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Preface

These proceedings contain 31 papers selected for presentation at the 9th Interna-
tional Conference on Applied Cryptography and Network Security (ACNS 2011)
held June 7-10, 2011 in Nerja (Malaga), Spain, and hosted by the Computer Sci-
ence Department of the University of Malaga.

Since 2003, ACNS is an annual conference that focuses on cutting-edge
advances and results in applied cryptography and systems/network security.
ACNS is a forum for research of academic as well as industrial/technical
nature.

This year, a total of 172 papers were submitted. They were evaluated on the
basis of research significance, novelty, and technical quality. Each submission was
reviewed by at least three members of the Program Committee (PC). The PC
meeting was held electronically and involved intensive discussions. In the end,
31 papers were selected for presentation at the conference, corresponding to an
18% acceptance rate. A further nine papers (not included in these proceedings)
were selected for the industrial track of the conference.

Many people deserve acknowledgment for having volunteered their time and
energy to make ACNS 2011 a resounding success. Many thanks are due to
General Co-chairs, Roberto di Pietro and Rodrigo Roman, for their valuable
help with the conference organization. We are also very grateful to Cristina
Alcaraz and Claudio Soriente (Publicity Co-chairs), Ersin Uzun and Pablo
Najera (Web Support) and Noelia Campos (Local Organization). Clearly, we
are greatly indebted to all members of the PC and external reviewers for their
selfless dedication and hard work during the review and selection process. We
would also like to express our appreciation to the invited/keynote speakers:
Refik Molva and Ed Dawson. Last, but certainly not least, our sincere grati-
tude goes to all submission authors as well as to all conference attendees.

We hope that you will find the program stimulating and that it will serve as
a source of inspiration for future research.

June 2011 Javier Lopez
Gene Tsudik
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Inferring Protocol State Machine from Network

Traces: A Probabilistic Approach�

Yipeng Wang1,3, Zhibin Zhang1, Danfeng (Daphne) Yao2,
Buyun Qu1,3, and Li Guo1
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Abstract. Application-level protocol specifications (i.e., how a protocol
should behave) are helpful for network security management, including
intrusion detection and intrusion prevention. The knowledge of proto-
col specifications is also an effective way of detecting malicious code.
However, current methods for obtaining unknown protocol specifications
highly rely on manual operations, such as reverse engineering which is
a major instrument for extracting application-level specifications but is
time-consuming and laborious. Several works have focus their attentions
on extracting protocol messages from real-world trace automatically, and
leave protocol state machine unsolved.

In this paper, we propose Veritas, a system that can automatically
infer protocol state machine from real-world network traces. The main
feature of Veritas is that it has no prior knowledge of protocol specifica-
tions, and our technique is based on the statistical analysis on the proto-
col formats. We also formally define a new model – probabilistic protocol
state machine (P-PSM), which is a probabilistic generalization of proto-
col state machine. In our experiments, we evaluate a text-based protocol
and two binary-based protocols to test the performance of Veritas. Our
results show that the protocol state machines that Veritas infers can
accurately represent 92% of the protocol flows on average. Our system
is general and suitable for both text-based and binary-based protocols.
Veritas can also be employed as an auxiliary tool for analyzing unknown
behaviors in real-world applications.

Keywords: Protocol Model Inference and Analysis; Probabilistic Pro-
tocol State Machine; Network Security.

1 Introduction

Detailed knowledge of protocol specifications is helpful in many network secu-
rity applications, such as intrusion detection systems [16], vulnerability discov-
ery [14], and protocol analyzers for Internet traffic monitoring [17]. Furthermore,
� This work is supported by the National Basic Research Program “973” of China

(Grant No. 2007CB311100).

J. Lopez and G. Tsudik (Eds.): ACNS 2011, LNCS 6715, pp. 1–18, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 Y. Wang et al.

given a protocol specification, it is important for application fingerprinting [15]
and mapping traffic to applications [7]. However, many network protocols, such
as private and non-standard protocols, have no public protocol specifications
available. Therefore, it is a crucial network security problem for Internet Ser-
vice Providers (ISP) to find out these unknown protocol specifications. In the
context of obtaining protocol specifications, inferring protocol state machines
plays a more important role in practice. Generally, the target of protocol spec-
ification discovery concerns not only protocol message formats (i.e., the packet
encapsulation mechanism), but also the protocol state machine. The protocol
state machine is a finite state automaton illustrating the states in the protocol
and their transitions (i.e., the state transition manner). Discovering message for-
mat is useful in identifying protocols in monitored network traffic and building
intrusion detection systems; and discovering protocol state machine can depict
the behavior of an application. Much previous work [5,6,7,8,9] was focused on
extracting the protocol format information, without resolving any protocol state
machine. However, there are a few exceptions [3,4]. For example, Prospex [3]
is an elegant solution for both protocol format and state machine inferencing,
which is useful for malware analysis. Prospex’s analysis is based on observing
the dynamic execution of the program and thus requires the binary code.

Our paper provides a novel technique for inferring protocol state machine
solely based on the real-world network trace of an application. There are several
advantages associated with our approach. First, analyzing network traffic can be
easily automated and requires less manual effort. The analysis does not require
the distinction between client and server applications. Second, up to 40% of In-
ternet traffic belongs to unknown applications [19], many of them ran by botnets.
The binary code of these applications may not be available for reverse engineer-
ing. Inferring the state machine of unknown protocol from its real world trace
can help ISPs have a better understanding to the behaviors of traffic passing
through their networks.

We propose Veritas, a system that automatically extracts protocol state ma-
chine for stateful network protocols from Internet traffic. The input to Veritas
is the network trace of a specific application. Our output is a probabilistic de-
scription of the protocol state machine. This probabilistic protocol state machine
(P-PSM) is a new and powerful model that we define for capturing and represent-
ing any protocols with incomplete knowledge. In order to test and verify Veritas,
we apply our system to several real-world applications, including a client-server
protocol SMTP, two peer-to-peer protocols PPLIVE [21] and XUNLEI [20]. The
experiment results show that our system is capable of correctly recognize and
classify 86% SMTP flows, 100% PPLIVE and 90% XUNLEI flows. Our tool has
the following features: (a) requiring no knowledge of protocol specifications, (b)
based on the statistics of protocol formats, and (c) effective for both text and
binary protocols. Our contributions are summarized as follows.

– We introduce and formalize a new model – probabilistic protocol state ma-
chine (P-PSM) – for describing the protocol state machine in a probabilis-
tic fashion when there is incomplete knowledge about the protocol. P-PSM
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model is general and can be used for representing any stateful protocol with
uncertain information.

– We design a system called Veritas, which can automatically infer the protocol
state machine of a specific protocol from its real-world trace with no prior
knowledge about the protocol specification. We propose a new technique to
extract protocol messages formats that is independent of the type of the
target protocol.

– We apply our system to verify real world applications. The applications con-
tain both text-based and binary-based protocols, which are quite complex.
Our results demonstrate that Veritas is capable of inferring protocol state
machine of good quality in practice.

The rest of the paper is organized as follows. Section 2 is dedicated to the related
work. In Section 3, we introduce the architecture of Veritas and present each
portion of the system. In Section 4, we make use of Veritas for protocol inference
and evaluate the whole system with different protocols. Finally, we conclude our
work with future research directions in Section 5.

2 Related Work

We divide our discussion of related work into three areas, namely automatic
protocol reverse engineering, protocol message format extraction, and inferring
protocol state machine.

Automatic protocol reverse engineering. Accurately reversing protocols typi-
cally involves manual efforts, such as in the cases of Gaim [23] and [22]. There are
several proposals on automating this process. Lim et al. [1] proposed a method,
which automatically extracted the format from files and application data output.
Their works depend on some parameters, such as the output functions, which
may not be available. Polyglot [5] proposed a new approach for reverse engineer-
ing a protocol by using dynamic analysis of program binaries. In our work, we
assume that the program binary is not available; thus our work is orthogonal to
the above.

Protocol message format extraction. Much work in the current literature is
focused on protocol message format extraction. Kannan et al. [8] presented al-
gorithms on extracting the structure of application sessions embedded in the
connections. Haffner [7] automated the construction of protocol signatures on
traffic that contains the known instance of each protocol. Ma [9] proposed an
unexpected means of protocol inference without relying on the port numbers. His
method classify the network data belonging to the same protocol automatically.
Cui et al. [6] introduced a tool, which is for automatically reverse engineering
the protocol message format from its network trace. His method divided protocol
formats into different tokens by some experiential delimiters. In those studies,
inferencing protocol state machine was not investigated.

Inferring protocol state machine. Inferring protocol state machine plays an
important role in protocol specifications. The works that are closest to ours in-
clude ScriptGen and Prospex. ScriptGen [4] aims to infer protocol state machine
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Fig. 1. The Architecture of Veritas

from network traffic. However, ScriptGen has to rebuilds TCP flows based on
several assumptions, and it can not handle each TCP session precisely. So those
limitations prevent it from emulating all possible protocols. Prospex [3] infers
protocol state machine by means of analyzing the execution trace of a program
on a stand-alone host. In comparison, our inference is based on observed network
traffic that can be performed by ISPs.

3 Architecture of Veritas

The objective of our system is to infer the specifications of a protocol that is
used for communication between different hosts. More specifically, given the
packet sequences of flows of a specific application, we investigate how protocol
state changes from one state to another in the flow. Our approach is to perform
machine learning and probabilistic/statistical analysis on the syntax of observed
network traces. In this section, we give the definitions used in Veritas and an
overview of Veritas architecture.

We define a protocol as a Markov chain model on sessions of length at most n,
which has a discrete state space. The Markov property states that the conditional
probability distribution of a system at the next time period depends only on
the current state of the system, i.e., not depending on the state of the system at
previous time periods.

Definition 1. The message that identifies the state of a protocol is referred to
by us as a protocol state message.
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Protocol state messages are important for understanding the behaviors of the
protocol. However, one may not always be able to obtain the state message
directly from network traces. Our approach is to infer or estimate protocol state
messages by observing and analyzing messages that frequently occur next to
them.

Definition 2. The protocol format message refers to the most frequent string
(i.e., the keyword) in the protocol format.

Protocol format messages are useful for both protocol format inference and ob-
taining the protocol state message. Protocol format messages include protocol
state messages, which we will give more description in the following subsection.

In comparison, research on protocol format extraction typically regards a
protocol as a distribution on sessions of length at most n [9], which is static.
In other words, the existing solutions work only for extracting the format of a
protocol, and cannot be used to describe the protocol states and their transitions.

The input to our system is the network trace of an application. In application-
layer packet headers, there may be some protocol state messages. Each of these
messages has a message type, which indicates the protocol state of the packet.
The sequence of packets (belonging to the same flow) is determined by the
protocol state machine of a specific application. Meanwhile, the protocol state
machine describes how packets of different message types are transmitted in the
traces.

Our assumptions In our work, we assume that the network trace is not en-
crypted. In addition, we assume that the network trace is only composed of
flows from the application to be investigated. That is, there is no mixed traffic
of multiple protocols.

Veritas has several components as shown in Figure 1, including network data
collection, packet analysis, state message inference, and state machine inference,
which we describe in more details next.

Network data collection. In this phase, network traffic of a specific appli-
cation (such as SMTP, DNS, BitTorrent etc.) is collected carefully. There are
several ways to get packets of a specific protocol, that is the ground truth. For
example, the GT [2] method, capturing packets on a specific transport layer port,
by means of reverse engineering and so on are all widely used. In this paper, the
method of collecting packets on a specific transport layer port is adopted.

Packet analysis. During the phase of packet analysis, we first look for high
frequency message units from off-line application-layer packet headers. Then, we
employ Kolmogorov - Smirnov (K-S) test [11] to determine the optimal number
of message units. Finally, we replay each application-layer packet header and
construct protocol message formats with candidate message units.

State message inference. In this phase, we extract the feature from each
protocol format message. The feature is used to measure the similarity between
format messages. Then, the partitioning around medoids (PAM) clustering algo-
rithm [12] is applied to group similar messages into a cluster. Finally, the medoid
message of a cluster will be a protocol state message.



6 Y. Wang et al.

State machine inference. In order to infer protocol state machine, we
should be aware of the protocol state sequence of flows. In order to label protocol
state, firstly our system builds flows for a specific protocol. Then, each packet
under analysis (if it has a state) will be assigned with a state. Afterwards, by
constructing the relationship between different states, a protocol state machine is
constructed. Moreover, in each flow the transitions probabilities of diverse states
are counted. Finally, together with the protocol state messages, the probabilistic
state machine is constituted.

3.1 Packet Analysis

The first stage of Veritas is to acquire the formats of protocol messages. In
Veritas, we extract message formats by applying statistical learning methods on
protocol packets. Protocol format messages can be extracted from application-
layer packet headers by searching for frequently occurring strings (i.e., keywords).
These keywords are typically encapsulated at the beginning of application-layer
packets. Taking SMTP (Simple Mail Transfer Protocol) for example, both of
the strings “MAIL FROM:” and “RCPT TO:” are its format messages, which
usually reside in the SMTP protocol application headers. We assume that the
protocol specifications is not available to us. Next, we describe in details how we
analyze collected packets in order to infer protocol format messages.

Message Units Extraction. Protocol format messages are defined by us as
the most frequently occurred strings in the traces of a protocol. From a statistical
perspective, if each protocol format can be partitioned into a set of all possible
subsequences with fixed lengths, the frequency of these subsequences can be
counted precisely.

However, there are two practical problems. The first issue is how to choose the
length l of these subsequences, which is critical to the performance of Veritas.
The second issue is that given a packet how to determine the number n of bytes
that are protocol related (i.e., not payload). The latter problem arises, as it
is unnecessary to the payload of a packet. Thus, the problem message units
extraction turns to determining proper values for l and n.

Definition 3. The l-byte subsequence originated from the first few bytes of each
packet header in network traces is referred to by us as a message unit.

We investigate several common application-layer protocols, and find that the
minimum field length of those protocols, both text and binary, is at least three
bytes. In addition, it is easy to see that the subsequences with length three will
be more differentiable than those with length two. The sequence set with three
bytes is larger than that with two characters, so high frequency of three-byte
sequences is more prominent in special subsequence seeking. On the other hand,
the subsequences with length four or more will weaken its occurrence frequency.
Therefore, in Veritas we set l = 3. Furthermore, if the packet length s is smaller
than three bytes, we regard l = s. For the other parameter n, we just give a
tentative value 12.
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Fig. 2. Packet Analysis of Veritas

It should be noticed that not all of the message units obtained from the
method aforementioned are protocol relative. In order to get the high frequency
units helpful in characterizing application layer protocol, Veritas introduces the
two-sample Kolmogorov-Smirnov statistical testing method (abbr. K-S test) [11]
to tackle the resulting message units set.

K-S Test Filter. In this part, we employ a K-S test filter to obtain message
units, which are associated with protocol formats. A concrete example is illus-
trated in Figure 2. The input to K-S test filter is two groups of message units
which is obtained by packet analysis. Before conducting K-S test, Veritas will
turn message units into numeric values. The output to K-S test filter is candidate
units which are used for constructing protocol format messages.

The essence of K-S test is to estimate the similarity of two samples according
to their empirical probability distributions in a nonparametric way. Given two
samples, say Sn and Sn′ , where the subscripts represent the sample sizes, their
empirical distribution functions (denote Fn and Fn′ respectively) can be calcu-
lated as F (X) = 1

n

∑n
i=1 IXi≤x, where IXi≤x is the indicator function, equal

to 1 if Xi ≤ x and equal to 0 otherwise. Then K-S test conducts the similar-
ity measurement by quantifying the distance between Fn and Fn′ as a statistic
Dn,n′ = supx |Fn(x) − Fn′ (x)|. The null hypothesis is that the samples are drawn
from the same distribution, without specifying what that common distribution
is. The null hypothesis is rejected (at level α) if

√
nn′/(n + n′)Dn,n′ > Kα,

where Kα is the critical value which can be found from Pr(K ≤ Kα) = 1 − α
under the Kolmogorov distribution.

So, in order to apply K-S test, the packet collection of a specific protocol
should be randomly partitioned into two disjoint groups A and B with approx-
imately the same size by utilizing the units extraction strategy described in
Section 3.1, two groups will yield two message-unit sets, A and B respectively.
Then after turning message units into numeric values, the frequency fx of el-
ement x in each set can be counted easily. Then for set A, we partition those
elements with frequency higher than or equal to λ into a subset Aλ. Here, λ
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is a frequency threshold. Doing the same thing on B generates Bλ. Now the
application of K-S test on Aλ and Bλ is just to choose a suitable value λ under
which the null hypothesis is acceptable. The rejection of K-S test on Aλ and Bλ

means the threshold λ is not high enough to cut off useless units.
In the circumstance of Veritas, the aim of K-S test is to filter out message

units that is not relevant to protocol formats. That is, it requires the result sets
Aλ and Bλ responsible for the reflection of protocol formats. Put it in the way of
statistical testing, the K-S test on Aλ and Bλ should be accepted at a extremely
low level (i.e., 1−α should be small enough). In Veritas, 1−α is valued less than
10−8. Then, for the purpose of accepting the K-S test under the chosen reject
level α, Veritas manipulates λ in a progressive way: it is initialized as 10−5 and
gradually increases by 10−5 till K-S test accepts.

Once the K-S test finished (i.e., been accepted), the elements in Aλ

⋂
Bλ will

be called candidate message units. Then Veritas attempts to recover the
protocol format messages from these candidate message units.

Protocol Format Message Inference. Obtaining protocol format messages
is important, as these messages are used for inferring protocol state messages,
which is described in Section 3.2. We design a units combiner, which is employed
to recover protocol format messages from candidate message units obtained. Here
we give a concrete example to explain the process of protocol format messages
reconstruction. As shown in Figure 2, the candidate units set φ is comprised
of five message units (DAT, ATA, HOS, OST and STS). The possible protocol
format message can be checked out as follows,

1. Randomly selecting a group of packets from the traffic collection, say Packet
Header 1 in Figure 2.

2. With candidate message units, the units combiner tries to rebuild all se-
quences as long as possible (maybe more than one) for each packet header.
So all of these sequences only contain possible three-byte subsequences which
are lying in φ.

3. All of these obtained sequences are regarded as protocol format messages,
such as ‘DATA HOSTS’ in Figure 2.

Furthermore, not all packets contain protocol format message, since some packets
only transmit data. Next, we describe our machine-learning methods for inferring
protocol state messages.

3.2 Inferencing Protocol State Messages

As defined earlier, protocol state messages are important and can be used to
represent states of a protocol. From our packet analysis, our system obtains a
set of protocol format messages from application-layer packet headers, based on
which we derive protocol state messages. This derivation is based on a statistical
approach, namely using a clustering algorithm.

We need to assign a type to each protocol format message, which can be accom-
plished in two steps. First, we define the features of a protocol format message,
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Protocol Format Message 1
Protocol Format Message 2
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Fig. 3. The Relationship between Protocol Format Messages and Protocol State Mes-
sages

as well as a similarity metric between messages. We assume that messages of the
same type share a similar message format. Second, our system will group similar
format message into a cluster using machine learning methods. Similar messages
are likely to be placed in the same cluster, which is labeled by us with the proper
type. We define the center of each cluster as a protocol state message, which can be
used to represent other messages in the cluster. The relationship between protocol
state messages and protocol format messages is illustrated in Figure 3. In Figure
3, each dot represents one protocol format message. Furthermore, as shown in Fig-
ure 3, protocol state messages are part of protocol format messages, and a protocol
state messages is the center message of a cluster.

However, there are two technical challenges in message clustering. First, we
have no knowledge of the similarities between messages or their types. Second, we
get no prior knowledge about how many state messages are in a certain protocol
under analysis. Next, we describe the details of our similarity computation, and
how we realize clustering and address the challenges.

Feature Extraction and Similarity Calculation. In order to group similar
format messages, we need to extract the feature from each format message. In Ver-
itas, the feature of a protocol format message is expressed by a vector in ∈ R256,
with the i-th (starting from 0) component counting the number of one-byte char-
acter (values i) in that message. Meanwhile, we regard that two format messages
of the same type should have a similar character composition. Afterwards, our sys-
tem carries out similarity calculation between different format messages.

For the purpose of comparing the similarity between two format messages, we
make use of the Jaccard index [13], which is defined as follows:

J(a, b) =
|a ∩ b|
|a ∪ b| , (1)

where, a is the set of elements associated with the feature of the first message,
while b is the set that stands for the same feature of the second message. J(a, b)
gains its maximum value 1 when all the items in the given set are the same
and it will achieve its minimum value 0 when all the items in the given set are
distinct.
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Message Clustering. Based on the feature and the similarity function intro-
duced in the previous subsection, we define the distance between two protocol
format messages, which is crucial in clustering. The distance of two protocol for-
mat messages a and b is defined as d(a, b) = 1 − J(a, b), where J is the Jaccard
index in this paper.

In order to group protocol format messages, we make use of the Partitioning
Around Medoids (PAM) algorithm [12]. In contrast to the k-means algorithm,
the partitioning around medoids algorithm is more robust to noise and outliers.
Therefore, PAM algorithm are suitable for protocol state messages inferring. Just
like most other clustering algorithms, the partitioning around medoids algorithm
needs an integer value k (the number of clusters) as the input. In order to
find out a proper k value, we use a generalization of the Dunn index [18] as a
measurement. The Dunn index is a standard intrinsic measurement of clustering
quality, defined as follows.

D(k) =
min1≤i≤k{min1≤j≤k{δ(Ci, Cj)}}

max1≤i≤k{Δ(Ci)}
, (2)

where Ci, .., Ck are the clusters, Δ(Ci) is the diameter of cluster Ci, and
δ(Ci, Cj) is the distance between two clusters. According to Equation 2, we may
see in a clear way that the numerator of Equation 2 is a measure of cluster sepa-
ration and denominator is a measure of cluster compactness. In our experiment,
the k, which maximizes the Dunn index, would be chosen. Finally, the format
message of each cluster center is regarded as a protocol state message, and the
type of the protocol state message is represented by π.

3.3 Probabilistic Protocol State Machine

Because our analysis is based on statistical methods, Veritas is able to represent
protocol state relations probabilistically. In this section, we introduce a novel
expression of protocol state machine – probabilistic protocol state machine (P-
PSM). P-PSM can be used to describe both protocol state transitions and their
probabilities. Moreover, the probabilistic protocol state machine is helpful for
identifying critical paths of a protocol.

Notation. Let Σ be the set of characters (256 possibilities) and Σ∗ be the set of
protocol state messages that can be built from Σ. In Σ, symbols can be denoted
as (\00, \01, \02, ... , \ff) and protocol state messages in Σ∗ will be represented
by alphabet letters (a, b, ... , z). Therefore, a protocol state transition Tij can be
denoted by (σi,σ2,... ,σj) from a starting state i to an accepting state j, where
∀σ ∈ Σ∗. Pr(Tij) is a probability

∏j
k=i,σk∈Σ∗ σk. Moreover, the distribution

must satisfy the equation
∑

ij∈Σ∗ Pr(Tij) = 1. The distribution can be modeled
by a probabilistic protocol state machine A (defined next). The protocol under
analysis will be described by A in a probabilistic manner.

Formal Definition of P-PSM. We give the formal definition for probabilis-
tic protocol state machine (P-PSM). P-PSM is a specialization of the general
probabilistic finite-state machine [10] in the (network) protocol context.
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 I(q0) = 1
q0
(0)

Fig. 4. An Example of P-PSM

Definition 4. A P-PSM is a tuple A.

A = 〈QA, Σ∗, δA, IA, FA, PA〉, where:

– QA is a finite set of states;
– Σ∗ is the set of protocol state messages;
– δA ⊆ QA × Σ∗ × QA is a set of transitions;
– IA : QA −→ R+ (initial-state probabilities);
– FA : QA −→ R+ (final-state probabilities);
– PA : δA −→ R+ (transition probabilities).

IA, FA, PA are function such that:

∑
q∈QA

IA = 1, (3)

and

∀q ∈ QA, FA(q) +
∑

x∈Σ∗,q′∈QA

PA(q, x, q′) = 1. (4)

By convention, P-PSMs are illustrated by directed labeled graphs. In
Figure 4, we give a concrete example of P-PSM. In what follows, the subscript
A will be dropped when there is no ambiguity. Typically, a protocol description
by means of P-PSM begins with starting states (q0 in Figure 4) and finishes
with accepting states (q2, q3 in Figure 4). In Figure 4, there are four states
Q = {q0, q1, q2, q3}, only one initial-state (I(q0) = 1) and the real numbers in
the states are the final-states probabilities. In addition, there are five protocol
state messages, Σ∗ = {a, b, c, d, e}, and real numbers in the arrows are transi-
tion probabilities.

3.4 State Machine Inference

Veritas constructs the protocol state machine based on protocol state mes-
sages, which are obtained from message clustering. Since each stateful packet
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has its own type, a TCP or UDP flow fi, can be represented as a sequence
Fi = (π1, .., πh), where π1, .., πh ∈ M and M is the set of protocol state mes-
sages. Next, we give details on how to associate a network packet with a state
label and to construct the protocol state machine in a probabilistic fashion.

State Labeling. We describe how to label each network packet with a state
type, which is assigned at message clustering. Since our state labeling method is
entirely based on a flow model, a 5-tuple of a flow, (source address, destination
address, source port, destination port, timeout), is needed as a distinction of
different flows. In a 5-tuple, the timeout value indicates the duration of a flow.
In our work, several timeout values (16s, 32s, 64s) have been examined in our
experiments. From our experiment results, we find that the timeout value is
not sensitive in our system, and different timeout values will yield the same
experiment results. As a result, in the following experiments, the timeout value
will be set to 64s.

As it is defined in previous section, πi, .., πk are cluster center messages (pro-
tocol state messages). In this phase, after aligning the two messages to be com-
pared, we denote the feature of the packet header under analysis with ρ, and
the feature of the cluster center message πi with θi. For each packet, our system
calculates the distance between ρ and θi, and labels the packet header ρ with
the type of πi, which satisfies that arg min d(ρ, θi), where i ∈ [1, k].

However, not each packet header have a state type. For example, some data
transmission packet do not contain any protocol format message, so it will be
not marked with any state type. Assuming that Δ(Ci) is the diameter of cluster
Ci, dmax can be defined as follows, dmax = max1≤i≤k{2Δ(Ci)}. Ch is the cluster
that is nearest to the packet header ρ′ under analysis. If d(θh, ρ′) > dmax, the
packet header ρ′ will be assigned with an unknown state type.

After labeling all packets of a specific protocol, Veritas constructs a proba-
bilistic protocol state machine, as explained next.

Obtaining Probabilistic Protocol State Machine. After the phase of state
labeling, we are aware of the state type π of the packet in each flow. And then in
each TCP or UDP flow Fi, Fi = (π1, .., πh), our system calculate the frequency
of each state type pair, such as (πi, πi+1). Therefore, Veritas will obtain both
the order of different state types and the transition probability from state type
πi to πi+1. For the reason that network packets may be out of order in real-world
transmission environment, we employ a threshold value as a filter, which can get
rid of state type pairs that is out of order. The system only keeps the state type
pairs with a frequency above 0.005.

According to the set of state type pairs, our system is able to depict the linkage
of each state type pair with a directed labeled graph. And all linkages of state
type pairs are employed to construct a deterministic finite automaton (DFA) of
the protocol under analysis, T . Afterwards, we find the minimal DFA that is
consistent with T . In the end, probabilistic protocol state machine (P-PSM) will
be the combination of minimal DFA and the set of state transition probabilities.
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Fig. 5. The changes of Dunn indices with the number of clusters for the three protocols

Fig. 6. Probabilistic protocol state machine of SMTP

4 Experimental Evaluation

In evaluation section, in order to verify the effectiveness of Veritas, we use two
kinds of protocols, text and binary. For each protocol under analysis, the input
to our system is real-world trace of the protocol, and the output to the system
is the protocol state machine described in a probabilistic mode.

4.1 Text Protocol

In this paper, we choose SMTP (Simple Mail Transfer Protocol), which is a
stateful and text-based protocol, as a verification of text protocol for our system.
In order to infer the P-PSM of SMTP, we capture real-world packets of SMTP
protocol. In this paper, the data source of SMTP is real-world trace, which is
obtained from a backbone router on TCP port 25.

In message clustering phase, as it is shown in Figure 5, the optimal cluster
number k for SMTP is 12. Moreover, after several iterative clustering experi-
ments, we find that EHLO and HELO messages are grouped into a cluster. And
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the probability of EHLO and HELO being the medoid of the cluster is equal.
This is due to the fact that mail clients may send an EHLO or a HELO command
to initialize a connection.

After state machine minimization, the final P-PSM of SMTP protocol we
inferred is shown in Figure 6. As it is shown in Figure 6, the P-PSM of SMTP
protocol contains two parts, one may be the state transition of client to server,
and the other is the state transition of server to client. In addition, from State
q4 to State q5, the state machines only carry on SMTP data transmission, which
does not contain any state information. Furthermore, from State q10 to State
q13, unknown protocol state message is represented by x currently.

4.2 Binary Protocols

To test the validation of our system to the binary protocol, in this part we choose
PPLIVE and XUNLEI, which are peer-to-peer and binary-based protocols.

Analysis on a P2P Streaming Video Application. PPLIVE is a famous
peer-to-peer streaming video application in China. The data source of PPLIVE
protocol is obtained from our server which only runs an entertainment channel of
PPLIVE on UDP port 3987. After state message inference phase, as it is shown
in Figure 5, the optimal cluster number k for PPLIVE protocol is 8.

After state machine inference, the ultimate P-PSM of PPLIVE protocol is
shown in Figure 7. Moreover, the set of protocol state messages are illustrated
in Table 1.

Table 1. PPLIVE Protocol State Messages

Sign Protocol State Message

a 0xe9 0x03 0x62 0x01 0x98 0xab 0x01 0x02 0x01

b 0xe9 0x03 0x61 0x01 0x98 0xab 0x01 0x02 0x01

c 0xe9 0x03 0x63 0x01 0x98 0xab 0x01 0x02 0x01

d 0xe9 0x03 0x53 0x00 0x98 0xab 0x01 0x02 0x5b

e 0xe9 0x03 0x49 0x01 0x98 0xab 0x01 0x02 0x98

f 0xe9 0x03 0x51 0x01 0x98 0xab

g 0xe9 0x03 0x50 0x00 0x98 0xab 0x01 0x02 0x9b

h 0xe9 0x03 0x4a 0x01 0x98 0xab 0x01 0x02 0x01

Analysis on a P2P File-Sharing Application. XUNLEI is a popular P2P
application in China, and it holds a significant UDP Internet traffic. The data
source of XUNLEI protocol is obtained from backbone routers on UDP port
15000. In message clustering phase, as it is shown in Figure 5, the optimal cluster
number k for XUNLEI protocol is 10. However, 10 is not the final number of
protocol state messages. In the next step, the system will construct DFA and
find the minimal DFA that is consistent with it.

After state machine minimization, the ultimate P-PSM of XUNLEI protocol
is shown in Figure 8. Moreover, the set of protocol state messages is illustrated
in Table 2. Furthermore, sign f is not depicted in Figure 8 for the reason that
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Fig. 7. Probabilistic protocol state machine of PPLIVE protocol

Table 2. XUNLEI Protocol State Messages

Sign Protocol State Message

a 0x32 0x00 0x00 0x00 0x06 0x00 0x00

b 0x32 0x00 0x00 0x00 0x07

c 0x32 0x00 0x00 0x00 0x08

d 0x32 0x00 0x00 0x00 0x11

e 0x32 0x00 0x00 0x00 0x12

f 0x32 0x00 0x00 0x00 0x09

Fig. 8. Probabilistic protocol state machine of XUNLEI protocol

state type pairs correspond with f are of very small probability. As far as we
know, f is an old version of XUNLEI protocol state message. If we analyze flows
correlated with f respectively, we will get a more comprehensive experiment
result, which we do not show here.
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4.3 Quality of Protocol Specification

In order to evaluate the quality of protocol specification inferred by Veritas,
we make use of real-world network traces to test P-PSMs we inferred. In the
following experiments, we will demonstrate that the P-PSMs we inferred are
complete. Completeness is a measurement of protocol specifications accepting
valid protocol sessions.

For SMTP, there are about 100,000 SMTP flows captured from the backbone
router. Out of those flows, the SMTP protocol state machine are able to parse
the state transitions of about 86% flows successfully. The remaining SMTP flows
may use an encryption transmission, which we can not handle properly as one of
the limitations of our system is its incompetence to deal with encrypted traffic.

PPLIVE peers always employ UDP packets to communicate and transmit
data with each other. For the purpose of testing the quality of the PPLIVE
specification, about 200,000 UDP flows of PPLIVE are captured from a server
which runs a news channel of PPLIVE on September 9th, 2009. For PPLIVE
flows, we are able to parse the state transitions of all flows successfully.

In order to test and verify XUNLEI protocol specification, there are about
500,000 UDP flows of XUNLEI obtained from a backbone router. For XUNLEI
flows, we are able to parse the state transitions of about 90% flows success-
fully. The flows we parsed take up more than 99% XUNLEI protocol packets
under analysis. Since our method is based on high probability sets, it will not
be sensitive to the event of small probability.

From the above experiment results, we can find that the probabilistic pro-
tocol state machines we inferred are of good quality. The whole system can be
employed as an auxiliary tool for analyzing unknown behaviors in real-world
applications.

4.4 Summary

Our technique for inferring protocol state machine is based on a statistical model,
and it is sensitive to states which are statistically significant. Therefore, maybe
Veritas cannot cover all the paths of a protocol state machine. However, our
method is suitable for analyzing critical paths in a protocol, which is very im-
portant in intrusion detection. Moreover, our experiment results show that the
our inference method has a high degree of accuracy in practice.

5 Conclusions and Future Work

Inferring protocol state machine from Internet traffic is a fundamental network
security problem, solutions to which have many practical applications. In this
paper, we presented a new solution to this problem. We proposed Veritas, a sys-
tem that can automatically extract protocol state machine for stateful network
protocols solely from Internet traffic. The input to Veritas is the real-world trace
of a specific application, and the output is the protocol state machine of that ap-
plication with a probabilistic description. Our technique proceeds mainly in the
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following steps. First, the real-world trace of a specific application is extracted
from Internet traffic. Then, by analyzing each packet header, we capture the pro-
tocol message format from packet headers. Afterwards, by means of clustering
algorithms, protocol state messages will be obtained. Based on the clusters, we
assign a type to each packet of flows. Finally, we obtain the probabilistic proto-
col state machine. Our verification experiments show that Veritas is general and
suitable for both text and binary protocols. The P-PSM inferred by our system
reflects the actual applications with high degrees of accuracy.

For future work, we plan to work on semantic inference with Veritas for better
understanding of protocol specifications. Moreover, Veritas can only deal with
real-world network trace of a single application. In the future, we would like to
make it fit for the multi-protocol environment.

References

1. Lim, J., Reps, T., Liblit, B.: Extracting Output Formats from Executables. In:
WCRE 2006: Proceedings of the 13th Working Conference on Reverse Engineering
(2006)

2. Gringoli, F., Salgarelli, L., Dusi, M., Cascarano, N., Risso, F., Claffy, K.C.: GT:
picking up the truth from the ground for internet traffic. In: SIGCOMM Comput.
Commun. Rev. (2009)

3. Comparetti, P.M., Wondracek, G., Kruegel, C., Kirda, E.: Prospex: Protocol Spec-
ification Extraction. In: SP 2009: Proceedings of the 2009 30th IEEE Symposium
on Security and Privacy (2009)

4. Leita, C., Mermoud, K., Dacier, M.: Scriptgen: an automated script generation
tool for honeyd. In: Annual Computer Security Applications Conference (2005)

5. Caballero, J., Yin, H., Liang, Z., Song, D.: Polyglot: automatic extraction of pro-
tocol message format using dynamic binary analysis. In: CCS 2007: Proceedings of
the 14th ACM conference on Computer and Communications Security (2007)

6. Cui, W., Kannan, J., Wang, H.J.: Discoverer: automatic protocol reverse engi-
neering from network traces. In: SS 2007: Proceedings of 16th USENIX Security
Symposium on USENIX Security Symposium (2007)

7. Haffner, P., Sen, S., Spatscheck, O., Wang, D.: ACAS: automated construction
of application signatures. In: MineNet 2005: Proceedings of the 2005 ACM SIG-
COMM workshop on Mining network data (2005)

8. Kannan, J., Jung, J., Paxson, V., Koksal, C.E.: Semi-automated discovery of ap-
plication session structure. In: IMC 2006: Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement (2006)

9. Ma, J., Levchenko, K., Kreibich, C., Savage, S., Voelker, G.M.: Unexpected means
of protocol inference. In: IMC 2006: Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement (2006)

10. Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco, R.C.: Prob-
abilistic Finite-State Machines-Part I. IEEE Trans. Pattern Anal. Mach. Intell.
(2005)

11. Kendall, M.G., Stuart, A., Ord, J.K.: Kendall’s advanced theory of statistics. Ox-
ford University Press, Inc., Oxford (1987)

12. Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley, Chichester (1990)



18 Y. Wang et al.

13. Jaccard, P.: The distribution of the flora in the alpine zone. The New Phytologist
(1912)

14. Brumley, D., Caballero, J., Liang, Z., Newsome, J., Song, D.: Towards automatic
discovery of deviations in binary implementations with applications to error detec-
tion and fingerprint generation. In: SS 2007: Proceedings of 16th USENIX Security
Symposium on USENIX Security Symposium (2007)

15. Caballero, J., Venkataraman, S., Poosankam, P., Kang, M.G., Song, D., Blum,
A.: FiG: Automatic Fingerprint Generation. In: Annual Network and Distributed
System Security Symposium (2007)

16. Dreger, H., Feldmann, A., Mai, M., Paxson, V., Sommer, R.: Dynamic application-
layer protocol analysis for network intrusion detection. In: USENIX-SS 2006: Pro-
ceedings of the 15th conference on USENIX Security Symposium (2006)

17. Borisov, N., Brumley, D.J., Wang, H.J.: A Generic Application-Level Protocol An-
alyzer and its Language. In: Network and Distributed System Security Symposium
(2007)

18. Dunn, J.C.: Well separated clusters and optimal fuzzy-partitions. Journal of Cy-
bernetics (1974)

19. Internet2 netflow statistics, http://netflow.internet2.edu
20. XUNLEI, http://www.xunlei.com/
21. PPLIVE, http://www.pptv.com/
22. How Samba Was Written, http://samba.org/ftp/tridge/misc/french_cafe.txt
23. Gaim Instant Messaging Client, http://gaim.sourceforge.net/

http://netflow.internet2.edu
http://www.xunlei.com/
http://www.pptv.com/
http://samba.org/ftp/tridge/misc/french_cafe.txt
http://gaim.sourceforge.net/


A Specification Based Intrusion Detection

Framework for Mobile Phones

Ashwin Chaugule, Zhi Xu, and Sencun Zhu

Department of Computer Science and Engineering,
The Pennsylvania State University, University Park, PA 16802

{avc114,zux103,szhu}@cse.psu.edu

Abstract. With the fast growth of mobile market, we are now seeing
more and more malware on mobile phones. One common pattern of many
commonly found malware on mobile phones is that: the malware always
attempts to access sensitive system services on the mobile phone in an
unobtrusive and stealthy fashion. For example, the malware may send
messages automatically or stealthily interface with the audio peripher-
als on the device without the user’s awareness and authorization. To
detect the unauthorized malicious behavior, we present SBIDF, a Speci-
fication Based Intrusion Detection Framework, which utilizes the keypad
or touchscreen interrupts to differentiate between malware and human
activity. Specifically, in the proposed framework, we use an application
independent specification, written in Temporal Logic of Causal Knowl-
edge (TLCK ), to describe the normal behavior pattern, and enforce this
specification to all third party applications on the mobile phone dur-
ing runtime by monitoring the inter-component communication pattern
among critical components. Our evaluation of simulated behavior of real
world malware shows that we are able to detect all forms of malware
that attempts to access sensitive services without possessing user’s per-
mission. Furthermore, the SBIDF incurs a negligible overhead (20 μ secs)
which makes it very feasible for real world deployment.

Keywords: Mobile Phone, Intrusion Detection, Messaging Attack, Au-
dio Attack.

1 Introduction

With the fast growth of mobile market, surveys and research show that there
is an increasing number of mobile phone malware. There are over 400 mobile
phone viruses detected so far [12]. Over 17% of manufacturers reported more
than 1 million attacks on mobile phones in 2008 [2]. Infected phones are even
capable of bringing down the GSM infrastructure of a whole city by exploiting
the SMS/MMS messaging protocols [7]. With the advent of newer more capable
mobile phone platforms, this security risk will only increase.

Most commonly found malware [11,23,25,29] on mobile phones share a com-
mon pattern, in which the malware always attempts to access sensitive services
stealthily without authorization from the mobile phone user. For example,
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– In the Messaging Attack, such as Cabir [8], Commwarrior [9] and Viver [10],
the attacker interfaces directly with the exported serial port of the GSM
engine and implement his own messaging framework, thus bypassing all the
phone stack components. This can allow him to send messages and interfere
with GSM calls. The attacker’s intention may be to deplete the battery
charge on the phone, spread the malware to other devices, or affect the
monthly bill of the user[23,13,25].

– In the Audio/Video Attack, such as the research presented by Xu et al. [29],
the attacker may access the audio/video peripherals and use them to covertly
record an ongoing conversation, interfere in a conversation by playing an
audio file or even record an ambient conversation.

To detect those stealthy unauthorized service accesses, the main challenge is
how to differentiate between a purely software generated action and a user ini-
tiated action. Software generated actions without user awareness or interactions
will have a high probability of being malicious. Another challenge is how to
detect the unauthorized access efficiently. Due to the limited battery and com-
puting resources, security solutions for desktops, such as the machine learning
based misuse detection approach in [24] and mandatory access control based
solutions [20], are not suitable for mobile phones.

In this paper, we propose Specification Based Intrusion Detection Framework
(SBIDF), a framework designed specifically for detecting the unauthorized ac-
cess to sensitive services on mobile phones, specifically for SMS service and
audio service. In the proposed framework, we solve the differentiation challenge
by observing hardware interrupts. Mobile phones come with touchscreens and/or
keypads which generate hardware interrupts for each key press event. This asyn-
chronous notification mechanism is the key to differentiate between a user gen-
erated activity and a purely software generated one, since the latter cannot
explicitly generate a hardware interrupt. To solve the efficiency challenge, the
proposed SBIDF only monitors the Inter-Process Communication (IPC) for the
critical components of the userspace stack, which include a finite and small set
of applications always involved for performing any function of the device.

Briefly, SBIDF consists of two phrases: training phrase and enforcing phrase.
In the training phrase, the vendor defines specifications, written in Temporal
Logic of Causal Knowledge(TLCK) language, before shipping to the user. These
specifications are independent to applications, thus no change on specifications
is needed when new applications are installed on mobile phone. In the enforcing
phrase, these specifications are then converted into a precise sequence of inter-
component communication events in the system. During the usage of mobile
phone, the SBIDF enforces the predefined specifications at runtime. Whenever a
deviation from specifications is detected, the SBIDF will alert user immediately.
The main contributions of this paper are summarized as follows.

– We define concise and precise specifications for legitimate behavior in the
system for the events of messaging and calling. The specifications describe
system activities related to calling and messaging originating from a hard-
ware interrupt of a corresponding key press event.
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– Our framework, SBIDF, resides in the kernel and enforces the behavior of
system according to the specification and detects any malicious activity that
tries to subvert SBIDF.

– We simulate behavior of real world malware and successfully prevent its mali-
cious attempts to send multiple SMS’s and control the audio hardware which
interferes with an on going call or stealthily records ambient conversations.

– SBIDF is able to detect all malware with negligible runtime overhead on the
system (20μ secs).

Here is the roadmap of this paper. Section 2 describes related research work,
Section 3 describes a typical phone stack, Section 4 outlines the security anal-
ysis of design, Section 5 describes a design overview, Section 6 describes the
framework in detail and Section 7 shows the promising feasibility of our work.
We end with laying out future work in Section 8 and conclusions in Section 9.

2 Related Work

Most of the previous research work focused on optimizing desktop solutions for
embedded devices. Very few of these propositions started the design from the
ground up with an exclusive focus on mobile devices.

Enck et al. [22] and Ontang et al. [21] look at individual application require-
ments on the Android operating system and define mechanisms to enforce poli-
cies defined by the application provider. This approach is very application centric
and thus implies numerous policies as number of applications increases. On the
other hand, our approach is application agnostic and enforces policies defined
only for critical components that provide services to other applications. Thus
the number of applications doesn’t affect the complexity of the framework.

Xie et al. [15] propose a behavior-based malware detection system named
pBMDS, which uses a probabilistic approach to detect anomalous activities in
phones via monitoring system calls. In this paper, our detection relies on the
inter-components communications within the phone, including IPC events, sys-
tem calls, and hardware interrupts. Moreover, the specification in SBIDF is pre-
defined thus prevent potential false positive detections caused by false learning.

Bose et al. [3] propose a solution to logically order the events caused by appli-
cations on the device. They use machine learning theory to detect the pattern of
these events and compare them to a whitelist of behavior signatures. However,
their scheme requires a vulnerable complex framework in userspace to detect and
monitor these learning patterns and they depend on remote analysis of behavior
to reduce the overhead of computation on the device. Their framework is prone
to mimicry attacks, so they can have false negatives with their approach.

Cheng et al. [4] proposes a collaborative detection and alert system where
neighboring phones collect and analyze system data for intrusions. These designs
may also need a proxy server in case collaborative analyses is not possible. They
require additional user space components that constantly run in the background
collecting this data, which are an expensive overhead for these devices.
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Vigna et al. [18] show a way of labeling processes and data to prevent cross
service attacks. By tagging resources used by processes upon network activity
they monitor the flow of data in between processes. Their scheme is effective in
achieving their goal, but not without overheads. Labeling resources requires sev-
eral rules, transition of labeling incurs monitoring overheads and false positives
can easily occur when legitimate processes initiate network activity.

Vogel et al. [28] ported SELinux on the mobile phone to prevent the SMS/MMS
related attacks. On the same lines Divya et al. [19] use a stripped down SELinux
policy infrastructure based on the PRIMA model to define policies for applica-
tions running on the mobile phone to prove to remote verifiers that the system
is safe to run their third party software. Desmet et al. [6] describe a way to
securely run third party applications on mobile phones without the conven-
tional sandboxing techniques. Their design uses secure execution techniques like
run-time monitoring, static verification and proof carrying code. The run time
monitors insert hooks into the applications and enforce correctness according to
the policies and rely on defining complex policies manually, where improper set-
tings could easily compromise the system. Also, addition of SELinux on mobile
phones shows significant overheads in the kernel as shown by Nakamura [20].

Venugopal [26] came up with a faster way to lookup signatures using hashes.
He focused on the overhead of detecting which signature matches the current
system behavior. However, these anomaly detection techniques still have the
downside of false positives and cannot detect zero day attacks. Venugopal et al.
[27] describe a virus detection system for the Symbian platform which monitors
the DLL functions used by applications. Using Bayesian decision theory and past
virus samples, they observe malicious activity. Although they claim a 0% false
negative rate, they are only able to detect 95% of the viruses.

3 Background

3.1 Cellphone Platform

For this research we used the Qtopia userspace stack (Qt-Extended-4.4.3) on the
Openmoko Neo1973 handset which contains an ARMv7 based CPU (Samsungs
S3c2410). This stack is widely used in many of Nokia phones which use the
Linux kernel. This stack’s design represents many other stack implementations
very well. Although there will be differences, we believe our framework can be
extended to other variants easily. We describe the implementation of SBIDF on
Android platform in the Discussion Section.

Figure 1 shows the components of the Qtopia phone stack and the key interac-
tions. Qtopia contains a critical component called QPE. This is the main server
that interfaces with the operating system through device nodes and sockets for
IPC communication. QPE is the first application to start when the stack exe-
cutes. It opens all the necessary sockets and device nodes and then initiates other
critical components like Message Server and Media Server. The Message Server
controls the messaging and emailing functions. The Media Server controls the
voice and audio related functions. However, QPE makes the final system calls
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to the kernel for submitting the SMS/MMS packet and the calls to alter the
microphone state. QPE, Message Server and Media Server are started up when
the device boots and remain resident till reboot or shutdown. There are several
other applications like Qtmail, Games, Browser etc. that are invoked as plugins.
These plugins are separate binaries that link with the QPE server at runtime and
are executed only when needed. They terminate after their function is over or
when the user closes them explicitly. The plugins communicate with each other
via QPE by using IPC mechanisms.

In the case of Qtopia, the communication channels are implemented as Sockets
and Pipes. These are created by QPE during startup and then the connection
at the other end is completed by the other components when they are executed.
Different components communicating over the same named socket can still be
identified uniquely in the kernel. The key concept in SBIDF is that we only need
to monitor activity between critical components and as such define specifications
only for their interactions. So, the number of specifications does not increase as
the number of applications downloaded to the phone increases.

3.2 Design Motivation

Our framework is based on a key observation which is: a user generated ac-
tivity usually includes a hardware interrupt generated via touchscreens and/or
keypads; however, a purely software generated activity cannot explicitly gener-
ate a hardware interrupt. This is true because the interrupt generated by the
touchscreen hardware is received directly by the CPU. The CPU then responds
by calling the interrupt handler of the touchscreen device driver. As the inter-
rupt handler is part of operating system, userspace code cannot directly call it
unless the operating system has been tampered with. e.g. via malicious system
calls. In our trust model, we assume that the operating system is within the
TCB. Therefore, the hardware interrupt handler can not be called directly by
userspace code.

In mobile devices, the touchscreen interrupt out line is connected to the CPU
interrupt [17] in line via an interrupt controller (which is part of the CPU).
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Pressing the touchscreen, triggers an interrupt to the CPU directly from the
touchscreen hardware. Each peripheral capable of raising hardware interrupts is
assigned a unique IRQ number by the CPU designers. The operating system,
detects which peripheral triggered the interrupt via a unique interrupt number.
Then the operating system calls the interrupt handler of the touchscreen device
driver which is part of the operating system code. Clearly, the legitimate path
of flow for the interrupt is all through hardware and then the operating system.
There is no userspace application interaction involved in the path.

Note that, userspace code can also raise exceptions like data aborts, software
interrupts (system calls), floating point exceptions. However, these have different
handlers in the operating system because they are not ”hardware interrupts”. As
explained in the ARM Architecture Reference Manual [17], the CPU jumps to
different addresses for these type of exceptions and thus calls different handlers.
So unless the operating system is tampered with, there is no direct way in which
the touchscreen interrupt handler will be called from userspace code.

4 Security Model

4.1 Threat Model

We assume that attackers use malware to exploit vulnerable components in
userspace. Malware is considered as third party applications. Attackers may
even compromise the integrity of existing components in the platform, such as
the Message Server and Qtmail. For example, in the messaging attacks, we as-
sume that the attacker can interface directly with the exported serial port of the
GSM engine and implement his own messaging framework, thus bypassing all
the phone stack components. In audio attacks, peripherals are exported through
device nodes and can be configured through system calls (IOCTL’s etc). The
telephony stack on the device registers with these nodes and provides the re-
spective service to other applications. But an attacker can easily open them by
himself and use them to alter the audio configurations.

There are other threats where the attacker can interface directly to the net-
work interfaces like BT or WiFi or even hijack the browser or mailing applications
to spread malware. If the mobile phone’s operating system is not protected (e.g.,
operating system memory maps are exposed to userspace), then he may even in-
stall rootkits that maliciously alter the kernel control flow. This later category is
only commonly found on desktops where the user typically has to install device
drivers and as such is not a major threat to mobile devices.

In this research, we address the messaging and audio attacks due to their
significant implications and widespread occurrence. SMS is an ubiquitous and
reliable method to communication among mobile phones. It exists on almost all
mobile phones with more than 2.4 billion active users. Also, the mature telecom-
munication infrastructure makes the message delivery very reliable even when
the receiver is offline at the moment of sending. Thus, it is one of favorite choices
for spreading malware or building command-and-control channels. Audio attacks
are chosen because of its serious consequences. Leaking the audio information
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directly invades the user’s privacy. Video attacks can be detected in a similar
way as that of audio attack. We discuss other types in future work section.

4.2 Trust Model

In our work, the operating system running on the device mainly forms the
Trusted Computing Base (TCB). The bootloader of phone should correctly load
the kernel which contains the SBIDF implementation. Kernel rootkits which may
compromise the kernel are not the focus of this research.

We assume that the kernel memory interfaces are not exported to userspace.
This requirement is a necessary to prevent userspace applications from writing
into kernel memory and altering kernel control flow[14]. For example, in Linux
these are exported as /dev/mem and /dev/kmem. These interfaces can be easily
disabled during kernel configuration time.

In the userspace, the integrity of critical userspace components should be
guaranteed, such as Message Server and Qtmail. This requirement is needed to
prevent a malicious application from bypassing the monitoring of SBIDF. To
provide such guarantee, we authenticate the critical components by setting up a
TEXT segment hash of the critical userspace component. We only need to trust
the critical components during the training phase. After the phone is deployed,
the attacker could tamper with them, but as we explain later, our SBIDF can
easily prevent any damage.

Note that, those critical components are bundled with the kernel and shipped
by the phone vendor. The user and third party applications lack permissions to
modify those components. Therefore, their authentication only needs to be done
once when the phone is shipped. If there is a need of update , the vendor will
redo the authentication during the update.

5 Design Overview

SBIDF utilizes the keypad or touchscreen interrupts to differentiate between
malware and human activity. Here we assume that specifications defining correct
pattern have been defined and stored in SBIDF. We will explain how to create
these specifications in details in Section 6.

Figure 2 shows the overview of our framework. Whenever these critical com-
ponents start up for execution, the Authentication Module computes an md5
hash over the TEXT segment of the component. The TEXT segment is the only
read-only segment of a process and any modifications to it during runtime will
be detected by the operating system. However, the attacker may replace or infect
the binary file of the critical component when it is stored on the flash device.
In order to detect this, the Authentication Module compares the hash with a
pre-computed copy of the hash of that component. This pre-computed copy is
present in the Specification Database. It could be calculated for the first time by
the phone stack provider during a training phase and then statically stored in
the Specification Database for future use. When the Authentication Module finds
a match of the hash with the pre-computed copy, it sets an authentication bit



26 A. Chaugule, Z. Xu, and S. Zhu

in that component’s Process Control Block (PCB), which is an in-kernel repre-
sentation of the userspace application, to signify the successful authentication.
This avoids recalculation of the hash for later stages.

In order to detect the messaging or calling activity in userspace from within
the kernel, the IPC Monitor observes all read and write IPC calls and it checks
the State Table for the Key Pressed flag. If the flag is unset, then it simply
returns, since the current IPC transaction was not triggered by a hardware in-
terrupt. If it is set, the IPC Monitor checks the PCB of the process that has
made this IPC call. If it finds the authentication bit to be set, then it knows that
the Authentication Module has authenticated this process previously. Similarly,
IPC Monitor also checks if the communicating peer involved in the current IPC
has been authenticated. Following this, it checks if the processes are communi-
cating over a specific named socket. This socket information is present in the
specifications in the Specification Database. Now the IPC Monitor knows which
authenticated critical components are communicating over a specific socket and
that this activity was triggered by a hardware interrupt. For each type of the
attacks (i.e., messaging or audio attacks) we aim to prevent, the Specification
Database contains unique specifications which define the expected IPC pattern
between the critical components. Amongst all the critical components, there is
usually a single component that finally sends out an SMS/MMS message from
userspace to the kernel. If all the IPC transactions occur as specified, then the
IPC Monitor sets a permission bit of that critical component in its PCB, grant-
ing it the permission to submit the SMS/MMS, and it also sets the flag IPC
Matched in the State Table.

The Hardware Controller mediates all the read and write calls that occur on
the GSM serial port and audio interface. When the Hardware Controller detects
that there is a GSM command (e.g., Submit SMS ) in the write call, it checks
the IPC Matched flag in the State Table. If this flag is set, then the Hardware
Controller checks if a permission bit is set for the critical component invoking
the write. If both these conditions are true, it allows the message to go through
the GSM hardware. If either of them is false, the message is denied.

SBIDF detects audio attacks in a similar way. The Interrupt Parser checks if
the ACCEPT CALL or END CALL keys are pressed. The IPC Monitor checks if
the expected IPC pattern occurs. The Hardware Controller checks if an expected
authenticated critical component as defined by the specification has been granted
permission by the IPC Monitor in the write call to the audio driver to switch
the microphone ON . If the IPC Matched flag is set, and the critical component
has been granted the permission, then the MIC is turned ON. The Hardware
Controller parses the data buffer of the write call to the GSM serial driver so as
to determine when to switch the MIC OFF. If it finds a CALL HANGUP GSM
command, then it knows the call is over and then switches the MIC OFF.

Compare the above scenarios with what the malware would do. There will be
no hardware interrupt generated. So, if the malware directly tries to access the
hardware, the Hardware Controller will deny access, because it will not see the
permission bit set by the IPC Monitor. If the malware tries to masquerade as
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one of the critical components, it will be detected by the Authentication Module,
which mediates all application’s startups. If the malware tries to mimic the IPC
pattern, the IPC Monitor will detect this, because it will not get the interrupt
information from the Interrupt Parser, or it will not get the authentication infor-
mation from the Authentication Module and therefore will not set the permission
bit. Therefore, the Hardware Controller will always deny any malicious access.

6 Specification Design and Enforcement

In SBIDF, the specifications define the precise expected behavior of the system
for specific events like messaging and calling. Each specification contains the
TEXT segment hash of the critical components involved in the activity, the key
scan codes that trigger the IPC activity, the expected IPC pattern and the action
for the Hardware Controller. The Specification Database is available to all the
above components of the SBIDF. Each specification is third party application
independent.

6.1 Specification Formalization

We use the TLCK (Temporal Logic of Causal Knowledge) described by Bose
et al. [3] to describe the sequence of events in the system and the interactions
in the SBIDF’s state machine. Temporal events in the system are described by
following notations.⊙

t is an event true at time t.
�t is an event true before time t.
�t−k

t is an event true in the interval [t − k, t].
The other operators such as ∧ and ∨ etc. carry their usual meanings. Next we
define some propositional variables.

– KeyPressed(S): Where, S = {s1, s2, s3, .., sn} which is a set of ‘n’ scan
code interrupts which we need to monitor. e.g.SEND, RECORD, STOP etc.
KeyPressed(S)returns TRUE if any of the monitored keys is pressed.

– AuthApp(T): Where, T = {t1, t2, ..., tm} which is a set of ‘m’ applica-
tions that we need to authenticate. e.g. QPE, Qtmail, Mediaserver, Message-
server etc. AuthApp(T ) returns TRUE if the hash of the running application
matches with a pre stored digest of that application.

– IPC(T, Sockname): IPC encapsulates both IPC read and write functions
over the AF UNIX socket. The socket name is defined by Sockname. The
IPC variable returns TRUE iff all the IPC transactions occur over the spec-
ified socket in the specified sequence and within a timeframe. The pattern
for the expected IPC is defined by a truth table as shown in the next section.

– ParseATCMD(C): Where, C = {AT + CMGS, AT + CHLD = 1} is the
set of AT commands to be monitored. ParseATCMD(C) returns TRUE
when the Hardware Controller finds any of these commands in the data
buffer that is passed to the GSM engine over the serial port.
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– Perm(X): X = {QPE}. Perm(X) returns TRUE if QPE has its permission
bit set as explained previously. For other stacks, X will contain the critical
components which make the final system calls to access the hardware.

Now, we define specifications using the TLCK and the aforementioned notations
for messaging attack and audio attack.

For Messaging Attack. Let
A

r−→ B denote an IPC Read of application A from application B.
A

w−→ B denote an IPC Write of A to B.
As a first example let us consider the specification for submitting an SMS.
The set S = {SEND}
The set T = {Qpe, Qtmail, Messageserver}
The set C = {AT + CMGS}
Sockname = ”/tmp/qtembedded-0/QtEmbedded-0”

The truth table for IPC(T, Sockname) is shown in Table 1. The IPC variable
is TRUE iff all the other variables are TRUE.

Table 1. Messaging Truth Table

Variable Value

Qpe
r−→ Qtmail T

Qtmail
r−→ Qpe T

Qpe
w−→ Qtmail T

Qtmail
w−→ Qpe T

Qpe
r−→ Msgserver T

MsgServer
r−→ Qpe T

Qpe
w−→ MsgServer T

Msgserver
w−→ Qpe T

IPC(T, Sockname) T

Table 2. Audio Call Truth Table

Variable Value

Qpe
w−→ Mediaserver T

Mediaserver
r−→ Qpe T

Mediaserver
w−→ Qpe T

Qpe
r−→ Mediaserver T

IPC(T, Sockname) T

The specification is defined as follows:⊙
t(SubmitSMS) = �t(KeyPressed(S) ∧ AuthApp(T ))∧(�t−k

t (IPC(T,
Sockname) ∧ Perm(X) ∧ ParseATCMD(C)))

Here, SubmitSMS is true only when a real user pressed the SEND key on
the touchscreen/keypad, the applications in set T were authenticated by the
Authentication Module and there was an expected IPC transaction over the
socket defined by Sockname between these authenticated components within a
time frame, the IPC Monitor set the permission bit for QPE and the Hardware
Controller received an AT +CMGS command to submit the SMS from QPE in
the data buffer of the GSM serial port. The time frame for IPC can be customized
depending upon the overheads of the IPC calls. When SubmitSMS evaluates
to TRUE, then the outgoing SMS is allowed, else denied.

For Audio Attack. In a similar way, the audio attack specification can be
constructed as follows.
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The set S = {CALL, ENDCALL}
The set T = {Qpe, Mediaserver}
The set C = {AT + CHLD = 1}
Sockname=”/tmp/qt-embedded/valuespace applayer”

The truth table for IPC(T, Sockname) is shown in Table 2. The IPC variable
is TRUE iff all the other variables are TRUE. The specification is defined as :⊙

t(AllowAudio) = �t(KeyPressed(S) ∧ AuthApp(T ))∧(�t−k
t (IPC(T,

Sockname) ∧ Perm(X)))
Here, AllowAudio is true when a real user presses the CALL key, the IPC

Monitor confirms the IPC pattern amongst authenticated processes on the spec-
ified socket within the specified time frame and the authenticated QPE is given
the permission to toggle the microphone, then the Hardware Controller turns
the microphone ON . At all other times, any command to alter the microphone
state is denied. Since the Hardware Controller controls the microphone, it needs
to know when to turn it OFF again. For this we have another specification.⊙

t(DenyAudio) = �t(KeyPressed(S) ∧ AuthApp(T ))∧(�t−k
t (IPC(T,

Sockname) ∧ ParseATCMD(C) ∧ Perm(X)))
Here the Interrupt Parser looks for the ENDCALL scan code. The truth

table for this IPC operation in case of the Qtopia stack is the same as the
case for CALL. In order to ensure that a call is being dropped or ended, the
Hardware Controller parses the AT commands passed to the GSM engine. So,
when it detects the command AT + CHLD = 1 after the IPC operations, and
QPE has the permission, it switches the microphone OFF .

6.2 Specification Enforcement

The description of specification enforcement in the SBIDF is described with a
State Machine. In Figure 3, we show the state machine for specifications we
introduced in previous subsection.

State INT: This is the Start state of the machine, where the Interrupt Parser
is just parsing the Input key events. The set of key scan codes to be monitored is
dependent upon the specification. When either of these key presses are detected,
the SBIDF transitions to the IPC State.

State IPC: This is where the IPC Monitor begins to monitor the ensuing IPC
communication between processes after a specific key press event. In this state,
it also checks if the communication is being performed over a specified named
socket as defined by the specification and the communicating peer processes are
authenticated. If authentic, it proceeds to either the T 1 or T 2 States.

State T1: Here, the IPC Monitor detects there was an IPC Send operation
from Qpe to Qtmail (Qpe

w−→ Qtmail). This is an indication that there could
be a event to form an outgoing SMS. Then the SMS timer is started. After this
timer expires, the IPC Monitor checks how many expected IPC operations were
performed. Here, the timer is set to expire in 1 second. The timer expiry value is
decided by observing the overheads involved in a normal IPC call. Upon timer
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Fig. 3. State Machine

expiry, if all the expected IPC occurred and the Hardware Controller gets an
AT + CMGS command in the data buffer of the GSM serial driver from an
authenticated QPE with the permission granted, then the GSM transmit path
is unlocked and the SMS is let though the GSM engine in STATE MSG.

State T2: Here the IPC Monitor detects if there was an IPC Send operation
from QPE to Mediaserver (Qpe

w−→ Mediaserver). This signifies that an outgo-
ing GSM call could be in progress. The MIC timer is triggered to expire in 1
second. After this timer expires, the IPC Monitor checks if the expected IPC
pattern occurs, then the Hardware Controller checks if the AT + CHLD = 1
command is found in the data buffer of the GSM serial driver written by an
authenticated QPE with the permission granted. If this command is found, then
it signifies an end of call, so the Hardware Controller switches the microphone
OFF, else it is turned ON. This way, the microphone is kept ON only during the
duration of a call and when the call is in progress, any modification to reroute
the audio is denied by the Hardware Controller.

Reverse Edges: The dashed back arrows in the State Machine in Figure 3 are
explained here. These edges characterize the false conditions of the propositional
variables described previously.

INT → INT: This means the Interrupt Parser has not encountered any key
press events for the ones it is monitoring.

IPC → INT: This could happen when
– The Interrupt Parser falsely recognized a key press event but the IPC Mon-

itor did not find a matching IPC pattern.
– Unauthenticated entities tried to communicate over the specified socket. This

could be when malware is masquerading as legitimate applications, or when
malware is trying to mimic the IPC pattern.

– Authenticated entities sent data over some other socket than the one spec-
ified. This could happen when the ongoing pattern represents other system
activity that is legitimate but has no relation to the attack prevention.

– When the IPC Monitor detected that the ensuing IPC activity was not
triggered by an expected hardware interrupt.
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T1 → INT: The IPC Monitor started the SMS timer, but the ensuing IPC
transactions didn’t match with the specification or didn’t complete in time due
to system noise.

T2 → INT: The IPC Monitor started the Call timer, but the ensuing IPC
transactions didn’t match with specification or didn’t complete due to system
noise.

(MSG/CALL/ENDCALL) → INT: In any of these cases, the Hardware
Controller did not get the commands in the data buffer from an authenticated
QPE component. Or, the IPC Matched flag was not set, which implies QPE did
not get permission. The latter case would arise when some userspace application
tried to directly interface with hardware. This could also happen when the system
noise mimicked the events in the specification but it was a false alarm.

Since we are only concerned with the interactions amongst the select few
critical components in the phone stack, the complexity of the state machine
does not increase with the number of applications running in the system. The
number of nodes and state transitions will only increase if we aim to prevent
more attacks than the ones we have described.

7 Evaluation

All instrumentation was performed completely in the kernel of the Openmoko
device. The hardware of the device consists of a Samsung S3c2410 ARMv7 based
CPU running at 266MHz, with 128MB SDRAM, 64MB NAND Flash. The Linux
kernel version used was v2.6.24 with modifications to add the SBIDF code. Only
784 lines of kernel code were added and no userspace code was changed.

7.1 Security Evaluation

For the simulation of malware, we coded two representative applications to
demonstrate the Messaging and Audio attacks that replicate the behavior of
commonly found malware. The SMS attack program implemented its own mes-
sage server and interfaced directly with the GSM serial port. Without the SBIDF,
this program automatically sends SMSes. The SBIDF, denied all SMSes from
this program, since the events in the system did not match with the specification
therefore the Hardware Controller denied access to the hardware.

Note that although the attack we implemented is a specific one, to our knowl-
edge all the existing messaging attacks are similar. Indeed, our framework is able
to prevent any variant of the Messaging attacks since all these attacks finally try
to use the GSM hardware either directly or indirectly. For example, such mal-
ware may exploit another application to interface with the GSM hardware on
its behalf. Since the SBIDF uses precise specifications that define the behavior
amongst critical applications to send SMSes, any malware that deviates from this
behavior will be detected. Also, even if the malware attempts to mimic the spec-
ification behavior, the Authentication Module detects malware that masquerades
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as legitimate applications, the IPC Monitor detects any malicious activity since
it checks the authenticity of the communicating peers, the Hardware Controller
denies any access to hardware if the IPC Matched flag is not set and finally since
there will be no hardware interrupt to trigger the IPC, the Interrupt Parser will
not set the Key Pressed flag.

The audio attack, firstly implemented by us, tries to interface with the audio
subsystem node to configure the audio chipset. This malware tries two attacks
on the audio interface. The first one tries to play a file during a call, with
an intention to interfere with the on-going conversation by making the other
peer hear the sound from the file. The second one tries to record an ongoing
conversation with and without a call in progress. In the second case, the intention
of the malware is to covertly record the conversations during a call and to record
ambient conversations when the user is not on a call. The recorded audio is
routed to a file, which can then be transferred to the attacker via an SMS or any
other network interface. This part of transferring the recorded audio was not
implemented. However, with the SBIDF, any attempt to alter the microphone
configuration was denied by the SBIDF. Using the similar principles behind
preventing the SMS/MMS attack, our framework is able to prevent any variation
of the audio malware. Moreover, the video attack as described in [29] can also
be easily prevented by the SBIDF, because the audio attack program closely
matches with their video capture malware.

7.2 Overhead Evaluation

Application Text Segment Sizes. The Authentication Module only calculates
the hashes of the TEXT segment of the critical applications. Their sizes as stored
in the respective PCBs are as follows: QPE(176 KB), MediaServer(192KB), Mes-
sageServer(596KB), Qtmail(28KB).

Application Load Time. The SBIDF affects the load time of only the criti-
cal components. All the other applications being loaded in the system are not
considered by the SBIDF. Since do execv is the system call to load the applica-
tion into main memory for the Linux kernel, the table shown below shows the
overheads for this call with and without the SBIDF.

The time taken for these applications to load through the Authentication
Module interface may seem very high. But this is because it scans through the
whole TEXT segment of the application, calculates an md5 hash and then

Table 3. Application Load Overheads

Application Time

W/ SBIDF(ms) W/O SBIDF(ms)

QPE 374 2

MediaServer 210 78

MessageServer 561 66

Qtmail 40 10
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Table 4. Training Run Overheads

Application Time (ms)

QPE 375

MediaServer 185

MessageServer 816

Qtmail 43

Table 5. IPC Overheads

With SBIDF(μs)

Send Receive

No Key Press 1.0 1.0

Not Authenticated 1.0 1.0

Authenticated 20 17

compares this hash with a pre-stored digest that was computed in the training
run. This scan may include a page table walk to fetch the respective pages into
memory. However, this is only a one-time overhead, since the Authentication
Module sets a bit in that applications PCB after comparing the hashes to signify
whether the application has been authenticated. This bit is then checked during
the IPC transactions thus avoiding re-calcuation of the hashes.

Training Run Time. For the training run, the SBIDF uses the same logic to
calculate the hash of the running applications, but stores the hashes into a file,
which may then be statically added to the Specification Database for run-time
usages. Table 4 includes the implicit file I/O overheads.

Input Event Overheads. The Interrupt Parser parses the scan code of spe-
cific keys such as the SEND, CALL, ENDCALL keys. For the OpenMoko de-
vice, the touchscreen hardware produces screen co-ordinates which then map
to scan codes. Each button on screen is represented by a range of [x, y] co-
ordinates. Hence the Interrupt Parser decodes the keys according to the range
of co-ordinates for each button. It takes only 1.1μsec to check if an expected
key is pressed. Thus, the SBIDF can easily detect when to proceed in the state
machine even with random key presses.

IPC Overheads. The IPC Monitor monitors each IPC Send and Receive oper-
ation over the AF UNIX sockets. However, it only mediates IPC operations over
specific sockets as defined by the specification. Also, the time taken by the IPC
operation depends upon the data being transferred between the two processes.
This varies for every run. Hence the results listed in Table 5 show the average
time over 5 runs of sending an SMS and making a GSM call. For each IPC op-
eration, first the IPC Monitor checks to see if any of the monitored keys was
pressed. If not it simply returns, because that IPC operation was not triggered as
a result of a hardware interrupt. Similarly, it then checks if the application that
initiated the IPC operation was authenticated previously. If not, then it returns.
This prevents malware from sending an SMS or modifying the microphone state.
If the applications are authentic and some monitored key was pressed, then it
checks which applications sent or received data and on which socket. Accordingly
it decides which timer to trigger as per the specification. The cases shown here
imply that the SBIDF takes on average just 20μs more while trying to prevent
malware activity and negligible overhead for all other cases. This shows how the
SBIDF can easily account for false alarms due to random system noise.
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8 Discussions

8.1 Scalability

Specification Database. We define specifications for legitimate sequence of
events in the system for the attacks we aim to prevent. For each type of attack,
the proposed framework defines a specification written in TLCK and enforces
the specification with state machines. The number of specifications only increase
if the number of attacks to be prevented increases. The length of the specification
depends on the number of critical components in the system, which by design
in most phone stacks is a small number. Unlike the context-related policies [5],
specifications in SBIDF focus on low-level system events.

Application to other platforms. The SBIDF is a framework that uses ob-
servation of inter-component communications to detect abnormal behaviors of
third party applications. Our preliminary experiments show that this framework
can be implemented for the Android platform on the Android ADP1 developer
phone. Android uses the Binder framework [1] for its IPC mechanism. A trace
of system events in the kernel shows that the binder kernel driver is able to de-
tect both peers involved in the IPC transaction. The critical components in this
case are rild, com.android.phone, system server, media server. Since the binder
framework does not use named sockets, we found that there were node identi-
fiers for each object involved in the transaction. These objects are represented
as nodes of a red-black tree per process/thread. The nodes in the tree act as
senders or receivers of data. The logcat service on the radio log shows the AT
commands exchanged with the GSM core. These commands could be parsed in
the kernel driver that maps the memory for the shared memory bridge between
the application processor and GSM core (smd qmi.c). SBIDF will need to in-
clude additional hooks in the sliding keypad interface driver to mediate inputs
other than the touchscreen.

8.2 Limitations and Future Work

Given the great variety of mobile phone platforms and the sophistication of at-
tacks, we do not think any single or a few defense techniques will be sufficient for
all cases. SBIDF focuses on detecting unauthorized access to sensitive services.
Below we discuss some limitations as well as some ideas for future research.

Message Integrity. At this stage, we do not consider the integrity of the
outgoing messages. So, if there is a vulnerability in the data segment of the
messaging application, once exploited, a malware could piggy-back malicious
data along with an outgoing message. Here, the SBIDF will not be able to
detect the alteration, but still let it pass since the message was initiated through
the SEND key interrupt followed by the specified IPC pattern. We think this is
a challenging research problem using our framework. We might need to always
trust the message server to protect the integrity of the message.
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Reducing False Positives. We notice that a few normal applications which au-
tomatically send SMS messages (e.g., with location data) in the background have
emerged. By our design principle our system would not be able to differentiate
these automated applications from malware which have similar behavior. Their
difference is on the intention, not on the techniques. So we need to attest the in-
tention of such automated messages. For an automated message detected by our
system, we are considering to validate the application originating it through a
graphic Turing test [16]. If the user confirms it is from an authorized application,
we may white-list the application (assuming the application is not compromised
yet at its first-time use). Such white-listed applications can be authenticated using
our Authentication Module. If the application is authenticated and authorized, the
message claimed to be from it will be allowed and otherwise denied.

Network Interfaces. Parsing data communication via BT and WiFi to detect
malicious activity without incurring high overheads and false positives is chal-
lenging. However, we think we can use SBIDF to mediate requests to power ON
and OFF these interfaces, or alter their configuration at runtime. This is possible
since, a real user will have to press a sequence of keys on screen. This is typically
a system configuration screen with one button for BT/WiFi power ON/OFF.
But we will not be able to parse events after these interfaces are switched ON,
using current techniques. We plan to leverage the work of Bose et al. [3] to detect
malware that tries to send sensitive files via these interfaces.

Component Authentication. To protect the integrity of critical components,
we use the Authentication Module to compute an md5 hash over the TEXT seg-
ment of the component. This authentication approach works well to protect the
static part of the component. However, a component may also contain dynamic
part which changes during run time. Attacker may take advantage of this dy-
namic part and bypass the authentication check. Verifying the dynamic part is
still a hard problem requiring more effort and investigations.

9 Conclusions

The framework described in this research shows a specification based intrusion
prevention approach to detect unauthorized access to sensitive services, such as
SMS, audio, and video services. We believe our framework is the first of its kind
to address mobile phone malware using hardware interrupts. For each type of
attack, the proposed framework defines a specification written in TLCK and en-
forces the specification with state machines. The number of specifications only
increase if the number of attacks to be prevented increases. Through evalua-
tions, we show how the framework is capable of detecting unauthorized access
to sensitive services at runtime with neglectable overhead.
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Abstract. Consent-based networking, which requires senders to have
permission to send traffic, can protect against multiple attacks on the net-
work. Highly dynamic networks like Mobile Ad-hoc Networks (MANETs)
require destination-based consent networking, where consent needs to be
given to send to a destination in any path. These networks are susceptible
to multipath misuses by misbehaving nodes.

In this paper, we identify the misuses in destination-based consent
networking, and provide solution for detecting and recovering from the
misuses. Our solution is based on our previously introduced DIPLOMA
architecture. DIPLOMA is a deny-by-default distributed policy enforce-
ment architecture that can protect the end-host services and network
bandwidth. DIPLOMA uses capabilities to provide consent for sending
traffic. In this paper, we identify how senders and receivers can mis-
use capabilities by using them in multiple paths, and provide distributed
solutions for detecting those misuses. To that end, we modify the capabil-
ities to aid in misuse detection and provide protocols for exchanging in-
formation for distributed detection. We also provide efficient algorithms
for misuse detection, and protocols for providing proof of misuse. Our
solutions can handle privacy issues associated with the exchange of infor-
mation for misuse detection. We have implemented the misuse detection
and recovery in DIPLOMA systems running on Linux operating systems,
and conducted extensive experimental evaluation of the system in Orbit
MANET testbed. The results show our system is effective in detecting
and containing multipath misuses.

Keywords: network capability, MANET security, misuse detection.

1 Introduction

Consent-based networking is emerging as a “clean-slate” design for providing
security against multiple attacks in the Internet [12,5,17,4]. In consent-based
networking, a sender needs to have permission to send traffic to a destination.
Consent-based architectures may support permission to send to a destination
on a particular path (path-based) or on any path (destination-based). In path-
based consent architectures, every node (or realm) in the path from a source to
a destination need to give consent to send traffic. This gives the nodes control
over the traffic passing through them, making it suitable for networks like the
Internet, where there are multiple providers (or administrative domains) and the
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paths are mostly static. In destination-based consent architectures, permission is
given to send traffic to a destination on any of the available paths; intermediate
nodes honor those permissions and forward the traffic. This architecture is useful
for networks where the paths are dynamic, as in mobile ad-hoc networks.

In a consent-based system, senders are given the permission to send traffic in
the form of verifiable proofs of consent (capabilities). The nodes perform band-
width enforcement by rate controlling the bandwidth used for the flows that are
part of the capability. In destination-based consent architectures, it is possible
to use the capability to reach a destination on multiple paths. In those cases,
not all traffic corresponding to a capability may go through a node. Hence, any
single node may not be able to enforce the bandwidth constraints of the capa-
bility. Furthermore, a node that has authority over multiple destination nodes
may assign permission to reach those destinations in a single capability. Hence,
the same capability may be used for multiple unrelated flows. Even if all the
traffic passes through a node, the node may be unable to enforce the bandwidth
constraints across unrelated flows due to high processing required to account
for traffic across the flows. It is also possible for certain nodes to collude with
senders allowing for larger bandwidth than the one allocated in the capability.
When misuse prevention is not feasible, we need a detection mechanism. Once
misuse is detected, the capability may be revoked or temporarily not honored,
or the node misusing the capability may be isolated.

Recently proposed DIPLOMA [4,3] is a destination-based consent architec-
ture for MANETs based on the concept of network capabilities [5]. A capabil-
ity is a cryptographically sealed token of authority that has associated rights.
DIPLOMA capabilities propagate both access control rules and traffic-shaping
parameters that should govern a node’s traffic. All the nodes in the path from
a source to a destination can verify and enforce the capability. The architecture
is based on deny-by-default paradigm, where nodes can only access the ser-
vices and hosts they are authorized for by the capabilities given to them. Thus,
DIPLOMA provides two main features: access control of the end-host services,
and protection of network bandwidth.

In this paper, we identify the sources of misuse in DIPLOMA and provide
solutions for detecting those misuses. A misuse may constitute either the use
of a capability in multiple paths to a destination, or the use of the same capa-
bility to multiple destinations. The detection of misuse may be done based on
the information locally available to the node (local detection), or based on the
information exchanged among the nodes (distributed detection).

To provide solutions for detecting misuses, we enhance the capability estab-
lishment protocol to enable nodes to detect the misuses. We also describe the
protocols for communicating the information about the flows going through the
nodes to enable distributed detection. We also provide efficient algorithms for
detecting misuses.

The node detecting a misuse should be able to provide the proof of the same,
so that other nodes can take action based on the misuse. Our solution can provide
the proof of the misuse, so that rogue nodes cannot exploit the misuse detection
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algorithms itself. Our solution also handles privacy issues associated with the
exchange of information about the flows.

We implemented our algorithms in the Orbit lab testbed [1]. We show that
the algorithms require minimum processing and memory. We also show that the
amount of information exchanged for the misuse detection algorithm is minimal.
We also conduct extensive experiments on capability misuses, and show that our
system effectively detects and contains these misuses.

2 Misuses in Consent-Based Architectures

The misuses in consent-based architectures depend on the type of the architec-
ture and the resources it is trying to protect. It depends whether the consent is
for a particular path or on any path to the destination. The misuse also depends
on whether the consent has any bandwidth constraint or it is just an access
constraint (i.e. unlimited bandwidth).

In architectures like network capabilities [5,16,17] and visas [7], consent is
given to access the receiver in any path. In network capabilities, all the nodes
from a source to destination participate in the protocol. In visas, on other hand,
only the source and destination networks are involved in the protocol. In ICING
architecture [12], consent is given for a particular path. ICING also requires that
all the intermediate nodes from the source to destination give explicit consent
for the packet to go through. In DIPLOMA, consent is given for any path, but
enforcement is done at all the intermediate nodes from source to destination.

Another factor that influences the misuse is whether the consent based archi-
tecture depends on the trusted nature of the routers or intermediate nodes and
security of the communication medium. If the protocol assumes trusted inter-
mediate nodes, it may be possible to overcome the protection by compromising
the routers. In general, protocols designed for wired networks assume trusted
routers. DIPLOMA is designed for wireless networks where the routers may not
be trusted and the communication medium is broadcast in nature.

A consent-based architecture may provide only access control or may addi-
tionally provide bandwidth limitations. It is easier to enforce bandwidth con-
straints on the path-based architectures. In destination based architecture like
DIPLOMA, which also provides bandwidth constraints, it is a challenge to en-
force the bandwidth constraints due to use of multiple paths to a destination;
the constraints has to be enforced across all the paths. The focus of this paper
is to detect and recover from misuses involving multiple paths.

3 DIPLOMA Overview

We assume wireless ad-hoc network setting where the nodes have limited mo-
bility. In DIPLOMA architecture, the resources needed to access a service are
allocated by the group controller(s) (GCs) of the MANET. Group controllers are
nodes responsible for maintaining the group membership for a set of MANET
nodes, and a priori authorize communications within the group. This means
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Fig. 1. System overview

that GCs do not participate in the actual communications, nor do they need
to be consulted by nodes in real time; in fact, if they distribute the appropri-
ate policies ahead of time, they need not even be members of the MANET. In
some cases, the GC may be reachable through a high-energy-consumption, high-
latency, low-bandwidth long-range link (e.g., a satellite connection); interactions
in such an environment should be kept to a minimum, and only for exceptional
circumstances (e.g., for revoking access for compromised nodes). The resource
allocation by GC to a node is represented as a credential (capability) called pol-
icy token, and it can be used to express the services and the bandwidth a node
is allowed to access. They are cryptographically signed by the GC, which can be
verified any node in the MANET.

When a node (initiator) requests a service from another MANET node (re-
sponder) using the policy token assigned to the initiator, the responder can
provide a capability back to the initiator. This is called a network capability,
and it is generated based on the resource policy assigned to the responder and
its dynamic conditions (e.g., level of utilization).

Figure 1 gives a brief overview of DIPLOMA. All nodes in the path between an
initiator to a responder (i.e., nodes relaying the packets) enforce and abide by the
resource allocation encoded by the GC in the policy token and the responder
in the network capability. The enforcement involves both access control and
bandwidth allocation. A responder accepts packets (except for the first) from
an initiator only if the initiator is authorized to send, in the form of a valid
network capability. It accepts the first packet only if the initiator’s policy token
is included. An intermediate node will forward the packets from a node only
if they have an associated policy token or network capability, and if they do
not violate the conditions contained therein. Possession of a capability does
not imply resource reservation; they are the maximum limits a node can use.
Available resources are allocated by the intermediate nodes in a fair manner, in
proportion to the allocations defined in the capability.

The capability need not be contained in all packets. The first packet carries the
capability, along with a transaction identifier (TXI) and a public key. Subsequent
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packets contain only the TXI and a packet signature based on that public key.
Intermediate nodes cache policy tokens and network capabilities in a capability
database, treating them as soft state. A capability database entry contains the
source and the destination addresses, TXI, the capability, public key for the
packet signature and packet statistics. Capability retransmissions update the
soft state of intermediate nodes when the route changes due to node mobility.
The soft state after a route change is also updated using an on-demand query
for the capability database entry from the upstream nodes.

3.1 Misuses in DIPLOMA

In this section, we identify ways of misusing capabilities in destination-based
consent systems like DIPLOMA. These includes simultaneous use of a capability
on multiple paths to get more than allocated bandwidth, or misusing a policy
to create network capabilities more than the policy is entitled to.

Misuse of policy tokens: Policy tokens are capabilities allocated by the group
controllers to the nodes to access the services running on other nodes in MANET.
The node for which the policy token is allocated is called owner of that policy
token. A policy token contains the owner, the destination node, the type of
service, the allocated bandwidth, and the signature of the group controller. The
destination field of a policy token may correspond to a specific host or a group of
hosts. A sender (i.e., the owner) can send traffic to multiple receivers simultane-
ously using a policy token that has authorization to access those receivers. While
accessing multiple receivers, the sender should not exceed the total bandwidth
allocated to that policy token. A misbehaving sender may try to exceed this
allocation by deliberately communicating with multiple receivers without satis-
fying the overall bandwidth constraints of the capability. We call this misuse as
concurrent-destination misuse.

Another way to misuse the capabilities is to use multiple paths to the receiver.
The sender may use the same capability on multiple paths, and may claim the
bandwidth allocation of the capability in each of the paths. This way the sender
can bypass the bandwidth enforcement that is performed by the intermediate
nodes. Though the receiver can easily detect this kind misuse, it might be col-
laborating with the sender to receive a larger bandwidth. We call this misuse as
multi-path misuse.

Misuses of network capabilities: Network capabilities are the capabilities
issued by the receiver nodes to the senders that authorize sending traffic to
those receivers. They are similar to policy tokens, except that the destination
field cannot be arbitrary; it has to be the receiver that issued the capability. The
capabilities also need to contain a signed policy issued by the group controller
authorizing the receiver to issue such a capability.

Nodes can misuse a network capability in two ways: either by a receiver issu-
ing more than it is entitled to, or by a sender sending more than the network
capability. A sender could misuse the network capability by sending the capa-
bility over multiple paths. This is same as the multi-path misuse. Note that
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concurrent destination misuse is not possible with network capabilities, since
those capabilities have fixed destination.

A receiver creating network capabilities may perform another form of misuse.
The receiver needs to conform to the policy while creating network capabilities.
A policy puts an upper bound on the amount of bandwidth a receiver may
allocate to capabilities simultaneously. A receiver might not abide by this policy,
and might allocate more network capabilities than it is entitled to. We call this
misuse as policy misuse.

4 System Architecture

Figure 2 shows the architecture of the misuse detection system in DIPLOMA.
The DIPLOMA engine, which is responsible for packet processing and capabil-
ity enforcement, collects the information about the capabilities going through
the node and provides them to the misuse detection engine. This information
is stored in the local records table. The detection engine may also receive the
information about the communication flows and the associated capabilities from
other nodes, which are stored in the external records table. The detection en-
gine periodically runs the misuse detection algorithm described in Section 5 on
these records. Whenever the algorithm detects a misuse, it informs the local
DIPLOMA engine as well as the misuse detection engines of the other nodes.
The DIPLOMA engine makes use of this information while accepting the capa-
bilities for connection establishment and packet forwarding.

Based on where the flow information is obtained, the misuse detection algo-
rithm is classified as local or distributed.

Local detection: In many cases, we can detect capability misuse using the local
information a node has, received either through the packets passing through
that node, or by listening to the channel and snooping on the packets in its
neighborhood. For example, a receiver can detect any misuse by a sender directed
towards it. Nodes in the sender’s neighborhood may be able to hear all the
packets by listening to the channel. In those cases, a neighboring node will be
able to detect any misuse by a sender, and provide a proof of the misuse.

Distributed detection: When it is not possible to detect the misuse based on
local information, we resort to distributed detection. For example, if the sender
is using a directional antenna, then its neighboring nodes may not be able to
hear all the packets it has sent. A misuse may be targeted towards multiple
receivers; hence, a single receiver cannot detect it. Even if a misuse involves a
single receiver, the receiver may be colluding with the sender and may not report
the misuse. In distributed detection, the nodes periodically exchange information
about the flows passing through them. The misuse detection algorithm is run
using the combination of the information a node collected locally and what it
received from other nodes. In distributed detection, one or more nodes in the
MANET are designated as verifier nodes. All the other nodes (called collector
nodes) send information about the flows going through them to one or more
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of these verifier nodes. The verifier nodes run the misuse detection algorithm,
and inform the collector nodes about any misbehaving nodes and the associated
capabilities, along with proof of misuse.

Figure 3 illustrates the types of the detection methods that are useful in
various misuse scenarios. Whether distributed detection is required or not is
dictated by whether there exists any common node in the misuse paths, and
whether the common node is willing to co-operate. A common node can run the
detection algorithm based on the local information alone to identify, and report
the misuse. For the misuse involving multiple paths to a single destination, the
receiver is always a common node. If all the common nodes are colluding with
the sender, then a distributed detection is required.

Our solution consists of the following: a capability-encoding scheme that aids
detection, protocols for exchanging information for distributed detection, and
detection algorithms.

4.1 Capability Encoding

In the DIPLOMA architecture, it is permissible to use a capability for multiple
communication sessions concurrently. For example, a node possessing a policy
token to communicate with a group of destinations may be simultaneously com-
municating with multiple nodes in that destination group. Similarly, it is possible
to use a policy authorizing the issue of the network capability to create multiple
capabilities simultaneously. For example, a node may be receiving packets from
multiple source nodes, and may want to allocate network capabilities to those
senders based on a single policy authorizing the allocations. Both of these con-
current uses of policies are valid as long as the nodes do not use (or allocate)
more bandwidth than allowed by the policies. When the nodes split the band-
width of a policy into multiple capabilities, we need protocols that enable other
nodes to check if these capabilities are within the limit.

While sending the policy token or while creating receiver capabilities, the
owner has to decide on how to split the available bandwidth. The protocol al-
lows dividing the available bandwidth into 32 or 64 equal sized slots, which are
represented using a bitmask of 32 or 64 bits. We call this bitmask as the alloca-
tion vector. A bit in the allocation vector is set, if the corresponding bandwidth
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slot is used. The allocation vector is included in the capability request packets,
as well as on the network capabilities created by the receivers. For a policy token
that a sender is using to communicate with multiple destinations, the allocation
vector on a capability request indicates the portion of the available bandwidth
allocated to that communication session. When a sender uses multiple paths to
reach a destination, the allocation vectors on the capability requests on each of
the paths indicate the portion of the available bandwidth from the capability
allocated to that path. If a receiver node creates multiple network capabilities,
based on a policy, the allocation vector field in the capability indicates the por-
tion of the available bandwidth allocated to that capability. Note that there
could be multiple bits set in the allocation vector indicating bandwidth alloca-
tion proportional to number of bits set in the vector.

It is permissible to allocate the same bandwidth slot to different capabilities,
derived from the same policy, at different times. Every capability request and
network capabilities contain a start time stamp and a validity duration, which
indicates the time until they are valid. To extend its validity, the owner needs to
create a new request. Hence, a misuse constitute the existence of two capability
requests for the same capability, or two network capabilities for the same policy
that has a common bit set in their allocation vector at the same time.

Our misuse detection algorithms do not depend on the data structure used for
dividing the allocated bandwidth. Allocation vectors have easy representation,
and allow for easy unions and intersection operations using bitwise operators.
If finer granularity is needed in dividing the bandwidth, one could use other
representations like slab allocation.

4.2 Communication Protocol

When a sender node wants to communicate with a receiver node, it uses the
capability request packet to inform the intermediate nodes about the capability
that will be used for the communication [4]. This request is signed by the sender’s
private key. To avoid any non-repudiation of the capability request by the sender,
the nodes participating in the misuse detection are required to store the capabil-
ity request and the signature. The capability request have many information that
are not necessary for the misuse detection. Storing this information puts undue
burden on the misuse detection nodes. One way to solve this problem is to sign
the information that are essential for misuse detection (called misuse detection
block), separately from that which are not useful for misuse detection (called
capability establishment block). Unfortunately, this requires senders to perform
two expensive signature operations. As a compromise between the amount of
information stored by nodes and the processing needed at the sender, we sign
the request in two steps. First, the sender computes the hash of the capability
establishment block. Then, it signs the combination of this hash and the misuse
detection block. To prove capability misuse by a sender, the nodes only need to
keep track of the hash, the misuse detection block, and the signature.

A capability request packet contains the capability establishment block and
misuse detection block. A node can verify the capability request by first
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computing the hash of the capability establishment block, and verifying the
signature for the combination of hash and the misuse detection block. A valid
signature indicates that the packet was not tampered with. We also use a similar
scheme for signing the networks capabilities created by the receiver nodes.

Information exchange: For the distributed detection, the detector nodes send
information about the communication sessions and the capabilities passing
through them to the verifier nodes. The detector nodes use the underlying
MANET unicast or multicast routing protocol to reach the verifier nodes. The
information required to detect misuse consists of the identity of the sender node,
the transaction identifier, serial number and the issuer of the capability, the al-
location vector, the time stamps, and the previous and next nodes in the path.
This information about the communication session is called a record. A node can
send multiple records in a packet. The nodes sign the packet using their private
keys. A similar record is also send for the network capabilities for detecting mis-
uses in them. The algorithms used for detection of the misuse by the senders,
and the receivers are similar. Hence, we will deal only with the sender misuse in
rest of the paper.

5 Detection Algorithms

In this Section, we describe the DIPLOMA misuse detection algorithms that are
used for both local and distributed detection. Then we describe how a verifier
node can provide a proof of misuse. Finally, we provide solution for handling the
privacy issues in our misuse detection architecture.

Recall that there is a misuse if there are two communication sessions that use
the same capability and have a common bit set in the allocation vectors with
overlapping validity periods. Hence, the goal of the algorithm is to find such
communication sessions. To that end, the algorithm first groups the records cor-
responding to a communication session. This is because there could be multiple
records for a communication, received from different collector nodes. Once the
records of communication sessions are grouped together, the algorithm look at
records across the communication sessions to identify misuse.

In DIPLOMA, a communication session can be uniquely identified by the
(transaction identifier, sender identity) pair. If the sender uses multiple paths to
a destination, the sender is required to use different transaction identifiers for
each path.

The misuse detection algorithm has two phases. In the first phase, it removes
the duplicate records for each communication sessions from the collection of
records it gathered locally and from other nodes. It also detects if a sender uses
the same transaction identifier on multiple paths. The output of the first phase
is a set of records, consisting of at most one record for a transaction identifier
per sender. This phase is not required if all the records are obtained from the
capability database of the local DIPLOMA engine, as the engine already prevents
duplicates. In the second phase, the algorithm detects if there is any misuse on
the filtered records output by the first phase.
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5.1 Phase 1 – Duplicate Removal and Multipath Detection

The removal of duplicate records for a communication session is performed by
sorting the records based on (sender, transaction id) pair and keeping only one
record per pair. However, this step will not detect use of the same transaction
identifier by a sender on multiple paths. To detect the multiple path misuse, we
use the following property of the paths.

If the same transaction id is used in two different paths to a destination, then
there will be two records for it that has a common previous node or a common
next node. This is because since the source and the destination nodes are common
in both paths, the paths need to bifurcate at some node and join at another node.
If the paths are bifurcating at any node other than the sender, or joins anywhere
other than the receiver, then the DIPLOMA engine at the common nodes in the
path can detect the misuse during the connection establishment stage. If the
paths are node disjoint and the receiver is not colluding with the misbehaving
sender, then the receiver can detect misuse. If all the common nodes are colluding
with the sender, then the phase 1 algorithm can detect the misuse looking for
the common nodes. This is depicted in Figure 4.

Algorithm 1 describes the phase 1 algorithm. It goes through the records
corresponding to the same (sender, transaction id) pair and verifies that all the
records use the same capability, allocation vector and time stamps. It also stores
the previous nodes and the next nodes of each record in temporary arrays. The
presence of duplicates in these arrays indicates a misuse.

Analysis: The algorithm will fail to detect a multipath misuse if certain nodes
collude with the sender and do not provide the relevant records to the verifier.
If the common nodes, including the receiver, collude with the sender, then local
detection of the multipath misuse will fail. If at least one of the nodes in the path
next to the common node colludes, where the forking of the paths has occurred,
then the algorithm will fail to detect that common node. Similarly if one of the
nodes before the common node at which the joining of the paths take place,
then also the algorithm will fail to detect the common next node. The algorithm
will fail to detect a multipath to a destination, when it cannot detect both the
common previous and next nodes. This is depicted in Figure 4. It is still possible

Fig. 4. Properties of multiple paths in aiding misuse detection
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for a verifier to detect that it has not received records from some of the nodes
(which may be colluding with the sender), because of the existence of two path
fragments (as opposed to one path) for the transaction identifier. However, we
cannot use this against the sender, because of the possibility of packet losses, or
the possibility of a node deliberately not sending the records to the verifier.

5.2 Phase 2 – Reuse of the Capability Detection

The second phase, the algorithm detects misuse of capabilities across the com-
munication sessions. Recall that a misuse is identified by a common bit set in
the allocation vectors at overlapping validity periods. The input to phase 2 is the
records output by phase 1. Hence, there is only one record per communication
session. The algorithm goes through all the records corresponding to each of the
capabilities and detects misuse.

Algorithm 1. Duplicate-record removal & multi-path detection
1: Li ← List of all (source node, transaction id) pair
2: Lu ← NULL {Output list of unique records}
3: for all id ∈ Li do
4: Lr ← List of records for id
5: Hprev, Hnext ← NULL
6: Add first record of Lr to Lu

7: for all rec ∈ Lr do
8: if attributes of rec different from head(Lr) then
9: print Misuse. Different attributes for same transaction

10: else if prevhop(rec) ∈ Hprev or nexthop(rec) ∈ Hnext then
11: print Misuse. Same transaction in different paths
12: end if
13: Add prevhop(rec) to Hprev and nexthop(rec) to Hnext

14: end for
15: end for
16: return Lu

Fig. 5. Computation of aggregate allocation vector and misuse detection using interval
graphs

The algorithm treats the records as an interval graph, where each record
corresponds to an interval for which they are active. There is an allocation vector
associated with each interval, which is the allocation vector of the corresponding
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record. We define the aggregate allocation vector at any point of time as the union
of the allocation vectors of the intervals passing through it. There is misuse at
any point in time if the intersection of any two intervals passing through it is
not empty. This is depicted in Figure 5.

Once the interval graph is formed, we can detect any misuse in linear time
in the number of intervals. The algorithm goes through the end points of the
intervals in increasing time and updates the aggregate allocation vector. At the
beginning of the algorithm, this vector is set to NULL. Whenever the algorithm
considers the beginning of an interval, it checks if the intersection of the aggregate
allocation vector and the allocation vector of that interval is non-empty. If it is
not empty, then there is misuse. Otherwise, the allocation vector of that interval
is added to the aggregate vector. Similarly, when the algorithm considers the end
of an interval, its allocation vector is subtracted from the aggregate allocation
vector. If there are both entering and leaving intervals at any point, then the
leaving operation is considered before the entering operation. This is because the
new entering interval could use slots from the leaving interval, without causing
misuse.

Figure 5 illustrates the computation of aggregate allocation vector and the
misuse detection. There are six flows labeled as a, b, . . . , f . They are represented
as the intervals in which they are active. Their corresponding allocation vectors
are also shown. For simplicity of illustration, we use the allocation vector of 4
bits. The vector on the top line shows the aggregate allocation vector when the
flows enter or leave the system. The aggregate vector at any point is the union
of the allocation vectors of the interval going through that point. There is no
misuse for flows a, b, . . . , e. The flow f uses one of the slots of flow d, hence there
is misuse. The aggregate allocation vector before f entered the system was 1101.
The flow f uses one bandwidth slot. The sender assigned it the slot 0001, which
is a reuse of the existing slot. If the sender had assigned it the slot 0010, then
there would not be any misuse. Hence, it is important that senders allocate the
right bandwidth slot for flows.

Creating an interval graph from the records is performed by sorting the end-
points of the interval. In fact, our algorithm maintains two sorted lists: one for
the starting points of the intervals and the second for the ending points of the
intervals. The algorithm is given in Algorithm 2.

5.3 Privacy Issues

In the protocol presented so far, the detector nodes send the information about
all the flows going through them to the verifier. Even though the records contain
only the sender node identity and does not have the receiver identities of the
flow, it is still possible to deduce the receiver identity by following the path using
the previous and next hop information. Hence, the verifier can know about the
source and destination of all the flows. Another privacy concern is the knowledge
about the number of flows a sender is sending, even if the verifier is not interested
in knowing the receivers.
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Algorithm 2. Phase 2 - checking for reuse of bandwidth slots
1: Li ← List of all (capability id, issuer) pair
2: for all id ∈ Li do
3: Lr ← List of records for id
4: Ls ← Records in Lr sorted on start time
5: Le ← Records in Lr sorted on end time
6: aggregate ← φ
7: while Ls not empty do
8: times ← starttime(head(Ls))
9: timee ← endtime(head(Le))

10: if timee ≤ times then
11: rec ← head(Le)
12: Le ← Le − rec
13: aggregate ← aggregate− allocvector(rec)
14: else
15: rec ← head(Ls)
16: Ls ← Ls − rec
17: if aggregate∩ allocvector(rec) �= NULL then
18: print Misuse. Reuse of bandwidth slots.
19: end if
20: aggregate ← aggregate∪ allocvector(rec)
21: end if
22: end while
23: end for

We can modify the protocol to honor privacy, and still detect the misuse as
follows. The detection algorithm continues to function even if all the fields in
the records, except the time stamps and the allocation vector, were encrypted
with a key that is common across all the flows corresponding to a capability. The
detector nodes can create such a key by taking a known function (e.g., hash)
of the capability. Since the flows are going through the detector nodes, they
know about the complete capability associated with the flow. However, verifier
knows only about their serial numbers, and cannot recreate the keys. Hence,
verifier cannot decrypt the records for the flows not going through it. In this
scheme, the verifier can still get information about all the flows that use any of
the capabilities passing through it.

6 Experimental Evaluation

In this section, we study the effectiveness of the misuse detection algorithms.
The experiments were conducted in the Orbit Lab Testbed [1]. The algorithms
were implemented on DIPLOMA systems running on Debian Linux with kernel
2.6.30. We analyzed memory, bandwidth and processing overheads, and found
them to be minimal; due to lack of space we omit the results.
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Fig. 6. Topology to study the perfor-
mance of detection algorithm

Fig. 7. Bandwidth of flows in a system
that does not require consent to send

6.1 Effectiveness in Containing Attacks

Now we study the effectiveness of misuse detection algorithm in detecting and
containing the attacks. We used the topology given in Figure 6, created by
assigning non-overlapping channels of 802.11b and 802.11a to the links [3].

In this set of experiments, there are four flows: two by good nodes and two
by the attacker. Each of the senders is allocated a capability of 4 Mbps. All the
flows were created using UDP iperf. The good nodes, 2 and 5, send traffic at 4
Mbps each to the destinations nodes 7 and node 4 respectively. We denote those
flows as flow 1 and flow 2 respectively and call them good flows. Flow 1 takes
the path 2 − 8 − 6 − 7 and flow 2 takes the path 5 − 8 − 3 − 4. These flows are
started at time 0 seconds and last for 120 seconds. The attacker, which is the
node 1, sends flows to nodes 4 and 7, which we denote by flows 3 and 4. We
call these attack flows. Each of the attack flows are 12 Mbps, even though the
attacker has one capability with the allocated bandwidth of 4 Mbps, which can
be used for either destination. Flow 3 is started at time 30 seconds and takes
the path 1 − 2 − 3 − 4. Flow 4 is started at time 60 seconds and takes the path
1−5−6−7. Both the flows last for 120 seconds, and use the same capability with
all the bits in the allocation vector set. Hence, the attacker launches two types
of attacks. First, it is sending higher bandwidth than that is allocated in the
capability, which starts at time 30 seconds. Secondly, it uses the same capability
to talk to multiple destinations simultaneously using the same bandwidth slot.
This attack starts at time 60 seconds.

We conduct three sets of experiments. The first is called the original, and
does not require any consent for sending the traffic. This scheme cannot pro-
tect against both the attacks. Then we use the consent-based scheme, where
DIPLOMA requires capabilities for sending traffic. This DIPLOMA without
misuse detection, can handle the first bandwidth hogging attack but cannot pre-
vent reuse of the capability across the flows. Finally, we use DIPLOMA with
misuse detection to handle both types of attacks. For each of the experiments,
we report the bandwidth of each of the flow over a period of time. All experi-
ments were run 6 times, and we show the average bandwidth. The iperf servers
(receivers) measured the bandwidths at 5 second intervals.
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Figure 7 shows the results for the original system. In this system, until 30
seconds, where there are only two flows from the good nodes, both the flows get
their requested 4 Mbps bandwidth. At 30 seconds, when the first attacker flow
(flow 3) arrives, the bandwidth of the good flows drop as the attacker flow takes
up most of the bandwidth. The attacker receives a bandwidth between 8 and 8.5
Mbps, whereas the bandwidth of good flows drop to 3 Mbps. At 60 seconds, when
the second attack flow arrives (flow 4), the bandwidth of the good flows further
drops along with the bandwidth of the first attacker flow. The bandwidth of the
flow 1 and flow 2 drops to 1.1 Mbps and 2.7 Mbps respectively. The bandwidth
of first attacker flow drops to 4.6 Mbps. The new attacker flow receives 2.6 Mbps.
This trend continues until 120 seconds, when the good flows end. At that point,
the first attacker flow bandwidth recovers to its previous levels (8 Mbps) and the
second attacker flow receives a higher bandwidth of 5.8 Mbps. At 150 seconds,
when the first attacker flow ends, the second attacker flow receives 11.8 Mbps,
which is close to the requested bandwidth of that flow.

Figure 8 shows the results for the DIPLOMA scheme when misuse detection
is not in effect. Until 30 Seconds, where the attacker had not started sending
any traffic, the good flows 1 and 2 get the bandwidth that are allocated in
their capability. The bandwidth reported by the flows is 3.74 Mbps, which is
slightly less than the allocated 4 Mbps due to the additional headers present in
DIPLOMA packets. At 30 seconds, when the attacker starts sending the first
attack flow (flow 3) at the rate of 12 Mbps, the bandwidth of the good flows
drops only slightly to 3.71 Mbps. The attacker gets a bandwidth of 3.5 Mbps,
which is closer to its allocated bandwidth. Hence, the consent-based DIPLOMA
scheme is able to protect the good flows and contain the attacker to its allocated
bandwidth. At 60 seconds, when the second attack flow (flow 4) starts, the
bandwidth of the good flows and the attacker drops. This drop for the good
flow is not as drastic as the original scheme. Here the bandwidth of the flow 1
drops to 2.3 Mbps and that of flow 2 drops to 3 Mbps. The existing attacker flow
drops to 2.9 Mbps, and the new attacker flow receives 1.9 Mbps bandwidth. This
drop in bandwidth is due to limited available bandwidth on the network. The
attacker is reusing the capability at this point, and DIPLOMA ends up honoring
the same capability in two node disjoint paths. At 120 s, the genuine flow ends.
At that point, the first attack flow bandwidth moves back to its original level
of 3.5 Mbps. The second attacker flow bandwidth ends up at 3.3 Mbps. This
increase is due to the freed up capacity from the good flows. At 150 seconds, the
first attack flow ends and the second attack bandwidth increases slightly to 3.6
Mbps. Even then, the bandwidth of the individual attack flows does not go above
the allocated bandwidth of 4 Mbps, because DIPLOMA enforces the bandwidth.
Therefore, in DIPLOMA without the misuse detection, an attacker cannot go
above the allocated bandwidth in a single path. However, it can bypass that
check by sending traffic to multiple destinations in disjoint paths, if the capability
permits it. When this happens, genuine traffic is affected due to capacity sharing.

Figure 9 shows the results for the DIPLOMA system with misuse detection.
The behavior of the system is same as DIPLOMA without misuse detection, until
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Fig. 8. Bandwidth of the flows in
DIPLOMA without misuse detection

Fig. 9. Bandwidth of the flows in
DIPLOMA with misuse detection

the misuse happens at 60 seconds. At 60 seconds, when the attacker sends the
second flow (flow 4), which constitutes a capability reuse, the behavior changes
from DIPLOMA without the misuse detection. In this case, the nodes send the
record to the verifier (node 8), which detects the misuse. In this experiment, the
period at which nodes send the record is 10 seconds. Hence, the verifier detects
the misuse before 70 seconds, and informs the forwarding nodes. The forwarding
nodes starts to block the attack flows. The drop of the attack bandwidth is
gradual due the nature of our implementation [3]. The bandwidth of the good
flows drops to 2.8 Mbps and 3.3 Mbps for a short duration (10 seconds) at 60
seconds while the misuse detection and recovery takes place. At 85 seconds, the
recovery is complete and the bandwidth of the good flows moves back to the
levels before the reuse attack. Even after the genuine flow ends at 120 s, the
attacker flows continue to be blocked due to their misuse action. This continues
even after the attacker stops the misuse at 150 seconds, when the first attacker
flow ends. Hence, DIPLOMA can effectively contain capability misuse.

6.2 Speed of Detecting Misuse

Next, we study how fast our scheme can detect the misuses and communicate
with the affected nodes. The time to detect the misuse will depend on the fre-
quency at which records are sent to the verifiers. Hence, we study the misuse
detection speed as a function of that period, using the same set of flows as in
the previous experiment.

Figure 10 plots the time required at the detector nodes to get the misuse
notification after the misuse happened for various record reporting periods. For
the periods up to 30 seconds, the time to detect is the same as the period. Hence,
the misuse is detected as soon as the record is received to the verifier. For the
periods 40 and 50 seconds the time to detect misuse was less than the period,
and for 60 seconds the detection time was the same as the period. This is because
for 40 and 50 seconds experiments, the start of the attack and the start of the
period may not have been synchronized. Hence, it is possible for the detectors
to send the record to the verifier in time less than the period after the attack
has happened. The verifier detects the misuse upon receiving the records.
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Fig. 11. Additional attack traffic after mis-
use for different record reporting periods

6.3 Attack Bandwidth after Misuse

Now we study the amount of additional traffic the attacker is able to send after
the misuse. This quantity depends on how fast the system is able to detect
the misuse and take action against the attacker. Hence, we study the additional
traffic as a function of record reporting period. We use the same flows and attack
scenario as the previous experiment and measure the data received at the receiver
for the attack flows (flows 3 and 4), after the misuse has started.

Figure 11 plots the amount of traffic received at the receivers for the attack
flows after the misuse, for different record reporting periods. Up to 30 seconds,
the attack traffic increases as the record reporting time increases. This is be-
cause the misuse traffic will be treated as the legitimate traffic and allowed to
pass through until the misuse is detected; and the misuse detection time is pro-
portional to the record reporting period. Note that even if the attacker is trying
to send the traffic at 12 Mbps, the throughput the flows receive is less than 4
Mbps due to bandwidth enforcement by the intermediate nodes. In this set of
experiments, the flow 3 had slightly higher bandwidth than flow 4, similar to the
experiment in Figure 9. For 40 and 50 seconds, the attack traffic drops is less
than that of 30 seconds, as the misuse is detected before the complete period as
explained in the previous experiment.

7 Related Work

The concept of capabilities was used in operating system for securing resources
[15]. Follow-on work investigated the controlled exposure of resources at the net-
work layer using the concept of “visas” for packets [7], which is similar to network
capabilities. More recently, network capabilities were proposed to prevent DDoS
attacks [5]. We extend the concept to MANETs and use it for both access con-
trol and traffic shaping [4,3]. All these works represent destination-based consent
architectures. Path-based consent architectures in the context of Internet have
also been proposed [12].
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Intrusion detection systems (IDS) for MANETs is an active area of research
[10]. In the Local Intrusion Detection Architecture [2] communities of nodes are
formed, which exchange various security data and intrusion alerts. The nodes
can also place mobile agents in the other nodes, to do a specific mission in
an autonomous and asynchronous manner. Distributed IDS architecture [18] is
another proposed IDS architecture for MANETs. It uses a local detection engine,
with the input from the local data collection, and a co-operative detection engine,
with the input from the neighboring nodes to detect intrusions.

Solutions are also proposed to specifically detect attacks on routing protocols
based on the protocol specification. [8] detects violations in the protocol specifica-
tion based on an extended finite state automation (EFSA) of AODV. Distributed
Evidence-Driven Message Exchange Intrusion Detection Model (DEMEM) [13]
detects inconsistency among the routing messages in OLSR. [6] models the at-
tacks on AODV protocol using attack tree and identify the damages. Proposals
are also made when to isolate a misbehaving node based on the criticality of
that node in maintaining the connectivity [14]. There is also a rich literature on
detecting DoS and node replication attacks in sensor networks [9,11].

8 Conclusions and Future Work

We identified sources of misuse in destination-based consent architectures and
provided a distributed solution for detecting misuses. Our solution is demon-
strated for DIPLOMA, a consent-based architecture for MANETs. DIPLOMA
is a deny-by-default distributed policy enforcement architecture based on capabil-
ities. We provided capability encodings and protocols for exchanging information
for distributed misuse detection, and presented efficient algorithms for misuse
detection. We showed through experimental evaluations that our algorithms are
effective in identifying and containing the misuse. In the future, we plan to mea-
sure the energy consumed for detecting misuses and the energy savings due to
preventing attacks, and to look at misuse in path-based consent architectures.
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Abstract. A method for extracting cryptographic key material from
DRAM used in modern computers has been recently proposed in [9]; the
technique was called Cold Boot attacks. When considering block ciphers,
such as the AES and DES, simple algorithms were also proposed in [9]
to recover the cryptographic key from the observed set of round subkeys
in memory (computed via the cipher’s key schedule operation), which
were however subject to errors due to memory bits decay. In this work
we extend this analysis to consider key recovery for other ciphers used
in Full Disk Encryption (FDE) products. Our algorithms are also based
on closest code word decoding methods, however apply a novel method
for solving a set of non-linear algebraic equations with noise based on
Integer Programming. This method should have further applications in
cryptology, and is likely to be of independent interest. We demonstrate
the viability of the Integer Programming method by applying it against
the Serpent block cipher, which has a much more complex key schedule
than AES. Furthermore, we also consider the Twofish key schedule, to
which we apply a dedicated method of recovery.

1 Introduction

The structure of block cipher key schedules has received much renewed atten-
tion, since the recent publication of high-profile attacks against the AES [4] and
Kasumi [3] in the related-key model. While the practicality of such attacks is
subject of debate, they clearly highlight the relevance of the (often-ignored) key
schedule operation from a cryptanalysis perspective. An unrelated technique,
called Cold Boot attacks, was proposed in [9] and also provided an insight into
the strength of a particular key schedule against some forms of practical attacks.
The method is based on the fact that DRAM may retain large part of its content
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for several seconds after removing its power, with gradual loss over that period.
Furthermore, the time of retention can be potentially increased by reducing the
temperature of memory. Thus contrary to common belief, data may persist in
memory for several minutes after removal of power, subject to slow decay. As a
result, data in DRAM can be used to recover potentially sensitive information,
such as cryptographic keys, passwords, etc. A typical application is to defeat the
security provided by disk encryption programs, such as Truecrypt [16]. In this
case, cryptographic key material is maintained in memory, for transparent en-
cryption and decryption of data. One could apply the method from [9] to obtain
the computer’s memory image, potentially extract the encryption key and then
recover encrypted information.

The Cold Boot attack has thus three stages: (a) the attacker physically re-
moves the computer’s memory, potentially applying cooling techniques to reduce
the memory bits decay, to obtain the memory image; (b) locate the cryptographic
key material and other sensitive information in the memory image (likely to be
subject to errors due to memory bits decay); and (c) recover the original cryp-
tographic key from this information in memory. While all stages present the
attacker with several challenges, from the perspective of the cryptologist the one
that poses the most interesting problems is the latter stage; we therefore con-
centrate in this work on stage (c). We refer the reader to [9,10] for discussion on
stages (a) and (b).

A few algorithms were proposed in [9] to tackle stage (c), which requires one
to recover the original key based on the observed key material, probably subject
to errors (the extent of which will depend on the properties of the memory,
lapsed time from removal of power, and temperature of memory). In the case of
block ciphers, the key material extracted from memory is very likely to be a set
of round subkeys, which are the result of the cipher’s key schedule operation.
Thus the key schedule can be seen as an error-correcting code, and the problem
of recovering the original key can be essentially described as a decoding problem.

The paper [9] contains methods for the AES and DES block ciphers (besides
discussion for the RSA cryptosystem, which we do not consider in this work).
For DES, recovering the original 56-bit key is equivalent to decoding a repeti-
tion code. Textbook methods are used in [9] to recover the encryption key from
the closest code word (i.e. valid key schedule). The AES key schedule is not as
simple as DES, but still contains a large amount of linearity (which has also
been exploited in recent related-key attacks, e.g. [4]). Another feature is that
the original encryption key is used as the initial whitening subkey, and thus
should be present in the key schedule. The authors of [9] model the memory
decay as a binary asymmetric channel, and recover an AES key up to error rates
of δ0 = 0.30, δ1 = 0.001 (see notation in Section 2 below). The results against
the AES – under the same model – were further improved in [17,11].

Contribution of this paper. We note that other block ciphers were not con-
sidered in [9]. For instance, the popular FDE product Truecrypt [16] provides
the user with a choice of three block ciphers: Serpent [2], Twofish [14] (both
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formerly AES candidates) and AES. The former two ciphers present much more
complex key schedule operations than DES and AES. Another feature is that
the original encryption key does not explicitly appear in the expanded key sched-
ule material (but rather has its bits non-linearly combined to derive the several
round subkeys). These two facts led to the belief that these ciphers were not
susceptible to the attacks in [9], and could perhaps provide an inherently more
secure alternative to AES when protecting against Cold Boot attacks1.

In this work, we extend the analysis from [9] and demonstrate that one can
also recover the encryption key for the Serpent and Twofish ciphers up to some
reasonable amount of error. We propose generic algorithms which apply a novel
method for solving a set of non-linear algebraic equations with noise based on
Integer Programming2. Our methods also allow us to consider different noise
models and are not limited to the binary asymmetric channel setting usually
considered in the Cold Boot scenario; in particular we improve the results against
the AES from [9] and extend the range of scenarios in which the attack can be
applied when compared to [9,17,11]. Finally, we note that our methods can in
principle be applied to any cipher and thus provide a generic (but possibly
impractical for some ciphers) solution to the Cold Boot problem.

2 The Cold Boot Problem

Cold Boot attacks were proposed and discussed in detail in the seminal work [9].
The authors of [9] noticed that bit decay in DRAM is usually asymmetric: bit
flips 0 → 1 and 1 → 0 occur with different probabilities, depending on the
“ground state”. To motivate our work, we model more formally the cold boot
problem for block ciphers below.

We define the Cold Boot problem (for block cipher) as follows. Consider an effi-
ciently computable vectorial Boolean function KS : Fn

2 → FN
2 where N > n, and

two real numbers 0 ≤ δ0, δ1 ≤ 1. Let K = KS(k) be the image for some k ∈ Fn
2 ,

and Ki be the i-th bit of K. Now given K, compute K ′ = (K ′
0, K

′
1, . . . , K

′
N−1) ∈

FN
2 according to the following probability distribution:

Pr[K ′
i = 0 | Ki = 0] = 1 − δ1 , P r[K ′

i = 1 | Ki = 0] = δ1,
P r[K ′

i = 1 | Ki = 1] = 1 − δ0 , P r[K ′
i = 0 | Ki = 1] = δ0.

Thus we can consider such a K ′ as the output of KS for some k ∈ Fn
2 except

that K ′ is noisy, with the probability of a bit 1 in K flipping to 0 is δ0 and the
1 In fact, a message in one of the most popular mailing lists discussing cryptography,

commenting at the time about the contributions of [9]: “While they did have some
success with recovering an entire AES key schedule uncorrupted, it seems important
to note that the simplistic nature of the AES and DES key schedules allowed them
to recover the entire original key even after the state had been somewhat degraded
with only moderate amounts of work. A cipher with a better key schedule (Blowfish
or Serpent, for instance) would seem to offer some defense here”[12], was one of the
initial motivations for our work in this problem.

2 We note that a similar method for key recovery on a different model of leakage,
namely side-channel analysis, was independently proposed in [13].
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probability of a bit 0 in K flipping to 1 is δ1. It follows that a bit K ′
i = 0 of K ′

is correct with probability

Pr[Ki = 0 | K ′
i = 0] =

Pr[K ′
i = 0|Ki = 0]Pr[Ki = 0]

Pr[K ′
i = 0]

=
(1 − δ1)

(1 − δ1 + δ0)
.

Likewise, a bit K ′
i = 1 of K ′ is correct with probability (1−δ0)

(1−δ0+δ1)
. We denote

these values by Δ0 and Δ1 respectively.
Now assume we are given a description of the function KS and a vector

K ′ ∈ FN
2 obtained by the process described above. Furthermore, we are also

given a control function E : Fn
2 → {True, False} which returns True or False

for a candidate k. The task is to recover k such that E(k) returns True. For
example, E could use the encryption of some known data to check whether k is
the original key.

In the context of this work, we can consider the function KS as the key
schedule operation of a block cipher with n-bit keys. The vector K is the result
of the key schedule expansion for a key k, and the noisy vector K ′ is obtained
from K due to the process of memory bit decay. We note that in this case, another
goal of the adversary could be recovering K rather than k (that is, the expanded
key rather than the original encryption key), since with the round subkeys one
could implement the encryption/decryption algorithm. In most cases, one should
be able to efficiently recover the encryption key k from the expanded key K.
However it could be conceivable that for a particular cipher with a highly non-
linear key schedule, the problems are not equivalent.

Finally, we note that the Cold Boot problem is equivalent to decoding (po-
tentially non-linear) binary codes with biased noise.

3 Block Cipher Key Expansion

In this section we briefly describe some of the relevant features of the key schedule
operation of the target ciphers.

3.1 AES

For details of the key schedule of the AES block cipher we refer the reader to [7].
In this work, we are interested in its description as a system of polynomial
equations over F2, see [6]. We note that the non-linearity of the key schedule
is provided by four S-box operations in the computation of each round subkey.
The explicit degree of the S-box Boolean functions is 7, while it is well known
that the key schedule can be described as a system of quadratic equations.

3.2 Serpent

Serpent, designed by Anderson et al. [2], was one of the five AES finalists.
The cipher key schedule operation produces 132 32-bit words of key material as
follows. First, the user-supplied key k is padded to 256 bits using known con-
stants, and written as eight 32-bit words w−8, . . . , w−1. This new string is then
expanded into the prekey words w0, . . . , w131 by the following affine recurrence:
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wi = (wi−8 ⊕ wi−5 ⊕ wi−3 ⊕ wi−1 ⊕ ψ ⊕ i) ≪ 11,

where ψ is some known constant. Finally the round keys are calculated from the
prekeys wi using the S-boxes Si in bitslice mode in the following way:

{k0, k1, k2, k3} = S3(w0, w1, w2, w3)
{k4, k5, k6, k7} = S2(w4, w5, w6, w7)

{k8, k9, k10, k11} = S1(w8, w9, w10, w11)
{k12, k13, k14, k15} = S0(w12, w13, w14, w15)
{k16, k17, k18, k19} = S7(w16, w17, w18, w19)

. . .

{k124, k125, k126, k127} = S4(w124, w125, w126, w127)
{k128, k129, k130, k131} = S3(w128, w129, w130, w131).

The rounds subkeys are then Ki = {k4i, k4i+1, k4i+2, k4i+3}.
We note the following features of the cipher key schedule which are of relevance

to Cold Boot key recovery: the user-supplied key does not appear in the output
of the Serpent key schedule operation, the explicit degree of the S-box Boolean
functions is three, and every output bit of the key schedule depends non-linearly
on the user-supplied key.

3.3 Twofish

Twofish, designed by Schneier et al. [14], was also one of the five AES finalists.
The cipher is widely deployed, e.g. it is part of the cryptographic framework in
the Linux kernel and is also available in Full Disk Encryption products. Twofish
has a rather complicated key schedule, which makes it a challenging target for
Cold Boot key recovery attacks. We note that while Twofish is defined for all
key sizes up to 256 bits, we will focus here on the 128-bit version. We also follow
the notation from [14].

The Twofish key schedule operation generates 40 32-bit words of expanded key
K0, . . . , K39, as well as four key-dependent S-boxes from the user-provided key
M . Let k = 128/64 = 2, then the key M consists of 8k = 16 bytes m0, . . . , m8k−1.
The cipher key schedule operates as follows. Each four consecutive bytes are
converted into 32-bit words in little endian byte ordering. That is, the leftmost
byte is considered as the least significant byte of the 32-bit word. This gives rise
to four words Mi. Two key vectors Me and Mo are defined as Me = (M0, M2)
and Mo = (M1, M3). The subkey words K2i and K2i+1 for 0 ≤ i < 20 are then
computed from Me and Mo by the routine gen_subkeys given in Algorithm 2
in the Appendix.

Algorithm 1 (also in the Appendix) defines the function h used in the key
schedule. There, we have that q0 and q1 are applications of two 8-bit S-boxes
defined in [14] and MDS(Z) is a multiplication of Z interpreted as a 4 element
vector over the field F28 ∼= F2[x]/〈x8 +x6 +x5 +x3 +1〉 by a 4× 4 MDS matrix.
The explicit degree of the S-boxes’ Boolean functions is also seven.
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Finally, a third vector S is also derived from the key. This is done by combining
the key bytes into groups of eight (e.g. m0, . . . , m7), interpreting them as a vector
over the field F28 ∼= F2[x]/〈x8 + x6 + x3 + x2 + 1〉, which is multiplied by a 4× 8
matrix RS. Each resulting four bytes are then interpreted as a 32-bit word Si.
These words make up the third vector S = (S1, S0). The key-dependent S-Box
g maps 32 bits to 32 bits and is defined as g(X) = h(X, S).

Full disk encryption products use infrequent re-keying, and to provide efficient
and transparent access to encrypted data, applications will in practice precom-
pute the key schedule and store the expanded key in memory. For the Twofish
block cipher, this means that the subkey words K0, . . . , K39 as well as the key
dependent S-boxes are typically precomputed.

Storing 40 words K0, . . . , K39 in memory is obviously straightforward (we note
however that this set of words does not contain a copy of the user-supplied key).
To store the key dependent S-box, the authors of [14] state: “Using 4 Kb of table
space, each S-box is expanded to a 8-by-32-bit table that combines both the S-
box lookup and the multiply by the column of the MDS matrix. Using this option,
a computation of g consists of four table lookups, and three XORS. Encryption
and decryption speeds are constant regardless of key size.” We understand that
most software implementations choose this strategy to represent the S-box (for
instance, the Linux kernel chooses this approach, and by default Truecrypt also
implements this technique, which can however be disabled with the C macro
TC_MINIMIZE_CODE_SIZE); we assume this is the case in our analysis.

4 Solving Systems of Algebraic Equations with Noise

In this section we model a new family of problems – solving systems of multi-
variate algebraic equations with noise – and propose a first method for solving
problems from this family. We use the method to implement a Cold Boot attack
against ciphers with key schedule with a higher degree of non-linearity, such as
Serpent.

Polynomial system solving (PoSSo) is the problem of finding a solution to a
system of polynomial equations over some field F. We consider the set
F = {f0, . . . , fm−1} ⊂ F[x0, . . . , xn−1]. A solution to F is any point x ∈ Fn

such that ∀f ∈ F , we have f(x) = 0. Note that we restrict ourselves to solutions
in the base field in the context of this work.

Moreover, denote by Max-PoSSo the problem of finding any x ∈ Fn that
satisfies the maximum number of polynomials in F . Likewise, by Partial Max-
PoSSo we denote the problem of finding a point x ∈ Fn such that for two sets
of polynomials H,S ⊂ F[x0, . . . , xn−1], we have f(x) = 0 for all f ∈ H, and the
number of polynomials f ∈ S with f(x) = 0 is maximised. Max-PoSSo is Partial
Max-PoSSo with H = ∅.

Finally, by Partial Weighted Max-PoSSo we denote the problem of finding a
point x ∈ Fn such that ∀f ∈ H : f(x) = 0 and

∑
f∈S C(f, x) is minimised where

C : f ∈ S, x ∈ Fn → R≥0 is a cost function that returns 0 if f(x) = 0 and some
value v > 0 if f(x) �= 0. Partial Max-PoSSo is Partial Weighted Max-PoSSo
where C(f, x) returns 1 if f(x) �= 0 for all f .
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The family of “Max-PoSSo” problems defined above is analogous to the well-
known Max-SAT family of problems. In fact, these problems could well be re-
duced to their SAT equivalents. However, the modelling as polynomial systems
seems more natural in this context since more algebraic structure can be pre-
served.

4.1 Cold Boot as Partial Weighted Max-PoSSo

We can consider the Cold Boot Problem as a Partial Weighted Max-PoSSo prob-
lem over F2. Let FK be an equation system corresponding to KS such that the
only pairs (k, K) that satisfy FK are any k ∈ Fn

2 and K = K∫(k). In our task
however, we need to consider FK with k and K ′. Assume that for each noisy
output bit K ′

i there is some fi ∈ FK of the form gi + K ′
i where gi is some poly-

nomial. Furthermore assume that these are the only polynomials involving the
output bits (FK can always be brought into this form) and denote the set of
these polynomials by S. Denote the set of all remaining polynomials in FK as
H, and define the cost function C as a function which returns

1
1−Δ0

for K ′
i = 0, f(x) �= 0,

1
1−Δ1

for K ′
i = 1, f(x) �= 0,

0 otherwise.

This cost function returns a cost proportional to the inverse of the probability
that a given value is correct. Finally, let FE be an equation system that is only
satisfiable for k ∈ Fn

2 for which E returns True. This will usually be an equation
system for one or more encryptions. Add the polynomials in FE to H. Then
H,S, C define a Partial Weighted Max-PoSSo problem. Any optimal solution x
to this problem is a candidate solution for the Cold Boot problem.

In order to solve Max-PoSSo problems, we propose below an approach which
appears to better capture the algebraic structure of the underlying problems
(compared to SAT-solvers), and should thus have further applications.

4.2 Mixed Integer Programming

Integer optimisation deals with the problem of minimising (or maximising) a
function in several variables subject to linear equality and inequality constraints,
and integrality restrictions on some or all the variables. A linear mixed integer
programming problem (MIP) is defined as a problem of the form

min
x

{cT x|Ax ≤ b, x ∈ Zk × Rl},

where c is an n-vector (n = k + l), b is an m-vector and A is an m × n-matrix.
This means that we minimise the linear function cT x (the inner product of c
and x) subject to linear equality and inequality constraints given by A and b.
Additionally k ≥ 0 variables are restricted to integer values while l ≥ 0 variables
are real-valued. The set S of all x ∈ Zk × Rl that satisfy the linear constraints
Ax ≤ b, that is

S = {x ∈ Zk × Rl | Ax ≤ b},
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is called the feasible set. If S = ∅ the problem is infeasible. Any x ∈ S that
minimises cT x is an optimal solution.

Efficient MIP solvers use a branch-and-cut algorithm as one of their core
components. The main advantage of MIP solvers compared to other branch-and-
cut solvers (e.g. SAT-solvers) is that they can relax the problem to a floating
point linear programming problem in order to obtain lower and upper bounds.
These bounds can then be used to cut search branches. This relaxation also
allows one to prove optimality of a solution without exhaustively searching for
all possible solutions.

Moreover we can convert the PoSSo problem over F2 to a mixed integer pro-
gramming problem using the Integer Adapted Standard Conversion [5] as fol-
lows. Consider the square-free polynomial f ∈ F2[x0, . . . , xn−1]. We interpret the
Boolean equation f = 0 as an equation over the integers by replacing XOR by
addition and AND by multiplication. All solutions of f over F2 will correspond
to multiples of 2 when considered over the integers. Let � be the mininum and u
the maximum value of these multiples of two. We introduce an integer variable
m and restrict it between �

2 and u
2 (inclusive). Finally we linearise f − 2m and

add equations relating the new linear variables to the original monomials. More
details of this modelling3 can be found in [5]. It then follows that solving the
resulting MIP problem for any objective function will recover a value x that also
solves the PoSSo problem.

Moreover we can convert a Partial Weighted Max-PoSSo problem into a Mixed
Integer Programming problem as follows. Convert each f ∈ H to linear con-
straints as before. For each fi ∈ S add some new binary slack variable ei to fi

and convert the polynomial fi+ei as before. The objective function we minimise
is

∑
ciei, where ci is the value of C(f, x) for some x such that f(x) �= 0. This

way, the penalty for having ei = 1 is proportional to the cost implied by the
cost function C. Any optimal solution x ∈ S will be an optimal solution to the
Partial Weighted Max-PoSSo problem.

We note that in our modelling of Cold Boot key recovering as a Mixed Inte-
ger Programming problem, we are using a linear objective function, which we
expect to be a first order approximation of the true noise model. Our results
will however demonstrate that this approximation is sufficient. Finally, we note
that the approach discussed above is essentially the non-linear generalisation of
decoding random linear codes with linear programming [8].

5 Cold Boot Key Recovery against Block Ciphers

The original approach proposed in [9] is to model the memory decay as a binary
asymmetric channel (with error probabilities δ0, δ1), and recover the encryption
key from the closest code word (i.e. valid key schedule) based on commonly used
decoding techniques. The model of attack used in [9] often assumes δ1 ≈ 0 (that
3 We note that the MIP solver SCIP [1] used in this work generates linear constraints

for (among others) AND clauses automatically and thus we do not need to model
these explicitly in our experiments.
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is, the probability of a 0 bit flipping to 1 is negligible), which appears to be a
reasonable assumption to model memory decay in practice. We will sometimes
do the same in our discussions below. However, all experimental data in this work
was generated with δ1 > 0, even where our algorithms assume δ1 = 0, in order
to estimate the success rate in practice more precisely. Thus, contrary to prior
work, when we construct experimental data we do not consider the asymmetry
to be perfect.

Under the adopted model, recovering the original 56-bit key for DES is equiv-
alent to decoding a repetition code, as discussed in [9]. In this section we will
discuss potential methods for recovering the user-supplied key for the key sched-
ules of Twofish, Serpent and the AES, under the Cold Boot attack scenario. We
note that the attack’s main parameters (the error probabilities δ0, δ1) obviously
affect the effectiveness (and the viability) of the methods discussed below; in
particular, while some methods may have a superior performance for a certain
range of δ0, δ1, they may however not be viable outside this particular range.
For instance, the technique presented in [11] relies on δ1 = 0.

5.1 Prior Work on AES

The AES key schedule is not as simple as the one from DES, but still contains a
large amount of linearity. Furthermore, the original encryption key is used as the
initial whitening subkey, and thus should be present in the key schedule output.
The method proposed in [9] for recovering the key for the AES-128 divides this
initial subkey into four subsets of 32 bits, and uses 24 bits of the second subkey as
redundancy. These small sets are then decoded in order of likelihood, combined
and the resulting candidate keys are checked against the full schedule. The idea
can be easily extended to the AES with 192- and 256-bit keys. The authors of [9]
recover up to 50% of keys for error rates of δ0 = 0.30, δ1 = 0 within 20 minutes. In
[17] an improved algorithm making better use of the AES key schedule structure
was proposed which allows one to recover the vast majority of keys within 20
minutes for δ0 = 0.70, δ1 = 0. It is noted in [17] that the algorithm can be
adapted for the case δ1 > 0.

In [11] an alternative algorithm is proposed which models the Cold Boot prob-
lem as a SAT problem by ignoring all output bits equal to zero. In the consid-
ered model this implies that the remaining output bits are correct (since δ1 = 0
implies Δ1 = 1). Thus a set of correct SAT clauses can be constructed, which –
due to the amount of redundant information available in the AES key schedule –
still allows one to recover the encryption key. The authors of [11] report recovery
of encryption keys for δ0 = 0.80, δ1 = 0 with an average running time of about
30 minutes.

Below we discuss the different methods we have considered for cold boot
key recovery, and our results when applied to the AES, Serpent and Twofish.
We first discuss a näıve decoding technique in order to have a base line to
compare our algebraic technique to. Our algebraic technique is then discussed
in Section 5.4.
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5.2 Generic Combinatorial Approach

Assuming that the cipher key schedule operation is invertible, we can still con-
sider a somewhat näıve combinatorial approach, even when the user-supplied key
does not explicitly appear in the expanded key schedule material. In order to
recover the full n-bit key, we will consider at least n bits of key schedule output.
We assume that bit-flips are biased towards zero with overwhelming probability
(i.e., we assume the asymmetry is perfect) and assume the distribution of bits
arising in the original key schedule material is uniform. Then for an appropriate
n-bit segment K in the noisy key schedule, we can expect approximately n

2 + r
zeros, where r = �n

2 δ0�. We have thus to check

r∑
i=0

(
n/2 + r

i

)

candidates for the segment K. Each check entails to correct the selected bits,
invert the key schedule and verify the candidate for k using for example E . For
n = 128 and δ0 = 0.15 we would need to check approximately 240 candidates; for
δ0 = 0.30 we would have to consider approximately 264 candidates; for δ0 = 0.50
we would have to consider approximately 285 candidates. By focusing the search
around the expected error rate, we may be able to improve these times. This
approach is applicable to both Serpent and the AES. However we need to adapt
it slightly for Twofish.

5.3 Adapted Combinatorial Approach for Twofish

We recall that for the Twofish key schedule, we assume that the key dependent
S-boxes are stored as a lookup table in memory. In fact, each S-box is expanded
to a 8-by-32-bit table holding 32-bit values combining both the S-Box lookup
and the multiplication by the column of the MDS matrix (see Section 3.3) Thus,
we will have in memory a 2-dimensional 32-bit word array s[4][256], where s[i][j]
holds the result of the substitution for the input value j for byte position i. The
output of the complete S-Box for the word X = (X0, X1, X2, X3) is s[0][X0] ⊕
s[1][X1] ⊕ s[2][X2] ⊕ s[3][X3].

Each array s[i] holds the output of an MDS matrix multiplication by the
vector X , with three zero entries and all possible values 0 ≤ Xi < 256, with each
value occurring only once. Thus, we have exactly 256 possible values for the
32-bit words in s[i] and we can simply adjust each disturbed word to its closest
possible word. Furthermore, we do not need to consider all values, we can simply
use those values with low Hamming distance to their nearest candidate word but
a large Hamming distance to their second best candidate. We can thus implement
a simple decoding algorithm to eventually recover an explicit expression for each
of the four key-dependent S-boxes.

Using this method, we can recover all bytes of S0 and S1. More specifically,
if we assume that δ0 = δ1, we can recover the correct S0, S1 with overwhelming
probability if 30% of the bits have been flipped. If we assume an asymmetric
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channel (δ1 ≈ 0) then we can recover the correct values for S0, S1 with over-
whelming probability if 60% of the bits have been flipped. This gives us 64-bit
of information about the key.

In order to recover the full 128-bit key, we can adapt the combinatorial ap-
proach discussed above. In the noise-free case, we can invert the final modular
addition and the MDS matrix multiplication. Since these are the only steps in
the key schedule where diffusion between S-box rows is performed, we should
get eight 8-bit equation systems of the form C1 = Q0(C0 ⊕M0)⊕M1, where Q0

is some S-box application and C0 and C1 are known constants. Each such equa-
tion restricts the number of possible candidates for M0, M1 from 216 to 28. Using
more than one pair C0, C1 for each user-supplied key byte pair M0, M1 allows
us to recover the unique key. Thus, although the Twofish key schedule is not
as easily reversed as the Serpent or AES key schedule, the final solving step
is still very simple. Thus, the estimates given for the combinatorial approach
(δ0 = 0.15 → 236 candidates and δ0 = 0.30 → 262 candidates) also apply to
Twofish.

Alternatively, we may consider one tuple of C0, C1 only and add the linear
equations for S. This would provide enough information to recover a unique
solution; however S does mix bytes from M0 across S-box rows, which makes
the solving step more difficult.

5.4 Algebraic Approach Using Max-PoSSo

If the algebraic structure of the key schedule permits, we can model the Cold
Boot key recovery problem as a Partial (Weighted) Max-PoSSo problem, and
use the methods discussed earlier to attempt to recover the user-supplied key or
a noise-free version of the key schedule. We applied those methods to implement
a Cold Boot attack against the AES and Serpent. We focused on the 128-bit
versions of the two ciphers.

For each instance of the problem we performed 100 experiments with randomly
generated keys. In the experiments we usually did not consider the full key sched-
ule but rather a reduced number of rounds of the key schedule in order to improve
the running time of our algorithms. We note however that this does not mean
we are attacking a reduced-round version of the algorithm: considering a reduced
amount of data (less redundancy) in the key schedule still allows us to recover the
entire encryption key of the full-round version of the block cipher. The running
time is increased when more data is considered due to the increase of terms in
the objective function. Furthermore, we did not include equations for E explicitly.
This is again to reduce the amount of data the solver has to consider. Finally, we
also considered at times an “aggressive” modelling, where our algorithm assumes
δ1 = 0 instead of δ1 = 0.001. In this case all values K ′

i = 1 are considered cor-
rect by the algorithm (since Δ1 = 1), and as a result all corresponding equations
are promoted to the set H. We stress, however, that the input data in our exper-
iments was always generated with δ1 > 0. Thus, increasing the amount of data
considered also increases the chances of including an equation for K ′

i = 1 which
is not correct. We note that in the “aggressive” modelling our problem reduces to
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Table 1. AES considering N rounds of key schedule output

N δ0 aggr limit t r min t avg. t max t

2 0.05 – 3600.00 59% 50.80 s 2124.90 s 3600.00 s

3 0.15 + 60.0s 63% 1.38 s 8.84 s 41.66 s
4 0.15 + 60.0s 70% 1.78 s 11.77 s 59.16 s

4 0.30 + 600.0s 66% 4.81 s 116.07 s 600.00 s
4 0.30 + 3600.0s 69% 4.86 s 117.68 s 719.99 s

4 0.35 + 600.0s 65% 4.66 s 185.14 s 600.00 s
4 0.35 + 3600.0s 68% 4.45 s 207.07 s 1639.55 s

4 0.40 + 600.0s 47% 4.95 s 284.99 s 600.00 s
4 0.40 + 3600.0s 61% 4.97 s 481.99 s 3600.00 s

5 0.40 + 3600.0s 62% 7.72 s 704.33 s 3600.00 s

4 0.50 + 3600.0s 8% 6.57 s 3074.36 s 3600.00 s
4 0.50 + 7200.0s 13% 6.10 s 5882.66 s 7200.00 s

Partial Max-PoSSo and that the specific weights assigned in the cost function are
irrelevant, since all weights are identical.

Running times for the AES and Serpent using the MIP solver SCIP [1] are
given in Tables 1 and 2 respectively. For each cipher dedicated tuning parameters
were used and we also made use of advanced features in SCIP such as the support
for AND constraints which are not available in other MIP solvers. The column
“a” denotes whether we chose the aggressive (“+”) or normal (“–”) modelling.
The column “cutoff t” denotes the time we maximally allowed the solver to run
until we interrupted it. The column r gives the success rate, i.e. the percentage
of instances we recovered the correct key for.

For the Serpent key schedule we consider decays up to δ0 = 0.50, δ1 =
0.001. We also give running times and success rates for the AES up to δ0 =
0.50, δ1 = 0.001 in order to compare our approach with previous work. We note
that a success rate lower than 100% may still allow a successful key recovery
since the algorithm can be run using other data from the key schedule if it
fails for the first few rounds. Considering later rounds of the key schedule has
no performance penalty for the AES, but does decrease the performance for
Serpent as indicated in the row 16 � 8 which considers 16 words of key
schedule output starting from the 8-th word. Our attacks were implemented
using the Sage mathematics software [15].

We note from the results in Table 1 that the Max-PoSSo based method pro-
posed in this work compares favourably to the results in [9]. However, it offers
poorer results when compared to the ones in [17,11]. While there is no prior work
to compare Table 2 with, we note that our technique compares favourably to
the generic combinatorial approach discussed earlier. Furthermore, our method
has some attractive features and flexibility which allow its application to more
extended scenarios and in principle to any block cipher4.

4 We note however that this does not imply the technique is practical for all block
ciphers as demonstrated by the lack of success against Twofish.
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Table 2. Serpent considering 32 · N bits of key schedule output

N δ0 aggr limit t r min t avg. t max t

12 0.05 – 600.0s 37% 8.22 s 457.57 s 600.00 s

12 0.15 + 60.0s 84% 0.67 s 11.25 s 60.00 s
16 0.15 + 60.0s 79% 0.88 s 13.49 s 60.00 s

16 	 8 0.15 + 1800.0s 64% 95.52 s 1089.80 s 1800.00 s

16 0.30 + 600.0s 74% 1.13 s 57.05 s 425.48 s

16 0.50 + 1800.0s 21% 135.41 s 1644.53 s 1800.00 s
16 0.50 + 3600.0s 38% 136.54 s 2763.68 s 3600.00 s

Table 3. Serpent considering 32 · N bits of key schedule output (symmetric noise)

N δ0 = δ1 limit t r min t avg. t max t

12 0.01 3600.0 96% 4.60 s 256.46 3600.0 s

12 0.02 3600.0 79% 8.20 s 1139.72 3600.0 s

8 0.03 3600.0 41% 3.81 s 372.85 s 3600.0 s

12 0.03 7200.0 53% 24.57 s 4205.34 s 7200.0 s

12 0.05 3600.0 18% 5.84 s 1921.89 s 3600.0 s

Finally, we note that our technique does not rely on δ1 = 0 and can thus be
applied if perfect asymmetry cannot be assumed. To demonstrate this feature,
we give results against Serpent for our technique when considering symmetric
noise (i.e., δ0 = δ1) in Table 3. For comparison, for δ0 = δ1 = 0.05 a combinatorial
approach similar to Section 5.2 would have to check rougly

(
128

�0.05·128�
)
≈ 236.4

candidates. In order to make the comparison fair, we aim for a success rate of
≈ 20% and thus only have to consider roughly 1/5 of those candidates. If each
of those checks costs at least 15 ·10−8 seconds – which ammounts to ≈ 390 CPU
cycles on a 2.6 Ghz CPU – then the overall running time would be greater than
the average running time reported in Table 3.

6 Conclusion and Discussions

In this paper we followed up from the original work on Cold Boot key recovery
attacks in [9,11,17], and extended the analysis to consider other block ciphers
such as Twofish and Serpent. Our algorithms apply a novel method for solving a
set of non-linear algebraic equations with noise based on Integer Programming.
Besides improving some existing results and extending the range of scenarios
in which the attacks can be applied, this paper also brings into attention two
topics which in our opinion should be of enough interest for future research in
cryptology:

Block Cipher Key Schedule: the structure of the key schedule of block
ciphers has recently started attracting much attention from the cryptologic re-
search community. Traditionally, the key schedule operation has perhaps received
much less consideration from designers, and other than for efficiency and protec-
tion against some known attacks (e.g. slide attacks), the key schedule was often
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designed in a somewhat ad-hoc way (in contrast to the usually well-justified
and motivated cipher round structure). However the recent attacks against the
AES and Kasumi have brought this particular operation to the forefront of block
cipher cryptanalysis (and as a result, design). While one can argue that some
of the models of attack used in the recent related-key attacks may be far too
generous to be of practical relevance, it is clear that resistance of ciphers against
these attacks will from now on be used as another form of measure of security
of block ciphers.

In this spirit, we propose in this paper a further measure of security for key
schedule operations, based on the Cold Boot attack scenario. These attacks are
arguably more practical than some of the other attacks targeting the key sched-
ule operation. More importantly, we believe the model can be used to further
evaluate the strength of the key schedule operation of block ciphers. Our results
show however that it is not trivial to provide high security against Cold Boot
attacks. In fact, by proposing generic algorithms for solving the Cold Boot prob-
lem, we showed that, contrary to general belief, several popular block ciphers are
also susceptible to attack under this model. How to come up with design criteria
for a secure key schedule under this model (while preserving other attractive
features such as efficiency) remains a topic for further research.

Polynomial System Solving with Noise: another contribution of this paper,
which is very likely to be of independent interest, is the treatment of the problem
of solving non-linear multivariate equations with noise. In fact, several interesting
problems in cryptography such as algebraic attacks, side-channel attacks and the
cryptanalysis of LPN/LWE-based schemes can be naturally modeled as Max-
PoSSo problems. However, so far this problem was not considered in its general
form. This paper presents a formalisation of this problem and a novel method,
based on Integer Programming, which proved to be a powerful technique in some
situations. We expect that this will bring MIP solvers further to the attention
of the cryptography research community and consider studying and improving
(MIP-based) Max-PoSSo methods an interesting area for future research.
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Appendix

Input: Z – a 32-bit word
Input: L – a list of two 32-bit words
Result: a 32-bit word
begin

L0, L1 ←− L[0], L[1];
z0, z1, z2, z3 ←− split Z into four bytes;
z0, z1, z2, z3 ←− q0[z0], q1[z1], q0[z2], q1[z3];
z0, z1, z2, z3 ←− z0 ⊕ L1[0], z1 ⊕ L1[1], z2 ⊕ L1[2], z3 ⊕ L1[3];
z0, z1, z2, z3 ←− q0[z0], q0[z1], q1[z2], q1[z3];
z0, z1, z2, z3 ←− z0 ⊕ L0[0], z1 ⊕ L0[1], z2 ⊕ L0[2], z3 ⊕ L0[3];
z0, z1, z2, z3 ←− q1[z0], q0[z1], q1[z2], q0[z3];
z0, z1, z2, z3 ←− MDS(z0, z1, z2, z3);
return the 32-bit word consisting of the four bytes z0, z1, z2, z3;

end
Algorithm 1. h

Input: i – an integer
Input: Me – a list of 32-bit words
Input: Mo – a list of 32-bit words
Result: two 32-bit words
begin

ρ ←− 224 + 216 + 28 + 20;
Ai ←− h(2iρ, Me);
Bi ←− h((2i + 1)ρ, Mo) ≪ 8;
K2i ←− Ai + Bi mod 232;
K2i+1 ←− (Ai + 2Bi mod 232) ≪ 9;
return K2i, K2i+1;

end
Algorithm 2. gen subkeys
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Abstract. Exponent blinding is known as a secure countermeasure
against side-channel attacks. If single power traces reveal some expo-
nent bits, an attack by Fouque et al. applies that recovers the exponent.
However, this attack becomes infeasible if some of the guessed bits are
incorrect. Thus, the attack was not assumed to be a realistic threat.
In this paper we present two variants of a novel generic attack, which
works for considerable error rates at each bit position, disproving the hy-
pothesis that mere exponent blinding is always sufficient. We confirmed
experimentally that our attack permits up to 28% (RSA case) or 23%
(ECC case) error bits.

1 Introduction

Blinding mechanisms such as base and exponent blinding [8] have been effective
algorithmic countermeasures against side-channel attacks. Both seem to prevent
pure global timing attacks [9], since no pure timing attack is presently known
defeating either base or exponent blinding.

However, base blinding does not protect against local timing attacks [11,1],
which exploit timing information on the particular elementary operations: mod-
ular multiplications and squarings in the RSA case, point doubling and point
addition (or arithmetic sub-operations thereof) in the ECC case. Attacks on
table-based RSA implementations [11,1] exploit the pre-computation phase of
modular exponentiation and the fact that the ith elementary operation in the
exponentiation phase is always of the same type (either squaring or a multiplic-
ation by a particular table value).

A cryptographic device must be also secure against power analysis [9], which in
particular comprises Simple Power Analysis (SPA) and Differential Power Anal-
ysis (DPA). However, exponent blinding prevents the alignment of power traces
corresponding to elementary operations of the same type. This shall prevent an
attacker from combining information from several RSA exponentiations/ECC
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scalar point multiplications. It might thus be assumed that exponent blinding
protects against power attacks if the device is resistant against SPA attack, or
more generally, against attacks on single exponentiations/scalar point multiplic-
ations. The assumption that exponent blinding automatically lifts SPA or partial
SPA resistance (i.e. the device is secure enough to protect some private key bits
against SPA) to higher-level security assertions (e.g., DPA resistance) should be
valid in many cases of practical relevance. However, we present a new generic
attack that shows that this conclusion is not true in general. We assume that
the targeted device applies the square and always multiply (S&aM) algorithm
[4], resp. a double and always add (D&aA) algorithm, as an SPA resistance
algorithm. At first we sketch related previous results.

Applying exponent blinding is a powerful solution even when the device is par-
tially SPA-resistant. In theory, a device with partial SPA resistance that only
applies exponent blinding is not secure against side-channel attacks [2]. However
this attack assumes a strong assumption: all observed bits of the randomized ex-
ponent must be perfectly revealed from a single power trace with no error bits ,
which is not easy to achieve in real environment because noise is included. There
are some known attacks on the S&aM algorithm. First is the address-bit power
analysis technique [6] because the address differs between the real and dummy
operations. However, large hardware multipliers cause strong noise, which should
hide the power consumption of the memory addresses. Second attack is a chosen
message technique using c = −1 (mod N) proposed by Yen et al [12]. Itoh et
al.’s result [7] shows clear waveforms using auto-correlation techniques. How-
ever, filtering the messages, checking whether c = −1 (mod N), prevents this
attack. If c = −1 (mod N) simply the lowest bit of the exponent is used to
calculate an output. Third is an attack proposed by Courrège et al. [5] that
utilizes the power consumption of partial multiplications on word length. It is
effective if messages can be chosen, which minimize partial hamming weights.
However, S&aM reduces its effectivity because the attacker can use only c = −1
(mod N), which is easily prevented by the filtering. That is, we do not know
concrete attacks, which fulfil the above assumption in real-world environments
when a simple filtering technique is used.

Can the attacker reveal the private key even when the above assumption,
consolidated knowledge on some key bits, is not satisfied? The scenario is the
following: the attacker guesses the blinded exponent bits on basis of the corre-
sponding waveforms. Some of the guessed bits may be wrong but the attacker
does not know their positions. This scenario is realistic if the waveforms of real
and dummy operations are similar, with noisy power traces. If there are 5%
unnoticed error bits a brute-force attack costs ≈

∑51
j=0

(
1024

j

)
= 2288 steps for

1024-bit RSA, or ≈
∑13

j=0

(
256
j

)
= 271 steps for 256-bit ECC.

This motivates the following idea: if the operations cannot perfectly be dis-
tinguished, the device should be secure against side-channel attack by asserting
exponent blinding and input filtering. However, our attack shows this idea does
not suffice in general. We show that the attacker is able to identify exponents
with identical exponent blinding factors (basic attack) or sums of exponents with
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identical sums of exponent blinding factors (enhanced attack), respectively, un-
dermining the declared goal of exponent blinding. The basic attack searches for t
exponents with identical exponent blinding factors, which allows to simply apply
the ’best of t’ rule (majority decision). The enhanced attack applies more so-
phisticated techniques. Both variants tolerate if all exponent bit positions allow
only uncertain guesses. In our analysis we assume identical error rate εb for all
bit positions and traces. Interestingly, even additionally applied base blinding
might not prevent our attack. Fortunately, generic countermeasures exist.

We mention that reference [3] also considers the recovery of a secret RSA key
from defective information. It is a theoretical attack that tolerates certain errors
rates in the binary representations of the particular components of (p, q, d, dp, dq),
(p, q, d), or (p, q), respectively. Results and techniques from [3] cannot be trans-
ferred to our situation where an attacker does not get any direct information on
the primes p and q. Our attack works against RSA (with and without CRT) and
ECC without any restrictions on the private key nor on the public key.

In Section 2 and Section 3 we describe the basic version and an enhanced
version of our new attack and present experimental results. Unlike the basic
attack, the enhanced attack needs only a small number of power traces to find
the private key and cannot effectively be prevented by limiting the number of
operations with the targeted key. Instead, large blinding factors are necessary.

2 Basic Attack

The setting of the attack is as follows. A target device (typically a smart card)
executes RSA or ECC operations. In both the basic and enhanced attacks we
assume that S & aM (RSA)/ D& aA (ECC) are used within exponent/scalar
blinding. The attacker performs a power attack on the target device. From single
power traces he derives information on the corresponding exponentiations or
scalar point multiplications with the secret key.

2.1 Notation

Our attack is generic and applies identically to RSA with CRT, RSA without
CRT, and ECC. To avoid clumsy formulations we will simply speak of ’multipli-
cation’, ’square’ and ’exponent’ in the following, which correspond to ’addition’,
’doubling’ and ’scalar’ in the ECC context. The blinded exponents are

vj := d + rjy for j = 1, 2, . . . (1)

where d denotes a long term key. For RSA d is the secret exponent, resp. the
secret exponent (mod p) (usually denoted by dp in this context) if the CRT is
used. For ECC d equals the secret scalar. Further, y = φ(n), y = φ(p), or y
equals the order of an elliptic curve, respectively. The integer rj is the exponent
blinding factor used for exponentiation j.

Remark 1. We point out that for RSA with CRT it suffices to recover dp if at
least one (plaintext / ciphertext) pair (x, y) is known, e.g. a digital signature.
Then gcd(y − xdp(mod n), n) = p factors the modulus n.
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We assume d, y < 2k where the integers d and y (resp. only d for ECC appli-
cations) are selected randomly. Hence we may assume log2(d), log2(y) ≈ k. The
blinding factor rj assumes values in {0, 1, . . . , 2R−1}. The binary representation
of vj is (vj;k+R−1, . . . , vj;0)2 where leading zero digits are allowed.

On basis of the SPA information provided by power trace j the attacker
guesses the randomized exponent with SPA to obtain ṽj = (ṽj;n+R−1, . . . , ṽj;0)2,
which will usually differ from the correct binary representation (vj;k+R−1,. . . , vj;0)2
of vj . (Otherwise, the jth power trace alone would suffice for a successful
SPA.)

The attacker may commit two types of guessing errors: Although vj;i = 0 he
might guess ṽj;i = 1 (’10-error’), or despite of vj;i = 1 he might guess ṽj;i = 0
(’01-error’). We denote the integer that corresponds to (ṽj;n+R−1, . . . , ṽj;0)2 by
ṽj . Using this notation the attacker guesses

ṽj := (d + rjy) ⊕ ej = vj ⊕ ej for j = 1, 2, . . . (2)

where ’⊕’ denotes the bitwise XOR operation while the integer ej expresses the
guessing error for exponent vj . For j �= m we consider the hamming weight of

ṽj ⊕ ṽm = (vj ⊕ vm) ⊕ (ej ⊕ em). (3)

We use the relationship

ham(ṽj ⊕ ṽm) =
{

ham(ej ⊕ em) (if rj = rm)
ham(vj ⊕ vm ⊕ ej ⊕ em) (if rj �= rm) (4)

to distinguish the cases rj = rm and rj �= rm.

2.2 Entire Process of the Basic Attack

The attack consists of two phases. In Phase 1 the attacker guesses ṽ1, ṽ2, . . . on
basis of the corresponding power traces (independent SPA attacks). The goal
of Phase 1 is to group the guessed exponents to classes with identical (though
unknown) blinding factors (’blinding classes’). Phase 2 considers only the class
Cw, which at first contains t elements with (presumably) identical blinding fac-
tors(’winning class’). The generic approach clearly is to apply the ’majority
decision’ to each elementary operation guess, based on the guessed binary rep-
resentations (ṽj;n+R−1, . . . , ṽj;0)2 for all ṽj ∈ Cw. We point out that the attacker
does not know d, y, r (RSA case), resp. d, r (ECC case) for any blinding class.
Pseudoalgorithm 1 describes our attack in more detail. The integer t should be
selected with regard to the error probabilities (cf. below). Typically, t is an odd
number (t = 3, 5, . . .), cf. Table 2 and Table 3. The attacker decides that ṽj

belongs to class Cm iff ham(ṽj ⊕ ṽ) < γ (a suitably selected threshold) for all
ṽ ∈ Cm. The algorithm stops when the some class Cw contains t elements (a
so-called ’t-birthday’).
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Pseudoalgorithm 1. (The basic attack)
Select an integer t ≥ 3 and a suitable threshold γ > 0

1) Phase 1: Find a class Cm with t elements ( = ’winning class’)

j:=1; s:=0; stop:=0;

while (stop = 0) {

attacker estimates ṽj ;
if (j = 1) then { s := 1; C1 := {ṽ1}; }

else { m:=1; found:=0;

while ( (m ≤ s) && (found = 0) ) {

if ( ham((ṽj ⊕ ṽ)) < γ ) for all ṽ ∈ Cm then {

Cm := Cm ∪ {ṽj} ; found:=1;

if ( |Cm| = t ) then { w:=m; stop:=1; }

/* t-birthday, winning class found */ } }

if (found = 0) then { s++; Cs := {ṽj}; }

} }

2) Phase 2: Apply the majority decision to the elements

of the winning class Cw

Theoretical Background of Phase 1. We show how to distinguish rj = rm

or rj �= rm. This is based on Eqn. (4) which reads

ham(ṽj ⊕ ṽm) =
∑

i=0,1,...,n+R−1

(vj;i ⊕ vm;i ⊕ ej;i ⊕ em;i) , (5)

which simplifies to
∑

i=0,1,...,n+R−1

(ej;i ⊕ em;i) if rj = rm (6)

where ej;i, em;i are the ith elements of error vectors ej = (ej;n+R−1, . . . , ej;0)2
and em = (em;n+R−1, . . . , em;0)2. Let εb be the error rate in Phase 1, i.e. ej;i

or em;i is ’1’ with probability εb, and is ’0’ with probability 1 − εb. Hence
ej;i ⊕ em;i = 1 is satisfied with probability 2εb(1− εb). If ri = rm we assume that
ṽj ⊕ ṽm and ham(ṽj ⊕ ṽm) are values that are taken on by random variables X ′

and Y ′ := ham(X ′), where the components of X ′ are independent and binomi-
ally B(2εb(1 − εb), 1)-distributed. Hence Y ′ is binomially B(2εb(1 − εb), n + R)-
distributed and thus has mean μX′ = 2εb(1− εb)(n +R) and standard deviation
σY ′ =

√
V ar(ham(X ′)) =

√
2εb(1 − εb)(ε2b + (1 − εb)2)(n + R).

In case rj �= rm, we can assume that vj;i⊕vm;i = 1 holds with probability 1/2.
Since (vj;i, vm;i) and (ej;i, em;i) are independent vj;i⊕vm;i⊕ej;i⊕em;i = 0 is sat-
isfied with probability 1/2. Therefore, ṽj ⊕ ṽm and ham(ṽj ⊕ ṽm) are assumed to
be values that are taken on by random variables X and Y := ham(X), where the
components of X are independent and binomially B(1/2, 1)-distributed. Hence
Y is binomially B(1/2, n + R)-distributed and thus has mean μX = 0.5(n + R)
and standard deviation σY =

√
V ar(ham(X)) =

√
(n + R)/4. Table 2 illumi-

nates the decision step (R = 16, γ = μY − 4σY , sample size = 10000 for each
parameter set). The column ’success rate’ provides the empirical probability for
the decision rj = rm when rj = rm is indeed true whereas ‘miss ratio’ shows the
empirical probability for rj = rm when rj �= rm is true. An appropriate choice of
γ, which should consider R is important for the success of the attack. Lowering
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Table 1. ham(·) distributions for different sets of parameters

ham(ṽj ⊕ ṽm) ham(ṽj ⊕ ṽm)

rj = rm rj �= rm rj = rm rj �= rm

k R εb μY ′ σY ′ μY σY k R εb μY ′ σY ′ μY σY

256 16 0.10 48.96 6.34 136 8.25 1024 16 0.15 265.2 14.06 520 16.12

256 16 0.15 69.36 7.19 136 8.25 1024 16 0.20 332.80 15.04 520 16.12

256 16 0.20 87.04 7.69 136 8.25 1024 16 0.25 390.0 15.61 520 16.12

256 16 0.25 102.00 7.98 136 8.25 1024 16 0.30 436.80 15.92 520 16.12

Table 2. Experimental results for γ = μY − 4σY

rj = rm rj = rm

k R εb Success ratio Miss ratio k R εb Success ratio Miss ratio

256 16 0.10 10000/10000 0/10000 1024 16 0.15 10000/10000 1/10000

256 16 0.15 10000/10000 0/10000 1024 16 0.20 10000/10000 0/10000

256 16 0.20 9762/10000 1/10000 1024 16 0.25 10000/10000 1/10000

256 16 0.22 8793/10000 2/10000 1024 16 0.30 8576/10000 0/10000

γ reduces the probability that ṽj is erroneously assumed to belong to blinding
class Cm while the probability for a false rejection ṽj /∈ Cm (and opening a new
blinding class) increases. Increasing γ clearly has opposite effects.

Discussion and Experimental Result of Phase 2. Let r∗w denote the (un-
known) common blinding factor of all elements in the winning blinding class Cw.
In Phase 2 the majority decision rule yields a false guess for the ith elementary
operation of the blinded exponent v∗w := d+r∗wy if the majority of the respective
error bits e·,i in Cw is 1. This occurs with probability

qt,εb :=
2u+1∑

s=u+1

(
t

s

)

εsb(1− εb)
t−s for t = 2u+ 1 ,

and we expect et,εb := (k +R)qt,εb false elementary operation estimates in average.

(7)
If there are ≤ �et,εb

� false operation guesses a brute force attack costs
at most

wk+R,t,εb
:=

�et,εb
�∑

i=0

(
k + R

i

)
trials (worst case estimate) (8)

to find and correct them. Table 3 supports the choice of an appropriate parameter
t if the majority decision rule shall be applied in Phase 2. For (k+R = 272, εb =
0.05), for instance, 3-birthdays are sufficient while for (k + R = 1040, εb = 0.20)
the parameter t = 17 seems appropriate. (Of course, smaller t is possible at cost
of higher correction workload wk+R,t,p; note further that > �et,p� errors may
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Table 3. Majority decision in Phase 2: Expected number of false operation estimates
and guessing workload due to (8)

k + R εb t qt,εb et,εb log2(wk+R,t,εb
) k + R εb t qt,εb et,εb log2(wk+R,t,εb

)

272 0.05 3 0.007 2.0 15.2 1040 0.05 5 0.001 1.2 19.1

272 0.10 5 0.008 2.3 21.7 1040 0.10 7 0.003 2.8 27.5

272 0.15 7 0.012 3.3 27.8 1040 0.15 11 0.003 2.8 27.5

272 0.20 11 0.012 3.2 27.8 1040 0.20 17 0.003 2.7 27.5

272 0.22 13 0.012 3.3 27.8 1040 0.25 27 0.002 2.5 27.5

272 0.24 15 0.013 3.7 27.8 1040 0.30 45 0.002 2.5 27.5

Table 4. Empirical results (The last column refers to the correct blinding classes)

average number of

correct different
t k R εb success rate exponentiations blinding classes blinding classes r-values

3 256 10 0.05 10/10 150 138 138 138

5 256 10 0.10 10/10 672 483 475 475

7 256 10 0.15 10/10 1435 758 748 748

13 256 10 0.22 10/10 5253 1419 1246 1004

15 256 10 0.23 9/10 7425 1919 1228 989

15 256 10 0.24 1/10 6154 2017 1064 905

17 1024 10 0.20 10/10 6890 1037 1022 1022

27 1024 10 0.25 10/10 13833 1044 1026 1024

37 1024 10 0.28 6/10 23682 2004 1971 1024

45 1024 10 0.30 0/10 10742 2047 1807 1024

occur.) Table 4 collects experimental results. In order to reduce the workload we
used the small blinding parameter R = 10. An attack was counted successful iff
the (first) winning class was correct. Table 4 shows that for R = 10 errors rates
up to 23% (256-bit ECC) and 28% (1024-bit RSA) are tolerable. Depending on
εb we used decision boundaries γ ∈ [μY − 4σY , μY − 3σY ].

Remark 2. Possible improvements
(i) Resuming Phase 1 if the winning class Cw is incorrect might increase the
success rate and thus the tolerable error rate εb.
(iii) Phase 1: For large t it might be an option to apply the decision strategy
”if (ham(ṽj ⊕ ṽ) < γ)” to, let’s say, at most 3 elements of Cm to reduce the
probability of an erroneous decision ṽj /∈ Cm.
(iii) Phase 2: Depending on the target implementation for large t more efficient
strategies than the majority decision rule might exist (e.g. DPA techniques),
reducing t, thereby increasing the success rate and the maximal tolerable εb.

2.3 Efficiency, Scalability, and Limits

The term N := 2αR with α := 1+(log(t!)+1−R log(2))/(Rt log(2)−1) provides a
rough estimate for the average number of traces needed until the first t-birthday
occurs if all decisions are correct. (This formula is a result of a fruitful discussion
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with E. Schulte-Geers.) For moderate R the value α ranges from 0.70 to 0.75 for
t = 3, while α ≈ 1 and α > 1 for medium-sized, resp. for large t, the exact value
depending on (t, R). If wrong decisions occur, either spoiling existing blinding
classes with wrong elements or opening new blinding classes unnecessarily (which
might occur for large εb, cf. Table 4), more power traces are needed. For large t
after ≈ 0.29 · 2R traces 0.25 · 2R blinding classes exist so that even in absence of
wrong decisions the overall number of decisions on whether an exponent belongs
to a particular blinding class is roughly in the order of 22R. Thus the number
of traces and the number of decisions are limiting factors for R ≥ 32 with large
t. Since more correct decisions are necessary until ṽj has been assigned to the
correct blinding class, then γ has to be lowered to guarantee comparable overall
success rate. Coarse heuristic considerations suggest that for R = 16, compared
to R = 10, the tolerable error rate should drop down by roughly ≈ 3% for ECC
and ≈ 2% for RSA. In fact, the setup (εb, k, R) = (20%, 256, 16) showed 100%
empirical success rate, matching with this heuristics. For R = 32 clearly further
percentage points are lost.

3 Enhanced Attack Variant

The basic attack aims at t-birthdays of exponent blinding factors r1, r2, . . . where
the choice of t depends on εb. This costs clearly more than

√
2R exponentiations,

for large t even more than 2R. A designer thus might feel secure just by selecting
some value R for which the maximum number of exponentiations within the life
cycle of the device (e.g., RSA signatures on a smart card) is clearly below

√
2R.

In contrast to the basic attack the enhanced variant does not aim at collisions
of blinding factors but on collisions of sums of blinding factors, which can be
obtained from substantially fewer exponentiations than

√
2R.

3.1 Enhanced Attack: Overview

We begin with a definition. As in Section 2 the letter N denotes the sample size,
i.e. the number of observed exponentiations, and r1, . . . , rN ∈ {0, 1, . . . , 2R − 1}
are the blinding factors.

Definition 1. For u > 1 let Mu := {(j1, . . . , ju) | 1 ≤ j1 ≤ · · · ≤ ju ≤ N}.
For each u-tuple (j1, . . . , ju) ∈ Mu we define the ’u-sum’ Su(j1, . . . , ju) := rj1 +
· · · + rju . For (j1, . . . , ju), (i1, . . . , iu) ∈ Mu we write (j1, . . . , ju) ∼ (i1, . . . , iu)
iff Su(j1, . . . , ju) = Su(i1, . . . , iu).

Observation. ∼ defines an equivalence relation on Mu. For 0 ≤ m ≤ u(2R −
1) the equivalence class Em consists of all u-tuples (j1, . . . , ju) ∈ Mu with
Su(j1, . . . , ju) = m. Next we summarize the particular steps of the enhanced
attack variant. With regard to N and error rate εb one first selects the parame-
ter u. The parameters u = 2, 3, 4 should be most relevant for applications.

– Step 1: Identify several pairs of u-tuples (j1, . . . , ju), (j′1, . . . , j
′
u) ∈ Mu with

Su(j1, . . . , ju) = Su(j′1, . . . , j′u), i.e. with (j1, . . . , ju) ∼ (j′1, . . . , j′u). This
yields a system of linear equations over Z in the blinding factors r1, . . . , rN .
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– Step 2: Solve the system of linear equations gained in Step 1. More precisely,
find (r∗1 , . . . , r∗N ) such that (r1, . . . , rN ) = (r∗1 , . . . , r∗N ) + (c, . . . , c) for some
unknown integer c much smaller than 2R.

– Step 3:
• ECC case: Compute ṽj − r∗j y = d∗ + ej with d∗ = d + c for j ≤ N .

Task: 1.) Find d∗. 2.) Determine d by exhaustive search in c.
• RSA case: Compute ṽj − ṽi = (r∗j −r∗i )y+(ej −ei) for several pairs (j, i).

Task: Find y (=φ(n), resp. = φ(p)).

3.2 NAF Representations

This subsection collects relevant properties of NAF representations, which will
be needed in Step 1 of the enhanced attack.

Definition 2. Zm := {0, 1, . . . , m − 1}, and if z =
∑t

j=0 βj2j with βj ∈
{1, 0,−1} for all j then (βt, . . . , β0)SD is called a binary signed-digit repre-
sentation of z. A signed representation is said to be non-adjacent if consecutive
non-zero coefficients are always separated by at least one zero. We briefly speak of
NAF representations where ’NAF’ abbreviates ’non-adjacent form’. The Ham-
ming weight ham(· · ·) of a signed-digit representation is the number of non-zero
digits. The term Φ(·) denotes the cumulative distribution function of the standard
normal distribution.

Every integer z has a unique non-adjacent representation, noted as NAF(z). In
particular, NAF(z) has minimal hamming weight under all binary signed-digit
representations of z. For z < 0 we set NAF(z) = −NAF(|z|). Due to the lack of
space we omit the proof of Lemma 1. Example 1 illustrates that the variance of
ham(NAF(X)) is surprisingly small, which will be crucial for our attack.

Lemma 1. For any integers z1 and z2 we have

ham(NAF(z1 + z2)) ≤ ham(NAF(z1)) + ham(NAF(z2)), (9)

and the right-hand side is ≤ the sum of the Hamming weights for any binary
signed-digit representations z1 and z2.
(ii) Let X be a random variable uniformly distributed on Z2n with n ≥ 2. Then

Prob (ham(NAF(X)) = k) =

2−n ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for k = 0
n for k = 1

2k−2
((

n+1−k
k

)
+
(
n+2−k

k

))
for k ∈ {2, . . . , �n+1

2 �}
2

n
2 −1 for k = n

2 + 1, if n is even

(10)

(iii) Unless n is too small, the random variable Y := ham(NAF(X)) is ap-
proximately normally distributed with expectation E(Y ) ≈ 0.333n and variance
Var(Y ) ≈ 0.075n.

Example 1. n = 1040 (corresponds to 1024-bit RSA with R = 16), Y :=
ham(NAF(X)), E(Y ) ≈ 0.334n = 347.4 σY :=

√
Var(Y ) ≈

√
0.075n = 8.8.
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3.3 Enhanced Attack: Step 1

In Step 1 we have to decide whether (j1, . . . , ju) ∼ (i1, . . . , iu), i.e. whether
Su(j1, . . . , ju) = Su(i1, . . . , iu). Therefore, we apply the decision rule

Decide for (j1, . . . , ju) ∼ (i1, . . . , iu) iff (11)
ham(NAF(ṽj1 + · · · + ṽju − (ṽi1 + · · · + ṽiu))) < b0 for some suitable b0.

Motivation for the decision strategy (11). Clearly, (ṽj1 + · · ·+ ṽju)− (ṽi1 +
· · · + ṽiu) = ry + ej1 + · · · + eju − ei1 + · · · − eiu with r = 0 iff (j1, . . . , ju) ∼
(i1, . . . , iu) and r ∈ Z \ {0} else. By Lemma 1(iii) for a uniformly distributed
random variable X on Z2k+R the variance Var(ham(NAF(X))) ≈ 0.075(k+R) is
very small, and thus E(ham(NAF(X))) is a ’typical’ value. Hence for randomly
selected vj and random ej one may expect ham(NAF(ṽj1 + · · · + ṽju − (ṽi1 +
· · · + ṽiu))) ≈ E(ham(NAF(X))) ≈ 0.333(k + R) if (j1, . . . , ju) �∼ (i1, . . . , iu)
although the absolute differences of u-sums are not uniformly distributed on
Z2k+R . Numerical experiments confirm the intuition (cf. Table 5). On the other
hand, if (j1, . . . , ju) ∼ (i1, . . . , iu) by Lemma 1(i)

ham(NAF(ṽj1 + · · · + ṽju − ṽi1 − · · · − ṽiu)) ≤ (12)
ham(NAF(ej1)) + · · · + ham(NAF(eju)) − · · · − ham(NAF(eiu)) ≤
total number of guessing errors for vj1 , . . . , vju , vi1 , . . . , viu .

If the error rate is sufficiently small for (j1, . . . , ju) ∼ (i1, . . . , iu) the term
ham(NAF(ṽj1 + · · · + ṽju − ṽi1 − · · · − ṽiu)) is significantly smaller than
for (j1, . . . , ju) �∼ (i1, . . . , iu), justifying decision rule (11). Each decision for
(j1, . . . , ju) ∼ (i1, . . . , iu) gives a linear equation

Su(j1, . . . , ju) − Su(i1, . . . , iu) = rj1 + · · · + rju − ri1 − · · · − riu = 0. (13)

Number of linear equations in Step 1. We derive a coarse estimator for
the average number of (not necessarily independent) linear equations that one
gains from N exponentiations if all decisions are correct. Neglecting those pairs
of u-tuples ∈ Mu, which have at least two identical components, we conclude

E(#linear equations) ≈
((N

u

)
2

)
Prob(Su(1, . . . , u) = Su(u + 1, . . . , 2u)) (14)

≈ N2u

2u!u!

(2R−1)u∑
t=0

Prob(Su(1, . . . , u) = t)2 for u � N

since for u � N for the great majority of pairs (j1, . . . , ju), (i1, . . . , iu) the
components j1, . . . , ju, i1, . . . , iu are mutually distinct. Approximately, the right-
hand sum in (14) (without pre-factor N2u/(2u!u!)) equals

c(u)
2R

with c(2) ≈ 2
3
, c(3) ≈ 11

20
, and c(u) ≈

√
3√

πu
for u ≥ 4 . (15)
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For R = 16, for instance, N = 116 for u = 2, resp. N = 28 for u = 3, resp.
N = 16 (coarse estimate since 4 �� 16) for u = 4, exponentiations provide ≈ 2N
linear equations (equate (14) with 2N). Numerical experiments agree with these
estimates, and these N ′s roughly give the necessary number of power traces
needed for the overall attack (cf. Phase 2, Table 6). Similarly, for R = 32 we
need N = 4689 (N = 141, N = 79) power traces for u = 2 (u = 3, u = 4) to
obtain ≈ 2N linear equations. In particular, 2N equations cost roughly

≈ N2u

2u!u!
≈

(
2R·4u!u!

c(u)

) 2u
2u−1

2u!u!
≈ 10 · (2R)1+

1
2u−1 comparisons for u ≤ 4. (16)

Discussion on the appropriate decision parameter. When applying de-
cision rule (11) to u-tuples (j1, . . . , ju), (i1, . . . , iu) ∈ Mu the attacker might
commit two types of errors: False positives (decision for ’∼’ although ’�∼’ is
true) and false negatives (decision for ’�∼’ although ’∼’ is true). A false nega-
tive just ’loses’ one linear equation (13) whereas a false positive yields a wrong
equation, making the solution of the system of linear equations (cf. Subsec. 3.4)
meaningless.

Unlike in the basic version a false positive does not only slow down the at-
tack (affecting a single blinding class) but the whole attack fails. False positives
thus should definitely be prevented although the fact that ∼ defines an equiva-
lence relation on Mu might allow to detect (and to cancel) some false positives
Moreover, for the great majority of mutual comparisons ’�∼’ is the correct de-
cision. More precisely, (14) to (16) says that only for the fraction c(u)/2R of
all comparisons ’∼’ is true. Assume that the random variables W and W ′ de-
scribe the distribution of ham(NAF(ṽj1 + · · · + ṽju − ṽi1 − · · · − ṽiu )) under
the condition (j1, . . . , ju) �∼ (i1, . . . , iu), resp. under the condition (j1, . . . , ju) ∼
(i1, . . . , iu). The empirical studies below consider R = 16 where we selected
b0 := E(W ) − 6.5σW in (11).

If we assume that W is at least approximately normally distributed the prob-
ability for a false positive in a single decision is < 10−9. In Table 5 μW and
μW ′ denote the mean values of W and W ′, while ’∼’ and ’�∼’ briefly stand for
(j1, . . . , ju) ∼ (i1, . . . , iu) and (j1, . . . , ju) �∼ (i1, . . . , iu), respectively. Each quin-
tuple (μ′

W , μW , σ′
W , σW , b0) in Table 5 was figured on basis of 40000 pseudo-

randomly generated pairs (ṽj1 , . . . , ṽju), (ṽi1 , . . . , ṽiu), fulfilling ’∼’, resp. ’�∼’.
Table 5 verifies that the empirical values μW and σW are indeed very close
to the expectation and standard deviation when X is uniformly distributed on
Z2k+R (cf. Lemma 1(iii) and Example 1), confirming our heuristics discussed at
the beginning of this subsection. Table 5 shows for several pairs (k + R, u) what
error rates εb Step 1 of the enhanced attack can tolerate. As Phase 1 of the basic
attack also Step 1 of the enhanced variant is more efficient for larger key sizes
since the ratio σW /(μW −μW ′) decreases as (k + R) increases. We applied deci-
sion rule (11) in many simulation experiments. As predicted false positives did
not occur for this choice of b0. For (k + R, u, εb) = (1040, 3, 0.07) false negatives
essentially do not occur whereas for (k + R, u, εb) = (272, 4, 0.04) about 29%
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Table 5. ham(NAF(·))-u-sum-distributions for several sets of parameters

ham(NAF(ṽj1 + · · · − ṽiu)) ham(NAF(ṽj1 + · · · − ṽiu))

∼ �∼ ∼ �∼
R u k εb μW ′ σW ′ μW σW b0 k εb μW ′ σW ′ μW σW b0

16 2 256 0.06 49.2 5.4 90.5 4.5 61.2 1024 0.11 272.7 10.4 347.0 8.8 289.8

16 2 256 0.07 54.7 5.4 90.1 4.5 61.0 1024 0.12 283.8 10.2 346.8 8.8 289.7

16 3 256 0.08 59.6 5.4 90.8 4.5 61.6 1024 0.13 293.4 10.1 346.8 8.8 289.9

16 3 256 0.04 48.7 5.4 90.5 4.5 61.2 1024 0.07 262.8 10.4 346.9 8.8 289.6

16 3 256 0.05 56.6 5.4 90.7 4.5 61.2 1024 0.08 279.8 10.2 346.9 8.8 290.1

16 3 256 0.06 63.0 5.4 90.8 4.5 61.7 1024 0.09 293.5 10.0 347.0 8.8 290.0

16 4 256 0.04 58.5 5.4 90.9 4.5 61.5 1024 0.06 277.7 10.3 347.0 8.8 290.0

(=100(1 − Φ((61.5 − 58.5)/5.4))% = 100 · (Φ(0.56))%) of the existing (correct)
equations get lost due to false negatives, increasing the required number of power
traces N somewhat (cf. (15)).

Remark 3. At cost of efficiency (more decisions and more power traces) Step 1 of
the enhanced attack also applies to larger error rates than discussed in Table 5.
From (15) one concludes that N ≈ 116 3

√
a for u = 2, N ≈ 28 5

√
a for u = 3, and

N ≈ 16 7
√

a for u = 4 provide ≈ 2aN linear equations (a > 1), thus tolerating
a fraction of (a − 1)/a lost equations. Numerical Example: For (k + R, u, εb) =
(1040, 2, 0.12) we expect ≈ 28% false negatives but N = 129 in place of N = 116
should compensate this defect.

3.4 Enhanced Attack: Step 2

Basic idea. In Step 1 the attacker has gained a homogeneous system of q linear
equations

Br′ = 0 with B ∈ Mat(q, N ; Z), r′ ∈ ZN,0 = (0, . . . , 0)t ∈ Zq . (17)

In the following we assume that all equations are correct. This is the case if all
decisions for ’∼’ were correct, or if all false positives could be eliminated due to
consistency checks within the equivalence classes Em. Then r := (r1, . . . , rN )t

clearly is a solution of (17). Moreover, z(1, . . . , 1)t ∈ ZN is also a solution of
(17) for all z ∈ Z. As it is extremely unlikely that r is an integer multiple of
(1, . . . , 1)t (which can easily be checked) the kernel kerB, the solution of (17),
is a proper superset of {z(1, . . . , 1)t | z ∈ Z}. Since dim(ker(B)) ≥ 2 would be
pointless to consider (17) as a system of linear equations over the real numbers.

Preliminary on Step 2

Definition 3. Let A �= {0} be a commutative ring that operates on an abelian
group M �= {0} via (a, m) �→ am ∈ M . Assume that besides (ab)m = a(bm) and
1m = m also a(m + n) = am + an and (a + b)m = am + bm for all a, b ∈ A
and m, n ∈ M . Then M is called an A-module. The module M is called free if
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M admits an A-basis, i.e. if there exists a subset B ⊆ M such that any m ∈ M
can be expressed in a unique way as an A-linear combination of elements of B.
If M has a finite basis {m1, . . . , mn} then M has dimension n.

Note that if A is a field then M is a vector space. Lemma 2 illuminates the
structure of kerB as a Z-module. We point out that for linear equations over IR
its assertion would be trivial while it is not obvious over Z.

Remark 4. (i) Example: Zn becomes a Z-module via y(z1, . . . , zn) :=
(yz1, . . . , yzn). (ii) Modules may not admit bases (e.g., the Z-module Zm), and
a set of independent elements may not be extendable to a basis: Consider, for
example, the Z-module Z2. The vector (2, 0) ∈ Z2 cannot be extended to a basis,
and (2, 0), (1, 0), for instance, only spans the sub-module 2Z × Z.
(iii) The definition of dim(M) tacitly uses the fact that all bases of M have the
same cardinality since A is commutative (cf. [10], Chap. XIII).

Lemma 2. kerB is a free sub-module of ZN. In particular, kerB admits a mod-
ule basis s(1) := (1, . . . , 1)t, s(2), . . . , s(dim(ker B)).

Proof. ZN is a free module over Z. As kerB is a sub-module of ZN

and since Z is a principal entire ring, kerB is also free and ad-
mits a basis with dim(kerB) elements ([10], Chap. III, Thm. 7.1). It is
(1, . . . , 1)t, (0, 1, 0, . . . , 0)t, . . . (0, 0, . . . , 0, 1)t is a basis of ZN, and ZN is a di-
rect sum of the sub-modules T1 and T2 where T1 is generated by (1, . . . , 1)t and
T2 by basis vectors (0, 1, 0, . . . , 0)t, . . . (0, 0, . . . , 0, 1)t. The mapping φ: T1×T2 →
ZN, (t1, t2) �→ t1+t2 defines a module isomorphism. Then ker(B◦φ) = {(t1, t2) ∈
T1 × T2 | B(t1 + t2) = B(t2) = 0} = T1 × {t2 ∈ T2 | B(t2) = 0}. The second
summand is a sub-module of T2

∼= ZN−1, is thus free and admits a basis s′
(2), . . .

([10], Chap. III, Thm. 7.1). Then s(1) := φ((1, . . . , 1)t, 0), s(2) := φ(0, s′
(2)), . . . is

a basis of kerB, which proves the lemma.

If the number q of linear equations is sufficiently large, dim(kerB) = 2 may
be expected. Experimental results confirm this conjecture (cf. Table 6). Larger
parameter u allows smaller N but on the negative side the admissible error rate
εb in Step 1 decreases. In the following we assume dim(ker B)) = 2. Then

r = μ1s(1) + μ2s(2) with unknown μ1, μ2 ∈ Z. (18)

Table 6. Enhanced attack: Experimental results for Step 2

u = 2 u = 3 u = 4

N 116 128 28 32 16 20

dim(kerB) = 2 43/50 49/50 49/50 50/50 12/50 50/50
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Finding the basis. Finding μ1 and μ2 might seem to be a O(22R) problem,
but this is not the case. Clearly, |μ2| · max{|s(2)i − s(2)j | : 1 ≤ i, j ≤ N} =
max{|ri − rj | : 1 ≤ i, j ≤ N} < 2R. If the blinding factors r1, . . . , rN have been
generated randomly it is very likely that the second term is ≈ 2R, and thus it
is very unlikely that there is an integer μ1 with gcd(r1 − μ1, . . . , rN − μ1) > 1.
Thus almost certainly μ2 ∈ {−1, 0, 1}.

The case μ2 = 0 is very unlikely and easily checked. If μ2 �= 0 order the indices
1, . . . , N twice, first according to the size of the components s(2)1, . . . , s(2)N and
secondly according to ṽ1, . . . , ṽN . If μ2 = 1 is correct both ordered sets should
be similar while for μ2 = −1 both sets should become more similar if one order
is reversed. Once μ2 has been determined for μ1 only

ca := 2R − (max{|s(2)i − s(2)j | : 1 ≤ i, j ≤ N} + 1) candidates remain (19)

to be checked. We assign to μ∗
1 the minimal integer for which

r∗ = μ∗
1s(1) + μ2s(2) has only non-negative components. (20)

We point out that finding a Z-basis of kerB is more difficult than finding a basis
of a vector space. In a first step we select some v(2) ∈ kerB that is no integer
multiple of s(1), where v(2) is obtained by following steps.

1. Let B′ =
(

B
11...1

)
. Since B′ is made by adding s(1) to B, dim(kerB′) = 1.

2. Use the Gaussian elimination to B′, to obtain a reduced row echelon form

B′′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 v′(2)1
...

...
...

...
...

0 0 · · · 1 v′(2)N−1

0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

3. v(2) is obtained by multiplying some integer to (−v′(2)1, . . . ,−v′(2)N−1, 1)t.

If the greatest common divisor of its components exceeds 1, we divide v(2) by this
number. Lemma 3(i) provides a simple criterion to check whether {s(1), v(2)} is
already a basis of kerB. If not, Lemma 3(ii) explains how to get one, i.e. how to
determine s(2) = v(3). Due to lack of space we omit its proof.

Lemma 3. Let dim(kerB) = 2.Assume further that that v(2) is no integer mul-
tiple of s(1), and that the gcd over the components of v(2) is 1.
(i) Assertion (∗) and Assertion (∗∗) are equivalent:

(∗) {s(1), v(2)} is basis of kerB.
(∗∗) There is no integer 1 < m ≤ 2 max{|v(2)1|, . . . , |v(2)N |} with

v(2)1 ≡ · · · ≡ v(2)N (mod m) (21)

(ii) Assume that {s(1), v(2)} is not a basis of kerB and that m∗ is the largest
integer with property (21). Then {s(1), v(3)} := ((m∗ − v(2)1)s(1) + v(2))/m∗} is
basis of kerB.
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3.5 Enhanced Attack: Step 3

The goal of Step 3 is to find the secret key d. Recall that r∗ denotes solution
(20). Step 3 differs between ECC and RSA.

The ECC Case. The attacker first computes

aj := ṽj − r∗j y = d + (μ1 − μ∗
1)y + ej = d∗ + ej for j = 1, . . . , N. (22)

He knows all aj while d∗ and ej = (ej,n+R−1, . . . , ej,0)2 are unknown.
Algorithm ECC (finds d∗):

1. Clearly, ej;0 = 0 (correct guess of elementary operation 0 for exponent vj)
iff d∗ ≡ aj(mod 2). This leads to the following decision rule:
(Majority Decision) For i = 0, 1 let Si := {j ≤ N | aj ≡ i(mod2)}. If
|S0| ≥ |S1| the attacker assumes that ej′,0 = 0 for j′ ∈ S0 and ej′,0 = 1 for
j′ ∈ S1. The case |S0| < |S1| is treated accordingly.

(Error Correction): ej,0 = 1 either means that the attacker has guessed
ṽj,0 = 1 although vj,0 = 0 is true (Case I) or that the attacker has guessed
ṽj,0 = 0 although vj,0 = 1 is true (Case II). The attacker clearly can distin-
guish between both cases since he knows his guess ṽj,0.

For Case I he replaces ṽj by ṽj − 1 and thus in (22) aj changes to aj − 1.
(Note: Since we are not interested in the ej ’s we simply keep the notation
ej .) Similarly, for Case II one gets the new equation (22) d∗ + ej = aj + 1.
(Note that after error correction d∗ ≡ aj(mod 2) for all j ≤ N .)

2. (Induction step): Assume that the guessing errors ej,i have already been
corrected for 0 ≤ i ≤ k − 1. Thus d∗ ≡ aj(mod 2k) for j ≤ N . Now we are
going to correct the ej,k.

(Majority Decision) Since ej ≡ 0(mod2k) equation d∗ + ej ≡ aj(mod
2k+1) implies d∗k + ej,k ≡ aj,k(mod2). As in Step 1 the attacker applies
the majority decision to identify those equations with a guessing error for
elementary operation k.

(Error Correction) as in Step 1, with ±2k in place of ±1 = ±20.

After this algorithm has terminated d∗ = a1 = · · · = aN if all majority decisions
had been correct. Since d = d∗ − (μ1 − μ∗

1)y one known pair (P, dP ) for some
point P should suffice to identify d after at most ca trials (cf. (19)).

Remark 5. For error rate εb = α one expects ej,0 = 1 in ≈ αN equations but
ej,0 = 0 in ≈ (1−α)N equations. For α ≤ 0.12, for instance, e1,i+· · ·+eN,i < N/2
with overwhelming probability unless N is extremely small, and false majority
decisions are very unlikely. For N = 20, α ≤ 0.12, the error probability is ≈ 10−5.

The RSA Case. At first the attacker re-labels r∗1 , . . . , r∗N (and, in the same
way, ṽj , ej etc.) such that r∗1 , . . . , r∗N ′ have alternating parity (odd, even, odd,
... or even, odd, even,...) with maximal possible N ′ ≤ N . The exponentiations
N ′+1, . . . , N are neglected in the following. Instead, we concentrate on a system
of N ′ − 1 linear equations
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bj := ṽj+1 − ṽj = (r∗j+1 − r∗j )︸ ︷︷ ︸
=rj+1−rj

y + ej+1 − ej := Δjy + ej+1 − ej for 1 ≤ j < N ′.

(23)
The integers bj and Δj are known while y, ej, ej+1 are unknown. By construc-
tion, Δj ≡ 1(mod 2) for all j ≤ N ′ − 1. The algorithm below applies the same
techniques as the ECC algorithm but it is more complicated in detail.
Algorithm RSA (finds y (= φ(n) or = φ(p))):

1. Analogously to the ECC case the equations (23) are considered (mod2).
This gives modular equations bj ≡ y + ej+1 − ej(mod 2).
(Majority Decision) For i = 0, 1 let Si := {j < N ′ | bj ≡ i(mod2)}. If
|S0| ≥ |S1| the attacker assumes bj′ ≡ y(mod 2) and thus ej′+1,0 − ej′,0 ≡
0(mod2) for all j′ ∈ S0, and thus ej′+1,0 + ej′,0 ≡ 1(mod2) for j′ ∈ S1.
In particular, he guesses y0 := bj (mod 2). The case |S0| < |S1| is treated
accordingly.

(Error Correction): Majority Decision gives a system of N ′ − 1 linear
equations ej′+1,0+ej′,0 ≡ cj′ ( mod 2) where cj′ = 0 if j′ belongs to the larger
set Si and cj′ = 1 else. Since the homogeneous system has 1-dimensional
kernel {(0, . . . , 0), (1, . . . , 1)} the non-homogeneous system has two solutions
with mutually flipped components. The attacker decides for the solution
with smaller Hamming weight. (If both Hamming weights are identical the
solution is selected, which comes first in lexicographical order.)

As for ECC ej,0 = 1 either means that the attacker has guessed ṽj,0 = 1
although vj,0 = 0 is true (Case I) or that the attacker has guessed ṽj,0 = 0
although vj,0 = 1 is true (Case II). The attacker replaces ṽj by ṽj − 1 for
CASE I, and by ṽj + 1 for Case II. Then he recalculates the left-hand sides
of (23). (After error correction y ≡ bj(mod 2) and ej,0 = 0 for all j ≤ N ′.)

2. (Induction step) Assume that we have already guessed y0, . . . , yk−1, and that
we have corrected the guessing errors for the k least significant elementary
operations, i.e. ej ≡ 0(mod 2k) for all j ≤ N ′. The next task is to guess yk

and to correct all guessing errors in e1,k, . . . , eN ′,k. From (23) we conclude

bj ≡ ṽj+1 − ṽj = Δjy + ej+1 − ej ≡

1 · yk2k + (Δj − 1)
k−1∑
i=0

yi2i + ej+1,k2k − ej,k2k(mod 2k+1). (24)

Since Δj is known and y0, . . . , yk−1 have already been guessed we obtain

b′j ≡ 2k(yk + ej+1,k − ej,k)(mod 2k+1) (25)

with b′j := bj − (Δj − 1)
∑k−1

i=0 yi2i(mod 2k+1). The right-hand side implies
b′j = b′j,k2k, which yields

yk + ej+1,k − ej,k ≡ b′j,k(mod 2) (26)

Analogously to Step 1 one estimates yk (Majority Decision) and corrects the
ej,k by modification of the ṽj and recalculation of (23) (Error correction).
The correction factor clearly is ±2k in place of ±1.
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Table 7. Success rates in Step 3 (computed from 300 trials each)

algo n + R εb N success rate algo n + R εb N success rate

ECC 272 0.12 20 100% RSA 1040 0.12 70 95%

ECC 272 0.12 16 96% RSA 1040 0.12 60 85%

ECC 272 0.08 16 100% RSA 1040 0.08 45 95%

ECC 272 0.08 10 91% RSA 1040 0.08 35 74%

If all majority decisions have been correct the algorithm delivers y, which im-
mediately gives the factorization of n = pq. We note that unlike (22) equations
(23) are ’disturbed’ by two error terms ej+1 and ej, and some exponentiations
are neglected. Consequently, for identical error rates the RSA algorithm requires
larger sample size N than the ECC algorithm. Experiments (Table 7) verify that
both error correction algorithms work. Note that the success rate depends only
on (N, εb) but not on parameter u from Step 1. Table 7 shows that for both
ECC and RSA for large error rate εb (e.g., εb = 0.12, demanding u = 2) Step 1
and Step 2 determine the minimum number of power traces, which is needed for
the overall attack. For RSA with small error rates εb (allowing u > 2) Step 3
defines the minimum number of power traces. Step 3 virtually does not depend
on R, and thus for large R the minimum number of traces depends on Step 1
and Step 2.

3.6 Efficiency, Scalability, and Limits

The empirical results from Subsections 3.3 to 3.5 indicate that for R = 16 the
enhanced attack tolerates error rates of 13%. Since the number of traces remains
moderate even for large R the number of comparisons (16) is the limiting factor.
However, the enhanced attack scales much better than the basic attack, and
thus e.g. R = 32 is definitely feasible. For R = 64 even u = 4 requires roughly
≈ 276 comparisons (NAF computations) in absence of false negatives, which
might be viewed impractical for side-channel attacks, in particular since the
attacker does not know in advance whether the error rate εb is indeed sufficiently
small. Moreover, for increasing R the boundary b0 has to be decreased (more
comparisons per gained equation); replacing 6.5σW , e.g. by 8.0σW (for R =
32, u ≥ 3) or 8.5σW (for R = 32, u = 2), decreases the tolerable error rate by
≈ 1.5 percentage points. For R = 48 the reduction is ≈ 3 percentage points.

4 Conclusion

We introduced two variants of a new generic attack on exponent blinding (RSA
without CRT, RSA with CRT, ECC). Experiments with simulated data con-
firmed the theoretical results. For small blinding factor R = 10 the basic attack
was successful for error rates of εb ≤ 0.23 (256-bit ECC), resp. for εb ≤ 0.28
(1024-bit RSA). The enhanced attack works for εb ≤ 0.13 (for R = 16) but re-
quires by orders of magnitudes less power traces and scales much better for large
R. Moreover, the enhanced variant applies new techniques, which are interesting
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by themselves. Of course, for security implementations power traces should not
provide any useable information at all. However, selecting R = 64, or maybe
even better R > 64, should make both variants impractical anyway. Limiting
the use of the key clearly below 2R/2 even prevents 2-birthdays (basic attack).

Acknowledgement. The authors would like to thank David Galindo for his
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to improve the editorial quality of the paper.
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Abstract. SecureMemory (SM), CryptoMemory (CM) and CryptoRF
(CR) are the Atmel chip families with wide applications in practice. They
implement a proprietary stream cipher, which we call the Atmel cipher,
to provide authenticity, confidentiality and integrity. At CCS’2010, it
was shown that given 1 keystream frame, the secret key in SM protected
by the simple version of the cipher can be recovered in 239.4 cipher ticks
and if 2640 keystream frames are available, the secret key in CM guarded
by the more complex version of the cipher can be restored in 258 cipher
ticks. In this paper, we show much more efficient and practical attacks on
both versions of the Atmel cipher. The idea is to dynamically reconstruct
the internal state of the underlying register by exploiting the different
diffusion speeds of the different cells. For SM, we can recover the secret
key in 229.8 cipher ticks given 1 keystream frame; for CM, we can re-
cover the secret key in 250 cipher ticks with around 24 frames. Practical
implementation of the full attack confirms our results.

Keywords: Stream ciphers, RFID, Frame, SecureMemory,
CryptoMemory.

1 Introduction

The Atmel Cipher. The Atmel chips AT88SC153 and AT88SC1608, called
SecureMemory (SM) family, were introduced in 1999 [3]. The CryptoMemory
(CM) family including the AT88SCxxxxC chips was introduced in early 2002
[2] with more advanced cryptographic features. These two families are ISO/IEC
7816 smart cards that communicate through a contact interface; in late 2003,
the CryptoRF (CR) family (ISO/IEC 14443-B smart cards) [10], which is a
variant of the CM family with the AT88SCxxxxCRF chips was introduced with
a RF interface. These chips are widely used in practice all over the world, e.g.
in smart cards (ID and access cards, health care cards, loyalty cards, Internet
kiosks, energy meters and e-government) [4], in the widely sold NVIDIA graphics
cards [12], the Microsoft’s Zune Player [7] and SanDisk’s Sansa Connect [13]. For
more complete and detailed information, please see [4,8].

A proprietary stream cipher, which we call the Atmel cipher, lies at the core
of the chips to provide authenticity, confidentiality and integrity. The SM family
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uses the simple version of the cipher, while in CM and CR, the more complex
version of the cipher is adopted. The difference between the simple version and
the complex one is that there is 1 byte feedback of the output into the other
shift registers every cipher tick in the complex version. Besides, in CM, the
initialization phase and the generation of the authenticators is much more com-
plicated. There are more mixing rounds in CM before the output is produced.
It is commonly believed that the complex version of the Atmel cipher provides
much stronger security.

Previous work. At CCS’2010, the Atmel cipher is described and analyzed in
the authentication mechanism [8]. In such a scenario, the tag and the reader
exchange their 64-bit nonces and use the shared 64-bit key to generate some
keystream nibbles as authenticators. The attacker is assumed to be able to cap-
ture some keystream frames produced by the same shared key, but with different
nonces. Throughout this paper, we call the result of a single authentication ses-
sion (with 128-bit keystream) a keystream frame, or briefly a frame. In [8], it was
shown that there exists a key recovery attack on SM in 239.4 cipher ticks with
probability 0.57, given 1 frame and a key recovery attack on CM in 258 cipher
ticks1, if 2640 frames are available. Hence, in theory, both versions of the cipher
do not provide the full security with respect to their key length. However, in
practice, the challenge is how to efficiently break the cipher with as few frames
as possible? Are there any cryptanalytic techniques that could be used in such
a restricted setting? Note that in our scenario, the attacker can only capture
some random known frames with random nonces, he cannot choose the frames
with the nonces satisfying some specific properties, e.g. some special differences.
Thus, the techniques requiring chosen nonces, e.g. the differential-like chosen
nonces attacks and the cube attacks [5,6] will not work in this realistic setting,
neither will fast correlation attacks [11] which usually require large amounts of
keystream.

Our contribution. In this paper, we present practical random known nonces
attacks on both version of the Atmel cipher. In contrast to the attack in [8], which
had to exhaustively search the left and right registers for each captured frame,
our attack only makes an exhaustive search of the shortest right-most register
and uses the optimal Viterbi-like decoding techniques [14] to recover the internal
states of the other registers. We exploit the differences in diffusion speeds of the
cells of the registers to restore the internal state efficiently. For SM, by starting
from the most dense part of the known keystream segment of the left register,
our technique can fill the gap of 2-step update for adjacent known keystream
nibbles very well, resulting in a key recovery attack in 229.8 cipher ticks with
success probability 0.75, given 1 frame. This is about 1000 times faster than
that in [8]. For CM, by a careful analysis of the state update function and the
output function of the underlying register, we can partially determine chunks of
the state with low complexity. The positions of the recovered chunks are chosen

1 In [8], this complexity is claimed to be 252 cipher ticks, however, the complexity of
unrolling the cipher 64 steps is ignored [9].



Cryptanalysis of the Atmel Cipher in SecureMemory, CM and CR 93

Table 1. Key recovery attacks on SecureMemory

data, frames time success probability running time

attack of [8] 1 239.4 0.57 minutes

this paper 1 229.8 0.75 seconds

Table 2. Key recovery attacks on CryptoMemory (success probability 0.5)

Theoretical Practical

data, frames time memory running time (200 CPU cores) memory

attack of [8] 2640 258 O(232) several weeks (estimated)[9] 16 GB

this paper 30 250 O(224) several days 530 MB

in such a way that we can determine the maximum keystream information solely
based on these states. By starting from the carefully chosen point in time, we
mount an attack on CM in 250 cipher ticks with around 24 frames, which is 28

times faster than that in [8] and uses much less frames. The extremely low data
complexity of our attack makes it more threatening in practice, an attacker can
easily get such a number of frames to mount the attack.

We have fully implemented our attack. It takes several minutes to find a good
frame among the 30 given frames and recover the possible left-right state pairs
subsequently. Then roughly 2 − 6 days are needed to restore the full internal
state of a good frame just after the initialization using the 200 CPU cores and
another 2 hours on a single core are taken for the full key recovery. The short
running time allowed us to run the full attack several times for different keys.

Tables 1 and 2 present a comparison of our new attacks and the attacks of [8]2

on SM and CM respectively. We note that due to the properties of our attack the
use of bit-slicing techniques, which according to [9] were employed in [8], is not
efficient in its implementation. Our original estimates were also very optimistic:
the recovery of just the middle register took only 6 hours and complexity of
the total attack seemed around 245 − 247 cipher ticks, but full implementation
has shown dependencies between all the phases of the attack, raising the total
complexity to about 249 − 250 cipher ticks.

Organization of the paper. We describe the two versions of the Atmel cipher
in Section 2 together with the concrete authentication protocols. Our attack on
SM is provided in Section 3 and the attack on CM is given in Section 4. We
describe our practical implementation of the full key recovery for CM in Section
5 and give our conclusions in Section 6.

2 The authors have corrected their original complexity of 252 (for which the attack
runs 2 days) to 258 which probably means increase to several months. However,
the authors of [9] used bit-slice implementation which offers some speedup. Our
implementation currently is not bit-sliced.
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2 Description of the Atmel Cipher and the
Authentication Protocol

In this section, we present a description of the two versions of the Atmel ci-
pher together with the concrete authentication protocols. Let us first specify the
notations used hereafter.

– Fn
2 = {0, 1, . . . , 2n − 1}.

– (x0x1 . . . xn−1) ∈ Fn
2 with x0 being the most and xn−1 being the least sig-

nificant bits.
– suc is the state transition function.
– a ∈ F8

2 is the input to the state.
– the cipher state s and the successor state s′ = suc1(a, s) = suc(a, s).
– sucn(a, s) = sucn−1(a, suc(a, s)) for n > 1.
– the left register l = (l0, l1, . . . , l6) ∈ (F5

2)
7.

– the middle register m = (m0, m1, . . . , m6) ∈ (F7
2)7.

– the right register r = (r0, r1, . . . , r4) ∈ (F5
2)

5.
– the feedback register f = (f0, f1) ∈ (F4

2)
2 for CM.

– L : Fn
2 → Fn

2 is the bitwise left rotation defined by L(x0x1 . . . xn−1) =
(x1 . . . xn−1x0).

– + is the integer addition.
– the modified modular addition � : Fn

2 × Fn
2 → Fn

2 is defined as:

x � y =
{

x + y (mod 2n − 1) if x = y = 0 or x + y �= 0 (mod 2n − 1)
2n − 1 otherwise

2.1 Specification of the Atmel Cipher

Both versions consist of 3 shift registers, i.e., the left register l, the middle register
m and the right register r. The complex version in CM has an additional feedback
register f to store the last 8 bits of output. The cipher structure is illustrated in
Fig. 1. At each tick, a cipher state s = (l, m, r, f) ∈ F117

2 (for SM, ignore f and
s ∈ F109

2 ) is converted into a successor state s′ = (l′, m′, r′, f ′) as follows. First
inject the input a into s at several cell positions, resulting in an intermediate
state ŝ. For CM, let b = a⊕f0f1; while for SM, let b = a. Then, l̂i = li, m̂j = mj

and r̂k = rk for i �= 2, j �= 4 and k �= 1. For i = 2, j = 4 and k = 1,

l̂2 := l2 ⊕ b3b4b5b6b7, m̂4 := m4 ⊕ b4b5b6b7b0b1b2, r̂1 := r1 ⊕ b0b1b2b3b4.

Second, shift the left, right and middle registers one cell to the right and com-
pute the new 0th terms by the 1-bit left rotation L and the modified modular
addition �.

l′i+1 := l̂i, m′
i+1 := m̂i, for i ∈ {0, 1, . . . , 5},

r′i+1 := r̂i for i ∈ {0, 1, . . . , 3},
l′0 := l̂3 � L(l̂6), m′

0 := m̂5 � L(m̂6), r′0 := r̂2 � r̂4.
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Fig. 1. The ciphers

Finally, generate the keystream and shift the feedback register f one cell to
the left and set a new 1st entry as the output nibble for CM. Let ‖ be the
concatenation operation, denote by outputl(l′) = l′0,1⊕l′4,1 ‖ l′0,2⊕l′4,2 ‖ l′0,3⊕l′4,3 ‖
l′0,4⊕ l′4,4 the rightmost 4 bits of l′0⊕ l′4 and outputr(r′) = r′0,1⊕r′3,1 ‖ r′0,2⊕r′3,2 ‖
r′0,3 ⊕ r′3,3 ‖ r′0,4 ⊕ r′3,4 the rightmost 4 bits of r′0 ⊕ r′3. The output of s′, denoted
by output(s′), is given by

output(s′)i =
{

outputl(l′)i, if m′
0,i+3 = 0

outputr(r′)i, if m′
0,i+3 = 1. i ∈ {0, . . . , 3}. (1)

Note that the rightmost 4 bits of m′
0 selects either a bit from outputl(l′) or a bit

from outputr(r′) to be output as the keystream bit. For CM, let f ′
0 = f̂1 = f1

and f ′
1 = output(s′).

2.2 The Authentication Protocol

In the protocol, the tag and the reader exchange the nonces (depicted in Fig. 2)
and use the cipher to generate keystream that will be used as authenticators for
both sides.

Let nt ∈ (F8
2)

8 be a tag nonce, nr ∈ (F8
2)

8 a reader nonce and k ∈ (F8
2)

8 be
the shared key between the tag and the reader. First initialize all the registers l,
m, r and f (for SM, ignore f) to be zero, then the cipher is clocked as follows.

nt
arnr,

at
Tag Reader

Fig. 2. The authentication protocol
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Table 3. The injection procedures

SM CM
s0 nt0, nt1, nr0 nt0, nt0, nt0 nt1, nt1, nt1, nr0

s1 nt2, nt3, nr1 nt2, nt2, nt2 nt3, nt3, nt3, nr1

s2 nt4, nt5, nr2 nt4, nt4, nt4 nt5, nt5, nt5, nr2

s3 nt6, nt7, nr3 nt6, nt6, nt6 nt7, nt7, nt7, nr3

s4 k0, k1, nr4 k0, k0, k0 k1, k1, k1, nr4

s5 k2, k3, nr5 k2, k2, k2 k3, k3, k3, nr5

s6 k4, k5, nr6 k4, k4, k4 k5, k5, k5, nr6

s7 k6, k7, nr7 k6, k6, k6 k7, k7, k7, nr7

s8

s0 := 0,

si+1 := suc(nri, sucv(nt2i+1, sucv(nt2i, si))), i ∈ {0, . . . , 3}

si+5 := suc(nri+4, sucv(k2i+1, sucv(k2i, si+4))), i ∈ {0, . . . , 3}

where v = 1 for SM and v = 3 for CM. Table 3 shows the schematic view
of the input in the initialization phase. Note that the states s0, . . . , s7, s8 are
non-consecutive. There are 24 setup rounds for SM and 56 setup rounds for
CM respectively. Let at ∈ (F4

2)
16 be the tag authenticators and ar ∈ (F4

2)
16 the

reader authenticators. The precise definitions of the authentication process are
given as follows.

SM Authentication. Define the following states and outputs:

si := suc2(0, si−1), i ∈ {9, . . . , 40}.
ati := output(s2i+9), ati+1 := output(s2i+10), i ∈ {0, 2, . . . , 14},
ari := output(s2i+11), ari+1 := output(s2i+12), i ∈ {0, 2, . . . , 14}.

CM Authentication. Define the following states and outputs:

s9 := suc5(0, s8), s10 := suc(0, s9), si := suc6(0, si−1) i ∈ {11, 13, . . . , 23};
si := suc(0, si−1) i ∈ {12, 14, . . . , 24}; si := suc(0, si−1) i ∈ {25, 26, . . . , 38};

ari := output(si+9) i ∈ {0, 1, . . . , 15}; at0 := 0xf, at1 := 0xf,

ati := output(si+23) i ∈ {2, 3, . . . , 15}.

Note that there are 16 consecutive keystream nibbles in the frame, i.e., ar14,
ar15, at2, at3, . . . , at15. Since CM and CR use the same version of the cipher, we
will ignore this distinction hereafter. The attacker’s aim is to restore the shared
64-bit key from a number of captured frames, for each of which only a short
keystream segment is known.
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3 Our Attack on SecureMemory

First note that from (1), for i ∈ {0, 1, 2, 3} we have

output(s′)i = m′
0,i+3 · outputr(r′)i ⊕ (1⊕m′

0,i+3) · outputl(l′)i. (2)

This suggests that P
(
output(s′)i = outputr(r′)i

)
= 3

4 and P
(
output(s′)i =

outputl(l′)i

)
= 3

4 . Thus, we can make an exhaustive search of all the possible s8

states of the right register r and use a classical correlation test to find the correct
state. This is feasible because we can run r independently of l and m. Note that
there are 128 bits of known keystream from 1 SM frame. The correct state of r

could pass the test with probability
∑128

i=Tr

(
128
i

)
(3
4 )i(1

4 )128−i and a wrong guess

would pass with probability
∑128

i=Tr

(
128
i

)
(1
2 )128, where Tr is the threshold value

of the correlation test.
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Fig. 3. The backward diffusion of l in SM

Then, unlike the attack in [8], we do not make a second exhaustive search of
the left register l. To get the candidate states of l matching the keystream bits
where the intermediate output outputr(r′) of r does not generate the correct
bit (There are 32 such bits on average), we regard the known keystream bits
generated by l as the observed events of the internal hidden states, as in the
classical Viterbi decoding scenario [14]. However, we found that it is not easy to
directly use the Viterbi decoding algorithm here. Instead, we exploit the different
diffusion speeds of the different cells in l to enumerate the possible candidates
dynamically. Fig. 3 and 4 show the diffusion process of the cells in l. Let li (i ≥ 0)
be the 5-bit content of the corresponding cell, then for every second step i, we
know some bits of the xor of the 0th cell and the 4th cell. In fact, the bits are
distributed according to the xor between outputr(r′) and at and ar. At some
instance, it may happen that there are no bits known; while at other step, it
also may happen that we know the whole nibble.

Let lki = outputl(l′) at step i, though sometimes lki is unknown. Our obser-
vation is that some cells of the initial state affect the output more often than
others. Hence, if we isolate the low-effect cells and first determine the cells that
have the most extensive effect on the output, it is expected that in this way, we
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need not try all the possible states one-by-one. Besides, we can shift the start-
ing point of our decoding algorithm. The chosen criterion is determined by the
problem that which cells we choose to determine first. We have the following
theorem (proved in the full version of the paper) on the latter problem. For
any starting point, define the starting state to be ls0 = {l0, l1, l2, l3, l4, l5, l6}.
The counting of the predecessor and successor states and the lkis follow Fig. 3
and 4.

Theorem 1. For any starting state ls0, if we choose A = {l0, l1, l3, l4, l6} to de-
termine first, then {lk3, lk5, lk7, lk9, lk11} depend on l8 and A, {lk−3, lk0, lk2, lk4}
only depend on A, {lk−1, lk6} depend on A and l2, and {lk1, lk8, lk10} depend
on A, l2 and l8.

Theorem 1 shows that if we know A, then we can reduce the possible values of
l8 to a large extent, for there are 5 equations that could be used for check. After
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Fig. 4. The forward diffusion of l in SM
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determining l8 and A, other cells of the state ls0 could be restored easily, for we
can just run l forward and backward from ls0 to get the candidates and then
clock back from ls0 to restore the real initial state. This theorem also indicates
how to choose the starting state. Let NH(lki) be number of known bits in lki

for 0 ≤ i ≤ 31, then we define the following function:

Ψ(i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
j∈{0,2,3,4,5,7,9,11} NH(lki+j) for 0 ≤ i ≤ 2

∑
j∈{−3,0,2,3,4,5,7,9,11} NH(lki+j) for 3 ≤ i ≤ 20

∑
j∈{−3,0,2,3,4,5,7,9} NH(lki+j) for 21 ≤ i ≤ 24

∑
j∈{−3,0,2,3,4,5} NH(lki+j) for 25 ≤ i ≤ 26

∑
j∈{−3,0,2,3,4} NH(lki+j) for i = 27

∑
j∈{−3,0,2,3} NH(lki+j) for i = 28

∑
j∈{−3,0,2} NH(lki+j) for i = 29

∑
j∈{−3,0} NH(lki+j) for 30 ≤ i ≤ 31 .

Let I =max0≤i≤31Ψ(i) and Ψ(J) = I, then we can start from the state s8+J in
the real SM authentication, which will have a maximum reduction effect on the
possible candidates. Table 4 shows the distributions of I and J obtained from
experiments. From Table 4, we get P (I ≥ 10, J < 25) ≈ 0.94.

Table 4. The distributions of I and J in SM.

I I ≥ 10 I ≥ 11 I ≥ 12 I ≥ 13 I ≥ 14
0.95 0.87 0.73 0.53 0.34

J J ≥ 21 J ≥ 22 J ≥ 23 J ≥ 24 J ≥ 25
(0.0297, 0.0344) (0.0205, 0.028) (0.003, 0.014) (0.003, 0.007) (0.0006, 0.0018)

Now we are ready to enumerate the possible states of A consistent with
{lk0, lk2, lk4}. We first guess l0 in ls0, there are 25 possibilities. From lk0, we
can get 23 candidates of l4 on average for each l0. Then from lk2, we can get
around 2 candidates of l3 for each l0. Knowing l0 and l3, we could derive l10.
From lk4, we could get 2 candidates on average of l7 for each pair of (l0, l3).
For each l7, we could derive one or two (due to the fact that � is not injec-
tive) candidates of l6. There are 25 candidates of l1, so with a complexity of
25 · 4 = 27, we could get 25 · 25 · 23 · 2 · 2 = 215 possible combinations of A.
Then using the 5 check equations for l8, we can determine several candidates
of l8 conditioned on A, sometimes even 1. For each possible combination of A
and l8, we can derive the corresponding l2 from other lkis. Given l8 and l2, we
know l5. Finally, we run l backwards and forwards from ls0 to further reduce
the possibilities. For each surviving candidate for ls0, run l backwards to recover
the real initial state s8 in the authentication. This procedure has a complexity
of 215 · 25 · 23 · 64

3 = 227.4 cipher ticks. The number of candidates of s8 of l is
directly determined by the coincidence bits between the intermediate output,
outputr(r′), of r and the keystream. More coincidence bits, more candidates of
s8. From experiments, we found that with probability around 0.92, there are less
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than or equal to 100 candidates of s8 recovered. For each right-left candidate
pair, we can run the meet-in-the-middle attack in Section 4.2 of [8] to recover
the secret key with a complexity of around 224.5 cipher ticks. So the total time
complexity of our attack is 227.4 + 224.5 + 225 · 64

3 = 229.8 cipher ticks. And the

success probability of our attack is around
∑128

i=T

(
128
i

)
(3
4 )i(1

4 )128−i · 0.92 · 0.94,
which is around 0.75 if we set T = 91. Given 1 frame, our attack on SM is
about 1000 times faster than that in [8] with a higher success rate. This attack
is verified on a single CPU core in C. In experiments, it takes tens of seconds to
restore the s8 state of l and r in the real authentication.

4 Our Attack on CryptoMemory

The starting point of our attack on CM is the 16 consecutive keystream nibbles,
i.e., we first use the correlation test to find some candidates of the right-most
register r. Because of the existence of the feedback register f in CM, we cannot
run l or r independently in general. But when CM generates the 16 consecutive
nibbles, we can run either l or r independently, for in this case we know the
feedback bytes, which is the same as the last 64-bit keystream in one frame.

Conditioned on r, we can derive 16-bit information of the intermediate output
of l on average by selecting those keystream bits where the intermediate output
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Fig. 5. The forward diffusion of l in CM
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of r does not generate the correct keystream bit. Again, we regard the known
intermediate output of l as the observed events of the corresponding internal
hidden states. The good thing for us is that now we know the intermediate out-
put of l for consecutive steps, instead of for every second step. Besides, we need
to exploit the properties of the state update function and the output function
of l to find the most likely internal states that generate the observed keystream
bits. Since both the state update function and the output function of l only de-
pend on very few variables, some of which are shared, we can partially determine
chunks of the state with low complexity. Several overlapping partial states could
be restored in this way. Then we take an intersection of the overlapping states
and use this subset to further reduce the candidates of other parts. The positions
of the recovered states are chosen in such a way that we can determine the max-
imum keystream information solely based on these states. The same techniques
are also applied to the middle register m.

4.1 Recovering the Right and Left Registers r and l

Precisely, we first make an exhaustive search of all the possible s24 states of
the right register r and use a correlation test to filter out the wrong guesses
to some extent. The correct candidate could pass the test with probability
∑64

i=Tr

(
64
i

)
(3
4 )i(1

4 )64−i and a wrong guess would pass with probability
∑64

i=Tr

(
64
i

)

·(1
2 )64, where Tr is the threshold value in correlation test. Since in CM we can

only use the 64 consecutive bits for correlation test, instead of 128 bits as in the
SM case, we select Tr in such a way that we need not call the following parts
of our attack for each captured frame. Our attack is continued only if there are
some candidates of r pass the correlation test. If for one frame, there are no
output from the correlation test, we discard the frame and try another one.

Now we look at the left register l. We want to restore the s24 state of l without
exhaustively searching all the possibilities. Still, we did not find a way to use the
Viterbi decoding algorithm directly. The following steps have some similarities
with the Viterbi algorithm in the sense that we determine the most likely hidden
state candidates up to a certain point depending only on the current observable
events and the most likely state candidates at the last point. Fig. 5 depicts the
forward diffusion process of l. In fact, we can shift the beginning point of our
counting, i.e., we can make a chosen time point in the middle to be 0. The chosen
criterion is determined by the diffusion properties of the different cells. Again,
let lki be the intermediate output of l, though sometimes lki is unknown. For
any starting point, define the starting state to be ls0 = {l0, l1, l2, l3, l4, l5, l6}.
We have

lk1 = (l3 � L(l6))⊕ l3, lk2 = (l2 � L(l5))⊕ l2, (3)
lk3 = (l1 � L(l4))⊕ l1, lk4 = (l0 � L(l3))⊕ l0, (4)
lk5 = (l7 � L(l2))⊕ l7, lk6 = (l8 � L(l1))⊕ l8. (5)

The above equations indicate that the output function and the state update
function of l depends on very few variables. For example, the 3rd cell of l is used
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in the current state update function and in the next step output function. Hence,
with a complexity of 210, we can determine the solution set H0 = {l3, l6} to (3).
Similarly, we derive H1 = {l2, l5}, H2 = {l1, l4}, H3 = {l0, l3}, H4 = {l7, l2},
H5 = {l8, l1} and H6 = {l9, l0} from (4) and (5). The cardinality of Hi depends
on NH(lki). Note that H0,3 = H0 ∩H3 = {l3}, H1,4 = H1 ∩H4 = {l2}, H2,5 =
H2∩H5 = {l1} and H3,6 = H3∩H6 = {l0}. Hence, we can reduce the cardinalities
of Hi and Hj by keeping only those solutions that have the value patterns
existing in the corresponding intersection set Hi,j . Experiments show that the
averaged value of |Hi| is 29.25. After reducing the cardinality by intersection,
the cardinalities sometimes reduce to half or more, sometimes remain. Then,
we combine H0 with H3 to get the possible values for H0,3,6 = {l0, l3, l6}. The
averaged number of solutions of H0,3,6 is 210.96 in 220 times of experiments. Note
that we have to xor the feedback byte b with the recovered l0 in H6 to get the
original value of l0 in ls0. Similar operation has to be done for the recovered
l1 in H5 too. To get a maximum reduction effect on the number of possible
candidates, we define the following function:

Ψ(i) =
∑

j∈{1,3,4,8}
NH(lki+j) for 1 ≤ i ≤ 7 .

This function considers the reduction effect on A = {l0, l1, l3, l4, l6} of the cho-
sen starting state, as can be seen from the diffusion process in Fig. 5. Let
I =max1≤i≤7Ψ(i) and Ψ(J) = I, then we can start from the state s24+J in
the real CM authentication to have a maximum reduction effect on A. Since in
CM, we know the 16 consecutive lkis and Ψ(i) is defined over 1 ≤ i ≤ 7, we
need not build a table similar to Table 4 to list the distributions of I and J , we
just use I and J directly following their definitions. From Fig. 5, we have the
following theorem, proved in the full version of the paper.

Theorem 2. For any starting state ls0, if we choose A = {l0, l1, l3, l4, l6} to
determine first in CM, then {lk0, lk1, lk3, lk4, lk7, lk8, lk11, lk15} depend only on
A, {lk−1} depends on {l5} and A, and {lk5, lk12} depend on A and l2.

Due to the fact that J is not necessarily equal to 1, some of the lki could not be
used in practice. For example, if J = 7, we can only use the lkis up to i = 8. Since
we define Ψ(i) only over 1 ≤ i ≤ 7, we can use at least {lk0, lk1, lk3, lk4, lk7, lk8}
for the reduction check of A. Then we use lk−1 and lk5 to reduce the possibilities
of H1. After that, we combine the remaining candidates of H1 with those of A
and run l backwards and forwards to cover the other lkis. Finally, we clock l
back from ls0 to recover the original initial state, i.e., the state s24 in the real
CM authentication. Note that the correct candidate of the s24 state of l will pass
the above procedures with probability 1.

Let nl be the number of candidates of the s24 state of l restored in the above
way. Experiments show that nl is determined by the threshold value Tr in the
correlation test of the right-most register r. For example, if we set Tr = 54, the
averaged value of nl is approximately 225.4, which is very close to 235−64+Tr .
To further reduce the possible candidates, we resort to the correlation test of l,
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but restrict ourselves only to the nl candidates. This step has a complexity of
nl · 16−2

3 , instead of 235 · 16−2
3 ≈ 237.2. Let Tl be the threshold value used in the

correlation test of the nl candidates, the correct candidate could pass this test
with probability around Pc =

∑64

i=Tl

(
64
i

)
(3
4 )i(1

4 )64−i, but the wrong candidates

would pass with the probability much larger than
∑64

i=Tl

(
64
i

)
(1
2 )64. The reason is

that the nl candidates are more likely to be the correct candidate than the ones
in the random case, which has 235 possibilities. We use experiments to determine
this probability. Let Pw be this false alarm probability, we found that if Tr = 54
and Tl = 45, then the averaged value of Pw is about 2−5; if Tr = 54 and Tl = 53,
then the averaged value of Pw is about 2−19. We conjecture that in general, Pw

is around 25 times larger than
∑64

i=Tl

(
64
i

)
(1
2 )64. After the correlation test of the

nl candidates, we get about (nl − 1) · Pw + 1 · Pc candidates for the left register
l. Then we turn to the middle register m.

4.2 Recovering the Middle Register m

Now we know the candidate s24 (in the real authentication) states of l, r and the
real feedback register f , our aim is to restore the candidate s24 states of m. By
xoring the intermediate outputs outputl(l′) of l and those of r, we could know
the exact values of the intermediate output of m from (1). Let mki denote such

0
m

3
m2

m
1
m

7
m

6
m

5
m

4
m

5
m

4
m

3
m

2
m

1
m

0
m

4
m

3
m

2
m

1
m

0
m7

m
8
m

3
m

2
m

1
m

0
m

7
m

8
m

9
m

2
m

1
m

0
m7

m
8
m

9
m10

m

1
m

0
m

7
m

8
m

9
m

10
m

11
m

0
m

7
m

8
m

9
m

10
m

11
m12

m

7
m

8
m

9
m

10
m

11
m

12
m

13
m

8
m9

m
10
m

11
m

12
m

13
m

14
m

9
m

10
m

11
m

12
m13

m
14
m

15
m

10
m

11
m

12
m

13
m

14
m

15
m

16
m

11
m

12
m

13
m

14
m

15
m

16
m

17
m

12
m

13
m

14
m15

m
16
m

17
m

18
m

13
m

14
m15

m
16
m

17
m

18
m

19
m

14
m

15
m

16
m17

m
18
m19

m
20
m

15
m

16
m

17
m

18
m19

m
20

m
21

m

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

11

15

14

13

12

10

9

8

7

6

5

4

3

2

1

0

Fig. 6. The forward diffusion process of m in CM
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value for the step i. Fig. 6 shows the forward diffusion process of m in CM. To
make a full use of the known information, we start from the state s24+6 = s30

in the real authentication. From Fig. 6, we have

mk7 = m7 � L(m0), (6)
mki = mi � L(mi−1). (8 ≤ i ≤ 15) (7)

The above equations indicate that the output function and the state update
function of the middle register m depend on even fewer variables than l. We can
see the content of the feedback cell directly. Hence, with a complexity of 214, we
can determine the candidates of Q0 = {m7, m0} satisfying (6). Similarly, we can
determine Q1 = {m8, m7}, Q2 = {m9, m8}, Q3 = {m10, m9}, Q4 = {m11, m10},
Q5 = {m12, m11}, Q6 = {m13, m12}, Q7 = {m14, m13} and Q8 = {m15, m14}
from (7). The cardinality of Qi depends on NH(mki). Note that Q0,1 = Q0∩Q1 =
{m7}, Q1,2 = Q1∩Q2 = {m8}, Q2,3 = Q2∩Q3 = {m9}, Q3,4 = Q3∩Q4 = {m10},
Q4,5 = Q4 ∩ Q5 = {m11}, Q5,6 = Q5 ∩ Q6 = {m12}, Q6,7 = Q6 ∩ Q7 = {m13}
and Q7,8 = Q7 ∩Q8 = {m14}. Experiments show that the averaged value of |Qi|
is 29.1 in the random case.

We can reduce the cardinalities of Qi and Qi+1 by keeping only those solutions
that have the value patterns existing in the corresponding intersection set Qi,i+1.
To get a maximum reduction effect, let I =min0≤i≤8|Qi|. Then we start the
reduction process from QI = {mj, mk} with k = 0 or k = j − 1. More precisely,
if I < 8, we reduce QI+1 = {mj+1, mj} by keeping only those solutions that have
the mj value patterns existing in QI . If I > 0, we reduce QI−1 = {mk, mk−1} by
keeping only those solutions that have the mk value patterns existing in QI . This
reduction process is continued to cover Q0 and Q8, i.e., we make the reduction
step for each Qi. After reducing each Qi (0 ≤ i ≤ 8), we combine Q0, Q1 and
Q2 together to get the possible values for the ith cells (3 ≤ i ≤ 6) of state s24+6

in the real authentication, i.e., we first fill the 5th and the 6th cells of s30 from
Q0, then we fill the 4th cell from the ’m8’ item of Q1 with the corresponding
’m7’ item equal to the ’m7’ item of Q0 just filled in. The same procedure applies
to the 3rd cell of s30. This is something like a chain. Still, we have to xor the
corresponding feedback byte with the recovered m9 item of Q2 to get the value
of the 3rd cell of state s30.

Then we can check the 3rd to 6th cells of s30 immediately by mk20 = m14 �
L(m13) = (m8 � L(m7)) � L(m7 � L(m0)) and mk21 = m15 � L(m14) = (m9 �
L(m8))� L(m8 � L(m7)). Experiments show that with probability around 0.85,
the number of the combined 3rd to 6th cells of state s30 is less than 218 and in
this case the averaged number is 214.6, which is much less than 228. The reduction
effect is obvious. Then, we continue the construction of the chain by filling the
0th to 2nd items of the state s30 from Q3, Q4 and Q5 respectively. Here we can
see the similarity of our method with the Viterbi decoding algorithm. After filling
in, we run m from s30 backwards and forwards to check all the known mkis for
0 ≤ i ≤ 15. Finally, we clock back m from s30 to recover the s24 state in the real
CM authentication. Let nm be the number of candidates of the s24 state of m
obtained in the above way, our experiments show that with probability around
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0.72, nm is less than 221 and in this case, the averaged number is 218.8, which
is close to the theoretical value 217 = 249−32. Note that in [8], this number is at
least 1.43 · 109 = 230.41. The gain of our method is obvious.

To further reduce the possible candidates, we now run the whole 117-bit state
of the cipher backwards to cover the authenticators ar13, ar12, ar11, ar10, ar9, ar8.
Here we have to clock the cipher back 21 steps, i.e., we check those candidates of
the middle register that are with the common right-left pair, instead of checking
the candidates of the right-left-middle triple. This batch treatment results in a
good complexity. In fact, what we do is to regroup all the candidates of the right-
left-middle triple of the s24 state in the real CM authentication into subgroups
which has a common right-left pair and check these subgroups one-by-one. In
most cases, we get 1 or 2 candidates of the middle register left corresponding
to a right-left state pair, for the above reduction factor is 2−24. If there are no
surviving candidates of the middle register we conclude that the correspond-
ing right-left pair is a wrong pair. After this step, there are around nm · 2−24

candidates of m left corresponding to a common right-left state pair.
Next, for each survived candidate for m with the common right-left pair we

run the cipher backwards to the s8 state in the real CM authentication. In this
process, we can use the authenticators ari for 0 ≤ i ≤ 7 to further reduce the
possible candidates of m and the right-left pairs. In general, only the correct
right-left pair with the correct candidate for the middle register could pass this
test, since the reduction factor is 2−32.

4.3 Complexity Analysis

In summary, our attack works in three phases. First, we exhaustively search the
shortest register r. In our attack, we set the threshold value Tr of the correlation
test in such a way that for some frames, there are no output of the test. Thus,
we need not run the following phases of our attack for each frame. Second, we
use our method to get the candidates of l without trying all the possible values
and for each candidate, we again call the correlation test with a threshold value
Tl to further reduce the number of candidates. In this way, it is possible that
the correct candidate of l is filtered out. We have to compensate this with more
frames.

Definition 1. We say a frame is a good frame, if both the correct candidate of
l and that of r pass the correlation tests in our attack.

Let Pl =
∑T ′

l

i=Tl

(
64
i

)
(3
4 )i(1

4 )64−i and Pr =
∑64

i=Tr

(
64
i

)
(3
4 )i(1

4 )64−i. In theory, with

F =
1

Pl · Pr
=

1
∑T ′

l

i=Tl

(
64
i

)
(3
4 )i(1

4 )64−i ·
∑64

i=Tr

(
64
i

)
(3
4 )i(1

4 )64−i

(8)

frames, we could encounter a good frame to mount our attack. In practice, we
usually need more than F frames to get a good frame with probability around
0.5. This is mainly caused by the fact that the left and the right registers are
not fully independent from each other. Third, we recover the middle register
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conditioned on the candidates of l and r. Since there is an unrolling check in
this phase, we can determine either the correct right-left-middle state triple or
there is no candidate survived, indicating that the frame is not good.

The time complexity of the first phase is 225 · 16−2
3 = 227.8 cipher ticks and

we have to repeat this step from each frame until we meet a good frame. Hence,
in total, the time complexity in the first phase is 227.8 · F cipher ticks. For
about w = F

2 · (Pr + (225 − 1) ·
∑64

i=Tr

(
64
i

)
(1
2 )64) frames, we have about nr =

1 · Pr + (225 − 1) ·
∑64

i=Tr

(
64
i

)
(1
2 )64 candidates passed from the first phase. In

such cases, we invoke the second phase of our attack to find some candidates
for the left register. The time complexity of a single run of the second phase
of our attack is Cl = nl · 16−2

3 + 210.96·210

2Ψ(J) · 210

2NH (lk−1)+NH (lk5) . We will get about
(nl−1) ·Pw +1 ·Pc candidates after the second phase which is mainly determined
by Tl. For each possible combination of the right-left state candidates pair, we
check whether the underlying frame is a good one or not in the third phase. The
time complexity of a single run of the third phase is at most Cm = 214 · 9 + 218 ·
4 · 16−2

3 + nm · 21 + 2 · (64− 21) cipher ticks. Therefore, the time complexity of
our attack so far is around

Ctotal = 227.8 · F + w · (nr · Cl + nr · ((nl − 1) · Pw + 1 · Pc) · Cm) (9)

cipher ticks. If we set Tr = 54, Tl = 45 and T ′
l = 48, we have F = 24 and

Ctotal ≈ 250 cipher ticks
The success probability of our attack depends on the number of captured

frames. Table 5 shows the relation got from 106 experiments with randomly
generated frames.

Table 5. The success probability of our attack if Tr ≥ 54 and Tl = 45, T ′
l = 48

F 24 30 40 45 60 90 120

Psucc 0.431 0.505 0.608 0.653 0.759 0.877 0.943

5 Practical Implementation

Here we describe the practical implementation of the full key recovery attack on
the CryptoMemory. We have fully implemented our attack. The implementation
consists of three stages:

1. finding a good frame and recovering the left-right pairs;
2. recovering the full internal state s8;
3. recovering the full key from s8.

The first stage is implemented on a single core (of an Intel Core 2 Duo 6600,
2.4 GHz). It takes about 10 minutes to find a possible good frame and recover
the possible left-right state pairs subsequently. The second stage is the most
time-consuming and is implemented on a computing cluster with 200 cores (of
Intel Xeon L5640, 2.26 GHz). It takes roughly 2−6 days to find the full internal
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state (this requires trying several possible good frames found in stage 1). The
last stage is implemented on a single core. It takes on average 2 hours to recover
the full secret key from s8. Note that stage 2 can return several candidates for
s8; in this case we launch stage 3 in parallel on several cores. We will describe
our low-memory (compared to that of [8]) key recovery algorithm in more details
in the full version of the paper.

The low complexity of our attack allowed us to run it several times with
different keys. The speed of our programm is about 27 clock cycles per inverse
cipher tick. Here we present the flow of the attack for one of the runs. We
obtained 30 authentication frames from the reference implementation of the
Atmel cipher (which was verified against the hardware according to [8]) with
the secret key 0xf7fb3e25ab1c74d8. After this, we proceeded as if we had not
known the key. We set Tr = 54, Tl = 45 and T ′

l = 48. Then Pr ≈ 0.05 and
Pl ≈ 0.84−0.45 = 0.39. Among the 30 frames we found one possible good frame

nr = 0xa8becfc790ce1272, nt = 0x8bd5987bdf33aec7,

ar = 0x2e0ba95f84eb0a50, at = 0xff3f26fab2fb809e,

for which there were around 220.73 left-right state pairs. For each left-right state
pair, 227.2 inverse cipher ticks are done on average to reduce the number of
possible candidates. We launched the second stage of our attack on 200 CPU
cores. The attack succeeded during the 4th frame. Analysis of the 4th frame
took about 20.4 hours to find 1 possible candidate state of s8, while analysis
of the 3 other frames took several days in total. For this s8 state, we use our
key-recovery technique to restore the key. The secret key 0xf7fb3e25ab1c74d8
was found for the state

s8 = (0x071d0308081a0e, 0x1627033e566b74, 0x1e1a100e1b, 0x0109)

(each two hexadecimal digits in this notation represent a single register cell).
We note that due the properties of our attack (namely, frequent checking of

the cipher output against the keystream while clocking back) its implementation
cannot be significantly sped-up by employing a bit-sliced implementation of the
cipher, as it was the case in [8] according to [9]. During the experiments, we found
an inherent property of CM, i.e., the number of non-coincidence bits between
the two intermediate outputs generated by one possible left-right state pair is a
fixed constant, if the sum of the numbers of coincidence bits between each one
of the intermediate output and the 64-bit keystream is a constant. It is checked
106 times, the experiments show it holds all the time. This property indicates
that we cannot further reduce the time complexity of our attack by setting a
larger Tl. Since in such cases, the entropy of the middle register also increases.
This property also explains why we set Tl = 45 and T ′

l = 48, for we have to
discard the pairs resulting in high entropy middle register.

6 Conclusions

In this paper, we have shown practical key recovery attacks on both versions
of the Atmel cipher. By using the optimal Viterbi-like decoding techniques to



108 A. Biryukov, I. Kizhvatov, and B. Zhang

recover the internal states of the left and middle registers and exploiting the
different diffusion speeds of the different cells of the underlying registers, our at-
tacks significantly improved the best previously known results [8]. Our analysis
shows that even the strongest version of the Atmel cipher succumbs to practical
attacks using relatively few captured authentication frames. Our practical im-
plementation recovers the full 64-bit secret key from 30 captured authentication
frames in about 2− 6 days using 200 CPU cores. Table 6 shows the comparison
of the attack on the Atmel CryptoMemory cipher presented in this paper and
that on another proprietary cipher KeeLoq in [1]. One can again conclude that
such proprietary ciphers fail to provide enough security even from a practical
point of view.

Table 6. Comparison of our attack on the Atmel cipher in CryptoMemory and the
attack [1] on KeeLoq

key length, bits data complexity time complexity

KeeLoq 64 216 known plaintexts 244.5

CryptoMemory 64 30 known frames 250
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Abstract. In this paper we present an attack that recovers the whole
internal state of RC4 using a cache timing attack model first introduced
in the cache timing attack of Osvik, Shamir and Tromer against some
highly efficient AES implementations. In this model, the adversary can
obtain some information related to the elements of a secret state used
during the encryption process. Zenner formalized this model for LFSR-
based stream ciphers.

In this theoretical model inspired from practical attacks, we propose
a new state recovery analysis on RC4 using a belief propagation algo-
rithm. The algorithm works well and its soundness is proved for known or
unknown plaintext and only requires that the attacker queries the RC4
encryption process byte by byte for a practical attack. Depending on
the processor, our simulations show that we need between 300 to 1,300
keystream bytes and a computation time of less than a minute.

Keywords: cryptanalysis, stream cipher, RC4, cache timing analysis.

1 Introduction

Some side channel attacks have been recently formalized in theoretic work by
modelling powerful adversaries that can learn a bounded amount of arbitrary
information on the internal state by Dziembowski and Pietrzak in [9]. Here we
consider information coming from cache attacks which is of the same kind but
more practical since they correspond to real attacks which have been exper-
imented on AES implementation [18,7,4,22,3]. Concretely, when the cipher is
looking for a value in a table, a whole line of cache is filled in, containing but not
limited to the value looked for in the table. This mechanism allows to achieve
better performance since in general when a program needs some data, it also
requests the successive ones soon after. Osvik, Shamir and Tromer proposed in
2006 an attack on some AES implementations that use look-up tables to imple-
ment the S-box and showed that the adversary can learn the high order bits of
the index looked for, but neither the whole index itself nor the corresponding

J. Lopez and G. Tsudik (Eds.): ACNS 2011, LNCS 6715, pp. 110–129, 2011.
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value of the table. These attacks are rather practical since they have been imple-
mented [18,7] on classical implementations used in the OpenSSL library. Others
cache attacks target DSA [1] or ECDSA [8] operations in the OpenSSL library
due to branch prediction on instructions.

To gain more information from cache monitoring, Osvik et al. propose to run
a concurrent process at the same time as the encryption process. Attackers can
evict data from the cache using the second process which begins by reading a
large table to flush the cache. Then, the encryption process is run; the attacker
finally tries to read again the elements of his table. If the element is in the cache,
the access is fast (cache hit) and in the other case, the access is slow (cache miss)
since the information has been evicted from the cache. Consequently, the adver-
sary is not allowed to read the cache, but since the cache lines correspond to lines
in the memory, if the adversary knows how the encryption process organizes the
data in the memory (the address of the whole table for instance), the information
of which cache line has been removed from the cache allows to recover the index
(or a part of it) of the value looked for by the encryption process. Indeed, we do
not recover the whole index since the cache is filled in line by line, so we know
that the encryption process has read some element of the whole line but not
exactly which element. Moreover, if the encryption process performs many table
lookups, we do not have the order of the indexes since we perform timing on our
own process which is run after the encryption process. These practical analyses
allow us to consider such attacks on encryption schemes through a new secu-
rity model. For example, Zenner et al. propose to study security of LFSR-based
stream ciphers in [23,15].

RC4 is a stream cipher designed in 1987 by Ron Rivest and widely used in
many standards such as in SSL, WEP, WPA TKIP, etc. The internal state of RC4
is composed of two indexes and of a permutation over F256. The initialization of
the permutation table depends on the secret key (which size varies between 0 and
256 bits); the table is then updated during the generation of the keystream. Many
attacks have been proposed on RC4 since its design was published in 1994 but
none of them really breaks RC4. The bad initialization used in the WEP protocol
and the key schedule algorithm of RC4 have been attacked by Fluhrer, Mantin
and Shamir in [10]. Recent improvement has revealed new linear correlations in
RC4 in order to mount key retrieve attacks on WEP and WPA [21]. Since then,
from a cryptographic point of view, this scheme has not been broken despite
many statistical properties. Finally, more powerful attacks have been taken into
account, for instance fault attacks by Hoch and Shamir, Biham et al. in [12,6].
However, the number of faults is rather high, 216 for the most efficient attack.

Previous Work. Our analysis is related to the one published in 1998 by Knud-
sen et al. in [14], which try to recover the internal state from the keystream.
Once the internal state is recovered, it is possible to run the algorithm backward
and efficient algorithms allow to recover the key [5]. Though an improvement
was proposed in 2000 [11] and another in 2008 [16], such attacks remain im-
practical, having a time complexity of 2241 operations for the full RC4 version.
The basic idea of the ”deterministic” attacks (section 4 of [14] and [16]) is to
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guess some values of the table and then check if these guesses are valid with the
output keystream. These algorithms perform a clever search by guessing bytes
when they need them and then use a backtracking approach when a contradic-
tion appears. However, a huge number of values have to be guessed so that the
complexity is relatively high in the end. This is basically the algorithm of [14].
Maximov and Khovratovich in [16] improve this algorithm by looking at the
equations of RC4:

it = it−1 + 1
jt = jt−1 + St−1[it]

St[it] = St−1[jt], St[jt] = St−1[it]
Zt = St[k] where k = St[it] + St[jt]

In the algorithm of [14], the number of unknowns is 4 (j, S[i], S[j] and k =
S[i] + S[j]) even if they are related). Maximov and Khovratovich solve these
equations by noting that if j is known for different times t, then S[i] also, and
the number of unknowns is reduced to 2. Then, they show that it is possible
to have the value of j for consecutive times t, and also to detect such patterns
from the keystream. The attack begins by locating in the keystream a good
pattern which gives information about the internal state and j, and then since
the equations are simpler the complexity is lower. Solving such linear systems
with non-linear terms has also been recently extended by Khovratovich et al.
to more complex equations system in [13] in the context of differential trail for
hash functions.

Finally, Knudsen et al. propose a ”probabilistic” algorithm in section 5 of [14],
which is different from the deterministic one since the idea is that the output
keystream gives conditions on the internal secret state which leads to condi-
tional probability distribution Pr(S[i] = v|Zt = z). Now, the internal state is
represented with a probabilistic distribution table: to each element S[i] in the
table is associated a probability distribution on the 256 possible values. At the
beginning, for all, i and v, Pr(S[i] = v) = 1/256. Then according to the output
keystream byte Zt, an a posteriori distribution is computed using Bayes rules
and the previous values in the distribution table, and finally the algorithm ac-
cordingly updates the distribution table. This probabilistic algorithm does not
work if no more information is used. Knudsen et al. partially fulfill the table at
the beginning with correct values. Their experiments show that they need 170
values so that the algorithm converges. They use the same idea (used later by
Maximov and Khovratovich): they fulfill the table such that consecutive values
of j can be found which makes the equations easier.

The algorithm we propose here is different from the one described in [14];
however they have in common the manner of using the structure of PRGA,
acronym of Pseudo Random Generation Algorithm, to propagate constraints on
the values of elements of the secret state used by RC4.

Our Results. RC4 is a good candidate to study cache timing analysis since
it uses a rather large table and indexes of the lookups give information about
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the table. In this paper, we present a probabilistic algorithm that recovers the
current state of the permutation table. Contrary to previous state recovery at-
tacks [14,16] whose complexity is about 2241 only based on cryptanalysis, our
algorithm is more efficient in practice and its soundness has been proved due to
information from cache timing analysis, although same cryptanalysis techniques
are used. The experiments are derived using our algorithm and by simulating
the information obtained in the model designed by Osvik et al. in [18]. The idea
is the following: to generate a cipher byte, the generation algorithm uses three
lookups in the permutation table and then updates the corresponding elements.
Thus, the knowledge of the elements used to generate this byte allows the at-
tacker to eliminate some candidate values for these elements, leading little by
little to the recovery of the entire permutation.

The key recovery algorithm we developed is probabilistic as the one of Knud-
sen et al. (section 5 of [14]). However, we use a belief propagation algorithm to
use the cache attack information. Belief propagation algorithms have been used
in information theory and coding theory and are related to Bayesian networks
and Hidden Markov Models, when a state is hidden and has to be recovered given
some information. Recently, such algorithms have been successfully used to prove
convergence and complexity results on the random assignment problem [20]. The
algorithm propagates the partial information on the indexes by modifying the
distribution table. According to the distribution table Pr(S[i] = v) and the par-
tial indexes, the algorithm computes for all possible guesses, the values of the
probability of such guesses. Since one guess is the correct one, we then normalize
all these probabilities, and we update the distribution table according guesses
modify or not the value of Pr(S[i] = v).

The algorithm gives good results but we improve the data complexity and
the success probability by using time to time an assignment algorithm, such as
the Hungarian algorithm, because we know that the table S is a permutation.
Without cache analysis information, the algorithm cannot be effective and the
complexity is too large as the probabilistic algorithm of Knudsen et al.. In this
paper, we show that in practice, we can recover the secret permutation using
only 300 bytes of the keystream in the best case. In the case of ciphertext only
attack, our analysis works in practice only when the cache lines are half of the
real size. Using partially known plaintext, we can recover the internal table using
3,000 bytes with probability 95%. This attack shows that RC4 must be used with
some care when attackers can monitor the cache and query the cipher stream
byte by byte.

Organization of the paper. The paper is organized as follows: after having
presented the information expected to get from cache monitoring in section 2, we
describe in section 3 a first algorithm, that only works on idealized cases. Then
our main algorithm is detailed in section 4, which is able to take information
from real cache monitoring to recover the permutation table through an example
based on OpenSSL implementation. Finally we conclude and point out some
practical thoughts on data collection in section 5.
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2 The Context of the Attack

Our algorithm is designed to attack RC4 from a side-channel, the cache memory.
We will briefly describe RC4 and the structure and the mechanism of cache
memory. Then we explain how this cache memory can be considered as a side-
channel and how to exploit the resulting data leakage.

2.1 Description of RC4

The design of RC4 has been kept secret until it was leaked anonymously in 1994
on the Cypherpunks mailing list [2]. It consists of two algorithms. The first one,
named KSA (key-scheduling algorithm), is used to initialize the permutation ta-
ble according to the secret key. The other PRGA is used to generate a keystream
byte and update the permutation. While the details of KSA are not relevant to
our subject, PRGA is described in algorithm 1.

Algorithm 1. Pseudo-random generation algorithm
i ← i + 1
j ← j + S[i]
swap(S[i], S[j])
k ← S[i] + S[j]

return S[k]

2.2 Structure and Use of Cache Memory

To make up for the increasing gap between the latency of microprocessors and
memories, some little but low-latency memory modules have been included in
modern microprocessors. The aim of these cache memories is to preload frequently
accessed data, reducing the latency of load/store instructions (an average code
uses one such instruction out of three). There are often two caches, named L1 and
L2. The L1 cache is closer to the CPU but smaller than the L2 cache. These memo-
ries are organized in Z sets. Each set contains W cache lines of B bytes; a memory
block which address is a in memory is stored in cache at the cache set a/B mod Z,
starting at the byte a mod B of a random cache line. The main placement policy
is to evict the most ancient stored data to store a new one. The values of these
parameters for Pentium 4 processors can be found in table 1.

The use of cache is as follows:

– when the processor needs data from memory, it sends a request to L1 cache;
– If the L1 cache contains the required data (cache hit), they are sent to the

CPU; otherwise (cache miss), the request is transmitted to the L2 cache;

Table 1. Cache parameters for the Pentium 4

B Z W

L1 64 32 8
L2 64 4096 8
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– If the L2 cache contains the data, they are transmitted to L1 cache (for
further use) and CPU; if not, the request is transmitted to the main memory,
and the data are copied in both caches.

This behavior allows us to make out four different time scales (the figures are
given for a Pentium 4 CPU):

– the average execution time of an instruction: 1 CPU cycle (1 nanosecond on
a 1 GHz CPU);

– the latency of the L1 cache: 3 cycles;
– the latency of the L2 cache (and time to write the data in the L1 cache): 18

cycles;
– the latency of the RAM: approximately 50 nanoseconds.

Because of this mechanism, the execution time of a process may vary significantly
according to the relative number of cache hits and misses during its execution.
Such variations can be used as a side-channel, either for covert communication
or for cryptanalytic purposes.

2.3 Cache Timing Analysis

The first side-attack using cache memory was described by Page in 2002 [19]. It
uses the fact that, in DES, if two rounds use the same element in some S-box, then
the global encryption time will be reduced (the second lookup resulting in a cache
hit). In 2006, Bonneau and Mironov [7] adapted this attack to AES, allowing to
recover a secret key in an average of 10 minutes and needing approximately 220

encryptions.
An even more powerful attack was published in 2006 by Osvik, Shamir and

Tromer [18]. The use of a test table filling the cache memory allowed them to
know which cache lines were used by the encryption process (causing the eviction
from cache of the corresponding lines of the test table, hence a greater latency to
access again to these elements). The knowledge of the position of the encryption
tables in memory allowed them to know which elements of these tables were
used, helping them to recover a secret key with less than 16,000 encryptions
(depending on the processor on which the attack was implemented).

2.4 Prerequisites

The context of the analyses presents here is the same as the one of [18]. We
assume that the attacker is able to monitor the cache memory and learns partial
information on which element of the permutation table is used. Our algorithm
is particularly fitted for “synchronous attacks”, where the attacker can trigger
encryption himself. Osvik et al. [18] first present the concept of synchronous
cache attacks and Zenner et al. [23,15] establish a cache model based on this
concept. They define an adversary having access to two oracles. The first oracle
allows to obtain a list of output keystream bytes. At the same time, the second
oracle delivers a truthful list of all cache requests realized by the first oracle.
This cache attack in Zenner’s model has several properties like noise-free and
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there is no order on the cache accesses. However, if the attacker can produce the
same cipher operation with the same input and output many times, the noise
and wrong cache accesses could be removed using many samples. Finally, one
must note that monitoring the cache does not allow us to know exactly which
element of the table is used. In fact, when a request causes a cache miss, the
whole cache line corresponding to the requested data is loaded into the cache.
As the elements of the RC4 permutation table are stored as 32-bit integers (in
32-bit CPUs), a cache line contains (in the case of a Pentium 4) 16 elements.
Thus, using a test table to monitor the cache only allows us to know the index
modulo 16 of the element used.

2.5 Conventions and Experimental Set-Up

We study the current version of RC4 with bytes even though some authors have
tried to attack weaker versions with smaller permutation table. Consequently,
unless explicitly stated, all additions and subtractions will be done modulo 256.

We denote by δ the number of integers per cache line, and S the permutation
table used for encryption.

We assume that the attacker can trigger the generation of the stream cipher
byte by byte; the data are collected as in [18].

We have simulated cache accesses on OpenSSL library and we have experi-
mented several cache models, from idealized one to real one.

Finally, all the experimental results are presented as follows: “time” represents
the time needed by the attack to succeed, “requests” the number of needed cipher
byte requests, and “success” the number of times when the table given by the
attack is equal to the permutation of RC4. All results are given on average, over
50 random secret keys.

3 A First Algorithm for Idealized Cases

In this section we assume for the sake of simplicity that monitoring the cache
allows us to know exactly which element of the permutation has been used by
the encryption process. It allows us to introduce our attack on a simple case
which is presented in appendix A. We will see further how to adapt the attack
to a more complex cache model.

Data Structures Used by the Algorithm. For each table element i we
have to keep a trace of the remaining candidates for its value. To do so we
use a 256x256-boolean table Svalues, where Svalues[i][v] = 0 if and only if we
are sure that S[i] �= v. Another 256-boolean table is used for j, with the same
conventions. We do not need to keep an equivalent structure for i, as its value
is known through the whole encryption process.

Exploitation of the Data Collected During the Generation of One
Cipher Byte. The generation of one cipher byte gives us the following data:

– the first index i;
– the unknown internal index j;



Cache Timing Analysis of RC4 117

– three indexes a, b and c (possibly equal) of elements used during the byte
generation;

– the cipher byte, which we will call out.

We invite the reader to note that we do not know the order of use of the three
elements of the table, except for the first (because we know i). We will suppose
from now on that a = i. Two orders remain: (a, b, c) and (a, c, b). We then use the
structure of PRGA, which imposes the following constraints in the case (a, b, c):

j + S[a] = b

S[a] + S[b] = c

S[c] = out

Algorithm 2. Algorithm for one step with order (a, b, c) when a �= b �= c �= a

1. for v ← 0 to 2n − 1 do
2. for t ← 0 to 2n − 1 do
3. if v �= a and v �= b and v �= c then
4. Svalues bis[v][t] ← Svalues[v][t]
5. else
6. Svalues bis[v][t] ← 0
7. end if
8. end for
9. jvalues bis[v] ← 0

10. end for
{Exploit cache data, order (a, b, c)}

11. for j ← 0 to 2n − 1 do
12. if jvalues[j] = 1 and Svalues[a][b − j] = 1 and Svalues[b][c − b + j] = 1 and

Svalues[c][out] = 1 then
13. Svalues bis[a][c − b + j] ← 1
14. Svalues bis[b][b − j] ← 1
15. Svalues bis[c][out] ← 1
16. jvalues bis[b] ← 1
17. end if
18. end for

{Repeat steps 11. to 18. for order (a, c, b)}
{Write new tables}

19. for v ← 0 to 2n − 1 do
20. for t ← 0 to 2n − 1 do
21. Svalues[v][t] ← Svalues bis[v][t]
22. end for
23. jvalues[v] ← jvalues bis[v]
24. end for

We deduce from these equations that the values of S[a], S[b] and S[c] are com-
pletely determined given the order of the lookups and the values of j and out. We
then do the following steps. For each order and each value v of j, we check if the
corresponding values of S[a], S[b] and S[c] remain possible. If not, we are sure that
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these order and values are not possible, which allows us to remove these candidates
for S[a], S[b] and S[c]. We reduce the number of candidates. Finally, we update the
Svalues and jvalues tables to take the swap of PRGA into account. Algorithm 2.
gives the details of one step of the attack; a special care has to be taken when a,
b or c are equal, because the swap operation is performed before reading the last
element S[c]. A special care has to be taken when a, b or c are equal, because the
swap operation is performed before reading the last element S[c].

We continue to use such data until every table element has only one possible
candidate value. Other candidates are eliminating due to contradiction. We have
then found the current permutation table and value of j.

4 Adaptation to Real Caches

There exist a main difference between the idealized framework used above and
the monitoring cache memory. Even if we did not know the order of use of the
elements, we knew exactly which elements of the table were used. In particular,
we were sure not to modify during an attack step the candidate values of an
unused table element. When we monitor real cache memory, we only know some
most significant bits of the index of used table elements. Therefore we cannot be
sure that the candidate values, on which we are trying to study, really correspond
to an effectively used table element.

To take this issue into account, we use the probabilistic frame presented in [14].
Instead of the boolean table Svalues, we now use a 256x256-floating point number
table Sprobas. We now noted P(S[i] = v) where Sprobas[i][v] is the estimated
probability S[i] = v. At the beginning of the attack, we suppose that every
value is equiprobable for any element of S and for j so these two tables are filled
with the value 1/256.

4.1 The Known-Plaintext Attack

We assume that the attacker knows, for each step:

– the first index i;
– three indexes a ∧ mask, b ∧ mask and c ∧ mask, where mask corresponds

to the known bits and is computed from the value of δ: if δ = 16, then mask
= 0xf0;

– the cipher byte out.

A Probabilistic Version of the Algorithm. The belief propagation algo-
rithm we design is exactly the same as the one for the idealized case, with the
exception that we do not know b and c for sure. As in the previous section, we
will assume that a = i and that aδ = a && mask, bδ = b && mask and cδ = c &&
mask are different (the case with some equalities is treated in a similar way but
taking care of the possible collisions in the permutation table).

We know that the indexes b and c used for the PRGA step are of the form
b = bδ + o1 and c = cδ + o2 where 0 ≤ o1, o2 < δ, so the equations giving S[a],
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S[b] and S[c] are the same as in the previous section, except that we have two
more unknowns, o1 and o2.

Our algorithm is hence modified as following:

1. we make two guesses for the values of o1 and o2 as well as the guess for the
value v of j and for the order of use of a, b and c;

2. we compute the corresponding values of S[a], S[b] and S[c] similarly to what
was done in the idealized case;

3. we evaluate the probability of this guess to be exact, assuming for the sake
of simplicity that all probabilities are independent:

P(guess) = P(j = v) · P(S[a] = bδ + o1 − v)
· P(S[bδ + o1] = cδ + o2 − bδ − o1 + v)
· P(S[cδ + o2] = out)

4. having done these computations for all possible guesses, we normalize the
corresponding probabilities (these guesses were the only ones having a chance
to describe what really happened during the keystream byte generation);

5. finally each guess contributes to modify the tables Sprobas and jprobas, since
for each guess we know exactly the action of the PRGA step on the three
elements looked up, the others remaining unmodified. Adding all these con-
tributions we obtain the global transformation of the table Sprobas:

∀i, ∀v,P(S[i] = v)after attack step =

⎛

⎝
∑

guesses imposing S[i]=v

P(guess)

⎞

⎠ · 1

+

⎛

⎝1−
∑

guesses imposing S[i]

P(guess)

⎞

⎠ ·P(S[i] = v)before attack step

(the first term of the sum gives the action of all transformations where the
equation S[i] = v is guaranteed by the action of the swap; the second step
gives the action of all transformations where S[i] is not affected, i.e. S[i] �= v).
The update of jprobas is much simpler since for each guess the new value of j
is imposed by the collected data; the formula is similar to the one for Sprobas

without the second term on the right.

How to Know if the Attack Succeeds? Two parameters remain to be set:
the time when we decide that the attack has succeeded (or failed), and the
processing of the solution. We first use a simple criterion to stop the attack: we
consider that it succeeds when for each table element a candidate value has a
greater probability than 1/2. The solution is thus “built” by local optimization,
retaining for each element the value with greatest probability. We consider that
the attack failed if this event does not occur after a certain number of steps.

Once the solution is found, we must first reverse it back to the initial permu-
tation, then test it. The reversion is easy, given that a step of PRGA is invertible
if the values of i and out are known. To test it, several options can be chosen:
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– a first and very simple test is to make sure that the solution given by local
search on each element is a permutation. If this is the case, we have a good
hint that this solution will be the good one: using the Stirling formula, we can
evaluate the probability of a random application on F256 to be a permutation
to approximately 2 · 10−110;

– we can then verify that the solution is the good permutation trying to predict
some following cipher bytes.

First Experimental Results. We use to implement our attack a simulation
of the cache monitoring to collect the data necessary to the attack. The experi-
mental results obtained are reproduced in Table 2 - the case where δ = 1 being
given only for comparison purposes, as the concerned results are similar to those
obtained in idealized cases.

Table 2. Known-plaintext cache attack of RC4, first version

δ 1 2 4 8 16

Time 0.393 s 0.542 s 0.962 s 2.836 s 25.48 s

Requests (maximum) 417 498 498 594 898
Requests (average) 326 384 400 456 666

Requests (minimum) 268 310 344 387 556

Success 100% 78% 66% 44% 56%

We can bring out from these results that our intuition on the convergence
of the probabilities is correct. However, the results for δ = 16 make this attack
nearly impractical for real CPUs.

4.2 An Improvement: Searching Permutations

The main issue concerning the previous test of success is that we never use the
fact that what we search is not any application on F256 but a permutation. We
take this crucial constraint into account reducing the search of a solution to a
constraint-solving problem: once we have the densities of probability for each
table element, searching the best permutation (which probability is given by the
product of the probabilities of the values of all its elements) is equivalent to solve
an assignment problem.

An assignment problem takes the following canonical formulation: given an
integer n, a set V of size n (historically representing n workers), another set D of
size n (representing n tasks) and an application c : V×D → R (representing the
cost of assigning a worker to a task), find a bijection f : V → D that minimizes
the global cost given by: ∑

v∈V
c(a, f(a))

Our problem is easily reducible to an assignment problem, using for 0 ≤ i, v <
256 the cost function c(i, j) = − log(P(S[i] = j)).
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Table 3. Known-plaintext cache attack of RC4 with global search of the solution

δ 1 2 4 8 16

Time 0.704 s 1.320 s 2.587 s 5.750 s 33.53 s

Requests (maximum) 300 400 400 500 700
Requests (average) 297 318 377 413 597

Requests (minimum) 268 300 300 368 533

Success 100% 98% 100% 100% 98%

The assignment problem can easily be written as a linear programming prob-
lem, but we prefer to solve it using the Hungarian algorithm, designed by Kuhn
and Munkres in 1955–1957 [17] and which time complexity is cubic. We decide
to stop the attack when the probability of the best found permutation is greater
than 2−16, value experimentally optimized according to a compromise between
the economy of encryption requests and the improvement of the success rate.
As the cost for the resolution of this problem is far greater than the cost of the
previous local search, this criterion is used for one step amongst 100. Further-
more, it is not used at the beginning of the attack (for the 300 first steps). The
previous criterion is used again in the latter cases.

The attack is carried out in the same conditions as before. The results are
shown in Table 3.

As guessed, the global search allows to reduce significantly the number of
needed encryption requests and greatly improves the success rate. We have no
decisive argument so far to prove the termination or estimate the convergence
of this algorithm, except for hints from information theory; however, its proofs
of soundness can be found in appendix B.

4.3 The Unknown-Plaintext Attack

In this paragraph the considered hypothesis does not use the properties of prob-
ability distribution for each language characters and their probability to appear.
We suppose that the attacker does not know the language or the byte code em-
ployed. The known-plaintext attack is easily adapted into an unknown plaintext
one, simply by considering that all values are uniformly possible for the cipher
byte (this is not exactly true, as most of the existing attacks against RC4 lie
on the non-uniformity of the distribution of the first cipher bytes; however, this
remains a good approximation). As a matter of consequence:

– the probability for each order, j value and offsets is computed as above,
simply summing on all possible values for the output;

P(guess) =
255∑

out=0

P(j = v) · P(S[a] = bδ + o1 − v)

· P(S[bδ + o1] = cδ + o2 − bδ − o1 + v)
· P(S[cδ + o2] = out)
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255∑

out=0

P(S[cδ + o2] = out) = 1

P(guess) = P(j = v) · P(S[a] = bδ + o1 − v)
· P(S[bδ + o1] = cδ + o2 − bδ − o1 + v)

– the probabilities of the table element corresponding to the output (that is
to say, the third one in the chosen order) are not updated anymore, since we
know nothing on its value and the PRGA does not modify it.

Results. We test the resulting attack in the same conditions as before, except
the number of steps without global search of the solution, which we adapt using
the minimal number of needed requests; the results are shown in Table 4.

Table 4. Unknown plaintext cache attack of RC4 (with global search of the solution)

δ 1 2 4 8

Time 1.512 s 6.395 s 3.409 s 12.06 s

Requests (maximum) 350 600 900 1,287
Requests (average) 318 490 765 1,099

Requests (minimum) 300 429 700 950

Success 100% 96% 92% 96%

For δ = 16, we do not succeed to make the probabilities converge.

4.4 A Partially-Known-Plaintext Attack

We finally develop another kind of the attack adapted to the main use of RC4:
communications. In this case, the attacker partially knows the stream cipher,
which corresponds for example to the case of TCP packets of which one attacker
can guess some header bytes. If the output is known, we obtain the P(guess) of
the known-plaintext attacks. On the contrary, if the output is unknown, the
P(guess) formula of the unknown-plaintext attacks is used. The results are
shown in Figure 1, for δ = 16; the average time does not vary much, and the
success rate is better than 47 over 50 trials.

5 Remarks on Collecting Data

In order to mount a practical attack on existing implementations from the above
analysis, we make some comments on the data collection:

– in some implementations of RC4, as in OpenSSL, the internal state is stored
as fields of the secret key; in particular, the two integers containing the value
of i and j are stored just before the permutation table, which may have two
effects:
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Fig. 1. Partially-known-plaintext cache attack on RC4: number of requests (logarith-
mic scale) as a function of the rate of unknown plaintext

• first, there is high probability that the beginning of the permutation
table does not correspond to the beginning of a cache line. On the one
hand, the attacker is not supposed to know where the table begins, so
he must use the attack algorithm for each possible offset between the
first element of the table and the beginning of the nearest cache line. On
the other hand, this offset causes the first and last cache lines covered
by the table to contain less than δ elements, which gives the attacker a
little more information,
• besides, the PRGA reads the value of both index registers to generate

each cipher byte, so the attacker cannot distinguish if the elements stored
in the first covered cache line have been really used, which leads to a loss
of information;

– last but not least, the attacker must be able to use the PRGA byte by byte;
if he cannot, all the given information he will get will be a set of used cache
line numbers through a large amount, say k, of cipher byte generation. He
will then have to test all ordered sets of 3k cache line numbers using all
the elements of the read set (but knowing with certainty the element out
of three corresponding to the current value of i), which number is at least
(2k)!, instead of k times the two orders used above.

6 Conclusion

We have detailed an efficient way of recovering the internal state of a RC4 process
from cache monitoring. The presented algorithm is efficient in both known- and
unknown-plaintext contexts. It allows to recover the internal permutation using
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the generation of on average about 550 keystream bytes and less than a minute
of computation time in an OpenSSL implementation. The only prerequisite is
the possibility for the attacker to run a process on the attacked machine and to
trigger the keystream generation by itself.

To avoid cache attacks, many countermeasures have been proposed in [18].
The main thing consists of removing or masking data links to memory access.
Cache could be replaced by registers or several copies of the lookup table could be
used. These countermeasures cost more in time and resources required. Shuffling
memory and adding random allow to avoid cache timing analysis and execution
branch analysis too.

The recovering algorithm is based on a belief propagation mechanism to in-
fer information on a hidden state which evolves in a deterministic manner and
output some values of this state. Our algorithm is rather simply but very effi-
cient, and its soundness has been proved. However, we are not able to prove its
termination and complexity, which we leave as an open problem.

This article draws attention to RC4 implementation has to be carefully used
to avoid cache attacks. Indeed, it would prevent from monitoring the cache and
querying ciphertexts, from accessing cache from remote computer.
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A A Numerical Example of the Algorithm With Idealized
Cache

Let us imagine that the generation of a cipher byte gives the following
information:

a = 0xf3, b = 0xd9, c = 0x43, out = 0x1c

The candidates values for j, S[a], S[b] and S[c], given by the preceding attack
steps, are:

j ∈ {0x2f, 0xc6}
S[a] ∈ {0x7d, 0xaa}
S[b] ∈ {0x14, 0x1c, 0x5d, 0x99}
S[c] ∈ {0x1c, 0x5c, 0xd4}

Let us suppose first that the table elements are used in the order (a, b, c):

– if the value of j is 0x2f, the constraints given above are:

0x2f+ S[a] = 0xd9, S[a] + S[b] = 0x43, S[c] = 0x1c

The imposed values are therefore S[a] = 0xaa, S[b] = 0x99 and S[c] = 0x1c.
At this step of the attack, these three values are considered possible: this
may correspond to what really happened when generating the keystream
byte;

– using analogous computations for j = 0xc6, we deduce that the value of S[a]
must be 0x13, which is not possible.

We make similar computations for the order (a, c, b) and finally obtain two
candidates for what happened during the step of PRGA:

– if the elements are used in the order (a, b, c), the corresponding values must
have been j = 0x2f, S[a] = 0xaa, S[b] = 0x99 and S[c] = 0x1c;

– otherwise, they must be j = 0xc6, S[a] = 0x7d, S[b] = 0x1c and S[c] = 0x5c.

We can now update the candidate values for j and the three table elements:
after this pseudo-random generation step, the value of j can be 0xd9 or 0x43
(as we were not able to determine the order of use of the table elements with
certainty); we also take the swap operation into account, which leads us to:

j ∈ {0x43, 0xd9}
S[a] ∈ {0x5c, 0x99}
S[b] ∈ {0x1c, 0xaa}
S[c] ∈ {0x1c, 0x7d}

We proceed like above to determine which values are possible or not and so on.



Cache Timing Analysis of RC4 127

B Proofs of Soundness

B.1 Algorithm for the Idealized Case

The proof of soundness of the algorithm for the idealized case is very straight-
forward:

– at the beginning of the attack, all the elements of the tables Svalues[i] have
the value 1. In particular, for each i, the value v corresponding to the secret
permutation table used by PRGA is associated to the value 1. Moreover, the
value of j is well-known;

– we now suppose that before an attack step the tables Svalues[i] and jvalues

contain the value 1 for the value v corresponding to the corresponding value
of the secret state of the encryption process. Consequently, when trying the
good order for a, b and c and the good value for j, the imposed values S[a],
S[b] and S[c], which correspond to the values of the secret state, all will
have the value 1 in Svalues: this try will be considered as successful. Finally,
the attack algorithm will update Svalues and jvalues to take this attack step
into account. Since the guess corresponding to the real secret state has been
considered as successful, the values for j, S[a], S[b] and S[c] will be marked
with the boolean 1, all other values of Svalues remaining untouched as in
PRGA: after the attack step, the tables Svalues and jvalues also associate
the boolean 1 to the values of S[i] and j corresponding to the secret state
used by PRGA.

Using the axiom of induction, we obtain that during each step of the attack,
the tables Svalues and jvalues associate the boolean 1 to the values corresponding
to the secret state used by PRGA, so that the Svalues[i] and jvalues always have
at least one boolean with value 1, and that when all of these tables contain only
one boolean with value 1, this boolean is the one corresponding to the value of
the secret stage used by PRGA.

B.2 Probabilistic Algorithm for Realistic Caches

An Impractical Straightforward Algorithm. The proof of soundness of the
probabilistic algorithm is a little more complicated. To do so, we will introduce
the following algorithm:

– we consider the space of couples (S, j), where S is a permutation over F256

and j an element of F256;
– we use a 256.256!-boolean table Cvalues, using for each couple (S, j) the

same meaning as in the algorithm for the idealized case: if the value is 1,
the couple is considered as probable as it explains the successive observed
cipher bytes and cache lookups; if it is 0, the couple has failed to explain the
observations and we know it to be impossible;

– during an attack step, we begin a new table C∗
values, filled with the value 0.

For each couple (S, j) that has the value 1 in the table Cvalues and that ex-
plains the observed cipher byte and cache lookups, we compute the updated
couple (S∗, j∗) with PRGA and give it the value 1 in C∗

values;
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– at the end of the attack step, we replace the table Cvalues by the table
C∗

values.

As for the algorithm of the idealized case, the proof of soundness of this
algorithm is very simple to do using induction, so we will not discuss it further.
However, this algorithm is very inefficient, as the number of possible couples in
the first steps if far too high to allow a computer to enumerate them.

The Probabilistic Algorithm, an Improvement of the Straightforward
Algorithm. We introduce a 256x256-floating point table Sp and a 256-floating
point table jp, which values are computed as follows:

∀i, ∀v, Sp[i][v] =
#{(S, j)|Cvalues[(S, j)] = 1, S[i] = v}

#{(S, j)|Cvalues[(S, j)] = 1}

∀v, jp[v] =
#{(S, j)|Cvalues[(S, j)] = 1, j = v}

#{(S, j)|Cvalues[(S, j)] = 1}

We will now prove that the evolution of Sp and jp is the same as the one of
Sprobas and jprobas. First, it is clear that, at the beginning of the attack:

∀i, ∀v, Sp[i][v] =
256 · 255!
256 · 256!

= 1/256

∀v, jp[v] =
1 · 256!

256 · 256!
= 1/256

Now, choosing an order (a, b, c), a value for j and for o1, o2 and being given the
values of i, bδ, cδ and out, we can compute the number Pg of probable couples
(S, j) concerned by this guess. We obtain, assuming that the different elements
of the permutation are independent (the same assumption as what was done in
the probabilistic algorithm) and using the constraints on S[a], S[b] and S[c] given
by the structure of PRGA, an equation analogous to the one giving P(guess):

Pg = jp[v] · Sp[a][b− v] · Sp[b][c− b + v] · Sp[c][out] ·N

where N is the number of probable couples.
For given values of i and v, the couples (S′, j′) of C∗

values can have two origins:

– either probable couples where PRGA does not affect S[i]. Assuming again
the independence of all concerned random variables, their number is:

⎛

⎝N −
∑

guesses imposing S[i]

Pg

⎞

⎠ · Sp[i][v]

– or couples where PRGA imposes S[i] = v. Their number is given by:
∑

guesses imposing S[i]=v

Pg
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Adding these two contributions, we obtain that the evolution of Sp is the
same as that of Sprobas, except for a coefficient

∑
any guesses Pg/N , which is the

proportion of couples (S, j) that are compatible with the observed cipher byte
and cache lookups, and that corresponds to the renormalization of P(guess).
Using the axiom of induction, this achieves proving that the behavior of Sp is
the same as the one of Sprobas in the probabilistic algorithm.

For the behavior of jp the proof is the same, as previously. In conclusion,
the behavior of the tables Sprobas and jprobas in the probabilistic algorithm is
a consequence of the behavior of the table Cvalues in the algorithm introduced
here. Furthermore, we know that if this algorithm only has one probable couple
(S, j), then this couple is the right one (we also know that the right couple is
always considered as probable). Consequently, we can deduce that if the tables
Sprobas[i] and jprobas contain only one value 1.0 and the other elements have the
value 0.0, then the value with probability 1 is the one of the secret state used
by PRGA, which concludes this proof.

Further Thoughts on the Practical Results. First, it is important to stress
that despite the previous proofs of soundness of the algorithms presented in this
paper, it was neither possible to estimate the speed of convergence to the solu-
tion, nor to prove the termination of these algorithms. The only hints according
to this problem are given considering arguments from information theory, since
the entropy of the secret state is easy to evaluate to the first order, as is the en-
tropy of every cipher byte and cache lookup. Furthermore, the number of cases
when the probabilistic algorithm fails to give the right secret state do not go
against the soundness of the algorithm, but rather show that the choice of stop-
ping the attack before only one probable state remains is done with the risk of
giving a wrong answer. Finally, as the number of possible couples is less than
256x256!, the number of bits needed to store the floating-point values of the
tables Sprobas and jprobas is log2(256 · 256!) ≈ 2056. To improve the speed of the
attack, we used basic floating-point numbers, which is also a probable cause for
the failure of the attack in some cases.
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Abstract. We present a robust secure methodology for computing func-
tions that are represented as multivariate polynomials where parties hold
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they do not assume honest majority, yet are robust in detecting any
misbehavior. We achieve solutions that take advantage of the algebraic
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ties). We further exploit a “round table” communication paradigm to
reduce the complexity in the number of parties.

A large collection of problems are naturally and efficiently represented
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Secure multiparty computation (MPC) allows mutually distrustful parties to
jointly compute a functionality while keeping their inputs private. Seminal feasi-
bility results for the two-party and multi-party settings have been demonstrated
in [34] [35] [19] [16] [1] [4] [31] [24]. These results show that any functionality can
be securely computed in time polynomial in the size of its Boolean or arithmetic
circuit representation.

While the works above yield strong feasibility results, these generic approaches
typically lead to inefficient implementations since the circuit size representation
of a functionality may be very large. Thus, an important open problem in MPC is
designing highly efficient protocols for smaller, yet large enough to be interesting,
sets of functionalities, taking advantage of the domain specific mathematical
structure.
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Problem Statement. We consider the problem of secure multiparty compu-
tation functions that can be represented by polynomial-size multivariate poly-
nomials. Each party’s inputs correspond to some subset of the variables in the
polynomial representation. There is a designated party receiving output that
learns only the output of the polynomial evaluation while all other parties re-
ceive no output.1 We assume a broadcast channel and that the private keys for
the threshold encryption scheme are distributed in a preprocessing stage.

Our Results: The General Protocol. We present a protocol that allows
multiple parties to compute the above functionalities, assuring security against
a dishonest majority and robustness (detection misbehavior). Our protocol is
fully black-box assuming any threshold additive homomorphic encryption with
a natural property that we specify later, (instantiated by Paillier scheme, say).
The protocol utilizes a “round table” structure where parties are nodes in a
ring network (which means that frequently a party only communicates with its
two neighboring parties around the table). This structure (employed already in
past protocols) has two benefits: first, it allows each party to be offline for the
majority of the execution of the protocol and to be involved only when it needs
to contribute its inputs at its turn. Second, it allows a division of the commu-
nication complexity into two types: “round table” communication complexity
including messages exchanged between two neighboring parties, and broadcast
communication complexity including messages sent simultaneously to all parties.
Our simulation-based proofs of security are given in the Ideal/Real (standard)
Model as per definitions in [20].

To the best of our knowledge, the only paper that has considered secure com-
putation of multivariate polynomials is [13]. This recent independent work has
focused on multivariate polynomials of degree 3 but points out that the pro-
posed protocols can be generalized to higher degree polynomials, however, with
communication complexity that is no longer optimal, leaving as an open ques-
tion improvements of this complexity. Their protocol is based on the compiler
of [23], but with the difference being that the outer and the inner protocols are
instantiated with efficient constructions tailored for multivariate polynomials.
Their protocol’s communication complexity is (sub)-exponential in the number
of variables t: O(poly(k)d�t/2�) for polynomials of degree d and security param-
eter k. Our work, in turn, improves their communication complexity to be fully
polynomial (i.e., polynomial in all parameters of the problem). Clearly, one can
take a poly-size multivariate polynomial and translate it to a circuit with poly
time secure computation soultion, but this will have a huge polynomial factor
expansion and will lose the structure enabling the special-purpose speedups.
We achieve “round-table” complexity 10kDn(m− 1) and broadcast complexity
k(10D + 1)(

∑m
j=1

∑lj
t=1 log αj,t + 1) for m parties where party i has li inputs

of degrees αi,1, . . . , αi,li , D being the sum of the logarithms of the variable de-
grees for polynomials consisting of n monomials. Next, since every polynomial

1 We note that our protocol can be generalized to allow any subset of the parties to
receive output.
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can be easily converted into an arithmetic circuit, our protocol is also a pro-
tocol for MPC of a subclass of all arithmetic circuits. From this point of view,
the work of [24] addresses a comparable problem to ours (constructing a MPC
protocol for all poly-size arithmetic circuits, using a black-box construction and
assuming no honest majority). The work of [13] already improves in the worst
case the complexity results of [24] (for proper set of multivariate polynomials),
and as we noted above we bring additional improvement (intuitively, our amor-
tized broadcast complexity is linear in the size of the representation of the largest
term of the polynomial, and does not depend on the number of terms in the rep-
resentation, which contributes to the size of the arithmetic circuit). Further, the
protocol of [24] requires as many rounds (involving all the parties) as the depth
of the circuit and communication complexity depending on the size of the cir-
cuit. In contrast, we achieve a number of rounds independent of the depth and
the size of the arithmetic circuit of the polynomial (and our round-complexity
is actually constant when either counting a round-table round as one round or
when considering only a constant number of parties).

Our Results: Special Cases. The class of polynomial size multivariate poly-
nomials contains a wide range of efficiently representable functionalities with
special structure that enables further optimizations. Most of the commonly used
statistics functions can either be represented as polynomials or approximated
with polynomials using Taylor series approximation for trigonometric functions,
logarithms, exponents, square, etc. Examples include average, standard devi-
ation, variance, chi-square test, Pearson’s correlation coefficients, and central
moment of statistical distributions. Matrix operations (i.e., linear algebra) can
also be translated to polynomial evaluations.

As a special case of the general protocol, we implement secure multiparty
set intersection against a malicious adversary controlling a majority of the par-
ties; we note that the set intersection question in the two party case has been
addressed in many works [15] [22] [26] [25] [8] [7] while there are fewer works
that have considered the multiparty version. Two works adress the issue in the
computational protocol setting. First, Kissner et al. [26] present a semi-honest
protocol and suggests using generic zero communication complexity O(m2d2) for
m parties with input sets of size d. The work of [32] improves this complexity by a
factor of O(m) for m party protocols, using more efficient ZK based on pairings.
(In addition, relatively inefficient information theoretic solutions are presented in
[29, 30]).) Our protocol achieves communication complexity O(md + 10d log2 d)
improving the existing works. We achieve linear complexity in the number of
parties m due to the round table communication paradigm, whereas even the
recent work [5] is quadratic in the number of parties.

Finally, when polynomial’s coefficients correspond to the input of the desig-
nated receiver, our method is turned into a multi-party oblivious multivariate
polynomial evaluation, a generalization of the problem of oblivious polynomials
evaluation [27] to inputs from multiple parties.
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Techniques. Many of our techniques exploit the “nice structure” of multivariate
polynomials as well as various interactions of this structure with other algebraic
and cryptographic primitives. First, we crucially utilize the fact that multivariate
polynomials are linear operators which are easy to combine with additive homo-
morphic encryption and polynomial secret sharing. We formalize this property
by presenting a commutativity property between the evaluation of multivariate
polynomials and reconstruction of Shamir’s secret sharing [33]. Intuitively, this
allows us to evaluate a given polynomial on multiple (modified) Shamir secret
shares in parallel and obtain the final evaluatation of the polynomial by recon-
structing the resulting secret shares. This technique allows us to apply (black
box) “cut-and-choose” techniques to verify the correctness of the evaluation,
without revealing information about the shared inputs or outputs. We note that
analogous techniques were used in a different context by [6, 8].

A second property of multivariate polynomials is that they can be computed
over additive homomorphic encryption non-interactively in a round-table type
protocol where each participant incrementally contributes his inputs to the en-
cryption of a monomial outputted by the previous participant (note that a par-
ticipant’s contribution to a given monomial amounts to multiplication of the
encrypted monomial by a scalar).

We additionally use the polynomial structure of a variant of Shamir’s thresh-
old sharing in zero knowledge protocols proving that inputs were shared correctly
and committed under homomorphic encryption. We utilize Lagrange interpola-
tion combined with what we call vector homomorphic encryption (where the
homomorphic properties hold for both the plaintexts and the encryption ran-
domness; which is true for many of the known homomorphic encryption schemes
[28,12,10,21]). This is used to verify that inputs were shared and encrypted cor-
rectly, provided that the randomness for the encryptions was chosen in a specific
way. This encrypted interpolation technique combined with the large minimum
distance of Reed-Solomon codes allows us to guarantee the correctness of an en-
tire computation on encrypted codewords based on the verification that a small
random subset of shares were computed correctly. Finally, we use the linear op-
erator properties of the sharing polynomials for share re-randomization under
additive homomorphic encryption.

We note that when we instantiate our protocol with homomorphic encryp-
tion over a ring, we apply the technique of Feldman ([11]) also used, e.g., in
Fouque et al. ([12]) for Paillier sharing that transforms interpolation over an
RSA-composite ring to an interpolation over (an interval of) the integers (where
computing inverses, i.e., division, is avoided and finding uninvertible elements is
hard, assuming factoring is hard).

2 Protocol Overview

Semi-honest structure: As described above, multivariate polynomials can be
computed over additive homomorphic encryption by a round-table protocol. This
constitutes our underlying semi-honest evaluation protocol.
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Robustness ideas: To achieve security against malicious adversaries, we em-
ploy the commutativity between evaluation of multivariate polynomials and
Shamir’s secret sharing reconstruction described above. Consider the following
simplified example that illustrates our basic techniques: Let us have m parties
that wish to evaluate the univariate polynomial Q(x) = x5 + 10x3 + 6x + 9, at
point x, where x is the committed input of Party 1. Note that allowing Party
1 to do the entire computation will not ensure that the outcome is consistent
with the committed input. One possible solution is to require Party 1 to com-
mit to its input x by encrypting x with a homomorphic encryption scheme, and
have all parties compute the encrypted result using the homomorphic properties
of the encryption, which is then decrypted. However, in order to compute all
polynomial functions we will need a threshold doubly (or fully)-homomorphic
encryption scheme. Although Gentry, [18], recently introduced the first (highly
expensive) known doubly-homomorphic encryption scheme, a threshold analogue
is not yet known.

Instead, we take the following approach: Party 1 computes a Shamir secret-
sharing of its input x by choosing a polynomial Px of degree k uniformly at
random conditioned on Px(0) = x. Now, instead of committing to the value x,
Party 1 commits to, say, 20k input shares of Px : Px(1), . . . , Px(20k). Next, Party
1 commits to 20k output shares of Q ◦Px(i) : Q(Px(1)), . . . ,Q(Px(20k)). Notice
that Q◦Px(i) is a polynomial of degree 5k and that Q◦Px(0) = Q(Px(0)) = Q(x).
Thus, by reconstructing Q◦Px(0) we obtain the output value Q(x). After Party
1 sends the input and output commitments, the parties verify efficiently that
the input and output shares indeed lie on a polynomial of degree k and 5k
respectively using an interpolation algorithm we define below. Now, the parties
run a cut-and-choose step where a set I ⊂ [20k] of size k is chosen at random.
For each index i ∈ I, Party 1 must open the commitments to reveal Px(i) and
Q◦Px(i). The remaining parties now verify privately that Q◦Px(i) was computed
correctly. Note that due to the secret-sharing properties of the commitment
scheme, the cut-and-choose step reveals no information about Px(0) = x or
Q ◦ Px(0) = Q(x). Now, let us assume that Party 1 acted maliciously. Since
the set I was chosen at random, and due to the large distance of Reed-Solomon
codes, we show that if Party 1 is able to open all the shares corresponding to I
correctly, then with very high probability Party 1 must have computed all of the
output shares correctly. We note that the above description leaves out important
re-randomization techniques (that are described in the full protocol) whose
goal is to prevent parties from learning during the incremental evaluation and
robustness checking.

Efficient Robustness: Although the technique described above is sufficient
to ensure that the parties behave honestly, it induces a huge blow-up in the
number of required shares. Indeed, in order to reconstruct the zero coefficient of
a polynomial of degree deg, we must have at least deg + 1 secret shares. Thus,
when evaluating a polynomial such as Q = x2n

, we would require an exponential
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number of shares. To prevent this blow-up, we employ an input preprocessing
step (described in Section 3).

Secure output reconstruction: Finally, we use a threshold decryption al-
gorithm to ensure that no subset of the parties can decrypt the intermediate
messages exchanged. The threshold decryption is needed in the case where more
than one party contributes its inputs to the polynomial (and is actually not
necessary in our toy example above). Any additive homomorphic threshold en-
cryption scheme (with one additional natural property, which we describe later)
would suffice for the correctness of our protocol. Examples of such schemes are
the El Gamal threshold encryption scheme [17] and the Paillier threshold encryp-
tion scheme [12]. Note that additive El Gamal does not allow efficient decryption
over a large domain, but it sufficies for our Set Intersection applications. We use
the Paillier threshold encryption scheme to instantiate our general polynomial
evaluation protocols. To obtain the final output, the designated party recon-
structs the encryption of the final output value using Lagrange interpolation
over encrypted values and decrypts with the help of the other parties.

3 Definitions and Building Block Protocols

We use a standard simulation-based definition of security (e.f., [3]), and follow
the definitions of zero knowledge proofs of knowledge and commitment schemes
([20]). We denote by ComB a perfectly binding commitment scheme and by
ComH a perfectly hiding commitment scheme. Given d + 1 evaluation points
(x0, y0), . . . (xd, yd) on a polynomial of degree d, we denote the interpolation
value at the point x as Lx0,...,xd

(y0, . . . , yd, x).

3.1 Vector Homomorphic Encryption

We require threshold additive homomorphic encryption scheme with the follow-
ing additional property, capturing the fact that the homomorphism applies also
to the randomness.2 This property is satisfied by most known homomorphic
encryption schemes: Paillier [28] and threshold Paillier [12], ElGamal [10], and
Goldwasser-Micali [21].

Property 1. Let E = (GEN, ENC, DEC) be an encryption scheme where the
plaintexts come from a ring R1 with operations (+, ·), the randomness comes
from a ring R2 with operations (⊕,�), and the ciphertexts come from a ring
R3 with operations (⊗,ˆ). We say that E is vector homomorphic if the following
holds: ENC(m1; r1)⊗ENC(m2; r2) = ENC(m1 +m2; r1⊕ r2) and ENC(m; r)c =
ENC(c ·m; r � c).

2 We actually only need a slightly weaker property, but to simplify the presentation
we assume our encryption scheme possesses the stronger property defined here.
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3.2 Polynomial Code Commutativity

Shamir secret sharing [33] or Reed-Solomon codes are commutative with respect
to polynomial evaluations, which we formalize as follows:

Property 2 (Polynomial Code Commutativity). Let Q(x1, . . . , xm) be a multi-
variate polynomial. Let Px(1), . . . , Px(t+1) be Shamir secret shares of a value x
where Px is a polynomial of degree t such Px(0) = x. We can reconstruct x from
its secret shares using Lagrange interpolation L. The evaluation of Q commutes
with L in the sense that we can compute the value Q(x1, . . . , xm) with either of
the following algorithms:

(Q ∗ L)(Px1(1), . . . Px1(t + 1), . . . Pxm(1), . . . Pxm(t + 1), 0) =
= Q((L(Px1(1), . . . Px1(t + 1), 0), . . . , L(Pxm(1), . . . Pxm(t + 1), 0))) =
= Q(x1, . . . xm),

where we first use L to retrieve the secrets and then evaluate Q, or

(L ∗Q)(Px1(1), . . . Px1(t + 1), . . . Pxm(1), . . . Pxm(t + 1), 0) =
= L(Q(Px1(1), . . . , Pxm(1)), . . . ,Q(Px1(t + 1), . . . , Pxm(t + 1)), 0) =
= L(w1, . . . , wt+1, 0) = Q(x1, . . . xm),

where we evaluate Q on each set of shares of x1, . . . , xm to obtain shares of
Q(x1, . . . , xm) and then use L to reconstruct the final secret.

3.3 Incremental Encrypted Polynomial Evaluation

We will use homomorphic encryption to allow multiple parties to evaluate a
multivariate polynomial depending on their inputs by incrementally contributing
their inputs to partial encrypted evaluations of its monomials. This is facilitated
by the following property:

Property 3 (Incremental Encrypted Polynomial Evaluation). Let m be the num-
ber of parties evaluating a multivariate polynomial Q defined by

Q(x1,1, . . . , x1,l1 , . . . , xm,1, . . . , xm,lm) =
n∑

s=1

cs(
m∏

j=1

hj,s(xj,1, . . . , xj,lj )),

where hj,s represents the inputs of party j to the s-th monomial of Q. Let
E = (GEN, ENC, DEC) be an additive homomorphic encryption. We define the
partial evaluations bj,s (including the contributions of parties 1,. . . , j) of the
monomials s, 1 ≤ s ≤ n of Q as follows:

b0,s = ENC(cj) for 1 ≤ j ≤ n, and bj,s = b
hj,s(xj,1,...,xj,lj

)

j−1,s for 1 ≤ j ≤ m
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3.4 Polynomial Interpolation over Encrypted Values

In this section we present a protocol that allows a verifier to verify (without
help from the prover) that the prover’s encrypted points lie on a polynomial of
low degree, assuming the prover constructed the encryptions in a predetermined
manner. Recall that Lagrange interpolation allows us, given d + 1 points, to
reconstruct the polynomial of degree d that interpolates the given points. In
Figure 1, we use the fact that Lagrange interpolation can, in fact, be carried
out over encrypted points when the known encryption used possesses the vector
homomorphic Property 1. Since the encryption is over a ring we use Feldman’s
technique for shift interpolation by factorial [11].

Lagrange Interpolation Protocol Over Encrypted Values (LIPEV)

Input: (1,ENCpk(y1, r1)), . . . (A,ENCpk(yA, rA)), d where d+ 1 < A,
Output: Verifier outputs Accept if there are polynomials P1 ∈ R1[x], P2 ∈ R2[x] of
degree at most d such that yj = P1(j) for 1 ≤ j ≤ A and rj = P2(j) (P1 and P2 are
defined with respect to the operations in the respective rings) for 1 ≤ j ≤ A.
Verification Protocol:

1. Let Δ = A!.
2. Let lj(x) = Δ ·∏d+1

i=1,i �=j
x−i
j−i

for 1 ≤ j ≤ d+ 1.

3. Verifier checks whether ENCpk(yi, ri)
Δ =

∏d+1
j=1(ENCpk(yj , rj))

lj(i), and rejects
otherwise.

Fig. 1.

Using the LIPEV protocol, a prover can prove to a verifier that A encrypted
points lie on one polynomial of degree d, provided that the randomness for the
encryptions was chosen in a specific way; namely, the random values chosen must
also lie on a polynomial of degree d. For completeness, we describe next how to
compute the random values for the encryptions so that they lie on a polynomial
P2 ∈ R2[x] of degree d (see Figure 2). We note that even though the randomness
for all A encrypted points are not chosen uniformly at random, semantic security
is still preserved since the randomness for d+1 of the points is chosen uniformly
at random and the remaining A−d−1 encryptions can be computed given only
the first d + 1 encryptions due to Property 1.

3.5 Input Sharing via Enhanced Shamir Scheme

One of the ideas that we employ in our main protocol is to share function evalu-
ation by secret sharing the arguments of the function via polynomials of degree
k and evaluating the function on the corresponding shares in order to obtain
shares of the final value of the function. The above can be implemented straight-
forwardly using Shamir’s secret sharing ([33]) and evaluating the polynomial on
corresponding shares. The problem with this approach is that if the degree of the
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Randomness Interpolation

Input: (1, y1), . . . , (A, yA), r1, . . . , rd+1 for d+ 1 < A
Output: rΔd+2, . . . , r

Δ
A such that the Lagrange Interpolation Protocol Over Encrypted

Values outputs accept on the input: [i,ENCpk(yi, ri)
Δ]1≤i≤A, d.

Protocol:

1. Compute lj(x) = Δ
∏d+1

i=0,i �=j
x−i
j−i

for 1 ≤ j ≤ d+ 1.

2. Compute rΔi =
∏d+1

j=0(rj)
lj(i) for d+ 2 ≤ i ≤ A.

Fig. 2.

output function is Deg, then we require at least k ·Deg shares to reconstruct the
output value. We avoid this blow-up in number of required shares by applying
the following transformation on the inputs.

We consider a multivariate polynomial Q(x1, . . . , x�) over the input set X =
{x1, . . . , x�} which we would like to evaluate on shares of the input variables in
order to obtain shares of the output value. Since the number of output shares
that we will need to compute will depend on the degree of Q and the degrees of
the sharing polynomials Pxi that we use to share each of the input variable, we
employ techniques that allow us to decrease the degree of the final polynomial
[8]. The main idea is to introduce new variables that represent higher degrees of
the current variables. For each variable xi that has maximum degree di in Q we
substitute each power x2j

i with a new variable for 0 ≤ j ≤ �log di�. Note that if
we view the original polynomial Q as a polynomial over these new variables, we
have that each variable has degree at most one. Let M t be the t-th monomial
in Q and let dMt,i ∈M t be the degrees of the variables in monomial M t. Thus,
the original degree of Q was maxt{

∑
i∈Mt dMt,i}, whereas the degree of the

transformed polynomial over the new variables is only maxt{
∑

i∈Mt log dMt,i}.
In our protocol, each party will pre-process its inputs to compute its new input
variables and their shares and will prove that the new shares are consistent with
the initial inputs.

4 Multiparty Polynomial Evaluation

The multiparty polynomial evaluation has the following setup:

– Each party Tj has lj inputs Xj = {xj,1, . . . , xj,lj} for 1 ≤ j ≤ m.
– A designated output receiver T ∗ (one of the parties T1, . . . , Tm).
– A polynomial Q(x1,1, . . . , x1,l1 , . . . , xm,1, . . . , xm,lm), which depends on the

inputs of all parties.



Secure Efficient Multiparty Computing of Multivariate Polynomials 139

We use the following representation of the polynomial Q:

Q(x1,1, . . . , x1,l1 , . . . , xm,1, . . . , xm,lm) =

=
n∑

s=1

csx
α1,1,s

1,1 . . . x
α1,l1,s

1,l1
. . . x

αm,1,s

m,1 . . . x
αm,lm,s

m,lm
=

n∑

s=1

cs(
m∏

j=1

hj,s).

where hj,s(xj,1, . . . , xj,lj ) = x
αj,1,s

j,1 x
αj,2,s

j,2 . . . x
αj,lj ,s

j,lj
and cs is a known coefficients

for 1 ≤ j ≤ m. If xj,v does not participate in the s-th monomial of Q, then
αj,v,s = 0. Alternatively, we view hj,s for 1 ≤ j ≤ m, 1 ≤ s ≤ n in the following
way:

hj,s(xj,1, x
2
j,1, . . . , x

2�log αj,1,s�
j,1 , . . . , xj,lj , x

2
j,lj , . . . , x

2
�log αj,lj ,s�

j,lj ) (1)

in which each variable is of degree at most one.

Notation. In the protocol we will use the following variables: Dh,s =
∑m

j=1 deg(hj,s) for 1 ≤ s ≤ n; Dh,j,s = k
∑j

v=1 deg(hv,s) for 1 ≤ j ≤ m where
hv,s is defined as in Equation 1 (variables of degree at most 1); D = maxn

s=1 Dh,s.
Also we let Δ = 10kD! be a public parameter, and E = (GEN, ENC, DEC) be a
threshold encryption scheme that possesses Property 1 with public key pk and
secret keys sk1, . . . , skm for the m parties T1, . . . , Tm.

Protocol Intuition. The protocol consists of four phases: Input Prepro-
cessing, Round-Table Step, Re-randomization, Verification and Reconstruc-
tion. During the Input Preprocessing phase, the parties use the technique
from Section 3.5 to transform Q from polynomial over the variables x1,1,
. . . , x1,l1 , . . . , xm,1, . . . , xm,lm into a polynomial of lower degree over the variables

xj,1, x
2
j,1, . . . , x

2maxn
s=1�log αj,1,s�

j,1 , . . . , xj,lj , x
2
j,lj

, . . . , x2
maxn

s=1�log αj,lj ,s�

j,lj
for 1 ≤ j ≤

m. Each party Ti commits to shares of its new inputs via the Efficient Prepro-
cessing protocol described in the full version of the paper [9]. In the Round Table
Step the parties compute the encrypted evaluations of the monomials in Q in
a round-table fashion. Next, in the Re-Randomization phase, each party helps
to re-randomize the output shares. Honest behavior of the parties is checked
during the Verification step via cut-and-choose and a Preprocessing Verification
protocol for the committed inputs, which is described in the full version of the
paper [9]. If the verification passes, the parties jointly decrypt the output shares
and the output receiver reconstructs the final polynomial evaluation result in
the Reconstruction phase. We now present the detailed protocol and state our
main theorem3.

3 We note that for each intermediate monomial hj,s passed between the parties in the
round-table step, each Party j needs to transmit only Dh,j,s + 1 shares to Party
j + 1 since the rest of the shares may be constructed by the receiving party via La-
grange interpolation over committed values. This may yield significant savings in the
communication complexity, which we assumed in our discussion in the introduction.
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Multiparty Polynomial Evaluation Protocol Πpoly eval

Inputs: T1 : X1, sk1; . . . ; Tm : Xm, skm
Outputs: T ∗ : Q(x1,1, . . . , x1,l1 , . . . , xm,1, . . . , xm,lm); {T1, . . . , Tm}\T ∗ :⊥

Input Preprocessing:

1. For 1 ≤ j ≤ m, Party Tj converts each hj,s for 1 ≤ s ≤ n in the form
of Equation 1 (each variable is of degree at most one).

2. For 1 ≤ j ≤ m, Party Tj runs the Efficient Preprocessing pro-
tocol (see [9]) to generate 10kD shares for each of its new in-

puts xj,1, x
2
j,1, . . . , x

2�logαj,1�
j,1 , . . . , xj,lj , x

2
j,lj

, . . . , x2
�logαj,lj

�

j,lj
where αj,t =

maxni=1 αj,t,i for 1 ≤ t ≤ lj and commits to the shares.

Round-Table Step:

3. Party T1 computes encryptions of the polynomials coefficients b0,i =
ENCpk(cs; 1) for 1 ≤ s ≤ n.

4. For 1 ≤ s ≤ n, T1 chooses Dh,1,s + 1 random numbers

r1,s1 , . . . , r1,sDh,1,s+1. T1 uses the Randomness Interpolation protocol to

compute (r1,sDh,1,s+2)
Δ, . . . , (r1,s10kD)

Δ.

5. For 1 ≤ i ≤ 10kD, 1 ≤ s ≤ n T1 uses the values chosen above to
compute

h1,s(i) = h1,s(Px1,1(i), . . . , P
x2
�logα1,1,j�

1,1

(i), . . . , Px1,l1
(i), . . . , P

x2
�logα1,l1,s

�
1,l1

(i))

and b1,s,i = b
Δ·h1,s(i)
0,j · ENCpk(0; r1i )

Δ, which he sends to party T2.
6. For each 2 ≤ j ≤ m:

(a) Party Tj receives from party Tj−1 coefficients bj−1,1,i, . . . , bj−1,n,i

for 1 ≤ i ≤ 10kD.

6. (b) For 1 ≤ s ≤ n, Tj chooses Dh,j,s + 1 random numbers

rj,s1 , . . . , rj,sDh,j,s+1. Pj uses the Randomness Interpolation protocol

to compute (rj,sDh,j,s+2)
Δ, . . . , (rj,s10kD)

Δ.

(c) For 1 ≤ s ≤ n Tj uses the values rj,si chosen above to compute
hj,s(i) = hj,s(Pxj,1(i), . . . , P

x2
�logαj,1�

j,1

(i), . . . , Pxj,lj
(i), . . . , P

x2
�logαj,lj

�
j,lj

(i))

and bj,s,i = b
Δ·hj,s(i)
j−1,s,i · ENCpk(0; r

j,s
i )Δ.

(d) If j < m Tj sends all bj,s,i to Tj+1. If j = m for each 1 ≤ i ≤ 10kD
Tm computes S′

i = Πn
s=1bm,s,i and sends them to all parties on the

broadcast channel.
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Re-Randomization Step:

7. For 1 ≤ j ≤ m, Party Tj computes polynomial Pj,0 of degrees kD
such that Pj,0(0) = 0.

8. For 1 ≤ j ≤ m, Party Tj chooses kD + 1 random val-
ues rj,1, . . . , rj,kD+1 and uses the Randomness Interpolation proto-
col to compute rΔj,kD+2, . . . , r

Δ
j,10kD. Tj commits to shares Zj,0 =

ENCpk(Pj,0(i); rj,i)
Δ for 1 ≤ i ≤ 10kD

9. All parties run the LIPEV protocol and a zero knowledge proof pro-
tocol (HEPKPV, see [9]) to ensure that each [Zj,i]1≤i≤10kD is an en-
cryption of a polynomial with constant coefficient 0.

10. The final encryptions are: Si = S′
i ·Πm

j=1Zj,0 for 1 ≤ i ≤ 10kD.

Verification:

11. All parties verify using the Lagrange encrypted interpolation protocol
that the values Si lie on a polynomial of degree kD. Otherwise reject.

12. All parties run a multi-party coin-tossing protocol (see [9]) to choose
a random subset I of size k from [1, 10kD].

13. For each i ∈ I parties T1, . . . , Tm decommit their corresponding shares
from the Efficient Input Preprocessing.

14. All parties run the Preprocessing Verification for their inputs (see [9]).
15. For each i ∈ I each party Tj decommits the i-th shares of its inputs

as well as the i-th share of the polynomials Pj,0. Additionally, each

party Tj reveals the randomness rj,si for 1 ≤ s ≤ n and rj,i used for
the corresponding shares. To verify, each party recomputes the entire
share S∗

i , using the inputs and randomness revealed and checks that
Si = S∗

i . If any verification fails the protocol is aborted.

Reconstruction:

16. For each 1 ≤ i ≤ 10kD each party computes its partial decryption si,j
of Si and sends it to the designated output receiver T ∗.

17. Party T ∗ uses the partial decryptions si,j for 1 ≤ j ≤
m to completely decrypt Si. T ∗ reconstructs the value of
Q(x1,1, . . . , x1,l1 , . . . , xm,1, . . . , xm,lm) via interpolation and division by
Δm.

Theorem 1. If the Decisional Composite Residuosity problem is hard in Z∗
n2 ,

where n is a product of two strong primes, and protocol Πpoly eval is instanti-
ated with the threshold Paillier encryption scheme TPm

enc such that E = TPm
enc,

then Πpoly eval securely computes the Polynomial Evaluation functionality in the
presence of malicious adversaries.
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5 Communication and Computational Complexity

Our protocol computes the polynomial functionality in a constant number
of rounds (counting round-table rounds as one, or otherwise when we have
a constant number of players). The communication complexity of the proto-
col is divided into two types: broadcast messages and “round-table” (neigh-
bors only) communication; we note that the “round-table” communication
can be done off-line. The broadcast communication consists of the commit-
ments of the inputs shares, the decommitments used in the final verification
phase, the encrypted and decrypted output shares as well as the messages
used in the coin tossing and HEPKPV protocols. These messages add up to
k(10D +1)(

∑m
j=1

∑lj
t=1 log αj,t +1). km Note that the communication complex-

ity may be much smaller than the size of the polynomial representation. For
example, if party Pj with input xj,1 must contribute αj,t consecutive powers of
xi: x1

i , . . . , x
αj,t

i to αj,t different terms, the broadcast communication complex-
ity for this party will still only be k(10D + 1) logαj,t + 1. round-table messages
passed between consecutive parties include all intermediate messages in the com-
putation that are sent by all the parties except the last one, which in total are
10kDn(m− 1). The computational complexity (where we count number of ex-
ponentiations) for all m parties in total is O(kDnm). Further, if we apply the
share packing optimization from [14] over k executions of the protocol we can
drop k factor for the new amortized complexities.

In summary, our protocol runs in constant number of “round table” rounds,
in which every party is involved in order, while the protocol for secure com-
putation of arithmetic circuits [24] requires as many rounds as the depth of the
arithmetic circuit. It also requires fewer broadcasted messages compared to tech-
niques proving the polynomial evaluation via zero knowledge proofs such as [2]
since any ZK proof will have to be broadcasted. Additionally, a ZK protocol will
require runs of a multiparty coin tossing protocol to generate randomness for
each ZK proof.

6 Protocol Optimizations and Application to Multiparty
Set Intersection

We apply several optimizations to the protocol given in Section 4 for polynomials
with specific structures. First, if we have a monomial that is computed only
from the inputs of a subset of the parties, then clearly, we can evaluate it in a
round-table fashion that only includes parties in this subset and proceed to the
Re-Randomization Step.

Additionally, in some cases, we can remove the requirement of a party to share
all of its inputs. Recall that we require the input-sharing in order to enable the
cut-and-choose verification of honest behavior of the parties In the case when
an input is used only once in the polynomial, this type of proof may not be
necessary. We can avoid sharing an input if it belongs to the first party in the
round table computation of the corresponding monomial as long as we can verify
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that the encryption itself is valid with a ZKPOK and extract the encrypted value.
We notice that the requirements imposed on the structure of the polynomial
in order to be able to apply this optimization substantially limit the range of
possible polynomials. However, in the next section we will see how the problem
of multiparty set intersection can be reduced to the evaluation of exactly this
type of polynomials.

Finally, we use the approach of multi-secret sharing from [14] that allows us
to use the same polynomials to share the input values for multiple parallel exe-
cutions of the protocol, which lowers the amortized communication complexity
of our protocol. Intuitively, we choose a set of points on the sharing polynomials
to represent the input values for each of the different executions of the protocol,
say points 1 to k for each of k different executions. The shares that will be used
in the computation will be those corresponding to points not in this set. As a
result, the final output polynomial will evaluate to each of the different output
values corresponding to each execution at the points 1 to k respectively.

In the setting of our protocol in Section 4 we assume that the multivariate
polynomial is known to all parties. By removing this requirement and assuming
that the polynomial coefficients are the inputs of one of the parties, we reduce
the problem to oblivious multivariate polynomial evaluation (introduced by [27]
in the single-variable case) for a small class of multivariate polynomials.

6.1 Multiparty Set Intersection

We apply the techniques introduced in Section 4 to the problem of multiparty
set intersection. We give here a brief sketch. In the multiparty set intersection
problem, there are m parties T1, . . . , Tm who have input sets X1, . . . , Xm and
wish to jointly compute X1

⋂
. . .

⋂
Xm.

Recall that a set X = {x1, . . . , xd} can be represented as a polynomial P (x) =
(x−x1) . . . (x−xd). Now if we consider the polynomial P ′(x) = r·P (x)+x, where
r is random, we have that if x′ ∈ X then P ′(x′) = x′ and if x′ /∈ X then P ′(x′)
is uniformly distributed (see [15]). In the multiparty case we have m parties
with input sets X1, . . . , Xm, represented by polynomials PX1(x), . . . , PXm(x).
Thus the polynomial R(x) = r ·

∑m−1
i=1 PXi(x) + x, where r = r1 + r2 + · · · +

rm and each ri is a randomly chosen input contributed by Party i, will have
the same property mentioned above: if x′ ∈ X1

⋂
. . .

⋂
Xm then R(x′) = x′

and if x′ /∈ X1

⋂
. . .

⋂
Xm then R(x′) is uniformly distributed. Now in the

setting of polynomial evaluation we let a designated party Pm evaluates R(x)
on its own inputs, and thus the output is exactly the intersection of all sets with
some additional random values. This problem now reduces to the Multiparty
Polynomial Evaluation problem.

Theorem 2. If the Decisional Composite Residuosity problem is hard in Z∗
n2 ,

where n is a product of two strong primes, protocol Πpoly eval is instantiated
with the threshold Paillier encryption scheme TPm

enc such that E = TPm
enc, and
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Q = R, then Πpoly eval securely computes the Set Intersection functionality4 in
the presence of malicious adversaries.

Using the optimizations described in this section, we have that the broadcast
communication complexity of the Set Intersection protocol is O(md+10d log2 d)
(there is no round-table communication) and the computational complexity is
O(md2), where d >> k is the maximum input set size of each party.
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Abstract. The increasing use of computing devices for social inter-
actions propels the proliferation of online social applications, yet, it
prompts a number of privacy concerns. One common problem occurs
when two unfamiliar users, in the process of establishing social rela-
tionships, want to assess their social proximity by discovering mutual
contacts. In this paper, we introduce Private Contact Discovery, a novel
cryptographic primitive that lets two users, on input their respective
contact lists, learn their common contacts (if any), and nothing else.
We present an efficient and provably secure construction, that (i) pre-
vents arbitrary list manipulation by means of contact certification, and
(ii) guarantees user authentication and revocability. Following a rigorous
cryptographic treatment of the problem, we define the privacy-protecting
contact-hiding property and prove it for our solution, under the RSA as-
sumption in the Random Oracle Model (ROM). We also show that other
related cryptographic techniques, such as Private Set Intersection and Se-
cret Handshakes, are unsuitable in this context. Experimental analysis
attests to the practicality of our technique, which achieves computational
and communication overhead (almost) linear in the number of contacts.

1 Introduction

The increasing volume of electronic social interactions motivates the need for
efficient privacy-enhancing techniques. One interesting problem occurs when two
unfamiliar users want to privately discover their common contacts: in doing so,
they would like to reveal to each other only the contacts that they share.

We focus, for instance, on the discovery of mutual social-network friends. On-
line social networks provide friends with services to share interests, activities, or
pictures, and help them build and reflect social relations. Popular social network
websites, such as Facebook, Linkedin, or MySpace, involve millions of active
users, who access their services ubiquitously — e.g., 250 of 500 million Facebook
users access it from their mobile devices [39]. Other projects, such as Nokia’s
Awarenet [1], aim at letting users in physical proximity interact using their mo-
bile phones, without relying on a central server or using an Internet connection.

One of the first steps toward establishing social-network relationships is to
verify the existence of common friends. Consider the following settings: (1) a so-
cial network user wants to extend her network and is willing to establish friend-
ships with other users with whom she has mutual friends; (2) a mobile phone
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c© Springer-Verlag Berlin Heidelberg 2011
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user would like to interact with other users in physical proximity (e.g., in a bar
or on the subway), given that they have some common friends on a given social
network, e.g., Facebook. One crucial problem, in these scenarios, is discovering
mutual friends in a privacy-preserving manner.

A näıve solution would require users to reveal their friends to each other.
Clearly, this would not preserve users’ privacy, since their complete lists would
be exposed. Another trivial solution would employ and trust a central server to
find and output the common friends. However, a central server is not necessarily
trusted and not always available. Also, such a server would learn not only users’
friends, but also which users become friends, how, when, and where. For instance,
in scenario (2) above, mobile phone users might be willing to discover their
mutual friends on a social network (e.g., Facebook) but may not be connected
to the Internet or they may want to operate outside the social network website.

In order to protect privacy, we are faced with a couple of fundamental issues.
First, we need to prevent a malicious user from manipulating her list of friends,
e.g., by populating it with her best guesses of other user’s list to maximize the
amount of information learned, or by “impersonating” unwarranted friendships.
Then, as friend relationships may vary over time, we need an efficient mechanism
allowing to revoke friendships.

In this paper, we introduce the concept of Private Contact Discovery, a
novel general construct geared to preserve user privacy, not only in social network
interactions, but also in any other application that uses personal contact lists.
We design a cryptographic primitive involving two users, e.g., Alice and Bob, on
input their contact lists, that outputs only the list of mutual contacts (if any).
The protocol prevents users from claiming unwarranted friendships by introduc-
ing contact certification. For instance, in order to include Carol in her contact
list, Alice needs to obtain a certificate from Carol attesting this friendship. Then,
when Alice interacts with Bob, not only the entries in her contact list are hidden
from Bob, but also the possession of corresponding certificates with respect to
non-common friends (and vice-versa). Note that, in our solution, these certifi-
cates are specific to individual users, i.e. malicious transfer of certificates, e.g. to
enable others to claim unwarranted friendship, is impossible. Our protocol does
not require any trusted server nor is bound to a specific network infrastructure,
and can be used in both centralized and distributed environments.

1.1 Private Contact Discovery with Available Tools?

The problem of Private Contact Discovery bears some resemblance with sev-
eral cryptographic constructs. We review them below and discuss why they are
inappropriate for the problem of Private Contact Discovery.

Private Set Intersection (PSI). PSI techniques, e.g. [2, 13, 14, 15, 20, 23, 24,
29, 30], allow two parties to compute the intersection of their input sets, such
that they learn nothing beyond the intersection (and the set sizes). However,
PSI does not prevent parties from manipulating their inputs, thus, in the con-
text of contact discovery, it would not prevent users from claiming unwarranted
friendships.
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Authorized PSI (APSI). APSI [14, 15] extends PSI by ensuring that inputs
are authorized by an appropriate Certification Authority (CA). Thus, unless
they hold authorizations on their inputs (typically, in the form of digital signa-
tures), parties do not learn whether the corresponding input belongs to the set
intersection. Similarly, Private Intersection of Certified Sets [10] allows a trusted
CA to ensure that all protocol inputs in PSI are valid and bound to each pro-
tocol participant. Note, however, that these constructs involve one single CA,
whereas, every user in the context of Contact Discovery would have to act as an
independent “CA” for her contacts. Also, one may think that the social network
provider could certify friendships, but such a solution would incur a fundamen-
tal problem. In fact, in APSI, authorizations are signatures: assuming that Alice
and Bob are both friends with Carol, Alice would have a signature on a mes-
sage in the form of “Carol→Alice”, while Bob would have one on “Carol→Bob”.
Therefore, since (Authorized) Private Set Intersection techniques only output
matching elements, we cannot use them for privately discovering common con-
tacts (as messages representing common friendships would not match).

Secure Two-Party Computation. Generic secure two-party computation,
e.g. [21, 32, 42], allows two parties with respective private inputs x and y to
compute a functionality f(x, y) = (f1(x, y), f2(x, y)) such that: one party ob-
tains f1(x, y) and the other receives f2(x, y), while neither learns more than its
own input and the output. The functionality underlying Private Contact Discov-
ery would require malicious model and could, possibly, be expressed and solved
using general secure two-party computation techniques. However, the expected
computational and communication overhead would be too large (possibly thou-
sands of rounds of interaction) and thus not be applicable in practice.

Anonymous Credentials (AC). AC schemes, e.g. [7, 9], allow a provider to
issue to a user an anonymous credential on various attributes. The user can then
prove to a third party that she possesses valid credentials issued by that provider,
yet without revealing further information about credentials and attributes. AC
schemes do not seem to offer an immediate solution to Private Contact Discovery.
Indeed, one could think that user’s friends may act as providers issuing friend-
ship credentials, however, AC proofs would disclose information about credential
issuers. For the same reason, Credential-Authenticated Key Exchange [8] does
not provide an immediate solution to the Private Contact Discovery problem.

Affiliation-Hiding Authentication (AHA). AHA protocols, also called Se-
cret Handshakes (SH) [3, 11, 26, 28, 41], allow two parties with membership
credentials issued by the same organization — called Group Authority (GA)
— to privately authenticate each other. Specifically, one party can prove to the
other that it has a valid credential, yet this proof hides the identity of the issuing
organization, unless the other party also has a valid credential from the same or-
ganization. Some protocols [6, 27, 33] efficiently support multiple credentials, i.e,
multiple Group Authorities, and are more closely related to the Contact Discov-
ery problem. Specifically, Jarecki and Liu [27] introduced a multiple-credential
Affiliation-Hiding Authentication scheme, with overhead (almost) linear in the
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number of credentials, secure under GapDH assumption. Recently, Manulis,
Pinkas, and Poettering [33] proposed another efficient multiple-credential AHA
scheme, secure under RSA assumption. One could think that Private Contact
Discovery can be solved using efficient multiple-credential AHAs. For instance,
every user could act as a GA and issue credentials as a contact certification:
whenever two users want to discover whether or not they have common contacts,
they execute AHA on input their credentials. However, this approach would in-
cur several problems. In fact, multiple-credential AHA schemes, such as [27, 33],
assume that GAs are unconditionally trusted and always follow protocol specifi-
cation. While this assumption might be realistic in classic AHA scenarios (where
GAs are courts or investigation agencies), it is not reasonable, in the context of
Contact Discovery, to trust all users, e.g., of a social network. Consider the case
of [27]: in the process of obtaining credentials from GAs, users need to surren-
der all their secret keys which are not dependent on the specific group but are
valid for all of them. If Eve certifies Bob to be her friend, she would obtain
Bob’s secret keys, thus, she would be able to impersonate Bob and/or test Bob’s
friendship with other users. Although recent results in [35, 36] relax some of the
trust assumptions on GAs in AHA protocols, it is not clear how to efficiently
extend them to the multiple-credential setting.

Friend-of-Friend. Prior work has attempted to solve problems similar to the
one considered in this paper. Von Arb et al. [40] present a mobile social net-
working platform which enables Friend-of-Friend (FoF) detection in physical
proximity. Matching of friend lists is provided using PSI techniques [25, 29].
As discussed earlier, this approach fails to effectively guarantee privacy, as con-
tact lists can be artificially expanded. Freedman and Nicolosi [19] propose two
solutions for the FoF problem, in the context of trust establishment in email
whitelisting. One solution is based on hash functions and symmetric encryp-
tions, the other on bilinear maps. Both solutions leverage friendship attestation
but do not support user revocation — a necessary requirement in our context.
Also note that, as opposed to our protocol: (1) their solution based on symmetric
encryption allows users to maliciously transfer attestations to other users, and
(2) their technique using bilinear maps is inefficient, as it involves a quadratic
number of bilinear map operations.

Non-Cryptographic Techniques. Besides the work focusing on protecting
privacy by means of cryptographic techniques, some solutions targeting the
discovery of common contacts have been proposed in different and broader con-
texts. Some techniques address the Friend-of-Friend problem with none or un-
clear privacy properties [12, 31]. Other solutions analyze, to a higher extent,
social relationships, without focusing on privacy. For instance, [38] uses random
walks to discover communities in large social-network graphs, [43, Chapter 12]
formalizes the problem of dynamically identifying core communities (i.e., sets of
entities with frequent and consistent interactions), [44] builds a prediction model
to identify certain social structures, e.g., friendship ties and family circles, while
[17] attempts at identifying communications that substantiate social relationship
types.
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Remark 1. Private Contact Discovery can be used as an important building
block for privacy-preserving social interactions. Indeed, although prior work has
focused on privacy concerns in this context, we highlight the need for a cryp-
tographic treatment of them to obtain clear guarantees. This includes formal
definition of privacy goals and design of provably secure and practical solutions.
Also, Günther, Manulis, and Strufe [22] recently proposed a cryptographic model
and solutions for Private User Profiles, another building block for privacy in so-
cial interactions.

1.2 Contribution and Organization

Our contributions are manifold: First, we define Private Contact Discovery, a
novel cryptographic tool that allows two users to discover their common con-
tacts, without leaking information on any other contacts, and without relying
on any (trusted) third parties. Second, we provide rigorous privacy definitions
and security model for this new notion. In particular, we define its main privacy
goal called Contact-Hiding. Finally, we propose a very efficient solution, secure
under the RSA assumption in ROM, which also supports efficient revocation.
Performance analysis attests to the practicality of our protocol, which incurs
almost linear computational and communication complexities in the number of
alleged contacts. This efficiency stems from the use of the recent Index-Hiding
Message Encoding (IHME) scheme [33, 34].

Paper Organization. After preliminaries in Section 2, we introduce Private
Contact Discovery and present our solution, alongside its performance analysis,
in Section 3. Next, in Section 4, we formalize the security model for Private
Contact Discovery and state Contact-Hiding security of our scheme. Section 5
concludes the paper and provides an outlook into further research directions. In
Appendix, we present the proof of Contact-Hiding security of our solution.

2 Preliminaries: Assumptions and Building Blocks

Definition 1 (RSA Assumption on Safe Moduli). Let RSA-G(κ′) be a prob-
abilistic algorithm that outputs pairs (N, e), where N = PQ for random κ′-bit
primes P �= Q such that P = 2P ′ + 1, Q = 2Q′ + 1 for primes P ′, Q′, and
e ∈ Zϕ(N) is coprime to ϕ(N). The RSA-success probability of a PPT solver A
is defined as

Succrsa
A (κ′) = Pr

[
(N, e)← RSA-G(κ′); z

$← ZN ; m← A(N, e, z); me = z (mod N)
]
.

The RSA assumption on Safe Moduli states that the maximum RSA-success
probability Succrsa(κ′) (defined over all PPT solvers A) is negligible in κ′.

One important building block of our protocol is an Index-Hiding Message Encod-
ing (IHME) scheme, recently introduced by Manulis, Pinkas, and Poettering [33],
which we review below. Definition 2 recalls the underlying concept of Index-Based
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Message Encoding (IBME), also introduced in [33]. It is an encoding technique
that combines a set of indexed input messages, m1, . . . , mn ∈ M (whereM is a
message space), into a single data structure S. Any message can be individually
recovered from S using its index, which is arbitrarily chosen from an index set
I, and specified at encoding-time.

Definition 2 (Index-Based Message Encoding). An index-based message
encoding scheme (iEncode, iDecode) over an index space I and a message space
M consists of two efficient algorithms:

iEncode(P): On input a tuple of index/message pairs P = {(i1, m1), . . . , (in, mn)}
⊆ I ×M, with distinct indices i1, . . . , in, this algorithm outputs an encod-
ing S.

iDecode(S, i): On input of an encoding S and an index i ∈ I this algorithm
outputs a message m ∈ M.

An index-based message encoding scheme is correct if iDecode(iEncode(P), ij) =
mj for all j ∈ {1, . . . , n} and all tuples P = {(i1, m1), . . . , (in, mn)} ⊆ I ×M
with distinct indices ij.

Further, [33] defines IBME schemes that guarantee index-hiding security as
‘Index-Hiding Message Encoding’ (IHME) schemes. Informally, an IHME scheme
guarantees that no adversary, by inspecting an IBME structure S that encodes
random messages, can learn any useful information about the deployed indices,
even if she knows some of the indices and/or messages. We refer to [33] for the for-
mal definition of the index-hiding property. Here we only recall the polynomial-
based construction of perfect IHME from [33]. It is defined over I = M = F

for an arbitrary finite field F (e.g., F = GF (p) as in [33]) and provides the
index-hiding property in an information-theoretic sense.

iEncode(P): On input of P = {(i1, m1), . . . , (in, mn)} ⊆ I×M = F2, the encod-
ing is defined as the list S = (cn−1, . . . , c0) of coefficients of the polynomial
f =

∑n−1
k=0 ckxk ∈ F[x] that interpolates all points in P , i.e. f(ij) = mj for

all (ij , mj) ∈ P . Note that this polynomial exists uniquely, i.e., the iEncode
algorithm is deterministic.

iDecode(S, i): On input of S = (cn−1, . . . , c0) and index i ∈ I, this algorithm
outputs the evaluation m = f(i) =

∑n−1
k=0 ckik of f at position i.

Our protocol deploys the IHME scheme in a black-box way, thus proposing
another application of this recent primitive. Furthermore, in our experimental
analysis, we will also take into account recent optimizations regarding the im-
proved polynomial interpolation algorithms and implementation of the IHME
scheme presented in [34].

3 Private Contact Discovery

3.1 Contact Discovery: Syntax and Correctness

A Contact Discovery Scheme CDS is defined as a tuple of four algorithms and
protocols:
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Init(1κ): This algorithm is executed once by each user U . On input of a security
parameter 1κ, it initializes internal parameters U.params and clears U ’s con-
tact revocation list, i.e., U.crl = ∅. U.crl is authenticated by U and will be
distributed to other users (i.e., all contacts of U should have access to the
up-to-date U.crl). In contrast, U.params is private to U .

AddContact(U ↔ V ): This is a protocol, executed between user U and user V ,
who wishes to become a contact of U . User U adds identity of V to her
contact list. In addition, a corresponding contact certificate ccU→V is output
to V . Note that we model contact establishment as a unidirectional process:
If U should become a contact of V as well then they additionally will execute
AddContact(V ↔ U).

RevokeContact(U, V ): This algorithm is executed by user U . On input identity
of V , the contact revocation list of U is updated to U.crl← U.crl ∪ {V }.

Discover(V ↔ V ′): This is an interactive algorithm (protocol), executed between
users V and V ′, to discover common contacts. V ’s private input is (role, CL,
partner), where role ∈ {init, resp} specifies the role of the session as initializer
or responder, contact list CL is a set of pairs of the form (U, ccU→V ), for
some users U , and partner is the name/id of the supposed protocol partner.
All values ccU→V are contact certificates previously obtained as output of
AddContact(U ↔ V ). V ′’s private input is (role′, CL′, partner′), defined anal-
ogously. Further, users keep track of the state of created Discover(role, CL,
partner) protocol sessions π through session variables that are initialized
as follows: (π.role, π.CL, π.partner) ← (role, CL, partner), π.state ← running,
π.SCL← ∅, and π.id is set to the own identity. After the protocol completes,
π.state is updated to either rejected or accepted. In the latter case, shared
contact list π.SCL holds a non-empty set of user identifiers.

Definition 3 (Correctness of CDS). Assume that users V and V ′ interact in
a Discover protocol on input (role, CL, partner) and (role′, CL′, partner′), respec-
tively. Let π and π′ denote the corresponding sessions. Let CL∩ denote the set
of users (contacts) U that appear in both CL and CL′ with the restriction that
neither partner nor partner′ are contained in the respective contact revocation
lists. CDS scheme is correct if: (1) π and π′ complete in the same state, which
is accepted iff (role �= role′ ∧ CL∩ �= ∅ ∧ partner = π′.id ∧ partner′ = π.id), and
(2) if the sessions accept then π.SCL = π′.SCL = CL∩.

3.2 Protocol Specification

We now present our CDS construction and describe the instantiation of Init,
AddContact, RevokeContact, and Discover algorithms.We assume that AddContact
sessions among (honest) users of CDS are protected by secure channels, whereas,
during Discover, the channel does not need to be confidential. Note that many
applications that would use CDS, such as social networks or further group appli-
cations, already provide an authentication infrastructure for their users, e.g., they
deploy a PKI or use some password-based techniques. Such an authentication in-
frastructure can then be used for various types of communication, including the
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execution of CDS protocols. With this assumption in mind, we can now focus on
the core functionality of the CDS scheme, namely the private discovery of shared
contacts, for which potential attacks may be mounted by other application users,
i.e., from the inside.

Let κ, κ′ ∈ N denote security parameters, where κ′ is polynomially dependent
on κ. As a building block, our construction utilizes the IHME = (iEncode, iDecode)
scheme from [33] (see also Section 2), defined over the finite field F = GF (p) ∼=
Zp, where p is the smallest prime number satisfying p > 22κ′+κ. In addition, the
protocol makes use of two hash functions

H : {0, 1}∗ → [0, p− 1] and H∗ : {0, 1}∗ → [0, p− 1],

modeled as random oracles. For convenience, for each N ∈ N of length 2κ′, we
define:

HN : {0, 1}∗ → ZN ; x �→ H∗(N ‖x)mod N.

The four algorithms and protocols of CDS are instantiated as follows:

Init(1κ). The setup routine run by each user U mainly consists of the generation
of safe RSA parameters. Given security parameter κ′, two κ′-bit safe primes
P = 2P ′ + 1 and Q = 2Q′ + 1 are picked randomly. The RSA modulus is set
to N = PQ, and a pair e, d ∈ Zϕ(N) is chosen s.t. ed = 1 (mod ϕ(N)). Observe
that ϕ(N) = (P − 1)(Q− 1) = 4P ′Q′.

The largest element order in Z×
N is λ(N) = lcm(P − 1, Q − 1) = 2P ′Q′ =

ϕ(N)/2. [26] and [35] show that for half of the elements g ∈ Z×
N it holds that

ord(g) = λ(N) and −1 �∈ 〈g〉, i.e., Z×
N
∼= 〈−1〉 × 〈g〉. Let Init() algorithm find

such g ∈ Z×
N (e.g., by random sampling and testing) and assign U.params ←

(N, e, d, g).
Finally, the algorithm initializes U ’s contact revocation list by setting

U.crl← ∅.
AddContact(U ↔ V ). In this protocol user U , on input U.params = (N, e, d, g)
and identifier id of a user V , computes contact certificate ccU→V = (N, e, g, σV )
with σV = (HN (id))d mod N , i.e., the Full-Domain-Hash RSA signature [4] on
id, and confidentially hands it out to V .

RevokeContact(U, V ). User U revokes given user V by inserting V into its contact
revocation list: U.crl← U.crl ∪ {V }. It is assumed that an up-to-date version of
this list is distributed authentically to all contacts of U .

Discover(V ↔ V ′). The contact discovery protocol is executed between two users
V and V ′ with inputs (role, CL, partner) and (role′, CL′, partner′), respectively (see
Section 3.1 for a description of parameters). The protocol is specified in detail in
Figure 1. Each user obtains its contact list and, for each entry in it, parses the
friendship certificate (lines 2–3). Next, our protocol combines Okamoto’s tech-
nique [37] for RSA-based identity-based key agreement (lines 4–5 and 18) with
a special padding scheme (introduced in [16]) to hide the size of deployed RSA-
moduli (lines 6–7 and 17). Note that several instances of Okamoto’s protocol are
run in parallel — one for each contact in contact list CL — and all transferred
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messages are IHME-encoded into a single structure before transmission (lines 8
and 10). Upon receiving the IMHE-encoded structure, each user, for every un-
revoked certificate, decodes the messages (line 16) and removes the probabilistic
padding applied in lines 6–7 (line 17). As we demonstrate in Section 3.3, values r
calculated in line 18 are equal for both protocol participants, when computed
for the same common contact. Confirmation messages (c0, c1) are derived from
this value (lines 19–20), IHME-encoded in lines 23–24, and verified after the
last communication round (line 28). Each common contact is then added to the
SCL list (line 29). Note that contact revocation is handled in lines 15 and 22.
Finally, the protocol terminates with “accepted”, unless SCL is empty, in which
case “rejected” is returned (lines 31-34).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

V on input (init, CL, partner):

P ← ∅, T ← ∅
for all (U, ccU→V ) ∈ CL:

parse ccU→V as (N, e, g, σV )
(b, t)←R Z2 × ZN/2

ϑ← (−1)bgtσV mod N
k ←R [ 0, �p/N� − 1 ]
θ ← ϑ + kN
P ← P ∪ {(N, θ)}
T ← T ∪ {(U, N, e, t)}

MV ← iEncode(P)

sid←MV ‖MV ′

P ′ ← ∅, T ′ ← ∅
for all (U, N, e, t) ∈ T :

if partner 	∈ U.crl:
θ ← iDecode(MV ′ , N)
ϑ← θ mod N
r ← (ϑe/HN (partner))2t mod N
c0 ← H(sid‖r‖0)
c1 ← H(sid‖r‖1)
T ′ ← T ′ ∪ {(U, N, c1)}

else: c0 ←R [ 0, p− 1 ]
P ′ ← P ′ ∪ {(N, c0)}

M′
V ← iEncode(P ′)

SCL← ∅
for all (U, N, c1) ∈ T

′
:

if c1 = iDecode(M′
V ′ , N):

SCL← SCL ∪ {U}

if SCL 	= ∅ then

terminate with “accept”

else

terminate with “reject”

MV−−−−−−−→
MV ′

←−−−−−−−−

M′
V−−−−−−−→

M′
V ′

←−−−−−−−−

V ′
on input (resp, CL′, partner′):

P ← ∅, T ← ∅
for all (U, ccU→V ′) ∈ CL′

:

parse ccU→V ′ as (N, e, g, σV ′)
(b, t)←R Z2 × ZN/2

ϑ← (−1)bgtσV ′ mod N
k ←R [ 0, �p/N� − 1 ]
θ ← ϑ + kN
P ← P ∪ {(N, θ)}
T ← T ∪ {(U, N, e, t)}

MV ′ ← iEncode(P)

sid←MV ‖MV ′

P ′ ← ∅, T ′ ← ∅
for all (U, N, e, t) ∈ T :

if partner′ 	∈ U.crl:
θ ← iDecode(MV , N)
ϑ← θ mod N
r ← (ϑe/HN (partner′))2t mod N
c0 ← H(sid‖r‖0)
c1 ← H(sid‖r‖1)
T ′ ← T ′ ∪ {(U, N, c0)}

else: c1 ←R [ 0, p− 1 ]
P ′ ← P ′ ∪ {(N, c1)}

M′
V ′ ← iEncode(P ′)

SCL← ∅
for all (U, N, c0) ∈ T

′
:

if c0 = iDecode(M′
V , N):

SCL← SCL ∪ {U}

if SCL 	= ∅ then

terminate with “accept”

else

terminate with “reject”

Fig. 1. Specification of Discover(V ↔ V ′)
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3.3 Protocol Correctness

Suppose that users V, V ′ have valid contact certificates ccU→V , ccU→V ′ , respec-
tively, for a shared contact U . Then ccU→V = (N, e, g, σV ) and ccU→V ′ =
(N, e, g, σV ′) for common parameter set N, e, g. In a Discover(V ↔ V ′) protocol
session, V would receive ϑ = (−1)b′gt′σV ′ from V ′ (lines 5 and 17) and com-
pute r = (ϑe/HN (partner))2t (line 18). From σV ′ = HN (partner)d mod N (see
AddContact protocol) it follows that r = g2ett′ . User V ′ obtains the same value r
by executing analogous computations (with partner′ and t′). The protocol’s cor-
rectness is now implied by IHME’s correctness, and verifiable by inspection of
Figure 1. The security analysis of the protocol is postponed to Section 4.3, after
the specification of the security model.

3.4 Protocol Efficiency and Performance Analysis

We now discuss the efficiency of our CDS construction. We focus on the protocol
Discover since Init is run only once per user, while AddContact and RevokeContact
are executed only once for each added or removed contact, respectively, and can
be performed off-line.

Computational Complexity and Bandwidth Requirements. The compu-
tational complexity of the Discover protocol is essentially related to the num-
ber of (relatively more expensive) exponentiations, executed for each contact in
lines 5 and 18. Any user V needs to compute 2|CLV | modular exponentiations
with modulus size 2κ′, where |CLV | denotes the number of contacts of V . If the
polynomial-based IHME constructions from [33] or [34] are used to encode mes-
sages, the polynomial interpolations and evaluations only require inexpensive
operations, such as multiplications in F. Specifically, the number of multiplica-
tions in F would amount to O(|CLV |2) and O(|CLV | · |CLV ′ |), respectively, where
V ′ denotes the protocol partner. Nevertheless, the corresponding workload can
be considered small in practice, as discussed in [33, 34].

The CRL-based check for revocation of partner’s pseudonym in line 15 can be
implemented in logarithmic complexity (assuming sorted crls). Note that users
need to keep revocation lists of their contacts up-to-date. In practice, this does
not impose a significant overhead, as revocation lists grow incrementally and
include only (short) identifiers of revoked contacts. Thus, the related communi-
cation overhead is negligible compared to that of an actual Discover session.

The overall communication complexity of the Discover protocol (including the
IHME-encoded transmission) is linear in the number of contacts. More precisely,
each user sends and receives in total approximately 2(|CLV |+|CLV ′ |)(2κ′+κ) bits.
Observe that this value can be lowered to 2(|CLV |+ |CLV ′ |)(κ′+κ) by shortening
confirmation messages c0, c1 to κ bits, in lines 19 and 20 (see also [34]).

Experimental Analysis. In addition to our asymptotic analysis, we also mea-
sured the performance of our scheme, experimentally. To this end, we conducted
several experiments involving laptops and mobile devices. Our prototypes use the
recent optimizations to IHME scheme, proposed by Manulis and Poettering [34].
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Following [34], for |CL| < 100, the overall costs of running the protocol is
dominated by the time consumed in the exponentiations, when related to IHME
encoding. If certain IHME-related precomputations from [34] are possible, then
this bound increases to |CL| < 250. Therefore, the computational overhead of
our CDS construction is, in practice, almost linear in the number of contacts.

Figure 2 presents running times of our Discover protocol, using different
CPUs: a single core of an Intel XEON 2.6GHz CPU, an AMD NEO 1.6GHz
processor (often found in Netbook computers), and an ARMv7 600MHz CPU
(installed on many today’s smartphones). All measurements were performed us-
ing the GMP library [18], thus, execution on smartphones can be even speeded
up using different cryptographic libraries optimized for mobile environments.

(a) AMD Neo and Intel Xeon (b) ARMv7

Fig. 2. Running times of our Discover protocol on different CPUs with an increas-
ing number of contacts. For each CPU, we also consider session-independent (off-line)
precomputations from [34]. All measurements are performed for 80-bit (symmetric)
security and 1024-bit RSA moduli.

We observe that our protocol for Private Contact Discovery scales fairly
well. For security level (κ, 2κ′) = (80, 1024), i.e., 80-bit symmetric security and
1024-bit RSA moduli, on laptops and server machines, a full protocol execution
requires less than a second, even for 100 or more contacts per user. On cores with
smaller footprint, e.g., on recent smartphones like Nokia’s N900 (equipped with
the ARMv7 600MHz processor), protocol execution with 100 contacts requires
about 5 seconds, which is an acceptable overhead. Note that smartphones’ CPU
speeds are envisioned to increase rapidly in the near future (e.g., the iPhone 4G
is already equipped with a 1GHz processor). Finally, we computed that each
user sends and receives around 300 Bytes per user of his contact list, where we
assume |CLV | = |CLV ′ | for simplicity. That is, in the protocol execution with 100
contacts, a total of 30KB is transmitted.

We conclude that our Private Contact Discovery solution is efficient and
practical enough for actual deployment, also on smartphones widely available
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today. Yet, our technique does not give up solid privacy guarantees, as we show
in the next section.

4 Security Model for Contact Discovery Protocols

In this section, we introduce our security model for a Contact Discovery Scheme
(CDS). We formalize this notion by describing adversarial capabilities and defin-
ing Contact-Hiding security. Finally, we analyze the properties of our scheme
with respect to this model.

4.1 Adversary Model

The adversary A is modeled as a PPT machine interacting with protocol par-
ticipants and having access to the following set of queries, where U denotes the
set of honest users in the system.

Discover(U, role, CL, partner): This query results in initiating, on behalf of user
U ∈ U , a new session π of Discover. Query’s input is a role identifier role ∈
{init, resp}, a contact list CL ⊆ U of users, and an identifier partner of the
protocol partner. Query’s output is a first protocol message M (if available).

Send(π, M): With this query, message M is delivered to session π. After pro-
cessing M , the output (if any) is given to A. The query is ignored if π is not
waiting for input.

Reveal(π): This query is ignored if π.state = running. Otherwise, the query re-
turns (π.state, π.SCL).

RevealCC(V, U): This query gives the adversary contact certificate ccU→V of user
V for contact U . It models the possibility of selective contact corruptions.

Revoke(U, V ): This query lets user U include user V in its contact revocation
list U.crl.

4.2 Contact-Hiding Security

Informally, the Contact-Hiding property protects users from disclosing non-
matching contacts to other participants. We model CH-security with a game,
following the indistinguishability approach. The goal of the adversary is to de-
cide which of two contact lists, CL∗

0 or CL∗
1, is used by some challenge session π∗.

The adversary can also invoke any number of Discover sessions, and perform
Reveal and RevealCC queries at will.

Definition 4 (Contact-Hiding Security). Let CDS = {Init, AddContact,
RevokeContact, Discover}, b be a randomly chosen bit, and Q = {Discover, Send,
Reveal, RevealCC, Revoke} denote the set of queries the adversary A has access
to. We consider the following game between a challenger and the adversary A:
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Gamech,b
A,CDS(κ, n) :

– The challenger creates n users, denoted by U = {U1, . . . , Un}. The adver-
sary A specifies a set Uc ⊆ U of initially corrupted users. Let Uh = U \ Uc.
Init(1κ) is run for all U ∈ Uh, and, for all combinations (U, V ) ∈ Uh × Uh,
contact certificates ccU→V are created by respective user U and given to V ,
each time by running the AddContact(U ↔ V ) protocol.
For all U ∈ Uc, the adversary sets up all parameters himself, including
U.crl. He then specifies a list L ⊆ Uh × Uc, and for all (U, V ) ∈ L, pro-
tocol AddContact(U, V ) is run, and the respective certificate ccU→V is given
to A;

– AQ interacts with all (honest) users using the queries in Q; at some point
AQ outputs a tuple (U∗, role∗, CL∗

0, CL∗
1, partner∗) where U∗ ∈ Uh, role∗ ∈

{init, resp}, CL∗
0, CL∗

1 ⊆ Uh with |CL∗
0| = |CL∗

1|, and partner∗ is any user id
(in U). Set D∗ = (CL∗

0 \ CL∗
1) ∪ (CL∗

1 \ CL∗
0) = (CL∗

0 ∪ CL∗
1) \ (CL∗

0 ∩ CL∗
1) is

called the distinguishing set;
– the challenger invokes a Discover(U∗, role∗, CL∗

b , partner∗) session π∗ (and
provides all needed credentials);

– AQ continues interacting via queries (including on session π∗) until it ter-
minates and outputs bit b′;

– the output of the game is b′ if all of the following hold; else the output is 0:
(a) if there is a Discover session π′ withD∗∩π′.CL �= ∅ and (π′.id, π′.partner) =

(π∗.partner, π∗.id) which was in state running while π∗ was in state running,
then neither Reveal(π∗) nor Reveal(π′) was asked,

(b) for no U ∈ D∗ a RevealCC(partner∗, U) query has been posed or a pair
(U, partner∗) is contained in L, i.e. the adversary did not ask for a contact
certificate for partner∗ issued by any user in the distinguishing set.

We define

Advch
A,CDS(κ, n) :=

∣
∣
∣Pr

[
Gamech,0

A,CDS(κ, n) = 1
]
− Pr

[
Gamech,1

A,CDS(κ, n) = 1
]∣
∣
∣

and denote with Advch
CDS(κ, n) the maximum advantage over all PPT adver-

saries A. We say that CDS is CH-secure if this advantage is negligible in κ
(for all n polynomially dependent on κ).

Conditions (a) and (b) exclude some trivial attacks on contact hiding. Con-
dition (a) thwarts the attack where A starts a Discover(U ′, role′, CL′, partner′)
session π′ with CL′ ∩ D∗ �= ∅ and (π′.id, π′.partner) = (π∗.partner, π∗.id), relays
all messages between π∗ and π′, and finally asks Reveal(π∗) or Reveal(π′). By
protocol correctness, π∗.SCL = π′.SCL would contain elements from D∗, and it
would be trivial to correctly decide about b. Condition (b) prevents A to ask
for a contact certificate issued by a user U ∈ D∗ for a user V ∈ U , to simulate
a protocol session on behalf of V , to relay all messages between that session
and π∗, and to decide about bit b from the results.
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Remark 2. One may also define a stronger notion of contact-hiding by requir-
ing that distinct sessions of the Discover protocol executed by the same user
remain unlinkable. We observe that our Discover protocol in its plain form would
not guarantee such unlinkability, since credentials (i.e., certified friendships) are
re-used across multiple protocol executions, which also allows an efficient realiza-
tion. Although linkable protocols may yield traceability concerns (with respect
to eavesdropping adversaries) and leak sensitive information about users, we
address this issue by executing the protocol over secure (encrypted and authen-
ticated) channels. Nonetheless, it is an interesting open problem to design a
Discover protocol, which would preserve the linear complexity of our solution
and, simultaneously, achieve such stronger property of unlinkability.

4.3 Security Analysis of Our Protocol

Following the definition in Section 4.2, we argue that our CDS protocol, described
in Section 3, offers Contact-Hiding security. We refer to Appendix A for the proof.

Theorem 1 (Contact-Hiding Security). The CDS protocol in Section 3.2 is
CH-secure under the RSA assumption on safe moduli, in Random Oracle Model.

5 Conclusion

This paper motivated the importance, and introduced the concept of, Private
Contact Discovery. Following a cryptographic treatment of the problem, we pre-
sented an efficient and provably secure construction. During protocol design, we
overcame several challenges, such as the arbitrary expansion of contact lists,
by using contact certification. Our solution relies on Full-Domain-Hash RSA
signatures and on the recent IHME primitive [33]. We also showed, through ex-
perimental evaluation, that our solution is practical enough to be deployed in
real-world applications, including those running on mobile devices.

Private Contact Discovery provides a valuable privacy-preserving tool that
can serve as building block for many collaborative applications, including popular
social networks. Since this work represents an initial foray into Private Contact
Discovery, much remains to be done. First, we plan to extend our techniques to
privately discover communities: consider, for example, two smartphone users in
proximity willing to find out whether or not they are member of the same social
community (e.g., a Facebook group or an Awarenet community [1]), in a privacy-
preserving manner. Users may receive (from a community manager) credentials
for community membership, and execute our CDS protocol to discover common
memberships. Then, we intend to address the (privacy-preserving) discovery of
i-th grade contacts and cliques [38], which currently seems impossible without
relying on some trusted third party. Another interesting direction is to consider
fairness [5] of the contact discovery process, a property that ensures a balanced
gain of knowledge of protocol participants even against insider adversaries.
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A Proof of Contact-Hiding Security of CDS from Fig. 1

We now prove the Contact-Hiding (CH) security (Definition 4) of our CDS protocol
(illustrated in Fig. 1), relying on the RSA assumption on safe moduli (Definition 1) and
on the security of the IHME scheme from [33]. By Advihide

IHME(κ) we denote the advantage
probability for breaking the index-hiding property of the IHME scheme, which (since
the utilized IHME scheme is perfect) is equal to 0. Note that our security arguments
have similarities with those of the multi-credential AHA protocol in [33], which proves
the “affiliation hiding”property of the proposed AHA under the same assumptions. We
only sketch the proof steps that mirror those in [33], as the reader can find more details
in [33] and its predecessor [26]. In contrast, we detail arguments regarding the use of
the IHME scheme. We prove CH-Security of CDS by presenting a sequence of games
G0, . . . , G5.

Game G0. We start with G0 = Gamech,b
A,CDS(κ, n), in which A interacts with simulator

C, which answers all queries honestly according to the specification of the game (see
Definition 4).

Game G1. Game G1 is like G0, except that the simulation is aborted (the game
outputs 0) if there exists a Discover session π′ �= π∗ that sends out the same M
structure as π∗ (see line 10 in Figure 1).

Note that M sent by π∗ contains for each contact in CL∗
b a specific θ value. These

are almost uniformly distributed in a set of size p ≈ 22κ′+κ. Thus, the probability of
finding a collision in the M’s is upper-bounded by qq/2

2κ′+κ (where qq denotes the
number of Discover queries), and thus negligible in κ.

Game G2. Let R = (r1, . . . , rk) denote the list of r-values for the contacts in CL∗
b \

CL∗
1−b = CL∗

b ∩D∗ of session π∗, as computed in line 18 of the protocol. Game G2 is like

http://www.facebook.com/press/info.php?statistics


164 E. De Cristofaro, M. Manulis, and B. Poettering

G1, except that all confirmation messages c0, c1 of π∗ (see lines 19 and 20), computed
based on the values in R, are replaced by random elements in the respective range.

By the Random Oracle Model (ROM), the modification introduced in Game G2 can
only be detected by adversaries that can compute and query the H oracle on at least one
of the r-values in R. Let rt ∈ R be such a value (and assume that the simulator guesses
t correctly). By embedding an RSA challenge into user identifiers (by programming
the HN oracle) and public user parameters (by choosing N and g appropriately), the
problem of computing rt can be reduced to the hardness of the RSA problem (see [26,
Section 3] for more details). We conclude that the computational distance between G2

and G1 is polynomially dependent on Succrsa(κ′), and is thus negligible in κ.

Remark 3. Note that for all contacts in CL∗
b ∩D∗, the adversary A cannot distinguish

correct confirmation messages for π∗ from random ones. Therefore, the output set
π∗.SCL is disjoint with D∗.

Game G3. This game is like Game G2, except that, for session π∗, the θ-values for all
contacts in CL∗

b ∩D∗ (as computed in line 7) are replaced by values uniformly random
in [0, p − 1].

Observe from the protocol definition that the θ-values replaced in this game only
affect the computation of the rt ∈ R (in Game G2), which cannot be computed and
checked by the adversary anyway by a result of Game G2. Hence, the only detectable
difference between G2 and G3 may arise from different distributions of the original
and the modified θ-values. Although the original values are not uniformly distributed
in [0, p − 1], their distribution is statistically indistinguishable from the uniform dis-
tribution. In [26], the corresponding statistical difference is proven to be bounded by
2−κ, what is negligible in κ.

Game G4. Game G4 is like G3, except that, for session π∗, in the IHME-encoding
step in line 10, for all contacts in CL∗

b ∩D∗, the indices N are replaced by the indices N
that correspond to the contacts in CL∗

0 ∩D∗. For all contacts in CL∗
b ∩CL∗

1−b the indices
remain unchanged.

As Games G3 and G4 are exactly the same in case b = 0 (as nothing has changed),
in the following we assume b = 1. We show that, if an efficient distinguisher D3,4

that distinguishes between Game G3 and G4 exists, then we can use it to construct
an adversary Aihide against index-hiding of IHME as follows. Adversary Aihide acts as a
challenger for D3,4 , i.e., Aihide sets up all users, and answers all protocol queries honestly
(but following the rules of Game G3), with the only exception that the encoding step
in line 10 for session π∗ is performed by the IHME challenger (i.e., the latter receives
(I0, I1, M

′) where I0 and I1 are the sets of indices N of CL∗
0 and CL∗

1, respectively, and
M ′ is the list of the θ-values honestly computed for the contacts in CL∗

0 ∩ CL∗
1), which

returns an encoding M using either the indices corresponding to CL∗
0 or CL∗

1. The bit
output by D3,4 serves as output b′ for Aihide. We see that the success probability of
D3,4 is bounded by Advihide

IHME(κ), which is 0 (since the IHME construction is perfect).
Hence, the computational difference between Games G3 and G4 is 0.

Game G5. The step between Game G4 and G5 is very similar to the previous tran-
sition: this time, it is the IHME-encoding in line 24 for which the indices N of all
contacts in CL∗

b ∩ D∗ are replaced by the indices N that correspond to the contacts in
CL∗

0 ∩ D∗.
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The difference between G5 and G4 is bounded by Advihide
IHME(κ) = 0, exactly for the

same reason above.

We conclude that the computational difference between G0 and G5 is negligible in
κ. Therefore, a CH-adversary cannot distinguish between Gamech,b

A,CDS and Gamech,0
A,CDS

with non-negligible probability, neither by analyzing the exchanged messages, nor by
interpreting the results of Reveal queries. As the latter game contains no information
about bit b, it follows that Advch

CDS(κ, n) is negligible in κ (for all N polynomially
dependent on κ). 
�
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Abstract. We present the performance measures of our Java Cryp-
tography Architecture (JCA) implementation that integrates sanitizable
signature schemes into the XML Signature Specification. Our implemen-
tation shows mostly negligible performance impacts when using the Ate-
niese scheme with four different chameleon hashes and the Miyazaki
scheme in XML Signatures. Thus, sanitizable signatures can be added
to the XML Security Toolbox. Applying the new tools we show how to
combine different hash algorithms over different document parts adding
and removing certain properties of the sanitizable signature scheme; this
mixing comes very natural in XML Signatures. Finally, we motivate that
existing definitions for the property of Transparency are counterintuitive
in these combinations. Our conclusion is that the document-level Trans-
parency property is independent of the sub-document properties Weak
and Strong Transparency.

Keywords: Sanitizable Signatures, Transparency, Performance, XML
Signature Framework.

1 Introduction

A sanitizable signature scheme (SSS) allows a defined third party, the so-called
sanitizer, to alter an already signed document without invalidating the signa-
ture and without involving the original signer again. This comes in handy for
many applications, examples thereof can be found in each scheme’s literature.
However, sanitizable signature schemes are not part of the proposed signature
methods in the XML Signature Syntax and Processing W3C Standard [7]1. We
have implemented the sanitizable signature scheme proposed in 2005 by Ate-
niese [1] in Java. The Ateniese scheme is build upon a chameleon hash; we
implemented chameleon hashes proposed by Krawczyk and Rabin [12], Ateniese
and de Medeiros [2], Chen et al. [6] and Zhang et al. [20]. Additionally, a redac-
tion based scheme proposed by Miyazaki et al. [16] was implemented to allow
performance comparison between both approaches.
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1 We will refer to this as XML Signature for brevity.
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All schemes have been integrated into the Java Cryptography Architecture
(JCA), thus they are usable for XML Signatures. We present XML Signature
integrations of a representative subset of the different “flavours” of sanitizable
signature schemes following the Ateniese scheme and redaction based schemes,
which have not been developed explicitly for tree-structured documents. This
integration is non-trivial: Sanitizable signature schemes do not work as straight
forward as the standard hash-and-sign SHA–RSA-Scheme, since some schemes
follow a different process when generating the signatures for document parts. In
this paper we present our solution that integrates sanitizable signature schemes
into XML Signatures without invalidating the W3C Standard.

Our contribution consists of the actual implementation and integration of five
different schemes and an analysis that demonstrates a practical performance
penalty, compared to RSA and SHA for most of the schemes presented. Addition-
ally, we show how XML helps to mix and allows to add resp. remove properties
from the original sanitizable signature scheme. We have shown this for the prop-
erties of transparency, accountability, consecutive sanitization control, restricting
to values and restricting to sanitizers. These additions are still compliant with the
XML Signature Specification and do not need major modifications of the underly-
ing sanitizable signature algorithms. Finally, we offer two observations: First, not
all sanitizable signature schemes are suitable for use in XML Documents, since
some do not allow overlapping references. Second, the properties of transparency
and its “flavours” weak and strong transparency, as originally defined by Ateniese
et al. [1], are actually independent properties and should not imply each other.

The rest of the paper is structured as follows: Sec. 3 gives technical details
on the integration into the existing frameworks and standards: JCA and XML
Signature. A short summary of our detailed performance measures is given in
Sec. 4. In Sec. 5 is shown how alterations using given primitives will add, respec-
tively remove, certain properties from the schemes. We then use these alterations
to motivate a revised view on the existing property of Transparency and its def-
inition in Sec. 6.

2 Related Work

From an implementer’s point of view, Tan et al. integrated the Ateniese scheme
into XML Signature using one chameleon hash developed by Krawczyk et al. [12]
in [18]. However, they just showed that one scheme can be integrated into XML
Signature without offering a performance analysis. Their implementation work
is similar to that of Ateniese et al. in [1]: they also implemented the Krawczyk
scheme, but in conjunction with OpenSSL and not JCA and XML Signature. Ad-
ditionally, they did not discuss the possibility to alter properties of the schemes
and their integration into the XML Signature Standard in more detail.

Brzuska et al. formalized the most common properties in [5], which we used for
our work. However, they do not take XML Signature into account any further.
They constructed a tag-based chameleon hash, which allows to add sanitizer
accountability to the Ateniese scheme. We did not implemented this, as this
chameleon hash is similar to the Krawczyk one.



168 H.C. Pöhls, K. Samelin, and J. Posegga

Kundu et al. developed a sanitizable signature scheme, which addresses the
specific needs of tree-structured documents. [13] These needs have been formal-
ized by Liu et. al in [15]. This has also been addressed and tailored for redaction
based signatures by Bruzska et al. in [4]. However, both approaches are not based
on the hash-and-sign paradigm in the “natural way”. For brevity their schemes
are left out of this work. A performance analysis of the Kundu scheme can be
found in [14].

Wu et al. also implemented a sanitizable signature scheme in [19]. However,
they also do not provide a performance analysis and their scheme relies on the
Merkle-Hash-Tree-Technique.

3 Implementation in JAVA and Integration into XML

We used the Java Cryptography Architecture (JCA) as an existing open-source
framework and we implemented a new “Cryptographic Service Provider”, follow-
ing the design patterns given in JCA. Whenever the schemes required additional
cryptographic algorithms these were added via external libraries. In particular:
GnuCrypto2 for EMSA-PSS [10], required by Ateniese [2], and a library from
the National University of Maynooth3 for elliptic curves and bilinear pairings,
required by Zhang [20]. Our implementations make use of Java’s BigInteger
class.

Within the XML Signature Specification we use <Reference> to split the
XML Document m into subdocuments m1, ..., mn. Subdocuments, or references,
are actually pointers to subsets (⊆) of the whole document, e.g. a nodeset, an
element or the complete document itself.4 The union m1∪ ...∪mn represents the
part of the document which is covered by the final signature. Each of these ref-
erences can be digested using a different hash-algorithm, allowing a maximum of
flexibility for the signer. The resulting digests, along with additional information,
are combined into the SignedInfo element. The additional information stored
contains, among others, the following: Applied digest method, C14n-algorithm,
reference URI, and applied transforms. The SignedInfo element is canonical-
ized, hashed, and the resulting digest is signed. The W3C specification allows to
assign parameters for each message-digest, we used this to integrate the keyed-
hash-functions.

3.1 JCA Implementation Details for the Five Schemes

This section will shortly introduce the schemes we implemented and evaluated.

Ateniese Scheme. Standard cryptographic hashes, denotedH, do not allow at-
tackers to find collisions in the hash-domain (“Collision-Resistance”). Chameleon
hashes, denoted CH, however do allow to compute collisions for arbitrary input,
2 http://www.gnu.org/software/gnu-crypto/
3 http://www.nuim.ie/
4 XPath allows even more complex expressions.

http://www.gnu.org/software/gnu-crypto/
http://www.nuim.ie/
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as long as a trapdoor is known; this trapdoor must be kept secret for chameleon
signature schemes. [12] Ateniese et al. propose to use those hashes to construct
a sanitizable signature scheme: [1]

σ = SIGN(d1||...||dn)

where
di =

{
H(mi) if mi is not sanitizable
CH(mi) if mi is sanitizable

H is a standard cryptographic hash like SHA-512, CH a chameleon hash, mi

subdocument i and n is the number of subdocuments.
Each sanitizer receives the trapdoor needed to find collisions, thus he is able

to do arbitrary changes to the sanitizable subdocuments. For this work four
different chameleon hashes have been implemented and used within the Ateniese
scheme, as each chameleon hash can result in different properties of the resulting
signature [5]:

1. Krawczyk as the first chameleon hash, based on the DLP assumption [12]
2. Ateniese as an ID-based approach [2]
3. Zhang as an ID-based approach without an UForge-algorithm [20]
4. Chen as an ID-based approach without the key-exposure-problem [6,3]

As we are concerned with the application within XML, let us share the following
observation concerning message splitting: For the Ateniese scheme it is necessary,
that in general: ∀i, j : mi �= mj , where 0 ≤ i < j ≤ n. Suppose mi = mj yields,
which means that two subdocuments are the same. If now mi is sanitizable while
mj is not, mj cannot be altered since SIGN(H(mi)||CH(mj)) must remain
the same value under all circumstances. Since H serves as a random oracle,
uniformerly distributing its digests over dom(H), finding a collision such that
SIGN(H(m′

i)||CH(m′
j)) = SIGN(H(mi)||CH(mj)), is infeasible by definition

of H.
The prior statement is just correct if mi = mj. Let’s assume that mi � mj .

Note, mj can be expressed as mj = mk||mi||ml where k �= i �= l, mk �= ∅ ∨
ml �= ∅. Further assume that mi is not sanitizable while mj is. Now, the sub-
subdocument mi which is contained within mj cannot be altered while the comple-
ment mj\mi = {mk, ml} can. Let the signature be σ = SIGN(H(mi)||CH(mj))
while mi � mj . If now mi is not changed in any wayH(mi) is not changed either.
Since a collision in dom(CH) can be found for arbitrary m ∈ {0, 1}∗, mi does not
have to be changed. Therefore mj\mi = {mk, ml} can be altered in any way, since
SIGN(H(mi)||CH(mj))=SIGN(H(mi)||CH(m′

j)) ∧ SIGN(H(mi)||CH(mj))=
SIGN(H(mi)||CH(m′

k||mi||m′
l)) remains true. This is important if the document

to be sanitized follows a strict ordering, i.e. text-documents. Note, for mj � mi

this does not work, since all alterations to mj also affect mi, which means that
the resulting digest di = H(mi) will differ. One may argue that splitting the doc-
ument up into three parts, namely mk, mi and ml, while making mk and ml san-
itizable fulfills the same requirements. This is possible if the subdocument itself
is just text. If additional information is signed, i.e. structure, or the node-based
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nature of XML documents is taken into account this may not be always possible.
Consider an XPath expression that counts the number of elements and is signed
using a standard cryptographic hash, while the nodeset used by this expression
is signed using a chameleon hash. This prohibits the alteration of the number of
elements contained. Since XPath is Turing-Complete [8] this construction allows
the protection of all structural information, if the expression used is wisely chosen.
A formal construction of these expressions is future work.

Miyazaki scheme. Miyazaki et al. developed a redactable signature scheme
which allows disclosure control in [16]. The scheme just allows deletion and of-

Fig. 1. Illustration of the Miyazaki Scheme

fers the possibility to prohibit additional sanitization for a consecutive sanitizer.
Each subdocument mi is transfered on a coordinate system. The transform is
a commitment to mi using e.g. the Halevi-Commitment-Scheme. [9] This com-
mitment (C(mi, ri))5 will then be transfered onto the point (1, C(mi, ri)). In a
second step, two random numbers sl

i, s
r
i with |sl

i| = |sr
i | = |ri| are committed

to by calculating an additional commitment C(sl
i, s

r
i ). The second commitment

constructs the point (2, C(sl
i, s

r
i )). Finally, the signer calculates two auxiliary

points (3, Pi) and (0, Qi) as illustrated in Fig. 1. The resulting signature is
σmiyazaki = (P1||...||Pn||Q1||...||Qn). The signature σmiyazaki, all Pi, all mi, and
the corresponding (de)commitment values will be distributed with m. To sanitize
a sanitizer just has to remove mi and ri along with its (de)commitment values; a
verifier is able to reconstruct Qi given Pi and C(sl

i, s
r
i ). To prohibit sanitization

an adversary has to remove sl
i and sr

i along with the (de)commitment values; a
verifier is still able to verify the signature, calculating Qi using C(mi, ri) and Pi.
Removing both values will result in a non-verifyable signature. Miyazaki requires
completely disjunct subdocuments (∀i, j : mi ∩mj = ∅ where 0 ≤ i < j ≤ n)6

since the scheme just allows deleting subdocuments rather then arbitrary alter-
ations. Hence, any partial deletion will alter another subdocument which is not
possible with this scheme. This limits its usefulness in XML Signatures, since
Miyazaki does not allow overlapping references.

5 Note, the Halevi scheme requires a purely random number r.
6 They need to form a disjunct partition.
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3.2 Integration into an XML Signature

In this section we give a brief introduction on the JCA code changes resp. ex-
tension made to allow XML Signatures with the sanitizable schemes. Sources
will be made available upon request. However, we present all the modifications
necessary to make the schemes JCA implementable.

Key Generation. Every chameleon hash needs a key-pair. Obviously this key-
pair has to be generated prior to calculating the digest. A Java key-generator
accepts exactly two parameters, a SecureRandom object, which handles the gen-
eration of random numbers and a security parameter τ used to define the key-
length. However, the class BigInteger does not allow to generate primes which
have a “bit-range”. Hence, each key will be generated using τnew = τ−1 to avoid
too huge primes. This reduces the security by two Bits. Trivially, the workaround
is to increase the bitlength by two to get at least the same security level. For
the performance evaluation this has no major impact.

Key Generation Zhang. For the Zhang chameleon hash no keys have been
defined, since this scheme has been implemented as a TTP-Service.

DigestMethod. The chameleon hashes need a public-key to be computed. We
marshalled the public key into to the reference element. For example, public
keys in the Krawczyk scheme have four elements: PKCH = (p, q, g, y). [12] We
add a new element containing the public key as Base64 -encoded BigIntegers as
illustrated in Lst. 1.1. Finally, we used new URIs to identify each digest method7.

Listing 1.1. Marshalling of the Krawczyk Parameters

1 <DigestMethod Algorithm="http:// www.example .org/xmldsig -more# chamhashdisc">
2 <ChamHashDiscKeyValue>
3 <p>Aa5Mue7ppx2YD7R8KXUqQIKSTSay6jHhWm9L0dxHpL2P</p>
4 <q>1yZc93TTjswH2j4UupUgQUkmk1l1GPCtN6Xo7iPSXsc=</q>
5 <r>FQrJPkWb0JwiffjrAdbWAoyropQmNohMgEy6ABsvptQ=</r>
6 <g>JtqJ1H0NL0Is+6 Y797XKQ1hbHc+HYgoGQAkvK8h+q8Y=</g>
7 <y>AVwdxMlXF6HIHRHl0r7Xoojb0VoB7ZBP4Dxc83BDDgxG</y>
8 </ChamHashDiscKeyValue>
9 </DigestMethod>

For the Zhang scheme the coin consists of a point P on an elliptic curve E(Fq).
The point is stored as its (x, y) coordinates.

For the Miyazaki and Chen scheme some workarounds were necessary due
to the JCA not being able to store negative numbers. Therefore, everything
must exclusively be encoded using positive numbers. For the Chen scheme we
store a negative b, i.e. −1, as a Base64-encoded 2 and reverse it to −1 during
unmarshalling. For the Miyazaki scheme a negative point P is not unlikely, if
Δ = C(sl

i, s
r
i )−C(mi, ri) < 0. To prohibit this the result of C(sl

i, s
r
i ) is multiplied

by 2|p|−1. This ensures that ∀C(mi, ri) : Δ > 0 ⇒ P > 0, where p is the prime
used in the Halevi scheme. Note, neither of the workarounds impacts security
since no Bits are omitted and the lower Bits are shifted out during unmarshalling.
7 http://www.example.org/xmldsig-more#chamhashdisc, ...#miyazaki, etc.

http://www.example.org/xmldsig-more#chamhashdisc
...#miyazaki
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Our second workaround in the implementation of the Miyazaki scheme ad-
dresses the output of the reference digest, which is (Pi||Qi) for each reference,
since the references are sequentially processed by the JCA framework. Hence, we
add an additional hashing step which extends the reference “digest” to H(Pi||Qi)
in order to gain a fixed length output. Additionally, any deletable element has
been placed in an Signature element not covered by the signature itself. Triv-
ially, this must be done to ensure that the signature verification can be done cor-
rectly if any changes are done. E.g. for the Miyazaki scheme the (de-)commitment
values are added outside of SignedInfo as shown in Lst. 1.2, since they can be
removed by a sanitizer. Note, we link them to the corresponding references by
using the reference’s URI value as Id attribute.

For the chameleon hashes the random value r resp. b are also part of the
DigestMethod element, as shown in Lst. 1.1. Just to be clear: This removes the
transparency property. However, storing them here or forward referencing them
has negligible impact on the performance itself. Another way to allow random
coin change would be to add an additional transform which removes them prior
to digesting the Reference element. The latter approach was not chosen since
an additional transform would not have been as self-explaining as this version.

Listing 1.2. Marshalled Miyazaki scheme (de-)commitment values

1 <Signature>
2 <SignedInfo>...</SignedInfo>
3 <SignatureValue>...</SignatureValue>
4 <KeyInfo >...</KeyInfo >
5 <MiyazakiKeyValue Id="#xpointer (id(’8492341’))">
6 <sr>cjyt7T7qu3j+ieBksyEOJ+yVv/0=</sr>
7 <sl>S5NrovXVK0YkswUERiz0EfjR+fc=</sl>
8 <r>bWTFplIzjCpiCWReRGzCL8m2OyY=</r>
9 <a>DKFCyGUL </a>

10 <b>ASWQM3JEo0cpm77v0oc+ NLwujCX +</b>
11 <y>7Zo2Etyvy3Umwf8LlyRfDSCvLc4=</y>
12 <a_s>CbaVZ/t+Lw==</a_s>
13 <b_s>AbW5KeKOBcyQMxqpZ0oqLUIwakDU</b_s>
14 <y_s>W9k9TudAZ8l3C4gFXbA1/ VM1lE8=</y_s>
15 <prime >AuX1hF /7 HhBr5va4Ayx9HWIKlSfj</prime>
16 <prime_s >Ao8RKY6Ezd5uRikVEpLheUqxdYVz</ prime_s >
17 </MiyazakiKeyValue>
18 </Signature>

Additional Hashing Steps. The hashes proposed by Ateniese et al., the one
proposed by Zhang et al., and Chen et al. perform an additional standard cryp-
tographic hash prior to its own calculations. To have comparable evaluations this
hashing-step has also been added to the other schemes. This additional hash-
ing step has been fixed as SHA-1 for all schemes to have comparable results.
The commitment-scheme required by the Miyazaki scheme returns an array
(yi, ai, bi, pi). For further calculations yi, ai, bi have to be merged into one in-
teger. We pad all numbers with zeroes till they have the same size. This means
that |qi1 |+ |yi| = |qi2 |+ |ai| = |qi3 |+ |bi|, where qi ≥ 0 are the padding Bits. This
does not allow any modifications since the width of each part is fixed. Note, the
prime p is an external value and thus not part of the commitment-value itself.
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Listing 1.3. Appended Values for the Chen scheme

1 <Signature>
2 <SignedInfo>...</SignedInfo>
3 <SignatureValue>...</SignatureValue>
4 <KeyInfo >...</KeyInfo >
5 <r Id="#xpointer (id( ’8492340’))">210874650874</r>
6 <b Id="#xpointer (id( ’8492340’))">2</b>
7 </Signature>

Signing. For the Miyazaki scheme the digest values need to be added prior to
hashing the reference. Thus, all parameters added to the DigestMethod element
must be known prior to the digestion procedure. This would have prohibited
the calculation of commitments. Our workaround runs the signing process twice,
in the first run the intermediate results, i.e. the (de-)commitment values are
cached and added during the second run. The second run’s results will not be
used. A negative performance impact, but this approach did not require major
code changes in the JCA framework itself.

Sanitization. The sanitization procedure outputs an r′i (and b′i for the Chen
scheme) for a given m′

i such that CH(ri, mi) = CH(r′i, m
′
i) where mi �= m′

i and
ri �= r′i. For performance reasons we cache each subdocument during the signing
process to allow an easy UForge implementation. Lst. 1.3 shows how a sanitizer
adds new elements to the Signature element for the Chen scheme, which requires
the two values b′i and r′i. For Ateniese and Krawczyk the element contains only r′i
for each sanitized reference. The Zhang scheme requires a point (x′

i, y
′
i).

The values leading to a collision are not encoded in Base64 ; this was done
for convenience. A sanitizer can add the calculated values without additional
encoding, except the encoding for negative values. Note, this does not have a
security-impact; a maliciously changed r′i will most likely result in a wrong digest
value. Thus, the whole signature validation will fail and malicious alterations will
be detected. In our performance evaluation we replaced every sanitized subdoc-
ument by the fixed string <test id="ID">xxx</test>.

For the Miyazaki scheme we have a different sanitization process: The whole
subdocument has to be replaced with a new element <sanitized id="ID>
ARBITRARY STRING </sanitized>. This allows for an easy decision which com-
mitment value to use when calculating the auxiliary points. Additionally, the
corresponding de-commitment values have to be removed as well.

Special Implementation of the Zhang scheme. The chameleon hash pro-
posed by Zhang et al. requires a very large signature and the reconstruction
of E(Fq) for each validation. We used a client-server approach. Every method
of the chameleon hash is calculated by a TTP and transfered to the calling
application. This was done to avoid reconstructing the elliptic curve for every
validation and to have a smaller signature, which just contains the random point
(xi, yi) ∈ E(Fq) and the recipient S for each reference. Note, this use of an online-
TTP is not enforced by the scheme itself; the verification only needs the public
key to reconstruct the curve.
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4 Performance Evaluation of Implemented Schemes

For each performance measurement we performed 100 runs and calculated the
median to reduce the impact of the probabilistic algorithms. Every input is di-
gested using a standard cryptographic hash prior to hashing it with the chameleon
ones. Thus, the results are independent of subdocument’s length. For every
identity-based scheme we used a fixed S as well.

Tests were run on a Lenovo Thinkpad T61 with an Intel T8300 Dual Core @
2.40 Ghz and 4 GiB of RAM. The operating system was Ubuntu Version 10.04
(64 Bit), while the Java-Framework version was 1.6.0 20-b02.

4.1 Algorithms: Setup, Hashing and Forging

To have a similar and commonly known algorithm to compare with, the RSA
key-pair-generation-algorithm was also measured. e has been fixed to 65537 in
the RSA algorithm. The results are shown in Tab. 1 along with SHA-512 for
hashing.

Krawczyk et al. The key pair generation time was the longest. It can basically
be divided into the need to find a safe-prime p = 2q + 1 and a generator of
order q, generating Z/pZ. Detailed analysis found the generation of the safe-
primes consumes the most time (99%), while finding a generator and setting
up the keys is negligible with less than 1% of the whole key generation time.
Our comparison yielded that key-length has the biggest performance impact for
Krawczyk, especially notable during key-pair generation. Currently the highest
practical key-size is 512 Bit. Hashing and forging do not use much time and
are almost calculated instantly. We suggest a pool of pre-generated key-pairs to
avoid long wait times for new key-pairs.

Ateniese et al. The key-pair-generation of the Ateniese scheme is not as ex-
pensive as the Krawczyk scheme since no safe-primes are needed. We found the
prime generation to be the limiting factor; all other operations are almost in-
stantly calculated. The argumentation is basically the same as for the Krawczyk

Table 1. Median Runtime: Input: 160 Bit; Hash-Output: 512 Bit; all in μs

Algorithm Setup Hash IForge UForge

RSA/SHA-512 400,119 7 - -

Krawczyk 11,082,481 3 4 16

Ateniese 7,856 410 424 522

Chen 68,319 1,878 248,280 7,661

Zhang 512Bit-Key 9,570,008 25,547,333 8,267,775 -

Zhang 128Bit-Key 243,040 929,648 381,215 -

Miyazakia 4,700 generation: 11,400 0 -
verification: 70

a Miyazaki does not use hashing, times are given for the comparable operation.
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scheme. The setup is fast and even huger security parameters can be used. How-
ever, hashing and forging are more complex algorithms than Krawczyk ’s and
take longer. Pre-generated primes could increase the performance. Compared to
Krawczyk ’s it will be faster if you consider that Krawczyk would require new
keys, while the ID-based concept used by Ateniese just needs one “master-key-
pair”. In practice, the speed gained during key generation compensates the longer
hashing times.

Chen et al. As the Ateniese scheme, the Chen scheme does not require safe-
primes. However, the needed primes cannot be arbitrary, since p ≡ q ≡ 3
(mod 4) must be true. ω has been fixed to 64 for all measurements. Notably,
Chen’s IForge algorithm takes a lot of time. Further investigation showed the
extraction process to consume the most time, in particular the square root cal-
culation is very expensive, consuming > 99% of the time. However, the practical
impact is reduced since Chen is key-exposure-free. Compared to Ateniese, which
does not offer this property, the impact of key-exposure must not be limited.
Ateniese et al. suggested in [2] to append a TransactionID to the ID, result-
ing in the extraction procedure being performed more often in Ateniese than in
Chen. A practical performance increase for the TTP for Chen is to extract the
trapdoor along with the registration or on request, as Ateniese proposed for his
scheme [2].

Zhang et al. The Zhang scheme relies on elliptic curves and pairings. Hence,
the Key-Pair-Generation is actually constructing an elliptic curve along with its
parameters. Note, the evaluation of the Zhang scheme includes the delays caused
by our TCP-socket-connections. Additionally a delay of 1s had to be introduced
to avoid a timeout of the signature-generation due to the TCP-transfers and
calculation on the server-side. This implementation-specific overhead has been
subtracted from the presented timings. Our observation showed that even after
the curve has been constructed, the setup for Zhang still takes a long time. This
is caused by adding the system parameters; however due to the library approach
no further investigation was possible.

The Zhang scheme suffers from certain limitations; first of all the key-pair-
generation is very slow. Tab. 1 shows that for a key length of 512 Bit the Zheng
algorithms take considerately more time. The speeds are getting practical when
the key length for the elliptic curve based scheme is lowered to 128 Bit, which
offers comparable security. The practical impact of the slow IForge algorithm
depends on how often sanitization is done.

Miyazaki et al. Finally, the Miyazaki scheme. It works completely differ-
ent; instead of calculating a digest it calculates a commitment, which can be
seen as a key-pair. Obviously, most time is spent calculating the commitments
(11, 400μs), while verifying a commitment is almost instantly (70μs). As for the
other schemes, this is due to the fact that primes must be generated. Redaction,
comparable to IForge, is just removing the element from the XML, and does not
require any calculation at all.
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4.2 Signature Generation and Verification

Comparing algorithms with such different approaches is like comparing ap-
ples and oranges; however, all schemes aim to provide sanitizable signatures.
The preceding section presented the bare runtime of each algorithm. To see
how the different schemes scale in praxis, they have been used to generate an
XML signature over the document listed in Lst. 1.4. By xpointers we split
the document into two subdocuments; namely #xpointer(id(’8492340’)) and
#xpointer(id(’8492341’)) have been used, returning the subtrees Item and
Address.

Listing 1.4. The XML File used

1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <PurchaseOrder>
3 <Item id="8492341 ">
4 <Description>Video Game</ Description>
5 <Price>10.29</Price>
6 </Item>
7 <Buyer>
8 <Name>My Name</Name>
9 <Address id="8492340 ">

10 <Street >One Network Drive</Street >
11 <Town>Burlington</Town>
12 <State >MA</State>
13 <Country >United States </Country >
14 <PostalCode>01803</PostalCode>
15 </Address >
16 </Buyer>
17 </PurchaseOrder>

For this evaluation each scheme will be measured with 512 Bit keys, while
the key-generations, both for the underlying RSA-Signature and the chameleon
hashes, have been omitted to have comparable results. This was done since the
Zhang scheme relies on a TTP to generate the curve on start-up. SHA-512 has
been measured as well to see the performance impact of a sanitizable schemes.
Tab. 2 shows the results for a “real” signing and verification step. As before, to
have meaningful results a 1s delay was subtracted for the Zhang scheme and the
server was already running.

4.3 Summary

Surprisingly, our evaluation showed that all schemes come with similar runtime
figures for generation and for validation; this finding, however, does not account

Table 2. Scheme Comparison (Generation/Validation) for 512 Bit keys in μs

SHA-512 Krawczyk Ateniese Chen Zhang 128 Zhang 512 a Miyazaki

Generation 2,010,624 2,219,806 2,472,972 2,424,781 3,645,070 52,434,635 2,675,284

Validation 1,373,907 1,301,410 1,366,284 1,278,295 1,908,047 50,256,292 1,339,633

a Zhang with 128 Bit offers a comparable security.
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for the pre-generated key-pair. Taken the key-pair generation into account as
well, the chameleon hash proposed by Ateniese et al. achieves the best per-
formance, in particular since just one key-pair has to be generated. Note, that
it suffers from the key-exposure-problem as discussed in [2]. Using transaction-
based IDs helps reducing the key-exposure-problem’s impact, hence the Ateniese
scheme is not as heavily affected as the Krawczyk scheme. Krawczyk needs a new
key-pair for each subdocument to prohibit non-wanted key-exposure. Thus, all
ID-based chameleon hashes perform better in this respect, even if they require
more complex algorithms. The notable exception is the Zhang scheme, which re-
quires calculations on elliptic curves. However, cryptographic algorithms based
on ECC offer a higher degree of security. Hence, smaller key-sizes are acceptable
which decreases the time needed for the algorithms.

The Miyazaki scheme is not as suitable for XML files as the Ateniese scheme
regardless of the chameleon hash. Since in Miyazaki it is not possible to protect
structural information as it requires non-overlapping subdocuments. However,
we showed it has a comparable runtime.

5 Property Changes of Schemes due to Mixing

The schemes introduced suffer from certain limitations, e.g. a verifier is able to
figure out what parts are sanitizable in the Ateniese scheme by just looking at
the used digest method. We propose some additions to these schemes which add
resp. remove certain properties.

5.1 Properties of Sanitizable Signature Schemes

Brzuska et al. already formalized most of the properties given in [5]. Hence just
the basic idea is given here.
1. Unforgeability: For an outsider (i.e. for anyone not being the signer or a

sanitizer) it is infeasible to forge signatures.
2. Immutability: The sanitizer should not be able to change parts of the docu-

ment which are not designated to be sanitized.
3. Privacy: Sanitized parts should not leak any information which may be used

to reconstruct information which has been censored.
4. Transparency: It should be impossible for the verifier to decide whether a

given document was sanitized or not. Ateniese et al. in [1] further distinguish
between:
– Weak Transparency: Weak Transparency means that the verifier is able

to identify the subdocuments mi that can potentially be sanitized.
– Strong Transparency: Is the opposite of Weak Transparency; the recipi-

ent is not able to distinguish whether a subdocument mi is sanitizable
or not.

To avoid confusion, Brzuska et al. formalized only Ateniese et al.’s notion
of Weak Transparency under the term Transparency. [5]

5. Accountability: The responsibility of a message should not be transferable to
another party, in particular the original signer should not be held responsible
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for a maliciously sanitized message. Brzuska et. al showed that this property
must be split up as well: [5]
– Signer Accountability: If a document was not signed by the signer even

a sanitizer should not be able to accuse him.
– Sanitizer Accountability: If a document was signed by a signer, the signer

should not be able to accuse the sanitizer if he did not alter document.
Not formalized byare the following properties:

6. Restrict to Values: A sanitizer is just able to replace a subdocument with
certain preset values instead of ones of his own choice.

7. Sanitization Control: Defines if a signer has control over the parts which can
be sanitized by a sanitizer.

8. Consecutive Sanitization: Defines if an already sanitized document can be
sanitized again by another sanitizer.

9. Consecutive Sanitization Control: Defines if a sanitizer can prohibit further
sanitization by another sanitizer.

5.2 Extensions of the Ateniese Scheme

This subsection will introduce some additions to the Ateniese scheme, using a
mixture of given primitives. The proposed extensions will lead to the redefinition
of transparency in Sec. 6.

Removing Transparency. The Ateniese scheme [1] is defined as
σateniese = SIGN(d1||...||dn), where

di =

{
H(mi) if mi is not sanitizable
CH(mi) if mi is sanitizable

This allows to see which subdocuments mi are potentially sanitizable, but not
if they have actually been sanitized. We change this by adding the original ri

for each chameleon hash to allow a “mi has been sanitized” detection. Therefore
the signature is expanded to σ′

ateniese = SIGN(s1||...||sn||d1||...||dn), where

si =

{
The ri in CH(mi, ri) if mi is sanitizable
∅ else

Every si is covered the signature in cleartext. This implies that every recipient is
able to decide whether a given (sub-)document has been sanitized, since he can
compare the r′i used for calculating the chameleon hashes with the si provided
by the signature σ′

ateniese. This has no impact on security, because the verifier
is still not able to find additional collisions since he needs the original mi. This
is the scheme implemented in this paper, as proposed by Tan et al. [18].

Removing Transparency II. The previous approach can be fine-tuned fur-
ther. The ri used to calculate each chameleon hash are now not directly ap-
pended to the signature, but hashed using a cryptographic hash, i.e.: σ′′

ateniese =
SIGN(d1||...||dn||h1||...|hn) while hi = H(si). However, this construction can be
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enriched with an interesting flavour; the hash H could also be replaced with a
chameleon hash (hi = CHtrans(si)), therefore allowing only the sanitizer who
holds an additional private key sktrans to transparently sanitize a subdocument.

This extended scheme requires that every ri is part of the respective hash;
however it is possible that the property of non-transparency is just desired for
certain subdocuments. Obviously, this can be achieved by removing ri from the
concatenation. This allows a signer to decide where he wants that property.
However, an attacker cannot add r′i to falsely indicate a sanitization; the verifier
can use the ri for verification which will reassure him that mi was not sanitized.
The trivial proof is omitted for brevity.

Adding Strong Transparency. Ateniese et al. already note in [1] that it is
very simple to gain strong transparency by generating distinct key pairs for each
chameleon hash, i.e.

di =

{
CHki(mi) if mi is sanitizable
CHui(mi) if mi is not sanitizable

We will later make use of this approach. This can also be used to improve
the overall performance. Originally, each chameleon hash needed a separate key
pair; However, if the standard chameleon hash is replaced with an ID-based
construction, just S needs to be different for each generated hash since the
private key B differs. This leads to another interesting application, a signer can
define groups, similar to networking domains. This means the TTP distributes
the secret keys with respect to a sanitizer’s group membership.

A similar approach without using a TTP is to use the extended chameleon
hash presented by Ren et al. which allows a multi-user hash. [17] Hence, a
signer can select which sanitizers are able to sanitize while hiding the group
membership.

Adding Restricting to Values. One way to restrict someone to values is the
use of an chameleon hash without an UForge algorithm, like the one proposed
by Zhang et al. [20]. An additional way is to use Bloom-Filters as proposed by
Klonoswki et al. [11].

5.3 Miyazaki Scheme

This section will introduce some mechanisms which change the properties of the
Miyazaki scheme.

Adding Weak Transparency. Adding weak transparency can be achieved by
adding a random number of “fake-documents” between the real subdocuments.
This fake-subdocuments will be redacted (sanitized) by the signer itself prior to
sending it to the sanitizers. As a result the signer gives only sanitized documents
to the first sanitizer. Thus, neither a sanitizer nor a verifier knows if the document
has been sanitized by sanitizers, since he cannot distinguish between a sanitized
original subdocument and a sanitized fake-subdocument. However, the signer



180 H.C. Pöhls, K. Samelin, and J. Posegga

now no longer distributes technically not sanitized documents, which might not
be wanted in all use cases.

Adding Accountability, Consecutive Sanitization Control & Restrict-
ing to Sanitizers. A way to add both signer and sanitizer accountability is
to use a similar mechanism as with the Ateniese scheme. The signer adds an
additional chameleon hash over the whole message m to the signature using a
tag-based-chameleon hashi.e. the one proposed by Brzuska et al. in [5].

σmiyazaki = SIGN(dch||P1||...||Pn||Q1||...||Qn) where dch = CHtag(m).
If a subdocument is redacted now, the tag-based-chameleon hash needs to be
adjusted as well. This allows a signer to trace back the changes and thus to find
a malicious sanitizer. Note, a sanitizer is not able to do arbitrary changes to the
subdocument since the signature still covers the commitments. This construction
also implies that just sanitizers defined by the signer are able to alter a signed
document, since only they know the trapdoor needed to calculate collisions.

To prohibit consecutive sanitization control an additional chameleon hash over
the (de-)commitment values of the mask can be constructed. The argumentation
is essentially the same as before.

6 The Transparency Property Revisited

Ateniese et al. define the property of transparency (T ) as follows:
Given a signed message with a valid signature, no party — except the
censor and the signer — should be able to correctly guess whether the
message has been sanitized. [1]

They further divide the property into “weak” (WT ) and “strong transparency”
(ST ):

We further distinguish among two flavors of transparency: weak and
strong. Weak transparency means that the verifier knows exactly which
parts of the message are potentially sanitizable and, consequently, which
parts are immutable. In contrast, strong transparency guarantees that
the verifier does not know which parts of the message are immutable and
thus does not know which parts of a signed message could potentially be
sanitizable. [1]

Essentially, T always implies exactly one of WT or ST and vice versa.

(T =⇒ (ST ∨̇WT )) ∧ (ST ∨̇WT )) =⇒ T ) ≡ T ⇔ (ST ∨̇WT )

where ∨̇ denotes “exclusive or”. Practically, a verifier either knows which mi is
potentially sanitizable or he does not. Hence, (ST ∨̇WT ) should be a tautology,
i.e. |= (ST ∨̇WT ). Since T ⇔ (ST ∨̇WT ) this results that T is always true. This
is counterintuitive and contradicts the Miyazaki scheme. Also, our construction
in Sec 5.2 removes transparency in general on the message level, but leaves WT
defined on subdocument level untouched.

Strong transparency does not always imply transparency either, as the fol-
lowing construction demonstrates. Let σ = SIGN(d1||...||dn||H(m)) where all
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di are calculated as in the Ateniese scheme with strong transparency. (Sec. 5.2)
Now a verifier is given the digest H(m) along with m′ and the signature σ. m′

is the potentially sanitized message, and he can use σ to verify the signature
over m′. With this construction a verifier can deduce that m has been altered by
comparing H(m) and H(m′), but gains no knowledge about what parts mi are
potentially sanitizable. Hence, this scheme does not have the property of trans-
parency while it maintains the property of strong transparency. On a closer
look, the scheme given in 5.2 can also be modified to fulfill this requirement;
the only addition is to hash the concatenation of r1, ..., rn prior to signing, i.e.
σ = SIGN(H(r1||...||rn)||d1||...||dn). The verifier is provided with H(r1||...||rn).
He further knows each chameleon hash’s actual value r′i, which can be differ-
ent or equal to ri. If the verifier compares H(r1||...||rn) from the signature with
H(r′1||...||r′n) he can identify that m was sanitized, but cannot deduce which mi.

A scheme without transparency but with weak transparency can be con-
structed in a similar way; instead of using the Ateniese scheme with strong
transparency the standard one is used. This allows to see what subdocuments
are potentially sanitizable but only to deduce if the document as a whole has
been sanitized.

We conclude that the properties of weak and strong transparency are actually
independent from the property of transparency. Hence, we do not see them as
“different flavours” [1] as stated by Ateniese et al. However, Ateniese et al.
correctly differentiated a difference in scope linguistically. We want to emphasize
this further by explicitly differentiating the scope:

Transparency makes a statement about a sanitized document as a whole.
Weak and Strong Transparency make statements about sanitizable
subdocuments.

7 Conclusion

We have integrated sanitizable signature schemes into the existing XML Digital
Signature Specification without any major adjustments, and by disregarding
the workarounds caused by bugs in the JCA. This also covers schemes which
do not rely on the standard hash-and-sign paradigm like the Miyazaki scheme
and schemes based on a TTP. Moreover, we showed that the performance of all
schemes are comparable to the standard SHA-512 - RSA signature procedure.
Furthermore, we have shown that the existing schemes are extendable while still
being compliant with the XML Digital Signature Specification. This also lead
to the finding that the properties of Weak and Strong Transparency, covering
subdocuments, are independent from the overall property of Transparency, which
concerns the document as a whole.
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Abstract. This paper introduces a novel tool, public-key anonymous
tag system, which is useful in building controlled privacy-protecting pro-
tocols. The double-trapdoor structure of the system not only allows the
authority to create a token which can trace someone’s tags without vio-
lating anonymity of the tag-issuer, but also allows the issuer to claim or
deny the authorship of a tag in the stateless manner. An efficient instan-
tiation based on simple assumptions in the standard model is presented.
We then use it for a modular construction of traceable signatures. Our
scheme supports a signature authorship claiming (and denial) that binds
a claim to the public-key of the signer unlike that in known schemes. It
is also the first scheme in the literature which features concurrent joining
of users, stronger anonymity and so on without random oracles.

1 Introduction

Group signatures allow members of a group to sign on behalf of the group, with-
out revealing their identity. A line of research efforts has been focused on incor-
porating a variety of anonymity revocation mechanisms for balancing between
privacy and fairness. For example, the group manager (GM) can use a trapdoor
to reveal the identity of a group signature’s signer. In verifier-local revocation
(VLR) group signatures [6], this opening mechanism is usually absent. Instead,
the GM can trace or revoke a user by publishing a revocation token of this user
so that any verifier can locally check if the author of the signature has been re-
voked. Traceable signatures [12], in addition to the opening and the user tracing,
allow the signer to claim the authorship of a signature, without maintaining any
state other than the signing key. Thus traceable signatures can be regarded as
group signatures with additional anonymity management mechanism.

Group signatures have been extensively studied since the introduction in [8].
In [10], a semi-modular construction is done based on selective-tag weakly chosen
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ciphertext secure encryption and other building blocks in the standard model.
A modular construction which achieves concurrent security (i.e., the joining of
different members can be arbitrarily interleaved) is given in [3]. On the other
hand, as seen in [13] for instance, the tracing and the claiming mechanisms
of traceable signatures are often constructed in a hand-crafted manner. While
the quasi-modular construction of traceable signatures in [9] essentially realizes
the tracing via the use of pseudorandom function, this scheme does not satisfy
the usual unlinkability guarantee. A systematic way to realize the anonymity
management functionalities provided by traceable signatures seems to be lacking.

1.1 Public-Key Anonymous Tags with Double-Trapdoor

In this paper, we first propose a new tool, which we call public-key anonymous
tag system (AT for short) with the double-trapdoor property. We then use it as
a building block for constructing a traceable signature scheme.

AT supports tag tracing (by the authority), claiming (by the tag issuer) and
denial (by non-issuers). A tag can be created with a user’s individual secret-key,
and cannot be associated to the user in normal circumstances. Whenever needs
arise, the authority can use the master key to publish a tracing token that allows
anyone to link all tags issued by the same user. Yet the tracing token does not
reveal the link to the public-key of the user. Thus all signatures of a given user
can be traced while retaining the anonymity. The same token can also be created
from the user’s secret-key. This double-trapdoor property makes it possible for
the users to claim or deny the authorship of tags by first creating the token and
proving in zero-knowledge that the committed token is linked to his/her public-
key and (not) linked to the tag in question. We present a concrete construction
based on simple assumptions in the standard model.

1.2 Modular Construction and CCA-Anonymity

Unlike that in the group signatures, the anonymity in the VLR framework [6]
only ensures that any adversary cannot compromise the anonymity of a signer
whose signatures have never been opened. Such a level of anonymity is called
CPA-anonymity. In this paper, we construct traceable signatures with stronger
level of anonymity, called CCA-anonymity, that allows the adversary to revoke
the anonymity of adaptively chosen signatures. This better models the require-
ment that an honest user’s signature remains anonymous even when other users’
signatures have been opened.

Previous constructions, e.g., [12,10,13,9], require an explicit encryption step
in signing. Indeed, it was shown that public-key encryption is necessary for the
opening feature of group signatures [1]. With AT, we can construct a trace-
able signature scheme in a modular fashion without encryption as a building
block. (The removal of encryption is conceptual since we use non-interactive
zero-knowledge proof (NIZK) of knowledge, which is equivalent to encryption.
It therefore does not contradict to the result in [1]. Yet it brings simplicity to
the construction when stronger level of anonymity is considered.)
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1.3 Real Authorship Claiming and Denial Mechanism

A more important benefit brought by the public-key nature of the tag system is
the possibility of realizing a better signature authorship claiming and denial of
traceable signatures. In the existing schemes, e.g., [13], the approach for claiming
the signature authorship is to produce a proof of some witnesses that govern the
relationship between the various parts of a signature. However, it is essentially
impossible to settle once and for all the linkage between a signature and the
identity of the issuer because nothing about the identity is in public. A public-
key anonymous tag system, on the other hand, allows a “real” claiming that
binds to the identity of the issuing user.

We remark that our approach, that uses a public certificate to bind a user’s
identity to a public-key, has a “drawback” as the original traceable signatures
in [12]. That is, the GM (as the issuer of the certificates) can create a signature
which can be linked to any given signature. Yet this is a reasonable compromise
since it is of the GM’s interest to identify the “bad” signatures issued by users.

Finally, note that the authorship denial functionality is uncommon in trace-
able signature schemes. While it is theoretically possible by proving in zero-
knowledge that a signature and a public-key of a user in question are not in
a proper relation, efficient instantiation is often difficult due to the nature of
the “proof of inequality”. Our concrete instantiation of AT allows very efficient
denial of authorship which is of an independent interest.

2 Anonymous Tag System

2.1 Definitions

Definition 1 (Anonymous Tag System). An anonymous tag system, AT, is
a tuple of algorithms, AT.{Setup, Key, Tag, Reveal, Claim, Link}:

Setup: (mtpk,mtsk) ← AT.Setup(1λ) is a probabilistic algorithm that generates
a common parameter, mtpk, and a master secret-key mtsk.

Key: (utpk, utsk)← AT.Key(mtpk) is a key generation algorithm that outputs a
pair of public-key and a secret-key, (utpk, utsk), for an individual user.

Tag: tag← AT.Tag(mtpk, utsk) is a probabilistic algorithm that generates a tag,
tag, from user’s secret-key utsk.

Reveal: tkn← AT.Reveal(mtsk, utpk) is a deterministic algorithm that generates
a link token tkn for user’s public-key utpk using master secret-key mtsk.

Claim: tkn ← AT.Claim(mtpk, utsk) is an algorithm that generates a link token
tkn from the user secret-key utsk.

Link: 1/0← AT.Link(mtpk, tag, tkn) is an algorithm that decides if tag is linked
to the given link token tkn. It outputs 1 for input (tag, tkn) generated cor-
rectly as (utpk, utsk)← AT.Key(mtpk), tag← AT.Tag(mtpk, utsk) and tkn←
AT.Reveal(utsk, utpk), or tkn← AT.Claim(mtpk, utsk).

A secure AT provides three properties, unlinkability, anonymity, and traceability.
While unlinkability and anonymity are considered as comparable notions in some
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other privacy-protecting protocols, they are incomparable in our framework. We
start with unlinkability that captures the idea that it is hard for the public to
see whether tags are generated by the same user or not. In the following formal
definition, the adversary is given tags (through oracles) whose issuers are known
as side-channel information.

Definition 2 (Unlinkability). AT is unlinkable if, for all polynomial-time al-
gorithm A, the advantage of A in making the following experiment returns 1,
i.e., AdvAUnlink(λ) = |Pr[ExpAUnlink(λ) = 1]− 1

2 |, is negligible in λ.

Experiment ExpAUnlink(λ) :

mtpk← AT.Setup(1λ),

(utpk0, utsk0)← AT.Key(mtpk), (utpk1, utsk1)← AT.Key(mtpk), b← {0, 1},

tag∗ ← AT.Tag(mtpk, utskb).

b̃← AAT.Tag(mtpk,utsk0),AT.Tag(mtpk,utsk1)(mtpk, utpk0, utpk1, tag
∗).

Return 1 if b = b̃. Return 0, otherwise.

Anonymity captures the idea that it is hard to associate a tag to a public-key
even after the link token for the public-key is published. Unlike the unlinkability,
the adversary is not given any reference tags whose issuer is known in advance
since otherwise the anonymity is trivially lost through the link tokens.

Definition 3 (Anonymity). AT is anonymous if, for all polynomial-time al-
gorithm A, the advantage of A in making the following experiment returns 1,
i.e., AdvAAnon(λ) = |Pr[ExpAAnon(λ) = 1]− 1

2 |, is negligible in λ.

Experiment ExpAAnon(λ) :

mtpk← AT.Setup(1λ),

(utpk0, utsk0)← AT.Key(mtpk), (utpk1, utsk1)← AT.Key(mtpk), b← {0, 1},

tknb ← AT.Reveal(mtsk, utpkb), tkn1−b ← AT.Reveal(mtsk, utpk1−b).

b̃← AAT.Tag(mtpk,utskb),AT.Tag(mtpk,utsk1−b)(mtpk, utpk0, utpk1, tknb, tkn1−b).

Return 1 if b = b̃. Return 0, otherwise.

Finally, we require tags be traceable in the sense that the link token computed
by the authority associates all tags generated by the target user. We do not
consider the traceability for maliciously generated public-keys.

Definition 4 (Traceability). For (mtpk,mtsk) ← AT.Setup(1λ), and two in-
dependent runs of AT.Key (utpk0, utsk0) ← AT.Key(mtpk) and (utpk1, utsk1) ←
AT.Key(mtpk), AT.Reveal(mtsk, utpk0) = AT.Reveal(mtsk, utpk1) happens only
with negligible probability. Furthermore, for any tag, there exists at most one
tkn that fulfills 1 = AT.Link(mtpk, tag, tkn).
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2.2 Efficient Instantiation

Let Λ = (p, G, GT , e, g) be a description of groups G and GT of prime order p
equipped with an efficient bilinear map e : G × G → GT . It includes a random
generator, g ∈ G. We assume that Λ is determined according to security param-
eter λ. We assume that the Decision Linear Assumption (DLIN) [4] holds for Λ.
Namely, given (g1, g2, g3, g

a
1 , gb

2, g
c
3), it is hard to decide whether c = a+ b or not.

We also make the following novel assumption, which is in the Uber-assumption
family [7] and can be easily justified in the generic (bilinear) group model [16].

Definition 5. (Decision Reciprocity Assumption (DRA)) Given Λ and (h1, h2,
h3, h

u
1 , hv

2, h
c
3), it is hard to decide whether c = u/v or not.

In Fig. 1, we present an efficient construction of AT based on DLIN and DRA
over Λ. The underlying idea is to “encrypt” a DLIN instance by using the
DRA structure. Slightly more in detail, we set a master-key, a user-key, and
a link token to be in the correct form of DLIN. Namely, for a linear relation
(g1, g2, g3, g1

a, g2
b, g3

a+b), we set (g1, g2, g3) be the master public-key mtpk, and
(g1

a, g2
b) be user’s public-key utpk, and g3

a+b be the link token. A tag is formed
by “encrypting” the link token as (gu, gv, (g3

a+b)u/v). Once the token is pub-
lished, tags can be linked by checking the relation e(ga+b

3 , gu) = e((ga+b
3 )u/v, gv).

Parameter Λ = (p, G, GT , e, g) is common for all algorithms below.

– AT.Setup: Choose x, y ← Z∗
p, g3 ← G and compute g1 = g

1/x
3 , g2 = g

1/y
3 .

Output mtpk = (g1, g2, g3) and mtsk = (x, y).
– AT.Key: Given mtpk = (g1, g2, g3), choose a, b ← Z∗

p, and output utpk =
(ga

1 , gb
2) and utsk = (a, b).

– AT.Tag: Choose u, v ← Z∗
p, and output tag = (gu, gv, (ga+b

3 )u/v).
– AT.Reveal: Given utpk = (ga

1 , gb
2) of a user, compute tkn = (ga

1 )x(gb
2)

y =
ga+b
3 by using master trapdoor (x, y).

– AT.Claim: Given secret-key (a, b), publish ga+b
3 .

– AT.Link: Given tag = (gu, gv, (ga+b
3 )u/v) ∈ (G∗)3 and tkn = ga+b

3 ∈ G∗,
output 1 if

e(ga+b
3 , gu) = e((ga+b

3 )u/v, gv) (1)

holds. Output 0, otherwise.

Fig. 1. Anonymous Tags System (AT) based on DLIN and DRA

Lemma 6. AT in Fig. 1 is anonymous if DLIN holds for Λ.

Proof. We proceed in a sequence of games, from a game where the challenger be-
haves like in the above anonymity game, and end up with one in which the tokens
(and the tags produced by the oracles) are computed independently from the
public-keys. Let Wi be the event that the adversaryA outputs b̃ such that b = b̃
in Game i. We show that all the games are computationally indistinguishable.
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Game 0. This is the anonymity game. Pr[W0] = 1
2 + AdvAAnon(λ).

Game 1. The tags from AT.Tag(mtpk, utskb) are computed differently. For each
query, choose u, v ← Z∗

p and compute tag = (gu, gv, (tknb)u/v). Similarly, each
tag from AT.Tag(mtpk, utsk1−b) is computed as tag = (gu, gv, (tkn1−b)u/v) for
randomly chosen u and v. The change is only syntactic, so Pr[W1] = Pr[W0].

Game 2. The two pairs of public/secret-keys {(utpki, utski)}1i=0 are computed
differently. For mtpk = (g1, g2, g3), choose a, b ← Zp, and compute A = ga

1 ,
B = gb

2. Then for random αi, βi, γi ← Zp, i = 0, 1, set utpki = (gaγi+αi

1 , gbγi+βi

2 )

=
(
Aγigαi

1 , Bγigβi

2

)
and the secret-key accordingly. Note that if C = ga+b

3 , then

tkni = Cγigαi+βi

3 , for i = 0, 1. The public-keys follow the correct distribution
and the tokens are computed correctly, so Pr[W2] = Pr[W1].

Game 3. The tokens are computed as tknb = gcb
3 and tkn1−b = g

c1−b
3 , for

random c0, c1 ← Zp. Game 2 and Game 3 are indistinguishable due to DLIN.
For (g1, g2, g3, g

a
1 , gb

2, g
c
3), tuple (g1, g2, g3, g

aγ+α
1 , gbγ+β

2 , gcγ+α+β
3 ) is in the linear

relation if c = a + b. On the other hand, if c is random, the tuple distributes
uniformly. So, if we are given a tuple (g1, g2, g3, A, B, C) by a DLIN challenger,
we compute the public-keys and the tokens as in Game 2 (if the tuple is a DLIN
one) or as in Game 3 (if not). Therefore, | Pr[W3]− Pr[W2] |= negl(λ).

In the last game Pr[W3] = 1
2 as the tokens are independent of the public-keys

(the role of b in tknb = gcb
3 is symmetric to the variable (1− b) and its value is

never revealed). Moreover, the tags returned by the oracles are computed so that
they match the corresponding token but are independent from the public-keys.
Therefore, if DLIN holds, A has a negligible advantage of winning.

Lemma 7. AT in Fig. 1 is unlinkable if DLIN and DRA hold for Λ.

Proof. We proceed in a sequence of games. We start from the original unlink-
ability game in Definition 2, and proceed like in Game 1, Game 2, and Game
3 by computing the challenge tag in different ways as if it is the output from
an oracle query. This way the tags become independent from the public-keys.
Then, we go through a couple more games so that the challenge tag becomes
independent from the tags returned by the oracle queries. In the last game, A
cannot do any better than guessing. Let Wi denote the event that the adversary
A outputs b̃ such that b = b̃ in Game i.

Game 0. This is the unlinkability game. Pr[W0] = 1
2 + AdvAUnlink(λ).

Game 1. Proceed like in Game 1 in the previous proof. The change is only
syntactic regarding the way the tags are computed, so Pr[W1] = Pr[W0].

Game 2. Proceed like in Game 2 in the previous proof. The public-keys follow
correct distribution and the tokens are computed correctly, so Pr[W2] = Pr[W1].

Game 3. Proceed like in Game 3 in the previous proof. Note that the tags
(including the challenge tag) are computed using fresh randomness from the
corresponding tokens and do not depend on the public-keys. If DLIN holds,
then | Pr[W3]− Pr[W2] |= negl(λ).
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Game 4. Change again the way AT.Tag(mtpk, utskb) computes the tags. In Game
3, for a fixed random cb, tags were computed as (gu, gv, (gcb

3 )u/v) for randomly
chosen u, v. Instead, choose h1, h2, h3 ← G∗ and compute each tag returned by
AT.Tag(mtpk, utskb) (and the challenge tag) as tag = (hu

1 , hv
2, h

u/v
3 ) for randomly

chosen u, v ← Z∗
p. The change is only syntactic and does not affect the output

distribution, so Pr[W4] = Pr[W3].
Game 5. Process the oracle queries for AT.Tag(mtpk, utskb) as in the previ-
ous game but compute the challenge tag as (hu

1 , hv
2, h

w
3 ) for randomly chosen

u, v, w← Z∗
p. If DRA holds, then | Pr[W5]−Pr[W4] |= negl(λ) as any adversary

distinguishing the two games with non-negligible probability breaks DRA.
Now the challenge tag, which is the only object in the experiment related to

the variable b, consists of three randomly chosen group elements. The adversary’s
advantage is clearly no better than guessing1. Therefore, if DLIN and DRA hold
AdvAUnlink(λ) = negl(λ).

Lemma 8. AT in Fig. 1 is traceable.

Proof. The probability of having the same a + b in Zp is negligible since a and b
are chosen randomly in each run of AT.Key. It is also clear that there is a unique
token that fulfills the relation (1) for a given tag.

3 A Modular Construction of Traceable Signatures

3.1 Syntax and Security Model

A traceable signature scheme, TS, consists of algorithms and protocols, used
by three kinds of entities – the group manager (G), group members (P), and
verifiers (V), as follows.

– Setup : (vk, rk, ik, lk)← TS.Setup(1λ) is an algorithm that generates a group
verification-key vk, opening-key rk, certificate issuing key ik, and link-key lk.

– Join : (cert, (cert, usk)) ← 〈JoinG(vk, ik), JoinPi(vk)〉 is a pair of interactive
algorithms JoinG and JoinPi run by the manager G and a group member Pi,
respectively. Algorithm JoinG issues a certificate by using issuing-key ik. The
resulting certificate will be appended to the membership list L. Algorithm
JoinPi outputs certificate cert and private signing-key usk.

– Sign : sig ← TS.Signusk(m) is a probabilistic algorithm that generates a
signature sig for message m by using the signing-key usk.

– Vrf : 1/0 ← TS.Vrfvk(sig, m) is a deterministic algorithm that decides the
correctness of signature sig on m. It outputs 1 for any input created through
Setup, Join and Sign.

1 It is possible to strengthen the notion of unlinkability by allowing A to query oracles
AT.Tag(mtpk, utskb) and AT.Tag(mtpk, utsk1−b). For the proof to go through, we can
simulate these oracles as AT.Tag(mtpk, utsk0) and AT.Tag(mtpk, utsk1), but each tag
will be changed like what we did on the challenge tag in Game 5.
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– Open : open/⊥ ← TS.Open(vk, rk, sig) is an algorithm that identifies the
owner of a valid signature sig by using the opening-key rk. It outputs an
opening information open that identifies certificate cert owned by a member.
In case of failure, the algorithm outputs ⊥.

– Judge : 1/0 ← TS.Judge(vk, sig, m, open, cert) is an algorithm that decides
whether or not opening information open is correct with respect to sig and
cert. It outputs 1 for any input created through Setup, Join, Sign, and Open.

– Reveal : tkn← TS.Reveal(lk, cert) is an algorithm that publishes a link token
tkn with respect to the member associated to cert.

– Trace : 1/0← TS.Trace(vk, sig, tkn) is a deterministic algorithm that decides
whether a signature sig is associated to link token tkn.

– Claim : claimpf/⊥ ← TS.Claim(vk, sig, m, usk) generates a proof claimpf that
associates signature sig on m to certificate cert identified by usk. In case of
failure, the algorithm outputs ⊥.

– ClaimVer : 1/0 ← TS.ClaimVer(vk, sig, m, claimpf, cert) verifies the proof cre-
ated by TS.Claim.

– Deny : denypf/⊥ ← TS.Deny(vk, sig, m, usk) generates a proof denypf that
signature sig on m is not associated with cert identified by usk. In case of
failure, the algorithm outputs ⊥.

– DenyVer : 1/0 ← TS.DenyVer(vk, sig, m, denypf, cert) verifies the proof cre-
ated by TS.Deny.

We assume that Setup is run by a trusted party. The resulting vk is published,
and (rk, ik, lk) is privately given to the group manager G. Our model assumes a
public directory service, denoted by C, that maintains certificates issued by G.
Every certificate is registered to C and the consistency is verified publicly.

We borrow some notations from [13]. Let Mi
signed, Phonest and Pcorrupt be ini-

tially empty lists. By Pall, we denote Phonest∪Pcorrupt. Adversary A is given some
of the oracles listed as follows.

– Op-join is an oracle that executes 〈JoinG(vk, ik), JoinPi(vk)〉 on receiving a
request. When JoinPi outputs (certi, uski), the oracle updates Phonest ←
Phonest‖certi and C ← C‖certi.

– Oa-join is an oracle that works on behalf of G in Join protocol. The interac-
tion with JoinG is shown to and controlled by the adversary. On receiving a
request, it executes 〈JoinG(vk, ik),A〉. When JoinG is completed, the oracle
updates Pcorrupt ← Pcorrupt‖certi and C ← C‖certi.

– Ob-join is an oracle that works on behalf of a new member Pi in Join protocol.
On receiving a request, it picks a new identity i and executes 〈A, JoinPi〉.
When JoinPi is completed with output certi, the oracle updates Phonest ←
Phonest‖certi and C ← C‖certi.

– Osig is the non-anonymous signing oracle. It receives (i, m) as input and
returns sig← TS.Signuski

(m). It then appends (sig, m) toMi
signed. This oracle

models the situation that the adversary has some side-channel information
about the identity of the signer.
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– Oi
a-sig is the anonymous signing oracle for Pi. It receives message m as input

and returns sig← TS.Signuski
(m). It then appends (sig, m) to Mi

signed. Note
that i will be seen as a symbol instead of a concrete value in the eyes of A.

– Oopen is the opening oracle that receives (sig, m) on request, runs open ←
TS.Open(vk, rk, sig) and outputs open if 1← TS.Vrfvk(sig, m).

– Oreveal is the revocation oracle that receives i ∈ Pall. It executes tkn ←
TS.Reveal(rk, certi) and outputs tkn.

– Oclaim is the claiming oracle that takes (i, sig, m). If 1 ← TS.Vrfvk(sig, m), it
runs claimpf← TS.Claim(vk, sig, m, uski), and returns claimpf. If claimpf �= ⊥,
then (sig, m) is appended to Si

claimed. Note that this oracle can naturally be
used to verify that if a signature belongs to Pi or not.

– Odeny is the oracle that takes (i, sig, m). If 1 ← TS.Vrfvk(sig, m), it runs
denypf← TS.Deny(vk, sig, m, uski), and returns denypf.

Non-Frameability. A malicious GM should not be able to convince a verifier
about the honest member’s ownership of a signature that has never actually
been created by the member. There are two cases depending on how the verifier
is convinced, either by the opening protocol or the claiming protocol.

The malicious GM may create a signature that is traceable by using the
tracing-key of Pi (and perhaps also prove that the tracing-key in question is
indeed for Pi), however, we exclude this in our definition since we want to keep
the only “official” mean for a GM to reveal the identity of a signature to public
is to use Open. The Trace algorithm is designed to link the signatures created
by the same signer while keeping this signer anonymous, and is never meant to
be a way for a GM to convince others about the true signer of a signature.

We also exclude the unavoidable attack that all but one member use TS.Deny
to deny the authorship of a given signature to “reveal” its signer.

Definition 9 (Non-Frameability). A traceable signature scheme is non-
frameable if the following game returns 1 only with negligible probability in λ.

Experiment Frame :

(vk, rk, ik, lk)← TS.Setup(1λ)

(i∗, claimpf∗, open∗, sig∗, m∗)← AOb-join,Osig,Oclaim,Odeny(vk, rk, ik, lk)

Return 1 if certi∗ ∈ Phonest and
(
(sig∗, m∗) �∈ Mi∗

signed ∧ 1← TS.Judge(vk, sig∗, m∗, open∗, certi∗)
)
∨

(
(sig∗, m∗) �∈ Si∗

claimed ∧ 1← TS.ClaimVer(vk, sig∗, m∗, claimpf∗, certi∗)
)

Return 0, otherwise.

Security Notions against Outsiders and Members. In the following no-
tions, the adversary is given access to oracles Op-join, Oa-join, Osig, Oopen, Oclaim,
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Odeny, Oreveal which are wrapped and denoted by Oatk for readability. More ora-
cles may be given. Any restrictions on the oracles will be noted explicitly.

Definition 10 ((Bi-directional) Traceability). A traceable signature scheme
is traceable if the following game returns 1 only with negligible probability.

Experiment Trace :

(vk, rk, ik, lk)← TS.Setup(1λ)

(sig∗, m∗)← AOatk(Λ, vk)

Return 1 if 1← TS.Vrf(vk, sig∗, m∗) and

∀cert ∈ Pall, 0← TS.Judge(vk, sig∗, m∗, TS.Open(vk, rk, sig∗), cert) ∨
∀cert ∈ Pall, 0← TS.Trace(vk, sig∗, TS.Reveal(lk, cert)) ∨
(∃certi, certj ∈ Pall, certi �= certj ,

1← TS.Judge(vk, sig∗, m∗, TS.Open(vk, rk, sig∗), certi) ∧

1← TS.Trace(vk, sig∗, TS.Reveal(lk, certj))
)

Return 0, otherwise.

The notion of anonymity claims that the outsider should not be able to see
which of the two users issued the target signature even when the link tokens for
those users are available. It can be seen as a natural extension of the anonymity
for the anonymous tag system. The adversary is given access to the oracles Osig

and Oreveal, but with no query about the target users i0, i1. Nevertheless, the
adversary can obtain “anonymous” signatures (via Oib

a-sig and Oi1−b

a-sig oracles) and
the link tokens (tknb, tkn1−b) of the target users. The adversary can also query
Oopen, Oclaim, and Odeny, but not on the anonymous signatures of i0, i1.

In the security model of group signatures in the literature, e.g., [10], some of
the secret-keys among (rk, ik, lk) can be leaked to the adversary. For instance,
when considering anonymity, the adversary is given the certificate issuing key
ik. Such a fine grained security was not considered in the context of traceable
signatures [12,13], and we follow that model. Thus our trust model is slightly
stronger than that of [10]. We will revisit this point in Section 3.2.

Definition 11 (Anonymity). A traceable signature scheme is anonymous if
the following game returns 1 only with negligibly better probability than 1

2 . In the
following, target identities, i0 and i1, must not be sent to either Osig or Oreveal.
It is also prohibited to send the signatures given from anonymous signing oracle
Oa-sig to any of Oopen, Oclaim and Odeny.
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Experiment Anonymity :

(vk, rk, ik, lk)← TS.Setup(1λ)

(i0, i1)← AOatk(Λ, vk)

If certi0 �∈ Phonest ∨ certi1 �∈ Phonest, return 0.

tkn0 ← TS.Reveal(lk, certi0), tkn1 ← TS.Reveal(lk, certi1)

b← {0, 1}

b̃← AOatk,Oib
a-sig,O

i1−b
a-sig (tknb, tkn1−b)

Return 1 if b = b̃. Return 0, otherwise.

Next is the unlinkability which has been named as anonymity in some litera-
tures about group signatures. Like the ones for anonymous tag system, anonymity
and unlinkability for traceable signatures are incomparable in our framework.

Definition 12 (Unlinkability). A traceable signature scheme is unlinkable if
the following game returns 1 only with negligibly better probability than 1

2 . In
the following, target identities, i0 and i1, must not be sent to Oreveal. It is also
prohibited to send the target signature sig to Oopen, Oclaim or Odeny.

Experiment Unlinkability :

(vk, rk, ik, lk)← TS.Setup(1λ)

(i0, i1, m)← AOatk(Λ, vk)

If certi0 �∈ Phonest ∨ certi1 �∈ Phonest, return 0.

b← {0, 1}, sig← TS.Signuskib
(m)

b̃← AOatk(sig)

Return 1 if b = b̃. Return 0, otherwise.

We consider two more security notions: no one but the real signer can claim
the ownership of a signature (Non-Snatching), and the real signer should not be
able to deny the ownership of his/her signatures (Undeniability).

Definition 13 (Non-Snatching). A traceable signature scheme is non-
snatching if the following game returns 1 only with negligible probability. The
list Pall is managed by the oracles.
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Experiment Snatch :

(vk, rk, ik)← Setup(1λ)

(sig, m, claimpf, certi)← AOatk(Λ, vk)

Return 1 if certi ∈ Pcorrupt and ∃certj ∈ Phonest such that

(sig, m) ∈ Mj
signed ∧ 1← TS.ClaimVer(vk, sig, m, claimpf, certi)

Return 0, otherwise.

Definition 14 (Undeniability). A traceable signature scheme is undeniable
if the following game returns 1 only with negligible probability. The list Pall is
managed by the oracles.

Experiment Deny :

(vk, rk, ik)← Setup(1λ)

(sig∗, m∗, denypf∗, cert∗)← AOatk(Λ, vk)

Return 1 if cert∗ ∈ Pall and

1← TS.Judge(vk, sig∗, m∗, TS.Open(vk, rk, sig∗), cert∗) ∧

1← TS.DenyVer(vk, sig∗, m∗, denypf∗, cert∗)

Return 0, otherwise.

3.2 Construction

Building Blocks. Other than AT from Section 2, we use the following building
blocks. Efficient and inter-operable instantiations are shown in Section 3.4.

Non-interactive Zero-Knowledge (NIZK) Proof of Knowledge System: It con-
sists of a suite of six algorithms; ZK.{Crs, Prf, Vrf, Ext, SimCrs, SimPrf}. ZK.Crs
is the common reference string (CRS) generator, which also outputs a trap-
door used by the extractor algorithm, ZK.Ext. Algorithm ZK.SimCrs gen-
erates a CRS and a trapdoor used by ZK.SimPrf that simulates proofs.
Algorithm ZK.Prf takes CRS generated by ZK.Crs and outputs a proof that
passes the verification algorithm ZK.Vrf. Algorithm ZK.Prf also works with
a simulated CRS generated by ZK.SimCrs, but ZK.Ext does not work with
it. ZK.Ext outputs ⊥ if it fails to extract a correct witness. It happens only
with negligible probability for any input that passes the verification with
ZK.Vrf.
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Digital Signatures: We use two signature schemes that are existentially unforge-
able against adaptive chosen message attacks (EUF-CMA). Let S1 and S2
be the signature schemes that consist of three algorithms {Key, Sign, Vrf} as
usual. We require that one can issue a certificate in the form of a signature
produced by S1 that authorizes a public-key of S2, and it must be further
possible to prove the possession of the certificate in the NIZK manner.

Strongly Unforgeable (SUF) One-time Signatures: To make our scheme SUF,
we use one-time signature scheme OTS.{Key, Sign, Vrf} that is SUF against
one-time chosen message attacks.

Design Intuition. Our construction follows the structure of “three-level” certi-
fication. In the first level, the group manager certifies the public-key (consists of
the public-keys for the underlying signature scheme and anonymous tag system)
of each member. In the second level, the member signs on a one-time public-key.
The signatures and keys in the first and second level will be hidden by NIZK,
then a tag is appended. Finally, in the third level, the message and everything
else are signed with the one-time key. To claim the signature ownership, a mem-
ber proves in NIZK the relation between the tag and the public tag-key. For
tracing, the link token is published by the group manager so that anyone can
use the token to check against the tag of a signature in question.

Our main idea of getting CCA-anonymity is similar to the technique used in
convertible undeniable signatures (e.g., [15]), which uses strong unforgeability
plus signature list checking. However, applying this technique for our usage re-
quires more work since the adversary may ask for the opening of a valid signature
which is signed with the key of a compromised user. To resolve this issue, we
require the GM in the simulation to know the user tracing trapdoors of com-
promised users. We stress that it does not kill the advantages brought by our
public-key anonymous tag system. The GM in the real world is still not required
to securely store the tracing tokens of users. This approach has similarity to
the Naor-Yung construction [14] of CCA-secure public-key encryption. Given a
signature, identity of the signer can be retrieved either by applying the extractor
of ZK1 to the zero-knowledge part zsig, or by using the tracing mechanism to
the tag part tag. The former identifies uvk and the latter identifies utpk. The
consistency of the retrieved public-keys are guaranteed by the certificate issued
by the group manager. This is the reason that the issuing key should not be
leaked to the adversary in our framework.

The Scheme. Fig. 2 illustrates the scheme. Relations and detailed description
of zero-knowledge (ZK) proofs are presented in Fig. 3. We make the following
remarks:

- The input signature to TS.Open, TS.Judge and TS.Trace must be verified by
TS.Vrf beforehand.

- Relation (3) in ZK1 and (6) in ZK3 are for the same fact. Actually, the latter
can be replaced with the former in a special case (and our instantiation from
Section 2.2 fits to the case).
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- ZK1, ZK3 and ZK4 can share the CRS and it can be provided by the group
manager since they are conducted by group members. On the other hand,
the CRS for ZK2 must be provided separately for the group manager.

3.3 Security

Theorem 15. TS is non-frameable if ZK2 is knowledge sound, S2 is EUF-CMA,
and OTS is strongly one-time EUF-CMA.

Theorem 16. TS is traceable if ZK1 is knowledge-sound, S1 is EUF-CMA, and
AT is traceable.

Theorem 17. TS is anonymous if ZK1 is knowledge sound and zero-knowledge,
ZK2 is zero-knowledge, ZK3 is zero-knowledge, AT is anonymous and traceable,
S1 and S2 are EUF-CMA, and OTS is one-time strong EUF-CMA.

Theorem 18. TS is unlinkable if ZK1 is knowledge sound, ZK1, ZK2, ZK3 and
ZK4 are zero-knowledge, AT is unlinkable and traceable, S1 and S2 are EUF-
CMA, and OTS is one-time strong EUF-CMA.

Theorem 19. TS is non-snatchable if ZK3 is knowledge sound and AT is
traceable.

Theorem 20. TS is undeniable if ZK1 and ZK4 are knowledge sound.

The proofs for these theorems are omitted due to page limitations.

3.4 Efficient Instantiation

For zero-knowledge proofs, we use the Groth-Sahai proof system [11], GS, with a
symmetric bilinear group setting Λ. The proof system has two serious constraints
to provide the zero-knowledge and proof of knowledge properties. One is that the
relations in question are limited to pairing product equations where the witnesses
are group elements of G. The other is that the constants in GT are represented
as a product of pairings of known elements in G. Other building blocks should
meet these constraints to inter-operate with GS. Fig. 4 shows concrete relations
to prove in our instantiation.

For S1, we use a signature scheme from [2,3], denoted by AHO. It is EUF-
CMA under the SFP Assumption [3]. The messages, public-keys and signatures
of AHO are elements of G. When signing n group elements (m1, . . . , mn) ∈ Gn,
a public-key is vk = ({gi, hi}n+2

i=1 , {ai, bi}4i=1), and a signature is (z1, . . . , z7)
verified by A = (

∏n
i=1 e(gi, mi)) e(gn+1, z1) e(gn+2, z2) e(z3, z4) and B = (

∏n
i=1

e(hi, mi)) e(hn+1, z1) e(hn+2, z5) e(z6, z7) where A = e(a1, a2) e(a3, a4) and
B = e(b1, b2) e(b3, b4). Values z2, z3, z4, z5, z6, and z7 are randomized every
time ZK1 is done (see [3] for details of the randomization).
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TS.Setup(1λ) :
(cvk, csk) ← S1.Key(1λ)
(mtpk,mtsk) ← AT.Setup(1λ)
(crszs, trapzs) ← ZK1.Crs(1λ)
(crszj, trapzj) ← ZK2.Crs(1λ)
vk = (crszs, crszj,mtpk, cvk), rk = trapzs, ik = csk, lk = mtsk
Output (vk, rk, ik, lk).

TS.JoinG(vk, ik)

(utpk, utsk) ← AT.Key(mtpk)
asig ← S1.Signcsk(utpk‖uvk)

uvk�

asig, utpk, (utsk)�

TS.JoinPi(vk, C)
(uvk, usk) ← S2.Key(1λ)

1
?
= S1.Vrfcvk(utpk‖uvk, asig)

cert = (asig, utpk, uvk)
usk = (usk, utsk, cert)
Output (cert, usk).

TS.Sign(usk,m) :

(ovk, osk) ← OTS.Key(1λ)
psig ← S2.Signusk(0||ovk)
tag ← AT.Tag(mtpk, utpk)
zsig ← ZK1.Prfcrszs
osig ← OTS.Signosk(m‖zsig‖tag)
sig = (zsig, tag, osig, ovk)
Output sig.

TS.Vrf(vk,m, sig) :
sig → (zsig, tag, osig, ovk)
Output 1 if
1 = OTS.Vrfovk(m‖zsig‖tag, osig) and
1 = ZK1.Vrfcrszs .

TS.Open(vk, rk, sig) :
(utpk, . . . , psig) ← ZK1.Exttrapzs(zsig)
info ← ZK2.Prfcrszj
open = (utpk, info)
Output (i, open).

TS.Judge(vk, sig,m, open, cert) :
Output 1 if
(utpk ∈ open) = (utpk ∈ cert),
1 = ZK2.Vrfcrszj .

TS.Reveal(lk, cert) :
mtsk ← lk, utpk ← cert
tkn ← AT.Reveal(mtsk, utpk)
Output tkn = tkn.

TS.Trace(vk, sig, tkn) :
mtpk ← vk, tag ← sig, tkn ← tkn
Output 1 if
1 = AT.Link(mtpk, tag, tkn).

TS.Claim(vk, sig,m, usk) :
mtpk ← vk, utsk ← usk, tag ← sig
tkn ← AT.Claim(mtpk, utsk)
If 1 ← AT.Link(mtpk, tag, tkn), do:

claim ← ZK3.Prf
csig ← S2.Signusk(1||claim‖sig‖m)
Output claimpf = (claim, csig).

Else output ⊥.

TS.ClaimVer(vk, sig,m, claimpf, cert) :
(claim, csig) ← claimpf, uvk ← cert
Output 1 if
1 = ZK3.Vrfcrszs and
1 = S2.Vrfuvk(1||claim‖sig‖m, csig).

TS.Deny(vk, sig,m, usk) :
mtpk ← vk, utsk ← usk, tag ← sig
tkn ← AT.Claim(mtpk, utsk)
If 0 ← AT.Link(mtpk, tag, tkn), do:

deny ← ZK4.Prf
Output denypf = deny.

Else output ⊥.

TS.DenyVer(vk, sig,m, denypf, cert) :
deny ← denypf, uvk ← cert
Output 1 if
1 = ZK4.Vrfcrszs

Fig. 2. Protocol specification of a traceable signature scheme TS
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ZK1: (“I have public-keys, utpk and uvk, certified by the GM, and uvk is used to
sign the one-time key ovk, and utpk is associated by tag.”)

1 = S1.Vrfcvk(utpk‖uvk, asig) ∧ 1 = S2.Vrfuvk(0||ovk, psig)∧ (2)

tag ∈ AT.Tag(mtpk, utsk) ∧ (utpk, utsk) ∈ AT.Key(mtpk) (3)

ZK2: (“I know a valid signature psig w.r.t. message ovk and public-key uvk.”)

1 = S2.Vrfuvk(0||ovk, psig) (4)

ZK3: (“Key utpk is associated with tag.”)

1 = AT.Link(mtpk, tag, tkn)∧ (5)

tkn = AT.Claim(mtpk, utsk) ∧ (utpk, utsk) ∈ AT.Key(mtpk) (6)

ZK4: (“Key utpk is not associated with tag.”)

0 = AT.Link(mtpk, tag, tkn)∧ (7)

tkn = AT.Claim(mtpk, utsk) ∧ (utpk, utsk) ∈ AT.Key(mtpk) (8)

Fig. 3. Relations for Zero-Knowledge proofs in Fig. 2 (Witnesses are underlined.)

– (ZK1) For A = e(a1, a2) e(a3, a4), B = e(b1, b2) e(b3, b4), G = e(g, g), and

H = Hash(η);

A = e(g′
1, z1) e(g′

2, z2) e(z3, z4) e(g′
3, u) e(g′

4, v) e(g′
5, g

a
1 ) e(g′

6, g
b
2) ∧ (9)

B = e(h′
1, z1) e(h′

2, z5) e(z6, z7) e(h′
3, u) e(h′

4, v) e(h′
5, g

a
1 ) e(h′

6, g
b
2) ∧ (10)

G = e(s, c gH dr) ∧ (11)

e(ga+b
3 , gu) = e((ga+b

3 )u/v, gv) ∧ (12)

e(g3, g
a) e(g3, g

b) = e(ga+b
3 , g) ∧ e(g1, g

a) e(g2, g
b) = e(ga

1 gb
2, g) (13)

– (ZK2) The same as (11) except that c and d are public.
– (ZK3) The same as (12) and (13) except that ga

1 and gb
2 are public.

– (ZK4) Use (13) but replacing the rightmost pairing with e(ga
1 gb

2, g) where ga
1

and gb
2 are public. Also, for Y �= 1, tag = (t1, t2, t3);

e(ga+b
3 , tr

1)/e(tr
3, t2) = Y ∧ e(t3, t

r
1) = e(tr

3, t1) (14)

Fig. 4. Concrete Relations for ZK: Underlined values are the witnesses. Double un-
derlined values are public but committed for the sake of zero-knowledge simulation.
It requires extra proof that the commitment is made correctly from the known value.
(Such a proof costs 2 group elements. See [11] for details.)
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Table 1. Summary of the properties among the state of the art group signature and
traceable signature schemes that provide non-frameability (the signature size counts
the number of group elements.)

Scheme Construction Claim Deny Anonymity Anonymity Concurrent Sig.
Type & Trace Function w/ Trace Level Join Size

AHO10 [3] generic no no no CCA yes 58
LY09 [13] tailor-made yes no no CPA no 83
This paper generic yes yes yes CCA yes 107

For S2, we use the full Boneh-Boyen signature scheme [5], which is EUF-
CMA under the Strong Diffie-Hellman Assumption [4]. A public-key consists
of two group elements; vk = (c, d) ∈ G2. For message m ∈ Zp, a signature is
(s, r) ∈ G × Z∗

p which is verified by e(s, c gm dr) = e(g, g). A long message is
compressed to a value in Zp with a collision resistant hash function Hash.

For OTS, we use the weak version of Boneh-Boyen scheme. A public-key con-
sists of one group element η ∈ G and the signature is μ that can be verified by
e(g, g) = e(μ, η · gm). (Base g can be re-used without endangering the security.)

For AT, we use the scheme in Section 2.2. Let (t1, t2, t3) denote a tag. To show
that a tag is not related to a public-key, as in ZK4, the prover chooses r ∈ Z∗

p

and compute Y =
{
e(ga+b

3 , t1)/e(t3, t2)
}r

. The verifier accepts if Y �= 1 and the
proof that the value Y is correctly made from the tag and the public-key in
question. If the tag is indeed made from the public-key, Y = 1 for any r ∈ Zp.
The zero-knowledge simulation for ZK4 is done as follows. Choose r randomly
and commit to tr1 and tr3 as well as the normal proof. Then commit to 1 for
other witnesses, ga, gb, ga+b

3 , and g, and simulate the proof that g is committed
correctly (this simulation is possible as the simulation trapdoor for GS is known
to the simulator). Finally compute Y = e(tr3, t2). The output perfectly follows
the proper distribution.

With above instantiations, our scheme yields a signature that consists of 107
elements. (Precisely, 88 in G and 19 in Zp. We assume in the following that
elements in G and Zp can be represented in the similar bit-size and only counts
the total number of elements for the sake of better overview of the comparison.)
More precisely, the number of group elements in the proof and the commitments
for showing relation (9) and (10) for S1.Vrf is 59, (11) for S2.Vrf is 19, and
(12)-(13) for AT.Tag and AT.Key is 24. Other than those, a tag costs 3, and a
public-key and a signature for OTS costs 2 group elements, which adds up to
107. The size of proofs for opening (ZK2) and claiming (ZK3) are 16 and 32,
respectively. A proof for denying a ownership (ZK4) costs 39 elements in the
base group and 1 in the target group.

Table 1 summarizes the comparison. Compared to [13], which is the state of
the art traceable signature scheme without random oracles, the increased cost
of 24 group elements is the price for gaining the properties of CCA-anonymity
with tracing, and concurrent join.
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Abstract. At ACNS 2008, Canard et al. introduced the notion of trap-
door sanitizable signature (TSS) based on identity-based chameleon hash
(IBCH). Trapdoor sanitizable signatures allow the signer of a message
to delegate, at any time, the power of sanitization to possibly several
entities who can modify predetermined parts of the message and gener-
ate a new signature on the sanitized message without interacting with
the original signer. In this paper, we introduce the notion of hierarchical
identity-based chameleon hash (HIBCH), which is a hierarchical exten-
sion of IBCH. We show that HIBCH can be used to construct other
cryptographic primitives, including hierarchical trapdoor sanitizable sig-
nature (HTSS) and key-exposure free IBCH. HTSS allows an entity who
has the sanitization power for a given signed message, to further delegate
its power to its descendants in a controlled manner. Finally, we propose a
concrete construction of HIBCH and show that it is t-threshold collusion-
resistant.

Keywords: Chameleon Hash, Trapdoor Sanitizable Signature, Hierar-
chical Identity-Based Chameleon Hash, Hierarchical Trapdoor Sanitiz-
able Signature.

1 Introduction

Chameleon hash was introduced by Krawczyk and Rabin [20] as a tool to con-
struct chameleon signatures. Informally, a chameleon hash function is a trap-
door collision-resistant hash function: without knowledge of the trapdoor, the
chameleon hash function is collision-resistant; however, collisions can be eas-
ily computed once the trapdoor is known. Similar to undeniable signatures
[9], chameleon signatures possess the properties of non-repudiation and non-
transferability for the signed messages; however, chameleon signatures are non-
interactive protocols. In order to provide a recipient with a non-transferable
signature, a signer hashes the message to be signed with a recipient’s chameleon
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hash function and signs on the resulting digest value. The recipient knows the
trapdoor of the chameleon hash function and hence is able to re-use the hash
value to obtain a signature on a second message. On the other hand, the signer
can prove knowledge of a hash collision, since the original signed message and
the claimed signed message have the same hash value. Such a collision can be
seen as proof of forgery by the signature recipient, as nobody apart from the re-
cipient has more than a negligible probability of successfully finding a collision.
One limitation of the original chameleon signature scheme [20] is that signature
forgery results in the signer discovering the recipient’s trapdoor information.
This deterrent effect of key/trapdoor exposure on forgeries threatens the claims
of non-transferability provided by the scheme. In fact, a third party will likely
believe claims made by the recipient, because the potential devastating damage
to the recipient would result from the forgery of a signature.

Identity-based chameleon hash (IBCH) and identity-based chameleon signa-
ture (IBCS), introduced by Ateniese and Medeiros [2], partly addressed the
problem of key exposure. In IBCH/IBCS, a unique transaction-specific public
key, called customized identity, is used to compute the chameleon hash of a trans-
action. The customized identity is computed by the signer from special strings
that describe the transaction, including the signer and recipient information as
well as a nonce value or time-stamp. As a result, the trapdoor corresponding
to the customized identity is transaction specific and signature forgery only re-
sults in the signer recovering the trapdoor information associated with a single
transaction.

Based on chameleon hash, Ateniese et al. [1] introduced the notion of sani-
tizable signature and presented its generic construction. Sanitizable signatures
allow a signer to partly delegate signing rights to a semi-trusted party, called
a sanitizer. During generation of a signature on a message, the signer chooses
a specific sanitizer who can later modify predetermined parts of the message
and generate a new signature on the sanitized message without interacting with
the signer. The capability of modification renders sanitizable signatures valuable
for many applications, such as authenticated multicast, authenticated database
outsourcing and secure routing.

At ACNS 2008, Canard et al. [8] introduced the notion of trapdoor sanitizable
signature (TSS) and showed its generic construction based on IBCH. TSS allows
the signer to delegate the power of sanitization for a specific signed message to
possibly several entities. Different from the sanitizable signatures in [1] where
the sanitizer is predetermined at the time of signature generation by the signer,
the signer in TSS can choose to whom and when it will provide the trapdoor
information and therefore, any entity can potentially act as a sanitizer. This
property makes a crucial difference from the conventional sanitizer signatures
and is essential for applications where the potential sanitizers are not known at
the time of signature generation.

In this paper, we introduce the notions of hierarchical identity-based chameleon
hash (HIBCH) and hierarchical trapdoor sanitizable signature (HTSS), which are
the hierarchical extensions of IBCH and TSS, respectively. We present a generic
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construction of HTSS from HIBCH. Like TSS, HTSS allows a signer to dele-
gate the power of sanitization for a specific signed message to any sanitizers at
any time. In addition, HTSS allows a sanitizer to further delegate sanitization
power to its descendants in an identity hierarchy. This distinguishing feature
of cascaded delegation of sanitization powers makes HTSS especially power-
ful in protecting information flows in distributed settings, such as automated
web-service-enabled business processes [26] and tiered multimedia distribution
systems [25].

As an example of automated web-service-enabled business processes, let us
consider a simple quotation response process, involving an electronic distributor
(ED), a transportation company (TC) and an electronic manufacturer (EM). A
business document Quotation in XML format is transferred between various en-
tities with use of document-styled web services. The quotation response process
begins when ED receives a request for quotation from an electronic retailer (ER).
ED generates the Quotation by providing quotes for each item and the taxes as-
sociated and forwards the Quotation document to TC via a SOAP message.
Upon receipt of the document, TC adds the delivery cost, delivery information
and updates the total cost. TC then forwards the document to EM, which inputs
additional product information based on the retailer’s information and then for-
wards the Quotation to ER. Upon receipt of the document, ER informs ED that
the quotation has been received. A basic security requirement of the quotation
response process is integrity and authenticity of the Quotation document. Such
a requirement can be fulfilled readily using HTSS: the document originator ED
generates a signature and a trapdoor on the Quotation document and forwards
them to TC. With the knowledge of the trapdoor, TC is able to perform prede-
termined modification on the document, such as adding delivery cost, without
invaliding the original signature. TC then generates a new trapdoor and for-
wards the updated document and the trapdoor to EM, which in turn modifies
the document based on its input.

Another application of HTSS is end-to-end content authentication in tiered
multimedia distribution systems, where multimedia contents are distributed from
a top-tier primary content provider to multiple levels of lower-tier affiliating
providers each with its own user groups. An example is a multinational com-
pany that has a global headquarter, a number of regional headquarters and
many country level offices worldwide. To promote a new product, the company
produces a video advertisement for the product and delivers it to all the regional
headquarters for processing, which then disseminate the processed video clips to
the country level offices. In order to better fit local markets, regional headquar-
ters and country level offices are entitled to derive their own local versions (e.
g., adding subtitles in the local language) based on the original advertisement.
In scenarios like this, higher-tier content providers may authorize lower-tier con-
tent providers performing transcoding operations on the original content, such as
content downscaling, content alteration, and content insertion. Apparently, the
capability of cascaded delegation of sanitization powers makes HTSS an ideal
solution for authenticated content delivery in such environments.
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1.1 Our Contributions

In this paper, we make the following contributions:

1. We introduce the notion of HIBCH, which is a hierarchical extension of
IBCH. We also introduce the security definitions of HIBCH.

2. We introduce the notion of HTSS, which is a hierarchical extension of TSS. In
an HTSS scheme, a signer can delegate at any time the power of sanitization
for a specific signed message to an entity; the entity in turn can further
delegate its power to its descendants in a controlled manner (details are
given in Section 4.1). We extend the standard security definitions of TSS for
the hierarchical setting and propose a generic construction of HTSS based
on HIBCH.

3. We show that a key-exposure free IBCH can be obtained from a two-level
HIBCH, though the latter is not key-exposure free. The construction of
key-exposure free IBCH from HIBCH with key-exposure is similar to the
construction of key-exposure free chameleon hash from IBCH [2,3]. In our
construction, forgery only results in recovering the trapdoor information as-
sociated to a specific transaction, and therefore offering a partial answer to
the key exposure problem of IBCH. We also point out in the full version of
the paper a flaw in [11] which was the first full construction of a key-exposure
free IBCH.

4. We present a concrete construction of HIBCH, which is resilient against
compromise of a threshold number of entities in every level of the underlying
hierarchy.

1.2 Related Work

Chameleon hash was introduced by Krawczyk and Rabin [20]. The original con-
struction of chameleon hash [20] suffers from the key exposure problem. The
problem was partly addressed by IBCH, which was introduced by Ateniese and
Medeiros [2].

Chen et al. [10] presented the first full construction of a key-exposure free
chameleon hash, which works in the setting of gap groups with bilinear pair-
ings. Ateniese and Medeiros [3] proposed three key-exposure free chameleon hash
functions, two based on RSA and one based on pairings. Other key-exposure free
chameleon hash constructions [14,13,12] were proposed subsequently.

Zhang et al. [28] proposed two IBCH schemes from bilinear pairing. Recently,
Chen et al. [11] considered the key exposure problem of IBCH and proposed a
concrete construction of key-exposure free IBCH. However, in the Appendix, we
point out a fault of the construction in [11].

The notion of sanitizable signature was introduced by Ateniese et al. [1]. San-
tizable signature allows a sanitizer to modify predetermined parts of a signed
message and generate new signature on the sanitized message without interact-
ing with the signer. Klonowski and Lauks [19] presented several extensions of
sanitizable signature, including limitation of the set of possible modifications of
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a single mutable block and limitation of the number of modifications of mutable
blocks.

Ateniese et al. [1] identified five security requirements of sanitizable signa-
ture schemes, including unforgeability, immutability, privacy, transparency and
accountability. Recently, Brzuska et al. [7] revisited the security requirements for
sanitizable signatures and investigated the relationship of the security require-
ments, showing for example that transparency implies privacy.

Miyazaki et al. [23] also used the notion of sanitizable signature in a slightly
different vein. Such sanitizable signature schemes [23,17,22] allow the sanitizer
to only delete predetermined parts of a signed message.

The notions of incremental cryptography [4] and homomorphic signatures,
which encompass transitive [21], redactable [18] and context-extraction signa-
tures [24], are also related to sanitizable signatures. We refer the reader to [1]
for details.

Canard et al. [8] introduced the notion of trapdoor sanitizable signatures
(TSS), in which the power of sanitization is given to possibly several entities.
Based on IBCH, Canard et al. [8] proposed a generic construction of TSS. Re-
cently, Yum et al. [27] presented a generic construction of trapdoor sanitizable
signatures from ordinary signature schemes; therefore, one-way functions imply
trapdoor sanitizable signatures.

1.3 Organization

The rest of the paper is organized as follows. Some preliminaries are given in
Section 2. We introduce the notion and security requirements of HIBCH in Sec-
tion 3. We introduce the notion of HTSS and propose a generic construction of
HTSS from HIBCH in Section 4. In Section 5, we describe the generic construc-
tion of key-exposure free IBCH from HIBCH with key exposure. We describe
and analysis our concrete HIBCH scheme in Section 6. Finally, we state our
conclusion in Section 7.

2 Preliminaries

If L is a positive integer, then [1, L] = {1, 2, . . . , L}. If S1, S2 are two sets,
S1\S2 = {x ∈ S1|x /∈ S2}. Let Zp denote the set {0, 1, 2, . . . , p − 1} and Z∗

p

denote Zp\{0}. For a finite set S, x
$← S means choosing an element x ∈ S

with a uniform distribution. If x1, x2, . . . are strings, then x1‖x2‖ . . . denotes
their concatenation. If A is a probabilistic algorithm, then A(x, r) is the result
of running A on input x and coins r. We denote by A(x;R) the random variable
of choosing coins r uniformly at random from R and outputting A(x, r).

We say that a function f(λ) is negligible if for every c > 0 there exists an
λc such that f(λ) < 1/λc for all λ > λc. We say that two distribution ensem-
bles {X(λ, z)}λ∈N,z∈{0,1}∗ and {Y (λ, z)}λ∈N,z∈{0,1}∗ are computationally indis-
tinguishable, if for any probabilistic polynomial-time (PPT) algorithm D, and
for all sufficiently large λ and any z ∈ {0, 1}∗, it holds that |Pr[D(λ, z, X) =
1]− Pr[D(λ, z, Y ) = 1]| is negligible in λ.
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2.1 Bilinear Pairings

Let G be a cyclic multiplicative group of prime order p and GT be a cyclic
multiplicative group of the same order p. A bilinear pairing is a map e : G×G→
GT with the following properties:

– Bilinearity: ∀g1, g2 ∈ G, ∀a, b ∈ Z∗
p, we have e(ga

1 , gb
2) = e(g1, g2)ab;

– Non-degeneracy: There exist g1, g2 ∈ G such that e(g1, g2) �= 1;
– Computability: There exists an efficient algorithm to compute e(g1, g2) for
∀g1, g2 ∈ G.

2.2 Identity-Based Chameleon Hash

A identity-based chameleon hash (IBCH) scheme [2] is a tuple of algorithms
described as follows:

Setup takes as input a security parameter λ. It generates a public/private key
pair (pk, sk), publishes pk and keeps sk secret. This algorithm is run by a
trusted party, called private key generator (PKG).

(pk, sk)← Setup(λ).

Extract takes as input sk and an identity ID. It outputs the trapdoor information
skID associated with the identity. This algorithm is run by PKG.

skID ← Extract(sk, ID).

Hash takes as input pk, an identity ID and a message m. It chooses a randomness
r and outputs a hash value h.

h← Hash(pk, ID, m, r).

Forge takes as input an identity ID, the trapdoor information skID associated
with ID, the hash value h on a message m with r, and a new message m′. It
outputs a value r′.

r′ ← Forge(skID, ID, m, r, h, m′).

For correctness, it requires that

Hash(pk, ID, m, r) = h = Hash(pk, ID, m′, r′ = Forge(skID, ID, m, r, h, m′)) and m′ �= m.

The security of an IBCH scheme consists of two requirements: resistance to
collision forgery under active attacks and semantic security. In the following and
throughout the rest of the paper, we use A to denote an adversary which can be
any probabilistic polynomial-time algorithm.

Resistance to collision forgery under active attacks: The IBCH scheme
is secure against (existential) collision forgery under active attacks, if for any
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PPT adversary A, for all sufficiently large λ, any (pk, sk)← Setup(λ), the prob-
ability that A(λ, pk) outputs (ID, m, r, m′, r′), satisfying Hash(pk, ID, m, r) =
Hash(pk, ID, m′, r′) and m′ �= m, is negligible. A is allowed to query an oracle
OExtract

IBCH
1 on adaptively chosen identities other than ID.

Semantic security: The IBCH scheme is said to be semantically secure if, for all
sufficiently large λ, any (pk, sk)← Setup(λ), any target identity ID and all pairs
of messages m and m′, the distribution ensembles {Hash(pk, ID, m;R)}λ,pk,ID,m,m′

and {Hash(pk, ID, m′;R)}λ,pk,ID,m,m′ are computationally indistinguishable.

3 Hierarchical Identity-Based Chameleon Hash

Like an IBCH scheme, a hierarchical identity-based chameleon hash (HIBCH)
scheme consists of four algorithms: Setup, Extract, Hash and Forge. In HIBCH,
however, identities are organized into a hierarchy, where an identity at depth
k of the hierarchy is represented as a vector of dimension k, and the trapdoor
information for an identity is generated by its parent. Concretely, an �-HIBCH
scheme consists of the following algorithms:

Setup takes as input a security parameter λ and the maximum hierarchy depth
� that is polynomial in λ. It generates a public/private key pair (pk, sk),
publishes pk and keeps sk secret. This algorithm is run by PKG.

(pk, sk)← Setup(λ, �).

Extract takes as an identity ID = (ID1, . . . , IDk) at depth k ≤ �, and the trapdoor
information skID|k−1 of the parent identity ID|k−1 = (ID1, . . . , IDk−1) at depth
k − 1. It outputs the trapdoor information skID for identity ID.

skID ← Extract(skID|k−1 , ID).

Note that, if k = 1, the trapdoor information skID|k−1 of the identity ID|k−1

is sk. Running Extract algorithm recursively, an identity ID = (ID1, . . . , IDk),
using its trapdoor information skID, can generate trapdoor information for
all its descendants. So, we also can denote this algorithm as

skID′ ← Extract(skID, ID′),

where ID′ is a descendant of ID.
Hash takes as input pk, an identity ID and a message m. It chooses a randomness

r and outputs a hash value h.

h← Hash(pk, ID, m, r).

1 When the adversary A queries OExtract
IBCH on an identity ID′, the simulator gives the

trapdoor information skID′ associated with ID′ to A.
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Forge takes as input an identity ID, the trapdoor information skID associated
with ID, the hash value h on a message m with randomness r, and a new
message m′. It outputs r′.

r′ ← Forge(skID, ID, m, r, h, m′).

For correctness, it requires that

Hash(pk, ID, m, r) = h = Hash(pk, ID, m′, r′ = Forge(skID, ID, m, r, h, m′)) and m′ �= m.

We now introduce the security requirements of HIBCH, including resistance
to collision forgery under active attacks, semantic security and forgery indistin-
guishability. The security requirements of resistance to collision forgery under
active attacks and semantic security are extended from the security require-
ments of IBCH. For forgery indistinguishability, informally, it requires that an
adversary be not able to decide whether (m, r, h) is a forgery or not.

Resistance to collision forgery under active attacks: The HIBCH scheme
is secure against (existential) collision forgery under active attacks, if for any
PPT adversaryA, for any sufficiently large λ, any hierarchy depth � that is poly-
nomial in λ, any (pk, sk) ← Setup(λ, �), the probability that A(λ, pk) outputs
(ID, m, r, m′, r′), satisfying Hash(pk, ID, m, r) = Hash(pk, ID, m′, r′) and m′ �= m,
is negligible. A is allowed to query an oracle OExtract

HIBCH
2 on adaptively chosen

identities other than ID or an ancestor of ID.
We say that an HIBCH scheme is t-threshold resistant to collision forgery

under active attacks (or t-threshold collusion-resistant for simplicity.), if A
issues at most t queries to its OExtract

HIBCH oracle on identities at each depth of the
hierarchy.

Semantic security: The HIBCH scheme is said to be semantically se-
cure if, for all sufficiently large λ, any hierarchy depth � that is polynomial
in λ, any (pk, sk) ← Setup(λ, �), all identities ID and all pairs of messages
m and m′, the distribution ensembles {Hash(pk, ID, m;R)}λ,pk,ID,m,m′ and
{Hash(pk, ID, m′;R)}λ,pk,ID,m,m′ are computationally indistinguishable.

Forgery indistinguishability: The HIBCH scheme is said to be forgery-
indistinguishable if, for all sufficiently large λ, any hierarchy depth � that is
polynomial in λ, any (pk, sk) ← Setup(λ, �), all identities ID and all pairs of
messages m and m′, the following distribution ensembles are computationally
indistinguishable:

DForge = {(m′, r̂, h)|r $←R, h← Hash(pk, ID, m, r), skID ← Extract(sk, ID),
r̂ ← Forge(skID, ID, m, r, h, m′)}λ,pk,ID,

DHash = {(m′, r′, h′)|r′ $←R, h′ ← Hash(pk, ID, m′, r′)}λ,pk,ID.

2 When the adversary A queries OExtract
HIBCH on an identity ID′, the simulator gives the

trapdoor information skID′ associated with ID′ to A.
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4 Hierarchical Trapdoor Sanitizable Signature and Its
Construction from HIBCH

In this section, we first introduce the notion of hierarchical trapdoor sanitizable
signature (HTSS), which is a hierarchical extension of TSS, and extend the stan-
dard security definitions of TSS for the hierarchical setting. Then, we propose a
generic construction of HTSS from HIBCH. The construction is similar to the
construction of TSS from IBCH [8].

4.1 Hierarchical Trapdoor Sanitizable Signature

Informally, in an HTSS scheme, an identity associated with an entity who has
the power of sanitization for a given signed message, can delegate its rights to
its descendant identities in a controlled manner. In the following, to simplify the
description, we will use the terms identity and entity interchangeably.

In the sequel we assume that each signed message m = m1‖ · · · ‖mL is par-
titioned into L blocks, where L is an positive integer. We define a hierarchical
sanitizable description ADM of m using a tree. Each leaf node of the tree is labeled
by a distinct block index i ∈ [1, L], which indicates the block is sanitizable. Each
node of the tree is associated with an identity. The identity of a node at depth
k is a k + 1-dimensional vector, and the first k components of the identity is in-
herited from its parent. The identity of the root node is computed from special
strings, which may include the signer and recipient information as well as some
nonce or time-stamp. We say that an identity ID matches ADM if an internal node
of the tree is associated with the identity ID.

A pictorial depiction of a hierarchical sanitizable description ADM is given
in Figure 1, where L = 8. We can obtain from the ADM that the set of in-
dices I ={1, 4, 5, 8} that are sanitizable, and identities ID0, (ID0, ID

1
1), (ID0, ID

2
1),

(ID0, ID
1
1, ID

1
2) and (ID0, ID

1
1, ID

2
2) match the ADM.

Like a TSS scheme, an HTSS scheme consists of five algorithms: KeyGen, Sign,
Trapdoor, Sanitize and Verify. In HTSS, however, Sign algorithm takes as input
a hierarchical sanitizable description ADM, not only a set of the indices I ⊆ [1, L]
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Fig. 1. An example of hierarchical sanitizable description
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that are sanitizable in TSS, and the trapdoor information for an identity is
generated by its parent, which runs Trapdoor algorithm. Concretely, an HTSS
scheme consists of the following algorithms:

KeyGen takes as input a security parameter λ and the maximum hierarchy
depth � of hierarchical sanitizable descriptions. It generates a public/private
key pair (pk, sk), publishes pk and keeps sk secret.

(pk, sk)← KeyGen(λ, �).

Sign takes as input a message m = m1‖ · · · ‖mL, a hierarchial sanitizable de-
scription ADM and sk. It outputs a signature σ on the message m.

σ ← Sign(m, ADM, sk).

Trapdoor takes as input a message m, a valid signature σ on m, a hier-
archial sanitizable description ADM, the trapdoor skID|k−1 of the identity
ID|k−1 = (ID1, . . . , IDk−1), and a child identity ID = (ID1, . . . , IDk). It out-
puts a trapdoor skID associated with ID.

skID ← Trapdoor(m, ADM, σ, ID, skID|k−1).

Note that, if k = 1, the trapdoor skID|k−1 of the identity ID|k−1 is sk. Run-
ning Trapdoor algorithm recursively, an identity ID = (ID1, . . . , IDk) with its
trapdoor skID can generate the trapdoors for all its descendants.

Sanitize takes as input pk, a message m, a valid signature σ on m, a hierarchial
sanitizable description ADM, a trapdoor skID associated with identity ID, a
new message m′. It outputs a new signature σ′ on m′.

σ′ ← Sanitize(pk, m, ADM, σ, m′, ID, skID).

Verify takes as input pk, a message m, a putative signature σ and a hierarchial
sanitizable description ADM. It outputs 1 if the signature σ on m is valid and
0 otherwise.

0/1← Verify(pk, m, ADM, σ).

For an HTSS scheme the usual correctness properties should hold, saying that
genuinely signed or sanitized messages are accepted. Formally, for correctness, an
HTSS scheme must satisfy the following condition. For any security parameter
λ and maximum hierarchy depth � of hierarchical sanitizable descriptions, any
message m = m1‖ · · · ‖mL, any hierarchial sanitizable description ADM, any iden-
tity ID = (ID1, . . . , IDk) and the trapdoor skID|k−1 of the parent identity ID|k−1 =
(ID1, . . . , IDk−1), letting (pk, sk) ← KeyGen(λ, �), σ ← Sign(m, ADM, sk), skID ←
Trapdoor(m, ADM, σ, ID, skID|k−1), σ′ ← Sanitize(pk, m, ADM, σ, m′, ID, skID),

1. Verify(pk, m, ADM, σ) = 1.
2. Verify(pk, m′, ADM, σ′) = 1.
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The security requirements of an HTSS scheme include unforgeability and in-
distinguishability, which are extended from the security requirements of TSS.
Informally, unforgeability requires that an outsider be not able to forger a signa-
ture on the original or the sanitized message, and indistinguishability requires
that an outsider be not able to decide whether a message has been sanitized or not.

Unforgeability: An HTSS scheme is existential unforgeable under adap-
tive chosen message attacks, if for all sufficiently large λ, any hierarchy depth
� that is polynomial in λ, any (pk, sk) ← Setup(λ, �), any PPT adversary
A(λ, pk), after issuing OSign

HTSS , OTrapdoor
HTSS and OSanitize

HTSS
3 oracle queries adaptively,

with only negligible probability, can output (m∗, ADM∗, σ∗) such that:

1. Verify(pk, m∗, ADM∗, σ∗) = 1;
2. A never queries OSign

HTSS oracle on (m∗, ·);
3. (m∗, σ∗) does not come from OSanitize

HTSS oracle, i. e., A never queries OSanitize
HTSS

oracle on (m, ·, σ, m∗, ·);
4. A never queries OTrapdoor

HTSS oracle on (m, ADM, σ, ID) such that mi = m∗
i for all

i /∈ I, where I is extracted from ADM and is a set of indices I ⊆ [1, L] that
are sanitizable.

Indistinguishability: Indistinguishability of an HTSS scheme demands that
the output distributions of Sign algorithm and Sanitize algorithm be computa-
tionally indistinguishable. In other words, for all sufficiently large λ, any hierar-
chy depth � that is polynomial in λ, any (pk, sk)← Setup(λ, �), any hierarchial
sanitizable description ADM, all message pairs m, m′ such that mi = m′

i for all
i /∈ I, where I is extracted from ADM and is a set of indices I ⊆ [1, L] that are
sanitizable, any identity ID = (ID1, . . . , IDk) that matches ADM and the trapdoor
skID|k−1 of the parent identity ID|k−1 = (ID1, . . . , IDk−1), the following distribu-
tion ensembles DSanitize and DSign are computationally indistinguishable:

DSanitize = {(m′, σ̂)|σ ← Sign(m,ADM, sk), skID ← Trapdoor(m, ADM, σ, ID, skID|k−1),

σ̂ ← Sanitize(pk, m, ADM, σ, m′, ID, skID)}λ,pk,ID,ADM,

DSign = {(m′, σ′)|σ′ ← Sign(m′, ADM, sk)}λ,pk,ID,ADM.

4.2 Generic Construction of HTSS from HIBCH

In our construction, to sign a message m = m1‖ · · · ‖mL, the signer first sets
m̃ = m̃1‖ · · · ‖m̃L, where m̃i = mi if i /∈ I and otherwise, m̃i = hi =
HIBCH.Hash(pk, ID(i), mi, ri). The set of indices I ⊆ [1, L] that are sanitizable
and the identity ID(i) associated with the sanitizable block index i ∈ I are given
in the hierarchial sanitizable description ADM. Then, the signer signs the message

3 When the adversary A queries OSign
HTSS on a message (m, ADM), the simulator gives

a valid signature σ = Sign(m,ADM, sk) on m to A. When the adversary A queries
OTrapdoor

HTSS on (m,ADM, σ, ID), the simulator gives the corresponding trapdoor skID to
A. When the adversary A queries OSanitize

HTSS on (m,ADM, σ, m′, ID), the simulator gives
a valid signature σ′ on m′ to A.
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m̃ using a conventional signature scheme. Obviously, an entity with the trapdoor
associated with ID(i) or an ancestor of ID(i) can modify mi and generate a new
signature on the sanitized message.

Given a conventional signature scheme Σ = (Σ.KeyGen, Σ.Sign, Σ.Verify) and
an HIBCH scheme Π = (Π.Setup, Π.Extract, Π.Hash, Π.Forge), we define the 5-
tuple algorithms (KeyGen, Sign, Trapdoor, Sanitize, Verify) of an HTSS scheme as
follows:

KeyGen Given a security parameter λ and the maximum hierarchy depth � of
hierarchical sanitizable descriptions, it first runs

(pkΣ , skΣ)← Σ.KeyGen(λ), (pkΠ , skΠ)← Π.Setup(λ, � + 1).

Then, it sets the public key pk = (pkΣ , pkΠ) and the private key sk =
(skΣ , skΠ). Finally, it publishes pk and keeps sk secret.

Sign Given a message m = m1‖ · · · ‖mL, a hierarchial sanitizable description
ADM and sk = (skΣ , skΠ), it first extracts a set of indices I ⊆ [1, L] that are
sanitizable from ADM. Then, it proceeds as follows.
1. For all i ∈ [1, L]\I, it sets m̃i = mi.
2. For all i ∈ I, let ID(i) be the identity of the leaf node of ADM labeled by the

block index i, it chooses a randomness ri uniformly, and computes hi =
Π.Hash(pkΠ , ID(i), mi, ri) and sets m̃i = hi. Let r be the concatenation
of all random values ri, i ∈ I.

3. It sets m̃ = m̃1‖ · · · ‖m̃L and runs

σ̃ ← Σ.Sign(m̃, skΣ).

4. Finally, it sets σ = σ̃‖r and outputs the signature σ on m.
Trapdoor Given a message m, a valid signature σ on m, a hierarchial sanitizable

description ADM, an identity ID = (ID1, . . . , IDk), and the trapdoor skID|k−1

of the parent identity ID|k−1 = (ID1, . . . , IDk−1), it first checks whether ID
matches ADM. If not, it outputs ⊥, denoted an error. Otherwise, it runs

skID ← Π.Extract(skID|k−1 , ID),

and outputs the trapdoor skID associated with ID.
Note that, if k = 1, the trapdoor skID|k−1 of the identity ID|k−1 is skΠ .

Sanitize Given pk = (pkΣ , pkΠ), a message m = m1‖ · · · ‖mL, a valid signature
σ = σ̃‖r on m, a hierarchial sanitizable description ADM, a trapdoor skID

associated with identity ID, a new message m′ = m′
1‖ · · · ‖m′

L, it proceeds
as follows.
1. Let I ′ = {i ∈ [1, L]|mi �= m′

i}. It extracts a set of indices I ⊆ [1, L]
that are sanitizable from ADM. Then, it checks whether I ′ ⊆ I. If not, it
outputs ⊥, denoted an error.

2. It checks whether ID matches ADM. If not, it outputs ⊥.
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3. For all i ∈ I ′, let ID(i) be the identity of the leaf node of ADM labeled by
the block index i, it checks whether ID(i) is a descendant of ID. If not, it
outputs ⊥. Otherwise, it runs

skID(i) ← Π.Extract(skID, ID(i)),

to obtain the trapdoor skID(i) associated with ID(i).
4. It retrieves {ri|i ∈ I} from the signature σ = σ̃‖r.
5. For all i ∈ I ′, it computes hi ← Π.Hash(pkΠ , ID(i), mi, ri) and

r′i ← Π.Forge(skID(i) , ID(i), mi, ri, hi, m
′
i).

6. For all i ∈ I\I ′, it sets r′i = ri. Let r′ be the concatenation of all random
values r′i, i ∈ I.

7. It sets σ′ = σ̃‖r′ and outputs the new signature σ′ on m′.
Verify Given pk = (pkΣ , pkΠ), a message m = m1‖ · · · ‖mL, a putative signature

σ = σ̃‖r and a hierarchial sanitizable description ADM, it proceeds as follows.
1. It extracts a set of indices I ⊆ [1, L] that are sanitizable from ADM and

retrieves {ri|i ∈ I} from the signature σ = σ̃‖r.
2. For all i ∈ [1, L]\I, it sets m̃i = mi.
3. For all i ∈ I, let ID(i) be the identity of the leaf node of ADM labeled by

the block index i, it computes hi = Π.Hash(pkΠ , ID(i), mi, ri) and sets
m̃i = hi.

4. It sets m̃ = m̃1‖ · · · ‖m̃L and outputs Σ.Verify(pkΣ , m̃, σ̃).

It is obvious that the above HTSS scheme satisfies correctness. We now state
the security theorems of the above HTSS scheme, including unforgeability and
indistinguishability. The proofs of the security theorems are similar to those in
[8] and will be given in the full version of the paper.

Theorem 1 (Unforgeability). If the signature scheme Σ is existential un-
forgeable under adaptive chosen message attacks [16] and the HIBCH scheme Π
is resistant to collision forgery under active attacks, the above construction of
HTSS is existential unforgeable under adaptive chosen message attacks.

Theorem 2 (Indistinguishability). If the HIBCH scheme Π is forgery in-
distinguishable, the following distributions DSanitize and DSign are indistinguish-
able for all sufficiently large λ, any hierarchy depth � that is polynomial in λ,
any (pk, sk)← Setup(λ, �), any hierarchial sanitizable description ADM, messages
m, m′ such that mi = m′

i for all i /∈ I, where I is extracted from ADM and is a
set of indices I ⊆ [1, L] that are sanitizable, any identity ID = (ID1, . . . , IDk)
that matches ADM and the trapdoor skID|k−1 of the parent identity ID|k−1 =
(ID1, . . . , IDk−1):

DSanitize = {(m′, σ̂)|σ ← Sign(m,ADM, sk), skID ← Trapdoor(m, ADM, σ, ID, skID|k−1),

σ̂ ← Sanitize(pk, m, ADM, σ, m′, ID, skID)}λ,pk,ID,ADM,

DSign = {(m′, σ′)|σ′ ← Sign(m′, ADM, sk)}λ,pk,ID,ADM.
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5 Key-Exposure Free IBCH from HIBCH

As mentioned in [2,3], a key-exposure free chameleon hash scheme can be ob-
tained from an IBCH scheme. In the construction of key-exposure free chameleon
hash from IBCH, each transaction uses a different public key (corresponding to
a different private key), so that a forgery only results in the user recovering
the trapdoor information associated with a single transaction. The transaction-
specific public key, called customized identity, is computed from special strings
that describe the transaction. Based on the same idea, we show that a 2-HIBCH
can be used to construct a key-exposure free IBCH scheme.

In this section, we first review the notion of key exposure freeness. Then, we
describe the generic construction of key-exposure free IBCH from a two-level
HIBCH formally.

Key Exposure Freeness: An identity-based chameleon hash scheme is
key-exposure free if, for any PPT adversary A, for all sufficiently large λ, any
(pk, sk) ← Setup(λ), the probability that, A(λ, pk) outputs (ID,L, m, r, m′, r′),
satisfying Hash(pk, ID,L, m, r) = Hash(pk, ID,L, m′, r′) and m′ �= m, is negli-
gible. A is allowed to query OForge

IBCH
4 oracle on the adaptively chosen tuples

(ID,Li, mi, ri, m
′
i), except that Li must be different from the target customized

identity L.
Now, given an HIBCH scheme Π = (Π.Setup, Π.Extract, Π.Hash, Π.Forge),

we define the 4-tuple algorithms (Setup, Extract, Hash, Forge) of an IBCH scheme
as follows:

Setup Given a security parameter λ, PKG first runs

(pk, sk)← Π.Setup(λ, 2).

Then, it publishes the public key pk and keeps the private key sk secret.
Extract Given the private key sk and an identity ID, it first runs

skID ← Π.Extract(sk, ID).

Then, it outputs the trapdoor information skID associated with the identity.
Hash Given the public key pk, an identity ID and a message m, it first computes

the customized identity L for this transaction, and chooses a randomness r.
Then, it sets a 2-level identity ĨD = (ID,L) and runs

h← Π.Hash(pk, ĨD, m, r).

Finally, it outputs the hash value h.
Forge Given an identity ID, the trapdoor information skID association with ID,

the hash value h on a message m with customized identity L and randomness
r, and a new message m′, it first sets a 2-level identity ĨD = (ID,L) and runs

4 When the adversary A queries OForge
IBCH on (ID,Li, mi, ri, m

′
i), the simulator gives the

randomness r′i to A such that Hash(pk, ID,Li, mi, ri) = Hash(pk, ID,Li, m
′
i, r

′
i).
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skĨD ← Π.Extract(skID, ĨD).

Then it runs

r′ ← Π.Forge(skĨD, ĨD, m, r, h, m′),

and outputs r′.

It is obvious that, if the HIBCH scheme Π satisfies correctness, the above IBCH
scheme also satisfies correctness, and if the HIBCH scheme Π is resistant to
collision forgery under active attacks and semantically secure, so is the above
IBCH scheme. Next, we prove that the above IBCH scheme is key-exposure free.

Theorem 3. If the HIBCH scheme Π is resistant to collision forgery under
active attacks, the above IBCH scheme is key-exposure free.

Proof. To prove this theorem, we will show that, given pk, if a PPT ad-
versary A can output (ID,L, m, r, m′, r′) such that Hash(pk, ID,L, m, r) =
Hash(pk, ID,L, m′, r′) and m′ �= m, we can construct another algorithm B, which
is a forger against the HIBCH scheme Π .

Given a public key pk of the HIBCH scheme Π , using A as a sub-routine, B
simulates a forger against the HIBCH scheme Π . First, B sends pk to A. When A
issues OForge

IBCH oracle queries on the adaptively chosen tuples (ID,Li, mi, ri, m
′
i),

B sets ĨDi = (ID,Li) and queries its OExtract
HIBCH oracle on ĨDi to obtain the

trapdoor information skĨDi
; then B computes Π.Hash(pk, ĨDi, mi, ri) = hi and

Π.Forge(skĨDi
, ĨDi, mi, ri, hi, m

′
i) = r′i and sends r′i to A. Finally, A outputs

(ID,L, m, r, m′, r′) such that Hash(pk, ID,L, m, r) = Hash(pk, ID,L, m′, r′). B
also outputs (ĨD = (ID,L), m, r, m′, r′), which is a collision against the HIBCH
scheme Π .

6 Construction of HIBCH

In this section, based on multivariate polynomials, we propose a concrete con-
struction of HIBCH, which is t-threshold collusion-resistant. Blundo et al. [6]
first used multivariate polynomials to construct key distribution schemes, and
Gennaro et al. [15] extended their schemes for hierarchical systems.

In our construction, the private key of the HIBCH scheme is a random
multivariate polynomial f(x1, . . . , x�), where the degree of xi is a threshold
parameter t. The trapdoor information of an identity ID = (ID1, . . . , IDk) is
f(ID1, . . . , IDk−1, IDk, xk+1, . . . , x�), which can be derived from his parent’s trap-
door information f(ID1, . . . , IDk−1, xk, . . . , x�). Blundo et al. [6] proved that, if
an adversary colludes with at most t entities in each depth of the hierarchy, the
multivariate polynomial f(x1, . . . , x�) can still be kept secret.

In fact, if we choose a random multivariate polynomial f(x1, . . . , x�) as the
private key, where the degree of xi is ti, our HIBCH scheme is resilient against
the adversary who colludes with at most ti entities at depth i of the hierarchy.
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The scheme consists of the following algorithms:

Setup Given a security parameter λ and the maximum hierarchy depth
�, it first generates a bilinear map group system 〈p, G, GT , e〉. Then it
chooses a random polynomial (over Zp) f(x1, . . . , x�) = at,t,...,tx

t
1x

t
2 · · ·xt

� +
at−1,t,...,tx

t−1
1 xt

2 · · ·xt
� + · · · + a0,0,...,0, where the degree of xi is the thresh-

old parameter t. Next, it chooses a generator g of G and an idle identity
ID ∈ Zp. Finally, it chooses a cryptographic hash function H : {0, 1}∗ → G.
The published public key is

pk = (p, G, GT , e, g, H, ID, gat,...,t , . . . , ga0,...,0),

and the private key is sk = f(x1, . . . , x�).
Extract Given an identity ID = (ID1, . . . , IDk) of depth k ≤ �, and the trapdoor

information skID|k−1 = f(ID1, . . . , IDk−1, xk, . . . , x�) of the parent identity
ID|k−1 = (ID1, . . . , IDk−1) at depth k−1, it first checks whether IDi �= ID for
1 ≤ i ≤ k. If not, it outputs ⊥, denoted an error. Otherwise, it computes

skID = f(ID1, . . . , IDk−1, IDk, xk+1, . . . , x�),

and outputs the trapdoor information skID for identity ID.
Note that, if k = 1, the trapdoor information skID|k−1 of the identity

ID|k−1 is sk.
Hash Given pk, an identity ID = (ID1, . . . , IDk) of depth k ≤ �, and a message

m ∈ {0, 1}∗, it first chooses a randomness R ∈ G uniformly. Then it computes

h = e(R, g) · e(H(m), gf(ID1,...,IDk,ID,...,ID)),

and outputs the hash value h.
Note that, given gat,...,t , . . . , ga0,...,0 , one can compute gf(ID1,...,IDk,ID,...,ID).

Forge Given an identity ID = (ID1, . . . , IDk), the trapdoor information skID =
f(ID1, . . . , IDk, xk+1, . . . , x�) associated with ID, the hash value h on a mes-
sage m ∈ {0, 1}∗ with randomness R, and a new message m′ ∈ {0, 1}∗, it
first computes f(ID1, . . . , IDk, ID, . . . , ID) using skID. Then it computes

R′ = R · (H(m) ·H(m′)−1)f(ID1,...,IDk,ID,...,ID),

and outputs the randomness R′.

Note that
Hash(pk, ID, m′, R′) = e(R′, g) · e(H(m′), gf(ID1,...,IDk,ID,...,ID))

= e(R · (H(m) ·H(m′)−1)f(ID1,...,IDk,ID,...,ID), g)

·e(H(m′), gf(ID1,...,IDk,ID,...,ID))

= e(R, g) · e(H(m), gf(ID1,...,IDk,ID,...,ID))
= Hash(pk, ID, m, R).

So, the above construction of HIBCH satisfies correctness. We now state the se-
curity theorems of the above HIBCH scheme. The proofs of the security theorems
will be given in the full version of the paper.
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Theorem 4. In the random oracle model [5], the above construction of HIBCH
is t-threshold resistant to collision forgery under active attacks.

Theorem 5. The above construction of HIBCH is semantically secure.

7 Conclusions

In this paper, we introduced the notion of HIBCH, which is a hierarchical ex-
tension of IBCH. We showed that HIBCH can be used to construct other cryp-
tographic primitives, including HTSS, which is a hierarchical extension of TSS,
and key-exposure free IBCH, even the HIBCH is not key-exposure free. Finally,
we proposed a concrete construction of HIBCH, which is t-threshold collusion-
resistant. A future direction is to find other constructions of HIBCH, which are
fully collusion-resistant and key-exposure free.
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Abstract. Signcryption is a primitive which provides the combined se-
curity properties of encryption and digital signatures i.e. confidentiality
and unforgeability. A number of signcryption schemes have been pre-
sented in the literature, but up until now, no scheme which simultane-
ously achieves the currently strongest notions of insider confidentiality
and strong insider unforgeability in the multi-user setting, has been pro-
posed, without relying on random oracles or key registration. In this pa-
per, we propose two new generic constructions of signcryption schemes
from the combination of standard primitives and simple extensions of
these. From our constructions, we instantiate a number of concrete and
efficient signcryption schemes which satisfy the strongest notions of in-
sider security in the multi-user setting while still being provably secure
in the standard model.

Keywords: signcryption, insider security, multi-user setting, generic
construction.

1 Introduction

Public key encryption and digital signatures aim at providing very different
security properties. More specifically, encryption provides confidentiality of data
whereas digital signatures provides authenticity of data. However, many practical
applications, such as secure e-mail, require both properties simultaneously. To
address this need, Zheng [25] proposed signcryption which is a single primitive
aiming at efficiently providing the security guarantees of both encryption and
digital signatures. Although the scheme proposed in [25] was not formally proved
secure, this was done in subsequent works [5,6].

Since the introduction of the primitive, many signcryption schemes have been
proposed, e.g. [25,4,5,18,19,13,6,17,23,21]. However, due to the many variations
of the used security models, the security level achieved by these schemes vary.
The simplest security model for signcryption, which was adopted in a few of
the early papers [4,13], considers the so-called two-user setting in which only a
single sender and a single receiver interact. However, as pointed out by Dent [13],

J. Lopez and G. Tsudik (Eds.): ACNS 2011, LNCS 6715, pp. 220–237, 2011.
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security in the two-user setting does not imply security in the multi-user setting
in which several senders address the same receiver, and several receivers receive
messages from the same sender. Hence, to ensure security in a more realistic
environment, a multi-user security model must be adopted. Furthermore, another
aspect of the signcryption security definition, is the concept of “insider” and
“outsider” attacks. While some security models require the adversary to attack
an uncompromised sender and receiver pair (i.e. the key material of both parties
are unknown to the adversary), others allow an “insider” attack in which the
adversary has access to the key material of one of the parties. Since security
against an insider attack implies security against an outsider attack, the former
is preferred. The currently strongest security definitions which capture insider
confidentiality and strong insider unforgeability in the multi-user setting, were
first defined and used in [18]. For a more detailed overview of the used security
models, see [21].

Up until now, several practical signcryption schemes which achieve insider
confidentiality and strong insider unforgeability in the multi-user setting have
been proposed [19,17,21], but these are only shown secure in the random or-
acle model. While a number of signcryption schemes which are secure in the
standard model, e.g. [4,23,21], these do not achieve the same level of security
as the random oracle model schemes. For example, An et al. [4] showed how to
strengthen the traditional Encrypt-then-Sign and Sign-then-Encrypt schemes to
achieve security in the multi-user setting. However, Encrypt-then-Sign construc-
tion only achieves the so-called generalized chosen ciphertext security which is
strictly weaker than ordinary chosen ciphertext security. Sign-then-Encrypt con-
struction achieves ordinary chosen ciphertext security for confidentiality while
it only achieves weak unforgeability for authenticity. While weak unforgeability
might be sufficient in some scenarios, strong insider unforgeability guarantees
that a ciphertext is non-malleable, even for a malicious receiver, and might be
needed when the signcryption scheme is used as a building block in a higher
level protocol.

Tan [23] proposed a scheme which achieves insider confidentiality in the
strongest sense, but the strong insider unforgeability of his scheme is only achieved
if key registration is used i.e. the adversary is required to reveal the private key cor-
responding to any public key he makes use of when trying to attack the scheme.
In practice, this assumption requires that a traditional public-key infrastructure
(PKI) is employed and that all parties engage in a zero-knowledge proof with
the certificate authority (CA), which proves knowledge of their private key, be-
fore they obtain a certificate for their public key. However, executing these proofs
places a heavy burden on the CA, and this type of registration is not used in most
practical systems.

Matsuda et al. [21] showed generic constructions of signcryption schemes from
existing basic primitives and their simple extensions such as tag-based encryp-
tion (TBE) [20,16]. Although their generic constructions were shown to achieve
insider confidentiality in the strongest sense, their constructions only achieve
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either weak insider unforgeability or strong insider unforgeability under the as-
sumption that key registration is used.

To the best our knowledge, there is no standard model signcryption scheme
which achieves both insider confidentiality and strong insider unforgeability in
the multi-user setting, without relying on key registration. The main motivation
of this paper is to construct such signcryption schemes.

Our Contribution. In this paper, we propose two new generic constructions of
simple but efficient signcryption schemes. Instantiations of our constructions
are the first to achieve strong insider unforgeability and insider confidentiality
without relying on random oracles or key registration.

Our first construction makes use of an IND-tag-CCA secure tag-based key
encapsulation mechanism (TBKEM), an IND-CCA secure data encapsulation
mechanism (DEM) which has a one-to-one property, and a sUF-CMA secure
signature scheme. Note that TBKEMs are fairly easy to construct from already
existing primitives, and many efficient concrete constructions are possible (see
Section 2.2). Our second construction makes use of an IND-CCA secure key en-
capsulation mechanism (KEM), a one-time secure DEM with a one-to-one prop-
erty, a one-time secure message authentication code (MAC) with a one-to-one
property, and a sUF-CMA secure signature scheme. Both of our constructions
are based on the ideas related to the well-known Sign-then-Encrypt approach,
but they exploit the functionality of tag-based primitives and hybrid encryption
(KEM/DEM approach) to overcome the limitation of the previous approaches
(see Section 4 for more details).

From these two constructions, we instantiate a number of efficient concrete
signcryption schemes which are insider secure in the multi-user setting (in the
standard model), and compare these with the existing standard model schemes
(see Section 5 for details). We emphasize that the advantage of the above con-
structions lies not only in the efficiency and security properties achieved by our
concrete instantiations, but also in being generic constructions, which allows us
to make use of any present or future instantiation of the underlying primitives
and the established security results for these.

2 Preliminaries

In this section, we review the notation used throughout the paper and the defini-
tions of the primitives that will be used in our first construction. The additional
primitives needed for our second construction, which includes a KEM and a
MAC, will be given in Appendix A.

2.1 Notation

In this paper, “x ← y” denotes that x is chosen uniformly at random from
y if y is a finite set, x is output from y if y is a function or an algorithm,
or y is assigned to x otherwise. “x||y” denotes a concatenation of x and y.
“PPT” denotes probabilistic polynomial time. “κ” always denotes the security
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parameter. We say that a function f(κ) is negligible in κ if f(κ) ≤ 1/p(κ) for
any positive polynomial p(κ) and all sufficiently large κ. In this paper, when
we say a function is negligible then we always mean that it is negligible in the
security parameter κ.

2.2 Tag-Based Key Encapsulation Mechanism

A tag-based key encapsulation mechanism (TBKEM) is a key encapsulation
mechanism whose encapsulation and decapsulation algorithms take an arbitrary
string called tag as an additional input. Note that a TBKEM is a KEM-analogue
of tag-based encryption (TBE) [20,16], and must not be confused with a tag-
KEM, which is a building block of hybrid encryption proposed by Abe et al. [2].

Formally, a TBKEM is given by the following four algorithms.

TSetup: Given input a security parameter 1κ, this algorithm returns a set of
public parameters prm (included in prm is a description of a key space K).

TKG: Given input prm, this algorithm returns a public/private key pair (pk, sk).
TEncap: Given input prm, a public key pk and a tag tag, this algorithm returns

an encapsulation and encapsulated key pair (c, K).
TDecap: Given input prm, a private key sk, a tag tag and an encapsulation c,

this algorithm returns a key K or an error symbol ⊥.

It is required for all prm ← TSetup(1κ), all (pk, sk)← TKG(prm), all tags tag,
and all (c, K)← TEncap(prm, pk, tag), that K = TDecap(prm, sk, tag, c)

IND-tag-CCA Security. For a TBKEM, indistinguishability against adaptive
tag and adaptive chosen ciphertext attacks (IND-tag-CCA) is defined by the
following game between an adversary A and an IND-tag-CCA challenger CH.

Setup. CH computes prm ← TSetup(1κ) and (pk, sk)← TKG(prm), and then
forwards (prm, pk) to A and keeps sk to itself.

Phase 1. A can adaptively submit decapsulation queries (tag, c) to CH. CH
responds to each query by returning K ← TDecap(prm, sk, tag, c).

Challenge. A chooses a challenge tag tag∗ and sends this to CH. CH computes
(c∗, K∗

1 ) ← TEncap(pk, tag∗), and chooses K∗
0 ∈ K uniformly at random.

Then CH flips a fair coin b ∈ {0, 1}, and returns the challenge encapsulation
and key (c∗, K∗

b ) to A.
Phase 2. A can submit decapsulation queries in the same way as in Phase 1,

except that A is not allowed to submit the challenge pair (tag∗, c∗).
Guess. A outputs a bit b′ as its guess for b.

We define the IND-tag-CCA advantage of A attacking the TBKEM TK as
AdvIND-tag-CCA

TK,A = |Pr[b′ = b]− 1
2 |.

Definition 1. We say that a TBKEM TK is IND-tag-CCA secure if
AdvIND-tag-CCA

TK,A is negligible for any PPT adversary A.
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How to construct TBKEMs. Although one might think that a TBKEM is not
a basic primitive, any IND-CCA secure public key encryption scheme can be
converted into a IND-tag-CCA secure TBKEM by encrypting a random session
key together with the tag [16]. Furthermore, any IND-CCA secure tag-KEM can
be used as an IND-tag-CCA secure TBKEM, which allows the many practical
constructions of tag-KEMs to be used (e.g. [2,1]). Lastly, Abe et al. [2] show that
IND-CCA secure tag-KEMs can be generically built from any IND-CCA secure
ordinary KEM and a one-time secure MAC, which implies that this technique
can be used for the construction of IND-tag-CCA secure TBKEMs as well.

2.3 Data Encapsulation Mechanism

A data encapsulation mechanism (DEM) is given by the following two
algorithms.

DEnc: Given input a symmetric key K ∈ K and a message m, this algorithm
returns a ciphertext c. K is a key space.

DDec: Given input symmetric key K ∈ K and a ciphertext c, this algorithm
returns a message m or an error symbol ⊥.

It is required for all K ∈ K and all messages m that DDec(K, DEnc(K, m)) = m.

IND-CCA Security. For a DEM, indistinguishability against adaptive chosen
ciphertext attacks (IND-CCA) is defined by the following game between an ad-
versary A and an IND-CCA challenger CH.

Setup. CH chooses K ∈ K uniformly at random, where K is a key space.
Phase 1. A can adaptively submit decryption queries c to CH. CH responds to

each query by returning m← DDec(K, c).
Challenge. A chooses two plaintexts (m0, m1) of equal length, and sends them

to CH. CH flips a fair coin b ∈ {0, 1}, and then returns the challenge cipher-
text c∗ ← DEnc(K, mb) to A.

Phase 2. A can submit decryption queries in the same way as in Phase 1,
except that A is not allowed to submit the challenge ciphertext c∗.

Guess. A outputs a bit b′ as its guess for b.

Note that, in the above game,A is not allowed to make any encryption queries i.e.
the above defined IND-CCA security for a DEM is strictly weaker, and therefore
easier to achieve, than ordinary IND-CCA security for symmetric encryption.

We define the IND-CCA advantage of A attacking the DEM D as
AdvIND-CCA

D,A = |Pr[b′ = b]− 1
2 |.

Furthermore, we define indistinguishability against one time attacks (IND-
OT) by an IND-OT game which is defined in the same way as the IND-CCA
game except that the adversary is not allowed to submit any decryption queries.
The advantage AdvIND-OT

D,A of an adversary attacking the IND-OT security of a
DEM D is defined similarly to the IND-CCA advantage.

Definition 2. We say that a DEM D is IND-CCA (resp. IND-OT) secure if
AdvIND-CCA

D,A (resp. AdvIND-OT
D,A ) is negligible for any PPT adversary A.



Efficient Generic Constructions of Signcryption with Insider Security 225

One-to-One Property. A DEM is said to be one-to-one if given a key K and a
plaintext m, there is at most one c such that DDec(K, c) = m. We consider this
property to be quite natural for a DEM, and all IND-CCA secure DEMs based
on strong pseudorandom permutations [22] satisfy this. Furthermore, the well-
known Encrypt-then-MAC [7] construction of IND-CCA secure DEMs preserves
the one-to-one property of the underlying (IND-OT secure) DEM and MAC i.e. if
both the used DEM and MAC are one-to-one, then so is the DEM resulting from
a Encrypt-then-MAC construction (the definition of the one-to-one property of
a MAC is given in Section A.2). We are not aware of any natural construction
of a DEM which does not have this property.

2.4 Signature

A signature scheme is given by the following four algorithms.

SSetup: Given input a security parameter 1κ, this algorithm returns a set of
public parameters prm.

SKG: Given input prm, this algorithm returns a public/private key pair (pk, sk).
Sign: Given input prm, private key sk and a message m, this algorithm returns

a signature σ.
SVer: Given input prm, a public key pk, a message m, and a signature σ, this

algorithm returns " or ⊥.

It is required for all prm ← SSetup(1κ), all (pk, sk) ← SKG(prm) and all mes-
sages m, that SVer(prm, pk, m, Sign(prm, sk, m)) = "

sUF-CMA Security. For a signature scheme, strong unforgeability against cho-
sen message attacks (sUF-CMA) is defined by the following game between an
adversary A and a sUF-CMA challenger CH.

Setup. CH computes prm← SSetup(1κ) and (pk, sk)← SKG(prm), and gener-
ates an empty list L into which message/signature pairs will be stored. CH
then forwards (prm, pk) to A and keeps sk to itself.

Query. A can adaptively submit signature queries m to CH. CH responds to
each query by returning σ ← Sign(prm, sk, m). CH furthermore stores the
message/signature pair (m, σ) in L.

Output. A outputs a message/signature pair (m∗, σ∗).

We define the sUF-CMA advantage of A attacking the signature scheme S as
follows:

AdvsUF-CMA
S,A = Pr[SVer(prm, pk, m∗, σ∗) = " ∧ (m∗, σ∗) /∈ L]

Definition 3. We say that a signature S is sUF-CMA secure if AdvsUF-CMA
S,A is

negligible for any PPT adversary A.

3 Signcryption

In this section we review the formal definition of a signcryption scheme.
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Algorithms. A signcryption scheme is given by the following five algorithms.

Setup: Given input a security parameter 1κ, this algorithm returns a set of public
parameters prm.

KeyGenS: This is the sender’s key generation algorithm which takes prm as input
and returns a public/private sender key pair (pkS , skS).

KeyGenR: This is the receiver’s key generation algorithm which takes prm as
input and returns a public/private receiver key pair (pkR, skR).

SC: This is the signcryption algorithm which takes prm, a private sender key
skS , a public receiver key pkR, and a message m as input, and returns a
ciphertext c.

USC: This is the unsigncryption algorithm which takes prm, a public sender
key pkS , a private receiver key skR, and a ciphertext c as input, and returns
either a message m or an error symbol ⊥.

It is required for all prm ← Setup(1κ), all (pkS , skS) ← KeyGenS(prm), all
(pkR, skR)← KeyGenR(prm), all messages m and all c← SC(prm, skS , pkR, m),
that m = USC(prm, pkS , skR, c).

3.1 Security

In this subsection, we review the security model in which we will prove our sign-
cryption constructions secure using the notations introduced in [21]. More specifi-
cally, for confidentiality, we will use the notion indistinguishability against insider
chosen ciphertext attacks in the dynamic multi-user model (dM-IND-iCCA), and
for unforgeability, we use the notion strong unforgeability against insider chosen
message attacks in the dynamic multi-user model (dM-sUF-iCMA).

dM-IND-iCCA Security. For a signcryption scheme, dM-IND-iCCA security is
defined by the following game between an adversary A and a dM-IND-iCCA
challenger CH.

Setup. CH computes prm ← Setup(1κ) and (pkR, skR) ← KeyGenR(prm), for-
wards (prm, pkR) to A, and keeps skR to itself.

Phase 1. A can adaptively submit unsigncryption queries (pkS , c) to CH. CH
responds to each query by returning m← USC(prm, pkS , skR, c) to A.

Challenge. A chooses two plaintexts (m0, m1) of equal length and a challenge
sender public/private key pair (pk∗

S , sk∗
S), and sends these to CH. It is re-

quired that (pk∗
S , sk∗

S) is a valid key pair i.e. (pk∗
S , sk∗

S) lies in the range of
KeyGenS(prm). CH flips a fair coin b ∈ {0, 1}, and then returns the challenge
ciphertext c∗ ← SC(prm, pkR, sk∗

S , mb) to A.
Phase 2. A can submit unsigncryption queries in the same way as in Phase 1,

except that A is not allowed to submit the pair (pk∗
S , c∗).

Guess. A outputs a bit b′ as its guess for b.

We define the dM-IND-iCCA advantage of A attacking signcryption SC as
AdvdM-IND-iCCA

SC,A = |Pr[b′ = b]− 1
2 |.



Efficient Generic Constructions of Signcryption with Insider Security 227

Definition 4. We say that a signcryption scheme SC is dM-IND-iCCA secure
if AdvdM-IND-iCCA

SC,A is negligible for any PPT adversary A.

Note that, in the dM-IND-iCCA security game,A can freely choose the sender keys
submitted in the unsigncryption queries, and is not required to prove knowledge
of or reveal the private keys corresponding to these (i.e.A is allowed to employ an
attack strategy in which these private keys are unknown toA). This will ensure se-
curity in the multi-user scenario in which a receiver decrypts ciphertexts from mul-
tiple senders. Furthermore, we would like to emphasize that the challenge sender
key pair (pk∗

S , sk∗
S) is also freely chosen byA, and in particular,A knows sk∗

S . This
implies that confidentiality is maintained, even if the private sender key is com-
promised i.e. insider confidentially is guaranteed. This is currently the strongest
security notion used in the signcryption literature, and is strictly stronger than
the security notion used in a number of previous papers [5,4,13,6]. See [21] for a
more detailed di scussion of the security models for signcryption.

dM-sUF-iCMA Security. For a signcryption scheme, dM-sUF-iCMA security is
defined by the following game between an adversary A and a dM-sUF-iCMA
challenger CH.

Setup. CH computes prm ← Setup(1κ) and (pkS , skS) ← KeyGenS(prm), and
generates an empty list L into which the adversary’s queries and answers
will be stored. CH forwards (prm, pkS) to A and keeps skS to itself.

Query. A can adaptively submit signcryption queries (pkR, m) to CH. CH re-
sponds to each query by returning c← SC(prm, skS , pkR, m). Furthermore,
CH stores the tuple (pkR, c, m) in L.

Output. A outputs a tuple (pk∗
R, sk∗

R, c∗). It is required that (pk∗
R, sk∗

R) is a
valid key pair.

We define the dM-sUF-iCMA advantage of A attacking signcryption SC as
follows:

AdvdM-sUF-iCMA
SC,A = Pr[USC(prm, pk∗

S , sk∗
R, c∗) = m∗ �= ⊥ ∧ (pk∗

R, c∗, m∗) /∈ L]

Definition 5. We say that a signcryption scheme SC is dM-sUF-iCMA secure
if AdvdM-sUF-iCMA

SC,A is negligible for any PPT adversary A.

Similar to the confidentiality definition, A can freely choose public receiver keys
in the signcryption queries, and is not required to prove knowledge of or re-
veal the private keys corresponding to these i.e. A can observe signcryptions
under multiple receiver keys as required for multi-user security. Furthermore, A
can freely choose the challenge receiver key pair (pk∗

R, sk∗
R), and proving secu-

rity in this model ensures insider unforgeability. Like dM-IND-iCCA, this is the
strongest unforgeability notion used in the signcryption literature.

4 Proposed Generic Constructions

In this section, we show our generic constructions of signcryption schemes which
achieve both insider confidentiality and strong insider unforgeability in the multi-
user setting. The first construction is based on a TBKEM, a signature scheme
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Setup(1κ) :
prmtk ← TSetup(1κ)
prmsig ← SSetup(1κ)
Output prm ← (prmtk, prmsig).

KeyGenS(prm) :
Output (pkS, skS) ← SKG(prmsig).

KeyGenR(prm) :
Output (pkR, skR) ← TKG(prmtk).

SC(prm, skS , pkR, m) :
tag ← pkS

(c1, K) ← TEncap(prmtk, pkR, tag)
σ ← Sign(prmsig, skS, (m||c1||pkR))
c2 ← DEnc(K, (m||σ))
Output c ← (c1, c2)

USC(prm, pkS, skR, c) :
Parse c as (c1, c2)
tag ← pkS

K ← TDecap(prmtk, skR, tag, c1)
(if K = ⊥, then return ⊥)

(m||σ) ← DDec(K, c2)
(if DDec outputs ⊥, then return ⊥)

If SVer(prmsig, pkS, (m||c1||pkR), σ) = ⊥
then return ⊥

Output m

Fig. 1. Construction using TBKEM: SCtk

and a DEM, and is given in Section 4.1. The second construction is based on a
KEM, a signature scheme, a MAC and a DEM, and is given in Section 4.2.

4.1 Composition Using TBKEM

Let TK = (TSetup, TKG, TEncap, TDecap) be an IND-tag-CCA secure TBKEM,
let D = (DEnc, DDec) be an IND-CCA secure DEM, and let S = (SSetup,
SKG, Sign, SVer) be a sUF-CMA secure signature scheme. Then, we construct
a signcryption scheme SCtk as shown in Fig.1. For simplicity, we assume the
symmetric key space of TK and that of D are {0, 1}κ.

Construction Idea. The proposed construction can be regarded as a variant of
the Sign-then-Encrypt construction. However, as shown by the previous results
[4,21], the ordinary Sign-then-Encrypt constructions cannot achieve strong in-
sider unforgeability in the multi-user setting (dM-sUF-iCMA security), because
an insider adversary who has a receiver’s private key and receives a ciphertext
from a signcryption query can decrypt the ciphertext and then re-encrypt it,
which can be a successful forgery in the sense of strong unforgeability. However,
in the proposed construction, we adopt the KEM/DEM approach and thus can
sign the KEM ciphertext together with the message. Because of this, an insider
adversary can no longer mount the above attack, and thus to break the strong
unforgeability he has to modify the DEM ciphertext so that the whole ciphertext
remains valid. However, such modification of the DEM ciphertext is impossible
if the underlying DEM is one-to-one, which guarantees the dM-sUF-iCMA secu-
rity of our construction. To achieve security in the multi-user setting, we make
use of a similar idea to [21] and employ a tag-based KEM. More specifically,
we sign the receiver’s public key with a signature scheme, and use the sender’s
public key as a tag of the TBKEM. This will ensure that the ciphertext is only
valid for a specific sender and receiver key pairs.
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Security. The security of SCtk is formally guaranteed by the following theorems.
Theorem 1. If the TBKEM TK is IND-tag-CCA secure and the DEM D is
IND-CCA secure, then the proposed signcryption scheme SCtk is dM-IND-iCCA
secure.

Proof. Suppose there exists an adversary A that breaks the dM-IND-iCCA se-
curity of the signcryption scheme SCtk. We then consider the following games.
(Values used in the challenge phase are marked with an asterisk (*))

Game0: This is the ordinary dM-IND-iCCA game regarding SCtk.
Game1: In this game, a uniformly random key K ′ ∈ K is chosen at the begin-

ning of the game, and the second component c∗2 of the challenge ciphertext
is computed by using this K ′ (c∗2 ← DEnc(K ′, (m||σ))). Moreover, for an
unsigncryption query of the form (pk∗

S , c∗1, c2) with c2 �= c∗2, c2 is decrypted
using K ′. The rest is unchanged from Game0.

We define Succi as the event that A, in Game i, succeeds in guessing the bit b
used for generating the challenge ciphertext. Then, we have

AdvdM-IND-iCCA
SCtk,A = |Pr[Succ0]−

1
2
| ≤ |Pr[Succ0]−Pr[Succ1]|+|Pr[Succ1]−

1
2
| (1)

To complete the proof, we prove the following lemmas.

Lemma 1. |Pr[Succ0]− Pr[Succ1]| is negligible.

Proof. (of Lemma 1) Towards a contradiction, assume |Pr[Succ0] − Pr[Succ1]|
is non-negligible. Using A as a building block, we then show how to construct
a PPT adversary S which breaks the IND-tag-CCA security of the TBKEM
scheme TK, thereby proving the lemma by contradiction. S plays its own IND-
tag-CCA game regarding the TBKEM scheme TK as follows.

Setup. Given (prmtk, pkR), S runs prmsig ← SSetup(1κ) and sets prm ←
(prmtk, prmsig). Then S runs A with input (prm, pkR).

Phase 1. S responds to A’s unsigncryption queries (pkS , (c1, c2)) as follow. S
first sets tag ← pkS , issues (tag, c1) to CH as his decapsulation query and
then obtains K. Then S computes (m||σ)← DDec(K, c2) and
SVer(prmsig , pkS , (m||c1||pkR), σ). Finally, if the value returned from SVer
is ", S returns m to A, otherwise returns ⊥.

Challenge. When A submits (m0, m1, pk∗
S , sk∗

S) to S, S regards pk∗
S as its

challenge tag tag∗ = pk∗
S and submits tag∗ to CH and obtains S’s challenge

ciphertext/key pair (c∗1, K
∗
β), where β is the challenge bit of S in the IND-

tag-CCA game. Then S flips a coin b ∈ {0, 1} uniformly at random, and com-
putes σ∗ ← Sign(prmsig , sk∗

S , (mb||c∗1||pkR)) and c∗2 ← DEnc(K∗
β , (mb||σ∗)).

S finally returns c∗ = (c∗1, c
∗
2) to A as A’s challenge ciphertext.

Phase 2. S responds to A’s unsigncryption queries (pkS , (c1, c2)) as follows.
1. If (pkS , c1) = (pk∗

S , c∗1): S computes (m||σ)← DDec(K∗
β, c2) and

SVer(prmsig , pk∗
S , (m||c∗1||pkR), σ). If the value returned from SVer is ",

S returns m to A, otherwise returns ⊥.
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2. Otherwise: S returns m/⊥ in the same way as the unsigncryption
queries in Phase 1.

Guess. A outputs a bit b′. If b′ = b, S outputs β′ = 1 and otherwise, outputs
β′ = 0 as its guess.

Note that S never issues the prohibited decapsulation query (tag∗, c∗1) = (pk∗
S , c∗1)

to CH.
Then, the IND-tag-CCA advantage of the adversary S is estimated as:

AdvIND-tag-CCA
TK,S = |Pr[β′ = β]− 1

2
|

=
1
2
|Pr[β′ = 0|β = 1]− Pr[β′ = 0|β = 0]|

=
1
2
|Pr[b′ = b|β = 1]− Pr[b′ = b|β = 0]|

Now, consider the case when β = 1, i.e. K∗
β = K∗

1 is a real symmetric key
corresponding to c∗1 under the tag tag = pk∗

S . Then, it is easy to see that S
perfectly simulates Game0 for A in which the challenge bit for A is b. Specifically,
A’s responses to decryption queries are perfectly answered as in Game0, and the
challenge ciphertext c∗ for A is generated as in Game0 (c∗2 is computed with a
correct symmetric key K∗

1 as in the proposed signcryption scheme SCtk). Under
this situation, the event b′ = b corresponds to the event Succ0, i.e. Pr[b′ = b|β =
1] = Pr[Succ0].

When β = 0, i.e. K∗
β = K∗

0 is a uniformly random value in {0, 1}κ, on the
other hand, S perfectly simulates Game1 for A in which the challenge bit for
A is b. Specifically, c∗2 in the challenge ciphertext is an encryption of mb under
the random key K∗

0 , and an unsigncryption query of the form (pk∗
S , c∗1, c2) where

c2 �= c∗2 is answered using K∗
0 . Under this situation, the event b′ = b corresponds

to the event Succ1, i.e. Pr[b′ = b|β = 0] = Pr[Succ1].
In summary, we have AdvIND-tag-CCA

TK,S = 1
2 |Pr[Succ0] − Pr[Succ1]| which is

not negligible by the assumption we made at the beginning of the proof of
this lemma. Since this contradicts IND-tag-CCA security of the TBKEM TK,
|Pr[Succ0]−Pr[Succ1]| must be negligible. This completes the proof of Lemma 1.

#$

Lemma 2. |Pr[Succ1]− 1
2 | is negligible.

Proof. (of Lemma 2) Assume towards a contradiction that |Pr[Succ1]− 1
2 | is not

negligible. Then we show that we can construct another PPT adversary S that
uses A as a subroutine and has non-negligible IND-CCA advantage against the
DEM D, thereby proving the lemma by contradiction. The description of the
IND-CCA adversary S is as follows.

Setup. S first computes prmtk ← TSetup(1κ) and prmsig ← SSetup(1κ), then
sets prm ← (prmtk, prmsig). Then S computes (pkR, skR) ← TKG(prmtk)
and runs A with input (prm, pkR).

Phase 1. S responds to A’s unsigncryption queries (pkS , (c1, c2)) by returning
m← USC(prm, pkS , skR, (c1, c2)). This is possible because S owns skR.
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Challenge. When A submits (m0, m1, pk∗
S , sk∗

S) to S, S first sets tag ← pk∗
S ,

computes (K ′, c∗1) ← TEncap(prmtk, pkR, tag). Next CH computes σ0 ←
Sign(prmsig , sk∗

S , (m0||c∗1||pk∗
R)) and σ1 ← Sign(prmsig , sk∗

S , (m1||c∗1||pk∗
R)).

Then S submits two plaintexts M0 = (m0||σ0) and M1 = (m1||σ1) to CH
as S’s challenge and obtains c∗2. S finally returns c∗ = (c∗1, c

∗
2) to A as A’s

challenge ciphertext.
Phase 2. S responds to A’s unsigncryption queries (pkS , (c1, c2)) as follows.

1. If (pkS , c1) = (pk∗
S , c∗1): S issues c2 as a decryption query and obtains

(m||σ). Then S computes SVer(prmsig , pkS , (m||c1||pkR), σ). Finally, if
the returned value of SVer is ", S returns m to A, otherwise returns ⊥.

2. Otherwise: S returns m/⊥ in the same way as the unsigncryption
queries in Phase 1.

Guess. A outputs a bit b′. S outputs b′ as its guess.

Note that S never issues the prohibited decryption query c∗2 to CH. Moreover
it is easy to see that S perfectly simulates Game1 for A in which A’s challenge
bit is that of S’s. Therefore, S’s IND-CCA advantage can be caluculated as
AdvIND-CCA

D,S = |Pr[Succ1]− 1
2 | which is not negligible according to the assumption

we made at the beginning of the proof of this lemma. Since this contradicts the
IND-CCA security of the DEM D, |Pr[Succ1] − 1

2 | must be negligible. This
completes the proof of Lemma 2. #$

According to the inequality (1) and Lemmas 1 and 2, AdvdM-IND-iCCA
SCtk,A is upper-

bounded to be negligible for any PPT adversary A. This completes the proof of
Theorem 1. #$

Theorem 2. If the signature scheme S is sUF-CMA secure and the DEM D
is one-to-one, then the proposed signcryption scheme SCtk is dM-sUF-iCMA
secure.

Proof. Suppose there exists an adversary A that breaks the dM-sUF-iCMA se-
curity of the signcryption scheme SCtk. Using A as a building block, we then
show how to construct an algorithm S which breaks sUF-CMA security of the
signature scheme S, thereby proving the theorem by contradiction. S plays its
own sUF-CMA game regarding the signature scheme S and is defined as follows.

Setup. Given (prmsig , pkS), S runs prmtk ← TSetup(1κ), sets prm←
(prmtk, prmsig) and sets tag← pkS . Then S runs A with input (prm, pkS).

Query. When A issues a signcryption query of the form (pkR, m), S first com-
putes (c1, K)← TEncap(prmtk, pkR, tag). S then issues (m||c1||pkR) to CH
as a signing query and obtains σ. Then S computes c2 ← DEnc(K, (m||σ)),
and finally returns (c1, c2) to A as an answer to the signcryption query.

Output. When A terminates with output a receiver key pair (pk∗
R, sk∗

R) and a
ciphertext c∗ = (c∗1, c∗2), S firstly computes K∗ ← TDecap(prm, sk∗

R, tag, c∗1)
and (m∗||σ∗) ← DDec(K∗, σ∗), and then outputs ((m∗||c∗1||pk∗

R), σ∗) as its
own forgery and terminates. (If either TDecap or DDec returns ⊥, then A
simply gives up and aborts.)
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It is straightforward to see that S’s simulation forA is perfect. Specifically, the
parameters prm = (prmtk, prmsig) and the key pkS given to A are distributed
identically to those given to A in the dM-sUF-iCMA game. Furthermore, A’s
signcryption queries are properly answered by using signing queries.

Hence, in order to complete the proof, all we need to show is that S’s forgery
is valid whenever A’s forgery is valid. Let q be the number of A’s signcryption
queries. For i ∈ {1, ..., q}, let (pk

(i)
R , m(i)) be A’s i-th signcryption query, let

(c(i)
1 , c

(i)
2 ) be S’s response to A’s i-th query, and let K(i) be the symmetric key

which is the output value of TEncap(prmtk, pk
(i)
R , tag) used to compute c

(i)
2 ,

where tag = pkS . If A succeeds in the dM-sUF-CMA game regarding SCtk, it
must hold that

TDecap(prmtk, sk∗
R, tag, c∗1) = K∗ �= ⊥

DDec(K∗, c∗2) = (m∗||σ∗) �= ⊥
SVer(prmsig , pkS , (m∗||c∗1||pk∗

R), σ∗) = "
∀i ∈ {1, ..., q} : (pk∗

R, m∗, c∗1, c
∗
2) �= (pk

(i)
R , m(i), c

(i)
1 , c

(i)
2 )

where tag = pkS . Under the above conditions, in order for S to succeed in the
sUF-CMA game regarding S, it must hold that there exists no i ∈ {1, ..., q} such
that ((m∗||c∗1||pk∗

R), σ∗) = ((m(i)||c(i)
1 ||pk

(i)
R ), σ(i)).

Now assume towards a contradiction that such i exists. Then, due to the
correctness of TK and the fact that in this simulation S always uses the same tag
tag = pkS , pk∗

R = pk
(i)
R and c∗1 = c

(i)
1 implies K∗ = K(i). Next, due to the one-to-

one property of D, (K∗, (m∗||σ∗)) = (K(i), (m(i)||σ(i))) implies c∗2 = c
(i)
2 . Putting

everything together, for this i we have (pk∗
R, m∗, c∗1, c

∗
2) = (pk

(i)
R , m(i), c

(i)
1 , c

(i)
2 ).

But this contradicts the fourth succeeding condition of A above, and thus such
i never exists.

Therefore, S succeeds in the sUF-CMA game regarding S whenever A suc-
ceeds, and we have AdvsUF-CMA

S,S = AdvdM-sUF-iCMA
SCtk,A is non-neglibible, which con-

tradicts that S is sUF-CMA secure. Hence, AdvdM-sUF-iCMA
SCtk,A must be negligible

for any PPT adversary A. This completes the proof of Theorem 2. #$

4.2 Composition Using KEM

Let KM = (KSetup, KKG, Encap, Decap) be an IND-CCA secure KEM, let
D = (DEnc, DDec) be an IND-CCA secure DEM, let M = (Mac, MVer) be a
sUF-OT secure MAC, and let S = (SSetup, SKG, Sign, SVer) be a sUF-CMA
secure signature scheme (the definitions of a KEM and a MAC are given in
Appendix A). Then, we construct a signcryption scheme SCkem as shown in
Fig.2. We assume symmetric key space of KM is {0, 1}2κ and that of D and M
are {0, 1}κ. (We can always achieve this by using an appropriate key derivation
function and/or a pseudorandom generator.)

Construction Idea. The basic idea of SCkem is almost the same as that of SCtk.
In SCkem, we use a KEM and a MAC as building blocks, instead of a TBKEM. As
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Setup(1κ) :
prmkem ← KSetup(1κ)
prmsig ← SSetup(1κ)
Output prm ← (prmkem, prmsig).

KeyGenS(prm) :
Output (pkS, skS) ← SKG(prmsig).

KeyGenR(prm) :
Output (pkR, skR) ← KKG(prmkem).

SC(prm, skS, pkR, m) :
(c1, K) ← Encap(prmkem, pkR)
(Km||Ka) ← K
σ ← Sign(prmsig, skS, (m||c1||pkR))
c2 ← DEnc(Km, (m||σ))
τ ← Mac(Ka, (pkS||c1||c2))
Output c ← (c1, c2, τ )

USC(prm, pkS, skR, c) :
Parse c as (c1, c2, τ )
K ← Decap(prmkem, skR, c1)

(if K = ⊥, then return ⊥)
(Km||Ka) ← K
If MVer(Ka, (pkS||c1||c2), τ ) = ⊥

then return ⊥
(m||σ) ← DDec(Km, c2)

(if DDec outputs ⊥, then return ⊥)
If SVer(prmsig, pkS, (m||c1||pkR), σ) = ⊥

then return ⊥
Output m

Fig. 2. Construction using KEM: SCkem

mentioned earlier, we can construct an IND-tag-CCA secure TBKEM using an
IND-CCA secure KEM and a one-time secure MAC [2], and we can also construct
an IND-CCA secure DEM using a one-time secure DEM and a sUF-OT secure
MAC [7]. However, we find that if we use an IND-tag-CCA secure TBKEM and
an IND-CCA secure DEM constructed as above in the first construction SCtk,
the one-time secure MAC can be shared and thus can be slightly more efficient.
SCkem is constructed based on this observation.

Security. The security of SCkem is formally guaranteed by the following theo-
rems. The proofs of these theorems are similar to the proofs of Theorems 1 and
2, and will not be given here.

Theorem 3. If the KEM KM is IND-CCA secure, the DEM D is IND-OT
secure and MAC M is sUF-OT secure, then the proposed signcryption scheme
SCkem is dM-IND-iCCA secure.

Theorem 4. If the signature scheme S is sUF-CMA secure, the DEM D is
one-to-one and MAC M is one-to-one, then the proposed signcryption scheme
SCkem is dM-sUF-iCMA secure.

5 Comparison

In Fig. 3, we compare concrete instantiations of standard model signcryption
schemes. In the figure, tBMW1 denotes the TBKEM (and the TBE scheme)
which is obtained from the PKE scheme by Boyen, Mei, and Waters [11] based on
the observation in [21, Sect. 7.2], and BMW2 denotes the KEM by Boyen, Mei,
and Waters in [12, Sect. 4]. MMS-StTE(X, Y) denotes “Sign-then-Tag-based-
Encrypt” schemes [21, Sect. 5] where the TBE scheme X and the signature
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Scheme Confidentiality Unforgeability Comp. Cost Ciphertext OH
/Assumption /Assumption SC / USC Elements/Bits

Tan [23] dM-IND-iCCA dM-sUF-iCMA(KR) [3,2;0] 3|Gp| + 2|Zp|
/DBDH /q-SDH / [3,1;4] / 800

MMS-StTE dM-IND-iCCA dM-wUF-iCMA [4,0;0] + 1W 3|Gp| + |Zp|
(tBMW1,BB[8]) /DBDH /q-SDH / [1,1;2] / 640

MMS-SC dM-IND-iCCA dM-wUF-iCMA(KR) [4,0;0] 3|Gp|
(tBMW1,Waters[24]) /DBDH /co-CDH / [1,0;3] + 1W / 480

MMS-SC dM-IND-iCCA dM-sUF-iCMA(KR) [4,1;0] 3|Gp| + |Zp|
(tBMW1,BSW[10]) /DBDH /co-CDH / [1,1;3] + 1W / 640

Ours: SCtk dM-IND-iCCA dM-sUF-iCMA [4,0;0] + 1W 3|Gp| + |Zp|
(tBMW1,BB[8]) /DBDH /q-SDH / [1,1;2] / 640

Ours: SCkem dM-IND-iCCA dM-sUF-iCMA [3,1;0] 3|Gp| + |Zp|
(BMW2,BB[8]) /DBDH /q-SDH / [1,1;2] +|MAC| / 720

Fig. 3. Comparison of existing and proposed signcryption schemes with insider secu-
rity in the dynamic multi-user model. Columns “Confidentiality” and “Unforgeability”
list the achieved security notions as well as the underlying security assumptions. In these
columns, the security notions followed with (KR) are security in the key registered model.
Column “Comp. Cost” lists the computational overhead for signcryption (SC) and un-
signcryption (USC), where [a, b; c] denotes a exponentiations, b multi-exponentiations
and c pairing computations, and W denotes computation of the so called Waters hash
[24] (other multiplications, computation costs of hash functions and symmetric key prim-
itives are ignored). In the overhead column, |G| denotes the size of a group element of
an elliptic curve equipped with an asymmetric pairing, and |Zp| denotes the size of an
exponent (i.e. the order of the group), and |MAC| denotes the size of a (sUF-OT secure)
MAC tag. When instantiated to achieve 80 bits of security and minimize ciphertext over-
head, listed in the last column, we set |G| = |Zp| = 160 bits, and |MAC| = 80 bits. We
assume that a DEM has no ciphertext overhead [22] (i.e. length preserving), regardless
of whether it is IND-OT or IND-CCA secure. “Ciphertext OH” means the difference
between the ciphertext size and the plaintext size.

scheme Y are used as concrete building blocks. MMS-SC(X, Y) denotes a sign-
cryption scheme constructed from “signcryption composable” TBKEM X and
signature scheme Y [21, Sect. 6]. SCtk(X, Y) (resp. SCkem(X, Y)) denotes the
signcryption scheme constructed from SCtk (resp. SCkem) in Section 4 where
the TBKEM (resp. the KEM) X and a signature scheme Y are used as concrete
building blocks.

As shown in Fig. 3, our schemes are the only ones which achieve dM-IND-
iCCA security and dM-sUF-iCMA security simultaneously without random or-
acles or key registration. SCtk(tBMW1, BB) has better efficiency in all aspects
than Tan and MMS-StTE(tBMW1,BB). Furthermore, we see that there exists a
tradeoff in the achieved security/assumption, computational costs, and cipher-
text size (overhead) among SCtk(tBMW1, BB), MMS-SC(tBMW1, Waters), and
MMS-CS(tBMW1, BSW). However, we would like to stress that if we admit
the q-SDH assumption and if we need strong unforgeability, then SCtk(tBMW1,
BB) is the best choice over other schemes. We remark that SCkem and Tan have
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constant size user (i.e. sender and receiver) public keys, and SCkem is better in
all aspects than Tan.

Although we have chosen tBMW1, BMW2, and BB as concrete building blocks
for comparison in Fig. 3 we would like to stress that our proposed constructions
SCtk and SCkem are generic constructions (which is also true in the constructions
in [21]), and thus a number of different combinations of concrete instantiations
are possible. For example, if one wants to construct an insider secure signcryption
scheme from factoring-based assumptions rather than discrete-logarithm-based
assumptions, one can use the recent KEM (and its TBKEM-analogue that can be
obtained through the observation in [21]) by Hofheinz and Kiltz [14] whose secu-
rity is proved from the factoring assumption and the recent signature scheme by
Hohenberger and Waters [15] whose security is proved from the RSA assumption.
Alternatively, one can also instantiate insider secure signcryption schemes based
on lattice-based assumptions from recent progress regarding identity-based en-
cryption and signature schemes in this area, such as the schemes from [3]. (Note
that we can always construct CCA secure KEMs from identity-based encryption
schemes due to [9])
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A Additional Definitions

A.1 Key Encapsulation Mechanism

A key encapsulation mechanism (KEM) is a special case of a TBKEM in which
the tag is always given by an empty string i.e. the encapsulation and decap-
sulation algorithms do not support the additional input tag. We use the no-
tation KSetup, KKG, Encap, and Decap to denote the setup, key generation,
encapsulation and decapsulation algorithms, respectively. Like for a TBKEM,
it is required for all prm ← KSetup(1κ), all (pk, sk) ← KKG(prm), and all
(c, K) ← Encap(prm, pk), that K = Decap(prm, sk, c). Lastly, IND-CCA secu-
rity of a KEM is defined almost as IND-tag-CCA security of a TBKEM, except
that decapsulation queries do not contain a tag, and the adversary is given a
challenge encapsulation and key pair without choosing a challenge tag.

A.2 Message Authentication Code

A message authentication code (MAC) is given by the following two algorithms
(Mac, MVer): Mac, which is given input a symmetric key K ∈ K and a message m,
where K is a key space, returns a message authentication tag τ ; and MVer, which
given input a symmetric key K ∈ K, a message m, and a message authentication
tag τ , returns " or ⊥.

It is required for all K ∈ K and all m that MVer(K, m, Mac(K, m)) = ".

sUF-OT security. For a MAC, strong unforgeability against one time attacks
(sUF-OT) is defined by the following game between an adversary A and a sUF-
OT challenger CH.

Setup. CH chooses a key K ∈ K at random.
Query. A can submit a single MAC query m to CH. CH responds to this query

by returning τ ← Mac(K, m).
Output. A outputs a message/tag pair (m∗, τ∗).

We define the sUF-OT advantage of A attacking the MAC M as follows:

AdvsUF-OT
M,A = Pr[MVer(K, m∗, τ∗) = " ∧ (m∗, τ∗) �= (m, τ)]

Definition 6. We say that a MAC M is sUF-OT secure if AdvsUF-OT
M,A is negli-

gible for any PPT adversary A.

One-to-One Property. A MAC is said to be one-to-one if given a key K ∈ K
and a message m, there is only one message authentication tag τ such that
MVer(K, m, τ) = ". It is satisfied by many MAC schemes such as the CMAC,
whose Mac algorithm is deterministic and the MVer algorithm re-computes the
MAC tag from a key and given message, and compares it with the given tag.
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Abstract. Attackers in particular botnet controllers use stealthy mes-
saging systems to set up large-scale command and control. Understanding
the capacity of such communication channels is important in detecting or-
ganized cyber crimes. We analyze the use of domain name service (DNS)
as a stealthy botnet command-and-control channel, which allows multiple
entities to pass messages stored in DNS records to each other. We describe
and quantitatively analyze new techniques that can be used to hide mali-
cious DNS activities both at the host and network levels.

We also present and experimentally evaluate statistical content-
analysis techniques as a countermeasure, which require deep packet in-
spection. Our techniques are beyond the specific DNS security problem
studied. We give a formal definition for the perfect stealth of a communi-
cation channel; point out the fundamental limits in achieving it, as well as
the practical issues in the detection. We perform comprehensive statisti-
cal analysis that makes use of a two-month-long 4.6GB campus network
dataset and 1 million domain names obtained from alexa.com.

Keywords: DNS tunneling, command and control, information theory.

1 Introduction

Botnet command and control (C&C) channel refers to the protocol used by bots
and botmaster (i.e., botnet controller) to communicate to each other, e.g., for
bots to receive new attack commands and updates from botmaster, or to submit
stolen data. A C&C channel for a botnet needs to be reliable, redundant, non-
centralized, and easily disguised as legitimate traffic. Many botnet operators used
the Internet Relay Chat protocol (IRC) or HTTP servers to pass information.
Botnet operators constantly explore new stealthy communication mechanisms
to evade detection. HTTP-based command and control is difficult to distinguish
from legitimate Web traffic. For example, detecting frequent and periodic HTTP
requests was proposed for identifying botnet traffic [12]. However, this method
may give high false positives as legitimate websites also automatically refresh
pages. The feasibility of email as a stealthy botnet command and control protocol
� This work has been supported in part by NSF grant CAREER CNS-0953638 and

CNS-0831186, and ARO grant STIR-45008.

J. Lopez and G. Tsudik (Eds.): ACNS 2011, LNCS 6715, pp. 238–254, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

alexa.com


Quantitatively Analyzing Stealthy Communication Channels 239

was studied by researchers in [22]. In this paper, we systematically investigate
the sole use of DNS queries for botnet command and control.

The decentralized nature of domain name systems (DNS) with a series of
redundant servers potentially provides an effective channel for covert communi-
cation of a large distributed system, including botnets. The focus of this paper
is on analyzing the feasibility of a pure DNS-based command-and-control. We
analyze a stealthy communication channel based on DNS updates, queries, and
responses with existing infrastructure, without enlisting any Web or special-
purpose servers. The DNS channel is aided by being a high traffic channel such
that data can be easily hidden. As virtually anyone can create their own domain
name and DNS servers, it is a system that can easily be infiltrated by hackers
and botnet operators.

DNS tunneling is a technique known for transmitting arbitrary data via DNS
protocol [3,4,9]. One application is to bypass firewalls, as both inbound and out-
bound DNS connections are usually allowed by organizational firewall rules.
Because DNS is often overlooked in current security measures, it offers a
command-and-control channel that is unimpeded. Because nearly all traffic re-
quires DNS to translate domain names to IP addresses and back, simple firewall
rules can not easily be created less they harm legitimate traffic. Whereas, other
channels such as HTTP might be limited to well known sites. Compared to the
existing studies on DNS security and botnet C&C, the novelty of our work is
two-fold: i) presenting and quantitatively evaluating new DNS-based techniques
for distributed and stealthy communication, and ii) more importantly, analyz-
ing the practical limitations of information-theoretic based detection techniques.
These limitations largely contribute to the current arm race between attackers
and defenders.

Our analysis is useful beyond the specific DNS tunneling problem studied.
There has not been a systematic study on its robustness against statistical de-
tection methods. Understanding the capacity of botnets communication power
helps identify and eliminate nefarious attacks launched from them. Therefore,
our work is not yet another botnet command-and-control solution. Our tech-
niques – including the countermeasure based on analyzing content distributions
and a model for perfect stealth in content-based communication channel – are
useful beyond the specific DNS problem studied.

Our contributions. While the technology of DNS tunneling for command and
control has been observed [11], it was still unclear how effective and feasible
to use this technique to sustain large botnets. We provide the first systematic
analysis on the constraints associated with DNS-based botnet communication
channels. Our technical contributions are summarized as follows.

– We give a formal description of a botnet command-and-control protocol
through DNS queries and responses associated with domains under botmas-
ter’s control. We describe a new codeword mode of communication, which
employs a shared vocabulary between bots and botmaster for stealthy dis-
semination of attack commands or code updates.
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– We describe techniques for hiding query activities, including i) piggybacking
query strategy – a bot blends its (outbound) DNS queries with legitimate
DNS queries and ii) exponentially distributed query strategy – a bot prob-
abilistically distributes DNS queries so that inter-arrival times follow an
exponential distribution.

– We give the first formal definition for the perfect covert channel in terms
of the distinguishability between normal traffic and attacker’s traffic. We
discuss how information theoretic analysis can be used to detect malicious
traffic. We evaluate statistical methods for detecting anomalies in the con-
tent of DNS packets, through comparing the probability distributions of
normal DNS traffic and tunneling traffic. More importantly, we point out
the practical limitations (namely efficiency and scalability) associated with
these information theoretic methods.

We perform comprehensive experiments to evaluate the behaviors of
proposed query strategies in terms of how quickly new commands are dis-
seminated to a large number of bots. Our analysis utilizes a 4.6GB two-
month-long wireless network trace obtained from an organization.

– We also raise an open question on how to efficiently and automatically gen-
erate short-lived domain names that resemble legitimate domain names and
evade anomaly detection. We give evidences on the difficulty of the problem.

Organization. We describe the basic DNS tunneling mechanisms in Section 2.
We present new strategies for improving the stealthiness of DNS-based command
and control in Section 3. Our experimental evaluation results are described in
Section 3.2. We describe a countermeasure that requires examining the content of
DNS packets and performing statistical analysis in Section 4. We raise an open
question regarding how to automatically generate practical domain names in
Section 5. Related work is given in Section 6. Conclusions are given in Section 7.

2 Communication Modes

In this section, we describe protocols that pass messages over the DNS between
distributed entities, and illustrate the ease of setting up large-scale command-
and-control via DNS. We describe two forms of communication modes: codeword
mode and tunneled mode. Codeword communication allows one-way communi-
cation from botmaster to a bot client, which is suitable for issuing attack com-
mands. Tunneled communication allows for the transmitting of arbitrary data in
both directions between bot and botmaster, which may be used for both issuing
commands and collecting stolen data. The former only requires the ability to set
a particular domain name response, this could be done via any free DNS service,
while the latter requires setting up an authoritative domain server.

The controller of the botnet first needs to create a domain or subdomain,
which is administered from a special DNS server. This DNS server waits for spe-
cial name lookups, which it then translates into incoming data. The DNS server
then responds with the appropriate data using the agreed-upon semantics. We
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assume that the botnet controller (i.e., botmaster) has access to the authori-
tative domain name server for some domains or sub-domains. Bots across the
Internet frequently receive commands and updates from a botmaster and launch
attacks accordingly, as well as submit stolen data to the botmaster. We give brief
background information on DNS records.

DNS Resources Records. The DNS system allows a name server administra-
tor to associate different types of data with either a fully qualified domain name
or an IP address. To send a message to a bot, an adversary can store data in
any one of these types of records.

– A record specifies an IP address for a given host name.
– CNAME and MX records can point to textual data representing the alias or

mailing host of a particular host name.
– TXT records are designed to store arbitrary textual data up to 255 characters.
– EDNS0 record allows storing up to a 1280 byte payload [9].

2.1 Codeword Mode

The codeword mode is a new stealthy communication mechanism. It requires
a botnet operator to decide upon a set of agreed upon codewords a pri-
ori. Each codeword represents a specific type of commands or attacks. The
codeword appears in the DNS query as an innocent hostname, for example
codeword.domain.com. This hostname may be stored as any type of record
(e.g. A, MX, CNAME). A request for an A or CNAME record tends to be the most
common and therefore a preference should be given to these records types
so that queries would appear most like legitimate traffic. The client queries
codeword.domain.com, and waits for a particular value in the server’s response.
Upon receiving the query, the DNS server (controlled by the botnet operator) re-
turns the pre-set response that contains command information. If the codeword
corresponds to denial-of-service (DoS) attacks, then the response may represent
a target of DoS attacks. If the codeword corresponds to update, the client may
contact the IP address returned for updated code or other instructions.

It is important to note that the codeword can be chosen arbitrarily and does
not need to correspond to a specific host or service. The codeword method al-
lows a stealthy one-way commanding system. It can effectively evade detection
approaches based on non-conforming packet sizes [11], i.e., DNS packets whose
sizes are outside the range of [28, 300] bytes. Codewords may be arbitrarily gen-
erated, or may be common service names such as www, mail, or ftp. In the latter
case, packet statistics cannot be performed to find anomalies.

2.2 Tunneled Mode

The purpose of tunneled mode is to allow the two-way transfer of arbitrary
binary data between a server and a client. This mode is referred to as tunneled
mode, as one can tunnel streaming data over this DNS communication method.
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– Upstream communication is for a client to submit data to a (malicious) do-
main server. The client submits the data as a CNAME query by i) encoding
the data using a base32 encoding, ii) using the encoded string to construct
a host name, and iii) send a CNAME DNS query. An example is shown in
Figure 1.

– Downstream communication is for the server to issue commands to clients.
Upon receiving the above query from the client on a hostname h, the server
i) encodes the response as base32 data, and ii) constructs and returns a
CNAME record for h. An example is shown in Figure 1.

– Upstream: Ask CNAME for:
NBSWY3DPFQQHO33SNRSA000.domain.com

– Downstream: CNAME points to:
NBUSYIDCN5ZXG000.domain.com

3600

CNAME

NBSWY3DPFQQHO33SNRSA000.domain.com

Fig. 1. Example data packets sent to and from a server in tunneled mode: To server:
“hello, world”. From server: “hi, boss”. In this example, the domain server for do-
main.com is the malicious server and the response has one hour TTL.

To prevent DNS caching from disrupting the communications, the server may
set a short time-to-live (TTL). This tunneling method gives an operator the
most options after implementation as the data stream can be arbitrary. Because
of the arbitrary payload, the distribution of packet bytes may differ significantly
from conventionally DNS payload. We perform more analysis in Section 4.

There are two main characteristics of DNS-based communication. First, be-
cause the DNS protocol does not allow the server to initiate a connection with
the client, the client needs to continually pull updates from the server. Second,
DNS is based on UDP, and thus does not guarantee reliable data transfer or
message order. To mitigate the problem, sequence numbers have to be appended
to messages for bookkeeping purposes.

Both the tunneled mode and codeword mode require clients to frequently
pull updates from name servers by querying the corresponding botnet’s domain.
Straightforward querying patterns are easy to detect (e.g., periodically sending
DNS queries) and susceptible to simple aggregate analysis, such as counting DNS
queries for each unique domains and identifying domains with abnormally large
query volume at the host, local area network, or internet service provider levels.
We analyze several simple-yet-effective methods for bots to hide their DNS traffic
in the next section.

3 Query Strategies and Quantitative Evaluation

In this section, we play the devil’s advocate and describe and experimentally
evaluate new techniques for hiding DNS query activities on a host, in order to
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defeat anomaly detection that targets abnormal temporal patterns. The pro-
posed strategies are useful for both the tunneling and codeword modes. We
quantitatively analyze the detection countermeasures in Section 4.

3.1 Exponentially Distributed Query and Piggybacking Query

We describe an exponentially distributed query strategy and a piggybacking
query strategy, both can be used to hide bot activities while communicating
with a botmaster in a timely fashion. In our experiments in Section 3.2, we
provide an experimental evaluation on both query methods.

Exponentially distributed query strategy. The Poisson process is previously
believed to be a suitable model for representing stochastic processes where ar-
rivals are independent on each other, i.e., memoryless. In [19], client-side DNS
request arrivals are modeled by Poisson processes with exponential random vari-
ables with different rates λ (e.g., 2.63 queries/hour for www.google.com and 0.78
queries/hour for www.cnn.com). In our exponentially distributed query strategy,
a bot probabilistically distributes DNS queries so that their intervals follow an
exponential distribution with a parameterized arrival rate λb. Because of the
memoryless feature of the model, the bot does not need to store the previous
communication history. One simple way to implement this query strategy is as
follows.

1. The bot sends a DNS query;
2. It computes an interval t by drawing from an exponential distribution with

parameter λb (hardcoded or dynamically generated);
3. The bot sleeps for t, and repeats from Step 1.

There is a trade-off between being stealthy and communication efficiency. We
study a bot’s strategy in finding an optimal λb in Section 3.2, given the host-wide
DNS query rates.

Piggybacking query strategy. Many (legitimate) websites contain content from
multiple independent domains due to third-party content delivery, advertise-
ments, or content mashup. Therefore, multiple DNS queries are usually issued
by a host with temporal proximity. The composition of domains is usually dy-
namic. The piggybacking query strategy leverages this fact. A bot passively
listens on the host’s DNS traffic or name-translation related function calls and
sends DNS queries when legitimate DNS queries are being made. Thus, the bot’s
query is blended among a group of legitimate DNS queries.

In the piggybacking query strategy, a bot’s communication with the controller
is constrained by the host’s activities. Therefore, we focus on analyzing its time-
liness, in terms of the dissemination efficiency of new command and data. We
define time-to-communicate (TTC) and minimum TTC as follows. Minimum
TTC is a threshold aiming to prevent a bot from sending queries too frequently.

Definition 1. Time-to-communicate (TTC) is defined as the time interval be-
tween two network connections (DNS queries in our setting) of a bot for retriev-
ing information from or submitting data to the botmaster server.

www.google.com
www.cnn.com
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Definition 2. Minimum TTC is the lower bound of time-to-communicate. A
bot does not send any DNS query if the bot’s last DNS query was sent within the
minimum TTC.

In this piggybacking mode, bots need to know when a legitimate query is made.
Since the DNS service in a server listens on port 53 for incoming requests, an
outgoing packet from host to a destination IP on port 53 is an indication of a
DNS request. Therefore, the bot program may monitor the host’s network traffic
through functions in a packet capture library, (e.g., pcap), and launch its own
communication DNS query upon successful detection of legitimate queries.

An alternative method for learning the host’s (legitimate) DNS traffic is to
watch the calls for DNS-related APIs such as gethostbyname() function in
Linux libbind library. gethostbyname looks up all IP addresses associated with
a host name and is implemented in the resolver library. One way of hooking into
the API function is for the bot to register a .so file (shared library) to the
LD_PRELOAD environmental variable. In the registered .so file, the target API
function is replaced by the attacker’s version which can notify the bot whenever
this function is called. Similarly, in Windows a bot may replace the corresponding
Winsock DLL file in order to implant a DNS-notifier function.

3.2 Experimental Evaluation

The goal of this evaluation is to understand how effective the aforementioned
stealthy query strategies are. Specifically, how soon botmaster disseminates com-
mands to all or most bots; and how soon stolen data is harvested bots by bot-
master? We do not allow bots to submit DNS queries at will, in order to avoid
detection. We only allow bots to either piggyback their queries with legitimate
DNS queries from the victim host, or follow a special inter-query distribution.

Our implementation uses the Python Modular DNS Server (pymds) and a
specially designed plugin to respond to DNS requests. PyMDS implements the
full DNS protocol while allowing the user to implement a programmatic and
dynamic backend to generate the DNS records returned. Instead of returning
records from a static file, PyMDS allowed for the decoding of codewords and the
creation of appropriate responses.

To evaluate the piggyback query strategy, our dataset is a two-month-long net-
work trace obtained from a university and collected with the IPAudit tool. The
trace covered users from three departments and several research and education
centers. (All machines were connected to the Internet wirelessly, i.e., there was
no wired connection.) The raw dataset is 4.6GB. We identify and analyze the
DNS traffic on port 53 of remote destinations. For data preprocessing, we select
the most active 200 users from the our dataset by partitioning users by their
(static) MAC address and sorting users by their traffic volume. We simulate the
piggyback DNS-query strategy by having a bot send outbound communication
whenever a host issues a UDP datagram on remote host port 53. Figure 2 shows
the percentage of packets whose TTC is above the given a minimum TTC in a
10-hour-span. Three minimum TTC values are analyzed: 1, 30, and 60 minutes.

pcap
gethostbyname()
libbind
gethostbyname
.so
LD_PRELOAD
.so
pymds
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Fig. 2. Cumulative density function on the percentage of bots that have successfully
sent at least one DNS query by piggybacking after a time period (X-axis). Each line
corresponds to a different minimum TTC (1, 30, and 60 minutes). The figure shows a
10-hour span.

Results in Figure 2 show that the piggybacking query strategy is quite effective
– at least 80% of bots are able to communicate with the botmaster within 2
hours. Clearly, there is a trade-off between minimum TTC and how soon bots
communicate with the headquarter. For an active botnet where commands may
change every day, minimum TTC may be set to 60 minutes.

Piggybacking case studies. We select four hosts from our dataset to sim-
ulate the piggybacking behaviors on them and evaluate the mean time-to-
communicate. The four hosts are the first, 50-th, 100-th, and 200-th most active
hosts according to their total traffic volume during the 2-month period. Figure 3
plots how the mean TTC changes with the minimum TTC in a piggybacking
query strategy. The results show that bot’s communication efficiency is higher
on more active hosts. Mean time-to-communicate grows with minimum TTC
and is almost always greater than minimum TTC. Their relationships for the
200 hosts studied are shown in Figure 4.

For the exponentially distributed query strategy, our goal is to identify an
optimal range for λb – bot’s query arrival rate on a host. We analyze the difference
between two distributions: i) host-wide inter-arrival time for regular DNS queries
with arrival rate λ, and ii) inter-arrival time for the bot-mixed DNS queries, i.e.,
new arrival rate λ + λb, where λb is the bot’s query rate.

We use Kolmogorov-Smirnov (KS) test, which is suitable for comparing un-
binned distributions that are functions of a single independent variable as in our
case [8]. In our KS test, a higher p value ([0, 1]) represents a higher resemblance
between the normal and the bot-mixed distributions. To simulate the Poisson
process, we use two estimated λ values – high arrival rate of 131.5 queries/hour
and low arrival rate of 39 queries/hour – based on results from [19].

Intuitively, a higher legitimate DNS query rate makes it easier for a bot to
blend in its traffic. Our results in Figure 5 and Figure 6 confirm the intuition.
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Fig. 4. Mean TTC vs. minimum TTC for 200 hosts

High rate λ = 131.5 is shown in Figure 5, and low rate λ = 39 in Figure 6,
where each line represents a different amount of data collected: 10, 24, 48, and
100 hours. X-axis is the varying λb value. The horizontal line represents a 5%
cut-off threshold that may be used for detecting anomalies.

Our results show that longer traces make it easier to discern data. Higher λ
tolerates higher λb, allowing bots to communicate more often. Given a p value
threshold, the KS test can be used to find a suitable λb. The experiments show
that even when data is collected for long periods of time, such as 100 hours, it
can be difficult to detect bots using a small λb. In the case of less active hosts,
λb can be come undetectable at 4 requests per hour and with more active hosts,
λb can be as high as 10 requests per hour.

Summary. The experiments suggest that both the piggybacking and
exponentially-distributed query strategies can be effective in allowing the
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Fig. 5. KS test results between queries with the arrival rate of λ = 131.5 queries/hour
and bot-mixed queries of λ + λb (X-axis). Four runs of simulation lasting for 10, 24,
48, and 100 hours are shown.

majority of bots to communicate in a reasonable time frame without being
detected. The exponentially-distributed query strategy gives the bot slightly
more control over when to query. On the other hand, the optimal query rate λb

depends on the host-wide query rate, which may change.

4 Perfect Stealth and Countermeasures

In this section, we describe and experimentally evaluate a countermeasure against
DNS-based stealthy messaging systems that requires deep packet inspection and
statistical analysis. Deep packet inspection examines packet payload beyond the
packet header. Specifically, we quantitatively analyze the probability distributions
of (bot’s) DNS-packet content. We also give a formal definition for the perfect
stealth in content-based communication channels in terms of the distinguishabil-
ity of probability distributions between legitimate and attacker’s traffic.

4.1 Perfect Stealth in Content-Based Covert Channel

Despite the existing work on constructing, measuring, and detecting general
covert channels [15] and specific covert timing channels [6], there still lacks any
formal definition for specifying perfect stealth in covert channels. We refer to
content-based stealthy communication channel as where an adversary aims to
hide her communication among normal payload. Such a channel differs from
covert timing channel [6] where the adversary cannot modify the packet payload,
but can tamper with the packet-sending schedule to reveal sensitive data. Next,
we present a formal definition aiming to capture the ultimate goal of the adver-
sary in realizing stealthy communication. We further discuss the fundamental
limits and practical issues in encapsulating and detecting stealthy communica-
tion channels over the Internet.
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Fig. 6. KS test results between queries with the arrival rate of λ = 39 queries/hour
and bot-mixed queries with λ + λb (X-axis). Four runs of simulation lasting for 10, 24,
48, and 100 hours are shown.

Our definition for the perfect stealth in content-based covert channel is for-
mulated following the indistinguishability in Equation 1, and is specified as a
game between a challenger and a defender as follows. Specifically, our definition
is given in terms of the indistinguishability between attacker’s communication
distribution and that of normal communication (not random distribution). Given
the legitimate message spaceM0 and malicious message spaceM1 of equal size,
our definition is modeled as a game between a challenger C – who chooses a
challenge message M∗

b randomly fromM0 ∪M1, and a defender D – who aims
to break the perfect covert channel and guess the bit b. During the game, the
defender D can learn some classified messages (with labels) (as the preparation)
from the challenger, denoted by {M̂}. The channel is perfectly covert if and only
if defender’s guess b′ equals b with 1

2 + ε probability, where ε is negligible.

Pr[b′ = b | C M∗
b /∈ ˆ{M}−−−−−−→ D;D outputs−−−−−→ b′] =

1
2

+ ε (negligible) (1)

We note that this definition applies to all types of communication protocols,
not limited to DNS. Similar definitions can be given to capture the indistin-
guishability of the temporal property in legitimate traffic and adversary’s traffic,
e.g., probability distributions of query intervals.

The perfect stealth imposes a very strong requirement for attackers. Because
botnet is designed to carry out special information and data, known botnet com-
munication indeed has characteristics patterns different from legitimate traffic in
practice – making it possible to detect. This observation implies the limitation
of attackers/malware in hiding their content over the Internet.

On the other hand, as long as the malware communication has a different
probability distribution from the normal traffic, then given sufficient storage and
computation power, defenders can deploy deep packet inspection to detect suspi-
cious sets of packets. We demonstrate the use of information theoretic measures,
namely Jensen-Shannon (JS) divergence, for the analysis in the next section.
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4.2 A Countermeasure Based on Deep Packet Inspection

We describe and evaluate a concrete countermeasure against stealthy DNS chan-
nels through statistically analyzing traffic content. To compute the byte distribu-
tion in normal and tunneling traces, we use the Jensen-Shannon (JS) Divergence
DJS , which is a common metric for quantifying the difference between two prob-
ability distributions P and Q, and is a commutative version of Kullback-Leibler
divergence of Q from P . A lower DJS value means a higher similarity in two
probability distributions. The JS Divergence is particularly suited in situations
where the random variable is discretized. It is computed as follows.

M =
1
2
(P + Q) (2)

DKL(P, Q) =
n∑

i=0

pi log
pi

qi
(3)

DJS =
1
2
(DKL(P, M) + DKL(Q, M)) (4)

We experimentally compare DNS packet traces recorded on a host, specifically,
on how different tunneling packets are from legitimate ones in terms of the
probability distribution of content, assuming that content is not encrypted.

Such probability measures may be taken on a per-host or per subnet basis,
however since a filter based on these methods must only keep an probability
distribution of the bytes in a packet, no identifying information can be inferred.
In this way privacy concerns can be kept at a minimum.

In the following tests, three normal DNS traces were recorded and one tun-
neling DNS trace via tunneled mode was recorded. Each trace corresponds to an
hour-long network activities on a host. Sizes of our traces are as follows: 862KB
for the tunneling trace, 823KB for normal trace 1, 699KB for normal trace 2,
and 153KB for normal trace 3. In addition, the tunnel trace contained 191 A
queries and 1433 TXT queries, while the normal trace 1 contained 1750 A queries
and no TXT queries, and normal trace 2 contained 2417 A queries and no TXT
queries. Tunneling trace contains encrypted Secure Shell (SSH) activities, i.e.,
SSH traffic through DNS tunneling.

When the entire packet including header is analyzed, we find that the di-
vergence of normal traces (normal 1 and normal 3) is large (not shown). To
get a more stable comparison, we drop the UDP headers and only observe the
DNS payload. Figure 7 shows how the Jensen-Shannon divergence changes as
more tunneling message carrying packets are mixed in. The X-axis is the ratio
of tunnel trace to normal trace 1. Our results show that a divergence threshold
of 0.015 can sufficiently distinguish normal traces from mixed traces containing
more than 30% bot queries. These results indicate that analyzing DNS payload
gives a better result than the entire DNS datagram; and the JS divergence can
be used for determining anomalies in a stream of DNS packets.

Practical limitations: This countermeasure requires the access of DNS packet
content and thus may not be scalable for real-time analysis, especially for
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traces.

high-bandwidth routers. Each host needs a 256-item floating point array to hold
the probability distribution of DNS packets. This requirement may incur storage
overhead for a large network. In addition, many legitimate applications use DNS
for storing non-IP data, such as public keys in the DomainKeys protocols [5,7].
The above content-distribution based analysis may result in false positives.

There are also several practical issues and constraints when executing the
detection in reality, besides the computational and storage costs. i) Because of
traffic diversity such as in HTTP and SMTP, it is difficult to generate the stan-
dard probability distributions representing legitimate traffic in general. ii) The
use of end-to-end encryption may prevent defenders from analyzing byte dis-
tribution of payload. iii) For stealthy communication as in our codeword mode
described in Section 2.1, the attacker’s extra payload is small and subtle with-
out significantly affecting the overall byte distributions. The abnormal traffic is
mixed with and diluted by normal traffic, making it harder to detect. Conven-
tional signature-based detection relies on known patterns, and is not effective
against new malware activities.

5 An Open Question on Domain Names

Understanding the capability of adversaries in setting up stealthy DNS-based
communication channel is important. In this section, we describe an open ques-
tion about how to automatically generate a large number of realistic-looking
domain names for command and control purposes.

Long-lived domain names are easy to manage and cheaper to maintain, how-
ever, they are susceptible to aggregate analysis. Domain flux refers to using
short-lived domain names in botnet C&C [18,24]. Domain flux typically requires
bots and botnet controller to independently derive new domain names period-
ically. To have short-lived domains, a static approach is to have a botmaster
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generate an ordered list of domain names and pack the list in malware code
for bot to look up. However, there are two disadvantages for this method: large
storage and high code-homogeneity – long lists of domain names shared by all
bot code making the code susceptible to signature-based malware detection. An
alternative is for the botmaster to send to all bots the new domain name during
the current epoch. However, a communication failure may prevent the bots from
learning the correct name for the next epoch.

One simple approach is for bots and their controller to independently compute
the hash value of an incremental counter and a shared secret at each epoch, i.e.,
H(counter‖secret), where H is a one-way collision-resistant hash function. How-
ever, automatically generating realistic-looking domain names by distributed
parties is still an open question, which is further explained next.

Popular (and legitimate) domain names usually have semantics, i.e., mean-
ings, whereas automatically generated domains do not. This difference (among
other features) was recently used to identify anomalous domains [1]. For hash-
generated domains and legitimate domains, their entropy may differ. For exam-
ple, we obtained the top one million popular domains from alexa.com on May 25,
2010, which we used to represent legitimate domain names. For hash-generated
domains, we use the first 32 bits of a hash value to generate 8 characters. The
average entropy for hash-generated domains is 2.97, which is close to the maxi-
mum entropy for an 8-character string: −

∑8
i=1

1
8 log2

1
8 = 3. In comparison, the

averaged entropy for legitimate domains is 2.17. We also evaluate the Maha-
lanobis distance for comparing byte distributions in alexa.com domain names
and hash-generated domains in Figure 8. hash-generated domains give slightly
higher Mahalanobis distances than legitimate domains. An interesting finding is
that outlier domains from alexa.com that give high Mahalanobis distance tend
to contain digits, e.g., 8555.com and c8048.com.

These evidences prompt us to raise an interesting open question as to how
to design algorithms and protocols that enable multiple parties to automatically

alexa.com
alexa.com
alexa.com
8555.com
c8048.com
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generate synchronized domain names that resemble legitimate domains and evade
statistics-based detection.

6 Related Work

Despite the fact that DNS tunneling is known for bypassing firewalls and encap-
sulating arbitrary data such as SSL traffic [9,3], Exploring DNS protocol as a
practical command-and-control channel and identifying its limitations have not
been scientifically studied. Various proof-of-concept botnet command and con-
trol systems via unconventional media exist, such as via bluetooth [21] and social
networks [13]. In comparison, our work is useful beyond the specific DNS-based
communication channel studied in two aspects.

– We present new quantitative techniques and evaluation regarding the detec-
tion and construction of general-purpose distributed stealthy communication
systems, including temporal strategies for making stealthy communication
and statistical content analysis.

– We give the first attempt to formalize the perfect stealth in content-based
covert channel and point out its practical implications. We also describe an
open question with a cryptographic and algorithmic flavor regarding how to
automatically generate useful domain names.

For DNS-based anomaly detection, Karasaridis et al described the use of the
Kullback-Leibler distance mentioned in Section 4 to measure byte distribution in
DNS datagrams [11]. Dagon [2] proposed to quantify how anomalous the num-
ber of queries for each domain name during an hour in a day with Chebyshev’s
inequality and distance measures previously used for examining anomalous pay-
loads. DNS-based anomaly detection approaches are presented in [25] for de-
tecting botnet C&C activities. One method is to detect dynamic domain names
whose query rates are abnormally high or temporally concentrated using outlier
detection metrics such as Chebyshev’s inequality. Our work describes stealthy
DNS behaviors whose querying patterns are hard to distinguish with legitimate
domains, which make the counting based detection less effective. We note that
DNSSec protocol does not prevent stealthy communication via DNS.

Stone-Gross et al observed the use of domain flux in Torpig botnet [24], where
new communication domains are generated periodically and registered by the
C&C server. Torpig bots communicated with the server over HTTP, after re-
solving the domain name. In comparison, we investigate the feasibility of solely
DNS-based command and control, without requiring any additional Web servers.

Our piggybacking DNS queries should not be confused with previously re-
ported piggybacking methods for reducing DNS traffic. Those techniques usually
take advantage of empty payload space in UDP datagrams. For example, renewal
using piggyback method was proposed to piggyback cached DNS records to DNS
queries to refresh expired cached records [10]. Related domains may also be pig-
gybacked in DNS queries [20], e.g., to include i.cnn.net in the DNS packet for
www.cnn.com as they are likely to be requested together by the browser.

i.cnn.net
www.cnn.com
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Millen did pioneering work on covert-channel analysis [14,15], in particular
in a system (host) environment. Covert channel has been heavily analyzed in
the context of traffic-analysis prevention [17] and routing anonymity [16]. Our
perfect covert channel definition (for one-to-one communication) can be applied
to traffic matrix (for n-to-n communication) defined in [17]. Our work differs
from them in that we focus on experimentally evaluating and detecting practical
covert channels across the Internet.

Our work is complementary to host-based malware detection and prevention
solutions, such as the cryptographic provenance verification technique by Stefan,
Wu, Yao, and Xu [23].

7 Conclusions

We conducted a systematic study on the use of pure DNS queries for massive-
scale stealthy communications among entities on the Internet. Our work shows
that DNS – in particular the codeword mode combined with advanced querying
strategies – can be used as a stealthy command-and-control channel. Because
almost all computers need domain-name resolution, it is impossible to block
DNS traffic. For the tunneling mode, we presented a payload-inspection based
countermeasure for detecting anomalies in DNS traffic through analyzing the
probability distributions of content. However, the payload inspection techniques
do not apply to codeword systems.

The focus of this paper is not on presenting offensive techniques for attackers.
Rather, we used information theoretic analysis and experiments to illustrate the
need and importance of understanding the potential capabilities of adversaries.
We further pointed out that although it may be difficult for attackers to achieve
a perfect stealth for C&C, practical constraints may prevent detection methods
such as the JS divergence test from being effective. We leave an open question on
how to algorithmically generate short-lived and realistic-looking domain names.
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Abstract. In this paper we put forward a new onion routing protocol
which achieves forward secrecy in a fully non-interactive fashion, without
requiring any communication from the router and/or the users and the
service provider to update time-related keys. We compare this to TOR
which requires O(n2) rounds of interaction to establish a circuit of size
n. In terms of the computational effort required to the parties, our pro-
tocol is comparable to TOR, but the network latency associated with
TOR’s high round complexity ends up dominating the running time.
Compared to other recently proposed alternative to TOR (such as the
PB-OR and CL-OR protocols) our scheme still has the advantage of be-
ing non-interactive (both PB-OR and CL-OR require some interaction to
update time-sensitive information), and achieves similar computational
performances. We performed extensive implementation and simulation
tests that confirm our theoretical analysis. Additionally, while compar-
ing our scheme to PB-OR, we discovered a flaw in the security of that
scheme which we repair in this paper.

Our solution is based on the application of forward-secure encryption.
We design a forward-secure encryption scheme (of independent interest)
to be used as the main encryption scheme in an onion routing protocol.

1 Introduction

As we move to use network communication in more and more aspects of every-
day’s life, it has become apparent that our privacy is at stake. The ability to
monitor electronic communication, to store large amount of data, and to run
sophisticated analytics on it, allows a sufficiently motivated party to ”connect
the dots” between various on-line activities of a specific user and get a pretty
accurate picture of his/her private life.

These privacy concerns were recognized since the beginning of the Internet
age, and anonymous communication was conceived as a possible approach to
� Work partially done while student at University of Catania.
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their solutions. Anonymity is the user’s ability to hide not only her identity but
also her network information (e.g. her network address). This is of utter impor-
tance in many real life applications, where a user’s identity should be decoupled
from her network activities (e.g. voting, e-cash, anonymous credentials, etc.).

Chaum in 1981 [8], proposed the notion of a anonymous channel, realized
through a mix-net: very informally, his idea was to route messages through a
series of nodes (the mix-net). The messages are ”wrapped” in several layers
of encryptions and sent to the first node in the mix-net. Each node, batches a
number of received ciphertexts, peels off a layer of encryption from each of them,
and sends the resulting values in permuted order to the next node. The last node
in the mix-net delivers the messages to the recipients. Anonymity derives from
the fact that since each node permutes the messages in a randomized order before
forwarding, no traffic analysis can actually link the sender to the receiver.

Goldschlag et al. introduced in [17] the so-called Onion Routing approach
which is based on Chaum’s idea as follows. Consider a setting defined by: a ser-
vice provider, a set of users and a set of nodes (called onion routers). The user’s
goal is to establish an anonymous channel that allows him to send messages over
the network without being identified. In order to do so, he selects a random set of
nodes (called a circuit), wraps the message with several layers of encryption, one
for each node, and sends it through these intermediate nodes. Because of their
layered composition such wrapped messages are called onions. Whenever a node
receives a message, it decrypts it and immediately sends the resulting value to the
next node. Note that differently from Chaum’s mixers, an onion router does not
collect and permute a batch of messages before forwarding, but it immediately
forwards what it receives. Roughly speaking, since the user chooses a random
subset of the routers to forward his messages, anonymity is guaranteed by the
assumption that the adversary cannot monitor the entire set of onion routers,
but has only a local view of the network communication. This very simple and
elegant idea has proven itself very popular over the Internet. Besides leading to
several other constructions and implementations (e.g. [17,9,25,18,15,26,14]), it
gave birth to the Onion Routing Project, later replaced by Tor [14] (the sec-
ond generation onion router) which provides privacy and anonymity to a large
number of users over the Internet. At the moment it counts, roughly, 1000 onion
routers and hundreds of thousands of users over the world.

An important aspect of onion routing protocols is how messages travel se-
curely through each onion router. The idea given in [17] proposes that the user
encrypts a random symmetric key with the public key of each onion router: the
symmetric key is used to encrypt the corresponding onion layer and the name
of the next node in the circuit. This approach, unfortunately, is not robust in
the face of possible server corruptions. Indeed if an adversary obtains the long-
term secret key of a router O, it can then decrypt all the ciphertexts received
by O: particularly troubling is that the adversary can decrypt communication
that happened before the leakage of the secret key. Resistance to such attacks
has been already recognized as an important security property (that is called
forward secrecy) in other cryptographic contexts. So, even for onion routing,
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ideally we would like to have a protocol that is forward-secure, namely such that
a router’s corruption does not reveal anything about communication prior to the
corruption.

In the context of Tor, Dingledine et al. [14] proposed a solution which relies
on using the routers’ public keys only to establish a temporary session key via an
(interactive) Diffie-Hellman [12] key agreement. In order to get anonymity such
interaction is made part of a specific protocol called Tor Authentication Protocol
(TAP) which was proven secure by Goldberg [16]. The main idea of TAP is the
telescoping technique that allows to construct the circuit and to exchange the
temporary keys anonymously. However, this technique has a major drawback:
its bandwidth and round complexity. In fact, in order to build a circuit of length
n it is required to exchange O(n2) (symmetrically encrypted) messages. Øverlier
and Syverson [24] later improved the efficiency of TAP by proposing the use of
only half-certified Diffie-Hellman key-agreement, but the round complexity of
telescoping is still quadratic.

A related notion of forward secrecy (sometimes called eventual forward secrecy
in the literature) can be realized by frequently changing the long-term server
keys, in order to minimize the security impact of key leakage. If the adversary
learns the secret key of a server O, it may only learn the communication related to
the validity period of that key. The trivial implementation of this idea (changing
the servers public keys) would be very complicated in practice as it forces the
routers to generate new keys with corresponding valid certificates, and the users
to repeatedly obtain such certified keys.

Recently, two approaches were proposed to achieve eventual forward secrecy
in a more efficient and simple way. In 2007, Kate et al. [20,21] proposed using
identity-based encryption schemes such as [4,29] to construct an onion routing
protocol called PB-OR (for pairing-based onion routing). In identity-based cryp-
tography (introduced by Adi Shamir in [27]) the parties’ public keys are their
identities, and the secret keys are provided to them by a trusted Key Generation
Center (KGC). PB-OR uses the original onion-routing idea to encrypt messages
using the public key of the routers, except that in this case the routers’ public
keys are their identities together with the validity period. Therefore a router’s
corruption reveals only the messages encrypted during the particular period of
the corruption. PB-OR has two major drawbacks: (i) the existence of a trusted
KGC who can decrypt any message in the network; (ii) it requires the routers to
interact with the KGC at each validity period to obtain new secret keys. While
the former can be solved by using known techniques (e.g. a distributed KGC),
the latter is more annoying and seems to be inherent in that construction.

These two drawbacks were addressed in a subsequent paper by Catalano et
al. [7] who suggested using certificateless encryption (rather than identity-based)
to construct the onions. Certificateless encryption [1] is an hybrid setting that lies
between public key and identity-based cryptography: each user has an identity
string ID with a matching secret key produced by a KGC and also a public/secret
key pair, as in the traditional public key model but with the advantage that such
key needs not be certified. Certificateless encryption does not suffer the problem
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of key escrow as the KGC cannot decrypt the messages sent to a user. The
CL-OR protocol in [7] achieves eventual forward secrecy by having the routers
periodically change their public keys: compared to PB-OR, CL-OR requires the
users to interact with the service provider at each time period to obtain the
routers’ new public keys (but with the advantage of not having to manage and
verify certificates).

Our Contribution. This paper presents a new onion routing protocol which
outperforms TOR (and the other proposals such as PB-OR and CL-OR as well).
The main improvement of our proposal is that it is fully non-interactive. Our
main idea is to achieve eventual forward secrecy by using forward-secure identity-
based encryption (fs-IBE) for the public keys of the routers.

Forward-secure public-key encryption (fs-PKE) was originally proposed by
Anderson in [2] exactly as a way to achieve eventual forward secrecy for public-
key encryption, without requiring users to continuously change their public keys.
In Anderson’s idea, a user U of a fs-PKE scheme publishes a static public key
pkU and senders encrypt messages using this public key and a time value t. To
decrypt such ciphertexts, U uses a secret key skU,t. At the beginning, U holds
the secret key skU,0, and at each time period U updates its secret key from skU,t

to skU,t+1 and erases skU,t. This process must be one-way – while it is easy
to compute skU,t+1 from skU,t the reverse must be hard – in order to achieve
eventual forward secrecy: if skU,t is compromised past communication remains
secret. Our contribution can be described as follows:

– First, we propose a new onion routing protocol fs-ID-OR, which uses the
“classical” onion-routing approach to construct onions by using the static
public keys of the routers, except that we use an identity-based forward
secure encryption (fs-IBE) scheme for the routers’ public-keys.

– Next, we build an fs-IBE scheme by carefully applying a generic paradigm by
Canetti et al. [6] to the Hierarchical Identity-Based Encryption of Boneh et
al. [3]. This scheme is tailored to the onion-routing application and has other
properties (discussed below) which can make it of independent interest.

The advantages of fs-ID-OR compared to PB-OR and CL-OR are substantial.
Compared to PB-OR, our new scheme does not require the KGC to be involved
in the generation of new secret keys for the routers: indeed in fs-ID-OR the
update of the secret key at each time period is a local, non-interactive procedure
performed by the router. Compared to CL-OR the public keys of the routers are
fixed throughout all time periods (only the secret keys change) so the users do not
need to obtain new public keys for the routers after each time period. Compared
to Tor, fs-ID-OR has a completely non-interactive circuit-building protocol with
linear round complexity. This makes fs-ID-OR a truly non-interactive solution as
it requires no interaction between the routers, the KGC or the users to update
time information after each time change.

It is fair to notice that in practice clients have to receive up-to-date informa-
tions about the state of the network to ensure that they create correct circuits
(e.g. restrictions on the paths, status of online nodes, delays, etc.) since these
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informations are all security sensitive items. Therefore a truly secure solution
seems to be interactive anyway, and the advantage of our proposal limited.
However, we argue that the cost of exchanging and processing cryptographic
information related to the protocol is likely to be orders of magnitude larger
than the cost of receiving network status updates, and therefore removing in-
teraction from the cryptographic part of the protocol is not just a theoretical
exercise, but a real practical advantage.

Note that the level of protection afforded by eventual forward-security is re-
lated to the frequency of updates of the long-term keys (more frequent updates
imply less past information being leaked in case of a key compromise). Because
our solution is non-interactive, we have removed the major cost of key updates,
thus making very frequent updates possible. Remarkably, our non-interactive so-
lution does not come with high efficiency cost. In terms of computational load,
our protocol is comparable with PB-OR, and definitely better than Tor (which is
saddled by the cost of telescoping). The performance details of our protocol are
discussed in Section 6 where we report an extensive implementation and simula-
tion tests. The basic version of our protocol works in the identity-based setting:
therefore we must assume a trusted KGC who has the ability to decrypt all com-
munications, as in PB-OR. However, we stress on that it is possible to modify our
protocol to work in both the classical PKI setting and in the certificateless setting
so to avoid the key-escrow problem. We discuss these variations in Section 4.

Note. While proving the security of our scheme, we noticed a small flaw in one
of the security arguments in [21]. They claim that the anonymity property can be
achieved by assuming that the encryption schemes used in the Onion Routing
protocol are simply semantically secure. But our proof of security shows that
anonymity relies in a crucial way on assuming that the encryption schemes are
secure against chosen ciphertext attack.

Other Related work. We refer the reader to the work in [23,5] for formal
security definitions for the problem of onion routing. We discuss the relationship
of our work with respect to the Camenisch and Lysyanskaya formal model [5] in
Section 2. A forward-secure (hierarchical) identity-based public key encryption
is presented by Yao et al. in [30]. Our new scheme is somewhat uncomparable to
theirs: our scheme was designed to satisfy only the minimal security properties
needed for the onion-routing application, while the scheme in [30] proposes ad-
ditional security properties which might be useful in other contexts. As a result
our scheme is simpler and more efficient (in particular it allows for constant size
ciphertexts), but does not satisfy all the security properties proposed in [30].

2 Forward-Secure Identity-Based Onion Routing

In this section we introduce the notion of Forward-Secure Identity-Based Onion
Routing (fs-ID-OR). As usual, an onion routing protocol is characterized by a
service provider, a set of “onion routers” and users. The goal of the protocol is to
provide anonymity over a network to users and the basic idea is that users route
their traffic throughout an encrypted circuit of randomly chosen onion routers.
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In addition, our solution considers forward-secrecy, a property which is in
general quite important for cryptographic protocols. Informally, it guarantees
that the security properties still hold even if the adversary can corrupt all the
parties and learn their secret keys after a protocol session is expired. If one
focuses only on adversaries that can corrupt parties after a specific time period
τ , then we call this property eventual forward-secrecy. Otherwise it is called
immediate forward-secrecy. In our work we will focus on eventual forward-secrecy
since it is the strongest notion that is achievable in a non-interactive way. Our
definition of fs-ID-OR follows the traditional notion of onion routing but focuses
on the identity-based setting where each onion router is represented by a unique
identity string ORi (e.g. its name, address, etc.) and receives a secret key related
to such string by a trusted entity, called the Key Generation Center (KGC).

In order to consider forward-secrecy, we assume that the time is split into
time periods of the same length. A fs-ID-OR protocol consists of the following
phases:

Setup and Key Generation. The service provider generates the global pa-
rameters of the system and makes them available to all users. When an onion
router with identity ORi joins the system at time t, the service provider acts
as a KGC and uses its master secret to generate a private key skORi,t for ORi.
When a time period t expires, each onion router is required to update its secret
key, that means that it runs a specific algorithm that on input skORi,t outputs
skORi,t+1 while the old key is erased.

Circuit construction. In this phase the user firstly has to obtain a list L
containing the identities of all the available onion routers. Such list is maintained
by the KGC and is updated at a specific interval t′. We notice that t′ might also
be different from the τ used for updating the keys. Next, the user chooses an
ordered set of n onion routers OR1, . . . , ORn at random among those in L. This
ordered set is called circuit and the number n is typically fixed and specified in
the protocol parameters. In order to send messages through the circuit at time t,
the user builds a special ciphertext O1, called “onion ciphertext” such that, for
all i = 1 to n onion router ORi is able to partially decrypt the onion Oi (using
its secret key of time t). From such partial decryption it obtains: (i) the address
of the next router ORi+1 in the circuit (ii) and another onion ciphertext Oi+1.
The user sends O1 to OR1 and whenever router ORi receives Oi, it decrypts
it and forwards Oi+1 to ORi+1. Finally, the last router of the circuit gets the
message m and the address P of the actual recipient, and forwards m to P .

2.1 Security of Forward-Secure Identity-Based Onion Routing

Now we describe the security properties that a fs-ID-OR protocol should satisfy.

Integrity and Correctness. Correctness states that when parties follow the
protocol, then the recipient should get the message that was originally sent and
encrypted by the sender. Let n be a pre-specified upper bound for the number of
routers in a circuit. Then we say that an onion routing protocol satisfies integrity
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if it is possible to recognize an onion ciphertext which is intended for more than
n routers.

Cryptographic Unlinkability. Cryptographic unlinkability formalizes in a
cryptographic way the fact that a fs-ID-OR protocol provides anonymity. In-
formally, this property says that an attacker should not be able to find a link
between the sender and the receiver of a given communication. We point out, as
explained in [21], that network-level attacks are not considered at this stage.

Consider the following game between an adversary A and a Challenger:

Setup. The Challenger generates the public parameters and gives them to A.
Phase 1. In this phase the adversary is allowed to:

– corrupt onion routers and learn their secret keys (at specific time t);
– submit a tuple (OR, t, O) to get the decryption of O under OR’s secret

key at time t.
Challenge. At some point the adversary is allowed to choose a message m,

a time period t∗ and routers OR1, OR′
1, OR2, OR′

2, ORH such that ORH

is honest (i.e. ORH has not been corrupted in the previous phase, or it has
been corrupted at time t > t∗). The Challenger flips a binary coin b

$← {0, 1}
and proceeds as follows. If b = 0 it creates:
– O1 as the onion for the circuit (OR1, ORH , OR2)
– and O′

1 as the onion for the circuit (OR′
1, ORH , OR′

2).
Otherwise, if b = 1 it creates
– O1 as the onion for the circuit (OR1, ORH , OR′

2)
– and O′

1 as the onion for the circuit (OR′
1, ORH , OR2).

Let OH , O2 and O′
H , O′

2 be the onion ciphertexts contained into O1 and O′
1

respectively. Finally (O1, O
′
1) is given to the adversary.

Phase 2. A can proceed as in Phase 1 except that:
– ORH cannot be corrupted at time t ≤ t∗;
– A cannot submit (ORH , t∗, OH) and (ORH , t∗, O′

H) to the decryption
oracle (otherwise the adversary would trivially win);

– A can ask to the Challenger the decryption of a pair (O, O′) under
ORH ’s secret key at time t∗. However in this case the Challenger does
the following. It first decrypts O and O′ and gets (OR, O) and (OR′, O′)
respectively. If OR = OR2 and OR′ = OR′

2 then the Challenger outputs
((OR, O), (OR′, O′)). Otherwise if OR = OR′

2 or OR′ = OR2 then A is
given ((OR′, O′), (OR, O)) (i.e. the tuple corresponding to OR2 is always
given first). We notice that such a requirement is essential, otherwise the
adversary might trivially win the game.

Guess. At the end, the adversary outputs a guess b′ for b and it wins if b′ = b.

We define the advantage of an adversary A in this game as Advanon
ID−OR(A) =

2 Pr[b′ = b] − 1 and we say that an onion routing protocol has cryptographic
unlinkability if for any PPT adversary A, A’s advantage is at most negligible.

Remark. A more general definition would consider an adversary A that in the
challenge phase can choose circuits of length n instead of length 3. However,
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since we assume that all but one (i.e. ORH) routers can be corrupted, one may
think to OR1 (resp. OR2) as the collapsed set of adversarially controlled routers
before (resp. after) the single honest one (i.e. ORH), and the same can be done
for OR′

1, OR2 and OR′
2.

Circuit Position Secrecy. This property says that it should not be possible to
learn a router’s position in the circuit by looking at the ciphertext it is receiving.
In those constructions where the onion ciphertexts are built as re-encryptions
with several keys (e.g. Γ = EK1(EK2(· · ·EKn(m) · · · ))) this property cannot
hold. Camenisch and Lysyanskaya [5] showed that it is in fact sufficient to look
at the ciphertext’s size to derive such information. Indeed, in every randomized
encryption scheme the ciphertext space is bigger than the plaintext one (typ-
ically by a constant). However solutions to this problem have been proposed
[5,21,11,19].

3 A Generic Construction of FS-ID Onion Routing

In this section we show how to construct a fs-ID-OR protocol in a black-box
way from any forward-secure identity-based key encapsulation mechanism (fs-
IB-KEM) and a symmetric encryption scheme.

Our construction generalizes the idea of Kate et al. [21] whose scheme can
be seen as an instantiation of our generic construction when using the IB-KEM
of Boneh and Franklin [4] and considering an interactive protocol for updating
routers’ keys (i.e. the KGC generates new keys every time period).

In what follows we define the primitives that are relevant for our construction.

Forward-Secure Identity-Based Key Encapsulation. A Forward-Secure
Identity-Based Key Encapsulation Mechanism (fs-IB-KEM) is defined by the
following algorithms:
Setup(1k, T ). It takes as input the security parameter k and the total number

of time periods T and outputs a public key MPK and a master secret key
MSK.

KeyGen(MSK, ID, t). The key generation algorithm uses the master secret key
to produce a private key skID,t that is related to the identity ID and the time
period t.

KeyUpdate(skID,t). Given in input skID,t (the secret key of identity ID for time
period t) the key update algorithm outputs a new key for time period t + 1.

Encap(MPK, ID, t). Given the master public key, an identity ID and a time pe-
riod t, the encapsulation algorithm outputs a ciphertext C and a session key
K.

Decap(skID,t, C). The decapsulation algorithm uses the secret key of identity ID
and time period t to recover the session key K from a ciphertext C.

Correctness requires that for all identities ID ∈ {0, 1}∗ and time periods 0 ≤ t <
T :

Pr

[
(MPK, MSK) $← Setup(1k, T ); skID,t

$← KeyGen(MSK, ID, t);
(C, K) $← Encap(MPK, ID, t); K ′ ← Decap(skID,t, C) : K ′ = K

]

= 1
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We notice that the same holds when the secret key skID,t is obtained via the
key update algorithm. Below we define the notion of forward-security against
chosen-ciphertext attacks (fs-ID-IND-CCA) for fs-IB-KEM schemes. Consider
the following game between an adversary A and a Challenger:

Setup. A pair of master keys (MPK, MSK) $← Setup(1k, T ) is generated and
the adversary is given MPK.

Phase 1. In this phase the adversary is given access to oracles breakin(·, ·) and
Decap(·, ·, ·) as follows:
– On input (ID, i) the breakin oracle computes the secret key skID,i and

gives it to the adversary.
– On query (ID, i, C) to the decapsulation oracle, the Challenger computes

the key skID,i and gives K ← Decap(skID,i, C) to the adversary.
Challenge. At some point the adversary is allowed to output a pair (ID∗, t∗)

such that either ID∗ is different from all the identities queried to breakin in the
previous phase or ID∗ = IDj and t∗ < tj (where (IDj , tj) was the j-th query
to breakin). The Challenger computes (C∗, K0)

$← Encap(MPK, ID∗, t∗) and
picks a random session key K1

$← K. Then it flips a random bit b
$← {0, 1}

and gives (C∗, Kb) to the adversary.
Phase 2. As Phase 1 except that the adversary is not allowed to query the

decapsulation oracle on (ID∗, t∗, C∗) and the breakin oracle on (ID∗, j) with
j ≤ t∗.

Guess. At the end of the game the adversary outputs a bit b′ as its guess for b.

We define the advantage of A in this game as

Advfs−IND−ID−CCA
IB (A) = |2 Pr[b = b′]− 1|.

Definition 1 (fs-IND-CCA security). A fs-IB-KEM is forward-secure
against chosen-ciphertext attacks if for any PPT adversary A we have:
Advfs−IND−ID−CCA

IB (A) ≤ ε, where ε is negligible in the security parameter.

3.1 Our Generic Construction

Let IB = (Setup, KeyGen, KeyUpdate, Encap, Decap) be a fs-IB-KEM and E =
(KG, E, D) be a symmetric encryption scheme (whose notion is quite standard,
and is omitted for lack of space). We construct the following protocol:

Setup. In this phase the KGC runs the setup algorithm of IB to obtain a master
public key MPK and a master secret key MSK. The master public key is made
available to all users together with informations about the time. We assume the
time to be split into time periods of length τ (e.g. τ = one hour) such that when
such a period expires, each onion router updates his secret key as explained in
the next phase. Moreover, the KGC maintains a list L containing the identities
of all the onion routers available at a specific time. Such list is updated at a
specific interval τ ′, which does not have to be necessarily equal to τ .
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Key Generation. Whenever an onion router ORi joins the system, at time t,
the KGC generates a secret key skORi,t

$← KeyGen(MSK, ORi, t) for it. To achieve
forward secrecy, when a time period t expires each onion router ORi is required
to update his secret key by running skORi,t+1 ← KeyUpdate(skORi,t) and erasing
skORi,t from its memory.

Circuit construction. Assume that a user wants to build a circuit at time t.
First he obtains the updated list L from the KGC and then he chooses an ordered
sequence of n onion routers OR1, . . . , ORn at random among those in L. Next,
for all i = n to 1 it proceeds as follows. It runs (Ci, Ki)

$← Encap(MPK, ORi, t)
and creates “onion ciphertext” Oi = (Ci, Γi) where Γi = EKi(ORi+1, Oi+1). The
user sends O1 to the first onion router in the circuit. Whenever onion router
ORi gets a pair Oi = (Ci, Γi) it recovers Ki ← Decap(skORi,t, Ci) and then runs
(ORi+1, Oi+1) ← DKi(Γi). Finally it sends Oi+1 to ORi+1 (which is the next
router of the circuit).

The first time a user is using a circuit, he wants to be aware that all the chosen
routers are available. Therefore it sends a special message ⊥ through the circuit
(i.e. Γn = EKn(⊥)). When an onion router decrypts and obtains ⊥ it learns
that it is the last router of the circuit and sends back a confirmation message
EKn(Ack) to the previous router. Upon the receipt of a confirmation message
an onion router ORi encrypts it using Ki and sends it to the previous router.
For this reason, we assume that each router keeps in memory a session state
containing the two adjacent nodes and the session keys. We notice that this is
also useful to prevent replay attacks. Finally, upon the receipt of a confirmation
message, the user verifies its validity by decrypting it using the session keys
K1, . . . , Kn.

Once the circuit has been successfully established, the user will use it to
send messages over the network. In particular, he will re-use the same session
keys K1, . . . , Kn to form the onions. This allows to avoid expensive asymmetric
encryption (and decryption) operations.

3.2 Security

Integrity and Correctness. Let n be the fixed upper bound for the number of
routers in the circuit. We notice that an onion ciphertext containing more than n
layers of encryption can be easily recognized by looking at its length. Therefore
our protocol has integrity. On the other hand correctness easily follows from the
construction and the correctness of the two employed encryption schemes.

Cryptographic Unlinkability. The property is proven by the following theo-
rem whose proof is omitted for lack of space.

Theorem 1. If IB is fs-ID-IND-CCA secure and E is IND-CCA secure, then
the protocol given in Section 3 satisfies cryptographic unlinkability.

A remark on cryptographic unlinkability. The previous theorem proves the
cryptographic unlinkability of our generic construction by assuming that both
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the fs-IB-KEM and the symmetric encryption schemes are secure in an IND-
CCA sense. We need this property because of the adversary’s (realistic) ability
to ask decryption of onions (e.g. he may simply send an onion to a router and
look for its outgoing packets).

Cryptographic unlinkability was first defined in [21] (though in a slightly less
formal way). There the authors claimed that for their construction this property
is implied by the IND-CPA security of the symmetric encryption scheme. The
proof of this claim is not formal and it is unclear how the proof can manage the
adversary’s decryption queries in the “C processing” phase.

Moreover, we notice that if only IND-CPA security is considered, then the
adversary might modify only one of the two challenge ciphertexts OH , O′

H in
such a way that, after seeing their decryptions, it can recognize which of the
two onions they come from. More precisely, A (who owns all secret keys but
ORH ’s) may keep O′

H the same and modify OH such that the encrypted onion
will decrypt to a random message1. When A later receives the two decrypted
onions, it will be able to recognize what was the path chosen by the challenger.
On the other hand, in our case assuming IND-CCA security allows to obtain a
correct and formal proof of cryptographic unlinkability.

Circuit Position Secrecy. Unfortunately, our protocol does not satisfy this
property as it is vulnerable to the attack showed by Camenisch and Lysyan-
skaya in [5] that allows to learn the circuit’s position of a ciphertext’s recipient.
Precisely, this can be done by looking at the length of a ciphertext. However,
if one is interested into this property, then it is possible to slightly modify our
protocol using the technique proposed by Kate et al. in [21]. Its application to
our protocol is straightforward and thus we can obtain a protocol with circuit
position secrecy, even if this comes at the cost of having longer ciphertexts.

4 Certificateless and PKI Variants

The onion routing scheme we presented in Section 3, uses an identity-based
forward-secure encryption for the routers. This means that the routers’ iden-
tities serve as their public keys and the secret keys are provided to them by a
trusted KGC. We chose this approach to minimize the size of the public infor-
mation required to run the system: public keys and certificates (users need to
know only the KGC’s). The obvious drawback of this approach is key escrow:
the KGC has the ability to decrypt any message. In this section we describe two
simple variations to eliminate the key escrow problem from our scheme. One will
yield a scheme in the classical PKI setting: each router has his own public key
and certificate. The second variation will be a certificateless (CL) scheme: in this
case together with the KGC’s keys, routers will hold public keys which however
need not be certified. Both variations pay some price compared to the identity-
based scheme presented earlier: when instantiated with our scheme of Section 5,

1 The definition of IND-CPA security does not rule out that this is possible, and indeed
it can be done in many IND-CPA secure schemes.
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the PKI version has to face long public keys (but no increase in computation);
the CL one requires a few extra exponentiations to the user. Details follow.

A PKI Variation. To obtain eventual forward secrecy for an onion-routing
protocol, it is sufficient to use any forward-secure encryption scheme, not nec-
essarily an identity-based one. In particular, one could use our scheme where
each router acts as his own KGC, and give himself different keys for each time
period. If we were to follow this approach, there would be no centralized KGC
and no key escrow problem. To create an onion, a user would have to do the
same amount of work as in the identity-based scheme above. The only problem
is that the concrete scheme we propose in Section 5 has longer public keys. Thus
the amount of data to be stored at each user would be large.

A Certificateless Variation. There is a generic way to transform any ID-
based encryption into a CL one [1]. The receiver R, who already holds a secret
key skR related to his identity and provided to him by the KGC, also publishes
an independent public key PK and keeps the secret key SK. To encrypt a
message m for R, a sender splits m = m1⊕m2, with m1 random, and sends m1

encrypted with the ID-based scheme, and m2 encrypted under PK. As pointed
out in [1] the public key PK needs not be certified to belong to R (intuitively this
is because only R can decrypt m1). The advantage is that now the KGC cannot
decrypt the message m. This generic paradigm can be efficiently implemented
in our case. In our protocol the user establishes a shared symmetric key ki with
the ith router in the circuit using the id-based KEM described in the previous
section. The key ki is used to encrypt the ith layer of the onion. To transform
this scheme into a CL one, each router can publish a public key and the user runs
another KEM to establish another key k′

i with it, and the ith layer of the onion is
encrypted with ki⊕k′

i. An efficient instantiation of this KEM could be any KEM
that works over the same cyclic group used for the ID-based scheme (so that no
new public information must be generated), e.g. establishing a random key using
ElGamal. This approach requires the user to compute n extra exponentiations
to create an onion (n is again the length of the circuit).

5 The Proposed Construction

In this section we present a concrete scheme that realizes a fs-IB-KEM with
T = 2�+1− 1 time periods. Our solution is presented in two steps. First, we give
a forward secure identity based encryption scheme (fs-IBE) that is probably
secure only in an IND-CPA sense. Next, we apply a simple variant of Dent’s
transformation [10] in order to convert our basic fs-IBE into an IND-CCA secure
fs-IB-KEM.

As for the first construction, we construct our fs-IBE as follows. Following the
idea of Canetti-Halevi-Katz [6], we use a binary tree of height � where each time
period is associated with a node of the tree according to a pre-order traversal.
If wt is the node of the tree associated with time period t we have:
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– w0 = ε, i.e. the root of the tree;
– if wi is an internal node, then wi+1 = wi||0 (where || is the concatenation

operator);
– if wi is a leaf node (and i < T − 1) then wi+1 = w′1 where w′ is the longest

string such that w′0 is a prefix of wi.

The proposed scheme builds upon the HIBE of Boneh, Boyen and Goh [3] and
the generic construction of Canetti-Halevi-Katz [6] as follows. The first level of
the hierarchy contains the identities and then each identity has below a binary
tree that represents the evolving time. In this setting a user who is given skID,0

can derive the secret keys for all the nodes in its binary subtree, that is for all
successive time periods. In order to achieve forward-security, users are required to
update their keys every time the period expires. More precisely a user computes
skID,t+1

$← KeyUpdate(skID,t) and deletes skID,t. The construction is based on
the decisional weak �-Bilinear Diffie Hellman Inversion Assumption (�-wBDHI∗

for short) that was introduced by Boneh, Boyen and Goh in [3]. The �-wBDHI∗

problem is defined in a bilinear group G of prime order p where g ∈ G is a
generator. Given D = (g, h, gα, gα2

, ..., gα�

), for random α ∈ Z∗
p and h ∈ G, we

say that an algorithm A has advantage ε in solving decisional �-wBDHI∗ in G if
∣
∣
∣Pr[A(D, e(g, h)α�+1

) = 0]− Pr[A(D, e(g, g)z) = 0]
∣
∣
∣ ≤ ε

where the probability is taken over the random choices of α, z ∈ Z∗
p and h ∈ G.

The �-wBDHI∗ assumption holds in a bilinear group G if, for any � polynomial
in k, any polynomially bounded adversary A has at most negligible advantage.

The scheme follows:

Setup(1k, �). Let G and GT be two groups of prime order p equipped with a
bilinear map e : G × G → GT . Let g ∈ G be a generator. Pick a random
α

$← Z∗
p and set g1 = gα. Then take random elements g2, u, v, h1, . . . , h�

$← G,
compute z = e(g1, g2) and select an hash function H : {0, 1}∗ → Z∗

p. The
master public key is MPK = (p, G, GT , g, g1, g2, z, u, v, h1, . . . , h�, H) and the
master secret key is MSK = gα

2 .
KeyGen(MSK, ID, t). Let skID,w be the key of the node w where w is a binary

string of length at most �. A key skID,t is organized as a stack of node keys
where skID,wt is on top.
A node key skID,wt is computed as follows. Let wt = w1 · · ·wk (with 0 ≤ k ≤
�) be the binary string representing the node wt. Pick a random r

$← Z∗
p and

compute d0 = gα
2 (uvH(ID)

∏k
i=1 h

f(wi)
i )r, d1 = gr, bi = hr

i for i = k + 1 to �.
Since 0 /∈ Z∗

p f : {0, 1} → Z∗
p is a function that maps 0 and 1 to specific values

of Z∗
p (e.g f(0) = 1, f(1) = 2). Thus we have skID,wt = (d0, d1, bk+1, . . . , b�).

Finally skID,t contains all the node keys of the stack that are needed to derive
the keys of successive time periods. We notice that the stack will contain at
most O(�) node keys.

KeyUpdate(skID,t). First pop the first key from the stack. If wt is a leaf node,
then skID,wt+1 is the next key on the stack. Otherwise, if wt is an internal
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node, compute (skID,wt0, skID,wt1) as described below and push skID,wt1 and
then skID,wt0 onto the stack. In both cases the node key skID,wt is erased.
Given the node key skID,wt = (d0, d1, bk+1, . . . , b�), a key skID,wtb for b ∈ {0, 1}
is obtained as follows. Pick a random t

$← Z∗
p and compute

d′0 = d0(uvH(ID)
k∏

i=1

h
f(wi)
i h

f(b)
k+1)

tb
f(b)
k+1, d′1 = d1g

t, b′i = bih
t
i

for i = k + 2 to �. It is easy to notice that such key is correctly distributed
for randomness r + t.

Encrypt(MPK, ID, t, m). Let wt = w1 · · ·wk be the node of the tree associated
with t. Pick a random s

$← Z∗
p and compute C0 = (uvH(ID)

∏k
i=1 h

f(wi)
i )s,

C1 = gs and C2 = zsm. Finally output C = (C0, C1, C2).
Decrypt(skID,t, C). The message is recovered by computing m = C2e(C0,d1)

e(C1,d0)
.

The security of the scheme follows from the following theorem whose proof is
omitted for lack of space.

Theorem 2. The scheme is fs-IND-ID-CPA secure if the decisional (� + 1)-
wBDHI* holds and H is modeled as a random oracle.

Now we show how to convert the construction given above into a IND-CCA
secure fs-IB-KEM using a very simple variant of Dent’s transform [10]. Such a
transform allows to convert a forward secure IBE satisfying very weak security
requirements into an IND-CCA secure fs-IB-KEM. Specifically the underlying
IBE is required to be only one-way forward secure.

Suppose Π = (Setup, KeyGen, KeyUpdate, Encrypt, Decrypt) be a secure (in the
weak sense mentioned above) fs-IBE scheme with a finite and efficiently sam-
pleable message space M. We assume that the Encrypt algorithm uses random
values taken from a set R. We can write Encrypt as a deterministic algorithm
C ← Encrypt(MPK, ID, t, m; r) where r

$← R. The only difficulty in applying
the method of Dent [10] is that we must re-encrypt the recovered message for
integrity check. In the context of forward secure IBEs, this means one must
know the time period and the identity under which the message was originally
encrypted. In our setting (i.e. the specific application of onion routing) we over-
come this difficulty as such information is available to routers.

We transform the fs-IBE scheme Π with a finite and efficiently sampleable
message space M and maximum number of time periods T into a fs-IB-KEM
scheme Π ′ = (Setup, KeyGen, KeyUpdate, Encap, Decap) using two hash func-
tions:

H1 : {0, 1}∗ × {0, 1}∗ ×M→ R and H2 : {0, 1}∗ → {0, 1}k .

6 Efficiency and Comparisons

In this section we compare the efficiency of our proposal with those of the other
known solutions: the certificateless onion routing (CL-OR) protocol of Cata-
lano et al. [7], the pairing-based onion routing (PB-OR) scheme of Kate et al. [21]
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and the actual Tor protocol (we refer to the official specifications [13]). Basically,
all these solutions differ only in the way the symmetric keys are established, so
we decided to analytically compare the cost of building a circuit of length n from
the perspective of both a user and an onion router. All the tests are carried on
considering security parameters of 80 and 128 bits: as widely suggested in [31,32],
the latter should be considered in order to gain an adequate long-term security
level.

In what follows we briefly describe the operations involved during the building
of a circuit in the considered protocols.

Tor. The Tor protocol incrementally builds the circuit using the telescoping
technique and each new key is established using a Diffie-Hellman (DH) key-
exchange [12]. Its specifications require that the user sends to each onion router
the DH component encrypted using an RSA key associated to the router. It
follows that: a user computes 1 RSA encryption and 2 exponentiations for each of
the n routers; an onion router performs 1 RSA decryption and 2 exponentiations.
Even if not required by Tor’s specifications [13] we consider pre-computation on
the fixed base for one of the two exponentiations of the DH key-exchange. For a
security level of 80 bits we need a 1024-bits RSA modulus and a 1024-bits finite
field for Diffie-Hellman. The specifications given in [13] suggest to use 65537 as
fixed RSA exponent and to optimize DH with exponents of 360 bits and generator
2. In order to get a 128-bits security level, the sizes of the RSA modulus as well
as of the DH finite-field have to be of 3072 bits. Tor’s specifications [13] require
a periodic update of the onion routers’ keys.

PB-OR. We consider an implementation of the pairing-based onion routing
protocol over a group of points of elliptic curves using the PBC library [22].
More specifically, following the indications of the authors, a type A (in the PBC
nomenclature) curve is used in order to get fast pairing operation e : G × G →
GT . Kate et al. suggest that each user can pre-compute a pairing application
for each onion router (as a function of some public parameter and of onion
router’s identity); such values have to be re-computed every time the KGC’s
keys change (e.g. every day). Therefore, in order to build a circuit of length n, a
user has to compute n exponentiations in G and n exponentiations in GT : both
the operations can be speed-up using pre-computation on the fixed base. On
the other hand, each onion router has to compute one pairing but an optimized
implementation can exploit a pre-computation on the pairing application that
makes use of a fixed parameter (such functionality is offered by PBC library).

CL-OR. For the CL-OR protocol2 of Catalano et al. we also consider an im-
plementation over EC using the PBC library but, as suggested by the authors,
using a type F curve in order to gain fast operations on smaller group ele-
ments. The user can pre-precompute some values that are function of the onion
router’s identities and public-keys. The on-line computation of the user requires

2 In [7] there are two implementations available: we consider the fastest that makes
use of the Strong Diffie-Hellman assumption in the Random Oracle model.
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3 exponentiations on the working group: only 2 of them can be performed using
pre-computation on the fixed bases. In such protocol, each onion router requires
2 exponentiations to compute the session-key: none of them can use such kind
of pre-computation.

Our Protocol. For this comparison we consider our proposal of Section 5 imple-
mented on a type A curve (like the PB-OR protocol). Observe that to compute
C0 = (uvH(ID)

∏k
i=1 h

f(wi)
i )s, many values can be entirely pre-computed off-line

by the user: the values uvH(ID) as well as the values h
f(wi)
i . The remaining notable

tasks for the user, for each onion router in the circuit, are: two exponentiations
over G (one for C0 and one for C1 = gs) and one exponentiation in GT to com-
pute C2 = zsm. Notice that the latter two exponentiations can be optimized
with pre-computation on the fixed bases g, z. Each onion router involved in the
circuit establishment has to compute 2 pairings for decryption (but with partial
pre-computation as in PB-OR) as well as a new encryption to fulfill the integrity
check required by Dent’s transformation.

In a fully operational implementation of an onion routing network, the key
establishment phase involves the use of other minor tools: a symmetric encryp-
tion scheme (e.g. AES) to protect the passing messages using the negotiated
session keys and fixed TLS channels among the connected onion routers. For
sake of simplicity we ignore the computational load related to such operations
since they are used by all the protocols considered in our comparisons. Moreover,
in the case of AES, its time complexity is negligible if compared with the other
involved cryptographic tools.

As a first step, all the operations were implemented using the PBC library
(version 0.4.18) on a 2.4GHz Intel Core 2 Duo workstation running Mac OS X
10.5.63.

As one can see from Table 1, from a purely computational perspective our
solution is not faster than previous protocols but its computational costs are
definitely practical. In these comparisons it is worth noting that the Tor cir-
cuit construction is an interactive protocol that requires a quadratic number of
exchanged messages. Therefore if we consider the natural network latency we
obtain that, even for the shortest possible circuit (i.e. 3 nodes), our protocol is
faster than Tor in constructing an entire new circuit. In fact, assuming a network
latency of 50 ms, Tor requires 627 ms to complete the circuit construction while
our protocol needs only 370 ms.

A look at Interaction. We stress that the main contribution of our work
is that the resulting OR protocol is totally non-interactive solving a problem
that is yet unsolved in currently known solutions. Indeed, all the other onion
routing protocols require interaction in some phase of the protocol. Tor is clearly
interactive in the circuit construction phase due to the use of telescoping. In PB-
OR the routers have to obtain new private keys from the KGC every time the
key validity period expires (a heavy workload for the KGC!). On the other hand,

3 The computational costs of each operation are ommitted for lack of space. They are
available in the full version of this work.
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Table 1. Total times for building a circuit of n routers and protocol features

Times and features
Tor PB-OR CL-OR our protocol

user OR user OR user OR user OR

Time for 80 bits security (ms) 2.3n 6.9 1.1n 3.9 2.1n 3.4 7.8n 15.6

Time for 128 bits security (ms) 16.5n 93.3 9.3n 57.3 5.1n 8.2 63.4n 178.0

Number of exchanged messages n(n + 1) 2n 2n 2n

IND-CPA security level × � � �
IND-CCA security level × × � �

Non-inter. circuit construction × � � �
Non-inter. key-update by OR × × � �

Non-inter. by user after OR key-update × � × �
Absence of key-escrow by KGC � × � ×

in CL-OR the routers can generate the updated keys by themselves but the users
have to obtain such new keys (e.g. by querying a directory server) every time
they are changed.

We stress that in our protocol onion routers can update their keys without
interacting with any party, and this process is transparent for the users who
keep using always the same public keys (i.e. routers’ identities). It is interesting
to note that the non-interactive nature of our key update allows to reduce the
security gap between eventual and immediate forward-security. We can indeed
arbitrarily reduce the refresh period of routers’ keys without any further network
overhead: this is not true for PB-OR and CL-OR. Finally, we observe that the
slightly higher computational cost of our solution is due only to the fact the best
fs-IB-KEM we can achieve has to perform pairings computation. Although this
is currently a limitation, we believe that the purely non-interactive nature of our
protocol, more than compensate for the slight increase in computational cost.
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Abstract. We aim at constructing adaptive oblivious transfer protocols,
enjoying fully simulatable security, from various well-known assumptions
such as DDH, DLIN (and more generally, d-linear), QR, DCR. To this
end, we present two generic constructions of adaptive OT, one of which
utilizes verifiable shuffles together with threshold decryption schemes,
while the other uses permutation networks together with what we call
loosely-homomorphic key encapsulation schemes. We then show that spe-
cific choices of the building blocks lead to concrete adaptive OT protocols
with fully simulatable security in the standard model under the targeted
assumptions. Our generic method can be further used to construct the
first (memory) leakage-resilient adaptive OT.

Keywords: adaptive OT, fully-simulatable, verifiable shuffles, permu-
tation networks, loose homomorphism.

1 Introduction

1.1 Background

Oblivious transfer (OT) with adaptive queries, or adaptive OT for short, was
first examined by Naor and Pinkas in [19], in which there are a sender and a
receiver. The sender holds n messages, and the receiver would like to retrieve
k of them, one after the other, so that: (1) the sender does not know what the
receiver obtains, and (2) the receiver gets nothing more beside the k messages.
The key applications of this type of OT are in patent searches, oblivious search,
medical databases etc.

The security notion capturing the above requirements has evolved in the lit-
erature. The notion of full simulatability was introduced by Camenisch, Neven,
and Shelat in [3], following the real-world, ideal-world paradigm. In the ideal
world, there exists a trusted third party (TTP), to which the sender gives all of
his messages. When a receiver wants to obtain a message, he simply sends the
corresponding index to the TTP. On the other hand, in the real world, there is
no TTP at all, and the protocol of adaptive OT is run by the sender and the
receiver. The intuition of full simulatability is that the real world is indistin-
guishable from the ideal world, with respect to any poly-time adversary.

J. Lopez and G. Tsudik (Eds.): ACNS 2011, LNCS 6715, pp. 274–291, 2011.
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Camenisch et al. additionally provided us with some first constructions of
adaptive OT which were fully simulatable, in both the random oracle model
(ROM) and the standard model. In particular, they showed with a refinement
that the scheme in ROM of Ogata and Kurosawa [22] achieved fully simulatable
security. They furthermore gave a construction in the standard model, using
q-based assumptions (in which q depends on n) in pairing groups.

After the work of Camenisch et al., much effort has been devoted to further
extending the direction. In [9], Green and Hohenberger constructed a universally-
composable, so fully-simulatable, scheme under the q-hidden LRSW assumption.
Jarecki and Liu [14] joined the research line with a scheme based on the q-DHI
assumption yet in RSA groups.

With respect to assumptions which are not q-based, Kurosawa and Nojima [16]
showed a simple scheme fully simulatable under the DDH assumption. However,
the scheme suffered from a large communication cost of O(n) in each transfer, as
pointed out by Green and Hohenberger in [10], who further gave a construction
under the decision 3-party DDH (3DDH) assumption in pairing groups. Con-
currently, Kurosawa, Nojima, and Phong [17], using a verifiable shuffle protocol,
overcome the demerit of [16], reducing the cost to O(1), while still maintaining
the DDH assumption for security. Specifically, they used the verifiable shuffle
protocol of Neff [21] which is a 7-move honest verifier ZKIP for proving the re-
lation between (g,X1, . . . , Xn) and (gc, Xc

π(1), . . . , Xc
π(n)), where π is a random

permutation and c is random. Note that Neff’s shuffle protocol is computation-
ally zero-knowledge under the DDH assumption, so that it seems impossible to
utilize the shuffle beyond the DDH case.

1.2 Our Contribution

We present two generic methods for constructing fully simulatable adaptive OT
in the standard model. They yield numerous protocols from various assumptions,
including the DDH, d-linear (d ≥ 2), quadratic residuosity (QR), and decisional
composite residuosity (DCR) assumptions. A comparison with previous works
is given in Table 1, in which our DDH-based OT protocol has less number of
moves in the initialization phase than that of [17]. Note that our schemes based
on the QR, and DCR assumptions induce a bit higher communication cost for
initialization.

Our first method can be applied to any public-key encryption scheme E which
satisfies two conditions: (1) It must be a homomorphic encryption scheme such
that the message space is a group of prime public order; and (2) It can be used
as a 2-out-of-2 threshold decryption scheme.

The first condition allows us to use the verifiable shuffle protocol of Groth
and Lu [11] which is a 3-move honest verifier ZKIP for proving the relation
between the tuples

(
E(m1), . . . , E(mn)

)
and

(
E(mπ(1)), . . . , E(mπ(n))

)
, where

π is a random permutation. However, we cannot obtain any adaptive OT even
if we directly replace Neff’s shuffle protocol by Groth-Lu’s shuffle protocol into
[17]. This is because the sender can compute π from

(
E(mπ(1)), . . . , E(mπ(n))

)
.

To overcome this problem, we use 2-out-of-2 threshold decryption. From this
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Table 1. Fully simulatable adaptive OT schemes without random oracles

Scheme Assumption Comm. Cost Init. Cost
(each transfer)

CNS [3] q-strong DH and q-PDDH O(1) O(n)

GH [9] q-hidden LRSW (UC secure) O(1) O(n)

JL [14] q-DHI (RSA group) O(1) O(n)

KN [16] DDH O(n) O(n)

GH [10] decision 3-party DH (3DDH) O(1) O(n)

KNP [17] DDH O(1) O(n)
(more moves)

This work
DDH

O(1)

O(n)
(less moves)

d-Linear O(n)
DCR O(n log n)
QR O(n log n)

method, new adaptive OTs are obtained under the DDH assumption and the
d-linear (d ≥ 2) assumption, respectively.

Our second method can be applied to any key encapsulation mechanisms
(KEM) satisfying what we call loosely-homomorphic property. We use permu-
tation networks for this case while we do not use threshold decryption. From
this method, new adaptive OTs are obtained under the QR assumption and the
DCR assumption, respectively.

Our generic method can be further used to construct the first (memory) leak-
age resilient adaptive OT protocol as shown in Sect.5.

2 Preliminaries

2.1 Notations

Throughout the paper, OTn
k×1 denote the adaptive OT with n messages of the

sender and k choices of the receiver. ZKPK stands for zero-knowledge proof of
knowledge, while ZKPM for zero-knowledge proof of membership. WIPK means
witness-indistinguishable proof of knowledge. Furthermore, ZKPK{(x) : X = gx}
means a ZKPK protocol showing the knowledge of secret x satisfying the equa-
tion; and similar notations for more complex ZKPK, ZKPM, WIPK protocols
will be used. Taking an element a randomly from a set A is denoted by a

$←A.
We use a[i] to indicate the i-th component of a. For example, when a is a bit
string, a[i] is the i-th bit; when a is a tuple of elements, a[i] becomes the i-th
element.

2.2 Fully-Simulatable OTn
k×1

We use almost the same presentation as [16], and consider a weak model of
universally composable (UC) framework as follows.
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– At the beginning of the game, an adversary A can corrupt either a sender S
or a receiver R, but not both of them.

– A can send a message, denoted by Aout, to an environment Z after the end
of the protocol. However,A cannot communicate with Z during the protocol
execution. (This property makes the definitions weaker than standard UC
security.)

The ideal functionality of OTn
k×1 will be shown below. For a protocol Π = (S, R),

define the advantage of Z as

Adv(Z)def=
∣
∣
∣Pr(Z = 1 in the real world)− Pr(Z = 1 in the ideal world)

∣
∣
∣

where the real and ideal worlds are defined below.

The ideal world: there are a few parties consisting of the ideal functionality
Fadapt, an ideal world adversaryA′, and the environment Z. Also we have dummy
sender S′ and receiver R′. The parties behave as follows.
Initialization phase

1. The environment Z sends (M1, . . . , Mn) to the dummy sender S′.
2. S′ sends (M∗

1 , . . . , M∗
n) to Fadapt, where (M∗

1 , . . . , M∗
n) = (M1, . . . , Mn) if S′

is not corrupted.

Transfer phase i = 1, . . . , k

1. Z sends σi to the dummy receiver R′, where 1 ≤ σi ≤ n.
2. R′ sends σ∗

i to Fadapt, where σ∗
i = σi if R′ is not corrupted.

3. Fadapt sends received to A′.
4. A′ sends b = 1 or 0 to Fadapt, where b = 1 if S′ is not corrupted.
5. Fadapt sends Ei to R′, where Ei = M∗

σ∗
i

if b = 1, and Ei = ⊥ if b = 0.
6. R′ sends Ei to Z.

After the end of the protocol, A′ sends a message A′
out to Z. Finally Z outputs

1 or 0.

The real world: Simply in this world, the protocol Π = (S, R) is executed as
specified by its construction (thus without Fadapt). The environment Z and the
real world adversary A behave in the same way as above.

For proving the security of our schemes, we will require that an honest receiver
will not ask for the same message twice.

Definition 1 (Full simulatability). Protocol Π = (S, R) is secure against
the sender (resp, receiver) corruption if for any real world adversary A who
corrupts the sender S (resp, receiver R), there exists an ideal world adversary
A′ who corrupts the dummy sender S′ (resp, dummy receiver R′) such that for
any poly-time environment Z, the advantage Adv(Z) is negligible. Moreover,
protocol Π = (S, R) is a fully simulatable OTn

k×1 if it is secure against the
sender corruption and the receiver corruption.
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3 Generic Adaptive OT from Verifiable Shuffles

3.1 Building Blocks

Threshold PKE. We need an 2-out-of-2 threshold PKE scheme TPKE, which
consists of the following algorithms.

– TGen: Two parties S and R run a protocol so that they respectively obtain
(pk, skS) and (pk, skR) where pk is the agreed public key and skS, skR are
the shares of secret key. (The public key is needed for all algorithms below,
and we omit writing it for clarity.)

– TEnc(M ; r): output a ciphertext C for a plaintext M and a random coin r.
– TDec(skP, C): for P ∈ {S, R}, output μP which is the decryption share of the

ciphertext C under secret key skP.
– TComb(C, μS, μR): output a plaintext M by combining the input C, μS, μR.

We require the following properties on the TPKE scheme.

Homomorphism: Namely, TEnc(M ; r)⊗TEnc(M ′; r′) = TEnc(M⊕M ′; r�r′),
where ⊗,⊕,� are the operators on the corresponding spaces.

Semantic security: We require that for all M , the ciphertext Enc(M ; r) for
random r is (almost) uniformly distributed over the ciphertext space.

Verifiable shuffles. Consider a set of ciphertexts Ci = TEnc(Mi; ri) for 1 ≤
i ≤ n of the TPKE scheme formed by S. Let I be the identity element of the
message space. It is easy enough for R to choose a permutation π on {1, . . . , n},
and random si to form the set of C′

i = Cπ(i) ⊗TEnc(I; si) for 1 ≤ i ≤ n, so that
both sets of ciphertexts contain the same plaintexts. The set of C′

i(1 ≤ i ≤ n) is
called a shuffle of the original one. If the scheme TPKE is semantically secure,
publishing the shuffle C′

i(1 ≤ i ≤ n) reveals nothing on the permutation π to S.
Correctness of the shuffle is verified via the following protocol

ZKPK
{
(π, si) : C′

i = Cπ(i) ⊗ TEnc(I; si)∀1 ≤ i ≤ n
}
,

which has efficient implementations for homomorphic encryption schemes such as
ElGamal or Paillier1 as shown in the work of Groth and Lu [11]. More generally,
the results of Groth and Lu apply for homomorphic encryption schemes with
the following properties:

Proper message space: the order of the message space does not have any
small prime factor (say less than 280).

Root extraction: from M , R, and Ce = TEnc(M ; R), it is possible to effi-
ciently extract (m, r) such that C = TEnc(m; r) for every e co-prime with
the order of the message space.

1 However, the Paillier encryption scheme with threshold decryption needs a setup
assumption for the secret keys.
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The protocols for verifiable shuffles given in [11] are statistical strong HVZK
arguments of three rounds, and can be turned into fully zero-knowledge by stan-
dard techniques. The additional property below will be needed in proving sender
security.

Computing μS without skS: Let μS = TDec(skS, C
′) where C′ = C′

π−1(σ)

as above for some 1 ≤ σ ≤ n. Note that C′ = Cσ ⊗ TEnc(I; sπ−1(σ)) for
Cσ = TEnc(Mσ; rσ). We require that μS can be alternatively expressed as a
function of pk, Cσ, Mσ, sπ−1(σ), and skR. Namely there exists an efficiently-
computable function f such that we have μS = f(pk, Cσ, Mσ, sπ−1(σ), skR).

3.2 The OT Protocol

Initialization:

1. The sender S and the receiver R run the protocol TGen so that they obtain a
common public key pk; and S gets secret key skS, R gets secret key skR.The
receiver R proves in ZKPK that he knows skR corresponding to pk.

2. For 1 ≤ i ≤ n, S computes and sends

Ci = TEnc(Mi; ri)

to R where ri are randomness used by TEnc.
3. S then proves to R by ZKPK that he knows Mi for all i. (This is equivalent

to proving the knowledge of ri in our below instantiations.)
4. (Shuffling) R chooses a permutation π on {1, . . . , n} and randomness si for

1 ≤ i ≤ n, then computes and sends to S for all i

C′
i = Cπ(i) ⊗ TEnc(I; si),

where I is the unit element of the message space.
5. R proves to S in ZKPK that he knows π and si(1 ≤ i ≤ n) satisfying the

equation at Step 4.

The j-th transfer:

6. R obtains an index σ as input, and sends C′ = C′
π−1(σ) to S.

7. S checks C′ ∈ {C′
1, . . . , C

′
n}, then computes and sends μS = TDec(skS, C

′)
to R.

8. S then proves in ZKPM that he did the right decryption in the above step.
9. R lets μR = TDec(skR, C′), and then obtaining Mσ by TComb(pk, C′, μS, μR).

To prove correctness of the OT, note that

C′ = C′
π−1(σ) = Cσ ⊗ TEnc(I; sπ−1(σ)) = TEnc(Mσ, rσ)⊗ TEnc(I; sπ−1(σ))

which means C′ encrypts the plaintext Mσ thanks to the homomorphic property
of the threshold PKE scheme. Now, by the correctness of the threshold PKE
scheme, TComb(pk, C′, μS, μR) is exactly Mσ as required.

Theorem 1. The generic OTn
k×1 from verifiable shuffles above is fully simulat-

able, if the TPKE scheme has semantic security.

The proof is postponed in Appendix A.
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Common input: G = (G, g, q)
Sender(skS = x0, M1, . . . , Mn) Receiver(skR = x1)

Initialization

h0 ← gx0 h0−−−→
h1←−−−−−−−−−−−−−−−−

ZKPK{(x1):h1=gx1}
h1 ← gx1

Set h = h0h1; for 1 ≤ i ≤ n,
Ci ← TEnch(Mi; ri)
(

= (gri , Mi · hri)
) C1,...,Cn−−−−−−−−−→

ZKPK
{

(ri):Ci[1]=gri∀1≤i≤n
}

−−−−−−−−−−−−−−−−−−−−→ Choose permutation π

Choose si
$← Zq∀1 ≤ i ≤ n

C′
1,...,C′

n←−−−−−−−−− C′
i ← Cπ(i) · TEnc(1; si)

ZKPK
{

(π,si):C
′
i=Cπ(i)·TEnc(1;si)∀1≤i≤n

}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−
The j-th transfer

Choose index σ
C′←−−−−−−−−− Set C′ = C′

π−1(σ)

Check C′ ∈ {C′
1, . . . , C

′
n}

μS ← TDec(x0, C
′)

(μS = C′[1]x0 )
μS−−−−−−−−−→

ZKPM
{

(x0):μS=C′[1]x0∧h0=gx0
}

−−−−−−−−−−−−−−−−−−−−−−→ μR ← TDec(x1, C
′)

M ← TComb(C′, μS, μR)

Fig. 1. The OTn
k×1 secure under the DDH assumption

3.3 Instantiations from DDH and Linear Assumptions

OTn
k×1 from the DDH assumption. We will use the threshold ElGamal

encryption scheme. The scheme works on a cyclic group G = (G, g, q) where g
is the generator of prime order q, and has semantic security under the DDH
assumption on G.

– TGen: S chooses skS = x0
$← Zq, computes and sends h0 ← gx0 to R. Similarly,

R chooses skR = x1
$← Zq and sends h1 ← gx1 to S. The agreed public key

is then h = h0h1.
– TEnc(M ; r): Output C = (C[1], C[2]) = (gr, M · hr) for r

$← Zq and M ∈ G.
– TDec(skP, C): Output μP = C[1]skP for P is either S or R.
– TComb(C, μS, μR): Output C[2]/(μSμR).

The TPKE scheme satisfies all requirements described in Sect.3.1. Our OTn
k×1

instantiation from the threshold ElGamal encryption scheme is depicted in Fig.1.
In the figure, the element μS = C′[1]x0 can be alternatively expressed as2

2 Let us elaborate a bit on the formula. We have Cσ[2]M−1
σ Cσ[1]−x1h

s
π−1(σ)

0 =

(Mσhrσ )M−1
σ Cσ[1]−x1h

s
π−1(σ)

0 = hrσ (grσ)−x1h
s

π−1(σ)
0 = (h0h1)

rσ (h−rσ
1 )h

s
π−1(σ)

0 =

h
rσ+s

π−1(σ)
0 = g

(rσ+s
π−1(σ))x0 = C′[1]x0 = μS, as required.
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μS = f(pk, Cσ, Mσ, sπ−1(σ), skR) def= Cσ[2]M−1
σ Cσ[1]−x1h

sπ−1(σ)
0 ,

which is the formula needed when proving sender security.
Since the threshold ElGamal encryption scheme has semantic security un-

der the DDH assumption, thanks to Theorem 1, the OTn
k×1 in Fig.1 is fully-

simulatable under the same assumption.

OTn
k×1 from the d-linear assumptions. We also works on G = (G, g, q), and

let us introduce some more notations. For two vectors v = (v[1], . . . , v[l]) ∈ G1×l,
u = (u[1], . . . , u[l]) ∈ Z1×l

q define

v · uᵀ = u · vᵀ =
l∏

i=1

v[i]u[i] ∈ G.

Matrix-matrix and matrix-vector multiplications are defined in the same manner.
Sometimes, the · operators are implicitly understood. Also recall that for u, u′ ∈
Z1×l

q , we have u+u′ = (u[1]+u′[1], . . . , u[l]+u′[l]) as normal. It is easy to check
that (u + u′) · vᵀ = (u · vᵀ)(u′ · vᵀ) ∈ G, and v · (u + u′)ᵀ = (v · uᵀ)(v · u′ᵀ) ∈ G.

For d ≥ 2, the following PKE scheme, introduced by Naor and Segev [20],
has semantic security under the d-linear assumption. The algorithm Gen gen-
erates sk

$← Z
(d+1)×1
q , φ

$←Gd×(d+1). The secret key is sk, and the public key
is pk = (φ, ψ) for ψ = φ · sk ∈ Gd×1. The encryption algorithm Enc(M ; R),
on message M ∈ G and random R ∈ Z1×d

q as input, outputs the ciphertext
C = (Rφ, (Rψ)M) ∈ G1×(d+1) ×G. The decryption algorithsm Dec(sk, C) out-
puts C[2]/(C[1] · sk). Note that the correctness of the PKE scheme comes from
the equation (R · φ) · sk = R · (φ · sk). The semantic security of the PKE scheme
implies that, given φ, ψ, the pair Enc(1; R) = (Rφ, Rψ) is indistinguishable from
random over G1×(d+1) ×G.

We now present the 2-out-of-2 threshold variant of the above PKE. In TGen,
the parties S and R, using G, agree on the matrix φ ∈ Gd×(d+1). They then
choose secrets skS and skR respectively in Z

(d+1)×1
q ; S publishes ψS = φ · skS ∈

Gd×1 while R does the same with ψR = φ · skR ∈ Gd×1. The agreed common
public key is φ, ψS, ψR in which ψ = ψSψR = (ψS[1]ψR[1], . . . , ψS[d]ψR[d])ᵀ ∈
Gd×1 will be used in encryption. Note that ψ = φ · (skS + skR). The algorithm
TEnc(M ; R) outputs C = Enc(M ; R) = (Rφ, (Rψ)M) ∈ G1×(d+1) ×G as above.
The algorithm TDec(skP, C) outputs μP = C[1] ·skP ∈ G for P ∈ {S, R}. Finally,
TComb(C, μS, μR) outputs C[2]/(μSμR). The resulting OT scheme is given in
Fig.2.

Note that the above TPKE satisfies all properties mentioned in Sect.3.1.
In particular, let us check some of them. For root extraction, given Ce =
TEnc(M ; R) =

(
Rφ, (Rψ)M

)
with (e, q) = 1, we want to extract (m, r) sat-

isfying C = TEnc(m; r). This is done by just putting m = M [e−1 mod q], and
r = R · [e−1 mod q] =

(
R[1](e−1 mod q), . . . , R[d](e−1 mod q)

)
. For the prop-

erty of computing μS without skS, referring to Fig.2, we show that the el-
ement μS = TDec(skS, C

′) = C′[1] · skS can be computed by R in case the
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Common input: G = (G, g, q, φ)
Sender(skS, M1, . . . , Mn) Receiver(skR)

Initialization

ψS ← φ · skS ∈ Gd×1 ψS−−−→
ψR←−−−−−−−−−−−−−−−−−−

ZKPK{(skR):ψR=φ·skR}
ψR ← φ · skR ∈ Gd×1

Set ψ = ψSψR; for 1 ≤ i ≤ n,
Ci ← TEnc(Mi; Ri)
(

= (Riφ, (Riψ)Mi)
) C1,...,Cn−−−−−−−−−→

ZKPK
{

(Ri):Ci[1]=Ri·φ ∀1≤i≤n
}

−−−−−−−−−−−−−−−−−−−−−−→ Choose permutation π

Choose Si
$← Z1×d

q

C′
1,...,C′

n←−−−−−−−−− C′
i ← Cπ(i) · TEnc(1; Si)

ZKPK
{

(π,Si):C
′
i=Cπ(i)·TEnc(1;Si)∀1≤i≤n

}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−
The j-th transfer

Choose index σ
C′←−−−−−−−−− Set C′ = C′

π−1(σ)

Check C′ ∈ {C′
1, . . . , C

′
n}

μS ← TDec(skS, C
′)

(μS = C′[1] · skS)
μS−−−−−−−−−→

ZKPM
{

(skS):μS=C′[1]·skS ∧ ψS=φ·skS

}

−−−−−−−−−−−−−−−−−−−−−−−−−−→ μR ← TDec(skR, C′)
M ← TComb(C′, μS, μR)

Fig. 2. The OTn
k×1 secure under the d-linear assumption

receiver already knew Mσ. Note that C′ = C′
π−1(σ) = Cσ · TEnc(1; Sπ−1(σ)) =

TEnc(Mσ; Rσ + Sπ−1(σ)) so that C′[1] = (Rσ + Sπ−1(σ))φ, and hence

μS = (Rσ + Sπ−1(σ))φ · skS = (Rσφ · skS)(Sπ−1(σ)φ · skS)

=
(
Rσφ · (sk − skR)

)(
Sπ−1(σ)φ · (sk − skR)

)
for sk = skS + skR

= (Rσφsk) · (Sπ−1(σ)φsk) ·
{
Rσφ(−skR)

}
·
{
Sπ−1(σ)φ(−skR)

}

= (Cσ[2]M−1
σ ) · (Sπ−1(σ)ψ) ·

{
Cσ[1](−skR)

}
·
{
Sπ−1(σ)φ(−skR)

}

def= f(φ, ψ, Cσ, Mσ, Sπ−1(σ), skR),

which is a function of what R has, as desired.

4 Generic Adaptive OT from Permutation Networks

We present OTn
k×1 with O(1) communication cost for the transfer phase, while

with O(n log n) for the initialization phase. The assumptions used for security
will be DCR or QR.
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4.1 Loosely Homomorphic KEM

A key encapsulation mechanism KEM consists of algorithms Gen, Encap, Decap
as follows: Gen produces keys (pk, sk); Encap(pk) outputs (ψ, K) where ψ is the
encapsulation of the key K; Decapsk(ψ) returns K as the decapsulation of ψ.
We write Encap(pk; r) to emphasize the random coin r. We need the following
conditions on KEM.

Semantic security: Suppose Encap(pk) = (ψ, K). Given pk, ψ, the key K is
indistinguishable from random.

Loose homomorphism: Given (ψ, K) and (ψ′, K ′), there are efficiently com-
putable functions f1, f2 such that

Decapsk(ψ · ψ′) = f1(ψ, ψ′, K, K ′) and K ′ = f2 (ψ, ψ′, K, Decapsk (ψ · ψ′)) .

The former equation is used in proving sender security, while the latter is
for the OT’s correctness. It is clear that a KEM is loosely homomorphic if
it is homomorphic (namely, satisfying Decapsk(ψ · ψ′) = K ⊕K ′).

Let us show some examples of loosely homomorphic KEM.

First example KEMDCR: Gen generates primes p, q, setting pk = N = pq,

and sk = (p, q). Encap takes r
$← ZN and computes (ψ, K) ∈ Z2

N satisfying
rN = ψ+K ·N mod N2. Note that ψ = [rN mod N ] ∈ ZN . Using sk, Decapsk(ψ)
first computes r satisfying rN = ψ mod N , an then outputs K = (rN − ψ mod
N2)/N . The computation ψ · ψ′ is normally defined over ZN .

The semantic security of KEMDCR comes from the DCR assumption. To show
that it is loosely homomorphic, consider (ψ, K) and (ψ′, K ′) satisfying rN = ψ+
K ·N mod N2, and r′N = ψ′ +K ′ ·N mod N2. Writing ψψ′ = S +TN mod N2,
we have

(rr′)N = [(ψ + KN)(ψ′ + K ′N) mod N2] = [S + (T + Kψ′ + K ′ψ)N mod N2],

so that K̂ = Decapsk(ψψ′ ∈ ZN ) = T +Kψ′+K ′ψ mod N , which is the function
f1. Moreover, since (ψ + KN)(ψ′ + K ′N) = S + K̂N mod N2, the key K ′ can
be computed as

K ′ =
[(S + K̂N)(ψ + KN)−1 − ψ′] mod N2

N
,

which expresses the function f2.

Second example KEMQR: To apply the recent 3-move ZKPK of Cramer and
Damg̊ard [5], we will use an expanded version of the Goldwasser-Micali encryp-
tion scheme. In particular, Gen is the same as above, except that a quadratic
non-residue y ∈ QNR+1

N is added to pk. The algorithm Encap takes K
$← {0, 1}�

and r
$← Z�

N , returning the key K and its encapsulation

ψ =
(
yK[1]r[1]2 mod N, . . . , yK[�]r[�]2 mod N

)
.
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The algorithm Decapsk(ψ), for 1 ≤ i ≤ �, returns K[i] = 0 if ψ[i] is a quadratic
residue modulo N ; otherwise returns K[i] = 1. The scheme KEMQR is homo-
morphic, and has semantic security under the QR assumption.

In [5], the protocol WIPK{(K, r) : ψ = Encap
(
N ; (K, r)

)
}, is realized by a

Σ-protocol, with soundness error 2−� and communication cost O(�) (instead of
O(�2) via the cut-and-choose technique). Turning the Σ-protocol into a fully
zero-knowledge one can be done by standard techniques (e.g., see [7]).

4.2 The OT Protocol

We show that an adaptive OTn
k×1 can be constructed from a loosely homomor-

phic KEM = (Gen, Encap, Decap).

Initialization Phase

1. The sender S generates (pk, sk)← Gen and sends pk to R. The sender proves
that pk is a valid public-key by ZKPM.

2. For i = 1, . . . , n, the sender S generates (ψ(ri), Ki) = Encap(pk; ri) by choos-
ing ri randomly and sends to R

Ci = (Ai, Bi) = (ψ(ri), KiMi),

where ri is a random string used by Encap.
3. The sender proves by ZKPK that he knows ri of ψ(ri) for every 1 ≤ i ≤ n.

Alternatively, he proves that he knows sk by ZKPK.
4. (Permuting and Blinding) The receiver chooses ui randomly for 1 ≤ i ≤

n, and generates
Encap(pk; ui) = (ϕ(ui), K ′

i).

He then randomly picks a permutation π on {1, . . . , n}, computes Ui =
Aπ(i) · ϕ(ui), and sends U1, . . . , Un to the sender. The receiver, equipped
with secrets (u1, . . . , un) and π, proves in ZKPK that

[
U1 = Aπ(1) · ϕ(u1)

]
∧ · · · ∧

[
Un = Aπ(n) · ϕ(un)

]
.

We will describe in Sect.4.3 how to perform the ZKPK with O(n log n) com-
munication cost.

The jth Transfer Phase

5. The receiver chooses an index 1 ≤ σ ≤ n, then sends U = Uπ−1(σ).
6. The sender checks U ∈ {U1, . . . , Un}, computes K̂ = Decapsk(U) and sends

K̂ to the receiver.
7. The sender proves that K̂ = Decapsk(U) by ZKPM.
8. Note that U = Aσ · ϕ(uπ−1(σ)). The receiver computes

Kσ = f2

(
Aσ, ϕ(uπ−1(σ)), K ′

π−1(σ), K̂
)

,

and then obtains Mσ by computing BσK−1
σ . (In additive groups, this be-

comes Bσ −Kσ, and all Bi as above are Ki + Mi.)
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A1

A2

A3

A4

ρ

ν

W1

W2

W3

W4

δ

η

T1

T2

T3

T4

τ

U1

U2

U3

U4

Fig. 3. From n = 2 to n = 4 with a permutation network of five switches

Theorem 2. The generic OTn
k×1 from permutation networks above is fully sim-

ulatable, if the KEM scheme has semantic security.

The proof is postponed in Appendix B.

4.3 How to Execute the ZKPK at Step 4

The case n = 2: First, let us focus on n = 2, proving the knowledge of u1, u2

such that
U1 = Aπ(1) · ϕ(u1) ∧ U2 = Aπ(2) · ϕ(u2),

for some permutation π on {1, 2}. The task is equivalent to proving
(
U1 = A1 · ϕ(u1) ∧ U2 = A2 · ϕ(u2)

)
∨
(
U1 = A2 · ϕ(u1) ∧ U2 = A1 · ϕ(u2)

)
,

depending on whether
(
π(1), π(2)

)
= (1, 2) or (2, 1). Expanding further, what is

proved becomes
(
U1 = A1 · ϕ(u1) ∨ U1 = A2 · ϕ(u1)

)
∧
(
U1 = A1 · ϕ(u1) ∨ U2 = A1 · ϕ(u2)

)

∧
(
U2 = A2 · ϕ(u2) ∨ U1 = A2 · ϕ(u1)

)
∧
(
U2 = A2 · ϕ(u2) ∨ U2 = A1 · ϕ(u2)

)
.

The above are exactly four OR-proofs. If one can implement the interactive
proof WIPK{(u) : U = A ·ϕ(u)} by a Σ-protocol, then it is well-known that one
can efficiently realize the OR-proofs also with Σ-protocols. Note that if u1, u2

are known, then the permutation π can be extracted as well. Transforming Σ-
protocols to ZKPK ones can be done by well-known techniques [6]. Therefore,
the ZKPK for n = 2 in consideration can be implemented in four rounds, and
we count its communication cost asymptotically as O(1).

From 2 to general n: We will use the idea of n-permutation networks, which
turn n inputs to n outputs, and the outputs are a permutation of the inputs. It
is known that n-permutation networks can be built from 2-ones, which are called
switches. There are constructions of n-permutation networks with O(n log2 n) [4]
or even O(n log n) switches [1, 8]. A comprehensive treatment on the topic can
be found in [4, Chapter 28].
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The idea is now we replace the switches by the WIPK protocol for n = 2
described above. We need O(n log n) protocols as switches, and each protocol
requires O(1) communication cost, so that the total communication cost becomes
O(n log n).

Let us concretely illustrate how one proceeds from n = 2 to n = 4, using the
permutation network depicted in Fig.3 of five switches. The elements Wi, Ti, Ui

are sent to the sender by the receiver3. The first two switches ρ and ν prove that

W1 = Aρ(1) · ϕ(w1), W3 = Aρ(3) · ϕ(w3), W2 = Aν(2) · ϕ(w2), W4 = Aν(4) · ϕ(w4).

Consequently, the second two switches δ and η ensure

T1 = Wδ(1) · ϕ(t1), T2 = Wδ(2) · ϕ(t2), T3 = Wη(3) · ϕ(t3), T4 = Wη(4) · ϕ(t4).

The final switch τ is between T2 and T3, showing

U2 = Tτ(2) · ϕ(v2) ∧ U3 = Tτ(3) · ϕ(v3).

To ease the illustration, let us take concrete switches τ = (2 3) (namely 2 to
3 and vice versa), δ = (1 2), ν = (2 4), and the others are identity switches.
Denote U ∼ A if there is u such that U = A · ϕ(u), so that

U1 ∼ T1 ∼W2 ∼ A4

U2 ∼ T3 ∼W3 ∼ A3

U3 ∼ T2 ∼W1 ∼ A1

U4 ∼ T4 ∼W4 ∼ A2

which means (U1, U2, U3, U4) blinds and permutes (A1, A2, A3, A4) as expected.

Instantiations: As shown above, we just need to implement the atomic
WIPK{(u) : U = A · ϕ(u)} by a Σ-protocol.

From the DCR assumption: Set ϕ(u) = uN mod N for u ∈ ZN , so that the
atomic WIPK is similar to the GQ proof [12].

From the QR assumption: Set

ϕ (u = (K, r)) =
(
yK[1]r[1]2 mod N, . . . , yK[�]r[�]2 mod N

)

for u = (K, r) ∈ Z�
2 × Z�

N . The elegant result of Cramer and Damg̊ard [5]
gives us the desired 3-move WIPK with soundness error 2−�.

4.4 How to Execute Other ZKPK Protocols

The ZKPM at step 7, in the case of KEMDCR, is equivalent to proving rN =
U + K̂N mod N2 for some r, for which the 4-move ZK protocol can be found
3 In general, the receiver needs to send n (= 4 in Fig.3) elements at O(log n) (= 3 in

Fig.3) steps.
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in [18]. For KEMQR, proving U = (yK̂[1]r[1]2 mod N, . . . , yK̂[�]r[�]2 mod N) for
some r ∈ Z�

N is needed, which can be accomplished by the 4-move ZK protocol
for the knowledge of � square roots in [5].

We now turn to the necessary protocols for the validity of the public key.
Proving y is a quadratic non-residue can be done in 4 moves as in [5]. To prove
the validity of N , namely N = pq for some distinct primes p, q, we can use the
protocols in [2, 15].

5 Leakage-Resilient Adaptive OT

Our generic method in Sect.3 can be further used to construct the first (memory)
leakage resilient adaptive OT protocol. We define an adaptive OT scheme by
(G, S, R), where G is a PPT algorithm, and S(ender) and R(eceiver) are interactive
PPT algorithms. G outputs a pair of public-key and secret-key (pk, sk). S takes
(pk, sk) and (M1, . . . , Mn) as inputs, where (M1, . . . , Mn) are given from outside.
R takes pk as input. It is also given a choice index σ from outside in each transfer
phase. Consider a scenario in which R mounts a side-channel attack against S to
steal some information on sk.

The leakage-resilient encryption scheme shown by Naor and Segev at the end
of Sect.5.2 in [20, Eprint] satisfies our conditions in Sect.3. Hence we can obtain
a leakage-resilient adaptive OT protocol under the DDH assumption. The details
will be given in the final paper.
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A Proof of Theorem 1

Lemma 3 (Receiver security). The OTn
k×1 protocol in Sect.3 is secure against

sender corruption.

Proof. For every real-world adversary A who corrupts the sender, we construct
an ideal-world adversary A′ such that the advantage Adv(Z) is negligible. We
will consider a sequence of games beginning from game G0, which is the real
world experiment, and proceed to the final game, which is the ideal world ex-
periment as in Sec.2.2. For each integer i, let Pr(Gi) = Pr (Z = 1 in game Gi) ,
and denote Pr(Gi) ≈ Pr(Gj) when the two values are negligibly close.
Game G0: This is the real world experiment such that the sender is controlled
by the adversary A. By definition Pr(G0) = Pr(Z = 1 in the real world).
Game G1: This game is the same as the previous one except the following. In
the initialization phase, the game extracts M∗

i (1 ≤ i ≤ n) from A by using the
knowledge extractor of the ZKPK. If it fails, then the protocol stops. Since the
failure occurs with negligible probability, we have Pr(G0) ≈ Pr(G1).
Game G2: This game is the same as game G1 except that, in the initialization
phase, the game uses two zero-knowledge simulators of the ZKPKs for proving
the knowledge of skR, and (π, si) respectively. Since ZKPK protocols are zero-
knowledge, we have Pr(G1) ≈ Pr(G2).
Game G3: This game is the same as the previous one, except that C′

i(1 ≤ i ≤ n)
are randomly chosen from the ciphertext space. We have Pr(G3) ≈ Pr(G2),
thanks to the semantic security of the threshold encryption scheme. (Namely,
TEnc(I; si) are almost random, so are C′

i = Cπ(i)TEnc(1; si).)
Game G4: This game is the same as the previous one except the following. In
each transfer phases, the receiver chooses C′ randomly and distinctly from the
set {C′

1, . . . , C
′
n}. Since the view of A is unchanged, we have Pr(G4) = Pr(G3).

Game G5: This game is the ideal world experiment in which an ideal-world
adversaryA′ uses A as a black-box as follows: (1) A′ receives (M1, . . . , Mn) from
Z, and sends (M1, . . . , Mn) to A; (2) A′ runs game G4 with A, where A′ plays
the role of the receiver, which can be accomplished since σ, the secret index of the
receiver, is not used in game G4; (3) A′ sends the extracted (M∗

1 , . . . , M∗
n) as in

game G1 to Fadapt; (4) In each transfer phase, if A behaved in an acceptable way,
then A′ sends b = 1 to Fadapt. Otherwise A′ sends b = 0 to Fadapt; (5) Suppose
that A sends Aout to Z at the end of the game. Then A′ sends A′

out = Aout

to Z.
We have Pr(G4) = Pr(G5), and by definition Pr(Z = 1 in the ideal world)

= Pr(G5). Summing up all above, we have Adv(Z) = |Pr(G0) − Pr(G5)| is
negligible as required. #$

Lemma 4 (Sender security). The OTn
k×1 protocol in Sect.3 is secure against

receiver corruption.

Proof. For every real-world adversary A who corrupts the receiver, we construct
an ideal-world adversaryA′ such that the advantage of the environment Adv(Z)
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is negligible. We again consider a sequence of games in which the first is the real
world experiment of Sec.2.2, while the final is the ideal world experiment. Again,
let Pr(Gi) = Pr(Z = 1 in game Gi).
Game G0: In this game the receiver is controlled by the adversary A, and by
definition Pr(G0) = Pr(Z = 1 in the real world).
Game G1: This game is the same as game G0 except the following. In the
initialization phase, the game extracts skR, and (π, si) by using the extractors of
the corresponding ZKPKs respectively. Unless the extractors fail, which occurs
with negligible probability, games G1 and G0 are identical, so that Pr(G1) ≈
Pr(G0).
Game G2: In this game the index σ used in the transfer phase is extracted as
follows. Since A sends C′ such that C′ ∈ {C′

1, . . . , C
′
n}, the sender searches the

index 1 ≤ ρ ≤ n satisfying C′ = C′
ρ. Recall C′ = C′

π−1(σ), so π−1(σ) = ρ, and
hence σ = π(ρ). Since the change is syntactic, we have Pr(G2) = Pr(G1).
Game G3: This game is the same as the previous one except the following. In
each transfer phase, the game computes μS as

μS = f(pk, Cσ, Mσ, sπ−1(σ), skR).

Since the change is syntactic, we have Pr(G3) = Pr(G2).
Game G4: This game is the same as the previous one except the following. In
each transfer phase, instead of running the ZKPK proving the correct decryp-
tion of C′ under skS, the zero-knowledge simulator of the ZKPK is run so that
Pr(G4) = Pr(G3).
Game G5: This game is the same as the previous one except the following.
In the initialization phase, each Ci is randomly chosen. It is easy to see that
Pr(G5) ≈ Pr(G4) thanks to the semantic security of the TPKE scheme.
Game G6: This game is the ideal world experiment in which an ideal-world
adversary A′ uses A as a black-box as follows: (1) A′ runs game G5 with A,
where A′ plays the role of the sender; (2) In each transfer phase, A′ sends σ
which is extracted as in game G2 to Fadapt, and obtains Mσ. Then A′ computes
μS as in game G3; (3) Suppose that A sends Aout to Z at the end of the game.
Then A′ sends A′

out = Aout to Z.
We have by definition Pr(G6) = Pr(Z = 1 in the ideal world). Summing up

all above, we have Adv(Z) = |Pr(G0)− Pr(G6)| is negligible as required. #$

B Proof of Theorem 2

Lemma 5 (Receiver security). The OTn
k×1 protocol in Sect.4 is secure against

sender corruption.

Proof. For every real-world adversary A who corrupts the sender, we construct
an ideal-world adversary A′ such that the advantage Adv(Z) is negligible. We
consider a series of games as follows. Game G0 is exactly the real-world experi-
ment where the sender is corrupted. Game G1 is the same as the previous game
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except that it extracts the secret key sk from the corrupted sender. It is easy to
see that Pr(G1) ≈ Pr(G0). In game G2, the difference is that U1, . . . , Un is cho-
sen randomly and sent to the sender. Then the simulator for the corresponding
ZKPK (at step 4) is run. It is clear that Pr(G2) ≈ Pr(G1). Game G3 is the ideal
experiment in which A′ runs game G2 with A. Since A′ extracts sk from A, it
obtains M∗

i from Ci for 1 ≤ i ≤ n and sends all the messages to Fadapt. In each
transfer, A′ chooses U randomly and distinctly from {U1, . . . , Un}. Moreover, if
the ZKPM (at step 7) passes, A′ sends 1, otherwise sends 0 to Fadapt. We thus
have Pr(G3) = Pr(G2) and hence Pr(G3) ≈ Pr(G0), meaning the ideal and real
worlds are indistinguishable, so that Adv(Z) must be negligible as required. #$

Lemma 6 (Sender security). The OTn
k×1 protocol in Sect.4 is secure against

receiver corruption.

Proof. For every real-world adversary A who corrupts the receiver, we con-
struct an ideal-world adversary A′ such that the advantage of the environ-
ment Adv(Z) is negligible. We consider a series of games as follows. First,
game G0 is the real-world experiment. Game G1 is identical to game G0, ex-
cept that it extracts the secrets u1, . . . , un and π from the corrupted receiver.
We have Pr(G1) ≈ Pr(G0). In game G2, the index σ is extracted as follows.
In the transfer phase, when the receiver sends U , the game searches for an in-
dex 1 ≤ ρ ≤ n such that U = Uρ. By the construction U = Uπ−1(σ) so that
ρ = π−1(σ) and hence σ = π(ρ). We have Pr(G2) ≈ Pr(G1). In game G3,
K̂ = Decapsk(Uπ−1(σ)) = Decapsk

(
Aσ · ϕ(uπ−1(σ))

)
is alternatively computed as

K̂ = f1

(
Aσ, ϕ(uπ−1(σ)), BσM−1

σ , K ′
π−1(σ)

)
. We have Pr(G3) ≈ Pr(G2). In game

G4, all Ci = (Ai, Bi) are randomly chosen. By the semantic security of KEM,
we have Pr(G4) ≈ Pr(G3). Game G5 is the ideal world in which A′ runs A as
in game G4. The adversary A′ extracts σ as in game G2, and the index is sent
to Fadapt to obtain Mσ. Then the key K̂ is computed as in game G3. All the
zero-knowledge proofs to the corrupted receiver are replaced by the simulated
ones. It is clear that Pr(G5) ≈ Pr(G4) so that Pr(G5) ≈ Pr(G0), and hence
Adv(Z) is negligible as required. #$
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1 Introduction

Consider the following problem: there exists a sender S and a receiver R, who
are part of a large distributed network and connected by n disjoint channels.
There exists a computationally unbounded adversary, who can listen and forge
communication over some of these channels in any arbitrary manner. However,
neither S, nor R knows which of the channels are under the control of the
adversary. S has a message mS, which is a sequence of � elements from a finite
field F, where � ≥ 1. The challenge is to design a protocol, such that after
interacting with S as per the protocol, the following should hold at R’s end:

1. Perfect Reliability: R outputs mR = mS.
2. Perfect Secrecy: Adversary should not get any extra information about

mS. In other words, mS should be information theoretically secure.

This problem is called perfectly secure message transmission (PSMT) [12].

Motivation and Different Models for Studying PSMT. PSMT is a well
known and fundamental problem in secure distributed computing. If S and R are
directly connected by a secure channel, as assumed in generic multiparty compu-
tation (MPC) protocols [3,4,29], then PSMT is trivial. However, if S and R are
not directly connected by a secure channel, then PSMT protocols help to simu-
late a virtual secure channel between S and R. The second motivation for PSMT
is to achieve information theoretic security. The security of all existing public
key cryptosystems is based on hardness assumptions of certain number theoretic
problems and security of these schemes holds only against a computationally
bounded adversary. However, with the advent of new computing paradigms like
Quantum computing [33] and with the increase in computing speed, these as-
sumptions may tend to be useless. But all these factors have no effect on PSMT
protocols, as security of these protocols holds good against a computationally
unbounded adversary.

Over the past two decades, PSMT problem has been studied by several re-
searchers in different settings. Specifically, we can consider the following settings:

1. Type of Channels: The channels between S and R can be bi-directional.
This setting has been considered in [12,31,16,36,1,13,19,26,24]. On the other
hand, channels may be uni-directional, having direction associated with them
[10,23,21,40,6].

2. Adversary Capacity: The adversary may be characterized by a thresh-
old, say t, such that the adversary can control any t out of the n channels
[12,31,36,19] or the adversary may be characterized as a more general non-
threshold adversary, specified by an adversary structure [16,28,40,41,17,18].

3. Adversary Behavior: The adversary may be static who corrupts the same
channels throughout the protocol [12,31,36,19] or the adversary may be mo-
bile, who corrupts different set of channels, during different stages of the
protocol [39,26,5,27].
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4. Type of Underlying Network: The underlying network may be syn-
chronous, where there is a global clock in the system and the delay in the
transmission over any channel is bounded by a constant [12,31,36,38,19] or
the network may be asynchronous, having no such global clock [30,6].

Any PSMT protocol is analyzed by the following parameters:

1. Round Complexity: It is the number of communication rounds taken by
the protocol, where a round is a communication from S to R or vice-versa.

2. Communication Complexity: It is the total number of field elements sent
by S and R in the protocol.

3. Computational Complexity: It is amount of computation which is done
by S and R in the protocol.

We call a PSMT protocol against a non-threshold adversary as efficient, if the
round complexity, communication complexity and computational complexity of
the protocol is polynomial in n and the size of the Monotone Span Programme
(MSP) for the adversary structure (adversary structure is presented in Sec. 1.1
and MSP is presented Sec. 2). On the other hand, a PSMT protocol against a
t-active threshold adversary is called efficient, if its round, communication and
computational complexity is polynomial in n and t. Irrespective of the settings
in which PSMT problem is studied, the following questions are fundamental:

– Possibility: What are the necessary and sufficient conditions for the exis-
tence of any PSMT protocol, tolerating a given type of adversary?

– Feasibility: Once the possibility of a protocol is ascertained, the next obvi-
ous question is whether there exists an efficient protocol or not?

– Optimality: Given a message of some specific length, what is the lower
bound on the round complexity and communication complexity of any PSMT
protocol to send the message? Moreover, do we have a protocol, whose total
round complexity and communication complexity matches these bounds?

Different techniques are used to answer the above questions in different settings.
For details, see [7]. The issue of Possibility, Feasibility and Optimality of
PSMT has been completely resolved tolerating threshold adversary. However,
not too much is known regarding the Feasibility and Optimality of protocols
against non-threshold adversary (see [7] for complete details).

1.1 Non-Threshold Adversary

Let the set of n channels be denoted by W = {w1, . . . , wn}. Then a threshold
adversary is characterized by a threshold t, such that the adversary can control
any t channels out of the n channels for corruption. We denote such an adversary
by At. On the other hand, a non-threshold general adversary A is characterized
by an adversary structure Γ , which is a collection of subsets of channels that the
adversary A can potentially corrupt. That is,

Γ = {B ⊂ W | A can corrupt B}.
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Moreover, we assume that if B ∈ Γ and if B′ ⊂ B, then B′ ∈ Γ . It is easy to
see that a threshold adversary is a special case of non-threshold adversary, such
that all possible B ⊂ W with |B| ≤ t, are present in Γ .

Definition 1 (Qk Condition [15]). We say that A satisfies the Qk condition
with respect to W, if there exists no k sets in Γ , which adds up to the whole set
W. That is:

∀B1, . . . , Bk ∈ Γ : B1 ∪ . . . ∪Bk �=W .

PSMT Tolerating Non-Threshold Adversary. Modeling the adversary by
a threshold helps in easy characterization of protocols and it also helps in ana-
lyzing protocols. However, as mentioned in [15], modeling the (dis)trust in the
network as a threshold adversary is not always appropriate because threshold
protocol requires more stringent requirements than the reality [16]. Motivated
by this, Kumar et al. [16] studied PSMT tolerating non-threshold adversary
for the first time in the literature. The work of Kumar et al. is followed by
[11,28,17,40,41], where the issues related to the Possibility and Feasibility of
PSMT against non-threshold adversary have been studied. In short, there exists
efficient PSMT protocols tolerating non-threshold adversary for bi-directional
channels [41,17] as well as for uni-directional channels [41]. However, there exists
another variant of PSMT, known as almost perfectly secure message transmission
(almost-PSMT), which got relatively less attention in the context of non-
threshold adversary.

1.2 Almost Perfectly Secure Message Transmission: Almost-PSMT

In PSMT, it is required that R should output mR = mS without any error.
In [14], the authors considered a variant of PSMT called almost-PSMT, where
they relaxed this requirement. Specifically, a protocol is called almost-PSMT, if
it satisfies the following requirements:

1. Perfect Secrecy: Same as in the case of PSMT.
2. Almost Perfect Reliability: R outputs mR = mS with probability at

least 1− 2−Ω(κ), where κ is the error parameter and κ > 0.

In [14], the authors studied almost-PSMT tolerating threshold adversary and
showed that almost-PSMT protocols require less number of channels than PSMT
protocols for tolerating a threshold adversary with the same threshold. That is,
allowing a negligible error probability in protocol outcome reduces the connec-
tivity requirement. The work of [14] is followed by [10,37,20,35,2,9,22] where
almost-PSMT tolerating threshold adversary is studied rigorously and the is-
sues related to the Possibility, Feasibility and Optimality of almost-PSMT
tolerating threshold adversary has been completely resolved. In summary, all
these works show that allowing a negligible error probability in the protocol out-
put (without compromising the secrecy) results in significant reduction in the
round complexity, communication complexity and also connectivity requirement
(number of channels) of PSMT protocols.
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Remark 1. (On the Term almost-PSMT): In the literature, almost-PSMT
protocols are also known by various other names. In [34,37], the authors called
these protocols as probabilistic PSMT (PPSMT). On the other hand, [25,35]
called these protocols as unconditionally secure message transmission (USMT)
protocols. Finally, [7] called these protocols as statistically secure message trans-
mission (SSMT) protocols. However, all the above terms stand for almost-PSMT.
In this article, we prefer to use the original name, namely almost-PSMT.

1.3 Almost-PSMT Tolerating Non-Threshold Adversary:
Motivation of Our Work

Unlike almost-PSMT tolerating threshold adversary, almost-PSMT against non-
threshold adversary has got very less attention. In [25], Patra et al. have studied
almost-PSMT tolerating non-threshold adversary. They showed that single round
as well as multi-round almost-PSMT is possible iff A satisfies Q2 condition. This
is to be compared with the results of [11] and [16], according to which single
round and multi-round PSMT is possible iff A satisfies Q3 and Q2 condition
respectively. Unfortunately, the almost-PSMT protocol tolerating non-threshold
adversary presented in [25] is very inefficient and requires computation and com-
munication complexity, which is exponential in the size of adversary structure2.
Moreover, it requires at least three rounds. In [25], the authors have left it as an
open problem to design efficient almost-PSMT protocol tolerating non-threshold
adversary, satisfying Q2 condition. In this paper, we solve this open problem.

1.4 Our Results and Comparison with the Existing Results

In this paper, we present the first single round almost-PSMT protocol tolerating
non-threshold adversary A, specified by an adversary structure, satisfying Q2

condition. Our protocol is round optimal, requiring minimum number of rounds.
Moreover, our protocol is very simple and efficient and thus significantly outper-
forms the almost-PSMT protocol of [25].

As a special case of our single round protocol, when we restrict it to thresh-
old adversary, we get a single round communication optimal almost-PSMT tol-
erating threshold adversary. Though there exists single round, communication
optimal almost-PSMT protocol tolerating threshold adversary [35], we find that
our protocol is much more computationally efficient and relatively simpler than
the protocol of [35]. In practical networks like sensor networks, it is desirable to
have protocols which perform simple computation. In such a situation, our com-
munication optimal protocol (tolerating threshold adversary) fits the bill more
appropriately than the communication optimal protocol of [35].

In [9] the authors have designed single round almost-PSMT protocol toler-
ating threshold adversary, which performs simple computations. However, their
protocol is not communication optimal. On the other hand, our protocol tol-
erating threshold adversary enjoys the property of being both simple and also
communication optimal.
2 The protocol of [25] does not use LSSS and is based on the principle of Induction.
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Table 1. Comparison of our almost-PSMT protocol tolerating Q2 adversary structure
with best known almost-PSMT protocol tolerating Q2 adversary structure

Reference Number of Rounds Efficient/Inefficient

[25] At least three Inefficient

This paper One Efficient

Table 2. Comparison of our single round almost-PSMT protocol tolerating threshold
adversary with n = 2t + 1 with the best known single round almost-PSMT protocols
tolerating threshold adversary with n = 2t + 1

Reference Communication Optimal Computational Complexity

[35] Yes Efficient (Polynomial in n)

[9] No More efficient than [35]

This paper Yes More efficient than [35]

In Table 1 and 2, we compare our protocols with the best known almost-PSMT
protocols in non-threshold and threshold settings respectively.

1.5 Tools and Techniques Used in Our Protocol

To design our protocol, we use Linear Secret Sharing Scheme (LSSS) [8]. In ad-
dition, we also use a new method of authenticating multiple values concurrently
in information theoretic sense. Together this leads to our efficient single round
almost-PSMT protocol.

2 Primitives

Our protocol involves a negligible error probability of 2−Ω(κ). To bound the error
probability by 2−Ω(κ), our protocol operates over a finite field F, where |F| = 2κ.
In our protocol, the error probability comes from the fact that adversary has to
guess a value (unknown to the adversary), selected uniformly and randomly by S
from F. If the adversary can correctly guess the value, then the protocol output
will be incorrect. However, the probability of this event is 1

|F| = 2−κ. Without
loss of generality, we assume that �

|F| ≈ 2−Ω(κ) and hence is negligible (this is
assumed in all the previous almost-PSMT protocols). We now discuss LSSS.

2.1 Linear Secret Sharing Scheme: LSSS

In a secret sharing scheme, a dealer D distributes a secret s ∈ F, to a set of n
parties P = {P1, . . . , Pn} in such a way that some subsets of the participants
(called access sets) can reconstruct s from their shares, while the other subsets of
the participants (called forbidden sets) have no information about s from their
shares. The family of access sets is called access structure. Moreover, we assume
that the access structure is monotone, which is defined as follows:
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Definition 2. An access structure Σ is monotone if A ∈ Σ and A′ ⊇ A, then
A′ ∈ Σ.

Corresponding to the access structure Σ, we have the adversary structure Γ =
Σc, where c denotes the complement. The sets in Γ are called forbidden sets.
There exists a computationally unbounded adversary A, who can control any set
in Γ .

A secret sharing scheme for any monotone access structure Σ can be realized
by a linear secret sharing scheme (LSSS) [8] as follows: LetM be a d× e matrix
over F and ψ : {1, · · · , d} → {1, · · · , n} be a labeling function, where d ≥ e and
d ≥ n.

Sharing algorithm

1. To share a secret s ∈ F, D first chooses a random vector ρ ∈ Fe−1 and
compute a vector

v = (v1, · · · , vd)T =M·
(

s
ρ

)

. (1)

2. Let
LSSS(s, ρ) = (share1, · · · , sharen), (2)

where sharei = {vj | ψ(j) = i}. The dealer gives sharei to Pi as a share of
s for i = 1, · · · , n.

Reconstruction algorithm: A set of parties A ∈ Σ can reconstruct the secret
s if and only if (1, 0, · · · , 0) is in the linear span of

MA = {mj | ψ(j) ∈ A},

where mj denotes the jth row ofM. If this is indeed the case then there exists
a vector αA called recombination vector, such that αA ·MA = (1, 0, . . . , 0). Let
sA denote the set of shares corresponding to the parties in A. Then the parties
in A can reconstruct s by computing s = 〈αA, sT

A〉, where 〈x, y〉 denotes the dot
product of x and y and xT denotes the transpose of x.

Definition 3 (Monotone Span Programme (MSP) [8]). We say that the
above (M, ψ) is a monotone span program which realizes Σ. The size of the MSP
is the number of rows d in M.

Theorem 1 ([8]). The above algorithm constitutes a valid secret sharing scheme.

We are now ready to present our protocol.

3 Efficient Single Round Almost-PSMT Protocol
Tolerating Non-Threshold Adversary

Let W = {w1, . . . , wn} be the set of n channels between S and R and let A be
a non-threshold adversary, specified by an adversary structure Γ overW . More-
over, let Σ = Γ c be the corresponding access structure overW . Furthermore, let
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A satisfies Q2 condition with respect to W , which is necessary for the existence
of any almost-PSMT protocol tolerating A. During the protocol, A can select
any set of channels B ∈ Γ for corruption. However, before the beginning of the
protocol, neither S nor R will know which set of channels are under the control
of A. The channels which are under the control of A are called corrupted. On
the other hand, the channels not under the control of A are called honest.

Let (M, ψ) be the MSP realizing the access structure Σ. Without loss of
generality and for simplicity, we assume that only ith row of M is assigned to
channel wi, for i = 1, . . . , n. Thus,

M =

⎛

⎜
⎝

m1

...
mn

⎞

⎟
⎠

is an n× e matrix over F. However, our protocol will also work when more than
one row of M is assigned to some wi. Finally we use the following notation in
our protocol:

Notation 1. Let Q be any subset of W i.e. Q ⊆ W. ThenMQ denotes the ma-
trix containing the rows ofM corresponding to the channels in Q. For example,
if Q = {w1, . . . , wt}, then

MQ =

⎛

⎜
⎝

m1

...
mt

⎞

⎟
⎠ .

3.1 Underlying Idea of the Protocol

The high level idea of the protocol is as follows: let the message mS, which is a
sequence of � elements from F be denoted by mS = [mS

1 , . . . , mS
� ]. Now using the

MSP M, S generates LSSS(mS
i , ρi) = (shareSi1, . . . , share

S
in), for i = 1, . . . , �,

where ρi’s are the randomness used by S.
If S sends the jth share of all the � mS

i ’s, namely shareSij , over wj , for j =
1, . . . , n, then the communication preserves the secrecy of mS. This is because
A can control any one set from the adversary structure Γ and hence will get the
shares of each mS

i ’s, sent over those channels. However, from the properties of
MSP, these shares will not reveal any information about mS

i ’s to A.
However, S cannot ensure that mS will be recovered correctly by R by sim-

ply sending the shares. This is because A may corrupt the shares sent over the
channels under its control and there will be no way by which R can detect which
channels have delivered correct shares. This is because there is only one round in
the protocol. So S also need to send some additional information to authenticate
each share, which can assist R to detect the corrupted shares with very high
probability. So in our protocol, S also sends additional authentication informa-
tion, using which R can detect the corrupted shares with very high probability
(the way this is done is explained in the next section).
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Though this mechanism of sending the shares, along with their authentication
information is also used in the earlier almost-PSMT protocols, we use a new
way of sending the authentication information, which is relatively simpler than
the earlier schemes. After removing the corrupted shares, R will be left with the
shares, which are correctly delivered with very high probability. Among these
shares, there will be a set of shares which are delivered over the honest channels
and hence they correspond to shares of the wires that constitute an access set.
So if R applies the reconstruction algorithm of the LSSS to the retained shares,
R will correctly recover each mS

i with very high probability.

3.2 Sending the Authentication Information

In our protocol, the authentication of shares is done in the following way: cor-
responding to the jth share of all the � mS

i ’s, sender S constructs a polynomial
pS

j (x) of degree �−1 as follows: pS
j (x) = shareS1j+shareS2j ·x+. . .+shareS�j ·x�−1.

Now S associates pS
j (x) with channel wj , for j = 1, . . . , n and sends it over wj

(by sending the coefficients of pS
j (x) over wj). This is same as sending all the jth

shares over wj .
Now S associates a random evaluation point αS

k with every channel wk, for k =
1, . . . , n. If S sends αS

k and pS
j (αS

k ), for j = 1, . . . , n over wk, then it achieves the
following: if wj is corrupted and if wk is honest, then wj cannot deliver pR

j (x) �=
pS

j (x) to R over wj without being caught by wk with very high probability. This
is because A will have no information about αS

k sent over wk and also αR
k received

by R over wk is same as αS
k . So except with probability �−1

|F| , pR
j (αR

k ) �= pS
j (αR

k ).
This is because two different polynomials of degree �− 1 can have at most �− 1
common roots and αS

k is randomly selected from F. By appropriately selecting
F, we can ensure that �−1

|F| ≈ 2−Ω(κ), which is negligible. So this can help to
detect corrupted shares.

However, the above communication may breach the secrecy as follows: if Pj

is honest and Pk is corrupted, then earlier adversary would have no informa-
tion about pS

j (x), as no information about pS
j (x) would have been sent over wk.

But now, adversary will know pS
j (αS

k ), as well as αS
k through wk, thus revealing

information about pS
j (x) and hence about jth share of all mS

i ’s. To avoid this
situation, we use the following idea: corresponding to channel wj , S selects n
random masking keys, denoted by keyS

j1, . . . , keyS
jn. All the n masking keys (asso-

ciated with wj) are sent over wj . Now the authentication of pS
j (x) corresponding

to the evaluation point αS
k , namely pS

j (αS
k ), is masked with the kth masking key,

namely keyS
jk and sent over wk. That is, over wk, S sends pS

j (αS
k )+keyS

jk, instead
of only pS

j (αS
k ). Notice that keyS

jk is not sent over wk. So if the adversary controls
wk, then even after knowing αS

k and pS
j (αS

k )+keyS
jk, adversary will not gain any

information about pS
j (x), as he has no information about the kth masking key

keyS
jk associated with wj . This way, we preserve the secrecy of each pS

j (x), sent
over honest pj’s. The interesting fact is that with this communication, we can
also ensure that if some pS

j (x) is changed by the adversary over some corrupted
wj , then it will be detected with very high probability by an honest wk.
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Remark 2. (Comparison with the earlier mechanisms of authenticating
shares) As mentioned earlier, all the previous almost-PSMT protocols also used
the idea of sending the authentication information of the shares, along with the
shares. However, these protocols perform the authentication of each individual
jth share separately, corresponding to each of the � messages, using the idea of
Check vectors [29]. On the other hand, in our scheme, a single authentication
information is sent for all the jth shares of the � secrets. This way, we achieve
more efficiency.

We are now ready to formally present our protocol, which is given in Fig. 1.
We now proceed to prove the properties of the protocol. In the proofs, we will

use the following notations (For the definition of VALID, see Fig. 1):

– HW denotes the set of channels in W not under the control of A.
– CW denotes the set of channels in W under the control of A.
– HVALID denotes the set of channels in VALID not under the control of A.
– CVALID denotes the set of channels in VALID under the control of A.

Remark 3. Notice that if some channel is under the control of A then it is
not necessary that A changes all the information sent over the channel. The
adversary may or may not change any portion of the information sent over the
channels under his control.

Lemma 1. HVALID = HW and hence HVALID constitutes an access set.

Proof: First notice that every channel in the set HW will correctly deliver all the
information to R. Specifically, pR

k (x) = pS
k (x), αR

k = αS
k , (keyR

k1, . . . , keyR
kn) =

(keyS
k1, . . . , keyS

kn) and valRjk = valSjk, for j = 1, . . . , n, for every channel wk ∈
HW. So the condition valRjk = pR

j (αR
k ) + keyR

jk holds for every wj , wk ∈ HW.
Moreover, HW constitutes an access set. Thus, the conditionW\SUPPORTj ∈ Γ
will hold for every channel wj ∈ HW. Thus, every channel in HW will be present
in VALID and hence HVALID = HW. �

Lemma 2. Every channel wj ∈ VALID will deliver pR
j (x) = pS

j (x), except with
error probability 2−Ω(κ).

Proof: The proof holds without any error probability if wj ∈ HVALID. So we
now consider the case when wj ∈ CVALID. So let wj be a channel in CVALID.
Since wj ∈ CVALID (and hence VALID), it implies that W \ SUPPORTj ∈ Γ .
This further implies that there exists at least one channel in SUPPORTj , say
wk, such that wk is not under the control of the adversary. Otherwise, it implies
that SUPPORTj ∈ Γ and hence A does not satisfy Q2 condition with respect to
W , which is a contradiction.

Now since wk is not under the control of A, it implies that αR
k = αS

k and
also valRjk = valSjk. Moreover, A will have no information about αR

k and valRjk.
Now suppose adversary changes pS

j (x), so that pR
j (x) �= pS

j (x). However, since
wk ∈ SUPPORTj , it implies that valRjk = pR

j (αR
k ) + keyR

jk. But adversary can
ensure the same only if he can correctly guess αR

k = αS
k . However, adversary can

do the same with probability at most �−1
|F| ≈ 2−Ω(κ). �
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Computation by S:

1. For i = 1, . . . , �, S computes LSSS(mS
i , ρi) = (shareS

i1, . . . , share
S
in).

2. For k = 1, . . . , n, corresponding to channel wk, S selects a random value αS
k , called

as kth evaluation point.
3. For j = 1, . . . , n, corresponding to the jth share of all the � mS

i ’s, S constructs a
polynomial pS

j (x) of degree � − 1 as follows:

pS
j (x) = share

S
1j + share

S
2j · x + . . . + share

S
	j · x	−1.

4. For j = 1, . . . , n, S evaluates each pS
j (x) at evaluation point αS

k , for k = 1, . . . , n.
5. For j = 1, . . . , n, corresponding to channel wj , S selects n random, non-zero values

keyS
j1, . . . , keyS

jn, called as masking keys.

Round I: Communication from S to R: For k = 1, . . . , n, S sends the following
to R over channel wk and terminates the protocol.

1. Polynomial pS
k (x).

2. Evaluation point αS
k .

3. n masking keys keyS
k1, . . . , keyS

kn.
4. Masked authentication values valSjk, for j = 1, . . . , n, where valSjk = pS

j (αS
k )+keyS

jk.

Information Received by R: For k = 1, . . . , n, let R receive the following from S
over channel wk:

1. Polynomial pR
k (x).

2. Evaluation point αR
k .

3. n masking keys keyR
k1, . . . , keyR

kn.
4. Masked authentication values valRjk, for j = 1, . . . , n.

Message Recovery by R: R does the following computation:

1. R initializes a set VALID = ∅.
2. For j = 1, . . . , n, corresponding to channel wj , R constructs a set SUPPORTj = ∅.
3. R adds channel wk in SUPPORTj if valRjk = pR

j (αR
k ) + keyR

jk.
4. For j = 1, . . . , n, R adds channel wj to VALID if W \ SUPPORTj ∈ Γ a.
5. Without loss of generality, let w1, . . . , wt be the channels in VALID. Moreover, for

j = 1, . . . , t, let pR
j (x) be of the form

pR
j (x) = share

R
1j + share

R
2j · x + . . . + share

R
	j · x	−1.

6. For i = 1, . . . , �, R applies reconstruction algorithm of the LSSS to
shareR

i1, share
R
i2, . . . , share

R
it and reconstructs mR

i .
7. Finally R reconstructs mR = [mR

1 , . . . , mR
	 ] and terminates the protocol.

a This is can be done efficiently by checking whether the target vector (1, 0, . . . , 0)
lies in the span of the rows assigned to the parties in the set W \SUPPORTj in M.

Fig. 1. Efficient Single Round Almost-PSMT Tolerating Q2 Adversary Structure
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Lemma 3 (Perfect Secrecy). The protocol in Fig. 1 satisfies perfect secrecy
condition.

Proof: If wk ∈ CW, then adversary will know the polynomial pS
k (x) and

hence the shares shareS1k, . . . , shareS�k. However, even after knowing all the
polynomials transmitted through the channels in CW, adversary will not know
mS

1 , . . . , mS
� , as adversary will only come to know the shares of mS

1 , . . . , mS
� sent

through the channels in CW and CW ∈ Γ . However, the adversary will also know
valSjk = pS

j (αS
k ) + keyS

jk, corresponding to every wj ∈ HW, which is transmitted
through every wk ∈ CW. However, such valSjk’s will not reveal any extra infor-
mation about pS

j (x) (corresponding to any Pj in HW) to the adversary, as the
adversary will have no information about the masking key keyS

jk, which is only
sent over wj . Thus, valSjk’s corresponding to every wj ∈ HW, which are trans-
mitted through every pk ∈ CW will not reveal any information about pS

j (x)’s
corresponding to wj ’s in HW. Thus, through the information received over the
channels in CW, adversary will not get any information about mS

i ’s and hence
the message mS.

Lemma 4 (Almost Perfect Reliability). The protocol in Fig. 1 satisfies al-
most perfect reliability condition.

Proof: To prove the lemma, we have to show that the shares (of mS
i ’s) received

by R over the channels in VALID are correct shares, except with error proba-
bility 2−Ω(κ). This further implies that every channel wj ∈ VALID has delivered
pR

j (x) = pS
j (x), except with error probability 2−Ω(κ). However, this follows from

Lemma 2. �

Lemma 5 (Computation and Communication Complexity). In the pro-
tocol of Fig. 1, S and R performs computation which is polynomial in the size
of the underlying LSSS. In the protocol, S sends O(�n + n2) field elements from
F to R.

Proof: The computational complexity is easy to verify. We now analyze the
communication complexity. Through each channel, S sends a polynomial of
degree � − 1, one evaluation point, n masking keys and n authenticated
values. This results in a total communication complexity of O(�n + n2) field
elements. �

Theorem 2. Let S and R be connected by n channels and let there exists a
computationally unbounded adversary A, specified by an adversary structure Γ
over the n channels, such that A satisfies Q2 condition. Then there exists an
efficient single round almost-PSMT protocol tolerating A.

Proof: The proof follows from Lemma 3, Lemma 4 and Lemma 5. �
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4 Simple and Computationally Efficient Single Round
Almost-PSMT Tolerating Threshold Adversary with
Optimum Communication Complexity

As discussed earlier, a threshold adversary At is a special type of non-threshold
adversary where the adversary structure Γ consists of all possible subsets of W
of size at most t. We now recall the following results from [25].

Theorem 3 ([25]). Any almost-PSMT (irrespective of the number of rounds)
tolerating At is possible iff S and R are connected by n ≥ 2t+1 channels. More-
over, any single round almost-PSMT protocol tolerating At has to communicate
Ω
(

n�
n−2t

)
field elements to send a message containing � field elements.

Remark 4. In any almost-PSMT protocol, |F| is selected as a function of the error
parameter κ (normally |F| = 2κ) and thus each field element can be represented
by a number of bits, which will be function of κ. So though κ does not figure
explicitly in the expression for communication complexity in Theorem 3, it is
implied implicitly if we look into the total number of bits that are actually
communicated.

Any single round almost-PSMT protocol designed with n = 2t + 1 channels is
said to have optimal resilience. Substituting n = 2t+1 in the above theorem, we
find that any single round almost-PSMT protocol with optimal resilience has to
communicate Ω(n�) field elements to send a message containing � field elements.
Thus any single round, optimally resilient, almost-PSMT protocol whose total
communication complexity is O(n�) is said to be communication optimal.

In [35,25], the authors presented an efficient3 single round, optimally resilient
almost-PSMT protocol toleratingAt. However, the protocol performs some com-
plex (though efficient) computations, like extrapolation technique, extracting ran-
domness, etc4 to achieve its task. In practical networks like sensor network, it is
desirable to design protocols which perform computationally simple steps. Moti-
vated by this, the authors in [9] have designed a very simple, optimally resilient,
single round almost-PSMT tolerating At. However, their protocol is not commu-
nication optimal. Specifically, their protocol sends O(n2) field elements to send
a message containing one field element.

We now show that our single round almost-PSMT protocol against non-
threshold adversary when restricted to threshold adversary is a single round,
optimally resilient, almost-PSMT protocol tolerating At having optimal commu-
nication complexity. Moreover, the protocol is efficient. Furthermore, the protocol
is very simple and performs much simplers steps (by avoiding steps like extrapo-
lation technique, extracting randomness) than the communication optimal single
round almost-PSMT protocol of [35].
3 The computation and communication complexity of the protocol are polynomial in

n and �.
4 See [7] for the detailed presentation of the single round almost-PSMT protocol of

[35].
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The first observation is that if the adversary is specified by a threshold t and if
the underlying adversary structure satisfies Q2 condition, then it implies that S
and R are connected by n ≥ 2t+1 channels. Moreover, it is well known that there
exists a very simple MSP tolerating a threshold adversary with threshold t, such
that there are exactly n rows in the MSP and one row of the MSP is assigned to
each channel. The MSP is nothing but an n×(t+1) Vandermonde matrix [8]. The
resultant secret sharing scheme is known as Shamir secret sharing scheme [32]. So
now with these observations, if we simply execute the protocol of previous section
assuming that the adversary is a threshold adversary and there aren = 2t+1 chan-
nels between S and R, we get a simple, efficient, optimally resilient, single round
almost-PSMT protocol tolerating At, which communicates O(�n + n2) field ele-
ments to send a message containing � field elements. Now if we set � = n, then we
find that the protocol sends a message containing n field elements by communi-
catingO(n2) field elements. From Theorem 3, any single round optimally resilient
almost-PSMT protocol has to communicate Ω(n2) field elements to securely send
a message containing n field elements. Thus our resultant protocol is communica-
tion optimal. We now state this in the following theorem:

Theorem 4. Let S and R be connected by n = 2t + 1 channels. Moreover, let
S has a message containing � = n field elements. Then there exists a simple,
efficient, optimally resilient, communication optimal single round almost-PSMT
protocol tolerating At.

5 Conclusion

In this paper, we resolved one of the open problems raised in [25] by designing
an optimally resilient, single round, efficient almost-PSMT protocol tolerating
non-threshold adversary. This is the first ever efficient single round almost-PSMT
protocol tolerating non-threshold adversary. When restricted to threshold adver-
sary, we get a simple, efficient, optimally resilient, single round communication
optimal almost-PSMT protocol.

Acknowledgments. We would like to thank the anonymous referees of ACNS
2011 for several useful suggestions.
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Abstract. We revisit the definition of signatures of knowledge by Chase
and Lysanskaya (Crypto 2006) which correspond to regular signatures
but where the signer also proves knowledge of the secret key to the
public key through any signature. From a more abstract point of view,
the signer holds a secret witness w to a public NP statement x and
any signature to a message allows to extract w given some auxiliary
trapdoor information. Besides extractability, Chase and Lysanskaya also
demand a strong witness-hiding property, called simulatability, akin to
the zero-knowledge property of non-interactive proofs. They also show
that this property ensures anonymity for delegatable credentials or for
ring signatures, for example.

In this work here we discuss relaxed notions for simulatability and
when they are sufficient for applications. Namely, in one notion we forgo
any explicit witness-hiding notion, beyond some weak requirement that
signatures should not help to produce further signatures, analogously
to unforgeability of regular signature schemes. This notion suffices for
example for devising regular signature schemes with some additional
proof-of-possession (POP) or knowledge-of-secret-key (KOSK) property.
Our stronger notion resembles the witness-indistinguishability notion of
proofs of knowledge and can be used to build anonymous ring signatures.
Besides formal definitions we relate all notions and discuss constructions
and the aforementioned applications.

Keywords: Signature of Knowledge, Anonymity, Credential, Ring
Signature.

1 Introduction

Signatures of knowledge (SoK), a term coined in [8], are widely used in cryp-
tography (e.g., [7,6,18,22]). The intuition behind SoKs is clear: besides basic
signature security, signatures of knowledge should also prove that the signer
“knows” the secret key. SoKs were, however, formalized only recently by Chase
and Lysyanskaya [12].

In [12], SoKs are abstractly considered, as primitives allowing users S to sign
messages such that if the signature verifies, a verifier knows that S has a witness
w to some NP statement x; no further information is leaked about w though.
Chase and Lysyanskaya give two equivalent formalizations: a simulation-based
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definition in Canetti’s Universal Composition (UC) framework [10], following ap-
proaches for regular signature schemes [11], and a game-based definition —called
SimExt security— containing an extractability experiment akin to knowledge ex-
tractors [2] and a simulatability notion similar to non-interactive zero-knowledge
(NIZK) proofs [4].

Since SimExt security closely resembles the security of NIZK proofs of knowl-
edge (NIZKPoK), it is unsurprising that the construction in Chase and Lysyan-
skaya [12] is based on such proofs. The generality of this approach on the one
hand yields quite expensive solutions, deploying general NIZKPoKs, but on the
other hand also supports many applications. Two applications shown in [12] are
ring signatures, where signers prove knowledge of a secret key corresponding to
one of the public keys of the ring but without revealing its identity, and delegat-
able anonymous credentials, where zero-knowledge guarantees anonymity.

1.1 Relaxing the Notion of Signature of Knowledge

Reconsider SoK-based ring signatures. In this case simulatability as defined in
[12] yields very strong anonymity: the SoK is simulatable without any witness.
This is stronger than the security requirements of ring signatures, where only
the actual signer should be hard to identify. We may thus consider a switch to
the weaker notion of witness indistinguishability (WI) for SoKs, ensuring that
one cannot deduce which (valid) witness w was used to sign. This relaxation
thus allows for potentially more efficient solutions.

Consider furthermore simple digital signatures with key registration, where
(some) information about the secret key is shown. Such registration steps are
both common in practice [1,19], where one simply signs the public key to be
registered, and often required in theory to prove security of protocols based on
such signature schemes [5,17,20]. The corresponding model is called the “knowl-
edge of secret keys” (KOSK) model and it implements some kind of proof
of knowledge. Extractability of SoKs combines theory with practice, because
self-signed public keys then mirror the KOSK model (though one can now ex-
tract with each signature and does not need an extra registration step). How-
ever, ordinary digital signatures usually do not require simulatability, but only
unforgeability.

1.2 Our Contributions

We introduce two relaxed security notions for SoKs, following the NIZKPoK
approach of [12] and thus inheriting extractability; however simulatability no
longer holds. Instead, we transfer the definition of unforgeability from regular
signatures and introduce UnfExt (Unf orgeability & Extractability) security as
a minimal security level for SoKs. We augment this notion by adding witness
indistinguishability, deriving the stronger WIUnfExt security. The SimExt def-
inition of [12] is yet one step stronger, replacing witness indistinguishability by
simulatability (as [12] shows, SimExt security implies unforgeability). We relate
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all three notions formally, showing a strict hierarchy, and also provide equivalent
definitions in the UC framework. 1

We then instantiate our notions. Using a result about the security of Waters’
signature scheme [23] in the KOSK model [20], we easily get an
UnfExt SoK (for a special NP relation). In fact, this scheme is trivially witness-
indistinguishable, too, as witnesses are unique. We next present a general con-
struction of WIUnfExt-secure SoKs for arbitrary NP statements based on gen-
eral assumptions. This construction relies on witness-indistinguishable proofs
of knowledge (a.k.a. ZAPs [13]), which are a relaxation of non-interactive zero
knowledge proofs; however, our construction does in fact achieve SimExt security
in the definition of Chase and Lysyanskaya [12]. Our third construction achieves
UnfExt security by signing message m on behalf of an extension of the original
statement-witness pair.

We finally address the aforementioned applications, especially ring signatures.
We discuss that adding witness indistinguishability reflects strong anonymity of
ring signatures. We use anonymity and unforgeability notions from the frame-
work for ring signatures of Bender et al. [3].

2 Signatures of Knowledge

Signatures of knowledge (SoKs) are protocols between a signer S, which signs
messages m ∈M, and a verifier V checking signature validity.

We identify NP languages L with arbitrary, but fixed relations RL, i.e., x ∈ L
iff there exists a polynomial-size witness w such that (x, w) ∈ RL. Jumping
ahead, we also require that it is hard, given some x, to compute a valid witness w
(we formalize this w.r.t. an instance generator, as shown in section 3). We assume
efficient (i.e., polynomial in the length |x| of x) verification of (x, w) ∈ RL; denote
byWL(x) the possibly empty set {w : (x, w) ∈ RL} of witnesses to x. Note that
WL(x) formally depends on RL, not on L. Sets S = M, L,RL,WL, . . . are
usually indexed by the security parameter k ∈ N and Sk denotes the strings
s ∈ S of polynomial complexity in k (for some fixed polynomial).

Definition 1 (Signature of Knowledge). A Signature of Knowledge (SoK)
for relation RL is a tuple of efficient algorithms SoK = (Setup, Sign, Vf)
where:

par← Setup(1k). For a security parameter k, Setup outputs public parameters
par. We assume that k is efficiently recoverable from par.

σ ← Sign(m, x, w, par). For a message m ∈ Mk, statement x ∈ Lk, witness
w ∈ WL

k (x), and parameters par (generated for k), Sign outputs SoK σ.
b← Vf(σ, m, x, par). On input an SoK σ, a message m, a statement x, and

parameters par, the algorithm Vf outputs bit b indicating the validity of the
SoK (b = 1 for valid σ).

1 Note that a work by Zou and Sun [15], advertising to discuss stronger anonymity for
signatures of knowledge, rather shows subliminal channels in some group signature
schemes through malicious signers, and is therefore not discussed further here.
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We require the usual correctness property: for any x ∈ Lk, any w ∈ WL
k (x), and

any m ∈Mk, it holds that,

Prob
[
par← Setup(1k); σ ← Sign(m, x, w, par) : Vf(σ, m, x, par) = 1

]
≈ 1,

i.e., is negligibly close to 1 (as a function of k).

3 Security Notions for SoKs

We first briefly describe SimExt security as in [12] and then introduce UnfExt
security as a relaxation thereof. We also explain the relation between the notions
and introduce WIUnfExt security as another flavor of SoK security. We then
show equivalent definitions in Canetti’s universal composition framework.

3.1 Simulatability, Unforgeability, and Witness Indistinguishability

In [12], SimExt security considers auxiliary inputs given to the adversary. We
omit such inputs for simplicity and instead use efficient algorithms, covering
both uniform and non-uniform (with auxiliary input) computational models, as
needed. Furthermore SoKs are universal in [12], using (the machine verifying)
the relation RL as input. Here we define SoK for specific fixed RL, which is
handier for instantiations, e.g., for specific SoK for discrete-log based relations.

Definition 2 (SimExt Security for SoK [12]). The SoK scheme SoK =
(Setup, Sign, Vf) is SimExt secure for RL iff it is:

Simulatable. There exists an efficient simulator Sim = (SimSetup, SimSign)
such that for all efficient adversaries A it holds that

∣
∣
∣
∣
Prob

[
(par, τ)← SimSetup(1k) : d← ASim(par,τ,·,·,·)(par) : d = 1

]

−Prob
[
par← Setup(1k); d← ASign(par,·,·,·)(par) : d = 1

]

∣
∣
∣
∣ ≈ 0,

where, on input (par, τ, m, x, w), Sim checks that RL(x, w) = 1; if so, it
returns SimSign(par, τ, m, x), otherwise it ouputs ⊥.

Extractable. There additionally exists an efficient extractor Ext such that for
all efficient A,

Prob [(par, τ)← SimSetup(1k); (x, m, σ)← ASim(par,τ,·,·,·)(par);
w ← Ext(par, τ, x, m, σ) :
(x, w) ∈ RL

k ∨ (m, x) ∈ Q ∨ Vf(σ, m, x, par) = 0] ≈ 1

Here, Q is the list of (m, x) queries that A has made to Sim.

Note that Simulatability guarantees that using Sign or SimSign is essentially
equivalent for extractability. Simulatability is a strong requirement for SoKs,
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resembling zero-knowledge simulation for non-interactive proofs. Some witness-
“protection” is necessary, however: we cannot restrict SoK security to just cor-
rectness and extractability, as this allows for insecure SoKs. Indeed, consider an
SoK scheme outputting w||m for each m, and where Vf checks the validity of
w. This SoK is correct and trivially extractable. However, any adversary can
create a SoK on fresh m∗, either by extracting a valid w from queried SoKs, or
by modifying queried SoKs such that the new SoK verifies for m∗.

Thus, a minimal security of SoKs additionally requires the basic (existential)
unforgeability under adaptive chosen message attacks of common signatures.
This requires that computing a witness w from a statement x is infeasible, else
unforgeability cannot hold. We capture this by introducing an instance genera-
tor IGen outputting (x, w) ∈ RL accordingly. Consider the example where IGen
outputs a group element x and its discrete logarithm w (w.r.t. some group gen-
erator). We say that IGen is a hard-instance generator if, in addition, no efficient
algorithm can, on input x for (x, w)← IGen(1k), output some w∗ ∈ WL(x) with
non-negligible probability.

We now define UnfExt SoKs in the notation of [12]. To connect Unforgeability
and Extractability we assume that the parameters in the two experiments are
indistinguishable (else the notions could be perfectly independent):

Definition 3 (UnfExt Security). The SoK SoK = (Setup, Sign, Vf) is Unf-
Ext secure for RL and IGen iff it is:

Extractable. There exists an efficient extractor Extr = (ExtSetup, Ext) such
that for any efficient A

Prob[(par, τ)← ExtSetup(1k); (x, m, σ)← A(par);
w∗ ← Ext(par, τ, x, m, σ) : (x, w∗) ∈ RL ∨ Vf(σ, m, x, par) = 0] ≈ 1.

Unforgeable. For all efficient A,

Prob[(x, w)← IGen(1k); par← Setup(1k);
(m, σ)← ASign(·,x,w,par)(x, par) : m �∈ Q ∧ Vf(σ, m, x, par) = 1] ≈ 0.

Here, the list Q contains queries m to Sign (note that the oracle is initial-
ized with the generated x and w, thus these parameters are not part of the
queries).

Parameter Indistinguishability. The output par in (par, τ) ← ExtSetup(1k)
is computationally indistinguishable from the output par← Setup(1k).

Note that the extractability notion in [12] gives the adversary access to a sim-
ulated signing oracle, allowing the adversary to see simulated signatures for
arbitrary messages (however, Ext need not extract witnesses from simulated sig-
natures). Since we do not consider simulated signatures in our definition, we
drop the oracle access and require extractability for any message.

As aforesaid, unforgeability in the UnfExt notion is equivalent to regular
chosen-message unforgeability for digital signatures. As a first sanity check, note
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that our trivial example where the SoK included w is not unforgeable, as A can
insert any fresh message into a forgery so that it verifies.

We show later that UnfExt security is strictly weaker than SimExt security.
Indeed, as aforementioned, UnfExt SoKs may leak some information about the
witness w, but not to the extent that it allows forgeries. An intermediate secu-
rity level between UnfExt and SimExt security combines UnfExt security with
witness indistinguishability (WI). As we show after the definition, we still need
unforgeability to exclude trivial examples (in particular, WI does not imply un-
forgeability). We formalize WIUnfExt security as follows:

Definition 4 (WIUnfExt Security). The SoK SoK = (Setup, Sign, Vf) is
WIUnfExt secure for RL and IGen iff it is:

UnfExt. The scheme is UnfExt scheme and, in addition,
Witness Indistinguishable. For all x ∈ Lk, all w0, w1 ∈ WL

k (x), and all
efficient A,

Prob[par← Setup(1k); b← {0, 1};
d← ASign(·,x,wb,par)(x, w0, w1, par) : d = b] ≈ 1

2 .

Note that we demand witness indistinguishability even if A knows w0, w1. We
also show that WI does not imply unforgeability. Consider a WIUnfExt SoK and
change it into SoK′ such that: Setup′ = Setup; on input m algorithm Sign′ runs
Sign on message m, then runs Sign on message 0 (the all-zero string of some fixed
length), and outputs (Sign(m), Sign(0)) as its signature; and finally on inputs
m, (σm, σ0), the verifier runs Vf on inputs (m, σm) and then on (0, σ0). The new
SoK′ is still WI and extractable, but an adversaryA against unforgeability simply
queries Sign′ on input m �= 0, receives (σm, σ0), and then outputs 0, (σ0, σ0) as
its forgery.

An alternative SoK security definition could use witness-hiding (WH) proofs
of knowledge [14] where it is infeasible to recover the entire witness. However,
unforgeability already implies WH: if a signature of knowledge is not WH, then
it is also not unforgeable (the adversary can simply re-use the recovered witness
w to sign a fresh message m∗).

3.2 Relationships of Security Notions

The strict hierarchy of SimExt, UnfExt, and WIUnfExt security appears in
Fig. 1. Formally we have:

Proposition 1 (Relationships of Notions). For any RL and any hard-
instance generator IGen, (1) any SimExt secure SoK for RL is also WIUnfExt
secure for RL and IGen, and (2) any WIUnfExt secure SoK for RL and IGen is
also UnfExt secure. Furthermore, (3) if there exists an UnfExt secure SoK for
some RL and IGen, then there exists an SoK for some RL′

and IGen′ that is
UnfExt but not WIUnfExt; and (4) if there exists an WIUnfExt SoK for some
RL and IGen, and if one-way permutations (OWP) exist, then there exists an
SoK for some RL′

and IGen′ which is WIUnfExt but not SimExt.
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Fig. 1. Security of SoKs: arrows refer to implications, hatched arrows to separations;
the dotted arrow indicates that the separation relies on an additional assumption. The
figure also shows potential applications of the different notions.

Proof. We prove claim (1). Consider a SimExt secure SoK= (Setup, Sign, Vf).
SimExt and UnfExt correctness are identical. Extractability follows since the
definitions are almost the same; however, as aforesaid A uses SimSign in SimExt
security, whereas in WIUnfExt security, A has no oracle access – though it may
still simulate Sign for valid pairs (x, w). By Simulatability, A cannot distinguish
between SimSign and Sign; thus we can interchange them with a negligible change
in the success probability. Unforgeability follows as described in [12] from the
fact that IGen is a hard-instance generator (despite minor technical differences).
Indistinguishability of the parameters is a weaker requirement than simulata-
bility. Finally, we prove witness indistinguishability. For this, we replace Setup
by SimSetup and Sign by SimSign in the original WI game (using the trapdoor
τ output by SimSetup). In the modified game, A cannot distinguish between
SoKs for the two witnesses, as they are generated independently of the witness.
By Simulability, using Sign and SimSign are indistinguishable; thus the success
probability in the modified game and that of the WI game are only negligibly
different. Thus the SimExt secure SoK is also WIUnfExt secure.

Statement (2) follows by definition of UnfExt and WIUnfExt security.
For claim (3) consider UnfExt secure SoK= (Setup, Sign, Vf) for RL and IGen.

We construct SoK∗ = (Setup∗, Sign∗, Vf∗) forRL′
and IGen′, defined for witnesses

W= (w||b) (for bit b) and statements X = x. Then (X, W) ∈ RL′
iff (x, w) ∈ RL,

and IGen′ samples (X, W) by running IGen and appending a random bit to w.
Algorithms Setup∗ and Vf∗ run Setup, resp. Vf as black boxes, forwarding the
output. Algorithm Sign∗ on input W runs Sign as a black box, appending b
from W to the output SoK. Clearly SoK∗ inherits correctness, extractability,
parameter indistinguishability, and unforgeability from SoK. Yet SoK∗ is not
WI, as signatures leak the added bit for witnesses w||0 and w||1. In claim (4) we
assume the existence of a OWP f . Consider WIUnfExt secure SoK. We construct
SoK′ that is still WIUnfExt secure, but not SimExt secure. For each statement
x, choose random r and set X = x||f(r). All W ∈ WL(X) also include r, i.e.,
W = w||r (this later ensures WI). It is also easy to derive IGen′ from IGen as in
Claim (3). Algorithm Setup′ of SoK′ runs Setup from SoK, forwarding the output
par. Algorithm Sign′ of SoK′ first runs Sign from SoK to get SoK σ. The output
of Sign′ is σ||r. Verification by Vf ′ runs Vf from SoK, then checks that f(r) for
the r in the SoK is the one featured in X.
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For the analysis, note that SoK′ is still WIUnfExt secure. Completeness, ex-
tractability, and indistinguishability of the parameters are trivial. Forging SoK’
also involves forging SoK. Finally, WI is preserved as r is the same for all w ∈
WL(x) for each x. However, SoK′ is not SimExt secure under the one-wayness of
f . In particular, it is not simulatable. Assume that there exists a simulator Sim
that simulates Sign’ to A. The success probability is taken over all x; if Sim is suc-
cessful, then we can build an inverter B against f . Indeed, Sim receives for every
statement x the corresponding f(r) for random r. If Sim simulates Sign success-
fully, it outputs the correct value r (else the SoK does not verify). Algorithm B
runs Sim, outputting r as its pre-image, and is as successful as Sim. #$

3.3 Universally Composable Versions

In the Universal Composability (UC) framework due to Canetti [9], protocols
are associated with ideal functionalities, describing permissible leakage of data
in the protocol run. Several parties run the protocol, receiving input from a
so-called environment Z. A protocol π UC-realizes functionality F if Z cannot
distinguish between a “real world” where parties run π around an adversary
who gets inputs from, and outputs to Z, and an “ideal world”, where parties
run F around a simulator Sim, also outputting to Z. The adversary may corrupt
parties, thus controlling them; these parties are marked down as corrupt. In the
UC framework, π is secure if there exists a Sim such that for all Z and for all
adversaries, Z cannot distinguish between the two worlds.

Chase and Lysyanskaya [12] give two equivalent definitions of SoKs. The first
is UC-based, for a modification of the tweaked ideal signature functionality—[11].
For more details regarding ideal functionalities for signatures, refer to [12]. The
UC definition for SoKs is equivalent to SimExt security, thus strictly stronger
than UnfExt security. We show how to modify this definition to capture UnfExt
security. The main difference is that we do not require simulatability for our
signing algorithm. In particular, we use Sign and not SimSign for SoK generation.

Our ideal functionality (Figure 2) resembles the one in [12], but is simpler,
as it is parameterized by RL, whereas [12] use a universal functionality and put
the (code of the machine verifying the) RL into session identities sid.

Note that as opposed to [12] the simulator is not among the algorithm de-
scriptions. This follows our idea that full simulatability is not required for SoK.
Note also that SoKs require some common parameter setup preceding it. As in
[12], we use the CRS model and corresponding FD

CRS functionality, where D is
a party-chosen distribution of the parameters. If party P forwards (CRS, sid) to
FD

CRS, the functionality checks that no value v is associated with this sid; else, it
chooses v randomly according to D and stores it, returning (CRS, sid, v) to both
P and to the adversary.

For SoKs, D is the distribution of the parameters output by Setup(1k). We run
SoK= (Setup, Sign, Vf) in a hybrid CRS environment and denote the resulting
protocol πSoK(RL, IGen). During each session of πSoK, every time party P receives
a (Setup, sid) message from the environment Z, sid is checked and P queries FD

CRS

so as to get (CRS, par). The public par are stored by P and P also generates
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FSOK(RL): signature of knowledge for a witness w with (x, w) ∈ RL.

Setup. Upon receiving (Setup, sid) from party P , check that this is the
first time a Setup request is made with parameter sid; if not, ignore,
else (Setup, sid) is forwarded to the adversary, which eventually returns
(Algorithms, sid, x, Vf, Sign, Ext) to the functionality. Here Sign and Ext de-
scribe probabilistic polynomial time (PPT) algorithms (represented by PPT
Turing Machines), and Vf describes a deterministic polynomial time al-
gorithm. The algorithm descriptions and x are stored, and P receives
(Algorithms, sid, Sign, Vf).

Signature Generation. Upon receiving (Sign, sid, m) from P , run σ ← Sign(m)
and check that Vf(σ, m,x) = 1; if so, output (Signature, sid, m, σ) to P and
record (m, x, σ). Else, output (Completeness Error) to P and halt.

Signature Verification. Upon receiving (Verify, sid, σ, m, x′) from verifier V , if
(m, x′, σ′) is stored for some σ′, then output (Verified, sid, σ, m, x′, Vf(σ, m, x′))
to V . Else, if x′ = x and Vf(σ, m, x) = 1 but (m, x, σ) has not been stored yet,
output (Unforgeability Error) and halt. Else let w′ ← Ext(m, x, σ); if (w′, x) ∈
RL, output (Verified, sid, σ, m, x, Vf(σ, m, x)) to V . Else, if Vf(σ, m, x) = 0,
output (Verified, sid, σ, m,x, 0) to V . Else, output (Extraction Error) and halt.

Fig. 2. Signature of Knowledge Functionality

(x, w)← IGen(1k). Both values are then included in the descriptions returned to
Z as (Algorithms, sid, Sign(par, ·, x, w), Vf(par, ·, ·)).

If Z sends a request (Sign, sid, m) to party P , this party retrieves the stored par
and returns (Signature, sid, m, Sign(par, m, x, w)). If a verifier V receives request
(Verify, sid, σ, m, x′) from Z, it returns (Verified, sid, σ, m, x′, Vf(par, σ, m, x′)) to
Z.

Like in [12], we can prove the equivalence of the two definitions. In particular,
we formalize the following theorem.

Proposition 2 (Equivalence of Notions). Protocol πSoK(RL, IGen) UC-
realizes the functionality FSOK(RL) in the FD

CRS hybrid model iff SoK is UnfExt
secure for RL and IGen.

The proof closely follows that of [12] and is omitted for space reasons. A UC
equivalence can also be extended to the notion of WIUnfExt security.

4 SoK Instantiation

In this section we recall Waters’ signature scheme [23] and show that it is UnfExt
secure; it is in fact also trivially WIUnfExt, as witnesses are unique. The latter
point is also discussed in [20] in the related KOSK model. We also describe a
universal construction based on general assumptions and for arbitrary relations,
which actually achieves the stronger SimExt security. We finally describe an
UnfExt secure construction where we sign messages m for extended statement-
witness pairs (x, w); an advantage here is that a single proof (ZAP) suffices for
every statement-witness pair, rather than a proof for each message.
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4.1 Waters’ Signature Scheme

We construct UnfExt secure SoKs from Waters’ unforgeable pairing-based signa-
tures [23]. In particular, such signatures are already complete and unforgeable,
becoming extractable if we add some master information about the randomness
used for signature generation. We outline our construction and then consider its
security. Note that we slightly abuse notation here as the key pairs now depend
on the parameters, i.e., the relation depends on par; all results presented before
remain valid in this setting.

Let SigW = (SKGenW , SSignW , SVfW ) be the unforgeable signature scheme
due to Waters. We review this construction briefly before outlining our UnfExt
Secure SoK. In the schema due to Waters, the parameters (generated at Key
Generation) consist of: multiplicative groups G and GT ; a prime q; an element
g ∈ G of prime order q; and (the description of) a bilinear mapping ê.

Key Generation. For security parameter k, algorithm SKGenW runs an (ex-
ternal) generator G to generate parameters par = (G, GT , q, g, ê). The algo-
rithm then picks a random a← Zq and computes g1 := ga. Then it chooses
g2, u0, . . . , uk ← G. Finally, the algorithm outputs the public/private key-
pair (pk, sk) for pk= (par, g1, g2, u0, . . . , uk) and sk = ga

2 .
Signature Generation. For message m ∈M and private key sk, the signing

algorithm SSignW parses m = m1 . . . mk for m1, . . . , mk ∈ {0, 1} and com-
putes H(m) ← u0

∏k
i=1 umi

i . It then picks a random r ∈ Zq; the signature
output by SSign is σ = (ga

2 ·H(m)r, gr).
Signature verification. For signature σ, message m, and public key pk, SVf

parses σ as (σ1, σ2) and outputs 1 iff. ê(g, σ1) = ê(σ2, H(m)) · ê(g1, g2).

This signature scheme is complete and existentially unforgeable under adaptive
chosen message attacks under the CDH assumption (see [23]).

We turn this construction into an UnfExt secure SoK by including u0, . . . , uk

in the public parameters, thus allowing the simulator to extract the witness if
the discrete logs of u0, . . . , uk with respect to g are in the trapdoor informa-
tion generated by ExtSetup. This idea is outlined in the following. The public
parameters, besides parW = (G, GT , q, g, ê) now also contain u0, . . . , uk. To
generate x and w via IGen the values g2 and a are chosen as by SKGenW ;
g1 is set as g1 = ga; and witness w = sk = ga

2 is given to the signer. The
statement is then x = (g, g1, g2) and we define the relation RL as follows:
(x, w) ∈ RL iff ê(g1, g2) = ê(g, w). If the values are generated honestly, we
note that ê(g1, g2) = ê(ga, g2) = ê(g, g2)a = ê(g, ga

2 ) = ê(g, w).

SoK Setup. For security parameter k, the algorithm Setup generates parW =
(G, GT , q, g, ê) as in SigW and also chooses z0, . . . , zk ← Zq and then sets
ui = gzi for i = 0, . . . , k. Finally, Setup outputs par = (parW , u0, . . . , uk).

SoK Generation. For message m ∈ M, witness w = ga
2 , statement x =

(g, ga, g2), and parameters par, the signing algorithm Sign runs SSignW and
outputs signature σ.
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SoK verification. For signature σ, message m, statement x, and public pa-
rameters par, the algorithm Vf runs SVf outputting the bit b.

Theorem 1 (UnfExt Security). The signature of knowledge scheme SoK de-
fined above is UnfExt Secure under the CDH assumption.

Proof. We have to prove correctness, extractability, unforgeability, and parame-
ter indistinguishability. First note that correctness and unforgeability (for IGen
as described above) follow from the corresponding properties of Waters’ signa-
ture scheme. We now describe an extractor Extr= (ExtSetup, Ext) which, given
a valid signature σ outputs witness w. The algorithm ExtSetup runs Setup and
sets τ = (z0, . . . , zk). In particular, the public parameters have identical distri-
butions in both cases. For signature σ, message m, statement x, parameters par,
and trapdoor information τ , the algorithm Ext parses σ as (σ1, σ2), calculates
d = z0 +

∑k
i=1 zimi mod q and outputs w∗ = σ1σ

−d
2 . Note that, if the signature

verifies, we must have

ê(g, σ1) = ê(σ2, H(m)) · ê(g1, g2)

which can be rewritten as

ê(g1, g2) = ê(g, σ1) · ê(σ2, g
d)−1 = ê(g, σ1σ

−d
2 ) = ê(g, w∗).

Hence, by definition of the witness relation, it holds that (x, w∗) ∈ RL. Thus,
extractability is also proved for this description of the extractor Extr. #$

Note that the scheme above is actually WIUnfExt since the witness is unique,
given x and par.

4.2 General Construction

By our results in Section 3.2 any SimExt signature of knowledge is WIUnfExt (if
finding witnesses for instances is hard). Theoretically thus, the general construc-
tion in [12] based on simulation-sound NIZKPoK is also WIUnfExt. We show
an alternative construction using the witness-indistinguishable proof systems for
any NP language, also called ZAPs [13]. The other ingredients are an IND-CCA
public-key encryption scheme (KGen, Enc, Dec) and a pseudorandom generator
G. For space reasons we merely sketch the construction and discuss its security.

Construction. Our idea is to add into par a public key pk of the encryption
scheme, a random string z of length 2k (whose purpose becomes clear later), and
a string parZAP for the ZAP. To sign message m with respect to witness w for x
let the signer encrypt the witness w together with m to C = Enc(pk, w||m) and
append a ZAP (with respect to parZAP) that C encrypts w||m for (x, w) ∈ RL

or that z is in the range of G for inputs of length k. We remark that we formally
require all witnesses w to be padded to have equal length; this is easy to imple-
ment via standard paddings as all witnesses of complexity k are polynomially
bounded. The verifier simply checks the validity of the ZAP.



320 M. Fischlin and C. Onete

Extractability. The extractability of this scheme can be realized by the decryp-
tion algorithm, relying on the fact that a random z is not in the range of G with
probability at least 1 − 2−k; thus, the validity of the ZAP implies that the en-
crypted witness is valid. Proving unforgeability and witness indistinguishability
is more sophisticated.

Unforgeability. For unforgeability consider an adversary against the original sig-
nature algorithm, being able to produce a valid SoK for a fresh message m with
non-negligible probability. As the ZAP is valid and z is not in the range of G with
overwhelming probability, running the decryption algorithm on the ciphertext in
the adversary’s forgery yields a valid witness w with non-negligible probability.
Note that we now consider an adversary’s success w.r.t. successful extraction of a
valid witness, not to a successful forgery. We can further condition on the adver-
sary not outputting a forgery for a previously seen ciphertext; such ciphertexts
cannot contain a fresh message.

Change the game slightly by using pseudorandom z = G(r) in par. By the
security of G the adversary’s success cannot drop significantly. In the next game
hop, the altered signing algorithm uses the preimage r to provide valid ZAPs;
by the WI of the ZAPs, this negligibly increases the success probability. In the
final game, instead of encrypting w in C the again modified signing process uses
0|w|||m. Note that the ZAP computation is not affected by this, and all wit-
ness have the same length. By the IND-CCA security of the encryption scheme,
replacing the encryptions of w||m by 0|w|||m, does not significantly change the
adversary’s probability of finding a forgery for a fresh message; this decrease is
easily detected by recovering the witness and message encapsulated in the ad-
versary’s forgery attempt (this has to work by IND-CCA and by message —thus
ciphertext— freshness). But now the signing oracle is independent of the actual
witness; thus the adversary essentially finds a valid witness w to x without help,
which is infeasible according to the security of the instance generator.

Parameter Indistinguishability. The public parameters have identical distribu-
tion in the actual scheme and the extractability experiment.

Witness Indistinguishability. Again here we can run any distinguisher on fake
parameters including a pseudorandom value z, encrypting Enc(pk, 0|wb|||m) in-
stead, and using the preimage of z to give a valid ZAP. As for unforgeability it
follows that the behavior of the distinguisher compared to the original signature
generation process (for either w0 or w1) cannot change significantly. But since
the resulting signatures are independent of b, it also follows that the original
signatures must be witness indistinguishable.

Simulatability. Actually this construction also achieves the stronger notion of
Simulatability. This can be seen from the proof of Witness Indistinguishability
and unforgeability, as essentially the initial game is reduced to a game where
the signature is independent of the witness. The proof for simulatability would
involve a SimSign procedure that does not use a valid witness at all and still
outputs a verifiable signature (by using a pseudorandom value z).
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4.3 Embedding Witnesses

Both the construction in section 4.2 and the one in [12] instantiate SimExt
secure SoKs by encrypting the witness w and a message m, and giving a zero
knowledge proof (NIZK) that the encryption is correctly formed and that w
and the statement x for which the signature was created are in RL. This both
ensures extractability for w, and it “hides” w, such that the SoK is simulatable.
However, in this scheme the NIZK needs to be computed every time a signature
is generated, as a fresh m must be encrypted every time together with w.

In this section we show how embedding the witnesses into a larger set can
improve efficiency such that the proof only needs to be computed once. This,
however, undermines witness indistinguishability, which does not hold in gen-
eral, making the solution inapplicable e.g., to the case of ring signatures. In our
construction we again use ZAPs, an IND-CCA public-key encryption scheme
(KGen, Enc, Dec), a pseudorandom generator, but this time also an existentially
unforgeable signature scheme Sig = (SKGen, SSign, SVf).

Construction. We add into par the public key pkEnc of the encryption scheme, a
random string z of length 2k, and a string parZAP for the ZAP. The main idea
for signature generation is that instead of signing messages m for statement-
witness pairs (x, w) in the relation RL, we sign m with respect to an extended
witness W = (w, s, r) and an extended statement X = (x, pkSig, C, π), where π
is a ZAP (with respect to parZAP) that C = Enc(pk, W) is a correct encryption
of W with randomness r such that (x, w) ∈ RL, and s is the randomness which
made SKGen(1k) output pkSig, or that z is in the range of G for inputs of length
k. The signature of knowledge is generated as SSign(skSig, m). Given m and x
the verifier computes verifies the validity of the signature by using pkSig, and
then the validity of the ZAP.

Extractability of Original Witnesses. The extractability of this scheme follows as
in the previous section. Note that we extract from the proof for any X only the
part of the some witness W∗ which comprises a witness w and the randomness
s for SKGen; the randomness r for the ciphertext would only be extractable if
the encryption scheme were to support randomness recovery, i.e., the decryption
algorithm could also be used to derive the randomness r.

Unforgeability. A forgery (m, σ) of a SoK must be output for a fresh message
m such that σ verifies under the public key pkSig. This would straightforwardly
violate the unforgeability under the signature scheme, as we can simulate the
encryption and the ciphertext C and proof π without knowledge of the random-
ness s resp. the signing key skSig with the same technique as in the construction
in the previous section.

Parameter Indistinguishability. The parameters for the extractor and the one in
the actual scheme are identically distributed.
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5 Application Scenarios

SoKs allow users to sign messages on behalf of any NP statement x; in particu-
lar, if there exist more witnesses corresponding to this statement, SoKs naturally
provide ring signatures. In this context, the SimExt security of SoKs due to [12]
actually guarantees that signatures are simulatable without the witness. How-
ever, with our definition of Witness Indistinguishable UnfExt SoKs we ensure
that witnesses are merely indistinguishable.

Below we show applications of SoKs to regular digital signatures and ring
signatures.

5.1 Digital Signatures

SoKs can be easily used as simple signature schemes as described in e.g. [16] as
shown in construction 2.

Construction 2. Let SoK= (Setup, Sign, Vf) be a UnfExt SoK scheme for a
relation RL. Define the signature scheme Sig= (SKGen, SSign, SVf) as follows,
for some security parameter k.

Key Generation. On input k, algorithm SKGen first runs Setup(1k) and out-
puts par then it runs the instance generator IGen for SoK on input par to
obtain a statement/witness keypair (x, w) such that (x, w) ∈ RL. SKGen
outputs (pk = (x, par), sk = (w, x, par)).

Signature Generation. On input message m and sk = (w, x, par), algorithm
SSign runs Sign(m, w, x, par) and outputs the resulting SoK σ as its signa-
ture.

Signature Verification. On input signature σ, message m, and pk = (x, par),
algorithm SVf runs Vf(σ, m, x, par) and outputs the resulting bit b.

The security of digital signatures as in [16] is defined in terms of correctness and
existential unforgeability against chosen message attacks. The following holds.

Proposition 3. If SoK is UnfExt secure, then construction 2 is a secure digital
signature.

Proof. Correctness is trivially inherited. Furthermore, Existential Unforgeability
holds: given an efficient adversary A outputting forgery s = SSignsk(m), the
adversary B against SoK Unforgeability uses A as follows: whenever A queries
SSign on mi, adversary B queries Sign on the same input, forwarding the output
signature σ. Finally, when A outputs a forgery (m, s), B outputs the same,
together with pk = x. By construction, if A is successful, then the SoK is valid,
thus B succeeds too. Furthermore, m must be fresh for B, as it is fresh for A. #$

5.2 Ring Signatures

Ring signatures were formalised by Rivest, Shamir, and Tauman [21] in 2001. In
this setting, a signer signs message m on behalf of a so-called ring of participants
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such that it is impossible to tell which ring member actually signed m. We denote
ring members by U1, U2, . . . , Un.

Ring signatures assume the existence of a PKI where users Ui are associ-
ated with private/public key pairs (ski, pki). Message m can be signed by Ui

under public keys {pki}ni=1 and under private key ski, resulting in a signature
σ. Verification requires the public keys of all the users, outputting a bit. In par-
ticular, Rivest et al. [21] define ring signatures to be setup-free, i.e. any signer
can dynamically select a ring just by knowing the public keys of the other ring
members.

We adopt the ring signature definitions due to Bender et al. [3]. This work
defines rings of n of users to be the subset of their public keys, which may be
honestly generated or chosen by the adversary. In the notation of [3], we write
R = (pk1, . . . , pkn) for the ring of users Uj with j ∈ {1, . . . , n}.

Definition 5 (Ring Signatures [3]). A ring signature is a tuple of efficient
algorithms RSig = (RSKGen, RSSign, RSVf) such that:

Key generation. Run on security parameter k, RSKGen outputs key-pair
(sk, pk).

Signature generation. On input index i, message m, ring R of size n with
n distinct elements, and sk s.t. (sk, pki) is a legitimate key-pair.

Signature verification. On input (R, m, σ), algorithm RSVf returns bit b.

We require perfect completeness, i.e., for all k, for all n key-pairs (ski, pki) for
i ∈ {1, . . . , n}, any j ∈ {1, . . . , n}, and any message m, it holds that RSVf(R, m,
RSSign(j, skj , m, R)) = 1 for R = (pk1, . . . , pkn).

Ring signatures have two main properties: anonymity and unforgeability. Bender
et al. [3] introduce various degrees of these notions and prove strict implications
between the different flavors. The adversary may query an OSign oracle with
input an index j, a message m, and a ring R, and running RSSign(j, m, R, skj)
to obtain the honestly generated signature σ. We reiterate only the strongest
form of anonymity – anonymity against attribution attacks – and the basic-
most form of unforgeability – unforgeability against fixed-rings attacks and call
them anonymity, resp. unforgeability. Intuitively, this form of anonymity allows
the adversary to know the secret keys of all-but-one users, but it still can’t
distinguish the signer of a message (i.e., if even a single signer is honest, a
signature cannot be attributed to him, even by everyone else colludes together).
In unforgeability against fixed-rings attacks, the signature is unforgeable if the
adversary uses the same ring of users. This is equivalent, as we see below, to
using the same statement x for SoKs. For further details on ring signatures,
please refer to [3]. Ring signature security now follows:

Anonymity. In order to formalize anonymity, Bender et al. allow the adversary
to learn the randomness used by RSKGenin generating the users’ key pairs.
Instead, we give the adversary access to all the honestly generated secret keys
after they have been generated. Another subtle difference in our definition
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allows our adversary to be stronger: Bender et al. give the adversary access
to the secret keys only after the adversary has chosen a challenge message m,
indices i0 and i1, and a ring R such that pki0 , pki1 are in R. In our definition,
the adversary may know the secret keys even before it has made its choice.
We call the ring signature scheme anonymous iff for all integers n (depending
on k), and all efficient adversaries A, the following holds:

Prob [(ski, pki)n
i=1 ← RSKGen(1k); (st, i0, i1, m, R)← AOSign(·,·,·)((ski, pki)n

i=1)
b← {0, 1}; σ← RSSign(ib, m, R, skib

); d← AOSign(·,·,·)(σ, st) : d = b] ≈ 1
2 .

Unforgeability. For all security parameters k, all integers n, and all efficient
adversaries A, the following holds:

Prob [(ski, pki)n
i=1 ← RSKGen(1k); (m, σ)← AOSign(·,·,R)({pki}ni=1) :

(·, m) �∈ Q ∧ RSVf(R, m, σ) = 1 ] ≈ 0.

Here we denote by Q the list of queries made to the OSign oracle.

Note that, although this definition of anonymity is the strongest of the three
presented by Bender et al. [3], it is not as strong as the simulatability property
required by signatures of knowledge as defined by Chase and Lysyanskaya. And
yet, ring signatures can be constructed from SoKs in a natural way, as long as
there exists a form of witness indistinguishability. Indeed, a signature of knowl-
edge on a message m proves that a signer who knows a valid witness (out of
possibly many valid witnesses) to a statement has signed a statement. In fact, if
we equivalate a ring to a statement, we can perceive the set of witnesses belong-
ing to this set as each representing a user in the ring. We describe this in what
follows.

We first consider a relation RL with statements of the form x and witnesses
w and with an efficient instance generator IGen, which, on input a security pa-
rameter k and some parameters par, outputs a statement x and a witness w
with (x, w) ∈ RL. Let SoK= (Setup, Sign, Vf) be a witness indistinguishable
signature of knowledge for a relation R with statements R = (x1, . . . , xn) and
witnesses w such that (w, R) ∈ R iff. there exists an index j ∈ {1, . . . , n} such
that (w, xj) ∈ RL. Consider a ring signature RSig= (RSKGen, RSSign, RSVf),
such that:

Setup. Before running the ring signature scheme, the algorithm Setup is run
on input k to output parameters par.

Key Generation. Upon input a security parameter K = (k, par) for an inte-
ger k and parameters par, the key generation algorithm RSKGen runs IGen,
outputting the tuple (xi, wi).

Ring Signature generation. Upon input an index i ∈ {1, . . . , n}, a message
m, a ring R = (x1, . . . , xn), and a private key wi, the signature generation
algorithm RSSign runs Sign on input m, R, w, par, and returns the output
signature σ.
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Ring Signature verification. Upon input a ring R = (x1, . . . , xn), a mes-
sage m, and a signature σ, the signature verification algorithm RSVf runs
Vf on input σ, m, R, par, and outputs the resulting bit b.

This construction is a secure ring signature in the sense of the above security
definition. In particular, the completeness property follows from the correct-
ness of the underlying signature of knowledge scheme, and unforgeability follows
from the unforgeability of the SoK (but the ring is fixed, as the definition of
unforgeability for SoKs fixes the statement, in this case R). To see that RSig is
also anonymous in the presence of attributions, note that the witness indistin-
guishability definition is quantified over all witnesses, which are freely given to
the adversary. Therefore the adversary knows all wi, but cannot tell them apart
anyway.
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Abstract. In this paper, we propose a new lightweight block cipher
called LBlock. Similar to many other lightweight block ciphers, the block
size of LBlock is 64-bit and the key size is 80-bit. Our security evaluation
shows that LBlock can achieve enough security margin against known
attacks, such as differential cryptanalysis, linear cryptanalysis, impossi-
ble differential cryptanalysis and related-key attacks etc. Furthermore,
LBlock can be implemented efficiently not only in hardware environ-
ments but also in software platforms such as 8-bit microcontroller. Our
hardware implementation of LBlock requires about 1320 GE on 0.18 μm
technology with a throughput of 200 Kbps at 100 KHz. The software
implementation of LBlock on 8-bit microcontroller requires about 3955
clock cycles to encrypt a plaintext block.

Keywords: Block cipher, Lightweight, Hardware efficiency, Design,
Cryptanalysis.

1 Introduction

With the development of electronic and communication applications, RFID tech-
nology has been used in many aspects of life, such as access control, parking
management, identification, goods tracking etc. In this kind of new cryptogra-
phy environment, the applications of RFID technology and sensor networking
both have similar features, such as weak computation ability, small storage space,
and strict power constraints. Therefore, traditional block ciphers such as AES are
not suitable for this kind of extremely constrained environment. Hence, in recent
years, research on lightweight ciphers has received a lot of attention. Compared
with traditional block ciphers, lightweight ciphers have the following three main
properties. Firstly, applications for constrained devices are unlikely to require the
encryption of large amounts of data, and hence there is no requirement of high
throughput for lightweight ciphers. Secondly, in this cryptography environment,
attackers are lack of data and computing ability, which means lightweight ciphers
only need to achieve moderate security. Lastly, lightweight ciphers are usually
implemented in hardware environment, and small part of them are also imple-
mented on software platforms such as 8-bit microcontroller. Therefore, hardware
performance will be the primary consideration for lightweight ciphers. Hardware
efficiency can be measured in many different ways: the length of the critical path,
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latency, clock cycles, power consumption, throughput, area requirements, and so
on. Among them area requirement is the most important parameter, since small
area requirement can minimize both the cost and the power consumption effi-
ciently. Therefore, it has become common to use the term hardware efficient as
a synonym for small area requirements, and the area requirements are usually
measured as gate equivalents (GE). At present, for the hardware implementation
of lightweight cipher, area requirements are usually dominated by the registers
storing the data state and the key, since registers typically consist of flipflops
which have a rather high area and power demand. For example, when using the
standard cell library it requires between 6 and 12 GE to store a single bit [26].
Therefore, in the design of lightweight block ciphers, 64-bit block size and 80-bit
key size are popular parameters.

While there is a growing requirement of ciphers suited for resource-constraint
applications, a series of lightweight block ciphers have been proposed recently,
e.g. PRESENT[9], HIGHT[14], mCrypton[21], DESL[19], CGEN[28], MIBS[15],
KATAN & KTANTAN[10], TWIS[23], SEA[30] etc. All of these ciphers are de-
signed and targeted specifically for extremely constrained environments such as
RFID tags and sensor networks. Among them, PRESENT is supposed to be very
competitive, since its hardware requirement is comparable with today’s leading
compact stream ciphers, and it is called an ultra-lightweight block cipher. Since
its publication, only a few cryptanalytic results have been proposed against
PRESENT, including the related-key rectangle attack on 17-round PRESENT
in [24] and the side-channel attacks described in [27,35]. HIGHT has a 32-round
generalized Feistel structure. Its main feature is the compact round function
which contains no S-box and all the operations are simple computations such
as XOR, rotation, and addition operating on 8-bit input. In respect of crypt-
analysis, a related-key attack on full-round HIGHT was presented in ICISC2010,
and an impossible differential attack on 26-round HIGHT were presented in [24].
mCrypton can be considered as a miniature of the block cipher Crypton[20], and
a related-key rectangle attack on 8-round mCrypton has been reported in [25].
DESL and DESXL are lightweight modified versions of the well-known DES, and
they adopt only one single S-box in order to minimize the hardware implementa-
tion. CGEN employs a compact round function called mixtable operation, and
the main design strategies include using a fixed and per-device seed key which
reduces the key scheduling and the decryption operation is not needed either.
MIBS is a 32-round Feistel cipher, and its round function employs SP-network
with XOR operations as diffusion layer, whose hardware requirements are more
expensive than the bitwise permutation used in PRESENT etc. KATAN and
KTANTAN are a family of lightweight block ciphers which contain six vari-
ants altogether. The KATAN family of ciphers all employ the same components,
whose design strategy exploits some features of stream cipher [11]. Meet-in-the-
middle attacks to the KTANTAN family with a key of 80 bits were presented in
[36]. TWIS is inspired from the existing block cipher CLEFIA [29]. However, a
differential distinguisher with probability 1 for full-round TWIS was presented
in [31]. SEA is a Feistel cipher with scalable block and key sizes, and its round
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function only consists of rotation, XOR, and a single 3-bit S-box operations.
TEA [33] and XTEA [34] are lightweight block ciphers proposed several years
earlier.

In this paper we propose a new lightweight block cipher called LBlock. The
design of its structure and components, such as S-box layer, P permutation
layer etc, all represent the trade-off between security and performance. Our se-
curity analysis shows that full-round LBlock can provide enough security margin
against known cryptanalytic techniques, such as differential cryptanalysis, linear
cryptanalysis, impossible differential cryptanalysis, related-key attack etc. Fur-
thermore, the performance evaluation of LBlock shows that not only hardware
efficiency but also software implementations on 8-bit/32-bit platforms are ultra
lightweight. The rest of this paper is organized as follows. Sect. 2 presents the
specification of LBlock. Sect. 3 introduces the design rationale briefly. Sect. 4
and Sect. 5 describe the security analysis and performance evaluation of LBlock
respectively. Finally, Sect. 6 concludes the paper.

2 Specification of LBlock

The block length of LBlock is 64-bit, and the key length is 80-bit. It employs a
variant Feistel structure and consists of 32 rounds. The specification of LBlock
consists of three parts: encryption algorithm, decryption algorithm and key
scheduling.

2.1 Notations

In the specification of LBlock, we use the following notations:
− M : 64-bit plaintext
− C: 64-bit ciphertext
− K: 80-bit master key
− Ki: 32-bit round subkey
− F : Round function
− s: 4× 4 S-box
− S: S-box layer consists of eight s in parallel
− P, P1: Permutations operate on 32-bit
−

⊕
: Bitwise exclusive-OR operation

− <<< 8: 8-bit left cyclic shift operation
− >>> 8: 8-bit right cyclic shift operation
− ||: Concatenation of two binary strings
− [i]2: Binary form of an integer i

2.2 Encryption Algorithm

The encryption algorithm of LBlock consists of a 32-round iterative structure
which is a variant of Feistel network. The encryption procedure is illustrated in
Fig. 1. Let M = X1||X0 denote a 64-bit plaintext, and then the data processing
procedure can be expressed as follows.
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Fig. 1. Encryption procedure of LBlock

1. For i = 2, 3, . . . , 33, do

Xi = F (Xi−1, Ki−1)⊕ (Xi−2 <<< 8)

2. Output C = X32||X33 as the 64-bit ciphertext

Specifically, the components used in each round are defined as follows.

(1) Round function F

The round function F is defined as follows, where S and P denote the confu-
sion and diffusion functions which will be defined later.

F : {0, 1}32 × {0, 1}32 −→ {0, 1}32
(X, Ki) −→ U = P(S(X ⊕Ki))

Fig. 2 illustrates the structure of round function F in detail.

(2) Confusion function S

Confusion function S denotes the non-linear layer of round function F , and
it consists of eight 4-bit S-boxes si in parallel.

S : {0, 1}32 −→ {0, 1}32
Y = Y7||Y6||Y5||Y4||Y3||Y2||Y1||Y0 −→ Z = Z7||Z6||Z5||Z4||Z3||Z2||Z1||Z0

Z7 = s7(Y7), Z6 = s6(Y6), Z5 = s5(Y5), Z4 = s4(Y4),
Z3 = s3(Y3), Z2 = s2(Y2), Z1 = s1(Y1), Z0 = s0(Y0).
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Fig. 2. Round function F

The contents of eight 4-bit S-boxes are listed in Table 1.

(3) Diffusion function P

Diffusion function P is defined as a permutation of eight 4-bit words, and it
can be expressed as the following equations.

P : {0, 1}32 −→ {0, 1}32
Z = Z7||Z6||Z5||Z4||Z3||Z2||Z1||Z0 −→ U = U7||U6||U5||U4||U3||U2||U1||U0

U7 = Z6, U6 = Z4, U5 = Z7, U4 = Z5,
U3 = Z2, U2 = Z0, U1 = Z3, U0 = Z1.

2.3 Decryption Algorithm

The decryption algorithm of LBlock is the inverse of encryption procedure, and it
consists of a 32-round variant Feistel structure too. Let C = X32||X33 denotes a
64-bit ciphertext, and then the decryption procedure can be expressed as follows.

1. For j = 31, 30, . . . , 0, do

Xj = (F (Xj+1, Kj+1)⊕Xj+2) >>> 8

2. Output M = X1||X0 as the 64-bit plaintext.

2.4 Key Scheduling

The 80-bit master key K is stored in a key register and denoted as K =
k79 k78 k77 k76 ...... k1k0. Output the leftmost 32 bits of current content of register
K as round subkey K1, and then operate as follows:

1. For i = 1, 2, . . . , 31, update the key register K as follows:
(a) K <<< 29
(b) [k79 k78 k77 k76] = s9[k79 k78 k77 k76]

[k75 k74 k73 k72] = s8[k75 k74 k73 k72]

(c) [k50k49k48k47k46]⊕ [i]2
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(d) Output the leftmost 32 bits of current content of register K as round
subkey Ki+1.

where s8 and s9 are two 4-bit S-boxes, and they are defined in Table 1.

Table 1. Contents of the S-boxes used in LBlock

s0 14, 9, 15, 0, 13, 4, 10, 11, 1, 2, 8, 3, 7, 6, 12, 5

s1 4, 11, 14, 9, 15, 13, 0, 10, 7, 12, 5, 6, 2, 8, 1, 3

s2 1, 14, 7, 12, 15, 13, 0, 6, 11, 5, 9, 3, 2, 4, 8, 10

s3 7, 6, 8, 11, 0, 15, 3, 14, 9, 10, 12, 13, 5, 2, 4, 1

s4 14, 5, 15, 0, 7, 2, 12, 13, 1, 8, 4, 9, 11, 10, 6, 3

s5 2, 13, 11, 12, 15, 14, 0, 9, 7, 10, 6, 3, 1, 8, 4, 5

s6 11, 9, 4, 14, 0, 15, 10, 13, 6, 12, 5, 7, 3, 8, 1, 2

s7 13, 10, 15, 0, 14, 4, 9, 11, 2, 1, 8, 3, 7, 5, 12, 6

s8 14, 9, 15, 0, 13, 4, 10, 11, 1, 2, 8, 3, 7, 6, 12, 5

s9 4, 11, 14, 9, 15, 13, 0, 10, 7, 12, 5, 6, 2, 8, 1, 3

3 Design Rationale

3.1 Structure

The structure of LBlock is a variant of Feistel network, and its design decisions
contain a lot of considerations about security and efficient implementations (such
as area, cost and performance etc.). In the aspect of implementation, the most
important consideration is the area requirement when implemented in hardware.
Therefore, we try to reduce the number of S-boxes used in each round and also min-
imize the size of each S-box used. Hence a Feistel-type structure seems a proper
choice. Furthermore, for all kinds of generalized Feistel structures which operate
less bits in each round, to achieve enough security margin they must take more
rounds iteration which will affect its performance (such as speed and throughput).
Therefore, in each round of LBlock, we choose only half of the data to go through
round function F , and the other half applies a simple rotation operation. In the
diffusion layer, we also choose to use permutation which can be implemented with
no cost in hardware. However, instead of the bitwise permutation usually used,
we apply a 4-bit word-wise permutation which can be implemented cheaply not
only in hardware but also in software environments such as 8-bit microprocessor
platforms. For example, the word-wise permutation in round function F can be
combined with the S-box layer to form 8 × 8 table lookups. Moreover, we specif-
ically choose the rotation offsets of right half in each round as 8 bits which can
be omitted in 8-bit platform implementation. On the other hand, in the aspect of
security requirement, we choose the word-wise permutation carefully so that the
structure of LBlock satisfies that in both encryption and decryption directions it
can achieve best diffusion [32] in 8 rounds. Furthermore, the number of differential
and linear active S-boxes both increase quickly, and the following Table 2 lists the
guaranteed number of active S-boxes before 20 rounds.
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Table 2. Guaranteed number of active S-boxes of LBlock

Rounds DS LS Rounds DS LS

1 0 0 11 22 22

2 1 1 12 24 24

3 2 2 13 27 27

4 3 3 14 30 30

5 4 5 15 32 32

6 6 6 16 35 35

7 8 8 17 36 36

8 11 11 18 39 39

9 14 14 19 41 41

10 18 18 20 44 44

3.2 Diffusion Layer

The diffusion permutation of LBlock consists of two parts, namely the word-wise
permutation in round function which is denoted as P , and the rotation of right
half data in each round which is denoted as P1. Both of these permutations
can be implemented by wiring in hardware which needs no additional area cost.
For software environments such as 8-bit and 32-bit microprocessor platforms,
P can be combined with the S-box layer in round function as table lookups
and P1 (8-bit rotation) can be implemented quite easily. Therefore, the diffusion
permutations of LBlock can be implemented efficiently both in hardware and in
software environments. Furthermore, the combination of P and P1 can guarantee
the best diffusion rounds and the least number of active S-boxes of LBlock. For
example, there already exist at least 32 active S-boxes for 15-round LBlock.

3.3 S-Box Layer

On the pursuit of hardware efficiency, we use 4 × 4 S-boxes s : F 4
2 → F 4

2 in
LBlock. Compared with the regular 8 × 8 S-box, small S-box has much more
advantage when implemented in hardware. For example, to implement the S-
box of AES in hardware more than 200 GE are needed. On the other hand, for
the 4 × 4 S-boxes used in LBlock, all of them can be implemented in hardware
with only about 22 GE. Furthermore, in the aspect of security, the S-boxes used
in LBlock are carefully chosen so that they all fulfill the following conditions: no
fix point, completed, best non linearity, best differential probability, and good
algebraic order etc.

3.4 Key Scheduling

Similar to many other lightweight block ciphers, the key scheduling of LBlock is
also designed in a stream cipher way. We only apply simple rotation and non-
linear operations to generate the round subkeys. First of all, the operation of
29-bit left rotation can be implemented freely in hardware, and it can also break
the 4-bit word structure, which helps to improve the security of LBlock against
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related-key attacks. Secondly, we choose to use two 4×4 S-boxes as the non-linear
operation which represents a trade-off between security and performance. Lastly,
the exact values of rotation offset, constants and positions of constant addition
are carefully chosen, so as to avoid weak relations between round subkeys.

4 Security Evaluation

4.1 Differential Cryptanalysis

For differential cryptanalysis, we adopt an approach to count the number of ac-
tive S-boxes of differential characteristics. This is a regular method to evaluate
the security against differential attack, which were adopted by many other block
ciphers, such as AES [12], Camellia [1] and CLEFIA [29] etc. We found the
guaranteed number of differential active S-boxes of LBlock by computer pro-
gram, and the results before 20-round are listed in Table 2. Considering that
there are at least 32 active S-boxes for 15-round LBlock and the best differential
probabilities of si are all equal to 2−2, then the maximum probability of differ-
ential characteristics for 15-round LBlock satisfies DCP 15r

max ≤ 232×(−2) = 2−64.
This means there is no useful 15-round differential characteristic for LBlock,
since the block length of LBlock is only 64-bit. Therefore, we believe that the
full 32-round LBlock is secure against differential cryptanalysis.

4.2 Linear Cryptanalysis

We also apply the method of counting active S-boxes for the evaluation of LBlock
against linear cryptanalysis. Since there are at least 32 active S-boxes for 15-
round LBlock and the best linear bias of each si is 2−2, the maximum bias of
linear approximations for 15-round LBlock satisfies LCP 15r

max ≤ 232−1 ·232×(−2) =
2−33. Therefore, according to the complexity estimation of linear cryptanalysis,
we can conclude that it is difficult to find useful 15-round linear-hulls which
can be used to distinguish LBlock from a random permutation. As a result, we
believe that the full 32-round LBlock has enough security margin against linear
cryptanalysis.

4.3 Impossible Differential Cryptanalysis

Impossible differential attack [3] is one of the most powerful cryptanalytic tech-
niques, and its applications to many block ciphers (such as Camellia and CLEFIA
etc.) represent the best cryptanalytic results obtained so far. We search for the
impossible differential characteristic of LBlock using the algorithm proposed by
Kim et al. [16]. The best distinguisher found is the following 14-round impossible
differential characteristic:

(00000000, 00α00000)
14r

�→(0β000000, 00000000), (1)

where α, β ∈ {0, 1}4\{0} represent non-zero differences. Note that by changing
the positions of α, β, we can construct other 14-round impossible differential
characteristics in a similar way.
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Based on the 14-round impossible differential distinguishers, we can mount a
key recovery attack on 20-round LBlock. The attack procedure can be described
as follows.

1. Choose a set of 212 plaintexts to construct a structure, where the 4-bit words
X0,1, X0,3 and X1,2 take all possible values and all the other words take con-
stants. Then each structure can generate about 223 plaintext pairs satisfying
the input difference (ΔX1, ΔX0) = (00000 ∗ 00, 0000 ∗ 0 ∗ 0). Choose 251

different structures which can generate about 274 candidate plaintext pairs.
2. For each corresponding ciphertext structure after 20-round encryption,

choose the pairs satisfying the output difference (ΔX21, ΔX20) = (∗ ∗ 00 ∗
∗0∗, 000 ∗ 0 ∗ ∗0), where ∗ denotes non-zero difference. After this test, there
remains about 274 × 2−32 = 242 candidate pairs.

3. For every guess of 28-bit subkey K20,0, K20,1, K20,2, K20,4, K20,5, K20,6, K20,7,
partially decrypt Round 20 to check if the pairs satisfying (ΔX20, ΔX19) =
(000∗0∗∗0, 00∗0000∗). After this test, there remains about 242×2−12 = 230

pairs.
4. For every guess of the 16-bit subkey K19,0, K19,2, K19,3, K19,5, partially de-

crypt Round 19 to check if the pairs satisfying (ΔX19, ΔX18) = (00 ∗
0000∗, ∗0000000). After this test, there remains 230 × 2−8 = 222 pairs.

5. For every guess of the 8-bit subkey K18,1, K18,7, partially decrypt Round
18 to check if the candidate pairs satisfying (ΔX18, ΔX17) = (∗0000000, 0 ∗
000000). After this test, there remains about 222 × 2−4 = 218 pairs.

6. For every guess of the 4-bit subkey K17,6, partially decrypt Round 17 to check
if the candidate pairs satisfying (ΔX17, ΔX16) = (0 ∗ 000000, 00000000).
After this test, there remains about 218 × 2−4 = 214 pairs.

7. For every guess of the 8-bit subkey K1,2, K1,7, partially encrypt Round 1 to
check if the candidate pairs satisfying (ΔX2, ΔX1) = (00∗00000, 00000∗00).
After this test, there remains about 214 × 2−4 = 210 pairs.

8. For every guess of the 4-bit subkey K2,5, partially encrypt Round 2 to check
if the candidate pairs satisfying the following equation:

(ΔX3, ΔX2) = (00000000, 00 ∗ 00000).

9. If there still remains a pair satisfying the impossible differential, then the
68-bit subkey guessed must be wrong. Delete it from the candidate subkey
table. If the table of candidate subkey is not empty after analyzing all the
remaining pairs, output the subkey remained in table as correct subkey.

For each of the candidate pair in Step 8, the probability that it satisfies the
filtering condition is about 2−4. Therefore, for a wrong subkey guess, the prob-
ability of its remaining after Step 8 is about (1 − 2−4)2

10 ≈ 2−95. Then we can
expect that after all these filtering, there remains about 268×2−95 ≈ 2−27 wrong
subkey guess, and only the correct subkey will be output.

The data and time complexities of above attack can be estimated as follows.
First of all, we choose 251 structures and the data complexity is 251 × 212 = 263

chosen plaintexts. The time complexity is dominated by Step 7 to Step 8, and
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each step needs about 278 S-box operations. Therefore, the time complexity of
the attack is about 2×2×278× 1

8×
1
20 ≈ 272.7 20-round encryptions. According to

the complexities of impossible differential attack on 20-round LBlock, we expect
that the full 32-round LBlock has enough security margin against this attack.

4.4 Integral Attack

Since LBlock is a 4-bit word oriented cipher, we also consider that integral
attack [18] may be one of the most powerful attacks against LBlock. The best
integral characteristic found is the 15-round distinguisher. Table 3 illustrates
one of the 15-round integral distinguisher in detail, where C denotes a constant
word, A denotes an active word and B denotes a balanced word respectively.
Note that by changing the position of C in plaintext, we can obtain similar
integral distinguishers easily.

Based on the 15-round integral distinguisher, we can mount a key recovery
attack up to 20-round LBlock. For simplicity, we first give the integral attack on
18-round LBlock, and the attack procedure is as follows.

1. Choose a set of 260 plaintexts to construct a structure, where only 4-bit
word takes a constant and all the other words take all the possible values
of {0, 1}60. Obtain the corresponding ciphertext after 18-round encryption.
Count the number of value X18,6, X18,4, X18,1, X19,6, X19,0 occurs, and dis-
card the values which occur even times.

2. Guess corresponding subkeys to decrypt the ciphertexts.
(a) For every guess of the 8-bit subkey (K18,1, K18,4), partially decrypt

Round 18 to compute X17,4 = s4(X18,4 ⊕ K18,4) ⊕ X19,6 and X17,6 =
s1(X18,1 ⊕K18,1)⊕X19,0.

Table 3. 15-Round integral distinguisher of LBlock

Rounds Integral characterisitcs

0 AAAC AAAA AAAA AAAA

1 AAAC ACAC AAAC AAAA

2 CCCC AAAC AAAC ACAC

3 ACAC CCCC CCCC AAAC

4 CCCC ACCC ACAC CCCC

5 ACCC CCCC CCCC ACCC

6 CCCC CCCC ACCC CCCC

7 CCCC CCAC CCCC CCCC

8 CCCC CCCA CCCC CCAC

9 CCCC AACC CCCC CCCA

10 CCCC AAAC CCCC AACC

11 CCAA ACAA CCCC AAAC

12 CAAB AAAA CCAA ACAA

13 B ?AA BBAA CAAB AAAA

14 ?B ?B ?B ?B B ?AA BBAA

15 ? ? ? ? ? ? ? ? ? B ?B ? B ?B
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(b) For every guess of the 4-bit subkey K17,4, partially decrypt Round 17 to
compute X16,4 = s4(X17,4 ⊕K17,4)⊕X18,6.

(c) For every guess of the 4-bit subkey K16,4, partially decrypt Round 16 to
compute X15,4 = s4(X16,4 ⊕K16,4)⊕X17,6.

3. Check if the equation ⊕
l

X15,4 = 0 is satisfied, where l is the number of plain-

texts. If the equation is satisfied, then X15,4 is a balance word. Otherwise,
guess another subkey and repeat until we get the correct subkey.

The complexity of this attack can be estimated as follows. Step 1 needs about
260 plaintexts which requires 260 encryptions. For the five words counted in Step
1, there are at most 220 values. Therefore, the time complexity of Step 1 to Step
3 are less than 220 × 216 encryptions. For a wrong subkey guess, the probability
that equation ⊕

l
X15,4 = 0 is satisfied is about 2−4. Therefore, to discard all the

wrong 16-bit subkey guesses, we need about five plaintext structures. Therefore,
the total data and time complexities of this attack are both 5× 260.

Moreover, we can mount an integral attack on 20-round LBlock based on the
15-round integral distinguisher. The attack procedure is similar with the attack
on 18-round LBlock, and we add two additional rounds in the end. Therefore,
12 subkey words need to be guessed and the data and time complexities will
increase to about 13× 260 ≈ 263.7.

4.5 Related-Key Attacks

Recently, the combination of related-key [2,17] and traditional cryptanalysis has
become one of the most powerful attacks, and its application to some ciphers
has improved the cryptanalytic results significantly [4,6,7,8,13]. Therefore, we
have studied the possible related-key differential characteristic of LBlock so as
to evaluate the security of LBlock against related-key attacks. In order to get
related-key differential characteristic with high probability, we have to control
the number of active S-boxes. Therefore, we first choose the output differences
of 10 S-boxes (8 S-boxes in round function and 2 S-boxes in key scheduling) in
Round i all have hamming weight less than 2. Then we search for the related-key
differential before Round i in the decryption direction and after Round i in the
encryption direction respectively, and count the total number of active S-boxes.
The best related-key differential obtained so far is a 13-round distinguisher with
26 active S-boxes, and its probability is (2−2)25 · (2−3) = 2−53. For the 14-round
related-key differential obtained, there are 32 active S-boxes and its probability
is less than (2−2)31 ·(2−3) = 2−65. Table 4 illustrates the propagation of 14-round
related-key differential of LBlock in detail.

5 Performance Evaluation

5.1 Hardware Performance

We implemented LBlock in VHDL and synthesized it on 0.18μm CMOS tech-
nology to check for its hardware complexity. Figure 3 in Appendix III shows
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Table 4. 14-Round related-key differential characteristic of LBlock

Rounds ΔXL ΔRK ΔIS ΔOP ΔXR

1 01200101 00000000 01200101 20012100 01222121

2 02200001 00000000 02200001 20010100 01200101

3 00000001 02000000 02000001 20000100 02200001

4 00000002 00000000 00000002 00000100 00000001

5 00000000 00000008 00000008 00000200 00000002

6 00000000 00000000 00000000 00000000 00000000

7 00000000 00000000 00000000 00000000 00000000

8 00000000 00000400 00000400 00001000 00000000

9 00001000 00000000 00001000 00000010 00000000

10 00000010 00000000 00000010 00000002 00001000

11 00100002 00020000 00120002 01010100 00000010

12 01011100 00000000 01011100 21002010 00100002

13 31002210 00000000 31002210 20102012 01011100

14 21012013 04000000 25012013 41200212 31002210

Table 5. Comparison of lightweight block cipher implementations

Algorithm Block Key Area Speed Logic
Size Size #GE kbps@100KHz Process

XTEA 64 128 3490 57.1 0.13 μm

HIGHT 64 128 3048 188.2 0.25 μm

mCrypton 64 128 2500 492.3 0.13 μm

DES 64 56 2300 44.4 0.18 μm

DESXL 64 184 2168 44.4 0.18 μm

KATAN 64 80 1054 25.1 0.13 μm

KTANTAN 64 80 688 25.1 0.13 μm

PRESENT 64 80 1570 200 0.18 μm

LBlock 64 80 1320 200 0.18 μm

the datapath of an parallelization implementation of LBlock, which performs
one round in one clock cycle. In this optimized implementation, we use a 64-bit
width datapath and implement the eight S-boxes of round function in parallel.
Then, to encrypt 64-bit plaintext with an 80-bit key occupies about 1320 GE
and requires 32 clock cycles. Table 5 compares the hardware performances of
LBlock with other lightweight block ciphers.

Specifically, in the above implementation the area requirement is occupied by
flip-flops for storing the key and the data state. To store the 80-bit key requires
about 480 GE and to store the 64-bit data state requires two 32-bit registers
(denoted as memleft and memright) which are about 384 GE. For round function
F , it is consisted of the following three parts. The KeyAddition is a 32-bit XOR
operation which requires about 87 GE. The S-box layer consists of eight 4 × 4
S-boxes in parallel, which requires about 21.84 × 8 = 174.8 GE. The diffusion
layer P can be implemented by simple wiring and costs no area. Then in the
end of each round, another 32-bit XOR operation of two halves is needed which
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requires about 87 GE. Furthermore, another two 4× 4 S-boxes and a 5-bit XOR
operation are needed in key scheduling which require at most 43.7 + 13.5 ≈ 57.2
GE. Moreover, control logic and other counters require about 50 GE. Therefore,
the hardware implementation of LBlock requires an estimated area of 1320 GE.

We can give a more compact implementation of LBlock with a serialization
design. For example, in the key scheduling we can reuse the 32-bit register and
generate each subkey by several operations. Then the area requirement of key
register can be reduced to 212 GE, while additional RAM is needed. Further-
more, the data state in encryption can also reuse the 32-bit key register and the
area requirements can be reduced to 192 GE. Then the control logic and other
counters need about 70 GE. Therefore, this area-optimized implementation of
LBlock only needs about 866.3 GE with additional RAM. Since the register is
reused in both key scheduling and encryption, the generation of each round sub-
key will need 12 clock cycles, and the encryption procedure will need 192 clock
cycles. Therefore, to encrypt 64-bit plaintext with 80-bit key needs about 576
clock cycles in total. Table 6 in Appendix II summarizes the area requirement
of LBlock in detail.

5.2 Software Implementations

For some resource-constraint environments, such as smart card and sensor net-
working system, the embedded CPU is usually 8-bit oriented. Therefore, in the
design of LBlock, we consider the implementation performance of LBlock not
only in hardware environment but also in software platform such as 8-bit micro-
controller. The choices of 4-bit word permutation in round function and 8-bit
rotation in right half of each round are suitable for both hardware and software
platforms. For example, in case of 8-bit oriented software implementation, the
eight S-boxes and 4-bit word permutation P in round function can be combined
together and realized as four 8-bit lookup tables. Our software implementation
of LBlock on 8-bit microcontroller only requires about 3955 clock cycles to en-
crypt a plaintext block. Hence, LBlock can achieve competitive hardware and
software performances compared with other known lightweight block ciphers.

6 Conclusion

In this paper we propose a new lightweight block cipher LBlock, whose block
size is 64-bit and key size is 80-bit. Our design goal is to provide cryptogra-
phy security for resource-constraint environments, e.g. RFID tags and sensor
networks etc. Moreover, compared with other lightweight block ciphers, the pro-
posal should achieve better hardware performance and also have good software
efficiency on 8-bit microcontroller. Therefore, in the design of LBlock, we employ
a variant Feistel structure and the encryption algorithm is 4-bit oriented which
can be implemented efficiently in both hardware and software. Furthermore, the
round function employs a SP-network, whose confusion layer consists of small
4 × 4 S-boxes and diffusion layer consists of a simple 4-bit word permutation.
All of these components are designed with the consideration of both security
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and implementation efficiency in mind. Our hardware implementation of LBlock
requires about 1320 GE on 0.18 μm technology, which satisfies the regular lim-
itation of 2000 GE in RFID applications. Furthermore, in an area-optimized
implementation, LBlock requires only 866.3 GE with additional RAM. We also
evaluate the security of LBlock and our cryptanalytic results show that LBlock
achieves enough security margin against known attacks. In the end, we strongly
encourage the security analysis of LBlock and helpful comments.
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Appendix I: Test Vectors

Test vectors for LBlock are shown in hexadecimal notation as follows.

Plaintext Key Ciphertext

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 c2 18 18 53 08 e7 5b cd

01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef fe dc 4b 71 79 d8 eb ee 0c 26

Appendix II

Table 6. Area requirement of LBlock

Module Speed Area
Optimized Optimized

64-bit Data Register 384 192

Key Addition 87 87

S-box Layer 174.8 174.8

P Layer 0 0

32-bit XOR 87 87

80-bit Key Register 480 212

S-boxes (Key Scheule) 43.7 30

5-bit Constant XOR 13.5 13.5

Control Logic 50 70

Sum 1320 GE 866.3 GE
(with RAM)
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Appendix III

Fig. 3. The datapath of an area-optimized version of LBlock
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Abstract. It is a well known fact that encryption schemes cannot hide a plaintext
length when it is unbounded. We thus admit that an approximation of it may leak
and we focus on hiding its precise value. Some standards such as TLS or SSH
offer to do it by applying some pad-then-encrypt techniques. In this study, we
investigate the information leakage when these techniques are used. We define
the notion of padding scheme and its associated security. We show that when a
padding length is uniformly distributed, the scheme is nearly optimal. We also
show that the insecurity degrades linearly with the padding length.

1 Introduction

Although an encryption process makes a plaintext unreadable to adversaries, the result-
ing ciphertext may still leak some information. Practically, we can always distinguish
an encrypted SMS message from an encrypted HD video stream. Namely, the length
of a plaintext may give some information away and it can often be deduced from the
ciphertext. For instance, the lengths of a plaintext and the corresponding ciphertext are
identical or differ by a small number of bits when the encryption is done by a stream
or a block cipher. One way of hiding the plaintext size is to use random padding before
the encryption which appends a padding of random length in {1,2, . . . ,B}. In this work,
we investigate the information leakage when a random padding is used.

Let us consider a symmetric encryption system in which encryption under a key K
is denoted by EncK and decryption is denoted by DecK . In the Shannon model [10],
the plaintext and the key are defined by independent random variables X and K. Perfect
secrecy is defined by the statistical independence of X and Y =EncK(X). If this property
is satisfied, we can easily see that the plaintext domain must be finite: if y is a possible
value for Y , then p = Pr[Y = y] is positive. For any possible value x for X , we must have
Pr[EncK(x) = y] = p due to perfect secrecy. Since EncK(x) = y implies DecK(y) = x,
p ≤ Pr[DecK(y) = x]. By summing over all possible x’s, we deduce that the number of
such x is bounded by 1

p , which is a finite number.1

1 Actually, this proof only holds for countable sets. More generally, we should define our prop-
erties with non-discrete probabilities to be able to consider uncountably infinite sets. In theory,
we could achieve perfect secrecy over uncountably infinite sets. However, the encryption al-
gorithm will no longer be polynomially bounded on classical computational models. So, we
only consider countable sets in the present paper. We could probably reopen this case when
considering encryption over a space of quantum states. (See [9] for more discussions.)
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This impossibility result extends to weaker security notions. In [3,4], Chor and
Kushilevitz consider α-weak security, given α ≥ 1, which states that for all possible
x1, x2, y, we have

1
α

Pr[Y = y|X = x2]≤ Pr[Y = y|X = x1]≤ αPr[Y = y|X = x2]

Perfect secrecy corresponds to the α = 1 case. Encryption over a countably infinite
domain cannot be α-weak secure for any α: if x2 and y are possible simultaneous values
for X and Y , p = 1

α Pr[Y = y|X = x2] is positive and we have Pr[Y = y|X = x1]≥ p for all
possible x1. So, Pr[DecK(y) = x1]≥ p and the number of possible plaintexts is bounded
by 1

p .
In [9], Phan and Vaudenay consider ε-statistically extended indistinguishability un-

der one-time encryption (extended IND-OTE game), given ε < 1, which means

1
2 ∑

y
|Pr[Y = y|X = x1]−Pr[Y = y|X = x2]| ≤ ε

for all possible plaintexts x1 and x2. Again, secure (in this sense) encryption over an
infinite (countable) domain is impossible.

A public-key cryptosystem is nothing but an encryption scheme in which EncK can
be described by using public values. So, the above impossibility results also apply to
public-key cryptography.

A standard security notion for encryption is the IND-CPA security (indistinguisha-
bility under chosen plaintext attacks) in which an adversary can make some chosen
plaintext encryptions and tries to get an advantage for distinguishing the encryption of
either x1 or x2, two plaintexts of same length selected by himself. For public-key encryp-
tion, the adversary makes the encryption himself by using the public key so IND-CPA
and IND-OTE notions are equivalent. For symmetric encryption, he must be provided
access to an encryption oracle. In the IND-OTE game, there is no such access so there
may be a gap between IND-CPA and IND-OTE notions. Still, these notions impose that
x1 and x2 have the same length so they offer no guarantee about keeping the plaintext
length secret. We call extended IND-OTE game (E-IND-OTE) the notion where the
restriction that x1 and x2 have the same length is relaxed.

The Phan-Vaudenay result says that if all adversaries in the E-IND-OTE game have
their advantage bounded by a given ε < 1, then the encryption domain must be finite.
Ideally, we would like to design secure encryption schemes over an infinite set. Practi-
cally, we could live with encryption domains which are finite but large enough. Indeed,
we can assume that the set of bitstrings of length bounded by a few petabytes is a vir-
tually infinite set. So, we could design an encryption scheme over this domain with a
pretty good security. However, for efficiency reasons, we would not like that the en-
cryption of a very small plaintext (say a few kilobytes) would lead to a ciphertext of
one petabyte. Therefore, we should consider encryption schemes which are somehow
length-preserving but also length hiding. To make it possible, we relax the E-IND-OTE
security notion and consider the Δ-IND-OTE game in which the submitted plaintexts
have a length difference bounded by Δ. The IND-OTE (resp. E-IND-OTE) notions cor-
respond to Δ = 0 (resp. Δ = +∞).
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In the sequel we consider encryption schemes defined by

Enc(x) = Enc0(x‖pad(x))

where Enc0 is a length-preserving IND-OTE-secure scheme and pad is a probabilis-
tic padding scheme. That is, pad generates a postfix-free random string which can be
extracted after decryption. Typically, pad(x) is a random bitstring whose length N is a
random variable. This kind of construction is proposed e.g. in TLS [6] or SSH [12]. For
instance, here is a quote from [6]:

Padding that is added to force the length of the plaintext to be an integral mul-
tiple of the block cipher’s block length. The padding MAY be any length up to
255 bytes, as long as it results in the TLSCiphertext.length being an integral
multiple of the block length. Lengths longer than necessary might be desirable
to frustrate attacks on a protocol that are based on analysis of the lengths of
exchanged messages.

This suggests that we could arbitrarily pad up to B = 32 (resp. B = 16) blocks of data to
hide the exact length of a plaintext, when the block cipher uses blocks of 64 bits (resp.
128 bits).

More generally, we consider preencryption schemes which are not necessarily of
form x‖pad(x). We may consider several assumptions:

– (uniformity) the distribution of the length overhead between x and Enc(x) is fixed
(it does not depend on x)

– (almost length-preserving property) the length overhead is bounded by B

Given B and Δ, our aim is to find the best distribution N to achieve optimal Δ-IND-OTE
security.

Related work. Padding often serves another purpose. Namely, it is used to fill incom-
plete blocks to encrypt a plaintext using a block cipher. Our notion of preencryption
scheme is similar to the notion of encoding by Paterson and Watson [8] who consider
several practical schemes. They analyze the security of the pad-then-encrypt scheme in
a practical case where the original encryption scheme is a block cipher in CTR mode.
This follows some other work in which they identified a terrible interaction between the
padding scheme and the decryption algorithm in CBC mode [1]. Some other padding
schemes leading to decryption attacks have been identified (see e.g. [2,5,7,11]).

Our results. We first formalize in Section 2 the notion of preencryption scheme and its
associated Δ-IND security notion. We formalize the notion of preencryption by padding
(or the pad-then-encrypt technique). When Enc0 is length-preserving, we show that
Δ-IND-security is necessary and sufficient to make Enc Δ-IND-OTE secure.

Then, we show in Section 3 that there is always an adversary with advantage nearly
Δ
B . That is, the insecurity degrades linearly with the padding length B. This main result
happens to have a very simple proof by using a diagonal argument.

We observe that a padding scheme making padding lengths uniformly distributed
makes the above adversary nearly the best one. So, this preencryption scheme is nearly
optimal.
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In Section 4, we further precisely study the optimal padding scheme in the uniform
case for Δ = 2.

2 Preliminaries

In what follows we consider an alphabet Z. This can be a Boolean alphabet, or the set of
bytes, or a set of blocks. We denote by Z∗ the set of finite sequences of elements taken
from Z. The length of an element x ∈ Z∗ is denoted by |x|. For x,x′ ∈ Z∗, we denote by
x‖x′ the concatenation of x and x′.

In this paper we adopt exact security notions. We can easily translate to asymptotic
security by introducing security parameters in the definition of encryption schemes.

2.1 Encryption Scheme

Definition 1. An encryption scheme is defined by

– a plaintext domain which is a subset of Z∗

– an algorithm to generate a key K
– a (probabilistic) encryption algorithm Enc taking a key and a plaintext as input and

producing a ciphertext
– a (deterministic) decryption algorithm Dec taking a key and a ciphertext as input

and producing a plaintext

The correctness property of an encryption scheme states that if we generate a key K by
the key generation algorithm, if we take a plaintext x in the plaintext domain, and if we
compute DecK(EncK(x)) then we obtain x with probability 1.

We say that an encryption scheme is B-almost length preserving if

||EncK(x)|− |x|| ≤ B

with probability 1 for all x. It is length-preserving if it is 0-almost length preserving.
We say that an encryption scheme t-fully leaks the plaintext length if there exists an

algorithm f such that for all x in the plaintext domain, f (EncK(x)) = |x| with probabil-
ity 1 within a complexity at most t.

For instance, a length-preserving encryption scheme fully leaks the plaintext length by
f (y) = |y|.

For symmetric encryption, the key generation algorithm simply picks a key in a given
key space, following the uniform distribution. For public-key encryption, the key can
be split in a public part and a private part. The encryption algorithm only use the public
part. What follows applies to both cases.

We define the Δ-IND-OTE security notion as follows:

Definition 2. We consider the following game between an adversary A and a chal-
lenger. Firstly, the challenger generates a key K using the key generation algorithm.
In the case of a public key cryptosystem, it reveals the public part Kp of K to the
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adversary. The adversary can do some computations and then submits two plaintexts
A(Kp;ρ) = (x0,x1) in the plaintext domain such that

||x0|− |x1|| ≤ Δ

by using some random coins ρ. The challenger flips a fair coin b, computesY = EncK(xb)
and reveals Y . The adversary can then do some extra computations and yields a guess
A(Kp,Y ;ρ) = b′. The adversary succeeds if b = b′. His advantage is Pr[b = b′]− 1

2 . A
has a complexity bounded by t if for any Kp, Y , and ρ, the total running time of A(Kp;ρ)
and A(Kp,Y ;ρ) is bounded by t. We say that the encryption scheme is Δ-IND-OTE(t,ε)-
secure if for all adversary with time complexity limited by t, the advantage is at most
ε.

Δ-IND-OTE Game:
1: Challenger generates K and discloses its public part Kp

2: Adversary selects plaintexts x0 and x1 where ||x0|− |x1|| ≤ Δ
3: Challenger flips a coin b, computes EncK(xb) = Y and gives Y to the adversary
4: Adversary guesses b′ and wins if b′ = b

IND-OTE security corresponds to the Δ = 0 case. We also consider E-IND-OTE secu-
rity defined by the Δ = +∞ case.

2.2 Preencryption Schemes

Definition 3. Given two plaintext domains X and X 0, a preencryption scheme from X
to X 0 is a pair of algorithms

– a (probabilistic) algorithm pre such that for all x ∈ X , pre(x) ∈ X 0 with probability
1

– a (deterministic) algorithm Extract

The correctness property of a preencryption scheme states that for all x ∈ X ,

Extract(pre(x)) = x

with probability 1.
We say that a preencryption scheme is B-almost length preserving if

||pre(x)|− |x|| ≤ B

with probability 1 for all x. We say that a preencryption scheme is length-increasing if
|pre(x)| ≥ |x| with probability 1 for all x. We say that a preencryption scheme is strictly
length-increasing if |pre(x)|> |x| with probability 1 for all x.

Definition 4. A preencryption scheme is Δ-IND (t,ε)-secure if for all adversary A with
time complexity limited by t, the advantage in the following game is at most ε. The
advantage is defined as Pr[b = b′]− 1

2 .
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Δ-IND Game:
1: Adversary selects plaintexts x0 and x1 where ||x0|− |x1|| ≤ Δ
2: Challenger flips a coin b, computes |pre(xb)|= L and gives L to the adversary
3: Adversary guesses b′ and wins if b′ = b

A has a complexity bounded by t if for any L and ρ, the total running time of A(;ρ) and
A(L;ρ) is bounded by t.

Given a set of integers A, x0 and x1, we define a Δ-IND adversary DA(x0,x1) as the one
selecting x0 and x1 then yielding b′ = 1 if and only if L ∈ A. We define AdvA(x0,x1) as
the advantage of this adversary.

Lemma 5. For any x0 and x1 we have

AdvA(x0,x1) =
1
2

Pr[|pre(x1)| ∈ A]− 1
2

Pr[|pre(x0)| ∈ A]

=
1
2 ∑

�∈A

(Pr[|pre(x1)|= �]−Pr[|pre(x0)|= �])

Proof. We have

AdvA(x0,x1) = Pr[b = b′]− 1
2

=
1
2

Pr[b′ = 1|b = 1]+
1
2

Pr[b′ = 0|b = 0]− 1
2

=
1
2

Pr[b′ = 1|b = 1]− 1
2

Pr[b′ = 1|b = 0]

=
1
2

Pr[|pre(x1)| ∈ A]− 1
2

Pr[|pre(x0)| ∈ A]

and the other expression follows by separating the � ∈ A cases. #$
We define Adv(x0,x1) as the maximal advantage for (computationally unbounded)

adversaries selecting x0 and x1.

Lemma 6. For any x0 and x1 we have Adv(x0,x1) = AdvA(x0,x1) where

A = {�;Pr[|pre(x1)|= �] > Pr[|pre(x0)|= �]}
Actually, Adv(x0,x1) is the statistical distance between the length of pre(x0) and the
length of pre(x1).
Proof. Since we consider unbounded adversaries, an optimal one using x0 and x1 can
be assumed to be of form DA′(x0,x1) without loss of generality. By Lemma 5 we clearly
have AdvA′(x0,x1) ≤ AdvA(x0,x1). So, A′ = A maximizes AdvA′(x0,x1) and we obtain
Adv(x0,x1) = AdvA(x0,x1). #$

Given an encryption scheme

C0 = (X 0,Gen0,Enc0,Dec0)

and a preencryption scheme P = (pre,Extract) from X to X 0 we define the encryption
scheme

C = (X ,Gen,Enc,Dec)
by Gen = Gen0,
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EncK(x) = Enc0
K(pre(x))

and
DecK(y) = Extract(Dec0

K(y))

Clearly, this defines an encryption scheme. If the preencryption scheme is B-almost
length-preserving and the encryption scheme C0 is length-preserving, then the encryp-
tion scheme C is B-almost length preserving.

Theorem 7. We assume there exists a constant tS and a sampling algorithm S(1L)
to pick a random element of X 0 of length L with complexity at most tS for any L ∈
{|x|;x ∈ X 0}. There exists a (small) constant c such that for any C, C0, t, tP, if C0 is
a IND-OTE(t + tS + tP + c,ε0)-secure encryption scheme and if P is a Δ-IND(t + tS +
tP + c,ε1)-secure preencryption scheme and pre can be computed within a complexity
bounded by tP, then C is a Δ-IND-OTE(t,2ε0 + ε1)-secure encryption scheme.

When C0 t0-fully leaks the plaintext length, if C is Δ-IND-OTE(t + t0 + c,ε)-secure
then P is Δ-IND(t,ε)-secure.

So, for an IND-OTE-secure encryption C0 which fully leaks the plaintext length, the
Δ-IND security of P is necessary and sufficient to have C Δ-IND-OTE-secure.

Proof. Let A be a Δ-IND-OTE adversary for C which has a time complexity bounded
by t. We want to prove that its advantage is less than 2ε0 + ε1.

We define the following adversary A ′.
1: receive (public) key material
2: simulate A to get x0 and x1

3: flip a fair coin b
4: compute x′0 = pre(xb)
5: pick a random x′1 = S(1|x

′
0|) in X 0

6: submit x′0 and x′1 and receive Y
7: continue the simulation of A with Y to get b′

8: output 1 if b = b′ and 0 otherwise

The complexity of this adversary is bounded by t + tS + tP + c where c is the small
overhead complexity beside the simulation of A , the sampling of S, and the computation
of pre(xb).

Let Γ be the experiment corresponding to the IND-OTE game of A ′ against C0 when
x′0 is selected by the challenger. So, Γ yields 1 if and only if A yields b′ = b on input
Y = Enc(pre(x0)). That is, the advantage of A is Pr[Γ→ 1]− 1

2 . Therefore, to bound
the advantage of A , we just need to prove that Pr[Γ→ 1]≤ 1

2 + 2ε0 + ε1.
Let Γ′ be the experiment corresponding to the IND-OTE game of A ′ against C0 when

x′1 is selected by the challenger. A ′ is an IND-OTE adversary for C0 with advantage
1
2 (Pr[Γ′ → 1]− Pr[Γ → 1]). Due to the IND-OTE-security of C0, we have |Pr[Γ →
1]−Pr[Γ′ → 1]| ≤ 2ε0.

Clearly, Γ′ is equivalent to the following:

1: generate a key
2: simulate A to get x0 and x1
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3: flip a fair coin b
4: compute L = |pre(xb)|
5: pick X = S(1L)
6: compute Y = Enc(X)
7: continue the simulation of A with Y to get b′

8: output 1 if b = b′ and 0 otherwise

This defines a Δ-IND adversary for P. So, Pr[Γ′ → 1]≤ 1
2 + ε1.

We deduce that Pr[Γ→ 1]≤ 1
2 + 2ε0 + ε1.

For the second part of the theorem, we now let A be a Δ-IND adversary for P of
complexity bounded by t and we want to bound its advantage. Since C0 fully leaks the
plaintext length, there is a function f to compute the plaintext length from the cipher-
text. We define the following adversary:

1: get key material from a challenger
2: simulate A to get x0 and x1

3: submit x0 and x1 to the challenger and get ciphertext Y
4: compute L = f (Y )
5: continue the simulation of A with L to get b′

6: yield b′

Clearly, this is a Δ-IND-OTE adversary for C whose advantage is exactly the advantage
of A . Assume that its complexity is bounded by t + t0 + c. Since C is Δ-IND-OTE
(t + t0 + c,ε)-secure, this advantage is bounded by ε. #$

2.3 Pad-then-Encrypt Scheme

Definition 8. A C subset of Z∗ is postfix-free if

∀s ∈ Z∗ ∀x,y ∈C s‖x = y =⇒ x = y

We observe that if the empty string belongs to C then no other string is in C. Further-
more, there exists a function Extract such that for all s ∈ X and for all x ∈ X , we have

Extract(s‖pad(x)) = s

with probability 1. In what follows we consider a postfix-free set such that this function
can be efficiently implemented.

Definition 9. Given X 0 ⊆ Z∗ and a postfix-free set C, a C-padding scheme on X 0 is a
probabilistic algorithm taking an element x of X 0 as input and producing an element
pad(x) of C as an output. We say that the padding scheme is uniform if the distribution
of pad(x) does not depend on x.

A padding scheme defines the preencryption scheme

pre(x) = x‖pad(x)

We note that preencryption schemes made out from a padding scheme are all length-
increasing. Except in the constant 0-padding case, they are even strictly length
increasing.
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Example 10. We consider the padding scheme defined by the parameter B as follows:
given x, we simply pick a sequence 100 · · ·0 of length N which is uniformly distributed
in {1, . . . ,B}. This padding scheme is B-almost length preserving, strictly length-

increasing, and uniform. By Lemma 5 and 6, we obtain that Adv(x0,x1) = ||x1|−|x0||
B .

So, this preencryption scheme is Δ-IND
(
t, Δ

B

)
-secure for all Δ and any t.

In what follows we show that this scheme is nearly optimal.
To make a pad-then-encrypt construction secure with Δ large, we shall find a secure

padding scheme for this Δ. A trivial solution consists of making sure that x‖pad(x) has
a constant length no matter the plaintext x. To make it possible, this length must be
at least the maximal length of a plaintext. This solution is clearly impractical. We shall
rather concentrate on Δ small. So, we do not fully hide the length of plaintexts but rather
their exact value.

3 Maximal Security of the Pad-then-Encrypt Scheme

In this section we consider lower bounds for the best advantage of an adversary against
a preencryption scheme. We consider the case where the plaintext space is large and
dense enough so that we can make sequences of plaintexts such that the length of two
consecutive ones differ by Δ.

Definition 11. We say that a sequence (x0, . . . ,xn) of Z∗ elements is a Δ-chain if for
every i = 0, . . . ,n−1, we have |xi+1|− |xi|= Δ. We say that this sequence represents a
length � if |x0| ≤ � ≤ |xn|. We say that a subset X of Z∗ is Δ-dense if for any x,y ∈ X ,
there exists a Δ-chain in X which represents |x| and |y|. We say that X is B-large if there
exists x,y ∈ X such that |x|− |y| ≥ B.

Theorem 12. Let P be a B-almost length-preserving preencryption scheme and Δ be
an integer. We assume that the input domain of P is Δ-dense and (2B + Δ)-large. Then,
there exists an adversary in the Δ-IND game with advantage at least 1/

(⌊
2B
Δ

⌋
+ 1

)
.

If P is length-increasing and B-almost length-preserving over a domain which is
Δ-dense and (B + Δ)-large, then there exists an adversary with advantage at least
1/

(⌊
B
Δ
⌋
+ 1

)
.

Proof. Let n =
⌊

cB
Δ

⌋
+ 1 with c = 1 for length-increasing preencryption schemes and

c = 2 otherwise. Since the domain is (cB + Δ)-large and Δ-dense, we can construct a
Δ-chain of n+1 elements x0,x1, . . . ,xn. We have |xi+1|= |xi|+Δ for i = 0,1, . . . ,n−1.
So, |xi|= |x0|+ iΔ for i = 0,1, . . . ,n. Let

si = Pr[|pre(xi)| ≤ B + |x0|]

which is the probability that the preencrypted version of xi has an overhead length
bounded by B+ |x0|− |xi|= B− iΔ. Clearly, s0 = 1 since P is B-almost length preserv-
ing, and sn = 0 since B−nΔ < (1− c)B.

So, ∑n−1
i=0 (si− si+1) = 1. Hence, there must exist some i such that si− si+1 ≥ 1

n . Let
A be the set of all integers up to B+ |x0|. We have Pr[|pre(xi)| ∈ A] = si. We deduce that
AdvA(xi,xi+1)≥ 1

n : there is an adversary with an advantage larger than 1
n . #$
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Remark 13. Example 10 shows a simple B-almost length-preserving scheme which is
Δ-IND

(
t, Δ

B

)
-secure. So, the optimal security which is achievable is between Δ

B and
1
( B

Δ)
. In particular, when Δ divides B, the scheme in Example 10 is optimal.

Theorem 12 can be generalized to preencryption schemes which are unbounded, but
with finite expected overhead length. In practice, we would like to have a guarantee
that a preencryption overhead is not too long on average, so this is a pretty reasonable
assumption.

Theorem 14. Let P be a length-increasing preencryption scheme and Δ be an integer.
We assume that the input domain of P is Δ-dense and (2B)-large. We assume that for all
x, we have |E(|pre(x)|)− |x|| ≤ B. There exists an adversary in the Δ-IND game with
advantage at least 1/

(
2
⌈

2B
Δ

⌉)
.

Proof. We apply the same proof method as in Theorem 12. We define n =
⌈αB

Δ
⌉

and

si = Pr[|pre(xi)|< αB + |x0|] = Pr[|pre(xi)|− |xi|< αB− iΔ]

for α such as the scheme is (αB)-large. We have s0≥ 1− 1
α since E(|pre(x0)|)−|x0| ≤B

and sn = 0 since the scheme is length-increasing. So, there is some i leading us to
AdvA(xi,xi+1)≥ 1

n

(
1− 1

α
)
. We can just take α = 2 and conclude. #$

4 Uniform Padding Schemes

In this section, we consider a uniform padding scheme. We let N be a random vari-
able following the distribution of |pad(x)|. We assume that Pr[N = 0] = 0: the padding
scheme is strictly length-increasing. Since the scheme is uniform, the distribution does
not depend on x. In notations, we further replace plaintexts x0 and x1 by their lengths a
and b where b≥ a without loss of generality.

Lemma 15. We have Pr[N ≤ b−a]≤Adv(a,b) and equality holds if and only if Pr[N =
x + b−a]≤ Pr[N = x] for all x > 0.

Proof. Let ε = Adv(a,b). Due to Lemma 5 and 6, we have

ε = ∑
�:Pr[N=�−a]≥Pr[N=�−b]

(Pr[N = �−a]−Pr[N = �−b])

≥ ∑
�:�≤b

Pr[N = �−a]

= Pr[N ≤ b−a]

and equality holds if and only if Pr[N = x + b−a]≤ Pr[N = x] for all x > 0. #$

Theorem 16. Consider a uniform strictly length-increasing padding scheme with the
above notations. We assume that it is B-almost length-preserving. If b−a = Δ and B is
divisible by Δ, then Adv(a,b)≥ Δ

B and equality holds if and only if Pr[N ≤ b−a] = Δ
B

and Pr[N = i] is periodic over [1, . . . ,B] with period Δ.

Proof. Let ε = Adv(a,b).
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Case 1: Assume Pr[N ≤ Δ] > Δ
B . Due to Lemma 15, we have ε≥ Pr[N ≤ Δ] > Δ

B .

Case 2: Assume Pr[N ≤Δ] = Δ
B . If there exists an integer j > a+Δ with Pr[N = j−a] >

Pr[N = j−b], then A = {a + 1,a + 2, . . .,a + Δ, j} makes

ε≥ AdvA(a,b) = Pr[N ≤ Δ]+ Pr[N = j−a]−Pr[N = j−b] >
Δ
B

If no such j exists, then we have Pr[N = x+Δ]≤ Pr[N = x] for all x > 0. By Lemma 15,
we obtain ε = Δ

B . Furthermore, we get Pr[ jΔ < N ≤ ( j + 1)Δ]≤ Δ
B for all j ≥ 0. There-

fore, we have

1 =
B

∑
i=1

Pr[N = i]≤
⌈

B
Δ

⌉

· Δ
B

Since B is divisible by Δ, this inequality is in fact an equality. Thus, we cannot have
Pr[N = x + Δ] < Pr[N = x] for any x. Hence, Pr[N = x + Δ] = Pr[N = x] for all x ∈
[1,B−Δ], and Pr[N = i] becomes periodic over [1, . . . ,B] with period Δ.

Case 3: Assume Pr[N ≤ Δ] < Δ
B . Then Δ

B −Pr[N ≤ Δ] = δ for some δ > 0. Since

( B
Δ)−1

∑
j=0

Pr[ jΔ < N ≤ ( j + 1)Δ] = 1

Pr[0 < N ≤ Δ] = Δ
B − δ, and Δ divides B, there must exist an integer j > 0 such that

Pr[ jΔ < N ≤ ( j + 1)Δ] > Δ
B . Thus, if we set A = {a + 1,a + 2, . . . ,a + ( j + 1)Δ}, we

obtain

ε≥ AdvA(a,b) = Pr[N ≤ ( j + 1)Δ]−Pr[N ≤ jΔ] >
Δ
B

Thus in all cases ε≥ Δ
B and equality holds if and only if Pr[N ≤ Δ] = Δ

B and Pr[N = i]
is periodic over [1, . . . ,B] with period Δ. #$

The following example shows that when B is not divisible by Δ, then ε can be less
than Δ

B .

Example 17. Let b−a = Δ = 2 and B = 5. We define N as follows:

Pr[N = 1] = Pr[N = 3] = Pr[N = 5] = 0.22 Pr[N = 2] = Pr[N = 4] = 0.17

Thus, the best advantage with a length difference of Δ = 2 is ε2 = Pr[N = 1]+ Pr[N =
2] = 0.39 which is less than 2

5 . However, for Δ = 1, the best advantage is ε1 = Pr[N =
1]+ Pr[N = 3]+ Pr[N = 5]−Pr[N = 2]−Pr[N = 4] = 0.32.

For Δ = 1, B is divisible by Δ so Example 10 gives an optimal padding scheme. For
Δ = 2 and B even, it is the same. For Δ = 2 and B odd, the optimal case is characterized
as follows.
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Table 1. Results of the Theorem 12 and 18 when Δ = 2 and B is odd

B Upper bound (Ex. 10) Best Achievable (Th. 18) Lower Bound (Th. 12)
3 0.666666666666667 0.6 0.5
5 0.4 0.384615384615385 0.333333333333333
7 0.285714285714286 0.28 0.25
9 0.222222222222222 0.219512195121951 0.2
11 0.181818181818182 0.180327868852459 0.166666666666667
13 0.153846153846154 0.152941176470588 0.142857142857143
15 0.133333333333333 0.132743362831858 0.125
17 0.117647058823529 0.117241379310345 0.111111111111111
19 0.105263157894737 0.104972375690608 0.1
21 0.0952380952380952 0.0950226244343891 0.0909090909090909
23 0.0869565217391304 0.0867924528301887 0.0833333333333333
25 0.08 0.0798722044728434 0.0769230769230769
27 0.0740740740740741 0.073972602739726 0.0714285714285714
29 0.0689655172413793 0.0688836104513064 0.0666666666666667
31 0.0645161290322581 0.0644490644490645 0.0625
33 0.0606060606060606 0.0605504587155963 0.0588235294117647
35 0.0571428571428571 0.0570962479608483 0.0555555555555556
37 0.0540540540540541 0.054014598540146 0.0526315789473684
39 0.0512820512820513 0.0512483574244415 0.05
41 0.0487804878048781 0.0487514863258026 0.0476190476190476
43 0.0465116279069767 0.0464864864864865 0.0454545454545455
45 0.0444444444444444 0.0444225074037512 0.0434782608695652
47 0.0425531914893617 0.0425339366515837 0.0416666666666667
49 0.0408163265306122 0.0407993338884263 0.04
51 0.0392156862745098 0.0392006149116065 0.0384615384615385
53 0.0377358490566038 0.0377224199288256 0.037037037037037
55 0.0363636363636364 0.0363516192994052 0.0357142857142857
57 0.0350877192982456 0.0350769230769231 0.0344827586206897
59 0.0338983050847458 0.0338885697874785 0.0333333333333333
61 0.0327868852459016 0.0327780763030629 0.032258064516129
63 0.0317460317460317 0.0317380352644836 0.03125
65 0.0307692307692308 0.0307619498343587 0.0303030303030303
67 0.0298507462686567 0.0298440979955457 0.0294117647058824
69 0.0289855072463768 0.0289794204115918 0.0285714285714286
71 0.028169014084507 0.028163427211424 0.0277777777777778
73 0.0273972602739726 0.0273921200750469 0.027027027027027
75 0.0266666666666667 0.0266619267685745 0.0263157894736842
77 0.025974025974026 0.0259696458684654 0.0256410256410256
79 0.0253164556962025 0.025312399871836 0.025

Theorem 18. Consider a uniform strictly length-increasing padding scheme with the
above notations. We assume that it is B-almost length-preserving. If B is odd, then

max
b−a≤2

Adv(a,b)≥ 2B
B2 + 1

and an equality can be reached by a distribution taking alternate values on every length.

Proof. We first note that 2B
B2+1

< 2
B so we must find a better distribution than the uniform

one from Example 10. We further note that 1
� B

2 �+1
= 2

B+1 ≤
2B

B2+1
so the bound to be

proven is consistent with the one from Theorem 12. Let
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ε = max
b−a≤2

Adv(a,b)

ε1 = max
b−a=1

Adv(a,b)

ε2 = max
b−a=2

Adv(a,b)

We have ε = max(ε1,ε2).
We let α = B−1

B(B2+1) , β = B+1
B(B2+1) . We note that 2

B + α− β = 2B
B2+1

. Furthermore,
B+1

2 α− B−1
2 β = 0. Let N0 be a random variable defined by the distribution Pr[N0 =

i] = 1
B + α for i odd and Pr[N0 = i] = 1

B −β for i even. That is, the distribution of N0

takes alternate values on every length. For N = N0, by using Lemma 5 and Lemma 6, we
obtain ε1 = 1

B +α+ B−1
2 (α+β)= 2B

B2+1
with the optimal set A = {a+1,a+3, . . . ,a+B}

and ε2 = 2
B + α−β = 2B

B2+1
with the optimal set A = {a + 1,a + 2}. So, ε = 2B

B2+1
. We

now want to prove that there is no distribution for N achieving a lower ε.
Let us assume that there is some 0 ≤ i < B− 1 such that Pr[N ∈ {i + 1, i + 2}] >

Pr[N0 ∈ {i+ 1, i+ 2}] = 2B
B2+1

. We take A = {a + 1,a + 2, . . .,a + i+ 2} and we obtain

ε≥ AdvA(a,a + 2) = Pr[N ≤ i+ 2]−Pr[N ≤ i] >
2B

B2 + 1

which is not better than our above distribution. Hence, we now assume that Pr[N ∈
{i+ 1, i+ 2}]≤ Pr[N0 ∈ {i+ 1, i+ 2}] for i = 0, . . . ,B−2.

Let i be an odd integer. Since Pr[N ∈ {u,u + 1}] ≤ Pr[N0 ∈ {u,u + 1}] for u =
1,3, . . . , i− 2, i + 1, . . . ,B− 3,B− 1, by summing all inequalities, we obtain Pr[N �=
i]≤ Pr[N0 �= i]. So,

Pr[N = i] = 1−Pr[N �= i]≥ 1−Pr[N0 �= i] = Pr[N0 = i]

for any odd i. Thus, Pr[N odd]≥ Pr[N0 odd].
Let now i be even. We have

Pr[N = i] = Pr[N ∈ {i, i+ 1}]−Pr[N = i+ 1]
≤ Pr[N0 ∈ {i, i+ 1}]−Pr[N0 = i+ 1]
= Pr[N0 = i]

Thus, Pr[N even]≤ Pr[N0 even].
Finally, let A = {a + 1,a + 3, . . .,B}. We have

ε≥ AdvA(a,a + 1) = Pr[N odd]−Pr[N even]
≥ Pr[N0 odd]−Pr[N0 even]

=
2B

B2 + 1

Therefore, we cannot have ε lower than 2B
B2+1

. #$

Theorem 18 shows that when b−a≤ 2 and B is odd, the lower bound 1
� B

2 �+1
= 2

B+1 for

the maximum advantage is not achievable. Results of Theorem 12 and 18 for the case
when Δ = 2 and B is odd are provided in Table 1 for small values of B.
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5 Conclusion

We have shown that a padding scheme adding strings with uniformly distributed length
is nearly optimal and that its security is roughly Δ

B . The optimal scheme can be slightly
better but still close to this bound. This shows that the price to pay for making ε-
indistinguishable two plaintexts with a single bit of length difference (i.e.
1-IND-OTE(t,ε)-security) is to append a padding of length ε−1, which is impractical
for the usual security levels we target for encryption (e.g. ε = 2−80).

Acknowledgements. The authors would like to thank one of the reviewers for his/her
lengthy and valuable comments.
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Abstract. In this paper we propose methods to cope with the Pirates
2.0 attack strategy against tracing and revoking schemes presented at
Eurocrypt 2009. In the Pirates 2.0 attack model traitors collaborate in
public and partially share their secret information with a certified guar-
antee of anonymity. Several classes of tracing and revoking schemes are
subject to such a new threat. We focus our attention on the tree-based
class of schemes. We start by discussing some simple techniques which
can partially help to deal with the attack, and point out their limits.
Then, we describe a new hybrid scheme which can be used to face up
the Pirates 2.0 attack strategy.

Keywords: Broadcast encryption, user revocation, traitor tracing.

1 Introduction

Secure Content Distribution. A central research issue within the cryptographic
community, starting from the 90’s, has been providing methods to enable a
center to deliver encrypted data to a large set of users, in such a way that only a
privileged subset of them can decrypt the data. Applications for these schemes
range from pay-tv systems to systems for delivering sensitive information stored
on media like CDs, DVDs or even available through web-based services.

The research efforts have been basically directed toward solving two problems:
the access problem, i.e., privileged users decrypt the content, unauthorized do
not; the tracing problem, i.e., the ability to trace and, hence, discourage dis-
honest users, to illegally help unauthorized users to set up a decoder to gain
access to the content. Specifically, in a broadcast encryption scheme (and its
variants), during a set-up phase, every user receives a set of predefined keys.
Then, at the beginning of each data transmission, the center sends a broadcast
message enabling privileged users to compute a session key, by means of which,
the encrypted data, that will be delivered later on, can be decrypted. The most
challenging, useful and well-studied setting is the one were the users are equipped
with stateless decoders. In such a setting a) from time to time, the subset of priv-
ileged users changes, but b) the sets of predefined keys held by the users stay the
same for the lifetime of the scheme. A broadcast encryption scheme is required

J. Lopez and G. Tsudik (Eds.): ACNS 2011, LNCS 6715, pp. 359–376, 2011.
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to be collusion resistant, in the sense that even if all the revoked users share their
secret information, they cannot compute a session key they are not entitled to.

On the other hand, a traitor tracing scheme is designed to get the same func-
tionality but, the key material embedded in the decoders (i.e., given to the users)
in the set up phase, is diversified on a user basis, in such a way that when a
pirate decoder, built through the contribution of legal users which collude, is
found, at least the identity of one of them can be caught.

At the state of current knowledge, efficient broadcast encryption schemes, in
terms of user storage and bandwidth (i.e., size of the broadcast message sent) re-
quirements, are known (e.g. [25,19,15,3,17,12] ). Similarly, tracing schemes very
efficient in terms of bandwidth requirements have been proposed in the litera-
ture (e.g., [4,6]). Unfortunately, such tracing schemes are not so efficient in terms
of user memory storage, when the number of traitors grows. Moreover, several
schemes proposed in the literature exhibit both functionalities, e.g., some broad-
cast encryption schemes (and variants) support efficient tracing procedures.

A look back. Berkovits, in [2], addressed for the first time the issue of how to
broadcast a secret to privileged users. Later on, Fiat and Naor, in [14], for-
malized the broadcast encryption paradigm. Since then, it has become a major
topic in Cryptography, due to the large number of possible applications, and
it has evolved in several directions (e.g., multicasting schemes [9], traitor trac-
ing schemes [8], revoking schemes, also referred to as user exclusion schemes or
blacklisting schemes, [24,23,1]).

Among these, tracing and revoking schemes, are schemes which combine trac-
ing and revocation. [26] started studying efficient schemes exhibiting both func-
tionalities. A seminal paper along this line is [25], where a framework for stateless
tracing and revoking schemes enabling efficient user revocation, referred to as
Subset-Cover, was proposed. The most efficient construction described in [25],
the SD scheme, was later enhanced in [19], which proposed the LSD scheme.
Related works are [11,15,18,20,17,22].

The Pirates 2.0 attack model. Historically, traitors have been considered users
who privately share their secret information to enable unauthorized users to
gain access to protected contents. In the Pirates 2.0 attack model [7], traitors
collaborate in public and partially share their secret information with a certi-
fied guarantee of anonymity. It has been shown that several classes of tracing
and revoking schemes, like tree-based revocation schemes (e.g., CS, SD, LSD...)
and code-based tracing schemes (e.g., tracing schemes based on collusion secure
codes, IPP codes...) are subject to such a new threat.

Our Contribution. We propose methods to cope with the new Pirates 2.0 attack
strategy against tree-based tracing and revoking schemes. First, we discuss some
simple techniques which can partially help to deal with the attack, and point
out their limits. Then, looking through the literature, we recover some ideas,
which can be used to strengthen revocation and tracing schemes. We analyze the
trade-off that can be obtained by applying these ideas to the schemes. Finally, we
describe a new hybrid scheme, obtained by mixing two previous constructions,
which can be used to face up the Pirates 2.0 attack strategy.
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2 Pirates 2.0: A New Attack Scenario

Let us briefly recall the attack model introduced in [7].

Basic Features. The main characteristics of Pirates 2.0 attacks are the follow-
ing:

– Anonymity Guarantee. Traitors that participate are provided with guarantee,
through the exhibition of a mathematical proof, that they cannot be traced
by the authority.

– Partial Contribution. They never need to reveal their whole set of secret
keys.

– Public Collusion. Traitors operate in a public environment: they publish
secret data from their decoders.

– Large Coalitions. They take part in unusual large coalitions.
– Dynamic Coalitions. Traitors can come into action only when necessary.
– Imperfect Decoders. The pirate decoders are useful even if they decrypt only

a certain percentage of ciphertexts.

The motivation for a Pirates 2.0 attack might be for example the need to get rid
of a protection system to which a large number of users are hostile. In such an
attack model the traitors contribute information at their discretion, which can
be collected through a centralized system or a distributed system.

Setting. The N users in the system belong to three different groups: honest
users, traitors, and pirates. Honest users are legitimate users who keep secret
their secret information. Traitors are legitimate but dishonest users who (par-
tially) disclose their secret information. Pirates are not legitimate users, not
entitled to secret information, but able to collect relevant secret information
from the public environment, in order to produce a pirate decoder.

The attack set up by traitors is modeled through the following concepts: the con-
tributed information, denoted with C, represents the sum of information released
to the public domain by the traitors. Initially C = ∅. Traitors, to provide infor-
mation to pirates, implement and run a public available probabilistic algorithm,
Contribute(). Such an algorithm takes as input the secret information sk of the
traitor, information already published by traitors, denoted by I, and the history H
of the traitor’s contribution to the public. When Contribute(sk, I, H) is executed,
the contributed information C becomes C = C ∪ Contribute(sk, I, H). Moreover,
the term Public Information, denoted byP , refers to all public data available from
the broadcaster, along with the contributed information. The anonymity level of a
traitor is quantified through a publicly available procedure, Anonymity(). It takes
as input the secret information sk of the traitor, information the traitor released,
denoted with S, and the public information P . Anonymity(sk, S,P) outputs an
integer � ∈ {1, . . . , N}. The value � = 1 means the traitor is known, while the
value � = N means the traitor is indistinguishable from any other user.

Finally, a pirate decoder is the output of an algorithm, Pirate(). Such an
algorithm takes as input P and, if the amount of public information is enough,
it produces a decrypting device (pirate decoder). Otherwise, it outputs ‘failed’.
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Definition 1. A traitor tracing scheme is α-secure against the Pirates 2.0 at-
tack if it prevents the construction of pirate decoders from information published
by traitors with an anonymity level greater than α.

Anonymity Treatment. Traitors are free to contribute some pieces of secret
data as long as plenty of users of the system could have contributed exactly
the same information following the same public strategy. More formally, user
anonymity is defined and estimated as follows.

Definition 2. Extraction function. An extraction function is an efficiently com-
putable function f that outputs information about the secret key.

Definition 3. Masked traitor. A traitor t is said to be masked by a user u for
an extraction function f if f(skt) = f(sku).

Definition 4. Anonymity level. The level of anonymity of a traitor t after a
contribution ∪1≤i≤nfi(skt) is defined as the number α of users masking t for
each of the n extraction functions fi simultaneously:

α = #{u|∀i, fi(skt) = fi(sku)}.

In the following the class of extraction functions considered are projection func-
tions, i.e., the secret information is a vector of secret keys, and fi is a projection
function, which returns the i-th coordinate (key) of the vector. Hence, projection
functions model partial public release of key-material.

3 The Subset-Cover Framework: CS, SD, and LSD

In a seminal paper [25] a framework for tracing and revoking schemes enabling
efficient user revocation1, referred to as Subset-Cover, was proposed. We briefly
recall it here and refer the reader to [25] for details.

Let N be the set of all users. Every user u ∈ N gets, at the beginning, some
secret information Iu. LetR ⊂ N be a subset of r users which should be revoked.
The center sends a message M containing a new session key K such that all users
u ∈ N \ R can decrypt the message correctly, while even a coalition consisting
of all members of R cannot decrypt it.

An algorithm defines a collection of subsets S1, . . . , Sω ⊆ N . Each subset Sj

is assigned (perhaps implicitly) a key Lj; each member u ∈ Sj can compute Lj

from its secret information Iu. Given a set of revoked users, the remaining users
N \R are partitioned into disjoint subsets Si1 , . . . , Sim so that N \R =

⋃m
j=1 Sij

and the session key K is encrypted m times with Li1 , . . . , Lim , i.e., denoting by
E and F two different encryption functions (see [25] for a discussion about the
properties of the functions), the broadcast message has the following structure:

[i1, . . . , im, ELi1
(K), . . . , ELim

(K), FK(M)].

1 The join operation is trivially performed by constructing at the beginning an over-
sized tree structure, capable of accommodating new users. Hence, the focus is only
posed on efficient ways to revoke users.
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A particular implementation of such a scheme is specified by a) the collection
of subsets S1, . . . , Sω, b) the key assignment to each subset in the collection, c)
a method to cover the non-revoked users N \ R by disjoint subsets from this
collection, and d) a method that allows each user u to find its cover-set S and
compute its key LS from Iu.

The schemes of [25] we consider in the following are all based on trees, i.e.,
receivers are associated to the leaves of a full binary tree.

Complete Subtree Method (CS, for short). The collection of subsets
{S1, . . . , Sω} in the CS scheme corresponds to all subtrees in the full binary tree
with n leaves. For any node vi in the full binary tree (either an internal node
or a leaf, 2n − 1 altogether) let the subset Si be the collection of receivers u
that correspond to the leaves of the subtree rooted at node vi. In other words,
u ∈ Si iff vi is an ancestor of u. The key assignment method is simple: assign an
independent and random key Li to every node vi in the complete tree. Provide
every receiver u with the log n + 1 keys associated with nodes along the path
from the root to leaf u. For a given set R of revoked receivers, let {u1, . . . , ur} be
the leaves corresponding to the elements in R. The method to cover N \R with
disjoint subsets essentially consists in selecting the minimal number of subtrees
which do not contain any of {u1, . . . , ur} (see [25] for details). It can be shown
that the size of the broadcast message is O(r log N

r ).

Subset Difference Method (SD, for short). The collection of subsets
in the SD scheme corresponds to subsets of the form “a group of receivers G1

minus another group G2.” More precisely, a valid subset Si,j is represented by
two vertices (vi, vj) such that vi is an ancestor of vj . A leaf u is in Si,j iff it is
in the subtree rooted at vi but not in the subtree rooted at vj (see Figure 1).

The key assignment method associates to each internal node vi of the full
binary tree a random and independent value LABELi (kept secret). This value
induces the keys for all legitimate subsets of the form Si,j . More precisely, let G
be a cryptographic pseudorandom generator that triples the input, and denote

vj

v i

Si,j

Fig. 1. Si,j : set of leaves descend-
ing from vi but not from vj

v

v

v

i

2

1

vk u

Label

Label

Label

i,2

i,1

i,k

Fig. 2. Labels of nodes hanging off
the path from vi to user u
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by GL(S), GR(S), and GM (S) the left, right and middle parts, respectively.
Consider a subtree Ti rooted at vi. To the root node is assigned LABELi.
From this label are computed recursively labels for all subtrees associated to
subsets Si,j : given that a parent node was labeled S, its two children are labeled
GL(S) and GR(S). Let LABELi,j be the label of node vj derived in the subtree
Ti from LABELi. Following such a labeling, the key Li,j assigned to Si,j is
GM (LABELi,j). The information Iu that each receiver u gets consists in a set
of values LABELi,j defined as follows: for each subtree Ti such that u is a leaf
of Ti, consider the path from vi to u and let v1, . . . , vk be the nodes adjacent
to the path but not ancestor of u (see Figure 2). Then, u receives the labels
LABELi,1, . . . , LABELi,k. Notice that each node vj that is not an ancestor of
u is a descendant of one of the nodes v1, . . . , vk. Therefore, u can compute the
labels LABELi,j for any j such that vj is not an ancestor of u. It is possible to
show that in SD each user stores O((log n)2) labels and the size of the broadcast
message is O(r) (see [25] for details and how to construct the covering).

Layered Subset Difference Method (LSD, for short). The LSD scheme
[19] shows that a small subcollection of subsets Si,j from the collection used by
SD suffices to represent any set P as the union of O(r) of the remaining subsets,
with a slightly larger constant hidden within the asymptotic notation.

Security. The security of the CS scheme and of the SD scheme was shown in
[25]. CS is unconditionally secure w.r.t. coalitions of users of any size (see Claim
1 of [25]). SD is computationally secure, according to an indistinguishability
definition, and based on some assumptions on the encryption scheme and the
generator used in the scheme (see Theorem 16 of [25]). The security of LSD
follows from the security of SD.

Pirates 2.0 attack. CS, SD and LSD are subject to the new attack. All the
traitors do is to publish the keys (labels) associated to nodes of the first levels
of the tree i.e., up in the tree. The idea is that keys up in the tree are stored by
many users (all leaves of the corresponding subtrees) who could have published
them.

More precisely, in [7], the following theorem was proved:

Theorem 1. On average, a randomly chosen group of ρ log ρ (operating iso-
lated) users is able to mount a Pirates 2.0 attack against a complete subtree
scheme in which the center wants to ensure a ciphertext rate of at most ρ(N−r)

N .
Moreover, each traitor is guaranteed an anonymity level of N/ρ.

In other words, traitors, in CS, by publishing keys associated to nodes belonging
to levels λ such that λ ≤ �log ρ�, are guaranteed an anonymity level of N/ρ.
Hence, the center, to avoid the attack has to use keys at lower levels. Unfortu-
nately, this means that the broadcast message size from O(r log (N/r)) moves
to O(ρ(N−r)

N + r log (N/r)). Similarly, in SD, by publishing direct labels (i.e.,
labels LABELi,j were j is either the left child or the right child of i) associated
to nodes belonging to levels λ such that λ ≤ �log ρ

2�, traitors are guaranteed an
anonymity level of N/2ρ.
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4 Partial Measures against Pirates 2.0

In this section we discuss some measures which can partially cope with the
Pirates 2.0 attack. The key observation is that the attack is successful because
in CS, SD and LSD, the users know the levels of their keys. Hence, a first attempt
to reduce the impact of the attack, could be to look for a strategy which reduces
such a knowledge but, at the same time, keeps the functionality of the scheme.
The measures we discuss are intended for the CS scheme.

Permuting labels. Let us focus on the CS scheme. Let V = {vi}i∈I be the set
of nodes of the complete tree and W = {wi}i∈I be a set of labels (w.l.o.g., we
can assume, for example, thatW = {1, . . . , |I|}). We modify the CS scheme (see
Table 1) by associating random labels to nodes. The labels do not provide any
information about the levels of the nodes.

Table 1. Permutation-based Construction

Permutation-based Construction.

Setup phase. The Broadcasting Center

– Chooses uniformly at random a secret bijection π : V −→ W .
– Associates to each node vi a key Ki, chosen u.a.r.
– For each complete subtree Si rooted in vi, sends to each user corresponding to a

leaf of Si, the pair (π(vi), Ki).

Broadcast phase. At the beginning of a new session, to send message M , the broad-
casting center

– Computes a cover {Si1 , . . . Sim} for non-revoked users in N \R.
– Chooses u.a.r a session key K, computes FK(M) and, for each subtree Si in the

cover, computes EKi(K).
– Sends

[(π(vi1), EKi1
(K)), . . . , (π(vim), EKim

(K)), FK(M)].

Decryption phase. Upon receiving a broadcast message, a non-revoked user u

– Looks for a matching label contained both in the header of the message and in his
set of labeled long-term keys. Let wl be such a label.

– Computes K = DKwl
(EKwl

(K)) and M = F−1
K (FK(M)).

The purpose of this modification is to make more difficult a Pirates 2.0 type
attack. In the attack proposed in [7] a traitor publishes all his keys correspond-
ing to complete subtrees rooted at a level of the complete tree lower than a certain
threshold λ. In this way, a traitor is guaranteed an anonymity level of N/2λ, where
N is the total number of users. The proposed modification thwarts in some way
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this attack, as a user does not have a priori information about the correspondence
between the keys in his possession and their levels in the complete tree.

Unfortunately, notice that users could gain some information about this corre-
spondence after seeing and decrypting broadcasted messages. Just to exemplify,
pirates could get information about the level of their keys by publicly collab-
orating. For example, the users could use a shared table, in which in the first
column are reported the labels π(vi), associated to the keys. In the second, each
user puts a cross in correspondence of the label associated to the key he used
to decrypt. In such a way, they can estimate the level of the key associated to
a certain label. However, the important point is that pirates lose the anonymity
guarantee they get in CS (no certificate is available any more). They can get
a partial guarantee but they need to trust the other pirates and they have to
assume that nobody else adds crosses in the table to falsify the results.

Adding some randomness. Another approach which seems to be of some
help consists in looking for a strategy which reduces the level of anonymity of
the user. To this aim, we modify the CS scheme (see Table 2), following an idea
from [16], where the family of “OR”-protocols was introduced. If at each node
are associated more keys and a user which descends from the node gets one of
the keys chosen uniformly at random, then the level of anonymity depends on
the level of the keys but also on the number of keys associated to that node. Of
course there is a trade-off: if the node is used, the broadcast message has to be
encrypted with all keys associated to the node.

Let h = max{hλ : λ = 0, . . . , log N}. The parameters of the modified scheme
(compared to CS) are:

CS modified CS
# keys per user logN + 1 logN + 1

total # of keys 2N − 1
∑logN

λ=0 2λhλ ≤ h(2N − 1)
header length O(rlog(N/r)) O(hrlog(N/r))

The modifications are useful to fight against Pirates 2.0 type attacks. In the
modified scheme, a traitor following the strategy of making public his unique
key with label equal to a certain level λ is covered, on average, by N/2λhλ users.
Moreover, a traitor following the strategy of making public all his keys with label
lower than a certain level λ is covered, on average, by N

2λ

∏λ
l=0

(
1
hl

)
users.

Notice that an interesting variant of the scheme could be the following: for
each node, instead of associating to users of the subtree a key of the pool chosen
uniformly at random, the keys could be associated according to a non-uniform
probability distribution (kept secret by the center) e.g., a degenerate-like prob-
ability distribution which associates a sort of trap key to a single or few users.
In such a case, if the user publishes such a key, the level of anonymity is much
lower than he is expecting. Of course, also this measure is useless if the traitor
try to estimate how many of them have decrypted a broadcast message by using
a certain key. But, again, traitors need to trust each other and no anonymity
guarantee is available anymore.
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Table 2. Or-based Construction

Or-based Construction.

Setup phase. W.l.o.g., assume that log N is an integer value.

1. For each λ ∈ {0, . . . , log N} choose an integer hλ > 0.
2. For each subtree Si, rooted at node vi at level λ in the tree, generate a set

Ki = {Ki,1, . . . , Ki,hλ}
of hλ keys.

3. For each subtree Si, send to each user covered by Si a single pair ((i, j), Ki,j),
where Ki,j is chosen u.a.r. from Ki, independently for each user.

Broadcast phase. At the beginning of a new session, to send message M , the broad-
casting center

– Computes a cover {Si1 , . . . Sim} for non-revoked users in N \R.
– Chooses u.a.r a session key K, computes FK(M) and, for each subtree Si in the

cover, computes EKi,1(K), . . . , EKi,hλ
(K).

– Sends

[i1, EKi1,1(K), . . . , EKi1,hλ
(K), . . . , im, EKim,1(K), . . . , EKim,hλ

(K), FK(M)].

Decryption phase. Upon receiving a broadcast message, a non-revoked user u

– Identifies the subtree Si he belongs to, and looks up the key Ki,j he holds for Si

– Computes K = DKi,j (EKi,j (K)) and M = F−1
K (FK(M)).

5 A New Scheme

All measures described before are partial solutions against the attack. The prob-
lem is that the secret information is not bound to the user identity. We need a
method through which, if a user publishes part of his secret information, then
he is immediately compromised. Of course, we would like to keep the scheme
as efficient as possible, comparable to the version which does not deal with the
Pirates 2.0 attack. To this aim, we combine two tracing and revoking schemes
previously proposed in the literature. The first one [26] in a certain sense exposes
the identities of the users which publicly contribute to foil the scheme, but can
be used to revoke a fixed (and a-priori known) number of users. The second, the
CS scheme [25], as we have seen, has no bound on the number of users which can
be revoked, but the traitors have a high level of anonymity. The hybrid inherits
the nice properties of both (due to lack of space the proof of security is provided
in Appendix A).
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5.1 Adding Secret Sharing Schemes to CS

The hybrid scheme we describe is a modification of the CS scheme, obtained
by combining it with the polynomial-based broadcast scheme described in [26]
(independently introduced in [1]), which are based on a former idea of [13]. Notice
that also [21] proposed a polynomial-based traitor tracing scheme, but the use
of the polynomial in [21] is a bit different compared to the use done in [1,26].
Moreover, the authors of [27] showed that the scheme in [21] is not collusion
resistant since two users can generate a decryption key which cannot be traced
back to one of them.

Consider a cyclic group G of prime order q such that the DDH problem is
believed to be hard in G. Let g be a generator of G. Each user u receives a secret
identifier Iu ∈ Zq, chosen uniformly at random, in such a way that different users
get different identifiers. Choose t different values I1, . . . , It ∈ Zq, also different
from 0 and from all the previous identifiers. The scheme is given in the box in the
next page. Notice that the total number of keys and the number of keys per user
remain the same as in the basic CS scheme. For the length of the broadcasted
message, t+1 additional elements of G are added to each fragment of the header,
but, asymptotically, it remains O(rlogN/r).

Pirates 2.0: No anonymity for traitors. The scheme completely prevents a
Pirates 2.0 attack. If any user u makes public just one of his secret keys, say
(Iu, Pi(Iu)), then the authority, immediately determines the identity of the user
associated with (Iu, Pi(Iu)) through a look up operation in its database. Actually,
we can do more: we can apply a slightly modified version of the self-enforcement
technique used in [26] (see paragraph 3.1) in order to discourage users to become
traitors. Briefly, a public file contains, for each user u, a row where some sensitive
information Su of user u (e.g., social security number, credit card number, etc...)
is encrypted by using as a key yi,u = Pi(Iu), for all logN +1 values Pi(Iu) stored
by user u.

The ElGamal encryption scheme, semantically secure under the DDH assump-
tion, is used (any CPA-secure encryption scheme is fine, but by using ElGamal,
the security of the scheme follows only from the DDH assumption): the system
administrator, in set up phase, for each encryption for user u, chooses a random
s ∈ Zq, computes gs and gsyi,u , computes C = H(gsyi,u ||Iu)⊕ Su, where H is a
pairwise independent hash function, and publishes (indi,u, gs, C), where indi,u

is a prefix of gsyi,u used for indexing the elements of the table. If user u discloses
(Iu, Pi(Iu)), then everybody else gain access to his sensitive information.

5.2 Subset Difference and Layered Subset Difference

The technique above described does not immediately apply to SD and LSD. In-
deed, a simple generalization might consist in the use of more polynomials. More
precisely, in the former construction, we associate Pi(x) to subset Si. Since in SD
we have subsets defined by two indices, we could associate Pi,j(x) to Si,j(x) and
define, at the beginning of each session, the encryption key for subset Si,j(x) as
Li,j = grPi,j(0). Each user u receives a point Pi,j(Iu), for each subset Si,j(x) he
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Hybrid CS Construction.

Setup phase. For each complete subtree Si

1. Choose u.a.r. a secret t-degree polynomial Pi(x) = ai
0 + ai

1x + . . . + ai
tx

t ∈ Zq[x].
2. Send to each user u covered by Si the pair (i, Pi(Iu)).

Broadcast phase. At the beginning of a new session, to send message M , the broad-
casting center

1. Computes a cover {Si1 , . . . Sim} for non-revoked users in N \ R. Then, chooses
u.a.r. a session key K, computes FK(M) and, for each Si ∈ {Si1 , . . . Sim}
(a) Choose a random ri ∈ Zq.
(b) Computes {δi,j = griPi(Ij)}j=1,...,t, Ki = griPi(0), and EKi(K).

2. Sends
[(il, g

ril , δil,1, . . . , δil,t, EKil
(K))1≤l≤m, FK(M)].

Decryption phase. Upon receiving a broadcast message, a non-revoked user u

1. Identifies the subtree Si he belongs to, and looks up in the header of the message
the corresponding tuple (i, γ, δ1, . . . , δt, c).

2. Computes λu =
∏t

k=1
Ik

Ik−Iu
and λj = Iu

Iu−Ij

∏t
k=1 (k �=j)

Ik
Ik−Iu

for j = 1, . . . , t.

3. Since, from Lagrange’s interpolation formula,

Pi(0) = λuPi(Iu) +

t∑

j=1

λjPi(Ij)

then, u computes

Ki = griPi(0) = griλuPi(Iu)
t∏

j=1

griλjPi(Ij) = γλuPi(Iu)
t∏

j=1

δλj .

4. Finally u computes the session key K = DKi(c) and M = F−1
K (FK(M)).

belongs to which, along with (Ik, gr, grPi,j(Ik)) for k = 1, . . . , t, enables comput-
ing Li,j. The drawback of this solution is that each user has to explicitly store a
point for each subset in which he belongs to. In other words, the advantages of
the pseudorandom generation of the labels (and keys) which is crucial in SD in
order to store O((log n)2) labels is lost2. Actually, we can do better. We could
compose the two schemes as follows:

It is easy to check that the scheme is correct and that each user stores
O((log n)2) labels plus log N + 1 points. Hence, the storage requirements stay
the same of SD. Note that the same construction can be applied to the LSD
scheme. Moreover, the same observations we have done for the CS case apply.

2 A similar problem is faced in [11] when trying to generalize the SD scheme to the
public key setting.
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Hybrid SD Construction.

Setup phase. For each complete subtree Si

1. Choose u.a.r. a secret t-degree polynomial Pi(x) = ai
0 + ai

1x + . . . + ai
tx

t ∈ Zq[x].
2. Generate an instance of the SD scheme with Zq as set for keys Li,j .
3. Send to each user u covered by Si,∗ the pair (i, Pi(Iu)) and the labels that SD

assigns to him.

Broadcast phase. At the beginning of a new session, to send message M , the broad-
casting center

1. Computes a cover {Si1,j1 , . . . Sim,jm} for non-revoked users in N\R. Then, chooses
u.a.r a session key K, computes FK(M) and, for each Si,j ∈ {Si1,j1 , . . . Sim,jm}
(a) Choose a random ri ∈ Zq.
(b) Computes Li,j , {griPi(Ik)Li,j}k=1,...,t, Ki,j = griPi(0)Li,j , and EKi,j (K).

2. Sends

[(i	, j	, g
ri� , gri�

Pi�
(I1)Li�,j� , . . . , gri�

Pi�
(It)Li�,j� , EKi�,j�

(K))]	=1,...,m.

Decryption phase. Upon receiving a broadcast message, a non-revoked user u

1. Identifies the subtree Si,j he belongs to, and looks up in the header of the message
the corresponding tuple ((i, j), γ, δ1, . . . , δt, c).

2. Computes λu, λk for k = 1, . . . , t, Li,j and

Ki,j = griPi(0)Li,j =

(

griλuPi(Iu)
t∏

k=1

griλkPi(Ik)

)Li,j

= γλuPi(Iu)Li,j

t∏

k=1

δλk .

3. Finally u computes the session key K = DKi,j (c) and M = F−1
K (FK(M)).

As reported in Theorem 1, the authors of [7] showed that in CS and LSD,
traitors, by publishing keys associated to nodes belonging to levels λ such that
λ ≤ �log ρ�, are guaranteed an anonymity level of N/ρ and N/2ρ, respectively.
It is immediate to check that in the above hybrid versions, the anonymity levels
drop to 1. More precisely, referring to Definition 1, we get:

Theorem 2. The Hybrid-CS and Hybrid-SD traitor tracing schemes are 1-
secure against the Pirates 2.0 attack, implemented by using projection functions
and are, in terms of key and ciphertext sizes, as efficient as the former CS and
SD.

5.3 Anonymity against Private Collusion

Let us look again at the Hybrid CS Construction. Notice that, as long as traitors
set up a pirate decoder by giving away privately some pieces of their private keys
(i.e., points of the polynomials associated to nodes along the path a user belongs
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to), our hybrid construction inherits exactly the same (efficient) black-box trac-
ing procedure that uses the CS scheme. Pirate decoders are either disabled or
at least a traitor is found. The scheme presented in [26] has a black-box tracing
procedure which requires exponential time.

However, our scheme is subject to another form of private collusion, which
does not permit to identify traitors. A coalition consisting on t + 1 traitors
u0, . . . , ut, collaborating in secret, is able to recover Pi(x) from their secret values
(Iuj , Pi(Iuj )). Then they can learn and distribute the value Pi(0) which allows
a pirate decoder to compute the key Ki = (gr)Pi(0) and therefore to decrypt
the broadcasted content. Any t + 1 users covered by the same subtree Si are
able to do this. In such a case, the tracing procedure can still make the decoder
useless, but the anonymity of the traitors among the subset Si is preserved.
Moreover, along the same line, the scheme enables the coalition to interpolate
all polynomials for which they have t + 1 points. However, notice that, if the
self-enforcement mechanism we have described before is used, it does not mean
that the coalition gain access to the sensitive information of all other users who
share the same polynomials: indeed, since the value Iv of user v is secret, they
have no idea of which values of the polynomials are used by the users. This
is also the reason for which, compared to [26], we have slightly modified the
encryption in the self-enforcement technique by including Iu in the computation
of the encryption C = H(gsyi,u ||Iu)⊕ Su.

Notice that this problem is also present in [26], where a coalition of t+1 users
can interpolate the t-degree polynomial: unfortunately, therein the t+1 colluders
gain access to the sensitive information of all revoked users, whose values are
broadcasted. In our scheme, the points in broadcast are I1, . . . , It which are not
associated to any user. We emphasize, however, that the scheme provided in
[26] is secure as long as the coalition of revoked users is not greater in size than
the fixed a-priori threshold t. In our scheme, due to the CS revocation strategy,
security holds w.r.t. coalitions of any size. What is lost if the coalition of traitors
is greater than t is the protection against anonymous collaboration to the set
up of a pirate decoder. Moreover, we could further strengthen the scheme in
order to reduce the anonymity guarantee of the traitors, by using the technique
employed within the Or-based Construction from [16]: associate to each node
vi a set of λ different polynomials, and assign to each user u of the subset Si

the value Pi,�(Iu), for an � ∈ {1, . . . , λ}, chosen uniformly at random. If both
measures are used the total length of the broadcast message in CS moves from
O(r log N

r ) to O(λtr log N
r ) and in SD from O(r) to O(λtr).

Nevertheless, notice that one of the motivations for introducing the Pirates
2.0 attack was that public collusion is easier than private collusion. Indeed, the
first one enables large coalitions, since users consider themselves protected by
anonymity; on the other hand, the second does not provide any guarantee to
traitors, they need to trust each other and share their sensitive information,
which means that large coalitions should be difficult to set up.

Using Cryptography against Cryptography. Notice that the above hybrid
schemes could also be attacked by a group of traitors who “publicly” collaborate
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but still preserve the privacy of their inputs. Indeed, it is not difficult to see that
the computation of Pi(0) can be casted as an instance of the general multi-party
computation problem, where each traitor has an input, the traitors jointly want
to compute the output of the function, but each of them wants to keep private
his own input, i.e., without disclosing any information about it, apart what can
be inferred from the output of the function. However, such an attack requires a
set up phase and, if the computations are publicly carried out, some other forms
of protection for the traitors (e.g., anonymous communication channels) have
to be considered. We do not go into details but emphasize that such a strategy
could be pursued. Our scheme is not robust against it. We are only protected by
the threshold on the size of the coalition of traitors. It seems an interesting open
problem to study the resistance of known broadcast encryption schemes against
this type of attacks.

6 Conclusions and Open Problems

In this paper we started studying measures to deal with the Pirates 2.0 attack
strategy. Among these, we have proposed an hybrid scheme, which combines a
scheme which enables efficient tracing and revoking with a scheme which exposes
traitors who publicly disclose secret information. Several open problems need to
be addressed: first of all, it is necessary to clearly conceptualize and formally
define a security model which incorporates the Pirates 2.0 attack strategy and
all forms of public collaborations. Then, a scheme which fulfills all requirements
should be designed and rigorously proven secure in the model.
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A Security of the Schemes

Tools. The schemes we have proposed, the Or-based construction, the Hybrid
CS construction and the Hybrid SD Construction, still belong to the Subset-
Cover framework. All we have changed are the key-assignment methods. Hence,
in order to prove that the schemes are robust against coalitions of revoked users
of any size, we can use the general results for the framework shown in [25].
Specifically, we need to show that our key-assignment methods satisfy the key-
indistinguishability property. Let us start by recalling some definitions given in
[25].

Definition 5. (Key-Indistinguishability)
Let A be a Subset-Cover revocation algorithm that defines a collection of subsets
S1, . . . , Sω. Consider a feasible adversary B that: a) selects i, 1 ≤ i ≤ ω; b)
receives the Iu’s (secret information that u receives) for all u ∈ N \ Si. We
say that A satisfies the key-indistinguishability property if the probability that B
distinguishes a key Li from a random string RLi of the same length is negligible.

The adversary we deal with is characterized as follows:

Definition 6. (Adversarial Model)
Consider an adversary B that:

1. Selects adaptively a set R of receivers and obtains Iu for all u ∈ R. By adap-
tively we mean that B may select messages M1, M2, . . . , and revocation sets
R1,R2, . . . (the revocation sets need not correspond to the actual corrupted
users) and see the encryption of Mi when the revoked sets is Ri. Also B can
create a ciphertext and see how any (non-corrupted) user decrypts it. It then
asks to corrupt a receiver u and obtains Iu. This steps is repeated |R| times
(for any u ∈ R).

2. Choose a message M as the challenge plaintext and a set R of revoked users
that must include all the ones it corrupted (but may contain more).

http://www.wisdom.weizmann.ac.il/~naor/
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B then receives an encrypted message M ′ with revoked set R. It has to guess
whether M ′ = M or M ′ = RM , where RM is a random message of the same
length. We say that a revocation scheme is secure if, for any (probabilistic poly-
nomial time) adversary B as above, the probability that B distinguishes between
the two cases is negligible.

The main result shown in [25] for the subset-cover framework is:

Theorem 3. Let A be a subset-cover revocation algorithm where the key assign-
ment satisfies the key-indistinguishability property and where E and F are two
encryption schemes CCA−I secure and CPA-secure, respectively. Then A is se-
cure in the sense of Definition 6 with security parameter δ < ε1+2mω(ε2+4ωε3),
where ω is the total number of subsets in the scheme, m is the maximum size of
a cover, and ε1, ε2 and ε3 are the probabilities associated to the key-assignment,
E and F .

It is immediate to see that the key-assignment method of the Or-based construc-
tion trivially satisfies the key-indistinguishability definition, since all keys are
chosen independently and uniformly at random. In the following, we prove that
also the key-assignment for the hybrid CS scheme satisfies the key-
indistinguishability property. The proof for the SD hybrid scheme, which is ob-
tained by using similar techniques, is included in the full version [10].
Hybrid CS Construction. The key-assignment method for the CS Hybrid
Construction satisfies the key-indistinguishability property, assuming that the
DDH assumption in the group G holds. The DDH assumption involves a cyclic
group G and a generator g. Loosely speaking, it states that no efficient algorithm
can distinguish between the two distributions < ga, gb, gab > and < ga, gb, gc >,
where a, b, c are randomly chosen in {1, . . . , |G|}. The reader is referred to [5] for
details about the assumption.

More precisely, by using a similar technique to the one employed in [26] we
show that if an adversary (i.e., a PPT algorithm) distinguishes a session key
from a random value, then such an adversary can be turned into an efficient
procedure which solves the DDH problem. We prove the following result:

Theorem 4. If the DDH assumption holds, then any probabilistic polynomial
time adversary B, which operates according to Definition 5, does not distinguish
a key Ki associated to subset Si from a random value.

Proof. By contradiction. Let us assume that there exists an efficient adver-
sary B, which has received the private information Iu of all users but users
in Si, and is able, with non negligible probability, after a sequence of a poly
number m of executions, to distinguish a key Ki associated to Si from a ran-
dom value Ri. At the beginning of each session, B sees vectors of the form
< gr, I1, . . . , It, g

rPi(I1), . . . , grPi(It) > where r is a new random value, sent to
enable users in Si to compute the new key Ki. Let us denote by < history >
the sequence of all vectors sent at the beginning of sessions 1, 2, . . . , m − 1
to enable all authorized subsets to compute the new session key, and let us
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assume that (< history >, < gr, I1, . . . , It, g
rPi(I1), . . . , grPi(It) >, C), where

< gr, I1, . . . , It, g
rPi(I1), . . . , grPi(It) > is the vector for Si for the m-th session,

and C is either the key Ki = grPi(0) or a random element Ri ∈ G, is the input
of B. On such an input, B, independently of the specific revocation strategy,
guesses with non-negligible probability what the challenge C is.

Then, we can turn B into an efficient algorithm B′ which solves the DDH
problem, i.e., B′ takes in input a triple < α, β, γ > and outputs with non-
negligible probability whether < α, β, γ >=< ga, gb, gab > or < α, β, γ >=<
ga, gb, gc >, where a, b, and c are chosen u.a.r in Zq. Such an algorithm B′ works
as follows:

– By using the public system parameters, g, q, p, B′ generates an instance of
the hybrid scheme. In particular, it generates secret keys for all users but the
users in Si. Chooses u.a.r values (I1, . . . , It, Pi(I1), . . . , Pi(It)), and associates
it to subset Si.

– For session � = 1, . . . , m − 1, B′ constructs < history > by choosing at
random a revocation strategy and revoking all users but users in Si. Since
B′ holds all secret keys but the ones held by users in Si, then he can construct
all encryptions (vectors) he needs for subsets different from Si. Moreover,
any time B′ needs to encrypt the key for users in Si, it chooses u.a.r a value
r′ and constructs the vector < αr′

, I1, . . . , It, α
r′Pi(I1), . . . , αr′Pi(It) > .

– Run B on input < history >, < α, I1, . . . , It, α
Pi(I1), . . . , αPi(It) >, γ.

– If B outputs key, then output DH triple. Otherwise, output random triple.

The idea is to embed the challenge C in the m-th session, i.e., by implicitly
imposing that r = a, Pi(0) = b. In such a way gr = ga, gb = gPi(0) and gab =
grPi(0). It is important to note that B does not distinguish a real < history >
from the < history > generated by B′ by using the triple < α, β, γ > . They are
identically distributed. Indeed:

– the vectors for subsets different from Si are distributed exactly as in a real
execution of the protocol, i.e., we are perfectly simulating the protocol.

– the vectors for Si use the challenge < α, β, γ >, a different value r at each
session, and the random values Pi(I1), . . . , Pi(It). Hence, it follows that they
are “consistent with” a unique t-degree polynomial Pi, chosen uniformly at
random, implicitly defined by the pairs (0, b), (I1, Pi(I1)), . . . , (It, Pi(It)).

Moreover, B′ runs in probabilistic polynomial time and distinguishes a DH triple
from a random triple exactly with the same advantage with which B distinguishes
a true key from a random value. Hence, if the DDH assumption in G holds, then
B′ (and thus B) does not exist, and the key-assignment method satisfies the
key-indistinguishability property. #$
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Abstract. This paper clarifies the relationships between security no-
tions for broadcast encryption. In the past, each new scheme came with
its own definition of security, which makes them hard to compare. We
thus define a set of notions, as done for signature and encryption, for
which we prove implications and separations, and relate the existing
notions to the ones in our framework. We find some interesting relation-
ships between the various notions, especially in the way they define the
receiver set of the challenge message. In addition, we define a security
notion that is stronger than all previous ones, and give an example of a
scheme that fulfills this notion.
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1 Introduction

Broadcast encryption (BE) is a cryptographic primitive that was first described
by Fiat and Naor in [FN94]. It provides a content holder the ability to publish
the content to a specific subset of the registered users. This is used in practice
by copyright protection mechanisms for digital media such as DVDs, so that
if the keys for a series of DVD players become known, this series will not be
able to play DVDs produced after the series is revoked [NNL01]. But while work
on the related topic of multi-cast encryption progressed, BE did not receive
much attention until the last decade, when Naor, Naor, and Lotspiech presented
their (symmetric-key) subset-cover framework along with a security model and a
security analysis [NNL01]. Since then, many BE schemes have been proposed, but
for each scheme the security proof was done in a new security model. Because of
these various and often ad-hoc security models, it is hard to compare the merits
of these schemes, as it is not always clear how the security notions relate to each
other.

Gentry and Waters [GW09], for example, defined a security notion they call
“adaptive”, because the adversary can corrupt users adaptively before the chal-
lenge phase. But there is a notion that is “even more” adaptive, where the
adversary can still corrupt users after the challenge phase. The goal of this pa-
per is thus to provide a better picture of the meaningful security models for BE,
and to compare them. In particular, we investigate whether the various adaptive
notions of corruption coincide or not.
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Related Work. The first scheme to come with a security argument was the subset-
cover framework introduced by Naor, Naor, and Lotspiech [NNL01]. The frame-
work uses symmetric keys, where the sender and the receivers share some secrets,
so the security proof relies on assumptions about the symmetric primitives (one-
way functions and block ciphers). Dodis and Fazio [DF03] presented the first
CCA2-secure public-key Trace and Revoke (TR) scheme along with a security
model covering CCA2 and generalized CCA2. When one considers possible cor-
ruption after the target ciphertext has been sent, one has to deal with forward-
secrecy. This was done by Yao, Fazio, Dodis, and Lysyanskaya [YFDL04] who
first considered forward-secrecy for HIBE and then by extension for BE. Boneh,
Gentry, and Waters [BGW05] designed a fully collusion-resistant BE scheme and
proposed a security model for it, where the adversary can corrupt all the users,
except the target users. Thereafter, Boneh and Waters [BW06] presented a fully
collusion-resistant TR scheme secure against adaptive attacks. Delerablée, Pail-
lier, and Pointcheval [DPP07] also presented a fully collusion-secure dynamic
BE scheme (DBE) and presented a new matching security model. More recently,
Gentry and Waters [GW09] defined two additional security notions they call
“semi-static” and “adaptive”, as well as a generic transformation from a semi-
static secure scheme into an adaptively secure scheme, and then a semi-static
secure scheme to which they later apply the transformation.

Contribution. As shown above, many security notions were proposed in the lit-
erature. In this paper, we define a more systematic security model for broadcast
encryption schemes, and construct a generic security framework for BE. We take
into account, as usual in the “provable security framework”, oracles to model
the means available to the adversary, such as the possibility to join new users,
to corrupt users, and to decrypt messages. It is worth noting that small details
can have a high impact. For example, the choice of the set of users to which the
challenge message is sent also plays a role in how the models relate to each other.
We investigate the relationships between the different notions, and find that in
some cases, two notions are equivalent or separated depending on the availability
of some oracles or the collusion-resistance of a BE scheme. After describing the
relationships between notions in our framework, we have a closer look at the
security models and the schemes proposed in the literature, and discuss where
they are in our framework, which then helps to compare them.

Our results are relevant for several existing BE schemes. For example, from
the proof found in [GW09], it is clear that the two-key transformation actually
achieves the stronger 2-adaptive-security level. We also examine the proof found
in [DPP07], and see that it can fulfill a stronger security notion where the ad-
versary can choose the target set, and then the scheme meets the requirements
from [GW09]. This means that it can be made 2-adaptively secure using the
generic transformation (although not efficiently).

Organization. In section 2 we provide a formal definition of broadcast encryption,
or more precisely key encapsulation, and specify some terminology. In section 3
we define our security framework. Section 4 relates the different security notions
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to each other. In section 5 we embed the existing security models from the
literature into our framework. In section 6, we describe which security notions
have been achieved by existing protocols and describe an (inefficient) protocol
that achieves the strongest notion.

2 Definitions

Broadcast encryption (BE) schemes enable the sender of a message to specify a
subset of the registered users (the target set or privileged set), who will be able to
decrypt the ciphertext sent to all users via a broadcast channel. The complement
of the target set (in the set of the registered users) is called the revoked set. To
accomplish user revocation when sending a message, a BE generally generates
three parts: the Id Header, that is a bit-string that unambiguously identifies the
target set/revoked set; the Key Header, that encapsulates a session key for the
privileged users; and the Message Body, that contains the payload encrypted
under the session key.

Since for all the schemes, the Id Header and the Message Body are similar, in
this paper, we will focus on the Key Header part only, which can be seen as a
key encapsulation mechanism (KEM). Furthermore, when no more information
is given, we will consider a public-key key encapsulation system with possibly
stateful decoders: encryption key is public, the decryption keys of the users
can evolve, but the updates will be global and sent on a public channel, and
ephemeral keys are distributed to be used together with symmetric encryption
(DEM: Data Encapsulation Mechanism). We will nevertheless sometimes make
remarks about alternative cases.

Definition 1 (Dynamic Broadcast Encapsulation). A dynamic broadcast
encapsulation scheme is a tuple of algorithms DBE = (Setup, Join, Encaps,
Decaps):

– Setup(1k), where k is the security parameter, generates the global parameters
param of the system (omitted in the following); and returns a master secret
key MSK and an encryption key EK. It also initiates an empty list Reg. If
the scheme is asymmetric, EK is public, otherwise it can be seen as a part
of the MSK.

– Join(MSK, Reg, id) takes as input the master secret key, the list Reg, and a
user identifier id. If id ∈ UI (where UI is the set of valid user identifiers,
usually N) and id /∈ Reg, outputs a user secret key uskid and a public user
tag upkid. The pair (id, upkid) is appended to Reg. Else, outputs ⊥.

– Encaps(EK, Reg, S) takes as input the encryption key, the list Reg, and a
target set S and outputs a key header H and a session key K ∈ {0, 1}k.

– Decaps(uskid, S, H) takes as input a user secret key, the target set S, and the
key header H. If id ∈ S, outputs the session key K.

The correctness requirement is that for any (polynomial size) set of joined users
U ⊂ UI, any target set S ⊂ U and for any id ∈ UI, if id ∈ S then the decapsu-
lation algorithm gives back the ephemeral session key. See figure 1.
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(MSK, EK, Reg) ← Setup(1k);
for all id ∈ S : (uskid, upkid, Reg) ← Join(MSK, Reg, id);
(H,K) ← Encaps(EK, Reg, S).

i ∈ S ⇒ Decaps(uski, S, H) = K

Fig. 1. DBE : Correctness

2.1 Terminologies and Various Types of Schemes

Join Algorithms. When the Join algorithm can be run at the setup phase only,
with no later evolution of the group, we say the scheme is static (instead of dy-
namic). For a dynamic scheme, several kinds of Join functionalities are possible:

Passive, no input (except a counter i); it generates a public tag upki to identify
the user;

Active, the input is id; it generates a public tag upkid to identify the user;
Identity-Based, the input is id, and the public tag upkid is simply id.

We stress that the default case in this paper (when no other version is specified)
is that Join is passive.

Target Set. A broadcast encryption scheme is called inclusive when the target
set is specified by the list of authorized users, and exclusive when the target set
is specified by its complement R, the set of revoked users.

Key Encapsulation Mechanisms. We described above a key encapsulation mech-
anism (KEM) where only a key is generated. The payload is then encrypted
with a symmetric mechanism to get a full encryption scheme. All the broad-
cast encryption schemes known to the authors can be written as KEMs, e. g.
the bilinear BE schemes from [BGW05, GW09] generate a random group ele-
ment which is then multiplied to the message. This random group element can
be considered as the symmetric key, and group multiplication as the symmetric
encryption. To achieve CCA2-security for the full broadcast encryption, given a
CCA2-secure key encapsulation, we additionally need to bind all the components
of the ciphertext together.

Encryption and Decryption Keys. The encryption key can be either public
(asymmetric) or private (symmetric), in the former case, we talk about public-
key broadcast encryption, in the latter we say this is a private-key broadcast
encryption. The decryption keys can either be defined and sent to the users at
the join phase and never modified again, or be updated each time another user
joins the system. In the former case, the decoders are said to be stateless since
there is no state to evolve. In the latter case, the decoders are called stateful
because they have to keep their state up-to-date. They thus have to be always
on-line to receive the update information.

Default. As already mentioned, in this paper, we focus on public-key key encap-
sulation system with possibly stateful decoders.
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3 Security Notions

Besides the various properties that a broadcast encryption scheme can satisfy,
many security notions have been defined to take all the threats into consid-
eration. We will thus review them, and try to give a cleaner view. As usual,
security notions are defined by the goal the adversary want to achieve, and by
the means that are available. We first define our standard security notions, and
then compare them with some alternatives defined in the literature.

3.1 Standard Security Notions

Since we are studying a KEM [CS03], the goal of the adversary is to distinguish
two keys in a key encapsulation, noted IND for key indistinguishability: after
having received the public parameters, in the first phase (the FIND phase) the
adversary outputs a target set S; then the challenger runs the key encapsulation
algorithm, on this set S, that outputs the ephemeral K and the encapsulation
H . It then chooses a random key K ′ and a random bit b and sets Kb = K and
K1−b = K ′. Upon receiving (H, K0, K1), the adversary runs the second phase
(the GUESS) during which it has to decide whether H encapsulates K0 or K1,
which means it has to guess the bit b.

Oracles can be available at different periods of time (Setup, FIND-phase, or
GUESS-phase) which defines several kinds of attacks. Figure 2 shows the ex-
periment Expind−dxayccaz

DBE,A (k), where the oracles OJoin1, OCorrupt1 and ODecaps1
are available during the FIND-phase, and the oracles OJoin2, OCorrupt2 and
ODecaps2 are available during the GUESS-phase. According to the exact defi-
nition of these oracles, we have an IND-Dynx-Ady-CCAz security game, for x-
Dynamic (Join), y-Adaptive (Corrupt) and CCA-z (Decaps). If not otherwise
specified, use of the variables x, y, z means that they can be replaced by any
level defined below.

The Join Oracle. It can be available at the Setup-time only. In this case, the
adversary can make a number of non-adaptive Join-queries, where he receives
the results only at the end of the Setup-phase, together with the parameters and
MSK, EK. As said above, we then talk about a static scheme, and the attack is
S-Dynamic (or DynS), and both the oracles OJoin1 and OJoin2 output ⊥. The
Join-oracle can be available during the first phase only, then OJoin1 = Join but
the OJoin2 oracle outputs ⊥, and the attack is 1-Dynamic (or Dyn1); it can be
available always, then OJoin1 = OJoin2 = Join, and the attack is 2-Dynamic (or
Dyn2).

The Corrupt Oracle. Corruptions can be more or less adaptive. Again, the ad-
versary may have to decide before the Setup-time which users will be corrupted.
This is a selective attack or S-Adaptive (also denoted AdS), which is meaning-
ful for static schemes (DynS) only (otherwise there are no users to corrupt during
the Setup-phase), and then both the oracles OCorrupt1 and OCorrupt2 output ⊥.
It can be available during the first phase only, then OCorrupt1 = Corrupt but the
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Expind−dxayccaz−b
DBE,A (k)

(MSK, EK) ← Setup(1k);
QC ← ∅; QD ← ∅;
(st, S) ← AOJoin1(·),OCorrupt1(·),ODecaps1(·,·,·)(param);

(H, K) ← Encaps(EK, Reg, S); Kb ← K; K1−b
$← K;

b′ ← AOJoin2(·),OCorrupt2(·),ODecaps2(·,·,·)(st;S, H,K0, K1);
if ∃i ∈ S, (i, S, H) ∈ QD or i ∈ QC

then return 0;
else return b′;

where x ∈{s, 1, 2}, y ∈{0, s, 1, 2}, z ∈{0, 1, 2}.

OJoin(i)
(uski, upki) ← Join(msk, i);
return upki;

OCorrupt(i)
QC ← QC ∪ {i};
return uski;

ODecaps(i, S, H)
QD ← QD ∪ {(i, S, H)}
K ← Decaps(uski, S, H);
return K;

Fig. 2. DBE : Key Privacy (IND-Dynx-Ady-CCAz)

OCorrupt2 oracle outputs ⊥, and the attack is 1-Adaptive (or Ad1). It can be
available during the full security game, then OCorrupt1 = OCorrupt2 = Corrupt,
and the attack is 2-Adaptive (or Ad2). Eventually, the adversary can have no
access at all to the Corrupt oracle: we say the attack is 0-Adaptive (or Ad0).

The Decaps Oracle. As usual for chosen-ciphertext security, the Decaps-oracle
can be available or not. It can never be available in the CPA (or CCA0) scenario,
and both the oracles ODecaps1 and ODecaps2 output ⊥; it can be available
during the first phase only, then ODecaps1 = Decaps but the ODecaps2 oracle
outputs ⊥, and the attack is CCA1; it can be available during the full security
game, then ODecaps1 = ODecaps2 = Decaps, and the attack is CCA2.

For the IND-goal, the natural restriction for the adversary is not to ask for
the decapsulation of the challenge header H nor corrupt any user in the target
set S.

Remark 2. For private-key schemes, the adversary is granted access to the en-
capsulation oracle instead of the encryption key. In the rest of the paper, we
will focus on the public-key setting for dynamic broadcast encryption schemes
(noted PKDBE).

Definition 3. A public-key DBE scheme DBE is said to be (t, N, qC , qD, ε)-
IND-Dynx-Ady-CCAz-secure if in the security game presented in figure 2, the
advantage, denoted Advind−dxayccaz

DBE (k, t, N, qC , qD), of any t-time adversary A
registering at most N users (OJoin oracle), corrupting at most qC of them
(OCorrupt oracle), and asking for at most qD decapsulation queries (ODecaps
oracle), is bounded by ε:

Advind−dxayccaz
DBE (k, t, N, qC , qD) =

max
A
{Pr[Expind−dxayccaz−1

DBE,A (k) = 1]− Pr[Expind−dxayccaz−0
DBE,A (k) = 1]} .
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3.2 Alternatives and Variants

Forward-Secrecy. For dynamic exclusive schemes (the target set is defined by
the list of revoked users), new users are by definition included in the target
sets of the message headers, even if they did not exist at the time the header
was sent. Furthermore, since new users are included in the challenge set S, the
adversary is not allowed to corrupt them. This means the encryption does not
provide forward-secrecy. To model forward-secrecy, we can allow corruption of
joined users, and in this case the encryption key EK must evolve when a new
user joins the system.

For dynamic inclusive schemes (the target set is defined by the list of autho-
rized users), the Ad2 notion provides forward-secrecy since any user not in the
target set can be corrupted in the second phase.

Target Set. In the default security game, the adversary chooses the target set
S at the end of the first phase, the FIND phase which consists in finding the
best S for winning the game. But some papers in the literature restrict this
choice:

– The adversary announces the target set before the setup phase [BGW05].
We call this selective security, denoted TargS. This can only happen in static
schemes, because the adversary needs to know the set of users to choose the
target set from.

– The target set is automatically set to all uncorrupted users at the end of the
first phase [DF03]. We call this fixed-target-set security, denoted TargF.

When needed, the default case (the adversary chooses the target set S at the
end of the FIND-phase) is denoted TargC.

Security Models in the Literature. We can now characterize all the security mod-
els defined in the literature into our formalism: These notions are summarized
in table 1, when S is the target set and C the corrupted users set.

– In [YFDL04], the authors defined the full access to the Corrupt oracle, but
for a static scheme (no Join oracle). In order to accommodate the forward-
secrecy, they included time slots. Disregarding the latter, the security model
is similar to IND-DynS-Ad2-CCA2-TargF. Essentially the adversary is re-
stricted to corrupting only users from a time slot later than the one the
challenge message was sent in. In our model, IND-Dynx-Ad2-CCAz-TargF-
security does only make sense for x = 2, as otherwise no users can be cor-
rupted in the GUESS-phase (because the target set is fixed to U \C and the
adversary cannot join new users after the challenge phase).

– In [Del08] the authors define a security model for IBBE they call IND-
sID-CCA (selective ID CCA-security), which is IND-DynS-Ad2-CCA2-TargS-
security in our notation.
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Table 1. Adversarial Capabilities

Security before setup FIND-Phase Challenge-Phase GUESS-Phase

Ad2 Corrupt S Corrupt
Ad2TargF Corrupt Corrupt
Ad1 Corrupt S
Ad1TargF Corrupt
semi-static C S
static C

– The partial access to the Corrupt oracle has been used in [BW06] and [GW09].
In our notation, the authors used IND-DynS-Ad1-CCA0 security, since no
decapsulation queries were available.

– As noted above, the the fixed-target-set security was introduced in [DF03],
but no Corrupt queries were allowed in the second phase, and the system was
static (no Join query). In our formalism, this is IND-DynS-Ad1-CCAz-TargF,
according to the Decaps-oracle access.

– Semi-static security has been introduced in [GW09] in order to build a
generic conversion into Adaptive-1. In this setting, the adversary must an-
nounce the set of corrupted users before the setup phase, as we defined as
selective attack. In our notation, this is IND-DynS-AdS-CCA0 security.1

– In the static model due to [BGW05], the adversary also has to announce its
target set before the setup phase (selective attack). In our notation, this is
IND-DynS-AdS-CCA2-TargF security with fixed target set. The authors also
define a CPA version.2

Collusion Resistance. We can also distinguish between two types of collusion-
resistance: full collusion-resistance, where there is no limit on the number of
Corrupt-queries, and t-collusion-resistance, where the number of queries is
bounded by t (which can depend on the number of users N). With our pa-
rameters, we implicitly consider all the cases.

1 More precisely, in the semi-static version of the experiment, the adversary must
commit to a set S̃ before the setup phase. He is allowed to corrupt any user not
in S̃ after the setup phase, and must choose a challenge set S ⊆ S̃. An equivalent
formulation is that the adversary chooses the set C of users to corrupt before the
setup phase (because he can corrupt all users not in S̃), but chooses S at the challenge
phase. This formulation is only equivalent for fully collusion resilient schemes, but
it is for these schemes that the notions were designed.

2 In the static version of the experiment [BGW05], the adversary has to announce
the set S of users he wants to attack before the setup phase. He then receives the
private keys of all users not in S after the setup phase. An equivalent definition is
that he chooses the set C of corrupted users, and the S is fixed to be all the users
except C. To allow the adversary to choose the target set, the adversary announces
both C and S before the setup phase. This definition where the adversary chooses
both C and S can also be used in not fully collusion-secure schemes and is the one
considered in this section.
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4 Relationship between the Security Notions

In this section, we shed light on the relationships between the security notions we
defined in the last section. We start in section 4.1 with the hierarchy of Decaps-
oracles, where we expect no surprises. In section 4.2, we explore the Join-oracle,
of which we defined three different versions: For the passive version, which takes
no input, all notions are equivalent; For the active version, which takes input and
outputs a user tag, we can separate all notions. For the IBBE version, which takes
an arbitrary string as input, but does not output a user tag (the upk is the identity
of the user), we can show equivalences and separations based on the availability of
a Corrupt-oracle. In section 4.3, we address the Corrupt-queries, and gaps appear
according to the number of such queries, and thus the level of collusion-resistance.
In section 4.4, we examine the various ways in which the target set can be chosen.
Due to space limitations, many proofs have been removed from this version, but
are given in the full version [PPS11].

4.1 Separating CPA and CCA

We remember the well-known separation between CPA (CCA0), CCA1, and
CCA2-security for PKE from [BDPR98]. The same separation applies in the
case of broadcast encryption, because if we set KeyGen(1k) to
(MSK, EK)← Setup(1k); (usk1, upk1)← Join(MSK, 1); dk

def= usk1, ek
def= EK||upk1,

we obtain a single-user KEM scheme.

Theorem 4. The following implications are strict:

IND-Dynx-Ady-CCA2⇒ IND-Dynx-Ady-CCA1⇒ IND-Dynx-Ady-CCA0.

4.2 Separating Notions of Dynamicity

In this section, in order to compare the Join-oracle access, we also have to con-
sider the three versions of the Join-algorithm, as defined in section 2.1: passive-
Join, if it takes no input; active-Join, if it takes an input; ID-based -Join, if the
output tag upk is the input identity.

Easy Implications. As above, there is a clear hierarchy on the Join oracle
access: at the setup time only, in the first phase, or at anytime.

Theorem 5. The following implications hold for all versions of the Join oracle:
IND-Dyn2-Ady-CCAz ⇒ IND-Dyn1-Ady-CCAz ⇒ IND-DynS-Ady-CCAz.

Passive Join. This is a standard definition in the literature. Interestingly
enough, in this context all the notions are equivalent, since the adversary cannot
influence the output.3

3 It is interesting to note that the equivalence is for our above notions only: for passive-
Join, a query in the first phase is strictly more useful than a query in the second
phase. As a consequence, if we consider in details the number of queries in each
phase, as done in [PP04] for the encryption and decryption oracles, we can show
that Dyn(N1 +N2, 0) → Dyn(N1, N2) → Dyn(0, N1 +N2), and these implications are
strict. However, in the above theorem, we do not fix the number of queries.
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Theorem 6. If Join takes no input,we have the following equivalences

IND-Dyn2-Ady-CCAz⇔ IND-Dyn1-Ady-CCAz⇔ IND-DynS-Ady-CCAz.

Proof. Because of the trivial implications, it remains to show that DynS ⇒
Dyn2. Given a successful Dyn2-adversary Ad that makes N1 queries to the Join-
oracle in phase 1, and N2 queries to the Join-oracle in phase 2, we construct a
successful DynS-adversary As that joins N = N1 + N2 users before the setup
phase. Because the Join-oracle takes no input, its behavior is exactly the same
in phase 1 and phase 2. Therefore As can store the results and then answer all
Join-queries made by Ad later.

Active Join with Large Input. If the Join-algorithm is interactive or takes
input from the adversary (that can be sufficiently large, i. e. |UI| is superpoly-
nomial), the adversary can influence the Join-process:

Theorem 7. If Join takes input and outputs a public tag, the following impli-
cations are strict

IND-Dyn2-Ady-CCAz⇒ IND-Dyn1-Ady-CCAz⇒ IND-DynS-Ady-CCAz.

Identity-Based. In this case, the OJoin-oracle only outputs a user secret key
uskid (because upkid = id). This means that in order to gain anything from the
output, the adversary must also be able to corrupt users.

Theorem 8. For ID-Based Broadcast Encryption, the following implications
are strict

IND-Dyn2-Ad2-CCAz ⇒ IND-Dyn1-Ad2-CCAz ⇒ IND-DynS-Ad2-CCAz
IND-Dyn2-Ad1-CCAz ⇔ IND-Dyn1-Ad1-CCAz ⇒ IND-DynS-Ad1-CCAz
IND-Dyn2-AdS-CCAz⇔ IND-Dyn1-AdS-CCAz⇔ IND-DynS-AdS-CCAz
IND-Dyn2-Ad0-CCAz ⇔ IND-Dyn1-Ad0-CCAz ⇔ IND-DynS-Ad0-CCAz

4.3 Separating Forms of Corruption

Theorem 9.

IND-Dynx-Ad2-CCAz⇒ IND-Dynx-Ad1-CCAz
⇒ IND-DynS-AdS-CCAz⇒ IND-Dynx-Ad0-CCAz,

and for BE schemes that are not fully collusion-secure all implications are strict.

Proof. The implications are clear, since having access to an oracle never makes
an adversary weaker. The separations follow from lemmas 10, 11, 12, and 14.

Separation of no Corruption from Selective Corruption. Recall that for
AdS, the only version of Dyn that makes sense is DynS (section 3.1).
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Lemma 10. IND-Dynx-Ad0-CCAz � IND-DynS-AdS-CCAz.

Separation of Selective Corruption from 1-Adaptive Corruption. In
a model with selective corruption, the adversary must announce the set C of
corrupted users before seeing the encryption key. To make a difference, we would
have to give some information on the subset of the users to corrupt in the
encryption key: we thus embed such information using a secret sharing scheme
to make sure all of the identified users (special users) have to be corrupted.

We need to make sure that the subset is hard to guess by chance: this is the
case for IBBE, where the size of the set UI is exponential and any user is hard
to guess. In case UI is of polynomial size, the size of the subset must not be
too small, otherwise all of them will be corrupted even by a selective-corruption
adversary with significant probability. If t is the number of special users, there
are

(
N
t

)
ways of choosing them, where N is polynomial in the security parameter.

To make the binomial be super-polynomial for a polynomial N , we need t to be
non-constant.

How can we be sure the adversary corrupts at most t users? First, it can be set
by definition, using the t-collusion secure level. For IBBE,

(|UI|
1

)
is already expo-

nential in the security parameter. However, without any additional constraint,
for a basic broadcast encryption scheme, if N − t is constant, then |S| must also
be constant, and we are actually dealing with a simple multi-encryption scenario.
Multi-cast security of encryption schemes has been considered in [BPS00]. The
authors proved that standard IND-CPA encryption schemes remain secure even
if the same message is sent to different users in parallel. This makes the case
where the adversary is always sending only to a constant number of users less
interesting to us. It thus seems reasonable to exclude these cases from BE. In
the following, we thus focus on t-collusion secure schemes, where t must be less
than the total number of users minus a non-constant number.

Lemma 11. For a t-collusion secure scheme (for t and N − t non-constant
numbers),

IND-DynS-AdS-CCAz � IND-DynS-Ad1-CCAz.

Separation of 1-Adaptive Corruption from 2-Adaptive Corruption.

Lemma 12. For a t-collusion secure scheme (for t and N − t non-constant
numbers),

IND-Dynx-Ad1-CCAz � IND-Dynx-Ad2-CCAz for z ∈ {0, 1}.

As noted, the proof requires t and N − t to be non-constant. But we can also
note that it does not work in the CCA2-setting, because on the one hand the
scheme is malleable, and on the other hand the adversary could simply query
the Hi’s to the Decaps-oracle.

For the following lemma, we need the notion of a homomorphic OWF.

Definition 13 (Homomorphic One-Way Function). Let (G, +) and (H, ∗)
be two groups with 2k−1 ≤ |G| ≈ |H | ≤ 2k. A PPT-computable function f : G→
H is
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– one-way if ∀A : Pr[x $← G; y ← A(1k, f(x)); f(y) = f(x)] is negligible.
– homomorphic if f(x + y) = f(x) ∗ f(y).

An example of a homomorphic OWF is discrete exponentiation (assuming DLOG
is hard). The security of MAC and symmetric encryption is defined as usual.

Lemma 14. For a t-collusion secure scheme (for t and N−t non-constant num-
bers),if strongly-UF-CMA-secure MAC, IND-CCA2-secure symmetric encryption
and homomorphic OWF exist,

IND-Dynx-Ad1-CCA2 � IND-Dynx-Ad2-CCA2.

4.4 Choice of the Target Set

Selective Security

Lemma 15. The following implication is strict:

IND-Dynx-Ady-CCAz-TargC⇒ IND-DynS-Ady-CCAz-TargS.

Fixed Target Sets. In our definition the adversary chooses the target set S of
the challenge. In the DPP security model [DPP07], S is automatically the set of
all non-compromised users. The same situation appears in [BGW05], where the
adversary outputs S before the setup and receives the secret keys for all users in
U \ S. A similar definition is given for the BGW model. We could reformulate
the BGW model so that the adversary outputs the set C of the keys he wants
to know, and S is set to U1 \ C1. This formulation is obviously equivalent. We
want to investigate the relationship between these two notions.

Note that under the “fixed” definition, the notions IND-Dynx-Ad1-CCAz and
IND-Dynx-Ad2-CCAz for x ∈ {s, 1} are equivalent since in any case the adversary
cannot corrupt users after the challenge phase (all the non-corrupted users at
the end of the first phases are in the target set and cannot be corrupted).

Theorem 16. All the following implications are strict

IND-DynS-AdS-CCAz-TargC⇒ IND-DynS-AdS-CCAz-TargS
⇔ IND-DynS-AdS-CCAz-TargF

IND-Dynx-Ad0-CCAz-TargC⇒ IND-DynS-Ad0-CCAz-TargS
⇒ IND-Dynx-Ad0-CCAz-TargF

The theorem follows from lemmas 15, 17, 18, and 19.

Lemma 17. IND-DynS-Ady-CCAz-TargS⇒ IND-Dynx-Ady-CCAz-TargF
for y ∈ {0, s}.

Proof. From an adversary Af against the IND-Dynx-Ady-CCAz-TargF-security
of a BE scheme, we build an adversary AS against the
IND-DynS-Ady-CCAz-TargS-security. If the model has no corruption or static
corruption, AS runs Af , who outputs C, chooses the same C and sets his target
set S = U \ C.
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Lemma 18. IND-DynS-AdS-CCAz-TargF⇒ IND-DynS-AdS-CCAz-TargS.

Proof. Given a successful adversaryAS , we construct an adversaryAf as follows.
AS outputs his target set S and the set of users to corrupt C before the Setup
phase. Af chooses C′ = U \ S.

Lemma 19. IND-Dynx-Ad0-CCAz-TargF � IND-DynS-Ad0-CCAz-TargS.

Proof. In the IND-Dynx-Ad0-CCAz-TargF-experiment, the target set is always
fixed to S = U . Given a IND-Dynx-Ad0-CCAz-TargF-secure scheme Π , we mod-
ify it into a scheme Π ′ that is still IND-Dynx-Ad0-CCAz-TargF-secure, but not
IND-Dynx-Ad0-CCAz-TargS. The only change is that if |S| = 1, Π ′.Encaps sets
K = 0 (or determines the key in a deterministic way by fixing all random coins
e. g. to 0).

Theorem 20. For fully collusion-resilient BE schemes, the following implica-
tions are strict

IND-Dynx-Ady-CCAz-TargC⇔ IND-Dynx-Ady-CCAz-TargF
⇒ IND-DynS-Ady-CCAz-TargS (y ∈ {1, 2})

The theorem follows from lemmas 15 and 21. It seem curious at first that the
relationship between fixed target set and selective security is inverted for models
with no corruption, but in this case the fixed target set means that it is always
set to U , while the selective security allows some freedom of the adversary to
choose.

Lemma 21. For fully collusion-resistant BE schemes

IND-Dynx-Ady-CCAz-TargC⇔ IND-Dynx-Ady-CCAz-TargF (y ∈ {1, 2}).

Proof. It is clear that if the adversary can choose S freely, he can set it to U \C.
Let Achoice be a successful adversary against a BE scheme that can choose his
target set S. Then we construct Afixed as follows: Afixed faithfully forwards
all queries. When Achoice outputs his challenge target set S, Afixed first issues
corrupt queries so that U \ C = S, then asks for the challenge and forwards it
to Achoice. He forwards the guess bit b and wins with the same probability as
Achoice.

Note that Afixed corrupts more users, which could reduce the tightness of a
security proof, and causes the proof to fail in a t-resilient setting where t < N−1
(if t = N − 1, the scheme is fully collusion-resistant).

In the following, we denote by � the fact that � in both directions.

Theorem 22. For BE schemes where the adversary must leave at least two
users uncorrupted, the following implications are strict:

IND-Dynx-Ady-CCAz-TargC⇒ IND-Dynx-Ady-CCAz-TargF
� IND-DynS-Ady-CCAz-TargS

and IND-Dynx-Ady-CCAz-TargC⇒ IND-DynS-Ady-CCAz-TargS (y ∈ {1, 2})
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The theorem follows from lemmas 15, 23, 24, and 25.

Lemma 23. If the adversary is restricted to leaving at least 2 users uncorrupted,
the following implication is strict

IND-Dynx-Ady-CCAz-TargC⇒ IND-Dynx-Ady-CCAz-TargF (y ∈ {1, 2}).

Lemma 24. If the adversary is restricted to leaving at least 2 users uncorrupted,

IND-Dynx-Ady-CCAz-TargF � IND-DynS-Ady-CCAz-TargS.

We can easily see that the adversary does not get weaker if he can choose the
target set freely from the set of uncorrupted users U \C, because he can choose
S = U \ C as in the fixed case.

Lemma 25.

IND-DynS-Ady-CCAz-TargS � IND-DynS-Ady-CCAz-TargF for y ∈ {1, 2}.

5 Relationships between Notions from the Literature

A security notion that our model does not cover is defined in [DPP07]. In this
model, the adversary accesses a JoinCorrupted oracle instead of the Corrupt oracle.
That means he must decide whether to corrupt a user before the user is joined,
but the choice can depend on information gained previously. The model defined
in [DPP07] is Dyn1, as the adversary has access to a Join oracle before the
challenge phase, CCA0 and TargF, as the challenge set is fixed to S = U \ C,
so it is rather similar to IND-Dyn1-Ad1-CCA0-TargF-model in our framework,
except that the Corrupt oracle is replaced with JoinCorrupted. We call it the
partially adaptive model. As in the previous section, we also denote TargC the
default case where the adversary can choose S as any subset of U \ C.

Theorem 26. We have the following implications

IND-Dyn1-Ad1-CCAz-TargF⇒ partially adaptive − CCAz− TargC
⇒ partially adaptive − CCAz− TargF⇒ IND-DynS-Ad1-CCAz-TargS

that are all strict (the first one only if t-collusion secure with t and N − t non-
constant).

The proof can be found in the full version of this paper [PPS11].
We now have almost all the results we need to establish the relationship

between the security notions that can be found in the existing literature to fill
the picture on figure 3. We now complete it.

Theorem 27. The following implication is strict

Partially adaptive − CCAz− TargC⇒ IND-DynS-AdS-CCA0-TargC.
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Proof. From any semi-static adversary AS we construct a partially adaptive
adversary as follows. AS announces N and C before the setup phase. Apa asks
for JoinCorrupted on all users in C and simply joins all users in U \ C. The
separation is analogous to the one in lemma 11.

We relate semi-static security to the version of static security with 1-adaptive
corruption defined in [GW09].

Theorem 28. The following implication is strict

IND-DynS-AdS-CCA0-TargC⇒ IND-DynS-Ad1-CCA0-TargS.

Proof. From any selectively 1-adaptive adversary Aa we construct a semi-static
adversaryAs. Aa announces N and S before the setup phase. As forwards N and
sets C = U \ S. He now has enough information to answer all Corrupt-queries.
The separation is analogous to the one in lemma 15.

Theorem 29. Partially adaptive-CCAz-TargF � IND-DynS-AdS-CCAz-TargC.

*: for t-collusion secure schemes with t and N − t non-constant
(all implications are strict)

IND-DynS-Ad2-CCAz-TargC

�lemma 23*
IND-DynS-Ad2-CCAz-TargF

�theorem 9*
IND-DynS-Ad1-CCAz-TargC

�lemma 23*
IND-DynS-Ad1-CCAz-TargF

�theorem 26
partially adaptive-CCAz-TargC

��theorem 27�theorem 26
partially adaptive-CCAz-TargF

��theorem 26
IND-DynS-AdS-CCAz-TargC

�theorem 28
IND-DynS-Ad1-CCAz-TargS

Fig. 3. Relations between Security Notions from the Literature

Remark 30. To conclude this section on the security notions found in the litera-
ture, we place some of the existing schemes more precisely. First, one can show
that the DPP dynamic BE scheme [DPP07] fulfills the “choice”-definition with-
out changing the security proof. Using theorem 28, we see that this notion implies
semi-static security, so the two-key transformation from [GW09] can be used to
achieve 1-adaptive security. The transformation is not efficient in this case, be-
cause the length of the ciphertext depends on the number of r revoked users,
and to use the transformation, N +r of 2N users have to be revoked. Looking at
the proof in [GW09], we see that the after applying the two-key transformation,
a scheme can be proved 2-adaptively secure using the same proof, because the
simulator has the secret keys of each user and can answer Corrupt-queries in the
GUESS-phase as easily as in the FIND-phase.
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Table 2. Comparison between schemes

DF03 BGW05 DPP07 Del08 GW09a GW09b Naive

Dyn DynS DynS DynS Dyn1 DynS DynS Dyn2
Ad Ad1 Partially adaptive Ad2 Ad2 Ad2 Ad2 Ad2

CCA CCA2 CCA2 CCA2 CCA0 CCA2 CCA2 CCA2

Targ TargS TargS TargS TargF TargC TargC TargC

6 Previous Schemes

Let us now discuss on the previous schemes in order to compare them. Table 2
sums up the security levels for each of them.

DF03. Dodis and Fazio[DF03] proposed the first scheme that is secure against
adaptive adversaries. However, their scheme is in the TargF model. Consequently,
the scheme can only be Ad1-secure, because any corrupted user in the second
phase is implicitly included in the target set and can thus decrypt. One of the
main disadvantages of the DF03 scheme is that the bound of maximum revoked
user rmax should be fixed before the setup and as soon as there are more than
rmax corrupted users, the scheme can be totally broken. The DF03 scheme can
be shown to be Ad2-secure when the target set is adversarially chosen with the
size of the revoked set bounded by rmax and the total number of corrupted users
in both first and second phases is also bounded by rmax.

BGW05. In [BGW05], Boneh, Gentry, and Waters presented new methods for
achieving fully collusion-resistant systems with short ciphertexts. However, the
scheme is only proved secure in the static model (DynS). As discussed in [GW09],
the BGW proof of security requires an “exact cancellation” and there is not an
obvious way to prove BGW05 to be semi-statically secure.

DPP07. In [DPP07], Delerablée, Paillier, and Pointcheval proposed a dynamic
scheme that is partially adaptive secure. As pointed out in remark 30, we can
show that the adversary can be allowed to choose the target set, which implies
that this scheme is semi-statically secure. Therefore, by using Gentry-Waters
transformation, one can obtain a (very inefficient) adaptive secure scheme.

Del08. The identity-based broadcast encryption in [Del08] deals with 2-adaptive
corruption and enjoys CCA security with constant ciphertext and private key
sizes. However, the adversary has to announce its target set before the setup
phase which corresponds to our selective security model.

GW09. In [GW09], the authors aim to construct efficient schemes that are adap-
tively secure and that resist to full collusion. The adaptive security mentioned
in the paper correspond to our Ad1 model. However, their schemes can be easily
proved secure in Ad2 model. They introduced a two-key transformation that
convert a semi-static system of 2N users into a adaptive secure system of N
users. Their schemes are not dynamic.
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A Secure Broadcast Encryption Scheme

Let us now propose a simple scheme that is IND-Dyn2-Ad2-CCA2-secure to show
that it is possible. The naive BE scheme where the center shares a key with every
user is not IND-Dyn2-Ad2-CCA2-secure, but adding a MAC makes it secure.

Definition 31. Let PKE be an IND-CCA2 secure public-key encryption scheme
with key length κ, MAC a strongly-UF-CMA MAC. We build a BE scheme Π
in the following way.

– Setup(1k) MSK
def= ∅; EK

def= ∅; Reg
def= ∅

– Join(MSK, i) (pki, ski)← PKE .KeyGen(1k). return (ski, pki).

– Encaps(EK, S): K,Km
$←− {0, 1}k;

for all i ∈ S : ci ← PKE .Encrypt(pki, K||Km);
σ ←MACKm(c1|| . . . ||c|S|);

H
def= c1|| . . . ||c|S|||σ

– Decrypt(ski, S, H): K||Km = PKE .Decrypt(ski, ci)
if MAC.Verify(Km, σ, c1|| . . . ||c|S|) return K,
else return ⊥

Theorem 32. The above BE scheme is IND-Dyn2-Ad2-CCA2-secure.

The proof can be found in the full version of this paper [PPS11].
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Abstract. Hardware-based “trusted execution environments” (TrEEs)
are becoming widely available and open credentials platforms allow any
service provider to issue credentials to such TrEEs. Credential transfer
in an open system poses usability challenges: Certain credential issuers
may disallow direct credential migration and require explicit credential
re-provisioning, and each credential provisioning typically requires sep-
arate user authentication. Additionally, the lack of secure user input
mechanisms on existing TrEEs makes the required user identity bind-
ing to TrEEs challenging. In this paper we present a practical credential
transfer protocol that can be implemented using devices available to-
day. Our protocol makes credential transfer user-friendly with delegated,
automatic re-provisioning, and can be integrated to a typical device ini-
tialization process.

Keywords: security, credential transfer, trusted computing.

1 Introduction

Traditional credentials have well-known drawbacks. User memorizable passwords
suffer from bad usability and are vulnerable to phishing and dictionary attacks.
Software-based credentials, such as secret keys stored on the device, may provide
better usability and security, but can be compromised by exploiting security
vulnerabilities inherently present in most modern operating systems. Hardware-
based credentials, like dedicated security tokens, provide higher level of security,
but are too expensive for most service providers, and due to their typical single-
purpose nature force users to carry multiple tokens with them.

During the past decade hardware-based “trusted execution environments”
(TrEEs) have started to become widely available in various commodity devices.
Many current mobile phones support integrated security architectures like M-
Shield [24] and TrustZone [1] that augment the mobile device central processing
unit with secure storage and isolated execution. Additionally, many mobile de-
vices are equipped with fixed or removable security elements, such as security
enhanced memory cards (see e.g. [17]) and UICCs (Universal Integrated Circuit
Card, used for cellular authentication), that provide similar hardware-based iso-
lation. Many personal computers are equipped with a Trusted Platform Module

J. Lopez and G. Tsudik (Eds.): ACNS 2011, LNCS 6715, pp. 395–412, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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(TPM) [25] which is a standardized security element that provides secure stor-
age and predefined cryptographic operations. When used with suitable central
processing unit TPMs can also provide isolated execution for arbitrary security-
sensitive code [16]. Using such TrEEs it is possible to implement credentials
that combine good usability of software-based credentials with the higher level
of security traditionally only provided by dedicated security tokens.

Some TrEE-based “credential platforms” are closed systems. For example in-
stalling new credentials to an UICC typically requires approval from the TrEE
owner, i.e. the mobile network operator. On-board Credentials [14] and Trusted
Execution Module [6] are examples of open credential platforms in which any
service provider can develop new credential types and install them to devices
without prior agreement with the TrEE issuer or manufacturer.

Users should be able to transfer credentials from one compliant TrEE to an-
other. The common use case is device replacement. Assume that Alice has several
credentials provisioned to her mobile phone. When Alice buys a new phone, the
already provisioned credentials should be made available to the new device as
easily as possible. When TrEEs are equipped with a certified key pair, a straight-
forward credential transfer approach would be to first validate the target device
certificate within the source TrEE and then encrypt all the TrEE-resident cre-
dentials using the target device public key. In practice, credential transfer is
more challenging due to following reasons.

First, while some issuers may allow their credentials to be copied from one com-
pliant TrEE to another, we take a practical stand and assume that others may
require explicit credential re-provisioning to the target device from the original
credential issuer. In a closed credential system such re-provisioning is easy. Typ-
ically, the user has to authenticate himself only towards the TrEE owner which
controls all credential provisioning. In an open credential platform, such creden-
tial re-provisioning poses usability challenges, since each credential provisioning
operation typically requires user authentication with respect to that issuers’s do-
main, and thus having to re-provision credentials from multiple different issuers
forces user to perform multiple user authentication operations, e.g. when a new
device is taken into use. Such an user experience is clearly not optimal.

Second, validating the target device TrEE certificate only guarantees that
copyable credentials are transfered from one compliant TrEE to another. To
ensure that the credentials are transfered to a TrEE belonging to the correct
user, the device certificate, or the credentials themselves, must be bound to the
user identity. In case of commodity devices such user identity binding must be
done by the user himself, since user identities are not known at the time of de-
vice manufacturing and can change during device lifetime. TrEEs on existing
commodity devices typically lack secure (user) input mechanisms, i.e. data in-
put to the TrEE is typically possible only via the possibly compromised device
operating system, which makes secure user binding challenging.

Third, the user may not have both the source and the target device in his
possession at the same time. The user may, e.g. during device replacement, have
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Provisioner (P)

Source TrEE

Source OS

Source device (S)

Trusted Server (TS)

Target TrEE

Target OS

Target device (T)

Attacker (A)

User (U)

Fig. 1. Credential transfer system model

to give away his old device before he gets the new device, and thus the target
device public key cannot be imported to the source device easily.

In this paper we address the problem of user-friendly credential transfer in
open credential platforms. We focus on embedded TrEEs on mobile devices, al-
though most of the discussion applies to other embedded TrEE types as well.
We present a credential transfer protocol that (1) utilizes delegated, automatic
re-provisioning for non-transferable credentials, and (2) handles user identity
binding by relying on the “trust on first use” principle to mitigate the lack of
secure user input mechanisms. The main contribution of this paper is not so
much in the technical novelty of the proposed protocol, but rather in identifying
the problem and presenting a practical solution that can be (a) implemented
using commodity devices available today and (b) integrated into a typical mo-
bile device initialization process for optimal user experience. We have formally
validated a relevant subset of our protocol using AVISPA [26] model-checking
security protocol validation tool.

2 Assumptions and Requirements

Assumptions. The entities involved in credential transfer are shown in Fig. 1.
Provisioner P issues credentials to a source device S from which the credentials
can be transfered to a target device T with the help of a trusted server TS.

We assume that devices S and T have an embedded TrEE with a (statistically)
unique asymmetric key pair PK/SK. The key pair has been issued a certificate
Cert by a trusted authority (e.g., the device manufacturer). Additionally, the
TrEEs are equipped with a symmetric key K that can be used for local encryp-
tion, or sealing. TrEEs do not have persistent secure storage in addition to these
fixed keys. We assume that only trusted code (e.g., code signed by the device
manufacturer) can be executed within the TrEE and can access TrEE-resident
keys. A trust root, such as a hash of the trusted authority public key, has been
installed within the TrEEs of S and T during manufacturing.

We assume that devices S and T have an operating system level security
framework using which access to the TrEE on the devices can be limited to
trusted operating system level software components only (e.g., processes with a
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required permission). Integrity of the operating system security framework itself
may be enforced with TrEE-based secure boot.

A direct and secure communication path between the user and the TrEE is
often denoted “trusted user interface” (see e.g. [9] for more information). De-
spite of promising research prototypes [23] TrEEs on existing commodity mobile
devices typically do not support trusted user interfaces or any other data in-
put mechanisms that are not controlled by the possible compromised OS. Thus
we assume that the communication between the user and the TrEE is always
mediated by the device operating system.

We assume that the mobile devices S and T have a device initialization process
that is automatically triggered when the device is booted for the first time (or
after device reset operation). As a part of this device initialization the user is
asked to log in (e.g., with username-password) to services provided by the mobile
platform provider (e.g., Google services for Android devices or Ovi services for
Nokia devices).

We assume that the trusted server TS also has an asymmetric key pair
PKTS/SKTS and a certificate CertTS issued by the same trusted authority. A
similar trust root (e.g., hash of trusted authority public key) is fixed in TS as
well.

We assume an open credential provisioning model in which credentials can be
provisioned from any service provider to the TrEEs. The actual provisioning pro-
tocol can be provisioner specific, but we assume that each credential provisioning
operation always requires both device and user authentication. We assume that
the device authentication is based on the above mentioned TrEE certificates.
Each credential issuer may have it’s own user authentication mechanism, but we
assume that user authentication always requires some user input, such as enter-
ing a “provisioning password” to the device. Due to previously mentioned lack
of trusted user interface, the provisioning user authentication is always handled
by operating system level software component.

We address two possible credential migration policies: (1) copyable credentials
can be transfered directly from one compliant TrEE to another and (2) non-
transferable credentials must be re-provisioning from the original issuer with
user authentication.

Attacker model. We assume that the attacker A can read and modify any
network traffic between P, S, TS and T based on the Dolev-Yao model [8]. The
attacker cannot read or modify keys stored on, or read or modify any program
execution that takes place within the TrEEs of S and T or on TS. We assume
that the attacker may be able to compromise the operating system of S or T at
runtime, and thus read and modify any program execution that takes place on
the operating system of S or T. The attacker may have one or more devices with
a compliant TrEE.

Requirements. We define single functional requirement for credential transfer:
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– No additional user interaction. Transferring all credentials from S to T should
require no additional user interaction besides the normal mobile device ini-
tialization process.

We define two security requirements:

– Credential secrecy. The attacker must not be able to read or modify any
credentials during transfer.

– Credential fidelity. Credentials should be transfered only to a device belong-
ing to the same user that the credentials were originally provisioned to.

The credential transfer protocol should guarantee “forward fidelity”, i.e. the
attacker should not be able to transfer securely provisioned credentials to a device
that belongs to a different user if the OS gets compromised after the provisioning.
(This requirement is similar to “forward secrecy” in key agreement protocols [7],
i.e. the attacker should not be able to determine previously established session
keys if the long-term keys used in the key agreement get compromised later.)

Since we assume that the provisioning user authentication is always handled
by operating system level component, due to lack of trusted user interface on
existing commodity devices, and that the attacker may be able to compromise
the device OS, the credential provisioning phase is vulnerable to a man-in-the-
middle attacker that can cause a credential to be provisioned to a wrong device,
and thus the credential transfer solution cannot credential fidelity for credentials
that are provisioned after the OS compromise.

3 Credential Transfer Protocol

The rationale behind the credential transfer protocol is as follows. User identity
installation is done by using the “trust on first use” principle. During device
first boot, or after device reset, when the device operating system is in an un-
compromised state, the password from the normal mobile device initialization
process is installed to the TrEE of the device. The installed password is bound to
the credentials inside the device TrEE during each credential provisioning. The
actual credential transfer happens in three phases. During credential backup, all
copyable credentials are copied securely from S to TS. For each non-transferable
credential, S creates a delegation token. During credential recovery, TS verifies
that the same user identity has been installed to T, and if this is the case, all

Table 1. Notations used in credential transfer protocol

c ← Enc(PK, d) Ciphertext c from encryption on data d using public key PK.
d ← Dec(SK, c) Plaintext d from decryption on ciphertext c using private key SK.
s ← Sign(SK, d) Signature s on data d using private key SK.
c ← Seal(d) Ciphertext c from authenticated encryption on data d with key K.
d ← Unseal(c) Plaintext d from authenticated decryption on ciphertext c with key K.
m ← MAC(k, d) Keyed message authentication code m over data d using key k.
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1. User, Pwd

3. SealedPwd

User OS TrEE

SealedPwd Seal(Pwd)

2. Pwd

Store User, SealedPwd

Fig. 2. User identity installation

5. ProvCred

User OS TrEEProvisioner

4. Mac, Cert, nonceT

1. ProvPwd

7. SealedCred

Verify Mac

Verify Cert and extract PK

Map Cred to PK

M policy || id  || URL 

ProvCred Enc(PK, Cred || M 
|| nonceT)

Cred || M || nonceT Dec(SK, 
ProvCred)

Verify nonceT

Pwd Unseal(SealedPwd)

SealedCred Seal(Cred || M || 
Pwd)

6. ProvCred, 
SealedPwd

Store SealedCred

3. nonceP
Pick random nonceP

Mac 
MAC(ProvPwd, 
Cert || nonceP)

2. nonceT

Fig. 3. Credential provisioning

copyable credentials and delegation tokens are transfered from TS to T. In re-
provisioning phase, using the delegation tokens, T can automatically fetch, or
re-provision, all the non-transferable credentials from the original provisioners
without explicit user authentication towards each provisioner.

Table 1 lists the algorithmic notations used in the protocol description. The
rest of the notations used are explained in the following text.

Identity installation. When the user starts his device for the first time, user
identity should be installed to the TrEE of the device (see Fig. 2).

1. The user is asked to enter a username User and a password Pwd.
2. An operating system level software component forwards Pwd to the TrEE.

Within the TrEE the password is locally sealed.
3. The resulting encryption SealedPwd is stored on the operating system side

together with User.

Operating system level security mechanism, e.g. permission based access con-
trol, is used to enforce that only a trusted software component can perform this
initialization only when the device is taken into use for the first time.

Provisioning. The credential provisioning protocol details may vary between
different credential issuers, but we assume that the basic principles are always
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4. UserS, CertS, 
EncCred / SDT

3. EncCred 
/ SDT

Source  TrEE Source OS Trusted 
Server (TS)

2. CertTS, 
SealedCred, 

Verify CertTS and extract PKTS

Cred || M || PwdS Unseal(SealedCred)

Copyable:

EncCred Enc(PKTS, Cred || M || PwdS)

Non-transferable:

SDT Sign(SKS, PKTS || M) || Enc(PKTS, PwdS || M)

1. CertTS

Store CertS and 
EncCred / SDT for UserS

Fig. 4. Credential backup (transfer from the source device S to the trusted server TS)

the same: each credential provisioning requires both device and user authentica-
tion. Example provisioning is shown in Fig. 3. We assume that the user and the
provisioner share provisioning password ProvPwd from prior out-of-band com-
munication, such as service registration email.

1. The mobile device requests ProvPwd from the user.
2. The TrEE picks a random nonceT and returns that to the operating system

component on the mobile device.
3. Provisioner picks a random nonceP and sends this to the device. An operat-

ing system level software component on the device calculates keyed message
authentication code Mac using ProvPwd. nonceP and the device certificate
Cert is included to the message authentication code to bind the user authen-
tication to the device authentication.

4. The device sends Mac, Cert and nonceT to the provisioner. The provisioner
verifies Mac using previously picked nonceP and ProvPwd. The provisioner
also verifies Cert to make sure that the credential is provisioned to a compli-
ant TrEE. The provisioner stores a mapping between the provisioned creden-
tial Cred and PK. This mapping is later needed for automated
re-provisioning. The provisioner encrypts the provisioned credential Cred,
credential metadata M and nonceT using PK. The credential metadata M
includes migration policy, credential identifier and re-provisioning URL for
non-transferable credentials.

5. The resulting encryption ProvCred is sent to the device.
6. ProvCred is loaded to the TrEE together with SealedPwd. Inside the TrEE,

both of these encryptions can be recovered and Cred is sealed for local stor-
age. The user identity password Pwd is included to the seal to bind the
installed credential to current user identity. The freshness of nonceT is also
verified.

7. The resulting encryption SealedCred is stored on the operating system side.

Credential backup. Credential transfer from the source device S to the trusted
server TS is described in Fig. 4.
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SealedPwd 

Trusted Server (TS)

1. nonce, CertTSPick random nonce

Install ProvCred

Install EncCred

Fig. 5. Credential recovery (transfer from trusted server TS to target device T)

1. The trusted server sends its certificate CertTS to the source device.
2. The source device loads CertTS and each SealedCred to the TrEE. The source

device verifies CertTS inside the TrEE with respect to the pre-installed trust
root to make sure that credentials are transfered only via the trusted server.
The source device unseals each SealedCred and in case of copyable credential
the source device encrypts it using the public key of the trusted server PKTS

which can be extracted from CertTS. The resulting encrypted credential Enc-
Cred includes the user identity password of the source device PwdS. If the
credential is non-transferable a server delegation token SDT is created. This
token contains PKTS and M signed with the private key of the source device
SKS concatenated with source device user identity password PwdS and M
encrypted for the trusted server.

3. Each encrypted credential EncCred and SDT for each non-transferable cre-
dential are returned to the operating system of the source device.

4. The operating system sends these to the trusted server together with user-
name UserS and CertS of the source device. The trusted server stores all
received data items.

Credential recovery. Credential transfer from the trusted server TS to the
target device T is described in Fig. 5. Prior to this, the user identity installation
must be done to T as described before.



Towards User-Friendly Credential Transfer 403

1. The trusted server picks a random nonce and sends this together with the
server certificate CertTS to the target device.

2. The target device loads these to the TrEE with the local SealedPwd. Inside
the target device TrEE CertTS is verified using the pre-installed trust root and
PKTS is extracted from the certificate. The target device creates a password
token PwdToken by encrypting the user identity password of the target device
PwdT, nonce and PKT using the public key of the server PKTS.

3. PwdToken is returned to the target device operating system.
4. The target device sends PwdToken, UserT and CertT to the trusted server. The

trusted server verifies CertT to make sure that the credentials are transfered
only to a compliant TrEE. The server decrypts PwdToken and verifies that
the received nonce matches the one picked earlier and that the public key
PKT inside the password token matches the one in CertT. For each copyable
credential the trusted server does as follows: EncCred received from source
device is decrypted using the private key of the server. The server verifies
that the user identity password PwdT recovered from PwdToken matches
PwdS recovered from EncCred. If this is the case, the target device belongs
to the same user as the source device and the server encrypts the credential
Cred using the public key of the target device PKT. The resulting encryption
is denoted EncCred. For each non-transferable credential the server decrypts
PwdS and M from SDT. The server verifies that PwdT received from the
target device in PwdToken matches PwdS and if this is the case the server
creates a new delegation token DT for the target device. This token includes
a signature over the target device public key PKT and M using the private
key of the server SKTS and the original signature made by the source device
from SDT.

5. The server sends EncCred for each copyable credential, DT for each non-
transferable credential and CertS to the target device.

6. The target device can install (decrypt and locally seal) each EncCred inside
it’s TrEE.

7. Using each received delegation token DT the target device can fetch non-
transferable credentials from the original provisioners. The target device
sends the certificates of all three devices (CertS, CertTS and CertT) and a
delegation token DT to a provisioner of a non-transferable credential. The
URL of the provisioning server can be extracted from the credential meta-
data M. The provisioner verifies these three certificates and checks that DT
has correct signature chain, i.e. the source device has delegated the trusted
server and that the trusted server in turn has delegated the target device.
The delegation token signatures include credential metadata M that includes
credential identifiers. The provisioner checks that these credential identifiers
match PKS (can be extracted from CertS). If all the above mentioned con-
ditions hold true, then the original credential Cred can be provisioned to
the target device without explicit provisioning user authentication and the
provisioner constructs ProvCred packages for the target device.

8. ProvCred is sent to the target device.
9. The target device can install ProvCred as described before.
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4 Requirement Analysis

Based on our requirements the credential transfer should require no additional
user interaction besides the normal mobile device initialization process. Creden-
tial backup can be automated so that credentials are copied from the source
device to the trusted server automatically whenever there is a change in one of
the credentials. Credential recovery can be run automatically after normal de-
vice login operation. Thus, no further user interaction besides the normal login
operation is needed.

The attacker must not be able to read or modify credentials during transfer
(credential secrecy). This is enforced using common public key infrastructure
mechanisms. The credentials are only encrypted to a trusted server or to a
compliant TrEE, and the encryption keys are validated with device certificates
and using trust roots fixed to device TrEEs during manufacturing. Only trusted
code is executed on the trusted server and compliant TrEEs, and trusted code
will not leak credentials outside these trusted environments.

The credentials should be transfered only to a device belonging to the same
user that the credentials were originally provisioned to (credential fidelity). This
is enforced with a password, and thus meeting this requirement relies on the
assumption that the attacker will not learn (or be able to guess) the correct
password, even if he manages to compromise the operating system on the source
or target device after device initialization process. User chosen and memorizable
password have well known security issues, most notably vulnerability to offline
dictionary attacks and phishing. In our protocol the password enforcement is
done on the trusted on-line server, and thus common dictionary attack preven-
tion techniques, such as throttling, can be applied. Our approach relies on the
assumption that the user enters the password only to a trustworthy device ini-
tialization software on the device when the device is booted for the first time. If
the user enters the password to any other (possible malicious) software on the
device the attacker can learn the password.

Operating system level enforcement mechanisms is used to ensure that a ma-
licious application will not replace the already installed user identity. If the
attacker manages to compromise the source device operating system, he may
replace currently installed user identity password with a freely chosen one and
all the credentials provisioned after the operating system compromise will be
bound to the attacker chosen password. As a result the attacker may transfer
such credentials to his device. This limitation of the solution is acceptable, since
an attacker that is able compromise the operating system can act as a man-in-
the-middle in original provisioning protocol and direct credential provisioning to
a compliant attacker device anyway.

5 Protocol Validation

We have validated (the core subset of) our credential transfer protocol using
AVISPA [26]. AVISPA is an automated security protocol validation tool. Se-
curity protocols are modeled using High-Level Protocol Specification Language
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(HLPSL) and the tool automatically translates such protocol models into an
equivalent infinite state transition system that is then input to validation back-
ends. The validation back-ends search the transition system for states that rep-
resent attacks, i.e. states and properties defined in terms of HLPSL. All the
back-ends analyze protocols by considering the Dolev-Yao model [8] of an active
adversary that controls the network but cannot break cryptography.

We have modeled the credential transfer protocol described in the this pa-
per with the following two restrictions. First, our current model only addresses
copyable credentials. Second, our current model does not cover operations that
involve user interaction, i.e. user identity installation and provisioning. Instead
we make the simplifying assumptions that (1) the user identity password has
already been securely installed to the TrEE of the source device (assuming trust
on first use), (2) the credential has already been provisioned to the TrEE of
the source device, and (3) the same user identity password has securely been
installed to the TrEE of the target device (again, trust on first use). Appendix A
shows listing of the protocol validation model in HSPSL. We see that extending
the model to cover the migration policy of non-transferable credentials is fairly
straightforward. Modeling user identity installation and provisioning, i.e. oper-
ations that involve user interaction, pose more challenges, especially under our
assumptions and threat model.

In our protocol model each entity is described as a separate role. Each role
has a set of input parameters (e.g., other roles to communicate with, and keys
and other data used within that role). The roles communicate over channels that
the adversary can fully control. The roles are combined into a session construct,
and sessions can be instantiated with constant parameters that e.g. define the
keys that each role will use in that session.

HLPSL offers two mechanisms for modeling security requirements. Declara-
tion secret(d, id, r) defines a security goal with identifier id that defines
that data d should remain secret between set of roles r. Typically, authentica-
tion security requirements are modeled with witness and request declarations.
For our simplified credential transfer model, both security requirements (SR1
and SR2) can be defined in one security goal sr. Declaration secret(Cred, sr,
{SourceTree, Server, TargetTree}) at the end of role SourceTree defines
that the transfered credential Cred should remain secret between the TrEE of
the source device, the trusted server and the TrEE of the target device. Since
the credential is not revealed to other parties, SR1 is met. Since the credential
is not transferred to TrEE of any other compliant device, SR2 is met. We model
our attacker model so that the adversary plays role of role TargetTree with
the knowledge of matching certified key pair. The correct user identity password
pwd is not given to target device TrEE played by the adversary.

We have successfully validated our protocol model with three ASVISPA back-
ends (OFMC, CL-AtSe and SATMC). The validation of the model can be easily
re-produced from the AVISPA tool web interface.1

1 http://www.avispa-project.org/web-interface/

http://www.avispa-project.org/web-interface/
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6 Discussion

In our credential transfer protocol the user authentication is based on a pass-
word that is installed after the first boot (“trust on first use” approach). This
solution meets our security requirements, provides nice user experience (assum-
ing integration to normal device initialization process), and can be implemented
with commodity devices available today. The drawbacks of this approach are
vulnerability to phishing and the fact that the server has to be fully trusted.

Alternatively, the user authentication could be based on a full-length key that
would is installed to the TrEE after first boot and copied e.g. to a removable
memory card. First part of the key would be used for encrypting the credentials
for the server and second part would be user for user authentication. Such an
approach would not have the problem of phishing and would not require fully
trusted server. The drawbacks of this approach would be inconvenient user inter-
action model, since the memory card would have to be removed from the device
after first boot to prevent the secret leaking to the OS that may get compromised
later. In practice the user would need a dedicated memory card for credential
transfer.

Another approach would be to rely on availability of “trusted user inter-
face” [9]. Such an approach would maintain the user interaction model of our so-
lution. Additionally provisioning user authentication could be TrEE-based, and
since the TrEE could reliably distinguish between user and application provided
input, a malicious application could not replace the already installed password,
and the attacker could not fool the system into transferring credentials provi-
sioned after the device OS compromise into an unauthorized device. Trusted
user interface would make phishing more difficult as well, although studies have
shown that users tend to ignore security most indicators [20]. In practice, despite
of promising research prototypes [23], TrEEs on existing mobiles do not support
such trusted user interfaces.

Another alternative would be to use a “trusted external interface”. Near Field
Communication (NFC) enabled mobile devices are currently becoming increas-
ingly popular [11] and due to many security-related NFC use cases device manu-
facturers are integrating NFC chips to device TrEEs. If such an interface would
be available, credential transfer could be based on demonstrative identification
[2], i.e. the user would touch and the target device with the source device, and
the source device could transfer (and delegate) credentials directly to the target
device. In practice, such devices are not yet widely available.

Finally, on mobile devices, a natural approach would be to use presence of
the correct UICC for credential transfer authentication. During first boot, UICC
identifier could be installed to the TrEE and that could be bound to all provi-
sioned credentials. The target device could prove the presence of the same UICC
to the trusted server e.g. using Generic Bootstrapping Architecture [12]. Such
an approach would require no additional user interaction besides normal device
switch operations. The drawback would be that such an approach would no
meet our security model. Since UICCs are not securely integrated to TrEEs, a
compromised OS could direct credential transfer to an unauthorized device.
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Table 2. Comparison of user authentication alternatives for credential transfer

user
authentication
mechanism

vulnerability to
OS compromise

vulnerabil-
ity to
phishing

extra user
interaction

requires fully
trusted server

device
available
today

trust on first use no * vulnerable no yes yes

trust on first use
(memory card)

no * no yes no yes

trusted user
interface

no less
vulnerable

no yes no

trusted external
interface

no no yes (touch) no no

UICC presence yes no no yes yes

*) Subject to the assumption of OS not being compromised during first use.

We summarize key properties of above discussed user authentication alterna-
tives in Table 2.

In this paper we have addressed two credential migration policies: copyable
and non-transferable credentials. A third natural migration policy would be
“movable credentials”, i.e. credentials that are allowed to exist in one (or pre-
defined number of) compliant TrEEs at the same time. The notable difference
to copyable credentials is that credential deletion or disabling from the source
device should be possible. Deleting or disabling credentials from a TrEE requires
replay-protection support from the TrEE hardware, e.g. in the form of mono-
tonic secure counter or non-volatile secure memory. Many existing TrEEs on
mobile device do not provide such support (see e.g. [21] for rationale), and thus
enforcement of movable credential migration policies must be done on the in-
frastructure back-end. Additionally, in many cases the credential issuers want
to control credential migration even tough the end user devices would support
replay protection.

Defining movable credentials as non-transferable, and thus mandating explicit
re-provisioning, is one way to allow the credential provisioner to control the num-
ber of the devices to which the credential can be moved. Alternatively, such mi-
gration control could be implemented on the infrastructure back-end by verifying
device identity during on-line credential usage. The drawback of such approach
is that it requires changes to the actual credential usage protocols. Our approach
allows the credential issuers to control credential replication by the means of ex-
plicit re-provisioning, which requires changes only to credential provisioning but
not the credential usage protocols.

7 Related Work

Credential transfer between TrEEs has been studied primarily in the context
of Trusted Platform Modules (TPMs). The TPM specifications define key mi-
gration commands [25]. When a new TPM based key is created, the calling
application may define a migration password. The key may be migrated only by
applications that know this password. The TPM specifications also define con-
cepts of Migration Authority (MA) and Migration Selection Authority (MSA)
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[25] that in principle can control to which devices TPM credentials are migrated
to. The specification do not, however, define how user binding is done for such
credential migration.

Several extensions and improvements have been proposed to TPM migration
commands. [10] presents a protocol for migrating of TPM-based web authenti-
cation credentials using existing TPM commands. [15] proposes extensions to
TPM commands. In [5] and [19] credential migration is studied in the context
of digital rights management. [3] describes a mechanism for TPM virtualiza-
tion and how such virtual TPMs could be migrated from one device to another.
Property-based TPM virtualization and migration is described in [18]. Migration
of Mobile Trusted Modules (MTM) is described in [22]. Temporary disabling of
TrEE-based credentials on mobile devices has been studied in [13]. However,
none of these works address the problem we are interested in, i.e. user-friendly
re-provisioning of non-transferable credentials and secure user binding to prevent
credentials from being transfered to a compliant but incorrect TrEE.

Our approach requires a fully trusted server. Boyen has proposed a scheme to
protect credentials on a server with a single user memorizable password that is
used for both access authentication and encryption in a way that the password is
not revealed to the server during access authentication [4]. The untrusted server
cannot recover password-encrypted credentials assuming the the credentials do
not have recognizable structure, and thus brute force attacks against password-
encrypted credentials are not possible. This assumption would not, however,
hold true for the credential platforms we are addressing [14,6], since the creden-
tials do have recognizable structure needed e.g. for TrEE-internal access control
enforcement (and TrEE-external credential metadata).

8 Summary

In this paper we have addressed the problem of credential transfer between
TrEEs on mobile devices. Credential transfer is challenging assuming an open
credential provisioning model in which each credential issuer has its own user
authentication domain and migration policies. Additionally, the lack of secure
user input mechanisms in existing TrEEs make credential transfer challenging.
The contribution of this paper is a novel and practical credential transfer protocol
that requires minimal user interaction and can be implemented using commodity
devices available today.
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A HLPSL Protocol Model

role role_SourceTree(SourceTree, SourceOs, Server, TargetTree : agent,
SourceSealKey, Pwd : symmetric_key,
PKSource, PKServerCA : public_key,
SND, RCV : channel(dy))

played_by SourceTree def=
local

State : nat,
SealedPwd, SealedCred : message,
Cred : text,
PKServer : public_key

init
State := 0

transition
1. State=0 /\ RCV(start) =|>

State’:=1 /\ Cred’ := new() /\
SND(SourceTree.SourceOs.{Cred’.Pwd}_SourceSealKey)

2. State=1 /\ RCV(SourceOs.SourceTree.{PKServer’}_inv(PKServerCA).
{Cred’.Pwd’}_SourceSealKey) =|>

State’:=2 /\ SND(SourceTree.SourceOs.{Cred’.Pwd’}_PKServer’) /\
secret(Cred, sr, {SourceTree, Server, TargetTree})

end role

role role_SourceOs(SourceOs, SourceTree, Server : agent,
PKSource, PKDevCA : public_key,
SND, RCV : channel(dy))

played_by SourceOs def=
local

State : nat,
SealedCred, ServerCert, SourceCert, EncCred : message

init
State := 0

transition
1. State=0 /\ RCV(SourceTree.SourceOs.SealedCred’) =|>

State’:=1
2. State=1 /\ RCV(Server.SourceOs.ServerCert’) =|>

State’:=2 /\ SND(SourceOs.SourceTree.ServerCert’.SealedCred)
3. State=2 /\ RCV(SourceTree.SourceOs.EncCred’) =|>

State’:=3 /\ SND(SourceOs.Server.EncCred’.SourceCert)
end role

role role_Server(Server, SourceOs, TargetOs : agent,
PKServer, PKDevCA, PKServerCA : public_key,
SND, RCV : channel(dy))

http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
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played_by Server def=
local

State : nat,
Cred, Nonce : text,
Pwd : symmetric_key,
PKSource, PKTarget : public_key,
EncCred : message

init
State := 0

transition
1. State=0 /\ RCV(start) =|>

State’:=1 /\ SND(Server.SourceOs.{PKServer}_inv(PKServerCA))
2. State=1 /\ RCV(Server.SourceOs.{Cred’.Pwd’}_PKServer.

{PKSource’}_inv(PKDevCA)) =|>
State’:=2 /\ Nonce’:= new() /\
SND(Server.TargetOs.Nonce’.{PKServer}_inv(PKServerCA))

3. State=2 /\ RCV(TargetOs.Server.{Pwd.Nonce.PKTarget’}_PKServer.
{PKTarget’}_inv(PKDevCA) ) =|>

State’:=3 /\ EncCred’ := {Cred.Pwd}_PKTarget’ /\
SND(Server.TargetOs.EncCred’)

end role

role role_TargetOs(TargetOs, TargetTree, Server : agent,
PKTarget, PKDevCA : public_key,
SND, RCV : channel(dy))

played_by TargetOs def=
local

State : nat,
Nonce : text,
SealedPwd, ServerCert, PwdToken, EncCred : message

init
State := 0

transition
1. State=0 /\ RCV(TargetTree.TargetOs.SealedPwd’) =|>

State’:=1
2. State=1 /\ RCV(Server.TargetOs.Nonce’.ServerCert’) =|>

State’:=2 /\ SND(TargetOs.TargetTree.Nonce’.ServerCert’.SealedPwd)
3. State=2 /\ RCV(TargetTree.TargetOs.PwdToken’) =|>

State’:=3 /\ SND(TargetOs.Server.PwdToken’.{PKTarget}_inv(PKDevCA))
4. State=3 /\ RCV(Server.TargetOs.EncCred’) =|>

State’:=4 /\ SND(TargetOs.TargetTree.EncCred’)
end role

role role_TargetTree(TargetTree, TargetOs, SourceTree : agent,
TargetSealKey, Pwd : symmetric_key,
PKTarget, PKServerCA : public_key,
SND,RCV : channel(dy))

played_by TargetTree def=
local

State : nat,
Nonce, Cred : text,
PKServer : public_key

init
State := 0

transition
1. State=0 /\ RCV(start) =|>

State’:=1 /\ SND(TargetTree.TargetOs.{Pwd}_TargetSealKey)
2. State=1 /\ RCV(TargetOs.TargetTree.Nonce’.{PKServer’}_inv(PKServerCA).

{Pwd’}_TargetSealKey) =|>
State’:=2 /\ SND(TargetTree.TargetOs.{Pwd’.Nonce’.PKTarget}_PKServer’)

3. State=2 /\ RCV(TargetOs.TargetTree.{Cred’.Pwd’}_PKTarget) =|>
State’:=3

end role

role session(Provisioner, SourceOs, SourceTree, Server : agent,
TargetOs, TargetTree : agent,
PKSource, PKTarget, PKServer : public_key,
PKDevCA, PKServerCA : public_key,
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SourceSealKey, TargetSealKey : symmetric_key,
SourcePwd, TargetPwd : symmetric_key)

def=
local

SND1, RCV1, SND2, RCV2, SND3, RCV3,
SND4, RCV4, SND5, RCV5 : channel(dy)

composition
role_SourceTree(SourceTree, SourceOs, Server,

TargetTree, SourceSealKey, SourcePwd, PKSource,
PKServerCA, SND1, RCV1) /\

role_SourceOs(SourceOs, SourceTree, Server,
PKSource, PKDevCA, SND2, RCV2) /\

role_Server(Server, SourceOs, TargetOs, PKServer,
PKDevCA, PKServerCA, SND3, RCV3) /\

role_TargetOs(TargetOs, TargetTree, Server,
PKTarget, PKDevCA, SND4, RCV4) /\

role_TargetTree(TargetTree, TargetOs, SourceTree,
TargetSealKey, TargetPwd, PKTarget, PKServerCA, SND5, RCV5)

end role

role environment()
def=
const

provisioner, sourceos, sourcetree, server, targetos, targettree : agent,
pksource, pktarget, pki, pkserver, pkdevca, pkserverca : public_key,

sourcesealkey, targetsealkey, isealkey, pwd, pwdi : symmetric_key,
sr : protocol_id

intruder_knowledge = {provisioner, sourceos, sourcetree, server,
targetos, targettree, pksource, pktarget,
pki, inv(pki), pkdevca, pkserverca}

composition
session(provisioner, sourceos, sourcetree, server, targetos, i,

pksource, pki, pkserver, pkdevca, pkserverca,
sourcesealkey, isealkey, pwd, pwi)

end role

goal
secrecy_of sr

end goal

environment()
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Abstract. While standard signatures provide an efficient mechanism for
information certification, the lack of privacy protecting measures makes
them unsuitable if sensitive or confidential information is being certified.
In this paper, we revisit nominative signatures, first introduced by Kim,
Park and Won, which provides the functionality and security guarantees
required to implement a certification system allowing the user (and not
the authority) to control the verifiability of an obtained certificate. Un-
like systems based on related primitives, the use of nominative signatures
protects the user against authority information leaks and impersonation
attacks based on these. We refine the security model of nominative sig-
natures, and propose a new efficient scheme which is provably secure
based on the computational Diffie-Hellman problem and the decisional
linear problem. To the best of our knowledge, this is the first nomina-
tive signature scheme which is provably secure in the standard model.
Furthermore, unlike the previous schemes, the proposed scheme provides
signatures which hide both the signer and user identity. Hence, through
our nominative signature scheme, we achieve an efficient non-transferable
user certification scheme with strong security guarantees.

Keywords: user certification, nominative signatures, standard model.

1 Introduction

Information certification plays an important role in many practical information
systems. While basic certification is easily achieved by the use of a standard
signature scheme, this solution might not be desirable in many scenarios due to
the lack of any privacy protecting measures. More specifically, if the information
being certified is of a sensitive or confidential nature, the user obtaining the
certificate will often be interested in restricting the verifiability of the certificate
to ensure that only the intended verifiers will be able to verify the authenticity of
the information in question. Due to the public verifiability of ordinary signatures,
this property is not achieved when using a standard signature scheme.

However, a number of different signature primitives which provide control of
verifiability have been proposed in the literature. The first type of such schemes
was introduced by Chaum and Van Antwerpen with their proposal of undeniable
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signatures [7]. In an undeniable signature scheme, a verifier will have to interact
with the signer to confirm the validity or invalidity of a signature, which allows
the signer to control who can verify his signatures. While the functionality of
undeniable signatures is not suited for certification, Kim, Park and Won [11] later
introduced nominative signatures which they refer to as a “dual” to undeniable
signatures. In this type of scheme, the recipient of a signature, and not the signer,
is able to show validity or invalidity to a third party verifier. More specifically, a
nominative signature scheme allows a signer (referred to as the nominator)1 and
a recipient (referred to as the nominee) to jointly create a signature σ which can
only be verified by the nominee.2 Furthermore, the nominee can interact with any
verifier to show either validity or invalidity of a signature, but without allowing
the verifier to transfer this knowledge to a third party.

Nominative signatures are closely related to designated confirmer signatures
(DCS) introduced by Chaum [6], universal designated verifier signatures (UDVS)
introduced by Steinfeld et al. [17], and the universal designated verifier signature
proofs (UDVSP) by Baek et al. [1]. However, unlike these schemes, nominative
signatures guarantee that (1) a signer cannot construct a signature associated
with a nominee without the consent of the nominee, and (2) no information
leaked from the signer will reveal the validity or invalidity of a signature. These
properties translate into strong security guarantees for the nominee against in-
formation leaks or impersonation attacks based on these, and make nominative
signatures well suited for certification of confidential information (this applica-
tion was also the main motivation of UDVS [17]). To illustrate the advantages
of nominative signatures for this purpose, consider the following scenario:

A patient at a hospital is diagnosed with a serious form of illness. The patient
would like to keep the information about his illness private, but will at the same
time have to prove that he has been diagnosed with his illness to gain access to
various kinds of treatments or to be able to buy certain types of medical drugs.
To address this problem, it is possible to make use of a DCS scheme which will
allow an entity called the confirmer, to prove validity or invalidity of a signature
on behalf of the signer. Hence, in this scenario, the hospital could act as a signer
and issue a designated confirmer signature on the patient’s diagnose, using the
patient as a confirmer. This would allow the patient to prove to any third party
that his diagnose is authentic. However, this approach requires the patient to
place a large amount of trust in the hospital. Specifically, the patient cannot be
guaranteed that rogue elements within the hospital will not, unintentionally or
maliciously, leak information which will make the designated confirmer signature
verifiable by unintended verifiers.

Alternatively, a UDVS or a UDVSP scheme might be used. In these schemes,
the signer produces an ordinary (publicly verifiable) signature σ which is given
to the recipient. In the former type of scheme, the recipient will use the public
key of a verifier to convert σ to a designated signature which is only verifiable by
the chosen verifier, and in the latter type of scheme, the recipient will be able to

1 To avoid confusion, we will keep using the term signer.
2 In this paper, we focus on schemes providing non-interactive signature generation.
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interact with a verifier and prove that he holds σ and that σ is valid. However,
applying these types of schemes in the above scenario will still leave the patient
with concerns about information leakage from the hospital. In particular, σ might
be leaked. Since both patient and hospital hold σ, a leak cannot be traced to
either party, making it difficult to place responsibility (note that a malicious
patient might try to frame the hospital to obtain compensation). Furthermore,
since the conversion of a signature in a UDVS scheme and the proof of possession
in a UDVSP scheme are not tied to the recipient to which σ is given, it might be
a concern that rogue elements within the hospital will impersonate the patient
to outside verifiers i.e. a verifier cannot tell whether the entity proving validity of
a converted signature or possession of σ was in fact the intended recipient of σ.
Lastly, we note that neither UDVS nor UDVSP schemes leave the verifier with
any evidence of a transaction. For example, it might be questioned whether a
drug supplier has been supplying drugs without confirmation of patients’ needs
for the drug. In this case, it cannot be confirmed that any converted signature
held by the supplier is valid or not if a UDVS scheme is used, or that any
transcripts of the interaction between the patient and the supplier were generated
by the supplier himself, if a UDVSP is used. This issue does not occur if a DCS
scheme (or nominative signature scheme) is used, since the supplier would obtain
a designated confirmer signature which the patient (i.e. the confirmer) would be
able to prove either valid or invalid to any third party.

The security properties of nominative signatures will eliminate the above men-
tioned security concerns regarding information leak, impersonation and denia-
bility which might arise when using a DCS, UDVS or UDVSP scheme.

A different approach, which is not mentioned above, is to make use of an
anonymous credential system [5]. This will allow the hospital to issue a cre-
dential to the patient for the given illness, and the patient will then have the
ability to prove possession of this credential to a verifier. Furthermore, even if
the verifier and the hospital collude, they will not be able to identify the patient
when he proves possession of his credential. While this provides a stronger pri-
vacy guarantee than the above mentioned schemes (full anonymity as opposed
to non-transferability), there might be concerns somewhat similar to the ones
present when a UDVSP scheme is used i.e. a verifier might not be able to check
whether a credential was issued to a legitimate patient or created by rogue ele-
ments within the hospital, and verifiers furthermore do not obtain any evidence
of a transaction. When using a nominative signature scheme, only the patient
can complete an execution of the confirm (or disavow) protocol involving his own
public key, and if the system relies on public key certification, even an imperson-
ation attack involving a malicious certificate authority generating a certificate
binding a patient’s identity to a public key of another malicious party can be
detected by the presence of either two public key certificates for a legitimate
patient or a public key certificate for a non-existing patient. In other words,
while nominative signatures are non-transferable and not fully anonymous, they
provide undeniable certificates and a high level of security against impersonation
attacks, even when the system authorities are implicitly or explicitly involved.
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Related Work. As mentioned above, nominative signatures were first proposed by
Kim, Park and Won [11]. However, Huang and Wang [10] showed that the scheme
presented in [11] is vulnerable to a malicious signer trying to determine the
validity of a signature and to prove validity to a third party without the consent
of the nominee. While a new scheme, which additionally supports conversion of
nominative signatures into ordinary signatures, is proposed in [10], similar types
of vulnerabilities were identified in the new scheme (see [18,19,12]).

The first provably secure scheme was proposed by Liu et al. [14] and was soon
followed by another scheme by Liu et al. [13]. However, the invisibility definition
used by [14] and [13] does not model the property that the signer will take part
in the generation of all valid signatures (in fact, it is fairly easy to see that
[14] allows the signer to recognize all signatures which he has been involved in
generating). Furthermore, the signature space in which valid signatures cannot
be distinguished from invalid ones, cannot be sampled by third party verifiers,
which results in a very limited non-transferability guarantee (see Section 4 for
discussion of the implications of this).

Huang et al. [9] introduced a stronger invisibility definition addressing the
issue regarding modeling of the signer, and proposed a new provably secure
scheme. Zhao et al. [21] adopted a similar security model, and proposed a more
efficient and convertible scheme. The invisibility of both schemes is shown with
respect to a signature space which can be sampled without knowledge of any
secrets, but is still restricted compared to the full signature space of the schemes.
As a consequence, the schemes do not provide signature anonymity i.e. given a
valid signature, the identity of the signer and nominee do not remain hidden.
Lastly we note that despite the claims made in [21], the scheme in [21] does
not provide basic invisibility3, which leaves [9] as the only nominative signature
scheme which provably satisfies a reasonable level of security.

Our Contribution. In this paper, we present a somewhat stronger and arguably
more simple security model for nominative signatures allowing conversion, and
then propose a new efficient scheme. To the best of our knowledge, our proposed
scheme is the first to be provably secure in the standard model, and unlike the
previous schemes, our scheme provides signature which hides the identity of both
signer and nominee. The security of our scheme rests on the computational Diffie-
Hellman problem and the decisional linear problem, and, like the random-oracle
model scheme in [9], our signatures consist of four group elements.

3 The public/private key pairs of the signer and nominee in the scheme in [21] are given
by (pkS, skS) = (gxS , xS) and (pkN , skN) = (gxN , xN), respectively, and a nomina-

tive signature on a message m is given by (σ1, σ2) = (H(m||pkS||pkN )xSx2
N , gxSxN ).

Hence, an adversary with the knowledge of a valid signature (σ1, σ2) on a random
message m, will be able to determine if a challenge signature (σ∗

1 , σ∗
2) on a message m∗

is valid or not by verifying that e(g, σ∗
2) = e(pkS, pkN) and e(H(m||pkS||pkN ), σ∗

1) =
e(σ1, H(m∗||pkS ||pkN )), where e is the bilinear map. The first equation ensures that

σ∗
2 = gxSxN , and since the adversary knows that σ1 = H(m||pkS||pkN )xSx2

N , the

second equation ensures that σ∗
1 = H(m∗||pkS||pkN )xSx2

N .
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2 Preliminaries

Notation. We use the notation m1||m2 to mean the concatenation of the strings
m1 and m2, and assume that m1 and m2 can be uniquely recovered from m1||m2.
For a value p, we use |p|2 to denote the bit-length of p. For a variable x and a
value y, we write x ← y to mean that x is assigned the value y, and for a set
Y , we write x ← Y to mean that x is assign an element of Y chosen uniformly
at random. By x← AO(y) we mean that the algorithm A is executed on input
y while being allowed to make queries to the oracle O, and that the output
of A is assigned to x. For a pair of interactive algorithms, A and V , we write
z ←2 {A(x1)↔ V (x2)}(y) to mean that A and V interact with common input
y and private inputs x1 and x2 to A and V , respectively, and that the output of
V , upon the completion of the interaction, is assigned to the variable z. Lastly,
we will use the abbreviation PPT algorithm to mean a probabilistic polynomial
time algorithm.

Negligible function. A function ε : N → [0, 1] is said to be negligible if for all
c > 0 there exists an nc such that for all n > nc ε(n) < 1/nc.

Computational assumptions. In the security proof of our concrete construction
of a nominative signature scheme, we will make use of the discrete logarithm
problem and the decisional linear problem, which will be defined below.

For a group G of prime order p, we define the advantage of an algorithm A
in solving the discrete logarithm problem as

AdvDLG,A = Pr[g, h← G; x← A(G, g, h) : gx = h]

Definition 1. The discrete logarithm problem in G is said to be hard if all PPT
algorithms A will have advantage AdvDL

G,A which is negligible in |p|2.

For a group G of prime order p, we define the advantage of an algorithm A in
solving the decisional linear problem as

Adv
DLIN
G,A = |Pr[A(g, x1, x2, x

y1
1 , xy2

2 , gy1+y2) = 1]−Pr[A(g, x1, x2, x
y1
1 , xy2

2 , gz) = 1]|

where g, x1, x2 ← G and y1, y2, z ← Zp.

Definition 2. The decisional linear problem in G is said to be hard if all PPT
algorithms A will have advantage AdvDLIN

G,A which is negligible in |p|2.

Signatures. A standard signature scheme is given by the following four algo-
rithms: Setup which takes as input a security parameter 1k, and returns a set of
public parameters par; KG which takes as input par, and returns a public/private
key pair (pk, sk); Sign which takes as input par, a private key sk and a message
m, and returns a signature σ; and Ver which takes as input par, a public key
pk, a message m and a signature σ, and returns " if σ is a valid signature on m
under the public key pk or ⊥ otherwise. It is required for all par ← Setup(1k),
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all (pk, sk) ← KG(par), and all messages m, that if σ ← Sign(par, sk, m), then
Ver(par, pk, m, σ) = ".

The standard security requirement for signatures is weak unforgeability against
a chosen message attack (wuf-cma), which is defined as follows: Let the advan-
tage of a wuf-cma adversary A against a signature scheme S be given by

Advwuf-cmaS,A = Pr[par← Setup(1k); (pk, sk)← KG(par);

(m∗, σ∗)← AOsig (par, pk) : m∗ �∈ {m1, . . . , mq}∧
Ver(par, pk, m∗, σ∗) = "]

where Osig is a signing oracle which given mi returns σi ← Sign(par, sk, mi).

Definition 3. A signature scheme S is said to be wuf-cma secure if all PPT
adversaries A will have advantage Advwuf-cmaS,A negligible in k.

We now recall the signature scheme by Waters [20]. This scheme will play an
important role in both the construction and proof of security of our concrete
nominative signature scheme.

– Setup: Pick a group G of primer order p and equipped with a bilinear map e :
G×G→ GT . Furthermore, pick generator g of G and return the parameters
par← (G, p, g, e).

– KG : Given par, pick α ← Zp and h ← G, and set g′ ← gα. Further-
more, pick u0, . . . , un ← G, and for a message m ∈ {0, 1}n, define F (m) =
u0

∏n
i=1 umi

i where mi is the ith bit of m. Finally set the public key to
pk ← (g′, h, u0, . . . , un) and the private key to sk← α. Return (pk, sk).

– Sign : Given input (par, sk, m), where sk = α, pick r ← Zp, compute
σ1 ← gr and σ2 ← hαF (m)r, and return the signature σ = (σ1, σ2).

– Ver : Given par, a public key pk = (g′, h, u0, . . . , un), a message m and a
signature σ = (σ1, σ2), return accept if e(g, σ2) = e(g′, h)e(σ1, F (m)).

In [20], the above signature scheme is shown to be wuf-cma secure given that
the computational Diffie-Hellman problem is hard in G.

3 Nominative Signatures

A nominative signature scheme involves a signer S and a nominee N , and is
given by the algorithms described below. We consider a non-interactive scheme
in which signature generation only involves the signer sending the nominee
a single signature generation message. This allows the signer to be used off-
line which is preferable when a high level of security is required. Furthermore,
like [10,21], our description allows a nominee to selectively convert a nomi-
native signature into a publicly verifiable signature by releasing a verification
token.
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– Setup: given a security parameter 1k, this algorithm returns a set of public
parameters par.

– KeyGenS , KeyGenN : given par, these algorithms return a public/private signer
and nominee key pair, (pkS , skS) and (pkN , skN ), respectively.

– Sign: given par, pkN , a message m, and skS , this algorithm returns a sig-
nature generation message δ.

– Receive: given par, pkS , m, a signature generation message δ, and skN , this
algorithm returns a nominative signature σ on m.

– Convert: given par, pkS , m, σ, and skN , this algorithms returns a verification
token tkσ.

– TkVerify: given par, pkS , pkN , m, σ, and tkσ, this algorithm returns either
accept or reject.

– (Confirm, VC): this is a pair of interactive algorithms with common input
(par, pkS , pkN , m, σ). The algorithm Confirm is furthermore given skN as
private input. At the end of the interaction, VC will either output accept or
reject.

– (Disavow, VD): like in the confirm protocol, this is a pair of interactive algo-
rithms with the common input (par, pkS , pkN , m, σ), and Disavow is given
skN as private input. At the end of the interaction, VD will either output
accept or reject.

Using the above defined algorithms, a nominee can check the validity of any
signature by firstly creating a verification token using Convert, and then verify
the validity using TkVerify. To simplify notation, we introduce an algorithm
Valid which performs these two steps:

– Valid: given (par, pkS , pkN , m, σ, skN ), this algorithm computes the verifi-
cation token tkσ ← Convert(par, pkS , m, σ, skN ) and returns the output of
TkVerify(par, pkS , pkN , m, σ, tkσ).

Correctness. A nominative signature scheme is required to be correct i.e. for all
public parameters par ← Setup(1k), all signer and nominee key pairs
(pkS , skS) ← KeyGenS(par) and (pkN , skN ) ← KeyGenN (par), all messages m
and all signatures σ ← Receive(par, pkS , m, Sign(par, pkN , m, skS), skN ), it is
required that Valid(par, pkS , pkN , m, σ, skN ) = accept and that the interaction
z ←2 {Confirm(skN ) ↔ VC}(par, pkS , pkN , m, σ) yields z = accept. Further-
more, for all message/signature pairs (m′, σ′) such that Valid(par, pkS , pkN , m,
σ, skN ) = reject, we require that z′ ←2 {Disavow(skN ) ↔ VD}(par, pkS , pkN ,
m, σ) yields z′ = accept.

4 Security Model

For a nominative signature scheme to be secure, we require that the scheme is un-
forgeable, provides security against malicious signers and is invisible. Addition-
ally, we require the confirm and disavow protocols to be zero-knowledge proofs.
In the following, we will formally define these security requirements. Lastly, we
will introduce key registration, which is required in our proof of security of our
concrete construction of a nominative signature scheme.
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Expuf-cmaNS,A(1k)

LS ← {}
par ← Setup(1k)
(pkS, skS) ← KeyGenS(par)
(pk∗

N , m∗, σ∗, tk∗
σ, st) ← AO(par, pkS)

z ←2 {A(st) ↔ VC(par, pkS, pk∗
N , m∗, σ∗)}

z′ ← TkVerify(par, pk∗
S, pkN , m∗, σ∗, tk∗

σ)
if (pk∗

N , m∗) �∈ LS ∧ (z = accept ∨ z′ = accept)
output 1

else output 0

Fig. 1. Unforgeability security experiment

4.1 Unforgeability

Informally, unforgeability requires that valid signatures can only be obtained by
interacting with the signer i.e. a malicious nominee should not be able to produce
a signature on a message m, and then convince a verifier that the signature is
valid, either by running the confirm protocol or by presenting a verification token,
without having requested a signature on m from the signer. The definition given
below is slightly stronger than the definitions from [9,21] in that the adversary
(and not the challenger) generates the challenge public nominee key and is only
required to convince an honest verifier about the validity of a forgery as opposed
to produce a forgery which will be accepted as valid by someone holding the
private nominee key. Note also that the inability of a malicious nominee to
produce an accepting signature and verification token pair for a message m
which was not submitted to the signer in a signature generation query, is not
captured by the security models in [21] ([9] does not consider conversion). Lastly
note that while [9,21] consider malicious behavior of the signer as part of their
unforgeability definition, we cover these aspects in our definition of security
against malicious signers.

Formally, we define unforgeability against a chosen message attack (uf-cma)
of a nominative signature scheme NS via the experiment Expuf-cmaNS,A shown in
Figure 1. In the experiment, A has access to the oracle O = {OSign} defined as
follows:

– OSign: given (pkN , m), this oracle computes δ ← Sign(par, pkN , m, skS),
adds (pkN , m) to LS, and returns the signature generation message δ to A.

Definition 4. A nominative signature scheme NS is said to be uf-cma secure
if all PPT adversaries A have advantage Advuf-cmaNS,A = Pr[Expuf-cmaNS,A (1k) = 1] which
is negligible in k.

4.2 Security against Malicious Signers

Our definition of security against malicious signers is relatively strong, and re-
quires that not even an adversary with the knowledge of the private signer key
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Exp
mal-sig

NS,A (1k)

LR ← {}; LC ← {}
par ← Setup(1k)
(pkN , skN) ← KeyGenN (par)
(pk∗

S, m∗, σ∗, tk∗
σ, st) ← AO(par, pkN)

z ← Valid(par, pk∗
S, pkN , m∗, σ∗, skN)

z′ ← TkVerify(par, pk∗
S, pkN , m∗, σ∗, tk∗

σ)
if z = accept

z′′ ←2 {A(st) ↔ VC(par, pk∗
S, pkN , m∗, σ∗)}

else
z′′ ←2 {A(st) ↔ VD(par, pk∗

S, pkN , m∗, σ∗)}
if (z = accept ∧ (pk∗

S, m∗, σ∗) �∈ LR)∨
(z′ = accept ∧ (pk∗

S, m∗, σ∗) �∈ LC)∨
(z′′ = accept)
output 1

else output 0

Fig. 2. Malicious signer security experiment

can (1) produce a new valid nominative signature associated to the nominee,
(2) convince a verifier about the validity or invalidity of a signature through the
confirm or disavow protocols, regardless of the signature being valid or not, or
(3) produce an accepting verification token for a signature he has not previously
seen a verification token for. Our definition implies security against a malicious
signer as defined as part of the unforgeability and non-impersonation definitions
of [9,21], as well as the token non-impersonation definition of [21]. Note that un-
like [9,21], we do not restrict the adversary’s access to the confirm and disavow
oracles i.e. the adversary is allowed to query all tuples (pkS , m, σ) to the convert,
confirm and disavow oracles, including the challenge tuple (pk∗

S , m∗, σ∗).
Security against malicious signers of a nominative signature scheme NS is

defined via the experiment Expmal-sigNS,A shown in Figure 2
In the experiment, A has access to the oraclesO = {OReceive, OConvert,OCon,

ODis} defined as follows:

– OReceive: given (pkS , m, δ), this oracle computes σ ← Receive(par, pkS , m, δ,
skN ), adds the tuple (pkS , m, σ) to the list LR, and returns σ to A.

– OConvert: given (pkS , m, σ), this oracle adds the tuple (pkS , m, σ) to LC and
returns the verification token tkσ ← Convert(par, pkS , m, σ, skN ).

– OCon: given (pkS , m, σ), this oracle interacts with A by running Confirm
with the common input (par, pkS , pkN , m, σ) and the private input skN .

– ODis: given (pkS , m, σ), this oracle interacts with A by running Disavow
with the common input (par, pkS , pkN , m, σ) and private input skN .

Definition 5. A nominative signature scheme NS is said to be mal-sig secure
if all PPT adversaries A have advantage Advmal-sigNS,A = Pr[Expmal-sigNS,A (1k) = 1]
which is negligible in k.
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Expinv-cmaNS,A (1k)

par ← Setup(1k)
(pk∗

N , sk∗
N ) ← KeyGenN (par)

(pk∗
S, m∗, δ∗, st) ← AO(par, pk∗

N)
b ← {0, 1}
if b = 0

σ∗ ← Receive(par, pk∗
S, m∗, δ∗, skN )

else (b = 1)
(pkN , skN) ← KeyGenN (par)
(pkS, skS) ← KeyGenS(par)
m ← M(par)
δ ← Sign(par, pkN , m, skS)
σ∗ ← Receive(par, pkS, m, δ, skN)

b′ ← AO(st, σ∗)
if b′ = b output 1
else output 0

Fig. 3. Invisibility security experiment

4.3 Invisibility

To ensure that no information leaked from the signer will reveal the validity of
a signature, invisibility requires that an adversary with the knowledge of the
private signer key, cannot distinguish between a valid signature, and a random
element of the signature space. This is required to hold, even when the adversary
is given access to all random choices made by the signer when the signature is
generated. We insist that the invisibility definition should make use of the full
signature space of the scheme. Note that, unlike the definitions used in [9,21],
this will ensure signer and nominee anonymity. Lastly, note that our definition
does not restrict the adversary’s access to the sign oracle, and he can obtain
signatures on the challenge message. In comparison, the definitions in [9,21] do
not allow this, and hence, invisibility is only guaranteed for nominative signatures
on messages which have not previously been signed. This could potentially be a
problem for applications in which only a small message space is used.

Formally, we define invisibility under a chosen message attack (inv-cma) of a
nominative signature scheme NS via the experiment Expinv-cmaNS,A shown in Figure
3 whereM(par) is the message space defined by par. In the experiment, A has
access to the oracles O = {OReceive, OConvert,OCon,ODis} defined as above.

Definition 6. A nominative signature scheme NS is said to be inv-cma secure
if all PPT adversaries A have advantage Advinv-cmaNS,A = |Pr[Expinv-cmaNS,A (1k) = 1]−
1/2| which is negligible in k.

4.4 Protocol Security

Lastly, we require the confirm and disavow protocols to be zero-knowledge proofs.
More specifically, consider the languages L(par) and L(par) parameterized by
par and defined by
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L(par) = {(pkS , pkN , m, σ) : ∃skNs.t.

(pkN , skN ) ∈ {KeyGenN (par)}∧
Valid(par, pkS , m, σ, skN ) = accept}

L(par) = {(pkS , pkN , m, σ) : ∃skNs.t.

(pkN , skN ) ∈ {KeyGenN (par)}∧
Valid(par, pkS , m, σ, skN ) = reject}

The confirm protocols is required to be a zero-knowledge proof of membership
for L, whereas the disavow protocol is required to be a zero-knowledge proof of
membership for L.

The zero-knowledge property of the protocols will, in combination with in-
visibility, ensure that the nominative signature scheme is non-transferable. More
specifically, non-transferability requires that a verifier can “fake” any evidence of
receiving a valid signature from the nominee and confirming the validity through
the confirm protocol. This ensures that the verifier cannot convince a third party
that he received a valid signature on a given message from the nominee (a sim-
ilar requirement is made for invalid signatures and the disavow protocol). Non-
transferability follows directly from the properties above: invisibility implies that
a randomly chosen signature chosen by the verifier will be indistinguishable from
a valid one, and the zero-knowledge property of the confirm protocol implies that
a verifier can simulate the transcript of an accepting interaction. Hence, a veri-
fier can, by himself, produce a “fake” signature and confirmation transcript pair
which is indistinguishable from a honestly generated one. Note that this type of
simulation requires that the verifier is able to sample the signature space used
in the invisibility definition. As mentioned above, this is not the case for the
schemes in [15,13].

4.5 Key Registration

In the above security experiments, the adversary can freely choose the public
keys submitted to the sign, receive, confirm and disavow oracles. However, in
systems based on a traditional PKI, users are required to obtain a certificate by
registering their public key at a certificate authority before the public key can
be used in interaction with other users. This allows additional security measures
such as requiring that a user prove knowledge of the secret key corresponding to
the public key he is registering. To model security in this scenario, we give the
adversary access to a key registration oracle in addition to the normal oracles.
The key registration oracle maintains a list LPK of registered key pairs and
interacts with A as follows:

– OReg : Given a (signer or nominee) key pair (pk, sk), the oracle checks if
(pk, sk) is a valid key pair. If not, the oracle returns ⊥. Otherwise, it adds
(pk, sk) to LPK , and returns ".

When key registration is used, it is assumed that all public keys which is part
of an oracle query or a set of challenge values, have been previously submitted
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to the key registration oracle. We will append the postfix (KR) to a security
notion to indicate that key registration is used e.g. uf-cma(KR). Note that key
registration is also used in [9,21].

5 Concrete Scheme

Our concrete scheme is inspired by the signature scheme by Waters [20]. More
specifically, a signature generation message δ for a message m, consists of an
ordinary Waters signature (gr, hαS

S FS(m)r) on m, and, using the aggregate tech-
niques by Lu et al. [16], a nominee will construct a compact “double” signa-
ture (gr, hαS

S FS(m)rhαN

N FN (m)r) on m. To ensure invisibility of the scheme, the
first component gr is split into two parts, yr1

1 and yr2
2 where r = r1 + r2, and

(y1, y2) is part of the public nominee key, which essentially makes determining
validity of a signature as hard a the decisional linear problem. Lastly, to avoid
re-randomization, which is required by security against malicious signers, the
nominee will furthermore apply the technique by Boneh et al. [2] for obtaining
strong unforgeability . In the description of our scheme, we use the notation
ZKPK{(w) : R(x, w)} to denote a zero-knowledge proof of knowledge of a wit-
ness w such that the relation R holds for the common input x and w. After
presenting the scheme, we will sketch how these proofs can be implemented.

– Setup: given 1k, choose a bilinear map e : G1 × G1 → GT where |G1| = p,
and a generator 〈g〉 = G1. Lastly pick a collision resistant hash function
H : {0, 1}∗ → Zp and return par ← (e, p, g, H).

– KeyGenS : given par, pick αS , v0, . . . , vn ← Zp and hS ← G1, and compute
gS ← gαS and ui ← gvi for 1 ≤ i ≤ n. Furthermore, for m ∈ {0, 1}n,
define FS(m) = u0

∏n
i=1 umi

i where mi is the i-th bit of m, and finally set
pkS ← (gS , hS , u0, . . . , un) and skS ← αS .

– KeyGenN : given par, pick αN , y1, y2, v0, . . . , vn ← Zp and hN , k ← G1, and
compute gN ← gαN . Furthermore, for 0 ≤ i ≤ n, set ui ← gvi , and
for m ∈ {0, 1}n define FN (m) = u0,

∏n
i=1 umi

i where mi is the i-th bit
of m. Lastly compute x1 ← gy−1

1 and x2 ← gy−1
2 , and return the pub-

lic key pkN ← (gN , hN , k, u0, . . . , un, x1, x2) and the private key skN ←
(αN , v0, . . . , vn, y1, y2).

– Sign: given par, pkN , m, and skS , pick r ← Zp, and compute δ1 ← gr and
δ2 ← hαS

S FS(pkN ||m)r. Lastly return δ ← (δ1, δ2).
– Receive: given par, pkS = (gS , hS , u0, . . . , un), m, δ = (δ1, δ2) and skN =

(αN , v0, . . . , vn, y1, y2), firstly check that e(gS , hS)e(δ1, FS(pkN ||m))=e(g, δ2)
holds. If this is not the case, return ⊥. Otherwise, pick r, r′, s← Zp and re-
randomize δ by computing δ′1 ← δ1g

r′
and δ′2 ← δ2FS(pkN ||m)r′

. Then set
σ1 ← (δ′1/gr)y−1

1 and σ2 ← (gr)y−1
2 , and compute t ← H(σ1||σ2||pkS ||m)

and M ← gtks. Finally set σ3 ← δ′2h
αN

N (δ′1)
v0+

∑n
i=1 viMi , where Mi is the

i-th bit of M , and return the signature σ ← (σ1, σ2, σ3, s).
– Convert: given par, pkS = (gS , hS, u0, . . . , un), m, σ = (σ1, σ2, σ3, s), and

skN = (αN , v0, . . . , vn, y1, y2), first check that the equation

e(g, σ3) = e(gS , hS)e(gN , hN)e(σy1
1 σy2

2 , FS(pkN ||m)FN (M))
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hold, where M = gtks and t = H(pkS ||σ1||σ2||m), and if this is not the case,
output ⊥. Otherwise, return the verification token tkσ ← (σy1

1 , σy2
2 ).

– TkVerify: given par, pkS = (gS , hS , u0, . . . , un), pkN = (gN , hN , u′
0, . . . , u

′
n,

x1, x2), the message m, σ = (σ1, σ2, σ3, s), and tkσ = (tk1, tk2), output
accept if the equations e(σ1, g) = e(tk1, x1), e(σ2, g) = e(tk2, x2), and

e(g, σ3) = e(gS, hS)e(gN , hN)e(tk1tk2, FS(pkN ||m)FN (M))

hold, where M = gtks and t = H(pkS ||σ1||σ2||m). Otherwise, output reject.
– (Confirm, VC): given (par, pkS , pkN , m, σ) as common input and skN as the

private input to the nominee running Confirm, let e1 = e(g, σ3), e2 =
e(gS , hS)e(gN , hN ), e3 = e(σ1, FS(pkN ||m)FN (M)) and finally let e4 =
e(σ2, FS(pkN ||m)FN (M)) where M = gtks and t = H(pkS ||σ1||σ2||m). Then
the nominee and the verifier interacts in the protocol

ZKPK{(y1, y2) : xy1
1 = g ∧ xy2

2 = g ∧ e1 = e2e
y1
3 ey2

4 }
– (Disavow, VD): Let input be as in (Confirm, VC). Then the nominee and the

verifier interacts in the protocol

ZKPK{(y1, y2) : xy1
1 = g ∧ xy2

2 = g ∧ e1 �= e2e
y1
3 ey2

4 }
We note that it is possible to construct sigma protocols for the confirm and dis-
avow protocols by using a combination of well known sigma protocols for proving
knowledge of a discrete logarithm, equality of discrete logarithms, and inequality
of discrete logarithms (see [4,3]). The zero-knowledge proofs of knowledge in the
above scheme can then be obtained by using the transformation proposed by
Cramer et al. [8] which converts a sigma protocol into a perfect zero-knowledge
proof of knowledge. The resulting zero-knowledge proofs are efficient 4-move
protocols, and no additional hardness assumptions are required in the transfor-
mation.

5.1 Security

The soundness and zero-knowledge properties of the confirm and disavow proto-
cols in the above defined nominative signature scheme NS follow directly from
the results by Cramer et al. [8], and we refer the reader to [8] for the details. In
the following, we state the theorems showing that the NS satisfies the remain-
ing security notions defined in Section 4. While the proofs of Theorem 7 and
Theorem 9 can be found in Appendix A and Appendix B, respectively, the proof
of Theorem 8 is not given here due to space limitation.

Theorem 7. Assume that Waters’ signature scheme is wuf-cma secure. Then
NS is uf-cma(KR) secure.

Theorem 8. Assume the decisional linear problem and the discrete logarithm
problem are hard in G1, that H is collision resistant, and that Waters signature
scheme is wuf-cma secure. Then NS is mal-sig(KR) secure.

Theorem 9. Assume that NS is mal-sig(KR) secure and that the decisional
linear problem is hard in G1. Then NS is inv-cma(KR) secure.
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6 Conclusion

We have presented a refined security model for nominative signatures as well as
proposed a new efficient scheme. Unlike the the previous schemes, our scheme
is provably secure in the standard model, and the security rests on standard
assumptions. Lastly, we note that our scheme provides signatures of the same
length as the random oracle model scheme [9] which is the only other scheme
provide a comparable level of security. Through our proposed scheme, we obtain
a highly secure and efficient non-transferable user certification scheme.
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A Proof of Theorem 7

Proof. Let Succ1 be the event that A succeeds by successfully completing the
confirm protocol in the unforgeability experiment (i.e. z = accept), and let
Succ2 be the event that A succeeds by producing a valid verification token
(i.e. z′ = accept). Furthermore, let V alid be the event that the element de-
fined by pkS and (pk∗

N , m∗, σ∗) output by A belongs to the language defined by
the zero-knowledge protocol implementing the confirm protocol (i.e. there exist
y1, y2 ∈ Zp such that xy1

1 = g, xy2
2 = g and e(g, σ3) = e(gS , hS)e(gN , hN )e(σy1

1

σy2
2 , FS(pkN ||m∗)FN (M)) where M = gtks and t = H(pkS ||σ1||σ2||m∗)). Then

we have

Advuf-cmaNS,A = Pr[Succ1 ∨ Succ2]

≤ Pr[Succ1 ∧ V alid] + Pr[Succ1 ∧ V alid] + Pr[Succ2]

Note that the zero-knowledge proof implementing the confirm protocol, which is
obtained by applying the transformation in [8] to a sigma protocol for proving
knowledge of (y1, y2) such that the required equations hold, will have negli-
gible soundness error i.e. a prover trying to complete the protocol for values
(par, pkS , pkN , m, σ) for which no such (y1, y2) exists, will have negligible prob-
ability of making a verifier accept. This follows from the ability to use the ex-
traction techniques from [8] to extract the values (y1, y2) with non-negligible

http://eprint.iacr.org/
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probability from a prover which makes a verifier accept with non-negligible
probability, which will contradict that no (y1, y2) exist. Hence, this implies that
Pr[Succ1 ∧ V alid] must be negligible. To complete the proof, we show the fol-
lowing claims.

Claim. Pr[Succ1 ∧ V alid] is negligible

Proof. Let A be an adversary such that εA = Pr[Succ1∧V alid] is non-negligible.
Using A, we will construct a simulator B breaking the unforgeability of Waters’
signature scheme with probability εA. B is constructed as follows:

Initially, B receives parameters par′ = (G1, p, g, e) and a public signer key
pkS = (gS , hS , u0, . . . , un). Then B picks a collision resistant hash function
H : {0, 1}∗ → Zp, sets par ← (G1, p, g, e, H), and runs A with input (par, pkS).
While running, A can ask sign queries (pkN , m) which B responds to by for-
warding pkN ||m to his own signing oracle to obtain δ, and then returning
δ to A. At some point, A outputs challenge values (pk∗

N , m∗, σ∗, tk∗
σ) where

pk∗
N = (gN , hN , u0, . . . , un, x1, x2) and σ∗ = (σ∗

1 , σ∗
2 , σ∗

3 , s∗). B interacts with
A in the confirm protocol, and upon completion, B retrieves the private key
sk∗

N = (αN , v0, . . . , vn, y1, y2) corresponding to pk∗
N from the list LPK . If V alid

occurs, there must exist values (y′
1, y

′
2) such that

e(g, σ∗
3) = e(gS , hS)e(gN , hN )e((σ∗

1)y1(σ∗
2)y2 , FS(pk∗

N ||m∗)FN (M))

where M = gtks and t = H(pkS ||σ∗
1 ||σ∗

2 ||m∗). Furthermore, since it is required
that (pk∗

N , sk∗
N ) is a valid key pair, (y′

1, y
′
2) must correspond to (y1, y2) from sk∗

N .
Hence, by setting σ′

1 ← (σ∗
1)y1(σ∗

2)y2 and σ′
2 ← σ∗

3/(hαN

N (σ′
1)v0+

∑ n
i=1 viMi), B ob-

tains a signature σ′ ← (σ′
1, σ

′
2) such that e(g, σ′

2) = e(gS , hS)e(σ′
1, FS(pk∗

N ||m∗)).
Furthermore, since it is required that A did not submit (pk∗

N , m∗) to OSign, B
will not have submitted pk∗

N ||m∗ to his own sign oracle i.e. σ′ is a valid forgery
on pk∗

N ||m∗ under pkS , and B terminates with output σ′. #$

Claim. Pr[Succ2] is negligible

Proof. Observe that if TkVerify(par, pk∗
S , pkN , m∗, σ∗, tk∗

σ) = accept, then σ∗

must be a valid signature. This can be seen as follows: let pk∗
S = (gS , hS, u0, . . . ,

un), pkN = (gN , hN , k, u′
0, . . . , u

′
n, x1, x2), σ∗ = (σ1, σ2, σ3, s) and tk∗

σ = (tk1, tk2).
Since both x1 and x2 generates G1, there must exist exponents r1, r2 ∈ Zp such
that σ1 = xr1

1 and σ2 = xr2
2 . Furthermore, if TkVerify outputs accept, the

equations e(σ1, g) = e(tk1, x1) and e(σ2, g) = e(tk2, x2) must hold, and hence,
due to the properties of the pairing, we must have tk1 = gr1 and tk2 = gr2 .
Lastly, since the equation

e(g, σ3) = e(gS , hS)e(gN , hN)e(tk1tk2, FS(pkN ||m)FN (M)), (1)

where M = gtks and t = H(pk∗
S ||σ1||σ2||m∗), is also required to hold, we have

that σ3 is of the form σ3 = hαS

S FS(pkN ||m∗)r1+r2hαN

N FN (M)r1+r2 where αS =
logg gS and αn = logg gN i.e. σ∗ is a valid signature on m∗ under pk∗

S and pkN .
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While this property is slightly stronger than needed for the proof of this claim
(we only need the implication of Equation 1), it will be useful in the following
proofs. Returning to the proof of the above claim, let A be an adversary such
that εA = Pr[Succ1 ∧ V alid] is non-negligible. Like in the proof of the claim
above, we will use A to construct a simulator B that breaks the unforgeability
of Waters’ signature scheme with probability εA.
B will setup the parameters and public signer key, and respond to sign queries

in the same way as in the proof of the above claim. At some point, A outputs
(pk∗

N , m∗, σ∗, tk∗
σ), where pk∗

N = (gN , hN , u0, . . . , un, x1, x2), tk∗ = (tk1, tk2) and
σ∗ = (σ∗

1 , σ∗
2 , σ∗

3 , s∗). B retrieves the private nominee key sk∗
N = (αN , v0, . . . ,

vn, y1, y2) corresponding to pk∗
N from the list LPK , and constructs the signature

(σ′
1, σ

′
2) where σ1 ← tk1tk2 and σ∗

3/(hαN

N (σ′
1)

v0+
∑ n

i=1 viMi). If TkVerify(par, pkS ,
pk∗

N , m∗, σ∗, tk∗) outputs accept, (σ′
1, σ

′
2) must satisfy e(g, σ′

2) = e(gS , hS)
e(σ′

1, FS(pk∗
N ||m∗)) due to Equation 1 i.e. (σ′

1, σ
′
2) must be a valid signature

on pk∗
N ||m∗ under pkS . Furthermore, since a successful A is not allowed to have

queried (pk∗
N , m∗) to OSign, B will not have queried pk∗

N ||m∗ to his own signing
oracle, in which case B has obtained a valid forgery (σ′

1, σ
′
2). #$

The theorem follows by the combination of the above two claims. #$

B Proof of Theorem 9

Proof. Let Succ denote the event that A successfully guesses the challenge bit,
and let Forge denote the event that A submits a query (pkS , m, σ) to OConvert,
OCon orODis such that σ is valid but was not obtained by submitting (pkS , m, δ)
to OReceive for any δ. The advantage of A can be expressed as follows:

Advinv-cmaNS,A = |Pr[Succ]− 1/2| ≤ Pr[Forge] + |Pr[Succ|Forge]− 1/2|

Claim. Pr[Forge] is negligible

It is fairly easy to see that an adversary which makes Forge happen with non-
negligible probability, can be reduced to an adversary attacking the security
against malicious signers i.e. an adversary who constructs a new signature asso-
ciated to the nominee. We leave out the details here.

Claim. |Pr[Succ3|Forge]− 1/2| is negligible

Proof. Let A be an adversary such that εA = |Pr[Succ|Forge] − 1/2| is non-
negligible. Using A, we construct a simulator B that break the decisional linear
problem in G1 with probability εA. B is constructed as follows:

Initially, B receives a group description (G1, p, g, e) and group elements x1, x2,
xa

1 , x
b
2, g

c ∈ G1 and will have to decide whether c = a+ b or a random element in
Zp. Firstly, B picks a collision resistant hash H : {0, 1}∗ → Zp and sets par ←
(G1, p, g, e, H). Then B picks αN , v0, . . . , vn ← Zp and hN , k ← G1, computes
gN ← gαN and ui ← gui for 1 ≤ i ≤ n, sets pkN ← (gN , hN , u0, . . . , un, x1, x2),
and stores the partial private nominee key sk′

N = (αN , v0, . . . , vn) (note that
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this partial key sk′
N is sufficient to execute Receive). Lastly, B runs A with

input (par, pkN ). While running,A can ask receive, confirm, disavow and convert
queries, which B responds to as follows:

– OReceive: given (pkS , m, δ), where pkS = (gS , hS , u0, . . . , un) and δ = (δ1, δ2),
B first checks if e(g, δ2) = e(gS, hS)e(δ1, FS(pkN ||m)), and if this is not the
case, B returns ⊥. Otherwise, B retrieves skS = (αS , v′0, . . . , v

′
n) correspond-

ing to pkS from the list LPK , and constructs a new signature (σ′
1, σ

′
2) =

(gr, hαS

S FS(pkN ||m)r) (note that (σ′
1, σ

′
2) corresponds to a re-randomization

of δ). Then B picks r′, s ← Zp and computes σ1 ← xr−r′
1 , σ2 ← xr′

2 ,
t ← H(pkS ||σ1||σ2||m), M ← gtks and σ3 ← σ′

2h
αN

N FN (M)r. Lastly, B
returns σ ← (σ1, σ2, σ3, s) to A and stores (pkS , m, σ, r− r′, r′) for later use.

– OConvert: given (pkS , m, σ), B returns ⊥ if σ was not returned in a re-
sponse to a receive query on (pkS , m, δ) for some δ (note that if Forge
does not occur, this is the correct response). Otherwise, B recalls the values
(pkS , m, σ, r − r′, r′), and returns the token tkσ = (tk1, tk2) = (gr−r′

, gr′
).

This corresponds to the correct token, since tk1 = gr−r′
= (xy1

1 )r−r′
= σy1

1

and tk2 = gr′
= (xy2

1 )r′
= σy2

2 where y1 = logx1
g and y2 = logx2

g (note
that (y1, y2) are unknown to B).

– OCon: given (pkS , m, σ), B returns ⊥ if σ was not returned in a response
to a receive query on (pkS , m, δ) for some δ. Otherwise, B exploits the zero-
knowledge property of the confirm protocol to simulates the protocol to A by
using standard rewind and replay techniques. Note that the zero-knowledge
protocol obtained by using the conversion by Cramer et al. provides perfect
zero-knowledge proof and thereby allows B to provide a perfect simulation.

– ODis: given (pkS , m, σ), B returns ⊥ if σ was returned as a response to
(pkS , m, δ) for some δ. Otherwise, B simulates the disavow protocol in similar
manner to the confirm protocol.

At some point, A will output (pk∗
S , m∗, δ∗). To construct a challenge signature,

B first retrieves sk∗
S = (αS , v′0, . . . , v

′
n) corresponding to pk∗

S from LPK . Then B
picks s ← Zp and sets σ∗

1 ← xa
1 , σ∗

2 ← xb
2, t ← H(pk∗

S ||σ∗
1 ||σ∗

2 ||m), M∗ ← gtks

and σ3 ← hαS

S (gc)v′
0+

∑n
i=1 v′

i(pkN ||m)ihαN

N (gc)v0+
∑ n

i−1 viM
∗
i . Finally, B returns the

challenge signature σ∗ ← (σ∗
1 , σ∗

2 , σ∗
3 , s) to A. Note that σ∗ will be a random

element of the signature space if c is random in Zp, whereas if c = a + b, σ∗ will
correspond to a valid signature. After receiving σ∗, A can ask additional queries
which B responds to as above. Lastly, A will terminate with output b′ which B
forwards as his own solution to the decisional linear problem. It should be clear
from the above that B will correctly solve the given decisional linear problem
whenever A correctly solves the invisibility challenge. #$

The theorem follows by combining the above two claims. #$
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Abstract. We provide an analytical framework for basic integrity prop-
erties of file systems, namely the binding of files to filenames and writing
capabilities. A salient feature of our modeling and analysis is that it is
composable: In spite of the fact that we analyze the filesystem in iso-
lation, security is guaranteed even when the file system operates as a
component within an arbitrary, and potentially adversarial system.

Our results are obtained by adapting the Universally Composable
(UC) security framework to the analysis of software systems. Origi-
nally developed for cryptographic protocols, the UC framework allows
the analysis of simple components in isolation, and provides assurance
that these components maintain their behavior when combined in a large
system, potentially under adversarial conditions.

1 Introduction

Contemporary software systems are complex, consisting of many millions of lines
of code, spread across a myriad of components and sub-components. A natural
approach for analyzing such large systems is by analyzing each component sep-
arately, and “hoping” to use the component-wise analysis to analyze the entire
system. Unfortunately, applying this approach to security analysis is problem-
atic. Even if a component is simple enough to analyze separately, its interaction
with other components can yield unexpected results. Often, a component will
be used in environments different from what its designers initially had in mind,
alongside other components that perhaps did not even exist when the original
component was analyzed, potentially violating some assumptions that were made
in the analysis.

Ideally, we would like to analyze the behavior of a component in isolation, and
have the assurance that this behavior remains intact even when that component
is embedded in a new environment. Within the realm of cryptography, the frame-
works of Reactive Simulatability [19,1] and Universal Composability (UC) [4,5]
ensure just that. These frameworks are aimed at capturing the security of crypto-
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to public-key encryption and signatures, zero-knowledge, and more (see [5] for
many examples.) However, many of the features of these frameworks appear at
first to be specific to the realm of cryptographic protocols. A natural question is
whether the “composable security” approach sketched above can be carried out
in a meaningful way even outside the limited domain of cryptography. A positive
answer could significantly reduce the overhead in analyzing the security of large
systems, while at the same time provide better overall security guarantees.

In this work we demonstrate that this can indeed be done, in the context of
guaranteeing some basic integrity properties of filesystems. For this purpose we
adapt the UC framework to software systems by establishing new conventions
for modeling process management and scheduling. The current work is one of
just a few attempts to apply the UC formalism to a large and complex software
system, and we believe that it will enable further application of the UC formalism
to other software systems.

Analysis in the UC framework proceeds by defining an idealized specification
model and an implementation, and then proving that the implementation real-
izes the idealized specification. Our main contribution is a very simple filesys-
tem specification model, called SimpFS, that captures many integrity concerns in
contemporary filesystems, together with an implementation over existing POSIX
filesystems [20] and a proof that the implementation realizes the specification
model.

The composability properties of our analysis imply that software systems
that use our implementation over POSIX behave essentially the same as
if they were using the simple, idealized specification system SimpFS.

This is a very strong security guarantee. In particular, it allows analyzing soft-
ware systems without worrying about how the filesystem is implemented, and
without worrying about potential bad interactions between the analyzed system
and the filesystem implementation.

Our filesystem model is geared toward ensuring integrity of files and their
names, and in particular preventing filename manipulation attacks. In such at-
tacks, a victim program expects a particular filename to have certain semantics.
(E.g., a mail program may expect the file /var/mail/root to be the mail file for
the super-user.) In the attack, the adversary creates a link by the same name in
the filesystem, pointing to another file (e.g., /var/mail/root -> /etc/passwd),
thereby “tricking” the victim program into accessing an unexpected file. (In the
mail example, such a link may cause a naive mail program to write incoming
email into the system’s password file.) Such attacks were quite common in UNIX
systems of old.

Our implementation builds on the ideas presented in Chari et al. [7], who
address the problem of privilege escalation attacks via filename manipulation.
To counter these attacks, Chari et al. present a “safe” name resolution procedure,
and deploy this system-wide on popular POSIX systems. The SimpFS interfaces
are designed to tightly bind files with their names: files can be accessed only via
the names they were created with, which means that filename manipulation
attacks are impossible in our model. Our proof — showing that implementation
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based on [7] realizes the model — implies in particular that it indeed eliminates
these filename manipulation attacks.

SimpFS offers a simple interface that captures enough filesystem primitives
for application developers to build meaningful applications. The simplicity of
SimpFS is due to its very narrow interface (only four commands) and the fact
that it does not have directories. We argue that the murky relation between files
and their names in plain POSIX systems stem to a large extent from the fact that
pathnames consist of many directories, each with its own permissions, which are
combined in a non-obvious manner to yield the effective permissions for the en-
tire name. In contrast, a filename in SimpFS is just a single entity with explicitly
specified permissions. Thus SimpFS provide applications with radically simpli-
fied semantics, making it easier to use the filesystem without falling into traps.
At the same time, we argue that the vast majority of contemporary applications
in POSIX systems do not really need directories, and can be implemented over
the simple SimpFS interface without loss of functionality.

1.1 Related Work

Triggered by Joshi and Holzmann’s mini-challenge [13], there is a lot of recent
work on formalization and verifications of file systems. Most notably, Freitas
et al [10] specify and prove a POSIX file store in Z/Eves. This body of work
focuses mostly on the correctness aspects and does not address in depth the
security and access control aspects of filesystems. In the broader perspective of
(secure) operating systems, there is a long history of formalization and verifi-
cation, from PSOS [16] to the recent seL4 [14]. While they make considerable
progress toward high-assurance OS, these works are not based on frameworks
that allow easy composition of components to form larger systems. Addition-
ally, the focus in many of these works is on mandatory access control whereas
we cover a discretionary control. (We stress that although our model addresses
integrity concerns, these are very different from the Biba integrity model [3].)

An abstract model of another large standard systems, the browser, suitable
for proofs of cryptographic protocols exists in [12]. It includes a model of
information-flow properties under attack. However, the federated identity pro-
tocols built on top of it have only been proven secure with respect to specific
security properties, not in a real-world / ideal-world setting [12].

Protocol Composition Logic (PCL) [8] is a comparable general approach on
reasoning about (cryptographic) network protocols in a composable fashion. Re-
cently, PCL was applied to analyze systems [9], more specifically integrity prop-
erties provided by TPM. The symbolic and axiomatic nature of PCL leads to
a more axiomatic specification of security rather than the declarative form in
UC. Furthermore, the composition theorems in PCL are weaker than in the UC
framework.

A noteworthy contribution to secure composition of large systems is the
CHATS project [17], that identifies architectural principles to guide the structur-
ing and decomposition of trustworthy systems. That work is largely orthogonal
to ours, as it does not focus on formal modeling or proofs.
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There have been many more attempts to leverage well-established formalisms
such as logic, typing or process calculi to model composability of certain system
security properties, e.g., McLean [15] for non-interference properties or Bengt-
son et al [2] for cryptographic protocols and access control mechanisms. Many
of them provide tool support; but they do not provide the same composition
guarantees as in the UC framework.

Organization. Due to lack of space, we did not include in this writeup the
proof of security in the UC framework. A full version that includes the proof is
available online [6]. In Section 2 we outline the UC framework, then in Section 3
we describe our SimpFS model and in Section 4 we show how it is implemented
over POSIX.

2 The Universal Composability Framework

We briefly describe the relevant aspects of the framework of universally compos-
able (UC) security. The reader is referred to [4] for more details. The framework
describes two probabilistic games: The real world that captures the protocol
flows and the capabilities of an attacker, and the ideal world that captures what
we think of as a secure system. The notion of security asserts that these two
worlds are essentially equivalent.

The real-world model. The players in the real-world model are all the en-
tities of interest in the system (e.g., the nodes in a network, the processes in a
software system, etc.), as well as the adversary A and the environment Z. All
these players are modeled as efficient, probabilistic, message-driven programs
(formally, they are all interactive Turing machines).

The actions in this game should capture all the interfaces that the various
participants can utilize in an actual deployment of this component in the real
world. In particular, the capabilities of A should capture all the interfaces that
a real-life attacker can utilize in an attack on the system. (For example, A can
typically see and modify network traffic.) The environment Z is responsible for
providing all the inputs to the players and getting all the outputs back from
them. Also, Z is in general allowed to communicate with the adversary A. (This
captures potential interactions where higher-level protocols may leak things to
the adversary, etc.)

The ideal-world model. Security in the UC framework is specified via an
“ideal functionality” (usually denoted F), which is thought of as a piece of code
to be run by a completely trusted entity in the ideal world. The specification
of F codifies the security properties of the component at hand. Formally, the
ideal-world model has the same environment as the real-world model, but we
pretend that there is a completely trusted party (called “the functionality”),
which is performing all the tasks that are required of the protocol. In the ideal
world, participants just give their inputs to the functionality F , which produces
the correct outputs (based on the specification) and hands them back to the
participants. F may interact with an adversary, but only to the extent that
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the intended security allows. (E.g., it can “leak” to the adversary things that
should be publicly available, such as public keys.) Specifying the code of F
is typically a non-trivial task. It is important that F satisfies all the desired
security properties, but also that F does not impose unnecessary constraints:
It is only too easy to write a functionality that describes “what we intuitively
want”, but is not realizable by any implementation. Another crucial concern is
the simplicity of the functionality F , since we want F to capture the important
security concerns, not the mundane implementation details.

UC-Security and the Composition Theorem. An implementation π se-
curely realizes an ideal functionality F if no external environment can dis-
tinguish between running the protocol π in the real world and interacting with
the trusted entity running the ideal functionality F in the ideal world. That is,
for every adversary A in the real world, there should exist an adversary A′ in
the ideal world, such that no environment Z can distinguish between interacting
with A and π in the real world and interacting with A′ and F in the ideal world.

The striking feature of the UC framework is its ability to handle composition.
Specifically, the composition theorem from [4] asserts the following: Let ρ be an
arbitrary system that runs in the ideal world and uses (perhaps multiple copies
of) the functionality F . Next, consider the system ρ′ in the real world, that is the
same as ρ except that in ρ′ each call to the ideal functionality F is replaced by
executing the implementation π. Then, if π securely realizes F it is guaranteed
that system ρ′ behaves essentially the same as system ρ. In particular, all the
security properties of ρ are inherited by protocol ρ′. This guarantee is the basis
for the composable security guarantees provided by the UC framework.

2.1 Conventions for Software Systems

We briefly describe some technicalities that must be resolved when attempt-
ing to apply the UC framework to software system, and the conventions that
we use to address them. The “entities of interest” in our work are processes,
which differ somewhat from the interactive Turing machines (ITMs) in common
cryptographic models. One aspect relates to side-channels: whereas an ITM can
only influence other ITMs by sending messages, a process shares some physical
resources with other processes on the same machine, so it could influence them
via side channels such as timing and concurrency. In this work we ignore that
aspect, i.e. we do not have any side channels in our formal model. (This does
not matter for our current SimpFS model, since we do not model any secrecy
requirements.) We thus just let the adversary learn “whatever it needs,” so it
has no use for side channels.

A more important difference is preemptive multitasking: common crypto mod-
els postulate a sequential scheduling model, where an active ITM keeps the con-
trol until it sends a message, at which point the recipient becomes active. On
the other hand, processes in contemporary OSes can be made to yield control
involuntarily. Resolving this discrepancy is not as hard as it may seem, since
(side-channels aside) an active entity has no effect on its surroundings until it
sends a message, which means that influencing the surroundings only comes with
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losing the control. We use the standard sequential scheduling of the UC frame-
work, but ensure that the adversary gets the control after every message is sent,
and can decide when this message will be delivered. (This is somewhat similar
to the “buffer scheduler” from [1].) Hence the adversary in our formal model is
able to simulate the actions that would have happened in the actual deployed
system, delay delivery messages until the simulation arrives at the point where
they were delivered. We thus argue that the formal adversary in our model is
able to induce any behavior that can happen in the actual deployed system.

Another difference is that some processing in real systems is done not by
the processes themselves, but by the kernel on their behalf. Hence also in our
model we postulate the existence of a “kernel component” that can do things
on behalf of processes. In our filesystem example, this kernel component is only
responsible for maintaining the process privileges: Whenever a process calls a
filesystem function, the kernel adds the process-id and roles of the calling process
to the list of arguments, and forwards everything to the filesystem. (The kernel
component gets these roles from the environment.) We note that although we
do not use it in our filesystem example, in general we could have several such
“kernel components” in a system, representing several physical machines.

3 SimpFS: A Simple Idealized File-System

This section describes SimpFS, our simple filesystem model. SimpFS has a min-
imalistic interface with simple semantics, having only basic primitives to create,
read, write and delete files. Still, we believe that the this file-system functional-
ity is sufficient for most applications. (Other aspects — such as locking — can
be implemented on top of our interface.) The SimpFS model includes file write
permissions, hence capturing properties of filesystem integrity. We currently do
not model read permissions, but we expect that this work can be extended to
include read permissions without too much change.

An important feature of SimpFS is that it does not have any directories, only
files and their names. As we mention in the introduction, we believe that di-
rectories have “inherently cumbersome semantics”, hence decided to do away
with them in order to keep the semantics as simple as possible. We stress that
the model supports names that include ‘/’ (so applications can still store their
temporary data in files with names that begin with “/tmp/”). But a name such
as “/a/b/foo” is viewed as just one entity, and its existence does not imply the
existence of an object with name “/a/b.” Of course, our implementation over
POSIX still interprets ‘/’ as a directory separator, and name creation induces
the right associations between names and paths, in spite of symlinks, adversarial
write permissions etc. While directories are a useful and convenient way to man-
age and organize systems, we argue that directory permissions are very rarely
needed in applications (if ever), and most applications can therefore directly use
the SimpFS interface.

A key security property of SimpFS is that it rules out filename manipulation
attacks. Our focus on this property is motivated by the large number of privilege
escalation attacks due to unsafe pathname resolution that were discovered in
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POSIX systems over the years. A classical example of this type of attacks is local
mail delivery, where /var/mail may be world-writable, allowing an adversary to
create a link from /var/mail/root to (say) /etc/passwd, thereby “tricking” a
naive mail-delivery program (running as root) to write the content of incoming
mail into /etc/passwd. Such attacks arise due to the opaque mapping of names
to files in POSIX. SimpFS features a very tight binding between files and their
names: a file can be manipulated only with the names it was created with.

We describe an implementation of SimpFS over contemporary POSIX filesys-
tems and rigorously prove that this implementation realizes SimpFS, using the
UC framework. The proof implies that processes that use our implementation
will be protected against pathname manipulation attacks such as above even if
adversarial processes use the same POSIX filesystem in arbitrary ways.

3.1 A Formal Model of SimpFS

SimpFS consists of files and their names. A newly created file is given some
names, and thereafter the file can be accessed by any of these names. Existing
names can be deleted, but one cannot add names to existing files. When deleting
names, a file can end up with zero names, in which case it is not reachable
anymore so we can consider it as deleted. We associate permissions with both
the file names and the files themselves:

– Every file has a list of roles that can write in it, called the Writers list. A
process can write to a file if it holds a role in the Writers list of the file.

– File names have a set of Manipulators, listing all the roles that have permis-
sion to delete that name.

In the current version we do not have read permissions, which means that
SimpFS allows every process to read every file.

In more details, our ideal SimpFS maintains an array of files and an associative
array of names: files[] is an array of files (indexed by integers). Each entry is a
file, consisting of an array of bytes (i.e., a data blob) and a list of roles (specifying
the Writers of this file). names[] is an associative array (indexed by strings). We
refer to the index of an entry as a file-name, and each entry consists of a pointer
to a file (i.e., an integer) and a list of roles (specifying the Manipulators of this
name). The interface below constrains the Manipulator lists, making sure that
all the names of the same file have the same set of Manipulators. (This choice is
not very important, it is done mostly to simplify the presentation.)

In the initial state, the file-system is empty, with no files and no names (i.e.,
both arrays are empty). There are only four operations that are supported in
SimpFS: CreateFile creates a new file with some names, DeleteName deletes
an existing name, Read reads data from a file (specified by some name), and
Write writes data to a file (specified by some name).

The semantics of these operations is described by the pseudo-code in Figure 1.
As is the case with every formal UC functionality, the pseudo-code includes not
only the intended functionality as seen by the legitimate users of the system, but
also all the interfaces that an adversary can utilize to attack it. This is codified
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CreateFile(Writers, Manipulators, Names, pid, Roles)
{

// Allow the adversary to fail the operation and decide the error code
var retCode = AdversaryAction("CreateFile",Writers,Manipulators,Names,pid,Roles);
if (retCode != OKAY) return retCode;

var codes[] = empty; // a local list of return codes, one per name
var f = index of next available entry in the files[] array;
files[f].data=empty, files[f].Writers=Writers;

// Allow the adversary to decide whether to create each name
for each fName in Names {

var code = AdversaryAction("CreateOneName", fName);
if (code!=OKAY) codes[i]=code;
else {

if (names[fName] already exists) codes[i] = FILE_EXISTS;
else {

names[fName].file=f, names[fName].Manipulators=Manipulators;
codes[i]=OKAY;

} } }
call AdversaryAction("Done CreateFile") and then return codes;

}

DeleteName(fName, pid, Roles)
{

// Allow the adversary to fail the operation and decide the error code
var retCode = AdversaryAction("DeleteName",fName,pid,Roles);
if (retCode != OKAY) return retCode;

if (names[fName] does not exist) return FILE_DOESNT_EXIST;
if (Roles intersect names[fName].Manipulators = emptyset) return NO_PERMISSION;

delete names[fName]; // Note: no point deleting the file, even if not reachable
call AdversaryAction("Done DeleteName") and then return OKAY;

}

Write(fName, atAddr, data, pid, Roles)
{

// Allow the adversary to fail the operation
var retCode = AdversaryAction("OpenWrite",fName,pid,Roles);
if (retCode != OKAY) return retCode;

if (names[fName] does not exist) return FILE_DOESNT_EXIST;
var f = names[fName].file; // f serves as a "handle" to the file
if (Roles intersect files[f].Writers = emptyset) return NO_PERMISSION;

var numBytes = AdversaryAction("Write",fName,atAddr,data,pid,Roles);
if (numBytes < length(data)) truncate data to numBytes bytes; // only partial write

var nBytes = length(data);
if (atAddr < 0) atAddr = length(files[f].data); // append
else if (atAddr > length(files[f].data)) {

prepend (atAddr-length(files[f].data)) zero bytes to data;
atAddr = length(files[f].data);

}
write data to files[f].data starting at position atAddr;
call AdversaryAction("Done Write") and then return [OKAY,nBytes];

}

Read(fName, fromAddr, nBytes, pid, Roles)
{

// Allow the adversary to fail the operation or read less bytes
var [retCode,numBytes] = AdversaryAction("Read",fName,fromAddr,nBytes,pid,Roles);
if (retCode != OKAY) return retCode;
if (numBytes < nBytes) nBytes = numBytes;

if (names[fName] does not exist) return FILE_DOESNT_EXIST;
var f = names[fName].file;

if (fromAddr < 0) fromAddr = 0;
else if (fromAddr > length(files[f].data)) {

fromAddr = length(files[f].data);
nBytes = 0;

}
if (nBytes < 0) // read to end-of-file

nBytes = length(files[f].data) - fromAddr;

data = content of files[f].data from fromAddr for nBytes;

call AdversaryAction("Done Read") and then return [OKAY,nBytes,data];
}

Fig. 1. The SimpFS commands
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by an AdversaryAction call, in which SimpFS “leaks” to the adversary the
details of its operation, and also lets the adversary influence these operations.

A key feature of SimpFS is that a file can be accessed only using one of the
names that were specified when the file was created, thus eliminating filename-
manipulation attacks such as described above. Hence proving that an imple-
mentation realizes SimpFS implies in particular that such attacks cannot be
successfully mounted against the implementation.

We make no liveness guarantees in SimpFS, so at the beginning of every oper-
ation the adversary is given the option to abort the operation and determine the
error code. (This does not mean that an implementation of SimpFS cannot en-
sure some liveness properties, but it means that a proof that an implementation
realizes SimpFS carries no such guarantees within itself.)

The pseudo-code includes with every call also the process-id and permis-
sions (Roles) of the caller, which in our system model are filled by the kernel
component. (Formally there is also an implicit “invocation id” for each call of
one of the four main operations, allowing SimpFS to handle messages received
from the ideal-world adversary for different invocations.) Note also that the
AdversaryAction at the beginning and end of every operation comply with our
convention that the adversary gets the control before any message is delivered.
Finally, we note that all the variables in the code in Figure 1 are local to that
invocation, except for the global files[] and names[].

Process corruption. Following the standard conventions of the UC frame-
work, SimpFS has a special procedure to handle the case where the adversary
corrupts a process. For our purposes it is more convenient to let the environ-
ment decide when a process is corrupted (as opposed to the adversary, which is
the more common convention in UC-model works). When the environment cor-
rupts a process, this process makes a call IamCorrupted(pid,Roles), to inform
SimpFS that “it belongs to the adversary” now. SimpFS informs the adver-
sary of this call, and it remembers that this process and all its roles are now
bad. Thereafter, the adversary is allowed to make all the usual calls to SimpFS

(CreateFile,DeleteName,Read, Write) on behalf of that process. SimpFS will
process these calls just as if it was the corrupted process that made the call, but
will return the result to the adversary rather than to the environment.

Every call from the corrupted process (not via the adversary) will be routed
directly to the adversary, and the adversary can always instruct SimpFS to
send anything to the corrupted process (which will then be forwarded to the
environment). Also, if the roles of the corrupted players change then the kernel
component will notify SimpFS of this change. SimpFS will add any new role
that a corrupted process acquires to its list of bad roles, but it will not remove
any roles from that list, even if the corrupted process loses some of its roles. (This
last aspect represents the fact that the corrupted process may already have used
this role to introduce artifacts into the filesystem, that will remain even after
the process no longer has this role.)

Atomicity of the SimpFS operations. The operations DeleteName and
Read are atomic, whereas CreateFile and Write are not: In DeleteName and
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Read, once the adversary allows the operation to go through (by returning OKAY),
SimpFS holds onto the control-flow throughout the name lookup and the oper-
ation itself, and only then it yields control back to the adversary.

In Write, on the other hand, the control is returned to the adversary after
the file lookup (via the call AdversaryAction("Write", ...)), and only then
is the operation carried out. Similarly in CreateFile, the adversary gets the
control before the creation of any name. This choice was made so that we would
be able to realize SimpFS over the POSIX interface that requires to open the
file and then write in it. The real-world read can be made atomic by checking
after the fact that the file did not change since it was opened, but for write such
a check is meaningless since the file was already written.
Mapping Unix permissions to roles. The interfaces of SimpFS above are
defined with “generic roles” that encode permissions, with access control be-
ing a simple role inclusion. Our implementation over POSIX, of course, uses
userids and groups, which are particular types of roles. The mapping is quite
straightforward, roughly there is a different role for each userid and group in the
system, and a process gets the role corresponding to its effective-uid and all the
roles corresponding to its groups. There is also one role for “others”, that every
process has. Some care must be taken since POSIX permissions do not exactly
follow role inclusion. (For example, if a file is not owner-readable then the owner
cannot read it, even if the file is readable by “others”.) Adjusting the mapping
to this technicality is quite straightforward, and is omitted here.

4 Implementing SimpFS over POSIX

We describe simpfs, which is a concrete implementation of the SimpFS function-
ality over the POSIX filesystem interface [20]. The presentation below focuses
on a user-space implementation, where each simpfs operation runs with the ef-
fective uid of its caller, but we point out that the same procedures can also be
implemented in the kernel.

Our implementation relies on the “safe pathname resolution” procedure of
Chari et al. [7], that protects processes from opening adversarial links. While re-
solving paths this procedure ensures that an adversary can not manipulate the
resolution to result in opening unintended components. In simpfs, very roughly
speaking, each operation consists of first using that procedure to open the cor-
responding file and then performing the actual operation.

Before describing this implementation, we first introduce concepts that are
used in the rest of the paper and describe some assumptions that we make on
the POSIX filesystems underlying our implementation. Then in Section 4.2 we
describe the safeDirOpen procedure, which is the heart of our implementation and
builds on [7], and then in Section 4.3 we describe the rest of the implementation.

4.1 Concepts and Properties of POSIX

We assume that the reader is familiar with basic concepts of POSIX such as
directories, pathnames, users and groups, hardlinks and symlinks, etc.
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Definition 1 (Pathname Manipulators). Let /dir1/.../dirn/foo be an
absolute pathname. The manipulators of this pathname are all the roles (users
and groups) that own, or have write permissions in, any directory visited during
the resolution of this pathname.

Note that the definition applies even when a pathname does not resolve, and
that root is a manipulator of every pathname.

Definition 2 (Safe Names). A pathname is system safe if its only manip-
ulator is root. A pathname is safe for U (where U is a user-id) if its only
manipulators are root and U . Otherwise, the pathname is unsafe for U .

For example, in a typical UNIX system the pathname /etc/passwd is system
safe, the pathname /home/joe/mbox is safe for user joe, and the pathname
/var/spool/mail/jane is unsafe for everyone (as /var/spool/mail may be
world- or group-writable).

Definition 3 (Simple Pathnames). A pathname is simple if it is an absolute
path that resolves to a regular file, its elements are only hard links (i.e., not
symbolic links), no elements are named ‘.’ or ‘..’, and the pathname contains
no repeated slashes ‘//’.

Assumptions. We now list some properties that we assume on the underlying
POSIX system, and use in our proof of security. Most of these assumptions are
justified either by the fact that they are part of the POSIX specification itself,
or by the fact that many contemporary POSIX filesystems seem to satisfy them.

Assumption 1. The underlying filesystem does not contain multiple mount
points to the same filesystem, and each directory has only one parent (i.e., one
hard link with a name other than ‘.’ or ‘..’).

Justification. Assumption 1 is justified by the fact that nearly all contemporary
POSIX implementations either do not allow processes to create additional hard
links to directories (e.g., FreeBSD, Linux) or restrict this operation to the super-
user (e.g., Solaris, HP-UX). A notable exception is MacOS.

We observe that given Assumption 1, for every reachable hard link to a regular
file there is a unique simple name that ends with that hard link. Moreover a
resolution of any absolute name that ends with that hard link will visit all the
directories in this unique simple pathname.

Assumption 2 (Permissions) 1. If an operation by a process affects the con-
tent of a file, then the process must have write permission for that file. 2. Let P
be an absolute pathname. If an operation by a process affects the resolution of P
or changes the permissions or ownership of any of the directories visited during
its resolution, then that process must have a role which is a manipulator of P .

Justification. The only operations that affect pathname resolution are creating,
removing, or renaming pathname components, and they all require write per-
mission in the containing directory. Also, note that only the owner of a directory
(or root) can change the permissions of that directory, and in most systems only
root can change ownership.
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Corollary 1. Let P be some pathname, denote byM(P ) the set of manipulators
for P (user-ids and groups), and let B be a set of roles such thatM(P )∩B �= ∅.
Then changing the manipulator set for P so that M(P ) ∩ B = ∅ requires an
operation by a process with some role outside of B.

This corollary follows from the fact that no role can perform an operation to “re-
move itself” from the manipulators set of P (which follows from Assumption 2).
Details are deferred to the full version.

Assumption 3. The hardlink to a directory in its parent directory can only
be removed when the child directory is empty. Moreover, after the hardlink is
removed from the parent directory, no further entries can be created in the child
directory, even if some process still holds a handle to it.

Justification. The last part of Assumption 3 is justified by the fact that rmdir
implementations remove the entries ‘.’ and ‘..’ from the child directory before
removing the hard link in the parent directory, and no new entries can be created
in directories without ‘.’ and ‘..’ .

Corollary 2. If a system call for creating an entry in a directory returns suc-
cessfully, then the hard link for this directory in its parent directory could not
have been removed before that system call, or removed after the call but before
the newly-created entry is removed.

4.2 The safeDirOpen Procedure

Underlying our simpfs implementation is a procedure for safe name resolution,
which is adapted from the work of Chari et al. [7]. Our safeDirOpen procedure
takes an absolute pathname, resolves it “in a safe manner” and returns a handle
to the directory containing the final hard link to the actual file, the name of that
hard link, and additional information as discussed below. The top-level opera-
tions of simpfs first call safeDirOpen and then perform the requested operation
on the final hard link.

safeDirOpen resolves a pathname one atom at a time, each time opening the
next atom (or reading it, if it is a symlink), while keeping track of the owners and
writers of the visited directories. (Below we identify the time that a directory
was visited as the time when it was opened, and the time that a symlink was
visited with the time that it was read.)

The procedure can be in one of three states: system-safe, safe-for-uid, or un-
safe. When invoked (by a process with effective uid U), the procedure begins
in a system-safe state, switching to safe-for-uid state upon visiting a directory
where U is an owner or writer, and switching to unsafe state upon visiting a
directory with any writer or owner other than root or U . Once in unsafe state
it stays in that state for the duration of the current name resolution. Likewise,
there is no transition from safe-for-uid to the system-safe state.

When safeDirOpen enters the unsafe state, it does not follow symlinks for
the remainder of the current name resolution. Also, for technical reasons the
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procedure never accepts pathnames that contain multiple slashes ‘//’ or have
components named ‘.’ or ‘..’, and it refuses to visit any directory whose name
begins with the special prefix SimpFS ephemeral . In any of these cases, the
procedure returns an error code.

Once safeDirOpen arrives at the final atom (and verifies that it is indeed the
final atom and not a symlink), it ends successfully, returning a handle to the
directory containing this last hard link, as well as the name of the hard link.
In addition, safeDirOpen returns its current state (system-safe, safe-for-uid, or
unsafe), the set of owners and writers of the directories that it visited, and an
array of (handle,name) pairs, containing handles to all visited directories, and
the names that were looked-up in those directories. (These names could belong
to either a directory, a symlink, or the final hard link.)

Upon failure, safeDirOpen returns an error code, a handle to the last directory
pathname component that was successfully resolved, the state (system-safe, etc.)
and manipulators of that directory, and the unresolved remainder of the path-
name. For example, when called to resolve /a/b/c, if it encountered an error
after visiting /a but before visiting /a/b, then it will return a handle to direc-
tory /a, the state and manipulators of /a, and the remainder of the pathname
argument “b/c”. (Note that this will be the return value even if /a/b happens
to be a symlink and the procedure visited more directories after /a, but could
not completely resolve /a/b.)

4.3 Implementing the simpfs Commands

createFile(Writers,Manipulators,Names). When called by a process with
effective-uid U , the procedure begins by checking that U belongs to the set of ma-
nipulators specified by the Manipulators parameter. Then it creates a new file
with an ephemeral name that begins with the special prefix SimpFS ephemeral .
This ephemeral name is created so that it is safe for U , thus ensuring that no
other users can remove or rename it.1

Now createFile attempts to set the write permissions of the new file as spec-
ified in the Writers parameter. If this is successful, it proceeds to create the
names, one at a time, by calling the subroutine createOneName for each name
in Names. After all the calls to createOneName, the procedure createFile removes
the ephemeral name that it created for the new file, and returns the vector of
return codes that it received from all the calls to createOneName.

The subroutine createOneName(fName) begins by checking that the new name
is an absolute name, and that it does not contain ‘//’ or elements named
‘.’ or ‘..’, or elements that begin with SimpFS ephemeral . Then it calls
safeDirOpen(fName) thus obtaining a handle to the last successfully resolved
directory on this pathname and the corresponding set of manipulators. If all the
directories were resolved successfully, then createOneName checks that the set of
manipulators equals the Manipulators parameter, and aborts if they differ.

If some directories were not resolved, createOneName verifies that the ma-
nipulator set of the prefix is not too large (i.e., it must be contained in the
1 See Section 4.5 for a short discussion of this point.
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Manipulators parameter), aborting otherwise. Then createOneName attempts
to create the remaining directories, one at the time, initially creating each one
so that it is only writable by owner U with an ephemeral name that begins
with SimpFS ephemeral . Upon success, it tries to set the write permissions
of the last directory so that the resulting set of manipulators will match the
Manipulators parameter. Then it goes over all the newly created directories,
top to bottom, renaming each one to the name that it is supposed to have
according to fName.

Once all the directories exist and have the right set of manipulators and the
right names, the procedure createOneName makes a linkat system call to create
a hard link in the last directory, pointing to the new file. createOneName then
returns whatever code was returned from the linkat system call.

If any operation fails, then createOneName attempts to clean-up after it-
self, trying to remove all the directories that still have names that begin with
SimpFS ephemeral . However, after a directory was renamed to its “permanent
name”, createOneName does not remove it.

In the proof of security in the full version we rely on the following properties of
our implementation of createFile:

– The initial ephemeral name for the new file is safe for the effective-uid of the
calling process.

– The procedure never creates symlinks, only directories and hard links.
– The procedure only changes permissions and/or removes pathname compo-

nents if these components begin with the special prefix SimpFS ephemeral .
– A name fName is created if and only if the linkat system call at the end of

the subroutine createOneName(fName) is successful.

deleteName(fName). When called with effective-uid U , deleteName calls
safeDirOpen(fName) and aborts if that function fails. Else deleteName has an
array of pairs (handle,name), and the state with which safeDirOpen arrived at
the final directory (system-safe, safe-for-uid, or unsafe). If the state is not system-
safe, then deleteName checks that the final directory is either world-writable, or
owner-writable and owned by U , and it aborts otherwise.2 Also, if the state is
unsafe then deleteName checks that the file that the hard link points to has only
a single hard link, aborting otherwise.

Then deleteName attempts to delete the final hard link, followed by attempts
to delete the directories higher-up on the path. deleteName returns when any
system call to remove a name fails, or when any of these names resolves to a
symlink, or when it is done deleting all the names in the array. The return code
from deleteName is whatever was returned from the first unlink system call (i.e.,
the one that deleted the hard link at the end of fName).

We note that barring a race condition, this implementation of deleteName
does not delete symlinks. In the proof in the full version we show that the only
2 This check is intended to protect against privilege-escalation attacks on setgid pro-

grams, cf. Section 4.5.
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cases where these race conditions are possible are when the adversary already
has permissions to delete these symlinks by itself.
read(fName,...). When called with effective-uid U , read calls safeDirOpen(fName)
to get a handle for the final directory, the name of the hard link pointing to the
actual file, and the state at which it arrived in this last directory: system-safe,
safe-for-uid, or unsafe. Then read uses openat, lstatat and fstat to open the
file and verify that it is still the same file (and not a symlink). In addition, if the
state is not system-safe, then read checks that the file is either world-readable,
or owner-readable and owned by U , and it aborts otherwise. Also, if the state
is unsafe then read checks that the file has only a single hard link, aborting
otherwise.

Then the procedure uses the read system call to read the file, and before
closing the file it makes yet another lstatat system call to check that the hard
link still points to the same inode as it did when it was opened. If all these checks
pass, then read returns the result from the read system call.
write(fName,...). The procedure write is almost identical to read except that it
adds a write-permission check on the actual file, and it does not do the final
check after writing to verify that the hard link still points to the same inode.
(Indeed, such check is useless since the file was already written to.)

4.4 Consistency Properties of the Implementation

In the proof of security in the full version, it is important to consider what
changes may happen in the filesystem between the time that the safeDirOpen
pathname resolver visits some directory and the time that the procedure that
called safeDirOpen returns. An important technical observation is that if the
procedure that called safeDirOpen was successful then none of those visited di-
rectories could have been removed during this time.

Lemma 4. Consider an execution of one of the procedures createOneName,
deleteName, read, or write on argument fName, and assume that the procedure
succeeds (i.e., does not return an error code). Assume further that no symlink
that was read during name resolution was later deleted or renamed during the
execution of this procedure, and no directory was renamed after it was opened
by this procedure. Then also none of these directories was deleted after it was
opened and before the time that the procedure issued the system call (respectively,
linkat, unlinkat or openat) for the final hard link in fName.

Moreover, for the procedures createOneName, read, and write, as long as no
symlinks are deleted or renamed, no directories are renamed, and the final hard
link in fName exists in its original containing directory, then also none of these
directories is deleted even after the operation returns.

The proof follows from Assumption 3, and is provided in the full version. #$
Jumping ahead, we use Lemma 4 in the proof by noting that our SimpFS im-
plementation never renames or removes symlinks, or renames directories, and
hence no uncorrupted process will do any of these things. If in addition we know
that no corrupted process has write permissions in any of the directories visited
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then also corrupted processes could not rename or remove symlinks or rename
directories. Thus, we can apply Lemma 4 and conclude that all the directories
stay put throughout the execution of createOneName, deleteName, read, or write.

4.5 Rationale and Discussion

Before proceeding to the formal proof of security, we discuss here some of the
rationale for our implementation, including some specific attacks that the im-
plementation was designed to foil.

Privilege-escalation attacks on setgid programs. Our implementation of
safeDirOpen only considers the effective-uid for the purpose of determining the
safety of a directory, and thus we must consider the possibility of privilege-
escalation attacks between processes with the same effective-uid. In contempo-
rary UNIX systems, two processes with the same effective-uid can have different
filesystem privileges only if one of them has a group-privilege that the other does
not,3 as would happen when one of these processes runs a setgid program.

To see the problem, consider two processes running with effective-uid of joe,
one having the additional group privilege of mail while the other is compromised
by an attacker (e.g., due to a buffer-overflow vulnerability). Ideally, we would
like to argue that files which have read/write permissions for the mail group
(but not user joe) are still protected against the compromised process.

Assume that the non-compromised process with mail group privileges needs
to delete a file /home/joe/dir/foo. The compromised process can create a sym-
link /home/joe/dir -> /var/mail, “tricking” the other process into deleting
/var/mail/foo (assuming that /var/mail/ is writable by group mail). Em-
bedding this attack in our formal model, we have a name /var/mail/foo for
which joe is not a manipulator, and a good process that attempts to delete an
unrelated name /home/joe/dir/foo, and yet by some action of a compromised
process with joe privileges, this results in the deletion of /var/mail/foo.

We fix this problem by adding a check to the operations deleteName, read, and
write, aborting if the name is not system-safe and group privileges are needed to
perform the operation. Very roughly, this defense works because it prevents the
use of group privileges after following symlinks that were created by non-root
processes. (We note that we do not need this extra precaution in createOneName.
This is because the SimpFS functionality restricts deletion of existing names,
but puts no restrictions on the creation of names that do not exist.)

Another reason for the check of the final hard link after a read system call
in read is a potential attack on open-then-read programs, which is described in
the full version.

Our treatment of symbolic links. Our proof of security in relies in places on
the assumption that good processes do not create symlinks. This is consistent
with our simpfs implementation (that indeed does not create symlinks), but it
begs the question why we allow safeDirOpen to follow symlinks at all.

3 We ignore the fsuid of Linux here.
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The reason is that the implementation of simpfs is useful also in situations
where the filesystem includes non-adversarial symlinks. A close inspection of
our proof shows that the arguments remain valid also in the presence of non-
adversarial symlinks, as long as the files that have non-adversarial symlinks
in their names remain static (i.e., they are not deleted, removed, or moved).
It is even possible to modify the semantics of SimpFS to accommodate non-
adversarial symlinks in a dynamic filesystem, but the new semantics will not be
as simple anymore.

Using the sticky bit. Recall that the initial ephemeral name for a new file
must be safe for the effective-uid of the calling process (denoted U). Such a
name can perhaps be created in U ’s home directory, but not all uid’s have one.
A simple way of achieving the same result in contemporary UNIX systems is
creating this ephemeral name in /tmp, relying on the fact that /tmp is owned
by root and has the sticky bit on. This does not quite fit into our definition
of “safe for U” (since /tmp is world-writable), but it suffices for the purpose of
our proof of security. Specifically, what we need is to ensure that as long as the
calling process holds a handle to the new file, only U or root can change the
resolution of the ephemeral name.

5 Conclusion

In this work we adapted the Universal Composability (UC) framework to the
modeling of large software systems. Focusing on filesystem interfaces, we de-
scribed SimpFS, which is a simple filesystem abstraction intended to capture
filesystem integrity concerns. We describe an implementation of this abstrac-
tion over real POSIX filesystems and prove that the implementation realizes the
SimpFS abstraction in the UC sense. SimpFS is a simple but useful interface
and with a few small enhancements is sufficient to build real applications.

Our work demonstrates that formal security frameworks such as Universal
Composability can be used also beyond the niche of cryptographic protocols.
Our modeling of POSIX-based file systems is the first example of this scale.
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Abstract. In this paper we present attacks on the compression function
of Maelstrom-0. It is based on the Whirlpool hash function standardized
by ISO and was designed to be a faster and more robust enhancement.
We analyze the compression function and use differential cryptanalysis to
construct collisions for reduced variants of the Maelstrom-0 compression
function. The attacks presented in this paper are of practical complexity
and show significant weaknesses in the construction compared to its pre-
decessor. The methods used are based on recent results in the analysis
of AES-based hash functions.
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1 Introduction

Cryptographic hash functions are a fundamental part of modern cryptography.
They are used in many practical applications e.g., verification of message in-
tegrity, message authentication or secure storage of passwords. Typically a hash
function is used as a digital fingerprint of the information that needs authenti-
cation.

A cryptographic hash function takes as input a string of arbitrary finite length
and produce a fixed sized output. Usually the input domain is larger than the
output domain, therefore this functions are many-to-one. As a result the exis-
tence of collisions is unavoidable.

Hash functions have to be both fast and secure. The security can be discussed
by the following properties:

– Preimage Resistance: For a given output y it should be computationally
infeasible to find an input x′ such that y = f(x′).

– Second Preimage Resistance: For given x, y = f(x) find x′ �= x such that
f(x′) = y.

– Collision Resistance: Find two distinct inputs x, x′ such that f(x) = f(x′).

A hash function with n-bit output is secure if finding a (second) preimage takes
at least 2n and finding a collision 2n/2 (birthday attack) queries [1].

The most commonly used hash functions at the moment are SHA-1, SHA-
256 and SHA-512 certified by NIST. They are part of several standards and
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based on MD4 and MD5. In the last few years cryptanalysis made a huge leap
forward and weaknesses have been found for these functions. There are practical
collisions for MD4 [2], MD5 [3] and SHA-0 [4]. The computational effort to
construct collisions for SHA-1 is still impracticable, but the security bound is
much lower than expected [5] and attacks on reduced rounds are possible [6].
Therefore, there is a strong interest in new hash functions.

Maelstrom-0 is based on the Whirlpool hash function which has been adopted
in the ISO 10118-3:2004 standard [7]. Maelstrom-0 is designed to be a faster
and more robust enhancement of Whirlpool but we will show that the new
lightweight key schedule significantly weakens this hash function and allows us to
construct collisions for reduced rounds of the Maelstrom-0 compression function
with practical complexity. In detail, we show how to construct a collision for 6
out of 10 rounds and give a colliding message pair. Furthermore, we show attacks
for 8 and 10 rounds in a weaker attack scenario (near-collision and semi-free-start
near-collision) and a theoretical collision attack on 7 rounds.

The paper is structured as follows: First there will be a description of the
Maelstrom-0 hash function followed by an overview of the attack in Section 2.
We continue with a detailed section on how to construct a differential path for
6-rounds and how to obtain the colliding message pair in Section 3. Afterwards
possible extensions on more rounds are discussed followed by the conclusion.

2 Description of Maelstrom-0

Maelstrom-0 is an iterative hash function designed by Filho, Barreto and Rijmen
[8]. Maelstrom-0 processes 1024-bit message blocks and produces a 512-bit hash
value. It uses the Davies-Meyer construction (see Figure 1) and 3CM chaining
mode which is based on 3C [9]. If we have a message m = M1||M2|| . . . ||Mk we
can compute the hash value h in the following way

H0 = IV (1)
Hi = E(Hi−1, Mi)⊕Hi−1, ∀i : 0 < i ≤ k (2)
h = E(Hk, sk||tk) (3)

where sk is the output of the second and tk the output of the third chain.
The second chain is the XOR accumulation of all the indermediate compression
function outputs and in the third chain a LFSR is involved in the accumulation
process.

Hj−1

Mj

Hj
state update
SB SC MR AK

key schedule

Fig. 1. Maelstrom-0 compression function



Practical Attacks on the Maelstrom-0 Compression Function 451

2.1 Block Cipher E

The block cipher E is based on the one used in Whirlpool. The only difference
between the block cipher used for Maelstrom-0 is that it uses a different key
schedule. The state update operates on a 8 × 8 states of 64 bytes therefore
the 512-bit input is bytewise transformed. The state is updated through 10
identical rounds and one key addition at the beginning. One round consists of
the application of the four transformations SubBytes, ShiftColumns, MixRows
and AddRoundKey similar to AES. We only give a very brief description and a
more detailed one can be found in [8].

SubBytes (SB)

The SubBytes step applies a nonlinear S-box on each byte using an 8-bit S-box.
The S-box is the same as in Whirlpool. For the definition of the S-box we refer
to [7].

ShiftColumns (SC)

The ShiftColumns step cyclically shifts each column j = 0, . . . , 7 by j steps
downwards.

MixRows (MR)

MixRows is a linear mapping based on a MDS code multiplying each row by
a 8 × 8 matrix over F28 . The values of the matrix are choosen such that the
branch number of MixRows is 9. Therefore the sum of active bytes (byte with
difference) at input and output is always at least 9.

AddRoundKey (AK)

The key addition uses bitwise xor to add the round key.

Key Schedule (KS)

The key schedule takes as input the 1024-bit message block M = (v0, . . . , v1023)
to generate the round keys K0, ..., K10. The message block M is mapped to a
column vector (K−2 = v0, . . . , v511, K

−1 = v512, . . . , v1023) and in each step two
new round keys are computed in the following way

(
K2i

K2i+1

)

= α

(
K2i−2

K2i−1

)

+ Ci ∀i = 0, . . . , 5 (4)

where

α =
(

1 1
x8 x8 + 1

)

(5)

and Ci is some round dependent constant. For the actual values we refer to [8].
There are only 11 keys needed so the last key is dropped. Multiplication is done
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over F2512 [x]/p(x) with p(x) = x512 + x8 + x5 + x2 + 1 . The 512-bit round keys
are transformed to a 8 × 8 state. For the actual round keys Maelstrom-0 uses
a key extraction function which applies the SubBytes and the MixRows step to
row 3 and 7 to obtain the round key. This is the only nonlinear transformation
used in the key schedule. Note that inverse key schedule looks almost the same
we only need to determine the inverse matrix of α which is given by

α−1 =
(

x8 + 1 1
x8 1

)

(6)

3 Outline of the Attack

For our attack on Maelstrom-0 we use differential cryptanalysis. Differential
cryptanalysis observes how the difference between a pair of inputs affect the
resulting output difference [10]. It was originally devised in the analysis of block
ciphers but is also used for stream ciphers and hash functions. Usual differential
cryptanalysis is a chosen plaintext attack. The basic method considers a pair of
messages (M, M ′) and the xor difference ΔM = M ⊕M ′.

For our analysis we use truncated differentials [11]. This means we do not
consider the full difference between two inputs, we only determine for single
bytes whether there is a difference or not.

The structure of Maelstrom-0 allows us to predict how differences propagate
through the key schedule and the round transformations to find a good differen-
tial path. For our goal to mount a collision attack we are looking for an input
pair (M, M ′) with output difference zero. The attack can be divided into two
individual steps. The first part is to find a differential path which holds with
high probability. We use differences in the key input (message input) such that
the resulting pattern can be fulfilled with a high probability. The second step is
to find a message following this differential path.

Similiar attacks have been applied to Whirlpool in [12] but they did not use
any difference in the key input due to the strong key schedule used in Whirlpool.
Our attack is similiar to the attacks on the AES hash mode in [13] using local
collisions to cancel out differences, but we use other techniques for finding the
confirming message pair [13]. In the following we define our notation and analyze
the differential properties of the round transformations and the key schedule,
before we describe the attack in detail.

Notation

We denote the state after round k after the transformationR={SB, SC, MR,AK}
by Rk

i,j where i, j are the row and column indices. Indices are used modulo 8.

3.1 Differential Properties of the Round Transformations

SB - SubBytes. For SubBytes we consider pairs of input/output differences
Δa, Δb ∈ {0, 1}8. Counting over all 216 possible differentials the number of
solutions for
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SB(X)⊕ SB(X ⊕Δa) = Δb (7)

can only be 0, 2, 4, 6, 8, 256. We are interested if a given input difference can prop-
agate to a given output difference. Counting over all possible inputs the proba-
bility for Δa to propage to Δb through SubBytes is equal to 0.395 respectively
there are about 101 valid transitions on average from Δa to another difference.
This can be computed by creating a difference distribution table (DDT) of size
256× 256 for all possible values.

SC - ShiftColumns. This steps moves differences to different rows but the
values are not changed. The 8 bytes of a full active row are moved to 8 different
rows.

MR - MixRows. MixRows is a linear step, hence xor differences propagate
in a deterministic way. For truncated differences we only got the position of
the difference and the propagation through MixRows is probabilistic. Since the
branch number of MixRows is 9, one active byte will propagate to 8 active bytes
with probability 1. The probability for a transition from a to b active bytes with
1 ≤ a, b ≤ 8 and a + b ≥ 9 is in general 2(b−8)·8.

AK - AddRoundKey. AddRoundKey uses simple xor to add the round key
hence difference propagate deterministic through this operation.

3.2 Differential Properties of the Key Schedule

The key schedule uses two 512-bit keys K−2, K−1 to compute the next two round
keys. Apart from the key extraction function the key schedule is linear. First we
can simplify the key schedule and ignore the addition of the round constant and
look at the two new keys separately.

K0 = K−2 + K−1

K1 = x8K−2 + (x8 + 1)K−1

The difference propagation to K0 is trivial because it simply xors the two input
keys. For the second key we have to look how multiplication over F2512 [x]/p(x) in-
fluences the differences. Multiplication by x8 equals shifting bytewise and adding
the irreducible polynomial p(x) depending on the values of the first byte (K0,0)
of each round key. If we avoid any differences in the first byte the differences will
just be shifted bytewise (see Figure 2). If we have a difference in the first byte
it will only affect the last two bytes due to the structure of p(x).

Key Extraction Function - ψ

The key extraction function applies SubBytes and MixRows to row 3 and 7 and
copies all other rows. Note that ψ is only applied on the round keys and does
not influence the state of the key schedule. For our attack we avoid difference in
this rows so we can ignore it for our further analysis.
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KS

K−2 K−1

K0 K1

Fig. 2. Example difference propagation through the keyschedule with differences in
K−2

6,7 and K−1
5,7 . Colored bytes denote differences.

3.3 Constructing the Differential Path

Constructing the differential path is rather simple due to the structure of the
round transformations. Using truncated differentials we can construct a good
path by hand.

For the 6-round differential path (see Figure 3) we start with a difference in
K1

6,7. We can ignore K−2 and K−1 because we can apply the inverse key schedule
to (K0, K1) to obtain the initial key. The difference introduced by K1 will end
up in a full active row in AK2 due to the properties of MixRows. After SC3

there will be an active byte in every row and therefore we will have a full active
state in AK3. We keep this full active state for AK4 and use the properties
of MixRows to obtain the pattern in AK5. Note that in row 6 we want the 8
active bytes to propagate to 4 active bytes so that they are canceled out with
the differences in K5. We choose this pattern to obtain a single active row after
applying ShiftColumns so that we can use the last MixRows to cancel out the
differences in K6. The number of active bytes for the rounds are:

0− 1− 9− 64− 64− 8− 0 (8)

AK0 AK1 AK2 AK3 AK4 AK5 AK6

K0 K1 K2 K3 K4 K5 K6

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

KS KS KS

Fig. 3. 6 round differential path for Maelstrom-0
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In the next step, we determine the xor differences of the differential path. For
this we use the same approach that has been used in the rebound attack on
Whirlpool [14]. So far we only considered truncated differentials, now we use xor
differences.

Backward direction

1. Start with an arbitrary difference in K6
6,5, K

6
6,7. We want to cancel this dif-

ference out so we also fix the difference in MR5
6,5, MR5

6,7.
2. The next step is to compute the MixRows step backwards to obtain the

differences in SC5 respectively SB5. To compute backwards the SubBytes
step we choose an arbitrary possible input difference to the given output
difference using the difference distribution table (see Section 3.1).

3. Now we repeat this steps to propagate the differences backward through
MR4, SC4. The differences after SB4 are now fixed and in the following steps
we show how we can propagate the difference from the start such that they
match this fixed difference.

Forward direction

1. Start with the difference in AK1
6,7 and propagate it forward. We get a full

active row in MR1. For the next SubBytes step we choose arbitrary possible
output differences using the DDT to the 9 given input differences and we
end up with a full active state in MR2 and AK2.

2. Now we start the matching process for each row r = 0, . . . , 7 individual.
Select the bytes AK2

(8−r),i for i = 0, . . . , 7 and it follows that this bytes form a
single row after ShiftColumns. Propagate the bytes through SB3, SC3, MR3,
AK3 step. For the SubBytes step we use a random valid output difference.

(a) Check for all bytes in row r of AK3 if there is a valid transition from
the input difference to the output difference in SB4. For any given input
difference we get up to 114 possible output difference. On average the
probability that the differences in one byte transition is valid is 0.395 and
the total probability is ≈ 2−10.72 that a full row matches. In practice we
can improve this by using favorable differences. If we do not get a match
for the row, we just choose another output difference in the previous step.
For every byte we can choose from at least 89 possible output differences,
therefore we can easily generate enough solutions to find a match.

(b) Repeat the steps until all conditions are fulfilled. The expected costs are
8 · 210.72 = 213.72

After finishing this steps the differential path is fully determined.

3.4 Finding the Message Pair

To find the colliding message pair we need to find a message that follows the
previous differential path. We need to determine the message M = K−2||K−1.
This can be done by random trials which obviously leads to a high complexity. A
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AK0 SB0 SC0 MR0

AK1 SB1 SC1 MR1

AK2 SB2 SC2 MR2

AK3 SB3 SC3 MR3

AK4 SB4 SC4 MR4

AK5 SB5 SC5 MR5

AK SB SC MR

AK SB SC MR

AK SB SC MR

AK SB SC MR

AK SB SC MR

AK SB SC MR

AK

K0

K1

K2

K3

K4

K5

K6

Fig. 4. Full differential path for 6 rounds using truncated differentials
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more efficient method is to use the triangulation algorithm invented by Khovra-
tovich et al. in the cryptanalysis of AES in hash mode [13]. Due to the structure
of Maelstrom-0 the best result we achieved had a complexity of 2184 which is in
fact lower than the theoretical bound but we used the following approach which
turns out to be very efficient for Maelstrom-0.

1. Start at SB4 and determine the correct values for the given differences. We
need to fulfill the conditions on all 64 active bytes, but there are no restric-
tions yet so we can choose the right pair of values.

2. For SB5 we got 8 conditions but we can use the according bytes in K5 to
get the correct input values to this SubBytes layer. The values for the rows
affected by the key extraction function can be computed by inverting the
MixRows and SubBytes step to obtain the desired value.

3. Now we need to satisfy the conditions for the fourth SubBytes layer. We
can compute the values from the difference for SB3 and apply ShiftColumns,
MixRows and use K4 to correct them and get the right input to the fourth
SubBytes layer. After this step all values of K4 and 8 bytes of K5 are fixed.

4. Compute K2, K3 by applying the inverse KeySchedule. From the inverse
KeySchedule it follows that K5 is xored to K4 in both cases. We can use
the remaining 54 free bytes now to influence K3 and therefore the values
we need to satisfy the 9 byte conditions of the third SubBytes layer. By
changing single bytes in K3 we can influence the value of each active byte
in SB2. The probability that we get the right value is 2−8. There are still
7 bytes that are not fixed in every row of K5 so we can create 256 possible
values and are guarenteed to find a solution. Each row in K5 only affects one
respectively two active bytes in SB2 therefore we can find the right values
for each row individually. With the naive approach by trying out different
values for each row we get a total complexity of 216.

5. With only one byte condition left in SB1 to fulfill we can simply bruteforce
the last S-box and repeat the previous steps. This results in a semi-free start
collision with a complexity of 224.

A colliding message pair for 6 rounds is given in the Appendix A.

3.5 Extension to More Rounds

In this section, we show how the attack can be extended to more rounds. It is
possible to construct collisions for 7 rounds. This could be achieved by using a
different path with another state between the two full active ones. This leads to

0− 1− 9− 64− 8− 64− 8− 0 (9)

active bytes. The attack can be constructed similar to the attack on 6 rounds,
but we have more conditions which can not be fulfilled using the message input.
A possible approach would be:

1. Fix the differences in AK4 and propagate them backward to SB3. Fix the
differences in SB2 and propagate them forward to AK3. We try to find a
match with the same method used in the 6-round attack previously.
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AK3 AK4 AK5 AK6 AK7

K3 K4 K5 K6 K7

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

KS KS

Fig. 5. 7 round differential path. The first three rounds are omitted and are the same
as for the 6 round path.

6-round path
(rounds 1-6)

AK0

K0

AK1

K1K1

AK9

K9

AK10

K10

SB
SC
MR
AK

SB
SC
MR
AK

KS KS

Fig. 6. Extending the differential path at the end to get a near-collisions for 8 rounds
with 25 active bytes. Furthermore, adding 2 rounds at the beginning for full 10-rounds
free-start near-collisions.

2. Choose a valid transition for the propagation from AK4 to SB4. Compute the
differences forward to AK5. Now choose a difference in AK6 and propagate
it backward to SB5 and try to find a match again.

Finding the message can now be done in the following way:

1. Determine the values at AK3 resp. SB3. We got 8 byte conditions at SB4

which can be fulfilled using the corresponding column in K4. The 64 byte
conditions for SB5 can be fulfilled using K5. Following onward this direction
we need one transition of 8 to 3 active bytes in MR6 which costs 240 and we
need them to cancel out with the last 3 bytes of K7. So the total complexity
for the forward direction is 264.

2. In backward direction this looks very similar. We got one 8 to 1 transition
in MR1 which costs 256 and two conditions for the bytes K1

6,7 and K2
6,7 to

cancel out. Therefore the complexity in forward direction is 272.
3. The total complexity is 2136 in this case.

By choosing a weaker attack scenario the previous collision attack on 6 rounds
can be extended to more rounds. If we allow differences in the output we get
near-collisions and additional differences at the input lead to semi-free-start near-
collisions.
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Table 1. Summary of attacks

Attack rounds complexity generic attack

semi-free-start collision 6 224 2256

semi-free-start collision 7 2136 2256

semi-free-start near-collision 8 224 2156

free-start near-collision 10 224 2124

Adding two more rounds after the 6-round attack we get near-collisions for 8
rounds with the same complexity of 224. The key addition after round 6 leads
to 3 active bytes which propagate to 3 active rows. The last key adds another
active byte. This gives us a near-collision with 25 active bytes (see Figure 6).

Furthermore it is also possible to additionally prepend two rounds to construct
a free-start near-collisions for the full 10 rounds of Maelstrom-0.

4 Conclusion

In this paper, we have shown how to construct collisions for the Maelstrom-0
compression function. Maelstrom-0 was designed to be faster and more robust,
however the new lightweight key schedule significantly weakens the compression
function and allows efficient attacks. The linear key schedule allows to construct
good differential paths and the key extraction function can be easily avoided.
We can construct collisions for 6 and 7 rounds. Furthermore, the attack scenario
can be extended to full Maelstrom-0, resulting in a free-start near-collision. In
Table 1 we summarize our results for the Maelstrom-0 compression function.
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A Colliding Message Pair

Here a colliding message pair (M, M ′) and the chaining value are given. The
message pair has been found by using the 6-round path and the difference in the
messages are ΔM1

6,7 = ΔM2
6,7 = 01. Values are given in hex notation.

Chaining Value After 6 rounds (AK6)

62 c4 11 cf 0e 4e dd eb
7e 1f 07 7c d7 84 ae 56
a4 81 51 b2 1e 91 d3 fe
23 08 cd 4a b8 d4 82 b9
67 89 16 74 f0 e6 7d 58
76 e0 fa f9 b6 8b 01 9c
83 d8 d8 36 e3 9e 54 f2
43 0c 85 58 a0 9b 30 38

6d 85 84 15 32 bd fc 98
b6 db 17 12 ed c5 fe 73
f5 85 8e a7 93 ea b0 87
ac 8e da b0 e1 20 82 d8
15 32 a8 61 d5 3f bc 93
ba dd 0a 2b bb 20 87 1f
32 45 86 6a c2 41 73 df
34 81 63 4e 4a 10 18 a7

M M ′

25 fe e7 fa 16 6f 30 2b
c3 03 8e d9 79 3a d6 06
8e 53 d3 da 9b 41 33 e0
66 e6 da 6 5c 9b f1 f2
31 1a ff 5c a1 ac 25 cd
2f 6e 63 a9 84 0e d5 40
00 c0 d9 9f 24 ab 7c 20
1f 2f d8 2f bc d2 04 2a

34 8c 53 c5 17 b4 87 35
e1 9c 2c e8 1d fb df 80
97 3d 46 0f ee 1d 5d 4b
63 55 37 c3 de 04 88 8e
b8 13 92 12 2c d2 8d 8e
ef 3b fc 5a b3 44 6b 7b
ef f6 80 42 49 9a 5d de
9f 1b d8 e9 88 7f c4 73

25 fe e7 fa 16 6f 30 2b
c3 03 8e d9 79 3a d6 06
8e 53 d3 da 9b 41 33 e0
66 e6 da 06 5c 9b f1 f2
31 1a ff 5c a1 ac 25 cd
2f 6e 63 a9 84 0e d5 40
00 c0 d9 9f 24 ab 7c 21
1f 2f d8 2f bc d2 04 2a

34 8c 53 c5 17 b4 87 35
e1 9c 2c e8 1d fb df 80
97 3d 46 0f ee 1d 5d 4b
63 55 37 c3 de 04 88 8e
b8 13 92 12 2c d2 8d 8e
ef 3b fc 5a b3 44 6b 7b
ef f6 80 42 49 9a 5d df
9f 1b d8 e9 88 7f c4 73
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Abstract. Recent developments in the field of cryptanalysis of hash func-
tions has inspired NIST to announce a competition for selecting a new
cryptographic hash function to join the SHA family of standards. One of
the 14 second-round candidates was CubeHash designed byDaniel J. Bern-
stein. CubeHash is a unique hash function in the sense that it does not
iterate a common compression function, and offers a structure which re-
sembles a sponge function, even though it is not exactly a sponge function.

In this paper we analyze reduced-round variants of CubeHash where
the adversary controls the full 1024-bit input to reduced-round Cube-
Hash and can observe its full output. We show that linear approxima-
tions with high biases exist in reduced-round variants. For example, we
present an 11-round linear approximation with bias of 2−235, which al-
lows distinguishing 11-round CubeHash using about 2470 queries. We
also discuss the extension of this distinguisher to 12 rounds using mes-
sage modification techniques. Finally, we present a linear distinguisher
for 14-round CubeHash which uses about 2812 queries.

Keywords: CubeHash SHA-3 competition, Linear cryptanalysis.

1 Introduction

Recent developments in the field of hash function cryptanalysis [1,18,19,20] along
with new results targeted against commonly used hash functions [6, 11, 26, 27]
has urged the National Institute of Standards and Technology to announce a
competition for the development of a new hash standard, SHA-3 [25].

The National Institute of Standards and Technology has received 64 hash
function proposals for the competition, out of which 51 met the submission
criteria and were accepted to the first round of the competition. Following the
first round of analysis, in which the security and performance claims of the
submitters were challenged, 14 candidates were selected to the second round of
the SHA-3 competition. One of these 14 candidates was CubeHash designed by
Daniel J. Bernstein [4]. Although CubeHash did not pass to the third round of
the SHA-3 competition, it is still of interest to challenge its security.

J. Lopez and G. Tsudik (Eds.): ACNS 2011, LNCS 6715, pp. 462–478, 2011.
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CubeHash is a family of cryptographic hash functions, parameterized by the
performance and security required. CubeHash has an internal state of 1024 bits,
which are processed by calling a transformation named T , a tweakable number of
times r, between introductions of new b-byte message blocks (b is also a tunable
parameter). At the end, after a final permutation, namely, T repeated 10r times,
h bits of the state are used as an output. By selecting different values of h, b, and
r, different security/performance tradeoffs are provided. Currently, several sets of
parameters are suggested, where the “normal” security values are r = 16, b = 32
(for h ∈ {224, 256, 384, 512}) [5].1

In this paper we analyze the security of several variants of CubeHash against
linear cryptanalysis. Our analysis found a linear approximation for 11-round
CubeHash2 with bias of 1

4 ·
1
2

233 = 2−235. We limited the analysis to biases of no
less than 2−256, as we felt that a hash function offering a 512-bit security (in its
strongest variant), should not be assessed with attacks taking more than 2512

queries. One can also extend the 11-round linear approximation into a 12-round
distinguisher using simple message modification techniques [27] (or a chosen-
plaintext linear cryptanalysis [22]).

We note that when removing this restriction, one can find 14-round linear ap-
proximations with bias of 2−406. Exploiting this approximation requires querying
T 14 about 2812 times, which is outside the security model. At the same time, if T
or CubeHash are ever used in different settings, this may provide some indication
concerning its security.

This paper is organized as follows: In Section 2 we describe CubeHash’s com-
pression function. In Section 3 we describe the linear approximations found for
CubeHash. In Section 4 we describe how bit fixing can be used to distinguish
more rounds than in the approximation. In Section 5 we quickly cover a possible
application of our results. Finally, Section 6 concludes this paper.

2 A Brief Description of CubeHash

As mentioned before, CubeHash is a tweakable hash function, where the shared
part of all its variants is the internal state (of 1024 bits), and the use of the same
round function T .

To initialize the hash function, h (the digest size), r the number of times T is
iterated between message blocks, and b the size of the message blocks (in bytes),
are loaded into the state. Then, the state is updated using 10r applications of T .
At this point, the following procedure is repeated with any new message block:
the b-byte block is XORed into the 128-byte state, and the state is updated
by applying T r (r times applying T ) to the state. After processing the padded

1 We note that there is a “formal” variant of CubeHash for which r = 16, b = 1 and
h ∈ {384, 512}.

2 We note that CubeHash is a full hash function which is not easily defined in the
common settings. Hence, 11-round CubeHash stands for iterating 11 times the trans-
formation T . We remind the reader that our analysis usually assumes the adversary
can choose the full 1024-bit input to T and observe the full 1024-bit output from T .
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message, the state is XORed with the constant 1, and is processed by applying
T 10r. The output is composed of the first h/8 bytes of the state.

The 1024 bits of the internal state are viewed as a sequence of 32 4-byte words
x00000, x00001, . . . , x11111 each of which is interpreted in a little-endian form as
a 32-bit unsigned integer. The round function T of CubeHash is based on the
following ten operations:

1. Add (modulo 232) x0jklm into x1jklm , for all (j, k, l, m).
2. Rotate x0jklm left by 7 bits, for all (j, k, l, m).
3. Swap x00klm with x01klm, for all (k, l, m).
4. XOR x1jklm into x0jklm, for all (j, k, l, m).
5. Swap x1jk0m with x1jk1m, for all (j, k, m).
6. Add (modulo 232) x0jklm into x1jklm , for all (j, k, l, m).
7. Rotate x0jklm left by 11 bits, for all (j, k, l, m).
8. Swap x0j0lm with x0j1lm, for all (j, l, m).
9. XOR x1jklm into x0jklm, for all (j, k, l, m).

10. Swap x1jkl0 with x1jkl1, for all (j, k, l).

The structure is represented in a little endian form, i.e., x00000 is composed
of the four least significant bytes of the state and x11111 is composed of the
most significant four. We note that the only nonlinear operations with respect
to GF(2) are the modular additions.

2.1 Previous Results on CubeHash

Following its simple structure, CubeHash has received a lot of cryptanalytic
attention. Some of the attacks, such as the ones of [7, 21], can be applied to
CubeHash, independent of the actual T (as long as it is invertible). These at-
tacks target the preimage resistance of CubeHash, and exploit the fact that as
all components are invertible, and as the adversary can control b bytes of the in-
ternal state directly, it is possible to find a preimage in about 2512−4b CubeHash
computations.

The second type of results, tried to analyze reduced-round variants of Cube-
Hash for collisions. In [2], a collision for CubeHash2/120-512 is given. Collisions
for CubeHash1/45 and 2/89 are given in [14], and for CubeHash4/48 and Cube-
Hash4/64 are produced by [9, 10]. A more general methodology to obtain such
collisions is described in [8], where variants up to CubeHash7/64 are successfully
analyzed.

A third type of attacks/observations concerning CubeHash deal with the sym-
metric structure of T . For example, if at the input to T all x0jklm words are equal,
and all x1jklm words are equal (not necessarily equal to the value of the x0jklm),
then the same property holds in the output as well. The first analysis of this
type of properties is given in the original submission document [4]. In [3], several
additional classes of “symmetric” states are observed, and their use is analyzed.
Recently, these classes were expanded to include a larger number of states (and
structures) in [16].
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Despite all the above-mentioned work, CubeHash is still considered secure,
as no attack comes close to offer complexity which is significantly better than
generic attacks.3 To the best of our knowledge this work is the first one that
succeeds to offer some non-trivial property of more than 10 rounds of T .

3 Linear Approximation of CubeHash

Linear cryptanalysis [24] is a useful cryptanalytic tool in the world of block
cipher cryptanalysis. When using linear cryptanalysis, the adversary tries to
find a linear expression that approximates a non-linear function with probability
different than 1

2 .
Once a good approximation is found for the relation between the plaintext,

the ciphertext and the key (by an expression that holds with some bias) the
adversary gains information concerning the key, by observing sufficient num-
ber of plaintext/ciphertext pairs until finding enough of them that satisfies the
approximation.

Since a good cryptosystem is expected to behave as a random function the
linear approximation is satisfied with probability 1

2 regardles of the approxima-
tion correctness. Therefore, the bias induced by the approximation is of the form
1
2 + ε.

As we expect two rounds of a good hash function to be independent of each
other we can use the piling up lemma that states that the overall bias for two
approximations with biases 1

2 + ε1 and 1
2 + ε2 is 1

2 + 2ε1ε2 making the total
number of queries required to satisfy the approximation 22ε1ε2 .

In the context of hash functions, linear cryptanalysis has received very little
attention, unlike differential cryptanalysis. The reason for that seems that while
differential cryptanalysis can be directly used to offer collisions or preimages,
linear cryptanalysis seems to be restricted to very rare cases (i.e., where the bias
is extremely high).

At the same time, the use of linear approximation to assess the security of
a hash function can shed some light on whether the underlying components
offer the required security. Even though hash functions are unkeyed cryptosys-
tems, the use of linear cryptanalysis supplies some information about the the
uniformity of the output distributions. Moreover, linear approximations of the
compression function might be useful when discussing MACs built on top of the
hash function (suggesting a detectable linear bias in the output).

3.1 Linear Approximation of Addition Modulo 232

CubeHash uses a mixture of XORs, rotations, and additions. While the first two
can be easily handled in the linear cryptanalysis framework, the approximation
of the modular addition possess several problems, mostly due to the carry chains.
3 We note that while the preimage attacks of [21, 7] may offer a small speed-up with

respect to generic attacks, their memoryless variants are not much faster than ex-
haustive search. Moreover, as the submission document lists this as a known issue,
this flaw is not considered too harmful by many.
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One of the papers studying the cryptographic properties of modular addition
is [12] which studies the carry effects on linear approximations. In the paper,
Cho and Pieperzyk show that approximating two consecutive bits can overcome
some of the inherent problems of carry chains. Namely, if λ is a mask of two
consecutive bits (in any position) then: λ · (x + y) = λ(x ⊕ y) with probability
3/4 (i.e., a bias of 1/4).

We analyzed several cases where λ contains pairs of consecutive bits, e.g., two
pairs of consecutive pairs, and even when these pairs appear immediately after
each other (i.e., λ is composed of four consecutive bits set to 1). Our analysis
shows that with respect to linear cryptanalysis, these pairs can be treated as two
separate independent instances. For example, the probability that λ · (x + y) =
λ(x ⊕ y) for λ whose four most significant bits are 1, while the rest are 0, is
10/16 (suggesting the expected bias of 2 · (1/4)2 = 1/8).

3.2 The Linear Approximation of the Round Function of CubeHash

Our first attempt in understanding the security of CubeHash against linear
cryptanalysis was a very simple experiment. We looked at all possible masks
which had only one pair of two consecutive bits active, and tried to extend this
mask as many rounds as possible in the forward direction. At some point, the
resulting mask had a divided pair of bits, i.e., a pair of bits that due to the
rotations used in CubeHash were sent one to the LSB of a word, and one to the
MSB of the same word. Such a mask does no longer fall under the type of masks
considered in [12], and our experiments show that such a mask has a very low
bias when considering addition.

After performing the search in the forward direction, we repeated the experi-
ment, this time running the light mask in the backward direction (i.e., through
T−1) as many rounds as possible. The results obtained in these experiments are
shown in Tables 1 and 2, which present the number of possible linear approx-
imations of that form in the forward and the backward directions (along with
the associated bias). The longest of which covers 10 rounds in any direction.

Following the surprisingly long approximations, we decided to explore pairs
of pairs (i.e., four active bits in the starting mask), repeating the process of
analyzing the forward direction as well as the backward direction. These results
are summarized in Tables 3 and 4.

We also combined the forward and the backward approximations to form a
series of approximations for as many rounds as could, using the combination of
this type of approximations. In Table 5 we offer input/output masks of the best
approximations we found.

Following the fact that CubeHash aims to offer at most a 2512 security, we
decided to concentrate at approximations of bias up to 2−256 (as detecting
smaller biases requires more than 2512 queries). The longest possible approx-
imation which adheres to this restriction is of 11 rounds and has a bias of 2−235

which is fully described in Table 6.
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Table 1. Number of Linear Approximations Following the Consecutive Masks Ap-
proach (Starting from a Mask with One Consecutive Pair in the Forward Direction)

Rounds Bias Number of Approximations

1 1
4
· 1

2

0
= 2−2 480

1 1
4
· 1

2

1
= 2−3 16

1 1
4
· 1

2

2
= 2−4 480

1 1
4
· 1

2

3
= 2−5 16

2 1
4
· 1

2

11
= 2−13 432

2 1
4
· 1

2

12
= 2−14 16

2 1
4
· 1

2

15
= 2−17 16

2 1
4
· 1

2

16
= 2−18 416

2 1
4
· 1

2

17
= 2−19 16

2 1
4
· 1

2

20
= 2−22 16

3 1
4
· 1

2

29
= 2−31 384

3 1
4
· 1

2

30
= 2−32 16

3 1
4
· 1

2

33
= 2−35 16

3 1
4
· 1

2

35
= 2−37 352

3 1
4
· 1

2

36
= 2−38 16

3 1
4
· 1

2

39
= 2−41 16

4 1
4
· 1

2

66
= 2−68 336

4 1
4
· 1

2

67
= 2−69 16

4 1
4
· 1

2

70
= 2−72 16

4 1
4
· 1

2

74
= 2−76 288

4 1
4
· 1

2

75
= 2−77 16

4 1
4
· 1

2

78
= 2−80 16

5 1
4
· 1

2

113
= 2−115 272

5 1
4
· 1

2

114
= 2−116 240

5 1
4
· 1

2

115
= 2−117 16

5 1
4
· 1

2

117
= 2−119 16

5 1
4
· 1

2

118
= 2−120 16

6 1
4
· 1

2

169
= 2−171 208

6 1
4
· 1

2

170
= 2−172 16

6 1
4
· 1

2

171
= 2−173 160

6 1
4
· 1

2

172
= 2−174 16

6 1
4
· 1

2

173
= 2−175 16

6 1
4
· 1

2

175
= 2−177 16

7 1
4
· 1

2

236
= 2−238 96

7 1
4
· 1

2

237
= 2−239 16

7 1
4
· 1

2

238
= 2−240 144

7 1
4
· 1

2

239
= 2−241 16

7 1
4
· 1

2

240
= 2−242 16

7 1
4
· 1

2

242
= 2−244 16

8 1
4
· 1

2

346
= 2−348 32

8 1
4
· 1

2

347
= 2−349 16

8 1
4
· 1

2

350
= 2−352 16

8 1
4
· 1

2

353
= 2−355 80

8 1
4
· 1

2

354
= 2−356 16

8 1
4
· 1

2

357
= 2−359 16

9 1
4
· 1

2

445
= 2−447 16

9 1
4
· 1

2

481
= 2−483 32

9 1
4
· 1

2

485
= 2−487 16

10 1
4
· 1

2

550
= 2−552 16
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Table 2. Number of Linear Approximations Following the Consecutive Masks Ap-
proach (Starting from a Mask with One Consecutive Pair in the Backward Direction)

Rounds Bias Number of Approximations

1 1
4
· 1

2

2
= 2−4 496

1 1
4
· 1

2

3
= 2−5 480

1 1
4
· 1

2

4
= 2−6 16

2 1
4
· 1

2

12
= 2−14 448

2 1
4
· 1

2

13
= 2−15 16

2 1
4
· 1

2

14
= 2−16 16

2 1
4
· 1

2

18
= 2−20 416

2 1
4
· 1

2

19
= 2−21 32

3 1
4
· 1

2

29
= 2−31 368

3 1
4
· 1

2

30
= 2−32 32

3 1
4
· 1

2

31
= 2−33 16

3 1
4
· 1

2

41
= 2−43 336

3 1
4
· 1

2

42
= 2−44 48

4 1
4
· 1

2

60
= 2−62 304

4 1
4
· 1

2

61
= 2−63 16

4 1
4
· 1

2

62
= 2−64 32

4 1
4
· 1

2

85
= 2−87 256

4 1
4
· 1

2

86
= 2−88 48

5 1
4
· 1

2

102
= 2−104 240

5 1
4
· 1

2

103
= 2−105 32

5 1
4
· 1

2

104
= 2−106 16

5 1
4
· 1

2

134
= 2−136 224

5 1
4
· 1

2

135
= 2−137 16

6 1
4
· 1

2

149
= 2−151 192

6 1
4
· 1

2

150
= 2−152 16

6 1
4
· 1

2

151
= 2−153 16

6 1
4
· 1

2

197
= 2−199 144

6 1
4
· 1

2

198
= 2−200 48

7 1
4
· 1

2

212
= 2−214 112

7 1
4
· 1

2

213
= 2−215 32

7 1
4
· 1

2

214
= 2−216 16

7 1
4
· 1

2

277
= 2−279 80

7 1
4
· 1

2

278
= 2−280 32

8 1
4
· 1

2

308
= 2−310 48

8 1
4
· 1

2

309
= 2−311 16

8 1
4
· 1

2

310
= 2−312 32

8 1
4
· 1

2

407
= 2−409 48

8 1
4
· 1

2

409
= 2−411 16

9 1
4
· 1

2

418
= 2−420 32

10 1
4
· 1

2

477
= 2−479 16
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Table 3. Number of Approximations with a Given Bias Starting from a Pair of Pair
of Active Bits (Forward Direction)

Rounds Bias Number of Approximations

1 1
4
· 1

2

1
= 2−3 115472

1 1
4
· 1

2

3
= 2−5 228128

1 1
4
· 1

2

5
= 2−7 113152

2 1
4
· 1

2

7
= 2−9 232

2 1
4
· 1

2

8
= 2−10 448

2 1
4
· 1

2

14
= 2−16 848

2 1
4
· 1

2

15
= 2−17to 1

4
· 1

2

33
= 2−35 301480

3 1
4
· 1

2

23
= 2−25 208

3 1
4
· 1

2

25
= 2−27 384

3 1
4
· 1

2

35
= 2−37 352

3 1
4
· 1

2

37
= 2−39 to 1

4
· 1

2

71
= 2−73 188144

4 1
4
· 1

2

45
= 2−47 184

4 1
4
· 1

2

53
= 2−55 320

4 1
4
· 1

2

73
= 2−75 304

4 1
4
· 1

2

77
= 2−79 to 1

4
· 1

2

149
= 2−151 98288

5 1
4
· 1

2

87
= 2−89 160

5 1
4
· 1

2

94
= 2−96 256

5 1
4
· 1

2

121
= 2−123 128

5 1
4
· 1

2

122
= 2−124to 1

4
· 1

2

229
= 2−231 61056

6 1
4
· 1

2

123
= 2−125 128

6 1
4
· 1

2

139
= 2−141 192

6 1
4
· 1

2

179
= 2−181 272

6 1
4
· 1

2

185
= 2−187to 1

4
· 1

2

343
= 2−345 33632

7 1
4
· 1

2

181
= 2−183 96

7 1
4
· 1

2

201
= 2−203 128

7 1
4
· 1

2

249
= 2−251 64

7 1
4
· 1

2

257
= 2−259 to 1

4
· 1

2

477
= 2−479 14256

8 1
4
· 1

2

251
= 2−253 64

8 1
4
· 1

2

288
= 2−290 64

8 1
4
· 1

2

368
= 2−370 48

8 1
4
· 1

2

369
= 2−371 to 1

4
· 1

2

693
= 2−695 3120

9 1
4
· 1

2

371
= 2−373 32

9 1
4
· 1

2

395
= 2−397 16

9 1
4
· 1

2

423
= 2−425 16

9 1
4
· 1

2

481
= 2−483 to 1

4
· 1

2

859
= 2−861 336

10 1
4
· 1

2

425
= 2−427 16

10 1
4
· 1

2

571
= 2−573 32

10 1
4
· 1

2

597
= 2−599 16

10 1
4
· 1

2

697
= 2−699 to 1

4
· 1

2

993
= 2−995 48

11 1
4
· 1

2

620
= 2−622 32

11 1
4
· 1

2

663
= 2−665 16

12 1
4
· 1

2

681
= 2−683 32

13 1
4
· 1

2

737
= 2−739 32

14 1
4
· 1

2

786
= 2−788 32

15 1
4
· 1

2

855
= 2−857 32

16 1
4
· 1

2

983
= 2−985 32
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Table 4. Number of Approximations with a Given Bias Starting from a Pair of Pair
of Active Bits (Backward Direction)

Rounds Bias Number of Approximations

1 1
4
· 1

2

0
= 2−2 464

1 1
4
· 1

2

1
= 2−3 240

1 1
4
· 1

2

2
= 2−4 448

1 1
4
· 1

2

3
= 2−5 to 1

4
· 1

2

7
= 2−9 411040

2 1
4
· 1

2

5
= 2−7 216

2 1
4
· 1

2

11
= 2−13 400

2 1
4
· 1

2

13
= 2−15 368

2 1
4
· 1

2

17
= 2−19 to 1

4
· 1

2

37
= 2−39 250224

3 1
4
· 1

2

19
= 2−21 184

3 1
4
· 1

2

29
= 2−31 352

3 1
4
· 1

2

31
= 2−33 304

3 1
4
· 1

2

35
= 2−37 152

3 1
4
· 1

2

39
= 2−41 to 1

4
· 1

2

83
= 2−85 136544

4 1
4
· 1

2

37
= 2−39 152

4 1
4
· 1

2

66
= 2−68 528

4 1
4
· 1

2

75
= 2−77 120

4 1
4
· 1

2

77
= 2−79 144

4 1
4
· 1

2

80
= 2−82 to 1

4
· 1

2

172
= 2−174 69664

5 1
4
· 1

2

77
= 2−79 120

5 1
4
· 1

2

109
= 2−111 96

5 1
4
· 1

2

111
= 2−113 192

5 1
4
· 1

2

113
= 2−115 240

5 1
4
· 1

2

125
= 2−127 to 1

4
· 1

2

269
= 2−271 43344

6 1
4
· 1

2

111
= 2−113 96

6 1
4
· 1

2

163
= 2−165 168

6 1
4
· 1

2

169
= 2−171 176

6 1
4
· 1

2

179
= 2−181 112

6 1
4
· 1

2

187
= 2−189 to 1

4
· 1

2

387
= 2−389 18672

7 1
4
· 1

2

165
= 2−167 56

7 1
4
· 1

2

223
= 2−225 24

7 1
4
· 1

2

228
= 2−230 64

7 1
4
· 1

2

238
= 2−240 112

7 1
4
· 1

2

258
= 2−260 to 1

4
· 1

2

539
= 2−541 5904

8 1
4
· 1

2

225
= 2−227 24

8 1
4
· 1

2

353
= 2−355 32

8 1
4
· 1

2

381
= 2−383 16

8 1
4
· 1

2

413
= 2−415 to 1

4
· 1

2

617
= 2−619 272

9 1
4
· 1

2

481
= 2−483 32

9 1
4
· 1

2

527
= 2−529 16

9 1
4
· 1

2

679
= 2−681 32

10 1
4
· 1

2

550
= 2−552 32

10 1
4
· 1

2

773
= 2−775 16

11 1
4
· 1

2

599
= 2−601 16

11 1
4
· 1

2

863
= 2−865 16

12 1
4
· 1

2

953
= 2−955 16
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Table 5. A trade-off of biases and rounds. Each line shows the best bias in this setting

Rounds Input mask Output mask Bias

7 x00001 = 0600 1806,x00011 = 0600 1806, x00000 = 0018 0606,x00010 = 0018 0606, 1
4
· 1

2

81
= 2−83

x00101 = 00c0 3030, x00111 = 00c0 3030, x01101 = 0000 0060,x01111 = 0000 0060,
x01001 = 000c 0303,x01011 = 000c 0303, x10001 = 0018 0606,x10011 = 0018 0606,
x10100 = 0000 0030,x10110 = 0000 0030, x10101 = c0c0 0300,x10111 = c0c0 0300,
x11001 = 000c 0303,x11011 = 000c 0303 x11101 = 6001 8060,x11111 = 6001 8060

8 x00000 = 0600 1806,x00010 = 0600 1806, x00000 = 0018 0606,x00010 = 0018 0606, 1
4
· 1

2

121
= 2−123

x01101 = 6660 0060,x01111 = 6660 0060, x01101 = 0000 0060,x01111 = 0000 0060,
x10001 = 0600 1806,x10011 = 0600 1806, x10001 = 0018 0606,x10011 = 0018 0606,
x10101 = 00c0 c003,x10111 = 00c0 c003, x10101 = c0c0 0300,x10111 = c0c0 0300,
x11101 = 6060 0180,x11111 = 6060 0180 x11101 = 6001 8060,x11111 = 6001 8060

9 x00001 = 0018 1998,x00011 = 0018 1998, x00000 = 0018 0606,x00010 = 0018 0606, 1
4
· 1

2

155
= 2−157

x00101 = c0cc c000,x00111 = c0cc c000, x01101 = 0000 0060,x01111 = 0000 0060,
x01001 = 0c0c cc00,x01011 = 0c0c cc00, x10001 = 0018 0606,x10011 = 0018 0606,
x10100 = 00c0 c003,x10110 = 00c0 c003, x10101 = c0c0 0300,x10111 = c0c0 0300,
x11001 = 0c0c cc00,x11011 = 0c0c cc00 x11101 = 6001 8060,x11111 = 6001 8060

10 x00001 = 0018 1998,x00011 = 0018 1998, x00001 = 0018 0606,x00011 = 0018 0606, 1
4
· 1

2

197
= 2−199

x00101 = c0cc c000,x00111 = c0cc c000, x00101 = c030 3000,x00111 = c030 3000,
x01001 = 0c0c cc00,x01011 = 0c0c cc00, x01001 = 0c03 0300,x01011 = 0c03 0300,
x10100 = 00c0 c003,x10110 = 00c0 c003 x10100 = 0030 3330,x10110 = 0030 3330,
x11001 = 0c0c cc00,x11011 = 0c0c cc00 x11001 = 0c03 0300,x11011 = 0c03 0300

11 x00001 = 0018 1998,x00011 = 0018 1998, x00000 = 8199 8001,x00010 = 8199 8001, 1
4
· 1

2

233
= 2−235

x00101 = c0cc c000,x00111 = c0cc c000, x01101 = 1818 0060,x01111 = 1818 0060,
x01001 = 0c0c cc00,x01011 = 0c0c cc00, x10001 = 8199 8001,x10011 = 8199 8001,
x10100 = 00c0 c003,x10110 = 00c0 c003, x10101 = 0030 3330,x10111 = 0030 3330,
x11001 = 0c0c cc00,x11011 = 0c0c cc00 x11101 = 1819 9800,x11111 = 1819 9800

12 x00000 = 1819 9800,x00010 = 1819 9800, x00000 = 9980 0181,x00010 = 9980 0181, 1
4
· 1

2

287
= 2−289

x01101 = e799 9f81,x01111 = e799 9f81, x01101 = 1800 6018,x01111 = 1800 6018,
x10001 = 1819 9800,x10011 = 1819 9800, x10001 = 9980 0181,x10011 = 9980 0181,
x10101 = 0003 0333,x10111 = 0003 0333, x10101 = 3033 3000,x10111 = 3033 3000,
x11101 = 0181 9980,x11111 = 0181 9980 x11101 = 1998 0018,x11111 = 1998 0018

13 x00000 = 0666 0006,x00010 = 0666 0006, x00001 = 6000 6066,x00011 = 6000 6066, 1
4
· 1

2

345
= 2−347

x01101 = e667 e079,x01111 = e667 e079, x00101 = 0303 3300,x00111 = 0303 3300,
x10001 = 0666 0006,x10011 = 0666 0006, x01001 = 0030 3330,x01011 = 0030 3330,
x10101 = 00c0 ccc0,x10111 = 00c0 ccc0, x10100 = 03cf 333f ,x10110 = 03cf 333f ,
x11101 = 6066 6000,x11111 = 6066 6000 x11001 = 0030 3330,x11011 = 0030 3330

14 x00001 = 3ccc fc0f ,x00011 = 3ccc fc0f , x00001 = 3033 3000,x00011 = 3033 3000, 1
4
· 1

2

405
= 2−407

x00101 = 67e0 79e6,x00111 = 67e0 79e6, x00101 = 9980 0181,x00111 = 9980 0181,
x01001 = 667e 079e,x01011 = 667e 079e, x01001 = 1998 0018,x01011 = 1998 0018,
x10100 = 6660 0060,x10110 = 6660 0060, x10100 = 999f 81e7,x10110 = 999f 81e7,
x11001 = 667e 079e,x11011 = 667e 079e x11001 = 1998 0018,x11011 = 1998 0018
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Table 6. The 11-round linear approximation with bias 1
4
· 1

2

233
= 2−235

Round Mask Bias Hamming
(before the round) Weight

Input x00001 = 0018 1998, x00011 = 0018 1998 1
4
· 1

2

33
= 2−35 76

x00101 = c0cc c000, x00111 = c0cc c000,
x01001 = 0c0c cc00, x01011 = 0c0c cc00,
x10100 = 00c0 c003, x10110 = 00c0 c003,
x11001 = 0c0c cc00, x11011 = 0c0c cc00

1 x00000 = 0600 1806, x00010 = 0600 1806, 1
4
· 1

2

39
= 2−41 64

x01101 = 6660 0060, x01111 = 6660 0060,
x10001 = 0600 1806, x10011 = 0600 1806,
x10101 = 00c0 c003, x10111 = 00c0 c003,
x11101 = 6060 0180, x11111 = 6060 0180

2 x00001 = 0600 1806, x00011 = 0600 1806, 1
4
· 1

2

17
= 2−19 52

x00101 = 00c0 3030, x00111 = 00c0 3030,
x01001 = 000c 0303, x01011 = 000c 0303,
x10100 = 0000 0030, x10110 = 0000 0030,
x11001 = 000c 0303, x11011 = 000c 0303

3 x00000 = 0001 8000, x00010 = 0001 8000, 1
4
· 1

2

13
= 2−15 28

x01101 = 6018 1800, x01111 = 6018 1800,
x10001 = 0001 8000, x10011 = 0001 8000,
x10101 = 0000 0030, x10111 = 0000 0030,
x11101 = 0000 1800, x11111 = 0000 1800

4 x00001 = 0001 8000, x00011 = 0001 8000, 1
4
· 1

2

3
= 2−5 16

x00101 = 0c00 0000, x00111 = 0c00 0000,
x01001 = 00c0 0000, x01011 = 00c0 0000,
x11001 = 00c0 0000, x11011 = 00c0 0000

5 x01101 = 0000 0006, x01111 = 0000 0006 1
4
· 1

2

1
= 2−3 4

6 x10100 = 0000 0300, x10110 = 0000 0300 1
4
· 1

2

5
= 2−7 4

7 x00000 = 0018 0000, x00010 = 0018 0000, 1
4
· 1

2

15
= 2−17 16

x10001 = 0018 0000, x10011 = 0018 0000,
x10101 = 0000 0300, x10111 = 0000 0300,
x11101 = 0001 8000, x11111 = 0001 8000

8 x00001 = 0018 0000, x00011 = 0018 0000, 1
4
· 1

2

21
= 2−23 28

x00101 = c000 0000, x00111 = c000 0000,
x01001 = 0c00 0000, x01011 = 0c00 0000,
x10100 = c0c0 0300, x10110 = c0c0 0300,
x11001 = 0c00 0000, x11011 = 0c00 0000

9 x00000 = 0018 0606, x00010 = 0018 0606, 1
4
· 1

2

41
= 2−43 52

x01101 = 0000 0060, x01111 = 0000 0060,
x10001 = 0018 0606, x10011 = 0018 0606,
x10101 = c0c0 0300, x10111 = c0c0 0300,
x11101 = 6001 8060, x11111 = 6001 8060

10 x00001 = 0018 0606, x00011 = 0018 0606, 1
4
· 1

2

35
= 2−37 64

x00101 = c030 3000, x00111 = c030 3000,
x01001 = 0c03 0300, x01011 = 0c03 0300,
x10100 = 0030 3330, x10110 = 0030 3330,
x11001 = 0c03 0300, x11011 = 0c03 0300

11 x00000 = 8199 8001, x00010 = 8199 8001, 76
x01101 = 1818 0060, x01111 = 1818 0060,
x10001 = 8199 8001, x10011 = 8199 8001,
x10101 = 0030 3330, x10111 = 0030 3330,
x11101 = 1819 9800, x11111 = 1819 9800
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Table 7. The 14-round linear approximation with bias 1
4
· 1

2

405
= 2−407 rounds 1-9

Round Mask Bias Hamming
(before the round) Weight

input x00001 = 3ccc fc0f , x00011 = 3ccc fc0f , 1
4
· 1

2

60
= 2−62 160

x00101 = 67e0 79e6, x00111 = 67e0 79e6,
x01001 = 667e 079e, x01011 = 667e 079e,
x10100 = 6660 0060, x10110 = 6660 0060,
x11001 = 667e 079e, x11011 = 667e 079e

1 x00000 = 0003 0333, x00010 = 0003 0333, 1
4
· 1

2

54
= 2−56 100

x01101 = f03c f333, x01111 = f03c f333,
x10001 = 0003 0333, x10011 = 0003 0333,
x10101 = 6660 0060, x10111 = 6660 0060,
x11101 = 3000 3033, x11111 = 3000 3033

2 x00001 = 0003 0333, x00011 = 0003 0333, 1
4
· 1

2

34
= 2−36 76

x00101 = 1819 9800, x00111 = 1819 9800,
x01001 = 0181 9980, x01011 = 0181 9980,
x10100 = 6018 1800, x10110 = 6018 1800,
x11001 = 0181 9980, x11011 = 0181 9980

3 x00000 = c0c0 0300, x00010 = c0c0 0300, 1
4
· 1

2

40
= 2−42 64

x01101 = 0ccc 000c, x01111 = 0ccc 000c,
x10001 = c0c0 0300, x10011 = c0c0 0300,
x10101 = 6018 1800, x10111 = 6018 1800,
x11101 = 0c0c 0030, x11111 = 0c0c 0030

4 x00001 = c0c0 0300, x00011 = c0c0 0300, 1
4
· 1

2

18
= 2−20 52

x00101 = 0018 0606, x00111 = 0018 0606,
x01001 = 6001 8060, x01011 = 6001 8060,
x10100 = 0000 0006, x10110 = 0000 0006,
x11001 = 6001 8060, x11011 = 6001 8060

5 x00000 = 0000 3000, x00010 = 0000 3000 , 1
4
· 1

2

14
= 2−16 28

x01101 = 0c03 0300, x01111 = 0c03 0300,
x10001 = 0000 3000, x10011 = 0000 3000,
x10101 = 0000 0006, x10111 = 0000 0006,
x11101 = 0000 0300, x11111 = 0000 0300

6 x00001 = 0000 3000, x00011 = 0000 3000, 1
4
· 1

2

4
= 2−6 16

x00101 = 0180 0000, x00111 = 0180 0000,
x01001 = 0018 0000, x01011 = 0018 0000,
x11001 = 0018 0000, x11011 = 0018 0000

7 x01101 = c000 0000, x01111 = c000 0000 1
4
· 1

2

2
= 2−4 4

8 x10100 = 0000 0060, x10110 = 0000 0060 1
4
· 1

2

6
= 2−8 4

9 x00000 = 0003 0000, x00010 = 0003 0000, 1
4
· 1

2

16
= 2−18 16

x10001 = 0003 0000, x10011 = 0003 0000,
x10101 = 0000 0060, x10111 = 0000 0060,
x11101 = 0000 3000, x11111 = 0000 3000

For those interested in assessing the full security that might be offered by
the 1024-bit transformation T , we note that there also exists a 14-round linear
approximation with a bias of 2−406. We outline the full 14-round approximation
in Tables 7 and 8.
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Table 8. The 14-round linear approximation with bias 1
4
· 1

2

405
= 2−407 rounds 10-14

Round Mask Bias Hamming
(before the round) Weight

10 x00001 = 0003 0000, x00011 = 0003 0000, 1
4
· 1

2

22
= 2−24 28

x00101 = 1800 0000, x00111 = 1800 0000,
x01001 = 0180 0000, x01011 = 0180 0000,
x10100 = 1818 0060, x10110 = 1818 0060,
x11001 = 0180 0000, x11011 = 0180 0000

11 x00000 = c003 00c0, x00010 = c003 00c0, 1
4
· 1

2

42
= 2−44 52

x01101 = 0000 000c, x01111 = 0000 000c,
x10001 = c003 00c0, x10011 = c003 00c0,
x10101 = 1818 0060, x10111 = 1818 0060,
x11101 = 0c00 300c, x11111 = 0c00 300c

12 x00001 = c003 00c0, x00011 = c003 00c0, 1
4
· 1

2

36
= 2−38 64

x00101 = 1806 0600, x00111 = 1806 0600,
x01001 = 0180 6060, x01011 = 0180 6060,
x10100 = 0006 0666, x10110 = 0006 0666,
x11001 = 0180 6060, x11011 = 0180 6060

13 x00000 = 3033 3000, x00010 = 3033 3000, 1
4
· 1

2

58
= 2−60 76

x01101 = 0303 000c, x01111 = 0303 000c,
x10001 = 3033 3000, x10011 = 3033 3000,
x10101 = 0006 0666, x10111 = 0006 0666,
x11101 = 0303 3300, x11111 = 0303 3300

14 x00001 = 3033 3000, x00011 = 3033 3000, 100
x00101 = 9980 0181, x00111 = 9980 0181,
x01001 = 1998 0018, x01011 = 1998 0018,
x10100 = 999f 81e7, x10110 = 999f 81e7,
x11001 = 1998 0018, x11011 = 1998 0018

4 Message Modification Techniques —
A Chosen-Plaintext Linear Approximations

Linear cryptanalysis relies on collecting a large number of input/output pairs,
and verifying whether they satisfy the approximation or not. In [22] Knudsen
and Mathiassen show that there are cases in which one can “help” the linear
approximation to be satisfied by properly selecting the inputs.

In the case of modular addition, the linear approximation which we use is
satisfied whenever one of the LSBs of the approximated bits is 0. This allows
preselecting inputs for which the approximation holds with probability 1. This
technique can be used either to increase the bias of our 11-round approximation
or to extend it to a 12-round approximation.

In order to fix the bits entering the first layer of addition in CubeHash it is
enough to fix the LSB of each pair of approximated bits. However, fixing the
bits for the next layer is a bit more tricky, as it requires to fix some internal
state bit (after an XOR or addition) to 0. This task is a bit harder due to carry
issues. More precisely, to fix bit i of x1jklm after the first five operations of T ,
it is required that bit i of x1jklm is 0 after the first operation of T . This specific
bit depends on the corresponding carry chain.
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Table 9. The round that extends the 11-round approximation to 12 rounds (and the
bits to fix

Round Input mask Input bits fixed to 0

-1 x00000 = 0018 1998, x00010 = 0018 1998 x10001 = 0008 0888x, x10011 = 0008 0888x

x01101 = 81e7 999f , x01111 = 81e7 999f x10101 = 1100 0101x, x10111 = 1100 0101x

x10001 = 0018 1998, x10011 = 0018 1998 x11101 = ffff ffffx, x11111 = ffff ffffx

x10101 = 3300 0303, x10111 = 3300 0303
x11101 = 8001 8199, x11111 = 8001 8199

-0.5 x00101 = f30c 0300x, x00111 = f30c 0300x x00001 = 000c 0cccx, x00011 = 000c 0cccx

x01000 = 0c0c cc00x, x01001 = 0c0c cc00x x00101 = 6006 0001x, x00111 = 6006 0001x

x01010 = 0c0c cc00x, x01011 = 0c0c cc00x x01000 = 0606 6600x, x01001 = 0606 6600x

x01101 = 8001 8199x, x01111 = 8001 8199x x01010 = 0606 6600x, x01011 = 0606 6600x

x10001 = 0018 1998x, x10011 = 0018 1998x x10001 = 000c 0cccx, x10011 = 000c 0cccx

x10101 = c00c 0003x, x10111 = c00c 0003x x10101 = 6006 0001x, x10111 = 6006 0001x

x11000 = 0c0c cc00x, x11001 = 0c0c cc00x x11010 = 0606 6600x, x11011 = 0606 6600x

x11010 = 0c0c cc00x, x11011 = 0c0c cc00x x10001 = 0006 0666x, x10011 = 0006 0666x

0 x00001 = 0018 1998, x00011 = 0018 1998
x00101 = c0cc c000, x00111 = c0cc c000
x01001 = 0c0c cc00, x01011 = 0c0c cc00
x10100 = 00c0 c003, x10110 = 00c0 c003
x11001 = 0c0c cc00, x11011 = 0c0c cc00

−0.5 stands for the mask that enters the second addition of the additional round.

A simple solution would be to fix one of the words x0jklm or x1jklm to zero,
ensuring no carrys are produced during the addition x1jklm ← x0jklm + x1jklm.
By additionally fixing bit i of both x0jklm and x1jklm to zero, we can guarantee
that the bit that enters the second layer of additions is indeed zero.

As the above approach sets many bits to zero we offer a more efficient ap-
proach. One can fix only bits i−1, i in x0jklm and i−1, i in x1jklm to zero. Even
if there is a carry entering bit i − 1, it does not produce carry that affects the
i’th bit, and we are assured that bit i after the addition is indeed 0.

Consider our 11-round approximation suggested in table 6. To increase its bias
we can fix the bits masked by x10100 = 0040 4001x, x10110 = 0040 4001x, x11001 =
0404 4400x, x11011 = 0404 4400x to 0 to ensure that our approximation holds for
the first layer of addition with probability 1. To ensure the approximation holds
for the second layer of the first round as well we fix the bits masked by 000c 0cccx

in x00101, x00111, x10101 and x10111, the bits masked by 0060 6001x in x00000,
x00010, x10000 and x10010 and the bits masked by 6066 6000x in x00101, x00011, x10001

and x10011 to 0. Fixing these 56 bits ensures that the first round of the approx-
imation holds with probability 1 hence increasing the bias by a factor of 234

making the total bias 2−201.
When considering an extension of the linear approximation shown in Table 6

by calculating it one round backward as described in Table 9, we can fix 80
input bits to zero, thus ensuring that the approximation holds for the first layer
of additions with probability 1. These 80 bits are the ones masked by x10001 =
0008 0888x, x10011 = 0008 0888x, x10101 = 1100 0101x, x10111 = 1100 0101x and
the whole words x11101 and x11111. We note that one can pick other sets of bits
(where any fixed bit from x0jklm can be exchanged for a bit in x1jklm).

To ensure that all the appropriate bits in x1jklm are zero one needs to set
the mask bits masked by 000c 0cccx of x00001, x00011, x10001, and x10011, the bits
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masked by c00c 0001x of x00101, x00111, x10101, and x10111, and those masked
by 0c0c cc00 in x01000, x01001, x01010, x01011, x11000, x11001, x11010, and x11011 to
zero. Fixing these 116 bits (10 of which are shared with the previous 80), assures
that all the additions in the first round of the 12-round approximation follow
the approximation, i.e., “saving” their “contribution” to the bias, and resulting
in a bias of 1

4 ·
1
2

233 = 2−235.
We note that the number of bits set to 0 is 186, leaving 838 bits to be randomly

selected. This is sufficient to generate the 2470 possible inputs to T 12, needed for
using this chosen-plaintext linear approximation successfully, in a distinguishing
attack on 12-round CubeHash.

5 Distinguishing Reduced-Round Variants of the
Compression Function of CubeHash

Given the linear approximations presented in the previous sections, it is possible
to distinguish a black box which contains up to 12-round CubeHash from a
random permutation. Of course, for any unkeyed primitive this distinguishing
can be done by just comparing the input/output of a few queries to the black box
with the input/output produced by the publicly available algorithm. If we want
to offer some cryptographic settings in which distinguishing attacks make sense,
we either need to consider keyed variants (either of the round function T or of
the hash function, e.g., in MACs) or to discuss known-key distinguishers [23].

Such possible “application” is an a Even-Mansour [15] variant of 11-round
T (or any other number of rounds), i.e., EM -T 11

k1,k2
(P ) = T 11(P ⊕ k1) ⊕ k2. If

11-round T is indeed good as a source of nonlinearity (for a linear T , the entire
security of CubeHash collapses), then XORing an unknown key before and after
these 11 rounds, should result in a good pseudo-random permutation. Using
our linear approximations, one can distinguish this construction from a random
permutation.

We emphasize that as our results are linear in nature, they require that the
adversary has access both to the input to the nonlinear function as well as its
output. To the best of our knowledge, there is no way to use this directly in a
hash function setting.

6 Conclusions

In this paper we presented a series of approximations for the SHA-3 former
candidate CubeHash. The analysis challenges the strength of CubeHash’s round
function, T , and shows that (from linear cryptanalysis point of view), offers
adequate security. At the same time, the security margins offered by 16 iterations
of T seems to be on the smaller side, as future works on CubeHash may find
better linear approximations.



Linear Analysis of Reduced-Round CubeHash 477

Acknowledgement

The authors wish to thank Prof. Adi Shamir for his guidance and assistance
analyzing CubeHash, Nathan Keller for providing core ideas in this paper, Daniel
J. Bernstein for his insightful and mind-provoking comments on previous versions
of this article. Finally, we wish to thank Michael Klots for his technical assistance,
which was crucial for finding our results.

References

1. Andreeva, E., Bouillaguet, C., Fouque, P.-A., Hoch, J.J., Kelsey, J., Shamir, A.,
Zimmer, S.: Second Preimage Attacks on Dithered Hash Functions. In: Smart,
N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 270–288. Springer, Heidelberg
(2008)

2. Aumasson, J.P.: Collision for CubeHash2/120-512. NIST mailing list (2008),
http://ehash.iaik.tugraz.at/uploads/a/a9/Cubehash.txt

3. Aumasson, J.-P., Brier, E., Meier, W., Naya-Plasencia, M., Peyrin, T.: Inside the
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Abstract. Indifferentiability is currently considered to be an important
security notion for a cryptographic hash function to instantiate Random
Oracles in different security proofs. In this paper, we prove indifferen-
tiability of Fugue and Luffa, two SHA3 second round candidates. We
also analyze the indifferentiability of a modified Luffa mode replacing
multiple small permutations by a single large permutation.

Our technique is quite general and can be applicable to any sponge
based design which uses affine function for message insertion. To the best
of our knowledge, our result for Luffa is the first indifferentiability anal-
ysis of a mode of operation based on variable (more than two) number
of small permutations.

Keywords: Hash function, Indifferentiability, Fugue, Luffa.

1 Introduction

Design of cryptographic hash functions typically involves two steps. One con-
structs a fixed input length primitive (like permutation or compression function)
f : {0, 1}m → {0, 1}n and applies a domain extension technique Cf to build the
hash function. Merkle-Damg̊ard technique along with its variants are the most
popular choice for domain extension.

In the last decade, cryptographic hash functions have gained immense im-
portance to instantiate a truly Random Function in cryptographic protocols.
Although, previous results prove that no hash function can accurately instan-
tiate a random function [6], one can hope to gain some confidence by using a
structurally rigid construction in order to resist any generic attack. Indifferentia-
bility of hash functions, introduced by Coron et. al. in [10] extending the result
of [13], is the strongest and appropriate criteria to establish generic rigidity of
the mode of a hash function. Informally, under the notion of indifferentiability,
to prove rigidity of a domain extension technique C (assuming the underlying
primitive f to be ideal), one has to design a simulator S that can simulate the
underlying ideal primitive and still remain Consistent to a Random Oracle R
with respect to concerned mode of operation. If no distinguisher can distinguish
between the output distribution of (Cf , f) from that of (R, SR) with probability
ε, the hash function Cf is said to be indifferentiable from a Random Oracle (RO)
with advantage ε.

J. Lopez and G. Tsudik (Eds.): ACNS 2011, LNCS 6715, pp. 479–497, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In [10], Coron et. al. proved that Merkle-Damg̊ard mode is insecure under
indifferentiability notion. However many of its variants, like strengthened-MD,
chop-MD, MD with HAIFA padding was proven to be secure in [8,9,10]. In [4],
Bertoni et. al. proved the indifferentiability of sponge mode of operation. In [1,5],
domain extension technique of Grøstl and JH was proven to be indifferentiable.
For a comparative discussion on the indifferentiability of SHA3 second round
candidates, we refer the reader to [2]. In this work we obtain indifferentiability
security bound for two NIST second round candidates Fugue and Luffa.

Our Results. In this paper we analyze indifferentiability of domain extension of
Fugue and Luffa. Indifferentiability analysis of the mode of both the hash func-
tion was open [2]. Fugue can be viewed as a variant of the sponge construction
with a post-processor and a fixed output length. However, due to the difference in
message insertion algorithm and application of a different post-processor in Fugue,
one cannot directly plug in the bounds from [4]. Our technique to prove indifferen-
tiability of Fugue is based on the technique used in [5], where one gives an upper
bound for the simulated world interpolation probability and lower bound for the
real world interpolation probability. In Section 4 we prove that under the assump-
tion that two permutations in Fugue are independent random permutations over
{0, 1}nt, Fugue mode of operation is indifferentiable from a random oracle with
advantage O(σ2)

2(t−1)n where σ is the total number of message blocks queried by the dis-
tinguisher. Recently Aumasson and Phan [3] have the final round transformation
in Fg do not really behave like a random permutation by showing a distinguisher
After wards Halevi et al [12], actually showed Fugue mode of operation behaves
like random oracle assuming some weak ideal functionality of the underlying per-
mutations. However in their analysis the attacker is restricted in the sense, that
she can not make inverse queries to the permutation.

Domain extension technique of Luffa is also similar to sponge; but message in-
jection algorithm of Luffa uses all the chaining bits (as opposed to at most half
the chaining bits of Sponge or Fugue) and instead of one large permutation, Luffa
uses t small permutations. Hence one cannot readily use previous techniques. First
we consider Luffa mode of operation with a single large permutations and mes-
sage block of n bits. We show that if the underlying permutation is assumed to be
one fixed random permutation over {0, 1}tn, the modified Luffa mode is indifferen-
tiable from a Random Oracle with advantage O(σ2)

2(t−2)n where σ is the total number
of message blocks queried by the distinguisher.

Finally, in Section 6, we consider the actual Luffa mode of operation. We prove
that under the assumption that underlying permutations are independent random
n bit permutations, Luffa mode of operation is indifferentiable from a Random Or-
acle with advantage O(q4)

2n , where q is the maximum number of queries the distin-
guisher makes.

Our result is the first indifferentiability analysis of Luffa. Although we achieve
much less than the birthday bound, one can view this as the security-efficiency
trade-off of Luffa due to its multiple small permutations to handle a large chaining
value.
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2 Preliminaries

Modes of Operation. Informally speaking, a mode of operation is an algorithm
to construct a hash function from a compression function.

Definition 1. A mode of operation C with oracle access to compression function
f{0, 1}m → {0, 1}n is an algorithm which defines a function Cf : {0, 1}∗ →
{0, 1}n.

Below we describe the well known Merkle-Damg̊ard or MD mode of operation.

Definition 2. Let IV ∈ {0, 1}n be a fixed initial value. Given a compression
function f : {0, 1}m → {0, 1}n, the well known Merkle-Damg̊ard mode of opera-
tion is defined as

MDf
IV (m1‖m2‖ . . . ‖ml) = f(f(. . . f(f(IV ‖m1)‖m2) . . .)‖ml)

where m1, m2, . . . ml ∈ {0, 1}m−n.

There is a subtle difference between a hash function and a mode of operation.
The mode of operation is actually a domain extension algorithm. If we supply a
particular compression function f to the mode of operation algorithm we get a
particular hash function. So when we think about a hash function, the compres-
sion function is fixed. Sometimes we will drop the subscript IV from MDf

IV and
write it as MDf when the IV value is clear from the context (which is either
IVFg or IVLf).

Luffa Mode of Operation . The compression function of Luffa, fΠ : {0, 1}(t+1)n

→ {0, 1}tn (Fig. 1(b)) is defined as, fΠ ≡ PΠ ◦MILf , where MILf : {0, 1}(t+1)n →
{0, 1}tn is a fixed linear transformation and PΠ(x1‖ · · · ‖xt) = π1(x1)‖ · · · ‖πt(xt),
Π = (π1, · · · , πt) being a tuple of t-independent random permutations on {0, 1}n.

To process arbitrary length messages the following padding rule PadLf :
{0, 1}∗ → ({0, 1}n)+ is used in Luffa. PadLf(M) = M‖10k, where k is the smallest
non-negative integer such that |M |+ k + 1 ≡ 0 mod n.

The Luffa-mode of operation is nothing but MD-mode of operation based on
the compression function fΠ of the padded message, followed by a finalization
round. If the required digest size nh is same as n (the size of the permutations
π1, · · · , πt) then we pass the output of the MDfΠ

, through a blank round of fΠ

with message 0n and process the Xor1 of t-many permutation outputs as the
final digest. If nh < n, then we just Chop2 the Xor value to give a nh bit output.
If n < nh ≤ 2n, then we follow the idea behind sponge construction, i.e. use two
blank rounds fΠ with message 0n each time, then concatenate the Xor of the
two blank round outputs and Chop it to the desired digest size. Formally, the
Luffa-mode of operation is defined as follows.

1 Xor : {0, 1}tn → {0, 1}n is defined as Xor(x1‖ · · · ‖xt) = x1 ⊕ · · · ⊕ xt.
2 Chops : {0, 1}l → {0, 1}l−s is defined as Chops(m‖m′) = m where |m′| = s.
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– If nh ≤ n,

LuffaΠ(M) = Chopn−nh
(Xor(MDfΠ

(PadLf(M)‖0n))).

– If n < nh ≤ 2n,

LuffaΠ(M)

= Chop2n−nh

(

Xor
(
MDfΠ

(PadLf(M)‖0n)
)
‖Xor

(
MDfΠ

(PadLf(M)‖0n‖0n)
))

.

The Luffa-mode of operation uses a fixed initial value IVLuffa = IV1‖ · · · ‖IVt to
use with the MD-mode of operation. In Luffa specification [7], the size of the
permutations are always n = 256 bits. For nh = 224 and nh = 256 bit digest
size, t = 3 permutations are used. For nh = 384 and nh = 512 bit digest size,
there are t = 4 and t = 5 many permutations respectively.

The Message Injection function MILf . The message injection functions can
be represented by a matrix over a ring GF (28)n/8 (Note, the input length of
each permutation is n bits or 8 blocks of n/8-bits). The definition polynomial of
the field is given by φ(x) = x8 +x4 +x3 +x+1. The map from an 8-block value
(a0, · · · , a7) to an element of the ring can be defined by (

∑
0≤k<8 ak,�x

k)0≤�<n/8.
The message injection function MILf : {0, 1}(t+1)n → {0, 1}tn is defined as,

MILf(h1, · · · , ht, m) = [MILf ]t×(t+1) · (h1 · · ·ht m)T .

We will write [MILf ] as [TA], where [T ] is a t × t square matrix and A is a t-
element column vector. In the specification of Luffa, some particular matrices
[MILf ]3×4, [MILf ]4×5 and [MILf ]5×6 are defined. However our analysis holds when-
ever T is full rank (invertible) and each element of the column vector A has an
inverse. For a detailed description of Luffa, the readers are referred to [7]. For sim-
plicity, we will only consider the case n = nh in our security proofs. For other
cases the same security bound can be derived in a similar but more involved
manner.

LuffaS-mode of Operation. We also define a simpler version of Luffa-mode of
operation, LuffaS or Luffa based on a single permutation. Here the function P is
modeled as a single nt-bit random permutation π. The compression function of
LuffaS, fπ : {0, 1}(t+1)n → {0, 1}tn is defined as, fπ ≡ π ◦MILuffa and in case of
n bit digest we have

LuffaSπ(M) = Xor(MDfπ

(PadLf(M)‖0n)).

Fugue Mode of Operation. The Fugue-mode of operation depends on Π =
(π1, π2) a pair of random permutations on {0, 1}nt. The compression function
of Fugue, gπ1 : {0, 1}(n+1)t → {0, 1}tn is defined as, gπ1 ≡ π1 ◦ MIFg, where
MIFg : {0, 1}(t+1)n → {0, 1}tn is a fixed linear transformation.

To process arbitrary length messages a suffix free padding rule PadFg is used.
For our analysis it is sufficient assume that the padded message is multiple of n
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bits and it is suffix free. The Fugue-mode of operation is nothing but MD-mode
of operation based on the compression function gπ1 followed by applying the
random permutation π2 and finally Choping the output to the desired digest
size. Formally, for nh bit digest the Fugue-mode of operation is defined as,

FugueΠ(M) = Choptn−nh

(

π2

(
MDgπ1 (PadFg(M))

))

.

The Fugue-mode of operation uses a fixed initial value IVFugue = IV ′
1‖ · · · ‖IV ′

t

to use with the MD-mode of operation. Depending on parameters there are 3
different linear transformations MIFg (TIX in Fugue specification [11]). In our
security proofs we only handle the following one,

MIFg(h1, · · · , ht, m) = (m, h2⊕ht−5, h3, h4, · · · ,
h8, h9 ⊕m, h10, h11 ⊕ h1, h12, h13, · · · , ht). (1)

For other cases, a similar security analysis holds.

Indifferentiability. The notion of indifferentiability, introduced by Maurer et.
al. in [13], is a generalization of classical notion of indistinguishability. Loosely
speaking, if an ideal primitive G is indifferentiable with a construction C based
on another ideal primitive F , then G can be safely replaced by CF in any cryp-
tographic construction. In other terms if a cryptographic construction is secure
in G model then it is secure in F model.

Definition 3. Advantage:
Let Fi, Gi be probabilistic oracle algorithms. We define advantage of the adver-
sary A at distinguishing (F1, F2) from (G1, G2) as

AdvA((F1, F2), (G1, G2)) = |Pr[AF1,F2 = 1]− Pr[AG1,G2 = 1]|.

Definition 4. Indifferentiability [13]:
A Turing machine C with oracle access to an ideal primitive F is said to be
(t, qC , qF , ε) indifferentiable from an ideal primitive G if there exists a simulator
S with an oracle access to G and running time at most t, such that for any
adversary A, it holds that

AdvD((CF ,F), (G, SG)) < ε.

The adversary makes at most qC queries to C or G and at most qF queries to
F or S. Similarly, CF is said to be (computationally) indifferentiable from G if
running time of A is bounded above by some polynomial in the security parameter
k and ε is a negligible function of k.

We stress that in the above definition G and F can be two completely different
primitives. As shown in Fig 1(a) the role of the simulator is to not only simulate
the behavior of F but also remain consistent with the behavior of G. Note that,
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Fig. 1. (a) The indifferentiability notion and (b) The Luffa compression function

the simulator does not know the queries made directly to G, although it can query
G whenever it needs. In this paper G is a variable input length Random oracle
and F is a random permutation. As the objective of any adversary is to build a
distinguisher , we use the term adversary and distinguisher interchangeably for
the rest of the paper.

3 Main Tools for Bounding Distinguisher’s Advantage

We follow a similar approach to [5,8,9] for proving indifferentiability of Fugue
and Luffa. In the discussion below C-mode of operation usually refers to either
Fugue or Luffa mode of operation based on Π = (π1, · · · , πt) a tuple of t random
permutations. In other words, C ∈ {Fugue, Luffa}. In case of Fugue, we have
t = 2. Below we recall some notations from [5].

Definition 5. Consistent Oracle:
A (small domain) probabilistic oracle algorithm G2 is said to be Consistent to
a (big domain) probabilistic oracle algorithm G1 with respect to MO-mode of
operation if for any point x (from the big domain), we have

Pr[G1(x) = MOG2(x)] = 1.

Note, Π is always Consistent to CΠ -mode of operation.
There might be some point x for which the value of MOG2(x) gets fixed by

the relations G2(x1) = y1, · · · , G2(xq) = yq. Such x’s are called evaluatable by
the relations G2(x1) = y1, · · · , G2(xq) = yq. Formally,

Definition 6. Evaluatable Queries:
A point x ∈ Domain(MOG2) is called evaluatable with respect to MO-mode of
operation (based on G2) by the relations G2(x1) = y1, · · · , G2(xq) = yq, if there
exist a deterministic algorithm B such that,

Pr[MOG2(x) = B(x, (x1, y1), · · · , (xq, yq))|G2(x1) = y1, · · · , G2(xq) = yq] = 1.
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In this paper the adversary is modeled as a deterministic, computationally un-
bounded 3 adversary A which has access to two oracles O1 and O2. Recall that
A tries to distinguish the output distribution of (CΠ , Π) from that of (R, SR).
We say A queries O1 when it queries the oracle Cπ or R and queries O2 when it
queries the oracle Π or SR. As we model Π as a tuple of t random permutations,
the adversary has to mention the index of the random permutation it wants to
query and whether she wants to make forward or inverse query. The forward
and inverse query to the ith random permutation are denoted by O2(+i, ·) and
O2(−i, ·) respectively.

Definition 7. Distinguisher View:
The view V of the distinguisher is the query-response tuple

((M1, h1), · · · , (Mq0 , hq0), (x
1
1, y

1
1), · · · ,(x1

q1+q−1 , y1
q1+q−1), · · · , (xt

qt+q−t , yt
qt+q−t)),

(2)

where

– O1(M1) = h1, · · · ,O1(Mq0) = hq0

– O2(+1, x1
1) = y1

1 , · · · ,O2(+1, x1
q1) = y1

q1

– O2(−1, y1
q1+1) = x1

q1+1, · · · ,O2(−1, y1
q1+q−1) = x1

q1+q−1

...
– O2(+t, xt

1) = yt
1, · · · ,O2(+t, xt

qt) = yt
qt

– O2(−t, yt
qt+1) = xt

qt+1, · · · ,O2(−t, yt
qt+q−t) = xt

qt+q−t .

Definition 8. Input Output View:
For any view V as in (2), we define Input View IV and Output View OV as
follows,

IV = (M1, · · · , Mq0 , x1
1, · · · , x1

q1 , y
1
q1+1, · · · , y1

q1+q−1 , · · · ,

xt
1, · · · , xt

qt , y
t
qt+1, · · · , yt

qt+q−t),

OV = (h1, · · · , hq0 , y1
1 , · · · , y1

q1 , x
1
q1+1, · · · , x1

q1+q−1 , · · · ,

yt
1, · · · , yt

qt , x
t
qt+1, · · · , xt

qt+q−t).

We recall the observations made in [5].

1. V , IV and OV are actually ordered tuples. That means, the position of any
element inside the tuple actually denotes the corresponding query number.
So, in general O1(·), O2(+i, ·) and O2(−i, ·) queries should not be grouped
together. But we write it like this to avoid further notational complexity.

2. For any deterministic non-adaptive attacker IV is always fixed.
3. For any deterministic adaptive attacker IV is actually determined by OV

[14].

3 Any deterministic adversary with unlimited resources is as powerful as a randomized
adversary [14].
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4. For any deterministic attacker (adaptive or non-adaptive) V is actually de-
termined by OV .

OVA
O1,O2

be the random variable corresponding to the output view of attacker
A, obtained after interacting with O1, O2.

Definition 9. Consistent Output View:
For an attacker A an output view OV is said to be Consistent with respect to
(O1,O2) if Pr[OVA

O1,O2
= OV ] > 0. If an output view is not Consistent, then it

is an Inconsistent output view.

Definition 10. Irreducible (Output) View:

V = ((M1, h1), · · · , (Mq0 , hq0), (x
1
1, y

1
1), · · · , (x1

q1+q−1 , y1
q1+q−1), · · · ,

(xt
1, y

t
1), · · · , (xt

qt+q−t , yt
qt+q−t)) (3)

is called C-Irreducible view if,

1. M1, · · · , Mq0 are distinct,
2. All the elements of X = {xi

1, · · · , xi
q1+q−1} are distinct and all the elements

of Y = {y1
1, · · · , y1

q1+q−1} are distinct.
3. M1, · · · , Mq0 are not evaluatable by the relations,

π1(x1
1) = y1

1 , · · · , π1(x1
q1+q−1) = y1

q1+q−1 , · · · ,
π1(xt

1) = yt
1, · · · , π1(xt

qt+q−t) = yt
qt+q−t (4)

with respect to C-mode of operation.

For an attacker A, an output view OV is called Irreducible if the corresponding
view V is Irreducible.

Theorem 1. [5] If there exists a simulator SR (aborting with a probability at
most ε′) Consistent to a random oracle R, with respect to C-mode of operation,
such that for any attacker A making at most q queries , the relation

Pr[OVA
CΠ ,Π = OV ] ≥ (1− ε) Pr[OVA

R,SR = OV ],

holds for all possible Consistent (with respect to the oracles CΠ , Π) and Irre-
ducible output views OV; then for any attacker A making at most q queries we
have

AdvA((CΠ , Π), (R, SR)) ≤ ε + ε′.

4 Indifferentiability Security Analysis of Fugue

In this section we show the Fugue-mode of operation is indifferentiable from a
random function R. If one could show the compression function of Fugue, gπ1

is indifferentiable from a random oracle, then he can try to apply the results of
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[10] to show Fugue is indifferntiable from a random oracle. However, π1 being a
random permutation attacker has access to inverse queries and gπ1 is not really
indifferentiable from a random oracle. Hence, to prove indifferentiability security
of Fugue we adopt the direct approach as outlined in Section 3. Our main result
of this section is the following.

Theorem 2. Let Π = (π1, π2) be a pair of independent random permutations
over {0, 1}nt. Let FugueΠ be the Fugue mode of operation with nh bit digest.
There exists a simulator SR such that for any adversary A which makes at most
q queries

AdvA((FugueΠ , Π), (R, SR)) ≤ O(q2 + qσ + σ2)
2n(t−1)

+
O(q2)
2nt−nh

where σ is the total number of blocks in the queries to R or FugueΠ .

To start with, we build a simulator SR Consistent to the random oracle R, with
respect to Fugue-mode of operation.

Simulator of Fugue. The simulator maintains two partial permutations π∗
1 , π∗

2 :
{0, 1}nt → {0, 1}nt initially empty and a (weighted) directed graph (in fact a
tree) G = (V, E). Each element of the vertex set V is an nt-bit element. V
is initialized to IVFugue and the edge set E is initially empty. Whenever the
simulator answers SR(+i, x) query as y or SR(−i, y) query as x it updates the
partial permutation π∗

i , as π∗
i (x) = y. There exists an edge v1 to v2 with weight

m in the edge set (or v1
m−→ v2 ∈ E) if and only if

gπ∗
1 (v1‖m) = v2.

While, answering a query the simulator also need to keep track of already defined
input/output points. At any instance, X (π∗

i ) and Y(π∗
i ) be the set of already

defined input and output points of the partial permutation π∗
i respectively. The

simulator always answers such a way such that π∗
i behaves as a random (partial)

permutation and G is a tree with root node as IVFugue. In fact, if there is a path
in G from IVFugue to v with weights (messages) m1, · · · , mk that would imply

MDgπ∗
1 (m1‖ · · · ‖mk) = v.

We recall that Fugue-mode of operation is nothing but processing the output of
MDgπ1

(PadFg(·)) through π2 and chopping nt − nh many bits of π2 output to
generate nh bit digest size. Hence to remain Consistent with R, if m1‖ · · · ‖mk

is an appropriate padded message (corresponding to message M) the simulator
should make sure

Chopnt−nh
(π∗

2(v)) = R(M).

The simulator needs to be careful about two things. Firstly, the tree structure
of the graph is always maintained and secondly, whenever any new node v gets
added to the tree the partial permutation π∗

2 should not be already defined at
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point v. When the simulator fails to do so, it outputs ⊥ to abort. The simulator
only allows the creation of a new node during SR(+1, x) queries. Note, in this
case whether a new node would be created only depends on x the query input.
This can be checked easily, for each v ∈ V find out whether there exists a message
m such that

MIFg(v‖m) = x.

Also, a single SR(+1, x) query should not be able to create more than one new
node.

SR(+1, x) query: When x �∈ X (π∗
1 ) the simulator samples y from {0, 1}tn \

Y(π∗
1) uniformly. The simulator aborts, when either of the following conditions

get violated. Otherwise it updates the partial permutation π∗
1 and returns y, if

y is a new node it also updates the graph G accordingly.

– Bad+11
Fg : y is a new node and there exist m1, m2 ∈ {0, 1}n, v ∈ V such that

MIFg(y‖m1) = MIFg(v‖m2).
– Bad+12

Fg : y is a new node and there exist m ∈ {0, 1}n, z ∈ X (π∗
1) such that

MIFg(y‖m) = z.
– Bad+13

Fg : y is a new node, the path from IVFugue leading to y is a valid
padded message and y ∈ X (π∗

2).

SR(−1, y) query: When y �∈ Y(π∗
1) the simulator samples x from {0, 1}tn \

X (π∗
1) uniformly. The simulator aborts when the following condition gets vio-

lated. Otherwise it updates the partial permutation π∗
1 and returns x.

– Bad−11
Fg : There exist m ∈ {0, 1}n and v ∈ V such that MIFg(v‖m) = x.

SR(+2, x) query: When x �∈ X (π∗
2), at first the simulator checks whether

x ∈ V or not. If x �∈ V or the path from IVFugue leading to x is not a valid
padded message the simulator returns y sampled uniformly from {0, 1}tn \Y(π∗

2)
and updates π∗

2 accordingly. In case PadFg(M), a valid padded message, is the
path from IVFugue to x then the simulator aborts if the following condition holds.
Otherwise, it returns R(M) and updates π∗

2 accordingly.

– Bad+21
Fugue : R(M) ∈ Y(π∗

2).

SR(−2, y) query: When y �∈ Y(π∗
2 ), the simulator samples x ∈ {0, 1}tn\X (π∗

2)
uniformly. It aborts if the following condition gets violated, otherwise it returns
x and updates the partial permutation π∗

2 .

– Bad−21
Fg : There exists v ∈ V such that x = v.

Upper bound on abort probability. Let q1 be the upper bound on number of
SR queries. We have also seen the number of nodes in the graph G can increase
by at most 1 for every SR query. Hence, before answering any SR query the
graph G can contain only q1 many nodes. Below we make a few observation
about the function MIFg as in (1).
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1. MIFg(v1‖m1) = MIFg(v2‖m2) implies m1 = m2.
2. For any v ∈ {0, 1}nt, there exist at most 2n many v′ ∈ {0, 1}nt such that the

relation MIFg(v‖m) = MIFg(v′‖m), holds for some m ∈ {0, 1}n.
3. Observations 1 and 2 actually imply for any v ∈ {0, 1}nt there exist at

most 2n many v′ ∈ {0, 1}nt such that the relation MIFg(v‖m) = MIFg(v′‖m′),
holds for some m, m′ ∈ {0, 1}n.

4. For any z ∈ {0, 1}nt there exist at most 2n many v ∈ {0, 1}nt such that the
relation MIFg(v‖m) = z, holds for some m ∈ {0, 1}n.

Utilizing the above observations one can deduce the following upper bounds on
Pr[Bad±ij

Fg ], during a single SR query.
Pr[Bad+11

Fg ] ≤ 2nq
2nt−q Pr[Bad+12

Fg ] ≤ 2nq1
2nt−q Pr[Bad+13

Fg ] ≤ q
2nt−q

Pr[Bad−11
Fg ] ≤ 2nq1

2nt−q Pr[Bad+21
Fg ] ≤ q

2nt Pr[Bad−21
Fg ] ≤ q

2nt−q

Note, the upper bound on Pr[Bad+21
Fg ] is derived assuming there is no chopping.

When there is no chopping the simulator aborts when R(M) ∈ Y(π∗
2), otherwise

it returns R(M). Hence, the probability of abort is exactly |Y(π∗
2 )|

2nt . In case n−nh

bits are chopped, the abort probability is even less. Hence, if Abort is the event
that the simulator aborts in any one of the q queries made by the attacker,
assuming q ≤ 2nt−1 we have

Pr[Abort] ≤ 6q2

2n(t−1)
.

Interpolation Probability of OVA
(R,SR). There is always an one to one

mapping between any (output) view and the simulators internal state (that
is the graph G and the partial permutations π∗

1 , π∗
2). Hence any Irreducible

output view OV , either implies that the simulator should abort, in which case
Pr[OVA

(R,SR) = OV ] = 0, or the simulator do not abort, in which case we have

Pr[OVA
(R,SR) = OV ] =

1
2nhq0

q1+q−1
∏

i=1

q2+q−2
∏

j=1

1
(2nt − i + 1)(2nt − j + 1)

.

Hence, for any Consistent output view OV (with respect to FugueΠ , Π oracles)
we have

Pr[OVA
(R,SR) = OV ] ≤ 1

2nhq0

q1+q−1
∏

i=1

q2+q−2
∏

j=1

1
(2nt − i + 1)(2nt − j + 1)

.

Also for any, Inconsistent output view OV (with respect to FugueΠ , Π oracles)
we have Pr[OVA

(R,SR) = OV ] = 0.

Interpolation Probability of OVA
(FugueΠ ,Π). Here we aim to give a lower

bound on Pr[OVA
(FugueΠ ,Π) = OV ] for any Consistent Irreducible output viewOV .
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For that we will consider the notion of Good NCFugue-Irreducible views, which
is similar to the notion of MD-Irreducible views in [5,9]. Informally NCFugue-
Irreducible view is an Irreducible attacker view where the attacker has access to
NCFugueΠ(·) ≡ π2(MDgπ1 (PadFg(·))) oracle instead of FugueΠ(·) ≡ Chopnt−nh

(π2(MDgπ1 (PadFg(·)))) oracle (So the attacker essentially receives more informa-
tion. However, the attacker does not use this extra information to decide its
future queries). We will obtain the lower bound in two steps.

– For any Consistent Good NCFugue-Irreducible output view OVNC obtain a
lower bound of
Pr[OVA′

(NCFugueΠ ,Π) = OVNC] as p (Here, A′ is the modified attacker which
has access to NCFugueΠ oracle instead of FugueΠ oracle.)

– For any Consistent Fugue-Irreducible output view OV we give a lower bound
(as N) on number of possible Good NCFugue-Irreducible output view OVNC

such that,

Pr[OVA
(NCFugueΠ ,Π) = OV|OVA′

(MDFugueΠ ,Π) = OVNC] = 1 (5)

This would imply, Pr[OVA
(FugueΠ ,Π) = OV ] ≥ pN . Before going further we define

the notion Good NCFugue-Irreducible output view.

Definition 11. For an attacker A′, interacting with (NCFugueΠ , Π) the view

VNC = ((M1, r1), · · · , (Mq0 , rq0 ), (x
1
1, y

1
1), · · · , (x1

q1+q−1 , y1
q1+q−1), · · · ,

(x2
1, y

2
1), · · · , (x2

q2+q−2 , y2
q2+q−2)) (6)

is a Good NCFugue-Irreducible view if VNC is an NCFugue-Irreducible view,
r1, · · · , rq0 are all different and they are different from y2

1 , · · · , y2
q2+q−2 . An output

view OVNC is called Good NCFugue-Irreducible output view, if the corresponding
view VNC is Good NCFugue-Irreducible.

By the following theorem, we get the lower bound on Pr[OVA′
(NCFugueΠ ,Π) = OVNC]

or estimate of p.

Theorem 3. For any Consistent Good NCFugue-Irreducible output view OVNC

(VNC as in (6) being the corresponding view ),

Pr[OVA′
(NCFugueΠ ,Π) = OVNC]

≥ (1 − 2σ(q + σ)
2(t−1)n

)
1

2ntq0

q1+q−1
∏

i=1

q2+q−2
∏

j=1

1
(2nt − i + 1)(2nt − j + 1)

,

where σ is the total number of message blocks present in NCFugue queries, q is
the total number of NCFugue and Π queries such that q + σ < 2nt−1.

In the following theorem we get an estimate of N .
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Theorem 4. For any Consistent Fugue-Irreducible view V as in (3) (with t = 2),
there exist at least

2(nt−nh)q0

(
1− q2

2nt−nh

)

many Consistent Good NCFugue-Irreducible view VNC as in (6) such that,
Chopnt−nh

(r1) = h1, · · · , Chopnt−nh
(rq0 ) = hq0 , where q is the total number

of FugueΠ and Π queries.

All together Theorem 3, Theorem 4 and the upper bound from Section 4 would
imply for any Consistent output view OV (with respect to FugueΠ , Π oracles)

Pr[OVA
(FugueΠ ,Π) = OV ] ≥

(
1− 2σ(q + σ)

2(t−1)n

)(
1− q2

2nt−nh

)
× 1

2nhq0

×
q1+q−1

∏

i=1

q2+q−2
∏

j=1

1
(2nt − i + 1)(2nt − j + 1)

≥
(
1− 2σ(q + σ)

2(t−1)n

)(
1− q2

2nt−nh

)
Pr[OVA

(R,SR) = OV ]

Applying the above inequality together with Pr[Abort] to Theorem 1 we prove
Theorem 2.

5 Indifferentiability Security Analysis of LuffaS

We recall that Luffa with single permutation or LuffaS is based on a random
permutation π : {0, 1}tn → {0, 1}tn. We view the the Message Insertion trans-
formation MILf(Y ‖m) as TY + Am where Y ∈ ({0, 1}n)t, m ∈ {0, 1}n. We view
the chaining value Y as a vector of t many n bit elements. By “forward query
input” we mean the input of forward query or the output of inverse query made
to the simulator. Our main result of this section is the following.

Theorem 5. Let π be an independent random permutations over {0, 1}nt. Let
LuffaSΠ be the LuffaS mode of operation with n bit message blocks. There exists
a simulator SR such that for any adversary A which makes at most q queries

AdvA((LuffaSπ, π), (R, SR)) ≤ O(σ(q + σ))
2nt

+
O(q2)
2n(t−2)

where σ is the total number of blocks in the queries to R or LuffaSπ.

As in Section 4 we start by describing a Consistent Simulator.

Simulator of LuffaS. The simulator maintains a partial permutation π∗ :
{0, 1}nt → {0, 1}nt to keep track of the all the received queries and responses
it made so far. By X (π∗) and Y(π∗) we denote the set of forward query input
and the set of forward query output so far. It also maintains a directed graph
G whose vertex set V = {0, 1}tn. These vertices are actually the output of the
simulator. An edge from vertex Y to vertex Y ′, marked by m, implies that
(TY + Am, Y ′) ∈ π∗. Initially π∗ is empty and V = {IVLuffa}. The objective of
the simulator is to maintain following properties in the graph
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– No cycle: the graph G is actually a tree, hence there is no cycle in the
graph.

– No collision: For any three nodes Y1, Y2 and Y3 in the graph, both (Y1, Y3)
and (Y2, Y3) are not edges in G.

In addition to the properties of the tree, to guard against the length-extension
attack, the simulator also tries to ensure that the final input of any path from
IVLuffa is not in X (π∗) yet.

Handling forward query SR(+, X). If X /∈ X (π∗),simulator checks whether
for any existing node Y ′ and a message m, MILf(Y ′, m) = X . If such a node
exist for m = 0n, then the simulator, retrieves M from labels of the edges of
path from IVLuffa to Y ′ and queries R(M). Then queries the simulator samples
Y = (y1, · · · , yt) uniformly at random from {0, 1}nt \ Y(π∗) conditioned on
y1 + · · · + yt = R(M). If m �= On, the simulator samples Y ← {0, 1}tn \ Y(π∗)
uniformly at random. In both the cases, a node Y is created and an edge (Y ′, Y )
with label m is added. If no such Y ′ is found, simulator just the simulator samples
Y ← {0, 1}tn \ Y(π∗) uniformly at random. If Y sets one of the following Bad
events true, the simulator aborts. Otherwise, the simulator updates the partial
permutation π∗ inserting (X, Y ) and returns Y as response.

We define the following events as Bad events for the simulator.

– Bad+1
Lf (Possible Collision): Let Y be the new node and Y2 be any other

node of the graph. T (Y + Y2) = Am has a solution for m.
– Bad+2

Lf : Let Y be the new node. If, for some m, TY + Am ∈ X (π∗).

Bad+2
Lf ensures that there is no cycle in the graph and the final input (input to

the finalization) for any properly padded message M is not yet in X (π∗).

Handling inverse query SR(−, Y ). While handling inverse queries, the sim-
ulator has no control over the input. The adversary might choose the inverse
query Y in such a way that for some node Y ′ in the graph and some m, m′,
TY + Am = TY ′ + Am′. However, as long as the output of the inverse query
do not make a new chain from IV , and the simulator remains Consistent with
R with respect to the mode. Hence, while answering an inverse query the sim-
ulator needs to make sure that for no existing node Y ′ and any message m,
TY ′ + Am matches with the output. This condition together with Bad+1

Lf and
Bad+2

Lf keeps the simulator Consistent with R. So, if Y /∈ Y(π∗), the simulator
samples X ← {0, 1}tn \ X (π∗) and check for the following Bad event.

– Bad−1
Lf : For some vertex Y ′ in the graph and some message m ∈ {0, 1}n,

MILf(Y ′, m) = X .

If the Bad is true then the simulator aborts. Otherwise, it adds (X, Y ) to π∗

and returns X .

Lemma 1. Let SR be the simulator for Luffa mode of operation with single
permutation. For any attacker A making at most q ≤ 2n queries

Pr[Abort] or Pr[SR →⊥] ≤ O(q2)
2(t−2)n

.
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Finally, similar to Section 4 for any Consistent output view OV (with respect to
LuffaSπ, π oracles) we have

Pr[OVA
(R,SR) = OV ] ≤ 1

2nq0

q1+q−1
∏

i=1

1
(2nt − i + 1)

.

Interpolation Probability of OVA
(LuffaSπ,π). In this section we aim obtain

a lower bound on Pr[OVA
(LuffaSπ,π) = OV ] for any Irreducible Consistent out-

put view OV . Similar to Section 4 we consider the notion of Good NXLuffaS-
Irreducible views. Informally, an NXLuffaS-Irreducible view is an Irreducible view
where the attacker has access to NXLuffaSπ(·) ≡ MDfπ

(PadLf(·)‖0n) oracle in-
stead of LuffaSπ(·) = Xor(MDfπ

(·)‖0n) oracle. As before, A′ is the modified
attacker which has access to NXLuffaSπ oracle instead of LuffaSπ oracle. Our
strategy is same as before, i.e. for any Consistent Good NXLuffaS-Irreducible
output view OVNX obtain a lower bound on Pr[OVA

(NXLuffaSπ,π) = OVNX] and for
any Consistent LuffaS-Irreducible view V obtain a lower bound on number of
corresponding Good Consistent NXLuffaS-Irreducible view VNX.

Definition 12. For an attacker A′, interacting with (NXLuffaSπ, π), the view

VNX = ((M1, g1), · · · , (Mq0 , gq0), (X1, Y1), · · · , (Xq1+q−1 , Yq1+q−1)) (7)

is a Good NXLuffaS-Irreducible view iff VNX is a NXLuffaS-Irreducible view and

– g1, · · · , gq0 are distinct and they do not collide with {Y1, · · · , Yq1+q−1}
– For any X ∈ {IV, X1, · · · , Xq1+q−1} there does not exist any M ∈ {0, 1}n

such that,
MILf(gi, M) = X for any i ∈ {1, · · · , q0}.

The output view OVNX is called Good NXLuffaS-Irreducible output view, if the
corresponding view VNX is Good NXLuffaS-Irreducible.

To obtain a lower bound on Pr[OVA
(NXLuffaSπ,π) = OVNX] we follow an approach

similar to proof of Theorem 3. However, for any z ∈ {0, 1}nt, m ∈ {0, 1}n
there exist an unique y ∈ {0, 1}nt such that, MILf(y‖m) = z.4 As a result while
assigning the output value of MDfπ

one can have at most 2(q+σ) many forbidden
values, where q is the total number of attacker queries and σ is the total number
of message blocks present in LuffaS queries. As before, we can obtain the following
theorem.

Theorem 6. For any Consistent Good NXLuffaS-Irreducible output view
OVNX(VNX as in (7) being the corresponding the view),

Pr[OVA′
(NXLuffaSπ ,π) = OVNX] ≥

(
1− 2σ(σ + q)

2nt

) 1
2ntq0

q1+q−1
∏

i=1

1
(2nt − i + 1)

,

4 Compared to 2n many possible y ∈ {0, 1}nt in case MIFg.
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where σ is the total number of message blocks present in NXLuffaS queries, q is
the total number NXLuffaS and π queries and (q + σ) < 2nt−1.

With an approach, similar to proof of Theorem 4 and using the previous obser-
vation regarding MILf one can also have the following theorem.

Theorem 7. For any Consistent LuffaS-Irreducible view V as in (3) (with t =
1), there exist at least

2n(t−1)q0

(
1− q2

2n(t−2)

)

many Consistent Good NXLuffaS-Irreducible view VNX as in (7) such that,
Xor(g1) = h1, · · · ,
Xor(gq0) = hq0 , where q is the total number of LuffaS and π queries.

Following the final discussion of Section 4 we get the following. For any Consis-
tent output view OV(with respect to LuffaSπ, π oracles) we have,

Pr[OVA
(LuffaSπ,π) = OV ] ≥

(
1− 2σ(σ + q)

2nt

)(
1− q2

2n(t−2)

)
Pr[OVA

(R,SR) = OV ].

Applying the above inequality together with Pr[Abort] to Theorem 1 we prove
Theorem 5.

6 Indifferentiability Security Analysis of Luffa

Theorem 8. Let Π = (π1, π2, · · · , πt) be a collection of independent random
permutations over {0, 1}n. Let LuffaΠ be the Luffa mode of operation with n bit
message blocks and n bit digest. There exists a simulator SR such that for any
adversary A which makes at most q queries

AdvA((LuffaΠ , Π), (R, SR)) ≤ O(σ2 + q2)
2n

+
O(q4)

2n

where σ is the total number of blocks in the queries to R or LuffaΠ .

Simulator for Luffa. In this section we describe the simulator for Luffa mode
of operation. As in Section 5, we view the MILf(Y, m) transformation as an affine
function TY + Am where T is a t× t square matrix, A is a coefficient vector of
length t and the chaining value Y is a vector of length t. For each permutation
πj ; j = 1, 2, · · · , t the simulator keeps a partial permutation π∗

j of input-output
relations derived so far. By X (π∗

j ) and Y(π∗
j ) we denote the set of forward query

input and the set of forward query output for partial permutation π∗
j , derived so

far. Simulator also maintains a directed graph G whose vertex set V ⊆ {0, 1}tn.
Initially V = {(IV1, · · · , IVt)} These vertices are actually tuple of the outputs
of the simulator that are part a chain starting from IVLuffa = (IV1, · · · , IVt).
An edge from vertex Y to vertex Y ′, marked by m, implies that for each j ∈
{1, · · · , t}, (TjY + Ajm, Y ′

j ) ∈ π∗
j . Tj represents the jth row of matrix T .
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While answering a new forward query x for permutation i, the simulator first
checks whether x can be an input of the finalization stage of any chain in the
graph. To find it, simulator searches for each existing node Y whether x = TiY
(Recall that for finalization, m = 0n) and for t − 2 many j �= i, TjY ∈ X (π∗

j )
(S(+, i, x) is the last but one query of the finalization). If simulator can find such
a unique Y , it queries R(M) and tries to set the output of all other permutation
maintaining consistency with R. For example, when t = 3, the simulator checks
whether there exists a state Y and an xj ∈ X (π∗

j ) for some j �= i. If such a node
exists, simulator finds a valid padded message M traversing the path from IV
to Y , get R(M) and set the output yi = π∗

i (x) and yk = π∗
k(TkY ) (k �= i, j) so

that yi ⊕ yj ⊕ yk = R(M) ((xj , yj) ∈ π∗
j ). Simulator also checks whether this

new (y1, y2, y3) state maintains some properties of the tree.
If, x is not the penultimate query of a finalization stage, simulator checks

whether output of x can make a new node in a chain in the graph; i. e. whether
there is a node Y in the graph such that for some m, x = TjY +Ajm and for all
other i �= j, TiY + Aim ∈ X (π∗

j ). If no such node exists, the simulator outputs
randomly only maintaining the permutation property. If such a node exists, the
simulator tries to sample the output so that the new node Y ′ maintains the
following properties of the tree:

– No cycle. Let Y ′ be the new node. For any other node Y = (y1, · · · , yt), in
the graph, for any m ∈ {0, 1}n, ∃j ∈ {1, · · · , t}, yj �= π∗

j (TjY
′ + Ajm).

– No Partial Collision. For any two nodes Y, Y ′ in the graph, there is no
message m1, m2 ∈ {0, 1}n, such that for any two i, j ∈ {1, · · · , t}, TjY +
Ajm1 = TjY

′ + Ajm2 and TiY + Aim1 = TiY
′ + Aim2.

– Free final inputs. For any two state Y, Y ′ in the graph and for all j ∈
{1, ..., t}, TjY �= TjY

′.

Overall the simulator samples a y maintaining the permutation property and
checks that the following Bad events do not occur.

– The properties of tree are not satisfied.
– Final input collides with previous input: For any j ∈ {1, · · · , t}, TjY

′ ∈
X (π∗

j ).
– Partial collision with non-chain inputs: ∃m ∈ {0, 1}n and ∃i, j ∈
{1, · · · , t} such that TiY

′ + Aim ∈ X (π∗
i ) and TjY

′ + Ajm ∈ X (π∗
j ).

For the inverse query of permutation i, the simulator tries to ensure that the
output does not create a new node in the graph. For each existing node Y and for
all j �= i, consider the set Γ2(Y, j) = {x′ = TiY +Aim|m = A−1

j (xj +TjY ), xj ∈
X (π∗

j )}. Note that as A is a vector, Aj is an element from the underlying field.
On input y simulator samples x from {0, 1}n \ X (π∗

j ), and sets the Bad true
if x ∈ Γ2(Y, j) for some node Y and for some j �= i. For a formal description
of the simulator we refer the reader to the full version of this paper. Next we
state an upper bound for the abort probability of the simulator and we have the
following lemma.
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Lemma 2. For any attacker A interacting with (SR,R) making at most q
queries to the simulator,

Pr[SR →⊥] ≤ O(q4)
2n − q

.

Interpolation Probability of OVA
(LuffaΠ ,Π). With an approach similar to

Section 4 and Section 5 one can show, for any Consistent Luffa-Irreducible output
view OV we have,

Pr[OVA
(LuffaΠ ,Π) = OV ] ≥

(
1− 2tσ2

2n

)(
1− 4q2

2n

)
Pr[OVA

(R,SR) = OV ].

Applying the above inequality together with Lemma 2 to Theorem 1 we prove
Theorem 8.

7 Conclusion

In this paper, we proved indifferentiability of domain extension algorithms of
Fugue and Luffa. Although, none of them are in the final round, the modes
of these hash functions are interesting in their own right. Specifically, domain
extension algorithm of Luffa opens up a interesting research direction regarding
security efficiency tradeoff. Improving our bound for Luffa remains an interesting
open problem too. However, such an analysis seems to need substantial insight.
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Abstract. A common approach for the construction of cryptographic
hash functions is to design the algorithm based on an existing sym-
metric encryption primitive. While there has been extensive research on
the design of block cipher-based hash functions, little has been done on
the study of design and security of stream cipher-based hash functions
(SCH). In this paper we discuss the general construction of stream cipher-
based hash functions, devoting special attention to one of the function’s
crucial components: the message injection function. We define two types
of message injection functions, which may be appended to the keystream
generator (e.g. a stream cipher) to build an SCH. Based on these con-
structions, we evaluate the security of simple SCHs whose stream cipher
function consists of a LFSR-based filter generator. We see this as an
initial step in the more formal study of the security of hash function
constructions based on stream ciphers.

Keywords: hash function, stream cipher, collision resistance.

1 Introduction

There has been much recent activity in the area of cryptographic hash function
design and analysis: popular hash functions such as MD5 [12] and SHA-1 [10]
have been shown to have weaknesses, e.g. lack of collision resistance [16,17], and
this has spurred much interest in research in hash functions, culminating in the
establishment of the NIST-sponsored SHA-3 competition to select a new hash
function standard. As a result, several new designs have been proposed in the
past few years.

A common approach for the construction of cryptographic hash functions is
to design the algorithm based on an existing symmetric encryption primitive.
There are several advantages in this type of approach: it may for instance be
possible to derive the security of the hash function from the underlying symmet-
ric algorithm; moreover, such a construction may allow one to use the symmetric
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algorithm for both encryption and as the building block for the hash function.
This may be particularly attractive when trying to reduce the total cost of im-
plementation of a cryptographic system in which encryption and hashing are
required (for example, implementations in resource-constrained devices).

While there has been extensive research on the design of block cipher-based
hash functions, not much has been done on the study of design and security of
stream cipher-based functions. The general construction of a stream cipher-based
hash function (SCH) was first introduced by Golić [3], as a mode of operation of
stream ciphers. An SCH consists of a keystream generator (e.g. a stream cipher)
and an additional function, which inputs the message into the internal state of
the stream cipher. Thus, we can model a stream cipher-based hash function as
a message injection function and a stream cipher function. The stream cipher
function is the core component of SCHs and an appropriate algorithm is selected
from among existing stream cipher algorithms. The pre-computation/injection
function is used to input the message into the internal state of the stream cipher
algorithm.

Several dedicated hash functions such as Boole [13] and MCSSHA-3 [5] are
based on stream ciphers, and although these have been shown to be insecure, they
did present good performance on a variety of platforms. It is also not uncommon
to encounter in practice ad hoc constructions where a stream cipher is used to
build a hash-like function. Despite of that, to the authors’ best knowledge a
well-developed set of design principles and security evaluation criteria for SCHs
has yet to be established.

Nakano et al. [8] proposed a model for SCHs and showed necessary conditions
for the construction of secure stream cipher-based hash functions. They concen-
trated on the problem of how to construct SCHs that are collision resistant, as
this is perhaps the most challenging task for a designer. Their considerations are
however not yet sufficient and a proposal for a concrete construction technique
remains an open problem. In this paper, we describe the construction of SCHs
based on bit-oriented simple stream cipher algorithms and provide the security
analysis of possible message injection functions for SCHs. As an initial work in
the area, we do not claim to provide an exhaustive discussion of all relevant
security and design aspects of SCHs. We only deal here with collision resistance,
and an analysis of other security requirements such as pre-image and second
pre-image resistance remains to be considered. Moreover, in order to make the
discussion simple, we only deal with bit-oriented linear feedback shift registers
for the stream cipher. Other stream cipher constructions (such as the ones based
on sponge functions) are not discussed in this paper.

The remaining of this paper is organised as follows: in Section 2 we present
a brief discussion of related work. Section 3 provides definitions of message in-
jection functions. We analyse the security of the message injection functions in
Section 4. In Section 5, as an extension, we consider two LFSR-based SCHs. We
present a discussion about the security and efficiency of the message injection
functions in Section 6, and a comparison with existing algorithms is made in
Section 7. Finally we conclude our paper in Section 8.
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2 Related Work

We introduce below the necessary definitions and briefly describe research results
of relevance to the construction of stream cipher-based hash functions.

2.1 Security Definitions of Hash Functions

The conventional security requirements for cryptographic hash functions are
pre-image resistance, second pre-image resistance, collision resistance [7]; more
recently length-extension security [4] has also been proposed as a security re-
quirement for hash functions. Let H be a hash function, n be the hash output
length, M and M ′ be messages; furthermore, let the symbol || denote the con-
catenation of data.

Pre-image Resistance: given h = H(M) for some (unknown, randomly gen-
erated) M , finding any M ′ such that H(M ′) = h requires on average the work
effort on the order of 2n hash operations.

Second Pre-image Resistance: given a randomly generated M and h =
H(M), finding any M ′ �= M such that H(M ′) = h requires on average the
work effort on the order of 2n hash operations.

Collision Resistance: finding M and M ′ such that H(M) = H(M ′) and
M �= M ′ requires on average the work effort on the order of 2n/2 hash oper-
ations.

Length-extension Security1: given H(M), the complexity of finding (z, x)
such that x = H(M ||z) should be greater than or equal to either the complexity
of guessing M itself or 2n.

2.2 Hash Function Constructions

The great majority of hash functions are of dedicated design. In this section,
we briefly discuss the design of hash functions based on symmetric encryption
algorithms, as well as some related SHA-3 proposals.

Block Cipher-Based Hash Functions. Preneel et al. studied general con-
structions of block cipher-based hash functions in [11]; they found that 12 out
of all 64 possible constructions are secure. Later, Black et al. [2] extensively
analysed the constructions. Stam [15] extended the work taking pre- and post-
processing into consideration. We note that these results on the security of block
cipher-based hash functions are based on the assumption that the primitive used
is an ideal block cipher (rather than a specific algorithm).

Golić’s Construction. Golić [3] studied modes of operation for stream ci-
phers, and showed how to convert a keystream generator into a stream cipher
1 This requirement has been proposed in the NIST SHA-3 competition.
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with memory (SCM), and how to build a hash function from an SCM. When
a feedback shift register (FSR) based keystream generator is used, the SCM
mode can be easily converted into a hash function by adding the plaintext bit to
the feedback bit of the FSR. The SCM mode is clocked m times with an m-bit
message and the corresponding m-bit ciphertext is stored in memory; then the
SCM mode is clocked another m times with the m-bit ciphertext being input in
reverse order. Finally, the SCM mode is clocked αm times where α is a small pos-
itive integer (e.g., three), and the last h successive ciphertext bits (or keystream
bits) are output as the hash value. As the ciphertext in reverse order is used,
the scheme requires an amount of memory that is equivalent to the message size.

SHA-3 Candidates. The NIST-sponsored SHA-3 competition kicked off in late
2008, and is expected to announce the new hash function standard in 2012. In
total 64 algorithms were submitted to the competition, although only 56 of them
are publicly known. Seven of the original submissions have similar structure to
a stream cipher, and are thus of relevance to our work. Below we give a brief
description of three of them.

Abacus. The Abacus [14] hash function has four registers (ra, rb, rc, rd).
The message injection phase processes one byte in each round. First, the values
of the four registers and one byte of the message are XORed and the result goes
through S-Boxes. In the next step, four counters are combined with registers.
Then, a maximum distance separable (MDS) matrix-based function is applied
and four bytes are output. Finally, another S-Box operation is applied to the four
bytes of registers. Two second pre-image attacks on Abacus were independently
proposed by Nikolić et al.[9] and Wilson [18]. Wilson also showed a collision
attack [18].

Boole. Boole [13] is constructed from a non-linear feedback shift register, input
accumulators, and an output filter function. Boole consists of three phases: an
input phase, a mixing phase, and an output phase. The state update function of
the register, referred to as a cycle, transforms the state St into St+1. A message
word is input to three accumulators, which are then updated. The register is then
cycled once. After the input phase, the mixing phase is applied: the register is
mixed with three accumulators, and the register is cycled 16 times. Finally the
hash value is generated in the output phase. A pre-image attack and a collision
attack against Boole were proposed by Nikolić [6].

MCSSHA-3. The MCSSHA-3 [5] hash function has a non-linear shift register
whose size is the same as the hash value. A message is added with the feedback
from the shift register. Before addition of the message, an 8× 8 substitution is
applied to the feedback. In MCSSHA-3, the message injection is performed every
four clocks. Once a message block is input, the shift register is clocked without a
message for another three clocks. After the whole message is processed, the h-bit
internal state S is obtained, where h denotes the size of a hash value. The reg-
ister is then clocked h/2 times with a 4h-bit sequence which is a concatenation
of the state S. Finally, the internal state is output as a hash value. A collision
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attack on MCSSHA-3 was presented by Aumasson and Naya-Plasencia[1]; they
also demonstrated a second pre-image attack on MCSSHA-3 and a pre-image
attack on the tweaked version: MCSSHA-4.

Model of SCHs. Nakano et al. [8] presented a general model of SCH, which
is shown in Figure 1. They showed that an SCH can be modelled with two
components: a message injection function and a stream cipher function.

A message injection function is appended to a stream cipher to construct an
SCH. The message injection function is the component that takes the message
and feedback from stream cipher as input, and determines the internal state of
the stream cipher. The stream cipher diffuses the message over its internal state.
The hash value is then generated as a certain length of the keystream. Generally,
keys and IVs (initialization vectors) are set to constant values, usually to zero,
and the message is loaded to the internal state of the stream cipher.

SCHs execute three phases: message injection, blank rounds, and hash gener-
ation. The message is loaded into the internal state of the stream cipher in the
message injection phase. The internal state is updated from the message, previ-
ous state, and output feedback in the message injection phase. Blank rounds are
the iteration of the state update (e.g. clocking the stream cipher) for diffusing the
last input message words over the entire state. In the blank round phase, the in-
ternal state is updated from the previous state and output feedback. This phase is
similar to the initialization of the stream cipher. Finally the stream cipher outputs
a keystream as a hash value in the hash generation phase. During hash generation,
only the previous state is used to update the state and the hash value is generated.
In [8], the security analysis of SCHs based on the model above was provided, and
suggested that secure message injection is a critical stage for achieving collision re-
sistance. In this paper we further consider the problem of how to design a collision
resistant message injection for stream cipher-based hash functions.

3 Definition of Message Injection Function

In this section, we present two message injection functions for a bit-oriented
stream cipher.

3.1 Stream Cipher Model

Before defining the message injection function, let us define the stream cipher
considered in this paper. We deal with a simple stream cipher that consists of
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Fig. 2. An LFSR and a filter function

an LFSR and a filter function as in Figure 2, and an extension that consists of
two LFSRs and a filter function as in Figure 5. Modern stream ciphers require
an initialization operation for loading and mixing the encryption key and ini-
tialization vector into the internal state before producing the keystream; in the
constructions discussed, the output of the non-linear filter can be fed back to the
end of the LFSR as part of the initialization process. We use the initialization
operation for message injection of the SCH.

Let l be the length of the LFSR, and f denote the filtering function. We
assume that the feedback polynomial of the LFSR is primitive, and that the
function f is balanced. Then, the LFSR reaches all internal states except all-
zero and the period of state transition is given by 2l − 1. By clocking the LFSR
2l − 1 times, ‘1’ is fed back 2l−1 times and ‘0’ is fed back 2l−1 − 1 times. The
probability ‘1’ is fed back and that of ‘0’ are given by

Pr[1 is fed back] =
2l−1

2l − 1
≈ 1

2
,

Pr[0 is fed back] =
2l−1 − 1
2l − 1

≈ 1
2
.

These probabilities can be developed to the probability which feedback has a
difference. Let two distinct internal states be S1 and S2, and HW (x) be the
Hamming weight of a binary string x. We say two internal states have a difference
Δ(= S1⊕ S2) when HW (Δ) ≥ 1. We denote the feedback derived from internal
states S1 and S2 as bfdbk1 and bfdbk2, respectively. We also say the feedback of the
LFSR has a difference Δ1(= bfdbk1 ⊕ bfdbk2) when HW (Δ1) = 1. Let us denote
registers with a difference as ‘1’ and without the difference as ‘0’.

Remark 1. The probability that the feedback has a difference is 1/2.

Please note that Remark 1 holds if the length l of the LFSR is large enough.
Let g be a message injection function. The message injection function is a

map g : {0, 1}l×{0, 1}m → {0, 1}l, where l and m denote the internal state size
and the message block size. Then the message injection function can be given
by

S′
t = g(St, mt).
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Let fp(x) = c1xt,1⊕ c2xt,2⊕ · · ·⊕ clxt,l be the linear recursion function of the
LFSR, then the update of the register can be described as:

st+1,i =
{

st,i+1 (1 ≤ i ≤ l − 1),
fp(st,1, . . . , st,l) (i = l). (1)

The keystream zt is given by

zt = f(d1st,1, . . . , dlst,l),

where the constants dj ∈ {0, 1} for 1 ≤ j ≤ l choose the registers to be input to
the filter function.

We define two message injections as: the message is XORed with the keystream
and this result is XORed with feedback of the LFSR; or the message is XORed
with the keystream and the result is XORed with the internal state. We describe
both injections in more detail in the following sections.

3.2 Inject into Feedback

The SCH with this message injection function is shown in Figure 3. This is the
most natural way to inject the message into the internal state, and a subcase
of the “inject into the internal state” mode, which we explain later. The con-
struction proposed by Golić applies this method. MD5 and SHA-1 can also be
categorized as this type since the step operation of these hash functions update
only one chaining variable and the others are just shifted2. Once the value of
the register is fixed, it is not updated until it is fed back again. Furthermore,
the feedback can be controlled by the message. It is possible for an adversary to
control the entire internal state. Note that we consider the bit-oriented LFSR
only and do not consider the message expansion.

The message injection function can be described as follows.

st+1,i =
{

st,i+1 (1 ≤ i ≤ l − 1)
fp(st,1, . . . , st,l)⊕ (f(d1st,1, . . . , dlst,l)⊕mt) (i = l). (2)

3.3 Inject into the Internal State

We show the scheme of this message injection function in Figure 4. This message
injection function updates the internal state by XORing the value of the internal
state with the message and the keystream. Since we consider the bit-oriented
LFSR only, the same message data is XORed in different positions. This scheme
requires selectors σi ∈ {0, 1} that determine the registers to be updated. The
message injection function can be described as:

st+1,i =
{

st,i+1 ⊕ σi(zt ⊕m) (1 ≤ i ≤ l − 1)
fp(st,1, . . . , st,l) (i = l). (3)

The security of the message injection depends not only on the stream cipher but
also where to inject the message. As we discuss later in Section 4, the number
of registers updated by the message is the important factor for the message
injection.
2 Although these hash functions also include a message expansion mechanism.
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4 Security Analysis

In this section, we evaluate the security of SCHs constructed from a simple
stream cipher and message injection functions introduced in Section 3 against
collision attacks.

4.1 Inject into Feedback

A difference Δ1 on feedback of the LFSR and/or an output difference Δ2 of the
f function can be easily cancelled out by using a message difference Δm as:

Δm = Δ1 ⊕Δ2,

and the value in the leftmost register is easily controlled. Assume that the LFSR
is clocked n times, where n is large enough when compared to the length of
the LFSR. Then the difference in the register is forced out, hence only the
difference on the leftmost register should be taken into consideration. Iterating
this cancellation of the difference for l times enables an adversary to control the
entire internal state of the LFSR. Therefore, the collision is easily generated.
This type of message injection cannot provide the collision resistance without
the message expansion.

4.2 Inject into the Internal State

Suppose that the same message-dependent data is injected into r positions of the
LFSR at regular intervals, then l/r registers can be controlled by the message
and a collision of these registers is easily generated. From the fact that the
adversary can control l/r bits of the internal state, l(1−1/r) bits of the internal
state could have differences. Since feedback has the difference with probability
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1/2, the filter function must output the difference for l(1− 1/r)/2 clocks and it
must not output the difference for the other l(1−1/r)/2 clocks. Suppose that the
filter function output the difference with the probability p, then the probability
of the collision is given by

Pr[coll] = [p(1 − p)]
l(1−1/r)

2 .

Here we introduce a useful remark for the evaluation of the filter function. Since
the filter function is balanced, the difference is output with probability 1/4 +
1/4 = 1/2.

Remark 2. If the output of the filter function is balanced, then it propagates
the difference with probability p = 1/2.

From Remark 2, we obtain Pr[coll] = 2−l(1−1/r). Using the birthday attack, the
probability is bounded below by,

Pr[coll] = 2−
l(1−1/r)

2 .

5 Extension to Two LFSRs

In this section, we consider the extension of the message injection function and
its security evaluation to the two-LFSR-based SCH.

5.1 Two-LFSR-Based SCH

The internal state size of LFSR-A and LFSR-B is give by la and lb, respectively.
The function f is the same as the stream cipher with one LFSR; the tf -to-1
balanced filter function. Let fA and fB be feedback polynomials of LFSR-A and
LFSR-B, and coefficients of each polynomial are given by αj and βj . For the
sake of the simplicity, we denote St =

⊕
αist,i, Ut =

⊕
βiut,i, and the input to

the filter function as S′
t, then the state update of each register can be denoted

as

st+1,i =

{
st,i+1 (1 ≤ i ≤ la − 1),
fA(St) (i = la),

ut+1,j =

{
ut,j+1 (1 ≤ j ≤ lb − 1),
fB(Ut)⊕ f(S′

t) (j = lb),

We define σA,i, σB,i ∈ {0, 1} that determine which registers to be updated by
the message. The output of the stream cipher is defined as,

zt = ut,1.

Then, we have four choices where to inject the message for this stream cipher
as:
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st+1,i =

{
st,i+1 (1 ≤ i ≤ la − 1),
fA(St)⊕ (zt ⊕m) (i = la),

ut+1,j =

{
ut,j+1 (1 ≤ j ≤ lb − 1),
fB(Ut)⊕ f(S′

t) (j = lb),
(4)

st+1,i =

{
st,i+1 (1 ≤ i ≤ la − 1),
fA(St)⊕ (zt ⊕m) (i = la),

ut+1,j =

{
ut,j+1 (1 ≤ j ≤ lb − 1),
fB(Ut)⊕ (zt ⊕m)⊕ f(S′

t) (j = lb),
(5)

st+1,i =

{
st,i+1 ⊕ σA,i(zt ⊕m) (1 ≤ i ≤ la − 1),
fA(St) (i = la),

ut+1,j =

{
ut,j+1 (1 ≤ j ≤ lb − 1),
fB(Ut)⊕ f(S′

t) (j = lb),
(6)

st+1,i =

{
st,i+1 ⊕ σA,i(zt ⊕m) (1 ≤ i ≤ la − 1),
fA(St) (i = la),

ut+1,j =

{
ut,j+1 ⊕ σB,i(zt ⊕m) (1 ≤ j ≤ lb − 1),
fB(Ut)⊕ f(S′

t) (j = lb).
(7)

Two methods described as Eq. (4) and Eq. (5) are essentially the same, the
message is XORed with feedback of LFSRs. The internal state is directly updated
by the message-dependent data in Eq. (6) and Eq. (7).

5.2 Security Analysis

We first introduce a remark regarding the security evaluation of the LFSR-B. Let
Pr[diff. on B cancelled] be the probability that all differences on the LFSR-B are
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cancelled out when no difference is input from the filter function f . We denote
the register with the difference as ‘1’ and without as ‘0’. When the filter function
does not output differences, ‘0’s are XORed with feedback of the LFSR-B and
the filter function does not influence the LFSR-B, that is, only LFSR-B should be
taken into consideration. There exists an integer n for any randomly chosen two
internal states Ut and Ut′ that satisfies Ut = Ut′+n. The period of the LFSR-B
is given by 2lb − 1 since its feedback polynomial is primitive. The computational
cost for finding such n is given by 2lb/2. Hence the probability that difference on
the LFSR-B is cancelled is given by Pr[diff on B cancelled] = 2−lb/2.

Remark 3. If the feedback polynomial of the LFSR-B is primitive and the dif-
ference is not input into the LFSR-B, then Pr[diff. on B cancelled] = 2−lb/2.

Inject into Feedback of LFSR-A. This scheme is shown in Figure 6. The
LFSR-A is easily controlled by a message, since the message is just XORed
with feedback. Once all differences on LFSR-A are cancelled out, no difference is
output from the function f . The LFSR-B still has a difference at this point and
this difference has to be cancelled out. Hence the probability which two different
messages collide is given by greater of the birthday paradox or the probability
of the difference on LFSR-B being cancelled out,

Pr[coll] = max(2−lb/2, Pr[diff. on B cancelled])
= 2−lb/2.

Inject into Feedback of Both LFSRs. Let us consider the case that messages
are injected into feedback of both LFSRs. When the message is injected into both
LFSRs, the adversary can control either LFSR-A or LFSR-B. Here, we assume
that the size of the LFSR-A is larger than that of the LFSR-B, then it is natural
for the adversary to control the LFSR-A. After all differences on LFSR-A are
cancelled out, no message difference should be injected. However LFSR-B still
has differences to be cancelled out. The probability that those differences are
cancelled out is the same as the probability of the collision and given as

Pr[coll] = max(2−lb/2, Pr[diff. on B cancelled])
= 2−lb/2.
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Inject into the Internal State of LFSR-A. Figure 7 shows this scheme. The
message is XORed with the output of the LFSR-B and the result is again XORed
with the internal state of the LFSR-A. Suppose that r bits of the internal state of
LFSR-A are updated by the message-dependent data at regular intervals, then
la/r bits of the LFSR-A can be controlled. The remaining la(1 − 1/r) bits are
unfixed and the probability which the LFSR-A collides is given by

Pr[coll.A] = 2−
la(1−1/r)

2 .

The LFSR-B collides when no difference is input, the difference on LFSR-B is
cancelled, or happen to collide. Therefore the LFSR-B collides with the proba-
bility,

Pr[coll.B] = max((1− p)lb , Pr[diff. on B cancelled], 2−lb/2) = 2−lb/2.

Hence the probability of the collision is

Pr[coll] = 2−
la(1−1/r)+lb

2 .

Inject into the Internal State of Both LFSRs. We consider that the
message-dependent data is injected into both LFSRs: the message is XORed
with r bits of the LFSR-A and q bits of the LFSR-B at regular intervals. The
adversary can control part of the internal state of either la/r bits of LFSR-A or
lb/r bits of LFSR-B. We assume that la/r is larger than lb/r, then it is natural
that the adversary tries to control LFSR-A. The remaining la(1 − 1/r) bits of
LFSR-A and the entire internal state of LFSR-B are unfixed. Therefore, the
adversary can generate the collision with probability,

Pr[coll] = 2−
la(1−1/r)+lb

2 .

6 Discussion

In this section, we discuss the security and the efficiency of two types of message
injection functions. Table 1 summarizes collision probabilities and the number
of required operations for each message injection function.
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Table 1. Message Injection Functions

Function Collision Prob. No. of Operation

Single LFSR

Inject into Feedback 1 1 XOR

Inject into the Internal State 2−[l(1−1/r)]/2 r XORs

Two LFSRs

Inject into the Feedback of LFSR-A 2−lb/2 1 XOR

Inject into the Feedback of Both LFSRs 2−lb/2 2 XORs

Inject into the Internal State of LFSR-A 2−[la(1−1/r)+lb]/2 r XORs

Inject into the Internal State of Both LFSRs 2−[la(1−1/r)+lb]/2 (r + q) XORs

6.1 Single LFSR

Inject into feedback only requires an XOR operation for each cycle of the message
injection function. Hence this message injection function is lightweight and we
believe SCH constructed with this function achieves as a high performance as
its original stream ciphers. However the entire internal state can be controlled
by the message and the collision is easily generated without the secure message
expansion.

Inject into the internal state requires r XOR operations for a cycle of the
message injection function. It also requires the selector, which selects registers
to be updated with the message. This selector is fixed by the specification of
the algorithm, hence does not affect the performance of the SCH. This scheme
can be collision resistant by choosing r and l adequately without the message
expansion.

6.2 Two LFSRs

Inject into feedback of LFSR-A only requires an XOR operation and inject into
feedback of both LFSRs requires two XOR operations. These two injections are
lightweight and achieve as a high performance as their original stream ciphers.
However, the entire internal state of LFSR-A can be fixed and the computational
cost for the collision is reduced from 2(la+lb)/2 to 2lb/2. By making the LFSR-B
larger than the size of hash value, the collision resistance can be ensured. The
computational cost is not affected if the message is injected into feedback of
LFSR-A or both LFSRs.

Inject into the internal state of LFSR-A and both LFSRs requires r and
(r + q) operations of XOR, respectively. Similar to the case of single LFSR,
the selector has to be introduced to these schemes. These two scheme is the
most secure way among six since the adversary can only control the part of the
LFSR-A. The adequate three parameters la, lb, and r can ensure the collision
resistance. Although inject into both LFSRs require additional q operations of
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XOR compared to inject into LFSR-A, probabilities of collisions are the same
in two cases.

7 Comparison to Real Algorithms

In this section, we apply our security analysis to real algorithms, which are Aba-
cus, MCSSHA-3, and Boole. Note that we cannot directly compare our evalua-
tion to above algorithms since these algorithms use word-oriented shift registers.
However, computational costs shown in attacks on these algorithms meet our
estimated ones.

7.1 Abacus

The message injection of Abacus is inject into feedback. Abacus can be consid-
ered as the extended version of two-LFSR-based SCH, since Abacus has four
registers. The adversary cannot control the entire state, but the largest regis-
ter can be fixed to zero. This is exploited in the second pre-image attack and
collision attack in [9] and [18].

Four registers of Abacus can be classified into registers updated by the message
and the others. Suppose the byte-oriented shift register is the extended version
of the bit-oriented LFSR, then security analysis of Section 5 is approximately
applicable to Abacus. The register where the message is injected corresponds to
LFSR-A of Section 5 and the others correspond to LFSR-B. Therefore, the size
of the LFSR-B is given by lb = 344 and the lower-bound of the probability for
the collision is estimated at 2−172 from table 1. This probability is pretty close
to the probability of the collision attack given in [18].

7.2 MCSSHA-3

MCSSHA-3 also uses the byte-oriented feedback shift register, and as the same
reason of Abacus, our security evaluation is applicable to it. The message injec-
tion of MCSSHA-3 is also inject into feedback. Since the message injection of
MCSSHA-3 is done every four clocks, the FSR of MCSSHA-3 can be divided into
two categories; registers where the message is injected and the others. Hence we
can divide the FSR of MCSSHA-3 into two FSRs and our security evaluation for
two LFSRs is applicable. From table 1, the lower bound of the collision proba-
bility for two LFSRs with inject into feedback is given by 2−lb/2. In MCSSHA-3,
the size of the registers is given by lb = 192, the probability for collision is esti-
mated at 2−96. This probability is pretty close to the probability of the collision
attack given in [1].

7.3 Boole

Boole applies the inject into the internal state. In the security evaluation, we
assumed that the message-dependent data is injected into r registers at regular
intervals. We cannot directly compare our security analysis and that of Boole
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since the message injection of Boole does not inject at regular intervals. The FSR
of Boole corresponds to the LFSR-A in our evaluation and three accumulators
corresponds to the LFSR-B. The message is injected into two registers of the
LFSR-A and three registers of the LFSR-B. From our evaluation, the probability
of collision is estimated to be 2−[512(1−1/2)+96]/2 = 2−176 since la = 512, lb = 96,
and r = 2.

We assume that the same message-dependent data is injected into multiple
registers in our evaluation, however, different message-dependent data is injected
into each register in Boole. This is the first reason why the probability of the
collision derived from our evaluation and shown in [6] has a gap.

In [6], they control the message difference that leads to collision, and the
computational cost for collision attack is dramatically reduced to be 233. This
is the second reason of the gap of the probability between ours and that of [6].
Boolean functions used in Boole have a vulnerability and collisions on Boolean
functions are easily generated. By exploiting this vulnerability, differences in the
accumulators can be cancelled. The difference injected into the register can be
also cancelled by the difference which is output from accumulators. As the result,
the difference is cancelled efficiently and the computational cost for the collision
attack is dramatically reduced to 233.

8 Conclusion

In this paper, we evaluated the security (mainly collision resistance) and the
efficiency of SCHs based on the classic filter generator. We considered a stream
cipher consisting of a single LFSR, and then extended it to the case with two
LFSRs. We defined two message injection functions for each stream cipher: inject
into feedback and inject into the internal state. We constructed six SCHs by
appending these message injection functions to the stream ciphers and derived
probabilities of collision.

Inject into feedback is lightweight and can achieve high performance, however
it cannot be secure without a message expansion. On the other hand, inject into
the internal state has the potential to realize the collision resistance without a
message expansion. As discussed in Section 4, the security of the resulting SCHs
can be increased by making r large. The computational cost of calculating hash
values can be optimized to use appropriate r. The construction that injects the
message into the internal state is adjustable not only for systems that require
a high security level but also for small devices whose resources are highly con-
strained. Our analysis suggests criteria for parameters, length of FSRs, and the
number of message-injecting registers in the design of SCHs. We also compared
our security analysis with real algorithms and confirmed that our evaluation
appears to be reasonably accurate, especially for inject into feedback function.

In our opinion, there remains many aspects to be researched for achieving
a secure design of stream cipher-based stream ciphers; these include analysis
of pre-image and second pre-image resistance, extension to other hash function
constructions, such as ones based on sponge functions, among others. We see
however this paper as an initial step in the more formal study of the security
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of hash function constructions based on stream ciphers, and hope it will spur
further research in this topic.
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1 Introduction

Critical data is nowadays accessed through the Internet, often through servers that do
not belong to the data owner. The protection of such re-distributed information was
explicitly mentioned by Tygar in his early summary of critical open problems in elec-
tronic commerce [42]. When important decisions are made based on such data (e.g.,
business, health-care, scientific, etc), it becomes especially important to provide a user
the means of verifying the integrity of the data to which they are entitled; such access
rights for data occur because of a user’s role in their organization, their government
security clearance level, or perhaps because of payment for access. A compelling case
was made in the third-party distribution literature, reviewed below in Section 5, for the
use of schemes that reduce the trust level required from a third-party dealer. But some
thorny issues arise when data distribution is done through a third party dealer who is
“moderately trusted” in the sense that, although the data owner relies on the dealer for
distribution, the owner does not wish to provide the dealer with the authority to sign
on its behalf; this is typically not out of fear for the signature keys (special keys can
be created for that purpose), but rather for purposes of data quality control and fear of
liability – a compromised dealer should not have the capability of convincing users that
corrupted data is pristine. This caution is often not motivated by mistrust of the dealer
as an organization, rather, it is a realistic recognition of the fact that networked systems
are vulnerable to break-ins, spyware, insider misbehavior, or simply accidents.

The third-party distribution model offers many economic advantages but also a chal-
lenge: How does the third-party distributor, who does not have the authority to sign,
prove to a user the integrity of the answer to the user’s query? There are typically too
many possible queries for the owner to pre-sign and store with the dealer a signature
for each – the space taken by the data and its signatures on the dealer’s system should
have size that is close to linear in the size of that data. The problem is conceptually easy
when a query asks for a subset of the n data items, as the use of aggregate signatures
enables the dealer to convince the user with a single signature (that would be the ag-
gregate, computed by the dealer, of the pre-stored signatures for the individual items
in the user’s query). But queries about semi-structured data involve comparisons, e.g.,
they require a proof that node v is to the left of a sibling node w without revealing to
the user anything else (e.g., the number of other siblings that are between v and w in
the structure); the authors of [28,29] explicitly make the case for the necessity in the
XML context of carrying out sibling-order comparisons with the exact properties we
require. The problem of comparisons also arises with “flat” data, when there is value-
added information computed by the owner and that imposes structure on the individual
items. The simplest such structure is a total ordering of the n items stored at the dealer,
according to the data owner’s proprietary evaluation methodology for the items; there
could even be k such total orderings, each of which is based on different evaluation
criteria from the others. A user who is comparing the qualifications of two or more of
the items stored with the dealer will want to know which is the best for the purpose
contemplated. Examples of such criteria include: For publicly traded securities, their
current level of attractiveness as an investment, or how they will be affected by some
future event; in geopolitical consulting, estimates how one specific hypothetical future
would impact various corporate or political entities (or, more boldly, estimates of the
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likelihood of each of n possible futures to materialize); for individuals or corporations
offering services, their levels of proficiency, or future promise, or likelihood of mis-
behavior; for technologies or products, their effectiveness/reliability/cost for particular
tasks. If a user is only authorized to compare two items X and Y, providing the user
with the actual score of each would allow the user to compare items other than X and
Y (violating disclosure rules, and possibly depriving the data owner of future revenue).

Our contribution: This paper presents an efficient and provably secure scheme for the
problem of authenticated secure comparisons that was informally sketched above, and
that will be more formally defined in the next section. The scheme requires an amount
of storage, at the dealer, that is O(n log n) where n is the number of items, and the setup
and protocols are efficient in that they take a constant amount of communication (hence
rounds). We prove that our scheme does not reveal to a user anything other than the
outcome of a comparison, that a user can verify the correctness of the answer, and that
a rogue dealer is unable to prove a false answer to a query. The security of our scheme
is proven in the standard model and is based on a new assumption over bilinear maps,
which we call a Computational Linear Splitting Assumption (CLS): That it is hard for
an adversary who has ga, gb, gc, gd to produce gm and gn such that mn = ab+cd (note
that a decisional version of this assumption is not true). To give evidence of the security
of this assumptions, we prove CLS is secure in the generic group model.

2 Preliminaries

2.1 Notation

The security of our approach is in the computational model, and thus we assume the
adversaries are probabilistic polynomial time (PPT). A function ε(n) is negligible if for
all polynomials p, ∃N such that ∀n > N , ε(n) < 1

p(n) . Given a set S, the notation

s
U← S corresponds to choosing a value uniformly from S.

2.2 Problem Formulation

In our model we consider three types of entities, a data owner, a data dealer, and users.
The data owner has a set of identities which we denote as {1, . . . , n}1 and a permuta-
tion Π : {1, . . . , n} → {1, . . . , n} that defines a total ordering of the identities (based
on, e.g., some proprietary information of the data owner). The data owner would like to
support queries of the form ”Which is greater according to Π , identity i or identity j?”.
What makes this difficult is that the data owner wants to provide the answers in an out-
sourced, verified, and zero-knowledge manner. More specifically, the data owner does
not want to provide a service that answers queries, and would like instead to outsource
the answering of such queries to the data dealer. However, the users of the system do
not trust that the data dealer will honestly answer queries, and thus the data dealer must
provide a proof that the results are correct (“as good if the user got them directly from

1 If the identities are not in this domain, then the data owner simply provides a mapping between
the real identities and these values.
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the owner”). Finally, the queries should be answered in a confidential manner such that
the users do not receive additional information other than the answers of their queries
as well as what can be inferred from such queries.

Formally, authenticated outsourced secure comparisons consist of three algorithms:

1. SETUP(Π, 1κ) takes as input the ordering Π of the identities and a security pa-
rameter 1κ. The output is (dk, pk) which are respectively the dealer key and the
public key.

2. PROVE(i, j, pk, dk) takes as input identities i and j (such that Π(i) < Π(j)), the
public key, pk, and the dealer key, dk. The output is a certificate cert.

3. VRFY(i, j, pk, cert) takes as input identities i and j, the public key, pk, and a
certificate cert. The output of this algorithm is a binary value b. If b = 1 we say the
the certificate is accepted, otherwise we say that the certificate is rejected.

2.3 Security Definitions

The security goals of this paper are threefold: i) correctness, ii) protection against dis-
honest dealer, and iii) zero-knowledge queries.

Correctness. The correctness requirement simply states that if the dealer is honest then
the verification algorithm accepts the certificates. More formally, given permutation Π
and security parameter κ, then ∀i, j ∈ [1, n] such that Π(i) < Π(j):

Pr
[
VRFY(i, j, pk, cert) = 1 :

(dk, pk)← SETUP(Π, 1κ), cert← PROVE(i, j, dk, pk)
]

= 1.

Protection against Dishonest Dealer. This requirement states that a dishonest dealer
cannot convince an honest user that Π(i) < Π(j) when in fact Π(j) < Π(i). For
a specific protocol Λ = (SETUP, PROVE, VRFY), this notion is captured in the
experiment in Figure 1. Protocol Λ is secure against forgery by a dishonest dealer if,
for all probabilistic polynomial time adversaries A, Pr[Expdealer-forge

Λ,A (1κ, Π)] = 1] is
negligible in κ.

Zero Knowledge Queries. Let π be an oracle that provides indirect access to the or-
dering Π ; moreover, π(i, j) returns 1 if Π(i) < Π(j) and returns 0 otherwise. Suppose
algorithm SIMπ has oracle access to π. More specifically, whenever SIM needs to know
the relationship about i and j it queries the oracle for π(i, j). After several queries to
π, let Ĝ be the relationship graph defined by these queries. Clearly, if there is no path
between i and j (or vica versa) in Ĝ, then either ordering is possible. Furthermore, SIM
does not know this relationship. Informally, a scheme has zero-knowledge queries if for
every PPT adversaryA, there is a PPT simulator SIMπ that can simulate theA’s view
in the real protocol.

More formally, in the real protocolA is given the public key pk, and then can adap-
tively ask for the comparison and certificate for each of the pairs (i1, j1), . . . , (im, jm).
Thus the view of adversary A is (pk, res1, cert1, . . . , resm, certm) where resi is the
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Experiment Expdealer-forge
Λ,A (1κ, Π)

(dk, pk) ← SETUP(1κ, Π)
(i, j, cert) ← A(1κ, Π, dk, pk)
if Π(i) > Π(j) and VRFY(i, j, pk, cert) = 1 then return 1
else return 0

Fig. 1. A forgery experiment involving a dishonest dealer

Experiment ExpCLS
A (1κ)

[q, G, GT , g, e] ← BGen(1κ)

a, b, c, d
U← Zq

(α, β) ← A(q,G, GT , g, e, ga, gb, gc, gd)
if e(α, β) = e(ga, gb) ∗ e(gc, gd) then return 1
else return 0

Fig. 2. ExpCLS
A (1κ)

result of the ith comparison, and we denote this view as VIEWΛ
A(1κ, Π). In the simu-

lated protocolA interacts with a simulator SIMπ, which must produce a public key and
then adaptively provide comparisons and certificates for pairs (i1, j1), . . . , (im, jm).
Let SIMπ

A(1κ) be the values output by a simulator when asked queries by adversaryA.
We say that Λ provides perfect zero knowledge queries if for all PPT adversaries

A, there exists a PPT simulator SIM such that VIEWΛ
A(1κ, Π) and SIMπ

A(1κ) are
identically distributed.

2.4 Bilinear Maps and Assumptions

We utilize bilinear maps in our protocol. Specifically, we utilize a method BGen(1κ)
that produces G = [q, G, GT , g, e] where G and GT are groups of order q, q is a prime
with κ bits, g is a generator of the group G, and e : G × G → GT is a non-degenerate
mapping where the bilinear property holds. That is, e(gr, gs) = e(g, g)rs.

In this paper we propose a new assumption (which is proven secure in the generic
group model in the Appendix), called the Computational Linear Splitting (CLS) as-
sumption. At a high level, CLS states that if an adversary is given G, g, ga, gb, gc, gd,
then it is hard for the adversary to produce gm and gn such that mn = ab + cd.
Clearly, a decisional version of this assumption is not true. That is, given gm and gn

it is easy to verify whether mn = ab + cd. This is done by simply checking whether
e(gm, gn) = e(ga, gb) ∗ e(gc, gd). Our protocols take advantage of this gap between
the computational and decisional versions of these problems, by requiring the prover
to create such a pair of values, which can then be verified by the user. More formally,
the CLS experiments is defined in Figure 2. Our assumption is that for all probabilistic
polynomial time adversaries A, Pr[ExpCLS

A (1κ) = 1] is negligible in κ. It is useful
to compare this assumption to the well-known Computational Diffie-Hellman (CDH)
assumption, which states that it is difficult to computer gab when given ga and gb. Ob-
viously, if the CDH problem is easy, then so is the CLS problem. However, the converse
does not appear to be true since the adversary has the flexibility of choosing any m and
n values.
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3 Scheme

Initially we introduce two straightforward solutions to the problem, based on signatures.
We then proceed to the main construction of the paper.

3.1 Two Straightforward Schemes

Suppose that (KeyGen, Sign, Vrfy) is a standard signature scheme. A simple solution
to this problem is to set the public key to the verification key, and ∀i, j ∈ [1, n] the
owner signs the message i||j (resp j||i) if Π(i) < Π(j) (resp Π(j) < Π(i)). The
dealer is then simply given all of these signatures. When the user asks for a proof about
a pair of values the dealer simply provides the signature from the owner. Now, forging
a proof is as hard as forging a signature, and confidentiality follows because all that
is revealed is the result. The downside with this approach is that the dealer must store
O(n2) values which limits the scalability of this approach.

Another approach takes the following form: The owner creates commitments for the
rank of each items and signs messages of the form (i||Commit(Π(i))) for all i ∈ [1, n]
and sends these signatures to the dealer. When the user asks for the comparison of i and
j, the dealer reveals the corresponding commitments and their signatures along with a
zero knowledge proof that the value held by one commitment is smaller than the other
value. We delay an exact comparison of this approach to our approach until section 5.1.

3.2 A More Interesting Scheme

The two key ideas in our scheme are (i) the use of dummy values each with a number
of pre-signed comparison statements about how each dummy value compares relative
to some of the identities; (ii) the randomization of the signed statements involving the
dummies (so that the user cannot recognize if the same dummy is involved in two
comparisons). The dummy values are set up in a sorted binary tree. The root of the tree
will be used to prove that any identity in the left half of the tree is smaller than any
identity in the right half of the tree. The rest of the internal nodes of the tree are used
to prove relationships between nodes in the same subtree. A crucial property that we
exploit is that if Π(i) < Π(j), then there will be exactly one node in the binary tree
such that i is in the left subtree of the node and j is in the right subtree; hiding which
node is being so used, is necessary to prevent extra information from being revealed.

The algorithms are as follows:

– SETUP Run BGen(1κ) to obtain G = [q, G, GT , g, e]. Choose 2n+2 values from
Zq and denote them by s, s′, s+

1 , . . . , s+
n , s−1 , . . . , s−n and n− 1 values t1, . . . , tn−1

from Z�
q . Let T̂ be a complete binary tree built on top of the sorted (according to

Π) version of [1, n], that is, the leftmost (resp., rightmost) leaf of T̂ is the i such
that Π(i) = 1 (resp., Π(i) = n). Denote the non-leaf nodes of T̂ as v1, . . . , vn−1.
For each non-leaf node vj of T̂ the following is done: For every i in the left subtree2

of vj in T̂ , the owner creates a value Ri,j = g
ss

+
i

tj . For every i in the right subtree

2 Where the “left subtree” of a node is the subtree of the node’s left child.
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Fig. 3. Example Tree

of vj in T̂ , the owner creates a value Si,j = g
s′s−

i
tj . At a high level Ri,j (resp. Si,j)

will be a “certificate” that i is in the left (resp., right) subtree of vj . Denote all of
these R values (resp., S values) for all vertices as the set R̂ (resp., Ŝ).
The respective keys produced are as follows:

• Public Key pk: G, gs, gs′
, gs+

1 , . . . , gs+
n , gs−

1 , . . . , gs−
n

• Dealer Key dk: T̂ , Π, R̂, Ŝ, gt1 , . . . , gtn−1

– PROVE When given i, j, pk, and dk such that Π(i) < Π(j), the dealer finds the
unique vertex vk ∈ T̂ such that i is in the left subtree of vk and j is in the right sub-
tree of vk. Choose a random α from Z�

q and set cert := (Ri,k
α ∗ Sj,k

α, (gtk)α−1
) =

(g
α(ss

+
i

+s′s−
j

)

tk , g
tk
α ).

– VRFY When given i, j, pk, and cert = (β, γ), then check if e(β, γ) = e(gs, gs+
i )∗

e(gs′
, gs−

j ). Output 1 if this check is true and output 0 otherwise.

Example: Suppose that n = 4, the tree created by the above algorithm is shown in
Figure 3. For this example, the R and S values that would be part of the dealer key are as
follows: RΠ−1(1),1, RΠ−1(3),2, RΠ−1(1),3, RΠ−1(2),3, SΠ−1(2),1, SΠ−1(4),2, SΠ−1(3),3,
and SΠ−1(4),3. Let x = Π−1(2) and y = Π−1(3). To prove that Π(x) < Π(y), the
PROVE protocol would use node v3 which separates the two nodes in the tree. That is,
the certificate would be: (RΠ−1(2),3

α ∗ SΠ−1(3),3
α, (gt3)α−1

).

3.3 Complexity Analysis

The parameters of interest are: i) setup complexity: O(n log n), ii) size of public key:
O(n), iii) size of the dealer key: O(n log n), iv) complexity of proof: O(1), v) proof
size: O(1), and vi) verification cost: O(1). The setup complexity, public key size, dealer
key size, proof size, and verification cost all are straightforward from the protocol. It
would appear that proof creation requires O(log n) complexity because it must find the
dummy node that separates the leaf nodes corresponding to i and j. However, this node
is simply the nearest common ancestor (NCA) of these leaf nodes. It is possible to pre-
process the tree in linear time to allow finding the NCA in O(1) time using the data
structure of Harel and Tarjan [25]. Note that this pre-processing would be done during
the setup.
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Reducing the Size of the Public Key to O(1). With a slight increase in the proof size
(and in the verification cost), it is possible to reduce the public key size to O(1). The
key to this modification is that the querier only needs to know the values G, gs, gs′

, gs+
i ,

and gs−
j when verifying the proof for Π(i) < Π(j). The linear part of the key is the

+ and− values. In the modified scheme the public key consists of G, gs, gs′
, pk where

pk is a public key associated with a signature scheme. The owner signs each piece
(along with meta-information about the component) of the original public key with its
signature key and gives it to the dealer. When the dealer creates the proof, it simply
sends the needed pieces (along with their signatures) to the verifier. More formally, the
dealer appends the following values to the proof: (i, +, gs+

i ), Signpk(i|| + ||gs+
i ) and

(j,−, gs−
j ), Signpk(j|| − ||gs−

j ).

3.4 Proof of Security

The correctness follows from: let (dk, pk)← SETUP(Π, 1κ), let i and j be two iden-
tities such that Π(i) < Π(j), and let (β, γ) ← PROVE(i, j, dk, pk). Now, e(β, γ) =

e(g
α(ss

+
i

+s′s−
j

)

tk , g
tk
α ) = e(g, g)ss+

i +s′s−
j = e(gs, gs+

i ) ∗ e(gs′
, gs−

j ).

Security against Dishonest Dealer. Suppose that the scheme, Λ, is not secure against
a dishonest dealer; that is there exists a polynomial-time adversaryA such that
Pr[Expdealer-forge

Λ,A (1κ, Π)] = 1] > 1
p(κ) for some polynomial p(κ). We will show

how to construct an adversary B with black box access to A that solves the CLS with
non-negligible probability.

Given an instance of CLS, we are given G = [q, G, GT , g, e] and ga, gb, gc, and
gd. Algorithm A will produce a forgery for some pair of values, but as the choice of
which pair of values is unknown, algorithm B will randomly pick two values î, ĵ such
that Π(ĵ) < Π (̂i). We will ensure that the public key and dealer key given to A will
be distributed identically to the real protocol, and since there are only O(n2) pairs
of values, B will guess which pair that A will produce a forgery with non-negligible
probability.
B chooses values r+

1 , . . . , r+
n , r−1 , . . . , r−n , r1, . . . , rn−1 uniformly from Z�

q . We im-

plicitly set s = a, s′ = c, s+

î
= b and s−

ĵ
= d. Note that a forgery proving that Π (̂i) <

Π(ĵ), would require creating two values ge and gf such that e(ge, gf ) = e(g, g)ab+cd,
which solves the CLS problem.

Moreover, we implicitly set

s+
k =

⎧
⎨

⎩

cr+
k : Π(k) < Π (̂i)
b : Π(k) = Π (̂i)

r+
k : Π(k) > Π (̂i)

s−k =

⎧
⎨

⎩

r−k : Π(k) < Π(ĵ)
d : Π(k) = Π(ĵ)

ar−k : Π(k) > Π(ĵ)

Given a tree vertex vk, denote as �k the rightmost leaf node in the left subtree of vk.
If Π(ĵ) ≤ Π(�k) we set tk = ark and otherwise we set tk = crk . It is important
to notice that we cannot generate many of the above values, but we can generate all
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B(1κ, G, ga, gb, gc, gd)

î, ĵ
U← [1, n]

(pk, dk) ← PGen(1κ, Π, î, ĵ)
(i, j, cert = (α, β)) ← A(1κ, Π, dk, pk)

If i = î and j = ĵ output α, β
else output FAIL

Fig. 4. Algorithm B

values gs+
k , gs−

k , and gtk . Furthermore, each s+
k , s−k , and tk are distributed identically

to the values chosen in the protocol. All that is left to show is how to compute Rk,m and
Sk,m. Let k be an identity in the left subtree of vm, then we need to be able to compute

Rk,m = g
ss

+
k

tm = g
as

+
k

tm , there are two cases to consider: i) Π(ĵ) ≤ Π(�m): In this case

tm = arm, and thus Rk,m = g
as

+
k

arm = g
s
+
k

rm , and ii) Π(ĵ) > Π(�m): Since ĵ is after
�m, then tm = crm and Π(k) ≤ Π(�m) < Π(ĵ) < Π (̂i), thus s+

k = cr+
k , and hence,

Rk,m = g
acr

+
k

crm = g
ar

+
k

rm .
Let k be an identity in the right subtree of vm, then we need to be able to compute

Sk,m = g
s′s−

k
tm = g

cs
−
k

tm , there are two cases to consider: i) Π(ĵ) ≤ Π(�m): In this case
tm = arm. Also, since k is in the right subtree of vm, we know that Π(ĵ) < Π(k),

thus s−k = ar−k , and hence, Sk,m = g
car

−
k

arm = g
cr

−
k

rm , and ii) Π(ĵ) > Π(�m): In this

case tm = crm, and thus Sk,m = g
cs

−
k

crm = g
s
−
k

rm .
Let PGen(1κ, Π, î, ĵ) be the procedure described above for computing pk and dk.

Algorithm B works as described in Figure 4.
If B does not output FAIL and A succeeds in producing a forgery, then B will solve

the CLS. Now,

Pr[ExpCLS
B (1κ) = 1] = Pr[Expdealer-forge

Λ,A (1κ, Π) = 1 ∧ B(1κ,G, ga, gb, gc, gd) �= FAIL]

Regardless of B’s choice for î and ĵ the public key and dealer key produced by
B is distributed identically. Thus these two events are independent, and the former’s
probability is ≥ 1

p(κ) and the latter’s probability is ≥ 1
n2 . Thus Pr[ExpCLSB(1κ) =

1] ≥ 1
n2p(κ) which is not negligible. �

Zero Knowledge Queries. The proof of zero knowledge queries rests on the certifi-
cates produced by PROVE(i, j, pk, dk) being distributed identically to tuples of the

form {gr−1(ss+
i +s′s−

j ), gr) : r ← Z�
q}. This follows because the certificate is of the

form (Ri,k
α ∗ Sj,k

α, (gtk)α−1
) = (g

α(ss
+
i

+s′s−
j

)

tk , g
tk
α ) where α

U← Z�
q . Let ρ = tk

α ,

in this case the certificate is simply (gρ−1(ss+
i +s′s−

j ), gρ). Now ρ and r are distributed
identically, because α is a randomly chosen value uniformly from Z�

q . Thus the claim
follows.
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Given the above observation, the simulator will operate as follows: it will do the same
random setup to produce its own pk, dk. The public key will be chosen identically to
that in the real protocol (since it is generated in the same manner). A difference is that
the simulator knows the values of s, s′, s+

1 , s−1 , etc. And so, the simulator can prove any
relationship between any pairs of values. When the client asks for a specific proof, the
simulator gets the correct response using its oracle to π and then produces a proof that is
distributed identically to the real proof. The specific simulator, SIMπ

A(1κ), is described
formally below:

Simulator Setup: The simulator does the following steps:

1. G← BGen(1κ)
2. s, s′, s+

1 , . . . , s+
n , s−1 , . . . , s−n

U← Zq

3. pk := G, gs, gs′
, gs+

1 , . . . , gs+
n , gs−

1 , . . . , gs−
n

4. The simulator givesA the public key pk.

Query responses: When A queries for the relationship between i and j, the simulator
uses its oracle access to π to determine the relationship between the two values. Without
loss of generality suppose that Π(i) < Π(j). The simulator then does the following:

Choose r
U← Z�

q , and return (gr−1(ss+
i +s′s−

j ), gr).
Now, VIEWΛ

A(1κ, B1, . . . , Bn, Π) consists of pk and several certificates. Now pk is
generated by the same process in both the simulator and the real protocol, and thus these
are distributed identically. Furthermore, the certificates also have the same distribution.
Thus these views are distributed identically. �

4 Extensions

4.1 Min/Max Queries

Consider the following authenticated range minimum query (RMQ) problem: a user
wants to query for the position of the minimum element among Π(i), Π(i + 1), Π(i +
2), · · · , Π(j), where i < j are two query parameters. We use RMQ(i, j) to denote the
position k such that Π(k) = mini≤p≤j Π(p).

To return authenticated k = RMQ(i, j) without leaking Π , a naive method is: For
each p ∈ [i, k − 1] ∪ [k + 1, j], the dealer sends to the user a proof that Π(k) < Π(p).
This naive approach has a complexity of O(n). More efficient solution can be obtained
using the technique of Cartesian trees [43]. In the Cartesian tree for Π , each tree node
vi has two keys: i and Π(i). The tree is organized in a unique way that: it is a binary
search tree under the first keys, and a minimum heap under the second keys. In Gabow,
Bentley and Tarjan [18], it was shown that the Cartesian tree for Π can be constructed
in O(n) time, and RMQ(i, j) = LCA(i, j), where LCA(i, j) is the least (or lowest)
common ancestor of nodes vi and vj in the Cartesian tree. Therefore, it is sufficient to
prove that vk (where k = RMQ(i, j)) is the lowest common ancestor of vi and vj , with
the requirement that the structure of the Cartesian tree is not leaked.

To prove that node vk is the lowest common ancestor of vi and vj , it is equivalent to
prove that:
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1. vk is an ancestor of vi;
2. vk is an ancestor of vj ;
3. vk’s left child (if it exists) is not an ancestor of vj ;
4. vk’s right child (if it exists) is not an ancestor of vi.

Property (1) and (2) can be easily tested in the following way [39,26]: A node u is a
proper ancestor of a node v if and only if the preorder number [27] of u is smaller
than the preorder number [27] of v, and the postorder number of u is bigger than the
postorder number of v. Therefore, the owner can define two new mappings Π1(i) =
preorder number of vi, and Π2(i) = postorder number of vi, and then let the dealer to
run the authenticated secure comparison protocol to prove (1) and (2) based on Π1 and
Π2. Property (3) can be tested by showing that the postorder number of the left child of
vk is smaller than the postorder number of the left child of vj . Note that we can add one
or two dummy children as new leaves to each tree node to make sure each tree node has
two children. Similarly, property (4) can be tested by comparing the preorder numbers
of the right children of vk and vi. To generate efficient proofs for property (3) and (4),
let T ′ be the new Cartesian tree with added dummy leaves, then the owner can define
two new mappings Π3 and Π4, where Π3(i) is the preorder number of the left child of
vi in T ′, and Π4(i) is the postorder number of the right child of vi in T ′. The dealer
then runs the authenticated secure comparison protocol to prove property (3) and (4)
based on Π3 and Π4. The complexity for proving the LCA and RMQ is then reduced
to O(1).

4.2 Extension to Partial Orders

Given a partial order, it is possible to decompose the partial order into the intersection of
a group of t total orders, and the dimension of a partial order is the minimum such t. In
this section we describe a technique for extending the system to d-dimensional partial
orders where the decomposition into d total orders is known. Unfortunately, comput-
ing the dimension of a partial order is NP-complete [44]. However, there are some cases
where computing the dimension (and the decomposition) is efficient. For example, trees
have dimension at most 2, and the decomposition is straightforward. Also, partial orders
whose transitive reduction is a planar graph have dimension at most 3, and the decom-
position can be computed in linear time [40]. Furthermore, if the transitive reduction
is 4-colorable then the dimension is at most 4 [40]. Thus the following section extends
the previous scheme to any partial order where the decomposition into total orders is
known, which is significantly more general than the protocol in section 3.2. It is impor-
tant to note that the following scheme does not need a minimal decomposition, however
a non-minimal decomposition leads to a less efficient scheme.

Specifically, we represent the partial order over [1, n] as d total order Π1, . . . , Πd.
Moreover, if

∧d
i=1 Πi(k) < Πi(j), then we say that k is less than j. However, if

∃i1, i2 ∈ [1, d] : Πi1(k) < Πi1(j) and Πi2(j) < Πi2(k), then we say that j and k
are incomparable. Proving statements of the form “k is less than j” is straightforward,
we utilize d versions of the scheme outlined in section 3.2, one for each of the d dimen-
sions. If “k is less than j’, then the dealer will be able to prove this statement for all
dimensions. The interesting part of this protocol is creating a proof that two elements
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are incomparable. If j and k are incomparable, then there will be a pair, Πd1 and Πd2 of
partial orders where Πd1(k) < Πd1(j) and Πd2(j) < Πd2(k), and thus it would appear
that all that needs to be done is to use the schemes for dimensions d1 and d2 to prove
both of these statements. Unfortunately, this reveals additional information, namely it
would reveal the specific dimensions to the querier. To hide this information we will ap-
ply the scheme to all d-dimensions a second time, and furthermore use the same values
s, s′, s+

1 , . . . , s+
n , s−1 , . . . , s−n for each dimension. With this approach the dealer will be

able to prove that “k is less than j” and that “j is less than k” for incomparable values.
However, for comparable values the dealer would not be able to generate such proofs.

The scheme requires O(d) versions of the original protocol. Thus the size of the
public key is O(dn) and the size of the dealer key is O(dn log n). The size of a proof
that Π(i) < Π(j) is O(d) and the size of a proof of incompatibility is O(1). Note that a
zero-knowledge incompatibility proof based on range proof protocols for commitments
would result in a proof size of O(d). Therefore, our scheme has a significant advantage
for proving incompatibility efficiently.

An authenticated outsourced private secure comparisons for partial orders consists
of five algorithms (POSETUP, POPROV ELT, POPROV EIN, POV RFY LT,
POV RFY IN), which correspond to setup, proving less than, proving incomparabil-
ity, verifying less than, and verifying incomparability.

Before describing the scheme formally, we define two variations of the Setup proto-
col in section 3.2. These variations allow us to specify some of the parameters used by
the setup algorithm.

1. SETUP(G, Π, 1κ): This does all of the steps in setup, but uses the group G instead
of creating its own group.

2. SETUP(G, Π, 1κ, s, s′, s+
1 , . . . , s+

n , s−1 , . . . , s−n ): This does all of the steps in
SETUP, but uses the group G instead of creating its own group, and uses the
values s, s′, s+

1 , . . . , s+
n , s−1 , . . . , s−n instead of generating its own parameters.

The actual protocols are as follows:

– POSETUP Run BGen(1κ) to obtain G = [q, G, GT , g, e]. For each j = 1 to d
run SETUP(G, Πj , 1κ) and denote the keys as (pkj , dkj).

Furthermore, choose 2n+2 values from Zq and denote them by s, s′, s+
1 , . . . , s+

n ,
s−1 , . . . , s−n For each j = 1 to d run SETUP(G, Πj , 1κ, s, s′, s+

1 , . . . , s+
n , s−1 ,

. . . , s−n ) and denote the keys as (p̂kj, d̂kj). Note that p̂kj is the same for all di-

mensions j ∈ [1, d], and thus it is denoted simply as p̂k. The keys defined by setup
are as follows:
• Public Key pk: pk1, . . . , pkd, p̂k
• Dealer Key dk: dk1, . . . , dkd, d̂k1, . . . , d̂kd

– POPROVELT When given i, j, pk, and dk such that i is less than j. For all
� ∈ [1, d], Π�(i) < Π�(j). Thus for each dimensions � ∈ [1, d], the dealer creates
cert� = PROVE(i, j, pk�, dk�). The certificate is cert1, . . . , certd.

– POVRFYLT When given i, j, pk, and cert = cert1, . . . , certd, the verification
algorithm checks whether VRFY(i, j, pk, cert�) accepts for all dimensions � ∈
[1, d]. If so, then this outputs 1 and accepts the certificate, and otherwise this rejects
the certificate and outputs 0.
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– POPROVEIN When given i, j, pk, and dk such that i is incomparable with j.
There exists total orders Πd1 and Πd2 such that Πd1(i) < Πd1(j) and Πd2(j) <

Πd2(i). The dealer creates certi,j = PROVE(i, j, p̂k, dkd1) and certj,i =
PROVE(j, i, p̂k, dkd2) . The certificate is (certi,j , certj,i).

– POVRFYIN When given i, j, pk, and cert = (certi,j , certj,i), the verification
algorithm checks whether VRFY(i, j, p̂k, certi,j) and VRFY(j, i, p̂k, certj,i). If
both accept, then this outputs 1 and otherwise it outputs 0.

5 Related Work

Hacigümüş [24] proposed the database outsourcing framework. Devanbu et al. [15] con-
sidered the query result integrity verification problem for basic operators (e.g., Selection,
Projection, Union, etc) in outsourced databases, based on the Merkle hash tree technique
[33]. Mykletun et al. [34] used signature aggregation approaches (Condensed-RSA and
BGLS [3]) to authenticate the SELECT query result. Narasimha and Tsudik [35] used
signature aggregation and chaining to verify the query result completeness for basic op-
erators in outsourced databases. Cheng, Pang and Tan [10] also used a similar signature
chain approach to verify the completeness of multi-dimensional query results. Their
signature chain approaches [35,10] to verify query result completeness leaks some data
tuples outside the query result. Pang and Tan [36] proposed a repeated hashing approach
to solve the data leakage problem in verifying query result completeness. Their approach
can also handle range aggregate operators (like COUNT, SUM and MAX/MIN). Using
a similar method, Cheng and Tan [11] considered the problem of authenticating k near-
est neighbor queries. Chen et al. [9] addressed the completeness verification problem in
a different access control model. Although the scheme of Pang and Tan [36] can be used
to authenticate range aggregate query result, their approach leaks information other than
the query results. Haber et al. [23] also provided schemes to authenticate query results,
but their schemes still leak information other than the query results. Other related work
on database outsourcing include authenticate dynamic outsourced databases [30,20],
authenticated data structures [19,21,37], and query result freshness [30].

For the secure authenticated comparison problem, the closest work is range proof
[32,16,4,31,22,5,45,8]: Given a commitment of a secret, a range proof is a zero-
knowledge protocol to prove that the committed secret belongs to a specific range.
Using range proof, one can solve the secure authenticated comparison problem in the
following way: Let Commit(x, r) represent a commitment of a secret x, where r is a
random number. The commitment scheme can be either Pedersen commitment [38] or
Fujisaki-Okamoto commitment [17,14], depending on the range proof protocol used.

Note that those commitment schemes are homomorphic, i.e.,
Commit(x1, r1)/Commit(x2, r2) = Commit(x1 − x2, r1 − r2). The owner signs

the commitments Commit(Π(i), ri) of Π(i) for every i, makes them public, and then
sends ri’s to the dealer. Whenever a user asks for comparing Π(i) and Π(j), the
dealer gives a zero-knowledge proof to convince the user that the secret hidden by
Commit(Π(i), ri) is smaller or bigger than the secret hidden by Commit(Π(j), rj)
using a range proof. For example, to prove that Π(i) < Π(j), one can prove that the
secret in Commit(Π(j), rj)/Commit(Π(i), ri) is in the range [1, n− 1].
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The complexity for generating the range proof (in terms of modular exponentiations
and final proof size) is O(log n) if the range proof protocol is based on the classic bit-
by-bit approach [32,16]. Note that it is possible to make the proof size constant using the
scheme of Boudot [4], Lipmaa [31], Groth [22], or Yuen et al. [45]. Note that the proof
size generated by the protocol of Camenisch, Chaabouni and shelat [5] (later improved
by Chaabouni, Lipmaa and shelat [8]) can also be constant for the secure authenticated
comparison problem (see the following subsection). In the following section, we argue
that the range proof based approach is less efficient than our scheme for the secure
authenticated comparison problem.

5.1 A More Exact Comparison with Previous Work

Our protocol is non-interactive without assuming the random oracle model [1,7]. Most
of the previous protocols [4,31,22,5] are 3-round Σ-protocols [12] if the random oracle
model is not allowed. Moreover, they are honest-verifier zero-knowledge unless assum-
ing random oracle model or applying some general transformation (e.g., the 4-round
general zero-knowledge transformation for certain Σ-protocols by Cramer et al. [13]).
The only previous range proof that is non-interactive without random oracle is due to
Yuen et al. [45].

Now consider the exact proof sizes of our protocol and the previous ones. We will
use |G| to denote the number of bits to represent a group element in G. We follow the
parameters in Camenisch, Chaabouni and shelat [5], e.g., |G| = 256, |GT | = 3072, and
|Zp| = 256 for the bilinear groups G, GT of prime order p.

In our protocol, only two group elements in G are sent to the user, so the proof size
is 2|G| = 512 bits.

Using the protocol of Camenisch, Chaabouni and shelat [5], the most efficient proof
size is achieved when u = n and l = 1 in their paper (recall that their basic protocol
proves that a committed secret lies in [0, ul)). The solution is sketched below.

– SETUP: The owner sends n−1 Boneh-Boyen signatures [2] (secure against chosen
message attack) to the dealer, the signatures are for messages 1, 2, 3, · · · , n − 1.
For each 1 ≤ i ≤ n, the owner commits the rank Π(i) to Ci, signs Ci using any
signature scheme, and publishes Ci and its signature.

– PROVE: To show that Π(i) < Π(j), the dealer can prove in zero knowledge that
it possesses a signature for the secret in Cj/Ci. This is sound because Cj/Ci is
a commitment of Π(j) − Π(i), which belongs to the interval [1, n − 1]. If the
dealer wants to fake a proof, then it needs to forge a signature for some integer in
[−n + 1,−1].

The proof size by this approach is 4608 bits. Note that Camenisch and Lysyanskaya’s
signature scheme [6] also has an efficient signature possession proof that can be used
in a way similar to the above scheme, but it is less efficient than the one by Camenisch,
Chaabouni and shelat [5].

Other approaches by Boudot [4], Lipmaa [31], Groth [22] are much less efficient in
the query stage, because of the needs to use 3072-bit RSA keys to match the security of
our protocol and Camenisch et al.’s [5]. For example, under the random oracle model,
Lipmaa’s sum of four squares protocol [31] requires about 30720 + 5

2 log2 (n− 1) bits
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to do the non-negativeness proof. Groth’s sum of three squares improvement [22] re-
quires about 23936 + 2 log2 (4n− 3) bits. The protocol of Yuen et al. [45] requires
27648 bits, whose size is more than 50 times larger than our 512-bit proof size.

Therefore, our protocol can be viewed as a non-interactive protocol that uses much
smaller query-stage proof size, while increasing server space from O(n) to O(n log n).

6 Conclusion/Future Work

In this paper we give a protocol for outsourced comparisons, where the dealer has to
prove that the answers are correct and all that is revealed to the querier is the outcome
of the comparison queries. We give a protocol for comparisons over total orders for n
items, where the proof size is O(1) and the dealer is required to store O(n log n) values.
The security of our approach is based on a new assumption, the Computational Linear
Splitting Assumption, which may be of independent interest.
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A Proof of CLS Assumption

Lemma 1. In the generic group model, the probability that an adversary that performs

k operations solves the CLS problem is at most 5(k+2)2

q .

Proof: We keep track of two lists, L = {(Fi, λi)} and LT = {(Fi,T , λi,T )}, of inter-
nal/external representation pairs. Initially, we choose five random external representa-
tions corresponding to the internal representations: 1, A, B, C, D. The lists are updated
according to the procedures listed below:
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– Group Action in G: Given internal representation F1 and F2, compute F ′ = F1 +
F2. If (F ′, λ) ∈ L respond with λ. Otherwise choose a new value λ, add (F ′, λ) to
L, and respond with λ.

– Inversion in G: Given internal representation F , compute F ′ = −F . If (F ′, λ) ∈ L
respond with λ. Otherwise choose a new value λ, add (F ′, λ) to L, and respond
with λ.

– Group Action/Inversion in GT : Do the same process as for G, except use LT .
– Bilinear Map: Given internal representation F1 and F2, compute F ′ = F1 ∗ F2. If

(F ′, λ) ∈ LT respond with λ. Otherwise choose a new value λ, add (F ′, λ) to LT ,
and respond with λ.

Eventually, the adversary outputs a pair of external representations σ1 and σ2. If σi is
not an external representation contained in L, then create a new internal representation
F = Ei and add F, σi to L. Clearly, all internal representations in L (resp LT ) have
degree≤ 1 (resp 2). We proceed by showing that the above lists are consistent, and then
bound the probability that B’s answer is a solution to CLS. We assign random values
to A, B, C, and D. We also assign random values to E1 and E2 if necessary. It was
shown in [41] that a d-degree nonzero polynomial in a group of order q will evaluate
to 0 with probability at most d

q when the variables of the polynomial. A corollary to
this observation is that two non-equal polynomials of degree d will evaluate to the same
value for a random assignment of variables with probability at most 1

q .
The first type of inconsistency would be two internal representations F and G in L

such that F �= G, but F (a, b, c, d, e1, e2) = G(a, b, c, d, e1, e2). By the results in [41],
this only happens with probability at most 1

q . And since there are at most k + 2 pairs in

L, the probability of this happening for any pair is at most (k+2)2

q .
The second type of inconsistency would occur if there is two internal representations

FT and GT in LT such that FT �= GT by FT (a, b, c, d) = GT (a, b, c, d). Now each
polynomial in LT has degree at most 2, and thus the probability that two specific poly-
nomials cause an inconsistency is at most 2

q . And since there are at most k pairs in LT ,

the probability of this happening for any pair is at most 2k2

q .
Finally, we show that it is unlikely that there are two polynomials, F and G, in L

such that F (a, b, c, d, e1, e2) ∗G(a, b, c, d, e1, e2) = ab+ cd. This would imply that the
answer returned by the adversary does not solve the CLS. All polynomials in L have
degree one. Also, there are no two one-degree polynomials over (A, B, C, D, E1, E2)
such that their product is the polynomial AB + CD. Consider the polynomial
F (A, B, C, D, E1, E2)∗G(A, B, C, D, E1, E2)−AB−CD. By the above, this is not
the zero polynomial, and it has at most degree 2. Thus given a random assignment to
the variables will produce a value of 0 with at most probability 2

q . By the union bound,

the probability of this happening for any pair is at most 2(k+2)2

q .
Thus the probability of any of the three events above happening is at most

5(k+2)2

q . �
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Abstract. In a public key setting, Alice encrypts an email with the pub-
lic key of Bob, so that only Bob will be able to learn the contents of the
email. Consider a scenario where the computer of Alice is infected and
unbeknown to Alice it also embeds a malware into the message. Bob’s
company, Carol, cannot scan his email for malicious content as it is en-
crypted so the burden is on Bob to do the scan. This is not efficient. We
construct a mechanism that enables Bob to provide trapdoors to Carol
such that Carol, given an encrypted data and a malware signature, is
able to check whether the encrypted data contains the malware signa-
ture, without decrypting it. We refer to this mechanism as public-key
encryption with delegated search (PKEDS).

We formalize PKEDS and give a construction based on ElGamal
public-key encryption (PKE). The proposed scheme has ciphertexts
which are both searchable and decryptable. This property of the scheme
is crucial since an entity can search the entire content of the message,
in contrast to existing searchable public-key encryption schemes where
the search is done only in the metadata part. We prove in the stan-
dard model that the scheme is ciphertext indistinguishable and trapdoor
indistinguishable under the Symmetric External Diffie-Hellman (SXDH)
assumption. We prove also the ciphertext one-wayness of the scheme
under the modified Computational Diffie-Hellman (mCDH) assumption.
We show that our PKEDS scheme can be used in different applications
such as detecting encrypted malware and forwarding encrypted email.

1 Introduction

Consider an organization, Carol, whose employees use public-key encryption to
communicate with other users from outside the organization. All organizational
incoming encrypted emails are stored in a server which is managed by Carol. Bob
(an employee) can download his encrypted email from the server and decrypt
it locally using his private key. Encryption prevents an attacker from learning
confidential information, but it opens another problem: the server cannot search
the ciphertext for malware. While encryption helps Bob to protect his sensitive
data, the hardness of processing the ciphertext without decrypting it, helps the
attacker to hide malicious content from the server. Suppose Alice, who resides
outside the organization, encrypts a message with the public key of Bob, so
that only Bob will be able to learn the contents of the message. Unbeknown to
Alice, her computer is infected and embeds malware into the message. Since the
malware is encrypted, the server is unable to scan the ciphertext for malicious
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code. A naive solution to detect encrypted malware is for Bob to send his private
key to the server. Once the server gets the key, it decrypts the ciphertext and
then scans the plain data for a malicious content. However this solution is too
risky since the server accesses the plain data and a compromise of the server
compromises all Bob’s data. Another solution would be to force Bob to scan his
email for malicious content. However this approach is not efficient.

In this paper we focus on finding mechanisms which allow the server to search
the ciphertext, without decrypting it. Searching encrypted data [BDCOP04] is
an attractive technique that might address the aforementioned problem. It al-
lows the server to search encrypted data without learning information about
the plain data or the search query. Boneh et al. [BDCOP04] were the first to
propose public-key encryption with keyword search (a.k.a PEKS or searchable
encryption). It works as follows. Alice creates a ciphertext cw which encrypts
the keyword w and Bob creates a trapdoor tw for a keyword w. The trapdoor
tw is sent to the server, which on receipt of the searchable ciphertext cw and the
trapdoor tw, runs the Test function which returns true only if both the search-
able ciphertext cw and the trapdoor tw are associated with the same keyword,
otherwise it outputs false. PEKS, is only used to encrypt keywords (meta-data)
describing the document, while to encrypt the entire document Alice must use a
traditional public-key encryption PKE scheme, where the ciphertext is decrypt-
able but not searchable. This approach is not suitable for some applications,
such as detecting encrypted malware, for the following reasons: a) the server
can search only inside the PEKS ciphertext, the other part of the ciphertext
created by the PKE scheme is not searchable, and b) Bob has to stay online
- the malware signature database maintained by the server might get updated
frequently, therefore Bob has to create trapdoors and send them to the server.

1.1 Our Contribution

In this paper we construct a public-key encryption scheme with delegated search
(PKEDS) which has the following properties:

1. Each part of the encrypted data is both searchable and decryptable, unlike in
PEKS where only the metadata part of the ciphertext is searchable. Hence,
our scheme can be used alone, without employing an additional PKE scheme,
to provide end-to-end security.

2. Once delegated by Bob, the server is allowed to create any trapdoor without
contacting Bob, thus, once the delegation is done, Bob can go offline. We
construct a mechanism that enables Bob to provide the server with a master
trapdoor t∗ such that, given the encrypted data and a word w picked by
the server, the server can test whether the word w is in the encrypted data,
without decrypting it.

3. The server can answer queries made by Bob. In the proposed scheme, Bob
can provide the server with a trapdoor tw associated with a specific word w
such that the server can test whether the word w occurs in the encrypted
data, without allowing the server to learn the word w.
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We provide a security proof in the standard model and show that the scheme is
ciphertext indistinguishable and trapdoor indistinguishable under the Symmet-
ric External Diffie-Hellman (SXDH) assumption. Note that in our scheme it is
inherently impossible to achieve these properties against the server (i.e. we can
achieve these properties against any adversary excluding the server). The first
limitation comes as a result of allowing the server to hold the master trapdoor
t∗, from which the server can create any trapdoor associated to any word and
break ciphertext indistinguishability security. The second limitation comes from
the nature of public-key encryption where an entity (i.e. the server) which holds
a trapdoor tw associated with a specific word w and knows the public key of the
receiver can create a valid ciphertext and break trapdoor indistinguishability.
This is also observed by Shen, Shi and Waters [SSW09] and to date the property
of trapdoor indistinguishability is only achieved in the symmetric key setting
where only the secret key holder can create a valid ciphertext. The best that we
can achieve against the server is ciphertext one-wayness and we show that our
scheme is secure in this respect under the modified Computation Diffie-Hellman
(mCDH) assumption in the standard model. The construction of the scheme is
based on ElGamal private-key encryption (PKE) [ElG85]. Indeed, our scheme
can be viewed as an extension of ElGamal, with additional features: it allows
the receiver to create trapdoors and the server to search the encrypted data.
The proposed construction uses Type-3 pairings [GPS08] which are employed
by the server to search the ciphertext and by the receiver to run the TrapGen
function in order to generate the trapdoor. The use of Type-3 pairing is crucial,
both for running testing functions and for preventing an adversary (other than
the server) to break the security of the scheme.

1.2 Related Work

In the public key setting, Boneh et al. [BDCOP04] introduced the first private-
key encryption with keyword search (PEKS) in which everyone can create a
searchable ciphertext but only the owner of a private key can create a trapdoor.
The proposed PEKS scheme [BDCOP04] is based on anonymous identity-based
encryption (IBE) as introduced in [BF01]. Abdalla et al. [ABC+05] fix a con-
sistency flaw from [BDCOP04] and provide a transform of an anonymous IBE
scheme from Boyen and Waters [BW06] to construct a PEKS scheme in the
standard model. In addition, they show how to extend PEKS scheme to design
a private-key encryption with temporary keyword search.

There are number of improvements to the initial concept of PEKS in which
the search is only done by comparing the keyword of the ciphertext with the
keyword of the trapdoor. Boneh and Waters [BW07] propose a scheme which
supports conjunctive, subset, and range queries over the keywords. Hwang and
Lee [HL07] propose a PEKS scheme which works in the multiuser setting, where
the keyword is encrypted under many public keys for many receivers. Fuhr and
Paillier [FP07] propose a decryptable PEKS scheme with a security proof in
the heuristic random oracle model, and Hofeinz and Weinreb [HW08] propose a
decryptable PEKS scheme with a security proof in the standard model.
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A similar concept to decryptable PEKS is the hybrid model [BSNS06, ZI07]
which integrates PKE and PEKS into a single scheme by allowing both schemes
to share the same key pair (pk, sk). The difference between the hybrid model
and the original PEKS scheme, is that the first integrates both PEKS and PKE
schemes into a single scheme, while the later assumes that in addition to PEKS
scheme there is an another separate PKE scheme. While the hybrid model ties
PEKS and PKE , it does not guarantee any relation between messages encrypted
under PEKS and messages encrypted under PKE scheme. Particularly, an at-
tacker can always encrypt one message using PEKS scheme and encrypt a differ-
ent message using PKE scheme, in this way causing the server to send emails in
which the receivers are not interested. The proposed PKEDS scheme guarantees
this relation since it allows the receiver to decrypt the searchable ciphertext and
check whether the keywords indeed describe the original message.

Organization of the Paper. In Section 2 we give a brief description of bilinear
groups and complexity assumptions. In Section 3 we define the algorithms of the
PKEDS scheme and formalize the security requirements. In Section 4 we present
our PKEDS construction. In Section 5 we prove its security and in Section 6 we
discuss its applications. The last section concludes the paper.

2 Bilinear Groups and Complexity Assumptions

Our construction uses prime order bilinear groups. Let G, Γ and GT be groups
of prime order p, and let g and γ be generator of G and Γ , respectively. A pairing
(or bilinear map) ê : G × Γ → GT has the following properties [BF01]:

1. Bilinearity: for all u ∈ G, v ∈ Γ and a, b ∈ Z∗
p, we have ê(ua, vb) = ê(u, v)ab.

2. Non-degeneracy: ê(g, γ) �= 1.
3. The function ê can be efficiently computed.

Pairings can be categorized into three types [GPS08]: a) Type-1: is known as
symmetric pairing and G = Γ , b) Type-2: is known as asymmetric pairing and
G �= Γ , but there is an efficiently computable isomorphism ψ : G → Γ , and c)
Type-3: is same as Type-2 except that there is no known efficiently computable
isomorphism ψ : G → Γ .

The ciphertext and trapdoor indistinguishability of the proposed scheme are
based on the Symmetric External Diffie-Hellman (SXDH).

Definition 1. Symmetric External Diffie-Hellman (SXDH ) Assump-
tion: In Type-3 pairings the Decision Diffie-Hellman Problem (DDH) is in-
tractable both in G and Γ , i.e. given a tuple (g, ga, gb, gc) ∈ G or (γ, γa, γb, γc) ∈
Γ with a, b ∈ Zp, decide whether c = ab or c ∈R Zp.

To prove the one-wayness of the scheme, we use a slightly stronger variant of
the CDH assumption which we call it the modified CDH (mCDH).

Definition 2. Modified Computational Diffie-Hellman (mCDH)
Assumption: Given tuples (g, ga, gb) ∈ G and (γ, γb) ∈ Γ with a, b ∈ Zp,
it is hard to compute gab.
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Note that the mCDH assumption is implied by the BDH-3 [CM09] assumption.
Therefore, an algorithm that breaks the mCDH assumption can be converted to
an algorithm that breaks the BDH-3 assumption.

3 Description and Security Model of PKEDS Scheme

Definition 3. A private-key encryption scheme with delegated search (PKEDS)
consists of the following nine algorithms (Setup, KeyGenS, KeyGenR, Encrypt,
Delegate, TrapGen, Test1, Test2, Decrypt):

– Setup(λ) : The setup algorithm is run by a system administrator and takes
as input a security parameter λ and outputs public parameters PP.

– KeyGenS(PP) : This key generation algorithm is run by the server and takes
as input public parameters PP and outputs the server’s public/private key
pair (pkS , skS).

– KeyGenR(PP) : This key generation algorithm is run by Bob (the receiver)
and takes as input public parameters PP and outputs Bob’s public/private
key pair (pkR, skR).

– Encrypt(pkR, w) : The encryption algorithm is run by Alice (the message
sender) and takes as input Bob’s public key pkR and a word w, and outputs
a ciphertext cw.

– Delegate(skR, pkS) : The delegate algorithm is run by Bob and takes as input
Bob’s private key skR, the server’s public key pkS, and outputs the master
trapdoor t∗.

– TrapGen(skR, pkS , w) : The trapdoor generation algorithm is run by Bob and
takes as input Bob’s private key skR, the server’s public key pkS and a word
w, and outputs the trapdoor tw.

– Test1(cw, t∗, tw, skS) : The first testing algorithm is run by the server and
takes as input a ciphertext cw, a master trapdoor t∗, a trapdoor tw associated
with the word w, and the server’s private key skS, and outputs true if the
ciphertext and the trapdoor are associated with the same word, otherwise
outputs ⊥.

– Test2(cw, t∗, w, skS) : The second testing algorithm is run by the server and
takes as input a ciphertext cw, a master trapdoor t∗, a word w, and the
server’s private key skS, and outputs true if the ciphertext contains the word
w, otherwise outputs ⊥.

– Decrypt(cw, skR) : The decryption algorithm is run by Bob and takes as input
a ciphertext cw and Bob’s private key skR, and outputs the word w or ⊥ if
cw is invalid.

Correctness. We say that PKEDS is correct if for all security parameters
λ ∈ N, for all server public/private key pairs produced by KeyGenS , for all
receiver public/private key pairs produced by KeyGenR, for all ciphertexts cw

produced by Encrypt, for all master trapdoors t∗ produced by Delegate and for
all trapdoors tw produced by TrapGen , we should have:
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Pr

⎡
⎢⎢⎣

PP ← Setup(λ), (pkS, skS) ← KeyGenS(PP), (pkR, skR) ← KeyGenR(PP),
cw ← Encrypt(pkR, w), t∗ ← Delegate(skR, pkS), tw ← TrapGen(skR, pkS, w) :

w ← Decrypt(cw, skR) ∧ true ← Test1(cw , t∗, tw, skS)
∧ true ← Test2(cw, t∗, w, skS)

⎤
⎥⎥⎦ = 1

Ciphertext Indistinguishability. In the following we describe the basic secu-
rity property for a PKEDS scheme which is ciphertext indistinguishability. This
property guarantees that it is infeasible for an adversary (other than the server)
to learn any information about any word from the ciphertext. The following
definition formally captures this property.

Definition 4. (CI-ATK) Let PKEDS be a private-key encryption with dele-
gated search scheme and let A be a polynomial-time (PPT) adversary. Let

ADVCI−ATK
A,PKEDS(λ)

def
= Pr

⎡
⎢⎢⎣

PP ← Setup(λ), (pkS, skS) ← KeyGenS(PP),
(w0, w1, R

∗) ← AO1,O2,O3(pkS,PP), v ← {0, 1},
cwv ← Encrypt(pkR∗ , wv),

v′ ← AO1,O2,O3(cwv , w0, w1, pkR∗ , pkS) : v′ = v

⎤
⎥⎥⎦ − 1

2

where w0 �= w1 ∧ |w0| = |w1| , the key-generation oracle O1(R) is defined as
KeyGenR(PP) and returns (pkR, skR) , the registration oracle O2(R) is defined
as Delegate(skR, pkS) and returns t∗, the trapdoor generation oracle O3(R, w) is
defined as TrapGen(skR, w) and returns tw. We restrict A such that if A queries
O1 for the receiver key pair R∗, then O1 returns only the public key pkR∗ of
the receiver R∗. We say that PKEDS is secure from ciphertext indistinguishable
attacks if ADVCI−ATK

A,PKEDS is negligible for any A.

The scheme does not achieve CI against the server. Given the challenge cipher-
text cwb

, the master trapdoor t∗ and words (w0, w1), the server runs Test2(cwb
,

t∗, w0, skS) to check whether the trapdoor and the ciphertext are associated with
the same word. If the output of Test2 is true then the server learns that b = 0,
otherwise it learns that b = 1. As CI against the server is inherently not possible
(remember that our focus is to allow the server to search the ciphertext); the
best we can achieve against the server is ciphertext one-wayness.

Note. The security model that we consider in this paper is weaker than the
original security model considered in PEKS [BDCOP04]. Our model gives more
power to the server since the scheme allows the server to generate any trapdoor.
This is risky for low entropy messages since the server by trial and error can find
out the message. Nevertheless, for high entropy messages this attack is hard. For
instance, if the server scans a ciphertext which contains user fingerprints, then
its hard for the server to guess the fingerprint and run the trial and error attack.
Indeed, our scheme is suitable for situations when the server is managed by an
organization which wants to protect their employees from potential malicious
senders while avoiding the need of giving the private key to the server.

Trapdoor Indistinguishability. The trapdoor indistinguishability property
guarantees that it is infeasible for an adversary (except the server) to learn any
information about any word from the trapdoor. Baek et al. [BSNS08] observe
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that PEKS scheme presented by Boneh et al. [BDCOP04] assumes a secure
channel between the server and the receiver. If there is no secure channel, then
everyone can break the trapdoor indistinguishability property since everyone can
play the role of the server. To remove the secure channel between the receiver
and the server, Baek et al. [BSNS08] propose a scheme where the sender en-
crypts the PEKS ciphertext with the public key of the server, in such a way
that only the server who knows the private key can reveal the PEKS ciphertext.
In this paper we take a different approach to achieve trapdoor indistinguishabil-
ity against outside adversaries. The Baek et al. [BSNS08] solution is not suitable
in our setting since we allow the receiver to decrypt the PKEDS ciphertext, oth-
erwise if we encrypt the PKEDS ciphertext with the server’s public key, then
the receiver cannot decrypt the ciphertext without getting help from the server.
Instead, the role of the server is to search the encrypted data and not to help
the receiver to decrypt the ciphertext. To achieve trapdoor indistinguishability,
we need the secure channel established between the receiver and the server, as
assumed in [BDCOP04]. This implies that, instead of encrypting the commu-
nication between the sender and the receiver, we encrypt the communication
between the receiver and the server. Namely, before sending the trapdoor to the
server, the receiver encrypts the trapdoor under the server’s public key. Since
only the server has the private key, only the server can reveal the trapdoor and
search the encrypted data. We capture the property of trapdoor indistinguisha-
bility through the following definition.

Definition 5. (TI-ATK) Let PKEDS be a private-key encryption with dele-
gated search scheme and let A be a polynomial-time (PPT) adversary. Let

ADVT I−ATK
A,PKEDS(λ)

def
= Pr

⎡
⎢⎢⎣

PP ← Setup(λ), (pkS, skS) ← KeyGenS(PP),
(w0, w1, R

∗) ← AO1,O2,O3(pkS,PP), v ← {0, 1},
twv ← TrapGen(pkR∗ , wv),

v′ ← AO1,O2,O3(twv , w0, w1, pkR∗ , pkS) : v′ = v

⎤
⎥⎥⎦ − 1

2

where w0 �= w1 ∧ |w0| = |w1| and oracles O1,O2,O3 are defined in the same way
as in CI − ATK, but the difference is that the adversary is not limited in his
queries. We say that PKEDS is secure from trapdoor indistinguishable attacks
if ADVT I−ATK

A,PKEDS is negligible for any A.

Under this definition we achieve T I only for adversaries other than the server.
Informally speaking, we achieve this property by not allowing an adversary to
search the encrypted data. In particular, we cannot achieve T I from the server
who runs the Test1 function since the server can guess the word in the following
way: the server sends to the challenger two words (w0, w1) and the challenger
replies to the server by sending twv for a random bit v ∈ {0, 1}. Next, the server
chooses a random bit v′ ∈ {0, 1} and runs cv′ ← Encrypt(pkR, wv′). Finally, the
server run Test1(cv′ , t∗, twv , skS) and outputs v′ = v if the output of Test1 is
true.

Ciphertext One-Wayness. The property of ciphertext one-wayness guaran-
tees that it is hard for an adversary to invert the ciphertext and to learn the
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word even if the adversary holds the server’s private key, the master trapdoor
and the trapdoor associated with that word, but the adversary does not hold
the receiver’s private key. The following definition formally captures this attack.

Definition 6. (COW-ATK) Let PKEDS be a private-key encryption with del-
egated search scheme and let A be a polynomial-time (PPT) adversary. Let

ADVCOW−ATK
A,PKEDS (λ)

def
= Pr

⎡
⎢⎢⎣

PP ← Setup(λ), (pkS, skS) ← KeyGenS(PP),
R∗ ← AO1,O2,O3(pkS, skS,PP), w∗ ← M(k),

cw∗ ← Encrypt(pkR∗ , w∗), tw∗ ← Encrypt(skR∗ , pkS, w∗),
w′ ← AO1,O2,O3(cw∗ , tw∗ , pkR∗ , skS, pkS) : w′ = w∗

⎤
⎥⎥⎦

where oracles O1,O2,O3 are defined in the same way as in CI −ATK with the
restriction that A is not allowed to learn skR∗ from the oracle O1. We say that
PKEDS is secure from ciphertext one-way attacks if ADVCOW−ATK

A,PKEDS is negligible
for any A.

4 A Construction of PKEDS Scheme

We are now ready to present our construction. When explaining the scheme we
consider the single-user setting. The scheme consists of nine algorithms (Setup,
KeyGenS , KeyGenR, Encrypt, Delegate, TrapGen, Test1, Test2, Decrypt) defined as
follows:

Setup: On input of the security parameter λ the algorithm outputs public pa-
rameters (PP) which contain the description of groups < G, Γ > of order p,
the bilinear map ê : G × Γ → GT , generators g and γ of groups G and Γ ,
respectively.

KeyGenS(PP): On input of public parameters PP the algorithm picks a random
x ∈ Zp and outputs the server’s key pair:

(skS , pkS) = (x, ps = γx)

KeyGenR(PP): On input of public parameters PP the algorithm picks a random
α, y ∈ Zp and outputs the receiver’s key pair:

(skR, pkR) = ((y, γα), pr = gy)

Encrypt(pkR, w): On input of the receiver’s public key and a word w ∈ G the
algorithm picks a random k ∈ Zp and outputs the ElGamal ciphertext:

cw = (c1, c2) =
(
w · pk

r , gk
)

Delegate(pkS , skR): The algorithm creates a master trapdoor to allow the server
to search the encrypted data for any word of his choice. The algorithm picks
at random r1, r2 ∈ Zp and outputs the master trapdoor:

t∗ = (t1, t2, t3, t4) = (γα · pr1
s , γr1 , γyα · pr2

s , γr2)
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TrapGen(skR, pkS , w): The algorithm creates a trapdoor to allow the server to
search for a specific message w. The algorithm picks a random δ ∈ Zp and
outputs the trapdoor:

tw = (t5, t6) =
(
ê(w, γα) · ê(pr, p

δ
s), γ

δ
)

Test1(cw, t∗, tw, skS) : The algorithm tests whether the ciphertext contains the
same message as the trapdoor. The algorithm parses cw as (c1, c2), t∗ as
(t1, t2, t3, t4), tw as (t5, t6) and defines:

t7 =
t1
tx2

, t8 =
t3
tx4

, ã =
ê(pr, t

x
6) · ê(c1, t7)

t5
, b̃ = ê(c2, t8).

Finally, the algorithm checks whether ã
?= b̃. If this equation holds, the

algorithm outputs true indicating that the ciphertext contains the same
message as the trapdoor, otherwise it outputs false.

Test2(cw, t∗, w, skS) : The algorithm tests whether the ciphertext contains the
word w. The algorithm parse cw as (c1, c2), t∗ as (t1, t2, t3, t4) and defines:

t7 =
t1
tx2

, t8 =
t3
tx4

, c̃ = ê(c1, t7) , d̃ = ê(c2, t8)

Finally, the algorithm checks whether c̃
d̃

?= ê(w, t7). If this equation holds,
the algorithm outputs true indicating that the ciphertext contains the word
w, otherwise it outputs false.

Decrypt(skR, cw): On input of the ciphertext and the private key the algorithm
outputs:

w =
c1

cy
2

.

4.1 Efficiency

In Table 1 we count the number of calculations in KeyGenS , KeyGenR, Encrypt,
Delegate, TrapGen, Test1, Test2 and Decrypt. KeyGenS requires one exponentia-
tion in Γ and KeyGenR requires one exponentiation in G and one exponentiation
in Γ . Encrypt and Decrypt are same as in ElGamal. Encrypt requires two exponen-
tiations in G which are independent of the message and can be computed ahead
of time and Decrypt requires only one exponentiation in G. Delegate requires five
exponentiations in Γ . TrapGen requires one exponentiation in Γ , one exponen-
tiation in GT and two pairing operations. Test1 requires two exponentiations in
Γ , one exponentiation in GT and three pairing operations. Test2 requires two
exponentiations in Γ and three pairing operations.

5 Security

We now show that the scheme satisfies the correctness property, and is cipher-
text indistinguishable, trapdoor indistinguishable and that the scheme offers
ciphertext one-wayness.
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Table 1. Efficiency of PKEDS

Exp.(G) Exp.(Γ ) Exp.(GT ) Pairing

KeyGenS // 1 // //

KeyGenR 1 1 // //

Encrypt 2 // // //

Delegate // 5 // //

TrapGen // 1 1 2

Test1 // 2 1 3

Test2 // 2 // 3

Decrypt 1 // // //

Correctness. Firstly, we show that when a ciphertext is created as a result of
running Encrypt on input of the word w and the receiver’s public key pkR, then
the same word w is revealed when running Decrypt on input of the ciphertext
and the receiver’s private key skR. This proof is ElGamal encryption/decyption
and proceeds as follows:

c1

cy
2

=
w · pk

r

grs
=

w · grs

grs
= w

Next, we show the correctness for Test1 algorithm. We observe that:

t7 =
γα · pr1

s

γxr1
= γα t8 =

γyα · pr2
s

γxr2
= γyα

ã =
ê(pr, γ

xδ) · ê(w · pk
r , γα)

ê(w, γα) · ê(pr, pδ
s)

= ê(pk
r , γα) b̃ = ê(gk, γyα) = ê(pk

r , γα)

Thus ã = b̃ and the output is true indicating that the word associated with
the ciphertext and the word associated with the trapdoor are the same. Finally,
we show the correctness for the Test2 algorithm. We observe that:

t7 =
γα · pr1

s

γxr1
= γα t8 =

γyα · pr2
s

γxr2
= γyα c̃ = ê(w · pk

r , γα)

d̃ = ê(gk, γyα)
c̃

d̃
= ê(w, γα)

Thus c̃
d̃

= ê(w, t7) and the output is true indicating that the ciphertext is an
encryption of the word w.

Ciphertext Indistinguishability. When proving this property we will closely
follow the security proof of [BGMM05]. In the following we show that our con-
struction is CI-ATK secure as long as the SXDH assumption holds.

Theorem 1. Suppose that there exists an adversary A that can break the CI-
ATK of the PKEDS scheme with advantage ε. Then we can construct a reduction
B that breaks the SXDH assumption with advantage (1 − q

n ) 1
n

ε
2 where q is the

number of queries asked by A, and n is the number of receivers in the system.
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Proof. The challenger selects a bilinear map ê : G × Γ → GT , and generators
g and γ of groups G and Γ , respectively. Then, it picks at random a, b ∈ Zp,
computes T0 = gab and picks at random T1 ∈R G. It flips a fair coin μ ∈R {0, 1}
and gives the SXDH tuple (g, ga, gb, Tμ) ∈ G to the reduction B. The goal of B
is to solve the SXDH assumption and acts as A’s challenger as follows:

1. Setup : B generates the server’s key pair (skS , pkS) = (x, ps = γx), where
x ∈R Zp is chosen in the same way as in the scheme. B publishes PP and
the server’s key pair. The distribution of the PP and the server’s key pair
is identical to the PP and the server’s key pair of the scheme since g and γ
are random generators, and x is a random exponent, all chosen in the same
way as in the scheme.

2. KeyGenR to O1 : B answers the receiver’s key generation queries by comput-
ing (skR, pkR) = ((y, γα), pr = gy) where α, y ∈R Zp are chosen in the same
way as in the scheme (each user has different α and y value). If the query is
for R∗, B sets the public key equal to pr = ga (this parameter is taken from
the SXDH instance). Note that B does not know the private key of R∗ (B
does not know a). The distribution of the receiver’s key pair is identical to
the distribution of the receiver’s key pair of the scheme since g is a random
generator, α, a and y are random exponents, all chosen in the same way as
in the scheme.

3. Delegate Query to O2 : A requests a master trapdoor for the receiver R. If R
is equal to R∗, B aborts the simulation and returns a guess μ′. Otherwise, if R
is not equal to R∗, B computes the random elements r1, r2 ∈ Zp and outputs
the master trapdoor t∗ = (t1, t2, t3, t4) = (γα · pr1

s , γr1 , γyα · pr2
s , γr2). When

B does not abort, the distribution of the master trapdoor is identical to the
distribution of the master trapdoor in the scheme since r1 and r2 are random
elements from Zp, same as in the real scheme.

4. TrapGen Query to O3 : A requests a trapdoor for the pair (R, w) 1. If R is
equal to R∗, B aborts the simulation and returns a guess μ′. Otherwise, if
R is not equal to R∗, B picks random δ ∈ Zp and outputs the trapdoor
tw = (t5, t6) =

(
ê(w, γα) · ê(pr, p

δ
s), γδ

)
.

When B does not abort, the distribution of the trapdoor is identical to
the distribution of trapdoor in the scheme since δ is chosen at random from
Zp, same as in the real scheme.

5. Challenge : A requests a ciphertext for one of the two words w0 and w1

generated under the public key of the receiver R. If R is equal to R∗, B
flips a fair binary coin v ∈ {0, 1} and outputs the ciphertext ĉwv = (c1, c2) =
(wv ·Tμ, gb), where gb and Tμ are parameters taken from SXDH instance. The
distribution of the ciphertext is identical to the distribution of the ciphertext
in the scheme only if Tμ = gab. Otherwise, if Tμ ∈R G, the ciphertext is a
random element from G. If R is not equal to R∗, B aborts the simulation
and returns a guess μ′.

6. Guess : At the end of the game, without loss of generality, we assume that A
has ciphertexts for all keywords generated by each user, and has requested

1 A trapdoor associated with the word w generated by user (receiver) R.
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trapdoor queries to oracles O2 and O3 generated from all but one user.
Therefore, we assume that at the end of the game, in a non-aborted simula-
tion case, A should have ciphertexts generated by all users for each keyword,
and have at least one challenge ciphertext, denoted as ĉv , which is either a
valid or invalid ciphertext generated by R∗ for which A does not have the
corresponding trapdoor. Lastly, A outputs a guess v′. If the guess is correct
v′ = v, then B sets μ′ = 0 indicating that T0 = gab, otherwise B sets μ′ = 1
indicating that T1 ∈R G.

Suppose B does not abort (noted as abort) during the simulation. If μ = 0 then
the ciphertext ĉv is a valid ciphertext generated by user R∗ and A sees an encryp-
tion of wv. In this case we have: Pr

[
v′ = v|abort ∧ μ = 0

]
= 1

2 + ε. If μ = 1 then
the ciphertext ĉv is random ciphertext for A (i.e. A gains no information about
wv). Hence we have: Pr

[
v′ �= v|abort ∧ μ = 1

]
= 1

2 . Note that the advantage of
B is same as the advantage of A. For the first case when the guess of A is correct
v′ = v, B will output μ′ = 0 and we have Pr

[
μ′ = μ|abort ∧ μ = 0

]
= 1

2 + ε. For
the second case when the guess is not correct v′ �= v, B will output μ′ = 1 and
we have Pr

[
μ′ = μ|abort ∧ μ = 1

]
= 1

2 .
Now assume that B aborts (noted as abort) the simulation when running either

TrapGen Query or Challenge phase. In this case B outputs its guess μ′ which is
independent of the guess given by A in Guess phase. Therefore the advantage of
B in the abort case is: Pr [μ′ = μ|abort] = 1

2 . Putting all together we define the
overall advantage of the reduction B:

Pr[abort] Pr [μ′ = μ|abort] + Pr[abort](Pr[μ = 0] Pr[μ′ = μ|abort ∧ μ = 0] +

Pr[μ = 1] Pr[μ′ = μ|abort ∧ μ = 1]) − 1
2

=
Pr[abort]ε

2
.

Now we have to define exactly the value of Pr[abort] and give the exact overall
advantage of B. Let assume that A makes at most q queries during TrapGen Query
phase and there are n users in the system. Since there is only one user for whom
B cannot answer in TrapGen Query phase, the probability that a query causes B
to abort is at most 1

n . Since A can make q queries the overall probability that A
aborts during TrapGen Query phase is q

n . Thus the probability that B does not
abort in the TrapGen Query is 1 − q

n . The probability that B will not abort in
the Challenge phase is at least 1

n . We now conclude that the reduction B solves
the SXDH assumption with advantage at least (1− q

n ) 1
n

ε
2 , as required. �

Trapdoor Indistinguishability. We prove that our scheme is TI-ATK secure
as long as the SXDH assumption is intractable. Unlike the ciphertext indistin-
guishability where the reduction had an SXDH instance from the group G, when
proving this property the reduction has an SXDH instance from the group Γ .

Theorem 2. Suppose that there exists an adversary A that can break the trap-
door indistinguishability of the PKEDS scheme with advantage ε. Then we can
construct a reduction B that solves the SXDH assumption with advantage ε

2 .

Proof. The challenger selects a bilinear map ê : G × Γ → GT , and generators g
and γ of groups G and Γ , respectively. Next, the challenger defines T0 = γab for
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a random a, b ∈R Zp and picks at random T1 ∈R Γ . After flipping a fair coin
μ ∈R {0, 1}, the challenger gives the SXDH tuple (γ, γa, γb, Tμ) ∈ Γ to B. The
reduction B solves the SXDH assumption by running A as a subroutine:

1. Setup: B sets the server’s public key pkS = (ps = γa), where γa is taken from
the SXDH instance, and implicitly sets the server’s secret-key skS = a. The
reduction publishes the PP and the server’s public keys which distribution
is identical to the PP and the server’s public keys of the scheme since g and
γ are random generators, a is random exponent, all chosen in the same way
as in the scheme.

2. KeyGenR to O1 : B answers receiver’s key generation queries by computing
(skR, pkR) = ((y, γα), pr = gy) where α, y ∈R Zp are chosen in the same way
as in the scheme (each user has different α and y value). The distribution
of receiver’s key pair is identical to the distribution of receiver’s key pair of
the scheme since g is a random generator, α and y are random exponents,
all chosen in the same way as in the scheme.

3. Delegate Query to O2 : A requests a master trapdoor for the receiver R.
B compute random elements r1, r2 ∈ Zp and outputs the master trapdoor
t∗ = (t1, t2, t3, t4) = (γα · pr1

s , γr1 , γyα· pr2
s , γr2).

The distribution of the master trapdoor is identical to the distribution of the
master trapdoor in the scheme since r1 and r2 are random elements from
Zp, same as in the real scheme.

4. TrapGen Query to O3 : A requests a trapdoor for the pair (R, w). B picks
random δ ∈ Zp and outputs the trapdoor tw associated with the keyword w,
tw = (t5, t6) =

(
ê(w, γα) · ê(pr, p

δ
s), γδ

)
. The distribution of the trapdoor is

identical to the distribution of the trapdoor in the scheme since δ is randomly
chosen from Zp, same as in the real scheme.

5. Challenge : A sends two words w0 and w1 to B and asks for a trapdoor
generated by user R∗. B flips a fair coin v ∈R {0, 1}, picks at random α ∈ Zp

and implicitly sets δ = b (where b is an exponent from the SXDH instance)
and returns the trapdoor to A: twv = (t5, t6) =

(
ê(wv, γα) · ê(pr, Tμ), γb

)
,

where (pr = gy, y) is R∗’s public/private key pair.
6. Guess : A outputs a guess v′.

If μ = 0 and Tμ = γab, then the generated challenged trapdoor twv is a valid trap-
door generated by user R∗ and the view of A is distributed as if it had received
the trapdoor from the real scheme. In this case we have: Pr [v′ = v|μ = 0] = 1

2 +ε.
If μ = 1 and Tμ ∈R Γ , then the generated trapdoor twv is an invalid trapdoor.
In this case we have: Pr [v′ �= v|μ = 1] = 1

2 . Putting all together we define the
overall advantage of B:

(Pr[μ = 0] Pr[μ′ = μ|μ = 0]+Pr[μ = 1] Pr[μ′ = μ|μ = 1])−1
2

=
ε

2
.

Ciphertext One-Wayness. In this section we show that our construction is
COW-ATK secure in the standard model.

Theorem 3. The PKEDS scheme with the message space in G is COW−ATK
secure in the standard model assuming mCDH is intractable.
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Proof. The challenger selects a bilinear map ê : G × Γ → GT , and generators g
and γ of groups G and Γ , respectively. Then, it picks at random a, b ∈ Zp, and
gives mCDH tuples (g, ga, gb) ∈ G and (γ, γb) ∈ Γ to the reduction B. The goal
of B is to solve the mCDH assumption and acts as A’s challenger as follows:

1. Setup : B generates the server’s key pair (skS , pkS) = (x, ps = γx), where
x ∈R Zp is chosen in the same way as in the scheme. B publishes PP and
the server’s key pair. The distribution of the PP and the server’s key pair
is identical to the PP and the server’s key pair of the scheme since g and γ
are random generators, and x is a random exponent, all chosen in the same
way as in the scheme.

2. KeyGenR to O1 : B answers receiver’s key generation queries by computing
(skR, pkR) = ((y, γα), pr = gy) where α, y ∈R Zp are chosen in the same
way as in the scheme (each user has different α and y value). If the query
is for R∗, B sets the public key equal to pr = ga (this parameter is taken
from the mCDH instance). Note that B does not know the private key of R∗

(the reduction does not know a). The distribution of receiver’s key pair is
identical to the distribution of receiver’s key pair of the scheme since g is a
random generator, α, a and y are random exponents, all chosen in the same
way as in the scheme.

3. Delegate Query to O2 : A requests a master trapdoor for the receiver R. B
computes random elements r1, r2 ∈ Zp and outputs the master trapdoor
t∗ = (t1, t2, t3, t4) = (γα · pr1

s , γr1 , γyα· pr2
s , γr2). If R = R∗ then y = a. The

distribution of the master trapdoor is identical to the distribution of the
master trapdoor in the scheme since r1 and r2 are random elements from
Zp, same as in the real scheme.

4. TrapGen Query to O3 : A requests a trapdoor for the pair (R, w). B picks ran-
dom δ ∈ Zp and outputs the trapdoor tw = (t5, t6) = (ê(w, γα)· ê(pr, p

δ
s), γ

δ).
The distribution of the trapdoor is identical to the distribution of trapdoor
in the scheme since δ is chosen at random from Zp, same as in the real
scheme.

5. Challenge : The reduction picks at random c′ ∈ Zp, computes gc′

ga = gc̄

(thus, c′ = a + c̄), implicitly sets w∗ = gbc̄ and outputs the challenge
ciphertext ĉw∗ = (c1, c2) = (gbc′ , gb) and the challenge trapdoor tw∗ =
(t5, t6) = (ê(gc̄, γbα)·ê(pr, p

δ
s), γ

δ) . The challenge ciphertext ĉw∗ = (c1, c2) =
(gbc′ , gb) = (gbc̄ · gab, gb) is a valid encryption of the message w∗ = gbc̄ under
the public key of R∗ and has the same distribution as the ciphertext in the
real scheme. The same holds for the trapdoor tw∗ .

6. Output : At the end of the game, A outputs the message w′.

B checks whether ê(w′, γ) ?= ê(ga, γb). If so, then A has decrypted the challenge
ciphertext and B uses the output of A to solve the mCDH assumption: gab = c1

w′ ,
which will reach a contradiction and proof the theorem. �
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6 Applications

In this section we illustrate two applications of the PKEDS scheme: to detect
encrypted malwares and to forward encrypted emails.

Detecting Encrypted Malware. A polymorphic virus uses encryption to
modify its form as it spreads in such a way that different infected files have
different byte-strings (each file is encrypted with a different key) [MC00]. The
polymorphic virus instance is divided into three parts: the decryption algo-
rithm, the decryption key and the encrypted virus. The decryption algorithm
uses the decryption key in order to decrypt and run the virus. The fact that
polymorphic viruses store the decryption key within each virus instance, makes
them detectable by a virus scanner. As pointed out in the introduction, in
this paper we consider attackers who use encryption to hide malware even in
a more powerful way. Namely, in our attack scenario an attacker does not in-
clude the decryption key within the encrypted data, indeed an attacker does
not know the decryption key which belongs to the receiver. Hence, the virus in-
stance that we consider contains only the encrypted malware and the decryption
algorithm.

In the proposed PKEDS, the server can use the master trapdoor, a ciphertext
and a malware signature, to check whether the ciphertext contains the malware
signature, without decrypting it. This kind of detection is known as signature-
based detection and is performed by most existing antivirus software packages,
which maintain a database with known malware signatures and check whether
the scanned data has the same signature as one of the signatures stored in the
database. If the signatures match, then a malware is found and the antivirus
takes further steps to quarantine, repair or delete the data. In our context we
assume that the server has a database with known malware signatures and for
each signature, using the master trapdoor t∗, it creates a trapdoor and checks
whether the trapdoor and the scanned ciphertext have the same signature. If so,
then a malware is detected and the server takes further steps to quarantine or
delete the ciphertext, otherwise the ciphertext is clean and is forwarded to the
receiver. The crucial property of the scheme is that ciphertexts are both search-
able and decryptable, thus the server can search every part of the ciphertext for
a possible malware. Note that allowing the server to search the encrypted data
does not mean that the server can perform any kind of intrusion detection. For
instance, 0-day attacks cannot be detected through signature-based detection.

Roschke et al. [RICM10] propose a technique which detects malicious content
in the encrypted data. The solution presented in [RICM10] is based on the IBE
[BF01] scheme and suffers from the key escrow property where the compromise
of the master secret key compromises the whole system. The conceptual differ-
ence between our approach and the approach presented in [RICM10], is that the
technique in [RICM10] uses the master secret key of the IBE to decrypt the cipher-
text and then uses the virus scanner to scan the plaintext, while in our approach
scanning can be done in the encrypted data, without having to decrypt it.
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Forwarding Encrypted Emails. The original motivation for a PEKS scheme
is to allow an email server to categorize user encrypted emails based on keywords
contained in the message text. Using this property, Bob can create trapdoors
twork and tfamily , and instruct the server to forward his encrypted emails tagged
with the word “work” to his secretary and encrypted emails tagged with the
word “family” to one of his family members. Waters et al. [WBDS04] showed
that PEKS schemes can also be used to build an searchable audit log which
is encrypted. The PKEDS scheme adds the decryption property to the PEKS
scheme and as such can be used in every application that PEKS can be used. The
PKEDS scheme has the following additional advantages compared to PEKS:

– PKEDS can be used alone, without employing an additional PKE encryption
scheme, to send encrypted messages in an open environment. This property
inherently brings an additional advantage - each word of the message be-
comes searchable by the server. For instance, to encrypt a message m with
consists from words w1, ..., wk, the sender generates the ciphertext:

(EncryptPKEDS(w1)||...||EncryptPKEDS(wk))
Where EncryptPKEDS is the encryption algorithm for the PKEDS scheme.
It is clear that to reveal the message m, the receiver has to decrypt each
searchable ciphertext separately. From the computational point of view, us-
ing PKEDS alone might be expensive since it requires a number of PKEDS
ciphertexts linear in the number of words in the document. Note that in
PEKS the server can search only for keywords and this might be a problem
for scenarios when the original message might contain some words that ap-
pear in the receiver’s query but do not appear in the keyword list, and as a
result the server will not forward these documents to the receiver.

– PKEDS can be used in the same way as PEKS is used, namely, use PKEDS
to encrypt only keywords in addition to a non-searchable PKE scheme which
encrypts the original message. For instance, to encrypt a message m with
keywords w1, ..., wk, the sender generates the ciphertext:

(EncryptPKE(m)||EncryptPKEDS(w1)||...||EncryptPKEDS(wk))

Where EncryptPKE is a regular encryption function for the PKE scheme and
EncryptPKEDS is the encryption function for thePKEDS scheme.UnlikePEKS
which does not guarantee any relation between keywords (encrypted under
PEKS) and the original message (encrypted under PKE), PKEDS guaran-
tees this relation since it allows the receiver to decrypt the searchable cipher-
text and check whether the keywords indeed describe the original message.
Another benefit is that the receiver can categorize her messages according to
keywords, unlike in PEKS where the receiver cannot categorize her messages
since the searchable ciphertext is not decryptable and consequently the re-
ceiver, without decrypting the ciphertext, does not know which keywords de-
scribe the message. From the computational point of view, using PKEDS in
addition to another PKE scheme would require a number of PKEDS cipher-
texts linear in the number of keywords in the message, same as in PEKS.
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7 Conclusion

In this work we have presented a private-key encryption with delegated search
(PKEDS) with a security proof in the standard model. In the proposed scheme
the private key holder creates a master trapdoor t∗ and delegates to another
entity (i.e. the server) the ability to search ciphertexts intended for the receiver
without decrypting it. The main property of the scheme is that ciphertexts are
both searchable and decryptable, thus the scheme can be used to search not
only for keywords describing the document, but search also for words inside the
document. The proposed scheme also allows the receiver to provide the server
with a special key (a.k.a. trapdoor tw) associated with a specific word w, such
that it enables the server to test whether the word w is in the ciphertext. As an
application, we show how PKEDS can be used for detecting encrypted malware
and for forwarding encrypted email.
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S.K., López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006.
LNCS, vol. 4176, pp. 217–232. Springer, Heidelberg (2006)

[BSNS08] Baek, J., Safavi-Naini, R., Susilo, W.: Public key encryption with keyword
search revisited. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D.,
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