Chapter 6
The EM Algorithm

Shu Kay Ng, Thriyambakam Krishnan, and Geoffrey J. McLachlan

6.1 Introduction

The Expectation-Maximization (EM) algorithm is a broadly applicable approach
to the iterative computation of maximum likelihood (ML) estimates, useful in a
variety of incomplete-data problems. It is based on the idea of solving a succession
of simpler problems that are obtained by augmenting the original observed variables
(the incomplete data) with a set of additional variables that are unobservable or
unavailable to the user. These additional data are referred to as the missing data in
the EM framework. The EM algorithm is closely related to the ad hoc approach
to estimation with missing data, where the parameters are estimated after filling
in initial values for the missing data. The latter are then updated by their predicted
values using these initial parameter estimates. The parameters are then re-estimated,
and so on, proceeding iteratively until convergence. On each iteration of the EM
algorithm, there are two steps called the Expectation step (or the E-step) and
the Maximization step (or the M-step). The name “EM algorithm” was given by
Dempster et al. (1977) in their fundamental paper.

The EM algorithm has a number of desirable properties, such as its numerical
stability, reliable global convergence, and simplicity of implementation. However,
the EM algorithm is not without its limitations. In its basic form, the EM algorithm
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lacks of an in-built procedure to compute the covariance matrix of the parameter
estimates and it is sometimes very slow to converge. Moreover, certain complex
incomplete-data problems lead to intractable E-steps and M-steps. The first edition
of the book chapter published in 2004 covered the basic theoretical framework of
the EM algorithm and discussed further extensions of the EM algorithm to handle
complex problems. The second edition attempts to capture advanced developments
in EM methodology in recent years. In particular, there are many connections
between the EM algorithm and Markov chain Monte Carlo algorithms. Furthermore,
the key idea of the EM algorithm where a function of the log likelihood is
maximized in a iterative procedure occurs in other optimization procedures as
well, leading to a more general way of treating EM algorithm as an optimization
procedure. Capturing the above developments in the second edition has led to the
addition of new examples in the applications of the EM algorithm or its variants to
complex problems, especially in the related fields of biomedical and health sciences.

The remaining of Sect. 6.1 focusses on a brief description of ML estimation and
the incomplete-data structure of the EM algorithm. The basic theoretical framework
of the EM algorithm is presented in Sect.6.2. In particular, the monotonicity of
the algorithm, convergence, and rate of convergence properties are systematically
examined. In Sect. 6.3, the EM methodology presented in this chapter is illustrated
in some commonly occurring situations such as the fitting of normal mixtures
and missing observations in terms of censored failure times. Another example
is provided in which the EM algorithm is used to train a mixture-of-experts
model. Consideration is given also to clarify some misconceptions about the
implementation of the E-step, and the important issue associated with the use of
the EM algorithm, namely the provision of standard errors. We discuss further
modifications and extensions to the EM algorithm in Sect. 6.4. In particular, the
extensions of the EM algorithm known as the Monte Carlo EM, ECM, ECME,
AECM, and PX-EM algorithms are considered. With the considerable attention
being given to the analysis of large data sets, as in typical data mining applications,
recent work on speeding up the implementation of the EM algorithm is discussed.
These include the IEM, SPIEM, and the use of multiresolution kd-trees. In Sect. 6.5,
the relationship of the EM algorithm to other data augmentation techniques, such
as the Gibbs sampler and MCMC methods is presented briefly. The Bayesian
perspective is also included by showing how the EM algorithm and its variants can
be adapted to compute the maximum a posteriori (MAP) estimate. We conclude the
chapter with a brief account of the applications of the EM algorithm in such topical
and interesting areas as bioinformatics and health sciences.

6.1.1 Maximum Likelihood Estimation

Maximum likelihood estimation and likelihood-based inference are of central
importance in statistical theory and data analysis. Maximum likelihood estimation
is a general-purpose method with attractive properties. It is the most-often used
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estimation technique in the frequentist framework, and it can be equally applied to
find the mode of the posterior distribution in a Bayesian framework (Chap. I11.26).
Often Bayesian solutions are justified with the help of likelihoods and maximum
likelihood estimates (MLE), and Bayesian solutions are similar to penalized likeli-
hood estimates. Maximum likelihood estimation is an ubiquitous technique and is
used extensively in every area where statistical techniques are used.

We assume that the observed data y has probability density function (p.d.f.)
g(y; ¥), where ¥ is the vector containing the unknown parameters in the pos-
tulated form for the p.d.f. of Y. Our objective is to maximize the likelihood
L(W) = g(y; ¥) as a function of ¥, over the parameter space §2. That is,

IL(W)/o¥ =0,
or equivalently, on the log likelihood,
dlog L(W)/o¥ = 0. 6.1

The aim of ML estimation is to determine an estimate lI>, so that it defines a
sequence of roots of (6.1) that is consistent and asymptotically efficient. Such a
sequence is known to exist under suitable regularity conditions (Cramér 1946).
With probability tending to one, these roots correspond to local maxima in the
interior of 2. For estimation models in general, the likelihood usually has a global
maximum in the interior of §2. Then typically a sequence of roots of (6.1) with the
desired asymptotic properties is provided by taking ¥ to be the root that globally
maximizes L(¥); in this case, ¥ is the MLE. We shall henceforth refer to ¥ as the
MLE, even in situations where it may not globally maximize the likelihood. Indeed,
in some of the examples on mixture models (McLachlan and Peel 2000, Chap. 3),
the likelihood is unbounded. However, for these models there may still exist under
the usual regularity conditions a sequence of roots of (6.1) with the properties of
consistency, efficiency, and asymptotic normality (McLachlan and Basford 1988,
Chap. 12).

When the likelihood or log likelihood is quadratic in the parameters as in the
case of independent normally distributed observations, its maximum can be obtained
by solving a system of linear equations in parameters. However, often in practice
the likelihood function is not quadratic giving rise to nonlinearity problems in ML
estimation. Examples of such situations are: (a) models leading to means which are
nonlinear in parameters; (b) despite a possible linear structure, the likelihood is not
quadratic in parameters due to, for instance, non-normal errors, missing data, or
dependence.

Traditionally ML estimation in these situations has been carried out using
numerical iterative methods of solution of equations such as the Newton—Raphson
(NR) method and its variants like Fisher’s method of scoring. Under reasonable
assumptions on L(¥) and a sufficiently accurate starting value, the sequence of
iterates {lI/(k )} produced by the NR method enjoys local quadratic convergence to
a solution ¥* of (6.1). Quadratic convergence is regarded as the major strength of
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the NR method. But in applications, these methods could be tedious analytically
and computationally even in fairly simple cases; see McLachlan and Krishnan
(2008, Sect. 1.3) and Meng and van Dyk (1997). The EM algorithm offers an
attractive alternative in a variety of settings. It is now a popular tool for iterative
ML estimation in a variety of problems involving missing data or incomplete
information.

6.1.2 Idea Behind the EM Algorithm: Incomplete-Data
Structure

In the application of statistical methods, one is often faced with the problem of
estimation of parameters when the likelihood function is complicated in structure
resulting in difficult-to-compute maximization problems. This difficulty could
be analytical or computational or both. Some examples are grouped, censored
or truncated data, multivariate data with some missing observations, multiway
frequency data with a complex cell probability structure, and data from mixtures
of distributions. In many of these problems, it is often possible to formulate an
associated statistical problem with the same parameters with “augmented data” from
which it is possible to work out the MLE in an analytically and computationally
simpler manner. The augmented data could be called the “complete data” and
the available data could be called the “incomplete data”, and the corresponding
likelihoods, the “complete-data likelihood” and the “incomplete-data likelihood”,
respectively. The EM Algorithm is a generic method for computing the MLE of
an incomplete-data problem by formulating an associated complete-data problem,
and exploiting the simplicity of the MLE of the latter to compute the MLE of
the former. The augmented part of the data could also be called “missing data”,
with respect to the actual incomplete-data problem on hand. The missing data
need not necessarily be missing in the practical sense of the word. It may just
be a conceptually convenient technical device. Thus the phrase “incomplete data”
is used quite broadly to represent a variety of statistical data models, including
mixtures, convolutions, random effects, grouping, censoring, truncated and missing
observations.

A brief history of the EM algorithm can be found in McLachlan and Krishnan
(2008, Sect. 1.8). In their fundamental paper, Dempster et al. (1977) synthesized
earlier formulations of this algorithm in many particular cases and presented a
general formulation of this method of finding MLE in a variety of problems. Since
then the EM algorithm has been applied in a staggering variety of general statistical
problems such as resolution of mixtures, multiway contingency tables, variance
components estimation, factor analysis, as well as in specialized applications in such
areas as genetics, medical imaging, and neural networks.
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6.2 Basic Theoretical Framework of the EM Algorithm

6.2.1 The E- and M-Steps

Within the incomplete-data framework of the EM algorithm, we let x denote the
vector containing the complete data and we let z denote the vector containing the
missing data. Even when a problem does not at first appear to be an incomplete-data
one, computation of the MLE is often greatly facilitated by artificially formulating it
to be as such. This is because the EM algorithm exploits the reduced complexity of
ML estimation given the complete data. For many statistical problems the complete-
data likelihood has a nice form.

We let g.(x; ¥) denote the p.d.f. of the random vector X corresponding to the
complete-data vector x. Then the complete-data log likelihood function that could
be formed for ¥ if x were fully observable is given by

logL.(¥) =logg.(x; ¥).

The EM algorithm approaches the problem of solving the incomplete-data likeli-
hood equation (6.1) indirectly by proceeding iteratively in terms of log L. (¥). As
it is unobservable, it is replaced by its conditional expectation given y, using the
current fit for ¥. On the (k + 1)th iteration of the EM algorithm,

E-Step: Compute Q(¥; ¥®), where

QW; ¥W) = Egwilog L (¥)]y}. (6.2)
M-Step: Choose ¥ %+ to be any value of ¥ € £2 that maximizes Q(¥; w ).
QWD wg®y > o why v e Q. (6.3)

The E- and M-steps are alternated repeatedly until convergence, which may be
determined, for instance, by using a suitable stopping rule like ||¥ ¢ ) —w®)|| < ¢
for some ¢ > 0 with some appropriate norm | - || or the difference L(¥ **+D) —
L(w®) changes by an arbitrarily small amount in the case of convergence of the
sequence of likelihood values {L (¥ ®)}.

It can be shown that both the E- and M-steps will have particularly simple forms
when g.(x; ¥) is from an exponential family:

ge(x: W) = b(x)exp{e (¥)t(x)}/a(¥), (6.4)

where #(x) is a k x 1 (k > d) vector of complete-data sufficient statistics and
¢(¥)is a k x 1 vector function of the parameter vector ¥, and a(¥) and b(x) are
scalar functions. Here d is the number of unknown parameters in ¥. Members of
the exponential family include most common distributions, such as the multivariate
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normal, Poisson, multinomial and others. For exponential families, the E-step can
be written as

QW:; ¥ Y) = Egw(logh(x)y) + ¢ ()" —loga(¥),

where %) = E.I,<k){t(X )|y} is an estimator of the sufficient statistic. The
M-step maximizes the Q-function with respect to ¥; but Eq,(k) (logh(x)|y) does
not depend on ¥ . Hence it is sufficient to write:
E—Step: Compute

19 = Egu{t(X)ly}.

M-Step: Compute

wk+l) — argm;x[c—r(!?)t(k) —loga(¥)].

In Example 2 of Sect.6.3.2, the complete-data p.d.f. has an exponential family
representation. We shall show how the implementation of the EM algorithm can
be simplified.

6.2.2 Generalized EM Algorithm

Often in practice, the solution to the M-step exists in closed form. In those instances
where it does not, it may not be feasible to attempt to find the value of ¥ that
globally maximizes the function Q(¥; ¥*)). For such situations, Dempster et al.
(1977) defined a generalized EM (GEM) algorithm for which the M-Step requires
¥ ®*D o be chosen such that

Q('I/(k+l); !F(k)) > Q(!p(k); q/(k)) (6.5)

holds. That is, one chooses ¥ (k+1) {0 increase the Q-function, Q(¥; ¥ (k)), over its
value at W = ¥®_ rather than to maximize it over all ¥ € £ in (6.3).

It is of interest to note that the EM (GEM) algorithm as described above
implicitly defines a mapping ¥ — M (¥), from the parameter space £ to itself
such that

v — M ®y  (k=0,1,2,..)).

The function M is called the EM mapping. We shall use this function in our
subsequent discussion on the convergence property of the EM algorithm.

6.2.3 Convergence of the EM Algorithm

Letk(x|y; ¥) = g.(x: ¥)/g(y; ¥) be the conditional density of X givenY = y.
Then the complete-data log likelihood can be expressed by
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log L. (¥) = logge(x; ¥) =log L(¥) + logk(x|y: ¥). (6.6)

Taking expectations on both sides of (6.6) with respect to the conditional distribution
x|y using the fit ® for ¥, we have

QW wW)y =logL(W) + HW; v®), 6.7)

where H(W; w®) = Eywilogk(X|y: ¥)|y}. It follows from (6.7) that

log L(#**D) —log LA@®W) = (@ "V W) — 9@ ®; w W)y
—~(HW@* D, gy gar®; g®)) (6.8)

By Jensen’s inequality and the concavity of the logarithmic function, we have
HW* D, g®y < gw®, w®)) From (6.3) or (6.5), the first difference on
the right-hand side of (6.8) is nonnegative. Hence, the likelihood function is not
decreased after an EM or GEM iteration:

L@ DYy > Lw®)  (k=0,1,2,..)). (6.9)

A consequence of (6.9) is the self-consistency of the EM algorithm. Thus for a
bounded sequence of likelihood values {L(¥*))}, L(¥®) converges monotoni-
cally to some L*. Now questions naturally arise as to the conditions under which
L* corresponds to a stationary value and when this stationary value is at least a local
maximum if not a global maximum. Examples are known where the EM algorithm
converges to a local minimum and to a saddle point of the likelihood (McLachlan and
Krishnan 2008, Sect. 3.6). There are also questions of convergence of the sequence
of EM iterates, that is, of the sequence of parameter values {!F(k) } to the MLE.

Wu (1983) investigates in detail several convergence issues of the EM algorithm
in its generality, and their relationship to other optimization methods. He shows
that when the complete data are from a curved exponential family with compact
parameter space, and when the Q-function satisfies a certain mild differentiability
condition, then any EM sequence converges to a stationary point (not necessarily
a maximum) of the likelihood function. If L(¥) has multiple stationary points,
convergence of the EM sequence to either type (local or global maximizers, saddle
points) depends upon the starting value ¥ for ¥. If L(¥) is unimodal in £ and
satisfies the same differentiability condition, then any sequence {¥ ®)} will converge
to the unique MLE of ¥, irrespective of its starting value.

To be more specific, one of the basic convergence results of the EM algorithm is
the following:

log L(M (¥)) = log L(¥)

with equality if and only if

OMW); ¥)=Q0W:¥) and k(x|y; M(¥)) = k(x|y; ¥).
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This means that the likelihood function increases at each iteration of the EM
algorithm, until the condition for equality is satisfied and a fixed point of the iteration
is reached.A If ¥ is an MLE, so that log L(¥) > logL(¥), V ¥ < £, then
log L(M(¥)) = log L(¥). Thus MLE are fixed points of the EM algorithm. If we
have the likelihood function bounded (as might happen in many cases of interest),
the EM sequence (w yields a bounded nondecreasing sequence {log L(w®)}
which must converge as k — oo.

The theorem does not quite imply that fixed points of the EM algorithm are in fact
MLEs. This is however true under fairly general conditions. For proofs and other
details, see McLachlan and Krishnan (2008, Sect. 3.5) and Wu (1983). Furthermore,
if a sequence of EM iterates {¥ )} satisfy the conditions

1. [00(¥; w<k>)/aw1W=W<k+l) =0, and

2. The sequence {¥®} converges to some value ¥* and logk(x|y; ¥) is suffi-
ciently smooth,

then we have [dlog L(¥)/0%]y _g+ = 0; see Little and Rubin (2002) and Wu
(1983). Thus, despite the earlier convergence results, there is no guarantee that the
convergence will be to a global maximum. For likelihood functions with multiple
maxima, convergence will be to a local maximum which depends on the starting
value ¥ ©.

In some estimation problems with constrained parameter spaces, the parameter
value maximizing the log likelihood is on the boundary of the parameter space. Here
some elements of the EM sequence may lie on the boundary, thus not fulfilling Wu’s
conditions for convergence. Nettleton (1999) extends Wu’s convergence results to
the case of constrained parameter spaces and establishes some stricter conditions to
guarantee convergence of the EM likelihood sequence to some local maximum and
the EM parameter iterates to converge to the MLE.

6.2.4 Rate of Convergence of the EM Algorithm

The rate of convergence of the EM algorithm is usually slower than the quadratic
convergence typically available with Newton-type methods. Dempster et al. (1977)
show that the rate of convergence of the EM algorithm is linear and the rate depends
on the proportion of information in the observed data. Thus in comparison to the
formulated complete-data problem, if a large portion of data is missing, convergence
can be quite slow.

Recall the EM mapping M defined in Sect. 6.2.2. If w® converges to some point
¥* and M (W) is continuous, then ¥* is a fixed point of the algorithm; that is, ¥ *
must satisfy ¥* = M (¥*). By a Taylor series expansion of & **D = M (w®))
about the point ¥ ¥’ = ¥*  we have in a neighborhood of ¥* that

vk g & (P — ),



6 The EM Algorithm 147

where J (¥) is the d x d Jacobian matrix for M(¥) = (M,(¥),...,M;(¥))T,
having (i, j)th element r;; (¥) equal to

rij (W) = aMz (!p)/alll,

where ¥; = (¥); and d is the dimension of ¥. Thus, in a neighborhood of ¥ *, the
EM algorithm is essentially a linear iteration with rate matrix J (¥™), since J(¥*)
is typically nonzero. For this reason, J (¥*) is often referred to as the matrix rate
of convergence. For vector ¥, a measure of the actual observed convergence rate is
the global rate of convergence, which is defined as

r=lim | @®F) g/ e®@ —wr,
k—00

where || - || is any norm on d-dimensional Euclidean space %¢. It is noted that the
observed rate of convergence equals the largest eigenvalue of J (¥ ™) under certain
regularity conditions (Meng and van Dyk 1997). As a large value of r implies slow
convergence, the global speed of convergence is defined to be s = 1 — r (Meng
1994); see also McLachlan and Krishnan (2008, Sect. 3.9).

6.2.5 Initialization of the EM Algorithm

The EM algorithm will converge very slowly if a poor choice of initial value ¥ ©
were used. Indeed, in some cases where the likelihood is unbounded on the edge
of the parameter space, the sequence of estimates {¥ (k)} generated by the EM
algorithm may diverge if ¥ © js chosen too close to the boundary. Also, with
applications where the likelihood equation has multiple roots corresponding to local
maxima, the EM algorithm should be applied from a wide choice of starting values
in any search for all local maxima. A variation of the EM algorithm (Wright and
Kennedy 2000) uses interval analysis methods to locate multiple stationary points
of a log likelihood within any designated region of the parameter space; see also
McLachlan and Krishnan (2008, Sect. 7.9).

Different ways of specification of initial value have been considered specifically
within the mixture models framework. With the EMMIX program (McLachlan and
Peel 2000, pp. 343-344), an initial parameter value can be obtained automatically
using either random partitions of the data, k-means clustering algorithm, or
hierarchical clustering methods. With random starts, the effect of the central limit
theorem tends to have the component parameters initially being similar at least in
large samples. With the EMMIX program, there is an additional option for random
starts to reduce this effect by first selecting a random subsample from the data, which
is then randomly assigned to the g components. As described in McLachlan and Peel
(2000, Sect.2.12), the subsample has to be sufficiently large to ensure that the first
M-step is able to produce a nondegenerate estimate of the parameter vector ¥.
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Ueda and Nakano (1998) considered a deterministic annealing EM (DAEM)
algorithm in order for the EM iterative process to be able to recover from a poor
choice of starting value. They proposed using the principle of maximum entropy and
the statistical mechanics analogy, whereby a parameter, say 6, is introduced with
1/6 corresponding to the “temperature” in an annealing sense. With their DAEM
algorithm, the E-step is effected by averaging log L. (¥) over the distribution taken
to be proportional to that of the current estimate of the conditional density of
the complete data (given the observed data) raised to the power of 8; see for
example McLachlan and Peel (2000, pp. 58—60). Recently, Pernkopf and Bouchaffra
(2005) combined genetic algorithms (GA) and the EM algorithm for fitting normal
mixtures, where the proposed algorithm is less sensitive to its initialization and
enables escaping from local optimal solutions.

6.3 Examples of the EM Algorithm

6.3.1 Example 1: Normal Mixtures

One of the classical formulation of the statistical pattern recognition involves a
mixture of p-dimensional normal distributions with a finite number, say g, of
components in some unknown proportions i, ..., 7, that sum to one. Here, we
have n independent observations y |, y,, ..., ¥, from the mixture density

g
f:iw) =) "mp(yip,. ).

i=1

where ¢ (y; pu;, X;) denotes the p-dimensional normal density function with mean
vector u; and covariance matrix X; (i = 1,...,g). The vector ¥ of unknown
parameters consists of the mixing proportions my,...,m,—, the elements of the
component means f;, and the distinct elements of the component-covariance
matrices X';. The problem of estimating ¥ is an instance of the problem of
resolution of mixtures or in pattern recognition parlance an “unsupervised learning

problem”.
Consider the corresponding “supervised learning problem”, where observations
on the random vector X = (Z,Y) are x; = (21,¥), X2 = (22,¥2),.--,

X, = (z4,y,). Here z; is the unobservable component-indicator vector, where the
ith element z; of z; is taken to be one or zero according as the jth observation
does or does not come from the ith component (j = 1,...,n). The MLE problem
is far simpler here with easy closed-form MLE. The classificatory vectors z =
(le, e ,z,—l'—)T could be called the missing data. The unsupervised learning problem
could be called the incomplete-data problem and the supervised learning problem
the complete-data problem. A relatively simple iterative method for computing the
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MLE for the unsupervised problem could be given exploiting the simplicity of the
MLE for the supervised problem. This is the essence of the EM algorithm.
The complete-data log likelihood function for ¥ is given by

g n
log L (%) =Y Y zj{logm; +logd(y;ipm;. X:)}. (6.10)

i=1j=1

Now the EM algorithm for this problem starts with some initial value ¥ ® for the
parameters. As log L.(¥) in (6.10) is a linear function of the unobservable data z
for this problem, the calculation of Q(¥; ¥®) on the E-step is effected simply
by replacing z;; by its current conditional expectation given the observed data y,
which is the usual posterior probability of the jth observation arising from the ith
component

k 0wk
L0 _ o(Ziiy) = ()¢(y,, “ E( )

T; (k) ij

i =Ly Z/=1”/(k)¢(yj? ® z )’

From (6.10), it follows that
g n «
oW w®) =33 tWlogm +log(yipni. £y (6.11)
i=1j=1

For mixtures with normal component densities, it is computationally advantageous
to work in terms of the sufficient statistics (Ng and McLachlan 2003) given by

(k) (k)
T;'l Z tl

j=1

®) ®)
T Z Lj Yj
T = er]")y v (6.12)

By differentiating (6.11) with respect to ¥ on the basis of the sufficient statistics in
(6.12), the M -step exists in closed form as

ﬂ§k+1) — T<(k)/n

k+1 k k
W = 181

-1 T
s =) - T STE T (6.13)
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The E- and M-steps are then iterated until convergence. Unlike in the MLE for
the supervised problem, in the M-step of the unsupervised problem, the posterior

probabilities 7;;, which are between 0 and 1, are used. The mean vectors u; and
the covariance matrix X; (i = 1,..., g) are computed using the ri(j{c)
weighted averages.

In the case of unrestricted component-covariance matrices X;, L(¥) is
unbounded, as each data point gives rise to a singularity on the edge of the parameter
space (McLachlan and Peel 2000, Sect. 3.8). In practice, the component-covariance
matrices X'; can be restricted to being the same, ¥; = ¥ (i = 1,...,g), where
¥ is unspecified. In this case of homoscedastic normal components, the updated

estimate of the common component-covariance matrix X' is given by

as weights in

g
E(k-i—l) — ZTi(lk)El(k-i-l)/n’

i=1

where ¥ ka) is given by (6.13), and the updates of 7; and u; are as above in the
heteroscedastic case.

6.3.2 Example 2: Censored Failure-Time Data

In survival or reliability analyses, the focus is the distribution of time 7" to the
occurrence of some event that represents failure (for computational methods in
survival analysis see also Chap. I11.27). In many situations, there will be individuals
who do not fail at the end of the study, or individuals who withdraw from the study
before it ends. Such observations are censored, as we know only that their failure

times are greater than particular values. We let y = (¢y, 61, ...,¢p, (‘)’,,)T denote the
observed failure-time data, where §; = 0 or 1 according as the jth observation 7 is
censored or uncensored at ¢; (j = 1,...,n). Thatis, if 7; is uncensored, t; = c;,

whereas if 1; > ¢, itis censored at ¢;.
In the particular case where the p.d.f. for 7" is exponential with mean ., we have

f@: ) = exp(—t/ W 000 () (1> 0), (6.14)

where the indicator function /(9 «)(f) = 1 for t > 0 and is zero elsewhere. The
unknown parameter vector ¥ is now a scalar, being equal to p. Denote by s the
number of uncensored observations. By re-ordering the data so that the uncensored
observations precede censored observations. It can be shown that the log likelihood
function for pu is given by

log L(p) = —slog,u—ch/u. (6.15)
j=1



6 The EM Algorithm 151

By equating the derivative of (6.15) to zero, the MLE of p is
n
L=y ci/s. (6.16)
j=1

Thus there is no need for the iterative computation of ft. But in this simple case,
it is instructive to demonstrate how the EM algorithm would work and how its
implementation could be simplified as the complete-data log likelihood belongs to
the regular exponential family (see Sect. 6.2.1).

The complete-data vector x can be declared to be x = (¢4, ..., 1, zT)T, where
Z2 = (ty+1.....1,) " contains the unobservable realizations of the n — s censored
random variables. The complete-data log likelihood is given by

log L (1) = —nlogp— Y " t;/p. (6.17)

J=1

As log L. (1) is a linear function of the unobservable data z, the E-step is effected
simply by replacing z by its current conditional expectation given y. By the lack of
memory of the exponential distribution, the conditional distribution of 7; —c; given
that T; > c; is still exponential with mean . So, we have

E,w0(T;|y) = Ew(T;|T; > ¢;) =c; + p® (6.18)

for j =54 1,...,n. Accordingly, the Q-function is given by

O(u: p®) = —nlogp—p™" 2> ¢+ (n—s)u®
j=1

In the M-step, we have

n
pkF = ch + (n—s)u® /n (6.19)

=1

On putting u*+Y = p® = ;1* in (6.19) and solving for u*, we have for s < n
that * = fi. That is, the EM sequence {;)} has the MLE f& as its unique limit
point, as k — 00; see McLachlan and Krishnan (2008, Sect. 1.5.2).

From (6.17), it can be seen that log L. (1) has the exponential family form (6.4)
with canonical parameter ;+~! and sufficient statistic #(X) = Z’;=1 T';. Hence,
from (6.18), the E-step requires the calculation of %) = Z'}-=1 cj+ (n—s)p®.
The M-step then yields ¥+ as the value of 4 that satisfies the equation
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t® = E {t(X)} = np.

This latter equation can be seen to be equivalent to (6.19), as derived by direct
differentiation of the Q-function.

6.3.3 Example 3: Mixture-of-Experts Models

Among the various kinds of modular networks, mixtures-of-experts (Jacobs et al.
1991) and hierarchical mixtures-of-experts (Jordan and Jacobs 1994) are of much
interest due to their wide applicability and the advantage of fast learning via the
EM algorithm (Jordan and Xu 1995; Ng and McLachlan 2004a). In mixture-of-
experts (ME) networks, there are a finite number, say m, of modules, referred to as
expert networks. These expert networks approximate the distribution of the output
Yy ; within each region of the input space. The expert network maps its input x ; to
an output, the density f;(y ;[x;;05), where 0 is a vector of unknown parameters
for the hth expert network. It is assumed that different experts are appropriate in
different regions of the input space. The gating network provides a set of scalar
coefficients 7 (x ;; &) that weight the contributions of the various experts, where o
is a vector of unknown parameters in the gating network. Therefore, the final output
of the ME neural network is a weighted sum of all the output vectors produced by
expert networks:

m
SOylx @) =) mxj:e) fily;|x;: 04), (6.20)
h=1
where ¥ = (aT, 01'—, o, 0;)T is the vector of all the unknown parameters. The

output of the gating network is modeled by the softmax function as

L exp(v;l'—x) .
mh(x;0) = —Z;,LI exp(v,Tx) (h=1,...,m), (6.21)

where v, is the weight vector of the Ath expert in the gating network and v,, = 0.
It is implicitly assumed that the first element of x is one, to account for an intercept
term. It follows from (6.21) that & contains the elementsinv, (h = 1,...,m —1).

To apply the EM algorithm to the ME networks, we introduce the indicator
variables zj;, where zj,; is one or zero according to whether y j belongs or does
not belong to the Ath expert (Ng and McLachlan 2004a). The complete-data log
likelihood for ¥ is given by

log Lo(¥) = )Y zyllogmy(x ;@) +log fu(y;1x;: 01)}.  (6.22)
j=lh=1
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On the (k 4 1)th iteration, the E-step calculates the Q-function as

Q(.p’ W(k)) — Ew(k){logL(r(WNy’ x}

=D ") Ege(Zily x){logm,(x ;@) +log fu(y;]x,:60,)}
j=1h=1
= Qo + Oy, (6.23)

where the Q-function can be decomposed into two terms with respect to & and
0, (h=1,...,m),respectively, as

n m
0, = Z ‘L’}(;) log m; (x j;0), (6.24)
j=lh=1
and -
Qp =Y > 1 log fi(y,lx,:05). (6.25)
j=1h=1
where

k
‘L’]gj) = E.I,(k)(Zhj|y,x)

= m(x 1 a®) fi(y 1% 100/ D (e 0 ®) fr(y x5 08

r=1

is the current estimated posterior probability that y ; belongs to the Ath expert (h =
1,....m).

Hence, the M-step consists of two separate maximization problems. With the
gating network (6.21), the updated estimate of a**1) is obtained by solving

Z (tﬁf) - ezp_(lvhx’)T )xj =0 (h=1,....m—1), (626)
j=1 1+ 305, exp(v) x;)

which is a set of non-linear equations with (m — 1) p unknown parameters, where p

is the dimensionof x ; (j = 1,...,n). It can be seen from (6.26) that the non-linear
equation for the /th expert depends not only on the parameter vector vy, but also on
other parameter vectors v; (I = 1,...,m — 1). In other words, each parameter

vector v, cannot be updated independently. With the iterative reweighted least
squares (IRLS) algorithm presented in Jordan and Jacobs (1994), the independence
assumption on these parameter vectors was used implicitly and each parameter
vector was updated independently and in parallel as
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—1
; ~ 0 90
(s+1) (s) [*3 o
=y oy [ 22 h=1,....m—1), 6.27
Vh Y Y (al}hv;’r) 3vh ( ) ( )

where y, < 1 is the learning rate (Jordan and Xu 1995). That is, there are m — 1
sets of non-linear equations each with p variables instead of a set of non-linear
equations with (m — 1) p variables. In Jordan and Jacobs (1994), the iteration (6.27)
is referred to as the inner loop of the EM algorithm. This inner loop is terminated
when the algorithm has converged or the algorithm has still not converged after
some pre-specified number of iterations. The above independence assumption on
the parameter vectors is equivalent to the adoption of an incomplete Hessian matrix
of the O-function (Ng and McLachlan 2004a).

The densities fi(y;|x;;04) (h = 1,...,m) can be assumed to belong to the
exponential family (Jordan and Jacobs 1994). In this case, the ME model (6.20) will
have the form of a mixture of generalized linear models (McLachlan and Peel 2000,

Sect. 5.13). The updated estimate of 0,(1k+1) is obtained by solving
Y o olog fu(y|x;:04)/00, =0 (h=1.....m). (6.28)
j=1

Equation (6.28) can be solved separately for each expert (h = 1,...,m) when

the density f;(y;|x;;05) is assumed to be normally distributed. With some other
members of the exponential family such as multinomial distribution, (6.28) requires
iterative methods to solve; see Example 5 in Sect. 6.4.2.

6.3.4 Misconceptions on the E-Step

Examples 1 to 3 may have given an impression that the E-step consists in simply
replacing the missing data by their conditional expectations given the observed data
at current parameter values. However, this will be valid only if the complete-data
log likelihood log L. (¥) were a linear function of the missing data z. Unfortunately,
it is not always true in general. Rather, as should be clear from the general theory
described in Sect. 6.2.1, the E-step consists in replacing log L. (¥) by its conditional
expectation given the observed data at current parameter values. Flury and Zoppé
(2000) give an example to demonstrate the point that the E-step does not always
consist in plugging in “estimates” for missing data. Similar misconceptions exist in
the applications of the EM algorithm to train neural networks. Let

GloyDT DT (6.29)

denote the n examples available for training a neural network, where x ; is an input
feature vector and y ; is an output vector (j = 1,...,n). In the training process, the
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unknown parameters in the neural network, denoted by a vector ¥, are inferred from
the observed training data given by (6.29). We let x = (xlT, xDTandy =
( le, cees ynT)T. In order to estimate ¥ by the statistical technique of maximum
likelihood, we have to impose a statistical distribution for the observed data (6.29),
which will allow us to form a log likelihood function, log L(¥; y, x), for ¥. In
general, we proceed conditionally on the values for the input variable x; that is, we
shall consider the specification of the conditional distribution of the random variable
Y corresponding to the observed output y given the input x; see, for example, (6.20)
in Sect. 6.3.3.

Within the EM framework, the unknown vector ¥ is estimated by consideration
of the complete-data log likelihood formed on the basis of both the observed and the
missing data z, log L.(¥; y, z, x). On the (k + 1)th iteration of the EM algorithm,
the E-step computes the Q-function, which is given by

QW ¥Y) = EgwllogL.(¥: y, z, X)|y, x}. (6.30)

In some instances, a modified form of the EM algorithm is being used unwittingly
in that on the E-step, the Q-function is effected simply by replacing the random vec-
tor z by its conditional expectation. That s, (6.30) is computed by the approximation

QW ¥) ~logL.(¥; y.Z. x), (6.31)

where
Z = qu(k){Z|y, x}.

As described above, the approximation (6.31) will be invalid when the complete-
data log likelihood is non-linear in z, for example, in the multilayer perceptron
networks or the radial basis function networks with regression weights; see Ng and
McLachlan (2004a).

6.3.5 Provision of Standard Errors

Several methods have been suggested in the EM literature for augmenting the EM
computation with some computation for obtaining an estimate of the covariance
matrix of the computed MLE. Many such methods attempt to exploit the com-
putations in the EM steps. These methods are based on the observed information
matrix 1 (lIAI ; y), the expected information matrix Z(¥) or on resampling methods.
Baker (1992) reviews such methods and also develops a method for computing
the observed information matrix in the case of categorical data. Jamshidian and
Jennrich (2000) review more recent methods including the Supplemented EM
(SEM) algorithm of Meng and Rubin (1991) and suggest some newer methods based
on numerical differentiation.

Theoretically one may compute the asymptotic covariance matrix by inverting
the observed or expected information matrix at the MLE. In practice, however, this
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may be tedious analytically or computationally, defeating one of the advantages of
the EM approach. Louis (1982) extracts the observed information matrix in terms
of the conditional moments of the gradient and curvature of the complete-data
log likelihood function introduced within the EM framework. These conditional
moments are generally easier to work out than the corresponding derivatives of the
incomplete-data log likelihood function. An alternative approach is to numerically
differentiate the likelihood function to obtain the Hessian. In an EM-aided differ-
entiation approach, Meilijson (1989) suggests perturbation of the incomplete-data
score vector to compute the observed information matrix. In the SEM algorithm
(Meng and Rubin 1991), numerical techniques are used to compute the derivative
of the EM operator M to obtain the observed information matrix. The basic idea is
to use the fact that the rate of convergence is governed by the fraction of the missing
information to find the increased variability due to missing information to add to
the assessed complete-data covariance matrix. More specifically, let V' denote the
asymptotic covariance matrix of the MLE ¥. Meng and Rubin (1991) show that

I\ y) =17\ y) + AV, (6.32)

where AV = {I, — J(¥)}"'"J(W)Z;'(¥: y) and Z.(¥: y) is the conditional
expected complete-data information matrix, and where I, denotes the d x d
identity matrix. Thus the diagonal elements of AV give the increases in the
asymptotic variances of the components of ¥ due to missing data. For a wide
class of problems where the complete-data density is from the regular exponential
family, the evaluation of Z.(¥; y) is readily facilitated by standard complete-data
computations (McLachlan and Krishnan 2008, Sect. 4.5). The calculation of J(¥)
can be readily obtained by using only EM code via numerically differentiation of
M(W). Let v = w**D where the sequence of EM iterates has been stopped
according to a suitable stopping rule. Let M; be the ith component of M (¥). Let
u'/) be a column d -vector with the jth coordinate 1 and others 0. With a possibly
different EM sequence v® et r; ; be the (i, j)th element of J (!ﬁ), we have

e e o

G _ Ml + @ ) -

Tl = ® ~ .
v -,

k+D (k)

Use a suitable stopping rule like |r; y rij | < /€ to stop each of the sequences

rij (i,j =1,2,...,d) and take ri’; = r,-(;cH); see McLachlan and Krishnan (2008,
Sect.4.5).

It is important to emphasize that estimates of the covariance matrix of the MLE
based on the expected or observed information matrices are guaranteed to be valid
inferentially only asymptotically. In particular for mixture models, it is well known
that the sample size n has to be very large before the asymptotic theory of maximum
likelihood applies. A resampling approach, the bootstrap (Efron 1979; Efron and
Tibshirani 1993), has been considered to tackle this problem; see also Chernick
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(2008) for recent developments of the bootstrap in statistics. Basford et al. (1997)
compared the bootstrap and information-based approaches for some normal mixture
models and found that unless the sample size was very large, the standard errors
obtained by an information-based approach were too unstable to be recommended.

The bootstrap is a powerful technique that permits the variability in a random
quantity to be assessed using just the data at hand. Standard error estimation of ¥
may be implemented according to the bootstrap as follows. Further discussion on
bootstrap and resampling methods can be found in Chaps. III.17 and III.18 of this
handbook.

1. A new set of data, y*, called the bootstrap sample, is generated according to F s
an estimate of the distribution function of Y formed from the original observed
data y. That is, in the case where y contains the observed values of a random
sample of size n, y* consists of the observed values of the random sample

A

* % 1.1.d.
VAT Gllr S o)

where the estimate F (now denoting the distribution function of a single
observation Y ;) is held fixed at its observed value.

2. The EM algorithm is applied to the bootstrap observed data y* to compute the
MLE for this data set, lIA/* .

3. The bootstrap covariance matrix of ¥ is given by

Cov*(F") = EX[{¥" — E*(0 )" — E* ")), (6.33)

where E* denotes expectation over the bootstrap distribution specified by F.

The bootstrap covariance matrix can be approximated by Monte Carlo methods.
Steps 1 and 2 are repeated independently a number of times (say, B) to give
B independent realizations of lI;*, denoted by @T, e lI;; Then (6.33) can be
approximated by the sample covariance matrix of these B bootstrap replications to
give

B —* . x —%*
Cov* (") ~ Y (W, —¥ )@, —¥ )T /(B-1), (6.34)
b=1

—k
where ¥ = Zf=1 v : /B. The standard error of the ith element of ¥ can be
estimated by the positive square root of the ith diagonal element of (6.34). It has
been shown that 50 to 100 bootstrap replications are generally sufficient for standard
error estimation (Efron and Tibshirani 1993).

In Step 1 above, the nonparametric version of the bootstrap would take F to
be the empirical distribution function formed from the observed data y. Situations
where we may wish to use the latter include problems where the observed data are
censored or are missing in the conventional sense.
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6.4 Variations on the EM Algorithm

In this section, further modifications and extensions to the EM algorithm are
considered. In general, there are extensions of the EM algorithm:

1. To produce standard errors of the MLE using the EM.

2. To surmount problems of difficult E-step and/or M-step computations.
3. To tackle problems of slow convergence.

4. In the direction of Bayesian or regularized or penalized ML estimations.

We have already discussed methods like the SEM algorithm for producing standard
errors of EM-computed MLE in Sect. 6.3.5. The modification of the EM algorithm
for Bayesian inference will be discussed in Sect. 6.5.1. In this section, we shall focus
on the problems of complicated E- or M-steps and of slow convergence of the EM
algorithm.

6.4.1 Complicated E-Step

In some applications of the EM algorithm, the E-step is complex and does not admit
a close-form solution to the Q-function. In this case, the E-step at the (k + 1)th
iteration may be executed by a Monte Carlo (MC) process:

1. Make M independent draws of the missing values Z, z('),...,z(™¥ | from the
conditional distribution k (z|y; ¥ ®).
2. Approximate the Q-function as

M
1
Q(F: ¥ & Qu (W W) = - 3 logk (W™ ).
m=1

In the M-step, the Q-function is maximized over ¥ to obtain ¥ &+ The variant
is known as the Monte Carlo EM (MCEM) algorithm (Wei and Tanner 1990). As
MC error is introduced at the E-step, the monotonicity property is lost. But in
certain cases, the algorithm gets close to a maximizer with a high probability (Booth
and Hobert 1999). The problems of specifying M and monitoring convergence are
of central importance in the routine use of the algorithm (Levine and Fan 2004).
Wei and Tanner (1990) recommend small values of M be used in initial stages
and be increased as the algorithm moves closer to convergence. As to monitoring
convergence, they recommend that the values of v ® pe plotted against k and when
convergence is indicated by the stabilization of the process with random fluctuations
about ¥, the process may be terminated or continued with a larger value of M.
Alternative schemes for specifying M and stopping rule are considered by Booth
and Hobert (1999) and McCulloch (1997). The computation of standard errors with
MCEM algorithm is discussed in Robert and Casella (2004, Sect. 5.3).
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Example 4: Generalized Linear Mixed Models

Generalized linear mixed models (GLMM) are extensions of generalized linear
models (GLM) (McCullagh and Nelder 1989) that incorporate random effects
in the linear predictor of the GLM (more material on the GLM can be found
in Chap.II1.24). We let y = (y1....,y,)" denote the observed data vector.
Conditional on the unobservable random effects vector, u = (uy,..., uq)T, we
assume that y arise from a GLM. The conditional mean p; = E(y;|u) is related
to the linear predictor ; = x;!—ﬂ + z;!—u by the link function g(u;) = n, (j =
1,...,n), where B is a p-vector of fixed effects and x ; and z; are, respectively, p-
vector and g-vector of explanatory variables associated with the fixed and random
effects. This formulation encompasses the modeling of data involving multiple
sources of random error, such as repeated measures within subjects and clustered
data collected from some experimental units (Breslow and Clayton 1993; Ng et al.
2004).

We let the distribution for u# be g(u; D) that depends on parameters D. The
observed data y are conditionally independent with density functions of the form

f(jlu: B.k) = explmik™'{0;y; —b(0,)} + c(y;: K], (6.35)

where 0; is the canonical parameter, « is the dispersion parameter, and m; is the
known prior weight. The conditional mean and canonical parameters are related
through the equation p; = b’(6;), where the prime denotes differentiation with
respect to 0. Let ¥ denotes the vector of unknown parameters within g, «, and D.
The likelihood function for ¥ is given by

L) = [ T]70)lu: Bt D (6.36)
=1

which cannot usually be evaluated in closed form and has an intractable integral
whose dimension depends on the structure of the random effects.
Within the EM framework, the random effects are considered as missing data.

The complete data is then x = ( yT, uT)T and the complete-data log likelihood is
given by
log Lo(%) =) log f(y;|u; B.x) + log g(u; D). (6.37)
j=1

On the (k + 1)th iteration of the EM algorithm, the E-step involves the computation
of the Q-function, Q(¥; w®)) = Ew(k){log L.(¥)|y}, where the expectation is

with respect to the conditional distribution of u| y with current parameter value ¥ ®
As this conditional distribution involves the (marginal) likelihood function L(¥)
given in (6.36), an analytical evaluation of the Q-function for the model (6.35) will
be impossible outside the normal theory mixed model (Booth and Hobert 1999). The
MCEM algorithm can be adopted to tackle this problem by replacing the expectation
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in the E-step with a MC approximation. Letu'®), ..., u™® denote a random sample
from k(u|y; ¥®) at the (k + 1)th iteration. A MC approximation of the Q-function
is given by

M
Ou@: ) = 23 " flog f(y1u™); B.%) + logg@"™: DY} (638)

m=1

From (6.38), it can be seen that the first term of the approximated Q-function
involves only parameters 8 and «, while the second term involves only D. Thus,
the maximization in the MC M-step is usually relatively simple within the GLMM
context (McCulloch 1997).

Alternative simulation schemes for # can be used for (6.38). For example, Booth
and Hobert (1999) proposed the rejection sampling and a multivariate ¢ importance
sampling approximations. McCulloch (1997) considered dependent MC samples
using MC Newton-Raphson (MCNR) algorithm. A two-slice EM algorithm has
developed by Vaida and Meng (2005) to handle GLMM with binary response, where
the MC E-step is implemented via a slice sampler.

6.4.2 Complicated M-Step

One of major reasons for the popularity of the EM algorithm is that the M-
step involves only complete-data ML estimation, which is often computationally
simple. But if the complete-data ML estimation is rather complicated, then the EM
algorithm is less attractive. In many cases, however, complete-data ML estimation
is relatively simple if maximization process on the M-step is undertaken conditional
on some functions of the parameters under estimation. To this end, Meng and Rubin
(1993) introduce a class of GEM algorithms, which they call the Expectation—
Conditional Maximization (ECM) algorithm.

ECM and Multicycle ECM Algorithms

The ECM algorithm takes advantage of the simplicity of complete-data conditional
maximization by replacing a complicated M-step of the EM algorithm with several
computationally simpler conditional maximization (CM) steps. Each of these CM-
steps maximizes the Q-function found in the preceding E-step subject to constraints
on ¥, where the collection of all constraints is such that the maximization is over
the full parameter space of ¥.

A CM-step might be in closed form or it might itself require iteration, but because
the CM maximizations are over smaller dimensional spaces, often they are simpler,
faster, and more stable than the corresponding full maximizations called for on
the M-step of the EM algorithm, especially when iteration is required. The ECM
algorithm typically converges more slowly than the EM in terms of number of
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iterations, but can be faster in total computer time. More importantly, the ECM
algorithm preserves the appealing convergence properties of the EM algorithm, such
as its monotone convergence.

We suppose that the M-step is replaced by S > 1 steps and let w KF5/5) denote
the value of ¥ on the sth CM-step of the (k + 1)th iteration. In many applications of
the ECM algorithm, the S CM-steps correspond to the situation where the parameter
vector ¥ is partitioned into S subvectors,

=, ... vH

The sth CM-step then requires the maximization of the Q-function with respect
to the sth subvector ¥ with the other (S — 1) subvectors held fixed at their
current values. The convergence properties and the rate of convergence of the ECM
algorithm have been discussed in Meng (1994), Meng and Rubin (1993), and Sexton
and Swensen (2000); see also the discussion in McLachlan and Krishnan (2008,
Sect.5.2.3), where the link to the monotone convergence of Iterative Proportional
Fitting with complete data (Bishop et al. 2007, Chap. 3) is described.
It can be shown that

QW W) = QD g ) = = Q@ W), (6.39)

which implies that the ECM algorithm is a GEM algorithm and so possesses its
desirable convergence properties. As noted in Sect. 6.2.3, the inequality (6.39) is a
sufficient condition for

L@y > L®)

to hold. In many cases, the computation of an E-step may be much cheaper than the
computation of the CM-steps. Hence one might wish to perform one E-step before
each CM-step. A cycle is defined to be one E-step followed by one CM-step. The
corresponding algorithm is called the multicycle ECM (Meng and Rubin 1993). A
multicycle ECM may not necessarily be a GEM algorithm; that is, the inequality
(6.39) may not be hold. However, it is not difficult to show that the multicycle ECM
algorithm monotonically increases the likelihood function L(¥) after each cycle,
and hence, after each iteration. The convergence results of the ECM algorithm
apply to a multicycle version of it. An obvious disadvantage of using a multicycle
ECM algorithm is the extra computation at each iteration. Intuitively, as a tradeoff,
one might expect it to result in larger increases in the log likelihood function per
iteration since the Q-function is being updated more often (Meng 1994; Meng and
Rubin 1993).

Example 5: Mixture-of-Experts Models for Multiclass Classification

It is reported in the literature that ME networks trained by the EM algorithm using
the IRLS algorithm in the inner loop of the M-step often performed poorly in
multiclass classification because of the incorrect independence assumption (Chen
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etal. 1999); see also the discussion in Sect. 6.3.3. In this section, we present an ECM
algorithm to train ME networks for multiclass classification such that the parameters
in the gating and expert networks are separable. It follows that the independence
assumption is not required and the parameters in both (6.26) and (6.28) can be
updated separately; see, for example, Ng and McLachlan (2004a) and Ng et al.
(2006a).

For multiclass classification, the densities fi(y;|x;:04) (h = 1,...,m) are
modelled by a multinomial distribution consisting of one draw on multiple (say, g)
categories. That is, we have

g1 T Yij Yei
exp(w,,; x ;) 1
'x',01 - o — ! — k]
Jn(yjlx;,0n) ||( ) <1+Zf

I i
i WL+ X85 exp(w)] x ;) Zexpw] x ;)

(6.40)
where 6 contains the elements in w,; (i = 1,...,g — 1). Equation (6.28) in
Sect. 6.3.3 thus becomes

n T
exp(w)x ) .
r,ﬁf)<y,-,-— e )x,:o (i=1,....g—1) (641
j=1 I+ Zr=l exp(whrxj)
for h = 1,...,m, which are m sets of non-linear equations each with (g — 1)p

unknown parameters.

With the ECM algorithm, the M-step is replaced by several computation-
ally simpler CM-steps. For example, the parameter vector a is partitioned as
(vI'—, ... ,v;'n—_l)T. On the (k + 1)th iteration of the ECM algorithm, the E-step is
the same as given in Equations (6.23)—(6.25) for the EM algorithm, but the M-step
of the latter is replaced by (m — 1) CM-steps, as follows:

* CM:-step 1: Calculate v\ T by maximizing Q,, withv, (I = 2,....m —1) fixed
at v}k).
e CM-step 2: Calculate vékﬂ) by maximizing Q, with v; fixed at v(1k+l) andv; (I =

3,....,m—1) ﬁxedatv?k).

e CM-step (m — 1) : Calculate vg;tll)) by maximizing Q, withv; (I = 1,...,m —
2) fixed at v§k+l).

As each CM-step above corresponds to a separable set of the parameters in v
forh = 1,...,m — 1, it can be obtained using the IRLS approach; see Ng and
McLachlan (2004a).

6.4.3 Speeding Up Convergence

Several suggestions are available in the literature for speeding up convergence,
some of a general kind and some problem-specific; see for example McLachlan
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and Krishnan (2008, Chap.4). Most of them are based on standard numerical
analytic methods and suggest a hybrid of EM with methods based on Aitken
acceleration, over-relaxation, line searches, Newton methods, conjugate gradients,
etc. Unfortunately, the general behaviour of these hybrids is not always clear and
they may not yield monotonic increases in the log likelihood over iterations. There
are also methods that approach the problem of speeding up convergence in terms
of “efficient” data augmentation scheme (Meng and van Dyk 1997). Since the
convergence rate of the EM algorithm increases with the proportion of observed
information in the prescribed EM framework (Sect.6.2.4), the basic idea of the
scheme is to search for an efficient way of augmenting the observed data. By
efficient, they mean less augmentation of the observed data (greater speed of
convergence) while maintaining the simplicity and stability of the EM algorithm. A
common trade-off is that the resulting E- and/or M-steps may be made appreciably
more difficult to implement. To this end, Meng and van Dyk (1997) introduce a
working parameter in their specification of the complete data to index a class of
possible schemes to facilitate the search.

ECME, AECM, and PX-EM Algorithms

Liu and Rubin (1994, 1998) present an extension of the ECM algorithm called the
ECME (expectation—conditional maximization either) algorithm. Here the “either”
refers to the fact that with this extension, each CM-step either maximizes the Q-
function or the actual (incomplete-data) log likelihood function log L(¥), subject
to the same constraints on ¥. The latter choice should lead to faster convergence as
no augmentation is involved. Typically, the ECME algorithm is more tedious to code
than the ECM algorithm, but the reward of faster convergence is often worthwhile
especially because it allows convergence to be more easily assessed.

A further extension of the EM algorithm, called the Space-Alternating General-
ized EM (SAGE), has been proposed by Fessler and Hero (1994), where they update
sequentially small subsets of parameters using appropriately smaller complete data
spaces. This approach is eminently suitable for situations like image reconstruction
where the parameters are large in number. Meng and van Dyk (1997) combined the
ECME and SAGE algorithms. The so-called Alternating ECM (AECM) algorithm
allows the data augmentation scheme to vary where necessary over the CM-steps,
within and between iterations. With this flexible data augmentation and model
reduction schemes, the amount of data augmentation decreases and hence efficient
computations are achieved.

In contrast to the AECM algorithm where the optimal value of the working
parameter is determined before EM iterations, a variant is considered by Liu et al.
(1998) which maximizes the complete-data log likelihood as a function of the
working parameter within each EM iteration. The so-called parameter-expanded
EM (PX-EM) algorithm has been used for fast stable computation of MLE in a wide
range of models (Little and Rubin 2002). This variant has been further developed,
known as the one-step-late PX-EM algorithm, to compute maximum a posteriori
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(MAP) or maximum penalized likelihood (MPL) estimates (van Dyk and Tang
2003). Analogous convergence results hold for the ECME, AECM, and PX-EM
algorithms as for the EM and ECM algorithms. More importantly, these algorithms
preserve the monotone convergence of the EM algorithm.

Incremental Scheme of the EM Algorithm

The EM algorithm can be viewed as alternating minimization of a joint function
between a parameter space §2 and a family of distributions @ over the unobserved
variables (Csiszdr and Tusnady 1984; Hathaway 1986). Let z denote the vector
containing the unobservable data and let P be any distribution defined over the
support of Z. The joint function is defined as

D(P,¥)=—logL(¥)+ KL[P,g(z|y; ¥)], (6.42)

where g(z|y; ¥) is the conditional distribution of Z given the observed data and
KL[P, g(z|y; ¥)]is the Kullback-Leibler information that measures the divergence
of P relative to g(z|y; ¥). Hathaway (1986) shows that, given the current estimates
¥ ® the E-step on the (k 4 1)th scan corresponds to the minimization of (6.42)
with respect to P over @. For fixed P+ the M-step then minimizes (6.42) with
respect to ¥ over £2.

From this perspective, Neal and Hinton (1998) justify an incremental variant
of the EM algorithm in which only a block of unobserved data is calculated in
each E-step at a time before performing a M-step. A scan of the incremental EM
(IEM) algorithm thus consists of B “partial” E-steps and B M-steps, where B is
the total number of blocks of data. This variant of the EM algorithm has been
shown empirically to give faster convergence compared to the EM algorithm in
applications where the M-step is computationally simple, for example, in fitting
multivariate normal mixtures (Ng and McLachlan 2003, 2004b). With the IEM
algorithm, Neal and Hinton (1998) showed that the partial E-step and the M-step
both monotonically increase F(P,¥) = —D(P,¥) and if a local maximum (or
saddle point) of F(P,¥) occurs at P* and ¥*, then a local maximum (or saddle
point) of the log likelihood occurs at ¥* as well. Although the IEM algorithm can
possess stable convergence to stationary points in the log likelihood under slightly
stronger conditions of Wu (1983) for the EM algorithm, the current theoretical
results for the IEM algorithm do not quarantine monotonic behaviour of the log
likelihood as the EM algorithm does. The same argument for proving that the
EM algorithm always increases the log likelihood cannot be adopted here, as the
estimate of ¥ in Q(¥; ¥®)) of (6.7) is changing at each iteration within each scan
(Ng and McLachlan 2003). However, it is noted that F(P,¥) can be considered
as a lower bound on the log likelihood since the Kullback-Leibler information is
non-negative. For given P, as obtained in the partial E-step, the M-step increases
F(P,¥) with respect to ¥. It follows that



6 The EM Algorithm 165

F(P,wkTGTD/B)y > p(p g k+b/B)y (b=0,...,B-1).

That is, the lower bound of the log likelihood is monotonic increasing after each
iteration.

The argument for improved rate of convergence is that the IEM algorithm
exploits new information more quickly rather than waiting for a complete scan of
the data before parameters are updated by an M-step. Another method suggested by
Neal and Hinton (1998) is the sparse EM (SPEM) algorithm. In fitting a mixture
model to a data set by ML via the EM, the current estimates of some posterior
probabilities ri(;{) for a given data point y ; are often close to zero. For example, if
ri(k) < 0.005 for the first two components of a four-component mixture being fitted,

j
then with the SPEM algorithm we would fix ri@ (1=1,2) for membership of y;

j
with respect to the first two components at their current values and only update ri(f)

(i=3,4) for the last two components. This sparse E-step will take time proportional
to the number of components that needed to be updated. A sparse version of the
IEM algorithm (SPIEM) can be formulated by combining the partial E-step and
the sparse E-step. With these versions, the likelihood is still found to be increased
after each scan. Ng and McLachlan (2003) study the relative performances of these
algorithms with various number of blocks B for the fitting of normal mixtures. They
propose to choose B to be that factor of 7 that is the closest to B* = round(n*/°) for
unrestricted component-covariance matrices, where round(r) rounds r to the nearest
integer.

Ng and McLachlan (2004b) propose to speed up further the IEM and SPIEM
algorithms for the fitting of normal mixtures by imposing a multiresolution kd-tree
(mrkd-tree) structure in performing the E-step. Here kd stands for k-dimensional
where, in our notation, k = p, the dimension of an observation y I The mrkd-
tree is a binary tree that recursively splits the whole set of data points into
partition (Moore 1999). The contribution of all the data points in a tree node to
the sufficient statistics is simplified by calculating at the mean of these data points
to save time. The mrkd-tree approach does not guarantee the desirable reliable
convergence properties of the EM algorithm. However, the IEM-based mrkd-
tree algorithms have been shown empirically to give a monotonic convergence as
reliable as the EM algorithm when the size of leaf nodes are sufficiently small (Ng
and McLachlan 2004b). It is noted that the number of leaf nodes will increase
dramatically when the dimension of the data points p increases. This implies
that mrkd-trees-based algorithms will not be able to speed up the EM algorithm
for applications to high dimensional data (Ng and McLachlan 2004b). Recently,
a number of techniques have been developed to reduce dimensionality without
losing significant information and separability among mixture components; see, for
example, the matrix factorization approach of Nikulin and McLachlan (2010) and
the references therein.
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6.5 Miscellaneous Topics on the EM Algorithm

6.5.1 EM Algorithm for MAP Estimation

Although we have focussed on the application of the EM algorithm for computing
MLE:s in a frequentist framework, it can be equally applied to find the mode of the
posterior distribution in a Bayesian framework. This problem is analogous to MLE
and hence the EM algorithm and its variants can be adapted to compute maximum
a posteriori (MAP) estimates. The computation of the MAP estimate in a Bayesian
framework via the EM algorithm corresponds to the consideration of some prior
density for ¥. The E-step is effectively the same as for the computation of the MLE
of ¥ in a frequentist framework, requiring the calculation of the Q-function. The
M-step differs in that the objective function for the maximization process is equal
to the Q-function, augmented by the log prior density. The combination of prior and
sample information provides a posterior distribution of the parameter on which the
estimation is based.

The advent of inexpensive high speed computers and the simultaneous rapid
development in posterior simulation techniques such as Markov chain Monte Carlo
(MCMC) methods (Gelfand and Smith 1990) enable Bayesian estimation to be
undertaken. In particular, posterior quantities of interest can be approximated
through the use of MCMC methods such as the Gibbs sampler. Such methods allow
the construction of an ergodic Markov chain with stationary distribution equal to the
posterior distribution of the parameter of interest. A concise theoretical treatment of
MCMC is provided in Gamerman and Lopes (2006) and Robert and Casella (2004);
see also McLachlan and Krishnan (2008, Chap.8) and the references therein. A
detailed description of the MCMC technology can also be found in Chap. I1.4.

Although the application of MCMC methods is now routine, there are some
difficulties that have to be addressed with the Bayesian approach, particularly in
the context of mixture models. One main hindrance is that improper priors yield
improper posterior distributions. Another hindrance is that when the number of
components g is unknown, the parameter space is simultaneously ill-defined and of
infinite dimension. This prevents the use of classical testing procedures and priors
(McLachlan and Peel 2000, Chap. 4).

6.5.2 Iterative Simulation Algorithms

In computing Bayesian solutions to incomplete-data problems, iterative simulation
techniques have been adopted to find the MAP estimates or estimating the entire
posterior density. These iterative simulation techniques are conceptually similar to
the EM algorithm, simply replacing the E- and M-steps by draws from the current
conditional distribution of the missing data and ¥, respectively. However, in some
methods such as the MCEM algorithm described in Sect. 6.4.1, only the E-step is
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so implemented. Many of these methods can be interpreted as iterative simulation
analogs of the various versions of the EM and its extensions. Some examples are
Stochastic EM, Data Augmentation algorithm, and MCMC methods such as the
Gibbs sampler (McLachlan and Krishnan 2008, Chap. 6). Here, we give a very brief
outline of the Gibbs sampler; see also Chap. I1.4 of this handbook and the references
therein.

The Gibbs sampler is extensively used in many Bayesian problems where the
joint distribution is too complicated to handle, but the conditional distributions are
often easy enough to draw from; see Casella and George (1992). On the Gibbs
sampler, an approximate sample from p(¥ | y) is obtained by simulating directly
from the (full) conditional distribution of a subvector of ¥ given all the other
parameters in ¥ and y. We write ¥ = (¥y,...,¥ ) in component form, a d-
dimensional Gibbs sampler makes a Markov transition from v ® o okt yig g
successive simulations as follows:

(1) Draw ¢* from p(¥ | y; ¥V, ---,W,ﬁk)l
(2) Draw l1/2(k+1) from p(¥; | y; llfl(k+l), lI/3(k) ...,llflgk)).

(d) Draw lI’SkH) from p(¥, | y; Wl(k+l), ...,llfskjl)).

The vector sequence {¥ (k)} thus generated is known to be a realization of a homo-
geneous Markov Chain. Many interesting properties of such a Markov sequence
have been established, including geometric convergence, as k — o0; to a unique
stationary distribution that is the posterior density p(llfl(k), “.,(pg‘) | y) under
certain conditions; see Roberts and Polson (1994). Among other sampling methods,
there is the Metropolis-Hastings algorithm (Hastings 1970), which, in contrast to the
Gibbs sampler, accepts the candidate simulated component in ¥ with some defined
probability (McLachlan and Peel 2000, Chap. 4).

The Gibbs sampler and other such iterative simulation techniques being Bayesian
in their point of view consider both parameters and missing values as random vari-
ables and both are subjected to random draw operations. In the iterative algorithms
under a frequentist framework, like the EM-type algorithms, parameters are sub-
jected to a maximization operation and missing values are subjected to an averaging
operation. Thus the various versions of the Gibbs sampler can be viewed as stochas-
tic analogs of the EM, ECM, and ECME algorithms (Robert and Casella 2004).
Besides these connections, the EM-type algorithms also come in useful as starting
points for iterative simulation algorithms where typically regions of high density are
not known a priori (McLachlan and Krishnan 2008, Sect. 6.10). The relationship
between the EM algorithm and the Gibbs sampler and the connection between their
convergence properties have been examined in Sahu and Roberts (1999).
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6.5.3 Further Applications of the EM Algorithm

Since the publication of Dempster et al. (1977), the number, variety, and range
of applications of the EM algorithm and its extensions have been tremendous.
Applications in many different contexts can be found in monographs Little and
Rubin (2002), McLachlan et al. (2004), McLachlan and Krishnan (2008), and
McLachlan and Peel (2000). We conclude the chapter with a quick summary of
some of the more interesting and topical applications of the EM algorithm.

Bioinformatics: EMMIX-GENE and EMMIX-WIRE Procedures

In bioinformatics, much attention is centered on the cluster analysis of the tissue
samples and also the genes. The clustering of tumour tisses can play a useful role
in the discovery and understanding of new subtypes of diseases (McLachlan et al.
2002), while the clustering of gene expression profiles contributes significantly to
the elucidation of unknown gene function, the validation of gene discoveries and
the interpretation of biological processes (Ng et al. 2006b). The EM algorithm
and its variants have been applied to tackle some of the problems arisen in such
applications. For example, the clustering of tumour tissues on the basis of genes
expression is a nonstandard cluster analysis problem since the dimension of each
tissue sample is so much greater than the number of tissues. The EMMIX-GENE
procedure of McLachlan et al. (2002) handles the problem of a high-dimensional
feature vector by using mixtures of factor analyzers whereby the component
correlations between the genes are explained by their conditional linear dependence
on a small number of latent or unobservable factors specific to each component.
The mixtures of factor analyzers model can be fitted by using the AECM algorithm
(Meng and van Dyk 1997); see, for example, McLachlan et al. (2004).

The clustering of gene profiles is also not straightforward as the profiles of the
genes are not all independently distributed and the expression levels may have
been obtained from an experimental design involving replicated arrays (Lee et al.
2000; Pavlidis et al. 2003). Similarly, in time-course studies (Storey et al. 2005),
where expression levels are measured under various conditions or at different
time points, gene expressions obtained from the same condition (tissue sample)
are correlated. Ng et al. (2006b) have developed a random-effects model that
provides a unified approach to the clustering of genes with correlated expression
levels measured in a wide variety of experimental situations. The EMMIX-WIRE
procedure of Ng et al. (2006b) formulates a linear-mixed-effects model (LMM) for
the mixture components in which both gene-specific and tissue-specific random
effects are incorporated in the modelling of the microarray data. In their model,
the gene profiles are not all independently distributed as genes within the same
component in the mixture model are allowed to be dependent due to the presence
of the tissue-specific random effects. This problem is circumvented by proceeding
conditionally on the tissue-specific random effects, as given these terms, the gene
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profiles are all conditionally independent. In this way, Ng et al. (2006b) showed that
the unknown parameter vector ¥ can be estimated by ML via the EM algorithm
under a conditional mode, where both the E- and M-steps are carried out in
closed form.

Health Science: On-Line Prediction of Hospital Resource Utilization

The continuing development and innovative use of information technology in health
care has played a significant role in contributing and advancing this active and
burgeoning field. Inpatient length of stay (LOS) is an important measure of hospital
activity and health care utilization. It is also considered to be a measurement of
disease severity and patient acuity (Ng et al. 2006a; Pofahl et al. 1998). Length of
stay predictions have therefore important implications in various aspects of health
care decision support systems. Most prediction tools use a batch-mode training
process. That is, the model is trained only after the entire training set is available.
Such a training method is unrealistic in the prediction of LOS as the data become
available over time and the input-output pattern of data changes dynamically over
time.

An intelligent ME network for on-line prediction of LOS via an incremental
ECM algorithm has been proposed by Ng et al. (2006a). The strength of an
incremental training process is that it enables the network to be updated when
an input-output datum becomes known. These on-line and incremental updating
features increase the simulation between neural networks and human decision
making capability in terms of learning from “every” experience. In addition, an
on-line process is capable of providing an output whenever a new datum becomes
available. This on-the-spot information is therefore more useful and practical for
adaptive training of model parameters and making decisions (Jepson et al. 2003;
Lai and Fang 2005), especially when one deals with a tremendous amount of data.

The incremental training process for on-line prediction is formulated based on
the incremental scheme of the EM algorithm described in Sect.6.4.3; see also
Ng and McLachlan (2003) and Ng et al. (2006a). In particular, the unknown
parameters are updated in the CM-step when a single input-output datum is
available. Also, a discount parameter is introduced to gradually “forget” the effect
of previous estimated posterior probabilities obtained from earlier less-accurate
estimates (Jordan and Jacobs 1994; Sato and Ishii 2000). It implies that the sufficient
statistics required in the CM-step are decayed exponentially with a multiplicative
discount factor as the training proceeds. When the discount parameter is scheduled
to approach one as the iteration tends to infinity, the updating rules so formed can
be considered as a stochastic approximation for obtaining the ML estimators (Sato
and Ishii 2000; Titterington 1984).
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