
Chapter 3
Random Number Generation

Pierre L’Ecuyer

3.1 Introduction

The fields of probability and statistics are built over the abstract concepts of
probability space and random variable. This has given rise to elegant and powerful
mathematical theory, but exact implementation of these concepts on conventional
computers seems impossible. In practice, random variables and other random
objects are simulated by deterministic algorithms. The purpose of these algorithms
is to produce sequences of numbers or objects whose behavior is very hard to
distinguish from that of their “truly random” counterparts, at least for the application
of interest. Key requirements may differ depending on the context. For Monte Carlo
methods, the main goal is to reproduce the statistical properties on which these
methods are based, so that the Monte Carlo estimators behave as expected, whereas
for gambling machines and cryptology, observing the sequence of output values for
some time should provide no practical advantage for predicting the forthcoming
numbers better than by just guessing at random.

In computational statistics, random variate generation is usually made in two
steps: (1) generating imitations of independent and identically distributed (i.i.d.)
random variables having the uniform distribution over the interval .0; 1/ and (2)
applying transformations to these i.i.d. U.0; 1/ random variates to generate (or
imitate) random variates and random vectors from arbitrary distributions. These
two steps are essentially independent and the world’s best experts on them are two
different groups of scientists, with little overlap. The expression (pseudo)random
number generator (RNG) usually refers to an algorithm used for step (1).
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In principle, the simplest way of generating a random variate X with distribution
function F from a U.0; 1/ random variate U is to apply the inverse of F to U :

X D F �1.U /
defD minfx j F.x/ � U g: (3.1)

This is the inversion method. It is easily seen that X has the desired distribution:
P ŒX � x� D P ŒF �1.U / � x� D P ŒU � F.x/� D F.x/. Other methods are
sometimes preferable when F �1 is too difficult or expensive to compute, as will be
seen later.

The remainder of this chapter is organized as follows. In the next section,
we give a definition and the main requirements of a uniform RNG. Generators
based on linear recurrences modulo a large integer m, their lattice structure and
quality criteria, and their implementation, are covered in Sect. 3.3. In Sect. 3.4,
we have a similar discussion for RNGs based on linear recurrences modulo 2.
Nonlinear RNGs are briefly presented in Sect. 3.5. In Sect. 3.6, we discuss empirical
statistical testing of RNGs and give some examples. Section 3.7 contains a few
pointers to recommended RNGs and software. In Sect. 3.8, we cover non-uniform
random variate generators. We first discuss inversion and its implementation in
various settings. We then explain the rejection, ratio-of-uniform, composition and
convolution methods, provide pointers to other methods that apply in special cases,
and discuss multivariate distributions.

Important basic references that we recommend are Knuth (1998), L’Ecuyer
(1994, 1998), Niederreiter (1992), and Tezuka (1995) for uniform RNGs, and
Devroye (1986, 2006), Gentle (2003), and Hörmann et al. (2004) for non-uniform
RNGs.

3.2 Uniform Random Number Generators

3.2.1 Physical Devices

Random numbers can be generated via physical mechanisms such as the timing
between successive events in atomic decay, thermal noise in semiconductors, photon
counting and photon trajectory detectors, and the like. A key issue when construct-
ing a RNG based on a physical device is that a “random” or “chaotic” output
does not suffice; the numbers produced must be, at least to a good approximation,
realizations of independent and uniformly distributed random variables. If the
device generates a stream of bits, which is typical, then each bit should be 0 or
1 with equal probability, and be independent of all the other bits. In general, this
cannot be proved, so one must rely on the results of empirical statistical testing to
get convinced that the output values have the desired statistical behavior, at least
approximately. Not all these devices are reliable, but some are and, as far as we
know, they pass all statistical tests that can be run in reasonable time.
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For computational statistics, physical devices have several disadvantages com-
pared to a good algorithmic RNG that stands in a few lines of code. For example,
(a) they are much more cumbersome to install and run; (b) they are more costly; (c)
they are slower; (d) they cannot reproduce exactly the same sequence twice. Item
(d) is important in several contexts, including program verification and debugging
as well as comparison of similar systems by simulation with common random
numbers to reduce the variance (Bratley et al. 1987; Fishman 1996; Law and Kelton
2000). Nevertheless, these physical RNGs can be useful for selecting the seed of an
algorithmic RNG, more particularly for applications in cryptology and for gaming
machines, where frequent reseeding of the RNG with an external source of entropy
(or randomness) is important. A good algorithmic RNG whose seed is selected at
random can be viewed as an extensor of randomness, stretching a short random seed
into a long sequence of pseudorandom numbers.

3.2.2 Generators Based on a Deterministic Recurrence

RNGs used for simulation and other statistical applications are almost always based
on deterministic algorithms that fit the following framework, taken from L’Ecuyer
(1994): a RNG is a structure .S; �; f;U ; g/ where S is a finite set of states (the state
space), � is a probability distribution on S used to select the initial state (or seed)
s0, f W S ! S is the transition function, U is the output space, and g W S ! U is
the output function. Usually, U D .0; 1/, and we shall assume henceforth that this is
the case. The state of the RNG evolves according to the recurrence si D f .si�1/, for
i � 1, and the output at step i is ui D g.si / 2 U . The output values u0; u1; u2; : : :

are the so-called random numbers produced by the RNG.
Because S is finite, there must be some finite l � 0 and j > 0 such that

slCj D sl . Then, for all i � l , one has siCj D si and uiCj D ui , because both
f and g are deterministic. That is, the state and output sequences are eventually
periodic. The smallest positive j for which this happens is called the period of the
RNG, and is denoted by �. When l D 0, the sequence is said to be purely periodic.
Obviously, � � jSj, the cardinality of S. If the state has a k-bit representation on
the computer, then � � 2k. Good RNGs are designed so that their period � is not
far from that upper bound. In general, the value of � may depend on the seed s0, but
good RNGs are normally designed so that the period is the same for all admissible
seeds.

In practical implementations, it is important that the output be strictly between 0
and 1, because F �1.U / is often infinite when U is 0 or 1. All good implementations
take care of that. However, for the mathematical analysis of RNGs, we often assume
that the output space is Œ0; 1/ (i.e., 0 is admissible), because this simplifies the
analysis considerably without making much difference in the mathematical structure
of the generator.
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3.2.3 Quality Criteria

What important quality criteria should we consider when designing RNGs? An
extremely long period is obviously essential, to make sure that no wrap-around
over the cycle can occur in practice. The length of the period must be guaranteed
by a mathematical proof. The RNG must also be efficient (run fast and use only
a small amount of memory), repeatable (able to reproduce exactly the same
sequence as many times as we want), and portable (work the same way in different
software/hardware environments). The availability of efficient jump-ahead methods
that can quickly compute siC� given si , for any large � and any i , is also very useful,
because it permits one to partition the RNG sequence into long disjoint streams and
substreams of random numbers, to create an arbitrary number of virtual generators
from a single RNG (Law and Kelton 2000; L’Ecuyer 2008; L’Ecuyer et al. 2002).
These virtual generators can be used on parallel processors or to support different
sources of randomness in a large simulation model, for example.

To show that these properties are not sufficient, consider a RNG with state space
S D f0; : : : ; 21000 � 1g, transition function siC1 D f .si / D .si C1/ mod 21000, and
ui D g.si / D si =21000. This RNG has period 21000 and enjoys all the nice properties
described in the preceding paragraph, but it is far from imitating “randomness.”

A sequence of real-valued random variables u0; u1; u2; : : : are i.i.d. U.0; 1/ if
and only if for all integers i � 0 and t > 0, the vector ui;t D .ui ; : : : ; uiCt�1/

is uniformly distributed over the t-dimensional unit hypercube .0; 1/t . Of course,
this cannot hold for algorithmic RNGs because any vector of t successive values
produced by the generator must belong to the finite set

�t D f.u0; : : : ; ut�1/ W s0 2 Sg;

which is the set of all vectors of t successive output values, from all possible initial
states. Here we interpret �t as a multiset, which means that the vectors are counted
as many times as they appear, and the cardinality of �t is exactly equal to that of S.

Suppose we select the seed s0 at random, uniformly over S. This can be
approximated by using some physical device, for example. Then, the vector u0;t

has the uniform distribution over the finite set �t . And if the sequence is purely
periodic for all s0, ui;t D .ui ; : : : ; uiCt�1/ is also uniformly distributed over �t for
all i � 0. Since the goal is to approximate the uniform distribution over .0; 1/t ,
it immediately becomes apparent that �t should be evenly spread over this unit
hypercube. In other words, �t approximates .0; 1/t as the sample space from which
the vectors of successive output values are drawn randomly, so it must be a good
approximation of .0; 1/t in some sense. The design of good-quality RNGs must
therefore involve practical ways of measuring the uniformity of the corresponding
sets �t even when they have huge cardinalities. In fact, a large state space S is
necessary to obtain a long period, but an even more important reason for having a
huge number of states is to make sure that �t can be large enough to provide a good
uniform coverage of the unit hypercube, at least for moderate values of t .
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More generally, we may also want to measure the uniformity of sets of the form

�I D f.ui1 ; : : : ; uit / j s0 2 Sg;

where I D fi1; � � � ; it g is a fixed set of non-negative integers such that 0 � i1 <

� � � < it . As a special case, we recover �t D �I when I D f0; : : : ; t �1g. Of course,
there are so many such sets �I that we cannot examine the uniformity over all of
them, but we can do it over a selected class J of such sets deemed more important.

The uniformity of a set �I is typically assessed by measuring the discrepancy
between the empirical distribution of its points and the uniform distribution over
.0; 1/t (L’Ecuyer 2009; L’Ecuyer and Lemieux 2002; Niederreiter 1992). Discrep-
ancy measures are equivalent to goodness-of-fit test statistics for the multivariate
uniform distribution. They can be defined in many different ways. The choice of a
specific definition typically depends on the mathematical structure of the RNG to
be studied and the reason for this is very pragmatic: we must be able to compute
these measures quickly even when S has very large cardinality, for instance 2200

or more. This obviously excludes any method that requires explicit generation of
the sequence over its entire period. The selected discrepancy measure is usually
computed for each set I in a predefined class J , these values are weighted or
normalized by factors that depend on I , and the worst-case (or average) over J is
adopted as a figure of merit used to rank RNGs. The choice of J and of the weights
are arbitrary. Typically, J would contain sets I such that t and it � i1 are rather
small. Examples of such figures of merit will be given when we discuss specific
classes of RNGs.

3.2.4 Statistical Testing

Good RNGs are designed based on mathematical analysis of their properties, then
implemented and submitted to batteries of empirical statistical tests. These tests try
to detect empirical evidence against the null hypothesis H0: “the ui are realizations
of i.i.d. U.0; 1/ random variables.” A test can be defined by any function T that
maps a sequence u0; u1; : : : in .0; 1/ to a real number X , and for which a good
approximation is available for the distribution of the random variable X under H0.
For the test to be implementable, X must depend on only a finite (but perhaps
random) number of ui ’s. Passing many tests may improve one’s confidence in the
RNG, but never guarantees that the RNG is foolproof for all kinds of simulations.

Building a RNG that passes all statistical tests is an impossible dream. Consider,
for example, the class of all tests that examine the first (most significant) b bits of n

successive output values, u0; : : : ; un�1, and return a binary value X 2 f0; 1g. Select
˛ 2 .0; 1/ so that ˛2nb is an integer and let Tn;b;˛ be the set of tests in this class that
return X D 1 for exactly ˛2nb of the 2nb possible output sequences. We say that
the sequence fails the test when X D 1. This Tn;b;˛ is the set of all statistical tests
of (exact) level ˛. Its cardinality is equal to the number of ways of choosing ˛2nb
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distinct objects among 2nb. The chosen objects are the sequences that fail the test.
For any given output sequence, the number of tests in Tn;b;˛ that return 1 for this
sequence is equal to the number of ways of choosing the other ˛2nb � 1 sequences
that also fail the test. This is the number of ways of choosing ˛2nb � 1 distinct
objects among 2nb � 1. In other words, as pointed out by Leeb (1995), every output
sequence fails exactly the same number of tests! Viewed from a different angle,
it is a restatement of the well-known fact that under H0, each of the 2nb possible
sequences has the same probability of occurring, so one may argue that none should
be considered more random than any other (Knuth 1998).

This viewpoint seems to lead into a dead end. For statistical testing to be
meaningful, all tests should not be considered on equal footing. So which ones are
more important? Any answer is tainted with arbitrariness. However, for large values
of n, the number of tests is huge and all but a tiny fraction are too complicated even
to be implemented. So we may say that bad RNGs are those that fail simple tests,
whereas good RNGs fail only complicated tests that are hard to find and run. This
common-sense compromise has been generally adopted in one way or another.

Experience shows that RNGs with very long periods, good structure of their set
�t , and based on recurrences that are not too simplistic, pass most reasonable tests,
whereas RNGs with short periods or bad structures are usually easy to crack by
standard statistical tests. For sensitive applications, it is a good idea, when this
is possible, to apply additional statistical tests designed in close relation with the
random variable of interest (e.g., based on a simplification of the stochastic model
being simulated, and for which the theoretical distribution can be computed).

Our discussion of statistical tests continues in Sect. 3.6. A key reference is
L’Ecuyer and Simard (2007).

3.2.5 Cryptographically Strong Generators

One way of defining an ideal RNG would be that no statistical test can distinguish
its output sequence from an i.i.d. U.0; 1/ sequence. If an unlimited computing time
is available, no finite-state RNG can satisfy this requirement, because by running
it long enough one can eventually figure out its periodicity. But what if we impose
a limit on the computing time? This can be analyzed formally in the framework
of asymptotic computational complexity theory, under the familiar “rough-cut”
assumption that polynomial-time algorithms are practical and others are not.

Consider a family of RNGs fGk D .Sk; �k; fk;Uk; gk/; k D 1; 2; : : : g where Sk

of cardinality 2k (i.e., Gk has a k-bit state). Suppose that the transition and output
functions f and g can be computed in time bounded by a polynomial in k. Let T
be the class of statistical tests that run in time bounded by a polynomial in k and
try to differentiate between the output sequence of the RNG and an i.i.d. U.0; 1/

sequence. The RNG family is called polynomial-time perfect if there is a constant
� > 0 such that for all k, no test in T can differentiate correctly with probability
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larger than 1=2 C e�k� . This is equivalent to asking that no polynomial-time
algorithm can predict any given bit of ui with probability of success larger than
1=2 C e�k� , after observing u0; : : : ; ui�1. This links unpredictability with statistical
uniformity and independence. For the proofs and additional details, see, e.g. Blum
et al. (1986), L’Ecuyer and Proulx (1989), Lagarias (1993), and Luby (1996).
This theoretical framework has been used to define a notion of reliable RNG in
the context of cryptography. But the guarantee is only asymptotic; it does not
necessarily tell what value of k is large enough for the RNG to be secure in practice.
Moreover, specific RNG families have been proved to be polynomial-time perfect
only under yet unproven conjectures. So far, no one has been able to prove even
their existence. Most RNGs discussed in the remainder of this chapter are known
not to be polynomial-time perfect. However, they are fast, convenient, and have
good enough statistical properties when their parameters are chosen carefully.

3.3 Linear Recurrences Modulo m

3.3.1 The Multiple Recursive Generator

The most widely used RNGs are based on the linear recurrence

xi D .a1xi�1 C � � � C akxi�k/ mod m; (3.2)

where m and k are positive integers called the modulus and the order, and the
coefficients a1; : : : ; ak are in Zm, interpreted as the set f0; : : : ; m � 1g on which
all operations are performed with reduction modulo m. The state at step i is
si D xi D .xi�kC1; : : : ; xi /

T. When m is a prime number, the finite ring Zm

is a finite field and it is possible to choose the coefficients aj so that the period
reaches � D mk � 1 (the largest possible value) (Knuth 1998). This maximal
period is achieved if and only if the characteristic polynomial of the recurrence,
P.z/ D zk � a1zk�1 � � � �� ak , is a primitive polynomial over Zm, i.e., if and only if
the smallest positive integer � such that .z� mod P.z// mod m D 1 is � D mk � 1.
Knuth (1998) explains how to verify this for a given P.z/. For k > 1, for P.z/ to
be a primitive polynomial, it is necessary that ak and at least another coefficient aj

be nonzero. Finding primitive polynomials of this form is generally easy and they
yield the simplified recurrence:

xn D .arxn�r C akxn�k/ mod m: (3.3)

A multiple recursive generator (MRG) uses (3.2) with a large value of m and
defines the output as ui D xi =m. For k D 1, this is the classical linear congruential
generator (LCG). In practice, the output function is modified slightly to make sure
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that ui never takes the value 0 or 1 (e.g., one may define ui D .xi C 1/=.m C 1/,
or ui D xi =.m C 1/ if xi > 0 and ui D m=.m C 1/ otherwise) but to simplify
the theoretical analysis, we will follow the common convention of assuming that
ui D xi =m (in which case ui does take the value 0 occasionally).

3.3.2 The Lattice Structure

Let ei denote the i th unit vector in k dimensions, with a 1 in position i and
0’s elsewhere. Denote by xi;0; xi;1; xi;2; : : : the values of x0; x1; x2; : : : produced
by the recurrence (3.2) when the initial state x0 is ei . An arbitrary initial state
x0 D .z1; : : : ; zk/T can be written as the linear combination z1e1 C � � � C zkek and
the corresponding sequence is a linear combination of the sequences .xi;0; xi;1; : : : /,
with reduction of the coordinates modulo m. Conversely, any such linear combina-
tion reduced modulo m is a sequence that can be obtained from some initial state
x0 2 S D Zk

m. If we divide everything by m we find that for the MRG, for each
t � 1, �t D Lt \ Œ0; 1/t where

Lt D
(

v D
tX

iD1

zi vi j zi 2 Z

)
;

is a t-dimensional lattice in Rt , with basis

v1 D .1; 0; : : : ; 0; x1;k; : : : ; x1;t�1/T=m

:::
:::

vk D .0; 0; : : : ; 1; xk;k; : : : ; xk;t�1/T=m

vkC1 D .0; 0; : : : ; 0; 1; : : : ; 0/T

:::
:::

vt D .0; 0; : : : ; 0; 0; : : : ; 1/T:

For t � k, Lt contains all vectors whose coordinates are multiples of 1=m. For
t > k, it contains a fraction mk�t of those vectors.

This lattice structure implies that the points of �t are distributed according to
a very regular pattern, in equidistant parallel hyperplanes. Graphical illustrations
of this, usually for LCGs, can be found in a myriad of papers and books; e.g.,
Gentle (2003), Law and Kelton (2000), and L’Ecuyer (1998). Define the dual lattice
to Lt as

L�
t D fh 2 Rt W hTv 2 Z for all v 2 Lt g:
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Each h 2 L�
t is a normal vector that defines a family of equidistant parallel

hyperplanes, at distance 1=khk2 apart, and these hyperplanes cover all the points
of Lt unless h is an integer multiple of some other vector h0 2 L�

t . Therefore, if `t

is the Euclidean length of a shortest non-zero vector h in L�
t , then there is a family of

hyperplanes at distance 1=`t apart that cover all the points of Lt . A small `t means
there are thick slices of empty space between the hyperplanes and we want to avoid
that. A large `t means a better (more uniform) coverage of the unit hypercube by the
point set �t . Computing the value of 1=`t is often called the spectral test (Fishman
1996; Knuth 1998).

The lattice property holds as well for the point sets �I formed by values
at arbitrary lags defined by a fixed set of indices I D fi1; � � � ; it g. One has
�I D LI \ Œ0; 1/t for some lattice LI , and the largest distance between successive
hyperplanes for a family of hyperplanes that cover all the points of LI is 1=`I ,
where `I is the Euclidean length of a shortest nonzero vector in L�

I , the dual lattice
to LI .

The lattice LI and its dual can be constructed as explained in Couture and
L’Ecuyer (1996) and L’Ecuyer and Couture (1997). Finding the shortest nonzero
vector in a lattice with basis v1; : : : ; vt can be formulated as an integer programming
problem with a quadratic objective function:

Minimize kvk2 D
tX

iD1

tX
j D1

zi vT
i vj zj

subject to z1; : : : ; zt integers and not all zero. This problem can be solved by a
branch-and-bound algorithm (Fincke and Pohst 1985; L’Ecuyer and Couture 1997;
Tezuka 1995).

For any given dimension t and mk points per unit of volume, there is an absolute
upper bound on the best possible value of `I (Conway and Sloane 1999; Knuth
1998; L’Ecuyer 1999b). Let `�

t .mk/ denote such an upper bound. To define a figure
of merit that takes into account several sets I , in different numbers of dimensions, it
is common practice to divide `I by an upper bound, to obtain a standardized value
between 0 and 1, and then take the worst case over a given class J of sets I . This
gives a figure of merit of the form

MJ D min
I2J `I =`�

jI j.m
k/:

A value of MJ too close to zero means that LI has a bad lattice structure for
at least one of the selected sets I . We want a value as close to 1 as possible.
Computer searches for good MRGs with respect to this criterion have been reported
by L’Ecuyer et al. (1993), L’Ecuyer and Andres (1997), L’Ecuyer (1999a), for
example. In most cases, J was simply the sets of the form I D f1; : : : ; tg for
t � t1, where t1 was an arbitrary integer ranging from 8 to 45. L’Ecuyer and
Lemieux (2000) also consider the small dimensional sets I with indices not too
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far apart. They suggest taking J D ff0; 1; : : : ; ig W i < t1g [ ffi1; i2g W 0 D i1 <

i2 < t2g [ � � � [ ffi1; : : : ; id g W 0 D i1 < : : : < id < td g for some positive integers
d; t1; : : : ; td . We could also take a weighted average instead of the minimum in the
definition of MJ .

An important observation is that for t > k, the t-dimensional vector h D
.�1; a1; : : : ; ak; 0; : : : ; 0/T always belong to L�

t , because for any vector v 2 Lt ,
the first k C 1 coordinates of mv must satisfy the recurrence (3.2), which implies
that .�1; a1; : : : ; ak; 0; : : : ; 0/v must be an integer. Therefore, one always has `2

t �
1 C a2

1 C � � � C a2
k . Likewise, if I contains 0 and all indices j such that ak�j 6D 0,

then `2
I � 1 C a2

1 C � � � C a2
k (L’Ecuyer 1997). This means that the sum of squares

of the coefficients aj must be large if we want to have any chance that the lattice
structure be good.

Constructing MRGs with only two nonzero coefficients and taking these coeffi-
cients small has been a very popular idea, because this makes the implementation
easier and faster (Deng and Lin 2000; Knuth 1998). However, the MRGs thus
obtained have a bad structure. As a worst-case illustration, consider the widely-
available additive or subtractive lagged-Fibonacci generator, based on the recur-
rence (3.2) where the two coefficients ar and ak are both equal to ˙1. In this case,
whenever I contains f0; k � r; kg, one has `2

I � 3, so the distance between the
hyperplanes is at least 1=

p
3. In particular, for I D f0; k � r; kg, all the points of �I

(aside from the zero vector) are contained in only two planes! This type of structure
can have a dramatic effect on certain simulation problems and is a good reason for
staying away from these lagged-Fibonacci generators, regardless of their parame-
ters. They fail several simple empirical statistical tests (L’Ecuyer and Simard 2007).

A similar problem occurs for the “fast MRG” proposed by Deng and Lin (2000),
based on the recurrence

xi D .�xi�1 C axi�k/ mod m D ..m � 1/xi�1 C axi�k/ mod m;

with a2 < m. If a is small, the bound `2
I � 1 C a2 implies a bad lattice structure for

I D f0; k � 1; kg. A more detailed analysis by L’Ecuyer and Touzin (2004) shows
that this type of generator cannot have a good lattice structure even if the condition
a2 < m is removed. Another special case proposed by Deng and Xu (2003) has the
form

xi D a.xi�j2 C � � � C xi�jt / mod m: (3.4)

In this case, for I D f0; k � jt�1; : : : ; k � j2; kg, the vectors .1; a; : : : ; a/ and
.a�; 1; : : : ; 1/ both belong to the dual lattice L�

I , where a� is the multiplicative
inverse of a modulo m. So neither a nor a� should be small.

To get around this structural problem when I contains certain sets of indices,
Lüscher (1994) and Knuth (1998) recommend to skip some of the output values to
break up the bad vectors. For the lagged-Fibonacci generator, for example, one can
output k successive values produced by the recurrence, then skip the next d values,
output the next k, skip the next d , and so on. A large value of d (e.g., d D 5k or
more) may get rid of the bad structure, but slows down the generator. See Wegenkittl
and Matsumoto (1999) for further discussion.
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3.3.3 MRG Implementation Techniques

The modulus m is often taken as a large prime number close to the largest integer
directly representable on the computer (e.g., equal or near 231 � 1 for 32-bit
computers). Since each xi�j can be as large as m � 1, one must be careful in
computing the right side of (3.2) because the product aj xi�j is typically not
representable as an ordinary integer. Various techniques for computing this product
modulo m are discussed and compared by Fishman (1996), L’Ecuyer and Tezuka
(1991), L’Ecuyer (1999a), and L’Ecuyer and Simard (1999). Note that if aj D
m � a0

j > 0, using aj is equivalent to using the negative coefficient �a0
j , which

is sometimes more convenient from the implementation viewpoint. In what follows,
we assume that aj can be either positive or negative.

One approach is to perform the arithmetic modulo m in 64-bit (double precision)
floating-point arithmetic (L’Ecuyer 1999a). Under this representation, assuming
that the usual IEEE floating-point standard is respected, all positive integers up
to 253 are represented exactly. Then, if each coefficient aj is selected to satisfy
jaj j.m � 1/ � 253, the product jaj jxi�j will always be represented exactly and
zj D jaj jxi�j mod m can be computed by the instructions

y D jaj jxi�j I zj D y � mby=mc:

Similarly, if .ja1j C � � � C jakj/.m � 1/ � 253, a1xi�1 C � � � C akxi�k will always be
represented exactly.

A second technique, called approximate factoring (L’Ecuyer and Côté 1991),
uses only the integer representation and works under the condition that jaj j D i or
jaj j D bm=ic for some integer i <

p
m. One precomputes qj D bm=jaj jc and

rj D m mod jaj j. Then, zj D jaj jxi�j mod m can be computed by

y D bxi�j =qj cI z D jaj j.xi�j � yqj / � yrj I
if z < 0 then zj D z C m else zj D z:

All quantities involved in these computations are integers between �m and m, so
no overflow can occur if m can be represented as an ordinary integer (e.g., m < 231

on a 32-bit computer).
The powers-of-two decomposition approach selects coefficients aj that can be

written as a sum or difference of a small number of powers of 2 (L’Ecuyer and
Simard 1999; L’Ecuyer and Touzin 2000; Wu 1997). For example, one may take
aj D ˙2q ˙ 2r and m D 2e � h for some positive integers q, r , e, and h. To
compute y D 2qx mod m, decompose x D z0 C 2e�qz1 (where z0 D x mod 2e�q)
and observe that

y D 2q.z0 C 2e�qz1/ mod .2e � h/ D .2qz0 C hz1/ mod .2e � h/:
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Suppose now that

h < 2q and h.2q � .h C 1/2�eCq/ < m: (3.5)

Then, 2qz0 < m and hz1 < m, so y can be computed by shifts, masks, additions,
subtractions, and a single multiplication by h. Intermediate results never exceed
2m � 1. Things simplify further if q D 0 or q D 1 or h D 1. For h D 1, y is
obtained simply by swapping the blocks of bits z0 and z1 (Wu 1997). L’Ecuyer and
Simard (1999) pointed out that LCGs with parameters of the form m D 2e � 1 and
a D ˙2q ˙ 2r have bad statistical properties because the recurrence does not “mix
the bits” well enough. However, good and fast (combined) MRGs can be obtained
via the power-of-two decomposition method, as explained in L’Ecuyer and Touzin
(2000).

Another idea to improve efficiency is to take all nonzero coefficients aj equal to
the same a, as in (3.4) (Deng and Xu 2003; Marsaglia 1996). Then, computing the
right side of (3.2) requires a single multiplication. Deng and Xu (2003) and Deng
(2005) provide specific parameter sets and concrete implementations for MRGs of
this type, for prime m near 231, and for k ranging from 102 to 1597.

One may be tempted to take m equal to a power of two, say m D 2e , because
then the “ mod m” operation is much easier: it suffices to keep the e least significant
bits and mask-out all others. However, taking a power-of-two modulus is not
recommended because it has several strong disadvantages in terms of the quality
of the RNG (L’Ecuyer 1990, 1998). In particular, the least significant bits have very
short periodicity and the period of the recurrence (3.2) cannot exceed .2k � 1/2e�1

if k > 1, and 2e�2 if k D 1 and e � 4. The maximal period achievable with k D 7

and m D 231, for example, is more than 2180 times smaller than the maximal period
achievable with k D 7 and m D 231 � 1 (a prime number).

3.3.4 Combined MRGs and LCGs

The conditions that make MRG implementations run faster (e.g., only two nonzero
coefficients both close to zero) conflict with those required for having a good
lattice structure and statistical robustness. Combined MRGs are one solution to this
problem. Consider J distinct MRGs evolving in parallel, based on the recurrences

xj;i D .aj;1xj;i�1 C � � � C aj;kxj;i�k/ mod mj (3.6)

where aj;k 6D 0, for j D 1; : : : ; J . Let ı1; : : : ; ıJ be arbitrary integers,

zi D .ı1x1;i C � � � C ıJ xJ;i / mod m1; ui D zi =m1; (3.7)

and
wi D .ı1x1;i =m1 C � � � C ıJ xJ;i =mJ / mod 1: (3.8)
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This defines two RNGs, with output sequences fui ; i � 0g and fwi ; i � 0g.
Suppose that the mj are pairwise relatively prime, that ıj and mj have no

common factor for each j , and that each recurrence (3.6) is purely periodic with
period �j . Let m D m1 � � � mJ and let � be the least common multiple of �1; : : : ; �J .
Under these conditions, L’Ecuyer and Tezuka (1991) and L’Ecuyer (1996a) proved
the following: (a) the sequence (3.8) is exactly equivalent to the output sequence
of a MRG with (composite) modulus m and coefficients aj that can be computed
explicitly as explained by L’Ecuyer (1996a); (b) the two sequences in (3.7) and (3.8)
have period �; and (c) if both sequences have the same initial state, then ui D wi C�i

where maxi�0 j�i j can be bounded explicitly by a constant � which is very small
when the mj are close to each other.

Thus, these combined MRGs can be viewed as practical ways of implementing an
MRG with a large m and several large nonzero coefficients. The idea is to cleverly
select the components so that: (1) each one is easy to implement efficiently (e.g.,
has only two small nonzero coefficients) and (2) the MRG that corresponds to the
combination has a good lattice structure. If each mj is prime and if each component
j has maximal period �j D mk

j � 1, then each �j is even and � cannot exceed
�1 � � � �J =2J �1. Tables of good parameters for combined MRGs of different sizes
that reach this upper bound are given in L’Ecuyer (1999a) and L’Ecuyer and Touzin
(2000), together with C implementations.

3.3.5 Jumping Ahead

The recurrence (3.2) can be written in matrix form as

xi D Axi�1 mod m D

0
BBB@

0 1 � � � 0
:::

: : :
:::

0 0 � � � 1

ak ak�1 � � � a1

1
CCCA xi�1 mod m:

To jump ahead directly from xi to xiC� , for an arbitrary integer �, it suffices to
exploit the relationship

xiC� D A�xi mod m D .A� mod m/xi mod m:

If this is to be done several times for the same �, the matrix A� mod m can be
precomputed once for all. For a large �, this can be done in O.log2 �/ matrix
multiplications via a standard divide-and-conquer algorithm (Knuth 1998):

A� mod m D
(

.A�=2 mod m/.A�=2 mod m/ mod m if � is even;

A.A��1 mod m/ mod m if � is odd.
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3.3.6 Linear Recurrences with Carry

These types of recurrences were introduced by Marsaglia and Zaman (1991)
to obtain a large period even when m is a power of two (in which case the
implementation may be faster). They were studied and generalized by Tezuka et al.
(1994), Couture and L’Ecuyer (1994, 1997), and Goresky and Klapper (2003). The
basic idea is to add a carry to the linear recurrence (3.2). The general form of this
RNG, called multiply-with-carry (MWC), can be written as

xi D .a1xi�1 C � � � C akxi�k C ci�1/d mod b; (3.9)

ci D b.a0xi C a1xi�1 C � � � C akxi�k C ci�1/=bc; (3.10)

ui D
1X

`D1

xi�`C1b
�`; (3.11)

where b is a positive integer (e.g., a power of two), a0; : : : ; ak are arbitrary integers
such that a0 is relatively prime to b, and d is the multiplicative inverse of �a0

modulo b. The state at step i is si D .xi�kC1; : : : ; xi ; ci /
T. In practice, the sum in

(3.11) is truncated to a few terms (it could be a single term if b is large), but the
theoretical analysis is much easier for the infinite sum.

Define m D Pk
`D0 a`b

` and let a be the inverse of b in arithmetic modulo m,
assuming for now that m > 0. A major result proved in Tezuka et al. (1994), Couture
and L’Ecuyer (1997), and Goresky and Klapper (2003) is that if the initial states
agree, the output sequence fui ; i � 0g is exactly the same as that produced by
the LCG with modulus m and multiplier a. Therefore, the MWC can be seen as a
clever way of implementing a LCG with very large modulus. Couture and L’Ecuyer
(1997) have shown that the value of `t for this LCG satisfies `2

t � a2
0 C � � � C a2

k for
t � k, which means that the lattice structure will be bad unless the sum of squares
of coefficients aj is large.

In the original proposals of Marsaglia and Zaman (1991), called add-with-carry
and subtract-with-borrow, one has �a0 D ˙ar D ˙ak D 1 for some r < k

and the other coefficients aj are zero, so `2
t � 3 for t � k and the generator has

essentially the same structural defect as the additive lagged-Fibonacci generator. In
the version studied by Couture and L’Ecuyer (1997), it was assumed that �a0 D
d D 1. Then, the period cannot exceed .m � 1/=2 if b is a power of two. A concrete
implementation was given in that paper. Goresky and Klapper (2003) pointed out
that the maximal period of � D m � 1 can be achieved by allowing a more general
a0. They provided specific parameters that give the maximal period for b ranging
from 221 to 235 and � up to approximately 22521.



3 Random Number Generation 49

3.4 Generators Based on Recurrences Modulo 2

3.4.1 A General Framework

It seems natural to exploit the fact that computers work in binary arithmetic and to
design RNGs defined directly in terms of bit strings and sequences. We do this under
the following framework, taken from L’Ecuyer and Panneton (2002) and L’Ecuyer
and Panneton (2009). Let F2 denote the finite field with two elements, 0 and 1,
in which the operations are equivalent to addition and multiplication modulo 2.
Consider the RNG defined by a matrix linear recurrence over F2, as follows:

xi D Axi�1; (3.12)

yi D Bxi ; (3.13)

ui D
wX

`D1

yi;`�12�` D :yi;0 yi;1 yi;2 � � � ; (3.14)

where xi D .xi;0; : : : ; xi;k�1/
T 2 Fk

2 is the k-bit state vector at step i , yi D
.yi;0; : : : ; yi;w�1/

T 2 Fw
2 is the w-bit output vector at step i , k and w are positive

integers, A is a k � k transition matrix with elements in F2, B is a w � k output
transformation matrix with elements in F2, and ui 2 Œ0; 1/ is the output at step i .
All operations in (3.12) and (3.13) are performed in F2.

It is well-known (L’Ecuyer 1994; Niederreiter 1992) that when the xi ’s obey
(3.12), for each j , the sequence fxi;j ; i � 0g follows the linear recurrence

xi;j D .˛1xi�1;j C � � � C ˛kxi�k;j / mod 2; (3.15)

whose characteristic polynomial P.z/ is the characteristic polynomial of A, i.e.,

P.z/ D det.A � zI/ D zk � ˛1zk�1 � � � � � ˛k�1z � ˛k;

where I is the identity matrix and each ˛j is in F2. The sequences fyi;j ; i � 0g,
for 0 � j < w, also obey the same recurrence (although some of them may follow
recurrences of shorter order as well, depending on B). We assume that ˛k D 1, so
that the recurrence (3.15) has order k and is purely periodic. Its period is 2k � 1

(i.e., maximal) if and only if P.z/ is a primitive polynomial over F2 (Knuth 1998;
Niederreiter 1992).

To jump ahead directly from xi to xiC� with this type of generator, it suffices to
precompute the matrix A� (in F2) and then multiply xi by this matrix.

Several popular classes of RNGs fit this framework as special cases, by appro-
priate choices of the matrices A and B. This includes the Tausworthe or LFSR,
polynomial LCG, GFSR, twisted GFSR, Mersenne twister, WELL, xorshift, multi-
ple recursive matrix generators, and combinations of these (L’Ecuyer and Panneton
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2009; Matsumoto and Nishimura 1998; Niederreiter 1995; Panneton and L’Ecuyer
2005; Panneton et al. 2006; Tezuka 1995). We detail some of them after discussing
measures of uniformity.

3.4.2 Measures of Uniformity

The uniformity of point sets �I produced by RNGs based on linear recurrences over
F2 is usually assessed by measures of equidistribution defined as follows (L’Ecuyer
1996b, 2004; L’Ecuyer and Panneton 2002, 2009; Tezuka 1995). For an arbitrary
vector q D .q1; : : : ; qt / of non-negative integers, partition the unit hypercube Œ0; 1/t

into 2qj intervals of the same length along axis j , for each j . This determines a
partition of Œ0; 1/t into 2q1C���Cqt rectangular boxes of the same size and shape. We
call this partition the q-equidissection of the unit hypercube.

For some index set I D fi1; : : : ; itg, if �I has 2k points, we say that �I is
q-equidistributed in base 2 if there are exactly 2q points in each box of the q-
equidissection, where k � q D q1 C � � � C qt . This means that among the 2k points
.xj1 ; : : : ; xjt / of �I , if we consider the first q1 bits of xj1 , the first q2 bits of xj2 ,
. . . , and the first qt bits of xjt , each of the 2k�q possibilities occurs exactly the same
number of times. This is possible only if q � k.

The q-equidistribution of �I depends only on the first qj bits of xij for 1 � j �
t , for the points .xi1 ; : : : ; xit / that belong to �I . The vector of these q1 C � � � C qt D
k � q bits can always be expressed as a linear function of the k bits of the initial
state x0, i.e., as Mqx0 for some .k � q/ � k binary matrix Mq, and it is easily seen
that �I is q-equidistributed if and only if Mq has full rank k � q. This provides
an easy way of checking equidistribution (L’Ecuyer 1996b; L’Ecuyer and Panneton
2009; Tezuka 1995).

If �I is .`; : : : ; `/-equidistributed for some ` � 1, it is called t-distributed with
` bits of accuracy, or .t; `/-equidistributed (L’Ecuyer 1996b). The largest value of
` for which this holds is called the resolution of the set �I and is denoted by `I .
This value has the upper bound `�

t D min.bk=tc; w/. The resolution gap of �I is
defined as ıI D `�

t � `I . In the same vein as for MRGs, a worst-case figure of merit
can be defined here by

�J D max
I2J ıI ;

where J is a preselected class of index sets I .
The point set �I is a .q; k; t/-net in base 2 (often called a .t; m; s/-net in

the context of quasi-Monte Carlo methods, where a different notation is used
Niederreiter 1992), if it is .q1; : : : ; qt /-equidistributed in base 2 for all non-negative
integers q1; : : : ; qt summing to k � q. We call the smallest such q the q-value of
�I . The smaller it is, the better. One candidate for a figure of merit could be the
q-value of �t for some large t . Although widely used to construct and evaluate
low-discrepancy point sets for quasi-Monte Carlo methods, a major drawback of



3 Random Number Generation 51

this measure is that it is too costly to compute for good long-period generators (for
which k�q is large), because there are too many vectors q for which equidistribution
needs to be checked. In practice, one must settle for figures of merit that involve a
smaller number of equidissections.

When ıI D 0 for all sets I of the form I D f0; : : : ; t � 1g, for 1 � t � k, the
RNG is said to be maximally equidistributed or asymptotically random for the word
size w (L’Ecuyer 1996b; Tezuka 1995; Tootill et al. 1973). This property ensures
perfect equidistribution of all sets �t , for any partition of the unit hypercube into
subcubes of equal sizes, as long as ` � w and the number of subcubes does
not exceed the number of points in �t . Large-period maximally equidistributed
generators, together with their implementations, can be found in L’Ecuyer (1999c),
L’Ecuyer and Panneton (2002), Panneton and L’Ecuyer (2004), and Panneton et al.
(2006), for example.

3.4.3 Lattice Structure in Spaces of Polynomials and Formal
Series

The RNGs defined via (3.12)–(3.14) do not have a lattice structure in the real space
like MRGs, but they do have a lattice structure in a space of formal series, as
explained in Couture and L’Ecuyer (2000), L’Ecuyer (2004), L’Ecuyer and Panneton
(2009), Lemieux and L’Ecuyer (2003), and Tezuka (1995). The real space R is
replaced by the space L2 of formal power series with coefficients in F2, of the formP1

`D! x`z�` for some integer !. In that setting, the lattices have the form

Lt D
8<
:v.z/ D

tX
j D1

hj .z/vj .z/ such that each hj .z/ 2 F2Œz�

9=
; ;

where F2Œz� is the ring of polynomials with coefficients in F2, and the basis vectors
vj .z/ are in Lt

2. The elements of the dual lattice L�
t are the vectors h.z/ in Lt

2

whose scalar product with any vector of Lt belongs to F2Œz�. We define the mapping
' W L2 ! R by

'

 1X
`D!

x`z�`

!
D

1X
`D!

x`2
�`:

Then, it turns out that the point set �t produced by the generator is equal to
'.Lt / \ Œ0; 1/t . Moreover, the equidistribution properties examined in Sect. 3.4.2
can be expressed in terms of lengths of shortest vectors in the dual lattice, with
appropriate definitions of the length (or norm). Much of the theory and algorithms
developed for lattices in the real space can be adapted to these new types of lattices
(Couture and L’Ecuyer 2000; L’Ecuyer et al. 2009; Tezuka 1995).
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3.4.4 The LFSR Generator

The Tausworthe or linear feedback shift register (LFSR) generator (L’Ecuyer 1996b;
Tausworthe 1965; Tezuka 1995) is a special case of (3.12–3.14) with A D As

0 (in
F2) for some positive integer s, where

A0 D

0
BBB@

1
: : :

1
ak ak�1 : : : a1

1
CCCA ; (3.16)

a1; : : : ; ak are in F2, ak D 1, and all blank entries in the matrix are zeros. If w � k,
the matrix B contains the first w lines of the k � k identity matrix, otherwise B is
constructed as explained in L’Ecuyer and Panneton (2009). The RNG thus obtained
can be defined equivalently by

xi D a1xi�1 C � � � C akxi�k mod 2; (3.17)

ui D
wX

`D1

xisC`�12�`: (3.18)

Here, P.z/ is the characteristic polynomial of the matrix As
0, not the characteristic

polynomial of the recurrence (3.17), and the choice of s is important for determining
the quality of the generator. A frequently encountered case is when a single aj

is nonzero in addition to ak ; then, P.z/ is a trinomial and we have a trinomial-
based LFSR generator. These generators are known to have important statistical
deficiencies (Matsumoto and Kurita 1996; Tezuka 1995) but they can be used a
components of combined RNGs (Sect. 3.4.6).

LFSR generators can be expressed as LCGs in a space of polynomials (L’Ecuyer
1994; Tezuka 1995; Tezuka and L’Ecuyer 1991). With this representation, their
lattice structure as discussed in Sect. 3.4.3 follows immediately.

3.4.5 The GFSR and Twisted GFSR

Here we take A as the pq � pq matrix

A D

0
BBBBB@

Ip S
Ip

Ip

: : :

Ip

1
CCCCCA
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for some positive integers p and q, where Ip is the p � p identity matrix, S is a
p � p matrix, and the matrix Ip on the first line is in columns .r � 1/p C 1 to rp

for some positive integer r . Often, w D p and B contains the first w lines of the
pq � pq identity matrix. If S is also the identity matrix, the generator thus obtained
is the trinomial-based generalized feedback shift register (GFSR), for which xi is
obtained by a bitwise exclusive-or of xi�r and xi�q . This gives a very fast RNG,
but its period cannot exceed 2q � 1, because each bit of xi follows the same binary
recurrence of order k D q, with characteristic polynomial P.z/ D zq � zq�r � 1. It
also fails several simple empirical tests (L’Ecuyer and Simard 2007).

More generally, we can define xi as the bitwise exclusive-or of xi�r1 ; xi�r2 ;

: : : ; xi�rd
where rd D q, so that each bit of xi follows a recurrence in F2 whose

characteristic polynomial P.z/ has d C 1 nonzero terms. However, the period is
still bounded by 2q � 1, whereas considering the pq-bit state, we should rather
expect a period close to 2pq . This was the main motivation for the twisted GFSR
(TGFSR) generator. In the original version introduced by Matsumoto and Kurita
(1992), w D p and the matrix S is defined as the transpose of A0 in (3.16), with
k replaced by p. The characteristic polynomial of A is then P.z/ D PS .zq C zm/,
where PS .z/ D zp � apzp�1 � � � � � a1 is the characteristic polynomial of S , and
its degree is k D pq. If the parameters are selected so that P.z/ is primitive over
F2, then the TGFSR has period 2k � 1. Matsumoto and Kurita (1994) pointed out
important weaknesses of the original TGFSR and proposed an improved version
that uses a well-chosen matrix B whose lines differ from those of the identity. The
operations implemented by this matrix are called tempering and their purpose is to
improve the uniformity of the points produced by the RNG.

The Mersenne twister (Matsumoto and Nishimura 1998; Nishimura 2000) is a
variant of the TGFSR where k is slightly less than pq and can be a prime number. A
specific instance named MT19937, proposed by Matsumoto and Nishimura (1998),
has become quite popular; it runs very fast and has the huge period of 219937 � 1.
However, its state xi occupies a large amount of memory (19,937 bits) and changes
very slowly as a function of i . Panneton et al. (2006) showed that as a consequence
of this slow change, if the generator starts in a state with very few bits equal to 1,
then the average output values over the next few thousand steps is likely to be much
less than 1/2. In particular, if the initial state has a single bit at 1, say randomly
selected, then we need about 3/4 million steps before the average output value gets
close to 1/2. Likewise, if two initial states differ by a single bit, it takes the same
number of steps before the corresponding outputs differ by about half of their bits.
This problem is related to the fact that the characteristic polynomial P.z/ has too
few nonzero coefficients, namely 135 out of 19,938.

Panneton et al. (2006) went on to develop a class of F2-linear generators
called well-equidistributed long-period linear (WELL), which run almost as fast
as MT19937, but whose state changes faster and whose polynomial P.z/ contains
nearly 50% nonzero coefficients. They propose specific instances with periods
ranging from 2512 � 1 to 244;497 � 1, which are all almost (or exactly) maximally
equidistributed.
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In the multiple recursive matrix method of Niederreiter (1995), the first row of
p � p matrices in A contains arbitrary matrices. However, a fast implementation is
possible only when these matrices are sparse and have a special structure.

3.4.6 Combined Linear Generators Over F2

Many of the best generators based on linear recurrences over F2 are constructed by
combining the outputs of two or more RNGs having a simple structure. The idea
is the same as for MRGs: select simple components that can run fast but such that
their combination has a more complicated structure and highly-uniform sets �I for
the sets I considered important.

Consider J distinct recurrences of the form (3.12–3.13), where the j th recur-
rence has parameters .k; w; A; B/ D .kj ; w; Aj ; Bj / and state xj;i at step i , for
j D 1; : : : ; J . The output of the combined generator at step i is defined by

yi D B1x1;i ˚ � � � ˚ BJ xJ;i ;

ui D
wX

`D1

yi;`�12�`;

where ˚ denotes the bitwise exclusive-or operation. One can show (Tezuka 1995)
that the period � of this combined generator is the least common multiple of the
periods �j of its components. Moreover, this combined generator is equivalent to
the generator (3.12–3.14) with k D k1 C � � � C kJ , A D diag.A1; : : : ; AJ /, and
B D .B1; : : : ; BJ /.

With this method, by selecting the parameters carefully, the combination of
LFSR generators with characteristic polynomials P1.z/; : : : ; PJ .z/ gives yet another
LFSR with characteristic polynomial P.z/ D P1.z/ � � � PJ .z/ and period equal to the
product of the periods of the components (L’Ecuyer 1996b; Tezuka 1995; Tezuka
and L’Ecuyer 1991; Wang and Compagner 1993). Tables and fast implementations
of maximally equidistributed combined LFSR generators are given in L’Ecuyer
(1999c).

The TGFSR and Mersenne twister generators cannot be maximally equidis-
tributed. However, concrete examples of maximally equidistributed combined
TGFSR generators with periods near 2466 and 21250 can be found in L’Ecuyer and
Panneton (2002). These generators have the additional property that the resolution
gaps ıI are zero for a class of small sets I with indices not too far apart.

3.5 Nonlinear RNGs

All RNGs discussed so far are based on linear recurrences and their structure may
be deemed too regular. For example, we saw earlier that the output binary sequence
fyi;j ; i � 0g of any F2-linear generator obeys the linear recurrence (3.15). This can
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be detected easily by applying statistical tests that measure the linear complexity
of this output sequence, or that construct “random” binary matrices from this
sequence and compute their ranks (L’Ecuyer and Simard 2007). Because of the
linear dependences between the bits, the linear complexity and the matrix ranks will
be smaller than what they should be on average. For the great majority of Monte
Carlo applications, this linearity is not a problem, because the random numbers
are transformed nonlinearly by the simulation algorithm. But for the rare situations
where it may matter, we need alternatives.

There are several ways of getting rid of the regular linear structure, including:
(1) use a nonlinear transition function f ; (2) keep the transition function linear but
use a nonlinear output function g; (3) combine two linear RNGs of different types,
such as an MRG with an F2-linear generator; (4) shuffle (randomly permute) the
output values using another generator. Several types of genuinely nonlinear RNGs
have been proposed over the years; see for example Blum et al. (1986), Eichenauer-
Herrmann (1995), Eichenauer-Herrmann et al. (1998), Hellekalek and Wegenkittl
(2003), Knuth (1998), L’Ecuyer and Proulx (1989), L’Ecuyer (1994), L’Ecuyer
and Simard (2007), Niederreiter and Shparlinski (2002), and Tezuka (1995). Their
nonlinear mappings are defined in various ways by multiplicative inversion in a
finite field, quadratic and cubic functions in the finite ring of integers modulo m,
and other more complicated transformations. Many of them have output sequences
that tend to behave much like i.i.d. U.0; 1/ sequences even over their entire period
length, in contrast with “good” linear RNGs, whose point sets �t are much more
regular than typical random points (Eichenauer-Herrmann et al. 1998; L’Ecuyer and
Granger-Piché 2003; L’Ecuyer and Hellekalek 1998; Niederreiter and Shparlinski
2002). On the other hand, their statistical properties have been analyzed only
empirically or via asymptotic theoretical results. For specific nonlinear RNGs, the
uniformity of the point sets �t is very difficult to measure theoretically. Moreover,
the nonlinear RNGs are generally significantly slower than the linear ones. The
RNGs recommended for cryptology are all nonlinear.

An interesting idea for adding nonlinearity without incurring an excessive speed
penalty is to combine a small nonlinear generator with a fast long-period linear
one (Aiello et al. 1998). L’Ecuyer and Granger-Piché (2003) show how to do this
while ensuring theoretically the good uniformity properties of �t for the combined
generator. A fast implementation can be achieved by using precomputed tables
for the nonlinear component. Empirical studies suggest that mixed linear-nonlinear
combined generators are more robust than the linear ones with respect to statistical
tests, because of their less regular structure.

Several authors have proposed various ways of combining RNGs to produce
streams of random numbers with less regularity and better “randomness” properties;
see, e.g., Collings (1987), Knuth (1998), Gentle (2003), Law and Kelton (2000),
L’Ecuyer (1994), Fishman (1996), Marsaglia (1985), and other references given
there. This includes shuffling the output sequence of one generator using another
one (or the same one), alternating between several streams, or just adding them in
different ways. Most of these techniques are heuristics. They usually improve the
uniformity (empirically), but they can also make it worse. For random variables



56 P. L’Ecuyer

in the mathematical sense, certain types of combinations (e.g., addition modulo 1)
can provably improve the uniformity, and some authors have used this fact to argue
that combined RNGs are provably better than their components alone (Brown and
Solomon 1979; Deng and George 1990; Gentle 2003; Marsaglia 1985), but this
argument is faulty because the output sequences of RNGs are deterministic, not
sequences of independent random variables. To assess the quality of a combined
generator, one must analyze the mathematical structure of the combined generator
itself rather than the structure of its components (L’Ecuyer 1996a,b, 1998; L’Ecuyer
and Granger-Piché 2003; Tezuka 1995).

3.6 Empirical Statistical Tests

As mentioned earlier, a statistical test for RNGs is defined by a random variable X

whose distribution under H0 can be well approximated. When X takes the value x,
we define the right and left p-values of the test by

pR D P ŒX � x j H0� and pL D P ŒX � x j H0�:

When testing RNGs, there is no need to prespecify the level of the test. If either
of the right or left p-value is extremely close to zero, e.g., less than 10�15, then
it is clear that H0 (and the RNG) must be rejected. When a suspicious p-value is
obtained, e.g., near 10�2 or 10�3, one can just repeat this particular test a few more
times, perhaps with a larger sample size. Almost always, things will then clarify.

Most tests are defined by partitioning the possible realizations of .u0; : : : ; u	�1/

into a finite number of subsets (where the integer 	 can be random or deterministic),
computing the probability pj of each subset j under H0, and measuring the
discrepancy between these probabilities and empirical frequencies from realizations
simulated by the RNG.

A special case that immediately comes to mind is to take 	 D t (a constant) and
cut the interval Œ0; 1/ into d equal segments for some positive integer d , in order
to partition the hypercube Œ0; 1/t into k D d t subcubes of volume 1=k. We then
generate n points ui D .ut i ; : : : ; ut iCt�1/ 2 Œ0; 1/t , for i D 0; : : : ; n � 1, and count
the number Nj of points falling in subcube j , for j D 0; : : : ; k � 1. Any measure
of distance (or divergence) between the numbers Nj and their expectations n=k

can define a test statistic X . The tests thus defined are generally called serial tests of
uniformity (Knuth 1998; L’Ecuyer et al. 2002). They can be sparse (if n=k � 1), or
dense (if n=k � 1), or somewhere in between. There are also overlapping versions,
where the points are defined by ui D .ui ; : : : ; uiCt�1/ for i D 0; : : : ; n � 1 (they
have overlapping coordinates).

Special instances for which the distribution under H0 is well-known are the chi-
square, the (negative) empirical entropy, and the number of collisions (L’Ecuyer
and Hellekalek 1998; L’Ecuyer et al. 2002; Read and Cressie 1988). For the latter,
the test statistic X is the number of times a point falls in a subcube that already
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had a point in it. Its distribution under H0 is approximately Poisson with mean

1 D n2=.2k/, if n is large and 
1 not too large.

A variant is the birthday spacings test, defined as follows (Knuth 1998; L’Ecuyer
and Simard 2001; Marsaglia 1985). Let I.1/ � � � � � I.n/ be the numbers of the
subcubes that contain the points, sorted by increasing order. Define the spacings
Sj D I.j C1/ � I.j /, for j D 1; : : : ; n � 1, and let X be the number of collisions
between these spacings. Under H0, X is approximately Poisson with mean 
2 D
n3=.4k/, if n is large and 
2 not too large.

Consider now a MRG, for which �t has a regular lattice structure. Because of
this regularity the points of �t will tend to be more evenly distributed among the
subcubes than random points. For a well-chosen k and large enough n, we expect
the collision test to detect this: it is likely that there will be too few collisions. In
fact, the same applies to any RNG whose set �t is very evenly distributed. When
a birthday spacings test with a very large k is applied to a MRG, the numbers of
the subcubes that contain one point of �t tend to be too evenly spaced and the test
detects this by finding too many collisions.

These specific interactions between the test and the structure of the RNG lead
to systematic patterns in the p-values of the tests. To illustrate this, suppose that
we take k slightly larger than the cardinality of �t (so k 	 �) and that due to
the excessive regularity, no collision is observed in the collision test. The left p-
value will then be pL 	 P ŒX � 0 j X 
 Poisson.
1/� D expŒ�n2=.2k/�. For
this p-value to be smaller than a given �, we need a sample size n proportional
to the square root of the period �. And after that, pL decreases exponentially
fast in n2.

Extensive experiments with LCGs, MRGs, and LFSR generators confirms that
this is actually what happens with these RNGs (L’Ecuyer 2001; L’Ecuyer and
Hellekalek 1998; L’Ecuyer et al. 2002). For example, if we take � D 10�15 and
define n0 as the minimal sample size n for which pL < �, we find that n0 	 16�1=2

(plus some noise) for LCGs that behave well in the spectral test as well as for LFSR
generators. For the birthday spacings test, the rule for LCGs is n0 	 16�1=3 instead
(L’Ecuyer and Simard 2001). So to be safe with respect to these tests, the period �

must be so large that generating more than �1=3 numbers is practically unfeasible.
This certainly disqualifies all LCGs with modulus smaller than 2100 or so.

Other types of tests for RNGs include tests based on the closest pairs of points
among n points generated in the hypercube, tests based on random walks on the real
line or over the integers, tests based on the linear complexity of a binary sequence,
tests based on the simulation of dice or poker hands, and many others (Gentle
2003; Knuth 1998; L’Ecuyer and Simard 2007; Marsaglia 1996; Rukhin et al. 2001;
Vattulainen et al. 1995).

When testing RNGs, there is no specific alternative hypothesis to H0. Different
tests are needed to detect different types of departures from H0. The TestU01 library
of L’Ecuyer and Simard (2007) implements a large collection of tests in the C
language, and also provides specific test suites with preselected parameters and
sample sizes. Some of these suites are designed for i.i.d. U.0; 1/ output sequences
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and others for strings of bits. Other (smaller) test suites for RNGs are DIEHARD
(Marsaglia 1996) and the NIST suite (Rukhin et al. 2001).

3.7 Available Software and Recommendations

Applying standard statistical test suites to RNGs found in popular software (sta-
tistical and simulation software, spreadsheets, system libraries, etc.) reveals that
many of them are surprisingly poor and fail the tests spectacularly (L’Ecuyer 2001;
L’Ecuyer and Simard 2007). There is no good reason to use these poor RNGs,
because several good ones are available that are fast, portable, and pass these test
suites with flying colors.

The RNG I use most of the time is the combined MRG MRG32k3a from
L’Ecuyer (1999a). A convenient object-oriented software package with multiple
streams and substreams of random numbers, based on this generator, is described
in L’Ecuyer et al. (2002) and is available in Java, C, and C++, at http://www.iro.
umontreal.ca/~lecuyer. This tool has been included recently in several software
products, including MATLAB, SAS, R, Arena, Automod, ns3, and many more.
MRG32k3a is not the fastest RNG available, but it is very robust and reliable.
A faster alternative is MGR31k3p from L’Ecuyer and Touzin (2000). Other good
combined MRGs, some for 64-bit computers, are available in L’Ecuyer (1999a).
Even faster ones are the combined LFSRs, Mersenne twisters, and WELL generators
proposed in L’Ecuyer (1999c), L’Ecuyer and Panneton (2002), Matsumoto and
Nishimura (1998), Nishimura (2000), and Panneton et al. (2006). When speed is a
concern, I personally use LFSR113 or LFSR258 from L’Ecuyer (1999c). Software
tools that provide multiple streams and substreams with most of these generators
(except the ones with very large state) are available in the SSJ library (L’Ecuyer
2008).

3.8 Non-Uniform Random Variate Generation

Like for the uniform case, non-uniform variate generation often involves approxima-
tions and compromises. The first requirement is, of course, correctness. This does
not mean that the generated random variate X must always have exactly the required
distribution, because this would sometimes be much too costly or even impossible.
But we must have a good approximation and, preferably, some understanding of
the quality of that approximation. Robustness is also important: when the accuracy
depends on the parameters of the distribution, it must be good uniformly over the
entire range of parameter values that we are interested in.

The method must also be efficient both in terms of speed and memory usage.
Often, it is possible to increase the speed by using more memory (e.g, for larger
precomputed tables) or by relaxing the accuracy requirements. Some methods need

http://www.iro.umontreal.ca/~lecuyer
http://www.iro.umontreal.ca/~lecuyer
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a one-time setup to compute constants and construct tables. The setup time can be
significant but may be well worth spending if it is amortized by a large number of
subsequent calls to the generator. For example, it makes sense to invest in a more
extensive setup if we plan to make a million calls to a given generator than if we
expert to make only a few calls, assuming that this investment can improve the speed
of the generator sufficiently.

In general, compromises must be made between simplicity of the algorithm,
quality of the approximation, robustness with respect to the distribution parameters,
and efficiency (generation speed, memory requirements, and setup time).

In many situations, compatibility with variance reduction techniques is another
important issue (Asmussen and Glynn 2007; Bratley et al. 1987; Law and Kelton
2000). We may be willing to sacrifice the speed of the generator to preserve
inversion, because the gain in efficiency obtained via the variance reduction methods
may more than compensate (sometimes by orders of magnitude) for the slightly
slower generator.

3.8.1 Inversion

The inversion method, defined in the introduction, should be the method of choice
for generating non-uniform random variates in a majority of situations. The fact
that X D F �1.U / is a monotone (non-decreasing) function of U makes this
method compatible with important variance reductions techniques such as common
random numbers, antithetic variates, Latin hypercube sampling, and randomized
quasi-Monte Carlo methods (Bratley et al. 1987; Law and Kelton 2000; L’Ecuyer
and Lemieux 2000; L’Ecuyer et al. 2009).

For some distributions, an analytic expression can be obtained for the inverse
distribution function F �1 and inversion can be easily implemented. As an example,
consider the Weibull distribution function with parameters ˛ > 0 and ˇ > 0, defined
by F.x/ D 1�expŒ�.x=ˇ/˛� for x > 0. It is easy to see that F �1.U / D ˇŒ� ln.1�
U /�1=˛ . For ˛ D 1, we have the special case of the exponential distribution with
mean ˇ.

For an example of a simple discrete distribution, suppose that P ŒX D i � D pi

where p0 D 0:6, p1 D 0:3, p2 D 0:1, and pi D 0 elsewhere. The inversion method
in this case will return 0 if U < 0:6, 1 if 0:6 � U < 0:9, and 2 if U � 0:9. For
the discrete uniform distribution over f0; : : : ; k � 1g, return X D bkU c. As another
example, let X have the geometric distribution with parameter p, so P ŒX D x� D
p.1 � p/x for x D 0; 1; 2; : : : , where 0 < p < 1. Then, F.x/ D 1 � .1 � p/bxC1c
for x � 0 and one can show that X D F �1.U / D dln.1 � U /= ln.1 � p/e � 1.

For other distributions (e.g., the normal, Student, chi-square) there is no closed-
form expression for F �1 but good numerical approximations are available (Bratley
et al. 1987; Gentle 2003; Hörmann et al. 2004; Marsaglia et al. 1994). When the
distribution has only scale and location parameters, we need to approximate F �1

only for a standardized version of the distribution. For the normal distribution, for
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example, it suffices to have an efficient method for evaluating the inverse distribution
function of a N.0; 1/ random variable Z, since a normal with mean � and variance
�2 can be generated by X D �Z C �.

When shape parameters are involved (e.g., the gamma and beta distributions),
things are more complicated because F �1 then depends on the parameters in a more
fundamental manner.

Hörmann and Leydold (2003) propose a general adaptive and automatic method
that constructs a highly accurate Hermite interpolation method of F �1. In a one-
time setup, their method produces tables for the interpolation points and coefficients.
Random variate generation using these tables is then quite fast.

A less efficient but simpler way of implementing inversion when a method is
available for computing F is via binary search (Cheng 1998). If the density is
also available and if it is unimodal with known mode, a Newton-Raphson iteration
method can advantageously replace the binary search (Cheng 1998; Devroye 1986).

To implement inversion for general discrete distributions, sequential search and
binary search with look-up tables are the standard methods (Bratley et al. 1987;
Cheng 1998). For a discrete distribution over the values x1 < � � � < xk , one first
tabulates the pairs .xi ; F .xi //, where F.xi / D P ŒX � xi � for i D 1; : : : ; k. To
generate X , it then suffices to generate U 
 U.0; 1/, find I D minfi j F.xi / � U g,
and return X D xI . The following algorithms do that.

Sequential search (needs O.k/ iterations in the worst case);
generate U 
 U.0; 1/; let i D 1;
while F.xi / < U do i D i C 1;
return xi .

Binary search (needs O.log k/ iterations in the worst case);
generate U 
 U.0; 1/; let L D 0 and R D k;
while L < R � 1 do

m D b.L C R/=2c;
if F.xm/ < U then L D m else R D m;
/* Invariant: at this stage, the index I is in fL C 1; : : : ; Rg. */

return xR.

These algorithms can be modified in many different ways. For example, if k D
1, in the binary search, one can start with an arbitrary value of R, double it until
F.xR/ � U , and start the algorithm with this R and L D R=2. Of course, only
a finite portion of the table (a portion that contains most of the probability mass)
would be precomputed in this case, the other values can be computed only when
needed. This can also be done if k is finite but large.

Another class of techniques use indexing or buckets to speed up the search
(Bratley et al. 1987; Chen and Asau 1974; Devroye 1986). For example, one can
partition the interval .0; 1/ into c subintervals of equal sizes and use (pre-tabulated)
initial values of .L; R/ that depend on the subinterval in which U falls. For the
subinterval Œj=c; .j C 1/=c/ the values of L and R would be Lj D F �1.j=c/

and Rj D F �1..j C 1/=c/, for j D 0; : : : ; c � 1. The subinterval number that
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corresponds to a given U is simply J D bcU c. Once we know that subinterval,
we can search it by linear of binary search. With a larger value of c the search
is faster (on the average) but the setup is more costly and a larger amount of
memory is needed. So a compromise must be made depending on the situation
(e.g., the value of k, the number of variates we expect to generate, etc.). For
c D 1, we recover the basic sequential and binary search algorithms given above.
A well-implemented indexed search with a large enough c is competitive with the
alias method (described in the next paragraph). A combined indexed/binary search
algorithm is given below. An easy adaptation gives the combined indexed/sequential
search, which is generally preferable when k=c is small, because it has smaller
overhead.

Indexed search (combined with binary search);
generate U 
 U.0; 1/; let J D bcU c, L D LJ , and R D RJ ;
while L < R � 1 do

m D b.L C R/=2c;
if F.xm/ < U then L D m else R D m;

return xR.

These search methods are also useful for piecewise-linear (or piecewise-
polynomial) distribution functions. Essentially, it suffices to add an interpolation
step at the end of the algorithm, after the appropriate linear (or polynomial) piece
has been determined (Bratley et al. 1987).

Finally, the stochastic model itself can sometimes be selected in a way that
makes inversion easier. For example, one can fit a parametric, highly-flexible, and
easily computable inverse distribution function F �1 to the data, directly or indirectly
(Nelson and Yamnitsky 1998).

There are situations where speed is important and where non-inversion methods
are appropriate. In forthcoming subsections, we outline the main non-inversion
methods.

3.8.2 The Alias Method

Sequential and binary search require O.k/ and O.log k/ time, respectively, in
the worst case, to generate a random variate X by inversion over the finite set
fx1; : : : ; xkg. The alias method (Walker 1977) can generate such a X in O.1/ time
per variate, after a table setup that takes O.k/ time and space. On the other hand, it
does not implement inversion, i.e., the transformation from U to X is not monotone.

To explain the idea, consider a bar diagram of the distribution, where each index
i has a bar of height pi D P ŒX D xi �. The idea is to “equalize” the bars so that they
all have height 1=k, by cutting-off bar pieces and transferring them to other bars.
This is done in a way that in the new diagram, each bar i contains one piece of size qi

(say) from the original bar i and one piece of size 1=k � qi from another bar whose
index j , denoted A.i/, is called the alias value of i . The setup procedure initializes
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two tables, A and R, where A.i/ is the alias value of i and R.i/ D .i � 1/=k C qi .
See Devroye (1986) and Law and Kelton (2000) for the details. To generate X , we
generate U 
 U Œ0; 1�, define I D dkU e, and return X D xI if U < R.I / and
X D xA.I/ otherwise.

There is a version of the alias method for continuous distributions, called
the acceptance-complement method (Devroye 1986; Gentle 2003; Kronmal and
Peterson 1984). The idea is to decompose the density f of the target distribution
as the convex combination of two densities f1 and f2, f D wf1 C .1 � w/f2 for
some real number w 2 .0; 1/, in a way that wf1 � g for some other density g and so
that it is easy to generate from g and f2. The algorithm works as follows: Generate
X from density g and U 
 U.0; 1/; if Ug.X/ � wf1.Y / return X , otherwise
generate a new X from density f2 and return it.

3.8.3 Kernel Density Estimation and Generation

Instead of selecting a parametric distribution that is hard to invert and estimating
the parameters, one can estimate the density via a kernel density estimation method
for which random variate generation is very easy (Devroye 1986; Hörmann et al.
2004). In the case of a Gaussian kernel, for example, on can generate variates simply
by selecting one observation at random from the data and adding random noise
generated form a normal distribution with mean zero. However, this method is not
equivalent to inversion. Because of the added noise, selecting a larger observation
does not necessarily guarantee a larger value for the generated variate.

3.8.4 The Rejection Method

Suppose we want to generate X from a complicated density f . In fact f may be
known only up to a multiplicative constant � > 0, i.e., we know only �f . If we know

f , we may just take � D 1. We select another density r such that �f .x/ � t.x/
defD

ar.x/ for all x for some constant a, and such that generating variates Y from the
density r is easy. The function t is called a hat function or majorizing function. By
integrating this inequality with respect to x on both sides, we find that � � a. The
following rejection method generates X with density f (Devroye 1986; Evans and
Swartz 2000; von Neumann 1951):

Rejection method;
repeat

generate Y from the density r and U 
 U.0; 1/, independent;
until Ut.Y / � �f .Y /;
return X D Y .

The number R of turns into the “repeat” loop is one plus a geometric random
variable with parameter �=a, so EŒR� D a=�. Thus, we want a=� � 1 to be as
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small as possible, i.e., we want to minimize the area between �f and t . There is
generally a compromise between bringing a=� close to 1 and keeping r simple.

When �f is expensive to compute, we can also use squeeze functions q1 and q2

that are faster to evaluate and such that q1.x/ � �f .x/ � q2.x/ � t.x/ for all x. To
verify the condition Ut.Y / � �f .Y /, we first check if Ut.Y / � q1.Y /, in which
case we accept Y immediately, otherwise we check if Ut.Y / � q2.Y /, in which
case we reject Y immediately. The value of �f .Y / must be computed only when
Ut.Y / falls between the two squeezes. Sequences of embedded squeezes can also
be used, where the primary ones are the least expensive to compute, the secondary
ones are a little more expensive but closer to �f , etc.

It is common practice to transform the density f by a smooth increasing function
T (e.g., T .x/ D log x or T .x/ D �x�1=2) selected so that it is easier to construct
good hat and squeeze functions (often piecewise linear) for the transformed density
T .f .�//. By transforming back to the original scale, we get hat and squeeze
functions for f . This is the transformed density rejection method, which has several
variants and extensions (Devroye 1986; Evans and Swartz 2000; Hörmann et al.
2004).

The rejection method works for discrete distributions as well; it suffices to
replace densities by probability mass functions.

3.8.5 Thinning for Point Processes with Time-Varying Rates

Thinning is a cousin of acceptance-rejection, often used for generating events from a
non-homogeneous Poisson process. Suppose the process has rate 
.t/ at time t , with

.t/ � N
 for all t , where N
 is a finite constant. One can generate Poisson pseudo-
arrivals at constant rate N
 by generating interarrival times that are i.i.d. exponentials
of mean 1= N
. Then, a pseudo-arrival at time t is accepted (becomes an arrival) with
probability 
.t/= N
 (i.e., if U � 
.t/= N
, where U is an independent U Œ0; 1�), and
rejected with probability 1 � 
.t/= N
. Non-homogeneous Poisson processes can also
be generated by inversion (Bratley et al. 1987). The idea is to apply a nonlinear
transformation to the time scale to make the process homogeneous with rate 1 in the
new time scale. Arrival times are generated in this new time scale (which is easy),
and then transformed back to the original time scale. The method can be adapted to
other types of point processes with time-varying rates.

3.8.6 The Ratio-of-Uniforms Method

If f is a density over the real-line, � an arbitrary positive constant, and the pair
.U; V / has the uniform distribution over the set

C D
n
.u; v/ 2 R2 such that 0 � u � p

�f .v=u/
o

;
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then V=U has density f (Devroye 1986; Gentle 2003; Kinderman and Monahan
1977). This interesting property can be exploited to generate X with density f :
generate .U; V / uniformly over C and return X D V=U . This is the ratio-of-
uniforms method. The key issue is how do we generate a point uniformly over C. In
the cases where this can be done efficiently, we immediately have an efficient way
of generating X .

The most frequent approach for generating .U; V / uniformly over C is the
rejection method: Define a region C2 that contains C and in which it is easy to
generate a point uniformly (for example, a rectangular box or a polygonal region).
To generate X , repeat: generate .U; V / uniformly over C2, until it belongs to C. Then
return X D V=U . If there is another region C1 contained in C and for which it is
very fast to check if a point .U; V / is in C1, this C1 can also be used as a squeeze
to accelerate the verification that the point belongs to C. Several special cases and
refinements are described in Devroye (1986), Gentle (2003), Leydold (2000), and
other references given there.

3.8.7 Composition and Convolution

Suppose F is a convex combination of several distributions, i.e., F.x/ DP
j pj Fj .x/, or more generally F.x/ D R

Fy.x/dH.y/. To generate from F ,
one can generate J D j with probability pj (or Y from H ), then generate X from
FJ (or FY ). This method, called the composition algorithm, is useful for generating
from compound distributions such as the hyperexponential or from compound
Poisson processes. It is also frequently used to design specialized algorithms for
generating from complicated densities. The idea is to partition the area under the
complicated density into pieces, where piece j has surface pj . To generate X ,
first select a piece (choose piece j with probability pj ), then draw a random point
uniformly over that piece and project it to the horizontal axis. If the partition is
defined so that it is fast and easy to generate from the large pieces, then X will
be returned very quickly most of the time. The rejection method with a squeeze is
often used to generate from some of the pieces.

A dual method to composition is the convolution method, which can be used
when X D Y1 C Y2 C � � � C Yn, where the Yi ’s are independent with specified
distributions. With this method, one just generates the Yi ’s and sum up. This requires
at least n uniforms. Examples of random variables that can be expressed as sums like
this include the hypoexponential, Erlang, and binomial distributions.

3.8.8 Other Special Techniques

Specialized and sometimes very elegant techniques have been designed for com-
monly used distributions such as the Poisson distribution with small mean, the
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normal (e.g., the Box-Muller and the polar methods), for generating points uni-
formly on a k-dimensional sphere, for generating random permutations, and so
on. Details can be found, e.g., in Bratley et al. (1987), Cheng (1998), Devroye
(1986), Fishman (1996), Gentle (2003). Many of those methods are based on a
clever multivariate change of variables, defined so that the random variates or
random vectors in the new coordinates are much easier to generate. In the Box-
Muller and Polar methods, for example, a pair of independent standard normals
is generated in polar coordinates, and then transformed back into rectangular
coordinates.

Recently, there has been an effort in developing automatic or black box algo-
rithms for generating variates from an arbitrary (known) density, and reliable
software that implements these methods (Hörmann and Leydold 2000; Hörmann
et al. 2004; Leydold 2009).

3.8.9 Multivariate Distributions

Inversion does not directly apply to generate a d -dimensional random vector X D
.X1; : : : ; Xd /T, because the inverse of its distribution function is not well defined. In
some cases, one can generate the first coordinate X1 by inversion from its marginal
distribution, then generate X2 by inversion from its marginal distribution conditional
on X1, then generate X3 by inversion from its marginal distribution conditional on
.X1; X2/, and so on. But this is not always possible and convenient.

Simple and elegant methods are available for certain classes of distributions. For
example, if X has a multinormal distribution with mean vector � and covariance
matrix ˙ , then one can decompose ˙ D AAT for some matrix A, generate a vector
Z of d independent standard normal random variable (with mean 0 and variance 1),
usually by inversion, and return X D � C AZ. One way to decompose ˙ is via the
Cholesky decomposition, for which A is lower triangular, but there are many other
possibilities, including the eigendecomposition as in principal component analysis.
The choice of decomposition can have a large impact on the variance reduction in
the context of randomized quasi-Monte Carlo integration, by concentrating more of
the variance on the first few uniform random numbers that are generated L’Ecuyer
(2009).

Multivariate normals are often used to generate vectors from other distributions.
For example, to generate a random point on a d -dimensional sphere of radius r

centered at zero, one can generate a vector Z of independent standard normals
(this amounts to generating a random direction), then normalize its length to r .
More generally, by putting X D R Z=kZk where R has an arbitrary distribution
over .0; 1/, one generates a vector with a radially symmetric distribution. As a
special case, if R has the Student distribution, X is multivariate Student. As a further
generalization, let X D � C R AZ=kZk where Z is multinormal in k dimensions
and A is a d � k matrix. This X has an elliptic multivariate distribution.
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A richer class of multivariate distributions are defined via copula methods
(Asmussen and Glynn 2007; Hörmann et al. 2004; Nelsen 1999). Start with
an arbitrary d -dimensional distribution function G with continuous marginals
Gj , generate Y D .Y1; : : : ; Yd /T from G, and let U D .U1; : : : ; Ud / D
.G1.Y1/; : : : ; Gd .Yd //T. These Uj have the uniform distribution over .0; 1/, but
they are not independent in general. The distribution function of U is the copula
associated with G and it specifies the dependence structure of the vector U. In
fact, any multivariate distribution function over .0; 1/d with uniform marginals is
a copula. To generate X D .X1; : : : ; Xd /T with arbitrary marginal distribution
functions Fj and dependence structure specified by this copula, put Xj D F �1

j .Uj /

for each j . A popular choice for G is the multinormal distribution with standard
normal marginals; then Y and U are easy to generate, and one can select the
correlation matrix of Y to approximate a target correlation (or rank correlation)
matrix for X. It can usually match the correlations pretty well. But to approximate
the whole dependence structure in general, a much richer variety of copulas is
required (Asmussen and Glynn 2007; Hörmann et al. 2004; Nelsen 1999).

The rejection method extends easily to the multivariate case. For a target
d -dimensional density f known up to the multiplicative constant �, pick a d -
dimensional density r such that �f .x/ � ar.x/ for all x and some constant a,
and such that sampling random vectors Y from r is easy. To generate X with
density f , generate Y from r and U uniform over .0; 1/ independent of Y, until
Uar.Y/ � �f .Y/, and return X D Y.

There are many situations where one wishes to generate random vectors X from
quite complicated distributions and no efficient method is available to do it exactly.
One very important approach that often permit one to generate X approximately
from the target distribution is the Markov chain Monte Carlo (MCMC) method. In
a nutshell, it constructs an artificial Markov chain whose steady-state distribution
is the target distribution of X, and runs the Markov chain for a large number of
steps, until it is deemed sufficiently close to steady-state. Then the state of the
chain has a distribution close to the target one. MCMC is covered elsewhere in this
handbook.
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