
Chapter 33
Bagging, Boosting and Ensemble Methods

Peter Bühlmann

33.1 An Introduction to Ensemble Methods

Ensemble methods aim at improving the predictive performance of a given statistical
learning or model fitting technique. The general principle of ensemble methods is
to construct a linear combination of some model fitting method, instead of using a
single fit of the method.

More precisely, consider for simplicity the framework of function estimation. We
are interested in estimating a real-valued function

g W IRd ! IR

based on data .X1; Y1/; : : : ; .Xn; Yn/ where X is a d -dimensional predictor variable
and Y a univariate response. Generalizations to other functions g.�/ and other data-
types are possible. We assume to have specified a base procedure which, given
some input data (as above), yields an estimated function Og.�/. For example, the
base procedure could be a nonparametric kernel estimator (if d is small) or a
nonparametric statistical method with some structural restrictions (for d � 2)
such as a regression tree (or class-probability estimates from a classification tree).
We can run a base procedure many times when changing the input data: the

original idea of ensemble methods is to use reweighted original data to obtain
different estimates Og1.�/; Og2.�/; Og3.�/; : : : based on different reweighted input data.
We can then construct an ensemble-based function estimate gens.�/ by taking linear
combinations of the individual function estimates Ogk.�/:

P. Bühlmann (�)
ETH Zürich, Seminar für Statistik, Zürich, Switzerland
e-mail: buhlmann@stat.math.ethz.ch

J.E. Gentle et al. (eds.), Handbook of Computational Statistics, Springer Handbooks
of Computational Statistics, DOI 10.1007/978-3-642-21551-3__33,
© Springer-Verlag Berlin Heidelberg 2012

985

buhlmann@stat.math.ethz.ch

986 P. Bühlmann

Ogens.�/ D
MX

kD1

ck Ogk.�/; (33.1)

where the Ogk.�/ are obtained from the base procedure based on the kth reweighted
data-set. For some ensemble methods, e.g. for bagging (see Sect. 35.2), the linear
combination coefficients ck � 1=M are averaging weights; for other methods, e.g.
for boosting (see Sect. 35.3),

PM
kD1 ck increases as M gets larger.

Ensemble methods became popular as a relatively simple device to improve the
predictive performance of a base procedure. There are different reasons for this:
the bagging procedure turns out to be a variance reduction scheme, at least for
some base procedures. On the other hand, boosting methods are primarily reducing
the (model) bias of the base procedure. This already indicates that bagging and
boosting are very different ensemble methods. We will argue in Sects. 33.4.1 and
33.4.7 that boosting may be even viewed as a non-ensemble method which has
tremendous advantages over ensemble (or multiple prediction) methods in terms
of interpretation.

Random forests (Breiman 2001) is a very different ensemble method than
bagging or boosting. The earliest random forest proposal is from Amit and Geman
(Amit and Geman 1997). From the perspective of prediction, random forests is about
as good as boosting, and often better than bagging. Section 33.4.12 highlights a few
more aspects.

Some rather different exposition about bagging and boosting which describes
these methods in the much broader context of many other modern statistical methods
can be found in Hastie et al. (2001).

33.2 Bagging and Related Methods

Bagging Breiman (1996a), a sobriquet for bootstrap aggregating, is an ensemble
method for improving unstable estimation or classification schemes. Breiman
Breiman (1996a) motivated bagging as a variance reduction technique for a given
base procedure, such as decision trees or methods that do variable selection and
fitting in a linear model. It has attracted much attention, probably due to its
implementational simplicity and the popularity of the bootstrap methodology. At
the time of its invention, only heuristic arguments were presented why bagging
would work. Later, it has been shown in Bühlmann and Yu (2002) that bagging is
a smoothing operation which turns out to be advantageous when aiming to improve
the predictive performance of regression or classification trees. In case of decision
trees, the theory in Bühlmann and Yu (2002) confirms Breiman’s intuition that
bagging is a variance reduction technique, reducing also the mean squared error
(MSE). The same also holds for subagging (subsample aggregating), defined in
Sect. 33.2.3, which is a computationally cheaper version than bagging. However,

33 Bagging, Boosting and Ensemble Methods 987

for other (even “complex”) base procedures, the variance and MSE reduction effect
of bagging is not necessarily true; this has also been shown in Buja and Stuetzle
(2006) for the simple case where the estimator is a U -statistics.

33.2.1 Bagging

Consider the regression or classification setting. The data is given as in Sect. 35.1:
we have pairs .Xi ; Yi / .i D 1; : : : ; n/, where Xi 2 IRd denotes the d -dimensional
predictor variable and the response Yi 2 IR (regression) or Yi 2 f0; 1; : : : ; J � 1g
(classification with J classes). The target function of interest is usually IEŒY jX D x�

for regression or the multivariate function IPŒY D j jX D x� .j D 0; : : : ; J �
1/ for classification. The function estimator, which is the result from a given base
procedure, is

Og.�/ D hn..X1; Y1/; : : : ; .Xn; Yn//.�/ W IRd ! IR;

where the function hn.�/ defines the estimator as a function of the data.
Bagging is defined as follows.

Bagging Algorithm

Step 1. Construct a bootstrap sample .X�
1 ; Y �

1 /; : : : ; .X�
n ; Y �

n / by randomly drawing
n times with replacement from the data .X1; Y1/; : : : ; .Xn; Yn/.

Step 2. Compute the bootstrapped estimator Og�.�/ by the plug-in principle:
Og�.�/ D hn..X�

1 ; Y �
1 /; : : : ; .X�

n ; Y �
n //.�/.

Step3. Repeat steps 1 and 2 M times, where M is often chosen as 50 or 100, yielding
Og�k.�/ .k D 1; : : : ; M /. The bagged estimator is OgBag.�/ D M �1

PM
kD1 Og�k.�/.

In theory, the bagged estimator is

OgBag.�/ D IE�Œ Og�.�/�: (33.2)

The theoretical quantity in (33.2) corresponds to M D 1: the finite number M

in practice governs the accuracy of the Monte Carlo approximation but otherwise,
it shouldn’t be viewed as a tuning parameter for bagging. Whenever we discuss
properties of bagging, we think about the theoretical version in (33.2).

This is exactly Breiman’s Breiman (1996a) definition for bagging regression
estimators. For classification, we propose to average the bootstrapped probabilities
Og�k
j .�/ D OIP�

ŒY �k D j jX�k D �� .j D 0; : : : ; J � 1/ yielding an estimator for
IPŒY D j jX D �� , whereas Breiman Breiman (1996a) proposed to vote among
classifiers for constructing the bagged classifier.

988 P. Bühlmann

The empirical fact that bagging improves the predictive performance of regres-
sion and classification trees is nowadays widely documented (Borra and Di Ciaccio
2002; Breiman 1996a,b; Bühlmann and Yu 2002; Buja and Stuetzle 2006). To
give an idea about the gain in performance, we cite some of the results of
Breiman’s pioneering paper Breiman (1996a): for 7 classification problems, bagging
a classification tree improved over a single classification tree (in terms of cross-
validated misclassification error) by

33%; 47%; 30%; 23%; 20%; 22%; 27%I

in case of 5 regression data sets, bagging regression trees improved over a single
regression tree (in terms of cross-validated squared error) by

39%; 22%; 46%; 30%; 38%:

In both cases, the size of the single decision tree and of the bootstrapped trees was
chosen by optimizing a tenfold cross-validated error, i.e. using the “usual” kind
of tree procedure. Besides that the reported improvement in percentages is quite
impressive, it is worth pointing out that bagging a decision tree is almost never
worse (in terms of predictive power) than a single tree.

A trivial equality indicates the somewhat unusual approach of using the
bootstrap methodology:

OgBag.�/ D Og.�/C .IE�Œ Og�.�/� � Og.�// D Og.�/C Bias�.�/;

where Bias�.�/ is the bootstrap bias estimate of Og.�/. Instead of the usual bias
correction with a negative sign, bagging comes along with the wrong sign and
adds the bootstrap bias estimate. Thus, we would expect that bagging has a higher
bias than Og.�/, which we will argue to be true in some sense, see Sect. 33.2.2.
But according to the usual interplay between bias and variance in nonparametric
statistics, the hope is to gain more by reducing the variance than increasing the bias,
so that overall, bagging would pay-off in terms of the MSE. Again, this hope turns
out to be true for some base procedures. In fact, Breiman Breiman (1996a) described
heuristically the performance of bagging as follows: the variance of the bagged
estimator OgBag.�/ should be equal or smaller than that for the original estimator Og.�/;
and there can be a drastic variance reduction if the original estimator is “unstable”.

33.2.2 Unstable Estimators with Hard Decision Indicator

Instability often occurs when hard decisions with indicator functions are involved as
in regression or classification trees. One of the main underlying ideas why bagging
works can be demonstrated by a simple example.

33 Bagging, Boosting and Ensemble Methods 989

Toy Example: A Simple, Instructive Analysis

Consider the estimator

Og.x/ D 1ŒY n�x�; x 2 IR; (33.3)

where Y n D n�1
Pn

iD1 Yi with Y1; : : : ; Yn i.i.d. (no predictor variables Xi are used
for this example). The target we have in mind is g.x/ D limn!1 IEŒ Og.x/�. A simple
yet precise analysis below shows that bagging is a smoothing operation. Due to the
central limit theorem we have

n1=2.Y n � �/!D N .0; �2/ .n!1/ (33.4)

with � D IEŒY1� and �2 D Var.Y1/. Then, for x in a n�1=2-neighborhood of �,

x D xn.c/ D �C c� n�1=2; (33.5)

we have the distributional approximation

Og.xn.c//!D L.Z/ D 1ŒZ�c� .n!1/; Z � N .0; 1/: (33.6)

Obviously, for a fixed c, this is a hard decision function of Z. On the other hand,
averaging for the bagged estimator looks as follows. Denote by ˚.�/ the c.d.f. of a
standard normal distribution:

OgBag.xn.c// D IE�Œ1
ŒY

�

n �xn.c/�
� D IE�Œ1

Œn1=2.Y
�

n �Y n/=��n1=2.xn.c/�Y n/=��
�

D ˚.n1=2.xn.c/ � Y n/=�/C oP .1/

!D LBag.Z/ D ˚.c �Z/ .n!1/; Z � N .0; 1/; (33.7)

where the first approximation (second line) follows because the bootstrap is
consistent for the arithmetic mean Y n, i.e.,

sup
x2IR
jIP�Œn1=2.Y

�
n � Y n/=� � x� �˚.x/j D oP .1/ .n!1/; (33.8)

and the second approximation (third line in (33.7)) holds, because of (33.4) and
the definition of xn.c/ in (33.5). Comparing with (33.6), bagging produces a soft
decision function LBag.�/ of Z: it is a shifted inverse probit, similar to a sigmoid-
type function. Figure 33.1 illustrates the two functions L.�/ and LBag.�/.

We see that bagging is a smoothing operation. The amount of smoothing is
determined “automatically” and turns out to be very reasonable (we are not claiming
any optimality here). The effect of smoothing is that bagging reduces variance due
to a soft- instead of a hard-thresholding operation.

990 P. Bühlmann

plug - in with indicator

z
-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 33.1 Indicator estimator from (33.3) at x D xn.0/ as in (33.5). Function L.z/ D 1Œz�0�

(solid line) and LBag.z/ (dotted line) defining the asymptotics of the estimator in (33.6) and its
bagged version in (33.7)

We can compute the first two asymptotic moments in the unstable region with
x D xn.c/.

Numerical evaluations of these first two moments and the mean squared error
(MSE) are given in Fig. 33.2. We see that in the approximate range where jcj � 2:3,
bagging improves the asymptotic MSE. The biggest gain, by a factor 3, is at the
most unstable point x D � D IEŒY1�, corresponding to c D 0. The squared bias
with bagging has only a negligible effect on the MSE (note the different scales in
Fig. 33.2). Note that we always give an a-priori advantage to the original estimator
which is asymptotically unbiased for the target as defined.

In Bühlmann and Yu (2002), this kind of analysis has been given for more general
estimators than Y n in (33.3) and also for estimation in linear models after testing.
Hard decision indicator functions are involved there as well and bagging reduces
variance due to its smoothing effect. The key to derive this property is always the
fact that the bootstrap is asymptotically consistent as in (33.8).

Regression Trees

We address here the effect of bagging in the case of decision trees which are
most often used in practice in conjunction with bagging. Decision trees consist of
piecewise constant fitted functions whose supports (for the piecewise constants) are
given by indicator functions similar to (33.3). Hence we expect bagging to bring a
significant variance reduction as in the toy example above.

33 Bagging, Boosting and Ensemble Methods 991

variance

c
-4 -2 4

0.
0

0.
10

0.
20

squared bias

c
-4 -2 4

0.
0

0.
00

2
0.

00
4

0.
00

6

AMSE

c
-4 -2

0 2 0 2

0 2 4

0.
0

0.
10

0.
20

Fig. 33.2 Indicator estimator from (33.3) at x D xn.c/ as in (33.5). Asymptotic variance, squared
bias and mean squared error (AMSE) (the target is limn!1 IEŒ Og.x/�) for the estimator Og.xn.c//

from (33.3) (solid line) and for the bagged estimator OgBag.xn.c// (dotted line) as a function of c

For simplicity of exposition, we consider first a one-dimensional predictor space
and a so-called regression stump which is a regression tree with one split and two
terminal nodes. The stump estimator (or algorithm) is then defined as the decision
tree,

Og.x/ D Ǒ`1Œx< Od�
C Ǒu1Œx� Od�

D Ǒ` C . Ǒu � Ǒ`/1Œ Od�x�
; (33.9)

where the estimates are obtained by least squares as

. Ǒ`; Ǒu; Od/ D argminˇ`;ˇu ;d

nX

iD1

.Yi � ˇ`1ŒXi <d� � ˇu1ŒXi �d�/
2:

These values are estimates for the best projected parameters defined by

.ˇ0
` ; ˇ0

u; d 0/ D argminˇ`;ˇu ;d IEŒ.Y � ˇ`1ŒX<d� � ˇu1ŒX�d�/
2�: (33.10)

The main mathematical difference of the stump in (33.9) to the toy estimator
in (33.3) is the behavior of Od in comparison to the behavior of Y n (and not the

992 P. Bühlmann

constants Ǒ` and Ǒu involved in the stump). It is shown in Bühlmann and Yu (2002)
that Od has convergence rate n�1=3 (in case of a smooth regression function) and a
limiting distribution which is non-Gaussian. This also explains that the bootstrap is
not consistent, but consistency as in (33.8) turned out to be crucial in our analysis
above. Bagging is still doing some kind of smoothing, but it is not known how this
behaves quantitatively. However, a computationally attractive version of bagging,
which has been found to perform often as good as bagging, turns out to be more
tractable from a theoretical point of view.

33.2.3 Subagging

Subagging is a sobriquet for subsample aggregating where subsampling is
used instead of the bootstrap for the aggregation. An estimator Og.�/ D
hn..X1; Y1/; : : : ; .Xn; Yn//.�/ is aggregated as follows:

OgSB.m/.�/ D
�

n

m

��1 X

.i1;:::;im/2I
hm..Xi1 ; Yi1/; : : : ; .Xim; Yim//.�/;

where I is the set of m-tuples (m < n) whose elements in f1; : : : ; ng are all distinct.
This aggregation can be approximated by a stochastic computation. The subagging
algorithm is as follows.

Subagging Algorithm

Step 1. For k D 1; : : : ; M (e.g. M D 50 or 100) do:

(i) Generate a random subsample .X�k
1 ; Y �k

1 /; : : : ; .X�k
m ; Y �k

m / by randomly draw-
ing m times without replacement from the data .X1; Y1/; : : : ; .Xn; Yn/ (instead
of resampling with replacement in bagging).

(ii) Compute the subsampled estimator
Og�k
.m/.�/ D hm..X�k

1 ; Y �k
1 /; : : : ; .X�k

m ; Y �k
m //.�/.

Step 2. Average the subsampled estimators to approximate
OgSB.m/.�/ �M �1

PM
kD1 Og�k

.m/.�/.

As indicated in the notation, subagging depends on the subsample size m which
is a tuning parameter (in contrast to M).

An interesting case is half subagging with m D bn=2c. More generally, we could
also use m D banc with 0 < a < 1 (i.e. m a fraction of n) and we will argue
why the usual choice m D o.n/ in subsampling for distribution estimation Politis
et al. (1999) is a bad choice. Half subagging with m D Œn=2� has been studied

33 Bagging, Boosting and Ensemble Methods 993

also in Buja and Stuetzle (2006): in case where Og is a U -statistic, half subagging is
exactly equivalent to bagging, and subagging yields very similar empirical results to
bagging when the estimator Og.�/ is a decision tree. Thus, if we don’t want to optimize
over the tuning parameter m, a good choice in practice is very often m D bn=2c.
Consequently, half subagging typically saves more than half of the computing time
because the computational order of an estimator Og D Og.n/ is usually at least linear
in n.

Subagging Regression Trees

We describe here in a non-technical way the main mathematical result from
Bühlmann and Yu (2002) about subagging regression trees.

The underlying assumptions for some mathematical theory are as follows. The
data generating regression model is

Yi D g.Xi /C "i ; i D 1; : : : ; n;

where X1; : : : ; Xn and "1; : : : ; "n are i.i.d. variables, independent from each other,
and IEŒ"1� D 0, IEj"1j2 < 1. The regression function g.�/ is assumed to be smooth
and the distribution of Xi and "i are assumed to have suitably regular densities.

It is then shown in Bühlmann and Yu (2002) that for m D banc .0 < a < 1/,

lim sup
n!1

IEŒ. OgSB.m/.x/ � g.x//2�

IEŒ. Ogn.x/ � g.x//2�
< 1;

for x in suitable neighborhoods (depending on the fraction a) around the best
projected split points of a regression tree (e.g. the parameter d 0 in (33.10) for a
stump), and where g.x/ D limn!1 IEŒ Og.x/�. That is, subagging asymptotically
reduces the MSE for x in neighborhoods around the unstable split points, a fact
which we may also compare with Fig. 33.2. Moreover, one can argue that globally,

IEŒ. OgSB.m/.X/ � g.X//2�
approx.

< IEŒ. Og.X/� g.X//2�

for n large, and where the expectations are taken also over (new) predictors X .
For subagging with small order m D o.n/, such a result is no longer true: the

reason is that small order subagging will then be dominated by a large bias (while
variance reduction is even better than for fraction subagging with m D banb; 0 <

a < 1).
Similarly as for the toy example in Sect. 33.2.2, subagging smoothes the hard

decisions in a regression tree resulting in reduced variance and MSE.

994 P. Bühlmann

33.2.4 Bagging More “Smooth” Base Procedures and Bragging

As discussed in Sects. 33.2.2 and 33.2.3, (su-)bagging smoothes out indicator
functions which are inherent in some base procedures such as decision trees. For
base procedures which are “smoother”, e.g. which do not involve hard decision
indicators, the smoothing effect of bagging is expected to cause only small effects.

For example, in Buja and Stuetzle (2006) it is proved that the effect of
bagging on the MSE is only in the second order term if the base procedure is a
U -statistic. Similarly, citing Chen and Hall (2003): “... when bagging is applied
to relatively conventional statistical problems, it cannot reliably be expected to
improve performance”. On the other hand, we routinely use nowadays “non-
conventional” methods: a simple example is variable selection and fitting in a linear
model where bagging has been demonstrated to improve predictive performance
(Breiman 1996a).

In Borra and Di Ciaccio (2002), the performance of bagging has been studied
for MARS, projection pursuit regression and regression tree base procedures:
most improvements of bagging are reported for decision trees. In Bühlmann and
Yu (2002), it is shown that bagging the basis function in MARS essentially doesn’t
change the asymptotic MSE. In Bühlmann (2003) it is empirically demonstrated in
greater detail that for finite samples, bagging MARS is by far less effective - and
sometimes very destructive - than bagging decision trees.

(Su-)bagging may also have a positive effect due to averaging over different
selected predictor variables; this is an additional effect besides smoothing out
indicator functions. In case of MARS, we could also envision that such an averaging
over different selected predictor variables would have a positive effect: in the
empirical analysis in Bühlmann (2003), this has been found to be only true when
using a robust version of aggregation, see below.

33.2.5 Bragging

Bragging stands for bootstrap robust aggregating (Bühlmann 2003): it uses the
sample median over the M bootstrap estimates Og�k.�/, instead of the sample mean
in Step 3 of the bagging algorithm.

While bragging regression trees was often found to be slightly less improving
than bagging, bragging MARS seems better than the original MARS and much
better than bagging MARS.

33.2.6 Out-of-bag Error Estimation

Bagging “automatically” yields an estimate of the out-of-sample error, sometimes
referred to as the generalization error. Consider a loss �.Y; Og.X//, measuring the

33 Bagging, Boosting and Ensemble Methods 995

discrepancy between an estimated function Og, evaluated at X , and the corresponding
response Y , e.g. �.Y; Og.X// D jY � Og.X/j2. The generalization error is then

err D IEŒ�.Y; Og.X//�;

where the expectation IE is over the training data .X1; Y1/; : : : ; .Xn; Yn/ (i.i.d. or
stationary pairs), Og.�/ a function of the training data, and .X; Y / is a new test
observation, independent from the training data but having the same distribution
as one training sample point .Xi ; Yi /.

In a bootstrap sample (in the bagging procedure), roughly exp.�1/ � 37%
of the original observations are left out: they are called “out-of-bag” observations
(Breiman 1996b). Denote by Bootk the original sample indices which were
resampled in the kth bootstrap sample; note that the out-of-bag sample observations
(in the kth bootstrap resampling stage) are then given by f1; : : : ; ng n Bootk which
can be used as test sets. The out-of-bag error estimate of bagging is then defined as

berrOB D n�1

nX

iD1

N �1
M

MX

kD1

1Œ.Xi ;Yi /…Bootk��.Yi ; Og�k.Xi//;

NM D
MX

kD1

1Œ.Xi ;Yi /…Bootk�:

In Bylander (2002), a correction of the out-of-bag error estimate is proposed. Out-
of-bag estimation can also be used for other tasks, e.g. for more honest class
probability estimates in classification when bagging trees (Breiman 1996b).

33.2.7 Disadvantages

The main disadvantage of bagging, and other ensemble algorithms, is the lack of
interpretation. A linear combination of decision trees is much harder to interpret
than a single tree. Likewise: bagging a variable selection - fitting algorithm for linear
models (e.g. selecting the variables using the AIC criterion within the least-squares
estimation framework) gives little clues which of the predictor variables are actually
important.

One way out of this lack of interpretation is sometimes given within the
framework of bagging. In Efron and Tibshirani (1998), the bootstrap has been
justified to judge the importance of automatically selected variables by looking
at relative appearance-frequencies in the bootstrap runs. The bagging estimator is
the average of the fitted bootstrap functions, while the appearance frequencies of
selected variables or interactions may serve for interpretation.

996 P. Bühlmann

33.2.8 Other References

Bagging may also be useful as a “module” in other algorithms: BagBoosting
Bühlmann and Yu (2000) is a boosting algorithm (see Sect. 35.3) with a bagged
base-procedure, often a bagged regression tree. The theory about bagging supports
the finding that BagBoosting using bagged regression trees, which have smaller
asymptotic MSEs than trees, is often better than boosting with regression trees.
This is empirically demonstrated for a problem about tumor classification using
microarray gene expression predictors (Dettling 2004).

In Ridgeway (2002), bagging is used in conjunction with boosting (namely
for stopping boosting iterations) for density estimation. In Dudoit and Fridlyand
(2003), bagging is used in the unsupervised context of cluster analysis, reporting
improvements when using bagged clusters instead of original cluster-outputs.

33.3 Stability Selection

Subsampling or bootstrapping are simple but effective techniques for increasing
“stability” of a method. In Sect. 35.2 we discussed bagging to potentially improve
the prediction performance of an algorithm or statistical estimator. Here, we will
briefly argue that subsampling or bootstrapping and aggregation leads to increased
power for variable selection and for controlling the expected number of false
positive selections.

To simplify the exposition, we consider data

.X1; Y1/; : : : ; .Xn; Yn/ i.i.d.;

where Xi is a d -dimensional covariate and Yi a univariate response. The goal is to
select the set of active variables

S D f1 � j � d I X.j / is associated with Y g: (33.11)

Here and in the sequel, x.j / denotes the j th component of the vector x. The wording
“associated to” is very loose, of course. Depending on the context, we can use
different definitions. For example, in a linear model

Y D
pX

j D1

ˇj X.j / C ";

we would define S D f1 � j � d I ˇj ¤ 0g. Similarly, we can use the
same definition for S in a generalized linear model with regression coefficients
ˇ1; : : : ; ˇd .

33 Bagging, Boosting and Ensemble Methods 997

33.3.1 Subsampling of Selection Procedure

We assume that we have specified an active set S as in (33.11) and we consider
a statistical method or algorithm OS for estimating S . As in Sect. 33.2.3, we
use subsampling with subsample size bn=2c. This yields a subsampled selection
estimate OS� and we can compute the selection probability from subsampling, for
each variable j 2 f1; : : : ; d g:

O�j D IP�Œj 2 OS��; j D 1; : : : ; d:

As in Sect. 33.2.3, we compute O�j by a stochastic approximation. Run the sub-
sampling M times, producing OS�1; : : : ; OS�M and use the right-hand side of the
following formula

O�j �M �1

MX

bD1

1Œj 2 OS�b�;

as an approximation for the left-hand side. Thus, the selection probabilities O�j are
obtained by aggregating the individual selectors OS�b from many subsampling runs
b D 1; : : : ; M , where M is large, e.g. M D 100.

The set of stable selections is defined as:

OSstable.�thr / D f1 � j � d I O�j � �thrg; (33.12)

where �thr is a tuning parameter to be chosen. We refer to OSstable.�thr / also as
“stability selection” (Meinshausen and Bühlmann 2010).

As described next, the choice of the tuning parameter should be governed by
controlling some false positive error measure.

33.3.2 Controlling False Positive Selections

Denote by V D V.�thr / D OSstable.�thr / \ Sc the number of false positives
with stability selection. Assuming some exchangeability condition on the design
or covariates, which is rather restrictive, and requiring that the selection procedure
OS is performing better than random guessing, a very simple formula controls the

expected number of false positive selections:

IEŒV .�thr /� � f rac12�thr � 1
q2

d
;

998 P. Bühlmann

where q is an upper bound for the selection algorithm j OSbn=2cj � q based on
bn=2c observations. For example, the selector OS is a forward selection algorithm
which stops when the first q variables have been selected. More details are given in
Meinshausen and Bühlmann (2010).

33.3.3 Related Work

Theoretical and empirical results are derived in Meinshausen and Bühlmann (2010)
showing that randomizing covariates is often beneficial for improved variable or fea-
ture selection. We note that randomizing covariates has also been successfully used
in Random Forests Breiman (2001). Another relation to subsampling as described in
Sect. 33.3.1 is given by multiple sample-splitting: this technique has been used for
deriving p-values in high-dimensional regression models (Meinshausen et al. 2009).

33.4 Boosting

Boosting algorithms have been proposed in the machine learning literature by
Schapire (Schapire 1990) and Freund (Freund 1995; Freund and Schapire 1996),
see also Schapire (2002). These first algorithms have been developed as ensemble
methods. Unlike bagging which is a parallel ensemble method, boosting methods
are sequential ensemble algorithms where the weights ck in (33.1) are depending
on the previous fitted functions Og1; : : : ; Ogk�1. Boosting has been empirically
demonstrated to be very accurate in terms of classification, notably the so-called
AdaBoost algorithm (Freund and Schapire 1996). A review of boosting from a
statistical perspective is given in Bühlmann and Hothorn (2007) where many of
the concepts and algorithms are illustrated with the R-software package mboost
(Hothorn et al. 2010).

We will explain below that boosting can be viewed as a nonparametric optimiza-
tion algorithm in function space, as first pointed out by Breiman (Breiman 1998,
1999). This view turns out to be very fruitful to adapt boosting for other problems
than classification, including regression and survival analysis.

Maybe it is worth mentioning here that boosting algorithms have often better
predictive power than bagging, cf. Breiman (1998); of course, such a statement has
to be read with caution, and methods should be tried out on individual data-sets,
including e.g. cross-validation, before selecting one among a few methods.

To give an idea, we report here some empirical results from Breiman (1998)
for classification: we show below the gains (in percentage) of boosting trees over
bagging trees:

33 Bagging, Boosting and Ensemble Methods 999

“normal” size data-sets: 64:3%; 10:8%; 20:3%;�4:6%; 6:9%; 16:2%;

large data-sets: 37:5%; 12:6%;�50:0%; 4:0%; 28:6%:

For all data-sets, boosting trees was better than a single classification tree. The
biggest loss of 50% for boosting in comparison with bagging is for a data-set
with very low misclassification error, where bagging achieves 0.014% and boosting
0.021%.

There is a striking similarity between gradient based boosting and the Lasso
in linear or generalized linear models, as we will describe in Sect. 33.4.10. Thus,
despite substantial conceptual differences, boosting-type algorithms are implicitly
related to `1-regularization.

33.4.1 Boosting as Functional Gradient Descent

Rather than looking through the lenses of ensemble methods, boosting algorithms
can be seen as functional gradient descent techniques (Breiman 1998, 1999). The
goal is to estimate a function g W IRd ! IR, minimizing an expected loss

IEŒ�.Y; g.X//�; �.�; �/ W IR 	 IR! IRC; (33.13)

based on data .Xi ; Yi / .i D 1; : : : n/ as in Sect. 33.2.1. The loss function � is
typically assumed to be convex in the second argument. We consider here both
cases where the univariate response Y is continuous (regression problem) or discrete
(classification problem), since boosting is potentially useful in both cases.

As we will see in Sect. 33.4.2, boosting algorithms are pursuing a “small”
empirical risk

n�1

nX

iD1

�.Yi ; g.Xi //

by selecting a g in the linear hull of some function class, i.e. g.�/ D P
k ckgk.�/

with gk.�/’s from a function class such as trees.
The most popular loss functions, for regression and binary classification, are

given in Table 33.1.

Table 33.1 The squared error, binomial negative log-likelihood and exponential loss functions
and their population minimizers; logit.p/ D log.p=.1 � p//

Boosting Loss function Population minimizer for (33.13)

L2Boost �.y; g/ D .y � g/2 g.x/ D IEŒY jX D x�

LogitBoost �.y; g/ D log2.1 C exp.�2.y � 1/g// g.x/ D 0:5 � logit.IPŒY D 1jX D x�/

AdaBoost �.y; g/ D exp.�.2y � 1/g/ g.x/ D 0:5 � logit.IPŒY D 1jX D x�/

1000 P. Bühlmann

−3 −2 −1 0 1 2 3

0
1

2
3

4
5

loss functions for binary classification

margin

Fig. 33.3 Loss functions of the margin for binary classification. Zero-one misclassification loss
(black), log-likelihood loss (red), exponential loss (green), squared error loss (blue). The loss-
functions are described in Table 33.1

While the squared error loss is mainly used for regression (see Bühlmann and
Yu (2003) for classification with the squared error loss), the log-likelihood and the
exponential loss are for binary classification only.

The Margin for Classification

The form of the log-likelihood loss may be somewhat unusual: we norm it, by using
the base 2 so that it “touches” the misclassification error as an upper bound (see
Fig. 33.3), and we write it as a function of the so-called margin Qyg, where Qy D
2y � 1 2 f�1; 1g is the usual labeling from the machine learning community. Thus,
the loss is a function of the margin Qyg only; and the same is true with the exponential
loss and also the squared error loss for classification since

. Qy � g/2 D Qy2 � 2 Qyg C g2 D 1 � 2 Qyg C . Qyg/2;

using Qy2 D 1.
The misclassification loss, or zero-one loss, is 1Œ Qyg<0�, again a function of the

margin, whose population minimizer is g.x/ D 1ŒIPŒY D1jXDx�>1=2�. For readers less

33 Bagging, Boosting and Ensemble Methods 1001

familiar with the concept of the margin, this can also be understood as follows: the
Bayes-classifier which minimizes the misclassification risk is

gBayes .x/ D 1ŒIPŒY D1jXDx�>1=2�:

We can now see that a misclassification occurs, if y D 0; gBayes .x/ D 1 or y D
1; gBayes .x/ D 0, which is equivalent to 2.y�1/gBayes .x/ < 0 or QygBayes .x/ < 0.

The (surrogate) loss functions given in Table 33.1 are all convex functions
of the margin Qyg which bound the zero-one misclassification loss from above,
see Fig. 33.3. The convexity of these surrogate loss functions is computationally
important for empirical risk minimization; minimizing the empirical zero-one loss
is computationally intractable.

33.4.2 The Generic Boosting Algorithm

Estimation of the function g.�/, which minimizes an expected loss in (33.13), is
pursued by a constrained minimization of the empirical risk n�1

Pn
iD1 �.Yi ; g.Xi //.

The constraint comes in algorithmically (and not explicitly), by the way we are
attempting to minimize the empirical risk, with a so-called functional gradient
descent. This gradient descent view has been recognized and refined by vari-
ous authors (cf. Breiman 1998, 1999; Bühlmann and Yu 2003; Friedman 2001;
Friedman et al. 2000; Mason et al. 2000). In summary, the minimizer of the
empirical risk is imposed to satisfy a “smoothness” constraint in terms of a
linear expansion of (“simple”) fits from a real-valued base procedure function
estimate.

Generic Functional Gradient Descent

Step 1 (initialization). Given data f.Xi ; Yi /I i D 1; : : : ; ng, apply the base procedure
yielding the function estimate

OF1.�/ D Og.�/;

where Og D OgX;Y D hn..X1; Y1/; : : : ; .Xn; Yn// is a function of the original data. Set
m D 1.

Step 2 (projecting gradient to learner). Compute the negative gradient vector

Ui D �@�.Yi ; g/

@g
jgD OFm.Xi /

; i D 1; : : : ; n;

1002 P. Bühlmann

evaluated at the current OFm.�/. Then, apply the base procedure to the gradient vector

OgmC1.�/;

where OgmC1 D OgX;U D hn..X1; U1/; : : : ; .Xn; Un// is a function of the original
predictor variables and the current negative gradient vector as pseudo-response.

Step 3 (line search). Do a one-dimensional numerical search for the best step-size

OsmC1 D argmins

nX

iD1

�.Yi ; OFm.Xi /C s OgmC1.Xi //:

Update,

OFmC1.�/ D OFm.�/C OsmC1 OgmC1.�/:

Step 4 (iteration). Increase m by one and repeat Steps 2 and 3 until a stopping
iteration M is achieved.

The number of iterations M is the tuning parameter of boosting. The larger it
is, the more complex the estimator. But the complexity, for example the variance of
the estimator, is not linearly increasing in M : instead, it increases very slowly as M

gets larger, see also Fig. 33.4 in Sect. 33.4.6.
Obviously, the choice of the base procedure influences the boosting estimate.

Originally, boosting has been mainly used with tree-type base procedures, typically
with small trees such as stumps (two terminal nodes) or trees having say 8 terminal
nodes (cf. Bauer and Kohavi 1999; Breiman 1998, 2004; Dettling and Bühlmann
2003; Friedman et al. 2000); see also Sect. 33.4.9. But we will demonstrate in
Sect. 33.4.7 that boosting may be very worthwhile within the class of linear, additive
or interaction models, allowing for good model interpretation.

The function estimate OgmC1 in Step 2 can be viewed as an estimate of IEŒUi jX D
x�, the expected negative gradient given the predictor X , and takes values in IR, even
in case of a classification problem with Yi in a finite set (this is different from the
AdaBoost algorithm, see below).

We call OFM .�/ the L2Boost-, LogitBoost- or AdaBoost-estimate, according to
the implementing loss function .y � g/2, log2.1C exp.�2.y � 1/g// or �.y; g/ D
exp.�.2y � 1/g/, respectively; see Table 33.1.

The original AdaBoost algorithm for classification is actually a bit different: the
base procedure fit is a classifier, and not a real-valued estimator for the conditional
probability of Y given X ; and Steps 2 and 3 are also somewhat different. Since
AdaBoost’s implementing exponential loss function is not well established in
statistics, we refer for a detailed discussion to Friedman et al. (2000). From a
statistical perspective, the squared error loss and log-likelihood loss functions are
most prominent and we describe below the corresponding boosting algorithms in
detail.

33 Bagging, Boosting and Ensemble Methods 1003

boosting

m

m
ea

n
sq

ua
re

d
er

ro
r

0 50 100 150 200

0.
2

0.
4

0.
6

0.
8

varying df

degrees of freedom

m
ea

n
sq

ua
re

d
er

ro
r

0 10 20 30 40

0.
2

0.
4

0.
6

0.
8

Fig. 33.4 Mean squared error IEŒ.g.X/ � Og.X//2� for new predictor X (solid line) and
n�1

Pn
iD1 IEŒ. OFm.Xi /�g.Xi //

2� (dotted line) from 100 simulations of a nonparametric regression
model with smooth regression function and Unif.Œ�1=2; 1=2�-distributed design points. Sample
size is n D 100. Left: L2Boost with cubic smoothing spline having df D 3, as a function of
boosting iterations m. Right: Cubic smoothing spline for various degrees of freedom (various
amount of smoothing)

Alternative Formulation in Function Space

In Steps 2 and 3 of the generic FGD algorithm, we associated with U1; : : : ; Un

a negative gradient vector. A reason for this can be seen from the following
formulation in function space.

Consider the empirical risk functional C.f / D n�1
Pn

iD1 �.f .Xi /; Yi / and the
inner product .f; g/n D n�1

Pn
iD1 f .Xi /g.Xi /. We can then calculate the negative

(functional) Gâteaux derivative dC.�/ of the functional C.�/,

�dC.f /.x/ D � @

@˛
C.f C ˛ıx/j˛D0; f W IRp ! IR; x 2 IRp;

where ıx denotes the delta- (or indicator-) function at x 2 IRp . In particular, when
evaluating the derivative �dC at Of Œm�1� and Xi , we get

� dC. Of Œm�1�/.Xi / D n�1Ui ; (33.14)

1004 P. Bühlmann

with U1; :::; Un exactly as in steps 2 and 3 of the generic FGD algorithm. Thus,
the negative gradient vector U1; : : : ; Un can be interpreted as a functional (Gâteaux)
derivative evaluated at the data points.

L2Boosting

Boosting using the squared error loss, L2Boost, has a simple structure: the negative
gradient in Step 2 is the classical residual vector and the line search in Step 3 is
trivial when using a base procedure which does least squares fitting.

L2Boosting Algorithm

Step 1 (initialization). As in Step 1 of generic functional gradient descent.

Step 2. Compute residuals Ui D Yi � OFm.Xi/ .i D 1; : : : ; n/ and fit the real-valued
base procedure to the current residuals (typically by (penalized) least squares) as
in Step 2 of the generic functional gradient descent; the fit is denoted by OgmC1.�/.
Update

OFmC1.�/ D OFm.�/C OgmC1.�/:

We remark here that, assuming the base procedure does some (potentially penalized)
least squares fitting of the residuals, the line search in Step 3 of the generic algorithm
becomes trivial with OsmC1 D 1.

Step 3 (iteration). Increase iteration index m by one and repeat Step 2 until a
stopping iteration M is achieved.

The estimate OFM .�/ is an estimator of the regression function IEŒY jX D ��.
L2Boosting is nothing else than repeated least squares fitting of residuals (cf.
Bühlmann and Yu 2003; Friedman 2001). With m D 2 (one boosting step), it
has already been proposed by Tukey (Tukey 1977) under the name “twicing”.
In the non-stochastic context, the L2Boosting algorithm is known as “Matching
Pursuit” (Mallat and Zhang 1993) which is popular in signal processing for fitting
overcomplete dictionaries.

LogitBoost

Boosting using the log-likelihood loss for binary classification (and more gener-
ally for multi-class problems) is known as LogitBoost (Friedman et al. 2000).

33 Bagging, Boosting and Ensemble Methods 1005

LogitBoost uses some Newton-stepping with the Hessian, rather than the line search
in Step 3 of the generic boosting algorithm:

LogitBoost Algorithm

Step 1 (initialization). Start with conditional probability estimates Op1.Xi / D
1=2 .i D 1; : : : ; n/ (for IPŒY D 1jX D Xi�). Set m D 1.

Step 2. Compute the pseudo-response (negative gradient)

Ui D Yi � Opm.Xi/

Opm.Xi/.1 � Opm.Xi//
;

and the weights

wi D Opm.Xi /.1 � Opm.Xi//:

Fit the real-valued base procedure to the current pseudo-response Ui .i D 1; : : : ; n/

by weighted least squares, using the current weights wi .i D 1; : : : n/; the fit is
denoted by OgmC1.�/. Update

OFmC1.�/ D OFm.�/C 0:5 � OgmC1.�/

and

OpmC1.Xi/ D exp. OFmC1.Xi //

exp. OFmC1.Xi //C exp.� OFmC1.Xi //
:

Step 3 (iteration). Increase iteration index m by one and repeat Step 2 until a
stopping iteration M is achieved.

The estimate OFM .�/ is an estimator for half of the log-odds ratio 0:5 � logit.IPŒY D
1jX D �� (see Table 33.1). Thus, a classifier (under equal misclassification loss for
the labels Y D 0 and Y D 1) is

sign. OFM .�//;

and an estimate for the conditional probability IPŒY D 1jX D �� is

OpM .�/ D exp. OFM .�//
exp. OFM .�//C exp.� OFM .�// :

A requirement for LogitBoost is that the base procedure has the option to be fitted
by weighted least squares.

1006 P. Bühlmann

Multi-Class Problems

The LogitBoost algorithm described above can be modified for multi-class problems
where the response variable takes values in a finite set f0; 1; : : : ; J � 1g with J > 2

by using the multinomial log-likelihood loss (Friedman et al. 2000). But sometimes
it can be advantageous to run instead a binary classifier (e.g. with boosting) for many
binary problems. The most common approach is to code for J binary problems
where the j th problem assigns the response

Y .j / D
(

1; if Y D j;

0; if Y ¤ j:

i.e. the so-called “one versus all” approach. For example, if single class-label can be
distinguished well from all others, the “one versus all” approach seems adequate:
empirically, this has been reported for classifying tumor types based on microarray
gene expressions when using a LogitBoost algorithm (Dettling and Bühlmann
2003).

Other codings of a multi-class into into multiple binary problems are discussed
in Allwein et al. (2001).

33.4.3 Poisson Regression

For count data with Y 2 f0; 1; 2; : : :g, we can use Poisson regression: we
assume that Y jX D x has a Poisson(�.x/) distribution and the goal is to estimate
the function g.x/ D log.�.x//. The negative log-likelihood yields then the loss
function

�.y; g/ D �yg C exp.g/; g D log.�/;

which can be used in the functional gradient descent algorithm in Sect. 33.4.2.

33.4.4 Small Step Size

It is often better to use small step sizes instead of using the full line search step-
length OsmC1 from Step 3 in the generic boosting algorithm (or OsmC1 � 1 for L2Boost
or OsmC1 � 0:5 for LogitBoost). We advocate here to use the step-size

� OsmC1; 0 < � � 1;

33 Bagging, Boosting and Ensemble Methods 1007

where � is constant during boosting iterations and small, e.g. � D 0:1. The param-
eter � can be seen as a simple shrinkage parameter, where we use the shrunken
� OgmC1.�/ instead of the unshrunken OgmC1.�/. Small step-sizes (or shrinkage) make
the boosting algorithm slower and require a larger number M of iterations. However,
the computational slow-down often turns out to be advantageous for better out-
of-sample prediction performance, cf. Friedman (2001), Bühlmann and Yu (2003).
There are also some theoretical reasons to use boosting with � (infinitesimally) small
(Efron et al. 2004).

33.4.5 The Bias-Variance Trade-Off for L2Boosting

We discuss here the behavior of boosting in terms of model-complexity and
estimation error when the number of iterations increase. This is best understood
in the framework of squared error loss and L2Boosting.

We represent the base procedure as an operator

S W IRn ! IRn; .U1; : : : ; Un/T 7! . OU1; : : : ; OUn/T

which maps a (pseudo-)response vector .U1; : : : ; Un/T to its fitted values; the
predictor variables X are absorbed here into the operator notation. That is,

S.U1; : : : ; Un/T D . Og.X1/; : : : ; Og.Xn//T ;

where Og.�/ D OgX;U .�/ is the estimate from the base procedure based on data
.Xi ; Ui /; i D 1; : : : ; n. Then, the boosting operator in iteration m equals

Bm D I � .I � S/m

and the fitted values of boosting after m iterations are

BmY D Y � .I � S/mY; Y D .Y1; : : : ; Yn/T :

Heuristically, if the base procedure satisfies kI �Sk < 1 for a suitable norm, i.e. has
a “learning capacity” such that the residual vector is shorter than the input-response
vector, we see that Bm converges to the identity I as m! 1, and BmY converges
to the fully saturated model Y as m ! 1, interpolating the response data exactly.
Thus, we have to stop the boosting algorithm at some suitable iteration number
m D M , and we see that a bias-variance trade-off is involved when varying the
iteration number M .

1008 P. Bühlmann

33.4.6 L2Boosting with Smoothing Spline Base Procedure for
One-Dimensional Curve Estimation

The case where the base procedure is a smoothing spline for a one-dimensional
predictor X 2 IR1 is instructive, although being only a toy example within the range
of potential applications of boosting algorithms.

In our notation from above, S denotes a smoothing spline operator which is
the solution (SY D g.X1/; : : : ; f .Xn/) of the following optimization problem (cf.
Wahba 1990)

argmingn�1

nX

iD1

.Yi � g.Xi //
2 C �

Z
g00.x/2dx:

The smoothing parameter � controls the bias-variance trade-off, and tuning the
smoothing spline estimator usually boils down to estimating a good value of �.
Alternatively, the L2Boosting approach for curve-estimation with a smoothing
spline base procedure is as follows.

Choosing the Base Procedure

Within the class of smoothing spline base procedures, we choose a spline by fixing
a smoothing parameter �. This should be done such that the base procedure has
low variance but potentially high bias: for example, we may choose � such that
the degrees of freedom df D trace.S/ is low, e.g. df D 2:5. Although the base
procedure has typically high bias, we will reduce it by pursuing suitably many
boosting iterations. Choosing the df is not really a tuning parameter: we only
have to make sure that df is small enough, so that the initial estimate (or first few
boosting estimates) are not already overfitting. This is easy to achieve in practice
and a theoretical characterization is described in Bühlmann and Yu (2003)).

Related aspects of choosing the base procedure are described in Sects. 33.4.7 and
33.4.9. The general “principle” is to choose a base procedure which has low variance
and having the property that when taking linear combinations thereof, we obtain a
model-class which is rich enough for the application at hand.

MSE Trace and Stopping

As boosting iterations proceed, the bias of the estimator will go down and the
variance will increase. However, this bias-variance exhibits a very different behavior
as when classically varying the smoothing parameter (the parameter �).

It can be shown that the variance increases with exponentially small increments
of the order exp.�C m/; C > 0, while the bias decays quickly: the optimal

33 Bagging, Boosting and Ensemble Methods 1009

mean squared error for the best boosting iteration m is (essentially) the same as
for the optimally selected tuning parameter � (Bühlmann and Yu 2003), but the
trace of the mean squared error is very different, see Fig. 33.4. The L2Boosting
method is much less sensitive to overfitting and hence often easier to tune.
The mentioned insensitivity about overfitting also applies to higher-dimensional
problems, implying potential advantages about tuning.

Asymptotic Optimality

Such L2Boosting with smoothing splines achieves the asymptotically optimal
minimax MSE rates, and the method can even adapt to higher order smoothness of
the true underlying function, without knowledge of the true degree of smoothness
(Bühlmann and Yu 2003).

L2Boosting Using Kernel Estimators

As pointed out above, L2Boosting of smoothing splines can achieve faster mean
squared error convergence rates than the classical O.n�4=5/, assuming that the true
underlying function is sufficiently smooth. We illustrate here a related phenomenon
with kernel estimators.

We consider fixed, univariate design points xi D i=n .i D 1; : : : ; n/ and
the Nadaraya-Watson kernel estimator for the nonparametric regression function
IEŒY jX D x�:

Og.xIh/ D .nh/�1

nX

iD1

K
�x � xi

h

�
Yi D n�1

nX

iD1

Kh.x � xi /Yi ;

where h > 0 is the bandwidth, K.�/ a kernel in the form of a probability density
which is symmetric around zero and Kh.x/ D h�1K.x=h/. It is straightforward to
derive the form of L2Boosting using m D 2 iterations (with Of Œ0� � 0 and � D 1),
i.e., twicing Tukey (1977), with the Nadaraya-Watson kernel estimator:

Of Œ2�.x/ D .nh/�1

nX

iD1

K tw
h .x � xi /Yi ; K tw

h .u/ D 2Kh.u/�Kh
Kh.u/;

where Kh
 Kh.u/ D n�1
Pn

rD1 Kh.u � xr/Kh.xr /. For fixed design points xi D
i=n, the kernel K tw

h .�/ is asymptotically equivalent to a higher-order kernel (which
can take negative values) yielding a squared bias term of order O.h8/, assuming that
the true regression function is four times continuously differentiable. Thus, twicing
or L2Boosting with m D 2 iterations amounts to be a Nadaraya-Watson kernel
estimator with a higher-order kernel. This explains from another angle why boosting

1010 P. Bühlmann

is able to improve the mean squared error rate of the base procedure. More details
including also non-equispaced designs are given in DiMarzio and Taylor (2008).

33.4.7 L2Boosting for Additive and Interaction Regression
Models

In Sect. 33.4.5, we already pointed out that L2Boosting yields another way of
regularization by seeking for a compromise between bias and variance. This
regularization turns out to be particularly powerful in the context with many
predictor variables.

Additive Modeling

Consider the component-wise smoothing spline which is defined as a smoothing
spline with one selected predictor variable X.O	/ (O	 2 f1; : : : ; d g), where

O	 D argmin	

nX

iD1

.Yi � Og	.X
.	/
i //2;

and Og	 are smoothing splines with single predictors X.j / , all having the same low
degrees of freedom df , e.g. df D 2:5.

L2Boost with component-wise smoothing splines yields an additive model, since
in every boosting iteration, a function of one selected predictor variable is linearly
added to the current fit and hence, we can always rearrange the summands to
represent the boosting estimator as an additive function in the original variables,Pd

j D1 Omj .xj /; x 2 IRd . The estimated functions Omj .�/ are fitted in a stage-wise
fashion and they are different from the backfitting estimates in additive models
(cf. Hastie and Tibshirani 1990). Boosting has much greater flexibility to add
complexity, in a stage-wise fashion: in particular, boosting does variable selection,
since some of the predictors will never be chosen, and it assigns variable amount of
degrees of freedom to the selected components (or function estimates); the degrees
of freedom are defined below. An illustration of this interesting way to fit additive
regression models with high-dimensional predictors is given in Figs. 33.5 and 33.6
(actually, a penalized version of L2Boosting, as described below, is shown).

When using regression stumps (decision trees having two terminal nodes) as
the base procedure, we also get an additive model fit (by the same argument as
with component-wise smoothing splines). If the additive terms mj .�/ are smooth
functions of the predictor variables, the component-wise smoothing spline is often
a better base procedure than stumps (Bühlmann and Yu 2003). For the purpose of
classification, e.g. with LogitBoost, stumps often seem to do a decent job; also, if

33 Bagging, Boosting and Ensemble Methods 1011

the predictor variables are non-continuous, component-wise smoothing splines are
often inadequate.

Finally, if the number d of predictors is “reasonable” in relation to sample size
n, boosting techniques are not necessarily better than more classical estimation
methods (Bühlmann and Yu 2003). It seems that boosting has most potential when
the predictor dimension is very high (Bühlmann and Yu 2003). Presumably, more
classical methods become then very difficult to tune while boosting seems to
produce a set of solutions (for every boosting iteration another solution) whose
best member, chosen e.g. via cross-validation, has often very good predictive
performance. A reason for the efficiency of the trace of boosting solutions is given
in Sect. 33.4.10.

Degrees of Freedom and AICc-Stopping Estimates

For component-wise base procedures, which pick one or also a pair of variables
at the time, all the component-wise fitting operators are involved: for simplicity,
we focus on additive modeling with component-wise fitting operators Sj ; j D
1; : : : ; d , e.g. the component-wise smoothing spline.

The boosting operator, when using the step size 0 < � � 1, is then of the form

Bm D I � .I � �SO	1 /.I � �SO	2 / : : : .I � �SO	m/;

where O	i 2 f1; : : : ; d g denotes the component which is picked in the component-
wise smoothing spline in the i th boosting iteration.

If the Sj ’s are all linear operators, and ignoring the effect of selecting the
components, it is reasonable to define the degrees of boosting as

df .Bm/ D trace.Bm/:

We can represent

Bm D
dX

j D1

Mj ;

where Mj D Mj;m is the linear operator which yields the fitted values for the j th
additive term, e.g. Mj Y D . Omj .X1/; : : : ; Omj .Xn//T . Note that the Mj ’s can be
easily computed in an iterative way by up-dating in the i th boosting iteration as
follows:

MO	i ;new MO	i ;old C �SO	i .I � Bi�1/

and all other Mj ; j ¤ O	i do not change. Thus, we have a decomposition of the total
degrees of freedom into the d additive terms:

1012 P. Bühlmann

df .Bm/ D
dX

j D1

dfj;m;

dfj;m D trace.Mj /:

The individual degrees of freedom dfj;m are a useful measure to quantify the
complexity of the j th additive function estimate Omj .�/ in boosting iteration m. Note
that dfj;m will increase very sub-linearly as a function of boosting iterations m, see
also Fig. 33.4.

Having some degrees of freedom at hand, we can now use the AIC, or some
corrected version thereof, to define a stopping rule of boosting without doing some
sort of cross-validation: the corrected AIC statistic (Hurvich et al. 1998) for boosting
in the mth iteration is

AICc D log. O�2/C 1C trace.Bm/=n

1 � .trace.Bm/C 2/=n
; (33.15)

O�2 D n�1

nX

iD1

.Yi � .BmY/i /
2: (33.16)

Alternatively, we could use generalized cross-validation (cf. Hastie et al. 2001),
which involves degrees of freedom. This would exhibit the same computational
advantage, as AICc , over cross-validation: instead of running boosting multiple
times, AICc and generalized cross-validation need only one run of boosting (over a
suitable number of iterations).

Penalized L2Boosting

When viewing the AICc criterion in (33.15) as a reasonable estimate of the true
underlying mean squared error (ignoring uninteresting constants), we may attempt
to construct a boosting algorithm which reduces in every step the AICc statistic (an
estimate of the out-sample MSE) most, instead of maximally reducing the in-sample
residual sum of squares.

We describe here penalized boosting for additive model fitting using individual
smoothing splines:

Penalized L2Boost with Additive Smoothing Splines

Step 1 (initialization). As in Step 1 of L2Boost by fitting a component-wise
smoothing spline.

33 Bagging, Boosting and Ensemble Methods 1013

Step 2. Compute residuals Ui D Yi � OFm.Xi/ .i D 1; : : : ; n/. Choose the individual
smoothing spline which reduces AICc most: denote the selected component by O	mC1

and the fitted function, using the selected component O	mC1 by OgmC1.�/.
Update

OFmC1.�/ D OFm.�/C � OgmC1.�/:

for some step size 0 < � � 1.

Step 3 (iteration). Increase iteration index m by one and repeat Step 2 until the AICc

criterion in (33.15) cannot be improved anymore.

This algorithm cannot be written in terms of fitting a base procedure multiple
times since selecting the component O	 in Step 2 not only depends on the residuals
U1; : : : ; Un, but also on the degrees of boosting, i.e. trace.BmC1/; the latter is a
complicated, although linear function, of the boosting iterations m0 2 f1; 2; : : : ; mg.
Penalized L2Boost yields more sparse solutions than the corresponding L2Boost
(with component-wise smoothing splines as corresponding base procedure). The
reason is that dfj;m increases only little in iteration m C 1, if the jth selected
predictor variables has already been selected many times in previous iterations; this
is directly connected to the slow increase in variance and overfitting as exemplified
in Fig. 33.4.

An illustration of penalized L2Boosting with individual smoothing splines is
shown in Figs. 33.5 and 33.6, based on simulated data. The simulation model is

X1; : : : ; Xn i.i.d. � Unif.Œ0; 1�100;

Yi D
10X

j D1

mj .X.j //C "i .i D 1; : : : ; n/;

"1; : : : ; "n i.i.d. � N .0; 0:5/; (33.17)

where the mj ’s are smooth curves having varying curve complexities, as illustrated
in Fig. 33.6. Sample size is n D 200 which is small in comparison to d D 100 (but
the effective number of predictors is only 10).

In terms of prediction performance, penalized L2Boosting is not always better
than L2Boosting; Fig. 33.7 illustrates an advantage of penalized L2Boosting. But
penalized L2Boosting is always sparser (or at least not less sparse) than the
corresponding L2Boosting.

Obviously, penalized L2Boosting can be used for other than additive smoothing
spline model fitting. The modifications are straightforward as long as the individual
base procedures are linear operators.

1014 P. Bühlmann

0 20 40 60 80 100

0
2

4
6

8
50 iterations

predictors

df

0
2

4
6

8

df

0
2

4
6

8

df

0 20 40 60 80 100

0
2

4
6

8

100 iterations

predictors

0 20 40 60 80 100

predictors

0 20 40 60 80 100

predictors

df
300 iterations 436 iterations

Fig. 33.5 Degrees of freedom (df) in additive model fitting for all 100 predictor variables (from
model (33.17)) during the process of penalized L2Boosting with individual smoothing splines
(having df D trace.Sj / D 2:5 for each spline). The first ten predictor variables (separated by
the dashed line) are effective. The result is based on one realization from model (33.17) with
sample size n D 200. The plot on the lower right corresponds to the estimated optimal number of
boosting iterations using the AICc criterion in (33.15). Only three non-effective predictors have
been selected (and assigned small amount of df), and one effective predictor has not been selected
(but whose true underlying function is close to the zero-line, see Fig. 33.6)

Interaction Modeling

L2Boosting for additive modeling can be easily extended to interaction modeling
(having low degree of interaction). Among the most prominent case is the second
order interaction model

Pd
j;kD1 Omj;k.xj ; xk/, where Omj;k W IR2 ! IR.

Boosting with a pairwise thin plate spline, which selects the best pair of predic-
tor variables yielding lowest residual sum of squares (when having the same degrees
of freedom for every thin plate spline), yields a second-order interaction model. We
demonstrate in Fig. 33.7 the effectiveness of this procedure in comparison with the

33 Bagging, Boosting and Ensemble Methods 1015

0.0 0.4 0.8

−
4

−
2

0
2

4
df = 3.5

predictor

0.0 0.4 0.8

−
4

−
2

0
2

4

predictor

df = 2.7

0.0 0.4 0.8

−
4

−
2

0
2

4

predictor

df = 0

0.0 0.4 0.8

−
4

−
2

0
2

4

predictor

df = 4.9

0.0 0.4 0.8

−
4

−
2

0
2

4

predictor

df = 5.3

0.0 0.4 0.8

−
4

−
2

0
2

4

predictor

df = 6.9

0.0 0.4 0.8

−
4

−
2

0
2

4

predictor

df = 6.3

0.0 0.4 0.8

−
4

−
2

0
2

4

predictor

df = 6.4

0.0 0.4 0.8

−
4

−
2

0
2

4

predictor

df = 0.9

0.0 0.4 0.8

−
4

−
2

0
2

4

predictor

df = 2.6

0.0 0.4 0.8

−
4

−
2

0
2

4

predictor

df = 8.2

0.0 0.4 0.8

−
4

−
2

0
2

4

predictor

df = 2.1

Fig. 33.6 True underlying additive regression curves (black) and estimates (red) from penalized
L2Boosting as described in Fig. 33.5 (using 436 iterations, estimated from (33.15)). The last
two plots correspond to non-effective predictors (the true functions are the zero-line), where
L2Boosting assigned most df among non-effective predictors

second-order MARS fit (Friedman 1991). The underlying model is the Friedman #1
model:

X1; : : : ; Xn i.i.d. � Unif..Œ0; 1�d /; d 2 f10; 20g;
Yi D 10 sin.�X.1/X.2//C 20.X.3/ � 0:5/2 C 10X.4/ C 5X.5/

C"i .i D 1; : : : ; n/;

"1; : : : ; "n i.i.d � N .0; 1/: (33.18)

1016 P. Bühlmann

0 100 200 300 400 500

degree 2 interaction modelling: d = 10, effective d = 5

boosting iterations

2
3

4
5

6
7

M
S

E

boosting
penalized boosting
MARS

2
3

4
5

6
7

M
S

E

boosting
penalized boosting
MARS

0 100 200 300 400 500

degree 2 interaction modelling: d = 20, effective d = 5

boosting iterations

Fig. 33.7 Mean squared errors for L2Boost with pairwise thin-plate splines (of two predictor
variables, having df D trace.Sj;k / D 2:5) (black), its penalized version (red) and MARS
restricted to the (correct) second order interactions (blue). The point with abscissa x=501 for the
boosting methods corresponds to the performance when estimating the number of iterations using
(33.15). Based on simulated data from model (33.18) with n D 50

The sample size is chosen as n D 50 which is small in comparison to d D 20.
In high-dimensional settings, it seems that such interaction L2Boosting is clearly

better than the more classical MARS fit, while both of them share the same superb
simplicity of interpretation.

33.4.8 Linear Modeling

L2Boosting turns out to be also very useful for linear models, in particular when
there are many predictor variables:

Y D Xˇ C "

33 Bagging, Boosting and Ensemble Methods 1017

where we use the well-known matrix-based notation. An attractive base procedure
is component-wise linear least squares regression, using the one selected predictor
variables which reduces residual sum of squares most.

This method does variable selection, since some of the predictors will never
be picked during boosting iterations; and it assigns variable amount of degrees
of freedom (or shrinkage), as discussed for additive models above. Recent theory
shows that this method is consistent for very high-dimensional problems where
the number of predictors d D dn is allowed to grow like exp.C n/ .C > 0/, but
the true underlying regression coefficients are sparse in terms of their `1-norm, i.e.
supn kˇk1 D supn

Pdn

j D1 jˇj j <1, where ˇ is the vector of regression coefficients
(Bühlmann 2006).

33.4.9 Boosting Trees

The most popular base procedures for boosting, at least in the machine learning
community, are trees. This may be adequate for classification, but when it comes
to regression, or also estimation of conditional probabilities IPŒY D 1jX D x�

in classification, smoother base procedures often perform better if the underlying
regression or probability curve is a smooth function of continuous predictor
variables (Bühlmann and Yu 2003).

Even when using trees, the question remains about the size of the tree. A guiding
principle is as follows: take the smallest trees, i.e. trees with the smallest number
k of terminal nodes, such that the class of linear combinations of k-node trees is
sufficiently rich for the phenomenon to be modeled; of course, there is also here a
trade-off between sample size and the complexity of the function class.

For example, when taking stumps with k D 2, the set of linear combinations
of stumps is dense in (or “yields" the) set of additive functions (Breiman 2004). In
Friedman et al. (2000), this is demonstrated from a more practical point of view.
When taking trees with three terminal nodes (k D 3), the set of linear combinations
of 3-node trees yields all second-order interaction functions. Thus, when aiming
for consistent estimation of the full regression (or conditional class-probability)
function, we should choose trees with k D d C 1 terminal nodes (in practice only
if the sample size is “sufficiently large” in relation to d), (cf. Breiman 2004).

Consistency of the AdaBoost algorithm is proved in Jiang (2004), for example
when using trees having d C 1 terminal nodes. More refined results are given in
Mannor et al. (2002), Zhang and Yu (2005) for modified boosting procedures with
more general loss functions.

Interpretation

The main disadvantage from a statistical perspective is the lack of interpretation
when boosting trees. This is in sharp contrast to boosting for linear, additive
or interaction modeling. An approach to enhance interpretation is described in
Friedman (2001).

1018 P. Bühlmann

33.4.10 Boosting and `1-Penalized Methods (Lasso)

Another method which does variable selection and variable amount of shrinkage
is basis pursuit (Chen et al. 1999) or Lasso (Tibshirani 1996) which employs an
`1-penalty for the coefficients in the log-likelihood.

There is an intriguing connection between L2Boosting with componentwise
linear least squares and the Lasso, as pointed out in Hastie et al. (2001). The
connection has been rigorously established in Efron et al. (2004): they consider
a version of L2Boosting, called forward stagewise linear regression (FSLR), and
they show that FSLR with infinitesimally small step-sizes (i.e., the value � in
Sect. 33.4.4) produces a set of solutions which is equivalent (as step-sizes tend to
zero) to the set of Lasso solutions when varying the regularization parameter � in
the Lasso

Ǒ.�/ D argminˇ

�
kY � Xˇk22=nC �kˇk1

�
:

The equivalence only holds though if the design matrix X satisfies a very restrictive
“positive cone condition” (Efron et al. 2004).

Despite the fact that L2Boosting and Lasso are not equivalent methods in general,
it may be useful to interpret boosting as being “related” to `1-penalty based methods.
This is particularly interesting when looking at the problem of high-dimensional
variable selection. For the Lasso, sufficient and necessary conditions on the design
X have been derived for consistent variable selection (Meinshausen and Bühlmann
2006; Zhao and Yu 2006). In view of these rather restrictive design conditions, the
adaptive Lasso has been proposed (Zou 2006). Related to the adaptive Lasso, Twin
boosting (Bühlmann and Hothorn 2010) is a very general method, like the generic
boosting algorithm in Sect. 33.4.2 which has better variable selection properties than
boosting. Similarly, when looking at estimation error in terms of k Ǒ � ˇk1 or k Ǒ �
ˇk2, many refined results have been worked out for the Lasso (cf. Bickel et al. 2009).

33.4.11 Aggregation

In the machine learning community, there has been a substantial focus on consistent
estimation in the convex hull of function classes (cf. Bartlett 2003; Bartlett et al.
2006; Lugosi and Vayatis 2004) which is a special case of aggregation (cf. Tsybakov
2004). For example, one may want to estimate a regression or probability function
which can be written as

1X

kD1

wkgk.�/; wk � 0;

1X

kD1

wk D 1;

33 Bagging, Boosting and Ensemble Methods 1019

where the gk.�/’s belong to a function class such as stumps or trees with a fixed
number of terminal nodes. The quantity above is a convex combination of individual
functions, in contrast to boosting which pursues linear combination of individual
functions. By scaling, which is necessary in practice and theory (cf. Lugosi and
Vayatis 2004), one can actually look at this as a linear combination of functions
whose coefficients satisfy

P
k wk D �. This then represents an `1-constraint as in

Lasso, a relation which we have already outlined above.

33.4.12 Other References

Boosting, or functional gradient descent, has also been proposed for other set-
tings than regression or classification, including survival analysis (Benner 2002),
ordinal response problems (Tutz and Hechenbichler 2005), generalized monotonic
regression (Leitenstorfer and Tutz 2007), and high-multivariate financial time series
(Audrino and Barone-Adesi 2005; Audrino and Bühlmann 2003). More references
are provided in Bühlmann and Hothorn (2007).

Random Forests (Breiman 2001) is another, powerful ensemble method which
exhibits excellent predictive performance over a wide range of problems. In addi-
tion, it assigns variable importance which is of tremendous use for feature/variable
selection and ranking features/variables (cf. Strobl et al. 2008). Some theoretical
properties are derived in Li and Jeon (2006) and Biau et al. (2008).

Support vector machines (cf. Hastie et al. 2001; Schölkopf and Smola 2002;
Vapnik 1998) have become very popular in classification due to their good perfor-
mance in a variety of data sets, similarly as boosting methods for classification. A
connection between boosting and support vector machines has been made in Rosset
et al. (2004), suggesting also a modification of support vector machines to more
sparse solutions (Zhu et al. 2004).

Acknowledgments: I would like to thank Marcel Dettling for some constructive
comments.

References

Allwein, E., Schapire, R., Singer, Y.: Reducing multiclass to binary: a unifying approach for margin
classifiers. J. Mach. Learn. Res. 1, 113–141 (2001)

Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees. Neural Comput.
9, 1545–1588 (1997)

Audrino F., Barone-Adesi G.: A multivariate FGD technique to improve VaR computation in equity
markets. Comput. Manag. Sci. 2, 87–106 (2005)

Audrino, F., Bühlmann, P.: Volatility estimation with functional gradient descent for very high-
dimensional financial time series. J. Comput. Fin, 6(3), 65–89 (2003)

Bartlett, P.L.: Prediction algorithms: complexity, concentration and convexity. In: Proceedings of
the 13th IFAC Symposium on System Identification, pp. 1507–1517 (2003)

1020 P. Bühlmann

Bartlett, P.L., Jordan, M.I., McAuliffe, J.D.: Convexity, classification, and risk bounds. J. Am. Stat.
Assoc. 101, 138–156 (2006)

Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: bagging,
boosting and variants. Mach. Learn. 36, 1545–1588 (1999)

Biau, G., Devroye, L. Lugosi, G.: Consistency of Random Forests and other averaging classifiers.
J. Mach. Learn. Res. 9, 2015–2033 (2008)

Benner, A.: Application of “aggregated classifiers” in survival time studies. In: Härdle, W., Rönz,
B. (eds.) In: COMPSTAT 2002 – Proceedings in Computational Statistics – 15th Symposium
held in Physika, Heidelberg, Berlin (2002)

Bickel, P., Ritov, Y., Tsybakov, A.: Simultaneous analysis of lasso and dantzig selector. Ann. Stat.
37, 1705–1732 (2009)

Borra, S., Di Ciaccio, A.: Improving nonparametric regression methods by bagging and boosting.
Comput. Stat. Data Anal. 38, 407–420 (2002)

Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996a)
Breiman, L.: Out-of-bag estimation. Technical Report (1996b); Available from ftp://ftp.stat.

berkeley.edu/pub/users/breiman/
Breiman, L.: Arcing classifiers. Ann. Stat. 26, 801–824 (1998)
Breiman, L.: Prediction games & arcing algorithms. Neu. Comput. 11, 1493–1517 (1999)
Breiman, L.: Random Forests. Mach. Learn. 45, 5–32 (2001)
Breiman, L.: Population theory for boosting ensembles. Ann. Stat. 32, 1–11 (2004)
Bühlmann, P.: Bagging, subagging and bragging for improving some prediction algorithms. In:

Akritas, M.G., Politis, D.N. (eds.) In: Recent Advances and Trends in Nonparametric Statistics,
Elsevier, Amsterdam (2003)

Bühlmann, P.: Boosting for high-dimensional linear models. Ann. Stat. 34, 559–583 (2006)
Bühlmann, P., Hothorn, T.: Boosting algorithms: regularization, prediction and model fitting (with

discussion). Stat. Sci. 22, 477–505 (2007)
Bühlmann, P., Hothorn, T.: Twin Boosting: improved feature selection and prediction. Stat.

Comput. 20, 119–138 (2010)
Bühlmann, P., Yu, B: Discussion on Additive logistic regression: a statistical view of boosting

(Auths. Friedman, J., Hastie, T., Tibshirani, R.) Ann. Stat. 28, 377–386 (2000)
Bühlmann, P., Yu, B.: Analyzing bagging. Ann. Stat. 30, 927–961 (2002)
Bühlmann, P., Yu, B.: Boosting with the L2loss: regression and classification. J. Am. Stat. Assoc.

98, 324–339 (2003)
Buja, A., Stuetzle, W.: Observations on bagging. Statistica Sinica 16, 323–351 (2006)
Bylander, T.: Estimating generalization error on two-class datasets using out-of-bag estimates.

Mach. Learn. 48, 287–297 (2002)
Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci.

Comput. 20(1), 33–61 (1999)
Chen, S.X., Hall, P.: Effects of bagging and bias correction on estimators defined by estimating

equations. Statistica Sinica 13, 97–109 (2003)
DiMarzio, M., Taylor, C.: On boosting kernel regression. J. Stat. Plann. Infer. 138, 2483–2498

(2008)
Dettling, M.: BagBoosting for tumor classification with gene expression data. Bioinformatics 20

(18), 3583–3593 (2004).
Dettling, M., Bühlmann, P.: Boosting for tumor classification with gene expression data. Bioinfor-

matics 19(9), 1061–1069 (2003)
Dudoit, S., Fridlyand, J.: Bagging to improve the accuracy of a clustering procedure.

Bioinformatics 19(9), 1090–1099 (2003)
Efron, B., Tibshirani, R.: The problem of regions. Ann. Stat. 26, 1687–1718 (1998)
Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression (with discussion). Ann.

Stat. 32, 407–451 (2004)
Freund, Y.: Boosting a weak learning algorithm by majority. Inform. Comput. 121, 256–285 (1995)

33 Bagging, Boosting and Ensemble Methods 1021

Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In Machine Learning:
Proceedings of 13th International Conference, pp. 148–156. Morgan Kauffman, San Francisco
(1996)

Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19, 1–141 (1991)
Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29,

1189–1232 (2001)
Friedman, J.H., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of

boosting. Ann. Stat. 28, 337–407 (2000)
Hastie, T.J., Tibshirani, R.J.: Generalized Additive Models. Chapman & Hall, London (1990)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Data Mining,

Inference and Prediction. Springer, New York (2001)
Hothorn, T., Bühlmann, P., Kneib, T., Schmid M., Hofner, B.: Model-based boosting 2.0. Journal

of Machine Learning Research 11, 2109–2113 (2010).
Hurvich, C.M., Simonoff, J.S., Tsai, C.-L.: Smoothing parameter selection in nonparametric

regression using an improved Akaike information criterion. J. Roy. Stat. Soc. B 60, 271–293
(1998)

Jiang, W.: Process consistency for AdaBoost (with discussion). Ann. Stat. 32, 13–29, (disc.
pp. 85–134) (2004)

Leitenstorfer, F., Tutz, G.: Generalized monotonic regression based on B-splines with an applica-
tion to air pollution data. Biostatistics 8, 654–673 (2007)

Li, Y., Jeon, Y.: Random Forests and adaptive nearest neighbors. J. Am. Stat. Assoc. 101, 578–590
(2006)

Lugosi, G., Vayatis, N.: On the Bayes-risk consistency of regularized boosting methods. Ann. Stat.
32, 30–55 (disc. pp. 85–134) (2004)

Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal
Process. 41, 3397–3415 (1993)

Mannor, S., Meir, R., Zhang, T.: The consistency of greedy algorithms for classification. Proceed-
ings COLT02, Vol. 2375 of LNAI, pp. 319–333. Springer, Sydney (2002)

Mason, L., Baxter, J., Bartlett, P., Frean, M.: Functional gradient techniques for combining
hypotheses. In: Smola, A.J., Bartlett, P.J., Schölkopf, B., Schuurmans, D. (eds.) In: Advances in
Large Margin Classifiers MIT Press, Cambridge, MA (2000)

Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the Lasso.
Ann. Stat. 34, 1436–1462 (2006)

Meinshausen, N., Bühlmann, P.: Stability selection (with discussion). Journal of the Royal
Statistical Society: Series B, 72, 417–473 (2010).

Meinshausen, N., Meier, L., Bühlmann, P.: p-values for high-dimensional regression. J. Am. Stat.
Assoc. 104, 1671–1681 (2009)

Politis, D.N., Romano, J.P., Wolf, M.: Subsampling. Springer, New York (1999)
Ridgeway, G.: Looking for lumps: Boosting and bagging for density estimation. Comput. Stat.

Data Anal. 38(4), 379–392 (2002)
Rosset, S., Zhu, J., Hastie, T.: Boosting as a regularized path to a maximum margin classifier.

J. Mach. Learn. Res. 5, 941–973 (2004)
Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5, 197–227 (1990)
Schapire, R.E.: The boosting approach to machine learning: an overview. In: Denison,

D.D., Hansen, M.H., Holmes, C.C., Mallick, B., Yu, B. (eds.) In: MSRI Workshop on Nonlinear
Estimation and Classification. Springer, New York (2002)

Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)
Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., Zeileis, A.: Conditional variable importance

for random forests. BMC Bioinformatics 9(307), 1–11 (2008)
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. B 58, 267–288

(1996)
Tsybakov, A.: Optimal aggregation of classifiers in statistical learning. Ann. Stat. 32, 135–166

(2004)
Tukey, J.W.: Exploratory data analysis. Addison-Wesley, Reading, MA (1977)

1022 P. Bühlmann

Tutz, G., Hechenbichler, K.: Aggregating classifiers with ordinal response structure. J. Stat.
Comput. Simul. 75, 391–408 (2005)

Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)
Wahba, G.: Spline Models for Observational Data. Society for Industrial and Applied Mathematics

(1990)
Zhang, T., Yu, B.: Boosting with early stopping: convergence and consistency. Ann. Stat. 33,

1538–1579 (2005)
Zhao, P., Yu, B.: On model selection consistency of Lasso. J. Mac. Learn. Res. 7, 2541–2563

(2006)
Zhu, J., Rosset, S., Hastie, T., Tibshirani, R.: 1-norm support vector machines. Advances in Neural

Information Processing Systems 16: Proceedings of the 2003 Conference, 49–56 (2004)
Zou, H.: The adaptive Lasso and its oracle properties. J. Am. Stat. Assoc. 101, 1418–1429 (2006)

	Chapter
33 Bagging, Boosting and Ensemble Methods
	33.1 An Introduction to Ensemble Methods
	33.2 Bagging and Related Methods
	33.2.1 Bagging
	33.2.2 Unstable Estimators with Hard Decision Indicator
	33.2.3 Subagging
	33.2.4 Bagging More ``Smooth'' Base Procedures and Bragging
	33.2.5 Bragging
	33.2.6 Out-of-bag Error Estimation
	33.2.7 Disadvantages
	33.2.8 Other References

	33.3 Stability Selection
	33.3.1 Subsampling of Selection Procedure
	33.3.2 Controlling False Positive Selections
	33.3.3 Related Work

	33.4 Boosting
	33.4.1 Boosting as Functional Gradient Descent
	33.4.2 The Generic Boosting Algorithm
	33.4.3 Poisson Regression
	33.4.4 Small Step Size
	33.4.5 The Bias-Variance Trade-Off for L2Boosting
	33.4.6 L2Boosting with Smoothing Spline Base Procedure for One-Dimensional Curve Estimation
	33.4.7 L2Boosting for Additive and Interaction Regression Models
	33.4.8 Linear Modeling
	33.4.9 Boosting Trees
	33.4.10 Boosting and 1-Penalized Methods (Lasso)
	33.4.11 Aggregation
	33.4.12 Other References

	References

