̃i and,
as a consequence, the feature scale Xi ⊆ X̃i along with the original set of objects:

fi

(
xi(ω)|ai, bi

)
= Ki

(
ai, xi(ω)

)
+ bi ≷ 0. (1)
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The inequality (1) plays the role of a modality-specific kernel-based linear two-
class classifier in the set of real-world objects of arbitrary kind.

Before discussing methods of combining diverse modalities of objects repre-
sented in a training set with missing measurements, we consider in the next
Section the structure of a modality-specific classifier, and introduce the notion
of neutral points in the linear closure of the feature scale X̃i ⊇ Xi. This notion
will be the main mathematical instrument for filling blanks in the training set.

2.2 A Single Modality-Specific Kernel-Based Classifier Inferred
from an Incomplete Training Set

Let Ω∗={(ωj , yj), j =1, ..., N} be the training set of real-world objects allocated
by the trainer between two classes yj = y(ωj) = ±1. In the case of training
incompleteness, the partial set of training information for the subset of objects
Ω∗

i ⊂Ω∗, at which the ith modality i∈I is acquired xij =xi(ωj)∈Xi, will consist
of the matrix of available kernel values and class-indices:

Ω∗
i ⇒ {Ki(xij , xil), yj ; ωj , ωl ∈ Ω∗

i } . (2)

Perhaps the most widely adopted technique for finding a discriminant hyper-
plane (1) for a given training set of classified objects represented by a single
kernel is the Support Vector Machine (SVM) [11]. The idea underlying the clas-
sical SVM for linearly separable training sets is that of finding the discriminant
hyperplane which provides the maximum margin between the closest training
points of both classes:{

Ki(ai, xij)+bi�εi, yj =1,
Ki(ai, xij)+bi�−εi, yj =−1,

ωj ∈Ω∗
i , 2εi→ max

Ki(ai,ai)=1
(ai∈X̃i, bi∈R). (3)

The attempt to maximize the overall margin between the classes 2εi → max
is what has given rise to the terminology ”Support Vector Machine”, because
the direction vector of the optimal discriminant hyperplane âi obtained as the
solution of the optimization problem (3) is completely determined (supported)
by the projections of a few number of objects into the modality-specific feature
space Xi ⊆ X̃i.

In the more realistic case of a linearly inseparable training set, the normalized
form of criterion (3) can be put as{

Ki(ai, ai)+ Ci

∑
ωj∈Ω∗

i
δij → min(ai ∈ X̃i, bi ∈R, δij ∈ R),

yj

(
Ki(ai, xij) + bi

)
� 1 − δij , δij � 0, ωj ∈ Ω∗

i ,
(4)

where coefficient Ci > 0 penalizes the shifts δij of objects breaking the linear
separability of classes [11]. The dual form of this criterion is a quadratic pro-
gramming problem with respect to modality-specific Lagrange multipliers λij at
the inequality constraints:{∑

ωj∈Ω∗
i

λij − (1/2)
∑

ωj∈Ω∗
i

∑
ωl∈Ω∗

i
yjylKi(xij , xil)λijλil → max,∑

ωj∈Ω∗
i

yjλij = 0, 0 � λij � Ci/2, ωj ∈ Ω∗
i .

(5)



130 M. Panov et al.

As the most essential result of training, the solution of the dual problem (λ̂ij �
0, ωj ∈ Ω∗

i ) picks out a subset of support objects within the modality-specific
training set (2):

Ω̂i ={ωj ∈Ω∗
i : λ̂ij >0}⊆Ω∗

i . (6)

The positive Lagrange multipliers at the support objects (λ̂ij > 0, ωj ∈ Ω̂i)
completely determine the values of the variables which optimize (4), first of all,
the direction vector and position of the hyperplane:

âi =
∑

ωj∈Ω̂i
yj λ̂ijxij ∈ X̃i, (7)

b̂i =

∑
ωj∈Ω∗

i ,0<λ̂ij<C/2 λ̂ijKi(âi, xij) + (C/2)
∑

ωj∈Ω∗
i ,λ̂ij=C/2 yj∑

ωj∈Ω∗
i ,0<λ̂ij<C/2 λ̂ij

. (8)

As collateral solutions, the training problem (4) yields also the forced shifts
δ̂ij �0 of the training objects, but for our purpose there is no need to compute
these values.

The direction vector âi∈X̃i of the modality-specific discriminant hyperplane is
expressed in (7) as the sum in terms of the hypothetical linear operations defined
in X̃i by the modality-specific kernel by virtue of the kernel trick. However, there
is no need to compute it explicitly. Substitution of the formal equality (7) into
(1) and (8) yields the family of recognition rules immediately applicable to any
new object ω ∈Ω under the only condition that the ith modality xi(ω)∈Xi is
completely defined for it, i.e., kernel values Ki

(
xij , xi(ω)

)
are known for all the

objects of the training set:

f̂i(ω|Ω∗
i , Ci, bi) =

∑
ωj∈Ω̂i

yj λ̂ijKi

(
xij , xi(ω)

)
+ b̂i ≷ 0,

b̂i =

∑
ωj∈Ω∗

i ,0<λ̂ij<C/2

λ̂ij

∑
ωk∈Ω∗

i ,λ̂ik>0

ykλ̂ikKi(xij , xik) + (C/2)
∑

ωj∈Ω∗
i ,λ̂ij=C/2

yj∑
ωj∈Ω∗

i ,0<λ̂ij<C/2

λ̂ij

.
(9)

2.3 Neutral Points in the Modality-Specific Linear Space of Object
Representation

Let the training set of object representations in terms of the ith modality Ω∗
i

(2) be fixed. Suppose the training problem in terms of the ith modality (4)-(5)
has been solved, namely, the Lagrange multipliers are known (λ̂ij , ωj ∈Ω∗

i ).
This solution determines the optimal discriminant hyperplane in the hypo-

thetical linear closure X̃i of the modality-specific feature scale Xi. Depending
on the sign of the decision function (9), the ith modality votes for assigning a
new object ω ∈ Ω to the positive or negative class, but a firm decision will be
impossible if the object maps exactly to the discriminant hyperplane. For this
reason, we call the points of the discriminant hyperplane neutral points, using
the special symbols xφ,i ∈ X̃φ,i to denote them:

X̃φ,i =
{

xφ,i ∈ X̃i :
∑

ωj∈Ω̂i
yj λ̂ijKi

(
xij , xφ,i

)
+ b̂i = 0

}
⊂ X̃i. (10)
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It is clear that X̃φ,i is a set of continuum cardinality. All the neutral points
xφ,i ∈ X̃φ,i possess the same property of ambiguous class membership (10), but,
in what follows, it will be convenient for us to distinguish one of them having
the minimum norm:

x̂φ,i = argminxφ,i∈X̃φ,i
Ki(xφ,i, xφ,i). (11)

In terms of the linear operations in X̃i, this point is proportional to the
direction vector of the optimal discriminant hyperplane (7) x̂φ,i = ciâi =
ci

∑
ωj∈Ω̂i

yj λ̂ijxij . The coefficient ci ∈ R is given by the equation Ki(âi, ciâi)+

b̂i = ciKi(âi, âi) + b̂i = 0, whence it follows that ci = −b̂i/Ki(âi, âi), and, with
respect to (7),

x̂φ,i =
b̂i∑

ωj∈Ω̂i

∑
ωk∈Ω̂i

yjykKi(xij , xik)λ̂ij λ̂ik

∑
ωj∈Ω̂i

yjλ̂ijxij ∈ X̃i. (12)

The neutral points (12) (or more exactly, the coefficients of their representa-
tion as linear combinations of object features in the hypothetical linear
spaces X̃i), are additional results of training from the incomplete modality-
specific training sets (Ω∗

i , i ∈ I), that contain only those objects in the entire
training set Ω∗ for which the respective modality is defined. The central idea be-
hind harnessing such values for joint training with respect to all of the modalities
is using x̂φ,i instead of missed actual values of the respective modality-specific
features for incompletely represented objects. Such a strategy of replacing missed
feature values is then free of arbitrary assumptions regarding the nature of the
original natural data set.

3 Fusing Pattern-Recognition Modalities at the Training
Stage for Incomplete Data

3.1 The Principle of Additive Kernel Fusion

We will call the union of all modality-specific training sets Ω∗ =
⋃

i∈I Ω∗
i (2)

over all the available modalities I = {1, . . . , n} the unified training set. We shall
say the unified training set Ω∗ is full if each object ωj ∈ Ω∗ is represented by
all modality-specific signals

(
xij = xi(ωj)∈Xi, i ∈ I

)
, i.e., all the kernel-specific

training sets coincide Ω∗
1 = ... = Ω∗

n.
A full training set Ω∗ allows for immediate combination of the various modal-

ities by kernel fusion. It is enough to define an appropriate combined ker-
nel (inner product) K(x′, x′′), x = (xi, i ∈ I) ∈ X̃, in the Cartesian product
X̃ = X̃1× ... × X̃n=|I| of the linear spaces X̃i ⊇ Xi defined by the respective
kernels. In particular, the sum of the initial kernels K(x′, x′′) =

∑
i∈I Ki(x′

i, x
′′
i )

will be a kernel in X̃. From this point of view, any choice of a point a =
(ai ∈ X̃i, i ∈ I) ∈ X̃ and real number b ∈ R yields a discriminant hyperplane
f̂(ω|Ω∗)=K

(
a, x(ω)

)
+b=

∑
i∈I Ki

(
ai, xi(ω)

)
+b≷0 with direction vector a in
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the Cartesian product X̃, and produces, thereby, a kernel fusion technique. How-
ever, just as in the case of a single kernel, there is no need to implicitly evaluate
the hypothetical direction vector which exists only in terms of the kernel trick.

The straightforward application of the SVM training principle (4)-(12) to
the Cartesian product of the particular linear spaces xj = (xij , i ∈ I) ∈ X̃ =
X̃1× ...× X̃n, ωj ∈Ω∗, results in the dual training problem, in which C >0 is the
penalty coefficient on the shifts of objects that break the linear separability of
the training set in X̃:{∑

ωj∈Ω∗ λj − (1/2)
∑

ωj∈Ω∗
∑

ωl∈Ω∗ yjyl

(∑
i∈I Ki(xij , xil)

)
λjλl → max,∑

ωj∈Ω∗ yjλj = 0, 0 � λj � C/2, ωj ∈ Ω∗
i .

(13)

This quadratic programming problem over Lagrange multipliers (λj , ωj ∈ Ω∗)
has the same structure as that for a single modality (5). The only difference is
that the training set occurs in (13) through kernels K(xj , xl) =

∑
i∈I Ki(xij , xil)

in the unified linear space X̃ instead of single modality-specific kernels Ki(xij , xil)
(5) in the particular spaces X̃i.

Let the training set be not full, i.e., such that each object ωj is, in general,
represented by only a fraction of the modalities xij ∈ Xi, i ∈ Ij ⊆ I. Then, there
are objects ωj not represented by certain of the modalities (xij , i /∈ Ij), and
the respective kernel values adjacent to these objects are unknown in the dual
criterion (13)

(
Ki(xij , xil) =?, i /∈ Ij , ωl ∈ Ω∗).

The central idea for overcoming the problem of incomplete data at the training
stage outlined in the next Section, is that of substituting the neutral values x̂φ,i

for the missing modalities xij .

3.2 Neutral Point Substitution for Missing Representations of
Training Objects

Let the SVM be applied within each modality-specific partial training set Ω∗
i

(Section 2.2). Then, the sets of support objects Ω̂i along with Lagrange mul-
tipliers (λ̂ij , ωj ∈ Ω∗

i ) and biases of discriminant hyperplanes b̂i are found for
all the modalities i ∈ I in accordance with (5), (6) and (12). As a result, the
hypothetical neutral points x̂φ,i ∈ X̃i are defined by (12) as linear combinations
of modality-specific object features.

Thus, it is possible to compute the neutral-point substitutes for missing values
of kernels in (13):

Ki(xij , xil) ⇐ Ki(x̂φ,i, xil), i /∈ Ij , ωl ∈ Ω∗;

Ki(x̂φ,i, xil) =
b̂i

∑
ωk∈Ω∗

i
ykλ̂ikKi(xik , xil)∑

ωk∈Ω̂i

∑
ωq∈Ω̂i

ykyqKi(xik, xiq)λ̂ikλ̂iq

.
(14)

The Lagrange multipliers (λj , ωj ∈Ω∗), found as a solution of the dual problem
(13) after such a substitution, determine, on the full application of the sequence
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of computations (6)-(12), first, the set of support objects Ω̂ ={ωj ∈Ω∗ : λ̂j >0},
then the bias of the discriminant hyperplane b̂, and finally yield the decision rule

f̂(ω|Ω∗, C) =
∑

ωj∈Ω̂ yjλ̂j

∑
i∈I Ki

(
xij , xi(ω)

)
+ b̂ ≷ 0, (15)

which is the result of fusing the available pattern-recognition modalities taking
into account the final imbalance of the incomplete training set Ω∗.

4 Experiments: Biometric-Based Identity Authentication
from Incomplete Data

To demonstrate the above principle experimentally, we employ the Biosecure
database [10], derived from a European project whose aim is to integrate multi-
disciplinary research efforts in biometric-based identity authentication.

We randomly chose a total of 333 different individuals from the database, with
distinct identities Z ={z=1, ..., 333}. Each of them is represented by four time-
spaced measurements vt

i(z)∈ Vi, t=0, 1, 2, 3, of eight modalities i∈ I ={1, ..., n},
n=8, where Vi is the scale for measuring the ith modality:

– two versions of the frontal face image (high- and low-resolution ones from,
respectively, professional and web camera), vt

i(z)∈Vi, i=1, 2,
– six fingerprints of the right hand (optical and thermal imprints of the index

finger, middle finger and thumb) vt
i(z)∈Vi, i=3, ..., 8.

The Cartesian product of all the modality-specific measurement scales will
be denoted as V = V1× ... × Vn. However, not all of potential measurements{
vt

i(z), z ∈ Z, i ∈ I, t = 0, 1, 2, 3
}

are available in the data base. Approximately
one fourth of them have missing constituents, but for each of the chosen persons
z ∈ Z at least one of the measurement sets, let it be t = 0, is full, i.e., all the
modalities

(
v0

i (z), i∈ I
)

are properly represented in the data base, and neither
of the remaining sets

(
v1,2,3

i (z), i∈I
)

is completely missed.
In the experiments, we used this full set v0(z) =

(
v0

i (z), i ∈ I
) ∈ V as the

personal template of person z∈Z, whereas the remaining three sets

v1,2,3(z)=
(
v1,2,3

i (z), i∈ I
)∈V, (16)

some of whose elements may be missing, served as his/her independent repre-
sentation in the experiments. Let symbols Vi(z) =

{
vt

i(z), t = 1, 2, 3
}⊂ Vi and

Vi =
⋃

z∈Z Vi(z) ⊂ Vi stand, respectively, for the set of the representations of
person z in terms of the ith modality and the total set of such representations
of all the persons involved in the experiments.

Thus, we distinguish here between the people’s identities z∈Z and the three
times greater number of their multi-modal computer representations vt(z) =
(vt

i(z), i∈I) ∈V =
⋃

z∈Z V (z)⊂V, V (z)=V1(z) × ... × Vn(z)⊂V, t=1, 2, 3.
To constitute the total set of real-world pattern-recognition objects ω ∈ Ω,

we choose the set of pairs

Ω =
{
ω=
(
vt(z), z̃

)}
=V ×V×V×Z, (17)
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where vt(z)=(vt
i(z), i∈I) is one of the three received representations of a person

t=1, ..., 3, and z̃ is its claimed identity, which may be true or false. We shall say
that object ω=(v(z), z̃) belongs to the class of clients y=1 if the identity claim
is correct z= z̃, and to the class of impostors y=−1 in the case of a fraudulent
claim z 	= z̃.

For each modality i ∈ I, a real-valued similarity measure Si(v′i, v
′′
i ) : Vi ×

Vi →R is defined in the Biosecure database. It appears natural to measure the
credibility of the identity claim z̃ in the received pair ω=(v(z), z̃)=

(
(vi, i∈I), z

)
from the viewpoints of different modalities i ∈ I as the real-valued modality-
specific features xi(ω)=Si

(
vi(z), v0

i (z̃)
)∈R. In this case, the natural modality-

specific kernel is dot product of feature values Ki(ω′, ω′′) = Ki

(
xi(ω′), xi(ω′′)

)
=

Ki(x′
i, x

′′
i )=x′

ix
′′
i .

We thus used information on 333 persons (person identities) Z=
{
z=1, ..., 333

}
,

each of which is represented by three independent sets of multi-modal measure-
ments v1,2,3(z) in accordance with (16). All in all, we have 999 × 333 = 332667
pairs of person representations and person identities ω =(v(z), z̃), which is the
size of the full set of objects |Ω|=332667 (17) in the experiments.

From the part of the full data set Ω, which contains only complete person
representations

(
vt

i(z), i ∈ I
)
, we chose the fixed test set consisting of 20962

objects, namely, pairs <complete person representation/claimed identity>. From
the rest of Ω, containing complete as well as incomplete person representations,
we further randomly chose 500 training sets each consisting of 200 pairs with
the correct claimed identity y =1 and 800 incorrectly claimed pairs y =−1. On
average, one fourth of 1000 objects in each of the random training sets were
incompletely represented, i.e., about 250 of them had at least one missing value
in the feature vector.

The goal of the experiment is to show that filling-in blanks in the multi-modal
training sets by the generalized neutral-point technique improves generalization
performance of the inferred recognition rule in comparison with other methods of
imputation. We compared the SVM-NPS technique outlined in this paper with
the following five SVM-based methods of treating blanks in the training data:

– SVM handling only objects represented by all the features, in our case,
about 3/4 of the training set (SVM-Full);

– sum-rule of combining single SVM-based modality-specific classifiers,
inferred each from the partial training subset containing only objects for which the
respective modality is known (SVM-SumRule);

– SVM handling all the objects with replacing the unknown features by their aver-
aged known values over the entire training set (SVM-OverallMean);

– the same with replacing the unknown features by their averaged known
values over the objects of the same class (SVM-ClassSpecificMean);

– the same with replacing the unknown features by their averaged known
values over 5 nearest neighboring objects in the feature space (SVM-5NN).

The interpretation of training results was based on computing the Equal Error
Rate of the direction vector of the discriminant hyperplane inferred by each of
the six techniques under comparison from each of the 500 random training sets
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and applied to the test set. The EER value of the respective technique was
further averaged over all the training sets.

The following table summarizes the averaged EERs in percentages for the
imputation methods under comparison starting with our SVM-NPS:

SVM-NPS SVM-Full SVM-SumRule SVM- SVM- SVM-5NN
OverallMean ClassSpecificMean

1.07 1.93 1.93 1.38 1.92 1.85

As we can see, the SVM-NPS approach shows almost two times better perfor-
mance than the SVM-based learning from the training set consisting only of
objects with the complete set of features and the SVM-based sum-rule of com-
bining modality-specific classifiers. All other imputation methods are also far
outperformed.

5 Conclusions

In this paper, we have set out to generalize the previous neutral point method
for accommodating missing data within multi-modal kernel fusion problems in
order to accommodate arbitrary amounts of missing training (as opposed to
test) data. By using imbalance-sensitive SVM methods, we have shown that the
SVM-NPS approach to multi-modal pattern-recognition with incomplete data
displays exceptionally good generalization performance as compared to the sum
rule fusion of modality-specific classifiers, and to the known SVM-based methods
of missing-data imputation. Future experimental study will set out to determine
the full bounds of its practical applicability.
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Abstract. Multiple Kernel Learning (MKL) has become a preferred
choice for information fusion in image recognition problem. Aim of MKL
is to learn optimal combination of kernels formed from different fea-
tures, thus, to learn importance of different feature spaces for classifi-
cation. Augmented Kernel Matrix (AKM) has recently been proposed
to accommodate for the fact that a single training example may have
different importance in different feature spaces, in contrast to MKL that
assigns same weight to all examples in one feature space. However, AKM
approach is limited to small datasets due to its memory requirements.

We propose a novel two stage technique to make AKM applicable
to large data problems. In first stage various kernels are combined into
different groups automatically using kernel alignment. Next, most influ-
ential training examples are identified within each group and used to
construct an AKM of significantly reduced size. This reduced size AKM
leads to same results as the original AKM. We demonstrate that pro-
posed two stage approach is memory efficient and leads to better perfor-
mance than original AKM and is robust to noise. Results are compared
with other state-of-the art MKL techniques, and show improvement on
challenging object recognition benchmarks.

1 Introduction

Object and image recognition has undergone a rapid progress in last decade due
to advances in both features design and kernel methods [1] in machine learn-
ing. In particular, recent introduction of multiple kernel learning methods set
a new direction of research. The state-of-the-art object and image recognition
algorithms use multiple kernel learning based methods for classification, dimen-
sionality reduction and clustering in a wide range of applications [1], [2]. Due
to importance of complementary information in MKL, much research was done
in field of feature design [3], [4] to diversify kernels, leading to large number of
kernels in typical visual classification tasks. Kernels are often computed indepen-
dently of each others thus may be highly informative, noisy or redundant. Proper
selection and fusion of kernels is therefore crucial to maximize performance and
to address the efficiency issues in large scale visual recognition applications.

MKL was first proposed by Lancriet et al. [5] using semi-definite program-
ming, where kernel weights were learned by maximizing soft margin between
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two classes. Since algorithm proposed in [5] was limited to small kernel sizes and
low number of kernels, a number of other methods were proposed to address
these problems [6], [7]. All these MKL methods focus on linear combination of
kernels, in which a single kernel corresponding to a particular feature space is
attributed a single weight. This is a strong constraint as it does not exploit in-
formation from individual samples in different feature spaces, e.g., in context of
object recognition, some samples can carry more shape information while others
may carry more texture information for same object category. To address this
problem AKM was proposed [8] in which different features extracted form same
sample are treated as different samples of same class. Fundamental problem
with AKM is its large augmented matrix which requires a lot of memory and
makes it inapplicable to large datasets. In this paper we derive primal and dual
of AKM, discuss its empirical feature space and address its issues with a two
stage architecture. In the first stage, groups are formed from a set of base ker-
nels based on similarity between kernels. Next, a representative kernel for each
group is learned by a linear combination of within group kernels. These represen-
tative kernels are highly informative containing most of information from each
group. Our grouping approach is also useful for methods proposed in [9], [10],
which assumed that kernel groups are available. We further reduce complexity of
AKM by exploiting independence of empirical feature spaces of representative
kernels in augmented kernel matrix. Due to independence, only most influen-
tial training examples from the representative kernels can be used to build an
AKM of a reduced size without compromising its performance. In second stage,
AKM scheme is used to include contribution of most influential samples from
all representative kernels in final classifier. Our experiments show that proposed
strategy of grouping kernels and selecting subsets of training examples makes
approach efficient and improves classifier performance. AKM results are com-
pared to other MKL techniques, using different regularization, 	1, 	2, and 	∞
norms. We demonstrate significant improvement on challenging object recogni-
tion benchmark Pascal VOC 2007 [11] and multiclass flower datasets [12], [13].
Moreover, proposed memory efficient learning strategy is also applicable in other
MKL techniques which is particularly important in large scale data scenario.

Rest of paper is organized as follows. In section 2 we discuss the structure
of AKM matrix and derive its primal and dual for SVM. We then compare
empirical feature spaces of a linear combination MKL and AKM schemes. Our
proposed two stage multiple kernel learning for AKM is presented in section 3.
In section 4 we present the result and compare with other state-of-art MKL
methods for object recognition.

2 Linear Combination vs Augmented Kernel Matrix

We first present structure of AKM and give primal formulations for a binary clas-
sification. We then present concept of empirical feature space for AKM scheme.

Consider we are given m training samples (xi, yi), where xi is a sample in
input space and yi ∈ ±1 is its label. Feature extraction results in n training
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kernels (Kp) of size m× m and corresponding n test kernels (K̇p) of size m× l.
Each kernel Kp = 〈Φp(xi), Φp(xj)〉 implicitly maps samples xi from input space
to feature space with mapping function (Φp(xi)p=1,...,n). In MKL aim is to find
linear combination

∑n
p=1 βpKp, normal vector w and bias b of separating hyper-

plane simultaneously such that soft margin between two classes is maximized.
Primal and its corresponding dual for a linear combination of kernels are de-
rived for various formulations in [14], [5], [6], [7]. The decision function is then
f(x) = sign(

∑m
i=1 αiyik(xi, x) + b), where k(xi, x) is dot product of test sample

x with ith training sample in feature space, α ∈ R
m, and b are Lagrange multi-

plier and bias. Contribution of a given feature channel is fixed by βp, which may
be suboptimal, as in a particular feature channel one example can carry more
shape information than texture or vice versa. In contrast, in AKM [8], given the
set of base training kernels augmented kernel is defined as follows:

K = K1 ⊕ · · · ⊕ Kn =

⎡⎢⎣K1 · · · 0
...

. . .
...

0 · · · Kn

⎤⎥⎦ (1)

where base kernels are on diagonal. Zeros on off diagonal reflect that there is no
cross terms between different kernel matrices. Note that all base kernels are of
size m×m while AKM is of size (n×m)× (n×m), thus it uses n×m training
samples instead of m. The SVM primal of AKM scheme is then given:

min
w,ξ,b

1
2

n∑
p=1

〈wp, wp〉 + C

n×m∑
i=1

ξi (2)

s.t. yi(
n∑

p=1

〈wp, Φp(xi)〉 + b) ≥ 1 − ξpi, ξpi ≥ 0, i = 1, ..., m, p = 1, ..., n

The dual of Eq. (2) can be derived using Lagrange multiplier techniques:

max
α

n∑
p=1

m∑
i=1

αpi − 1
2

n∑
p=1

m∑
i,j=1

αpiαpjyiyjkp(xi, xj) (3)

s.t.

n∑
p=1

m∑
i=1

αpiyi = 0, 0 ≤ α ≤ C,

Decision function of AKM is f(x) = sign(
∑n

p=1

∑m
i=1 αpiyikp(xi, x) + b, where

αpi are Lagrange multipliers and x is test sample. Note that same samples from
different feature channels are added as separate examples of same class, therefore
one Lagrange multiplier is learnt for each sample from each feature channel.

The concept of empirical feature space is crucial to analyze spread and shape
of data. Kernel matrices consist of dot products between samples in some feature
spaces. These feature spaces are usually very high or even infinite dimensional.
However, in [15] it is shown that there exists an empirical feature space in which
the intrinsic geometry of data is identical to true feature space, thus, in many
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problems it is sufficient to study empirical feature space. Empirical feature spaces
X and Ẋ for training kernel K of size m × m and test kernel K̇ of size m × l
can be derived by eigen value decomposition as shown in [8].

Consider a linear combination of two training kernels K1, K2 with sample
points in r1, r2 dimensional empirical feature space given by matrices X1, X2 of
sizes r1 ×m and r2 ×m, respectively. By definition of a dot product, computing
weighted sum of base kernels is equivalent to computing cartesian product of
associated empirical feature spaces, after scaling them with

√
βp, p = 1, ..n. An

illustration of empirical feature space is given in figure 1. K1, K2 are two base
kernels with rank r1 = r2 = 1 i.e., the samples live in one dimensional empirical
feature space as shown in figure 1(a) and (b). Note, this toy example is for
illustration purpose, whereas, in practice the empirical feature spaces can be up
to m dimensional. Figure 1(c) shows the empirical feature space of a sum of
two kernels. Note that the number of samples in figure 1(c) is equal to m which
is the same as the number of samples in K1 and K2.

Let K be AKM of two training kernels K1, K2. The matrix X of training vec-
tors in empirical feature space associated with K can be computed by eigen value
decomposition [8]. However, by exploiting property of block diagonal augmented
matrix K, its associated matrix X is directly given by:

X =
(

X1 0
0 X2

)
(4)

where X is a block diagonal matrix of size (r1+r2)×2m, with matrix X1 and X2

on its diagonal. The empirical feature space for augmented kernel matrix from
two one-dimensional kernels K1 and K2 is shown in figure 1(d). Note that there
are now total of 2m training examples in the empirical feature space of AKM.

3 Two-Stage Multiple Kernel Learning

In this section we present a two stage architecture for multiple kernel learning
which combines the MKL and AKM schemes. Kernel matrix of AKM needs large
amount of memory and is very slow in training of classifier. For example, the
extra memory required by cross terms in a large augmented kernel matrix of
n base kernels is n(n − 1) times larger than linear combination of these base
kernels. This makes AKM less inapplicable to large datasets especially when n is
large. We address this problem by introducing grouping of base kernels followed
by a selection of training samples. Two stage approach serves two goals. It ad-
dresses the memory problems of AKM but also filters out noisy and redundant
feature channels. Adding redundant feature channels as separate examples in-
creases the memory requirements in AKM and adding noisy feature channel as
separate examples leads to a significant performance loss. These two problems
are alleviated by applying the grouping stage.
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3.1 Kernel Grouping

We define multiple groups of base kernels using a similarity criterion. One such
grouping criterion can be based on the modality of features or their extrac-
tion technique. For example, feature channels based on colour can belong to
one group, texture based feature channels to another group and shape based
ones to yet another group. However, this kind of grouping is not automatic
and needs prior information about input spaces of kernel which may not be
available. We exploit Kernel Alignment [16] as a measure of similarity between
kernels to group then in unsupervised manner. Given an unlabeled sample set
S = {xi}m

i=1, we use the Frobenius inner product between kernel matrices i.e.,
〈K1, K2〉F =

∑m
i,j=1 K1(xi, xj)K2(xi, xj). The empirical alignment between ker-

nels with respect to the set S is defined as:

Â(S, K1, K2) =
〈K1, K2〉F√〈K1, K1〉F 〈K2, K2〉F

(5)

where Ki is the kernel matrix for the sample S. In [16] concentration and gener-
alization of kernel alignment was introduced and proved. Concentration means
that the probability of an empirical estimate deviating from its mean can be
bounded as an exponentially decaying function of that deviation. In other words,
the alignment is little dependent on the training set S as shown by theorem 3
in [16]. Generalization (test error) of a simple classification function is related
to the value of the alignment as shown by theorem 4 in [16].

Using kernel alignment Â(S, k1, k2) defined in Eq. (5) as a similarity measure
we preform agglomerative clustering to find g groups of kernels. We initialize
all kernels as clusters and merge two most similar clusters at a time. Simi-
larity between two clusters is defined as largest distance between all possible
pairs of clusters members. This continues until g groups re obtained. We used
agglomerative as opposed to k-means to make it independent to initialization.
Kullback-Leibler divergence can also be used as a similarity criterion between
kernels [17].

Learning a linear combination of kernels within a group can discard or down-
weight redundant or noisy kernels thus result in a better kernel. Moreover, linear
combination leads to more compact representation without loss of information.
Therefore, for each group, MKL-SVM methods using 	1, 	2 and 	∞ norms are
applied to obtain the representative kernels. The kernel that obtains the highest
score on the validation data is used as group representant. Thus, the grouping
and within group combination results in a set of representative kernels containing
most of the information from various feature channels.

3.2 Selection of Training Samples

Kernel grouping partially addresses the issue of large AKM matrix. However,
the matrix can be further reduced without compromising the performance by
selecting only the samples from representative kernels which are crucial for clas-
sification. The decision function of SVM is determined by the αi, one for each
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(a) (b) (c) (d)

Fig. 1. Empirical feature spaces for Multiple kernels: (a) empirical feature space for
K1; (b) empirical feature space for K2; (c) empirical feature space for K1 + K2; (d)
empirical feature space for K1 ⊕ K2

training sample. The αi are non-zero for the support vectors only. Hence, for a
single kernel, support vectors are sufficient for classification and all other sam-
ples can be discarded without performance degradation. This is supported by the
fact that the feature spaces do not interfere with each other due to the structure
of the augmented kernel matrix (cf. Eq. (1)). It can be proved by considering
the dual of AKM, Eq. (3), which can be rewritten as follows:

max
α

m∑
i=1

α1i − 1
2

m∑
i,j=1

α1iα1jyiyj〈Φ1(xi), Φ1(xj)〉 + ...+ (6)

m∑
i=1

αni − 1
2

m∑
i,j=1

αniαnjyiyj〈Φn(xi), Φn(xj)〉

s.t.
m∑

i=1

α1iyi + ... +
m∑

i=1

αniyi = 0, 0 ≤ α ≤ C,

The first constraint in Eq. (6) is the sum of constraints for n kernels. The support
vectors for all individual kernels together satisfy this constraint and thus lie in the
feasible set of the optimization problem in Eq. (6). This is also illustrated by a toy
example of a binary classification in figure 1. All the support vectors in empirical
feature space for base kernels K1 and K2 are shown by the enclosing black circles
and the hyperplane is represented in green at origin in figure 1(a) and (b),
respectively. Figure 1(c) shows the empirical feature space of unweighted linear
combination of base kernel. There are only two support vectors in figure 1(c),
and the classes are separated by the hyperplane. However, the separability of
the training set does not necessarily guarantee better performance as it depends
upon the generalization to the test set [1]. Figure 1(d) is the empirical feature
space of AKM combination of base kernels. Feature spaces of two base kernels
are orthogonal to each other. There are 2m training samples and all the support
vectors of kernel K1 and K2 are support vectors of AKM due to the orthogonality
of their feature space. It is clear from Eq. (6) and figure 1, that the support
vectors of representative kernels from each group are sufficient to construct the
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AKM matrix as the Lagrange multipliers of support vectors lie in the feasible set
of Eq. (6). The use of support vectors only for different combinations of kernels
is validated empirically in section 4.

4 Experiments and Discussion

This section presents experimental results on challenging binary and multiclass
object recognition datasets Pascal VOC 2007 [11], Oxford Flower 17 [12] and
Oxford Flower 102 [13].

Pascal VOC 2007 [11] consists of 20 object classes with 9963 image exam-
ples. The classification of 20 object categories is handled as 20 independent bi-
nary classification problems (as recommended by organizers of Pascal challenge).
We present results using average precision (AP) [11], which is proportional to
area under precision recall curve. Mean average precision (MAP) is computed
by averaging scores for all 20 classes.

We compute 20 kernels by combining features introduced in [3], [4] with 2
sampling strategies (dense, interest points) and spatial location grids [18]: whole
image (1x1), horizontal bars (1x3), vertical bars (3x1) and image quarters (2x2).
In experiments we use SVM to compare several kernel combination schemes and
two stage AKM scheme proposed in this paper. The multiple kernel SVM (MK-
SVM) schemes differ by regularization norms used during learning, which include
	1 [7], 	2 [14], and 	∞ (equal weights). We divide 20 kernels into 4 groups as
discussed in section 3.1. For each group, MKL-SVM methods using 	1, 	2 and 	∞
norms are applied to obtain representative kernels. Results for various learning
techniques are presented in table 1.

Consistently lower performance of 	1-norm, which typically leads to sparsely
selected kernels, indicates that most of base kernels carry complementary infor-
mation. Therefore, non-sparse multiple kernel methods, 	2-norm and 	∞-norm,
give better results. Proposed two stage AKM scheme outperforms other MKL
combination schemes. In case of 	2 within group and AKM between groups,
(AKM, 	2), we obtain an improvement of 0.6%, and in case of 	∞ within group
and AKM between groups, an improvement of 0.7% over all linear combinations
of MKL-SVM. In case of informative kernels, use of kernel grouping achieves
comparable performance to corresponding non-grouping schemes. The best per-
formance of state-of-the-art multiple kernel learning for these kernels is 62.1%
, as shown in table 1 while performance of winning method for this challenge
is 59.4% [11]. We beat winning method by 3.4%, moreover, 0.7% improvement
by proposed two stage AKM over state-of-the-art MKL is still significant given
that all kernels are highly informative due to carefully designed features. For ex-
ample, leading methods in PASCAL VOC often differ by a fraction of a percent
in MAP. It is important to note that AKM on its own is giving 61.0%, however,
when it is used together with grouping stage it is performing 1.8% better. It
is because linear combination within grouping stage gives good representative
kernel with less noisy or redundant data. These highly informative representa-
tive kernel should be combined with AKM scheme so that information in each
example of these kernels is exploited. We expect grouping scheme to show better
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Table 1. MAP of PASCAL VOC 2007 with various MKL and AKM approaches

�����������between groups

within group
no grouping linear �1 linear �2 linear �∞

linear �1 56.0 55.3 56.5 56.6
linear �2 61.4 60.8 61.3 56.5
linear �∞ 62.1 61.1 62.1 62.0
AKM 61.0 60.8 62.7 62.8

performance if there are noisy or redundant kernels in set as shown by noisy
feature channels experiment in next section.

We have also validated empirically the selection of support vectors for AKM
on 20 binary classification problems of the Pascal 2007 [11] dataset. Only 0.3% to
0.5% of the support vectors of AKM differs from the union of individual support
vectors of representative kernels, while the MAP results are same up to sixth
decimal place. However, due to use of the significant examples only, we are using 3
to 4 times less samples per base kernel. Hence, size of AKM matrix is 60% to 70%
less than original size without compromising performance. It is important to note
that it is not possible to apply AKM without selection of significant examples in
this benchmark due to memory requirements. We have used 4 groups of kernels
thus AKM kernel is even smaller than original kernel of size 5011 × 5011. Note
that for each group a classifier has to be trained i.e. 4 in this experiment. This is
however done efficiently on small kernels and acceptable considering performance
gain achieved over other multiple kernel learning methods. Moreover, in α-step
of alternative MKL techniques [7], [14] we have to train linear combination
of base kernels for different regularization norms several times before obtaining
optimal weights values β for base kernels. All results presented for AKM in this
paper are obtained using “support vectors only scheme”.

Oxford Flower 17 [12] dataset consists of 17 categories with 80 images in
each category. Dataset is split into training, validation and test using 3 predefined
random splits. We have used used seven distance matrices provided online. Fea-
tures used to compute these distance matrices include different types of shape,
texture and color based descriptors [12]. We have used SVM as classifier and
follow one-vs-all setup for multiclass classification [12]. We train an AKM clas-
sifier for each category and use the maximum response of the classifiers for each
example to obtain the label and score for evaluation. Regularization parameter
for the SVM is in the range C ∈ {10(−2,−1,...,3)}.

Results are given in figure 2(a). For comparison we use recent evaluation
results from [19] of state-of-the-art feature fusion techniques including MKL
and boosting based classifier fusion. There are two baseline techniques, MKL-
prod-SVM and MKL-avg-SVM, which are obtained from element wise product
and averaging of base kernels and classifying with SVM. MKL baseline for kernel
product gives the highest score of 85.5%. Moreover, it is very simple and fast in
comparison to other MKL methods in figure 2(a). Our proposed scheme based on
AKM gives 86.7%, which is better than all MKL and Boosting based methods.

We also investigate effect of adding random feature channels on different fu-
sion schemes. In addition to 7 informative kernels of Flower17 dataset we have
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(a) (b) (c)

Fig. 2. (a) Mean accuracy on Oxford Flower17 and comparision with different machine
learning methods; (b) Oxford Flower17. Mean Accuracy of diffierent fusion methods
under noisy feature channels; (c) Mean accuracy on Oxford Flower 102 dataset.

generated 20 RBF kernels from 20 sets of random vectors. We started with all
informative kernels, i.e., zero noisy kernels, then we added different number of
noisy kernel. Mean accuracy of different state-of-the-art methods under noisy
channels is presented in figure 2(b). MKL baseline drops down significantly with
the number of noisy kernels while two-stage AKM is robust to noisy feature chan-
nels and perform significantly better than MKL or boosting based approaches.

Oxford Flower 102 [13] is an extended multi-class dataset containing 102
flower categories. The dataset is split into training, validation and test using
predefined splits. For experiments we have used 4 χ2 distance matrices provided
online. The details of the features used to compute these distance matrices can
be found in [13]. The experimental setup is the same as for Oxford Flower 17.
AKM is performing comparable to MKL as shown in figure 2(c).

5 Conclusions

In this paper we have presented a novel two stage multiple kernel learning ap-
proach for augmented kernel matrix. The proposed method addresses the com-
plexity problems of AKM and makes it robust to redundant and noisy kernels.
We propose automatic grouping of kernels based on kernel alignment by ag-
glomerative clustering of kernels. Learning representative kernels for each group
results in a small set of highly informative kernels. Learning a combination within
a group discards or downweights redundant and noisy kernels thus results in an
optimal kernel from a set of informative base kernels. The complexity is further
reduced by exploiting the property of independence of empirical feature spaces
in the AKM scheme. It allows to use only the most influential examples from
each representative kernel to construct the AKM matrix. We perform exper-
iments on challenging object recognition datasets and the results validate our
technique. The proposed approach makes it possible to use the AKM method for
20 kernels with several thousands of training examples. A performance increase
is observed compared to MKL based on a linear combination of all base kernels.
This observation is significant as it suggests that the information in the kernels
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can be exploited more effectively and the classification rate increases without
using additional features.
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Abstract. In this paper we formulate multiple kernel learning (MKL) as
a distance metric learning (DML) problem. More specifically, we learn
a linear combination of a set of base kernels by optimising two objec-
tive functions that are commonly used in distance metric learning. We
first propose a global version of such an MKL via DML scheme, then
a localised version. We argue that the localised version not only yields
better performance than the global version, but also fits naturally into
the framework of example based retrieval and relevance feedback. Finally
the usefulness of the proposed schemes are verified through experiments
on two image retrieval datasets.

1 Introduction

Kernel methods [1] have enjoyed considerable success in a wide variety of learn-
ing tasks since their introduction in the mid-1990s. In the past few years, an
extension of the kernel methods, multiple kernel learning (MKL) [2,3,4], has
drawn great attention in the machine learning community. The goal of MKL
is to learn an “optimal” (and often linear) combination of a given set of base
kernels. On the other hand, distance metric learning (DML) [5,6,7] is another
very active area of machine learning in recent years. In supervised and linear
DML, the objective is to learn a Mahalanobis distance in the original space,
such that the distance between similarly labelled samples is reduced and that
between differently labelled samples is increased.

In this paper, we combine MKL and DML by formulating MKL as a DML
problem. More specifically, we learn a linear combination of a set of base kernels,
or equivalently a composite feature space, by considering several DML objectives
in the concatenation of the feature spaces induced by the base kernels. Such a
scheme is of particular interest to applications with heterogeneous data types
(e.g. strings, graphs, vectors). In such a situation, it is not straightforward to
learn a distance function by combining the features in the input spaces. On
the other hand, by mapping into feature spaces, different types of features are
unified and standard DML methods can be applied. The learnt feature space can
be considered optimal for distance based classifiers such as nearest neighbour
(NN), which makes our scheme particularly attractive for image retrieval. We
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demonstrate that by learning a composite feature space using DML objectives,
the performance of an image retrieval system can be improved over a single
kernel or the uniform weighting scheme.

The formulation above learns a composite feature space globally. We then
further propose to learn a feature space locally, that is, for each query image.
Such a formulation fits naturally into the framework of interactive retrieval. For
each query image, we start with a uniform weighting of the base kernels, and ask
the user to annotate a small number of retrieved images. Training triplets are
then generated from these annotated images and used for learning a set of kernel
weights for this particular query image. We show on two datasets that this local
learning approach further boosts the performance of an image retrieval system.

The rest of this paper is organised as follows. In Section 2, we introduce pre-
vious work that is related to this paper. We then present our MKL via DML
approach, first the global setting then the local setting, in Section 3. Experi-
mental evidence showing the usefulness of our approach is provided in Section 4.
Finally, conclusions are given in Section 5.

2 Related Work

In this section we discuss the approaches in multiple kernel learning and distance
metric learning that we combine within an active learning scenario.

2.1 Multiple Kernel Learning

The goal of multiple kernel learning (MKL) is to learn an “optimal” (and of-
ten linear) combination of a set of base kernels, or equivalently, an “optimal”
composite feature space. Suppose one is given n m × m training kernel matri-
ces Kh, h = 1, · · · , n and m class labels yi ∈ {1,−1}, i = 1, · · · , m, where m is
the number of training samples. The original formulation of MKL [2] considers
a linear convex combination of these n base kernels: K =

∑n
h=1 βhKh, βh ≥

0, ||β||1 = 1. In [2] the soft margin of SVM is used as a measure of optimality,
and the kernel weights are regularised with an 	1 norm. The efficiency of this first
MKL formulation was improved significantly in later works [3,4]. Various other
norms have also been proposed to regularise the kernel weights [8]. In parallel
to MK-SVM, another line of research focuses on MKL for Fisher Discriminant
Analysis (FDA) [9,10], where the FDA type of class separation criterion is con-
sidered instead of the soft margin.

2.2 Distance Metric Learning

Supervised linear distance metric learning (DML) [5,6,7] has a strong connection
to supervised dimensionality reduction [11]. Suppose we have a set of samples
xi ∈ R

D, i = 1, · · · , m. The goal of supervised linear DML is to learn a squared
Mahalanobis distance dM (xi,xj) = (xi −xj)T M(xi−xj), where M is a positive
semi-definite (PSD) matrix, such that the “compactness” of similarly labelled
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samples and the “scattereness” of differently labelled samples are maximised si-
multaneously. The DML and dimensionality reduction techniques in [5,6,7,11]
differ mainly in the definition of compactness and scattereness. Among them,
SVM with relative comparison (SVM-RC) [6] and large margin nearest neigh-
bour (LMNN) [7] are two representative techniques. SVM-RC assumes weak
supervision is available in the form of relative comparison, such as “i is closer
to j than i is to k”. It learns a weighted Euclidean distance by minimising the
violation of the supervision information. SVM-RC assumes for any sample, all
samples with the same label should be closer to it than any sample with a dif-
ferent label. By contrast, LMNN only assumes that the g nearest neighbours
with the same label should be closer than any sample with a different label.
LMNN then learns a Mahalanobis distance by minimising the violation of this
assumption.

3 Multiple Kernel Learning via Distance Metric Learning

In this section, we formulate multiple kernel learning as a distance metric learn-
ing problem. We first present the global version of this MKL via DML approach,
and then describe the local version and its application to relevance feedback.

3.1 MKL via DML: The Global Version

Assume we are given n m×m PSD kernel matrices Kh, h = 1, · · · , n. Each kernel
induces a feature space and the hth kernel Kh can be considered as the pairwise
dot product of m points in the feature space induced by Kh: Ki,j

h =< xi
h,xj

h >,
where xi

h,xj
h ∈ R

rh and rh is the rank of Kh. It directly follows that the squared
Euclidean distance between the ith and jth samples in the hth feature space is
given by dh(xi

h,xj
h) = Ki,i

h + Kj,j
h − 2Ki,j

h , and this distance can be used in
distance based applications such as information retrieval.

Now consider a weighted linear combination of the n kernels K =
∑n

h=1 βhKh,
βh ≥ 0. The squared Euclidean distance between the ith and jth samples in the
composite feature space induced by K is given by:

d(xi,xj) =
n∑

h=1

βhdh(xi
h,xj

h) (1)

The problem of learning a linear combination of the n kernel matrices can then
be cast as one of learning a distance metric.

SVM-RC Formulation. We first consider the setting in SVM-RC [6]. Sup-
pose we have a set of triplets of indices of the training samples, and for each
triplet {i, j, k} we have weak supervision information in the form of relative
comparison: we know that samples i and j share the same label and i and k
have different labels. As a result the distance between samples i and j should be
smaller than that between i and k. However, in practice this cannot be satisfied
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by all triplets. As in SVM, we introduce a slack variable for each triplet and
learn the kernel weights β = (β1, · · · , βn)T by minimising the violation of the
relative comparison:

minβ,ξ

∑
i,j,k ξijk (2)

s.t. ∀{i, j, k} : d(xi,xk) − d(xi,xj) ≥ 1 − ξijk , ξ ≥ 0, β ≥ 0

where d(·, ·) is defined as in Eq. (1).
To avoid the trivial solution of an arbitrarily large β, we put an 	2 constraint

on β. Incorporating this regularisation and substituting Eq. (1) into Eq. (2), we
arrive at the MKL via SVM-RC optimisation problem:

minβ,ξ
1
2βT β + C

∑
i,j,k ξijk (3)

s.t.∀{i, j, k} :
∑n

h=1 βhdh(xi
h,xk

h) −∑n
h=1 βhdh(xi

h,xj
h) ≥ 1 − ξijk, ξ ≥ 0, β ≥ 0

where C is a parameter controlling the trade-off between the 	2 norm of β and
the empirical error. The main difference between SVM-RC and our formulation
in Eq. (3) is that SVM-RC assigns weights to different dimensions of a vector
space, while Eq. (3) assigns weights to several vector spaces. In this light Eq. (3)
can be thought of as a block version of SVM-RC, where each block corresponds to
the feature space of a base kernel. Eq. (3) is recognised as a linearly constrained
quadratic program (LCQP), and can be solved with off-the-shelf optimisation
toolboxes such as Mosek 1.

LMNN Formulation. The formulation above assumes that for any sample
all similarly labelled samples should be closer to it than any differently labelled
sample. By contrast, LMNN [7] only assumes the similarly labelled g nearest
neighbours should be closer than any differently labelled sample. We introduce
a variable ηi,j to indicate whether sample j is one of the g nearest neighbours of
sample i that share the same label with i: ηij = 1 if it is and ηij = 0 otherwise.
Ignoring the regularisation on β for the moment, we have:

minβ,ξ

∑
i,j,k ηijξijk (4)

s.t. ∀{i, j, k} : d(xi,xk) − d(xi,xj) ≥ 1 − ξijk , ξ ≥ 0, β ≥ 0

where d(·, ·) is defined as in Eq. (1). Note that the only difference between Eq. (2)
and Eq. (4) is the ηij term in the objective function.

Similarly as in the SVM-RC formulation, β must be regularised in order to
get a meaningful solution. However, following LMNN, we regularise β slightly
differently. Instead of minimising the 	2 norm of β, we minimise the sum of
the distances between all samples and their g same labelled nearest neighbours.
Incorporating this regularisation and substituting Eq. (1) into Eq. (4) we arrive
at the MKL via LMNN optimisation problem:

minβ,ξ

∑
ij ηij

∑n
h=1 βhdh(xi

h,xj
h) + C

∑
i,j,k ηijξijk (5)

s.t.∀{i, j, k} :
∑n

h=1 βhdh(xi
h,xk

h) −∑n
h=1 βhdh(xi

h,xj
h) ≥ 1 − ξijk, ξ ≥ 0, β ≥ 0

1 http://www.mosek.com
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where C is the trade-off parameter. As in the SVM-RC formulation, Eq. (5) can
be seen as a block version of LMNN. Another difference between LMNN and
Eq. (5) is that LMNN is a semidefinite program (SDP) while Eq. (5) is a linear
program (LP), which can be solved again using the Mosek optimisation toolbox.

3.2 MKL via DML: The Localised Version

Given a set of base kernels (and the associated base feature spaces), the formula-
tions in Eq. (3) and Eq. (5) learn distance metrics by weighting the base feature
spaces, hence they can also be considered as multiple kernel learning methods.
Both formulations require a set of triplets {i, j, k}, which can be drawn randomly
from, or by considering all valid combinations in a set of (weakly) labelled sam-
ples. The learnt metrics are expected to be more discriminative than the squared
Euclidean distance in the feature space associated with the uniformly weighted
sum of the base kernels, and as a result expected to perform better in distance
based applications such as image retrieval.

However, such schemes are global in the sense that the distance metrics are
learnt from a fixed training set and applied universally ignoring the locations
of a sample in the base feature spaces. Arguably, localised learning may be
advantageous over global learning since it captures better the local shapes in the
base feature spaces. Moreover, localised distance metric learning fits naturally
into the framework of example based retrieval and relevance feedback. The MKL
via localised DML scheme for relevance feedback can be summarised as follows:

1. User submits an example image as query and machine provides initial re-
trieval results using the Euclidean distance in the uniformly weighted sum
of the n base feature spaces;

2. User labels the top m retrieved images as to whether they are relevant or
not;

3. Triplets are drawn from the set of m+1 labelled images including the query
image: the query image is used as sample i; sample j is drawn from images
labelled as relevant; and sample k drawn from the remaining images.

4. A new distance metric is learnt using either Eq. (3) or Eq. (5), with
the drawn triplets in step 3. The list of relevant images is recalculated with
the new distance metric. Go to step 2 if desired.

Essentially, this localised learning scheme learns an optimal distance metric
for each query image online, by capturing the local structures around the query
image in the base feature spaces. In the next section, we will show experimental
evidence that locally learnt metrics outperform globally learnt metrics.

4 Experiments

In this section we show experimental results of the proposed global and local
MKL via DML methods, in an example based image retrieval setting. We first
described the datasets used, and then present the results.
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4.1 Datasets

Oxford Flower17 dataset [12] consists of 17 categories of flowers with 80 images
per category. It comes with three predefined splits into train (17 × 40 images),
validation (17 × 20 images) and test (17 × 20 images) sets. For each split, we
use the 17 × 60 = 1020 images in the training and validation sets as images
to be retrieved, and the 17 × 20 = 340 images in the test set as queries. For
each query image, a ranking of the 1020 images in the database is given based
on their distances to the query image according to some distance metric. An
average precision is computed from this ranking. The mean average precision
(MAP) of the 340 query images can then be used as the performance measure.
We repeat this process for all three predefined splits and report the mean of
the MAPs. The authors of [12] precomputed 7 distance matrices using various
features 2, from which we computed 7 radial basis function (RBF) kernels and
used them as base kernels.

Caltech101 [13] is a multiclass object recognition benchmark with 101 object
categories. We randomly select 15 images from each class and use the 101×15 =
1515 images as images to be retrieved, and use up to 50 randomly selected
images per class, that is, 3999 in total, as query images. We repeat this process
of randomly selecting samples three times. Similarly as in Flower17 experiments,
we compute an MAP for each random sampling, and report the mean of the
three MAPs. 21 base kernels are generated by combining the colour based local
descriptors in [14] and three kernel functions, namely, pyramid match kernel
(PMK) [15], spatial pyramid match kernel (SPMK) [16], and RBF kernel with
χ2 distance.

4.2 Results

We show first in Fig. 1 left and Fig. 2 left the baseline performance. The first
4 bars in both plots show the minimum, maximum, median, and mean of the
performance of the base kernels; while the last bar indicates the performance
of the uniformly weighted sum of the base kernels. For the Oxford Flower17
dataset, the uniform weighting scheme outperforms the best single kernel by a
large margin (0.3680 vs. 0.3022); while for the Caltech101 dataset, its advantage
is only marginal (0.2303 vs. 0.2294).

In Fig. 1 right and Fig. 2 right we show the performance of the global version
of the proposed MKL via SVM-RC and MKL via LMNN schemes. For the global
version, triplets of relative comparison are drawn randomly from the 1020 images
in the database. Note that this is not realistic since in a retrieval scenario the
labels of the images in the database are not available. Nevertheless, we present
the results of the global learning schemes to show the advantage of localised
learning.

For both global schemes we use approximately the same number of triplets for
training. For MKL via SVM-RC, we randomly draw 2 × 104 triplets of samples
2 http://www.robots.ox.ac.uk/˜vgg/research/flowers/index.html
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Fig. 1. Oxford Flower17. Left: baseline. Right: performance of global learning.

Fig. 2. Caltech101. Left: baseline. Right: performance of global learning.

such that two samples share the same label and the third one has a different
label. For the MKL via LMNN scheme, we first randomly draw 100 samples as
sample i. We then identify for each of them the nearest 3 samples with the same
label, which form sample j. Finally, 70 samples are randomly drawn for each of
the 100 “i samples” from those with different labels, and are used as sample k.
This process results in 100× 3× 70 = 2.1× 104 triplets. With ∼ 2× 104 triplets,
both methods use several GB of memory, and take ∼ 15 seconds to learn a set
of kernel weights on a single core processor.

We vary the value of the trade-off parameter C in both schemes from 10−8 to
108, and show in Fig. 1 right and Fig. 2 right how the performance varies accord-
ingly. Results on both datasets show that for SVM-RC, when C is sufficiently
small, the learnt kernel weights are uniform, leading to an MAP that is same
as the uniform weighting scheme. For LMNN, when C is sufficiently small, the
learnt kernel weights are all zeros, which means its performance becomes that of
a random distance metric. For both methods, the optimal performance is reached

Fig. 3. Oxford Flower17. Learnt kernel weights in the global version of MKL via SVM-
RC and MKL via LMNN. C = 108.
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Fig. 4. Oxford Flower17. Localised learning for relevance feedback. Left: naive, learning
based, and combined schemes, m = 10. Right: combined scheme, m = 10, 20, 30.

Fig. 5. Caltech101. Localised learning for relevance feedback. Left: naive, learning
based, and combined schemes, m = 10. Right: combined scheme, m = 10, 20, 30.

when C is large enough. When C = 108, the MAPs of SVM-RC and LMNN for-
mulations on the Oxford Flower17 dataset are 0.3892 and 0.3845 respectively,
as compared to 0.3680, which is the MAP achieved by uniform weighting. The
learnt kernel weights in both global schemes when C = 108 are shown in Fig. 3.
On the Caltech101 dataset, similar improvements are observed (0.2553/0.2462
vs. 0.2303).

In the following experiment we turn to localised learning for relevance feed-
back. We draw triplets following the scheme outlined in Section 3.2. These “local
triplets” are then used for learning a distance metric for this particular query
image. Since the number of images a user labels, m, is typically small, the effect
of pulling all similarly labelled samples and that of pulling only the nearest g of
them become similar. Therefore, we show only the results of localised MKL via
SVM-RC. Note that since we have the labels of the images in the benchmark
dataset, the manual labelling process is simulated.

In addition to learning a distance metric, another way of using the labels
provided by the user is simply to rank the positively labelled samples at the top
of the list of retrieved images. We shall call this the naive scheme. Furthermore,
this naive scheme can be combined with the learning based scheme: we learn
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a new distance metric using the labelled samples, retrieve again with the new
metric, and then rank the positively labelled samples at the top of the new list.
We shall call this the combined scheme in the following experiment.

The relevance feedback procedure can be applied iteratively. In each round,
the newly labelled images are pooled with the labelled images in the previous
rounds for triplet sampling, and a new distance metric is learnt, which will be
used for retrieval in the next round. This allows a user to actively explore the
database and improve the metric used for retrieval.

The performance of the three schemes: naive, learning based (localised MKL
via SVM-RC), and combined, is plotted in Fig. 4 left and Fig. 5 left, where
iteration 0 corresponds to uniform weighting of kernels. In the learning based
scheme, the trade-off parameter C is set to 108, and the number of randomly
sampled triplets is set to 103. It is clear from the figures that both the combined
scheme and the learning based scheme outperform the naive scheme. This means
that significant improvements are indeed from learning the kernel weights.

In Fig. 4 right and Fig. 5 right we show the performance of the combined
scheme with various numbers of labelled images. As expected, the performance
improves significantly as the number of manually labelled samples increases. La-
belling even 30 images is fast as the user needs to indicate either the relevant or
irrelevant images only. Finally, the MAPs of all methods under comparison on
both datasets are summarised in Table 1. Note that the MAPs of localised learn-
ing are achieved without combining with the naive scheme. We can see from the
table that the localised learning scheme not only outperforms the baseline meth-
ods, but also outperforms global learning. With 103 triplets at each iteration, it
takes on average 0.061 seconds to learn the kernel weights.

Table 1. Performance on both datasets: a summary

baseline global SVM-RC localised

single max. uniform SVM-RC LMNN m = 10, iter=1 m = 30, iter=1 m = 30, iter=4

Flower17 0.3022 0.3680 0.3892 0.3845 0.4036 0.4612 0.5046

Caltech101 0.2294 0.2303 0.2553 0.2462 0.2756 0.3120 0.3263

5 Conclusions

In this paper we have formulated multiple kernel learning as a distance metric
learning problem. We consider two objective functions that are commonly used in
distance metric learning, and optimise them under constraints based on relevance
comparisons. We have proposed both global version and localised version of
such a MKL via DML scheme. We argue that the localised version not only
yields better performance than the global version, but also fits naturally into
the framework of example based retrieval and relevance feedback. This claim is
verified through experiments on two image retrieval datasets.
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Abstract. Although not in widespread use in Signature Verification
(SV), the performance of SV systems may be improved by using en-
semble of classifiers (EoC). Given a diversified pool of classifiers, the
selection of a subset to form an EoC may be performed either statically
or dynamically. In this paper, two new dynamic selection (DS) strategies
are proposed, namely OP-UNION and OP-ELIMINATE, both based on
the K-nearest-oracles. To compare ensemble selection strategies, a hybrid
generative-discriminative system for off-line SV system is considered. Ex-
periments performed by using real-world SV data, comprised of genuine
samples, and random, simple and skilled forgeries, indicate that the pro-
posed DS strategies achieve a significantly higher level of performance in
off-line SV than other well-known DS and static selection (SS) strategies.
Improvements are most notable in problems where a significant level of
uncertainty emerges due a considerable amount of intra-class variability.

1 Introduction

Signature Verification (SV) systems are relevant in many real-world applications,
such as check cashing, credit card transactions and document authentication. In
off-line SV, handwritten signatures are transcribed on sheets of paper, and at
some later time scanned in order to obtain a digital representation. Given a dig-
itized signature, an off-line SV system typically performs preprocessing, feature
extraction and classification to authenticate the signature of an individual.

Handwritten signatures are behavioural biometric traits that are known to
incorporate a considerable amount of intra-class variability. Although not in
widespread use in off-line SV, a promising way to improving system performance
is through ensemble of classifiers (EoC) [1,4]. The motivation of using EoCs
stems from the fact that a diverse set of classifiers usually make different errors
on input samples. Indeed, when the response of a set of C classifiers is averaged,
the variance contribution in the bias-variance decomposition decreases by 1/C,
resulting in a smaller expected classification error [9].
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Bagging, boosting and random subspaces are well-known methods for crea-
ting diversity among classifiers. While bagging and boosting use different samples
subsets to train different classifiers, the random subspace method use different
subspaces of the original input feature space. Given a diversified pool of classi-
fiers, an important issue is the selection of a subset to form an EoC, such that
the recognition rates are maximized during operations [6]. EoC selection may
be performed either statically or dynamically. Based on a set of reference sam-
ples not used during training, static selection (SS) strategies select the EoC that
provides the best classification rates on that set. Then, this EoC is employed du-
ring operations to classify any input sample. Dynamic selection (DS) strategies
also need a reference set to select the best EoC, although this task is performed
during operations, by taking into account the specific characteristics of a given
sample to be classified.

In a pattern recognition system that starts with a limited number of reference
samples, it is difficult to define a priori a single best EoC for the application.
Ideally, the EoC should be continuously adapted whenever new reference samples
become available. With DS, this new data can be incorporated to the reference
set (after being classified by the pool of classifiers) without any additional step.

KNORA (K-nearest-oracles) is a DS strategy that has been successfully ap-
plied to handwritten numeral recognition [6]. For each input sample, the KNORA
strategy finds its K-nearest neighbors in the reference set, and then selects the
classifiers that have correctly classified those neighbors. Finally, the selected clas-
sifiers are combined in order to classify the input sample. The main drawback
of KNORA is that a robust set of features must be defined in order to compute
similarity between the input sample and the samples in the DS database.

As an alternative, this paper propose two new DS strategies, namely OP-
UNION and OP-ELIMINATE, that use the classifier outputs (i.e., the output
profile) to find the K-nearest neighbors. To validate the proposed and other
reference dynamic and static selection strategies, a multi-classifier generative-
discriminative system is considered. In this system, Hidden Markov Models
(HMMs) are employed as feature extractors followed by Support Vector Ma-
chines (SVMs) as two-class classifiers. Proof-of-concept experiments are carried
out on a real-world signature database [4,5,8], comprised of genuine samples,
and random, simple and skilled forgeries. The rest of this paper is organized as
follows. The next section presents the hybrid generative-discriminative system
for off-line SV. Then, Section 3 proposes two new DS strategies. Finally, Section
4 describes the experimental methodology, and Section 5 presents and discusses
the experiments.

2 A Hybrid System for Off-Line SV

Let T i = Ii
trn(l), 1 ≤ l ≤ N , be the training set used to design a SV system

for writer i. The set T i contains genuine signature samples supplied by writer
i, as well as random forgery samples supplied by other writers not enrolled to
the system. For each signature Ii

trn(l) in the training set T i, a set of features is
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generated (see Figure 1). First, Ii
trn(l) is described by means of pixel densities,

which are extracted through a grid composed of retangular cells. Each column
of cells j is converted into a low-level feature vector Fi

j=
{
f i

j1, f
i
j2, ...

}
, where

each vector component f i
jh ∈ [0, 1]. These components correspond to the number

of black pixels in a cell divided by the total number of pixels of this cell. The
signature Ii

trn(l) is therefore represented by a set of low-level feature vectors

F i
trn(l) =

{
Fi

j

}
, 1 ≤ j ≤ col, where col is the number of columns in the grid.

Fig. 1. Design of the generative stage for a specific writer i. After feature extraction,
the signature is quantized into Q different sequences, from which B > Q likelihoods
are obtained.

Then, F i
trn(l) is quantized into a sequence of discrete observations Oi

q=
{
oi

j

}
,

for 1 ≤ j ≤ col. Each observation oi
j is a symbol provided by the codebook

q (generated using the K-means algorithm). Since Q different codebooks are
employed per writer i, each training signature Ii

trn(l) yields a set of observation
sequences Oi

trn(l)= {Oi
q}, for 1 ≤ q ≤ Q. The set of observation sequences,

Oi
trn(l), is then input to the bank of left-to-right HMMs Mi=

{
λi

b

}
, 1 ≤ b ≤

B, from which a high-level feature vector D
(
Oi

trn(l), Mi
)
= {P1, ..., PB} is

extracted. Each component Pb is a likelihood computed between an observation
sequence Oi

q and a HMM λi
b, where λi

b can either correspond to the genuine
class (i.e., trained with genuine samples from writer i), or to the impostor class
(i.e., trained with random forgery samples). It is worth noting that the same
sequences Oi

trn(l), 1 ≤ l ≤ N , used to obtain the HMM likelihood vectors are
also used to train the HMMs in Mi. Appart from the different codebooks, a
different number of states is employed to produce a bank of HMMs.
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As long HMM likelihood vectors are produced during the design of the genera-
tive stage, the random subspace method (RSM) is used to select the input space
in which multiple SVMs are trained. For each random subspace r, 1 ≤ r ≤ R,
a smaller subset of likelihoods is randomly selected, with replacement, from
D
(
Oi

trn(l), Mi
)
, 1 ≤ l ≤ N , and used to train a different SVM. During oper-

ations, a given input signature Ii
tst follows the same steps of feature extraction,

vector quantization and likelihood extraction as performed with a training sig-
nature, resulting in the HMM likelihood vector D

(
Oi

tst, Mi
)
. Then, based on

previously-classified signature samples – stored in the dynamic selection (DS)
database –, the most accurate ensemble of SVMs is dynamically selected from
the pool and used to classify D

(
Oi

tst, Mi
)
(see Figure 2).

As described in Section 3, signature samples selected from the DS database are
the K-nearest neighbors of the input sample to be classified. The DS database
contains genuine samples supplied by writer i, as well as random forgery samples
taken from writers not enrolled to the system. explains the partitioning of each
dataset used in this work.

Fig. 2. System architecture of the discriminative stage for a specific writer i

Bank of HMMs. Let Mi = {w1 ∪ w2} be the bank of HMMs, where
w1= {λ(C1)

1 , λ
(C1)
2 , ..., λ

(C1)
R } is the set of R HMMs of the genuine class C1, and

w2= {λ(C2)
1 , λ

(C2)
2 , ..., λ

(C2)
S } is the set of S HMMs of the impostor’s class C2.

Given the set of observation sequences Oi
trn(l) ={Oi

1, Oi
2, ...,O

i
Q} extracted

from a training signature Ii
trn(l), the vector D

(
Oi

trn(l), Mi
)

is obtained by

computing the likelihoods of Oi
trn(l) for each HMM in Mi, that is,

D
(
Oi

trn(l), Mi
)
=

⎡⎢⎢⎢⎣
P (Oi

q/λ
(C1)
1 )

P (Oi
q/λ

(C1)
2 )

...

P (Oi
q/λ

(C2)
S )

⎤⎥⎥⎥⎦ (1)
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If, for instance, λ
(C1)
1 and λ

(C2)
S are trained with observation sequences extracted

from the codebook q = 10, a compatible sequence from Oi
trn(l), that is, Oi

q=10,

must be sent to both. Finally, the vector D
(
Oi

trn(l), Mi
)

is labeled accord-

ing to the class of Oi
trn(l). It is worth noting that, if Oi

trn(l) belongs to class

C1, D
(
Oi

trn(l), Mi
)

should contain higher values in the first R positions and
smaller values in the remaining S positions, allowing a two-class classifier to
discriminate samples of class C1 from class C2.

3 New Strategies for Dynamic Ensemble Selection

Let Oi
ds(j), 1 ≤ j ≤ M , be the sequences of observations extracted from the

DS database of writer i, and D
(
Oi

ds(j), Mi
)
be their corresponding likelihood

vectors 1, for 1 ≤ j ≤ M . For each DS vector D
(
Oi

ds(j), Mi
)
, an output profile

(OP) is calculated as follows. First, D
(
Oi

ds(j), Mi
)

is input to all SVM classi-
fiers cr, r = 1, 2, ...,R, in the pool of classifiers C. Each cr receives as input only
the vector positions related to its respective subspace. Then, the resulting output
labels are stored as a vector to form a DS output profile, OP

(
D
(
Oi

ds(j), Mi
))

.
This procedure is repeated for all DS vectors, resulting in a set of DS-OPs. For
simplicity, it is assumed that the DS-OPs are also stored in the DS database.

During operations, when a test vector D
(
Oi

tst, Mi
)

is presented to the
off-line SV system, four main steps are performed. First, the output profile
OP

(
D
(
Oi

tst, Mi
))

is calculated, as performed for the DS vectors. Second, the
Euclidean distance is computed between OP

(
D
(
Oi

tst, Mi
))

and each DS-OP,
in order to find its K-nearest neighbors. Third, the SVMs that correctly classify
the K corresponding DS vectors are selected and used to classify D

(
Oi

tst, Mi
)
.

Finally, the SVMs decisions are fused through majority voting. The two follow-
ing variants of KNORA are proposed to manage output profiles:

1) OP-ELIMINATE. Given the test vector D
(
Oi

tst, Mi
)
, the objective

of this first variant is to find an ensemble of up to K SVMs that simultane-
ously classify its K-nearest neighbors in the DS database correctly. After ob-
taining OP

(
D
(
Oi

tst, Mi
))

, its K-nearest DS-OPs, OP
(
D
(
Oi

ds(k), Mi
))

,
1 ≤ k ≤ K, are found via Euclidean distance. For each SVM cr, r = 1, 2, ...,R,
in the pool C, the OP-ELIMINATE algorithm verifies if cr has previously classi-
fied all corresponding DS vectors D

(
Oi

ds(k), Mi
)
, 1 ≤ k ≤ K, correctly. If so,

cr is added to the ensemble E; otherwise, the next SVM in the pool is verified.
In the case where no classifier ensemble can correctly classify all K DS vectors,
the value of K is decreased until at least one SVM can correctly classify a DS

1 During dynamic selection, D
(
Oi

ds(j), Mi
)

is refered as a DS vector.
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vector. Finally, each SVM in the ensemble E submites a vote on the test vector
D
(
Oi

tst, Mi
)
, where the final classification label L is obtained by using the

majority vote rule.
2) OP-UNION. Given the test vector D

(
Oi

tst, Mi
)

and its K-nearest
neighbors in the DS database, the objective of this variant is to find for each
neighbor k, 1 ≤ k ≤ K, an ensemble of up to K SVMs that correctly classify
it. First, the test output profile, OP

(
D
(
Oi

tst, Mi
))

, and its K-nearest DS-

OPs, OP
(
D
(
Oi

ds(k), Mi
))

, 1 ≤ k ≤ K, are obtained, such as performed for
OP-ELIMINATE. For each neighbor k, and for each SVM cr, r = 1, 2, ...,R, in
the pool C, the OP-UNION algorithm then verifies if cr has previously classified
the DS vector D

(
Oi

ds(k), Mi
)

correctly. If so, cr is added to the ensemble Ek;
otherwise, the next SVM in the pool is verified. After applying this procedure
to all K-NNs, the SVMs in each ensemble Ek are combined in order to classify
the test vector D

(
Oi

tst, Mi
)
. Finally, the final classification label L is obtained

by using the majority vote rule. Note that a same SVM can give more than one
vote if it correctly classifies more than one DS vectors.

4 Experimental Methodology

Brazilian SV database. It contains 7920 samples of signatures that were dig-
itized as 8-bit greyscale images over 400X1000 pixels, at resolution of 300 dpi.
The signatures were provided by 168 writers and are organized in two sets:
the development database (DBdev) and the exploitation database (DBexp).
DBexpcontains signature samples from writers enrolled to the system, and is
used to model the genuine class. It is composed of 3600 signatures supplied by
60 writers. Each writer i has 40 genuine samples, 10 simple forgeries and 10
skilled forgeries. 20 genuine samples are available for training (T i

exp(20)) and 10
for validation (V i

exp(10)). As test set, each writer i has 10 genuine samples, 10
random forgeries, 10 simple forgeries and 10 skilled forgeries; where the random
forgeries are genuine samples randomly selected from other writers in DBexp.

DBdevcontains signature samples from writers not enrolled to the system,
and is used as prior knowledge to design the codebooks and the impostor class.
It is composed of 4320 genuine samples supplied by 108 writers. Each writer
j has 40 genuine samples, where 20 are available for training (T j

dev(20)) and

10 for validation (Vj
dev(10)). The remaining 10 samples, available for test, are

not employed in this work. Given a writer i enrolled to the system, DBdevand
DBexpare used to compose different datasets employed in different phases of the
system design (see Table 1).

After binarization, the signature images are divided in 62 columns of cells,
where each cell is a rectangle composed of 40X16 pixels. To absorb the hori-
zontal variability of the signatures, the images are aligned to the left and the
blank cells in the end of the images are discarded. Then, feature extraction is
performed.
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Table 1. Datasets for a specific writer i, using the Brazilian SV database

Dataset Name Task Genuine Samples Random Forgery Samples

DBi
hmm HMM Training T i

exp(20) + Vi
exp(10) T j=1:108

dev(20) + Vj=1:108
dev(10)

DBi
svm SVM Training T i

exp(20) 20 from T j=1:180
dev(20)

DBi
grid SVM Grid Search

Vi
exp(10)

10 from Vj=1:180
dev(10)

DBi
roc ROC Curve

Vj=1:180
dev(10)

DBi
ds Dynamic Selection

HMM Training. 29 different codebooks q (1 ≤ q ≤ 29) are generated by
varying the number of clusters from 10 to 150, in steps of 5; using all training
and validation signatures of DBdev. Given a writer i and a codebook q, DBi

hmm

is employed to train a set of discrete left-to-right HMMs with different number
of states, using the Baum-Welch algorithm. As the number of states varies from
2 to the lenght of the smallest sequence used for training (Lmin), the genuine
class is composed of a variable number HMMs (i.e., 29x(Lmin-1)) that depends
on the writer’s signature size. On the other hand, to compose the impostor class,
there are thousands of HMMs taken from the writers in DBdev.

SVM Training. By using the RSM, 100 subspaces composed of 30 dimen-
sions each (i.e., 15 likelihoods randomly selected from each class) are used to
train 100 different SVMs (RBF kernel) per writer. For a same writer i, the
training set, DBi

svm, remains the same for all 100 SVMs.

Comparison of Techniques.In this paper, the simulation results obtained
with OP-UNION/ELIMINATE are compared with KNORA-UNION/ELIMINA-
TE [6], with the standard combination of all classifiers, and with Decision Tem-
plates (DT) [7] – a well-known DS method in the multi-classifier system (MCS)
community. With OP-UNION/ELIMINATE, the search for the K-nearest neigh-
bors is performed using the output labels provided by all 100 SVMs; while with
KNORA-UNION/ELIMINATE, only the SVM input subspace providing the low-
est error rates on DBi

ds is used during the search. The value of K is defined as
being half of the number of genuine samples in DBi

ds, that is, 5. Comparisons are
performed as well with two reference systems proposed in our previous research,
that is, (i) a traditional generative system based on HMMs [2] (refered in this pa-
per as baseline system), and (ii) a hybrid system based on the static selection of
generative-discriminative ensembles [3]. In both systems, HMMs are trained by
using T i

exp(20) + V i
exp(10), from the Brazilian SV database.

Performance Evaluation. The overall system performance is measured
through different operating points of an averaged ROC curve. To obtain this
curve using DBi

roc, the operating points {TPRi, FPRi} related to different
users, i = 1, .., N , are averaged if they have a same true negative rate (TNR, or
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1 − FPR) – refered in this paper as γ. The average error rate (AER) indicates
the total error of the system for a specific γ, where the false negative rate (FNR)
and the false positive rate (FPR) are averaged taking into account the a priori
probabilities. In the experiments, the FPR is calculated with respect to three
forgery types: random, simple and skilled.

5 Simulation Results

Figure 3 presents the AERs curves obtained on test data (DBi
tst) as function of

operating points (γ). These results indicate that the proposed DS strategies, i.e.,
OP-UNION and OP-ELIMINATE, provided the lowest AERs, demonstrating
the advantage of using a DS approach based on output profiles – as opposed
to KNORA, where the input feature space is used to find the K-nearest DS
samples. It is also beneficial to employ EoCs composed of a small set of base
classifiers – in contrast to DTs and to the standard technique of combination of
classifiers, where all base classifiers in the pool are part of the ensemble.

OP-UNION and OP-ELIMINATE strategies also achieved AERs that are
lower than those obtained with SS. This represents a situation where DS is su-
perior to SS, i.e., in a problem where a significant level of uncertainty emerges
due a considerable amount of intra-class variability. Finally, the lowest perfor-
mance of the baseline system is obtained because a pure generative approach is
adopted for system design, i.e., only the genuine class is modeled, and a single
HMM is employed per writer.

Fig. 3. AERs versus operating points (γ) obtained on Brazilian test data using off-line
SV systems that employ different ensemble selection techniques
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Table 2. Overall error rates (%) obtained on test data for γ=0.92

Method FNR FPRrandom FPRsimple FPRskilled AER

OP-UNION 4.17 1.50 3.50 33.17 10.58
OP-ELIMINATE 5.17 1.00 2.83 28.17 9.29
KNORA-UNION 2.17 2.50 6.83 43.33 13.71

KNORA-ELIMINATE 2.33 2.67 6.33 42.50 13.46
Decision Templates 2.67 2.17 6.33 44.33 13.88

Combination of 100 SVMs 2.33 2.67 7.33 45.83 14.54
Static Selection [3] 2.17 5.67 5.00 34.50 11.83

Baseline [2] 0.33 9.83 18.17 74.33 25.67

Table 3. Overall error rates (%) compared to reference SV systems from literature

Method FNR FPRrandom FPRsimple FPRskilled AER

Batista et al. [2] 9.83 0.00 1.00 20.33 7.79
Bertolini et al. [4] 11.32 4.32 3.00 6.48 6.28
Justino et al. [5] 2.17 1.23 3.17 36.57 7.87
Santos et al. [8] 10.33 4.41 1.67 15.67 8.02

OP-UNION (γ = 1.0) 8.17 0.67 0.67 14.00 5.88
OP-ELIMINATE (γ = 1.0) 7.50 0.33 0.50 13.50 5.46

Table 2 presents the overall results for γ=0.92. Note that the proposed DS
strategies provide lower FPRs at the expense of higher FNRs. In practice, the
trade-off between FPR and FNR can be adjusted according to the risk linked
to an input sample. In banking applications, for example, the decision to use a
specific operating point may be associated with the amount of the check. In the
simplest case, for a user that rarely signs high value checks, big amounts would
require operating points related to low FPRs, such as would be provided by a
γclose to 1; while lower amounts would require operating points related to low
FNRs, since the user would not feel comfortable with frequent rejections.

Finally, Table 3 presents a comparison with other systems designed with the
Brazilian SV database. By assuming that the objective of these systems is to
minimize the AER, the comparison is performed with γ= 1.

6 Conclusions

In this paper, two new DS strategies based on KNORA, namely OP-UNION and
OP-ELIMINATE, are proposed to improve performance of off-line SV systems.
These strategies employ the classifier outputs (i.e., the output profile), instead
of the input feature space, to find the most accurate EoC for a given input
sample. To compare ensemble selection strategies, a hybrid off-line SV system is
considered. In this system, HMMs are employed as feature extractors followed
by SVMs as two-class classifiers.
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Experiments performed using real world signature data indicate that OP-
UNION/ELIMINATE can achieve a higher level of accuracy in off-line SV than
other reference DS and SS strategies. This is especially true in problems where a
significant level of uncertainty emerges due a considerable amount of intra-class
variability. Future work consists of investigating the adaptive capabilities of the
proposed strategies for incremental learning of new reference samples.
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Abstract. While it is known that multiple classifier systems can be ef-
fective also in multi-label problems, only the classifier fusion approach
has been considered so far. In this paper we focus on the classifier selec-
tion approach instead. We propose an implementation of this approach
specific to multi-label classifiers, based on selecting the outputs of a pos-
sibly different subset of multi-label classifiers for each class. We then
derive static selection criteria for the macro- and micro-averaged F mea-
sure, which is widely used in multi-label problems. Preliminary experi-
mental results show that the considered selection strategy can exploit the
complementarity of an ensemble of multi-label classifiers more effectively
than selection approaches analogous to the ones used in single-label prob-
lems, which select the outputs of the same classifier subset for all classes.
Our results also show that the derived selection criteria can provide a
better trade-off between the macro- and micro-averaged F measure, de-
spite it is known that an increase in either of them is usually attained at
the expense of the other one.

Keywords: Multi-label classification, Multiple classifier systems, Clas-
sifier selection.

1 Introduction

In multi-label classification problems each sample can belong to more than one
class, contrary to traditional, single-label problems. Multi-label problems occur
in several applications related to retrieval tasks, like text categorisation, im-
age annotation, protein function classification and music classification, and are
receiving an increasing interest from the pattern recognition and machine learn-
ing literature. So far, several works have shown that multiple classifier systems
(MCSs) can be effectively exploited to improve classification performance also in
multi-label problems [7,6,9,10]. In [9] it was also claimed that MCSs can be use-
ful to deal with imbalanced class distribution, which often occurs in multi-label
problems.

To our knowledge, all previous works considered the classifier fusion approach,
which consists in the combination of the outputs of all the available classifiers. In
this work we focus on the classifier selection approach instead. We first present

C. Sansone, J. Kittler, and F. Roli (Eds.): MCS 2011, LNCS 6713, pp. 167–176, 2011.
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in Sect. 2 a selection approach specific to multi-label classifiers. It is based on the
selection of the output of a possibly different subset of multi-label classifiers for
each class. This potentially allows one to better exploit the complementarity be-
tween the available multi-label classifiers on the different classes. We then focus
in Sect. 4 on static selection, and develop selection criteria based on the macro-
and micro-averaged Van Rijsbergen’s F measure, which is a widely used perfor-
mance measure in multi-label problems [2,8,9,11]. The F measure is described
in detail in Sect. 3. From the analysis of the proposed selection criteria, we ar-
gue that our method may also provide a good trade-off between the macro- and
micro-averaged F measure. This is an interesting result, as it is known that an
improvement in the macro-averaged F measure can be usually be attained only
at the expense of the micro-averaged one, and vice versa [13]. In Sect. 5 we give
an empirical evaluation of the proposed static classifier selection approach on
three multi-label data sets related to text categorisation and gene functionality
classification tasks. Conclusions are finally drawn in Sect. 6.

2 A Classifier Selection Approach for Multi-label
Problems

In the following we denote with Ω = {ω1, . . . , ωN} the set of classes of a given
problem, and the feature vector of a sample as x ∈ X ⊆ R

n, where n is the size
of the feature space X . In a single-label problem each sample belongs to exactly
one class, and a classifier implements a decision function f : X → Ω.

Given an ensemble of single-label classifiers f1, . . . , fL, the rationale of se-
lection methods is that different classifiers can be more accurate than others in
different regions of the feature space [12,4]. Accordingly, given a testing sample
x, these methods aim to select one of the classifiers that correctly classify x (if
any). This can be done “statically”, by defining at the design phase the so-called
region of competence of each classifier in the feature space. Each testing sam-
ple is then labelled by the classifier associated to the region in which it falls.
Classifier selection can also be done “dynamically”. In this case, the classifier
which exhibits the highest accuracy in a neighbourhood of the testing sample is
selected. Such “local” accuracy is estimated online, at the classification phase.
To the scope of this work, a somewhat related approach is the selection of a
subset of classifiers to be fused, out of a larger ensemble. It is based on a similar
rationale as the one above: a different subset of classifiers can be more effec-
tive than the whole ensemble, on different testing samples [14]. This approach is
usually implemented statically.

As in multi-label problems each sample can belong to more than one class,
a multi-label classifier implements a decision function f : X → {+1,−1}N ,
where the value +1 (−1) in the k-th element of the vector f(x) means that the
sample x is labelled as (not) belonging to ωk. The classifier (subset) selection
approaches described above can be used with multi-label classifiers as well. In
addition, for multi-label classifiers it is possible to implement a different selection
approach. Consider an ensemble of multi-label classifiers f1, . . . , fL, and let us
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denote with f i
k(x) the output of the i-th classifier for the k-th class. Instead of

selecting the same subset of L′ classifiers (1 ≤ L′ < L) to label a testing sample
x, as happens in single-label problems, one can also select a different subset
of L′ classifiers for each class. In other words, the decision whether x belongs
or not to ωk is taken by combining the outputs f

i1(k)
k , f

i2(k)
k , . . . , f

iL′(k)
k , where

a different subset {i1(k), i2(k), . . . , iL′(k)} ⊂ {1, . . . , L} can be chosen for each
ωk. We will denote this approach as “Hybrid Selection of Multi-label classifiers”
(HSM), where “hybrid” refers to the selection a possibly different classifier subset
for each class.

To implement the HSM approach, a seemingly reasonable criterion is to select
for each class the subset of L′ classifiers which exhibit the highest classification
performance on that class (either a local performance measure around a given
testing sample, in the case of dynamic selection, or the performance in pre-
defined regions of the feature space, in the case of static selection). However, as
we will show in the next sections, it turns out that this criterion is not always
suitable to maximise the overall classification performance of a multi-label clas-
sifier evaluated on all classes. This is due to the particular performance measures
usually used in multi-label problems, which are based on precision and recall.
In particular, the above criterion is suitable for macro-averaged performance
measures, but not for micro-averaged ones. This implies that, to maximise a
micro-averaged performance measure, an exhaustive search over all the possible(

L
L′
)N

choices of L′ out of L classifiers for each of the N classes is required,
which is clearly impractical. To address this issue, we first describe in detail
performance measures based on precision and recall in Sect. 3, and then derive
a suboptimal selection criterion for micro-averaged measures in Sect. 4.

3 Performance Measures for Multi-label Classifiers

The performance of multi-label classifiers is measured in terms of precision and
recall, as multi-label problems usually occur in retrieval tasks. In the field of
information retrieval, precision and recall are respectively defined as the proba-
bility that a retrieved document is relevant to a given query or topic, and as the
probability that a relevant document is retrieved. In a multi-label classification
problem, each class corresponds to a distinct topic. Accordingly, precision and
recall for the k-th class are defined respectively as pk = P(x ∈ ωk | fk(x) = 1),
and rk = P(fk(x) = 1 | x ∈ ωk). Ideally, both measures should equal 1. How-
ever, in practice a higher precision can be attained only at the expense of a lower
recall, and vice versa. In practice, they can be estimated from a multi-label data
set as:

p̂k =
TPk

TPk + FPk
, r̂k =

TPk

TPk + FNk
, (1)

where TPk (true positive) is the number of samples that are correctly labelled as
belonging to ωk, while FPk (false positive) and FNk (false negative) are defined
analogously.
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To obtain a scalar performance measure, the Van Rijsbergen’s F measure is
often used. For a class ωk it is defined as:

F̂β,k =
1 + β2

1/p̂k + β2/r̂k
, (2)

where β ∈ [0, +∞] allows to weigh the relative importance of precision and recall.
In particular, for β = 1 the F measure equals their harmonic mean.

The overall precision and recall on all categories can be computed either by
macro- or micro-averaging the class-related values, depending on application
requirements [8]. We will denote macro- and micro-averaged values respectively
with the superscripts ‘M’ and ‘m’. Macro-averaging simply consists in averaging
the category-related values. The corresponding F measure is:

F̂M
β =

1
N

N∑
k=1

F̂β,k =
1
N

N∑
k=1

(1 + β2)/
(

(1 + β2) +
FPk + β2FNk

TPk

)
. (3)

The micro-averaged precision and recall are instead defined as:

p̂m =
∑N

k=1 TPk∑N
k=1 (TPk + FPk)

, r̂m =
∑N

k=1 TPk∑N
k=1 (TPk + FNk)

, (4)

and the corresponding F measure is defined as F̂m
β = 1+β2

1/p̂m+β2/r̂m [13], which
after some algebra leads to:

F̂m
β = (1 + β2)/

(
(1 + β2) +

∑N
k=1(FPk + β2FNk)∑N

k=1 TPk

)
. (5)

It is known that macro-averaged measures are dominated by the performance
on rare classes, while the opposite happens in the case of micro-averaging [8,13].
Furthermore, an improvement on one of them can be usually attained only at
the expense of the other one, especially when there are rare categories [2]. In the
rest of this paper we will consider only the F measure, as it is widely used in
multi-label tasks, is easier to handle being a scalar measure, and can be used to
find a trade-off between precision and recall [13].

4 Criteria Based on the F Measure for Static Multi-label
Classifier Selection

In this section we discuss selection criteria for the static implementation of the
HSM method, when classification accuracy is evaluated in terms of the F mea-
sure. We consider first the case of L′ = 1. In this case, for each class ωk we want
to select a single, possibly different classifier f i(k), i(k) ∈ {1, . . . L}. What we
obtain can be seen as a new, single multi-label classifier whose outputs for the N

classes are given by f
i(1)
1 (x), f i(2)

2 (x), . . . , f i(N)
N (x). The final goal is to maximise

the overall F measure (either macro- or micro-averaged).
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From Eq. (2) it can be seen that maximising the macro-averaged F measure
F̂M

β amounts to independently maximise the F̂β,k measure of each class. This
implies that the classifier for each class can be chosen independently on the
other classes. It is also easy to see that to maximise F̂β,k one should choose the
classifier f i(k) such that:

i(k) = arg min
i∈{1,...,L}

FP i
k + β2FN i

k

TP i
k

, (6)

where FP i
k denotes the number of samples erroneously labelled as belonging to

ωk by f i, and similarly for FN i
k and TP i

k. Obviously, these terms have to be
estimated from validation samples. We name the above selection criterion HSMM

(the superscript ‘M’ stands for “macro-averaging”).
In the case of the micro-averaged F̂m

β measure instead, Eq. (5) shows that
it can not be maximised by independently considering the contribution of the
different classes. This can be seen by noting that maximising F̂m

β amounts to
minimise the ratio between the two summands in Eq. (5). Let us rewrite this
term by separating the contribution of any class ωk:

(FPk + β2FNk) +
∑

j 
=k(FPj + β2FNj)
TPk +

∑
j 
=k TPj

. (7)

It is clear that the contribution of the terms related to ωk, (FPk + β2FNk) and
TPk, to the overall value of expression (7) is not independent on the contribution
of the remaining terms, related to all the other classes. It follows that, to select
the classifiers f

i(1)
1 , f

i(2)
2 , . . . , f

i(N)
N which maximise F̂m

β , an exhaustive search
over all the possible LN choices is required, which is clearly impractical.

Nevertheless, the analysis of expression (7) reveals that, under some conditions
on the values of the four terms (FPk +β2FNk),

∑
j 
=k(FPj +β2FNj), TPk and∑

j 
=k TPj, the contribution of the terms related to ωk is independent on that
of the remaining terms. Under such conditions, it turns out that the classifier
f

i(k)
k that maximises F̂m

β can be chosen independently on the other ones, using
the following criterion:

i(k) = arg min
i∈{1,...,L}

(FP i
k + β2FN i

k) + Ak

TP i
k + Bk

, (8)

where Ak and Bk are two arbitrary, positive constants. It also turns out that,
under slightly stricter conditions, both Ak and Bk can be zero. Due to the lack
of space, the proof is not reported in this paper.1

According to the above result, when the micro-averaged F measure is used we
propose to use the criterion (8) to select a classifier for each class. We will call
this criterion HSMm (the superscript stands for “micro-averaging”). Clearly, this
is a suboptimal choice, as the conditions under which (8) is the optimal criterion
may not hold for all classes simultaneously, and anyway in practice one can not
1 The proof can be found at http://prag.diee.unica.it/pra/bib/pillai_mcs2011

http://prag.diee.unica.it/pra/bib/pillai_mcs2011


172 I. Pillai, G. Fumera, and F. Roli

know whether they hold or not, for any class. The choice of the constants Ak and
Bk can be made in such a way to limit the consequences of the non-optimality of
HSMm. To this aim, we propose to set Ak and Bk to a value that approximates
the corresponding terms

∑
j 
=k(FPj + β2FNj) and

∑
j 
=k TPj in Eq. (7), which

can be estimated from validation data together with the terms FP i
k, FN i

k and
TP i

k of (8).
Consider now the case of L′ > 1, namely when two or more classifiers have to

be selected for each class. To maximise F̂M
β , the best subset of L′ classifiers can

be chosen independently for each class, for the same reason explained above. The
corresponding criterion is the same as HSMM of(6), where the FP, FN and TP
values now refer to the combination of L′ classifiers instead of a single classifier.
However, this requires to evaluate all possible

(
L
L′
)

combinations of classifiers,
which may be impractical.

Similar considerations apply to the case of the F̂M
β measure. Even in the

conditions under which the criterion HSMm of (8) is optimal for all classes
(where the FP, FN and TP values now refer to an ensemble of L′ classifiers as
above), all possible

(
L
L′
)

combinations of classifiers must be evaluated for each
class. In principle, in the worst case when such conditions do not hold for any
class, the number of classifier ensembles to evaluate becomes

(
L
L′
)N

.
To keep computational complexity low when L′ > 1, in this paper we will

consider the simplest sub-optimal criterion for both F̂M
β and F̂m

β . It consists in
selecting the top L′ classifiers for each class, ranked in terms of the corresponding
HSMM or HSMm criterion of (6) and (8).

We finally discuss an interesting by-product of the above results. We men-
tioned above that under the conditions when HSMm is optimal, the positive
constants Ak and Bk of (8) can be arbitrarily small. Accordingly, as Ak and
Bk approach zero, HSMm tends to the HSMM criterion of (6). This leads us
to argue that HSMM may also provide a good micro-averaged F measure. On
the other hand, HSMm requires to maximise for each class a quantity that does
not depend on the other classes, analogously to HSMM. It may thus provide
in turn also a good macro-averaged F measure. In other words, we argue that
both HSMm and HSMM may provide a good trade-off between the macro- and
micro-averaged F measure, with respect to the performance of the individual
multi-label classifiers.

5 Experimental Evaluation

The experiments presented in this section are aimed at investigating whether,
given a set of multi-label classifiers, the HSM method can outperform a “stan-
dard” selection method which selects the same classifier subset for each class, as
well as the fusion of all the available classifiers.

The experiments have been carried out on three widely used benchmark data
sets: the “ModApte” version of “Reuters 21578”;2 the Heart Disease subset of the

2 http://www.daviddlewis.com/resources/testcollections/reuters21578/

http://www.daviddlewis.com/resources/testcollections/reuters21578/
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Table 1. Characteristics of the three data sets used in the experiments

Data set Reuters Ohsumed Yeast

N. of training samples 7769 12775 1500
N. of testing samples 3019 3750 917
Feature set size 18157 17341 104
N. of classes 90 99 14
Distinct sets of classes 365 1392 164
N. of labels per sample (avg./max.) 1.234 / 15 1.492 / 11 4.228 / 11
N. of samples per class (min./max.) 1.3E-4 / 0.37 2.4E-4 / 0.25 0.07 / 0.75

Ohsumed data set [5]; and the Yeast data set.3 Reuters and Ohsumed are text
categorisation tasks, while Yeast is a gene functionality classification problem.
Their main characteristics are reported in Table 1.

For Reuters and Ohsumed we used the bag-of-words feature model with the
term frequency-inverse document frequency (tf-idf) kind of feature [8]. A feature
selection step has also been carried out through a four-fold cross-validation on
training samples, by applying stemming, stop-word removal and the information
gain criterion. A feature set of 15,000 features was obtained for both data sets.

We implemented multi-label classifiers using the well known binary relevance
(BR) approach. It consists in independently training N two-class classifiers (one
per class) using the one-vs-all strategy: each classifiers independently decides
whether labelling an input sample as belonging or not to the corresponding class
[6,8,11]. We used as base two-class classifier a support vector machine (SVM)
with a linear kernel for Reuters and Ohsumed (as it is considered the state of
the art classifier for text categorisation tasks) and a SVM with a radial-basis
function (RBF) kernel for Yeast. We used the libsvm software to implement
SVMs [1]. The C parameter of the SVM learning algorithm was set to the libsvm
default value of 1. The σ parameter of the RBF kernel, defined as K(x,y) =
exp
(−||x− y||2/2σ

)
, was set to 1 according to a four-fold cross-validation on

training samples.
Since the output of a SVM is a real number, a threshold has to be set to decide

whether labelling or not an input sample as belonging to the corresponding class.
The threshold values can be set to optimise the considered performance measure.
To maximise the macro-averaged F measure, it is known that the threshold can
be set by independently maximising the F measure of each class [13]. No optimal
criterion exists for maximising the micro-averaged F measure instead. To this
aim we used a sub-optimal algorithm proposed in [2]. In both cases we estimated
the thresholds through a five-fold cross-validation on training samples.

All the quantities involved in the selection criteria HSMM and HSMm were
estimated through a five-fold cross-validation on training samples. Classification
performance was evaluated using the F1 measure, namely β = 1.

To generate an ensemble of multi-label classifiers for each data set, we used
the random subspace method of [3]: each individual multi-label classifier was

3 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html
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trained on the whole set of training samples, by using a different, randomly
chosen feature subset. We used a fraction of 3/4 of the original feature set, and
set the ensemble size to 10. We used as combining rules majority voting and
simple averaging. For the latter, we also estimated the decision thresholds on
the outputs of the fused classifiers, using again a five-fold cross-validation on
training samples.

Five runs of the experiments were carried out. The average F1 values and the
standard deviation are shown in Table 2, related to the majority voting rule.
The different columns contain the F1 measure attained by all the considered
methods. The two left-most and the two right-most columns correspond to the
case when the criteria for classifier selection and for threshold optimisation were
based respectively on the micro- and on the macro-averaged F1. In both cases we
report both the resulting macro- and micro-averaged F1. For each data set we
show the performance of the “standard” selection method when one, three and
five two-class classifiers are selected for each class, the performance of the HSM
method for the same number of selected classifiers, and the performance attained
by the fusion of all the multi-label classifiers of the ensemble. The comparison
between the “standard” selection method and HSM has to be done being equal
the number of selected classifiers, and within the same column.

Table 2 shows that, being equal the number of selected classifiers, HSM almost
always performed better or at least as good as the “standard” selection method,
both in terms of the macro- and the micro-averaged F1 measure. This shows that
it can be capable to better exploit the complementarity between the multi-label
classifiers on the different classes.

HSM also attained a better or at least a very similar performance as the fu-
sion of all the available multi-label classifiers. This shows that, besides being
more efficient at the classification phase, HSM can also attain a higher clas-
sification performance. On the contrary, the “standard” selection method was
almost always outperformed by the fusion of all the available classifiers, with
some exceptions on the Yeast data sets only.

Finally, HSM attained a higher macro-averaged F1 measure than the “stan-
dard” selection method, even when the selection criterion based on the micro-
averaged F1 was used (see the second column of each table), and vice versa (third
column). Moreover, we observed that, regardless on the selection criterion (ei-
ther HSMM or HSMm), the resulting macro-averaged F1 attained by HSM was
very similar. The same result was observed in the case of the micro-averaged
F1 (these results are not reported, due to lack of space). The micro-averaged
F1 attained by the “standard” selection method was instead significantly higher
than the macro-averaged F1, if the selection criterion was based on the former
measure, and vice-versa. This result provides evidence that, as argued in Sect. 4,
both the HSMM and the HSMm criteria can be capable to attain a good trade-off
between the macro- and micro-averaged F measure.

Similar results have been obtained using the simple average combining rule,
as well as two different base classifiers, k-nearest neighbours and Naive Bayes
(these results are not reported here due to lack of space).
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Table 2. Average F1 measure and standard deviation attained on the three data sets
by the “standard” selection method and by HSM (see text for the details)

Selection method Selection based on Fm
1 Selection based on FM

1

and ensemble size Fm
1 FM

1 Fm
1 FM

1

R
eu

te
rs

Best single 0.863± 0.005 0.520± 0.020 0.261± 0.037 0.564± 0.018
HSM 1 0.878± 0.002 0.586± 0.011 0.427± 0.028 0.609± 0.010
Best 3 0.874± 0.001 0.534± 0.013 0.267± 0.030 0.586± 0.019
HSM 3 0.881± 0.002 0.588± 0.009 0.333± 0.030 0.613± 0.004
Best 5 0.878± 0.002 0.557± 0.011 0.270± 0.038 0.587± 0.015
HSM 5 0.882± 0.001 0.582± 0.005 0.308± 0.029 0.617± 0.005
All 0.880± 0.002 0.560± 0.006 0.274± 0.037 0.603± 0.010

O
h
su
m
ed

Best single 0.667± 0.005 0.536± 0.021 0.653± 0.003 0.573± 0.012
HSM 1 0.683± 0.001 0.591± 0.010 0.672± 0.002 0.612± 0.010
Best 3 0.681± 0.003 0.560± 0.016 0.672± 0.005 0.607± 0.003
HSM 3 0.688± 0.001 0.595± 0.007 0.682± 0.002 0.624± 0.010
Best 5 0.685± 0.003 0.576± 0.006 0.677± 0.001 0.609± 0.005
HSM 5 0.690± 0.001 0.596± 0.006 0.684± 0.002 0.623± 0.008
All 0.684± 0.004 0.573± 0.005 0.681± 0.003 0.617± 0.005

Y
ea
st

Best single 0.675± 0.004 0.439± 0.009 0.618± 0.008 0.494± 0.002
HSM 1 0.676± 0.002 0.449± 0.004 0.642± 0.005 0.497± 0.004
Best 3 0.679± 0.003 0.443± 0.006 0.623± 0.005 0.496± 0.004
HSM 3 0.680± 0.002 0.449± 0.005 0.641± 0.003 0.501± 0.004
Best 5 0.680± 0.002 0.444± 0.003 0.624± 0.006 0.498± 0.002
HSM 5 0.680± 0.002 0.445± 0.003 0.636± 0.003 0.499± 0.001
All 0.680± 0.002 0.438± 0.003 0.631± 0.006 0.498± 0.002

6 Conclusions

In this work we proposed a classifier selection approach specific to ensembles of
multi-label classifiers, which is based on selecting a possibly different subset of
classifiers for each class. This allows in principle to better exploit the comple-
mentarity between the multi-label classifiers, on the different classes. Moreover,
we developed two static classifier selection criteria based on the macro- and the
micro-averaged F measure, which is widely used in multi-label tasks.

Our experimental results provided evidence that the proposed selection ap-
proach can be more effective than a “standard” approach based on selecting the
same classifier subset for each class, as well as than fusing all the available multi-
label classifiers. An interesting by-product is that both the proposed selection
can also attain a good trade-off between the macro- and micro-averaged F mea-
sure, despite it is known that an increase in either of them is usually attained
at the expense of the other one.

In light of these results, it becomes interesting to further investigate the
following issues: investigating the characteristics of an ensemble of multi-label
classifiers that make the proposed selection approach more effective; evaluating



176 I. Pillai, G. Fumera, and F. Roli

dynamic selection methods based on this approach; analysing the behaviour of
these static and dynamic selection methods as a function of the training set size,
as well as the effect of class imbalance, which is a typical problem in multi-label
tasks involving a high number of classes.
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Abstract. In recent years, classifier combination has been of great in-
terest for the pattern recognition community as a method to improve
classification performance. Several combination rules have been proposed
based on maximizing the accuracy and the Area under the ROC curve
(AUC). Taking into account that there are several applications which
focus only on a part of the ROC curve, i.e. the one most relevant for
the problem, we recently proposed a new algorithm aimed at finding the
linear combination of dichotomizers which maximizes only the interest-
ing part of the AUC. Since the algorithm uses a greedy approach, in
this paper we define and evaluate some possible strategies which select
the dichotomizers to combine at each step of the greedy approach. An
experimental comparison is drawn on a multibiometric database.

Keywords: Classifiers combination, ROC curve, partial AUC.

1 Introduction

Classifier combination has become an established technique for building profi-
cient classification systems. Among the various combination methods proposed
up to now, linear classifier combination has been used mainly for its simplicity
and effectiveness. In particular, some methods have been designed to increase
the Area under the ROC curve (AUC), a more suitable performance measure
than the classification accuracy [1], specially for those applications characterized
by imprecise environment or imbalanced class priors [2]. AUC resumes in a single
quantitative index the performance exhibited by the classifier over all the false
positive rate (FPR) values.

However, there are many applications that are interested only to a particular
range of FPRs. For example, in a biometric authentication system used to iden-
tify people, or to verify the claimed identity of registered users when entering
in a protected area, a false positive is considered the most serious error, since
it gives unauthorized users access to the systems that expressly are trying to
keep them out. In such case, the FPR values considered are the ones that cor-
respond to lower values, and the partial AUC [3] is the most indicate index to
use, since it allows us to focus on particular regions of the ROC space. In [4]
we have proposed a new method aimed at calculating the weight vector in a

C. Sansone, J. Kittler, and F. Roli (Eds.): MCS 2011, LNCS 6713, pp. 177–186, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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linear combination of K ≥ 2 dichotomizers, such that the pAUC is maximized.
In particular, we have provided an algorithm for finding the optimal weight in
a combination of two dichotomizers and then have extended to the combination
of K > 2 dichotomizers by means of a greedy approach which divides the whole
K-combination problem into a series of pairwise combination problems.

In such a case, making the right local choice at each stage is of fundamental
importance since it affects the performance of the whole algorithm. For this
reason, in this paper we define and evaluate some possible strategies which select
the dichotomizers to combine at each step of the greedy approach. The strategies
considered are based both on the evaluation of the best single dichotomizer and of
the best pair of dichotomizers. Such strategies are then experimentally compared
on a biometric database.

The paper is organized as follow. The next section presents the pAUC index
and its main properties while section 3 analyzes the combination of two di-
chotomizers. The combination of K > 2 dichotomizers is presented in section 4;
in the same section the proposed selection strategies are described and analyzed.
The performed experiments and obtained results are shown in section 5, while
section 6 concludes the paper.

2 ROC Analysis and Partial Area Under the ROC Curve

Receiver Operating Characteristics (ROC) graphs are useful for visualizing, or-
ganizing and selecting classifiers based on their performance. Given a two-class
classification model, the ROC curve describes the trade-off between the fraction
of correctly classified actually-positive cases (True Positive Rate, TPR) and the
fraction of wrongly classified actually-negative cases (False Positive Rate, FPR),
giving a description of the performance of the decision rule at different operating
points.

In some cases, it is preferable to use the Area under the ROC Curve (AUC) [5]
[6], a single metric able to summarize the performance of the classifiers system:

AUC =
∫ 1

0

ROC(τ)dτ (1)

As said before, some applications do not use all the range of false positive
rates: in particular, the most part of biometric and medical applications [7]
work on false positive rate close to the zero value. In such cases it is worth to
consider a different summary index measuring the area under the part of the
ROC curve with FPRs between 0 and a maximal acceptable value t. This index
is called partial AUC (pAUC) and defined as:

pAUC =
∫ t

0

ROC(τ)dτ (2)

where the interval (0, t) denotes the false positive rates of interest. Its choice
depends on the particular application, and it is related to the involved cost of a
false positive diagnosis.
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Moreover, the pAUC can be also defined as the probability that a classifier
will rank a randomly chosen positive instance higher than a randomly chosen
negative one, such that this latter is higher than the 1 − t quantile1 qt

y:

pAUC = P
{
xi > yj , yj > qt

y

}
(3)

where xi = f(pi) and yj = f(nj) are the outcomes of the dichotomizer f on a
positive sample pi ∈ P and a negative sample nj ∈ N .

In order to evaluate the pAUC of a dichotomizer avoiding to perform a nu-
merical integration on the ROC curve, we use the non-parametric estimator [3],
which is defined as:

pAUC =
1

mP · mN

mP∑
i

mN∑
j

V
qt

y

ij (4)

where mP and mN are the cardinalities of the positive and negative subsets,
respectively, and

V
qt

y

ij = I{xi > yj , yj > qt
y} =

⎧⎨⎩
1 if xi > yj

∧
yj > qt

y;
0.5 if xi = yj

∧
yj > qt

y;
0 if xi < yj

∧
yj > qt

y.
(5)

3 Combination of Two Dichotomizers

As a first step, let us consider a set T = P ∪N of samples, and define the outputs
of two generic dichotomizers fh and fk on two positive and negative samples pi

and nj :

xh
i = fh(pi), xk

i = fk(pi), yh
j = fh(nj), yk

j = fk(nj).

The pAUCs for the two dichotomizers, considering the FPR interval (0, t),
are:

pAUCh =

mP∑
i=1

mN∑
j=1

I
(
xh

i > yh
j , yh

j > qt
yh

)
mP · mN

, pAUCk =

mP∑
i=1

mN∑
j=1

I
(
xk

i > yk
j , yk

j > qt
yk

)
mP · mN

(6)

It is worth noting that the linear combination of two generic dichotomizers
flc = αhfh + αkfk can be put as flc = fh + αfk without loss of generalization,
with α = αk

αh
∈ (−∞, +∞). Therefore, considering the linear combination, the

outcomes on pi and nj are:

ξi = flc(pi) = xh
i + αxk

i , ηj = flc(nj) = yh
j + αyk

j . (7)

and the pAUC is:

pAUClc =
1

mP · mN

⎛⎝mP∑
i=1

mN∑
j=1

I
(
ξi > ηj ,

(
ηj > qt

η (α)
))⎞⎠ (8)

1 The quantile function returns the value below which random draws from the negative
population would fall, (1 − t) × 100 percent of the time.



180 M.T. Ricamato, M. Molinara, and F. Tortorella

To have an insight into the formulation of the pAUClc, let us analyze the term
I(ξi > ηj) without considering the constraint on the quantile. In particular, let
us consider how it depends on the values of I(xh

i , yh
j ) and I(xk

i , yk
j ):

– I(xh
i , yh

j ) = 1 and I(xk
i , yk

j ) = 1. In this case the two samples are correctly
ranked by the two dichotomizers, and I(ξi > ηj) = 1.

– I(xh
i , yh

j ) = 0 and I(xk
i , yk

j ) = 0. In this case neither dichotomizer ranks cor-
rectly the samples and thus the contribution for the pAUC is 0.

– I(xh
i , yh

j ) xor I(xk
i , yk

j ) = 1. Only one dichotomizer ranks correctly the sam-
ples while the other one is wrong. In this case the value of I(ξi > ηj) depends
on the weight α.

The subset T can be divided into four subsets: Thk, Thk̄, Th̄k and Th̄k̄ defined as:

Thk = {(pi,nj)|I(xh
i , yh

j ) = 1 and I(xk
i , yk

j ) = 1},
Th̄k = {(pi,nj)|I(xh

i , yh
j ) = 0 and I(xk

i , yk
j ) = 1},

Thk̄ = {(pi,nj)|I(xh
i , yh

j ) = 1 and I(xk
i , yk

j ) = 0},
Th̄k̄ = {(pi,nj)|I(xh

i , yh
j ) = 0 and I(xk

i , yk
j ) = 0}

Now, let us consider the constraint on the negative samples related to the quan-
tile, and define the following set:

Γα = {(pi,nj) ∈ P × N |yh
j + αyk

j > qt
η} (9)

where qt
η is the 1 − t quantile of η, which depends on the weight α. If we define

the sets T ′
hk, T ′

h̄k
, T ′

hk̄
, T ′

h̄k̄
as:

T ′
hk = Thk ∩ Γα, T ′

h̄k = Th̄k ∩ Γα,

T ′
hk̄ = Thk̄ ∩ Γα, T ′

h̄k̄ = Th̄k̄ ∩ Γα,

the expression for pAUClc in equation 8 can be written as:

pAUClc =
1

mP ·mN

( ∑
(pi,nj)∈T ′

h̄k̄

I(ξi > ηj) +
∑

(pi,nj )∈T ′

hk

I(ξi > ηj) +
∑

(pi,nj)∈T ′

hk̄
∪T ′

h̄k

I(ξi > ηj)

)
.

Starting from equation above, the value of α which maximizes pAUClc can
be found by means of a linear search; the details are described in [4].

4 Combination of K > 2 Dichotomizers

Let us now consider the linear combination of K > 2 dichotomizers which is
defined as:

flc(x) = α1f1(x) + α2f2(x) + ... + αKfK(x) =
K∑

i=1

αifi(x) (10)
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In order to find the weight vector αopt = (α1, ..., αK) that maximizes the
pAUC associated to flc(x), we can consider a greedy approach which divides the
whole K-combination problem into a series of pairwise combination problems.
Even though suboptimal, such approach provides a computationally feasible al-
gorithm for the problem of combining of K dichotomizers which would be in-
tractable if tackled directly. In particular, the first step of the algorithm chooses
the two “most promising” dichotomizers and combines them so that the number
of dichotomizers decreases from K to K −1. This procedure is repeated until all
the dichotomizers have been combined.

The choice of the dichotomizers that should be combined in each iteration
plays an important role since it affects the performance of the algorithm. To this
aim, we have considered various selection strategies that differ in the way the
greedy approach is accomplished: in the Single Classifier Selection the best can-
didate dichotomizer is chosen, while with the Pair Selection the best candidate
pair of dichotomizers is taken.

4.1 Single Classifier Selection

This is the most immediate approach, that selects the dichotomizer with the best
performance index. The related implementation first sorts the K dichotomizers
into decreasing order of an individual performance measure, and the first two
classifiers are combined. The remaining dichotomizers are then singularly added
to the group of the combined dichotomizers.

pAUC based selection. A first way to implement this strategy is to use
the pAUC of the dichotomizers as single performance measure. In this way,
one looks at the behavior of the single classifier in the range of interest of the
false positives assuming that it could be a sufficiently good estimate of how the
classifier contributes to the combination. In other words, we are assuming that
it is sufficient to take into account the performance of the dichotomizer, say fh,
on the set of the negative samples Nh = {nj ∈ N |yh

j > qt
h} even though this

set likely does not coincide with the set of negative samples contributing to the
value of pAUClc.

AUC based selection. A second way is to employ the whole AUC of the
dichotomizer. In this case we don’t assume that the samples in Nh are sufficient
to predict the performance of the combination and thus consider the behavior
of the dichotomizer in the whole FPR range.

4.2 Pair Selection

This approach is based on the estimation of the joint characteristics of a pair
of dichotomizers, so as to predict how proficient is their combination. In par-
ticular, we rely on the idea that combining dichotomizers with different char-
acteristics should provide good performance. Therefore, a pairwise measure is
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evaluated which estimates the diversity of the dichotomizers; at each step, the
pair of classifiers exhibiting the best index is combined. The procedure is re-
peated K−1 times until a single classifier is obtained. Two different measures are
considered which estimate the diversity in the ranking capabilities between two
dichotomizers.

Kendall Rank Coefficient. The first index we consider is the Kendall rank
correlation coefficient [8] that evaluates the degree of agreement between two
sets of ranks with respect to the relative ordering of all possible pairs of objects.
Given K the sum of concordant pairs and l the number of considered items, the
Kendall rank correlation coefficient is defined as:

2K
1
2 l(l − 1)

− 1 (11)

where 1
2 l(l − 1) =

(
l
2

)
is the total amount of pairs.

In our case the subsets are the ones defined in the previous section and thus
the correlation coefficient can be redefined as:

τ ′ =
2
(|T ′

hk| + |T ′
h̄k̄
|)

t · mP · mN
− 1 (12)

However, to evaluate τ ′ we should previously know the optimal value of the
coefficient α chosen for the combination, but this would be computationally
heavy. Therefore we use a surrogate index τ defined as

τ =
2 (|Thk| + |Th̄k̄|)

mP · mN
− 1 (13)

which is an upper bound for τ ′ since |Thk ≥ |T ′
hk| and |Th̄k̄| ≥ |T ′

h̄k̄
|. At each

step the pair with the lowest τ is chosen.

Ranking Double Fault. The second index comes from an analysis of the
expression of the pAUClc given in eq. 10. The maximum allowable pAUC of a
linear combination depends on the cardinality of the subsets T ′

hk, T ′
hk̄

and T ′
h̄k

.
Since the number of pairs in each subset depends on the value of the quantile, it
is not possible to compute a priori the value of pAUCmax

lc . However, it is feasible
to obtain a lower bound for it. To this aim, let us consider the relation between
the number of pairs of positive and negative samples obtained without using the
quantile, and its reduction after using the quantile. The (1 − t) quantile is the
value which divides a set of samples such that there is the given proportion (1−t)
of observations below it. Therefore, when the quantile is applied, the number of
the considered negative samples decreases, with the consequent change of the
number of the total pairs:

m′
tot = mtot − |{(pi,nj)|ηj < qt

η(α)}|
= mP · mN − mP [(1 − t)mN ] = t · mP · mN = t · mtot

(14)



Selection Strategies for pAUC-Based Combination of Dichotomizers 183

where mtot = mP ·mN is the number of pairs considered without the constraint
of the quantile.

Therefore, the pAUCmax
lc can be rewritten as:

pAUCmax
lc =

1
mP · mN

(
m′

tot − |T ′
h̄k̄|
)

=
1

mP · mN

(
t · mP · mN − |T ′

h̄k̄|
)

(15)

It is obvious that :
|T ′

h̄k̄| ≤ |Th̄k̄| (16)

since the number of the considered negative samples decreases.
Therefore:

pAUCmax
lc ≥ 1

mP · mN
(t · mP · mN − |Th̄k̄|) (17)

In particular, the lower bound for pAUCmax
lc is high when we have a low

number of pairs that have been misranked by both the classifiers. This quantity
can be interestingly related to the double fault measure [9] that is used to evaluate
the diversity between classifiers. For this reason we define Ranking Double Fault
the index:

DF =
|Th̄k̄|

mP · mN
(18)

and adopt it as second diversity index. Also in this case, the pair with the lowest
DF is chosen at each step.

5 Experimental Results

In order to compare the selection strategies proposed in the previous section,
some experiments have been performed on the public-domain biometric dataset
XM2VTS [10], characterized by 8 matchers. We used the partition of the scores
into training and test set proposed in [10] and shown in table 1. The XM2VTS
is a multimodal database containing video sequences and speech data of 295
subjects recorded in four sessions in a period of 1 month. In order to assess its
performance the Lausanne protocol has been used to randomly divide all the
subjects into positive and negative classes: 200 positive, 25 evaluation negatives
and 70 test negatives. All the details about the procedure used to obtain the
final dichotomizers are described in [10].

For each considered strategy the vector of coefficients for the linear combi-
nation is evaluated on the validation set, and then applied to the test set. The
results are analyzed in term of partial AUC, considering the false positive ranges:
FPR0.1 = (0, 0.1), FPR0.05 = (0, 0.05) and FPR0.01 = (0, 0.01). For the sake

Table 1. XM2VTS database properties

# Sample # Positive # Negative

Validation Set 40600 600 40000

Test Set 112200 400 111800
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Fig. 1. Mean rank of the selection strategies for t=0.1

of comparison, we consider, besides the combinations obtained with the four se-
lection strategies described in the previous section, also the best single classifier
chosen by looking at the highest pAUC value on the validation set.

The number of combined dichotomizers varies from 2 to 7. For each of those
experiments we obtain different number of possible combinations that are inde-
pendent from each other. Therefore, we use an approach based on giving a rank
to each method compared to the others, for each independent experiment. Let us
consider the pAUC values {pAUCij}M×L, for i = 1, . . . , M with M the number
of combinations, and for j = 1, . . . , L with L number of the strategies compared.
For each row we assign a rank value ri

j from 1 to L to each column depending on
the pAUC values: the highest pAUC gets rank 1, the second highest the rank 2,
and so on until L (in our case L = 5). If there are tied pAUCs, the average of the
ranks involved is assigned to all pAUCs tied for a given rank. Only in this case
it is appropriate to average the obtained ranks on the number of combinations:

r̄j =
1
M

M∑
i=1

ri
j (19)

Figures 1-3 show the results obtained varying the FPR ranges. The higher the
curve, i.e. the lower the average rank value, the better the related method.

The results show a clear predominance of the strategies based on single clas-
sifier selection. In particular, only the pair choice selection based on the DF
index is comparable with pAUC and AUC based selection, specially when the
number of the dichotomizers to be combined grows. A probable reason for such
outcome is that in the pair selection strategies we use upper bound surrogates of
the actual indices and this could sensibly affect the effectiveness of the selection
strategy.

A comparison between the two single classifier selection strategies reveals
how, even though pAUC is almost always better than AUC, the difference is
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not so high for t = 0.1. As the FPR range becomes smaller and smaller, the
pAUC based strategy clearly outperforms the AUC counterpart and this trend
becomes more evident when the number of dichotomizers grows. This suggests
that the behavior of the single classifier in the FPR range of interest provides a
sufficiently good estimate of how the classifier contributes to the combination.

In summary, a selection strategy which chooses the single dichotomizer with
the highest pAUC at each step of the greedy approach described in Sect. 4 seems
to ensure the best results on a large extent of situations.

6 Conclusions

In this paper, we have defined and evaluated some strategies which select the
dichotomizers to combine at each step of a pAUC combination method based
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on a greedy approach. The strategies considered are based both on the evalua-
tion of the best single dichotomizer and of the best pair of dichotomizers. Such
strategies have been experimentally compared on a biometric database, i.e. an
application for which the use of the pAUC is particularly important. The results
obtained have shown clearly that the single classifier selection strategies seem
the most proficient ones, in particular the selection based on the pAUC of the
single dichotomizer. However, it should be taken into account that the indices
used by the pair strategies are actually replaced by computationally feasible ap-
proximations. Future investigations will be aimed at verifying if more tight (and
hopefully more effective) approximations are attainable.

References

1. Huang, J., Ling, C.X.: Using AUC and accuracy in evaluating learning algorithms.
IEEE Trans. on Knowledge and Data Engineering 17, 299–310 (2005)

2. Cortes, C., Mohri, M.: AUC optimization vs. error rate minimization advances. In:
Neural Information Processing Systems. MIT Press, Cambridge (2003)

3. Dodd, L.E., Pepe, M.S.: Partial AUC estimation and regression. Biometrics 59,
614–623 (2003)

4. Ricamato, M.T., Tortorella, F.: Combination of Dichotomizers for Maximizing the
Partial Area under the ROC Curve. In: Hancock, E.R., Wilson, R.C., Windeatt,
T., Ulusoy, I., Escolano, F. (eds.) SSPR&SPR 2010. LNCS, vol. 6218, pp. 660–669.
Springer, Heidelberg (2010)

5. Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine
learning algorithms. Patt. Recogn. 30, 1145–1159 (1997)

6. Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology 143, 29–36 (1982)

7. Nandakumar, K., Dass, S.C., Jain, A.K.: Likelihood ratio-based biometric score
fusion. IEEE Trans. on Patt. Anal. and Mach. Intell. 30, 342–347 (2008)

8. Kendall, M.G.: A new measure of rank correlation. Biometrika 30, 81–93 (1938)
9. Giacinto, G., Roli, F.: Design of effective neural network ensembles for image clas-

sification processes. Image and Vision Computing 19, 699–707 (2001)
10. Poh, N., Bengio, S.: Database, protocol and tools for evaluating score-level fusion

algorithms in biometric authentication. Patt. Recogn. 39, 223–233 (2006)



Sequential Classifier Combination for Pattern

Recognition in Wireless Sensor Networks

Janos Csirik1, Peter Bertholet2, and Horst Bunke2

1 Institute of Informatics, University of Szeged, Hungary
2 Institute of Informatics and Applied Mathematics, University of Bern, Switzerland

csirik@inf.u-szeged.hu,

peter bertholet@students.unibe.ch,

bunke@iam.unibe.ch

Abstract. In the current paper we consider the task of object classi-
fication in wireless sensor networks. Due to restricted battery capacity,
minimizing the energy consumption is a main concern in wireless sensor
networks. Assuming that each feature needed for classification is acquired
by a sensor, a sequential classifier combination approach is proposed that
aims at minimizing the number of features used for classification while
maintaining a given correct classification rate. In experiments with data
from the UCI repository, the feasibility of this approach is demonstrated.

Keywords: Sequential classifier combination, wireless sensor networks,
feature ranking, feature selection, system lifetime.

1 Introduction

Multiple classifier systems have become an intensive area of research in the last
decade [1]. Usually, the parallel architecture is adopted for the combination of a
number of individual classifiers into a single system. This means that n experts
process a given input pattern in parallel and their decisions are combined. A
large number of combination rules have been proposed in the literature. In [2]
an in-depth analysis of some of these rules is provided.

In addition to parallel classifier combination, there also exists a serial, or se-
quential, approach [3]. It is characterized by activating a number of classifiers in
sequential order, where the later classifiers use, in some way, the results derived
by the classifiers that were applied earlier in the processing chain. Various appli-
cations of sequential classifier combination have been reported in the literature,
including text categorization [4], handwritten phrase and digit recognition [5],
human face recognition [6], and fingerprint classification [7].

As discussed in detail in [3], there are two principal methods of sequential
classifier combination. The first category, called Class Set Reduction, is char-
acterized by aiming at a successive reduction of the number of classes under
consideration until, in the ideal case, only a single class remains in the end. By
contrast, combination strategies of the second type, called Reevaluation meth-
ods, analyze the results of each classifier Ci in the processing chain and activate
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the next classifier Ci+1 if the confidence of Ci is below a given threshold. The
overall aim of multiple classifier combination is either to increase the recognition
accuracy of a system or to reduce the computational effort to reach a certain
classification rate [8].

In the current paper we propose a sequential classifier combination approach
for pattern recognition in wireless sensor networks [9]. Pattern recognition tasks,
such as vehicle or target classification, localization, and tracking [10,11,12,13,14],
as well as surveillance [15], are common in wireless sensor networks. Typically,
a wireless sensor network consists of a base station and a (large) number of
sensors. While the base station usually has sufficient computational power and
energy supply, the individual sensors are characterised by limited computational
resources and very restricted battery capacity. Therefore, to keep the number
of sensor measurements as low as possible is a major concern in the design of a
wireless sensor network.

In this paper we address the problem of object classification in wireless sensor
networks. It is assumed that the classification algorithm runs on the base station
of the network, where also classifier training and parameter optimization are
conducted. The individual sensors are used only for the acquisition of features,
where each sensor corresponds to exactly one feature. Each sensor acquires a
feature only upon request from the base station. Once a request is received, the
value of the corresponding feature is measured and transmitted back to the base
station. In such a scenario, keeping the energy consumption of the sensors low is
equivalent to minimizing the number of features used by the classifier. In order
to achieve classification accuracy as high as possible and minimize the number of
sensors, i.e. features, at the same time, we propose a sequential multiple classifier
combination approach following the reevaluation strategy. In a preprocessing
step we perform a ranking of all available features according to their ability
to discriminate between different classes. Then, in the operational phase of the
system, we sequentially apply classifiers C1, C2, ..., Cn where classifier Ci uses all
features of classifier Ci−1 plus the best ranked individual feature not yet used,
i.e. not used by Ci−1. The first classifier works with only a single feature, which
is the best ranked element out of all features. In our model, it is possible that
individual features are not available at a certain point in time, due to battery
exhaustion or some other sensor fault.

Minimizing the energy consumption of sensors and maximizing the lifetime of
a wireless sensor network has been addressed in a number of papers before. For
a survey see [16]. To the knowledge of the authors, the current paper is the first
one where a sequential multiple classifier system is proposed in this context.

2 General Approach

We assume that a pattern x is represented by an N -dimensional feature vector,
i.e. x = (x1, . . . , xN ), where xi is the value of the i-th feature; i = 1, . . . , N . Let
S = {s1, . . . , sN} be the set of available sensors, where each sensor si measures
exactly one particular feature f(si) = xi to be used by the classifier. Hence,
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the maximal set of features possibly available to the classifier is {x1, . . . , xN}.
Furthermore, let ϕ : S → R be a function that assigns a utility value ϕ(xi) to
each feature xi. Concrete examples of utility functions will be discussed below.
For the moment, let us assume that the utility of a feature xi is proportional to
its ability to discriminate between the different classes an unknown object may
belong to.

The basic structure of the algorithm for object classification proposed in this
paper is given in Fig. 1. The system uses a base classifier. This base classifier can
be a classifier of any type, in principle. For the purpose of simplicity, however,
we use a k-nearest neighbor (k-NN) classifier in this paper.

1: begin
2: rank sensors s1, . . . , sN according to the utility of the their features such that

ϕ(x1) ≥ ϕ(x2) ≥ . . . ≥ ϕ(xN)
3: F = ∅
4: for i = 1 to N do
5: if sensor si is available then
6: read feature f(si) = xi

7: F = F ∪ {xi}
8: classify(F )
9: if confidence(classify(F )) ≥ θ then

10: output result of classify(F ) and terminate
11: end if
12: end if
13: end for
14: output result of classify(F )
15: end

Fig. 1. Basic algorithm for sequential classifier combination

Having a base classifier at its disposition, the algorithm starts with ranking the
sensors in line 2. After this step, the sensors s1, . . . , sN are ordered according to
the utility of their features x1, . . . , xN , such that ϕ(x1) ≥ ϕ(x2) ≥ . . . ≥ ϕ(xN ).
That is, the first sensor yields the most discriminating feature, the second sensor
the second most, and so on. Then the algorithm initializes the set F of features
to be used by the classifier to the empty set (line 3). Next it iteratively activates
one sensor after the other, reads in each sensor’s measurement, and adds it to
feature set F (lines 4 to 7). Once a new feature has been obtained, statement
classify(F ) is executed, which means that the base classifier is applied, using
feature set F (line 8). Note that a k-NN classifier is particularly suitable for
such an incremental mode of operation where new features are iteratively added,
because the distance computations can be performed in an incremental fashion,
processing one feature after the other and accumulating the individual features’
distances. In line 9, it is checked whether the confidence of the classification
result is equal to or larger than a threshold θ. If this is the case the classification
result is considered final. It is output and the algorithm terminates (line 10).
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Otherwise, if the confidence is below the given threshold θ, the next sensor is
activated.

Obviously, in order to classify an unknown object, the base classifier uses
nested subsets of features {x1}, {x1, x2}, . . . , {x1, x2, . . . , xi} until its confidence
in a decision becomes equal to or larger than threshold θ. While running through
the for-loop from line 4 to 13, it may happen that a sensor si becomes unavailable
due to battery exhaustion or some other cause. In this case, sensor si will be
simply skipped and the algorithm continues with sensor si+1. In case none of the
considered feature subsets leads to a classification result with enough confidence,
the classifier outputs, in line 14, the result obtained with the set F of features
considered in the last iteration through the for-loop, i.e. for i = N .

An important issue in the algorithm of Fig. 1 is how one determines the
confidence of the classifier. Many solutions to this problem can be found in
the literature [17,18,19]. In the current paper, our base classifier is of the k-
NN type. This means that it determines, for an unknown object represented
by a subset of features {x1, . . . , xi}, the k nearest neighbors in the training
set. Then it assigns the unknown object to that class that is represented most
often among the k nearest neighbors. In case of a tie, a random decision is
made. Let k′ ≤ k be the number of training samples that are among the k
nearest neighbors and belong to the majority class. Then we can say that the
larger k′, the more confident is the classifier in its decision. Consequently, we
can define confidence(classify(F )) = k′. That is, if there are k′ > θ nearest
neighbors from the majority class, then the classification result is output and
the system terminates. Otherwise, if the number of nearest neighbors belonging
to the majority class is less than or equal to θ, the next sensor is activated. If
M denotes the number of classes to be distinguished, then the range of feasible
thresholds is the set of integers from the interval [�k/M� , . . . , k − 1].

In order to rank the features in line 2 of the algorithm, three well-known
methods have been used. The first method is Relief [20], which directly yields a
ranking of the given features. Secondly, a wrapper approach (WA) in conjunction
with k-NN classifiers is applied. The k-NN classifiers use only a single feature
each. The features are finally ordered according to their performance on an
independent validation set. Thirdly, sequential forward search [21] in conjunction
with a k-NN wrapper is applied (WA-SFS). Here nested subsets of features {xi1},
{xi1 , xi2},...,{xi1 , ..., xiN } are generated and the ranking is given by the order
xi1 , ..., xiN in which the features are added. For more details of features ranking,
we refer to [22].

Table 1. Datasets and some of their characteristic properties

Data Sets # Instances # Features # Classes Training Set Test Set

Isolet 7797 617 26 6237 1560

Multiple Features 2000 649 10 1500 500
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Fig. 2. Accuracy and lifetime as a function of the threshold on Isolet

3 Experiments

The algorithm described in Section 2 was implemented and experimentally eval-
uated. In the field of wireless sensor networks, there are not many data sets
publicly available, especially not for pattern recognition problems. In [23], a
dataset for activity recognition of humans equipped with body worn sensors as
well as environmental sensors is described, and in [24] the PlaceLab datasets
are introduced, which were acquired in the context of research on ubiquitous
computing in a home setting. However, the authors of these papers do not men-
tion any use of the data sets for pattern classification problems. Moreover, no
classification benchmarks have been defined for any of these data sets. For this
reason, it was decided to use datasets from the UCI Machine Learning Repos-
itory [25]. The sensors were simulated by assuming that each feature in any of
these datasets is delivered by a sensor. The experiments reported in this paper
were conducted on dataset Isolet and Multiple Features (see Table 1). These
dataset pose classification problems with only numerical and no missing feature
values. These conditions are necessary for the k-NN classifier being applicable in
a straightforward way. Moreover, these datasets have a rather large number of
features which makes them suitable to test the approach proposed in this paper.
Experiments on other datasets from the UCI repository with similar character-
istics gave similar results but are not reported here because of lack of space.

3.1 First Experiment

The purpose of the first experiment was to study how the value of threshold θ
(see line 9 of the algorithm in Fig. 1) influences the classification accuracy and
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Fig. 3. Accuracy and lifetime as a function of the threshold on Multiple Features

the total number of sensor measurements (i.e. features) used for classification.
Instead of computing the total number of sensor readings we measure the life-
time of the considered system, i.e. the number of classifications a system is able
to perform before the sensors become unavailable, because of battery exhaustion.
Hence the aim of the experiment is to measure the lifetime of the system and
analyze the trade-off between lifetime and accuracy depending on threshold θ.

We assume that the test set consists of M patterns and each feature xi can
be used exactly M times before the battery of its sensor is exhausted. This
means that with a conventional pattern recognition system, which uses the full
set of features for each pattern to be classified, the test set can be classified
exactly once before all sensors become unavailable. By contrast, with the system
proposed in this paper, not all features will be used in each classification step,
which allows one to classify the test set multiple times.

In this experiment, we classify the test set multiple times until all sensors
become unavailable. Let M ′ ≥ M be the number of pattern instances actually
classified, where we count an element of the test set as often as it has been
classified. Now we define lifetime extension factor = M ′/M . Clearly, the
lifetime extension factor is bounded by 1 from below. According to our
assumption that each feature can be used exactly M times before it becomes
unavailable, the case lifetime extension factor = 1 occurs if the underlying
system always uses all features in each classification step. However, if less than
N features are used, the value of the lifetime extension factor will be greater
than 1.

We measure the accuracy and the lifetime extension factor both as a
function of threshold θ. A representation of the results appears in Figs. 2 and
3. In these figures, the value of θ is decreased as we go from left to right. Obvi-
ously, we observe a trade-off between accuracy and lifetime extension factor.
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Fig. 4. Performance of SFS-WA over Time on Isolet

Clearly, in neither of the two datasets the proposed system reaches the accuracy
obtained with the full set of features, but for large values of θ (at the left end
of the curve) it gets quite close. Without loosing much recognition accuracy,
the lifetime of the system can be extended by a factor of about 2 on Isolet and
5 on Multiple Features. For lower values of θ a much higher lifetime extension
factor can be achieved, though at a price of a more pronounced loss of recogni-
tion accuracy. Comparing the different ranking strategies we note on Isolet that
WA-SFS performs best and Relief worst. One may also conclude that the choice
of a proper feature ranking strategy is not a critical issue.

3.2 Second Experiment

From the first experiment one can conclude that the lifetime of a system can be
increased at the cost of decreased accuracy. However, no quantitative statement
can be made about how the decrease in accuracy takes place over time. In the
second experiment we proceed similarly to Experiment 1 and classify the test
set several times. Yet we do not report the accuracy in the global sense, i.e. in
one number for all runs together, but want to see how it changes as the system
evolves over time and more sensors become unavailable.

In Experiment 2 the test set was divided into smaller portions of size one
tenth of the original test set size. Then the algorithm of Fig. 1 was applied until
all sensors became unavailable. For each portion of the test data the recognition
rate and the number of sensors used were recorded. For the sake of brevity, we
show only results for threshold θ = 15 and the feature ranking strategy WA-SFS.

In Figs. 4 and 5, the results of the second experiment are shown. The x-axis
depicts the number of rounds through the partitions of the test set, while on the
left and right y-axis the accuracy and the number of sensors actually used is
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Fig. 5. Performance of SFS-WA over Time on Multiple Features

given, respectively. On both datasets we observe a similar behavior. On data set
Isolet, the accuracy does not decrease much until about round 65. Afterwards
it decays very rapidly. The number of features fluctuates remarkably, but shows
an upward trend until round 60. Then it quickly declines. The second phase of
this decline, when only very few sensors are left, is paralleled by a steep decline
of the accuracy. From the qualitative point of view, a similar behavior can be
observed on data set Multiple Features.

4 Summary, Discussion and Conclusions

In this paper, a sequential multiple classifier system is proposed for reducing the
number of features used by a classifier. It is motivated by applications in wireless
sensor networks. The procedure can be applied in conjunction with any known
method for feature ranking. In the current paper three well known methods,
viz. Relief, a wrapper approach based on evaluating each feature individually
with a k-nearest neighbor classifier, and a wrapper approach in conjunction
with sequential forward search are applied. The underlying base classifier is a
k-nearest neighbor classifier.

The proposed procedure was implemented and experimentally tested. As test
data, two datasets from the UCI Machine Learning repository were used. A
wireless sensor network scenario was simulated by assuming that the individual
features are delivered by independent sensors. The results of the experiments
revealed that the system behaves very well. Its lifetime can be noticeably in-
creased without loosing much recognition accuracy. During most of its lifetime,
the system behaves quite stable. That is, the recognition rate only slightly de-
creases over the system’s lifetime, and a drastic drop happens only towards the
very end when almost all sensors are no longer available.
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The proposed system can be applied to pattern classification tasks in real
wireless sensor networks provided that the objects or events to be classified
behave in some stationary way.1 Because features are acquired in a sequential
fashion and the decision of the classifier about the class label of an unknown
object or event is only available after the first i features (1 ≤ i ≤ N) have
been processed, it is required that the object or event to be recognized does not
change until sensor si has delivered feature f(si) = xi. This may be a problem
when quickly moving objects or rapidly changing events are to be classified.
However, there are many potential applications of wireless sensor networks where
this stationary assumption is typically satisfied. Examples include environment
monitoring and surveillance.

There are many ways in which the work described in this paper can be ex-
tended. First of all one can think of investigating classifiers other than the k-
nearest neighbor classifier.2 Similarly, in addition to the three feature ranking
strategies considered in this paper, there are many alternative methods known
from the literature [26]. It would be certainly worthwhile to extend the exper-
iments to these methods and compare them to the ones applied in this paper.
Moreover, an extension of the experiments to more datasets would be desirable,
in particular datasets obtained from real wireless sensor networks.

Acknowledgments. This research has been supported by the T’AMOP-4.2.2/
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Abstract. One assumption in supervised learning is that data is inde-
pendent and identically distributed. However, this assumption does not
hold true in many real cases. Sequential learning is that discipline of
machine learning that deals with dependent data.

In this paper, we revise the Multi-Scale Sequential Learning approach
(MSSL) for applying it in the multi-class case (MMSSL). We have in-
troduced the ECOC framework in the MSSL base classifiers and a for-
mulation for calculating confidence maps from the margins of the base
classifiers. Another important contribution of this papers is the MMSSL
compression approach for reducing the number of features in the ex-
tended data set. The proposed methods are tested on 5-class and 9-class
image databases.

1 Introduction

Sequential learning [3] assumes that samples are not independently drawn from a
joint distribution of the data samples X and their labels Y . In sequential learning,
training data actually consists of sequences of pairs (x, y), so that neighboring
examples on a support lattice display some correlation. Usually sequential learn-
ing applications consider one-dimensional relationship support, but this kind of
relationships appear very frequently in other domains, such as images, or video.
Consider the case of object recognition in image understanding. It is clear that
if one pixel belongs to a certain object category, it is very likely that neighboring
pixels also belong to the same object (with the exception of its borders).

In literature, sequential learning has been addressed from different perspec-
tives: from the point of view of graphical models, using Hidden Markov Models
or Conditional Random Fields (CRF) [10,7,4,15] for inferring the joint or con-
ditional probability of the sequence. From the point of view of meta-learning,
sequential learning has been addressed by means of sliding window techniques,
recurrent sliding windows [3] or stacked sequential learning (SSL) [6]. In SSL,
a first base classifier is used to produce predictions. A sliding window among
the predictions is applied and it is concatenated with the original data, building
an extended dataset. Finally, a second base classifier predicts the final output
from the extended dataset. In our previous work [11], we identified that the main

C. Sansone, J. Kittler, and F. Roli (Eds.): MCS 2011, LNCS 6713, pp. 197–206, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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step of the relationship modeling proposed in [6] is precisely how this extended
dataset is created. In consequence, we formalized a general framework for the
SSL called Multi-scale Stacked Sequential Learning (MSSL), where a multi-scale
decomposition is used in the relationship modeling step.

Previous approaches addres bi-class problems. Few of them have been ex-
tended to the multi-class case. However in many applications, like image seg-
mentation, problems are inherently multi-class. In this work, our contribution
is an efficient extension of MSSL to the multi-class case. We revise the general
stacked sequential learning scheme for applying to multi-class as well as bi-class
problems. We introduce the ECOC framework [2] in the base classifiers to ex-
tend them to the multi-class case, defining the Multi-class Multi-scale Stacked
Sequential Learning (MMSSL). An important issue considered in this work is
how the number of features in the extended data set increases with the num-
ber of classes. We propose a feature compression approach for mitigating this
problem.

The paper is organized as follows: first, we review the original MSSL for the bi-
class case. In the next section, we formulate the MSSL for the multi-class case
(MMSSL), introducing the ECOC framework. Each step in MSSL is revised
for the multi-class case and a compression approach for the extended dataset
is explained. Then experiments and results of our methodology are shown in
Section 4. Finally, Section 5 concludes the paper.

2 Related Work: Multi-scale Stacked Sequential Learning

SSL [6] is a meta-learning framework [9] consisting in two steps. In the first
step, a base classifier is trained and tested with the original data. Then, an
extended data set is created which joins the original training data features with
the predicted labels produced by the base classifier considering a window around
the example. At the second step, another classifier is trained with this new feature
set. In [11] SSL is generalized by emphasizing the key role of neighborhood
relationship modeling. The framework presented includes a new block in the
pipeline of the basic SSL. Figure 1 shows the Generalized Stacked Sequential
Learning process. A classifier h1(x) is trained with the input data set (x, y) and
the set of predicted labels y′ is obtained. The next block defines the policy for
creating the neighborhood model of the predicted labels. It is represented by
z = J(y′, ρ, θ) : R → Rw, a function that captures the data interaction with a
model parameterized by θ in a neighborhood ρ. The result of this function is a

Fig. 1. Generalized stacked sequential learning
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w-dimensional value, where w is the number of elements in the support lattice
of the neighborhood ρ. In the case of defining the neighborhood by means of
a window, w is the number of elements in the window. Then, the output of
J(y′, ρ, θ) is joined with the original training data creating the extended training
set (xext, y) = ((x, z), y). This new set is used to train a second classifier
h2(xext) with the goal of producing the final prediction y′′.

The definition of J(y′, ρ, θ) proposed in [11] consists of two steps: first the
multi-scale decomposition that answers how to model the relationship between
neighboring locations, and second, the sampling that answers how to define the
support lattice to produce the final set z.

3 Multi-class Multi-scale Stacked Sequential Learning

To extend the generalized stacked sequential learning scheme to the multi-class
case, it is necessary that base classifiers h1(x) and h2(xext) can deal with data
belonging to several classes instead of just two. This can be achieved by using as
base classifier a built-in multi-class classifier. However, it is also possible to use
binary base classifiers by applying an ensemble of classifiers. One of the most suc-
cessful ensemble strategies is the Error-Correct Output Codes framework [2,14].
In essence, ECOC is a methodology used for reducing a multi-class problem into
a sequence of two-class problems. It is composed by two phases: a coding phase,
where a codeword is assigned to each class, and a decoding phase, where, given
a test sample, it looks for the most similar class codeword. The codeword is a
sequence of bits, where each bit identifies the membership of the class for a given
binary classifier. The most used coding strategy is the one-versus-all [5], where
each class is discriminated against the rest, obtaining a codeword of length equal
to the number of classes. Another standard coding strategy is the one-versus-
one [1] which considers all possible pairs of classes, with a codeword length of
N(N−1)

2 .
The decoding phase of the ECOC framework is based on error-correcting

principles under the assumption that the learning task can be modeled as a
communication problem. Decoding strategies based on distances measurements
between the output code and the target codeword are the most frequently ap-
plied. Among these, Hamming measure and Euclidean measure are the most
used [14].

Apart from the extension of the base classifiers, the neighborhood function
J has to be also modified. Figure 2 shows the multi-class multi-scale stacked
sequential learning scheme presented in this work. Now, from an input sample,
the first classifier produces not only a prediction, but a measure of confidence
for belonging to each class. These confidences maps are the input of the neigh-
borhood function. This function performs a multi-class decomposition over the
confidence maps. Over this decomposition, a sampling z around each input ex-
ample is returned. The extended data set is built up using the original samples
as well as the set of features selected in z. Additionally, in order to reduce the
number of features in the extended data set, we propose a compression approach
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for encoding the resulting multi-class decomposition of the confidence maps. Fi-
nally, having the extended data set xext as input and using again the ECOC
framework, the second classifier will predict to which class belongs the input sam-
ple x. In the next subsections we explain in detail how the generalized stacked
sequential learning can be extended to the multi-class case.

  

 

Fig. 2. Multi-class multi-scale stacked sequential learning

3.1 Extending the Base Classifiers

For the multi-class case, we need base classifiers that can handle with multiple
classes. For this purpose, we use the ECOC framework explained before. Given a
set of N classes, n different bipartitions (groups of classes) are formed, and n bi-
nary problems over the partitions are trained. As a result, a codeword of length n
is obtained for each class, where each position (bit) of the code corresponds to a
possible prediction value of a given binary classifier (generally {+1,−1}). We de-
fine a coding matrix M where each row is a codeword, where M ∈ {−1, +1}N×n

in the binary code case. Nonetheless, binary as well as ternary codes can be used
in the coding strategy [14]. How to construct this matrix is an open problem,
but in our experiments we will use the one-versus-one strategy cited above.

During the decoding process, applying the n binary classifiers, a code x is
obtained for each data sample in the test set. In the SSL model, this code is
obtained using the mere predicted label. However, it would be desirable that the
base classifiers can provide not only a prediction but a measure of confidence for
each class. The use of confidences gives a more precise information about the
decisions of the first classifier than just its prediction. Given a set of possible
labels L = {λ1, . . . , λn}, we have n membership confidences,

F̂ 0(x,L) = {F (y = λ1|x), . . . , F (y = λn|x)} (1)

In order to obtain these confidence maps we need base classifiers to generate
not only a class prediction, but also its confidence. Unfortunately, not all kind
of classifiers can give a confidence for its predictions. However, classifiers that
work with margins such as Adaboost or SVM can be used [8]. In these cases,
it is necessary to convert the margins used by these classifiers to a measure of
confidence. In the Adaboost case, we apply a sigmoid function that normalizes
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Adaboost margins from the interval [−∞,∞] to [−1, 1] (the same as codeword
interval) by means of the following equation,

f(x) =
1 − e−βmx

1 + e−βmx
(2)

where mx is the margin of the predicted label given by Adaboost algorithm for
the example x, and a constant that governs the transition: β = − ln(0.5ε)

0.25t , which
depends on the number of iterations t that Adaboost performs, and an arbitrary
small constant ε.

Once we have the normalized code by applying Equation 2, we use a soft
distance d for decoding. The obtained code is compared to the codewords Ci, i ∈
[1, . . . , N ] of each class defined in the matrix M , as follows:

F (y = λ1|xj) = e−αd(C1,f(xj)), . . . , F (y = λn|xj) = e−αd(CN ,f(xj))

where d may be any soft distance, as the Euclidean distance for example, α =
− ln(ε)/2 , and ε is arbitrarily small positive quantity. By applying this to the
all data samples xj ∈ x we have the confidence maps for each class as expressed
in Equation 1 that will be used in the next step.

3.2 Extending the Neighborhood Function J

We define the neighborhood function J in two stages: 1) a multi-scale decompo-
sition over the confidence maps and 2) a sampling performed over the multi-scale
representation. This function is extended in order to deal with multiple classes.
Now it is formulated as: z = J(F̂ 0(x,L), ρ, Σ).

Starting from the confidence maps F̂ 0(x,L), we apply a multi-scale decompo-
sition upon them, resulting in as many decomposition sequences as labels. For
the decomposition we use a multi-resolution gaussian approach. Each level of the
decomposition (scale) is generated by the convolution of the confidence field by
a gaussian mask of variable σ, where σ defines the grade of the decomposition.
This means that the bigger the sigma is, the longer interactions are considered.
Thus, at each level of decomposition all the points have information from the
rest accordingly to the sigma parameter. Given a set of Σ = {σ0, ..., σn} ∈ R

+

and all the predicted confidence maps F̂ 0(x,L), each level of the decomposition
is computed as follows,

F̂ si(x,L) = gσi(x) ∗ F̂ 0(x,L)

where gσi(x) is defined as a multidimensional isotropic gaussian filter with zero
mean,

gσi(x) =
1

(2π)d/2σ
1/2
i

e−
1
2xT σ−1

i x

Once we have the multi-scale decomposition, we define the support lattice z.
This is, the sampling performed over the multi-scale representation in order to
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obtain the extended data. Our choice is to use a scale-space sliding window over
each label multi-scale decomposition. The selected window has a fixed radius
with length defined by ρ in each dimension and with origin in the current pre-
diction example. Thus, the elements covered by the window is w = (2ρ + 1)d

around the origin. For the sake of simplicity, we use a fixed radius of length ρ = 1.
Then, for each scale i considered in the previous decomposition (σi i = 1 . . . n),
the window is stretched in each direction using a displacement proportional to
the scale we are analyzing. We use a displacement δi = 3σi + 0.5. This dis-
placement at each scale forces that each point considered around the current
prediction has very small influence from previous neighbor points. In this way,
the number of features of z, that are appended to the extended data set, is equal
to (2ρ + 1)d × |Σ| × |L|, where |L| is the number of classes. According to this,
we can see that the extended data set increases with the number of classes the
problem has. This can be a problem if the number of classes is large, since the
second classifier have to deal with many features, and therefore, the learning
time is increased. In the next subsection, a grouping approach for the extended
features is explained.

3.3 Extended Data Set Grouping: A Compression Approach

The goal of grouping the extended data set is to compress its number of fea-
tures. Using the above approach, we can see that a confidence map is obtained
for each class.Then, for each map, a multi-scale decomposition is computed,
and finally, a sampling around each input example is performed. To reduce the
number of confidence maps, we add a compression process between the multi-
scale decomposition and the sampling process. This compression is done follow-
ing information theory by means of partitions. Let be {P 1, P 2} a partition of
groups of classes and L = {λi} the set of all the classes, such that P 1 ⊆ L and
P 2 ⊆ L | P 1 ∪ P 2 = L and P 1 ∩ P 2 = ∅, the confidence maps are encoded as

Fsj ({P 1, P 2}) =
∑

i

F̂ sj (x, λi ∈ P 1) −
∑

i

F̂ sj (x, λi ∈ P 2)

for all the scales sj ∈ Σ. Then, using a coding strategy, a minimum set of
partitions P = {P 1, P 2}1, · · · , {P 1, P 2}α is defined, where α = �log2 |L|� is the
minimum number of partitions for compressing all the classes.

Following this compression approach, now the support lattice z is defined over
FΣ(P), this is, over all the scales in Σ and all the partitions in P . Therefore,
the number of features in z is reduced to (2ρ + 1)d × |Σ| × �log2 |L|�.

4 Experiments and Results

Before presenting the results, we discuss the data, methods and validation pro-
tocol of the experiment.
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– Data: We test our multi-class methodology on the e-trims database [12]. The
e-trims database is comprised of two datasets, 4-class with four annotated
object classes and 8-class with eight annotated object classes. There are 60
annotated images in each of the dataset. The object classes considered in 4-
class dataset are: (1) building, (2) pavement/road, (3) sky and (4) vegetation.
In 8-class dataset the object classes considered are: (1) building, (2) car,
(3) door, (4) pavement, (5) road, (6) sky, (7) vegetation and (8) window.
Additionally, for each database we have a background class (0) for any other
object. Examples of this database and ground-truth for 4-class and 8-class
are shown in Figure 5.

– Methods: We test our method using all the confidences maps, named
MMSSL Standard and using the compression approach, named MMSSL
Compressed. The settings for both experiments are the same, the only differ-
ence is the number of generated features in the extended dataset. We have
used as base classifier a Real Adaboost ensemble of 100 decision stumps.
For each image in the training set we perform a stratified sampling of 3000
pixels per image. For each example (pixel) the feature vector is only com-
posed of RGB attributes. This data is used for training the first classifier
using leave-one-image-out to produce confidence maps. The coding strategy
for the ECOC framework in each classifier is one versus one and the de-
coding measure is euclidean distance. The neighborhood function performs
a gaussian multi-resolution decomposition in 4 scales, using Σ = {1, 2, 4, 8}.
Observe that in order to compute the neighbors of each pixel the whole left-
out image is classified. Finally, both classifiers are trained using the same
feature samples without and with the extended set, respectively.
Furthermore, we have performed an experiment using multi-label optimiza-
tion via α-expansion [13]. Using the confidence maps for each class obtained
from the first classifier, we have applied the α-expansion optimization. For
the neighborhood term, we have took into account the intensity of the 4-
connected pixels.

– Validation: We have performed each experiment using six disjoint folds,
where 50 images are used as train set and 10 images used as test.

Tables 3 and 4 show accuracy, overlapping, sensitivity and specifity averaged
for all the classes. The accuracy of both MMSSL approaches in both databases
are very similar. This fact reinforce that our idea of grouping features without
losing performance is correct. The main advantage for using the compression
approach is that reducing the number of features in the extended dataset, the
time of the learning phase for the second classifier is reduced as well. In this way
if the number of classes increases the approach of MMSSL is still feasible.

Figures 3 and 4 show the overlapping for each class in 4-class and 8-class
database respectively. Large classes as building or sky have more overlapping
than the rest. Observe that class road/pavement in 4-class or road in 8-class
have a significantly larger overlapping than the Adaboost approach, this means
that using only the RGB features, this class is difficult to distinguish, but the
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Table 1. Method results for 4-class database

Method Accuracy Overlapping Sensivity Specifity

MMSSL Standard 0.8380 0, 6425 0, 7398 0, 795
MMSSL Compression 0.8358 0, 6390 0, 7342 0, 8001
Optimization α-expansion 0.5503 0, 3940 0, 6121 0, 5471
Adaboost 0.6200 0, 4366 0, 5634 0, 6278

Table 2. Method results for 8-class database

Method Accuracy Overlapping Sensivity Specifity

MMSSL Standard 0.7015 0, 4248 0, 5390 0, 5941
MMSSL Compression 0.7070 0, 4528 0, 5685 0, 6443
Optimization α-expansion 0.5138 0, 2570 0, 3927 0, 3529
Adaboost 0.6200 0, 2915 0, 4031 0, 4347

Fig. 3. Method Overlapping for 4-class

Fig. 4. Method Overlapping for 8-class

relationship among the rest classes makes it easier (road/pavement class is at
bottom of the building).

Figure 5 shows results for some images in the 4-class and 8-class dataset. Ob-
serve that MMSSL methods grasp the relationship between adjacent classes and
ADAboost can not. In addition, we have observed that using the optimization
α-expansion, the results are poor. This means that the classification performed
by the first classifier is not good enough to generalize from the surrounding pix-
els. On contrary, our MMSSL method can extract longer interrelations between
samples and, thus, obtain better results.
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Optimization
MMSSL 
compression Original GroundThrough MMSSL ADAboost

Fig. 5. Etrims 4-class (four top rows) and 8-class (four bottom rows) results
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5 Conclusions

In this paper we adapted multi-scale sequential learning (MSSL) to the multi-
class case (MMSSL). First, we have introduced the ECOC Framework in the
base classifiers. Next, we show how to compute the confidence maps using the
normalized margins obtained from the base classifiers. Another important con-
tribution is the compression approach we have used for reducing the number of
features in the extended data set. Taking into account that the experiments was
done using only RGB features, the effect of sequential features from MMSSL
is highly remarkable in our results. Moreover, they also shows that in terms of
accuracy the loss of information during de compression process is negligible, but
the amount of reduced features is considerable.
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Abstract. We compare experimentally the performance of three ap-
proaches to ensemble-based classification on general multi-class datasets.
These are the methods of random forest, error-correcting output codes
(ECOC) and ECOC enhanced by the use of bootstrapping and class-
separability weighting (ECOC-BW). These experiments suggest that
ECOC-BW yields better generalisation performance than either ran-
dom forest or unmodified ECOC. A bias-variance analysis indicates that
ECOC benefits from reduced bias, when compared to random forest,
and that ECOC-BW benefits additionally from reduced variance. One
disadvantage of ECOC-based algorithms, however, when compared with
random forest, is that they impose a greater computational demand lead-
ing to longer training times.

1 Introduction

Two of the most popular approaches to constructing multiple classifier systems
(MCS) to solve multi-class classification problems are random forest [1] and
error-correcting output codes (ECOC) [2,3]. In this paper we present the result
of an experimental comparison of these two methods when applied to a selection
of real-world datasets taken from the UCI repository [4]. We also consider an
enhanced version of ECOC, referred to as ECOC-BW, in which bootstrapping1

is applied when constructing base-classifier training sets and weighting is applied
to base-classifier decisions. Previous work has shown these enhancements to be
beneficial [5,6].

The random forest algorithm was introduced by Breiman in 2001 [1]. A num-
ber of variants of random forest have been proposed but here we focus on the
method that is often cited as a reference in the literature, known as Forest-RI.
This consists of building an ensemble of unpruned decision tree classifiers whose

1 Bootstrapping is a technique whereby new training sets are constructed from a given
training set by repeated sampling with replacement. Each new training set (referred
to as a bootstrap replicate) has, on average, 63% of the patterns in the original set
but with some patterns repeated so as to form a set of the same size.
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classification decisions are combined by a voting procedure. Each decision tree
is randomised in two ways: firstly, the training set is modified by constructing
a bootstrap replicate and secondly, at each node of the tree, the search for the
best split is limited to a subset of features that is randomly selected (without
replacement) from the full set of features. Forest-RI thus aims to achieve good
classification performance by combining the principles of bagging and random
feature selection.

In the ECOC approach, first described by Dietterich in 1991 [7], a multi-
class problem is decomposed into a series of 2-class problems, or dichotomies,
and a separate base classifier trained to solve each one. These 2-class problems
are constructed by repeatedly partitioning the set of target classes into pairs
of super-classes so that, given a large enough number of such partitions, each
target class can be uniquely represented as the intersection of the super-classes
to which it belongs. The classification of a previously unseen pattern is then
performed by applying each of the base classifiers so as to make decisions about
the super-class membership of the pattern. Redundancy can be introduced into
the scheme by using more than the minimum number of base classifiers and this
allows errors made by some of the classifiers to be corrected by the ensemble as
a whole.

The operation of the ECOC algorithm can be broken down into two distinct
stages - the coding stage and the decoding stage. The coding stage consists of
applying the base classifiers to the input pattern x so as to construct a vector
of base classifier outputs s (x) and the decoding stage consists of applying some
decoding rule to this vector so as to make an estimate of the class label that
should be assigned to the input pattern. A commonly used decoding method is to
base the classification decision on the minimum distance between s (x) and the
vector of target outputs for each of the classes, using a distance metric such as
Hamming or L1. This, however, treats all base classifiers as equal, and takes no
account of variations in their reliability. In the ECOC-BW variant of ECOC we
assign different weights to each base classifier and target class combination so as
to obtain improved ensemble accuracy. The weighting algorithm is referred to as
class-separability weighting (CSEP) because the weights are computed in such
a way that they measure the ability of a base classifier to distinguish between
examples belonging to and not belonging to a given class [8].

Although, unlike random forest, bootstrapping is not a standard feature of
the ECOC algorithm, we have shown [5,6] that it can be beneficial, particularly
when combined with the CSEP weighting scheme. For this reason, in ECOC-BW
we apply bootstrapping to the training set when each base classifier is trained.
The effect of bootstrapping is to increase the desirable property of diversity [9]
among the base classifiers in the ensemble. By this is meant that the errors made
by component classifiers should, as far as possible, be uncorrelated so that the
error correcting properties of the ensemble can have maximum effect. A further
potential benefit of bootstrapping is that each base classifier is trained on only a
subset of the available training data and this leaves the remaining data, known as
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the out-of-bootstrap (OOB) set, to be used for other purposes such as parameter
tuning. Note, however, that the OOB set is unique to each base classifier.

When considering the errors made by statistical pattern classifiers it is use-
ful to group them under three headings. Firstly there is the unavoidable error,
known as Bayes error, which is caused by noise in the process that generates the
patterns. A second source of error is variance; this is caused by the sensitivity of
a learning algorithm to the chance details of a particular training set and causes
slightly different training sets to produce classifiers that give different predic-
tions for some patterns. Thirdly there are errors caused by bias in a learning
algorithm2; here the problem is that the classifier is unable, for whatever reason,
to adequately model the class decision boundaries in the pattern feature space.

In this paper we use the concepts of bias and variance to investigate the
reasons for the differences in the accuracy achieved by different classification
methods.

The ideas of bias, variance and noise originally emerged from regression the-
ory. In this context they can be defined in such a way that the squared loss
can be expressed as the sum of noise, bias (squared) and variance. The goal of
generalising these concepts to classification problems, using a 0-1 or other loss
function, has proved elusive and several alternative definitions have been pro-
posed (see [10] for a summary). In fact it is shown in [10] that, for a general
loss function, these concepts cannot be defined in such a way as to possess all
desirable properties simultaneously. For example the different sources of error
may not be additive, or it may be possible for variance to take negative values.
In this study we adopt the Kohavi-Wolpert definitions [11]. These have the ad-
vantage that bias and variance are non-negative and additive. A disadvantage,
however, is that no explicit allowance is made for Bayes error and it is, in effect,
incorporated into the bias term.

The remainder of this paper is structured as follows. The technique of CSEP
weighting is described in detail in section 2. Here we also derive a novel prob-
abilistic interpretation of the method. Section 3 then describes the other main
novelty of this paper which is an experimental comparison of each of the three
classification methods: random forest, ECOC and ECOC-BW; this comparison
is made in terms of classifier accuracy and is also broken down into bias and
variance components. Finally, section 4 summarises the conclusions to be drawn
from this work.

2 ECOC Weighted Decoding

The ECOC method consists of repeatedly partitioning the full set of N classes
Ω into L super-class pairs. The choice of partitions is represented by an N × L
binary coding matrix Z. The rows Zi are unique codewords that are associated
with the individual target classes ωi and the columns Zj represent the different
super-class partitions. Denoting the jth super-class pair by Sj and Sj , element
Zij of the coding matrix is set to 1 or 0 depending on whether class ωi has been
2 Bias is actually measured as the quantity bias2 .
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put into Sj or its complement3. A separate base classifier is trained to solve each
of these 2-class problems.

Given an input pattern vector x whose true class y (x) ∈ Ω is unknown, let the
soft output from the jth base classifier be sj (x) ∈ [0, 1]. The set of outputs from
all the classifiers can be assembled into a vector s(x) = [s1(x), . . . , sL(x)]T ∈
[0, 1]L called the output code for x. Instead of working with the soft base classifier
outputs, we may also first harden them, by rounding to 0 or 1, to obtain the
binary vector h(x) = [h1(x), . . . , hL(x)]T ∈ {0, 1}L. The principle of the ECOC
technique is to obtain an estimate ŷ (x) ∈ Ω of the class label for x from a
knowledge of the output code s(x) or h(x).

In its general form, a weighted decoding procedure makes use of an N × L
weights matrix W that assigns a different weight to each target class and base
classifier combination. The class decision, based on the L1 metric, is made as
follows:

ŷ (x) = argmin
ωi

L∑
j=1

Wij |sj (x) − Zij| , (1)

where it is assumed that the rows of W are normalised so that
∑L

j=1 Wij =
1 for i = 1 . . .N . If the base classifier outputs sj (x) in Eqn. 1 are replaced
by hardened values hj (x) then this describes the weighted Hamming decoding
procedure.

The values of W may be chosen in different ways. For example, if Wij = 1
L

for all i, j then the decoding procedure of Eqn. 1 is equivalent to the standard
unweighted L1 or Hamming decoding scheme. In this paper we make use of the
class separability measure [8,5] to obtain weight values that express the ability
of each base classifier to distinguish members of a given class from those of any
other class.

In order to describe the class-separability weighting scheme, the concept of a
correctness function must first be introduced: given a pattern x which is known
to belong to class ωi, the correctness function for the j’th base classifier takes
the value 1 if the base classifier makes a correct prediction for x and 0 otherwise:

Cj (x) =

{
1 if hj (x) = Zij

0 if hj (x) 	= Zij

. (2)

We also consider the complement of the correctness function Cj (x) = 1−Cj (x)
which takes the value 1 for an incorrect prediction and 0 otherwise.

For a given class index i and base classifier index j, the class-separability
weight measures the difference between the positive and negative correlations of
base classifier predictions, ignoring any base classifiers for which this difference
is negative:

3 Alternatively, the values +1 and -1 are often used.
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Wij = max

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0,

1
Ki

⎡⎢⎢⎢⎢⎢⎣
∑

p ∈ ωi

q /∈ ωi

Cj (p)Cj (q) −
∑

p ∈ ωi

q /∈ ωi

Cj (p)Cj (q)

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (3)

where patterns p and q are taken from a fixed training set T and Ki is a
normalisation constant that ensures that the i’th row of W sums to 1. The
algorithm for computing W is summarised in fig. 1.

Inputs: matrix of training patterns T ∈ R
P×M , binary coding matrix Z ∈

{0, 1}N×L, trained ECOC coding function E : R
M �→ [0, 1]L .

Outputs: weight matrix W ∈ [0, 1]N×L where
∑L

j=1 Wij = 1, for i = 1 . . . N .
Apply E to each row of T and round to give prediction matrix H ∈ {0, 1}P×L.
Initialise W to 0.
for c = 1 to N

for i = indices of training patterns belonging to class c
for j = indices of training patterns not belonging to class c

let d be the true class of the pattern Tj .
for k = 1 to L

if Hik = Zck and Hjk = Zdk, add 1 to Wck

as the predictions for both patterns Ti and Tj are correct.
if Hik �= Zck and Hjk �= Zdk, subtract 1 fromWck

as the predictions for both patterns Ti and Tj are incorrect.
end

end
end

end
Reset all negative entries in W to 0.
Normalise W so that each row sums to 1.

Fig. 1. Pseudo-code for computing the class-separability weight matrix for ECOC.

The weights matrix Wij of Eqn. 3 was derived from a consideration of the
spectral properties of the Boolean functions that map base classifier outputs to
the ensemble decisions. In this interpretation base classifiers are weighted by
their ability to distinguish the members of a given class from patterns which
do not belong to that class. An alternative interpretation may also be given in
terms of base classifier accuracy probabilities. Let

Pij =
1

Mi

∑
x∈ωi

cj (x) , Qij =
1

(M − Mi)

∑
x′ /∈ωi

cj (x′) (4)
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where M is the total number of training patterns and Mi is the number of belong-
ing to class ωi. Then Pij and Qij respectively represent estimates of the prob-
ability that the jth base classifier makes correct decisions for patterns belong-
ing to and not belonging to class ωi. By substituting MiPij and (M − Mi)Qij

for
∑

x∈ωi
cj (x) and

∑
x′ /∈ωi

cj (x′) in Eqn. 3 and making use of the fact that
cj (x) = 1 − cj (x), it can be easily shown that an alternative definition of the
CSEP weights is given by:

Wij = max
{

0,
1

K
′
i

[Pij + Qij − 1]
}

, (5)

where K
′
i = Ki/Mi (M − Mi) is a modified normalisation constant.

From Eqn. 5 it can be seen that CSEP weighting rewards those base classifiers
that have a high true detection rate and a low false detection rate for class ωi.
Any base classifier that cannot outperform random guessing, where Pij = Qij =
0.5, will be zero weighted under this algorithm.

3 Experiments

In this section we present the results of performing classification experiments
on 11 multi-class datasets obtained from the publicly available UCI repository
[4]. The characteristics of these datasets in terms of size, number of classes and
number of features are given in table 1 All experiments were based on a 20/80
training/test set split and each run used a different randomly chosen stratified
training set. These training sets were first normalised to have zero mean and
unit variance.

Table 1. Experimental datasets showing the number of patterns, classes, continuous
and categorical features

Dataset Num. Num. Cont. Cat.
Patterns Classes Features Features

dermatology 366 6 1 33
ecoli 336 8 5 2
glass 214 6 9 0
iris 150 3 4 0

segment 2310 7 19 0
soybean 683 19 0 35
thyroid 7200 3 6 15
vehicle 846 4 18 0
vowel 990 11 10 1

waveform 5000 3 40 0
yeast 1484 10 7 1

For each dataset, ECOC ensembles of 200 base classifiers were constructed.
Each base classifier consisted of a multi-layer perceptron (MLP) neural network
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with one hidden layer. The Levenberg-Marquardt algorithm was used for base
classifier training as this has been shown to converge more rapidly than back-
propagation. Base classifier complexity was adjusted by varying the hidden node
counts and training epochs. Each such combination was repeated 10 times and
the lowest mean test error was obtained. Random variations between each run
were introduced by generating a different random code matrix and by randomly
setting the initial MLP weights. The code matrices were constructed in such a
way as to place an approximately equal number of target classes in the super-
classes Sj and Sj .

The ECOC experiments were repeated using ECOC-BW (i.e. with CSEP
weighting and bootstrapping being applied). Each base classifier was trained on
a separate bootstrap replicate drawn from the full training set for that run. The
CSEP weight matrix was computed from the full training set each time so its
value was determined in part by patterns (the OOB set) that were not used in
the training of the base classifier.

The random forest experiments were conducted in a similar way to ECOC
except that it was found necessary to repeat each experiment 100 times in order
to obtain stable results. The number of decision trees in each forest was varied up
to 400 and the optimal number required to minimise test error was obtained. The
number of random features selected at each node was chosen using Breiman’s
heuristic log2 F + 1 where F is the total number of features available4. This has
been shown to yield near optimal results [12].

The outcome of these experiments on individual datasets is shown graphi-
cally in Fig. 2. This shows a bar chart of the lowest test error attained by the
three classification methods. Also shown is the average test error taken over all
datasets. Table 2 summarises these results and shows the number of experiments
that were found to be statistically significant at the 5% level using a t-test.

Table 2. A comparison of classifier types showing the number of favourable and non-
favourable experiments in support of the proposition that the first classifier is more
accurate than the second. Figures in brackets show how many experiments were sig-
nificant at the 5% level.

First Second Favourable Non-Favourable
Classifier Classifier (out of 11) (out of 11)

ECOC-BW RF 9 (8) 2 (1)
ECOC RF 7 (6) 4 (4)

ECOC-BW ECOC 9 (3) 2 (0)

Inspection of Fig. 2 and table 2 shows that no single classification algorithm
gave the best results on all datasets. Indeed, random forest gave the lowest
generalisation error on glass and soybean, ECOC gave the lowest error on segment

4 Another commonly used heuristic is
√

F . For these datasets, however, both formulae
selected a very similar, and in many cases identical, number of features.
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Fig. 2. The lowest percentage ensemble test error attained by different classifiers on
11 datasets

and vowel whilst ECOC-BW was optimal on dermatology, ecoli, iris, thyroid,
vehicle, waveform and yeast. Comparing the different algorithms, it can be seen
that ECOC gave a lower error than random forest on 7/11 datasets and also had
a lower average error taken over all datasets. ECOC-BW yielded lower error than
random forest on 9/11 datasets and also beat standard ECOC on 9/11 datasets.
ECOC-BW also had the lowest mean error over all datasets. The evidence from
these experiments is then that the ECOC-BW algorithm tends to give the best
generalisation performance out of the three methods. There is also evidence that
standard ECOC tends to perform a little better random forest but the advantage
is not so consistent.

One further consideration that is worth taking into account when comparing
these classification methods is that of computational overheads. The decision
tree base classsifiers used by random forest are of a more lightweight nature that
the MLP base classifiers that were used in ECOC classification and this was
reflected in the elapsed times of the experiments which were, typically, about 15
times greater for the ECOC-based methods than for random forest.
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It is interesting to look at the performance of these classifiers in terms of a
bias-variance decomposition of the error. Table 3 shows a breakdown of the error
incurred by each ensemble type when averaged over all datasets.

Inspection of table 3 suggests that when ECOC is compared with random
forest, the variances of the two algorithms are the same and the slightly greater
accuracy of ECOC may be attributed to a lower level of bias. It seems likely that
lower bias of ECOC is due to the fact that the MLP base classifiers themselves
will tend to have lower bias due to the fact that they are able to model non-linear
decision boundaries between classes. By contrast, random forest uses decision
trees as base classifiers are thus constrained to model decision boundaries as
segments of hyperplanes that run parallel to the feature-space axes.

When ECOC-BW is used, variance is also reduced, leading to a further re-
duction in classification error. This is consistent with previous work [6] which
has demonstrated that the use of CSEP weighting and bootstrapping tends to
make the ECOC ensemble less prone to over-fitting the data so that classifier
decisions become less sensitive to variations in the training set.

Table 3. A comparison of percentage bias, variance and total error incurred by different
classifiers. The values are averaged over 11 datasets.

Bias2 Variance Total
Error

RF 9.8 7.5 17.4
ECOC 9.1 7.5 16.5

ECOC-BW 9.1 6.7 15.8

4 Discussion and Conclusions

In this paper we have compared experimentally the generalisation performance
of three types of ensemble classifier on general multi-class datasets. The classifier
types were random forest, ECOC and ECOC-BW in which ECOC is enhanced
by the application of class-separability weighting and bootstrapping. The evi-
dence from this set of experiments is that, although each classifier type can be
optimal on some datasets, in general ECOC-BW tends to yield better accuracy
than either random forest or ECOC. There is evidence that accuracy of ECOC
is slightly better than that of random forest but the advantage cannot be so
consistently observed as for ECOC-BW.

A breakdown of the error into bias and variance components reveals that
standard ECOC has similar variance properties to random forest but benefits
from slightly lower bias. It is suggested that this is due to the lower bias of the
MLP base classifiers that were used with ECOC, when compared to the decision
tree base classifiers of the random forest algorithm. For ECOC-BW the variance
is also lower than for random forest and this leads to a further reduction in
overall classification error.
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Although ECOC-BW tends to yield greater classification accuracy, it is worth
noting that random forest has an advantage over the ECOC-based algorithms
in the sense that it has substantially reduced computational requirements.
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Abstract. The original task of a multiclass classification problem can be
decomposed using Error Correcting Output Coding in several two-class
problems which can be solved with dichotomizers. A reject rule can be set
on the classification system to improve the reliability of decision through
an external threshold on the decoding outcomes before the decision is
taken. If a loss-based decoding rule is used, more can be done to make
such external scheme works better introducing a further reject stage in
the system. This internal approach is meant to single out unreliable
decisions for each classifier in order to proficiently exploit the properties
of loss decoding techniques for ECOC as proved by experimental results
on popular benchmarks.

Keywords: ECOC, reject option, multiple classifiers systems.

1 Introduction

Error Correcting Output Coding (ECOC) is a successful technique to face a
multiclass problem by decomposing it in several two-class problems. The main
idea is to create a certain number of different binary tasks which aggregate the
original classes in only two classes according to a coding matrix. Each row of
this matrix associates a binary string to each class of the original problem while
each column defines a binary problem for a dichotomizer. When a new sample is
classified by the dichotomizers, a new binary string is obtained, which has to be
matched with the existing class codewords using a suitable decoding technique.
The motivation for such method founds on the error correcting capabilities of
the codes used to group classes and on the stronger theoretical roots characteriz-
ing two-class classifiers. Moreover, it has also been proved that ECOC provides
a reliable probability estimation and a concurrent reduction of both bias and
variance [1] which motivate its good generalization capabilities. For such rea-
sons it has been successfully applied to a wide range of real applications such as
text and digit classification [2,3], face recognition and verification [4,5] or fault
detection [6].

When used in real applications, ECOC systems can produce errors which
could have serious consequences, typically expressed in terms of an error cost. A
well known technique to reduce the error rate is to abstain from decision when
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the reliability of the classification is estimated to be not sufficient (reject option)
[7]. Thus, a dichotomizer, in addition to the possible outputs, can be in the state
of reject which possibly avoids a wrong decision. The reject option is actually
employed in many applications since it can alleviate or remove the problem of a
misclassification rate too high for the requirements of the application at hand.

This technique can be usefully applied to ECOC systems and a preliminary
analysis of this problem has been presented in [8]. In that paper we modified the
decoding stage of the system in order to introduce a reject threshold uniquely
based on the observation of the output of the ensemble of classifiers. Here we
carry out a more in depth analysis that takes explicitly into account the struc-
ture of the ECOC system and estimates the reliability of the output of each
dichotomizer. In this way, the binary decisions are rejected if not sufficiently
reliable and the rejected elements in the output vector are decoded in an ap-
propriate way based on the loss distance [9]. The effectiveness of the proposed
scheme has been verified on several benchmark data sets.

The paper is organized as follows: in sect. 2 we analyze ECOC and the loss
decoding rule. Sect. 3 describes the different proposed approaches. The experi-
mental results are reported in sect. 4 while sect. 5 concludes the paper and draws
some possible future developments.

2 The ECOC Approach

Error Correcting Output Coding is a technique meant to solve multi class classi-
fication problems with a decomposition of the original task in binary problems. A
bit string of length L (codeword) is associated to each class ωi with i = 1, . . . , n,
where n is the number of the original classes. The set of codewords is arranged
in a n×L coding matrix C = {chk} where chk ∈ {−1, +1}. Each column defines
a binary problems which requires a specific dichotomizer (An example of C is in
table 1).

Table 1. Example of a coding matrix for a 5 classes problem

classes codewords

ω1 +1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

ω2 −1−1−1−1−1−1−1−1+1+1+1+1+1+1+1

ω3 −1−1−1−1+1+1+1+1−1−1−1−1+1+1+1

ω4 −1−1+1+1−1−1+1+1−1−1+1+1−1−1+1

ω5 −1+1−1+1−1+1−1+1−1+1−1+1−1+1−1

Each sample x is fed to the group of dichotomizers and the outcomes are
collected into the output vector. Such vector is then compared with the original
collection of words from the coding matrix using a decoding procedure. Differ-
ent decoding techniques are available in literature, but the loss based decoding
proved to outperform the others because it considers the reliability of the deci-
sion by evaluating a specific loss function on the margin of each classifier [9].
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In the case of ECOC, the margins associated to the choice of a particular
codeword ci are given by cihfh(x) with h = 1, . . . , L; if we know the loss func-
tion L(·) used for training the dichotomizers, we can evaluate the global loss
associated to such codeword:

DL(ci, f) =
L∑

h=1

L(cihfh(x)). (1)

The combination of margin values into this loss-based distance gives the level
of confidence on the output word and the following rule can be used to predict
the label for the k -th class:

ωk = arg min
i

DL(ci, f). (2)

Eq. (2) can be also considered when the loss function of the dichotomizers is
not known and the L1 or L2 norm distance is used. In fact, it is easy to see that
the loss-based distance in (1) reduces to L1 or L2 distance provided that the loss
L(z) = |1 − z| or L(z) = (1 − z)2 is used, respectively.

3 From an External to an Internal Reject Approach

A popular approach in many classification tasks is to reduce the costs by turning
as many errors as possible into rejects. A simple technique to reject on ECOC
systems can be accomplished by evaluating the reliability of the decision. Such
rule is typically based on the final decision criterion which can be the minimiza-
tion of the distance between the output word and the original codewords of the
coding matrix. A threshold can be externally set on the output value of the
decision block of the system.

Such external schemes do not require any assumption neither on the di-
chotomizers nor on the coding matrix, because the application of the rule does
not imply any modification on the internal structure of the ECOC system.

In a previous work[8] we have analyzed the reject option applied on a decoding
technique based on the loss distance and found that it works sensibly better than
more traditional decoding techniques, such as those based on Hamming distance.
The reason is that the loss distance based decoding is able to more effectively
estimate the reliability of each dichotomizer by considering the margin it provides
on the sample to be classified. Assuming a loss value normalized in the range
[0, 1], such a criterion, that we indicate as Loss Decoding, can be formalized as:

r(f , tl) =

{
ωk if DL(ck, f) < tl,
reject if DL(ck, f) ≥ tl.

(3)

where ωk is the class chosen according to eq. (2) and tl ∈ [0, 1].
More can be done for an ECOC system by introducing a previous stage of

reject. If each binary classifier outputs a real value in the range [−1, +1], we can
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provide them with a reject option by fixing a threshold on their outcomes. In this
situation, a new scheme (internal scheme) can be introduced which evaluates the
reliability of the dichotomizers output and rejects the unreliable samples. The
rationale is to process the binary decisions before arriving at the decoding stage.

Some considerations must be done on the design of the reject option for the
ensemble of dichotomizers. Assuming that each one fh(x) outputs a real value
in the range [−1, +1], then such value is compared with a threshold τh in order
to assign them to a class +1 if fh(x) ≥ τh and to a class −1 otherwise.

Whichever the value of the decision threshold τh the majority of unreliable
decisions corresponds to the closer outcomes for the boundary, i.e. where the dis-
tributions of the two classes overlap. Samples with an output falling in this region
are characterized by some ambiguity in the allocation, since their corresponding
outcomes are very similar and thus quite difficult to distinguish. Therefore, re-
liable results are obtained adopting a decision rule with two thresholds τh1 and
τh2 with τh1 ≤ τh2 such that:

r(fh, τh1, τh2) =

⎧⎪⎨⎪⎩
+1 if fh(x) > τh2,
−1 if fh(x) < τh1,
reject if fh(x) ∈ [τh1, τh2].

(4)

Such rule has to consider the class distributions overlap region into the reject
interval [τh1, τh2] which is the principal cause of misclassification. Thresholds
must be chosen to satisfy two contrasting requirements: enlarging the reject
region to eliminate more errors and limiting the reject region to preserve as
many correct classifications as possible. Since all the dichotomizers have different
distributions a single threshold for every classifier could lead to abnormal results
as shown in fig. 1).

For this reason, we do not impose the same reject threshold, but the same
reject rate ρ and evaluate for each classifier the corresponding pair of thresholds,
according to the method described by Pietraszek in [10]. Such method requires to
estimate the ROC curve of each dichotomizer and calculate the pair of thresholds
(τh1, τh2) such that fh abstains for no more than ρ at the lowest possible error
rate to make all the dichotomizers working almost at the same level of reliability.

The outcomes of the entire system are now different from the previous case.
The output word is constituted by a mixture of zero values corresponding to a
rejected sample by some dichotomizers and some real values for the same sample
on some other dichotomizers. Such situation can thus be synthesized:

f
(ρ)
h (x, τh1, τh2) =

{
0 if fh(x) ∈ [τh1, τh2]
fh(x) otherwise

. (5)

Loss distance can be still computed even though the presence of the zero
values in the output word f (ρ) modifies the range of possible outcomes. It is
given by:

DL(ci, f (ρ)) =
∑

h∈Inz

L(cihfh(x)) + |Iz| · L(0) (6)
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fh(x| + 1)

fh(x| − 1)

τh1 τh2

(a)

τh1 τh2

fk(x| + 1)

fk(x| − 1)

(b)

fk(x| − 1)

fk(x| + 1)

τk1 τk2

(c)

Fig. 1. (a) The output distributions of the dichotomizer fh for the two classes and the
pair of thresholds (τh1, τh2). (b) The same thresholds applied to a different dichotomizer
fk produce abnormal results. (c) The proper thresholds (τk1, τk2) evaluated for fk.
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Fig. 2. The block diagram for the internal reject rule coupled with loss decoding

where Inz and Iz are the sets of indexes of the nonzero values and zero values in
the output word, respectively. In practice the loss is given by two contributions,
where the second one is independent of the codeword that is compared to the
output word. An example of how the values can range is shown in fig. 3.
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Fig. 3. Loss based distance decision using an exponential loss function: output word
f is decoded as class 3 without reject (upper part), while is decoded as class 2 if an
internal reject is applied (lower part)

If a threshold tl is set the rejection rule, that we call Trimmed Loss Decoding,
is defined as:

r(f (ρ), tl) =

{
ωk if DL(ck, f (ρ)) > tl,
reject if DL(ck, f (ρ)) ≤ tl.

(7)

where ωk is the class chosen according to eq. (2).
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4 Experiments

Ten multiclass benchmark data sets publicly available at the UCI machine learn-
ing repository [11] have been used to compare the performance of the different
reject rules. To avoid any bias in the comparison for each data set twelve runs
of a multiple hold out procedure have been performed. In each run, the data
set has been split into three subsets: a training set (containing the 70% of the
samples of each class), a validation set and a test set (each containing the 15%
of the samples of each class). The training set has been used for learning the
base classifiers, the validation set for the normalization of the binary outputs
into the range [−1, 1] and the estimation of the thresholds (τh1, τh2) and the test
set for the performance evaluation. A short description of the data sets is given
in table 2. In the same table we also report the number of columns of the coding
matrix chosen for each data set according to [12].

Three different classifiers have been used as base dichotomizer: Modest Ad-
aboost (MA)[13] and Support Vector Machine (SVM) with both linear and RBF
kernel. MA has been built using a decision tree with maximum depth equal to
10 as weak learner and 50 boosting steps. SVM was implemented through the
SVMLight [14] software library using a linear kernel and an RBF kernel with
σ = 1. In both cases the C parameter has been set to the default value calcu-
lated by the learning procedure. The exponential loss L(z) = e−z for the MA
and the “hinge” loss L(z) = max{1 − z, 0} for the SVM were adopted.

Experiments are meant to compare the two presented reject schemes: the Loss
Decoding (LD) and Trimmed Loss Decoding (TLD). For the sake of comparison
we also considered the basic reject rule [8] based on Hamming distance Decoding
(HD). For HD the external threshold has been varied in the range [0, L/2] with
step 1, while for LD the loss output was normalized in the range [0, 1] and
consequently the thresholds were varied in this interval with the step 0.01. In
the case of TLD we have varied the parameter ρ from 0 to 1 with step 0.05

Table 2. Data sets used in the experiments

Data Set Classes Features Length (L) Samples

Abalone 29 8 30 4177

Ecoli 8 7 62 341

Glass 6 9 31 214

Letter 26 16 63 5003

OptDigits 10 62 31 5620

Pendigits 10 12 31 10992

SatImage 6 36 31 6435

Segmentation 7 18 63 2310

Vowel 11 10 14 435

Yeast 10 8 31 1484
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Table 3. Mean area under the error-reject curve and standard deviation for Modest
Adaboost

Data Sets HD LD TLD

Abalone 0.359(0.010) 0.348(0.009) 0.342(0.010)

Ecoli 0.032(0.016) 0.036(0.015) 0.026(0.011)

Glass 0.094(0.026) 0.090(0.019) 0.069(0.017)

Letter 0.061(0.005) 0.052(0.007) 0.050(0.006)

OptDigits 0.006(0.001) 0.004(0.001) 0.004(0.001)

Pendigits 0.003(0.001) 0.003(0.001) 0.002(0.001)

SatImage 0.025(0.005) 0.021(0.003) 0.021(0.003)

Segmentation 0.002(0.001) 0.001(0.001) 0.001(0.001)

Vowel 0.052(0.011) 0.037(0.010) 0.032(0.010)

Yeast 0.169(0.015) 0.160(0.015) 0.151(0.012)

and, as in the LD case, the loss output is normalized in the range [0, 1] and the
external threshold is varied with step 0.01 into the same range.

To make a complete comparison among the different strategies, we have con-
sidered the Error-Reject (ER) curve which gives a complete description of a clas-
sification system with the reject option by plotting the error rate E(t) against
the reject rate R(t) when varying the threshold t on the reliability estimate.

In these experiments to consider a synthetic and clear performance figure for
the classification systems, we have used the area under the error-reject curves
which gives the average error rate when varying the reject rate. This is a sin-
gle numerical value which provides a simple measure for the performance of a
classification system with the reject option: the lower its value, the better the
overall classification performance.

Tables 3, 4 and 5 report the results respectively for MA, linear SVM and RBF
SVM classifier, obtained with the multiple hold out procedure before described.
Each cell contains the values of the mean area under the error-reject curve and
its standard deviation for each data set and reject rule. To verify if there is a
statistical difference between the obtained results, the Wilcoxon signed ranks-
test [15]) has been performed with a significance level equal to 0.05. Since this
statistical test is appropriate only for pairs of classifiers and we want to analyze
the behavior of TLD we have performed it twice for the two pairs: HD versus
TLD and LD versus TLD. The outcomes are shown in the reported tables where a
bold value in TLD column indicates that this method has obtained a statistically
lowest mean area in both tests. The Wilcoxon test assesses the superiority of TLD
method in all the analyzed cases with respect to LD and HD since it allows us
to control the individual errors of the base classifiers. For this reason, using an
internal reject rule and thus the knowledge of the nature of the base classifier,
the system has the possibility to face the uncertainty of wrong predictions in a
more precise and effective way than external techniques.
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Table 4. Mean area under the error-reject curve and standard deviation for linear
SVM

Data Sets HD LD TLD

Abalone 0.386(0.010) 0.362(0.010) 0.353(0.006)

Ecoli 0.029(0.017) 0.036(0.012) 0.025(0.010)

Glass 0.185(0.035) 0.189(0.027) 0.143(0.024)

Letter 0.174(0.011) 0.162(0.008) 0.158(0.007)

OptDigits 0.007(0.001) 0.005(0.001) 0.005(0.001)

Pendigits 0.021(0.003) 0.020(0.003) 0.019(0.003)

SatImage 0.041(0.003) 0.035(0.002) 0.034(0.002)

Segmentation 0.020(0.004) 0.018(0.004) 0.016(0.004)

Vowel 0.301(0.026) 0.238(0.026) 0.220(0.022)

Yeast 0.187(0.013) 0.192(0.012) 0.177(0.011)

Table 5. Mean area under the error-reject curve and standard deviation for Radial
Basis Function SVM

Data Sets HD LD TLD

Abalone 0.356(0.008) 0.344(0.006) 0.338(0.006)

Ecoli 0.035(0.022) 0.037(0.017) 0.028(0.016)

Glass 0.145(0.049) 0.122(0.032) 0.102(0.032)

Letter 0.031(0.005) 0.027(0.004) 0.026(0.004)

OptDigits 0.003(0.001) 0.001(0.000) 0.001(0.000)

Pendigits 0.002(0.001) 0.001(0.000) 0.001(0.000)

SatImage 0.037(0.003) 0.022(0.003) 0.020(0.003)

Segmentation 0.008(0.002) 0.006(0.002) 0.005(0.002)

Vowel 0.007(0.005) 0.003(0.003) 0.002(0.002)

Yeast 0.175(0.021) 0.179(0.019) 0.169(0.018)

5 Conclusions and Future Works

In this paper we have compared two techniques to provide the ECOC classifica-
tion system with a reject option. The first and more immediate one consists in
modifying the final decoding stage, where the multi class decision is accomplished
and where it is possible to evaluate a reject threshold on the system output. The
second solution, instead, is to work where base classifiers takes their binary de-
cisions and to apply a reject rule to each one of them. The main difference is
in the simplicity and ease of use of the external methods against the flexibility
of internal methods. The experiments showed that the more complex technique
attains higher reduction of the error rate confirming that an internal reject is
useful when coupled with loss decoding.

Directions for future work include investigating the relation of the rejection
rule with the characteristics of the coding, taking into special account new
problem-dependent or data-dependent designs.
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Abstract. Error Correcting Output Codes (ECOC) have demonstrate
to be a powerful tool for treating multi-class problems. Nevertheless, pre-
defined ECOC designs may not benefit from Error-correcting principles
for particular multi-class data. In this paper, we introduce the Separabil-
ity matrix as a tool to study and enhance designs for ECOC coding. In
addition, a novel problem-dependent coding design based on the Separa-
bility matrix is tested over a wide set of challenging multi-class problems,
obtaining very satisfactory results.

Keywords: Error Correcting Output Codes, Problem-dependent de-
signs, Separability matrix, Ensemble Learning.

1 Introduction

Multi-class classification tasks are problems in which a set of N classes, categories
or namely brands are categorized. Most of state-of-the-art multi-class method-
ologies need to deal with the categorization of each class either by modelling its
probability density function, or by learning a classification boundary and using
some kind of aggregation/selection function to obtain a final decision. Another
way to deal with multi-class problems is to use a divide-and-conquer approach.
Instead of extending a method to cope with the multi-class case, one can divide
the multi-class problem into smaller binary problems and then combine their
responses using some kind of strategy, such as voting.

In the ensemble learning field, Error Correcting Output Codes (ECOC) have
demonstrated to be a powerful tool to solve multi-class classification prob-
lems [CS02, DB95]. This methodology divides the original problem of N classes
in n binary problems (2-class problems). Commonly, the step of defining n bi-
nary partitions of the N classes is known as coding. At this step, a coding matrix
MN×n ∈ {−1, +1} is generated. The columns of M denote the n bi-partitions
of the original problem, and the rows of M , known as codewords, identify each

C. Sansone, J. Kittler, and F. Roli (Eds.): MCS 2011, LNCS 6713, pp. 227–236, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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one of the N classes of the problem uniquely. Once M is defined, a set of n base
classifiers {h1, . . . , hn} learn the n binary problems coded in M .

  h5  h4  h3  h2  h1

s

xs

   2

   4

    1

   4

   2

   δ
  h5  h4  h3  h2  h1

(a) (b)

(c)

h3

h2

h1h4

h5

Fig. 1. (a) Feature space and trained boundaries of base classifiers. (b) Coding matrix
M , where black and white cells correspond to {+1,−1}, denoting the two partitions to
be learnt by each base classifier (white cells vs. black cells). (c) Decoding step, where
the predictions of classifiers, {h1, . . . , h5} for sample s are compared to the codewords
{y1, . . . , yN} and s is labelled as the class codeword at minimum distance.

At the decoding step, a new sample s is tested by each base classifier
{h1, . . . , hn}, obtaining a set of label predictions. The set of predictions xs is
compared to each codeword of M using a decoding measure δ and sample s is
labelled as the class ci with codeword yi at minimum distance (i-th row of M).
In Figure 1, an example for coding and decoding steps is shown for a 5−class
toy problem. Note that though classifier h4 fails its prediction, s is correctly
classified.

The coding step has been widely studied in literature [TR98, RK04, ASS02],
proposing either predefined [TR98, RK04] or random [ASS02] coding designs
always following the trend of reducing the number of used dichotomizers. Nev-
ertheless, predefined strategies may not be suitable for a given problem because
they do not take into account the underlying distribution of the classes. In this
scope, one can roughly find works on problem-dependent strategies for coding
designs [EOR08, PRV06].

In this paper we introduce the Separability matrix as a way to analyse and
study the properties of a certain ECOC coding matrix. Although the concept of
separability has always been in the heart of all ECOC studies, up to this moment
there has not been the need of defining explicitly a matrix of this kind. This is
mainly due to the fact that predefined strategies assume that the coding matrix
must have equidistant codewords. However, with the introduction of problem-
dependent and sub-lineal coding designs this general assumption does not hold
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and more concise tools are needed for their analysis. The Separability matrix ex-
plicitly shows the pairwise separation between all pairs of classes. With this tool
in mind, we also propose a new compact problem-dependent coding design that
shows the benefits of applying the separability criteria in a problem-dependent
manner.

This paper is organized as follows: Section 2 introduces the Separability ma-
trix, in Section 3 the novel problem-dependent coding design is proposed and,
Section 4 shows the experimental results. Finally, Section 5 concludes the paper.

2 The Separability Matrix

One of the main concerns of the ECOC framework is to correct as many base
classifiers errors as possible. In literature, the correction capability ρ of a coding
matrix M is defined as ρ = min(δ(yi,yj))−1

2 , ∀i, j ∈ {1, . . . , N}, i �= j. Therefore,
distance between codewords and correction capability are directly related. Given
this close relationship between distance and correction capability, we define the
Separability matrix S, as follows:

Given an ECOC coding matrix MN×n, the Separability matrix SN×N contains
the distances between all pairs of codes in M . Let {yi, yj} be two codewords,
the Separability matrix S at position (i, j), defined as Si,j , contains the distance
between the codewords {yi, yj}, defined as δ(yi, yj). An example of Separability
matrix estimation for two coding designs is shown in Figure 2.

Usually, the increment in the correcting capability problem has been tackled
by enlarging the codeword length, and thus, the distance between codewords
[TR98]. However, Rifkin et al. show in [RK04] that if a classifier with high
capacity is well optimized, small codes such as One vs. All are also suitable
for solving the problem. Recently, following the same principle as Rifkin et al.,
in [BEB10] the authors propose to use a Compact ECOC matrix, with a code
length of �log2(N)�, where �.� round to the upper integer, which is optimized
by a Genetic Algorithm in a problem-dependent manner.

If we analyse the Separability matrix S of predefined ECOC coding designs
[TR98, RK04], we find that Si,j = ς ∀i, j ∈ {1, . . . , N}, i �= j, where ς is a
constant separation value. This means that codewords are equidistant, as shown
in Figure 2(d). In fact, when dealing with predefined codings, the Separability
matrix makes little sense and has been overlooked since all non-diagonal values
are constant. Nevertheless, in problem-dependent coding strategies the Separa-
bility matrix acquires a great value, since it shows which codewords are prone
to have more errors due to the lack of error correction capability. For example,
if we analyse the Compact ECOC coding matrix M we find that codewords are
not equidistant and the distribution of separability is not constant. An example
of Compact ECOC coding and its Separability is shown in Figure 2(a) and 2(b),
respectively.
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Fig. 2. (a) Compact ECOC coding matrix. (b) Separability Matrix of a Compact
ECOC. (c) One vs. All coding matrix. (d) Separability matrix of One vs. All
coding.

3 Application of Separability Matrix for Extension
Coding

Problem-dependent coding strategies have not been thoroughly studied in litera-
ture [EOR08, PRV06]. In contrast to classical approaches [RK04, TR98, ASS02],
problem-dependent coding designs combine the error correcting principles with
a guided coding procedure which takes into account the distribution of the data.
In this work we define a problem-dependent coding design based on the Separa-
bility matrix to enhance the error correcting capabilities of the design. Moreover,
we also take profit of the Confusion matrix to define the partitions of classes of
each binary classifier.

In [BEB10] the authors propose a problem-dependent Compact ECOC cod-
ing matrix of length �log2 N�. However, the computational cost of optimizing
this coding matrix is very expensive and in every case the resultant matrix
M has null correction capability since ρ = 0. On the other hand, one would
like to have at least min(S) ≥ 3, to correct one error. This could be done by
extending the codewords {y1, . . . , yN} of the coding matrix M until Si,j = 3
∀i, j ∈ {1, . . . , N}, i �= j. However, we have to take into account that confusion
is not equally distributed among all the classes, and thus separability might not
have to be also equally distributed. Let {ci, cj , ck, cl} be four classes of our N -
class problem, then, if (Ci,j + Cj,k) > (Ck,l + Cl,k) (where Ci,j is the number of
samples of class ci classified as class cj), it will be more probable to misclassify
a sample between classes ci and cj than between classes ck and cl. Thus, it will
be more efficient to increase δ(yi, yj) than δ(yk, yl).

Therefore, following the idea of Compact ECOC coding, we propose to ex-
tend the codewords of a non-optimized Compact ECOC coding (Binary ECOC),
which is the binary representation of the N classes of our problem. This means
that the codeword yi of class ci is the binary representation of a decimal value
i ∀i ∈ {1, . . . , N}. This extension is calculated in order to increase the distance
δ between the most confused codes, computing a problem-dependent extension
still with a reduced code length. The proposed algorithm uses both Separabil-
ity SN×N and Confusion CN×N matrices of a Binary ECOC to compute an
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extension of its coding matrix M , defined as EN×k where k is the number of
columns (base classifiers) of the extension.

The Confusion-Separability-Extension (CSE) coding algorithm is an iterative
algorithm that looks for the most confused classes in C, i.e {ci, cj} and codes
an Extension matrix E that increases its separability Si,j until a certain user-
defined separability value � is achieved. In addition, the Extension matrix E
also increments the separability for all the classes confused with ci or cj . This
extension is performed in order to increase the separability with all the classes
that are prone to confuse with classes ci or cj . When no classes are confused
with {ci, cj} the coding is performed taking into account the overall confusion
with all classes {c1, . . . , cN}. Once E is completely coded, the algorithm checks
if any column in E was previously on M . In that case, the algorithm changes
specific codewords. Let t be an iteration of the algorithm, which codes Et, then
at iteration t + 1, Mt+1 = Mt ∪ Et, the algorithm will stop when in M , n ≥ N ,
this stop condition is defined to upper bound the code length of the design
to N , though smaller codes may be suitable. In addition, we consider that if
δ(yi, yj) ≥ �, then Ci,j = 0. Therefore, another stop condition for the algorithm
is that ∀i, jCi,j = 0, because that means that no confusion is left to treat. Note
that CSE coding algorithm only requires the C and S matrices generated by a
Binary ECOC. In addition, no retraining or testing of classifiers is needed trough
the extension process. Algorithm 1 shows the CSE coding algorithm, which is
illustrated in the toy example of Figure 3.

Data: MN×n, CN×N , SN×N , �
Result: EN×k

k // separability increment needed

Y E
N×k ∈ {−1, +1}// set of unused generated codewords

Sm
1×1 ∈ {0, . . . ,∞}// minimum separability value

Sc
p×q ∈ {0, 1},p ≤ N ,q = 2// classes at minimum separability with {ci, cj}

while k + n < N and ∃ i, j Ci,j ≥ 0 do
(i, j) := arg maxi,j(C) // look for the pair of classes {ci, cj} with maximum

confusion in C
k := � − Si,j ;

Y E :=generateCodes(k,N) // generate 2k codes κ times until N codes are generated

yE
i := Y E

1 // assign random code to one of the classes with maximum confusion

(E, Y E) :=findCode(yE
i , k, Y E) // find a code at δ = k with the code Y E

i
while Sm < � do

(Sc, Sm) :=findMinSepClasses(E,S, C);

(E, Y E) :=codifyMinSep(Sc, E, Y E) // look for a suitable code for Sc

Sm = Sm + 1;

end
if ∃{i, j} : Ei,j = 0 then

E :=codifyZero(E,S, C, Y E) // codify the undefined codes in E taking into
account confusion with {c1, ..., cN}

end
E :=checkExtension(M,E) // check if some column in E was previously in M
(C, S, M) :=updateMatrices(M,E, S, C) // update confusion, separability and coding

matrices

end

Algorithm 1. CSE coding algorithm.
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Fig. 3. CSE example in a 5−class toy problem

The CSE coding algorithm codifies an Extension matrix E based on the Sepa-
rability and Confusion matrices of a certain coding matrix M . Note that though
in this paper this Extension matrix is applied over a Binary ECOC, the CSE
coding algorithm is independent of the initial coding matrix M , and thus it could
be applied to extend any coding design.

The confusion matrix C of Figure 3 has it maximum confusion value at C4,5

(circle and square classes). Therefore, in the first iteration, an extension to split
those classes and increment its separability will be coded. For this example, let
the user-defined value of � be 3. Thus, the length k of the Extension matrix at
the current iteration E is k = �− S4,5. To increment the distance δ(y4, y5) to �,
we have to find two codes {yE

4 , yE
5 } so that δ(yE

4 , yE
5 ) = k. In fact, the algorithm

generates the 2k codes κ times until N codewords are generated, and then,
searches for two codes at δ = k. Once this codes are defined in E, the algorithm
looks for all the classes with minSi,j , i ∈ {4, 5}, j ∈ {1, . . . , N} and maxCi,j ,
i ∈ {4, 5}, j ∈ {1, . . . , N} in order to increment its distance δ. If no confusion
positions are found and the codes in E are left empty, then the algorithm applies
min(Si,j), ∀i, j ∈ {1, . . . , N} and max(Ci,j), ∀i, j ∈ {1, . . . , N}.

Once the Extension matrix E is coded the algorithm checks if E ∩ M = ∅
column-wise, if not, then the codeword corresponding to the class with minCi,j ,
i ∈ {4, 5}, j ∈ {1, . . . , N} and an opposite with minSi,j , i ∈ {4, 5}, j ∈
{1, . . . , N} are interchanged, and E is checked again. When E is completely
coded and checked, M , S, and C are updated. That means that for the next
iteration M = M ∪ E. In addition, S is re-estimated with the new M .



Introducing the Separability Matrix for ECOC Coding 233

3.1 Training the Base Classifiers

In [RK04] the author concludes that if the base classifier is properly tuned, the
One vs. All may be used without loss of generalization capability. Following this
idea, our coding design is upper bounded by N classifiers and thus, we need to
use powerful dichotomizers in order to reduce possible classification errors.

In literature, Support Vector Machines with a RBF-Gaussian kernel have
demonstrated to be powerful dichotomizers. Nevertheless, they need some pa-
rameters to be optimized. In this case, parameters ζ, which is the regularizer,
and γ, which has a relationship with the smoothness of the boundary, have to
be optimized. A common way to optimize this parameters is to perform a grid
search with cross-validation. Recently, in [BEB10] the authors have shown that
Genetic Algorithms (GA) can be introduced in this optimization problem with
good results.

For each binary problem, defined by a column of M , we use Genetic Algo-
rithms in order to estimate values for ζ and γ. For this task, we use the same
settings than in [LdC08], where individuals correspond to a pairs of genes, and
each gene corresponds to the binary codification of a floating point value. This
parameter estimation is performed under a 2-fold cross-validation measurement
in order to avoid over-fitting bias and improve generalization.

4 Experimental Results

In order to present the results, first, we discuss the data, methods, and evaluation
measurements of the experiments.

– Data: The first bench of experiments consists of seven muti-class problems
extracted from the UCI Machine Learning Repository [AN07], showed in
Table 1. In addition, we test our methodology over 3 challenging Computer
Vision multi-class problems. First, we classify 70 visual object categories
from the MPEG dataset [MP]. Then, 50 classes of the ARFace database
[MB98] are classified. Finally, we test our method in a real traffic sign cate-
gorization problem consisting of 36 traffic sign classes [CMP+04].

Table 1. UCI repository data sets characteristics

Problem #Training samples #Features #Classes

Dermathology 366 34 6
Ecoli 336 8 8

Vehicle 846 18 4
Segmentation 2310 19 7

Glass 214 9 7
Vowel 990 10 11
Yeast 1484 8 10
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– Methods: We compare the One vs. All [RK04] ECOC approach with the
CSE coding design with separability value � = {3, 5}. In addition, we also
compare our results with the Dense Random coding scheme [ASS02] using N
classifiers. The ECOC base classifier is the libsvm implementation of a SVM
with Radial Basis Function kernel [CC01a]. The SVM ζ and γ parameters
are tuned via Genetic Algorithms for all the methods, minimizing the classi-
fication error of a two-fold evaluation over the training sub-set. Furthermore,
the same experiments were run with Real AdaBoost as base classifier [FS95].

– Evaluation Measurements: The classification performance is obtained by
means of a stratified ten-fold cross-validation.

The classification results obtained for all the data sets considering the
different ECOC configurations are shown in Table 2 and Table 3, with SVM
an Adaboost as base classifier, respectively. In order to compare the perfor-
mances provided for each strategy, the table also shows the mean rank of
each ECOC design considering the twelve different experiments. The rank-
ings are obtained estimating each particular ranking rj

i for each problem i
and each ECOC configuration j, and computing the mean ranking R for
each design as Rj = 1

N

∑
i rj

i , where N is the total number of data sets. We
also show the mean number of classifiers (#) required for each strategy.

Table 2. UCI classification results with SVM as base classifier

One vs. All ECOC CSE ECOC � = 3 CSE ECOC � = 5 Dense Random ECOC
Data set Perf. Classif. Perf. Classif. Perf. Classif. Perf. Classif.

Vowel 55.0±10.5 11 66.9±7.8 9.2 69.8±6.3 10.6 67.9±8.3 11
Yeast 41.0±7.3 10 54.7±11.8 5.7 53.0±9.3 9.5 54.9±6.4 10
Ecoli 78.9±3.5 8 76.4±4.4 7 78.6±3.9 7.4 72.1±2.7 8
Glass 51.6±10.2 7 55.5±7.6 6 52.7±8.4 3 42.8±11.02 7

Segment 97.3±0.7 7 96.9±0.8 6.6 96.6±1.0 6.2 96.6±1.3 7
Derma 97.1±1.2 6 97.1±0.9 5.2 95.9±1.2 3 95.7±0.8 6
Vehicle 80.1±4.0 4 81.1±3.5 3 70.6±3.4 3 81.1±3.6 4

MPEG7 83.2±5.1 70 88.5±4.5 15 89.6±4.9 20.4 90.0±6.4 70
ARFaces 76.0±7.22 50 80.7±5.2 13.8 84.6±5.3 20.2 85.0±6.3 50
Traffic 91.3±1.1 36 95.7±0.92 12.2 96.6±0.8 19 93.3±1.0 36

Rank & # 3.0 20.8 2.2 8.8 2.3 10.3 2.5 20.8

Table 3. UCI classification results with Real AdaBoost as base classifier

One vs. All ECOC CSE ECOC � = 3 CSE ECOC � = 5 Dense Random ECOC
Data set Perf. Classif. Perf. Classif. Perf. Classif. Perf. Classif.

Vowel 40.6±1.3 11 44.7±0.8 10 46.5±1.2 10.6 47.0±1.2 11
Yeast 36.8±1.1 10 45.6±0.4 9.6 42.9±1.0 9.5 40.8±1.3 10
Ecoli 71.5±10.9 8 68.1±8.3 7.4 63.3±9.2 7.4 75.0±7.8 8
Glass 53.8±12.1 7 52.8±13.5 6 44.5±10.8 6 49.5±10.9 7

Segment 96.4±0.7 7 95.0±0.3 6.8 94.8±0.9 6.2 95.3±1.0 7
Derma 89.3±4.9 6 77.6±6.3 5.4 76.0±5.3 3 76.7±5.3 6
Vehicle 73.6±1.3 4 72.7±1.9 4 62.9±1.4 3 72.7±1.5 4

MPEG7 54.4±7.2 70 65.5±9.5 15 73.7±8.3 24.3 86.5±6.4 70
ARFaces 36.3±7.2 50 53.8±5.2 13.8 62.8±8.3 20.4 81.5±6.3 50
Traffic 80.6±6.2 36 81.3±8.1 12.2 87.4±7.9 20.6 91.2±5.3 36

Rank & # 2.6 20.8 2.4 9.16 3.0 10.89 1.9 20.8
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Results show that the proposed method outperforms the One vs. All stan-
dard coding design in most cases, using far less number of dichotomizers. This
is caused by the fact that the proposed algorithm focus the correcting capa-
bility in those classes more prone to be confused, and thus, less redundancy is
needed. However, one has to notice that if designing a coding matrix with n = N
classifiers, Dense Random coding seems to be a suitable choice that also outper-
forms the standard One vs. All coding.

Nevertheless when comparing Dense Random coding with our method in
terms of performance, no significance is found since both methods have a com-
parable rank. In fact, Dense Random coding seems to perform better than our
proposal in the Computer Vision problems, where the number of classes was
large.

This situation was expectable since Dense Random coding was bounded to
code N dichotomies. In fact, since Dense Random tend construct coding matri-
ces of equidistant codes, we can approximate the correction capability of Dense
Random coding by dividing the number of classes between the minimum num-
ber of classifiers needed to increase, at least, one unit the distance between
codes (ρest = N

�log2(N)	 ). For example, in the MPEG7 experiment [MP], the
estimation of the correction capability of Dense Random coding tends to be
ρest = 70

�log2(70)	
= 10. While for the CSE algorithm proposed with � = 5 the

estimation for the correcting capability is ρ = 2.

5 Conclusions

In this paper, we introduce the Separability matrix as a tool to enhance and
analyse ECOC coding designs. Although separability issues have been always in
the core of all ECOC coding proposals, until now there was no explicit need to
define such a matrix. Nevertheless, in problem-dependent strategies and in sub-
linear coding designs, acquires great value since it shows which codes are prone
to be confused due to the lack of correction capability, and thus, more precise
and compact codes can be defined. Moreover, a novel ECOC coding design based
on the Separability matrix is, focusing the correction capability on those codes
which are more prone to be confused.

Results show that the proposed coding design obtains comparable or even
better results than predefined compact coding designs using far less number of
dichotomizers.
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Abstract. The Optimum-Path Forest (OPF) classifier is a recent and
promising method for pattern recognition, with a fast training algorithm
and good accuracy results. Therefore, the investigation of a combining
method for this kind of classifier can be important for many applications.
In this paper we report a fast method to combine OPF-based classifiers
trained with disjoint training subsets. Given a fixed number of subsets,
the algorithm chooses random samples, without replacement, from the
original training set. Each subset accuracy is improved by a learning
procedure. The final decision is given by majority vote. Experiments
with simulated and real data sets showed that the proposed combining
method is more efficient and effective than naive approach provided some
conditions. It was also showed that OPF training step runs faster for a
series of small subsets than for the whole training set. The combining
scheme was also designed to support parallel or distributed processing,
speeding up the procedure even more.

Keywords: Optimum-Path Forest classifier, distributed combination of
classifiers, pasting small votes.

1 Introduction

The combination of classifiers was demonstrated to be effective, under some con-
ditions, for several pattern recognition applications. These methods were widely
explored, for example, to stabilize results of random classifiers and to improve
performance of weak ones.
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If the classifiers to be combined provide only class labels as output, the ma-
jority voting is the approach commonly used to decide over an ensemble of them.
The limits of vote fusion schemes were investigated by Kuncheva et al. [9], and
the diversity aspect that is often claimed to produce successful combinations is
currently under discussion, with the study of patterns of failure and success, and
“good” and “bad” diversity [4].

In order to produce a classifier ensemble, bagging [1], boosting [7] and random
subspace methods [8] were shown to be useful under some conditions [15]. They
are based on the creation of classifiers trained with multiple training sets using
different samples or features. The majority voting is used to produce the final
decision.

To deal with large data sets, pasting small votes was proposed by Breiman
[2]. The original idea was to build many classifiers from “bites”, bags of small
size, of data. Each one of the M bites yields one classifier. The M decisions are
combined by voting.

From pasting small votes, two algorithms, Rvotes and Ivotes, were developed.
While Rvote performs a simple random selection of samples to create each bite,
Ivote creates consecutive training datasets based on the “importance” of the
instances. It uses an algorithm similar to boosting-based algorithms to create
classifiers trained with more representative samples [15]. These methods uses
an evaluation set, a separate set with labeled objects, to test the accuracy of
the current bite and change samples with ones that can improve the subset
classification accuracy. Although Rvote is faster, it is not competitive in accuracy
when compared with Ivote. Later, distributed versions for Rvote and Ivote were
proposed by Chawla et al. [5] in order to reduce training time.

In this study, we propose a strategy similar to pasting small votes aiming
to combine decisions of Optimum-Path Forest (OPF) classifiers [13]. The OPF
technique models the feature space as a graph, using optimum-path algorithms
to perform training and classification. It outputs only class labels. The proposed
combination is performed by training classifiers with disjoint training subsets
and it is designed to improve accuracy and reduce running time. To improve
speed, the method was developed so that it could be processed using parallel or
distributed processors. Since multicore and multiprocessing systems are widely
available, it is an interesting feature of the proposed method.

Many papers have studied the effects of combination schemes applied to
classifiers based on statistical pattern recognition, trees [8], neural-networks
[3], nearest neighbors and support-vector machines [15]. Graph-based combi-
nation methods were also investigated with focus on structural pattern recog-
nition [14,10]. In this context, as far as we know, we are the first to present
a combination system for OPF classifiers. Therefore, this paper presents novel
material both on the study of a new classifier and on the development of a fast
combination algorithm based on this classifier.

The paper is organized as follows. Sections 2 and 3 introduces the OPF classi-
fier and the combination method, respectively. Section 4 and 5 describe the exper-
iments, results and discussion. Finally, the conclusions are presented in Section 6.
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2 Optimum-Path Forest Classifier (OPF)

Papa et al. [13] introduced the idea of designing pattern clasifiers based on
optimum-path forest. Given a training set with samples from distinct classes,
we wish to design a pattern classifier that can assign the true class label to
any new sample, where each sample is represented by a set of features and a
distance function measures their dissimilarity in the feature space. The training
samples are then interpreted as the nodes of a graph, whose arcs are defined by
a given adjacency relation and weighted by the distance function. It is expected
that samples from a same class are connected by a path of nearby samples.
Therefore, the degree of connectedness for any given path is measured by a
connectivity (path-value) function, which exploits the distances along the path.
In supervised learning, the true label of the training samples is known and so it is
exploited to identify key samples (prototypes) in each class. Optimum paths are
computed from the prototypes to each training sample, such that each prototype
becomes the root of an optimum-path tree (OPT) composed by its most strongly
connected samples. The labels of these samples are assumed to be the same of
their root.

The OPF approach proposed by Papa et al. [13] computes prototypes as the
nearest samples from different classes in the training set. For that, a Minimum
Spanning Tree (MST) is computed over that set, and the connected samples with
different labels are marked as prototypes. A path-cost function that calculates
the maximum arc-weight along a path is used, together with a full connected-
ness graph. Therefore, the training phase of OPF consists, basically, of finding
prototypes and execute OPF algorithm to determine the OPTs rooted at them.
This training procedure is implemented below.

Algorithm 1 – OPF train: OPF training algorithm

Input: A λ-labeled training set T .
Output: Optimum-path forest P1, cost map C1, label map L1, and ordered set

T ′.
Auxiliary: Priority queue Q, set S of prototypes, and cost variable cst.

1. Set T ′ ← ∅ and compute by MST the prototype set S ⊂ T .
2. For each s ∈ T\S, set C1(s) ← +∞.
3. For each s ∈ S, do
4. C1(s) ← 0, P1(s) ← nil, L1(s) ← λ(s), and insert s in Q.
5. While Q is not empty, do
6. Remove from Q a sample s such that C1(s) is minimum.
7. Insert s in T ′.
8. For each t ∈ T such that t �= s and C1(t) > C1(s), do
9. Compute cst ← max{C1(s), d(s, t)}.
10. If cst < C1(t), then
11. If C1(t) �= +∞, then remove t from Q.
12. P1(t) ← s, L1(t) ← L1(s), C1(t) ← cst.
13. Insert t in Q.
14. Return a classifier [P1, C1, L1, T

′].
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Further, the test phase essentially evaluates, for each test sample, which train-
ing node offered the optimum-path to it. In [13], the classification of each new
sample t from test set O is carried out based on the distance d(s, t) between t
and each training node s ∈ T and on the evaluation of the following equation:

C2(t) = min{max{C1(s), d(s, t)}}, ∀s ∈ T. (1)

Let s∗ ∈ T be the node s that satisfies this equation. It essentially considers all
possible paths from S in the training graph T extended to t by an arc (s, t), and
label t with the class of s∗. Algorithm 2 shows the implementation of the OPF
classification phase.

Algorithm 2 – OPF classify: OPF classification algorithm

Input: Classifier [P1, C1, L1, T
′], evaluation set E (or test set O), and the pair

(v, d) for feature vector and distance computations.
Output: Label L2 and predecessor P2 maps defined for E.
Auxiliary: Cost variables tmp and mincost.

1. For each t ∈ E, do
2. i ← 1, mincost ← max{C1(ki), d(ki, t)}.
3. L2(t) ← L1(ki) and P2(t) ← ki.
4. While i < |T ′| and mincost > C1(ki+1), do
5. Compute tmp ← max{C1(ki+1, d(ki+1, t)}.
6. If tmp < mincost, then
7. mincost ← tmp.
8. L2(t) ← L(ki+1) and P2(t) ← ki+1.
9. i ← i + 1.
10. Return [L2, P2].

2.1 Learning

Large datasets usually present redundancy, so at least in theory it should be
possible to estimate a reduced training set with the most relevant patterns for
classification. The use of a training and an evaluation set has allowed us to learn
relevant training samples from the classification errors in the evaluation set, by
swapping misclassified samples of the evaluating set and non-prototype samples
of the training one during a few iterations (usually less than 10 iterations) [13].
In this learning strategy, the training set remains with the same size and the clas-
sifier instance with the highest accuracy is selected to be used for classification
of new objects. Algorithm 3 below implements this idea.

Algorithm 3 – OPF learn: OPF learning algorithm

Input: A labeled training and evaluating sets T and E, respectively and the
number T of iterations.

Output: Optimum-path forest P1, cost map C1, label map L1, and ordered set
T ′.

Auxiliary: Arrays FP and FN of sizes c for false positives and false negatives,
set S of prototypes, and list LM of misclassified samples.
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1. Set MaxAcc ← −1.
2. For each iteration I = 1, 2, . . . , T , do
3. LM ← ∅ and compute the set S ⊂ T of prototypes.
4. [P1, C1, L1, T

′] ← OPF train(T, S, (v, d)).
5. For each class i = 1, 2, . . . , c, do
6. FP (i) ← 0 and FN(i) ← 0.
7. [L2, P2] ← OPF classify(T ′, E, (v, d))
8. For each sample t ∈ E, do
9. If L2(t) �= λ(t), then
10. FP (L2(t)) ← FP (L2(t)) + 1.
11. FN(λ(t)) ← FN(λ(t)) + 1.
12. LM ← LM ∪ t.
13. Compute accuracy Acc according to [13].
14. If Acc > MaxAcc then save the current instance [P1, C1, L1, T

′]
15. of the classifier and set MaxAcc ← Acc.
16. While LM �= ∅
17. LM ← LM\t.
18. Replace t by a non-prototype sample, randomly selected from T .
19. Return the classifier instance [P1, C1, L1, T

′] with the highest accuracy in E.

3 Combination of Classifiers Trained with Disjoint
Subsets

The OPF classifier outputs only class labels, without ranking or probability
information. Therefore, only abstract-level options are available in order to create
ensembles and combine this kind of classifier. A method based on bagging or
boosting would be interesting in this case. However, since the OPF classifier has
the advantage to perform a fast training, it is interesting to design an also fast
combining scheme.

We propose a fast combination method based on the idea of pasting small
votes. It creates an ensemble of OPF classifiers using disjoint training subsets.
A fixed number D of subsets is set, and the algorithm chooses random samples,
without replacement, from the original training set T . The samples are taken
so that each subset will contain approximately the same number of objects per
class. The complete procedure, called OPFcd, is described in Algorithm 4. As
described in Section 2.1, the OPF has a fast learning algorithm to change the
training set using an evaluation set. It has a behavior similar to a boosting
algorithm. This learning algorithm is used to improve accuracy of each classifier,
and, therefore, is expected to improve accuracy of the final decision. Moreover,
the OPF training algorithm has computational complexity of Θ(N2), where N
denotes the training set size, and therefore, it is expected to run faster for k
training sets of size X then for a larger one with size N = k × X .

The OPFcd was designed in order to take advantage of new (and widely avail-
able) multicore and multiprocessor systems. With use of this algorithm, training,
learning and classification procedures for each classifier Ej can be assigned to a
different processor. It can be carried out by assigning each call of lines 5 and 6
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(see Algorithm 4) to different processors. In section 5.1 it will be shown that the
use of a multicore processor can reduce the overall running time.

Algorithm 4 – OPFcd: OPF combination of distributed disjoint sets

Input: Training data set T of size N with correct labels ωj ∈ Ω, j = {1, .., C}
for C classes, the evaluation set V , the set of objects to be classified
O (test set), the number of disjoint subsets D, the number of samples
of each class P = {p1, .., pC}, and the OPF algorithm OPF learn and
OPF classify

Output: Set of labels after final decision, L
Auxiliary: The number of objects on each subset M , training subsets Ki, classi-

fiers Ei, and objects labeled by each classifier Ii, where i = {1, .., D}
1. M ← 
N/D�
2. For each subset i, (∀i = 1..D), do
3. For each class j, (∀j = 1..C), do
4. Select randomly (pj/D) × M samples of class j from T without
5. replacement and store them in Ki

6. Ei ← OPF learn(Ki,V )
7. Ii ← OPF classify(O,Ei)
8. L ← Vote(Ii)
9. Return L

3.1 Nearest Neighbor Tie-Breaking

In multiclass problems and decisions by vote, it is possible to observe ties. Tie-
breaking methods are often arbitrary. However, using object local information
[16,14] it is possible to obtain a better solution for tie-breaking.

We propose the use of a nearest neighbor tie-breaking for multi class problems
as follows. Let

[
ωi

1, ..., ω
i
D

]
be the class outputs of an ensemble of D classifiers

for a given object i. If the voting procedure results in a tie, the class labels of the
nearest previously classified object j are joined with the current object, so that
the new voting will be applied at

[
ωi

1, ..., ω
i
D, ωj

1, ..., ω
j
D

]
. If a new tie is obtained,

the object is assigned to a random class, chosen from the set of tied classes.

4 Experiments

4.1 Data

Several experiments were carried out to test the effectiveness of OPF combi-
nation using training subsets. The data used in the experiments includes six
synthetic and four real data sets. The simulated data sets were built to have
partially overlapped classes. Different covariance matrices were used to gener-
ate the 4-class Gaussian data sets. The project web page contains details and
the code used to generate the simulated data using PRTools (v.4.1.4)1 Table 1
1 http://www.prtools.org/

http://www.prtools.org/
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shows the simulated data sets characteristics and Table 2 displays the real data
sets used to show whether the proposed technique is effective when solving real
problems.

Table 1. Synthetic databases details

Name size classes features type
B2-2d 1,000 2 2 Banana-shape
B4-2d 2,000 4 2 Banana-shape
G2-3d 1,000 2 3 Gaussian
G4-3d 2,000 4 3 Gaussian
G2-4d 100,000 2 4 Gaussian
G4-4d 100,000 4 4 Gaussian

Table 2. Synthetic databases details

Name size classes features
NTL 8,067 2 4

COREL 1,000 10 150
Activity 164,860 11 6

KDD-1999 380,271 3 9

The NTL is a real database obtained from an electric power company. It
is frequently used to identify thefts in power distribution systems, and it is
composed by legal and illegal industrial profiles. The idea is to classify each
profile as a fraud or not.

COREL is a subset of an image database including the classes: African peo-
ple and villages, beach, buildings, buses, dinosaurs, elephants, flowers, horses,
mountains and glaciers, food. The 150 features were extracted using the SIFT
algorithm [11].

KDD-1999 is the data set used for “The Third International Knowledge Dis-
covery and Data Mining Tools Competition”[6]. The task was to build a network
intrusion detector, capable of distinguishing intrusions or attacks, and normal
connections. It includes a variety of intrusions simulated in a military network
environment.

Activity is the “Localization Data for Person Activity Data Set” [6]. The data
set contains recordings of people wearing four sensors while performing one of the
activities: walking, falling, lying down, lying, sitting down, sitting, standing up
from lying, on all fours, sitting on the ground, standing up from sitting, standing
up from sitting on the ground. We used a subset of 6 features (the original has
8), without the date and time stamp features.
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4.2 Settings and Implementation

We conducted the experiments as follows: the data sets were partitioned in three
sets, 15% for training, 10% for evaluating and 75% for testing. The settings
for KDD-1999 are an exception due to the size of the data set, and the high
performance obtained by the single classifier, so for this data set we used 1% for
training and 0.5% for evaluating.

All samples from training set was used to train the “single classifier”, and
disjoint partitions of the training set were used to train several classifiers and
built the ensembles. We performed experiments with 3, 5, 7, 9, 11 and 13 parti-
tions (disjoint training subsets). For multi class problems, the nearest neighbor
tie-breaking described in Section 3.1 was also included in the experiments and
identified by the name OPFcd+NN.

All experiments were repeated 10 times on independent training sets. The av-
erage results are presented in tables and graphics. A two-tailed t-test for samples
with unequal variance was computed to verify the significant differences between
the results of single classifier and the combination methods.

Regarding OPF implementation we used the LibOPF [12], a free library for
the implementation of optimum-path forest-based classifiers. All experiments
were carried out on a quad-core machine Intel R© CoreTM2 Quad 3GHz with
6MB cache size, and a Linux 64-bits operational system (kernel v.2.6.32-27). To
investigate the use of multicore processing we assigned the affinity of processes
related to the training, learning and classification to the four different core pro-
cessors using taskset routine. We are going to present the results of the running
time for the data sets G2-3d and G4-3d, both with 100,000 samples.

5 Results and Discussion

The average accuracy results for each data set is shown in Table 3 for simulated
and Table 4 for real data sets. The use of combined OPF classifiers significantly
increased the performance for almost all data sets.

To analyze when the combination is useful, we studied the classification er-
ror when individual disjoint sets (without combination) were used to train and
classify the data sets. In Figure 1 we present examples of the three different
“patterns” found on the data sets when the different sizes of partitions were
used to train a classifier. The best results were observed with the second pat-
tern, as observed for the B4-2d data set. In this case when less training samples
are taken there is a slight increase in the error, and the combination improves
the performance using almost any number of partitions. The third pattern was
also shown to improve results when using a particular range of partition sizes —
for the NTL data set we observed an improvement using from 3 to 7 partitions.
However, when the performance decreases as the number of partitions increases,
the combination is useless or increases the error, as observed for the Activity
data set.

For the B4-2d data set a significant improvement was achieved using from 5
to 13 partitions in OPFcd method and for all partitions using also the nearest
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Table 3. Synthetic databases results: classification average error and standard devi-
ation for single classifier and combination, with significant improvements in boldface
for p < 0.01, using the best number of partitions, indicated by #part

Data set Single classifier OPFcd (#part) OPFcd+NN (#part)
B2-2d 22.6±1.7 16.8±1.2 (9) —
B4-2d 31.0±1.7 26.0±1.5 (11) 23.8±1.9 (11)
G2-3d 26.0±1.1 21.0±2.5 (11) —
G4-3d 14.1±0.7 12.3±0.6 (11) 11.9±0.6 (11)
G2-4d 18.9±1.2 16.6±1.8 (7) —
G4-4d 13.2±0.8 13.5±1.0 (7) 12.9±0.7 (5)

Table 4. Real databases results: classification average error and standard deviation
for single classifier and combination, with significant improvements in boldface for
p < 0.01, using the best number of partitions, indicated by #part

Data set Single classifier OPFcd (#part) OPFcd+NN (#part)
NTL 9.2±0.5 8.2±0.3 (5) —

COREL 31.0±1.7 26.0±1.5 (11) 24.8±1.9 (11)
Activity 30.1±1.1 31.3±2.5 (7) 30.6±2.3 (5)

KDD-1999 0.21±0.05 0.14±0.02 (9) 0.12±0.02 (11)

Table 5. Classification results for the data set B4-2d using combination of classifiers
trained with 3–13 disjoint sets, with significant improvement in boldface for p < 0.01
when compared to the single classifier (31.0±1.7)

# training set partitions
3 5 7 9 11 13

OPFcd 29.7±1.2 26.8±1.1 26.9±1.0 26.5±1.5 26.0±1.6 26.1±0.9
p values .003 .004 .002 .002 .004
with NN 28.3±1.2 24.9±1.3 25.8±0.7 24.6±1.6 23.8±1.4 24.7±1.7
p values .022 .001 .001 .001 .001 .001

Table 6. Classification results for the data set NTL using combination of classifiers
trained with 3–13 disjoint sets, with significant improvement in boldface for p < 0.01
when compared to the single classifier (9.2±0.5)

# training set partitions
3 5 7 9 11 13

OPFcd 8.1±0.2 8.0±0.3 8.3±0.3 9.1±0.2 9.4±0.6 9.5±0.6
p values .003 .002 .008 .312 .419 .457

neighbor tie-breaking, as displayed in Table 5. The results for the NTL are shown
in Table 6, where improvement was achieved using from 3 to 7 partitions.
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The nearest neighbor tie-breaking method improved the results of multi class
problems in most experiments. However, since this method is more time con-
suming, one must analyze the benefits of using it to possibly reduce the error
with an increase in overall running time.

Fig. 1. Examples of patterns of classification error as a function of the percentage of
samples used from the training set of three data sets: Activity, B4-2d and NTL

5.1 Improvement in Running Time and Multicore Processing

One of the main contributions of the proposed combination scheme is the poten-
tial to be less time consuming. The observed average running times are shown in
Figure 2. Each procedure was timed during all the experiments with the G2-4d

Fig. 2. Average running time results for trainining, classification and combination us-
ing single classifier and combination of classifiers using from 3 to 15 partitions, with
comparison between multicore and sequential processing
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data set using OPFcd and with the G4-4d data set using OPFcd+NN. It is pos-
sible to see a significant decrease of the overall running time as a higher number
of disjoint partitions are used. This effect is due to the quadratic nature of the
training and learning OPF algorithms.

It can be seen also in Figure 2 that even lower running times were observed
when assigning each process to a different processor core.

6 Conclusions

The combination of OPF classifiers trained with disjoint subsets has showed
to be effective under some conditions, since we have found three patterns of
classification behavior. The proposed method reduced the classification error for
different data sets specially when the error does not increases as the size of the
partitions decrease. We also showed that the running time results for OPF can
be improved by training series of smaller training sets and combining them. This
improvement is due to the quadratic nature of the OPF algorithm. The training
and learning algorithms can also be processed in multicore or multiprocessor
machines to achieve a larger improvement in speed.

The OPF classifier is a recent and promising method for pattern recognition.
Therefore, reporting an effective combining method for this classifier can be
important for many applications. In this paper, we focused on the development of
a fast and robust method, capable of be implemented on a parallel or distributed
system for OPF classifiers. Further projects can analyze the behavior of OPF
classifiers when combined using methods such as boosting, bagging and random
subspace with focus on more accurate results. A deepest analysis of the proposed
combination system is also a point left for future studies.
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Abstract. In this paper, we present an empirical analysis on the re-
lationship between diversity and accuracy of classifier ensembles in the
context of the theory of belief functions. We provide a modelling for
formulating classifier outputs as triplet mass functions and a unified no-
tation for defining diversity measures and then assess the correlation be-
tween the diversity obtained by four pairwise and non-pairwise diversity
measures and the improvement of accuracy of classifiers combined in de-
creasing and mixed orders by Dempster’s rule, Proportion and Yager’s
rules. Our experimental results reveal that the improved accuracy of
classifiers combined by Dempster’s rule is positively correlated with the
diversity obtained by the four measures, but the correlation between the
diversity and the improved accuracy of the ensembles constructed by
Proportion and Yager’s rules is negative, which is not in favor of the
claim that increasing diversity could lead to reduction of generalization
error of classifier ensembles.

1 Introduction

The combination of multiple classifiers/ensemble approach is a powerful decision
making and classification technique that has been used successfully for modelling
many practical problems, such as text categorization and remote sensing. In the
modelling of classifiers combination, many researchers believe the diversity be-
ing inherent in the classifiers plays an important role in constructing successful
classifier ensembles. Unfortunately to date there exists no general accepted theo-
retical framework for capturing diversity in multiple classifier systems. Although
many statistics have been employed to measure diversity among classifiers with
the intension to determine whether it correlates with ensemble performance in
the literature, results are varied. In particular there is little effort concerning how
diversity measured by statistics imparts ensemble performance in the framework
of the Dempster-Shafer (DS) theory of evidence [6], where classifier outputs are
modeled as pieces of evidence that are combined by Dempster’s rule of combi-
nation and its alternatives. In this paper, we present our studies on measuring
diversity among classifiers and then experimentally examine the relationship be-
tween diversity obtained by four pairwise and non-pairwise diversity measures
and the improved accuracy of classifiers combined by Dempster’s rule of combi-
nation [6], Yager’s rule [10] and Proportion rule [11].
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Previous studies on the relationship between diversity and ensemble perfor-
mance have stimulated considerable interest and they can be categorized into
the contexts of regression and classification. In the context of classification,
Kuncheva et al. carried out an experimental study on relationship between diver-
sity and accuracy [5]. Their results show although there are proven connections
between diversity and accuracy in some special cases, there is no strong lin-
ear and non-linear correlation between diversity and accuracy. In [8], Tang, et
al. conducted a follow-up comprehensive study. They investigate the correla-
tion among the six statistical measures used in [5] and relate these measures to
the concept of margin, which is explained as a key success factor of Boosting
algorithms. The experimental results indicate that large diversity may not con-
sistently correspond to better ensemble performance and the information gained
by varying diversity among classifiers cannot provide a consistent guidance for
making an ensemble of classifiers to achieve good generalization performance.

In [1], we have developed new evidence structures called a triplet and quar-
tet and a formalism for modelling classifier outputs as triplet and quartet mass
functions, and we also established a range of formulae for combining these mass
functions in order to arrive at a consensus decision. In [2], we formulated the
problem of measuring diversity among classifiers and addressed the impact of
diversity on the performance of classifiers combined only by Dempster’s rule
of combination. In this paper, we extend our previous study and carry out an
analysis of diversity effects on the quality of classifier ensembles, in which the
component classifier are independently generated by 13 machine learning algo-
rithms and are combined in decreasing and mixed orders using three evidential
combination rules. We use the triplet as an underlying evidence structure for rep-
resenting classifier outputs and study the correlation between diversity and the
ensemble accuracy by the Spearmans rank analysis over 12 benchmark data sets.
The experimental results demonstrate that the positive correlation between the
diversity and the ensemble accuracy made by Dempster’s rule is stronger than
the negative correlation made by the other two rules in mixed order, however
the positive correlation made by Dempster’s rule is weaker than the negative one
made by Yager’s rule. Moreover our results conjecture that the order of com-
bining classifiers could be regarded as a useful factor in constructing successful
classifier ensembles.

2 Representation of Classifier Outputs

In ensemble approaches, a learning algorithm is provided with a training data
set made up of D×C = {〈d1, c1〉, · · · , 〈d|D|, cq〉} (1 ≤ q ≤ |C|) for deriving some
unknown function f such that f(d) = c. Instance di is characterized by a vector
in the form of (di1 , · · · , din) where dij is either a nominal or ordinal value, and
ci is typically drawn from a set of categorical classes in terms of class labels.
Given a set of training data D × C, a learning algorithm is aimed at learning a
function ϕ in terms of classifier from the training data set, where classifier ϕ is
an approximation to an unknown function f .
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Given a new instance d, a classification task is to make decision for d using ϕ
about whether d belongs to class ci. Instead of single-class assignment, we regard
such a classification process as a mapping:

ϕ : D → C × [0, 1] (1)

where C × [0, 1] = {(ci, si) | ci ∈ C, 0 ≤ si ≤ 1}, si is a numeric value.The
greater the value of class si, the greater the possibility of the instance belonging
to that class. Simply we denote a classifier output by ϕ(d) = {s1, · · · , s|C|} and
the accuracy of the classifier by F (ϕ). Given a group of classifiers, ϕ1, ϕ2, · · · , ϕM ,
all the classifier outputs on instance d can be organized into a matrix as illus-
trated in formula (2).⎛⎜⎜⎜⎝

ϕ1(d)
ϕ2(d)

...
ϕM (d)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
s11 s12 . . . s1|C|
s21 s22 . . . s2|C|
...

... . . .
...

sM1 sM2 . . . sM|C|

⎞⎟⎟⎟⎠ (2)

3 Basics of the Dempster-Shafer (DS) Theory of
Evidence

Definition 1. Let Ω be a frame of discernment. Let m be a mass function,
which is defined as a assignment function assigning a numeric value in [0, 1] to
X ∈ 2Ω with two conditions below [6].

1) m(∅) = 0, 2)
∑

X⊆Ω

m(X) = 1

where X is called a focal element or focus if m(X) > 0 and a singleton if |X | = 1.
Given the general representation of classifier outputs in formula (2) and Defi-

nition 1, we denote Ω = {c1, . . . c|Ω|} where {c} ⊆ Ω represents a proposition of
interest.

Definition 2. Let Ω be a frame of discernment and let ϕ(d) be a list of scores
as before, an application-specific mass function is defined a mapping function,
m : 2Ω → [0, 1] as follows:

m({ci}) =
si∑|Ω|

j=1 sj

(3)

where ci ∈ Ω and 1 ≤ i ≤ |Ω|.
Definition 3. Let Ω be a frame of discernment. Let m1 and m2 be two mass
functions defined for X, Y ⊆ Ω. Dempster’s rule of combination (or Dempster’s
rule) is, denoted by ⊕, defined as

(m1 ⊕ m2)(A) =
∑

X∩Y =A m1(X)m2(Y )∑
X∩Y 
=∅ m1(X)m2(Y )

(4)
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where A ⊆ Ω and ⊕ is also called the orthogonal sum. N=
∑

X∩Y 
=∅ m1(X)m2(Y )
is the normalization constant. E = 1 − N is called the conflict factor. This rule
strongly emphasizes the agreement between multiple independent sources and
ignores all the conflicting evidence through a normalization factor.

The issue associated with Dempster’s rule of combination is the normalization
process, which may produce counter-intuitive results when evidence sources are
in highly conflict. In the past decades there has been a great deal of debate
about overcoming counter-intuitive results. Much of research has been devoted
to develop alternatives to Dempster’s rule of combination. Due to the limited
space, we confine our study in the classical combination rules: Dempster’s rule,
Yager’s rule and Proportion rule and formulating pieces of evidence derived from
classifier outputs in terms of triplet mass functions below.

3.1 Triplet Mass Function and Computation

Given the formulation of classifier outputs in formula (2), by formula (3), we can
rewrite ϕ(d) as ϕ(d) = {m({c1}), m({c2}), · · · , m({cΩ})}, referred to as a list of
decisions − a piece of evidence. By formula (4) two or more pieces of evidence
can then be combined to make the final classification decision. To improve the
efficiency of computing the orthogonal sum operation and the accuracy of the
final decision on the basis of the combined results, a new structure, called a
triplet, has been developed in [1]. A brief introduction of the structure is given
below.

Definition 4. Let Ω be a frame of discernment and ϕ(d) = {m({c1}), m({c2}),
. . . , m({cΩ})} where |Ω| ≥ 2, the expression of Y = 〈{u}, {v}, Ω〉 is defined as
a triplet, where {u}, {v} are singletons and they satisfy

m({u}) + m({v}) + m(Ω) = 1

Based on the number of singleton decisions, we also refer to a triplet as a
structure of two-point focuses, and call the associated mass function a two-point
mass function. To obtain triplet mass functions, we define a focusing operation
in terms of the outstanding rule and denote it by mσ as follows:

{u} = arg max({m({c1}), m({c2}), ..., m({cΩ})}) (5)

{v} = arg max({m({c}) | c ∈ {c1, ..., cΩ} − {u}}) (6)

mσ(Ω) = 1 − mσ({u}) + mσ({v}) (7)

We refer to mσ as a triplet mass function or as a two-point mass function,
simply m. By applying formulas (3), (5), (6), (7), formula (2) is simply rewritten
as formula (8) below.⎛⎜⎜⎜⎝

ϕ1(d)
ϕ2(d)

...
ϕM (d)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
m1({u1}) m1({v1}) m1(Ω)
m2({u2}) m2({v2}) m2(Ω)

...
...

...
mM ({uM}) mM ({vM}) mM (Ω)

⎞⎟⎟⎟⎠ (8)
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Definition 5. Suppose m1 and m2 are two triplet mass functions on the frame
of discernment Ω. Let X and Y be two triplets. Yager’s combination rule is
defined as:

(m1 γ© m2)(A) =

⎧⎪⎪⎨⎪⎪⎩
0 if A = ∅∑

X∩Y =A m1(X)m2(Y ) if ∅ ⊂ A ⊂ Ω∑
X∩Y =Ω m1(X)m2(Y )+∑
X∩Y =∅ m1(X)m2(Y ) if A = Ω

(9)

Yager’s rule keeps the condition of m(∅) = 0 and adds masses allocated to
both the empty set and the frame of discernment together into Ω.

Definition 6. Suppose m1 and m2 are two triplet mass functions on the frame
of discernment Ω. Let X and Y be two triplets. Proportion combination rule is
defined as:

(m1 a© m2)(A) =

⎧⎨⎩
0 if A = ∅
(
∑

X∩Y =A mc(X)+∑
X∩Y =A mr(Y ))/2 if A �= Ω

(10)

where mc(X) and mr(Y ) are the average of mass functions based on columns
and rows in the intersection table, respectively [11]. The detailed calculation
of combining triplet mass functions and incorporating the outstanding rule to
formulas (4), (9) and (10) is omitted due to the limited space.

4 Diversity Measures

Since there has been no convincing theory or experimental study, suggesting
which of statistical measures can be reliably used to improve ensemble perfor-
mance [8]. In this study, based on the way of measuring agreement and dis-
agreement we employ three pairwise and one non-pairwise methods to measure
diversity being inherent in binary classifier outputs as discussed in most studies
in the literature [5].

Formally suppose we are given M classifiers denoted by ϕ1, · · · , ϕM , a set
of classes Ω = {c1, · · · , cΩ} and a test set T = {x1, · · · , x|T |}. For any instance
x ∈ T , each classifier output ϕi(x) is modeled as an binary output, i.e. ϕi(x) = 1
if ϕi correctly classifies x, ϕi(x) = 0 if ϕi incorrectly classifies x. For the classifiers
that correctly classify instances, we denote them by ϕ̂(x) = {ϕ(x)|ϕi(x) = 1, 1 ≤
i ≤ M, x ∈ T }.

With this notation, we implemented four statistical diversity measures for our
experiments, including Kappa (κ) statistic [3], Disagreement (dis) measure [7],
Q-statistic (qs) [5] [8] and Kohavi-Wolpert variance [4].

5 Experimental Evaluation

5.1 Experimental Settings

In our experiments, we used 12 data sets, including anneal, audiology, balance,
car, glass, autos, iris, letter, segment, soybean, wine and zoo. All the data sets
have at least three or more classes as required by the triplet structure.
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For base (individual) classifiers, we used thirteen learning algorithms which
all are taken from the Waikato Environment for Knowledge Analysis (Weka)
version 3.4, including AOD, NaiveBayes, SOM, IB1, IBk, KStar, DecisionStump,
J48, RandomForest, DecisionTable, JRip, NNge, and PART. These algorithms
were simply chosen on the basis of their performance on three randomly picked
data sets. Parameters used for each algorithm was at the Weka default settings
described in [9].

Given 13 classifiers ϕ1, · · · , ϕ13 that are generated by the 13 learning algo-
rithms, for the combination of classifiers in decreasing order, we first rank all
the classifiers as F (ϕk1) ≥ F (ϕk2) ≥ · · · ≥ F (ϕk12 ) ≥ F (ϕk13 ) (1 ≤ ki ≤ 13),
and then we combine ϕk1 with ϕk2 as a classifier ensemble, denoted by 2C,
and combine the resulting 2C with ϕk3 as another classifier ensemble, denoted
by 3C, and so forth, until combine 12C with ϕk13 , denoted by 13C. We also
denote the groups of classifiers that make up the classifier ensembles iC by iΦ
(1 ≤ i ≤ 13). With respect to the combination of classifiers in mixed order, the
order of classifiers is random. We first pick up two classifiers to combine them
as a classifier ensemble, denoted by 2C, and then combine the resulting 2C with
the third classifier that is randomly chosen, denoted by 3C, until combine the
resulting ensembles with the last classifier, denoted by 13C.

To assess how the diversity div(iΦ) (detailed in Section 4) is actually corre-
lated the accuracy F (iC), we carried out a Spearmans rank correlation analysis
on each pair of 〈div(2Φ), F (2C)〉, 〈div(3Φ), F (3C)〉, . . ., 〈div(13Φ), F (13C)〉 over
the 12 data sets, resulting in 12 pairs of correlation coefficient r ∈ [−1, 1] and
p-value∈ [0, 1]. A positive correlation coefficient r indicates a positive correlation
between the diversity and accuracy, whereas a negative r indicates a negative
correlation between them. p-value indicates the degree of that the correlation is
statistically significant.

To further quantify the relationship between the diversity div(iΦ) and the
improvement of the accuracy F (iΦ), we calculate the mean accuracy of iΦ, de-
noted by FM (iΦ) with [F (ϕK1) + F (ϕK2) + . . . + F (ϕKi)]/i and then calculate
each difference between F (iC) and FM (iΦ) in terms of the improvement of the
accuracy, denoted by FIM (iΦ) (1 ≤ i ≤ 13).

5.2 Results in Decreasing Order

In this experiment we constructed three groups of classifier ensembles by
Dempter’s rule, Proportion rule and Yager’s rule, respectively, each of which
shares the same group of classifiers in the form of 2Φ, 3Φ, . . ., 13Φ, thus 3 × 13
classifier ensembles have been generated in total. For iΦ, we calculate diversity
κ(iΦ), qs(iΦ), dis(iΦ) and kw(iΦ) (1 ≤ i ≤ 13), resulting in four groups of diver-
sity collectively 4 × 13 pieces of diversity. We scaled these calculations up over
the 12 data sets, and the results are graphed in Fig. 1.

According to the behaviors of the curves and the nature of the four diversity
measures in Fig.1, the diversity curves of 12 groups of classifiers from 2c to 13c
over the 12 data sets can be characterized into two groups: one is measured
by qs and κ, and the other is measured by kw and dis. It can be observed
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Fig. 1. Diversity and accuracy of the corresponding combinations of 13 classifiers over
the 12 data sets in decreasing order

that the fitness between kw and dis is better than that between qs and κ, and
the curve margins between qs and κ are larger than those between kw and dis.
Roughly speaking, for the former group the curves decrease as more classifiers are
added, whereas for the latter group, the curves increase with the addition of more
classifiers, i.e. both of them go towards the closer from 2c to 13c. These results
suggest that the number of classifiers has an impact on the agreement among
the classifiers − the more classifiers are added into the groups of classifiers, the
more diversity appears among the groups.

We further calculated the improvement of the accuracy FIM (iΦ) = F (iC)
- FM (iΦ), and the correlation coefficients between pairs of 〈div(2Φ), FIM (2C)〉,
〈div(3Φ), FIM (3C)〉, . . ., 〈div(13Φ), FIM (13C)〉 (1 ≤ i ≤ 13) for the three combi-
nation rules and the four diversity measures over the 12 data sets. The resulting
correlation coefficients are presented in Table 1. In the table, each cell value is
a correlation coefficient between the diversity obtained by one measure and the
accuracy improvement on one data set. Based on the properties of the diversity
measures, when the qs and κ coefficients are positive and kw and dis are neg-
ative, they represent a positive correlation between the diversity and accuracy,
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Table 1. Correlation coefficients between diversity and improved accuracy of combined
classifiers using Dempster’s rule, Proportion rule and Yager’s rule in decreasing order

Dempster’s rule Proportion rule Yager’s rule
Dataset kw qs dis κ kw qs dis κ kw qs dis κ

anneal 0.95 0.42 0.96 -0.96 -0.79 -0.33 -0.81 0.81 -0.96 -0.42 -0.96 0.96
audiology 0.18 -0.19 0.12 -0.11 -0.63 0.45 -0.56 0.54 -0.73 0.56 -0.66 0.64
balance 0.79 -0.70 0.79 -0.77 -0.71 0.63 -0.72 0.71 0.41 -0.51 0.42 -0.45
car -0.25 0.17 -0.32 0.44 -0.83 0.24 -0.86 0.85 -0.89 -0.17 -0.78 0.71
glass 0.63 -0.77 0.67 -0.68 -0.01 0.05 -0.02 -0.01 -0.90 0.81 -0.85 0.84
autos 0.99 -0.95 0.97 -0.98 -0.80 0.88 -0.80 0.79 -0.96 0.97 -0.96 0.96
iris 0.91 -0.63 0.90 -0.91 0.70 -0.61 0.68 -0.68 -0.65 -0.12 -0.55 0.54
letter 0.89 -0.88 0.89 -0.88 0.85 -0.84 0.85 -0.84 -0.83 0.77 -0.81 0.83
segment 0.99 0.31 0.99 -0.99 0.81 0.21 0.83 -0.83 -0.89 -0.40 -0.83 0.83
soybean 0.99 -0.93 0.99 -0.99 0.90 -0.84 0.90 -0.89 -0.89 0.80 -0.88 0.89
wine 0.64 -0.43 0.66 -0.66 0.44 -0.38 0.48 -0.48 -0.94 0.79 -0.94 0.94
zoo 0.39 -0.11 0.55 -0.55 0.11 0.09 0.25 -0.25 -0.95 0.76 -0.97 0.97

Av 0.64 -0.34 0.60 -0.67 -0.02 -0.04 0.02 0.03 -0.72 0.27 -0.65 0.68

otherwise they represent a negative correlation. From the table we can see that
for Dempster’s rule, the diversity obtained by the measures of kw, dis and κ are
strongly correlated with the improvement of accuracy of the classifier ensembles,
where the correlation coefficients over 9, 10 out of 12 data sets is statistically
significant (p ≤ 0.05), which are shown in bold, and the three average coefficients
are greater than the critical value 0.577 (making p ≤ 0.05). By contrast, the re-
lationship between the diversity measured by qs and the improved accuracy is
rather weak. From the results of Proportion rule, we were surprised to find that
the correlation between the diversity and the improved accuracy is negatively
strong where the kw and κ coefficients over 8, 9 out of 12 data sets is statis-
tically significant (p ≤ 0.05), and even stronger negative correlation occurred
in the results of yager’s rule, where the correlation coefficients over 10, 11 out
of 12 data sets are statistical significant. Interestingly, for Proportion rule and
Yager’s rule, the diversity measured by qs is weakly correlated to the improve-
ment of accuracy achieved by the three combination rules, which is similar to
the case of Dempster’s rule. From this experiment we develop an understanding
of that Dempster’s rule of combination is better to avail of the diversity among
the classifiers to improve the performance of the individual classifiers than Pro-
portion and Yager’s rules, and the diversity measured by qs is less sensitive to
the improved accuracy of the classifiers.

5.3 Results in Mixed Order

In this experiment we took the same way as detailed in Subsections 5.1 and
5.2, but classifiers ϕ1, . . ., ϕi (1 ≤ i ≤ 13) within each group iΦ combined
by the three combination rules are in a mixed order. The diversity curves of
12 groups of classifiers can be similarly characterized into two groups and the
graph is omitted. It has been observed that when more classifiers are added into
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Table 2. Correlation coefficients between diversity and improved accuracy of combined
classifiers using Dempster’s rule, Proportion rule and Yager’s rule in mixed order

Dempster’s rule Proportion rule Yager’s rule
Dataset kw qs dis κ kw qs dis κ kw qs dis κ

anneal 0.89 -0.59 0.87 -0.87 0.65 -0.64 0.63 -0.63 -0.92 0.50 -0.90 0.90
audiology 0.96 -0.94 0.94 -0.92 0.97 -0.95 0.98 -0.98 0.17 -0.13 0.31 -0.40
balance 0.64 -0.74 0.48 -0.49 -0.19 0.12 -0.27 0.28 -0.59 0.60 -0.50 0.51
car 0.98 -0.60 0.90 -0.91 -0.17 0.01 -0.21 0.20 -0.78 0.23 -0.63 0.73
glass 0.61 -0.30 0.50 -0.53 0.44 -0.31 0.38 -0.36 -0.59 0.25 -0.45 0.46
autos 0.82 -0.77 0.87 -0.83 0.60 -0.44 0.66 -0.60 -0.76 -0.15 -0.66 0.63
iris 0.95 -0.89 0.97 -0.97 0.82 -0.92 0.86 -0.86 -0.97 0.80 -0.97 0.97
letter 0.96 -0.91 0.97 -0.96 0.76 -0.73 0.71 -0.67 -0.20 0.21 -0.01 0.02
cleveland -0.25 0.28 -0.15 -0.06 -0.32 0.28 -0.25 0.13 -0.19 0.13 -0.15 0.30
segment 1.00 -0.29 1.00 -1.00 0.94 -0.14 0.96 -0.96 -0.99 0.30 -0.98 0.98
soybean 0.97 -0.82 0.97 -0.97 0.84 -0.70 0.85 -0.85 -0.56 0.42 -0.54 0.54
wine 0.97 -0.82 0.98 -0.98 0.68 -0.37 0.67 -0.67 -0.96 0.59 -0.95 0.95
zoo 0.99 -0.76 0.99 -0.99 0.59 -0.47 0.60 -0.59 -0.88 0.46 -0.82 0.82

Av 0.81 -0.63 0.79 -0.81 0.51 -0.40 0.50 -0.51 -0.63 0.32 -0.56 0.57

the groups of classifiers, the first group of the curves roughly decreases, while
the second group increases but both of them have some fluctuations, there is no
consistent trend that can be visually identified from them. Compared with the
diversity curves in two orders, although the curves in both of the orders share
a similar shape, there are more fluctuations in mixed order than in decreasing
order, which could be caused by the order of classifiers.

Following the same way as in decreasing order, we calculated the correlation
coefficients between the diversity and the improved accuracy of the different
groups of classifiers, and the resulting coefficients are presented in Table 2. The
table clearly shows the strong correlation between the diversity obtained by kw,
qs, dis and κ and the improved accuracy of the different groups of classifiers by
Dempster’s rule of combination, where the correlation coefficients over 10, 12
of the 12 data sets are statistically significant. However the diversity measured
by the four measures is negatively correlated to the improved accuracy of the
classifiers combined by Proportion rule and Yager’s rule, and the correlation of
Proportion rule is stronger than that of Yager’s rule and qs is less sensitive to
the improved accuracy.

6 Summary and Future Work

This study reports a range of experiments to assess the relationship between
diversity and accuracy over the 12 benchmark data sets with the 12 groups of
classifiers. The experimental results reveal that

– Demspter’s rule can better utilize the diversity among classifiers to improve
the performance of individual classifiers than Proportion and Yager’s rules;
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– the diversity measured by qs is less sensitive to the improved accuracy of
the classifiers;

– the order of classifiers has an impact not only on the diversity among the
classifiers, but also on the ensemble accuracy.

However the impact of the orders is varied on the combination rules and
data sets. For Dempster’s rule, the average accuracy of the classifier ensembles
built in decreasing order is 77.89%, which is 1.10% better than that of mixed
order; for Yager’s rule, the average ensemble accuracy in decreasing order is
65.58%, 2.68% better than that of mixed order; for Proportion rule, the average
ensemble accuracy in decreasing order is 74.81%, 0.05% better than that of mixed
order. Nevertheless we conclude that the decreasing order could be a better
way for combining classifiers. Meanwhile the negative correlation between the
improvement of ensemble accuracy made by Proportion and Yager’s rules and
the diversity obtained by the four measures raises the issue of developing a sound
theoretical understanding of effectiveness of the alternative combination rules in
this context, in particular how to explain such negative correlations between the
diversity and accuracy warrants a further investigation.
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Abstract. Combination of multiple classifiers, commonly referred to as an 
classifier ensemble, has previously demonstrated the ability to improve 
classification accuracy in many application domains. One popular approach to 
building such a combination of classifiers is known as stacking and is based on 
a meta-learning approach. In this work we investigate a modified version of 
stacking based on cluster analysis. Instances from a validation set are firstly 
classified by all base classifiers. The classified results are then grouped into a 
number of clusters. Two instances are considered as being similar if they are 
correctly/incorrectly classified to the same class by the same group of 
classifiers. When classifying a new instance, the approach attempts to find the 
cluster to which it is closest. The method outperformed individual classifiers, 
classification by a clustering method and the majority voting method.  

Keywords: Combining Classifiers, Stacking, Ensembles, Clustering, Meta-
Learning. 

1   Introduction 

A classifier ensemble is a group of classifiers whose individual decisions are combined 
to provide, as an output, a consensus opinion during the process of classification. The 
key to producing a successful ensemble can be viewed as an approach which applies 
both, an appropriate combination scheme along with the careful selection of base 
classifiers that are going to be combined. Two key issues must therefore be considered: 
firstly, which and how a group of base classifiers should be selected (learning methods), 
and secondly,  how to combine individual results into one final decision (combination 
methods) [9]. Very often diversity [6] and individual classifier accuracy are used as 
criterion for the selection of a good collection of base classifiers. Many approaches have 
been investigated to this problem. They are based either on using different learning 
methods and the same training set [1], or the same learning method and different 
training samples [8]. Different methods use different types of base classifier outputs 
during the combination phase, for instance class label or class probability distribution 
[1, 2]. Alternatively, another approach is to use predictions as a set of attributes to train 
a combining function in terms of meta-learning [12].  
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In our work, we investigate a new technique of combining multiple classifiers, 
which can be reviewed as meta-learning based approach. We apply a framework of 
clusters built on the outputs of the base models. Base classifiers are used for 
generating clusters, however,  are not reused in the testing phase. In such a way, the 
computational complexity can be reduced. Based on this concept, classification of 
unseen instances is reduced to a simple clustering task.  

The remainder of the paper is organized as follows: Section 2 presents a brief 
review of previously investigated meta-learning techniques. A description of the new 
approach is introduced in Section 3. Section 4 presents the experimental results, 
which are discussed in Section 5. Conclusions and future work are presented in 
Section 6. 

2   Related Work 

Stacking, an approach based on the Meta-Learning technique, usually refers to the 
combination of models that are built using different learning methods, all with the 
same single data set [3]. Firstly, a collection of base-level classifiers is generated 
(level-0). Secondly, all instances from the validation set are classified by all base 
classifiers. The results of this process compose a training data set for a meta model. In 
the next step, a meta-learner model is built for combining the decisions of the base-
level models (level-1) [3]. In the testing phase, the meta-level classifier uses the base 
classifiers’ predictions as the input attributes to the model.  

In a study by Ting and Witten [12] four different learning algorithms were applied 
in level-1: C4.5, IB1, NB and multi response linear regression (MLR). Results 
demonstrated that MLR was the only good candidate. For classification problems 
with n classes, n regression problems were defined. For each class a linear equation 
was formulated. Given a new test pattern, the equations were calculated for all the 
classes and the class with the greatest value was nominated as the final answer. In the 
same work, it was shown that using class probability distributions was more 
successful than applying class labels. 

In [11], the concept of Meta Decision Trees (MDT) was proposed. The difference 
in comparison with an ordinary decision tree is that instead of predicting a class label 
directly, the MDT approach predicts the model which should be used to make the 
final decision. C4.5 was employed as the learning algorithm at the meta-level 
(MLC4.5). In the study, probability distribution characteristics were used as 
attributes. The method outperformed the stacking algorithm using an ordinary 
classification tree built with C4.5. Re-implementation of the MLC4.5 referred to as 
MLJ4.8 was proposed in [14]. It outperformed other techniques such as bagging, 
boosting or stacking with ordinary classification trees, however, it did not provide 
better results in comparison to stacking with MLR. 

A modified version of Stacking with MLR, referred to as StackingC, was proposed 
in [10]. In StackingC, as opposed to Stacking, for each linear model assigned to a 
specific class, only the partial probability distribution related to that class is applied  
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during training and testing phases. Results showed that for multi-class problems, 
StackingC outperformed Stacking. In 2-class cases, the performance of the two 
approaches were similar with accuracies of 85.51% and 85.54%,  respectively.   

Two further extensions to Stacking with MLR were introduced in [3]. In the first 
extension beside probability distribution the entropies and the probability distributions 
multiplied by the maximum probability were applied as a meta-level attributes. In the 
second extension model tree induction was applied instead of linear regression with 
the remainder of the process remaining the same. Therefore, instead of n linear 
equations, n model trees were inducted. The second approach was found to be 
successful and outperformed many other methods including Majority Voting, Select 
Best, Stacking with MDT, Stacking with MLR and StackingC.  

In stacking, if the number of classes increases, the dimensionality of the meta-level 
attributes increases proportionally.  This has the effect of increasing the complexity of 
the problem.  StackingC is more effective in multi-class problems since only the 
probability related to specific classes are considered in the learning phase. This 
approach may, however, fail in the situations when the class distribution is non-
symmetric [4]. An approach called Troika, was proposed in [7] to address multi-class 
problems. The architecture of this method contains 3 layers: Level-0 has a structure 
where all base classifiers provide class probability distributions. In Level-1, base 
classifiers are combined to obtain a group of specialists, where each one can 
distinguish between different pairs of classes. Predictions obtained at this level are 
used by the meta-classifiers in Level-2, which are trained with a one-against-all 
binarization method. This has the result that each classifier is a specialist being 
responsible for one class. Level-3 is the last layer, and contains just one model: the 
super classifier, which outputs a vector of probabilities as the final decision of the 
ensemble. Troika aimed to avoid the dimensionality problem by applying more than 
one combining classifier in Level-1. To avoid the effects of a skewed class 
distribution, a one-against-one instead of one-against-all binarization training method 
was employed. This method outperformed Stacking and StackingC in terms of 
classification accuracy. 

In our work we investigate a new meta-learning based approach that is less 
complex than all existing meta models. In the proposed algorithm we take only class 
labels as the output of the base classifiers. Consequently the efficiency of the model is 
not affected by the number of classes and non-symmetric class distribution. In 
addition, we do not require the application of base classifiers in the testing phase. 
They are applied only to the training process of the meta model, that decreases the 
computational cost of the testing process.  

3   Classification by Cluster Analysis (CBCA) 

The general concept of the proposed approach is to use cluster analysis in the 
classification process. It is applied with different learning methods and the same  
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training dataset to obtain a set of base classifiers. The main aim is to generate a 
collection of clusters, each of which contains similar instances according to their 
classification results. This means that one cluster should contain objects that were 
correctly/incorrectly classified to the same class by the same group of base classifiers. 
Additionally, to improve the quality of the clusters, the most significant features were 
considered during the clustering process. In the next step centroids of the cluster and 
their class labels were calculated. Upon presentation of an unseen instance, the 
centroid to which it is closest is identified. The class label of the selected centroid 
informs us to which class the instance belongs. 

We notice that, similar to stacking, the base classifiers’ outputs are used to 
generate a meta-model, which in our case is composed of a collection of clusters. The 
difference between our method and stacking is, that during the testing phase, our 
method does not require the further use of the base classifiers. New patterns are 
classified based only on their features. The following 2 sub-sections describe the 
general process of clustering and classification in more detail. All technical details of 
the implementation of the proposed algorithm are provided in Section 3.3.  

3.1   Clustering Process 

The clustering approach is applied with N different learning methods denoted by 
L1,...,LN. In the first step, the data set D is divided into 3 disjoint subsets: D = D1∪ 
D2∪D3. D1 is used for the training of the base classifiers, D2 is used for the purpose of 
building the clusters, which will be used as a meta classifier and D3 is the testing set. 
Fig. 1 presents the entire process of generating a collection of clusters.  

 

 

Fig. 1. Outline of the clusters generation process 

In the first step, we apply N different learning methods and D1 as a training set, to 
obtain N different base classifiers: C1,...,CN. All models are meant to provide a class 
label as an output. In the second step, all instances in D2, denoted by x1,..., xM, are 
classified by all base classifiers. As a result of this process, we obtain an MxN matrix 
containing classification results. Rows represent instances from D2, and columns 
represent base classifiers. For example, cell Cj(xi) of the matrix, contains the label of 
the class, where xi was classified by Cj. Next, we intended to cluster all rows  
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according to the values in the columns to obtain a collection of clusters denoted by 
P1,...,PL. Instances in each cluster were expected to belong to the same class. 
Nevertheless, given that the matrix does not contain information about real class 
labels of the instances, it may occur that in one cluster there will be instances from 
many different classes. This situation may happen, for example, if one instance will 
be misclassified by all the models to the same class given by ck. Consequently, it will 
be located in the cluster with the instance that really belongs to the class ck and were 
correctly classified by all base classifiers since the 2 equivalent rows in the matrix 
will be identical. In order to alleviate this problem, we decided to apply a subset of 
the most significant features in the clustering process. This helps to ensure that 
instances in one cluster generally belong to the same class. In step 3 K most 
significant features were selected. K new columns, labeled as F1,...,Fk, were 
subsequently added to the matrix. Each of them represents one attribute. In the 4 step, 
the rows are clustered according to values in N+K columns. As a result we obtain a 
collection of clusters. In the last step centroids of all the clusters and their class labels 
are calculated. The whole classification process is described in the following section. 

3.2   Classification Process 

In our method, classification of a new instance differs from the stacking approach. In 
stacking, all base classifiers are re-used to provide meta data for each pattern being 
considered. Based on this data, the meta classifier makes a final decision. In our 
method, the final classifier only uses the features of an instance to make the decision. 
The entire process is presented in Fig. 2.  

 

Fig. 2. Outline of new instance classification process 

As a result of the training process we obtain a collection of L centroids. In step 1, the 
distance between the unseen instance, represented by the K most significant features, 
and the centroids are calculated using the Euclidean distance. In step 2, the centroid that 
is most similar to the unseen instance, is identified. In the final step, the class where the 
selected centroid belongs is considered as the final decision. Section 3.3 presents all 
technical details of the described algorithm. 

3.3   Technical Details of CBCA 

Figure 3 presents the pseudo code of the proposed CBCA approach.   
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      //Select K most significant features
  4)  Information Gain (D1,D2) F1,...,FK ;

//Build matrix A
  5)  For i=1 M   
  6) For j=1 N      A(i,j)=Cj(xi); 
  7)        For k=1  K   A(i,N+k)=Fk(xi); 
       //Determine the number of clusters
  8)   Z=number of classes; 
  9)   Do 
10)   {    Z++; 
11)         Calculate Accuracy (Z,D1);   } 
12)  While (Accuracy(Z,D1)> Accuracy (Z-1,D1)) 
13)  Z--; 
       //Build final collection of clusters 
14)  Kmeans([A(1,1),...,A(1,N+K)],...,[A(M,1)...A(M,N+K)], Z) P1,...,PZ ; 
15)  For i=1 Z   
16)      {  Identify centroid of Pi  xi

* ; 
17)          Read class label of instance xi

*  yi
*;  }  

Outputs:      (x1
*, y1

*),...,(xZ
*, yZ

*)-centroids of the cluster with their class labels
Testing process

Input:      x - testing pattern 
Process: 18) Select (x’,y’) such that d(x,x’,K)=min{d(x, x1

*,K),...,d(x, xZ
*,K)}, 

      where d is the Euclidean distance, and assign y' to the x 

 
Training process

Input:       D1, D2 =(x1,..,xM); L1,...,LN - learning methods; K–no. of features to be selected 
Process:       //Build Base Classifiers

  1)  for   i=1...N               
  2)       Ci=Li(D1);  
  3)  end 

 

Fig. 3. Outline of CBCA method for training and testing process 

As an input for the method we have to provide a training data sets, that is later 
divided in 2 parts: D1 for training base classifiers and D2 for building clusters. 
Followed by that, there are N learning methods given that are used to generate base 
classifiers. The third input is a number of the most significant features that are taken 
into account during the clustering process (K). The initial step in the process is 
building N classifiers using N different learning methods and a training set D1. For the 
selection of learning methods and value of K we tried a number of different 
combinations and chose the one that gave the best results on the training data. We 
applied rather low values of N, 2 or 3 in most cases, to not increase drastically 
dimension of the data. Following this, the Information Gain1 is calculated for each 
attribute. This method discretizes all numeric attributes. All attributes are then ranked2 
from the highest to the lowest. We applied for this both training and validation data 
sets. The first K attributes in the ranking are selected. In the next step a matrix A with 
size Nx(M+K) is constructed. All rows of the matrix are clustered by the K-Means 
algorithm3, that automatically handles numerical and categorical attributes. The 

                                                           
 1 weka.InfoGainAttributeEval.buildEvaluator 
 2 weka.attributeSelection.Ranker 
 3 weka.clusterers.SimpleKMeans 
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method uses the Euclidean distance measure4. For categorical data the distance is 
either 0 or 1. Numerical data are normalized into 0-1 range to make them equal 
influence in the distance calculation. To determine the number of clusters required we 
implemented a straightforward searching algorithm. Initially the number of clusters Z 
equals the number of classes. In each iteration we increase Z by one and calculate the 
accuracy of our method on the training data set. The procedure is repeated until the 
performance improves when we increase the number of clusters. Following 
determining the parameter Z, all instances from D2 are divided into Z clusters. For 
each cluster we calculate the centre and its class label5. Class labels of the centre is 
calculated as a mode - value that appears most often within the cluster. As an output 
of the training process we obtain a collection of centroids with their class labels. 
Following presentation of an unseen pattern the distance between it and the all centers 
are calculated using the Euclidean distance. Only the K number of the most 
significant features are considered in this process. The class label of the closest centre 
is considered as the final decision.  

4   Experiments 

To evaluate the method, experiments were conducted with 15 data sets taken from the 
UCI Machine Learning Repository [13]. A brief description is presented in Table 1.  

Table 1. Data Sets used in Experiments taken from the UCI Machine Learning Repository 

Data Set 
No. of 

Instances 
No. of 
classes 

No. of 
attributes

Data Set 
No. of 

Instances
No. of 
classes 

No. of 
attributes 

Breast Cancer 286 2 9 Spect 187 2 22 
Colic 368 2 23 Tytanic 2201 2 6 
Hepatitis 155 2 20 Credit-g 1000 2 4 
Heart-c 303 5 14 Iris 150 3 4 
Breast-w 699 2 10 Omin 479 2 65 
Haberman 306 2 4 Waveform 600 2 15 
Heart-h 294 5 13 Heart-statlog 270 2 14 
Glass 214 7 10     

We have used 6 base classifiers implemented in Weka [5]: Naive Bayes6 (NB),  
NB Tree7 (DT), Simple Logistic Regression8 (SL), J48 Tree9 (J), Multilayer 
Perceptron10(MP), and BF Tree11 (BF). For each data set, the best combination of 
classifiers was selected, based on the performance on the training data. 

                                                           
 4 weka.core.EuclideanDistance 
 
5

 weka.clusterers.SimpleKMeans.GetClustersCentoids 
 6 weka.classifiers.bayes.NaiveBayes 
 7 weka.classifiers.trees.NBTree 
 8 weka.classifiers.functions.SimpleLogistic -I 0 -M 500 -H 50 -W 0.0 
 9 weka.classifiers.trees.J48 -C 0.25 -M 2 
10

 weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a 
11

 weka.classifiers.trees.BFTree -S 1 -M 2 -N 5 -C 1.0 -P POSTPRUNED 
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4.1   Implementation Details 

To evaluate the proposed approach, we have implemented an experimental system that is 
composed of 6 learning methods in addition to the proposed meta learning approach and 
a majority voting (MV) method. MV is tested twice, one with all 6 base classifiers and 
the other with the same combination of base classifiers that was selected and applied with 
the CBCA approach. All base classifiers were implemented in Weka. Since some 
parameters of the system were established by validation on the training set, to reduce 
over fitting problem, a 5-fold cross-validation was performed for all experiments. The 
original data set was divided into 5 folds. One fold was used for testing and the 
remaining 4 folds were divided into 2 parts. The first part was used for training and  
the second part was used for building the clusters. To investigate the relationship between 
the size of the validation/training set and the performance of the CBCA approach we 
performed three types of division with relations 1:1, 1:3 and 3:1. The process is repeated 
for each fold and the final accuracy is calculated as an average over the 5 folds.  

4.2   Results 

The experiments were carried out with 15 data sets. The proposed method was tested 
with each of the data sets and then compared with individual classifiers and the MV 
approach. For each data set, the CBCA approach was considered with different 
combinations of the base models. Combinations which provided the best final results on 
the training data were identified and applied to build a final classifier (to generate the 
collection of clusters). For the different data sets, the different numbers of the most 
significant attributes were applied in the clustering process. Additionally, we 
implemented and compared with our approach the standard “classification by clustering” 
method (CL). Clusters in this method are built by using only the attributes from the 
instances. In this way we want to consider if the first N columns in the matrix (attributes 
presenting classification results) are significant in the whole approach. Table 2 presents  
 

Table 2. Accuracy for the different methods considered following evaluation for 15 data sets 

Data Set NB DT SL J MP BF MV MV(*) CL CBCA(*) 
BC 72.6 70.2 73.3 73.7 69.5 68.6 72.3 72.3 72.1 76.5 
Colic 79.7 84.9 82.2 85.8 79.7 86.3 86.6 81.4 77.0 86.8 
Hepatitis 84.0 77.3 80.7 77.3 83.3 78.0 82.0 82.0 78.7 86.0 
Heart-c 82.7 81.3 81.0 74.0 80.0 75.7 81.3 81.3 82.0 84.6 
Breast-w 95.8 96.1 96.0 94.1 94.0 94.7 96.1 93.8 97.0 97.4 
Haberman 75.1 72.1 71.5 70.8 69.2 71.1 73.4 72.5 73.1 76.5 
Heart-h 84.5 81.7 84.5 78.3 81.0 79.3 81.7 80.0 80.3 84.5 
Spect 66.5 71.9 66.5 61.1 59.5 68.1 68.1 61.1 73.5 74.1 
Titanic 77.9 79.1 77.9 79.0 78.8 79.1 77.9 77.5 79.1 
Credit-g 75.5 71.0 75.1 71.2 72.1 70.0 75.5 71.9 72.1 73.2 
Iris 95.9 93.8 95.2 91.7 94.5 93.8 94.5 95.1 92.4 97.3 
Omin 65.3 71.6 68.8 60.9 69.7 71.0 69.7 60.6 70.1 72.2 
Waveform 88.7 89.4 91.1 84.5 88.7 85.7 90.4 90.4 84.5 91.1 
Heart-s 84.1 81.1 83.0 76.2 78.5 76.6 81.9 76.6 82.3 84.5 
Glass 50.0 64.3 65.7 68.6 66.7 68.6 68.6 69.1 64.8 69.1 
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the accuracy of all the methods considered for all data sets. The values in the table 
present the mean percentages of the instances which were correctly classified for all 5 
folds. The last column in the table presents the results of the proposed CBCA approach. 
The shaded cells in Table 2 indicate which base classifiers were applied with our method 
in each data set. The MV column represents the accuracy of the MV method applied with 
all base classifiers. MV(*) stands for MV applied with the same combination of base 
classifiers as the CBCA approach. The CL column presents the results of the standard 
classification accuracy attained by the clustering method.  

5   Discussion 

Table 2 shows that the CBCA approach outperformed all base classifiers, MV and 
MV(*) in 11 out of the 15 data sets considered. In 3 datasets the CBCA approach 
attained the same best result as a number of the other algorithms. The CBCA was 
only outperformed by one of the other approaches in one of the datasets.  

Based on the results we can see, that in 14 cases the performance of the base 
classifiers was improved. The only case where no improvement over base models was 
achieved was when considering the Credit-g dataset. For Heart-h CBCA gave the 
same result as NB and SL. Nevertheless, in this case only J and BF were considered 
as base classifiers, and both methods were still significantly improved. Similar 
situations arose for the Titanic dataset.  

During the experiments we compared our method with MV applied with all 6 base 
classifiers (MV) and with only selected models (MV(*)). CBCA outperformed MV in 
14 out of 15 cases. We performed a T-test with the confidence level α=0.1, and the 
results showed that the difference was statistically significant for 8 out of 14 cases. 
Given that for each data set we only have 5 samples obtained from 5 folds, we 
decided to run another T-test on all data together hence providing us with 15*5=75 
samples. According to the results attained, CBCA is significantly more effective than 
MV with the confidence level of α=99%. MV(*) provided improved  results in 
comparison with the MV in only two of the data sets. CBCA outperformed MV(*) in 
13 out of 15 cases and in 10 the difference was statistically significant with the 
confidence level α=0.1. We performed the T-test for all 75 samples and the result 
showed that CBCA is more effective than MV(*) with the confidence level α=99%. 

The final comparison we performed was between CBCA and the standard CL. We 
can see from Table 2 that CL was outperformed by the CBCA in all data sets. This 
confirms that the information contained in the attributes representing classification 
results is significant in the entire process. 

6   Conclusion and Future Work 

In this paper we have investigated a new approach to combining multiple classifiers 
based on cluster analysis. A collection of base classifiers was applied to generate a 
group of clusters, which were subsequently used to compose the final classifier. 
Instances were grouped according to their classification results together with the 
number of the most significant attributes. The proposed method is a modified Meta-
Learning approach since the training set of the final model is composed of the base 
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classifier outputs. The approach differs from the stacking approach, since we do not 
reuse base classifiers in the testing phase. The final model makes decisions based only 
on the features of the instances. This significantly reduces the complexity of the 
classification process. After obtaining the framework of clusters, classification of 
unseen patterns turns into a relatively simple clustering task. The proposed method 
appears to be an effective combination tool. For 14 out of 15 data sets it improved 
performance of all base classifiers combined. CBCA appeared more effective than the 
MV method. It has been observed as well that cluster analysis based only on the 
features of the instances is less effective than the one proposed by us.  

Given the results of the experiments are promising, we wish to continue our work 
on a number of related issues. The key limitation of the proposed system is that some 
of the parameters are selected based on trial-and-error. It cost the problem of low 
generality of the system. This is the first issue we want to consider in the future work. 
Beside this, we would like to investigate more carefully an influence of random 
initialization of the K-Means on the proposed system.   
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Abstract. The combination of multiple classifiers to generate a single
classifier has been shown to be very useful in practice. Similarly, sev-
eral efforts have shown that cluster ensembles can improve the quality
of results as compared to a single clustering solution. These observa-
tions suggest that ensembles containing both classifiers and clusterers
are potentially useful as well. Specifically, clusterers provide supplemen-
tary constraints that can improve the generalization capability of the
resulting classifier. This paper introduces a new algorithm named C3E
that combines ensembles of classifiers and clusterers. Our experimental
evaluation of C3E shows that it provides good classification accuracies in
eleven tasks derived from three real-world applications. In addition, C3E
produces better results than the recently introduced Bipartite Graph-
based Consensus Maximization (BGCM) Algorithm, which combines
multiple supervised and unsupervised models and is the algorithm most
closely related to C3E.

Keywords: Ensembles, Classification, Clustering.

1 Introduction

The combination of multiple classifiers to generate a single classifier has been
an active area of research for the last two decades [8,7]. For instance, an ana-
lytical framework to quantify the improvements in classification results due to
combining multiple models has been addressed in [13]. More recently, a survey
of traditional ensemble techniques — including applications of them to many
difficult real-world problems such as remote sensing, person recognition, one vs.
all recognition, and medicine — has been presented in [9]. In brief, the extensive
literature on the subject has shown that from independent, diversified classifiers,
the ensemble created is usually more accurate than its individual components.
Analogously, several research efforts have shown that cluster ensembles can im-
prove the quality of results as compared to a single clustering solution — e.g.,
see [6]. Actually, the potential motivations and benefits for using cluster en-
sembles are much broader than those for using classifier ensembles, for which
improving the predictive accuracy is usually the primary goal. More specifically,
cluster ensembles can be used to generate more robust and stable clustering re-
sults (compared to a single clustering approach), perform distributed computing
under privacy or sharing constraints, or reuse existing knowledge [12].
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In this paper, an algorithm that combines ensembles of classifiers and clus-
terers is introduced. As far as we know, this topic has not been addressed in the
literature. Most of the motivations for combining ensembles of classifiers and
clusterers are similar to those that hold for the standalone use of either clas-
sifier ensembles or cluster ensembles. However, some additional nice properties
can emerge from such a combination — e.g., unsupervised models can provide
a variety of supplementary constraints for classifying new data [11]. From this
viewpoint, the underlying assumption is that similar new objects in the tar-
get set are more likely to share the same class label. Thus, the supplementary
constraints provided by the cluster ensemble can be useful for improving the
generalization capability of the resulting classifier, specially when labelled data
is scarce. Also, they can be useful for designing learning methods that are aware
of the possible differences between training and target distributions, thus being
particularly interesting for applications in which concept drift may take place.

The remainder of this paper is organized as follows. The proposed algorithm —
named C3E, from Consensus between Classification and Clustering Ensembles
— is described in the next section. Related work is addressed in Section 3. An
experimental study is reported in Section 4. Finally, Section 5 concludes the
paper and describes ongoing work.

Notation. Vectors and matrices are denoted by bold faced lowercase and capital
letters, respectively. Scalar variables are written in italic font. A set is denoted
by a calligraphic uppercase letter. The effective domain of a function f(y), i.e.,
the set of all y such that f(y) < +∞ is denoted by dom(f), while the interior
and the relative interior of a set Y are denoted by int(Y) and ri(Y), respectively.
Also, for yi,yj ∈ R

k, 〈yi,yj〉 denotes their inner product.

2 Description of C3E

The proposed framework that combines classifier and cluster ensembles to gen-
erate a more consolidated classification is depicted in Fig. 1. It is assumed that
an ensemble of classifiers has been previously induced from a training set. Such
an ensemble is part of the framework that will be used for classifying new data
— i.e., objects from the target set1 X = {xi}n

i=1. The ensemble of classifiers is
employed to estimate initial class probabilities for every object xi ∈ X . These
probability distributions are stored as a set of vectors {πi}n

i=1 and will be refined
with the help of a cluster ensemble. From this point of view, the cluster ensem-
ble provides supplementary constraints for classifying the objects of X , with
the rationale that similar objects are more likely to share the same class label.
Each of πi’s is of dimension k so that, in total, there are k classes denoted by
C = {C�}k

�=1. In order to capture the similarities between the objects of X , C3E
also takes as input a similarity (co-association) matrix S, where each entry cor-
responds to the relative co-occurrence of two objects in the same cluster [6,12]
— considering all the data partitions that form the cluster ensemble induced

1 The target set is a test set that has not been used to build the ensemble of classifiers.
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from X . To summarize, C3E receives as inputs a set of vectors {πi}n
i=1 and the

similarity matrix S. After processing these inputs, C3E outputs a consolidated
classification — represented by a set of vectors {yi}n

i=1, where yi = P̂ (C | xi) —
for every object in X . This procedure is described in more detail below, where
r1 classifiers, indexed by q1, and r2 clusterers, indexed by q2, are employed to
obtain a consolidated classification.

Fig. 1. Combining Ensembles of Classifiers and Clusterers

Step A: Obtain Input From Classifier Ensemble. The output of classifier
q1 for object xi is a k-dimensional class probability vector π

(q1)
i . From the set

of such vectors {π(q1)
i }r1

q1=1, an average vector can be computed for xi as:

πi =
1
r1

r1∑
q1=1

π
(q1)
i . (1)

Step B: Obtain Input From Cluster Ensemble. After applying r2 clustering
algorithms (clusterers) to X , a similarity (co-association) matrix S is computed.
Assuming each clustering is a hard data partition, the similarity between two
objects is simply the fraction of the r2 clustering solutions in which those two
objects lie in the same cluster2. Note that such similarity matrices are byproducts
of several cluster ensemble solutions, e.g., CSPA algorithm in [12].

Step C: Obtain Consolidated Results from C3E. Having defined the in-
puts for C3E, namely the set {πi}n

i=1 and the similarity matrix, S, the problem
of combining the ensembles of classifiers and clusterers can be posed as an op-
timization problem whose objective is to minimize J in (2) w.r.t. the set of
probability vectors {yi}n

i=1, where yi = P̂ (C | xi), i.e., yi is the new and hope-
fully improved estimate of the aposteriori class probability distribution for a
given object in X .

J =
∑
i∈X

L(πi,yi) + α
∑

(i,j)∈X
sijL(yi,yj) (2)

2 A similarity matrix can also be defined for soft clusterings — e.g., see [10].
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The quantity L(·, ·) denotes a loss function. Informally, the first term in Eq.
(2) captures dissimilarities between the class probabilities provided by the en-
semble of classifiers and the output vectors {yi}n

i=1. The second term encodes the
cumulative weighted dissimilarity between all possible pairs (yi,yj). The weights
to these pairs are assigned in proportion to the similarity values sij ∈ [0, 1] of
matrix S. The coefficient α ∈ R+ controls the relative importance of classifier
and cluster ensembles. Therefore, minimizing the objective function over {yi}n

i=1

involves combining the evidence provided by the ensembles in order to build a
more consolidated classification.

The approach taken in this paper is quite general in that any Bregman di-
vergence (defined in the Appendix) can be used as the loss function L(·, ·) in
Eq. (2). Bregman divergences include a large number of useful loss functions
such as the well-known squared loss, KL-divergence, logistic loss, Mahalanobis
distance, and I-divergence. A specific Bregman Divergence (e.g. KL-divergence)
can be identified by a corresponding convex function φ (e.g. negative entropy
for KL-divergence), and hence be written as dφ(yi,yj). Using this notation, the
optimization problem can be rewritten as:

min
{yi}n

i=1

J = min
{yi}n

i=1

⎡⎣∑
i∈X

dφ(πi,yi) + α
∑

(i,j)∈X
sijdφ(yi,yj)

⎤⎦ . (3)

All Bregman divergences have the remarkable property that the single best
(in terms of minimizing the net loss) representative of a set of vectors, is simply
the expectation of this set (!) provided the divergence is computed with this
representative as the second argument of dφ(·, ·) — see Th. 1 in the Appendix
for a more formal statement of this result. Unfortunately this simple form of the
optimal solution is not valid if the variable to be optimized occurs as the first
argument. In that case, however, one can work in the (Legendre) dual space,
where the optimal solution has a simple form (see [1] for details). Re-examining
Eq. (3), we notice that the yi’s to be minimized over occur both as first and
second arguments of a Bregman divergence. Hence optimization over {yi}n

i=1 is
not available in closed form. We circumvent this problem by creating two copies
for each yi — the left copy, y(l)

i , and the right copy, y(r)
i . The left(right) copies

are used whenever the variables are encountered in the first(second) argument
of the Bregman divergences. The right and left copies are updated iteratively,
and an additional constraint is used to ensure that the two copies of a variable
remain close during the updates. First, keeping {y(l)

i }n
i=1 and {y(r)

i }n
i=1 \ {y(r)

j }
fixed, the part of the objective function that only depends on y(r)

j can be written
as:

J
[y

(r)
j ]

= dφ(π(r)
j ,y(r)

j ) + α
∑

i(l)∈X

si(l)j(r)dφ(y(l)
i ,y(r)

j ). (4)

Note that the optimization of J
[y

(r)
j ]

in (4) w.r.t. y(r)
j is constrained by the fact

that the left and right copies of yj should be equal. Therefore, a soft constraint
is added in (4), and the optimization problem now becomes:
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min
y

(r)
j

⎡⎣dφ(π(r)
j ,y(r)

j ) + α
∑

i(l)∈X

si(l)j(r)dφ(y(l)
i ,y(r)

j ) + λ
(r)
j dφ(y(l)

j ,y(r)
j )

⎤⎦ , (5)

where λ
(r)
j is the corresponding Lagrange multiplier. It can be shown (see the

Appendix) that there is a unique minimizer for the optimization problem in (5):

y(r)
j

∗
=

⎡⎣⎡⎣π
(r)
j + γ

(r)
j

∑
i(l)∈X

δi(l)j(r)y(l)
i + λ

(r)
j y(l)

j

⎤⎦ /
[
1 + γ

(r)
j + λ

(r)
j

]⎤⎦ , (6)

where γ
(r)
j = α

∑
i(l)∈X si(l)j(r) and δi(l)j(r) = si(l)j(r)/

[∑
i(l)∈X si(l)j(r)

]
. The

same optimization in (5) is repeated over all the y(r)
j ’s. After the right copies are

updated, the objective function is (sequentially) optimized w.r.t. all the y(l)
i ’s.

Like in the first step, {y(l)
j }n

j=1 \ {y(l)
i } and {y(r)

j }n
j=1 are kept fixed, and the

equality of the left and right copies of yi is added as a soft constraint, so that
the optimization w.r.t. y(l)

i can be rewritten as:

min
y

(l)
i

⎡⎣α
∑

j(r)∈X

si(l)j(r)dφ(y(l)
i ,y(r)

j ) + λ
(l)
i dφ(y(l)

i ,y(r)
i )

⎤⎦ , (7)

where λ
(l)
i is the corresponding Lagrange multiplier. As mentioned earlier, one

needs to work in the dual space now, using the convex function ψ (Legendre
dual of φ) which is defined as:

ψ(yi) = 〈yi, �φ−1(yi)〉 − φ(�φ−1(yi)). (8)

One can show that ∀yi,yj ∈ int(dom(φ)), dφ(yi,yj) = dψ(�φ(yj), �φ(yi))
(see [1] for more details). Thus, the optimization problem in (7) can be rewritten
in terms of the Bregman divergence associated with ψ as follows:

min
�φ(y

(l)
i )

⎡⎣α
∑

j(r)∈X

si(l)j(r)dψ(�φ(y(r)
j ), �φ(y(l)

i )) + λ
(l)
i dψ(�φ(y(r)

i ), �φ(y(l)
i ))

⎤⎦ .

(9)
The unique minimizer of the problem in (9) can be computed using Corollary 1
(see the Appendix). �φ is monotonic and invertible for φ being strictly convex
and hence the inverse of the unique minimizer for problem (9) is unique and
equals to the unique minimizer for problem (7). Therefore, the unique minimizer
of problem (7) w.r.t. y(l)

i is given by:

y(l)
i

∗
= �φ−1

⎡⎣⎡⎣γ
(l)
i

∑
j(r)∈X

δi(l)j(r)�φ(y(r)
j ) + λ

(l)
i �φ(y(r)

i )

⎤⎦ /
[
γ

(l)
i + λ

(l)
i

]⎤⎦ ,

(10)
where γ

(l)
i = α

∑
j(r)∈X si(l)j(r) and δi(l)j(r) = si(l)j(r)/

[∑
j(r)∈X si(l)j(r)

]
.
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For the experiments reported in this paper, the generalized I-divergence, de-
fined as:

dφ(yi,yj) =
k∑

�=1

yi�log(
yi�

yj�
) −

k∑
�=1

(yi� − yj�), ∀yi,yj ∈ R
k, (11)

has been used. The underlying convex function is given by φ(yi) =
k∑

�=1

yi�log(yi�)

so that �φ(yi) = (1 + log(yi�))
k
�=1. Thus, Eq. (10) can be rewritten as:

y(l)
i

∗,I
= exp

⎛⎝⎡⎣γ
(l)
i

∑
j(r)∈X

δi(l)j(r)�φ(y(r)
j ) + λ

(l)
i �φ(y(r)

i )

⎤⎦ /
[
γ

(l)
i + λ

(l)
i

]⎞⎠− 1.

(12)
Optimization over the left and right arguments of all the data points con-

stitutes one pass (iteration) of the algorithm. These two steps are repeated till
convergence. Since, at each step, the algorithm minimizes the objective in (3)
and the minimizer is unique due to the strict convexity of φ, the algorithm is
guaranteed to converge. On convergence, all yi’s are normalized to unit L1 norm,
to yield the individual class probability distributions for every object xi ∈ X .
The main steps of C3E are summarized in Algorithm 1.

Algorithm 1 - C3E
Input: {πi},S
Output: {yi}
Step 0: Initialize {y(r)

i }, {y(l)
i } so that y

(r)
i� = y

(l)
i� = 1

k
∀i ∈ {1, 2, · · · , n}, ∀� ∈

{1, 2, · · · , k}
Loop until convergence

Step 1:
Update y

(r)
j using equation (6) ∀j ∈ {1, 2, · · · , n}

Step 2:
Update y

(l)
i using equation (10) ∀i ∈ {1, 2, · · · , n}

End Loop
Step 4: Compute yi = 0.5[y

(l)
i + y

(r)
i ] ∀i ∈ {1, 2, · · · , n}

Step 5: Normalize yi ∀i ∈ {1, 2, · · · , n}

3 Related Work

Of late there has been substantial interest in exploiting both labeled and unla-
beled data for a variety of learning scenarios, including works on semi-supervised
learning and transductive learning [11,2,14]. In almost all cases, these approaches
use a single (clustering, classification or regression) model, which is then tem-
pered by additional data or other constraints. A notable exception is a recent
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work by Gao et al. [5], in which the outputs of multiple supervised and unsu-
pervised models are combined. Here, it is assumed that each model partitions
the target dataset X into groups, so that the objects in the same group share
either the same predicted class label or the same cluster label. The data, models
and outputs are summarized by a bipartite graph. In this graph, on one side
the nodes denote the groups output by the models, whereas on the other side
the nodes denote objects. A group node and an object node are connected if the
object is assigned to the group — no matter if it comes from a supervised or
unsupervised model. From the resulting graph, the goal is to predict the class
labels so that they agree with the supervised models and also satisfy the con-
straints enforced by the clustering models, as much as possible. In other words,
the authors in [5] aim at consolidating a classification solution by maximizing
the consensus among both supervised predictions and unsupervised constraints,
casting it as an optimization problem on a bipartite graph. The objective func-
tion is designed to maximize such a consensus by promoting smoothness of label
assignment over the graph and consistency with the initial labeling. To solve
the optimization problem, they introduce the Bipartite Graph-based Consensus
Maximization (BGCM) Algorithm.

The C3E algorithm can also be viewed as a semi-supervised ensemble work-
ing at the output level. Unlike BGCM, however, it does not receive as input
several supervised and unsupervised models. Instead, C3E ultimately processes
only two fused models, namely: (i) an ensemble of classifiers that delivers a class
probability vector for every object in X ; and (ii) an ensemble of clusterers that
provides a similarity matrix, where each entry corresponds to the relative co-
ocurrence of two objects in the same cluster of X (considering all the available
data partitions). Contrary to BGCM, which is based on hard classification in-
puts from supervised models, C3E can deal with class probability distributions
obtained by the ensemble of classifiers, and caters to both hard and soft cluster-
ings. Moreover, C3E avoids solving a difficult correspondence problem — i.e.,
aligning cluster labels to class labels — implicitly tackled by BGCM.

4 Experimental Evaluation

The C3E algorithm has been evaluated on the same classification datasets em-
ployed by Gao et al. [5] to assess their BGCM algorithm3. Following Gao et al.
[5], eleven classification tasks from three real-world applications (20 Newsgroups,
Cora, and DBLP) have been used. In each task, there is a target set on which
the class labels should be predicted. In [5], two supervised models (M1 and
M2) and two unsupervised models (M3 and M4) were used to obtain (on the
target sets) class and cluster labels, respectively. These same labels have been
used as inputs to C3E. In doing so, comparisons between C3E and BGCM
are performed using exactly the same base models, which were trained in the
same datasets. In other words, both C3E and BGCM receive the same inputs

3 Datasets available at http://ews.uiuc.edu/ jinggao3/nips09bgcm.htm.
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w.r.t. the components of the ensembles, from which consolidated classification
solutions for the target sets are generated.

For the sake of compactness, the description of the datasets and learning mod-
els used in [5] are not reproduced here, and the interested reader is referred to
that paper for further details. However, the results achieved by Gao et al. [5]
from their four base models (M1, M2, M3, and M4), from BGCM [5], and
from two well-known cluster ensemble approaches — MCLA [12] and HBGF
[4] — are reproduced here for comparison purposes. Being cluster ensemble ap-
proaches, MCLA [12] and HBGF [4] ignore the class labels, considering that
the four base models provide just cluster labels. Therefore, to evaluate classi-
fication accuracy obtained by these ensembles, the cluster labels are matched
to the classes through an Hungarian method that favors the best possible class
predictions. In order to run C3E, the supervised models (M1 and M2) have
been fused to obtain class probability estimates for every object in the target
set. Also, the co-association matrix used by C3E was achieved by fusing the un-
supervised models (M3 and M4). The parameters of C3E have been manually
optimized for better performance in each dataset. In particular the following
pairs of (α, λ)4 have been respectively used for the datasets News, Cora, and
DBLP: (4 × 10−2,10−2); (10−4,10−2); (10−7, 10−3).

Table 1. Classification Accuracies — Best Results in Boldface

Method News1 News2 News3 News4 News5 News6 Cora1 Cora2 Cora3 Cora4 DBLP
M1 0.7967 0.8855 0.8557 0.8826 0.8765 0.8880 0.7745 0.8858 0.8671 0.8841 0.9337
M2 0.7721 0.8611 0.8134 0.8676 0.8358 0.8563 0.7797 0.8594 0.8508 0.8879 0.8766
M3 0.8056 0.8796 0.8658 0.8983 0.8716 0.9020 0.7779 0.8833 0.8646 0.8813 0.9382
M4 0.7770 0.8571 0.8149 0.8467 0.8543 0.8578 0.7476 0.8594 0.7810 0.9016 0.7949

MCLA 0.7592 0.8173 0.8253 0.8686 0.8295 0.8546 0.8703 0.8388 0.8892 0.8716 0.8953
HBGF 0.8199 0.9244 0.8811 0.9152 0.8991 0.9125 0.7834 0.9111 0.8481 0.8943 0.9357
BGCM 0.8128 0.9101 0.8608 0.9125 0.8864 0.9088 0.8687 0.9155 0.8965 0.9090 0.9417

C3E 0.8501 0.9364 0.8964 0.9380 0.9122 0.9180 0.8854 0.9171 0.9060 0.9149 0.9438

The classification accuracies achieved by the studied methods are summarized
in Table 1, where one can see that the proposed C3E has shown the best accu-
racies for all datasets. In order to provide some reassurance about the validity
and non-randomness of the obtained results, the outcomes of statistical tests,
following the study of Demsar [3], are also reported. In brief, multiple algorithms
have been compared on multiple datasets by using the Friedman test, with a cor-
responding post-hoc test. The adopted statistical procedure indicates that the
null hypothesis of equal accuracies — considering the results obtained by the
ensembles — can be rejected at α = 0.05. In pairwise comparisons, significant
statistical differences have only been observed between C3E and the other en-
sembles, i.e., there is no evidence that the accuracies of MCLA, HBGF, and
BGCM are statistically different from one to another.

4 λ
(r)
i = λ

(l)
i = λ has been set for all i.
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5 Conclusions

The C3E algorithm, which combines ensembles of classifiers and clusterers,
was introduced. C3E has shown better accuracies than the recently proposed
BGCM Algorithm [5], which combines the outputs of multiple supervised and
unsupervised models and is the most closely related algorithm to C3E. The
asymptotic time complexity of C3E is quadratic with the number of objects
in the target set and linear with the number of ensemble components, whereas
BGCM has cubic time complexity with respect to these input sizes.

There are several aspects that can be investigated in future work. For example,
the impact of the number of classifiers and clusterers in C3E deserves further
investigations. Also, the relative relevance of each component of the ensemble
can be straightforwardly incorporated into C3E. Finally, a more comprehen-
sive experimental evaluation, specially considering comparisons with other semi-
supervised algorithms, is in order.
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Appendix

Definition 1. Let φ : S → R be a strictly convex, differentiable function defined
on a convex set S = dom(φ) ⊆ R

k. Then the Bregman divergence dφ : S ×
ri(S) → [0,∞) between yi ∈ S and yj ∈ ri(S) is defined as: dφ(yi,yj) =
φ(yi) − φ(yj) − 〈yi − yj , �φ(yj)〉.
From this Definition, it follows that dφ(yi,yj) ≥ 0 ∀yi ∈ S,yj ∈ ri(S) and
equality holds iff yi = yj . Then, it can be shown that there is a unique minimizer
for the optimization problem in (5) by considering the following theorem:

Theorem 1 (from [1]). Let Y be a random variable that takes values in Y =
{yi}n

i=1 ⊂ S ⊆ R
k following a probability measure v such that Ev[Y ] ∈ ri(S).

Given a Bregman divergence dφ : S × ri(S) → [0,∞), the optimization problem
mins∈ri(S) Ev[dφ(Y, s)] has a unique minimizer given by s∗ = μ = Ev[Y ].

Corollary 1. Let {Yi}n
i=1 be a set of random variables, each of which takes

values in Yi = {yij}ni

j=1 ⊂ S ⊆ R
d following a probability measure vi such that

Evi [Yi] ∈ ri(S). Consider a Bregman divergence dφ and an objective function of

the form Jφ(s) =
m∑

i=1

αiEvi [dφ(Yi, s)] with αi ∈ R+ ∀i. This objective function

has a unique minimizer given by s∗ = μ =

[
m∑

i=1

αiEvi [Yi]

]
/

[
m∑

i=1

αi

]
.

Proof. The proof for this corollary is pretty straightforward and similar to that
of Theorem 1 as given in [1] but omitted here for space constraints. �
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Abstract. This paper addresses some theoretical properties of cluster-
ing ensembles. We consider the problem of cluster analysis from pattern
recognition point of view. A latent variable pairwise classification model
is proposed for studying the efficiency (in terms of ”error probability”) of
the ensemble. The notions of stability, homogeneity and correlation be-
tween ensemble elements are introduced. An upper bound for misclassi-
fication probability is obtained. Numerical experiment confirms potential
usefulness of the suggested ensemble characteristics.

Keywords: clustering ensemble, latent variable model, misclassification
probability, error bound, ensemble’s homogeneity and correlation.

1 Introduction

Collective decision-making based on a combination of simple algorithms is ac-
tively used in modern pattern recognition and machine learning. In last decade,
there is growing interest in clustering ensemble algorithms [1,2]. In the ensemble
design process, the results obtained by different algorithms, or by one algorithm
with various parameters settings are used. After construction of partial clustering
solutions, a final collective decision is built.

Modern literature on clustering ensembles can be roughly divided into sev-
eral main categories. There are a great deal of works in which the ensemble
methodology is adapted to new application areas such as magnetic resonance
imaging, satellite images analysis, analysis of genetic sequences etc (see, for ex-
ample, [3,4,5]). Another direction aims to develop clustering ensembles methods
of general usage and elaborate efficient algorithms using various optimization
techniques (e.g., [6]). Other categories of works are of more theoretical nature;
their purpose is to study the properties of clustering ensembles, improve mea-
sures of ensemble quality, suggest the ways to achieve the best quality (e.g.,
[7,8,9]).

There is a large number of experimental evidences confirming a significant
raise in stability of clustering decisions for ensemble algorithms (see, for example,
[2,10]). At the same time, theoretical grounds of clustering ensembles algorithms,
as opposed to the pattern classifier ensembles theory (e.g., [11]), are still in
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the early development stage. Existing works consider mainly the asymptotic
properties of clustering ensembles (e.g., [7]).

Cluster analysis problems are characterized by the complexity of formalization
caused by substantially subjective nature of grouping process. For the definition
of clustering quality it is necessary to apply additional a priori information in
terms of ”natural” classification, to use data generation models etc. In the given
work we attempt to corroborate clustering ensemble methodology by utilizing
of a pattern recognition model with latent class labels. To avoid problems with
class renumbering, a pairwise classification approach is used.

The rest of the paper is organized as follows. In the next section we give basic
definitions and introduce the model of ensemble cluster analysis. In the third
section we receive an upper bound for error probability (in classifying a pair of
arbitrary objects according to latent variable labels) and give some qualitative
consequences of the result. In the forth section we introduce the estimates of
ensemble characteristics. The next section describes numerical experiment that
demonstrates the usage of these notions. The conclusion summaries the work
and gives possible future directions.

2 Ensemble Model

Let us consider a sample s = {o(1), . . . , o(N)} of objects independently and ran-
domly selected from a general population. The purpose of the analysis is to group
the objects into K ≥ 2 classes in accordance with some clustering criterion; the
number of classes may be either given beforehand or not (in the latter case an
optimal number of classes should be determined automatically).

Let each of the objects be characterized by variables X1, . . . , Xn. Denote by
x = (x1, . . . , xn) the vector of these variables for an object o, xj = Xj(o),
j = 1, . . . , n.

In many clustering tasks it is allowable to consider that there exists a ground
truth (latent, directly unobserved) variable

Y ∈ {1, . . . , K}

that determines to which class an object belongs. Suppose that the observations
of k-th class are distributed according to the conditional dencity function pk(x) =
p(x|Y = k), k = 1, . . . , K.

Consider the following model of data generation. Let each object be assigned
to class k in accordance with a priori probabilities Pk = P(Y = k), k = 1, . . . , K,

where
K∑

k=1

Pk = 1. After the assignment, an observable value of x is determined

with use of pk(x). This procedure is repeated independently for each object.
For an arbitrary pair of different objects a, b ∈ s, their correspondent obser-

vations are denoted by x(a) and x(b). Let

Z = I(Y (a) �= Y (b)),
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where I(·) is indicator function. Denote by PZ = P[Z = 1|x(a), x(b)] the proba-
bility of the event ”a and b belong to different classes, given x(a) and x(b)”:

PZ = 1 − P[Y (a) = 1|x(a)] P[Y (b) = 1|x(b)] − . . .

− P[Y (a) = K|x(a)] P[Y (b) = K|x(b)] = 1 −
K∑

k=1

pk(x(a))pk(x(b))P 2
k

p(x(a))p(x(b))
,

where p(x(o)) =
K∑

k=1

pk(x(o))Pk , o = a, b.

Let a clustering algorithm μ be run to partition s into K subsets (clusters).
Because the numberings of clusters do not matter, it is convenient to consider
the equivalence relation, i.e. to indicate whether the algorithm μ assigns each
pair of objects to the same class or to different classes. Let

hμ(a, b) = I[μ(a) �= μ(b)].

Let us consider the following model of ensemble clustering. Suppose that al-
gorithm μ is randomized, i.e. it depends from a random value Ω from a given
set of allowable values (parameters or more generally ”learning settings” such as
bootstrap samples, order of input objects etc). In addition to Ω, the algorithm’s
decisions are dependent from the true status of the pair a, b (i.e., from Z):

hμ(a, b) = hμ(Ω)(Z, a, b).

Hereinafter we will denote hμ(Ω)(Z, a, b) = h(Ω, Z).
Suppose that

P[h(Ω, Z) = 1|Z = 1] = P[h(Ω, Z) = 0|Z = 0] = q,

i.e. the conditional probabilities of correct decision (either partition or union
of objects a,b) coincide. One can say that q reflects the stability of algorithm
under various learning settings. We shall suppose that q > 1/2; it means that
algorithm μ provides better clustering quality than just random guessing. In
machine learning theory, such a condition is known as the condition of weak
learnability.

Denote Ph = P[h(Ω, Z) = 1]. This quantity shows the homogeneity of algo-
rithm’s decisions: Ph close to 0 or 1; or homogeneity index

Ih = 1 − Ph(1 − Ph)

close to 1 means high agreement between the solutions. Note that

Ph = P[h(Ω, Z) = 1|Z = 1]PZ + P[h(Ω, Z) = 1|Z = 0](1 − PZ) =
qPZ + (1 − q)(1 − PZ).

Suppose that algorithm μ is running L times under randomly and indepen-
dently chosen settings. As a result, we get random decisions h(Ω1, Z), . . . ,
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h(ΩL, Z). By Ω1, . . . , ΩL we denote independent statistical copies of a random
vector Ω.

For every Ωl, algorithm μ is running independently (it does not use the results
obtained with other Ωl′ , l′ �= l). Suppose that the decisions are conditionally
independent:

P[h(Ωi1 , Z) = hi1 , . . . , h(Ωij , Z) = hij |Z = z] =
P[(h(Ωi1 , Z) = hi1 |Z = z] · · · · · P[h(Ωij ,Z) = hij |Z = z],

where Ωi1 , . . . , Ωij are arbitrary learning settings, hi1 , . . . , hij , z ∈ {0, 1} (we
shall assume that L is odd).

Let Ph,h = P[h(Ω′, Z) = 1, h(Ω′′, Z) = 1], where Ω′, Ω′′ have the same dis-
tribution as Ω, and Ω′ �= Ω′′. It follows from the assumptions of independence
and stability that

Ph,h = P[h(Ω′, Z) = 1, h(Ω′′) = 1|Z = 1]PZ+
P[h(Ω′, Z) = 1, h(Ω′′) = 1|Z = 0](1 − PZ) =

q2PZ + (1 − q)2(1 − PZ). (1)

Denote H̄ = 1
L

L∑
l=1

h(Ωl, Z). The function

c(h(Ω1, Z), . . . , h(ΩL, Z)) = I[H̄ >
1
2
]

shall be called the ensemble solution for a and b, based on the majority voting.
For constructing a final ensemble clustering decision, various approaches can

be utilized [2]. For example, it is possible to use a methodology based on the
pairwise dissimilarity matrix H =

(
H̄(o(i1), o(i2)

)
, where o(i1), o(i2) ∈ s, o(i1) �=

o(i2). This matrix can be considered as a matrix of pairwise distances between
objects and used as input information for a dendrogram construction algorithm
to form a sample partition on a desired number of clusters.

3 An Upper Bound for Misclassification Probability

Let us consider the margin [11] of the ensemble:

mg =
1
L
{ number of votes for Z − number of votes against Z},

where Z = 0, 1. It is easy to show that the margin equals:

mg = mg(H̄, Z) = (2Z − 1)(2H̄ − 1).

Using the notion of margin, one can represent the probability of wrong prediction
of the true value of Z:

Perr = PΩ1,...,ΩL,Z [mg(H̄, Z) < 0].
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It follows from the Tchebychev’s inequality that

P[U < 0] <
VarU
(EU)2

,

where EU is population mean, VarU is variance of random value U (it is required
that EU > 0). Thus,

PΩ1,...,ΩL,Z [mg(H̄, Z) < 0] <
Varmg(H̄, Z)
(E mg(H̄, Z))2

,

provided that E mg(H̄, Z) > 0.

Theorem. The expected value and variance of the margin are:

E mg(H̄, Z) = 2q − 1,

Varmg(H̄, Z) =
4
L

(Ph − Ph,h) .

Proof. We have:

E mg(H̄, Z) = E (2Z − 1)(
2
L

∑
l

h(Ωl, Z) − 1) =

4
L

∑
l

E Zh(Ωl, Z) − 2EZ − 2
L

∑
l

E h(Ωl, Z) + 1.

Because all h(Ωl, Z) are distributed in the same way as h(Ω, Z), we get:

E mg(H̄, Z) = 4E Zh(Ω, Z)− 2PZ − 2E h(Ω, Z) + 1 =
4P[Z = 1, h(Ω, Z) = 1] − 2PZ − 2P[h(Ω, Z) = 1] + 1.

As P[h(Ω, Z) = 1] = P[Z = 1, h(Ω, Z) = 1] + P[Z = 0, h(Ω, Z) = 1] =
qPZ + (1 − q)(1 − PZ) = 2qPZ + 1 − q − PZ ,

we obtain:

E mg(H̄, Z) = 4qPZ − 2PZ − 2(2qPZ + 1 − q − PZ) + 1 = 2q − 1.

Consider the variance of margin:

Varmg(H̄, Z) = Var (4ZH̄ − 2H̄ − 2Z) = E (4ZH̄ − 2H̄ − 2Z)2−
(E (4ZH̄ − 2H̄ − 2Z))2 = E (16Z2H̄2 + 4h̄2 + 4Z2 − 16ZH̄2 − 16Z2H̄ + 8ZH̄)−

(E mg(H̄, Z) − 1)2 = E (4H̄2 + 4Z − 8ZH̄) − 4(1 − q)2
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(we apply Z2 = Z). Next, we have

E H̄2 =
1
L2

E

(∑
l

h(Ωl, Z)

)2

=
1
L2

E

(∑
l

h2(Ωl, Z)

)
+

1
L2

∑
l′,l′′:
l′ �=l′′

E (h(Ωl′ , Z)h(Ωl′′ , Z)) =

1
L

E h(Ω, Z) +
L − 1

L

∑
Ω′,Ω′′:
Ω′ �=Ω′′

E (h(Ω′, Z)h(Ω′′, Z) =
Ph

L
+

L − 1
L

Ph,h.

From this, we obtain:

Varmg(H̄, Z) = 4
Ph

L
+ 4

L − 1
L

Ph,h + 4PZ − 8qPZ − 4(1 − q)2.

Using (1) finally we get:

Varmg(H̄, Z) = 4
Ph

L
+ 4

L − 1
L

Ph,h − 4Ph,h =
4
L

(Ph − Ph,h) .

The theorem is proved.
Evidently, the requirement E mg(H̄, Z) > 0 is fulfilled if q > 1/2.
Let us consider the correlation coefficient ρ between h′ = h(Ω′, Z) and h′′ =

h(Ω′′, Z), where Ω′ �= Ω′′. We have

ρ = ρh′,h′′ =
Ph,h − P 2

h

Ph(1 − Ph)
.

Because Ph − Ph,h = Ph − P 2
h + P 2

h − Ph,h, we obtain

Var (mg(H̄, Z)) =
4
L

(1 − ρ)Ph(1 − Ph).

Note that Ph − Ph,h = q(1 − q), and after necessary transformations we get
the following upper bound for error probability:

Perr <
1
L

(
1

1 − 4(1 − ρ)Ph(1 − Ph)
− 1
)

.

The obtained expression allows to make some qualitative conclusions. Namely,
if the model assumptions are fulfilled and q > 1/2, then under other conditions
being equal the following statements are valid:

- the probability of error decreases with an increase in number of ensemble
elements;

- an increase in homogeneity of the ensemble and raise of correlation between
its outputs reduce the probability of error (note that a signed value of the cor-
relation coefficient is meant).
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4 Estimating Characteristics of a Clustering Ensemble

To evaluate the quality of a clustering ensemble, it is necessary to estimate
ensemble’s characteristics (in our model – homogeneity and correlation) from a
finite number of ensemble elements. For an arbitrary pair of different objects a
and b, the estimate of the ensemble’s homogeneity can be found as follows:

Îh(a, b) = 1 − P̂h(a, b)(1 − P̂h(a, b)),

where

P̂h(a, b) =
1
L

L∑
l=1

hl(a, b).

Unfortunately, the straightforward estimation of the correlation coefficient ρ(a, b)
is impossible: under a fixed sample, every pair of clustering algorithms give con-
ditionally independent decisions. Let us introduce a similar notion: the averaged
correlation coefficient, where the averaging is done over all pairs of different
objects:

ρ̄ =
cov(h′, h′′)

σ2(h)
;

where the covariance
cov(h′, h′′) = h′h′′ − h̄2,

h′h′′ =
2

N(N − 1)
2

L(L − 1)

∑
a,b:

a�=b

∑
l′,l′′:

l′ �=′l′′

hl′(a, b)hl′′(a, b),

h̄ =
2

N(N − 1)
1
L

∑
a,b:

a�=b

∑
l

hl(a, b) =
2

N(N − 1)

∑
a,b:

a�=b

P̂h(a, b),

and the variance
σ2(h) = h2 − h̄2 = h̄ − h̄2.

Similarly, it is possible to introduce the averaged homogeneity index:

Īh =
2

N(N − 1)

∑
a,b:

a�=b

Îh(a, b).

5 Numerical Experiment

To verify the applicability of the suggested methodology for the analysis of clus-
tering ensemble behavior, the statistical modeling approach was used. In the
modeling, artificial data sets are repeatedly generated according to certain dis-
tribution class (a type of ”clustering tasks”). Each data set is classified by the
ensemble algorithm. The correct classification rate, averaged over a given number
of trials, determines algorithm’s performance for the given type of tasks.



286 V. Berikov

The following experiment was performed. In each trial, two classes are inde-
pendently sampled according to the Gauss multivariate distributions

N (m1, Σ), N (m2, Σ),

where m1, m2 are vectors of means,

Σ = σI

is a diagonal n-dimensional covariance matrix,

σ = (σ1, . . . , σn)

is a vector of variances. Variable Xi shall be called ”noisy”, if for some i ∈
{1, ..., n}, σi = σnoise >> 1. In our experiment, the set of noisy variables

{Xi1 , ..., Xinnoize
}

is chosen at random. For those variables that are not noisy, we set σi = σ0 =
const. Both classes have the same sample size.

The mixture of samples is classified by the ensemble of k-means clustering
algorithms. Each algorithm performs clustering in the randomly chosen variable
subspace of dimensionality nens. The ensemble decision for each pair of objects
(i.e., either unite them or assign to different classes) is made by the majority vot-
ing procedure. The true overall performance Pcor of the ensemble is determined
as the proportion of correctly classified pairs.
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Fig. 1. Example of experiment results (averaged over 100 trials). Experiment settings:
N = 60, n = 10, m1 = 0, m2 = 1, σnoise = 10, σ0 = 0.2, nens = 2, ensemble size
L = 15.
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An example of experiment results is shown in Figure 1. The graphs display
the dependence of averaged values of Pcor, ρ̄ and Īh from the number of noisy
variables nnoise. To demonstrate the effectiveness of the ensemble solution in
comparison with individual clustering, the averaged performance rate Pind of a
single k-means clustering algorithm is given (this algorithm performs clustering
in the whole feature space of dimensionality n).

From this example, one can conclude that

a) in average, the ensemble algorithm has better performance than a single
clustering algorithm (when a noise presents), and
b) the dynamics of estimated ensemble characteristics (averaged homogeneity
and correlation) reproduces well the behavior of correct classification rate (note
that this rate is directly unobserved in real clustering problems). When averaged
correlation and homogeneity index are sufficiently large, one can expect good
classification quality.

Conclusion

A latent variable pairwise classification model is proposed for studying non-
asymptotic properties of clustering ensembles. In this model, the notions of sta-
bility, homogeneity and correlation between ensemble elements are utilized. An
upper bound for probability of error is obtained. Theoretical analysis of the sug-
gested model allows to make a conclusion that the probability of correct decision
increases with an increase in number of ensemble elements. It is also found that
a large degree of agreement between partial clustering solutions (expressed in
our model in terms of homogeneity and correlation between ensemble elements),
under condition of independence of base clustering algorithms, indicates good
classification performance. Numerical experiment also confirms this conclusion.

The following possible future directions can be indicated. It is interesting
to study intensional connections between the notions used in the suggested
model (conditional independence, stability, homogeneity and correlation) and
other known concepts such as mutual information [2] and diversity in clustering
ensembles (e.g., [8,9]). Another direction could aim to improve the tightness of
the obtained error bound.
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Abstract. We present a novel clustering approach, that exploits boost-
ing as the primary means of modelling clusters. Typically, boosting is
applied in a supervised classification context; here, we move in the less ex-
plored unsupervised scenario. Starting from an initial partition, clusters
are iteratively re-estimated using the responses of one-vs-all boosted clas-
sifiers. Within-cluster homogeneity and separation between the clusters
are obtained by a combination of three mechanisms: use of regularised
Adaboost to reject outliers, use of weak learners inspired to subtractive
clustering and smoothing of the decision functions with a Gaussian Ker-
nel. Experiments on public datasets validate our proposal, in some cases
improving on the state of the art.

1 Introduction

Boosting algorithms [9] are a class of ensemble methods that have repeatedly
proved highly effective in the context of supervised classification. A somehow
less explored scenario is the use of boosting techniques for unsupervised classi-
fication, namely clustering. Recently, there have been a few attempts to extend
the boosting approach to the clustering domain. Some authors have proposed
to combine different clustering algorithms in a boosting-like framework. For in-
stance [20] and [10] introduced weighted re-sampling of data points according to
how reliably they are classified. In [16], a general iterative clustering algorithm
is presented that combines several algorithms by keeping track both of point
weights and of a membership coefficient for each pair of a point and a model.
Point weights are updated by a Bregman divergence optimisation procedure very
similar to Adaboost [8].

All these works represent attempts at combining different clustering algo-
rithms in an Adaboost-like framework. However, an alternative stance consists
in using the Adaboost algorithm itself to describe the data, moving from the
“boosting clustering methods” paradigm to “clustering with boosting methods”
paradigm. This is in line with some other recent and very successfully approaches,
based on Support Vector Machines [3, 2]. The approach presented in this paper
explores this direction, and is aimed at developing a clustering technique which
employs a boosted classifier to describe each cluster. This may be particularly
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advantageous for clustering since it is known that, depending on the chosen weak
learners, boosting classifiers may describe non convex non connected regions in
the feature space. A somehow related approach is the very recent MCBoost [11]
where a noisy-or scheme is used to combine the output of several boosted classi-
fier, one per cluster; however the weight update equations for the single boosting
algorithm depend in this case on the decision of the algorithms after fusion, so
that strictly speaking the strong classifiers are not obtained by Adaboost.

In this work, we explore the use of Adaboost proper to model the clusters, via
a cycle of learning and classification iterations reminiscent of k-means – in line of
what has been done by Camastra and Verri with Support Vector Machines [3].
Contrary to [11] we choose to model the data with a regularised Adaboost al-
gorithm, namely Adaboost-REG [18]. The specificity of the clustering problem
is dealt with at the level of the weak learners. These are balls in feature space,
centred at the locations identified by a potential similar to what is done in Sub-
tractive Clustering [4,5]. The locality of clusters is enforced by spatial smoothing
of the output of the strong classifiers.

The suitability of the proposed approach has been tested on 4 different stan-
dard ML datasets, yielding results that compare favourably with the state of
the art. Interestingly, the experiments suggest that our algorithm is especially
advantageous in higher-dimensional spaces.

The rest of the paper is organised as follows: Section 2 presents an introduc-
tion to the Adaboost algorithm, followed by a discussion of related topics and
variants of the algorithm that are relevant to its application to the clustering
problem. Our proposal is detailed in Section 3, followed by experimental results
in Section 4. A brief discussion in Section 5 concludes the paper.

2 Standard and Regularised Adaboost

Boosting concerns itself with the problem of combining several prediction rules
with poor individual performance into a highly accurate predictor. This is com-
monly referred to as combining a set of “weak” learners into a “strong” clas-
sifier. Adaboost, introduced by Yoav Freund and Robert Schapire [8], differs
from previous algorithms in that it does not require previous knowledge of the
performance of the weak hypotheses, but it rather adapts accordingly. This adap-
tation is achieved by maintaining a distribution of weights over the elements of
the training set.

Adaboost is structured as an iterative algorithm, that works by maintaining
a distribution of weights over the training examples. At each iteration a new
weak learner (classifier) is trained, and the distribution of weights is updated
according to the examples it misclassifies; the underlying idea is to increase the
importance of the training examples that are “difficult” to classify. The weights
also determine the contribution of the each weak learner to the final strong
classifier.

Unfortunately, as the number of iterations increases Adaboost tends to put
higher weight on examples that are difficult to classify (see [18] and references
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Table 1. The Adaboost and Adaboost-REG algorithms. For Adaboost, C = 0 and the
minimisation (step 1) can be solved in closed form to give αt = (log(1− εt)− log εt)/2.

Adaboost and Adaboost-REG:

Initialise d1,i = 1
m

.
For t = 1, . . . , T :

1. Select the weak learner ht that minimises the training error εt, weighted by
current distribution of weights dt,i: εt =

∑
i|ut,i=−1 dt,i.

2. Find the coefficient αt that minimises

Z(αt, αt−1) =
∑

i

exp (−ρ(ut,i, αt) + Cζ(ut,i, αt)) (1)

where ρ(ut,i, αt) =
∑t

τ=1 ατuτ,i and Cζ(ut,i, αt) is a regularization term; abort
if αt = 0 or αt ≥ Γ where Γ is a large constant.

3. Compute the new weights according to dt,i ∝ exp(−ρ(ut,i, αt)) and normalise.

Output the final classifier: H(x) = sign (F (x)), where

F (x) =
T∑

t=1

αtht(x) (2)

therein). In high-noise cases these often happen to be outliers. This is of partic-
ular relevance to our clustering application because of the arbitrariness in the
initial choice of the clusters (see Section 3).

A number of algorithms have been developed to alleviate this issue [7, 18, 6,
22,21]. In the Adaboost-REG algorithm [18] this is done by substituting the soft
margin of a point for its hard margin. This is an estimate of the hard margin
corrected by a measure of how much we trust the point.

In the following, we will indicate the m training examples as {(x1, y1), . . . ,
(xm, ym)}, where the xi are vectors in a feature space X and the yi ∈ {−1, +1}
are the respective class labels. Given a family of weak learners H = {ht : X →
{−1, +1}}, it is convenient to define ut,i = yiht(xi), so that ut,i is +1 if ht

classifies xi correctly, and −1 otherwise. If we now let dt,i be the distribution of
weights at time t, with

∑
i dt,i = 1, the cycle of iterations can be described as in

Table 1 in a way that summarises both Adaboost and Adaboost-REG.
The regularization term ζ that appears in Equation 1 is used in Adaboost-

REG to quantify the “mistrust” of each particular point. It is defined based on
a measure of influence of the pattern on the combined hypothesis [18]:

ζ(ut,i, αt) =

(∑
t

αtdt,i

)2

, (3)
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based on the intuition that a pattern that is often misclassified will have a high
influence. Note that the minimisation in Equation 2 must be carried out numer-
ically with some linear search algorithm, e.g. the Golden Section algorithm [17].

2.1 Using Weak Learners That Abstain

Because of the local nature of the clustering problem, we would like to be able
to use weak learners that specialise on a particular region of feature space. This
can be done by allowing weak learners to abstain on part of the feature vectors.
To this aim, we extend to the case of Adaboost-REG one of the estimates for
Alpha reported in [19], specifically:

α =
1
2

ln
(

W+ + W0/2
W− + W0/2

)
. (4)

where W+ is the sum of the weight of the examples that the weak hypothesis
classifies correctly, W− is the misclassified weight and W0 the weight on which
the hypothesis abstains.

We extend this to Adaboost-REG by adding the following contribution to
Zt(αt, αt−1) for each point i on which the weak learner ht abstains:

1
2
e−ρ+

t (ut,i,αt)+Cζ(ut,i) +
1
2
e−ρ−

t (ut,i,αt)+Cζ(ut,i). (5)

where
ρ+

t (ut,i, α) = ρt−1(ut−1,i, αt−1) + αt (6)

and
ρ−t (ut,i, α) = ρt−1(ut−1,i, αt−1) − αt. (7)

Thus the penalty term for the point is calculated by treating half of its weight
as misclassified and the other half as correctly classified; this is a generalisation
to the regularised case of the expression for α in Equation 4.

3 Iterative Clustering with Adaboost

We propose an iterative clustering scheme outlined in Table 2. Clusters are
iteratively re-estimated using one-vs-all boosted classifiers.

Within-cluster homogeneity and separation between the clusters are obtained
by a combination of three mechanism:

1. use of regularised Adaboost to reject outliers, as detailed in Section 2;
2. use of weak learners (possibly localised) inspired to Subtractive Clustering,

as explained in Section 3.1 below;
3. smoothing of the decision functions with a Gaussian kernel, see point 2 in

Table 2.
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Table 2. Iterative clustering with Adaboost

The Cloosting algorithm:

Input: points {xi}, number of clusters K.

Assign initial cluster labels ki to each xi either at random or based on a k-means run

Repeat until convergence:

1. Train K strong classifiers Fk(x) to recognise the elements of each cluster, using
the Adaboost-REG algorithm in Table 1

2. Compute the scores Sk(xi) =
∑

j Fk(xj) exp(−β‖xi − xj‖2)
3. Assign each point xi to cluster ki = arg maxk Sk(xi)

Output the final clusters {(xi, ki)}

Regularization through smoothing in a boosted clustering setting also appears
in [1], where however it is applied to a separate set of 2D spatial coordinates
associated to the feature vectors and not to the vectors xi themselves. The
spatial weak learners used in [1] are ineffective in our context, while smoothing
the final decision functions greatly improves the stability of the algorithm.

Experimentally, the algorithm is found to reliably converge within a limited
number of iterations; for details, see Section 4.

3.1 “Subtractive” Weak Learners

We use spherical neighbourhoods (“balls”) in feature space as weak learners. A
weak learner classifies points that fall inside the ball as belonging to the cluster;
the other points are rejected (i.e. assigned to any other cluster).

When training the boosted classifier for cluster k, at each iteration the centre
of a ball learner is chosen as the point ck,t = xi∗(t) that maximises the following
weighted data density:

D(xi∗(t)) =
∑

j|xj∈k

dj,te
−γ‖xi−xj‖2 − Δ(xi, d) (8)

where γ = 4/r2
a, ra is the effective radius of the neighbourhood on which the

average is computed, and Δ(xi, d) is a penalty term that discounts previously
chosen centres:

Δ(xi, d) =
t−1∑
τ=1

di∗(τ),τe−δ‖xi−xi∗(τ)‖2
. (9)

This is a weighted version of the density function used for the selection of
cluster centres in Subtractive Clustering [4, 5]. Once a centre is chosen, the ra-
dius of the ball is optimised for the best weighted error rate, according to the
Adaboost distribution of weights.
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It is observed that the number of centres selected adaptively by Adaboost for
representing each cluster often diminishes as better centres are chosen in later
iterations of Cloosting.

3.2 Weak Learners That Abstain

In order to increase the locality of the clustering process, we tested our algorithms
using weak learners that specialise on a local area in feature space. These are
obtained by selecting a centre in feature space based on weighted density, as
described above. Two spherical neighbourhoods are then constructed around
this centre. Points inside the inner sphere are accepted; points in the spherical
shell between the two surfaces are rejected, and the classifier abstains on points
outside the outer sphere. The radii of the two surfaces are chosen to minimise
the penalty function

Z̃ = W0 + 2
√

W+W− (10)

where notation is as in Section 2.1. This strikes a compromise between classifica-
tion accuracy and the effective domain of the weak learner [19]. We have found
it useful nevertheless to constrain the radius of the outer sphere to be larger
than a multiple of the radius of the inner sphere, in order to avoid an excessive
localisation of the weak learners.

Using specialist weak learners forces all decisions to be local, which might be
advantageous in the case, for instance, of non-convex clusters. From the point of
view of the boosting algorithm, these weak learners are treated as specified in
Section 2.1

4 Experimental Evaluation

The experimental evaluation was based on four well-known real data-sets: the
Iris dataset, the Wisconsin breast cancer (referred to as WBC), the Ionosphere
data set – all from the USC Machine Learning Repository1 – and the Biomed
dataset2. Datasets differ in terms of number of patterns and dimension – details
may be found in Table 3. All datasets have been standardised before applying
the clustering methodology.

Table 3. Description of the datasets used for testing

Dataset n. of clusters n. of patterns n. of features

Iris 3 150 4
Biomed 2 194 5
WBC 2 683 9
Ionosphere 2 351 34

1 Available at http://archive.ics.uci.edu/ml/datasets.html
2 Available at http://lib.stat.cmu.edu/datasets/
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Table 4. Results for Cloosting on different publicly available datasets

Dataset With Abstention Without Abstention K-Means
RAND-INIT KM-INIT RAND-INIT KM-INIT

Iris 88.7% 94.7% 90.7% 90.7% 89.0%
Biomed 88.6% 88.7% 88.1% 89.2% 88.7%
WBC 96.8% 97.2% 96.6% 96.6% 96.1%
Ionosphere 72.9% 62.1% 69.8% 64.4% 65.2%

We compare two versions of the proposed approach, the first with weak learn-
ers that abstain, the second with the original version of the weak learners. Tests
with two kinds of initialisation have been carried out: in the former, the initial
labels have been chosen using the k-means algorithm (KM-INIT), while in the
latter they have been randomly selected (RAND-INIT). In order to be robust
against initialisation-driven fluctuations (also the k-means algorithm starts from
a random assignment), all experiments have been repeated 5 times and the best
result has been taken.

A preliminary evaluation of the impact of the choice of the parameters has
shown that the number of Adaboost iterations T , the regularization parameter
C of Adaboost-REG and the constants γ and δ for calculating the data density
in subtractive weak learners are fairly insensitive; in all experiments they have
been fixed to T = 15, C = 20 and γ = 1.5 respectively, with δ = 3γ/4. On the
contrary, the constant β of the smoothing kernel in Equation 2 of Table 2 and
(limited to weak learners that abstain) the minimum ratio between the outer
sphere and the inner sphere of the learner have proved to be dataset dependent,
so that a different value has been used in each case.

Since true labels are known, clustering accuracies can be quantitatively as-
sessed. In particular, given a specific group, an error is considered when a pattern
does not belong to the most frequent class inside the group (following the pro-
tocol of [3]). The results obtained for each dataset with the different versions of
the algorithm are displayed in Table 4. As a reference, in the last column, we
report the results obtained with the standard k-means (for the sake of fairness,
also in this case we performed 5 random initialisations, picking the best result).

As can be inferred from the table, Cloosting appears to work rather well on
these datasets, that are heterogeneous in terms of the number of patterns and
of dimensionality of the feature space. Concerning the different versions of the
method, the use of weak learners that abstain seems to increase performance.
Moreover, it may be noted that k-means initialisation seems to permit a more
accurate clustering than random initialisation. Interestingly this is not true for
the Ionosphere database, on which k-means performs rather poorly. In this case
our method works better if started from random assignments. Finally it may be
noted that Cloosting compares favourably with the k-means algorithm (for two
datasets the improvement is significant), especially when the dimension of the
space is rather large (as in the Ionosphere case, dimensionality 34).
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Table 5. Comparative results for three datasets. We refer the reader to the cited papers
for details of the experimental protocols.

Iris

Self organising maps (SOM) [12] 81.0
Neural gas [13] 91.7
Spectral clustering [15] 84.3
Gaussian Mixture Models [14] 89.3
Kernel clustering [3] 94.7
Soft kernel clustering [2] 93.3
Cloosting 94.7

WBC

Self organising maps (SOM) [12] 96.7
Neural gas [13] 96.1
Spectral clustering [15] 95.5
Gaussian Mixture Models [14] 94.6
Kernel clustering [3] 97.0
Soft kernel clustering [2] 97.1
Cloosting 97.2

Biomed

Kernel clustering [3] 83.0
Soft kernel clustering [2] 88.2
Cloosting 89.2

As a further comparison with the literature, in Table 5 we report state of
the art results3 for some of the datasets – we also include our best result for
comparison. It may be noticed that the performances of Cloosting are in line
with those of other state of the art methods.

A final consideration concerns the convergence of Cloosting. Although we
do not yet have a theoretical justification for the convergence of the iterative
clustering algorithm, in all our experiments the method always converged; the
number of iterations required was, on average, around ten to fifteen, depending
of course on the initialisation (for k-means initialisation convergence was clearly
faster).

5 Conclusions

In this work we take a novel look at clustering from a boosting perspective.
Each cluster is modelled by a regularised boosted classifier composed of weak
learners inspired by Subtractive Clustering, that can be localised to different
areas of feature space. Learning follows a cycle of iterations similar to k-means;
3 Some of the results have been computed by the authors, some others have been taken

from [3] and [2].
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a smoothing kernel is used to stabilise the assignment of points to the various
clusters.

The convergence properties of the algorithm are at this early stage established
empirically, and a smart parameter setting policy still needs to be designed.
However, the experiments we report show that Cloosting achieves optimal results
on several standard datasets, either matching or improving the performance
of state of the art algorithms. This proves, in our view, the potential of the
technique and justifies further inquiry into the use of boosting for modelling
clusters.
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Abstract. In this paper, a method of combining face detectors is pro-
posed, which is based on the geometry of the competing face detection
results. The main idea of the method consists in finding groups of similar
face detection results obtained by several algorithms and further averag-
ing them. The combination result essentially depends on the number of
algorithms that have fallen in each of the groups. The experimental eval-
uation of the method is based on seven algorithms: Viola-Jones (OpenCV
1.0), Luxand c© FaceSDK, Face Detection Library, SIFinder, Algorithm
of the University of Surrey, FaceOnIt, Neurotechnology c© VeriLook. The
paper contains practical results of their combination and a discussion of
future improvements.

Keywords: combining classifiers, face detection, clustering of detector
outputs, combination of face detectors, comparative test.

1 Introduction

The state-of-the-art algorithms of face detection (FD) have excellent perfor-
mance for many tasks [1,2,3,8,13]. However, even the best of them still have
significant error rates, e.g., 5 − 6% False Rejection Rate, separating them from
the desired error-free result. At the same time, it was shown by Degtyarev et al.
[3] that the percentage of challenging images incorrectly processed by all tested
algorithms is much smaller, only 0.13%, whereas each of the remaining 99.87%
of images is correctly processed by at least one of the algorithms.

This fact reveals the possibility of reducing the error rate of face detection
through harnessing several diverse algorithms in parallel. We call such principle
the combination or fusion of face detectors on the analogy of the commonly
adopted term of combination/fusion of classifiers, introduced by J. Kittler [11]
and R. Duin [5].

In classifier combining, an object submitted to analysis is supposed to be indi-
visible, and the final output is result of jointly processing a number of elementary
decisions on its class membership – voting, optimal weighting, etc. However, as
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to face detector combining, images under processing are not atomic, and what
is to be fused is an ensemble of diverse suggestions on the position of the face in
the given image in addition to the information of its presence.

In this paper, we propose a quite naive and obvious geometric approach to
fusing several face detectors, which takes into account only geometric proper-
ties of their outputs and ignores, for the computational simplicity sake, other
individual properties like False Rejection/Acceptance Rates (FRR/FAR), Con-
fidence Rates, etc. The main principle of combining consists in clustering of the
detected face represented by the centers of the eyesand further averaging the
cluster centers with respect to the portions of the detectors that have fallen in
each of the clusters.

The most tangible disadvantage of the very idea of combining several diverse
face detectors is the increasing computational time. However, the recent advances
in the multi-core CPU technology (Central Processing Unit) allows, in principle,
for a natural parallelization by the scheme ”one detector – one core”.

2 Models of Face Representation and Localization
Accuracy

To combine or correctly compare face detectors, they should represent faces
in a unified form. Coordinates of the eye centers (i.e., centers of the pupils)
are the most suitable description of faces for these tasks. The reasons for this
proposition are, first, the convenience of this kind of representation from the
viewpoint of comparing the results, second, the necessity of matching the eye
centers as an inevitable step in the majority of learning algorithms, and, third,
the fact that ground-truthing eyes by a human is faster, easier and can be done
more confidently than locating faces by rectangles.

Thus, we consider all faces as represented by their eye centers. If some FD
returns a face location in the rectangular form, we first additionally estimate
the coordinates of the eye centers by the eye reconstruction algorithm proposed
in [3] and examined in [4].

If a detected face is represented by the centers of the eyes (Fig. 1), we consider
them as correctly detected, if and only if the detected eyes belong to the pair of
circles DA around the true locations of the eyes. The common diameter of the
circles DEyes = 2α × lEyes depends on the distance lEyes between the centers
of the eyes with coefficient α taken equal to 0.25. This criterion was originally
used by Jesorsky et al. [7]).

3 A Geometric Method of Face Detectors Combining

As mentioned above, the proposed method of FD combining is based on the
geometric approach. This means that the method takes into account only the
positions of detected faces and disregards any additional information related to
or provided by FD e.g. false rejection or acceptance error rate, confidence rate of
detection, etc. Before describing the method, let us introduce some definitions.
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Fig. 1. Schematic face representation. EyeLeft and EyeRight – absolute coordinates of
detected left and right eyes respectively; lEyes – distance between eye centers; DEyes

– diameter of the area of acceptable eyes’ coordinates deviation from the true eyes
location EyeA

Right and EyeA
Left;

Definition 1. The distance between the faces of a given pair (g, h) each repre-
sented by the centers of the eyes is the greatest of the Euclidean distances between
the left eyes of the pair and the right ones:

dFaces(g, h) = max
(∥∥Eyeg

Left − Eyeh
Left

∥∥, ∥∥Eyeg
Right − Eyeh

Right

∥∥). (1)

Hereafter, Eyeg
Right and Eyeg

Left stand for the coordinates of, respectively, the
left and the right eye of the given face g.

Definition 2. The merged face is a synthetic pair of the coordinates of eye
centers, averaged among the given group of K faces:

EyeMerge
Left =

1
K

K∑
i=1

Eyei
Left, EyeMerge

Right =
1
K

K∑
i=1

Eyei
Right,

lMerge
Eyes =

1
K

∥∥∥ K∑
i=1

Eyei
Left −

K∑
i=1

Eyei
Right

∥∥∥. (2)

The model of eyes localization accuracy described in Section 2 implies that if
each algorithm of a group of algorithms has correctly detected a face, then the
distances between the detected faces are smaller or equal to the diameter DEyes

of the respective area DA, i.e.:

dFaces(g, h) ≤ DEyes ≤ 2α × lEyes. (3)

A merged face based on a group of accurate algorithms may be treated as
a correctly detected face, too. If some algorithms in the group have incorrectly
detected a face, the merged face based on all results of the group may still
be a correctly detected face, depending on the number of incorrectly estimated
positions and the errors of estimates.



302 N. Degtyarev and O. Seredin

Definition 3. A given pair of faces (g, h) is mergeable if and only if the distance
between them is at least 2α times smaller than the interocular distance of the
corresponding merged face lMerge

Eyes (g, h), i.e. dFaces(g, h) ≤ 2α
(
lMerge
Eyes (g, h)

)
.

In other words, the pair of mergeable faces will be correctly detected, if position
of the corresponding merged face on the image is the true face location. Examples
of mergeable and nonmergeable faces are given in Fig. 2.

Fig. 2. Examples of mergeable (a) and non mergeable (b) pairs of faces

In practice, we don’t know whether an algorithm has detected a face correctly
or incorrectly, nor the true location of the face in the image, and even nor whether
a face is in the image at all. Therefore, we suppose that correctly detected faces
form clusters around the “true face location”, whereas incorrectly detected faces
must be scattered in the image. Such clusters may be defined as follows.

Definition 4. A group of faces forms a cluster if and only if there is at least
one face (further called the “center”) among the group, that is meargeable with
all other faces (in the group).

Such definition of a cluster of faces is less strict than (3), and allows for inter-
secting clusters of detected faces, i.e., one face can be member of several different
clusters. However, the merged face based on the largest cluster is more likely to
be result of correct detection than one based on all other clusters. This considera-
tion is the essence of Algorithm 1. The algorithm consists in repeatedly replacing
all faces in the largest cluster by corresponding merged faces, until there exists
at least one non-trivial cluster (i.e. with size greater than 1). When at some
step the remaining clusters become trivial, namely, each of them contains one
face, the algorithm selects the merged face produced by the greatest number of
originally detected faces, but not less than the preset Threshold, which is the
only parameter of the algorithm, otherwise, the algorithm makes the decision
that the image contains no face.

It should be emphasized that after replacing clusters by corresponding merged
faces, each merged face can become a part of other clusters, etc. A simulated
example of combining Face Detectors by this algorithm is shown in Fig. 3. The
proposed method is discussed in Section 6.
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Algorithm 1. A Geometrical Method of Face Detectors Combining.
Require: α, Threshold;
DetFaces = {(EyeLeft, EyeRight, mergecount = 1), . . .};
Ensure: (EyeLeft, EyeRight)

loop
Determinate the largest cluster of the faces (see Definition 4);
if the size of the found cluster is > 1 then

Replace all faces in the cluster by the corresponding merged face in DetFaces
else

Since there are no clusters consisting of more than one face, select merged
face (Facem), that has been originated by the greatest, but not least than the
Threshold number of initial faces.
if such merged face is founded then

return the merged face (Facem);
else

return NOT FACE;
end if

end if
end loop

Fig. 3. Successive steps of combining simulated outputs of five Face Detectors by Al-
gorithm 1: mergeable (a) and nonmergeable (b) pairs of faces; clusters of faces (c);
substitution of clusters by the corresponding merged faces (d)
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4 Experimental Procedure

In this work, we combined the following implementations of different algorithms:
Viola-Jones [14] (OpenCV 1.0, OCV); Luxand FaceSDK (FSDK, http://www.
luxand.com); Face Detection Lib. (FDLib) [9]; SIFinder (SIF) [10]; Algorithm
of the University of Surrey (UniS); FaceOnIt [12] (FoI, http://www.faceonit.
ch); Neurotechnology VeriLook (VL, http://www.neurotechnology.com).

The result of each algorithm was evaluated by the following parameters:

– False Rejection Rate (FRR) — Ratio of type I errors, which indicates the
probability of misclassification of the images containing a face;

– False Acceptance Rate (FAR) — Ratio of type II error, which indicates the
probability of misclassification of the images not containing a face.

The total size of the test dataset is 59 888 images, namely, 11 677 faces and 48 211
non-faces. More information on experimental data and comparative testing of
FD algorithms can be found in [3].

5 Results

The proposed face detector combining algorithm had been routinely tested in
accordance with the procedure described in Degtyarev et al. [3]. The main idea
of the procedure consists in computing FRR, FAR and vectors of algorithm’s
errors for each Threshold of the FD combining algorithm.

Fig. 4. The ROC plots “FAR in the log scale against FRR” as functions of the tun-
ing parameter Threshold. The perfect performance would be the bottom left corner:
FRR = FAR = 0. Circled points correspond to the tuning parameter value that
delivers the minimal detection error for each algorithm.

http://www.luxand.com
http://www.luxand.com
http://www.faceonit.ch
http://www.faceonit.ch
http://www.neurotechnology.com
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The receiver operating characteristic (ROC curves) “FAR in the log scale
against FRR in the standard biometric sense” [6,15] for all the tested face de-
tectors and their combination by our algorithm are presented in Fig. 4. These
curves let us to identify the algorithm with the best overall performance, be-
cause the closer the curve to the perfect-performance-point FRR = FAR = 0
(the bottom left corner), the better the performance. As we can see, the pro-
posed method of face detector combining does improve the performance of each
of the FD algorithms to be combined for 2-3%. Nevertheless, there is still room
for future development.

It is obvious that each of the algorithms have unique peculiarities of detec-
tion. One way to perform their numerical evaluation is to compare the number
of images uniquely classified by each algorithm, as well as the numbers of “chal-
lenging” and “easy” images (see Table 1). Here the term easy images means the
images detected by all algorithms, in the opposite case images are considered as
challenging.

Table 1. Peculiar images distribution on the datasets

Cases Number (faces) % in DB

easy images 38 478 (4 385) 64,25

challenging images 78 (78) 0,13

only OCV 5 (5) < 0,01

only SIF 5 (5) < 0,01

only FDL 3 (3) < 0,01

only FSDK 10 (10) 0,02

only UniS 20 (20) 0,04

only FoI 22 (22) 0,04

only VL 49 (49) 0,08

only Comb 3 (3) < 0,01

For a better understanding of the potential of the proposed FD combining
method, let us take a look to some exemplary cases. As we can see in Fig. 5,
all seven algorithms and their combination by the proposed method correctly
detected the given faces. In Fig. 6 we can see two examples of non-face images
where the two best algorithms (OCV and VL) falsely detected faces, whereas
the proposed FD combining method did not find any faces in them, because
there were no clusters of faces containing at least 3 elements. In Fig. 7, a much
more interesting case is presented – the face correctly detected by the proposed
FD combining method, whereas all the original algorithms failed, each of them
correctly marked no more than one eye in this face. This case is noteworthy,
because our algorithm does not detect any new faces, it only successively finds
and merges the largest cluster of faces found by other face detectors. According
Table 1, there are also two cases like this one.
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Fig. 5. Results of face detector combining on easy images containing faces; (a) – the
pupils of the eyes are not visible; (b) – the pupils are visible

Fig. 6. Face detectors combining results on images not containing faces; two leading
FD algorithms (OCV and VL) incorrectly detected faces; Combined algorithm did not
find any suitable clusters of faces in given images, thus this images were considered to
be non faces

Fig. 7. “Challenging” case of face detectors combining; face correctly detected only by
FD combining, because 5 algorithms’ outputs (faces) formed a cluster
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6 Discussion and Conclusion

We have demonstrated in our experiments that the proposed method of FD
combining has better performance (FRR 2.65%, FAR 0.15%) than each of its
component algorithms. For comparison, VL and OCV, which are known to merge
candidate windows according to some criteria, give, respectively, (FRR 5.23%,
FAR 0.62%) and (FRR 6.54%, FAR 2.01%).

The method also has ability to correct some of detection errors made by all
“elementary” algorithms (see Fig. 7). Nevertheless, there is a sufficient perfor-
mance gap of 2−3% FRR that separats it from the desired error-free result. This
gap can be eliminated through further development, tuning of the FD combining
algorithm and/or adding additional FD algorithms to the collection.

Perhaps, the most significant open question at this stage is the choice of
the method of tuning free parameters in single algorithms to be combined. In
this work, free parameters in each of the algorithms were chosen to deliver the
minimal detection error

(√
FRR2 + FAR2 → min

)
, that are not proven to be

optimal for the FD combining task. It even may be better to combine a mix of
the algorithms with two values of tuning parameters, delivering one the minimal
FRR and the other the minimal FAR, because this would prevent forming false
clusters and allow to lower the Threshold of cluster acceptance.

Exactly the same motivation leads us to another interesting and prospective
idea – self-combining. It consists in combining results of only one algorithm,
but with several different values of tuning parameters. Such an approach would
allow us to eliminate misdetected faces, because they must not remain steady as
the parameters will be changing, whereas true faces are expected to have fixed
intervals of FD tuning parameters outside which they must disappear from the
output of the respective algorithm.

Another interesting method of FD combining may consists in selecting a “most
likely to be a face” region among originally detected alleged face regions using
the decision tree learning approach. As features might be used, for instance
distances between the results of algorithms, whether originally detected face
regions were detected as faces by other FD algorithms or not, etc. Such method
would return only originally detected face positions and not eliminate detection
errors made simultaneously by all algorithms (see Fig. 7) in contrast to the
proposed geometric method.

As mentioned above, the geometric approach takes into account only face po-
sitions in the outputs of detectors. Contrariwise, additional information provided
by or linked to some FD algorithms may be helpful for combining face detectors,
in particular, for finding the optimal different weights for outputs of different
algorithms (FRR and FAR look to be suitable for this role).

It should be emphasized, that the aim of this work is only to show the pos-
sibility of face detector combining, and the proposed method is only the first
attempt. We believe that disadvantages of this method will lead to much better
approaches in solving of the above-mentioned problems.
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Abstract. The use of multimodal biometric systems has been encour-
aged by the threat of spoofing, where an impostor fakes a biometric
trait. The reason lies on the assumption that, an impostor must fake all
the fused modalities to be accepted. Recent studies showed that there
is a vulnerability of the existing fusion schemes in presence of attacks
where only a subset of the fused modalities is spoofed. In this paper,
we demonstrated that, by incorporating a liveness detection algorithm
in the fusion scheme, the multimodal system results robust in presence
of spoof attacks involving only a subset of the fused modalities. The
experiments were carried out by analyzing different fusion rules on the
Biosecure multimodal database.

1 Introduction

A biological measurement can be qualified as a biometric if it satisfies basic
requisite like universality, permanence, distinctiveness, circumvention. The last
property concerns the possibility of a non-client being falsely accepted, typically
by spoofing the biometric trait of an authorized user [1]. Previous works have
shown that it is possible to spoof a variety of fingerprint technologies using spoof
fingers made with materials as Silicon, Play-Doh, Clay and Gelatin (gummy
finger) [2].

Multibiometric systems improve the reliability of the biometric authentication
by exploiting multiple sources, such as different biometric traits, multiple sam-
ples, multiple algorithms. They are able to improve the recognition accuracy, to
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increase the population coverage, to offer user choice and to make biometric au-
thentication systems more robust to spoofing [3]. Several works in the literature
on biometrics demonstrate the efficiency of the multimodal fusion to enhance
the recognition accuracy of the unimodal biometric systems [4].

From a security perspective, a multimodal system appears more protected
than its unimodal components. The reason is that, one assumes that an im-
postor must fake all the fused modalities to be accepted and spoofing multiple
modalities is harder than spoofing only one [5]. However, a hacker may fake
only a subset of the fused biometric traits. Recently, researchers demonstrated
that the existing multimodal systems can be deceived also when only a subset
of the fused modalities is spoofed [6]. Rodrigues et al. proposed an approach to
measure the security of a multimodal system, where the contribution provided
by each single modality matcher is weighted based on the ease to spoof that
biometric trait. For example, the probability of success associated to a spoof
attack is high in presence of a sample which gives a low match score. Johnson et
al. [7] explored the multimodal vulnerability of the score level fusion strategies
in a scenario where partial spoofing has occurred.

The goal of this paper is to propose an approach, based on liveness detection
techniques, which can improve the security of multimodal biometric systems
in presence of spoof attacks involving one fingerprint modality. We have ana-
lyzed the performance of different multibiometric systems in presence of partial
spoofing when an effective spoofing detection algorithm is incorporated in the
fusion mechanism. Our experiments showed that the proposed technique aids
to increase the robustness of such systems with respect to the spoofing. In our
approach the integration involves match scores, and the spoof attack is detected
separately for each modality matcher before fusion. Thus, when a fake sample is
detected by the algorithm, the unimodal output does not give any contribution
in the fusion which results in a more secure decision.

The current analysis is carried out as a simulation to assess performance
of multibiometric systems in presence of spoof attacks. The simulation makes
the assumption that live match scores have a similar distribution with respect
to spoof match scores. In future work, actual spoof data is needed to assess
the performance in a real-world system. However, this simulation can provide a
framework for assessing novel algorithms, as well as their relative performance.

The paper is organized as follows. Section 2 presents an overview of our ap-
proach, together with the combination rules we considered for our study and
the liveness detection algorithm exploited in the fusion. Section 3 describes the
adopted dataset and the experiments carried out on it, which show the effective-
ness of the proposed technique. Section 4 draws our conclusions.

2 Our Approach

In the current approach, we have analyzed the performance of different multi-
biometric systems in presence of spoof attacks involving one fingerprint modal-
ity, when an effective spoofing detection algorithm is incorporated in the fusion
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mechanism. The final multimodal decision is made by considering that, when a
spoofed sample is detected by the algorithm, the corresponding matcher does
not give any contribution in the fusion scheme.

2.1 Score Fusion Rules

When designing a multibiometric system, several factors should be considered.
These concern the choice and the number of biometric traits, the level of inte-
gration and the mechanism adopted to consolidate the information provided by
multiple traits. Fusion at match score level is often chosen since it is easy to
access and combine the scores presented by different modalities. The operators
which do not contain parameters to be tuned, are known as fixed combiners [8].
Based on experimental results, researchers agree that fixed rules usually per-
form well for ensemble of classifiers having similar performance, while trained
rules handle better matchers having different accuracies. When fusing different
modalities, individual matchers often exhibit different performance, thus for this
problem trained rules should perform better than fixed rules [9].

Transformation-based fusion. The match scores provided by different match-
ers are firstly transformed into a common domain (score normalization), then
they are combined using a fusion rule. It has been shown that the simple sum
rule gives very good accuracy [9]. The technique adopted in our fusion frame-
work is the min-max, which retains the original distribution of scores except a
scaling factor and transform the scores to a common range from zero to one,
based on the minimum and the maximum score values. Given a set of matching
scores sk, k = 1 . . .K, the normalized scores are given by (1).

sk =
sk − min

max − min
(1)

The operator employed for the current analysis is the simple score sum, defined
by (2)

ssum =
N∑

k=1

1
N

sk (2)

Density-based fusion. The match scores are considered as random variables,
whose class conditional densities are not a priori known [10]. So, this approach
requires an explicit estimation of density functions from the training data [5]. The
model is built by estimating density functions for the genuine and impostor score
distributions [11]. A recent method, proposed by Nandakumar et al. in [12], is
the framework based on the Likelihood Ratio test, where the scores are modeled
as mixture of Gaussians and a statistical test Ψ(s) is performed to discriminate
between genuine and impostor classes. The Gaussian Mixture Model (GMM) lets
to obtain reliable estimations of the distributions, even if the amount of data
needed for it increases as the number of considered biometrics increases. This
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framework produces high recognition rates at a chosen operating point (in terms
of False Acceptance Rate), when it is possible to perform accurate estimations
of the genuine and impostor score densities.

Let s = [s1, s2, ..., sK ] denote the scores emitted by multiple matchers, with
sk representing the match score of the kth matcher, k = 1, ..., K.

Ψ(s) =

⎧⎨⎩
1, when LR(s) ≥ η

0, when LR(s) < η
(3)

where s = [s1, s2, ...sK ] is an observed set of K match scores that is assigned to
the genuine class if LR(s) is greater than a fixed threshold η, with η ≥ 0.

2.2 Spoofing Detector

Our multimodal fusion approach is evaluated assuming that fake-live match
scores are similarly distributed as live-live match scores. For each modality, the
spoof attack was simulated by substituting a genuine match score in place of
an impostor match score. The multimodal system considered in this paper is
composed by face and fingerprint traits and it is analyzed under normal operation
(i.e., without spoofing), and when only a fingerprint trait is spoofed.

In all the scenarios, a fingerprint liveness detection is integrated in the fusion
scheme. In this investigation, we incorporate the performance, known by the
literature, of a liveness algorithm which combines perspiration- and morphology-
based static features [13]. The classification performance of the adopted algo-
rithm was evaluated by using the parameters of the Liveness Detection
Competition 2009 (LivDet09) [14], defined as follows:

– Ferrlive: rate of misclassified live fingerprints.
– Ferrfake: rate of misclassified fake fingerprints.

In particular, the values of Ferrlive and Ferrfake were averaged on the three
databases (Biometrika, CrossMatch and Identix ) that compose the LivDet09
data. On such data, the liveness algorithm exploited in our approach presented
an average Ferrlive of 12.60% and an average Ferrfake of 12.30% [13]. We used
the performance obtained on these three different databases taken from LivDet09
as an estimate of the actual performance of the algorithm on the database used
in this paper.

When a spoofed modality is detected by the incorporated algorithm, it will
not give any contribution to the final decision. In particular, (100%-Ferrfake)
indicates the percentage of correctly detected live-spoof match scores to be ex-
cluded from the combination, and Ferrlive indicates the percentage of wrongly
detected live-live match scores to be excluded from the combination. In the pro-
posed approach, live genuine match scores are employed for a real live genuine
scenario, where FRR can be assessed, and also in place of impostor match scores
in order to simulate spoofing.
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– In the score sum scheme, this is realized by resetting a percentage of (100%-
Ferrfake) impostor scores substituted by genuine scores, and a percentage
of Ferrlive genuine scores before performing the sum.

– In the likelihood ratio scheme, the detected spoofed modality can be marginal-
ized by employing, for the (100%-Ferrfake) of the fake samples and for the
Ferrlive of the live samples, the joint density functions involving only the live
modalities.

3 Experimental Results

3.1 Dataset

The performance of the proposed strategy was evaluated on a subset of the
BioSecure multimodal database. This database contains 51 subjects in the De-
velopment Set (training) and 156 different subjects in the Evaluation Set (test-
ing). For each subject, four biometric samples are available over two sessions:
session 1 and session 2. The first sample of each subject in the first session was
used to compose the gallery database while the second sample of the first ses-
sion and the two samples of the second session were used as probes (P1, P2, P3).
For the purpose of this study, we have employed one face and three fingerprint
modalities, denoted as fnf, fo1, fo2 and fo3, respectively [15]. The scores used
in our experiments are the output of the matching between the first available
sample and the second one for each subject. Our second dataset consists in an
unbalanced population composed by 516 genuine and 24,180 (156*155) impostor
match scores. The details are reported in Tables 1 and 2.

Table 1. The Biosecure database: Development Set

Biometric Subjects Samples Scores

Face 51 4 per subject Gen 204 × 3
Imp 51 × 50 × 16

Fingerprint 51 4 per subject Gen (204 × 3) × 3
Imp (51 × 50 × 16) × 3

Table 2. The Biosecure database: Evaluation Set

Biometric Subjects Samples Scores

Face 156 4 per subject Gen 624 × 3
Imp 156 × 155 × 16

Fingerprint 156 4 per subject Gen (624 × 3) × 3
Imp (156 × 155 × 16) × 3
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3.2 Results

The evaluation of the multibiometric system is carried out by adopting the metric
denoted as Spoof False Accept Rate (SFAR) which corresponds to a percentage of
times a spoof attack results in success. In this paper, a successful spoof attack is
when the sum of match score (in the case of sum rule) is above the threshold when
a partial spoof attack has occurred (substitution of genuine score for imposter
scores). Such a metric has been introduced in [7] to distinguish from traditional
FAR. The complete performance curve which represents the full capabilities of
the system at different operating points, is given by the Detection Error Tradeoff
(DET) in which FRR is a function of FAR/SFAR obtained using logarithmic
scales on both axes.

Table 3 reports our results averaged on 20 iterations where for each iteration
the fake samples detected by the algorithm has been randomly varied.

Table 3. Results on Biosecure database in different scenarios where one fingerprint
modality is spoofed

Fusion Fused Spoofed EER SFAR 1 spoofed SFAR with FRR
rule modalities modality No spoof modality algorithm

sum 3 fg + 1 face fo1 0.32% 56.36% 28.98% 0.32%

sum 3 fg + 1 face fo2 0.32% 18.67% 5.67% 0.32%

sum 3 fg + 1 face fo3 0.32% 9.01% 0.46% 0.32%

avg sum 4 mod 1 fg 0.32% 28.01% 11.70% 0.32%

LR 3 fg + 1 face fo1 0.004% 91.37% 11.12% 0.004%

LR 3 fg + 1 face fo2 0.004% 62.47% 0.18% 0.004%

LR 3 fg + 1 face fo3 0.004% 56.83% 8.81% 0.004%

avg LR 4 mod 1 fg 0.004% 70.22% 6.70% 0.004%

In a multimodal system based on the sum of scores with four modalities, three
fingerprints and one face, the EER point fixed on the curve without spoofing
corresponds to 0.32%, while for this value of FRR, when the fingerprint fo3 is
spoofed, SFAR becomes equal to 9.01% (see Fig.1); while incorporating in the
fusion the fingerprint liveness detection algorithm, SFAR significantly decreases
to a value of 0.46%. See note for Figure 1.

In a multimodal system based on the likelihood ratio involving three finger-
print and one face modalities, the EER point fixed on the curve without spoofing,
corresponds to 0.004%, while for this value of FRR, when the fingerprint fo1 is
spoofed, SFAR becomes equal to 91.37% (see Fig.2 notes); while incorporating
in the fusion the fingerprint liveness detection algorithm, SFAR significantly de-
creases to a value of 11.12%. When fo2 is the fingerprint spoofed, SFAR increases
to 62.47%, but the error rate can be reduced by introducing the algorithm until
a percentage of 0.17%.
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Fig. 1. DET curve of the score sum of three fingerprint and one face modalities taken
from Biosecure database over 20 iterations, where one fingerprint is spoofed. Both
vertical and horizontal axis of the plot is logarithmically scaled.

Fig. 2. DET curve of the likelihood ratio involving three fingerprint and one face
modalities taken from Biosecure database over 20 iterations, where one fingerprint is
spoofed

3.3 Finding the Best Error Rate at Spoof Detection Level

We have extended our investigation by experimentally analyzing how multimodal
performance can improve when reducing Ferrlive and Ferrfake, starting from
the values of 12.60% and 12.30% respectively, we used in our previous experi-
ments (see Fig.3 and Fig.4).
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Fig. 3. Performance of the score sum when one fingerprint is spoofed by varying the
Ferrlive and Ferrfake of the liveness detection algorithm incorporated in the fusion

Fig. 4. Performance of the likelihood ratio when one fingerprint is spoofed by varying
the Ferrlive and Ferrfake of the liveness detection algorithm incorporated in the
fusion

This step aids to understand which is the best trade-off between the error rate
required to a liveness detection algorithm and the fusion performance achieved
after incorporating it in the combination scheme. Results are reported in Table 4.
The benefits obtained by incorporating the algorithm in the fusion mechanism
change by varying the fusion rule. Regarding the LR-based mechanism, the ben-
efits obtained by incorporating the algorithm in the fusion are more significant;
in particular, SFAR can be reduced to the value of 0.88% when the spoofing is
detected by an algorithm with Ferrlive and Ferrfake both equal to 1.00%.
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Table 4. Results on Biosecure database by varying the error rate of the liveness detec-
tion algorithm. In the plot x%-x% indicates the percentage of Ferrlive and Ferrfake.

Fusion Fused Modality SFAR SFAR SFAR SFAR SFAR SFAR
rule modalities spoofed 1%-1% 2%-2% 5%-5% 7%-7% 9%-9% 12.60%-12.30%

sum 3 fg + 1 face fo1 3.87% 5.83% 12.34% 18.93% 26.84% 28.98%

sum 3 fg + 1 face fo2 0.99% 1.95% 2.34% 3.64% 4.78% 5.67%

sum 3 fg + 1 face fo3 0.05% 0.08% 0.10% 0.15% 0.38% 0.46%

avg LR 4 mod 1 fg 1.64% 2.62% 4.93% 7.53% 10.67% 11.70%

LR 3 fg + 1 face fo1 1.02% 1.03% 4.71% 4.81% 8.38% 11.11%

LR 3 fg + 1 face fo2 0.11% 0.13% 0.13% 0.16% 0.18% 0.18%

LR 3 fg + 1 face fo3 1.51% 2.28% 3.93% 5.49% 6.79% 8.81%

avg LR 4 mod 1 fg 0.88% 1.15% 2.92% 3.48% 5.12% 6.70%

4 Conclusions and Future Directions

In this paper, we have analyzed the performance of the most efficient fusion
approaches at score level under spoof attacks which involve only one fingerprint
modality. We have considered a multimodal biometric system in presence of a
worst case spoof attack, where the fake-live match score distribution is assumed
to coincide with the live-live match score distribution. Previous works and the
results here showed that, when only a subset of the fused modalities is spoofed,
multimodal systems can be deceived. Our experiments also demonstrated that
a more robust fusion can be realized by incorporating a fingerprint liveness
detection algorithm in the combination scheme. Further, we have reduced the
error at spoof detection level and found the best trade-off between the optimal
Ferrlive and Ferrfake values and the multimodal performance.

This paper considers the case where spoofing is simulated by substituting with
genuine scores. One limitation of the proposed approach lies on the assumption
that spoof match scores are distributed as live match scores. Since spoofing is
difficult, it may be that the spoof match score distribution has a mean match
score which is lower. Therefore, this simulation could be considered as a worst
case scenario. Incorporating a spoofing detection, even if it improves FAR under
spoof attacks, could have a significant impact on the FRR, as we showed in the
case of likelihood ratio-based scheme.

As a future step in this research, the experiments will be extended to additional
multimodal databases. A number of fusion algorithms will also be collected and
compared using the methods outlined in this paper. Moreover, the performance
of the proposed approach will be evaluated by employing real spoofed data.
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Abstract. We address the problem of cohort based normalisation in
multiexpert class verification. We show that there is a relationship
between decision templates and cohort based normalisation methods.
Thanks to this relationship, some of the recent features of cohort score
normalisation techniques can be adopted by decision templates, with the
benefit of noise reduction and the ability to compensate for any distri-
bution drift.

1 Introduction

Although class identity verification is a two class hypothesis testing problem,
the underlying recognition task can be two or multiclass pattern recognition
problem. For instance, detection problems inherently involve just two classes.
The hypothesis tested is that an observation is consistent with a particular class
identity. A typical example is face detection where for every tested locality it
is assumed that a face is present. In some verification problems it is relatively
easy to collect sufficient number of samples representative of the hypothesised
identity and its negation. In such cases one can use conventional machine learning
methods to design a verification (detection) system. This situation is typified for
instance by face detection where tens of thousands of exemplars of each category
are available for training. In anomaly detection, on the other hand, it is relatively
easy to collect a huge number of samples representing the normal class but more
difficult to capture enough samples of abnormalities. The verification system
design then has to be approached as a one class pattern recognition problem.

In this study we address the problem of class identity verification where the
underlying task involves multiple classes. For instance, in biometrics, a sample
may belong to one of many individuals. The underlying recognition task is a
multiclass problem. Then, in a cooperative scenario, where the subject claims a
certain identity, the problem becomes one of two-class verification whereby the
claimed identity is either accepted or rejected. In principle one can attempt to
solve the verification problem as a two class learning problem, by measuring the
score for the hypothesised identity. If the score is not high enough, the claim
is rejected. Thus for verification, in principle, we need only a model for the
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hypothesised class. However, it has been demonstrated that it is beneficial to
make use of multiple class models even for verification [2], [8]. Multiple class
models jointly model the reject class. By computing the score for each model on
line (during testing), we can detect any drift of the reject class distribution. This
in turn allows on-line adaptation of the decision rule, which is achieved by on-line
modelling of the distribution of the reject class scores as a Gaussian and using
it to normalise the hypothesised class identity score. This on-line adaptation is
meritorious both for enhancing the performance of a single expert [6] as well as
a prerequisite for multiple expert fusion [9].

It has recently been shown that instead of modelling the reject class score
distribution using a Gaussian, it is more powerful to model the profile of class
conditional scores. The idea behind this approach is that for true claims the
profile of class conditional scores is very different from the profile of scores for
an untrue claim. The method proposed in [11] involved ordering the class condi-
tional scores in the descending order of their magnitude. Each verification claim
is then tested by measuring the average squared deviations between the observed
profile and a profile template. We shall show that this method has a close rela-
tionship with the decision template method of Kuncheva et al [5]. By virtue of
this relationship, one does not need to rank order the class conditional responses
to create a profile template. Retaining class identities is sufficient. However, rank
ordering opens a new way of modelling the class conditional score profile. The
method presented in [7] uses profile models involving a very small number of pa-
rameters which has noise reducing effect. More over, in contrast to the decision
template method, the rank order profile modelling can also cope with any score
distribution drift.

The aim of this paper is to establish the relationship between score normali-
sation methods and decision templates in the context of class identity verifica-
tion. We shall show that decision templates correspond to cohort normalisation
methods. Thanks to this relationship, some of the recent features of cohort score
normalisation techniques can be adopted by decision templates, with the benefit
of noise reduction and the capacity for a distribution drift compensation. The
effectiveness of modelling rank ordered class conditional scores is illustrated on
a problem of fusing multimodal biometric experts.

The paper is organised as follows. In the next section we discuss the problem of
cohort score normalisation and establish the relationship between this technique
and decision templates. In Section 3 we extend the normalisation method to the
problem of fusing the outputs of multiple experts. The methodology is applied
to the problem of multimodal biometrics in Section 4. The paper is drawn to
conclusion in Section 5.

2 Cohort Based Reasoning

Let us consider an m-class pattern recognition problem. Given a test pattern
x, for each class ωi, a classifier delivers a score si representing the degree of
membership of x in class ωi. The degree of membership could be defined in
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terms of aposteriori class probability, P (ωi|x). However, we shall not impose
any such constraint on its essence. Suffice it to say that scores si, i = 1, ..., m
satisfy si ≥ 0 ( their values being non negative). In general, the higher the score
value si, the more consistent the observation x is with class ωi.

In a verification scenario, when a hypothesis regarding the class identity of x
can be generated by an independent process, the decision making task becomes
one of accepting or rejecting the hypothesis. In principle, this task can be ac-
complished by computing the score sh for the hypothesised model. If the score is
high enough (above a decision threshold) the hypothesis is accepted. Otherwise
it is rejected. The optimal threshold can be determined using off-line training
data.

While it may be advantageous to perform verification using just the model of
the hypothesised class, it should be noted, that all the other classes represent
samples from the reject class. Thus in principle, by computing the score for each
and every class model, given x, we get an on-line empirical distribution of scores
representing the reject class. This distribution conveys valuable information, as
it can be compared with the off-line distribution to determine any drift in score
values. This may be caused, for instance, by changing environmental conditions
in which measurement x is acquired. A more practical proposition is to use the
on-line distribution of scores for all the alternative hypotheses for the normali-
sation of the score for the class identity being verified. The well known t-norm
[8] is designed to achieve such normalisation.

Let μh be the mean of the empirical distribution of scores delivered by our
classifier for all classes other than class ωh to be verified, i.e. μh = 1

m−1

∑
i
=h si

and denote the standard deviation of these scores by σh. Then t-normalised score
ŝh is defined as

ŝh =
sh − μh

σh
(1)

From (1) it is evident that the underlying model for the distribution of cohort
scores is a Gaussian, with mean μh and standard deviation σh. Since the score
values are non negative, the assumption of normality of the cohort distribution
is somewhat unrealistic. For this reason other normalisation schemes have been
proposed [6]. Most methods rely on some rank order statistics [11,1]. The method
proposed in [7] establishes a complete ordering of the cohort scores, for some
off-line cohort set, in the descending order of their magnitudes. Let r(i) be an
index mapping function which relates class index i to its rank position in the
list of ordered scores, and let i(r) be the inverse index mapping function. Then
function s(r) = si(r) is monotonic. Clearly, for every hypothesis h to be verified,
the index mapping function, as well as function s(r) would be different. Now if
a query sample belongs to the hypothesised class ωh, then the class conditional
scores S(r) = Si(r) computed for the input test pattern would adhere to the
profile s(r). On the other hand, when the observation is inconsistent with the
hypothesis, then the observed function S(r) would be random. Thus, the mean
squared error between S(r) and s(r), can be used as a basis for accepting or
rejecting the hypothesis, i.e.



322 J. Kittler, N. Poh, and A. Merati

x → ωh if θ ≤ ρ
reject ωh if θ > ρ

(2)

where the test statistics θ is defined as

θ =
1
m

m∑
r=1

[S(r) − s(r)]2 (3)

and ρ is a suitable threshold.
It is interesting to note that matching class conditional scores produced for a

test pattern to a score profile is the basis of a multiple classifier fusion method
known as decision templates. A single classifier version of the decision template
method then compares the decision template entries si, i = 1, ..., m to the class
conditional scores Si obtained for a given test pattern x. There are a number
of norms that can be used to measure the similarity of si and Si, ∀i [5] but
the quadratic norm in (3) is among the recommended possibilities. Clearly the
reordering of scores will have no effect on the value of the test statistics and
therefore these two methods are equivalent.

The decision template method was devised for multiple classifier fusion and
as such it is pertinent to ask what relevance it has for a hypothesis testing
involving a single classifier. Clearly the answer is not much, but looking at a
single classifier decision template (one column of the decision template matrix)
can help to understand the properties of this post-processing method.

– In principle, one can look at the class conditional scores as features and the
hypothesis testing is then a process of decision making in this feature space.
When the class conditional scores are normalised so that they sum up to one
(i.e. they represent aposteriori class probabilities), then these features have
been shown to be optimal [3]. Thus decision making in this new feature space
should in theory be as good as decision making in the original feature space.
The benefit of the decision template method is that it is readily extensible
to a multiple expert scenario.

– When the decision making problem involves a large number of classes, most
of the dimensions of this new feature space do not convey discriminative
information and will only inject noise into the decision making process.

– Where as a simple modelling of the cohort scores using a Gaussian is far
from perfect, it had the advantage of enabling the hypothesis testing process
to compensate for any drift in the score distribution.

Thus our attempt to introduce a better distribution models resulted in the loss
of some of the attractive features of the simple t-norm. In the following we shall
discuss how these features can be restored while retaining the benefit of working
with more flexible score distribution models. We shall see that there are two
aspects to the problem

1. cohort score distribution modelling
2. the use of cohort score distribution model in decision making and fusion.
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2.1 Cohort Score Distribution Modelling

As pointed out earlier, the direct use of decision templates for hypothesis testing
according to (3), whether the scores are ranked or not, suffers from several
disadvantages. However, the benefit of score ranking is that the off-line cohort
score function s(r) is monotonic. This opens the possibility for modelling s(r)
in terms of a function of few parameters. In particular, we can model s(r) as

s(r) = f(r, a) (4)

The function, f(r, a) would typically be a low order polynomial defined by a
set of parameters a. Given a set of rank order cohort scores, the function can
easily be fitted to the data. Note, that such a function fitting would be very
difficult for decision templates, as the evolution of class conditional scores si as
a function of i is potentially much more complex. The fitting process allows us
to represent a multidimensional feature space in terms of just a few parameters.
For large cohorts, the information compression achieved through this process
is enormous. This has a number of benefits. First of all, it helps to minimise
overfitting. Second, it helps to reduce the amount of noise injected into the
decision making process. There is a chance that some of the parameters of the
rank ordered cohort score distribution fitting computed for a test pattern will be
invariant to a distribution drift. For instance, if the test sample quality changes
and the score values for all the classes are lower, this would be reflected only
in an offset parameter for the function f(r, a), with the rest of the model being
unaffected.

2.2 Cohort Score Models in Decision Making

In principle, the decision making can be conducted in the cohort score feature
space, as in the case of the decision template method. When the dimensionality of
the cohort model is reduced, the benefit of noise reducing property of the fitting
process is manifest in improved performance. However, the cohort score model
can alternatively be used in conjunction with the raw score for the hypothesis
being tested. We shall demonstrate that this latest option is the most effective.

3 Cohort Based Fusion of Multiple Experts

The discussion so far assumes a single classifier involving a set of cohort scores.
In order to consider the multiple classifiers setting, we shall further augment
the score variable with the subscript p ∈ {1, . . . , P} to denote the output of the
p-th classifier. Thus, sp

h denotes the reference score; ŝp
h, the T-normalised score;

Sp(r), the cohort score profile; and f(r, ap), the fitted score profile.
We shall discuss the baseline methods followed by three other competing meth-

ods that take the cohort information into account.

Baseline: In order to combine the cohort-based scores, one takes a weighted
sum of the {sp

h} scores. To this end, we use logistic regression. It has a number
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of advantages. First, it is a linear classifier, and by being linear, the risk of
overfitting is significantly reduced. Second, its optimisation procedure, known as
Gradient Ascent [4], has a unique global solution. Logistic regression computes
P (ωh|s1

h, . . . , sP
h ) in support of the hypothesis that a query pattern belongs to

ωh versus its alternative that it belongs to the remaining classes {ωi|i �= h}.
T-norm: Since T-norm is a function that takes sp

h as input and produces a nor-
malised output ŝp

h, the most straightforward way combine the classifier outputs
is to take a weighted sum of {ŝp

h}. To this end, we use logistic regression that
computes P (ωh|ŝ1

h, . . . , ŝP
h ).

Decision Template: The above weighted-sum approach cannot be used directly
to combine the cohort score profile. The Decision Template approach does so
by considering the set of profile vectors {Sp(r)|∀p} as a single large vector S.
This vector forms the decision template. A distance is then defined in order to
compare the decision template with the set of profile vectors computed from a
query sample.

Our proposal – cohort distribution modelling: Rather than using the
entire profiles {Sp(r)|∀p} that are noisy for the alternative classes i �= h, we
shall use the fitted profile instead. Combining the multiple the classifier out-
puts along with their respective cohort score profile amounts to combining the
vectors: {sp

h,ap|∀p}. Let the concatenation of these vectors be A. One can then
use logistic regression to classify A. In this case, logistic regression computes
P (ωh|A) in support of the hypothesis that a query pattern belongs to ωh versus
its alternative that it belongs to the remaining classes.

It is worth noting that A is much smaller in dimension compared to the
decision template S. This compression is achieved by summarising each of the
p-th score profile Sp(r) (a constituent element in S) by its fitted parameters ap

(a constituent element in A). This compression has two implications. First, a
classifier such as logistic regression can be used to classify A which is relatively
low in dimension. Second, the representation A is much less noisier yet retains
all the discriminative power subsumed in S.

4 Experimental Support

In order to illustrate the effectiveness of our proposal, we will compare the three
competing methods along with the baseline approach according to one of the
two roles they play: as a score normalization scheme and as a fusion mechanism.
The main difference between the two is that the former involves only a single
classifier/system whereas the latter involves P > 1 systems.

Although Decision Template is commonly used for fusion only, it is recalled
here that it can also be used as a score normalization scheme by simply com-
puting a distance metric, θ, between two cohort score profiles (in which one is a
decision template and another is a query pattern). We have experimented with
several distance metrics and found that normalized correlation is the most ef-
fective distance metric. Therefore, only this metric is used when reporting the
performance of Decision Template.
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Another point to note is that, as a score normalization procedure, logistic
regression produces no effect, since it is a non-decreasing monotonic function. As
a result, the baseline method is represented by the reference score sh, whereas for
the T-norm method, ŝh is used as the system output that is used for subsequent
performance evaluation.

In order to evaluate the performance in the context of verification (as opposed
to identification), we shall plot the Receiver’s Operating Characteristic (ROC)
curve. It is a plot of False Acceptance Rate (FAR) versus False Rejection Rate
(FRR). FAR corresponds to the probability of falsely accepting a negative class
(the altnerative class labels where i �= h) whereas FRR is the probability of
falsely rejecting a positive class (the reference class h). The unique point in
which FAR equal FRR is called Equal Error Rate (EER). This operating point
is used to characterise the performance of the abovementioned methods. The
lower EER, the better the system performance.

The Biosecure DS2 dataset is used for this purpose [10]. This data set con-
tains the impressions of six fingers of some 400 subjects. For each finger, four
impressions were acquired over two sessions. Two devices were used: thermal
and optical device. In order to report the performance, we shall divide the ex-
periments into 12 sets spanned by 6 fingers and the 2 acqusition devices.

Five disjoint groups of subjects were identified, with the first four groups
(respectively referred to as g1–g4), constituting enrollees, and the final group
forming a separate set of cohort users to provide a pool of cohort models. Subjects
in g1 and g2 were used as enrollees in the development (dev) set; and, g3 and g4
as enrollees in the evaluation (eva) set. Subjects in group g5 were used as cohort
models. The total number of subjects in g1–g4 are {84, 83, 83, 81} respectively.
The total number of cohort users is 84 for both modalities. For the purpose of
obtaining a cohort scores, only the first of the four samples of the cohort was
used.

We require that each of the dev and eva sets to have its own enrollment
and query data sets, i.e.,Dd,enrol, Dd,query for d ∈ {dev, eva}. Recall that there
are four impressions (images) per finger, per subject and per device. The first
fingerprint impression was used as the enrollment template for the target user.
In order to generate match (genuine) scores, the second impression was used
to produce scores for Ddev,query whereas the remaining two query samples were
used to produce scores for Deva,query .

To generate the non-match scores, for Ddev,enrol we used query samples of g3;
for Ddev,query , g4; for Deva,enrol, g1; and, for Ddev,query , g2 . In this way, the
non-match scores in all four data sets are completely disjoint.

In the empirical evaluation to be reported in the next section, we use Ddev,query

as our training set and Deva,query as our test set. Note that the enrollees and non-
match subjects in these two match scores are completely disjoint. This simulates
a scenario where the development and operational data have disjoint subjects,
a very realistic condition in practice.

Using the conventional machine learning terms, we shall treat Deva,query as
the test set, whereas the remaining three data sets as the training set.
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(a) Cohort score profiles (b) Distribution of a

Fig. 1. (a) Cohort score profiles as well as their respective reconstructed versions for the
reference class (genuine) and the remaining classes (impostor in this case). The offline
cohort score profile is, by defition, a decreasing function as it was used to determine
the rank order of the cohorts. (b) The distribution of the fitted parameters when the
cohort score profiles are fitted with a line. “+” denotes the parameters of the reference
class (genuine matching); and “·”, the remaining classes (impostor matching).

Figure 1(a) shows the various cohort score profiles sorted by the rank order
S(r) determined from the training data set. The “offline cohort score profile”
corresponds to the decision template. By fitting this profile using a polyno-
mial function, one obtains a smoothed curve with a noticeable positive gradient
under matching with the reference class (genuine or client access in biometric
application). In comparison, the score profile subjecting to matching with the
alternative class (impostor in biometric application) does not exhibit trend. This
shows that cohort score profile contains discriminatory information.

Figure 1(b) shows the scatter plot of the fitted regression parameters a in
terms of slope versus bias (intercept), hence, representing the cohort score pro-
files with a line. This figure shows that the cohort information along, without
the reference score, sh, contains highly discriminative information.

Table 1 compares the effectiveness of the four methods as a score normalization
scheme in terms of EER in percentage. As can be seen, our proposed method
which fits the cohort score profile attains the best generalization performance in
11 out of the 12 data sets. We then analysed the relative merit of these methods
by comparing the performance with the baseline method. This was done by
computing the relative change of EER, defined as

rel. change of EER =
EERalgo − EERbaseline

EERbaseline
,

where EERalgo is the EER of a given score normalization procedure whereas
EERbaseline is the EER of the original system without any score normalization.
A boxplot summarizing the relative gain of each method is shown in Figure 2.
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Fig. 2. Relative change of EER profiles

Table 1. Comparison of different cohort-based normalization schemes

Dataset baseline T-norm poly DT

fo1 2.79 2.42 2.13 2.59
fo2 1.80 1.39 1.14 2.01
fo3 3.11 2.45 2.21 3.52
fo4 3.69 2.84 2.70 3.84
fo5 3.41 2.95 3.22 3.45
fo6 3.05 2.76 2.69 3.61
ft1 9.61 9.61 9.45 12.08
ft2 5.41 4.71 4.37 6.18
ft3 8.78 8.37 8.05 11.08
ft4 12.61 12.09 12.03 16.78
ft5 6.89 7.28 6.30 9.02
ft6 8.40 7.84 7.43 12.12

A negative change implies improvement over the baseline. As can be observed,
across the 12 data sets, one can expect a relative reduction of error between 5%
and 25% using the proposed method.

The final experiment reports the performance of fusion of all the fingers. For
illustration, we show the result of one of the fusion systems comparing all the
four methods in Figure 3. In this figure, the Decision Template (DT) approach
was implemented with two distance metrics, namely, Euclidean distance and
normalized correlation. As can be observed, DT with normalized correlation
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Fig. 3. DET curves of the fusion problem involving 3 fingers

performs better. However, its performance is still far from that attained by T-
norm or our proposed method. This shows that the importance of correctly
exploiting the cohort information.

5 Conclusion

We discussed the problem of cohort based normalisation in multiexpert class
verification. We exposed the existence of a close relationship between decision
templates and cohort based normalisation methods and showed that thanks to
this relationship, some of the recent features of cohort score normalisation tech-
niques can be adopted by the decision templates approach. The benefit of this
includes noise reduction and a distribution drift compensation. This has been
demonstrated on an application in multimodal biometrics.
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Abstract. In this paper we propose an Intrusion Detection System
(IDS) for the detection of attacks against a web server. The system ana-
lyzes the requests received by a web server, and is based on a two-stages
classification algorithm that heavily relies on the MCS paradigm. In the
first stage the structure of the HTTP requests is modeled using several
ensembles of Hidden Markov Models. Then, the outputs of these ensem-
bles are combined using a one-class classification algorithm. We evaluated
the system on several datasets of real traffic and real attacks. Experimen-
tal results, and comparisons with state-of.the.art detection systems show
the effectiveness of the proposed approach.

Keywords: Anomaly Detection, IDS, HMM, Payload Analysis.

1 Introduction

The always increasing number of Web-based applications that are deployed
worldwide, makes their protection a key topic in computer security. The tradi-
tional defense systems (e.g. Intrusion Detection/Prevention Systems) are based
on a database of signatures that describe known attacks. Unfortunately, the large
number of new attacks that appears everyday, and the wide use of custom appli-
cations on web servers, make almost impossible to have signature-based systems
always updated to the most recent and effective attacks. A possible solution to
this problem is offered by the “anomaly based” approach to intrusion detection.

An anomaly based system builds a model of the “normal” behavior of the
resource to be protected. An attack pattern is detected if it appears “anomalous”
with respect to the normal behavior, that is if it significantly deviates from the
statistical model of the normal activity. The normal behavior is defined as a set
of characteristics that are observed during normal operation of the resource to
be protected, e.g., the distribution of the characters in a string parameter, the
mean and standard deviation of the values of integer parameters [[6], [7]]. One of
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Fig. 1. An example of legitimate HTTP payload

GET /pra/ita/home.php HTTP/1.1 =⇒ Request-Line

Host: prag.diee.unica.it

Accept: text/*, text/html =⇒ Request-Headers

User-Agent: Mozilla/4.0

the reasons that initially prevented anomaly-based IDS from becoming popular
is the fact that they tend to generate too high rates of false alarms. In fact the
false alarm rate is a crucial parameter in the evaluation of an IDS since an IDS is
generally required to manage large amounts of patterns (hundreds of thousands)
every day. A strategy which is usually employed to mitigate this problem is that
of realizing IDSs based on multiple classifiers in order to increase the overall
classification accuracy [[2],[6],[7],[9],[11]].

The anomaly based IDS recently proposed in the literature for the protection
of web servers and web applications basically analyze the requests received by
the web server. HTTP requests are carried in the data portion of the network
packet that is generally called “HTTP payload”. An example of HTTP payload is
presented in Figure 1. The HTTP protocol is defined by RFC 2616 [1]. According
to this RFC, a HTTP payload contains a Request-Line plus a certain number of
Request-Header fields. More in detail:

– The Request-Line begins with a method token (e.g. POST, GET), followed
by the Request-URI and the protocol version, and ending with CRLF. The
Request-URI contains the name of the resource requested on the web server.
In Figure 1 the resource requested is the page /pra/ita/home.php.

– The Request-Header fields are used by the client to provide additional infor-
mations to the web server. For example, with the User-Agent header, the
client host notifies to the web server the type and the version of the web
browser. This information can be used by the web server to optimize the
response sent back to the client according to the version of the browser. In
Figure 1 the value of the User-Agent header is Mozilla/4.0.

Anomaly based IDS use statistical models to represent and analyze HTTP re-
quests. Basically they create a statistical model of the bytes’ distribution within
the payload. Some of them, such as HMM-Web [5] or Spectrogram [11], focus on
the Request-Line only and perform an analysis based on Hidden Markov Models
(HMM), and on Mixture of Markov-chains respectively. Other approaches, such
as PAYL [13] and HMMPayl [2] analyze the bytes’ distribution of the whole
payload using n − gram − analysis or HMM. These IDSs are based on the as-
sumption that the bytes’ statistics of HTTP payloads containing attacks are
different from the bytes’ statistics of the legitimate traffic. Nevertheless, at the
best of our knowledge, none of the IDSs proposed in the literature, exploits the
a-priori knowledge of the structure of the HTTP payload.

In this paper, we propose an IDS based on HMM that effectively exploit the
analysis of the different portions of the HTTP payload structure. In particular,
for each header of the payload, we use a different ensemble of HMM to analyze the
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related values. Another ensemble of HMM is used to analyze the Request-Line.
Attack detection is performed by stacking the outputs of the HMM ensembles,
and using this vector as input for a one-class classifier. The experimental results
achieved on several datasets of legitimate traffic and attacks confirm the effec-
tiveness of the proposed approach, and its superiority with respect to similar
IDS proposed in the literature.

The rest of the paper is organized as follows. In section 2 a review of the State
of Art is provided. In Section 3 a detailed description of the IDS is provided. In
sections 4 and 5 we describe respectively the experimental setup and results. We
then draw the conclusions in section 6.

2 State of the Art

In the recent years, several anomaly based IDS have been proposed for the
protection of web servers and web applications. They usually rely on multiple
classifiers or models for two main reasons. First, multiple classifiers generally
lead to better classification accuracy. In the case of IDSs, this means an higher
percentage of detected attacks and a smaller percentage of false alarms. Ex-
amples of applications of Multiple Classifiers are [[2],[6],[7],[9],[11]]. The second
reason for using multiple classifiers is that they usually increase the robustness
of the system against attempts of evasion. This topic is gaining an increasing
attention in the last years not only in the Intrusion Detection area but also in
related fields such as spam detection and biometric authentication [4,8].

Intrusion detection techniques such as those proposed in [[5],[7],[11]] limit
their analysis to the structure of the Request-Line, and in particular they focus
on the value of the input parameters received by the web applications. These
approaches are tailored for the detection of the most frequent attacks against
web applications, e.g., SQL-Injection, Cross-Site Scripting, that basically exploit
the flaws of the web applications in the validation of the received input. Never-
theless, these IDS are completely ineffective against attacks that exploit other
vulnerabilities of web applications.

IDS such as [[2],[9],[13]] cover a broader range of attacks since they model the
bytes’ distribution of the whole payload. As a consequence, they are theoreti-
cally able to detect any kind of attack that makes the payload statistics deviating
from those of the legitimate traffic. The bytes’ distribution of the payload can
be modeled in several ways. PAYL [13] performs an n − gram analysis using a
very small value for n, since the size of the features space exponentially increases
with n. This represent a severe limitation for PAYL since the IDS can be easily
evaded if the attacker is able to mimic the statistics of the legitimate traffic.
HMMPayl performs an analysis of the payload based on HMM. This analysis is
equivalent to the n − gram analysis, but it is able to circumvent the limitation
on the value of n from which PAYL suffered. This lead to an increased classifi-
cation accuracy of HMMPayl with respect to PAYL. Nevertheless, the analysis
performed by HMMPayl is quite complex. This might be an issue since an IDS
such as HMMPayl must be able to keep up with the network speed. For this



HTTP Payload Analysis 333

reason, in this paper we propose to exploit the a-priory knowledge of the pay-
load structure in order to significantly reduce the complexity of the classification
algorithm without affecting the classification accuracy.

The largest part of the IDSs proposed in the literature are based on outliers
detection techniques, and one-class classifiers. This means that the classifiers, or,
more in general, the statistical models on which they are based, are built using
samples of legitimate patterns only. There are various reasons for this choice.
First of all, the main aim of anomaly based IDS is to recognize those patterns
that are anomalous with respect to those assumed to be legitimate. In addition,
a two-class model (normal vs. attack) would not be probably the one that best
fits the problem. In fact the attack class would contain patterns that are com-
pletely different each other, as they exploit vulnerabilities of different type and,
as a consequence, they exhibit statistical properties that are completely different
[2]. Another (and more “practical”) reason for using one-class classifiers is that
collecting representative samples of the attack class is usually quite difficult. In
fact, the attacks a web server might be susceptible to, depend on several ele-
ments such as the platform (e.g. the operating system), the hosted applications,
the network topology, and so on. One could certainly scan the web server and
analyze the web applications looking for possible vulnerabilities, and then cre-
ate samples of attacks that exploit them. Nevertheless, the assessment of all the
possible attacks a web server might be subject to, remains a task quite difficult
and time consuming. If such a knowledge should be available, then there would
be better ways to protect against known attacks than training a classifier, that
is patching the vulnerabilities. Another possibility is to extract the signatures
for that attacks, and deploy them in a signature-based IDS.

3 A Modular Architecture for the Analysis of HTTP
Payloads

This section provides the details of the IDS proposed in this paper. A simplified
scheme of the system is presented in Figure 2. Several solutions proposed in the
literature (e.g. HMM-Web[5], Spectrogram [11]) focus their analysis only on the
Request-Line (which is in red in the figure). Otherwise, solutions such as PAYL
[13], or HMMPayl [2] analyze the bytes’ distribution of the whole payload but
do not take into account its structure. This paper aim to investigate the use of
a model of the HTTP payload which reflects its structure as it has been defined
by the RFC 2616 [1]. This analysis is performed in two steps. First, the payload
is split in several “fields”, that are analyzed by several HMM ensembles. Second,
the outputs of the HMM are combined using a one-class classifier that finally
assigns a class label to the payload. A more detailed description of these steps
follows.

HMM Ensembles. We briefly reminded the HTTP payload structure in sec-
tion 1, recalling that this structure consists of a Request-Line plus (eventu-
ally) one or more Request-Headers. We also remind here that the Request-Line
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Fig. 2. A simplified representation of the IDS architecture. An exhaustive list of all
the Request-Headers analyzed by the IDS is reported in Table 1. The analysis of each
header can be carried out by a single HMM or by an ensemble of HMM.

specifies the resource requested by the browser to the web server (e.g. the
index.php page), whereas the Request-Headers are used by the web browser
to provide additional information to the web server (thus their presence is op-
tional). The RFC 2616 defines for the HTTP protocol a large number of possible
Request-Headers, the most part of which is generally unused. In order to sim-
plify the analysis, a list of the headers that a web server is actually using can
be easily produced through a simple inspection of the incoming network traffic.
Table 1 reports the list of the 18 headers that we observed within our datasets
during the experimental evaluation of the proposed technique.

Once the set of the Request-Headers to be analyzed has been defined, the
payload is processed as follows. First, a probability is assigned to each Request-
Header and to the Request-Line by a different HMM ensemble through the
Forward-Backward procedure [10]. With respect to the example shown in figure
2, the strings analyzed by the different HMM ensembles are the following: the
string from “GET” to “HTTP/1.1” is analyzed by the the Request-Line ensem-
ble (red); the string “prag.diee.unica.it” is analyzed by the Host ensem-
ble (green); the string “Mozilla/5.0” is analyzed by the User-Agent ensemble
(blue) and so on. Details about the setting of the HMM parameters will be
provided in the following section. It is just worth noting that the use of HMM
ensembles instead of single HMM allows mitigating the risk of having a single
HMM that performs poorly, due to the random initialization of the parameters.
The output of the HMM ensemble is thus computed by averaging the outputs
of the individual HMMs, as they differ for the parameter initialization only.

One Class classifier. The analysis performed by the HMM ensembles pro-
duces as output a set of probabilities assigned to the Request-Line and Headers
by the ensembles (see figure 2). Obviously a fusion stage is required in order to
combine the outputs of the the different ensembles. We considered static rules
(e.g. the mean or the product rule) to perform the combination. Unfortunately,
as we will show in section 5, they do not result suitable for this purpose. A fur-
ther possibility is to concatenate the outputs of the ensembles within an array
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Table 1. List of the Request-Headers analyzed by the IDS. A detailed description of
the role played by each header within the HTTP protocol can be found in [1].

Accept Connection Cache-Control Via User-Agent

Accept-Charset From If-None-Match UA-CPU Transfer-Encoding

Accept-Encoding Host If-Modified-Since UA-OS X-Forwarded-For

Accept-Language Referer Keep-Alive

that will be provided as input to a one-class classifier. In this case, the outputs
of the ensemble are used as features and a label (attack or legitimate) is assigned
to the payload as the result of a classification in this features space.

It can be observed that a legitimate payload typically contains a number
of five or six headers. Which headers are included in the payload depends on
the settings of the HTTP client. On the other hand, the IDS must be able
to analyze all the headers that occur in the network traffic (we observed the
presence of 18 different headers in the network traces used in our experiments).
As a consequence, the one class classifier will be designed to work in a features
space of size equal to the number of observed headers (18 in our case) plus
one, since the Request-Line must be also analyzed. From the perspective of
the one class classifiers, the absent headers represent “missing features”, since
a probability will be associated by the ensembles only to the headers within
the payload. The problem of managing these missing features is approached
differently in the Training and in the Detection phases. During the training of
the one class classifier, the missing features are replaced by their average value
(computed over the payloads in which they are present). This is a practice well
known in the literature [12]. This choice does not affect the results of classifier
training since the most important features (e.g. the Request-Line) are present
in the largest part of the traffic. In the detection phase, the missing components
are set to the value of -1, that is a value outside the output range of the HMM
(the output range is in [0,1], as they are probabilities).

Complexity Evaluation Since the training of the IDS is performed off-line,
the complexity is estimated for the detection phase only. Let K the number of
Request-Headers analyzed by the IDS (K typically assumes a value in the range
between 15 and 20). If all of these headers appears in the payload, the IDS has to
analyze K+1 sequences (the headers plus the request line). In addition a further
classification step has to be performed in a features space of size K + 1. Just to
provide a brief comparison with a similar approach let us consider the HMMPayl
algorithm [2]. In the case of HMMPayl the number of sequences analyzed by the
IDS is approximately as high as the length (in terms of number of bytes) of the
payload. A typical legitimate payload has a length of several hundreds of bytes.
Thus, the solution proposed here offers two main advantages: the first is that
the number of sequences analyzed is significantly smaller; the second is that this
number is known and depends only on the setup of the IDS.
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4 Experimental Setup

In this Section we describe the experimental setup on which we performed the
experiments.

HMM Parameters. The parameter that influences the most the performance
of a discrete HMM is the number of (hidden) states. A rule does not exist to
estimate the optimum value for the number of states for a bunch of data. Here,
we used the “effective-length” of the training sequences, which is an heuristic
that has been successfully used also in [5]. The effective length basically counts
the number of different characters in a string. For instance the effective length of
the string “abc” is 3, that of “abcd” is 4, and that of “aabcdd” is still 4. Thus,
for each ensemble of HMM, we set the number of states of every single HMM
equal to the average effective-length calculated on the corresponding training
set. In addition, the transition and emission matrices are randomly initialized
for each HMM. Then, the estimate of the model parameters that maximize the
probability assigned by the model to the sequences within the training set is
calculated by resorting to the Baum-Welch algorithm [3].

Datasets. The intrusion detection algorithm proposed has been deeply tested
on two different datasets of normal traffic, and on three datasets containing
different kinds of attacks. For what concerns datasets of normal traffic both of
them consists of real traffic traces collected at academic institutions. One dataset
is made up of HTTP requests towards the website of the College of Computing
at the Georgia Tech (GT), USA. The other one consists of HTTP request toward
the website of our department (DIEE) at the University of Cagliari, Italy.

They consist respectively of seven and six days of traffic. It is worth to remark
that both the GT and the DIEE datasets are completely unlabeled. We consid-
ered the GT and DIEE datasets as “clean” from known attacks for the purpose
of measuring the false positive rate since any evidence of occurring attacks has
not been reported in the period in which we collected the traffic.

The experiments have been carried out in the same way on both datasets,
for what concerns both training and testing. A k-fold cross validation has been
realized, using in rotation one day of traffic for training and all the remaining
days for testing purposes. Details about the number of packets and the size (in
MB) of each trace are provided in table 2.

We evaluated the detection rate of the IDS on several datasets consisting of
attacks frequently observed against web applications. Attack datasets are briefly

Table 2. Details of the legitimate traffic datasets used for the training and to evaluate
the false alarms rate

Dataset Day 1 2 3 4 5 6 7

DIEE
Packets 10,200 10,200 10,200 10,200 10,200 10,200 —

Size (MB) 7.2 7.4 6.6 6 6.4 6.7 —

GT
Packets 307,929 171,750 289,649 263,498 195,192 184,572 296,425

Size (MB) 131 72 124 110 79 78 127
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Table 3. Details of the attacks datasets used to evaluate the detection rate

Dataset Name # of Attacks Description

Generic Attacks 66 Shell-code, Denial of Service or Information Leakage

Shell-code Attacks 11 Shell-code attacks from the Generic Attack dataset

XSS-SQL Attacks 38 Cross-site Scripting and SQL-Injection attacks

described in Table 3. Generic and Shell-code attacks are the same used in [[2,9]].
Attacks into the XSS-SQL dataset are the same used in [[2,5]].

Performance Evaluation. In order to validate the classification performance
of our detector, we use the ROC curve analysis, and the related Area Under
the ROC Curve (AUC). Since we are interested in evaluating the IDS for small
values of the false positive rate, we computed the area under the ROC curve
in the range [0, 0.1] of the false positive rate. In order to obtain a performance
value in the range [0, 1], we normalized the “partial” AUC (AUCp) computed in
[0, 0.1] by dividing it by 0.1.

5 Experimental Results

This section provides a discussion of the experimental results achieved. The
performance, evaluated in terms of AUCp, has been calculated considering sev-
eral one-class classification algorithms. In addition, we also varied the number of
HMM within each ensemble. A number of HMM from 1 to 3 has been considered.

We first considered the static rules as a possible choice for the one-class clas-
sifier. We considered two rules, respectively the average and the product rules.
The missing features have been excluded from the computation. For the sake of
brevity we report just some examples of the results achieved. The AUCp was
equal to 0.440 on the Generic attacks and equal to 0.464 on the Shell-code
attacks (DIEE legitimate traffic) for the average rule. The results achieved using
the product rule (and on the GT dataset) were equivalent. These results clearly
show that static rules are not suitable in this scenario, thus confirming our choice
of one-class classifiers as trainable fusion rules.

We experimented using several classifiers to combine the outputs produced
by the HMM ensembles. In particular, we considered the Gaussian (Gauss)
distribution, the Mixture of Gaussians (MoG), the Parzen density estimators,
and the SVM. For the first three classifiers we used the implementation provided
within the dd tools1. For the SVM, we used the implementation provided by
LibSVM2. We used a Radial Basis function for the SVM kernel. We left the setting
of the other parameters to the default values.

Table 4(a) and 4(b) report the results achieved on the DIEE and GT dataset
respectively. The same tables also reports the average values of AUCp achieved
by HMMPayl under the same conditions. From a deep comparison between

1 Dd tools - http://prlab.tudelft.nl/david-tax/dd_tools.html
2 LibSVM - http://www.csie.ntu.edu.tw/~cjlin/libsvm

http://prlab.tudelft.nl/david-tax/dd_tools.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm
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Table 4. Average and Standard Deviation values of AUCp. The rightmost column
reports the performance achieved by HMMPayl [2].

(a) DIEE Dataset.

Attack Dataset HMM Gauss Parzen MoG SVM HMMPayl

Generic
1 0.656 (0.216) 0.931 (0.022) 0.874 (0.097) 0.843 (0.036)

0.922 (0.058)2 0.659 (0.207) 0.931 (0.023) 0.857 (0.125) 0.848 (0.029)

3 0.659 (0.226) 0.933 (0.021) 0.865 (0.129) 0.851 (0.031)

XSS-SQL
1 0.937 (0.030) 0.941 (0.031) 0.923 (0.046) 0.838 (0.203)

0.847 (0.032)2 0.936 (0.030) 0.940 (0.033) 0.915 (0.059) 0.863 (0.175)

3 0.935 (0.030) 0.939 (0.034) 0.924 (0.046) 0.871 (0.161)

Shell-code
1 0.935 (0.030) 0.946 (0.022) 0.923 (0.032) 0.889 (0.061)

0.996 (0.002)2 0.942 (0.033) 0.946 (0.022) 0.916 (0.028) 0.899 (0.055)

3 0.944 (0.035) 0.945 (0.023) 0.924 (0.028) 0.908 (0.056)

(b) GT Dataset.

Attack Dataset HMM Gauss Parzen MoG SVM HMMPayl

Generic

1 0.686 (0.107) 0.920 (0.082) 0.915 (0.035) 0.801 (0.102)
0.866 (0.071)2 0.695 (0.087) 0.922 (0.087) 0.917 (0.037) 0.809 (0.095)

3 0.709 (0.024) 0.923 (0.093) 0.919 (0.028) 0.816 (0.093)

XSS-SQL

1 0.718 (0.107) 0.972 (0.018) 0.870 (0.055) 0.806 (0.043)
0.827 (0.056)2 0.725 (0.095) 0.972 (0.018) 0.896 (0.052) 0.813 (0.037)

3 0.737 (0.083) 0.973 (0.018) 0.904 (0.037) 0.816 (0.030)

Shell-code

1 0.848 (0.060) 0.928 (0.079) 0.930 (0.044) 0.909 (0.073)
0.988 (0.003)2 0.837 (0.041) 0.926 (0.084) 0.910 (0.043) 0.917 (0.075)

3 0.837 (0.036) 0.925 (0.088) 0.909 (0.043) 0.917 (0.072)

HMMPayl and other similar algorithms (e.g [5,9,11]) HMMPayl resulted as the
most effective IDS on the same datasets we used here [2]. Thus, in this paper we
consider only HMMPayl for the sake of comparison.

It can be easily observed that if we exclude the case on which the Gauss
classifier is used, the proposed solution performs generally well with respect to
HMMPayl. A result which is worth to notice is that achieved using the Parzen
classifier. In fact in this case the IDS works significantly better than HMMPayl
against the XSS-SQL attacks (especially on the GT dataset) and it works better
also against the Generic attacks. On the contrary, HMMPayl performs better
when Shell-code attacks are considered. This is not surprising since HMMPayl
basically creates a detailed model of the bytes’ distribution of the payload, that
in the case of the Shell-code attacks significantly deviates from that of the
legitimate traffic. Nevertheless, we are quite convinced that the effectiveness of
our IDS can be easily improved also against attacks of this type by designing
more carefully the HMM ensemble. In fact, we observed that for certain headers
the length of the sequences can variate heavily from payload to payload. Since
the probability assigned by a HMM to a sequence significantly depends on the
sequence length, a model that takes into account also the length of the header
would be probably preferable in the case of those headers. It must be also con-
sidered that the one-class classifier can be further optimized since we left the
setting of the parameters to the default values.
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We can also notice that increasing the number of classifiers within the HMM
ensembles does not provide remarkable benefits. It can be observed that in some
cases the AUCp increases with the number of HMM (e.g. in the SVM column)
whereas in other cases the AUCp slightly reduces (e.g. in the Parzen column).
Notwithstanding, the observed variations are very low for both the average and
the standard deviation of the AUCp.

6 Conclusions

This paper we proposes an IDS that models the HTTP payload structure for the
purpose of detecting the attacks against a web server. The IDS heavily relies on
the MCS paradigm, since the outputs provided by a set of HMM ensembles are
combined using a one-class classifier. The experimental results achieved confirm
the effectiveness of the proposed solution and also show that the IDS works
generally better than analogous algorithms. In addition, as a consequence of its
small complexity, this IDS would be easily implemented in a real system.
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Abstract. The incremental Boolean combination (incrBC ) technique is
a new learn-and-combine approach that is proposed to adapt ensemble-
based pattern classification systems over time, in response to new data
acquired during operations. When a new block of training data becomes
available, this technique generates a diversified pool of base classifiers
from the data by varying training hyperparameters and random initial-
izations. The responses of these classifiers are then combined with those
of previously-trained classifiers through Boolean combination in the ROC
space. Through this process, an ensemble is selected from the pool, where
Boolean fusion functions and thresholds are adapted for improved accu-
racy, while redundant base classifiers are pruned. Results of computer
simulations conducted using Hidden Markov Models (HMMs) on syn-
thetic and real-world host-based intrusion detection data indicate that
incrBC can sustain a significantly higher level of accuracy than when the
parameters of a single best HMM are re-estimated for each new block of
data, using reference batch and incremental learning techniques. It also
outperforms static fusion techniques such as majority voting for com-
bining the responses of new and previously-generated pools of HMMs.
Pruning prevents pool sizes from increasing indefinitely over time, with-
out adversely affecting the overall ensemble performance.

1 Introduction

In practice, pattern recognition systems are typically designed a priori using
limited and imbalanced data acquired from complex changing environments.
Various one- and two-class neural and statistical classifiers have been applied
to detection tasks, for instance, to learn and detect normal or abnormal system
behavior. Since the collection and analysis of representative training data for
design an validation is costly, the classifier may represent an incomplete view of
system behavior. Since new training data may become available after a classifier
has originally been deployed for operations, it could be adapted to maintain or
improve performance over time.
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Given a new block of training data, incremental re-estimation of classifier pa-
rameters raises several challenges. Parameters should be updated from new data
without requiring access to the previously-learned data, and without corrupt-
ing previously-acquired knowledge [6]. State-of-the-art batch learning classifiers
must accumulate new training data in memory, and retrain from the start using
all (new and previously-accumulated) data. A number of classifiers in literature
have been designed with the inherent ability to perform supervised incremental
learning. However, the decline in performance caused by knowledge corruption
remains an issue. Indeed, single classifier systems for incremental learning may
not adequately approximate the underlying data distribution when there are
multiple local maxima in the solution space [1].

Ensemble methods have been employed to overcome such limitations [6]. The-
oretical and empirical evidence suggests that combining the responses of several
accurate and diverse classifiers can enhance the overall accuracy and reliability
of a pattern classification system [4,10]. Despite reducing information to binary
decisions, combining responses at the decision level, in the Receiver Operat-
ing Characteristic (ROC) space, allows to combine across a variety of classifiers
trained with different hyperparameters, feature subsets and initializations.

In this paper, a new ensemble-based technique called incremental Boolean
combination (incrBC ) is proposed for incremental learning of new training data
according to a learn-and-combine approach. When a new block of training data
becomes available, it is used to generate a new pool of classifiers by varying train-
ing hyperparameters and random initializations. The responses from the newly-
trained classifiers are then combined to those of the previously-trained classifiers
by applying Boolean combination in the ROC space. The proposed system al-
lows to improve overall accuracy by evolving an ensemble of classifiers (EoCs) in
which Boolean fusion functions and decision thresholds are adapted. Since the
pool size grows indefinitely over time, incrBC integrates model management
strategies to limit the pool size without significantly degrading performance.

For proof-of-concept, incrBC is applied to adaptive anomaly detection from
system call sequences with Hidden Markov Models (HMMs). The experiments
are conducted on both synthetically generated and sendmail data from the Uni-
versity of New Mexico [11]. Learning new data allows to account for rare events,
and hence improve detection accuracy and reduce false alarms. The performance
of the proposed system is compared to that of the reference algorithms for batch
and incremental learning of HMM parameters. In addition, the performance
achieved with Boolean fusion functions is compared to that of median (MED)
and majority vote (VOTE) functions combining the outputs from pool of HMMs.

2 Learn-and-Combine Approach Using Incremental
Boolean Combination

Boolean combination (BC) has recently been investigated to combine the de-
cision of multiple crisp or soft one- or two-class classifiers in the ROC space
[8]. These threshold-optimized decision-level combination techniques can out-
perform several techniques in the Neyman-Pearson sense, yet they assume that
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the classifiers are conditionally-independent, and that their corresponding ROC
curves are convex and proper. These assumptions are rarely valid in practice,
where classifiers are designed using limited and imbalanced data. In previous
research, the authors proposed BC techniques [3] for efficient fusion of multiple
ROC curves using all Boolean functions, without any prior assumptions. These
technique apply to batch learning of a fixed-size data set.

In this paper, an extension to the batch BC techniques (proposed in [3]) –
called incremental BC (incrBC ) technique – is proposed for incremental learning
of new training data during operations. In response to a new block of data, this
learn-and-combine approach consists in generating a new pool of classifiers, and
then applying incrBC to combine ROC curves of the new pool with the ROCCH
obtained with previously-obtained data.

As described in Algorithm 1, incrBC uses each Boolean function to combine
the responses corresponding to each decision threshold from the first classifier
to those from the second classifier. Fused responses are then mapped to vertices

Algorithm 1. incrBC (λ1, λ2, . . . , λK ,V): Incremental Boolean combination of classifiers

input : K classifiers (λ1, λ2, . . . , λK) and a validation set V of size |V|
output: ROCCH of combined classifiers where each vertex is the result of 2 to K

combination of crisp classifiers. Each combination selects the best decision
thresholds (λi, tj) and Boolean function, which are stored in the set (S)

1 nk ← no. decision thresholds of λk using V // no. vertices on ROC(λk)
2 BooleanFunctions ← {a∧b,¬a∧b, a∧¬b,¬(a∧b), a∨b,¬a∨b, a∨ ¬b,¬(a∨b), a⊕b, a ≡ b}

compute ROCCH1 of the first two classifiers (λ1 and λ2)
3 allocate F an array of size: [2, n1 × n2] // temporary storage of combination results
4 foreach bf ∈ BooleanFunctions do
5 for i ← 1 to n1 do
6 R1 ← (λ1, ti) // responses of λ1 at decision threshold ti using V
7 for j ← 1 to n2 do
8 R2 ← (λ2, tj) // responses of λ2 at decision threshold tj using V
9 Rc ← bf(R1, R2) // combine responses using current Boolean function

10 compute (tpr, fpr) of Rc using V // map combined responses to ROC space
11 push (tpr, fpr) onto F

12 compute ROCCH2 of all ROC points in F
13 nev ← number of emerging vertices
14 S2 ← {(λ1, ti), (λ2, tj), bf} // set of selected decision thresholds from each

classifier and Boolean functions for emerging vertices

15 for k ← 3 to K do
16 allocate F of size: [2, nk × nev ]
17 foreach bf ∈ BooleanFunctions do
18 for i ← 1 to nev do
19 Ri ← Sk−1(i) // responses from previous combinations
20 for j ← 1 to nk do
21 Rk ← (λk, tj)
22 Rc ← bf(Ri, Rk)
23 compute (tpr, fpr) of Rc using V
24 push (tpr, fpr) onto F

25 compute ROCCHk of all ROC points in F
26 nev ← number of emerging vertices
27 Sk ← {Sk−1(i), (λk, tj), bf} // set of selected subset from previous combinations,

decision thresholds from the newly-selected classifier, and Boolean functions for
emerging vertices

28 store Sk : 2 ≤ k ≤ K
29 return ROCCHK
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in the ROC space, and their ROC convex hull (ROCCH) is computed. Vertices
that are superior to the ROCCH of original classifiers are then selected. The set
(S) of decision thresholds from each classifier and Boolean functions correspond-
ing to these vertices is stored, and the ROCCH is updated to include emerging
vertices. The responses corresponding to each decision threshold from the third
classifier are then combined with the responses of each emerging vertex, and so
on, until the last classifier in the pool is combined. The BC technique yields
a final ROCCH for visualization and selection of operating points, and the set
of selected thresholds and Boolean functions, S, for each vertex on the com-
posite ROCCH to be applied during operations. For a pool of K soft classifiers
each comprising n crisp classifiers, the worst-case time complexity required for
combinations (during the design phase) is O(Kn2) Boolean operations.

Selecting crisp detectors from all HMMs in the pool leads to unnecessarily
high computational and memory complexity since the pool size grows as new
blocks of data become available. In addition, HMMs are combined according
to the order in which they are stored in the pool. An HMM trained on new
data may capture different underlying data structure and could replace sev-
eral previously-selected HMMs. Model management mechanisms are therefore
required for ensemble selection and pruning less relevant members of the pool.

Model Selection. Ensemble selection is performed at each new block of data,
and the best ensemble of classifiers is selected from the pool based on different
optimization criteria and selection strategies, each one seeking to increase accu-
racy and reduce the computational and memory complexity [9]. Optimization
criteria include ensemble accuracy, entropy and diversity. Ensemble selection
strategies include ranking- and search-based techniques. In ranking-based tech-
niques, the pool members are ordered according to some performance measure
on a validation set, and the top classifiers are then selected to form an ensemble.
Search-based techniques first combine the outputs of classifiers and then select
the best performing ensemble evaluated on a validation set.

The proposed ensemble selection algorithm, BCsearch, (see Algorithm 2) em-
ploys both rank- and search-based selection strategies to optimize the area under
the ROCCH (AUCH)1. In contrast with existing techniques, BCsearch exploits
the monotonicity of the incrBC algorithm for an early stopping criterion. Fur-
thermore, the final composite ROCCH is always stored which allows for visu-
alization of the whole range of performance and adaptation to changes in prior
probabilities and costs of errors. This can be achieved by adjusting the desired
operational point, which activates different classifiers, decision thresholds and
Boolean functions.

As described in Algorithm 2, the BCsearch algorithm employs an incremental
search strategy. It starts by ranking all classifiers in decreasing order of their
AUCH accuracy on a validation set and then selects the classifier with the largest
AUCH value. Next, it applies the incrBC algorithm to combine the selected
1 Other ROC-based measures, such as the partial AUCH or the true positive rate at

a required false positive rate, can also be measured for a region-specific accuracy.
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Algorithm 2. BCsearch(P,V): Boolean combination – incremental search

input : Pool of classifiers P = {λ1, λ2, . . . , λK} and a validation set V
output: Ensemble of base classifiers (E) selected from the pool P

1 set tol // set the tolerance value for AUCH
2 foreach λk ∈ P do
3 compute ROC curves and their ROCCHk, using V
4 sort classifiers (λ1, . . . , λK) in descending order of AUCH(ROCCHk) values
5 λ1 = arg maxk{AUCH(ROCCHk) : λk ∈ P}
6 E ← λ1 // select classifier with the largest AUCH value
7 foreach λk ∈ P\E do // remaining classifiers in P
8 ROCCHk=incrBC ((λ1, λk),V)

9 λ2 = arg maxk{AUCH(ROCCHk) : λk ∈ P\E}
10 E ← E ∪ λ2 // select classifier with largest AUCH improvement to E
11 ROCCH1 ← ROCCH2 // update the convex hull
12 S2 ← {(λ1, ti), (λ2, ti′), bf} // Set of selected decision thresholds from each

classifier and selected Boolean functions (from incrBC algorithm)
13 j ← 3
14 repeat
15 foreach λk ∈ P\E do
16 ROCCHk=incrBC ((Sj−1, λk),V)

17 λj = arg maxk{AUCH(ROCCHk) : λk ∈ P\E}
18 E ← E ∪ λj

19 ROCCHj−1 ← ROCCHj

20 Sj ← {Sj−1(i), (λj , ti′ ), bf} // Set of selected subset from previous combinations,
decision thresholds from the newly-selected classifiers, and Boolean functions
(derived from incrBC algorithm)

21 j ← j + 1

22 until AUCH(ROCCHj) ≤ AUCH(ROCCHj−1) + tol // no improvement
23 store Sj , 2 ≤ j ≤ K
24 return E

classifier with each of the remaining classifiers in the pool. The classifier that
most improves the AUCH accuracy of the EoCs is then selected. The cumulative
EoCs are then combined with each of the remaining classifiers in the pool (using
incrBC ), and the classifier that provides the largest AUCH improvement to the
EoCs is selected, and so on. The algorithm stops when the AUCH improvement
of the remaining classifiers is lower than a user-defined tolerance value, or when
all classifiers in the original ensemble are selected. Given a pool of K classifiers,
the worst-case time complexity of this selection algorithm is O(K2) w.r.t. the
number of Boolean combination of incrBC. However, this complexity is only
attained when the algorithm selects all classifiers (zero tolerance). In practice,
the computational time is typically lower depending on the tolerance value.

Model Pruning. As new blocks of data are learned incrementally, pruning less
relevant models is essential to limit the pool size |P| (and memory resources)
from growing indefinitely. With incrBC, classifiers that go unselected over time
are discarded. A counter is therefore assigned to each classifier in the pool in-
dicating the number of blocks for which an classifier was not selected as an
ensemble member. A classifier is then pruned from the pool, according to a user-
defined life time (LT ) expectancy value of unselected models. For instance, with
an LT = 3 all classifiers that have not been selected after receiving three blocks
of data, as indicated by their counters, are discarded from the pool.
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3 Simulation Results

Host-based intrusion detection systems applied to anomaly detection (AD) typ-
ically monitor for significant deviations in system call sequences, since system
calls are the gateway between user and operating system’s kernel mode. Among
various neural and statistical classifiers, techniques based on HMMs have been
shown to produce a high level of performance [11], although standard tech-
niques for re-estimating HMM parameters involve batch learning [2]. Designing
an HMM for AD involves estimating HMM parameters and the number of hidden
states (N) from the training data. incrBC allows to adapt AD to newly-acquired
data based on a learn and combine approach.

Proof-of-concept simulations are conducted on both synthetically generated
data and sendmail process data collected at the University of New Mexico
(UNM)2 [11]. The synthetic data generator is based on the conditional rela-
tive entropy (CRE) [3,7], which controls the irregularity of the generated data
(CRE = 0, perfect regularity and CRE = 1, complete irregularity). The syn-
thetically generated data simulate a complex process, with an alphabet Σ = 50
symbols and CRE = 0.4. The sizes of injected anomalies (AS) are assumed
equal to the detector window (DW ) sizes. The training is conducted on ten
successive blocks Dk, for k = 1, . . . , 10, of normal system call sequences, each
of length DW = 4 symbols. For the synthetic data, each block comprises 500
sub-sequences, whereas the validation (V) and test (T ) sets are comprised of
2, 000 and 5, 000 labeled sub-subsequences (normal or anomalous). For sendmail
data, each block comprises 100 sub-sequences, and each V and T comprise 450
sub-sequences. In both cases, the anomaly size is AS = 4 symbols and the ratio
of normal to anomalous sequences is 4 : 1.

For each Dk, 20 new base HMMs are generated and appended to the pool
(P). These ergodic HMMs are trained with 20 different number of states (N =
5, 10, . . . , 100) according to the Baum-Welch (BW) algorithm. For each N value,
10-fold cross-validation and ten different random initializations are employed to
select the HMM (λk

N ) that gives the highest AUCH on V . The HMMs from the
pool (of increasing size |P| = 20, 40, . . . , 200 HMMs) are then provided for in-
cremental combination according to the incrBC technique. The same training,
validation and selection procedures are applied to the other techniques. However,
for the reference batch Baum-Welch (BBW) the training is conducted on cumu-
lative data blocks (D1 ∪ D2 . . . ∪ Dk), and both online Baum-Welch (OBW) [5]
and IBW [2] algorithms resume the training from the previously-learned HMMs
using only the current block of data (Dk).

Incremental BC without model management. The performance of the
proposed incrBC technique is first presented without employing the model man-
agement strategy. For a given block Dk, all available HMMs in P were selected
and combined according to incrBC. As illustrated in Figure 1, the average AUCH
accuracy achieved by applying this technique is highest overall. It is significantly
2 http://www.cs.unm.edu/~immsec/systemcalls.htm

http://www.cs.unm.edu/~immsec/systemcalls.htm
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(b) Sendmail data.

Fig. 1. Average AUCH of techniques used for incremental learning over 10 succes-
sive blocks of data Dk. For each block, the HMMs are trained according to each
technique with 20 different states (N = 5, 10, . . . , 100), providing a pool of size
|P| = 20, 40, . . . , 200 HMMs. Numbers above points are the N values for BBW, OBW
and IBW that achieved the highest AUCH accuracy on each block. Error bars in (a)
are lower and upper quartiles over ten replications.

higher than that of the reference BBW, most notably when provided with lim-
ited training data in the first few blocks. The incrBC effectively exploits the
complementary information provided from the pool of HMMs trained with dif-
ferent number of states and different initializations, and using newly-acquired
data. Not surprisingly, OBW leads to the lowest level of accuracy, as one pass
over limited data is insufficient to capture the underlying data structure. IBW
outperforms OBW since it re-estimates HMM parameters iteratively over each
block using a fixed learning rate [2].

The MED and VOTE fusion functions do not improve accuracy with respect
to the Boolean functions produced with incrBC, which reflects their inabilities
to exploit the complementary information. The MED function directly combines
HMM likelihood values for each sub-sequence during operations, while VOTE
considers the crisp decisions from HMMs at optimal operating thresholds (equal
error rates). In contrast, incrBC applies ten Boolean functions to the crisp de-
cisions provided by the thresholds of each HMM. Then, it selects the decision
thresholds and Boolean functions that improve the overall ROCCH on the val-
idation set V . Exploring all decision thresholds before selection may increase
ensemble diversity, and improve overall system accuracy.

Model selection. Figure 2 presents the impact on accuracy of using the
BCsearch algorithm proposed for selection of ensembles in the incrBC tech-
nique (compared to that of incrBC from Figure 1). The results in Figure 2a
(using synthetic data) correspond to the first replication of Figure 1a. As shown
in Figure 2, BCsearch maintains a AUCH accuracy that is comparable to that of
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(a) Synthetic data (tolerance = 0.01)
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(b) Sendmail data (tolerance = 0.003)

Fig. 2. Average AUCH accuracy achieved when the incrBC technique employs
BCsearch for model selection, over 10 successive blocks of data Dk. For each block,
values on the arrows correspond to the number of models (EoHMM size) selected by
each technique from the overall pool of size |P| = 20, 40, . . . , 200 HMMs. The perfor-
mance of the BBW used to train a single best HMM, where the best state value is
selected at each block, is also shown for reference.

incrBC. For each block however, the size of selected EoHMMs, |E|, is reduced
significantly compared to the original pool of size |P| = 20, 40, . . . , 200 HMMs.
For instance, at the 10th data block in Figure 2a, BCsearch selects an ensem-
ble of size |E| = 7 from the generated pool of size |P| = 200 HMMs (selected
with incrBC ). BCsearch provides compact and accurate ensembles by exploiting
the order in which HMMs are combined and the benefit achieved by cumulative
EoHMMs before selecting a new ensemble member.

Model pruning. Figure 3 presents the AUCH accuracy of the full incrBC tech-
nique, employing BCsearch and the pruning strategy according to various life time
(LT) expectancy values. An HMM is pruned if it is not selected during a LT corre-
sponding to 1, 3 or 5 data blocks. Figure 3a illustrates the impact on AUCH accu-
racy of pruning the pool of HMMs in Figure 2a (synthetic data), while Figure 3b il-
lustrates the impact of pruning the pool of HMMs in Figure 2b (sendmail data). As
shown in Figure 3a, the level of AUCH accuracy achieved with incrBC decreases
when LT varies from ∞ to 1. Early punning (LT = 1) of HMMs that have not
improved ensemble performance during a given learning stage, may lead to knowl-
edge corruption, and hence a decline in system performance. These HMMs may
provide complementary information to newly-generated HMMs, depending on the
data. This is illustrated in Figure 3b, where the decline in AUCH for LT = 1 is
relatively smaller for sendmail data, which incorporates more redundancy than
the synthetically-generated data. As shown in Figures 3a and 3b, the performance
achieved with a delayed pruning of HMMs (e.g., LT = 3 and 5) compares to that
of retaining all generated HMMs in the pool (LT = ∞). For fixed tolerance and
LT values, incrBC is capable of selecting small EoHMMs and further reducing the
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BCsearch(LT = 1)
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BCsearch(LT = 3)
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Bsearch(LT = 5)
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|P| 20 40 60 80 92 97 92 93 94 92
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Fig. 3. Average AUCH accuracy achieved when the incrBC technique uses BCsearch

and pruning of HMM pools on (a) synthetic and (b) UNM sendmail data. The size
of selected EoHMMs and that of the pool are presented for each data block below
the graphs. The performance of the BBW algorithm, of incrBC without model man-
agement (Figure 1), and of incrBC when HMMs are combined without any pruning,
LT = ∞ (Figure 2), are also shown for reference.

size of the pool. A fixed-size pool may be maintained by tuning the tolerance and
LT values upon receiving new blocks of data.

4 Conclusions

This paper presents a new ensemble-based technique called incremental Boolean
combination (incrBC ) for incremental learning of new training data according
to a learn-and-combine approach. Given a new block of training data, a diver-
sified pool of base classifiers is generated from the data, and their responses
are combined with those of previously-trained classifiers in the ROC space. A
BCsearch algorithm selects accurate ensemble of classifiers for operations. This
technique allows to adapt Boolean fusion functions and decision thresholds over
time, while punning redundant base classifiers. The proposed system is capable
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of changing its desired operating point during operations, and hence allow to
account for changes in prior probabilities and costs of errors.

During simulations conducted on both synthetic and real-world host-based
intrusion detection data using HMMs, the proposed system has been shown to
achieve a higher level of accuracy than when parameters of a single best HMM
are estimated, using reference batch and incremental learning techniques. It also
outperforms ensemble techniques that use the median and majority vote fusion
functions to combine new and previously-trained HMMs. The system has shown
to form compact ensembles for operations, while maintaining or improving the
overall system accuracy. Pruning has been shown to limit the pool size from
increasing over time, without negatively affecting the overall ensemble accuracy.

The robustness of the proposed learn-and-combine approach depends on main-
taining a representative validation set over time, for selection of base classifiers,
and for adaptation of decision thresholds and Boolean functions. Future work in-
volves applying incrBC to real-world problems that feature heavily imbalanced
data sampled from dynamically-changing environments.
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Abstract. Pattern recognition systems have been widely used in ad-
versarial classification tasks like spam filtering and intrusion detection
in computer networks. In these applications a malicious adversary may
successfully mislead a classifier by “poisoning” its training data with
carefully designed attacks. Bagging is a well-known ensemble construc-
tion method, where each classifier in the ensemble is trained on a different
bootstrap replicate of the training set. Recent work has shown that bag-
ging can reduce the influence of outliers in training data, especially if
the most outlying observations are resampled with a lower probability.
In this work we argue that poisoning attacks can be viewed as a particu-
lar category of outliers, and, thus, bagging ensembles may be effectively
exploited against them. We experimentally assess the effectiveness of
bagging on a real, widely used spam filter, and on a web-based intrusion
detection system. Our preliminary results suggest that bagging ensem-
bles can be a very promising defence strategy against poisoning attacks,
and give us valuable insights for future research work.

1 Introduction

Security applications like spam filtering, intrusion detection in computer net-
works, and biometric authentication have been typically faced as two-class clas-
sification problems, in which the goal of a classifier is to discriminate between
“malicious” and “legitimate” samples, e.g., spam and legitimate emails. How-
ever, these tasks are quite different from traditional classification problems, as
intelligent, malicious, and adaptive adversaries can manipulate their samples to
mislead a classifier or a learning algorithm. In particular, one of the main issues
to be faced in a so-called adversarial classification task [6] is the design of a
robust classifier, namely, a classifier whose performance degrades as gracefully
as possible under attack [6,12]. Adversarial classification is attracting a growing
interest from the pattern recognition and machine learning communities, as wit-
nessed by a recent workshop held in the context of the NIPS 2007 conference 1,
and by a special issue of Machine Learning [13] entirely dedicated to this topic.
1 http://mls-nips07.first.fraunhofer.de

C. Sansone, J. Kittler, and F. Roli (Eds.): MCS 2011, LNCS 6713, pp. 350–359, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In this work we consider a specific class of attacks named causative attacks in
[2,1], and poisoning attacks in [11], in which the adversary is assumed to control
a subset of samples that will be used to train or update the classifier, and he
carefully designs these samples to mislead the learning algorithm. For instance, in
intrusion detection skilled adversaries may inject poisoning patterns to mislead
the learning algorithm which infers the profile of legitimate activities [11] or
intrusions [15,4]; while in spam filtering adversaries may modify spam emails
by adding a number of “good words”, i.e., words which are likely to appear in
legitimate emails and not in spam, so that when a user reports them as spam to
the filter, it becomes more prone to misclassify legitimate emails as spam [14].

We argue that the problem of designing robust classifiers against poisoning
attacks can be formulated as a problem in which one aims to reduce the influence
of outlier samples in training data. The main motivation is that the adversary
aims to “deviate” the classification algorithm from learning a correct model or
probability distribution of training data, and typically can control only a small
percentage of training samples. If this were not true, namely, poisoning samples
were similar to other samples within the same class (or even to novel samples
which represent the normal evolution of the system), their effect would be neg-
ligible. Since bagging, and in particular weighted bagging [19], can effectively
reduce the influence of outlying observations in training data [9], in this work
we experimentally investigate whether bagging ensembles can be exploited to
build robust classifiers against poisoning attacks. We consider two relevant ap-
plication scenarios: a widely deployed text classifier in spam filtering [16], and
a basic version of HMM-Web, an Intrusion Detection System (IDS) for web
applications [5].

The paper is structured as follows: in Sect. 2 we review related works, in
Sect. 3 we highlight the motivations of this work, in Sect. 4 we describe the
problem formulation and the considered applications, in Sect. 5 we present our
experiments, and, eventually, in Sect. 6 we draw conclusions and sketch possible
future work.

2 Background

The aim of this section is twofold. We first discuss works which investigated the
effectiveness of bagging ensembles in the presence of outliers (Sect. 2.1). Then,
we shortly review works related to poisoning attacks (Sect. 2.2).

2.1 Bagging in the Presence of Outliers

Bagging, short for bootstrap aggregating, was originally proposed in [3] to im-
prove the classification accuracy over an individual classifier, or the approxima-
tion error in regression problems. The underlying idea is to perturb the training
data by creating a number of bootstrap replicates of the training set, train a
classifier on each bootstrap replicate, and aggregate their predictions. This al-
lows to reduce the variance component of the classification or estimation error
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(in regression) (e.g., [3,7]). Indeed, bagging has shown to be particularly success-
ful when applied to “unstable” classifiers (i.e., classifiers whose predictions vary
significantly when small variations in training data occur) like decision trees and
neural networks. Other explanations to the effectiveness of bagging were also
proposed; in particular, in [9] it was argued that bagging equalizes the influ-
ence of training samples, namely, it reduces the influence of outlier samples in
training data. This was also experimentally verified on a simple task in [10], and
exploited in [8] to develop outlier resistant PCA ensembles.

To further reduce the influence of the most outlying observations in training
data, weighted bagging was proposed in [19,18]. The rationale behind this ap-
proach is to resample the training set by assigning a probability distribution over
training samples, in particular, lower probability weights to the most outlying
observations. The method can be summarised as follows. Given a training set
Tn = {xi, yi}n

i=1, and a set of probability weights w1, . . . , wn, for which it holds∑n
i=1 wi = 1:

1. create m bootstrap replicates of Tn by sampling (xi, yi) with probability wi,
i = 1, . . . , n;

2. train a set of m classifiers, one on each bootstrap replicate of Tn;
3. combine their predictions, e.g., by majority voting, or averaging.

Note that this corresponds to the standard bagging algorithm [3] when wi = 1/n,
i = 1, . . . , n, and the majority voting is used as combining rule.

The set of weights w1, . . . , wn was estimated in [19,18] using a kernel density
estimator. Since kernel density estimation can be unreliable in highly dimensional
feature spaces, the authors exploited a boosted kernel density estimate, given by

f(xi) =
n∑

j=1

wj

(2π)d/2σd
k(xi,xj) , (1)

where k(xi,xj) = exp (−γ||xi − xj ||2) is a Gaussian kernel, and the set of
weights w1, . . . , wn is iteratively estimated as follows. Initially, all samples are
equally weighted, i.e., wi = 1/n, i = 1, . . . , n. Each weight is then iteratively
updated according to w

(k+1)
i = w

(k)
i +log (f (k)(xi)/g(k)(xi)), where k represents

current iteration, and g(xi) is the “leave-one-out” estimate of f(xi), given by

g(xi) =
n∑

j=1

wj

(2π)d/2σd
k(xi,xj)I(j �= i) , (2)

where I(j �= i) equals 0 (1) only when j = i (j �= i). Once convergence or a
maximum number of iterations is reached, the final weights are inverted and
normalized as

wi =
1

w
(k)
i

/

n∑
j=1

1

w
(k)
j

, (3)

so that weights assigned to outlying observations exhibit lower values.
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2.2 Works on Poisoning Attacks

Poisoning attacks were investigated in the field of adversarial classification,
mainly considering specific applications. According to a taxonomy of potential
attacks against machine learning algorithms proposed in [2,1], they can be more
generally referred to as causative attacks, and can be exploited either to increase
the false positive rate (i.e., the percentage of misclassified legitimate samples) or
the false negative rate at operation phase. They were thus further categorised
as availability or integrity attacks.

Poisoning attacks were devised against spam filters [14] (based on adding “good
words” to spam emails, as described in Sect. 1) and simple online IDSs [2,11].
Instead, in [17] a countermeasure against them was proposed; in particular, the
framework of Robust Statistics was exploited to reduce the influence of poisoning
attacks in training data (which were implicitly considered “outliers”).

3 Motivations of This Work

The aim of this section is to further clarify the scope of this work. As mentioned in
Sect. 1, we argue that poisoning attacks can be regarded as outlying observations
with respect to other samples in training data. The reason for that is twofold:

1. since the goal of a poisoning attack is to “deviate” the classification algorithm
from learning a correct model or probability distribution of one of the two
classes (or both), poisoning attack samples have to be different from other
samples within the same class;

2. since the adversary is likely to control only a small percentage of training
data in real applications, each poisoning sample should be able to largely
deviate the learning process.

In addition, we also point out that several defence strategies implicitly deal with
poisoning attacks as they were outliers, e.g., [17]. Besides this, as discussed in
Sect. 2, a number of works highlighted that bagging (and in particular weighted
bagging) can reduce the influence of outliers in training data. Thus, in this
work we experimentally investigate whether bagging and weighted bagging can
be successfully exploited to fight poisoning attacks in two different adversarial
classification tasks, namely, spam filtering and intrusion detection. We also point
out that comparing bagging and weighted bagging with the defence strategies
mentioned in Sect. 2 is out of the scope of this work, as we are only considering
a preliminary investigation.

4 Problem Formulation and Application Scenarios

In this section we briefly describe the problem formulation related to the two case
studies considered in this work, namely, spam filtering and web-based intrusion
detection. For the spam filtering task, we considered a text classifier proposed
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in [16], which is currently adopted in several spam filters, including SpamAs-
sassin (http://spamassassin.apache.org), SpamBayes ((http://spambayes.
sourceforge.net), and BogoFilter (http://bogofilter.sourceforge.net).
It estimates the probability for an email to be spam mainly based on its textual
content. We tested the effectiveness of this classifier, as well as that of bagging en-
sembles, against a poisoning attack proposed in [14], aimed at generating a higher
false positive rate at operation phase (i.e., a causative availability attack [1]).
The rationale is to modify spam emails by adding “good words” without making
them appear as legitimate emails (e.g., using white text on a white background
2), so that users still report them as spam to the filter, increasing the probability
for legitimate emails including those words to be classified as spam.

For the intrusion detection task, we focused on web applications. Web
applications are largely employed in simple websites, and in security-critical en-
vironments like medical, financial, military and administrative systems. A web
application is a software program which generates informative content in real
time, e.g., an HTML page, based on user inputs (queries). Cyber-criminals may
divert the expected behaviour of a web application by submitting malicious
queries, either to access confidential information, or to cause a denial of ser-
vice (DoS). In our experiments we considered a simplified version of HMM-Web,
a state-of-the-art IDS for web applications based on Hidden Markov Models
(HMMs) [5]. We devised a poisoning attack against this classifier, aimed at al-
lowing more intrusions at operation phase (i.e., a causative integrity attack [1]),
as inspired by [2,11]. To this aim, we generate attack queries with (1) a different
structure with respect to legitimate queries, and (2) portions of structures simi-
lar to intrusive sequences. This attack turned out to be very effective in practice,
as it degrades the classifier’s performance when very few poisoning attacks are
injected into the training set. On the contrary, we noted that the same classifier
was very robust to the injection of random sequences or of the intrusive ones.

5 Experiments

We start describing the experimental setup for the spam filtering and web-based
intrusion detection tasks. In both experiments performance was evaluated as pro-
posed in [12]. In particular, we computed the area under the ROC curve (AUC) in
the region corresponding to FP rates in [0, K]: AUCK = 1/K

∫K

0
TP(FP)dFP ∈

[0, 1], where K denotes the maximum allowed FP rate. This measure may be con-
sidered as more informative than the AUC since it focuses on the performance
around practical operating points (corresponding to low FP rates).

Spam filtering. Our experiments in spam filtering were carried out on the
publicly available TREC 2007 email corpus 3, which is made up of 25,220 legit-
imate and 50,199 spam emails. The first 10,000 emails (in chronological order)
were used as training set, while the remaining 65,419 were used as testing set.

2 http://www.virusbtn.com/resources/spammerscompendium/index
3 http://plg.uwaterloo.ca/~gvcormac/treccorpus07

http://spamassassin.apache.org
http://bogofilter.sourceforge.net
http://www.virusbtn.com/resources/spammerscompendium/index
http://plg.uwaterloo.ca/~gvcormac/treccorpus07
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The SpamAssassin filter was used to extract a set of distinct tokens from training
emails, which turned out to be 366,709. To keep a low computational complexity,
we selected a subset of 20,000 tokens (with the information gain criterion), and
used them as feature set. In particular, each email was represented by a Boolean
feature vector, whose values denoted either the absence (0) or presence (1) of the
corresponding tokens in the given email. We exploited the text classifier proposed
in [16] to build bagging and weighted bagging ensembles. We considered 3, 5, 10,
20, and 50 as the number of base classifiers, and the simple average to combine
their outputs. For weighted bagging, we set the γ parameter of the Gaussian
kernel as the inverse of the number of features (i.e., 0.5E−4), since the latter
corresponds to the maximum value of the distance between two samples. More-
over, we performed a further experiment by varying γ ∈ {1E−3, 1E−5, 1E−6}
besides the default value, to study the effect of this parameter on the robustness
of weighted bagging. To keep the kernel density estimation computationally neg-
ligible, we computed an estimate of f(x) and g(x) (see Sect. 2.1) by considering
a randomly chosen subset of 50 training spam emails (instead of the whole set).
We point out that this did not significantly affect the estimation of the probabil-
ity weights. Poisoning attack samples were created as follows. First, a set of spam
emails S was randomly sampled (with replacement) from the training set; then,
a number of randomly chosen “good words” (chosen among an available set of
good words) was added to each spam in S; and, finally, all spam emails in S were
added to the training set. As in [14], we investigated the worst case scenario in
which the adversary is assumed to know the whole set of “good words” used by
the classifier (which includes all tokens extracted from legitimate emails). In our
experiments we noted that the adversary is required to add up to about 5, 000
randomly chosen “good words” to each spam to make the classifier completely
useless at 20% poisoning (i.e., using 2,500 poisoning emails). We thus evaluated
the performance of the considered classifiers by varying the fraction of poisoning
attacks in [0, 0.2] with steps of 2%.

Web-based intrusion detection. We experimented with a dataset which
reflected real traffic on a production web server employed by our academic in-
stitution. We collected 69,001 queries towards the principal web application,
in a time interval of 8 months. We detected 296 intrusive attempts among
them. The first 10,000 legitimate queries (in chronological order) were used
as training set, while the remaining 58,705 legitimate queries and the intru-
sive queries were used as test set. Each web application query q has the form
a1 = v1&a2 = v2& . . .&an = vn, where ai is the i-th attribute, vi is its corre-
sponding value, and n is the number of attributes of q. We encoded each query
as the sequence of attributes and their values. 4 The HMM was trained using
the Baum-Welch algorithm, to exploit the underlying structure of legitimate
sequences, and consequently detect intrusions by assigning them a lower likeli-
hood. To build a simple and effective model, we initialized the HMM with two
states: one associated to the emission of symbols in even positions, and the other

4 The whole data set is available at
http://prag.diee.unica.it/pra/system/files/dataset_hmm_mcs2011.zip

http://prag.diee.unica.it/pra/system/files/dataset_hmm_mcs2011.zip
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associated to the emission of symbols in odd positions. The emission probability
of each symbol was initialized as its relative frequency in even or odd positions,
depending on the state. The state transition matrix was randomly initialized.
Similarly to spam filtering, we carried out experiments also considering bagging
and weighted bagging, with 3, 5, 10, 20 HMMs per ensemble, and the simple
average as combining rule. In order to apply the kernel density estimator used in
weighted bagging (remind that we deal with sequences of non-fixed length), we
first extracted all possible bigrams (i.e. contiguous subsequences of length two)
from legitimate and intrusive sequences. Then, we represented each sequence as
a Boolean feature vector, in which each value denotes either the absence (0) or
presence (1) of the corresponding bigram in the given sequence. The length of
each feature vector (total number of bigrams) turned out to be N = 205. As
in spam filtering, the default value of γ has been computed as the inverse of
the cardinality of the feature space, i.e., 1/N ≈ 5E−3, and f(x) and g(x) were
estimated using a subset of 50 training samples. The sensitivity of weighted bag-
ging to γ was further studied by varying γ ∈ {5E−4, 2.5E−3}. The poisoning
attacks against the HMM were built exploiting the rationale described in the
Sect. 4. In particular, poisoning sequences contained only bigrams which were
not present in legitimate sequences, but which might have been present in in-
trusive sequences. As this attack turned out to be very effective, we evaluated
the performance of the considered classifiers by varying the fraction of poisoning
attacks in [0, 0.02] with steps of 0.2%.

5.1 Experimental Results

In this section we report the results for spam filtering (Fig. 1) and web-based
intrusion detection (Fig. 2). We assessed performance using the AUC10% measure
in the spam filtering task (as in [12]), and AUC1% in the intrusion detection task
(since FP rates higher than 1% are unacceptable in this application). Results
are averaged over 5 repetitions, as poisoning samples were randomly generated.
We do not report standard deviation values as they turned out to be negligible.

First, note that AUC values decreased for increasing percentage of poisoning,
as expected. When no poisoning attack is performed (0%), all classifiers behaved
similarly, and, in particular, bagging and weighted bagging only slightly outper-
formed the corresponding single classifiers. Under attack, instead, bagging and
weighted bagging significantly outperformed the single classifiers. In particular,
the performance improvement was marked when the injected amount of poi-
soning attacks significantly affected the single classifier’s performance (see, for
instance, 8-10% of poisoning for spam classifiers).

Increasing the ensemble size of bagging classifiers turned out to significantly
improve the performance under attack only in the spam filtering task (Fig. 1,
left). The underlying reason could be that bagging can effectively drop the vari-
ance of the classification error by increasing the ensemble size (as mentioned in
Sect. 2.1, and shown in [7]); thus, increasing the ensemble size may be effective
only when poisoning attacks introduce a substantial variance in the classification
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Fig. 1. Left: performance of the spam classifier (S), bagging (B), and weighted bagging
with default γ (WB) against percentage of poisoning attacks in training data, for
different ensemble sizes (3,5,10,20,50). Right: performance of WB with ensemble sizes
of 5 and 20 against percentage of poisoning attacks in training data, for different γ.

error (whereas this may be not true when the error is highly biased). This aspect
can be a promising research direction to investigate.

We focus now on weighted bagging, which significantly improved the perfor-
mance over standard bagging in both experiments, as expected. This is clearly
due to the use of a kernel density estimator, which basically imputes outliers
in training data, and reduces their influence. To investigate the effectiveness of
weighted bagging more in depth, we considered different values of the γ pa-
rameter, as explained in the previous section. The rationale was to alter the
performance of the kernel density estimator. From Fig. 1 (right) one can imme-
diately note that a value of γ = 10−3 in the spam filtering task allowed weighted
bagging to completely remove poisoning attacks from training data (the perfor-
mance did not decrease). On the other hand, for γ = 10−6 performance was very
similar to that of standard bagging. Similar results were obtained in the intru-
sion detection task. Fig. 2 (left) shows that the higher γ, the more gracefully
the performance of weighted bagging decreased. It is worth noting that weighted
bagging can worsen performance with respect to standard bagging, even in ab-
sence of poisoning, if the weights assigned by the kernel density estimator to
samples in the same class exhibit a large variance. The reason is that this leads
to obtain a set of bootstrap replicates of the training set which do not reflect
the correct probability distribution of training samples.

To sum up, standard bagging can provide a significant improvement in perfor-
mance over an individual classifier, in particular against some kinds of poisoning
attacks. The effectiveness of weighted bagging is strictly related to the capa-
bility of estimating a reliable set of weights, namely, on the capability of the
kernel density estimator to correctly impute the outlying observations. However,
when this happens (as in our experiments) weighted bagging can provide a great
performance improvement. Besides this, when using a good kernel density es-
timator the adversary is required to spend more “effort” to build a poisoning
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Fig. 2. Left: performance of the HMM-web classifier (S), bagging (B), and weighted
bagging with default γ (WB) against percentage of poisoning attacks in training data,
for different ensemble sizes (3,5,10,20). Right: performance of WB with ensemble sizes
of 3 and 10 against percentage of poisoning attacks in training data, for different γ.

attack which misleads weighted bagging. For instance, in the case of spam fil-
tering the adversary would be required to add only a few “good words” to each
spam email, so that poisoning emails are not easily distinguishable from oth-
ers. Consequently, he would be required to control a much larger percentage of
training data, which may be not feasible in practice.

6 Conclusions and Future Work

In adversarial environments, like spam filtering and intrusion detection in com-
puter networks, classifiers must not only be accurate, but also robust to poison-
ing attacks, i.e., to the deliberate injection of malicious noise in the training set.
In this preliminary study we experimentally showed, for two relevant applica-
tions, that bagging ensembles may be a general, effective technique to address
the problem of poisoning attacks, regardless the base classification algorithm.
These results give us valuable insights for future research work. First, we plan to
theoretically investigate the effectiveness of bagging against poisoning attacks.
Second, we aim to study more general methods for better estimating the set of
resampling weights. Lastly, we want to investigate what categories of poison-
ing attacks can be effectively tackled by increasing the ensemble size (as this
emerged as an open problem from our experiments).
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Abstract. The assignment of an IP flow to a class, according to the
application that generated it, is at the basis of any modern network
management platform. In several network scenarios, however, it is quite
unrealistic to assume that all the classes an IP flow can belong to are
a priori known. In these cases, in fact, some network protocols may be
known, but novel protocols can appear so giving rise to unknown classes.
In this paper, we propose to face the problem of classifying IP flows by
means of a multiple classifier approach based on the Behaviour Knowl-
edge Space (BKS) combiner. It has been explicitly devised in order to ef-
fectively address the problem of the unknown traffic too. To demonstrate
the effectiveness of the proposed approach we present an experimental
evaluation on a real traffic trace.

1 Introduction

In the past decade, network traffic classification – i.e., the association of net-
work traffic flows to the network applications (e.g. FTP, HTTP, BitTorrent,
etc.) that generate them – has gained large attention from both industry and
academy. This is mainly due to two factors: the increasing unreliability of tradi-
tional classification approaches, combined with a strong interest in using traffic
classification for several practical applications as, for example, the enforcement
of Quality of Service and security policies, traffic/user profiling, network provi-
sioning and resource allocation.

Despite the massive contribution of the research community in this field, the
analysis of literature shows that there is still no perfect technique achieving 100%
accuracy when applied to the entire traffic observed on a network link [15]. Deep
Packet Inspection (DPI) is still considered today the most accurate approach,
but because of its lack of robustness to the increasing usage of encryption and
obfuscation techniques, and also for possible issues related to privacy, is mainly
used today as a reference (ground-truth) in order to evaluate the accuracy of
new experimental algorithms that should overcome these limitations. Most of
these algorithms are based on the application of machine-learning classification
techniques to traffic properties that do not need access to packets payload (that
is, user-generated content) and, even if their accuracy never reaches 100%, it
has been shown that they typically are more resistant to obfuscation attempts
and still applicable when encryption is in place [5, 23]. In order to improve the
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performance of network traffic classifiers based on machine-learning, lately, few
approaches based on the combination multiple classifiers have been presented.

In this work, we apply the Behaviour Knowledge Space (BKS) combiner [14]
to the problem of traffic classification, attempting the combination of classifiers
based on traditional and more recent traffic classification techniques using either
packet content or statistical properties of flows. We show on a real traffic trace
that it is possible to improve the overall classification accuracy over that of the
best-performing classifier.

In several network scenarios, however, it is quite unrealistic to assume that all
the classes an IP flow are a priori known. In these cases, in fact, some network
protocols may be known, but novel protocols can appear, giving rise to unknown
classes. Another advantage of the proposed approach is that it is straightforward
to use it in order to cope with the presence of the unknown classes. We also report
the BKS combiner performance in detecting unknown classes within real traffic
traces.

The rest of the paper is organized as follows: related works on traffic classifica-
tion are presented in Section 2. The BKS combiner is reviewed in Section 3. The
tools used for classifying network traffic traces are illustrated in Section 4, while
data and base classifiers are presented in Section 5.1. Then, an experimental
evaluation of the BKS combiner on real traffic traces is reported in Section 5.2.
Finally, some conclusions are drawn.

2 Related Work

In the past years, a large amount of research work has been devoted to traffic
classification. Several surveys and papers making comparisons among different
techniques [15] [22] [7] [18] have been published. These papers show pros and
cons of different methods, techniques and approaches (DPI- vs statistical- vs
port- based) as well as their inability to completely classify network traffic (i.e.,
reach 100% classification accuracy). On the other side, during the last years, re-
searchers of the machine-learning and pattern recognition communities have de-
veloped combination algorithms and approaches for classification problems that
allow several improvements, included an increase in overall classification accu-
racy [16]. A first simple combination approach to traffic classification, for the
network traffic classification, was proposed in [20]: three different classification
techniques are run in parallel (DPI, well-known ports and heuristic analysis),
and a decision on the final classification response is taken only when there is a
match between the results of two of them (otherwise the combiner reports “un-
known”). Inspired by research in the machine learning and pattern recognition
communities related to multiple classifier systems [16], we proposed – in [10]
and [9] – the idea of combining multiple traffic classifiers using advanced combi-
nation strategies. As for traffic classification, concepts like En-semble Learning
and Co-training have been introduced in [13], where a set of similar classifiers
co-participate to learning, while an advanced combination of different traffic
classification techniques has been shown in [6]. Finally, it is worth noticing that
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the approach of combining multiple classification techniques through specific al-
gorithms to build a more accurate multiple classifier system, has been already
used with success in other networking research areas as network intrusion and
anomaly detection [8].

3 The BKS Combiner

Since some traffic classifiers can be only seen as a Type 1 classifier (i.e. a classifier
that outputs only the most likely class), only criteria that can be applied to
classifiers that provide a crisp label as output can be considered. It is worth
noting, in fact, that some well-known combination schemes (such as the Decision
Templates proposed in [17]) cannot be applied to Type 1 classifiers, since they
require class probability outputs (i.e., the so-called Type 3 classifiers).

Among combiners that can be used for fusing label outputs, we proposed to
consider the Behavior-Knowledge Space (BKS ) approach. This choice is due to
the fact that it already demonstrated very good performance in combining traffic
classifiers [11] and that it is quite straightforward to use it in order to cope with
the problem of unknown classes.

BKS derives the information needed to combine the classifiers from a knowl-
edge space, which can concurrently record the decision of all the classifiers on
a suitable set of samples. This means that this space records the behavior of
all the classifiers on this set, and it is therefore called the Behavior-Knowledge
Space [14]. So, a BKS is a N -dimensional space where each dimension corre-
sponds to the decision of a classifier. Given a sample to be assigned to one of
m possible classes, the ensemble of the classifiers can in theory provide mN dif-
ferent decisions. Each one of these decisions constitutes one unit of the BKS. In
the learning phase each BKS unit can record m different values ci, one for each
class. Given a suitably chosen data set, each sample x of this set is classified
by all the classifiers and the unit that corresponds to the particular classifiers’
decision (called focal unit) is activated. It records the actual class of x, say j, by
adding one to the value of cj . At the end of this phase, each unit can calculate
the best representative class associated to it, defined as the class that exhibits
the highest value of ci. It corresponds to the most likely class, given a classifiers’
decision that activates that unit. In the operating mode, the BKS acts as a look-
up table. For each sample x to be classified, the N decisions of the classifiers are
collected and the corresponding focal unit is selected. Then x is assigned to the
best representative class associated to its focal unit.

In order to detect unknown classes we can consider the use of the following
decision rule:

C(x) = i

when ci > 0 and ci

T ≥ λ, otherwise x is rejected. T is the total number of
samples belonging to that focal unit (i.e. T =

∑m
k=1 ck), while λ is a suitably

chosen threshold (0 ≤ λ ≤ 1) which controls the reliability of the final decision.
By increasing λ we can detect an higher number of unknown flows, but this
will also correspond to the rejection of a number of known traffic flows whose
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reliability is quite low. This can even have a positive impact on the overall
performance, since most of these flows should be the misclassified ones.

4 Software Tools: TIE and WEKA

To perform experiments on real network traffic traces, and to combine differ-
ent traffic classifiers, in this work we used TIE1, TIE a software platform for
experimenting with and comparing traffic classification techniques. Algorithms
implementing different classification techniques are implemented as classification
plugins which are plugged into a unified framework supporting their compari-
son and combination. We refer the reader to [9] as regards the TIE platform as
well as the TIE-L7 classification plugin, which implements a DPI classifier using
the techniques and signatures from the Linux L7-filter project [1] and that we
used in this work to produce the ground truth, whereas, in the following, we
describe the new features we introduced in TIE in order to develop this work.
Different combination strategies, and in particular one implementing the BKS
approach, have been implemented in a TIE’s module called decision combiner,
while a set of support scripts have been developed in order to extract from the
ground-truth (generated by TIE-L7) the confusion matrix and the BKS matrix
needed for training the combiner. This information is written into configuration
files that are read at run time by the combination algorithm selected.

Furthermore, we used the WEKA2 tool, which implements a large number
of machine-learning classification techniques, to be able to rapidly test different
machine-learning approaches to traffic classification. We plan to implement few
of these techniques as TIE classification plugins, but in order to first study
and test a relevant number of machine-learning approaches we implemented a
“bypass” mechanism in TIE which is structured in three phases: (i) for each
flow, the corresponding classification features extracted by TIE (e.g. first ten
packet sizes, flow duration, etc.) along with the ground-truth label assigned by
TIE-L7, are dumped in a file in arff format (the format used by WEKA); (ii)
this file is split in the training and test sets used to train and test various WEKA
classifiers, which generate their classification output in arff format too. (iii) a TIE
classification plugin (developed for this purpose) reads the output of a WEKA
classifier and use it to take the same classification decision for each flow. Multiple
instances of such plugin can be loaded in order to support the output of multiple
“WEKA” classifiers at the same time.

Following this approach, TIE has a common view of both WEKA classifiers
and TIE classification plugins: all the classifiers are seen as TIE plugins. This al-
lowed us to easily test several classification approaches and to combine several of
them plus pre-existing TIE classification plugins not based on machine-learning
techniques (e.g. port-based and a novel lightweight payload inspection technique
we called Portload). In addition, based on the results of our studies on multi-
classification we can later implement in TIE only the best performing classifiers.
1 http://tie.comics.unina.it
2 http://www.cs.waikato.ac.nz/ml/weka
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5 Experimental Analysis

5.1 Data Set and Base Classifiers

For the experimental results shown in this paper we used the traffic trace de-
scribed in Table 1, in which we considered flows bidirectionally (biflows in the
following) [9]. To build the ground truth, each biflow has been labeled by run-
ning TIE with the TIE-L7 plugin in its default configuration, i.e. for each biflow
a maximum of 10 packets and of 4096 bytes are examined.

Table 1. Details of the observed traffic trace

Site Date Size Pkts Biflows

Campus Network of the University of Napoli Oct 3rd 2009 59 GB 80M 1M

Table 2. Traffic breakdown of the observed trace (after filtering out unknown biflows
and applications with less than 500 biflows)

Application Percentage of biflows
BITTORRENT 12.76

SMTP 0.78
SKYPE2SKYPE 43.86

POP 0.24
HTTP 16.3

SOULSEEK 1.06
NBNS 0.14
QQ 0.2
DNS 4.08
SSL 0.21
RTP 1.16

EDONKEY 19.21

From such dataset we then removed all the biflows labeled as UNKNOWN
(about 167,000) and all the biflows that summed to less than 500 for their corre-
sponding application label. Table 2 shows the traffic breakdown obtained3. This
set was then split in three subsets in the following percentages: (i) 20% classifiers
training set ; (ii) 40% classifiers & BKS validation set ; (iii) 40% classifiers & BKS
test set.

As base classifier, we have considered eight different traffic classifiers, which
are summarized in Table 3. The first six are based on Machine-Learning ap-
proaches which have been commonly used in the open literature on traffic clas-
sification, both in terms of learning algorithms (Decision Tree - J48, K-Nearest
Neighbor - K-NN, Random Tree - R-TR, RIPPER - RIP, Multilayer Percep-
tron - MLP, and Naive Bayes - NBAY) and features [21, 3, 19, 4]. As regards
the features, in Table 3 PS and IPT stands for Payload Size and Inter-Packet
Time [12], respectively. J48 and K-NN use the first 10 PS and IPT as feature

3 QQ is an instant messaging application.
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Table 3. Single classifiers

Label Technique Category Features
J48 J48 Decision Tree Machine Learning PS, IPT

K-NN K-Nearest Neighbor Machine Learning PS, IPT
R-TR Random Tree Machine Learning L4 Protocol, Biflow duration & size, PS & IPT statistics
RIP Ripper Machine Learning L4 Protocol, Biflow duration & size, PS & IPT statistics
MLP Multi Layer Perceptron Machine Learning PS
NBAY Naive Bayes Machine Learning PS

PL PortLoad Payload Inspection Payload
PORT Port Port Ports

vector, MLP and NBAY only consider the PS values, while R-TR and RIP take
into account PS and IPT statistics, as their average and standard deviation,
as well as the transport-level protocol of the biflow and the biflow duration (in
milliseconds) and size (in bytes). The PortLoad classifier (PL), instead, is a light-
weight payload inspection approach [2] that overcomes some of the problems of
DPI, as the computational complexity and the invasiveness, at the expense of
a reduced accuracy. PL uses the first 32 bytes of transport-level payload from
the first packet (carrying payload) seen in each direction. Finally, we have also
considered a standard traffic classifier (PORT ) which is simply based on the
knowledge of transport-level protocol ports.

Table 4 shows the biflows accuracy of each base classifier on the test set, for
each considered application. Different performance for each application implies
that the classifiers are quite complementary each other. Note that the PORT
classifier has a very low overall accuracy, which in general would suggest to
avoid its use in a multiple classifier system. This notwithstanding we decided to
consider it since it reaches a very high accuracy on some specific applications.
Finally, the last column contains the accuracies that would be obtained by the
oracle, that is, by selecting for each biflow the correct response when this is given
by at least one of the base classifiers. The overall accuracy obtainable by the
oracle (98.8%) demonstrates that the combination of the chosen base classifiers
is able to improve the results achieved by the best base classifier (97.2%).

5.2 Evaluation of the BKS Approach

We experimented the combination of the base classifiers from the previous section
using the BKS algorithm. When combining the classifiers we experimented with
different pools of them, as shown in Table 5, where the overall accuracies for
each pool and combiner are reported. The values show that in general it is
indeed possible to gather an improvement through combination, as suggested
theoretically by the oracle. As it can be expected, this improvement depends on
the choice of the classifiers. The port-based classifier has in general a negative
impact on the performance of the multiple classifier system, the same happens
for the Naive Bayes classifier. This behavior can be easily explained by looking
at their rather low performance as base classifiers (Table 4).
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Table 4. Classification accuracy – per-application and overall – of base classifiers (best
values are in bold font) and oracle

Classifier
J48 K-NN R-TR RIP MLP NBAY PL PORT ORACLE

Class
Bittorrent 98.8 97.4 98.9 98.6 55.1 79.9 7.7 21.0 99.9

SMTP 95.1 92.9 93.8 96.0 90.6 69.2 8.2 96.3 99.4
Skype2Skype 98.8 97.2 96.5 99.2 94.6 31.8 98.7 0 99.7

POP 96.0 95.0 98.7 93.9 0 79.6 29.2 100 100
HTTP 99.5 98.9 99.6 99.3 94.3 63.3 99.1 47.7 100

Soulseek 98.6 96.8 98.3 98.1 93 97.7 0 0 99.9
NBNS 78.4 75.9 79.9 80.4 9 0 0 0 85.4
QQ 0 0.7 2.5 0 0 0 0 0 3.2
DNS 93.6 92.6 95.3 94.4 51.1 86.2 100 99.7 100
SSL 96.1 93.1 95.2 93.7 69.5 68.2 99.1 0 99.6
RTP 84.0 74.1 64.5 77.3 0 41.5 0 0 92.2

EDonkey 93.0 91.7 93.3 91.5 72 16.1 92.9 0.1 95.7
overall 97.2 95.9 96.3 97.0 82.3 43.7 83.7 15.6 98.8

Table 5. Classification accuracy for different pools of classifiers combined

Pool of classifiers Combiner
J48 K-NN R-TR RIP MLP NBAY PL PORT BKS
X X X 97.7
X X X X 97.8
X X X X X 96.0
X X X X X X 97.3
X X X X X X 97.9
X X X X X X X 97.7
X X X X X X X 97.7
X X X X X X X X 97.4

The pool of classifiers achieving the best results is reported in Table 5, using 6
classifiers out of the 8 tested, and closely followed by the second pool in the table
that includes only 4 classifiers. The best BKS combiner attained a 97.9% overall
accuracy. This value should be interpreted by considering the highest overall
accuracy achieved by a base classifier (97.2%) and the maximum theoretically
possible combination improvement set by the oracle (98.8%): an improvement
equal to 43% of the maximum achievable.

Since the difference between the performance of the best BKS combiner and
of the runner-up is not significant, we used the pool reported in the second row
of Table 5 for the successive tests. This pool, in fact, does not include the K-NN
classifier which is quite time-consuming in the operating phase (an undesirable
feature for traffic classification systems). In particular, in Figure 1 the behavior
of the chosen BKS combiner as the λ threshold varies is reported. As it can be
noted, the proposed approach is able to detect over the 90% of the unknown
traffic with a decreasing of the accuracy on known flows of only a 2.5%.
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Fig. 1. Trade-off between accuracy and ability to detect the unknown classes

6 Conclusion

In this work we have presented and evaluated the Behaviour Knowledge Space
combiner for use in network traffic classification. This combiner has been explic-
itly designed in order to effectively address the problem of detecting unknown
traffic flows. An experimental evaluation of our proposal on a real traffic trace
demonstrated its effectiveness. As future work, we plan to define a methodology
for automatically selecting the λ threshold as a function of the considered net-
work scenario (e.g. QoS, security, etc.) as well as to test our approach on other
real traffic traces.

Acknowledgments

The research activities presented in this paper have been partially funded by
Accanto Systems and by LATINO project of the FARO programme jointly fi-
nanced by the Compagnia di San Paolo and by the Polo delle Scienze e delle
Tecnologie of the University of Napoli Federico II.

References

1. L7-filter, Application Layer Packet Classifier for Linux,
http://l7-filter.sourceforge.net

2. Aceto, G., Dainotti, A., de Donato, W., Pescapé, A.: PortLoad: taking the best of
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