


Lecture Notes in Computer Science 6701
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Julia Pahl Torsten Reiners Stefan Voß (Eds.)

Network
Optimization

5th International Conference, INOC 2011
Hamburg, Germany, June 13-16, 2011
Proceedings

13



Volume Editors

Julia Pahl
Stefan Voß
Torsten Reiners
University of Hamburg
Institute of Information Systems
Von-Melle-Park 5, 20146 Hamburg, Germany
E-mail: {pahl, reiners}@econ.uni-hamburg.de,
stefan.voss@uni-hamburg.de

Torsten Reiners
Curtin University
School of Information Systems
Perth, WA 6845, Australia
E-mail: t.reiners@cbs.curtin.edu.au

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-21526-1 e-ISBN 978-3-642-21527-8
DOI 10.1007/978-3-642-21527-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011928709

CR Subject Classification (1998): C.2, D.4.4, E.1, F.2.2, G.2.2, H.3.5, H.4.3

LNCS Sublibrary: SL 5 – Computer Communication Networks and Telecommuni-
cations

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

The International Network Optimization Conference (INOC) is the conference
of the European Network Optimization Group (ENOG) which aims at regu-
larly bringing together experts from different disciplines especially from oper-
ations research, graph theory, queuing theory and stochastic search with the
main focus on network optimization. The conference is intended to be a forum
for researchers and practitioners working in the area of network optimization.
Certainly networks may be seen in the widest possible sense. Telecommunica-
tion networks on the physical as well as the logical layer have been the focus
of INOC-related research from the very beginning. This relates to network de-
sign problems, (multi-commodity) flow problems, location and routing. However,
INOC does not only deal with telecommunication networks, but with networks
in the widest sense. These could be networks for vehicle routing, electricity pro-
vision or maritime shipping, just to mention a few.

One might argue whether globalization and (ferocious) competition are at the
very heart of what is needed for mankind. However, one might still follow the idea
of an ever increasing need for decision support and solutions of network-related
problems using latest information technology. This is especially important re-
garding the value chain and networks of firms. This may draw special attention
to the latest developments in technologies and the challenges that come along
regarding theoretical as well as practical implications of network optimization.

This volume of the Lecture Notes in Computer Science consists of selected pa-
pers presented at the INOC 2011, held at the University of Hamburg, Germany,
during June 13–16. The INOC 2011 is the successor of a series of scientific con-
ferences on network optimization. The first was held in 2003 aiming at providing
a fruitful environment for discussion and exchange of ideas on current and future
challenges regarding information science and communication technologies. Pre-
vious conferences were held in Pisa (Italy, 2009), Spa (Belgium, 2007), Lisbon
(Portugal, 2005) and Evry (France, 2003). These are well documented as follows:

INOC 2003 W. Ben-Ameur and A. Petrowskin, Proceedings of the Interna-
tional Network Optimization Conference INOC 2003, ISSN: 1762-5734, Evry
(2003).
Special issue of Annals of Operations Research, Vol. 146, Issues 1, pp. 1-202
(2006), editors W. Ben-Ameur, D. Bienstock and I. Saniee

INOC 2005 L. Gouveia and C. Mourao, Proceedings of the International Net-
work Optimization Conference INOC 2005, Lisbon (2005), ISSN: 1762-5734.
Special issue “Multicommodity Flows and Network Design” of Networks,
Vol. 49, Issue 1, pp. 1–133 (2007), guest editors L. Gouveia and S. Voß.
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INOC 2007 Contributions are available online at http://www.euro-online.org
/enog/inoc2007/INOC%202007%20-%20program.htm.
Special issue “Network Optimization” of Networks, Vol. 55, Issue 3, pp. 169–
297 (2007), editors B. Fortz and L. Gouveia,

INOC 2009 M.G. Scutellà, CD-Rom with proceedings.
Special Issue of Networks, in preparation, guest editors L. Gouveia and M.G.
Scutellà.

The INOC 2011 was located in the most beautiful city in Germany, Ham-
burg. Hamburg is part of important logistics and telecommunication networks.
Among others, we feature two airports within the city, one of the three biggest
container ports in Europe belonging to the largest container ports worldwide. As
a metropolitan region, numerous trade activities involving multitudes of com-
panies take place every day providing great challenges for optimization up- and
downstream along the value chain. That makes Hamburg the perfect place to
inspire new ideas in the field of network optimization as well as information and
communication sciences.

The contributions presented at the conference as well as the selected papers
in these proceedings highlight recent developments in network optimization. We
grouped contributions as follows:

– Network design
– Network flows
– Routing and transportation
– Further optimization problems and applications

• Energy-oriented network design
• Telecom applications
• Location
• Maritime shipping
• Telecom
• Graph theory
• Miscellaneous

Organizing a conference and publishing the proceedings is of course an endeavor
involving many people in numerous activities. We first want to thank all au-
thors and presenters for their contributions. Moreover, we greatly appreciate the
valuable help and cooperation from the members of the international Program
Committee as well as the referees.

June 2011 Julia Pahl
Torsten Reiners

Stefan Voß
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Abstract. In this paper, we are interested in the Optical Multi-Band Network
Design. This problem consists, given the physical layer of an optical network
and a set of traffic demands, in designing a virtual layer and grooming the traffic
demands on virtual links called subbands, then to determine the number of sub-
bands and the wavelength to assign for each subband of the virtual layer. We first
propose a node-arcs, and arc-paths integer linear programming formulations for
the problem, then we describe the column generation procedure for solving the
linear relaxation of the 0-1 arc-paths formulations.

1 Introduction

User demand in traffic is steadily increasing and it is necessary to upgrade the trans-
mission capacity of networks with the emerging high capacitated WDM (Wavelength
Division Multiplexing) systems. The existence of physical phenomena also called trans-
mission impairments [3] that affect the optical fibers, highlights the difficulty of setting
up high capacitated wavelengths on long distances. A new technology that may support
this evolution is currently under review and would lead to a network architecture that
enables the routing of traffic rates up to 100 Gb/s for long distances. This technology is
called OFDM (Orthogonal Frequency Division Multiplexing) and is based on the divi-
sion of each wavelength of the network in many subbands, this is known as an Optical
Multi-Band OFDM Network. This property enables to efficiently use the huge capacity
of a wavelength and thus to significantly reduce the number of resources required to
satisfy the traffic demands of the users.

In this paper, we are interested in the problem of designing an optical WDM layer
based on the OFDM technology, with considering the traffic grooming particularity of
WDM networks. This is a network design problem which consists in grooming and
routing the traffic demands in a multi-band layer and assigning a wavelength for each
subband of that layer so that the total cost is minimum. We first give a node-arcs, and
an arc-paths integer linear programming formulations for the problem. Then we discuss
some columns generation procedure for the arc-paths formulation. The network de-
sign problem received a growing interest and many variants of the problem have been

J. Pahl, T. Reiners, and S. Voß (Eds.): INOC 2011, LNCS 6701, pp. 1–6, 2011.
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presented and solved by different approaches. Some authors have focused on the multi-
layer architecture of these networks [2,5], and proposed many efficient branch-and-cut
algorithms, based on polyhedral study [1,4]. In [6], authors have proposed some de-
composition methods for a variant of the network design problem that is the Grooming,
Routing and Wavelength Assignment problem. Our model is distinguished from the
previous ones in that we consider in addition to the traffic routing, the assignment of a
physical path to each installed subband, and other specific engineering constraints.

This paper is organized as follows. In Section 2, we present the Optical Multi-Band
Network Design problem and we give two ILP formulations for the problem. In Sec-
tion 3, we describe the column generation procedure for solving the relaxation of the
0-1 arcs-paths formulation. We finaly give some concluding remarks in Section 4.

2 The Optical Multi-Band Networks Design Problem

2.1 General Statement

An optical network has a virtual layer and a physical layer. The virtual layer is com-
posed of several ROADMs1 interconnected by virtual links. The physical layer is com-
posed of transmission nodes interconnected by physical links each of which contains
two optical fibers. Each multiplexer in the virtual layer is associated with a transmission
node in the physical layer. And every link in the virtual layer consists in one or several
OFDM subbands. Each subband of a link in the virtual layer corresponds to a path in
the physical layer between the transmission nodes associated with the ends of the sub-
band. The Optical Multi-band Network Design problem (OMBNDP) consists, given a
physical layer of an optical network, where each physical link has a certain capacity,
and a set of traffic demands, to design a virtual layer, and to determine for each virtual
link, the number of subbands and the wavelength to be assigned to each subband.

In terms of graphs, the problem can be represented as follows. Consider a directed
graph G1 = (V1,A1) that represents the physical layer of an optical network, where V1 is
the set of nodes and A1 is the set of arcs. Each node v∈V1 corresponds to a transmission
node. The graph G1 is such that if there is an arc (i, j) between two nodes i and j of
V1, there is also an arc ( j, i) between j and i. Each arc a ∈ A1 corresponds to an optical
fiber, so that the traffic can be routed in both directions between i and j. Each fiber
can support at most |Ω | wavelengths2. Every wavelength has a capacity C and can be
divided into |B| different subbands. The capacity of a subband can not exceed a certain
value denoted by cmax.

Let K be a set of traffic demands in G1. Each demand k ∈ K has an origin node
ok ∈ V1, a destination node dk ∈ V1 and a traffic amount Dk. The (OMBND) problem
is to find a directed multigraph G2 = (V2,A2) corresponding to a virtual layer of the
OFDM-based network, where V2 and A2 are the sets of nodes and arcs, respectively.
Each node v′ ∈V2 in G2 corresponds to an ROADM and is associated to a node v ∈V1

in the graph G1. Each arc e ∈ A2 is composed of one or more subbands bi ∈ B. Even if
the traffic demands of K have their origin and destination nodes in the graph G1, they
have to be routed in the graph G2.

1 Reconfigurable Optical Add/Drop Multiplexers.
2 In practice, an optical fiber may contain either 8, 32 or 80 wavelengths.
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If we suppose that G2 is complete on the set of nodes V2, the problem is to remove
a subset of nodes and a subset of arcs and find the smallest graph G2, detemine the
number of subbands to install on each virtual arc and the wavelength to be assigned to
each subband, so that :

– For each demand k, there exists a path in G2 between nodes o′k and d′
k,

– There exists a path in G1, associated to each subband bi of the arc e = (u′,v′) ∈ A2

between nodes u and v of V1,
– A unique wavelength is assigned to each subband in a virtual link,
– The total cost of the virtual layer design is minimum, given that each subband bi is

associated a cost denoted by γ(bi).

In what follows we will first introduce some necessary notations, in order to give two
integer linear programming formulations.

2.2 Node-Arcs ILP Formulation

Let yebω be a binary variable that takes the value of 1 if a subband b ∈ B is installed
on a virtual link e ∈ A2 and assigned a wavelength ω ∈ Ω and 0 otherwise. Let f ebω

a
be a binary variable that takes the value of 1 if the subband b ∈ B of the virtual link
e ∈ A2 is assigned the wavelength ω ∈ Ω , while the associated path in G1 uses the
arc a ∈ A1, and 0 otherwise. We finaly denote by xk

ebω , a binary variable that takes the
value of 1 if the traffic demand k ∈ K uses the subband b ∈ B of the virtual link e ∈ A2

that is assigned the wavelength ω ∈Ω for its routing, and 0 otherwise. Let’s denote by
m1=|A1| and m2=|A2| the number of arcs in G1 and G2, respectively. And let Γ (s)+,
s ∈V1 ∪V2 (resp. Γ (s)−) be the set of arc outgoing from the node s (resp. incoming to
s). A formulation for (OMBND) is:

Min ∑
e∈A2

∑
ω∈Ω

∑
b∈B

γ(b)yebω

∑
a∈Γ+(s)

f ebω
a − ∑

a∈Γ−(s)
f ebω
a =

⎧⎨⎩
−yebω , i f s′ = u′, ∀e ∈ A2,

0, i f s′ �= u′,v′, ∀b ∈ B,∀ω ∈Ω ,
yebω , i f s′ = v′, ∀s ∈V1,

(1)

∑
e∈A2

∑
ω∈Ω

∑
b∈B

f ebω
a ≤ |Ω ||B|, ∀a ∈ A1, (2)

∑
e∈A2

f ebω
a ≤ 1, ∀b ∈ B,∀ω ∈Ω ,∀a ∈ A1, (3)

∑
ω∈Ω

∑
b∈B

∑
e∈Γ+(s′)

xk
ebω − ∑

ω∈Ω
∑
b∈B

∑
e∈Γ−(s′)

xk
ebω =

⎧⎨⎩−1, i f s′ = d′
k, ∀k ∈ K,

0, i f s′ �= o′k,d
′
k,∀s′ ∈V2,

1, i f s′ = o′k,
(4)

∑
k∈K

Dkxk
ebω ≤ cmaxyebω , ∀b ∈ B,ω ∈Ω ,e ∈ A2, (5)

yebω ∈ {0,1}, ∀b ∈ B,∀ω ∈Ω ,∀e ∈ A2, (6)

f ebω
a ∈ {0,1}, ∀b ∈ B,∀ω ∈Ω ,∀e ∈ A2,∀a ∈ A1, (7)

xk
ebω ∈ {0,1}, ∀b ∈ B,∀ω ∈Ω ,∀e ∈ A2,∀k ∈ K. (8)
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In this formulation, there are |B||Ω |m2 binary design variables, |B||Ω |m1m2 binary flow
variables for the physical layer and |B||Ω ||K|m2 binary flow variables for the virtual
layer. The objective is to minimize the total cost of installing the required number of
subbands on the arcs of the virtual layer. The three first constraints are flow constraints
for each subband b assigned the wavelength ω . They ensure that a path in G1 is asso-
ciated to each subband of G2. Constraints (2) and (3) ensure that the total number of
subbands associated to each arc of G1 cannot exceed the allowed capacity of that arc.
Constraints (4) and (5) are flow constraints for each commodity k. They require that the
traffic is not splitted on several paths, and the total flow on each subband cannot exceed
the capacity installed on that subband.

2.3 Arcs-Paths ILP Formulation

It is also possible to formulate the problem using path variables as follows. We define,
like for the node-arcs formulation the binary variables yebω for the design of the virtual
layer. Let’s denote by Pe, e = (u′,v′) ∈ A2, the set of paths in G1 between u and v
of V1. We define the binary variables f ebω (p) that takes the value 1 if the path p ∈
Pe is associated to the subband b ∈ B that is established on e ∈ A2 and assigned the
wavelength ω ∈Ω , and 0 otherwise. We denote by Pk, k ∈ K the set of candidate paths
in G2 for routing the demand k. Let xk(π) be a binary variable that takes the value 1 if
the path π ∈ Pk is selected to route the demand k, and 0 otherwise.

Let’s define the coefficients τ = (τa
e (p),a∈A1,e∈A2, p∈Pe) and ϕ = (ϕebω

k (π),e∈
A2,b ∈ B,ω ∈ Ω ,k ∈ K,π ∈ Pk) as binary parameters that indicate whether the arc a
belongs to the path p, and the subband b of the link e that is assigned the wavelength ω
that belongs to the path π . The (OMBND) problem is equivalent to the following 0-1
formulation:

Min ∑
e∈A2

∑
ω∈Ω

∑
b∈B

γ(b)yebω

∑
p∈Pe

f ebω (p) = yebω , ∀e ∈ A2,∀b ∈ B,∀ω ∈Ω (9)

∑
e,b,ω

∑
p∈Pe

τa
e (p) f ebω (p) ≤ |Ω ||B|, ∀a ∈ A1, (10)

∑
e∈A2

∑
p∈Pe

τa
e (p) f ebω (p) ≤ 1, ∀b ∈ B,∀ω ∈Ω ,∀a ∈ A1 (11)

∑
π∈Pk

xk(π) = 1, ∀k ∈ K (12)

∑
π∈Pk

∑
k∈K

Dkϕebω
k (π)xk(π) ≤ cmaxyebω , ∀e ∈ A2,∀b ∈ B,∀ω ∈Ω , (13)

yebω , f ebω ∈ {0,1}, ∀e ∈ A2,b ∈ B,ω ∈Ω , (14)

xk ∈ {0,1}, ∀k ∈ K. (15)

In this formulation, the constraints are similar to the node-arcs formulation and their
number is of order O(V 2

1 ). This arc-paths formulation may contain an exponential num-
ber of variables, and the integer column generation procedure is an appropriate method
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to deal with this kind of formulations. In what follows, we describe the pricing problem
associated to the linear relaxation of the formulation.

3 The Column Generation Procedure

In this section, we attempt to describe the column generation procedure that is used to
solve the linear relaxation of the formulation (9)-(15). We solve iteratively the prob-
lem with a subset of columns. The remaining formulation is called Restricted Master
Problem (RMP), and we search the missing columns with negative reduced cost by
solving two pricing sub-problems. The (RMP) is given by the linear relaxation of (9)-
(15), restricted to a subset of paths J = J1 ∪ J2. J1 is a subset of paths in the graph G1

between the pairs of nodes (u,v), u, v ∈ V1, corresponding to the the end nodes of the
arcs e = (u′,v′) ∈ A2. J2 is a subset of paths in the graph G2 between the pairs of nodes
(o′k,d

′
k) corresponding to the source and destination nodes of each traffic demand k.

Let’s denote by αebω , βa, λ bω
a , μk and δ ebω , the dual variables associated to the

constraints of the linear relaxation of (RMP). These dual variables allow to express the
reduced costs given by (16) and (17)

−(αebω + ∑
a∈A1

τa
e (p)βa + ∑

a∈A1

τa
e (p)λ bω

a ) (16)

−(μk + ∑
e∈A2

∑
b∈B

∑
ω∈Ω

Dkϕebω
k δ ebω) (17)

associated to the variable xk. Both of the two associated pricing problems are shortest
path problems, in the graphs G1 and G2, respectively, with specific weigths on the arcs
of A1, and specific weigths on each subband b of the arcs of A2.

Fig. 1. The reduced cost on the arcs of G1 Fig. 2. The reduced cost on the arcs of G2

The dual variables βa, λ bω
a and δ ebω associated to the constraints (10), (11) and (13),

respectively are positive. The dual variables αebω and μk, associated to the constraints
(10) and (12) respectively, are not necessarily positive as they arise from equalities.
However, they express a constant cost that does not impact on the shortest path compu-
tation (see Fig. 1 and Fig. 2).
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4 Conclusion

In this paper, we have considered the Optical Multi-Band Network Design problem. We
have given two ILP formulations for the problem and described the column generation
procedure for solving its linear relaxation. We have implemented the column genera-
tion procedure for the arc-paths formulation and provided some numerical results for
both formulations. This work still in a preliminary phase, however some interesting
topics would be to performe a polyhedral study of the problem, and to propose efficient
algorithms in order to solve the problem for real instances.
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Abstract. Modern life heavily relies on communication networks that operate
efficiently. A crucial issue for the design of communication networks is robust-
ness with respect to traffic fluctuations, since they often lead to congestion and
traffic bottlenecks. In this paper, we address an NP-hard single commodity ro-
bust network design problem, where the traffic demands change over time. For
k different times of the day, we are given for each node the amount of single-
commodity flow it wants to send or to receive. The task is to determine the
minimum-cost edge capacities such that the flow can be routed integrally through
the net at all times. We present an exact branch-and-cut algorithm, based on a
decomposition into biconnected network components, a clever primal heuristic
for generating feasible solutions from the linear-programming relaxation, and a
general cutting-plane separation routine that is based on projection and lifting.
By presenting extensive experimental results on realistic instances from the liter-
ature, we show that a suitable combination of these algorithmic components can
solve most of these instances to optimality. Furthermore, cutting-plane separation
considerably improves the algorithmic performance.

1 Introduction

Communication networks play a fundamental role in every-day life. Due to the huge
growth of telecommunications services in the last years, the development of efficient
methods for an optimal design of such networks is nowadays a crucial research area.

In a standard network design problem, we are given a network represented by a
graph with non-negative costs on the edges, and we aim at routing a set D of demands
through the network at minimum cost. However, since in practical settings the set of
demands is often subject to uncertainty and may vary with time, more accurate models
recently have been defined in the literature. In particular, there is a well-studied class of
robust network design problems, which assumes to have as input a family D of possible
sets of demands to be routed, instead of just one set. The aim is to install minimum
cost capacities such that every set of demands D ∈ D can be suitably routed. Robust
network design problems of this kind have received a lot of attention in the network
design community, see e.g. [7,5,14,12,16,26] and the recent survey of Chekuri [10].

J. Pahl, T. Reiners, and S. Voß (Eds.): INOC 2011, LNCS 6701, pp. 7–17, 2011.
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In this paper, we focus on a single commodity robust network design (RND) prob-
lem. As an example, suppose that some clients wish to download some program stored
on several servers. For a client, it is not important which server he or she is downloading
from, as long as the demand is satisfied. Still, at different times of the day (e.g. morn-
ing/afternoon/evening), the demands may change (e.g. different clients show up), and
we would like to design a network that is able to route all flow in all different scenarios.

Formally, we are given an undirected graph G = (V,E) with costs ci j ≥ 0 for every
edge {i, j} ∈ E , and k sets {D1, . . . ,Dk} of demands. A set Dt , also called a traffic
matrix, specifies for each node u ∈V a value bt

u ∈� of flow that the node wants to send
(bt

u < 0) or to receive (bt
u > 0); one may also have bt

u = 0. The goal is to install integral
min-cost capacities u ∈�E such that each traffic matrix Dt can be (non-simultaneously)
integrally routed on G without exceeding the capacity.

Note that, if we have only one traffic matrix (i.e. k = 1), then the problem is just a
min-cost single commodity flow problem, the so-called transshipment problem, and it
is therefore easily solvable in polynomial time (see e.g. [11]). In contrast, whenever we
take into account more scenarios, the problem becomes NP-hard, already for k = 3 [27]
(the complexity is open for k = 2).

To the best of our knowledge, no exact methods are available in the literature for
this problem so far. In this work, we provide a branch-and-cut algorithm, based on the
natural flow formulation strengthened by generating local cuts, revisited according to
[8]. We test our algorithm on a wide set of realistic instances, and show that in this
application local cuts significantly improve the computational time to find an optimal
integral solution.

Related Works: Robust network design problems with a family D of demand sets are
widely studied in the literature.

A popular model is the one introduced by [7], where the family D is described by a
polyhedron. In this setting, a well-known polyhedral set of traffic matrices is the hose
model, defined by [12,16]. In fact, this model is the basis of one of the most important
RND problem, namely the Virtual Private Network Design problem [20,19]. For RND
problems with a polyhedral set of traffic matrices, many exact algorithms [5,14] as well
as approximation algorithms [13,17,21] have been developed.

Whenever the set D of traffic matrices given in input is a finite list, as in our setting,
the problem is a network synthesis problem with non-simultaneous flows. This problem
has two main applications [23]: the first one, that we discussed in the previous section,
is related to the design of a network with time-varying demands. One reason for con-
sidering this model, is that network operators may have historical data on which they
can rely to construct an explicit list of traffic matrices to take into account. Here the
number k of different sets can be assumed reasonably small, but typically we have mul-
tiple sources/destinations. The second application is related to the design of survivable
networks. Here the number k is large, since it is equal to the number of edges of the
graph, but we have a single source and a single destination at the time.

The first application has been studied in more detail in the multi-commodity case
(i.e. when each traffic matrix specifies a demand for every pair of nodes). This problem
is NP-hard already for k = 2 [27]. In this setting, although k can be assumed to be small,
a flow formulation would use different flow variables for every pair of nodes and every
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scenario, which make exact approaches based on flow formulations more difficult to
solve in practice when comparing it to our single commodity setting. Some heuristics
are given in [23]. Still, the problem can be approximated within a factor of O(log |V |)
using metric embedding techniques [15,27].

In survivable network design, we have a demand r(i, j) for every edge {i, j} ∈ E
representing the flow that needs to be re-routed in case the edge {i, j} fails, and the
problem is to install capacity in order to non-simultaneously route each r(i, j). In this
setting, every flow is a single-commodity flow with exactly one source and one desti-
nation, but the number k is equal to the number of edges in the graph, therefore in a
flow formulation we may again have order of |V |2 different flow variables. The study of
this problem was started by [18], who provided combinatorial algorithms for finding an
optimal fractional solution in unit-cost metric graphs. Later on, some people studied the
polyhedral structure of the problem (see e.g. [25,24]), and exact approaches for special
classes of graphs (see e.g. [25,28]).

Interestingly, there is a 2-approximation for the survivable network design problem
due to [22] based on an iterative rounding technique. Although our RND problem is
also a single-commodity flow problem, we note that our setting has more sources and
destinations, which is different from survivable network design. This may make the
problem harder to approximate. In fact, the 2-approximation algorithm of [22] does not
apply in our case (see [27] for more details), and it is an interesting open question to
find a constant factor approximation for the single commodity RND problem.

2 Problem Formulation

We are concerned with the problem of assigning minimum cost edge capacities such
that k different flows can be non-simultaneously integrally routed through the network.
Clearly, once we compute k flows which realize the demands of the k traffic matrices
in input, the capacity which needs to be installed on an edge is just as large as the
maximum amount of flow routed along it for all matrices.

For the matrix Dt , let the variable f t
i j model the amount of flow that is routed along

edge {i, j} in the direction from i to j. Then our optimization problem, which from now
on we simply call the RND problem, can be formulated as follows:

min ∑{i, j}∈E ci j max( f 1
i j + f 1

ji, . . . , f k
i j + f k

ji)
∑ j:{ j,i}∈E f t

ji −∑ j:{i, j}∈E f t
i j = bt

i for i ∈V, t = 1, . . . ,k
f t
i j ∈ �+ for {i, j} ∈ E, t = 1, . . . ,k

(1)

Considering the above set of constraints with linear cost functions, effective algo-
rithms exist for determining optimum flows. However, in this formulation of the RND
problem, the cost function is non-linear in the flow variables, which prevents their ap-
plicability. Trivially, this non-linear formulation can be linearized by introducing a ca-
pacity variable ui j for each edge {i, j} ∈ E that models the maximum amount of flow
sent along the edge for all matrices:
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min ∑{i, j}∈E ci jui j

∑ j:{ j,i}∈E f t
ji −∑ j:{i, j}∈E f t

i j = bt
i for i ∈V, t = 1, . . . ,k

ui j ≥ f t
i j + f t

ji for {i, j} ∈ E, t = 1, . . . ,k
f t
i j ≥ 0 for {i, j} ∈ E, t = 1, . . . ,k

ui j ∈ �+ for {i, j} ∈ E

(2)

Note that in the above formulation we relaxed the integrality constraints for the flow
variables. In fact, once an integral feasible capacity vector u is given, one can easily
compute integral flows realizing our demands by solving k different flow problems, one
for each traffic matrix Dt , with the given capacities ui j. The existence of integral flows
is guaranteed since we are dealing with single commodity flows (see e.g. [11]).

The linear relaxation of (2) is the LP at the basis of our branch-and-cut algorithm.

3 Preprocessing

We can preprocess a given RND instance by decomposing the network into biconnect-
ing components. A biconnected component is a maximal connected subgraph such that
the removal of any of its nodes does not destroy its connectedness. Any connected
graph decomposes into its biconnected components, which are connected to each other
by so-called cut vertices.

It is easy to see that the RND instance can be solved for each of the network’s bi-
connected components independently as follows. There exists at least one of them, say
C = (VC,EC), that contains only one cut vertex v ∈VC. All flow into and out of C has to
be routed through v. Therefore, we can decompose the RND instance on G into an RND
instance on C and an RND instance on a graph G′ which is the union of all components
different from C. Note that v is included in both C and G′. In the RND instance on C,
the demand of the cut vertex is set to bv = ∑u∈V\VC

bu. In the other instance, we set
bv = ∑u∈VC

bu. The demands for all the other nodes are left unchanged.
Applying the same arguments to G′ recursively and appropriately choosing the de-

mands of the cut vertices, the RND problem on G can be reduced to RND problems on
its biconnected components, which have a smaller size. The partial optimal solutions
for different biconnected components can trivially be combined to an optimum solution
for the whole network.

4 Primal Heuristics

Within a branch-and-cut approach, it is important to design so-called primal heuristics
that try guessing good feasible solutions in order to derive upper bounds on the opti-
mum value. A standard approach finds feasible solutions by appropriately rounding the
optimal solutions of the LP relaxations.

For the RND problem, suppose we have solved an LP relaxation at some node in the
branch-and-bound tree, and let ( f ∗,u∗) be the optimum solution. We compute a feasible
solution in three steps. First, we define u ∈ �E to be the vector with entries ue = 
u∗e�,
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for all e ∈ E . Second, we determine k integral flows that satisfy the k different traffic
matrices and respect the capacities given by u. By construction such flows exist, and we
compute them by solving a minimum-cost flow problem for each traffic matrix, with
a randomly chosen linear objective function. Finally, the k flows are combined to an
RND solution by determining for each edge the actual capacity uprim necessary to route
the k flows. Note that some entries of the vector uprim could be strictly smaller than the
corresponding entries of the vector u.

In computing the k flows, we use the same cost function for all matrices, as the
same edges should be preferred for each of the k flows, in order to keep the values of
the capacity variables low. The cost function is chosen randomly in order to have the
chance of generating different solutions in each iteration.

In the next lemma, we give an upper bound on the quality of a feasible solution
( f prim,uprim) obtained by this procedure. More specifically, we relate it to the value of
an optimum feasible solution contained in the subtree of the corresponding node of the
branch-and-bound tree. If the node is not the root, we call such a solution local as it is
optimum under the constraints given by the branching decisions.

Lemma 1. The distance of a (local) optimum RND solution to the feasible solution
(uprim, f prim) generated in the primal heuristic is at most c�(u−u∗).

Proof. Let ( f loc,uloc) be a (local) optimum solution that is feasible for RND. Clearly,
c�uprim ≤ c�u and c�uloc ≥ c�u∗. This implies c�uprim − c�uloc ≤ c�u− c�u∗ .

5 Separation of Target Cuts

For designing an effective branch-and-cut algorithm, it is essential to separate strong
cutting planes so that branching is rarely necessary. In [8], the separation of target cuts
was introduced as a variant of the local cuts by Applegate et al. [6]. No predescribed
structure is imposed on the generated cutting planes. Furthermore, their separation is
a general procedure that can be applied in various contexts. For the separation, the
problem is first projected into a low-dimensional space. Let P denote the convex hull
of all projections of feasible solutions. Let x∗ be the point to be separated and x∗ its
projection. The separation problem for x∗ and the polytope P in question is solved
heuristically by generating a facet separating x∗ from P, if it exists. Such a facet can
be found by determining an optimal extremal solution of a linear optimization problem
whose size is linear in the number of vertices of P and the extreme rays. Let q belong
to the relative interior of P. The cut-generation LP is of the form

max a�(x∗ −q)
s.t. a�(xi −q) ≤ 1 for all vertices xi of P

a�(xi −q) ≤ 0 for all extreme rays xi of P
a ∈ �r

(3)

If the optimum value of (3) is larger than 1, the inequality a�(x− q) ≤ 1 is violated
by x∗. Furthermore, it is proven in [8] that an optimum solution of (3) defines a facet of
P. In case (3) is unbounded, then a�(x− q) = 0 is a valid equation for P and violated
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by x∗, where a is an unbounded ray. Finally, the inequality is lifted to become valid (not
necessarily facet-defining) for P. In [9], target cuts were successfully used for solving
several constrained binary quadratic optimization problems.

5.1 Choice of the Projection

Choosing good projections is crucial for the success of the target-cut separation. In most
optimization problems defined on a graph G = (V,E), the polytope P is either deter-
mined through an orthogonal projection onto some subgraph of G, or through shrinking
subsets of nodes or edges in G. The resulting graph is denoted by G = (V ,E).

For the RND problem, the polytope P in the original variable space is the convex
hull of all feasible solutions ( f ,u) of problem (2). An orthogonal projection onto some
subgraph that only contains a subset of nodes is not useful. Indeed, suppose G is ob-
tained through an orthogonal projection such that for an edge {v1,v2} ∈ E it is v1 ∈ V
but v2 �∈ V . Then, P also contains vectors ( f ,u) for which f does not need to satisfy
the flow-conservation constraints for v1 because (positive or negative) excess flow at
v1 could be annihilated in G by routing flow along {v1,v2}. Therefore, most of the
structure of the RND polytope is lost when using such a projection.

In contrast, we iteratively choose an edge {v1,v2} ∈ E randomly and shrink it by
identifying the nodes v1 and v2. Loops are deleted, multiple edges are replaced by one
edge, the demand of the resulting supernode is set to bv1 + bv2 . The corresponding en-
tries in the optimum solution x∗ of the relaxation are summed up. We shrink until the
number of (super-)nodes in the shrunk graph is equal to the value of a fixed parameter
c that specifies the size of G. The latter is also called a chunk.

Let P be the convex hull of the vertices in the projected space obtained through
shrinking edges as outlined above. Clearly, the vectors in P being projections of feasible
solutions of (2) need to satisfy the flow conservation constraints on G. It is easy to see
that P is again the convex hull of feasible solutions of problem (2), but defined on G.

Finally, a different parameter l specifies the number of traffic matrices that should
be taken into account. In case this number is smaller than the original number k of
matrices, we randomly choose a subset of them.

The target-cut separation routine now determines facets of P that are violated by x∗,
if they exist. These inequalities need to be lifted to become valid for P. We use stan-
dard lifting procedures. First, we argue that an inequality valid for a subset of scenarios
remains valid if all scenarios are addressed. Indeed, as the capacity variables are not
bounded from above in the RND model, their coefficients are necessarily nonpositive
in any valid inequality. As the capacity values can only increase when enlarging the set
of traffic matrices, an inequality that is valid for a subset remains valid when all ma-
trices are considered. An inequality is then iteratively lifted to an inequality valid for
P by simultaneously unshrinking the graph. The shrinking steps are undone one after
the other, in reverse order of the shrinking procedure. Suppose some loop was deleted
when shrinking an edge {v1,v2}. Furthermore, also suppose some multiple edges were
replaced by a single edge e. We obtain the lifted inequality for the graph in which nodes
v1 and v2 are unshrunk as follows. The coefficient corresponding to the loop edge is set
to zero. Let ae be the coefficient of the single edge that represents multiple edges. As
the flow along e in G can now be split along multiple edges, ae is set as coefficient for
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each of these. The coefficient of {v1,v2} is set to zero. All other coefficients remain un-
changed. It is easy to see that iteratively applying this lifting and unshrinking procedure
yields an inequality valid for P.

5.2 Cut Generation

In our implementation, target cuts are generated by delayed column generation [8].
Starting from a small subset of feasible points in P, the remaining points of P are gen-
erated only if necessary. More precisely, a candidate target cut is computed considering
the initial set of points, then it is checked whether this inequality is violated by some
point in P not generated yet. If so, the new point is added and a new candidate cut
is computed. To check whether P contains a point violating the given cut, we need a
so-called oracle that solves the RND problem on the shrunk graph G. This is done by
applying a branch-and-cut algorithm to the MIP model (2).

In our application, the delayed column generation approach is crucial. While for
binary problems it might be feasible to completely enumerate all integer points in P
at once, at least in small dimensions, this is practically not possible in the presence of
general integer variables, since the number of these points could become much larger.
As described in [8], the delayed column generation procedure can be applied even if
the set of initial points is low-dimensional. However, to avoid dealing with numerical
problems and to speed up the cut generation process significantly, we always start from
a full-dimensional polyhedron P0, which is computed as sketched in the following.

First we compute any feasible solution ( f ,u) for the RND problem on the shrunk
graph G and set P0 = {( f ,u)}. Such a solution ( f ,u) can be computed efficiently as a
composition of arbitrary feasible solutions for the single matrices, computing appropri-
ate values for the variables ui j in the end. Next, we determine any cycle basis of G. For
each cycle C in the basis and for each of the l matrices considered (recall that we may
select a subset of the k matrices), we add the incidence vector of C to the entries of f
corresponding to the chosen matrix and adjust the u-entries. The result is a new feasible
vector in P, which we add to P0. All vectors added in this way are affinely indepen-
dent. If G has n̄ nodes and m̄ directed edges (counted in both directions (i, j) and ( j, i)),
the cycle basis contains m̄− n̄+ 1 elements, so the current polytope P0 has dimension
l(m̄− n̄ + 1). Additionally, we add an unbounded direction to P0 for each variable ui j,
since increasing ui j preserves feasibility. Equivalently, in the cut generation LP (3) we
may enforce that the coefficient of ui j is non-positive. The dimension of P0 increases to
l(m̄− n̄+1)+ 1

2 m̄. Finally, for each vertex in G, we have a valid flow conservation con-
straint (and all but one of these equations are independent). If a is the coefficient vector
of any such constraint, we add the unbounded directions a and −a to P0. Consider-
ing (3), this implies that all generated target cuts will be orthogonal to all flow conser-
vation constraints. The final dimension of P0 is l(m̄− n̄+1)+ 1

2 m̄+ l(n̄−1) = (l + 1
2 )m̄,

which means P0 is full-dimensional.
If a target cut is found, i.e., if x∗ �∈ P, we try to compute further target cuts by a reop-

timization approach: in (3), we choose the first non-zero coefficient in the last generated
cut and fix it to zero. Then we reoptimize (3), using delayed column generation again if
necessary, and continue fixing coefficients until no violated target cut is found.
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6 Computational Results on Realistic Instances

We implemented an exact branch-and-cut algorithm based on the ideas outlined in the
previous sections, using the optimization tool SCIL [4] in combination with ABA-
CUS 3.0 [1], LEDA 6.1 [2], and CPLEX 12.1 [3]. The executable is run on 2.3 GHz
machines with a limit of four hours CPU time for each job. Furthermore, as the pro-
gram is a 32-bit executable, a maximum of 4 GB of memory can be addressed. Param-
eters controlling the target-cut separation are the chunk size c and the number of traffic
matrices l used in the target-cut separation. In particular, for c = 0, no separation is
performed. We evaluate our method on 1120 realistic network topologies from the lit-
erature [5]. For each of these instances, k = 2,3,4,5 random traffic scenarios are added.
Furthermore, for each network topology and each choice of k, we randomly choose the
percentage p of terminals, i.e., nodes with non-zero demand, as p = 25,50,75,100%.
For very small instances, we did not use p = 25%. Altogether, these are 1120 different
instances. In Table 1, we report the distribution of the instance sizes. As the instances
from [5] strongly vary in size, they are grouped with respect to the number of nodes in
the network in bins of size 150. Average node and edge numbers of the instances in the
respective groups are also given.

Table 1. Distribution of sizes for the realistic instances, grouped in bins by the number of nodes
|V | in the network

bin |V |avg |E|avg # instances
0 ≤ |V | ≤ 149 34.31 55.48 612

150 ≤ |V | ≤ 299 201.31 383.57 268
300 ≤ |V | ≤ 449 352.00 578.80 240

Within the time and memory limits, 94% of the instances could be solved to opti-
mality, even without separation. Using target cuts separation, we can further increase
the number of instances that can be solved to optimality. The fact that almost all of the
instance set can be solved shows the effectiveness of our approach. In order to eval-
uate the computational results in more detail, we first assess the quality of the primal
heuristic. For the instances that could be solved to optimality without separation, we re-
port the distance of the optimum solution to the feasible RND solution generated from
the first LP relaxation. More specifically, we determine the relative gap g in %, i.e.,
g = 100 · xprim−xopt

xopt . In 24% of the cases, g < 0.1%, in 45% of the cases, g < 1%, and in
55% of the cases, g > 10%. In the worst case, the gap is not larger than 61%.

In Table 2, we report results for solving the instances to optimality. Results are pre-
sented separately for each number l of scenarios, grouped with respect to the number
of nodes in the network. As the running time usually increases for chunk sizes larger
than 4, we restrict ourselves to smaller chunks and therefore use the parameter choices
(c, l) = (0,0),(3,2),(3,3),(4,2),(4,3), where the case (0,0) means that no separation
takes place. Numbers are only shown for instances in which the number k of scenar-
ios is at least as large as l. For each parameter choice, we report in the first column the
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number of instances that could be solved to optimality for a specific choice of separation
parameters, followed by the number of instances that could not be solved due to time
or memory constraints, respectively. Typically, for an instance that could not be solved
due to memory constraints, a number of subproblems in the order of 105 was generated.
The following columns show the average number of subproblems in the branch-and-
bound tree and the average cpu time in seconds of the instances that could be solved to
optimality. Interestingly, many instances in Table 2 can be solved within a few minutes
only. On average, instances with only two scenarios are computationally easier than
those with a larger number of scenarios, as can be expected. Furthermore, on average
the difficulty often increases with increasing network sizes.

Clearly, target-cut separation considerably improves the performance of the algo-
rithm. Whereas several instances cannot be solved to optimality without separation, the
number of unsolved instances is never worse and often better if target-cut separation
is used. Usually, when reaching the time limit, the unsolvable instances have a huge
number of open subproblems, often in the range of 105 or more. Thus, these instances
are too difficult for the corresponding algorithmic setting. The fact that the algorithm
with target cut separation can solve a larger number of instances to optimality shows the
effectiveness of the separation. Furthermore, instances solvable without separation can
be solved considerably faster and with a smaller number of subproblems when target
cuts are separated.

We conclude that our approach can solve to optimality most of the realistic instances
that we have at hand. Whereas instances defined on small networks should probably be
solved without separation, in many cases target cut separation leads to faster solution
of instances or even makes it possible to solve otherwise unsolvable instances.
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Abstract. We consider a one layer network design problem in the presence of
Shared Risk Groups (SRGs). We can define an SRG as a set of links of the logical
layer that simultaneously fail in the case of a failure of a lower layer. We propose
a mathematical model for the dedicated protection and two alternative models
for the shared protection, all based on flow variables. In addition we propose a
simple constructive heuristic. We report some computational results that compare
the outcome of the models (upper and lower bounds provided by a commercial
software) and those of the heuristic.

1 Introduction and Problem Statement

The design of resilient networks is a crucial problem in telecommunications and has
obtained much attention by the optimization community. The most traditional setting
considers link failures. The link capacity must be allocated at minimum cost so that in
case of single or multiple link failures the demands can still be routed. When single
failure protection is accounted for, for each demand the capacity on a pair of disjoint
paths (primary and backup) from the origin to the destination nodes must be allocated.
If the protection is of dedicated type, the capacity must be reserved to the demand on
both paths, thus the capacity allocated on each link must consider the sum of flows on
the primary and backup paths using that link. However, this kind of protection can lead
to an excessive capacity allocation. Indeed if two primary paths are completely disjoint,
they can share the capacity allocated on common portions of the backup paths, since
the event that both demands need to be rerouted on the backup paths never occurs. This
is the so called shared protection.

Due to the diffusion of multilayer networks, protection mechanisms, even in the
dedicated case, are required to consider more complex features. The links of the logical
layer network correspond to complex objects in lower layers. This means that in case
of a failure in the lower layers more than one link is affected in the upper one. This
complexity is captured by the so called SRGs. We can define a SRG as the set of links
of the logical layer, where the design must be decided, that simultaneously fail in the
case of a failure of the lower layer. Notice that one link of the logical layer, being
made by more entities of the lower layers, may belong to more than one SRGs, as it
may fail upon the failing of any of the entities defining it. SRGs may be associated to
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single layer networks, as well, as they are related to the physical layout of the network
elements. In the presence of SRG, protections (both dedicated or shared) must consider
this additional complexity that usually spoils the network structure of the problem as
one SRG can include apparently uncorrelated links.

Resilient network design has been widely addressed. In [5] a review on different
resilient network design problems is proposed together with path based models: failure
scenarios (or states) are taken into account, which, as SRGs, can be used to represent
multiple simultaneous failures. The complexity of path-based survivability mechanism
is addressed in [6]. Problems arising in the SRG network design context have been
considered in several recent works as for example [3] and [4] where some paths and
cut problems on colored graphs are analyzed from the computational complexity and
approximability point of view. In [7] a network design of resilient networks with SRG
is considered. The authors propose a very complex mathematical model that includes
many technological aspects. Often SRG related problems arise in two layer networks,
as shown in [1] and [2], where SRGs are tackled considering an explicit knowledge of
the physical layer affecting them.

In this work we consider a one layer network design problem in the presence of
SRGs. We propose one mathematical model for the dedicated protection and two alter-
native models for the shared protection, all based on flow variables. In addition we pro-
pose a simple constructive heuristic. We report some computational results that compare
the outcome of models (upper and lower bounds provided by a commercial software)
and those of the heuristic.

The network is represented by a directed graph G = (N,A). The set of arcs corre-
sponds to the set of potential links where capacity must be allocated. A set of traffic
demands K is given. Each traffic demand is defined by a triple (ok, tk,dk) where ok and
tk are the origin and the destination of dk units of flow.

The set S of SRGs is also given. Each SRG s ∈ S is a subset of A. To guarantee
resilience to single arc failure, each arc represents a SRG, as well. We assume that
the arc capacity is provided by installing transportation channels. Each transportation
channel provides a capacity of λ flow units. The cost of installing one transportation
channel on arc (i, j) is ci j.

The reliable network design problem consists in finding, for each demand k, two
paths from the origin ok to the destination dk (unsplit routing) disjoint on the SRGs and
allocate the capacity on the arcs at minimum cost. The capacity allocation depends on
the type of applied protection. In the case of dedicated protection, the capacity to be
allocated on a link (i, j) amounts to the sum of flows (primary or backup) traversing the
link. In the case of shared protection, the capacity allocated on link (i, j) is given by the
sum of flows of the primary paths traversing the link plus the maximum of the backup
paths flows of demands that do not share SRGs on their primary paths.

2 Proposed Approaches: Models and Heuristic

Let us consider the end-to-end dedicated protection case. The problem can be modelled
using two sets of binary variables, describing the nominal and backup paths of a demand
k, xk

i j and yk
i j, which are equal to one if the nominal path – backup path respectively–



20 B. Addis, G. Carello, and F. Malucelli

of demand k is routed on arc (i, j). Beside, an integer variable zi j gives the number of
channels installed on arc (i, j). The model is the following:

min ∑
(i, j)∈A

ci jzi j (1)

∑
( j,i)∈A

xk
ji − ∑

(i, j)∈A

xk
i j = bk

i ∀i ∈ N,k ∈ K (2)

∑
( j,i)∈A

yk
ji − ∑

(i, j)∈A

yk
i j = bk

i ∀i ∈ N,k ∈ K (3)

∑
k∈K

dk

(
xk

i j + yk
i j

)
≤ λ zi j ∀(i, j) ∈ A (4)

xk
i j + yk

hl ≤ 1 ∀k ∈ K,s ∈ S ,(i, j),(h, l) ∈ s (5)

xk
i j,y

k
i j ∈ {0,1},zi j ∈ Z+ ∀(i, j) ∈ A,k ∈ K (6)

where bk
i =−1 if i = ok, 1 if i = tk and 0 otherwise. Objective function (1) guarantees the

minimum installation costs. Constraints (2) (and (3)) guarantee that there exists one and
only one primary (and backup, respectively) path for each traffic demand. Constraints
(5) force the two paths to be SRG disjoint for each demand. Equations (4) are arc
dimensioning constraints, while (6) are integrality constraints.

Let us consider now the shared protection case. The problem can be modelled using
xk

i j and yk
i j binary variables, and integer variables zi j , with the same meaning of the

above model. Besides, a binary variable gsk
i j is introduced, which is equal to one if the

demand k is re-routed on arc (i, j) in case fault associated to SRG s occurs. Objective
function (1) is kept, as well as constraints (2), (3) and (5). The following constraints are
added to force the dimensioning of each link:

xk
hl + yk

i j −1 ≤ gsk
i j , ∀s ∈ S ,∀(h, l) ∈ s,∀(i, j) ∈ A : (i, j) �= (h, l),(l,h) (7)

∑
k∈K

dk

(
xk

i j + gsk
i j

)
≤ λ zi j, ∀(i, j) ∈ A,∀s ∈ S (8)

Constraints (7) force the value of variable gsk
i j , while constraints (8) guarantee that the

installed capacity on each arc is enough to manage all the traffic demands whose pri-
mary path is routed on the arc, plus the amount of re-routed traffic due to the worst fault
condition.

An alternative formulation uses a binary variable vks which is equal to one if de-
mand k is affected by SRG s, and continuous variables ri j

ks, which represent the amount
of traffic of demand k which must be rerouted on arc (i, j) if SRG s occurs. In such
formulation constraints (7) and (8) are replaced by:

∑(i, j)∈s xk
i j ≤ |s|vks ∀s ∈ S ,k ∈ K (9)

ri j
ks ≥ dk

(
vks + yk

i j −1
)

∀s ∈ S ,k ∈ K,(i, j) ∈ A (10)

∑k∈K ri j
ks +∑k∈K dkxk

i j ≤ λ zi j ∀(i, j) ∈ A,s ∈ S . (11)
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Greedy heuristic The problems are solved via a greedy approach integrated in a Mul-
tistart. The greedy approach sequentially routes the demands and dimensions the net-
work. Following an ordered set of demands, which can be randomly changed to provide
a multistart approach, the algorithm considers one by one the demands and routes them
as follows:

– Evaluate incremental costs, i.e. the increase in the capacity installation cost which
the demand will cause if routed on the arc: for each arc the capacity installation
cost is computed assuming that the considered demand is routed on the arc. The
incremental cost are given by the difference between such cost and the current one.

– Find minimum incremental cost pair of primary and backup paths solving suitable
ILP models.

– Route demand on graph and dimension link capacity.

3 Computational Results

The models and the proposed heuristic have been tested on a set of a randomly gener-
ated instances with 10 nodes. The networks have been generated with GT Internetwork
Topology Models code ([8]). The set of demands and the SRGs have been randomly
generated. The number of SRGs is four for all the instances. Each instance is named
as i |A|− index |K|, where |A| is the number of arcs, |K| the number of demands, and
index is the index of the randomly generated topology. For each network we consider
the dedicated protection and the shared protection cases.

Models have been solved with CPLEX 11.0.1 with a time limit of 3600 seconds,
heuristic has been implemented on C++: both CPLEX and heuristic, with 30 multistart
iterations, have been run on a Xeon processor at 2.0GHz with 4Gb RAM.

First we compare the results obtained with CPLEX with those obtained by the heuris-
tic on the dedicated protection instances: results are reported in Table 1. For each in-
stance, four columns are devoted to CPLEX (lower bound LB, upper bound UBC,
gap computed as (UBC-LB)/LB in percentage, and computational time) and four are
devoted to the heuristic results (UBH, gap with respect to CPLEX UB computed as
(UBH-UBC)/UBC, gap with respect to LB computed as (UBH-LB)/LB and computa-
tional time). CPLEX manages to solve to optimality 7 instances – those with 5 demands
– over 12, in reasonable CPU time (up to about 260 s. in the worst case). The gap is lim-
ited for the five instances for which optimality is not proved. The average gap is about
4% and it is about 11% in the worst case. The heuristic algorithm provides gaps with
respect to the integer solution of about 14% on the average, which increase up to about
22% in the worst case. Although the computational time increases on the 40 demands
instances, however it does never exceed one minute and is limited for the instances with
five demands.

The shared protection case is reported in Table 2, where results obtained with the
first model (including constraints (7) and (8)) are compared to the ones obtained with
the second one (including constraints (9), (10) and (11)). The improvement in the lower
bound, with respect to the continuous relaxation, and the gap between upper and lower
bound after one hour of computation are compared. Finally we compare upper bound
obtained solving the two models with CPLEX with heuristic method results. The last
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Table 1. Results on instances with dedicated protection

CPLEX Heuristic
Instance LB UB gap CPU time UB gap UB gap LB CPU time

i 17 5 7506 7506 0.00% 0.33 7700 2.58% 2.58% 3.74
i 17 40 25350.47 25353 0.01% 263.23 28332 11.75% 11.76% 21.59

i 45-0 5 3348 3348 0.00% 8.19 3693 10.30% 10.30% 5.67
i 45-0 40 9342.85 10265 9.87% t.l. 12569 22.45% 34.53% 45.16
i 45-1 5 3975 3975 0.00% 2.02 4435 11.57% 11.57% 5.63

i 45-1 40 12815.21 14102 10.04% t.l. 17223 22.13% 34.39% 45.17
i 45-2 5 4311 4311 0.00% 4.73 4941 14.61% 14.61% 5.62

i 45-2 40 13931.12 15514 11.36% t.l. 19013 22.55% 36.48% 47.90
i 45-3 5 2939 2939 0.00% 1.35 2940 0.03% 0.03% 5.67

i 45-3 40 9928.96 10765 8.42% t.l. 12836 19.24% 29.28% 44.91
i 45-4 5 4238 4238 0.00% 1.94 4843 14.28% 14.28% 5.64

i 45-4 40 14474.29 15827 9.35% t.l. 18966 19.83% 31.03% 44.89

average 4.09% 40.26 14.28% 19.24% 23.47

Table 2. Results on instances with shared protection

CPLEX first model CPLEX second model Heur. UB gap
instance LB impr gap LB impr gap gap first model second model CPU time

i 17-4 5 82.34% 0.00% 82.58% 0.00% 0.00% 12.50% 12.50% 8.90
i 17-4 40 39.53% 22.42% 39.66% 22.79% 2.44% 7.86% 10.22% 57.26
i 45-0 5 75.53% 67.76% 73.59% 60.69% 7.35% 2.56% 15.56% 25.55

i 45-0 40 17.45% 421.21% 12.72% 169.00% 5.60% -36.99% 29.32% 295.47
i 45-1 5 67.12% 75.24% 66.30% 73.13% 2.43% 13.81% 18.06% 26.48

i 45-1 40 21.57% 318.82% 17.20% 135.75% 5.29% -27.51% 35.96% 305.48
i 45-2 5 66.46% 93.08% 65.82% 81.20% 1.87% 4.78% 13.77% 31.47

i 45-2 40 15.29% 269.14% 11.99% 144.03% 3.79% -20.47% 25.04% 291.01
i 45-3 5 75.54% 57.30% 71.65% 83.10% 13.71% 61.93% 61.21% 25.97

i 45-3 40 20.68% 345.47% 17.63% 171.94% 3.70% -28.02% 22.44% 285.00
i 45-4 5 63.84% 94.90% 62.73% 94.99% 2.98% 11.16% 14.52% 31.06

i 45-4 40 - - 14.83% 131.16% - 36.39% 284.08

average 49.58% 160.49% 44.73% 97.31% 0.14% 24.58% 138.98

column of the table gives the heuristic computational time. Both models manage to
prove optimality in only one instance, and the first one cannot find any integer solution
for one instance. The number of demands affects significantly the final gap, which are
considerable. The continuous relaxation seems quite poor for both models. The com-
parison between the gap, given by (first model LB-second model LB)/(first model LB),
shows that the first model seems to provide slightly better lower bounds. However, such
model provides quite poor upper bounds. In fact the heuristic approach can find bet-
ter upper bounds in 4 instances, while it always finds worse upper bounds that those
provided by the second model. The heuristic computational time are reasonable, never
rising above 6 minutes.
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Beside the 10 node instances, we tested the models and the heuristics on 20 node
instances. Preliminary results show that the model can solve 3 out of 20 instances for
the dedicated protection case in one hour, and the gap is slightly increased with respect
to 10 node instances. The heuristic CPU time increases of about three times on average
and it rises up to about 15 minutes in the worst case. We run preliminary tests for the
shared protection on the most promising model: none of the instance can be solved to
optimality, and the model run out of memory for the more dense instances. The heuristic
does not suffer memory problems, but its computational time increases significantly.

Computational experiments show that such models cannot solve the instances of both
problems even with a small number of nodes. On the other side, the simple multistart
approach, even if providing integer solutions in reasonable time, is affected by sensi-
ble gaps. As future developments, both improvements in the formulations and in the
heuristics are worth investigating.
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5. Piòro, M., Medhi, D.: Routing, flow and capacity design in communication and computer
networks. Morgan Kaufman, San Francisco (2004)
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Abstract. We present two complete integer programming formulations
for the ring spur assignment problem. This problem arises in the design
of next generation telecommunications networks. We analyse and com-
pare the formulations in terms of compactness, the resulting LP bound
and results from a branch and cut implementation. We present our con-
clusions with computational results.

1 Introduction

We address a new problem, the Ring Spur Assignment Problem (RSAP), in-
troduced in [3,4]. The problem is motivated by a practical situation: a network
operator seeks to identify an economical fault tolerant Next Generation Network
(NGN) topology that can be overlaid on existing physical infrastructure. This
problem arose in discussions with an industry partner who wished to identify a
survivable backbone topology design in the physical network layer as part of an
overall network upgrade plan. The operator wished to achieve this by exploit-
ing existing spare capacity with no (or minimal) further capital investment. At
about the same time the Irish Government proposed a project to build a back-
bone network on the infrastructure of its local agencies aiming to connect EU
funded Metropolitan Area Networks (MANs) which aim to provide broadband
access in all areas of the country. The solution we propose would be suitable
for both the industry partner and the government project. In both instances, we
seek to mine some value from the existing infrastructure and harness the benefits
from emerging technology.

In Section 2, we describe the RSAP in detail, explain how it relates to prob-
lems previously addressed in the literature and an initial decomposition approach
to solving the problem. In Sections 3 and 4 we describe two new complete integer
programming formulations for the RSAP. In Section 5 we compare the formula-
tions. Finally, we present computational results in Section 6 and our conclusions
in Section 7.

2 Survivable Network Design Problems

Fibre Optic cable used in NGNs allows speeds in the Tb/s range, higher than
traditional copper. However the higher the speed (bandwidth), the greater the
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loss if an individual cable or piece of equipment develops a fault. Thus, it has
become mandatory for backbone networks to be designed with survivability in
mind. Despite the Dial before you dig campaigns of many utility companies, it
is still a frequent occurrence for cables to be accidently cut as noted in [11].
Survivability issues are reviewed in detail in [10,12].

Synchronous Digital Hierarchy (SDH) is a transmission standard which al-
lows for ease of access to individual channels. SDH, also known as Synchronous
Optical NETwork (SONET), provides a fast managed response to failures and
so can provide the survivability protection required by modern sparse networks.
SDH promotes the use of Self Healing Rings (SHRs) to increase network reliabil-
ity. Wavelength Division Multiplexing (WDM) is used on Fibre Optic networks
to achieve even higher bandwidths. In [16], the authors give an introduction to
optical networking issues and indicate that Internet Protocol (IP) over WDM
may be the preferred option for NGNs. This protocol can be implemented over
the physical SDH layer. The use of WDM introduces additional graph colouring
type problems. Wavelength conversion equipment must be installed where traffic
is routed across neighbouring rings [1].

The Two Connected Network with Bounded Rings problem (2CNBR) and
its variants that arise in the design of SDH/SONET and WDM networks are
described in [6,7,8]. This problem concerns designing a minimum cost network
where at least two node-disjoint, or alternatively edge-disjoint, paths exist be-
tween every pair of nodes. Each edge of the network belongs to at least one cycle
whose length (number of edges) is bounded by a given constant. The ring bound
is imposed to ensure the quality of the telecommunications signal.

The NP-Hard SDH Ring Assignment Problem (SRAP) is discussed in [9].
They describe the SRAP as a high level design problem that seeks to identify
which SHR rings should be built; they choose to minimise network costs by
minimising the number of disjoint rings while satisfying customer demand and
satisfying a common ring capacity. A special ring, called the federal ring, of
the same capacity as the other rings in the network, interconnects the other
rings. Another formulation of SRAP as a set partitioning model with additional
knapsack constraints is given in [14]. We also mention the Ring Star problem
described by [13]. A Ring Star is used to connect terminals to concentrators
where not all nodes are required to be 2-connected.

2.1 The Ring Spur Assignment Problem

We now describe the RSAP in detail. Communities of interest, defined in [5]
as geographically close nodes that have high traffic demands between them,
are identified and their traffic demands are estimated. If such communities
can be clustered on node disjoint rings, no wavelength conversion is required,
eliminating the cost of wavelength conversion and/or opto-electronic conversion
equipment for intra-ring demand; this is an important cost consideration in any
network upgrade plan. We call these rings local rings.

Local rings can then be connected by a special ring, which we call the tertiary
ring, often called the federal or backbone ring in the literature. Tertiary is a
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legacy naming convention used by this operator to signify the highest level in
the physical infrastructure. The tertiary ring facilitates inter-ring demand; wave-
length converters are required where local rings connect to the tertiary ring.

So far the problem described is similar to the SRAP problem; we are identi-
fying rings that can carry the estimated demand. However, as shown in [4], in
some real world instances, no SRAP solution is possible. We note that in the
SRAP, demand pairs are grouped together so that there is as little inter-ring
traffic as possible subject to capacity constraints on rings. The SRAP problem
addresses how to design a ring based network by selecting the link capacities to
install. In contrast, in the RSAP, we assess an existing network and the problem
is to impose a ring topology over existing links at the logical level.

As an alternative, where no SRAP solution exists, we allow locations that
have insufficient spare capacity or no possible physical route due to limitations of
geography, to be connected to SHRs by spurs off the local rings. Spur nodes must
be connected to a local ring by a single edge, i.e., we do not allow a chain of edges
to connect spur nodes. We call this problem the Ring Spur Assignment Problem.
A solution to the RSAP is a set of disjoint bounded ring stars interconnected by
a tertiary ring. In [4] a branch-and-cut algorithm to identify the local ring spur
partitions is described. In [3] an integer programming formulation for the RSAP
is described. They describe a heuristic procedure that decomposes the RSAP
into a subproblem of first finding a minimum cost local ring/spur topology and
a second subproblem of finding a minimum cost tertiary ring to interconnect the
local ring spur partitions. Computational results on benchmark problems of up
to 65 nodes and 108 links are presented. However, the formulation proposed in
[3] cannot be used for an exact approach, as the decisions for the local topology
and the tertiary ring are explicitly decomposed in two subproblems.

In Sections 3 and 4, we propose two complete IP formulations that can be used
to identify the optimal local ring (spur) partitions and tertiary interconnection
ring without the need for decomposition. A problem instance is specified by:

– an undirected graph G = (V, E) defined on a set V of nodes, labelled from
1 to n where n = |V |, and a set of undirected edges E; the underlying set A
of oriented arcs contains, for each edge {i, j} ∈ E, two arcs (i, j) and (j, i),
one in each direction;

– a non-negative installation cost cij ≥ 0 for each ring edge {i, j} ∈ E and the
corresponding spur arcs (i, j) and (j, i).

Since we wish to foster high resilience by having locations assigned to rings
where possible, we assign a sufficiently high weight, b, to links that are spurs.
We use a similar approach to [3] to quantify a penalty weighting value in terms
of other network parameters sufficient to ensure the creation of ring solutions if
they exist. For simplicity, we set the coefficient of each arc (i, j) ∈ A, to be bcij

in our objective function, i.e., the cost of using a spur edge is the network cost
of that edge, cij , multiplied by the penalty weighting value of b for the network.
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3 A Formulation Based on Ring Representatives

We describe the first of our complete formulations for the RSAP. We first concen-
trate on the local rings and come back to the tertiary ring later. The formulation
uses variables to assign nodes and edges to rings, and a third set of variables
for spurs. The main problem with such a choice of variables is that it induces
a lot of symmetry in the formulation, as rings are interchangeable. One way to
break this inherent symmetry is to use the same kind of symmetry breaking
that was used e.g. in [2] for graph colouring problems. Each ring is designated
by a representative node belonging to it. If we decide that the representative
node is the node with smallest index in the ring, the symmetry is completely
broken. Note that since each ring is composed of at least 3 nodes, only nodes
k ∈ K := {1, . . . , n − 2} can be ring representatives.

Let xijk be a binary variable equal to 1 if and only if edge {i, j} appears on
ring k, and equal to 0 otherwise; i.e. both i and j are assigned to the same ring
k. Also, we implicitly assume that i < j when writing an edge {i, j}. For each
arc (i, j)∈ A, let yij be a binary variable equal to 1 if vertex i is assigned to
vertex j as a spur; we set yii = 1 for any vertex i that is on a ring. Let zik be a
binary variable equal to 1 if vertex i is assigned to ring k as a ring node.

Let αik be a binary variable equal to 1 if and only if node i represents ring k
on the Tertiary ring, 0 otherwise. Let βij be a binary variable equal to 1 if and
only if edge {i, j} appears on the Tertiary ring, and equal to 0 otherwise.

With these sets of variables, the problem can be formulated as follows:

(F1) min
∑

{i,j}∈E

∑
k∈K

cijxijk +
∑

(i,j)∈A

bcijyij +
∑

{i,j}∈E

cijβij (1)

s.t.
i∑

k=1

zik = yii ∀ i ∈ V (2)

n∑
j=1

yij = 1 ∀ i ∈ V (3)

∑
j∈adj(i),j>i

xijk +
∑

j∈adj(i),j<i

xjik = 2zik ∀ i ∈ V, k ∈ K (4)

∑
l∈adj(i),l<i

xilk +
∑

l∈adj(i),l>i,l �=j

xlik ≥ xijk ∀ {i, j} ∈ E, k ∈ K (5)

∑
l∈adj(j),l<j,l �=i

xljk +
∑

l∈adj(j),l>j

xjlk ≥ xijk ∀ {i, j} ∈ E, k ∈ K (6)

∑
i∈V,i>k

zik ≤ 7zkk ∀ k ∈ K (7)

zik ≤ zkk ∀ i ∈ V, k ∈ K (8)∑
k∈K

xijk + yji ≤ yii ∀ i ∈ V, j ∈ adj(i) (9)
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k∈K

xijk + yij + yji ≤ 1 ∀ {i, j} ∈ E (10)∑
i∈V,i≥k

αik ≥ zkk ∀ k ∈ K (11)

αik ≤ zik ∀ i ∈ V, k ∈ K (12)∑
j∈V,i<j

βij +
∑

j∈V,j<i

βji = 2
∑
k∈K

αik ∀ i ∈ V (13)

∑
l∈adj(i),l<i

βil +
∑

l∈adj(i),l>i,l �=j

βli ≥ βij ∀ {i, j} ∈ E (14)

∑
l∈adj(j),l<j,l �=i

βlj +
∑

l∈adj(j),l>j

βjl ≥ βij ∀ {i, j} ∈ E (15)

βij + yij + yji ≤ 1 ∀ {i, j} ∈ E (16)
xijk, yij , zik, αik, βij ∈ {0, 1} ∀ {i, j} ∈ E, k ∈ K (17)

We use constraints (2) to link the y and z variables. Constraints (3) ensure
every node is assigned. Constraints (4) say that every node i on ring k has
exactly two incident local ring edges on ring k. Constraints (5) and (6) are dis-
aggregated edge connectivity constraints and ensure that the head (tail) of a
ring edge each have an incident ring edge. This form of connectivity constraints
ensure there are at least three edges (three nodes) on each local ring. Rings are
restricted to having no more than eight nodes by the Ring Bound Constraints (7),
if ring k is active, node k must be active and no more than seven other nodes.
Constraints (8) ensure node i is assigned to ring k if and only if node k is assigned
to ring k. Constraints (9) say that j is assigned to i as a spur or adjacent to i
on a ring if and only if i is a ring node. Constraints (10), which are only needed
in the relaxed LP, limit the usage of any edge (or its corresponding arcs) to
1. The next set of constraints define the tertiary ring. Constraints (11) ensure
every active local ring k is represented on the tertiary ring by at least one of its
nodes. Constraints (12) connect the α to the z variables and ensure that node
i only represents ring k if it is active on ring k. Constraints (13) ensure that
nodes on the tertiary ring are two connected while constraints (14) and (15) are
similar to the local ring edge dis-aggregated connectivity constraints (5) and (6).
Again, these connectivity constraints ensure there are at least three edges on the
tertiary ring ring. Constraints (16) ensure that no spur edge is used as a tertiary
ring edge (this ensures the robustness of the tertiary ring) while constraints (17)
are the binary integer constraints.

We note that the formulation thus far would allow subtours on both the
local and tertiary rings and that there are an exponential number of subtour
elimination constraints (SECs) that would need to be added to eliminate all
such subtours. In Section 6 we describe our implementation of a cutting plane
algorithm that adds SECs. Where a subtour is detected on ring k we add the
following modified versions of the usual SECs.
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∑
{i,j}∈E(S)

xijk ≤ (|S| − 1)zkk ∀ S ⊂ V, k /∈ S (18)

Eq. (18) says that the set of edges of the subset S cannot all be on ring k.
Indeed, we can add such a constraint for all k ≤ min(S), the minimum index of
the subset S. For example, if the edges of the subset S := {5, 6, 7} form a local
ring, they must be on ring 5 and cannot be on ring 4 or lower. Also note, since
constraints (5) and (6) force the number of nodes on an active local ring to be
at least three, we consider subtours on S ⊂ V where |S| ≥ 3.

We must also add SECs for subtours on the tertiary ring. If a subtour con-
sisting of subsets Sa and Sb is detected, since we do not know which local ring
edges will be nonzero in the optimal solution, it is possible that the optimal
tertiary ring could consist of all edges of one tertiary ring subtour, either Sa or
Sb. However, not all edges of both subtours could be non-zero in the optimal
solution. We can use an aggregated version of the usual SECs as follows:∑

{i,j}∈E(Sa)∪E(Sb)

βij ≤ |Sa ∪ Sb| − 2 ∀ Tertiary Subtours Sa and Sb (19)

The F1 model has more decision variables than that described by [3] but we
can perform significant pre-processing since not all decision variables can exist.
As noted already, the nodes of highest and second highest index in G can never
be assigned as ring indices (since a ring must have three nodes). Therefore the
maximum value of k is n − 2. In addition, for each node, its maximum k value
is itself. For example, if node 20 is a ring node, i = 20 and k for this node is
≤ 20. We can reduce this value further by looking at the indices of the nodes
adjacent to i. For example, if i is exactly 2-connected, the maximum k value
for xijk and zik is min(i, lowest index of adjacent node). If node 20 is exactly
2-connected and adjacent to nodes 5 and 25, the maximum ring index for node
20 is 5. So only these decision variables need to be created in F1.

We note also that we only need to create ring bound constraints where re-
quired. For example, if k = n − 2, only the highest indexed node, the second
highest and kth indexed node in G can be assigned to this ring, giving a ring of
size 3, therefore the ring bound constraint is redundant in this instance.

4 An Extended Formulation

Another possible IP formulation for the RSAP is the following: Let xijk be a
binary variable equal to 1 if and only if edge {i, j} appears on ring k, and equal
to 0 otherwise; i.e. both i and j are assigned to the same ring k where k, the ring
designate, is the lowest indexed node on the ring similar to the approach in F1
i.e., k ≤ i and k ≤ j and k ∈ K := {1, . . . , n − 2}. In our extended formulation,
we combine the use of the yij and zik and variables and use one variable wijk .
For each arc (i, j)∈ A, let wijk be a binary variable equal to 1 if vertex i is
assigned to vertex j as a spur on ring k; we set wiik = 1 for any vertex i that is
assigned as a ring node on ring k where i ≥ k.
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We use tertiary ring decision variables similar to those in F1. Let αik be a
binary variable equal to 1 if and only if node i represents ring k on the Tertiary
ring, 0 otherwise. Let βij be a binary variable equal to 1 if and only if edge {i, j}
appears on the Tertiary ring, and equal to 0 otherwise. The second formulation
is as follows:

(F2) min
∑

{i,j}∈E

n−2∑
k=1

cijxijk +
∑

(i,j)∈A

n−2∑
k=1

bcijwijk +
∑

{i,j}∈E

cijβij (20)

s.t.
n∑

j=1

j∑
k=1

wijk = 1 ∀ i ∈ V (21)

∑
j∈adj(i),j>i

xijk +
∑

j∈adj(i),j<i

xjik = 2wiik ∀ i ∈ V, k ∈ K (22)

∑
l∈adj(i),l<i

xilk +
∑

l∈adj(i),l>i,l �=j

xlik ≥ xijk ∀ {i, j} ∈ E, k ∈ K (23)

∑
l∈adj(j),l<j,l �=i

xljk +
∑

l∈adj(j),l>j

xjlk ≥ xijk ∀ {i, j} ∈ E, k ∈ K (24)

n∑
i=1,i>k

wiik ≤ 7wkkk ∀ k ∈ K (25)

wiik ≤ wkkk ∀ i ∈ V, k ∈ K (26)
n−2∑

j≥k,j �=i

wijk ≤ wkkk ∀ i ∈ V, k ∈ K (27)

xijk + wjik ≤ wiik ∀ i ∈ V, k ∈ K, j ∈ adj(i) (28)
xijk + wijk + wjik ≤ wkkk ∀ {i, j} ∈ E, k ∈ K (29)∑
k∈K

(xijk + wijk + wjik) ≤ 1 ∀ {i, j} ∈ E (30)∑
i∈V,i≥k

αik ≥ wkkk ∀ k ∈ K (31)

αik ≤ wiik ∀ i ∈ V, k ∈ K (32)∑
j∈V,i<j

βij +
∑

j∈V,j<i

βji = 2
∑
k∈K

αik ∀ i ∈ V (33)

∑
l∈adj(i),l<i

βil +
∑

l∈adj(i),l>i,l �=j

βli ≥ βij ∀ {i, j} ∈ E (34)

∑
l∈adj(j),l<j,l �=i

βlj +
∑

l∈adj(j),l>j

βjl ≥ βij ∀ {i, j} ∈ E (35)
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βij +
∑
k∈K

wijk +
∑
k∈K

wjik ≤ 1 ∀ {i, j} ∈ E (36)

xijk , wijk, wjik , αik, βij ∈ {0, 1} ∀ {i, j} ∈ E, k ∈ K (37)

Constraints (21) ensure every node i ∈ V is assigned while constraints (22)
ensure that every ring node i on ring k is incident with two edges on the ring.
Constraints (23) and (24) are dis-aggregated connectivity constraints for the
head and tail of each ring edge, constraints (25) are the ring bound constraints.
Constraints (26) only allow node i to be assigned as a ring node on ring k if k
is a ring node while the set (27) ensure that node i is only assigned as a spur
to node j on ring k if node k is a ring node. Constraints (28) allow node j to
be assigned as a spur or adjacent to node i on ring k if i is assigned as a ring
node to ring k while constraints (29) and (30) focus on the use of the edge {i, j}
and allow the edge or its corresponding arcs to be assigned to ring k iff node k
is assigned to ring k. Constraints (31) to (36) are the tertiary ring constraints
and are similar in style to those of the F1 formulation and lastly, (31) are the
binary integer constraints.

This model also allows for subtours which can be eliminated on the local rings
as follows: ∑

{i,j}∈E(S)

xijk ≤ (|S| − 1)wkkk ∀ S ⊂ V, k /∈ S (38)

As before in Eq. (18), |S| ≥ 3. Subtours on the tertiary ring can be eliminated
by adding constraints given by Eq (19) described in the F1 formulation.

5 Comparison of the Formulations

Having described the two complete formulations, F1 and F2, we now wish to
determine which is the more promising for implementation.

Let us first consider the size of the formulations (not taking into account
subtour elimination constraints). Both formulation have O(n3) variables: F1 and
F2 share O(n3) x-variables. In F1, there are moreover O(n2) y and z-variables,
while in F2 there are O(n3) w-variables. Asymptotically, F2 thus tends towards
having twice as many variables as F1.

The constraints in both formulations are mostly similar. There is a one-to-one
correspondence between all constraints of F1 and F2, with the exception of (2)
that appear only in F1, (27) that appear only in F2, and each constraint of (9)
and (10) in F1 is replaced by |K| constraints (28) and (29), plus constraints
(30), in F2. So there are O(n3) constraints in both formulations, but the total
number of constraints is higher in F2.

Computational results for the LP bound achieved by relaxing the integer
requirements are described in detail in Sect. 6. They show that there is no
empirical difference in the LP bound form these two formulations. The question
of this equivalence of the LP relaxations is still open, but it is quite easy to show
that F2 is at least as strong as F1.
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Indeed, consider a point (x, w, α, β) satisfying (21)-(36). By defining y and z
such that

zik = wiik, ∀i ∈ V, k ∈ K,

yij =
∑
k∈K

wijk , ∀i, j ∈ V, k ∈ K,

by substitution into (21)-(26) and (30)-(36), we immediately obtain that
(x, y, z, α, β) satisfies (3)-(8) and (10)-(16). By definition of y and z, (2) is obvi-
ously satisfied.

Now summing constraints (28) over all k ∈ K, and substituting the summed
w by y, we obtain (9) and we can conclude that (x, y, z, α, β) is valid for the
linear relaxation of F1.

6 Computational Results

The F1 and F2 IP formulations were implemented with code written in ANSI C,
using Xpress-MP suite 7.0 with Xpress-BCL version 4.2.0 Builder Component
library routines and Xpress-Optimizer 20.00.05, and run on a 32 bit Toshiba
Satellite Pro with Intel Dual Core Pentium 1.86GHz processors and 1G of RAM
under Windows Vista.

The test data used was SNDlib [15], since it provides many real world problem
instances with both a network model and a set of demand requirements. In
problem instances that have zero pre-installed link capacity, we install one unit
of the lowest capacity available at the costs specified to allow us to test our
algorithm. Two problems, janos-us-ca and zib54 were integer infeasible for local
ring spur partitions, so were omitted from further testing. These two networks
have a small number of nodes of very high degree making them unsuitable for
the RSAP topology.

Looking at an example of the fractional decision variables from problem giul39
shown in Table 1, we see the same overall result achieved by the two formulations.
For example, Node 12 is assigned as a ring node to both rings 1 and 11 by both
formulations. Node 30 is partially assigned as a ring node in both formulations.
However the sum of the value used by F2 to assign node 30 to rings 1, 2 and 6 is
the same as the value used by F1 to assign node 30 to ring 1. Both formulations
assign node 30 equally to the other listed rings.

Both formulations were run without XpressMP heuristics or tightening of
the formulation. A summary of the LP bounds is shown in Table 2. This table
shows from left to right the problem name and size ( in terms of number of
nodes, edges), the LP objective function value from F1 followed by the LP ob-
jective function value from F2. As can be seen, there is insufficient difference in
the results from the F1 and F2 LP bounds to perform a signed rank comparison.
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Table 1. Fractional Decision Variable examples

F1 F1 Value F2 F2 Value

y12,12 1.00 - -
z12,1 0.818182 w12,12,1 0.818182
z12,11 0.181818 w12,12,11 0.181818
y30,30 0.849774 - -
z30,1 0.183816 w30,30,1 0.085306
z30,13 0.031779 w30,30,13 0.031779
z30,16 0.074714 w30,30,16 0.074714
z30,18 0.00344 w30,30,18 0.00344
- - w30,30,2 0.045455
z30,20 0.018479 w30,30,20 0.018479
z30,24 0.29953 w30,30,24 0.29953
z30,4 0.238015 w30,30,4 0.238015
- - w30,30,6 0.053055

Table 2. Formulation LP Bound comparison

Problem Size n, e LP Obj F1 LP Obj F2

dfn-bwin 10, 45 91,499.29 91,499.29
pdh 11, 34 1,176,327.71 1,176,327.71
di-yuan 11, 42 378,142.86 378,142.86
dfn-gwin 11, 47 13,813.33 13,813.33
polska 12, 18 2,989.68 2,989.68
atlanta 15, 22 36,790,750.00 36,790,750.00
new york 16, 49 1,370,720.00 1,370,720.00
ta1 24, 51 8,712,415.62 8,712,415.62
france 25, 45 11,575.00 11,575.00
janos-us 26, 42 13,218.15 13,218.15
norway 27, 51 462,419.27 462,419.27
sun 27,51 462.42 462.42
nobel-eu 28, 41 179,567.32 179,567.32
cost266 37, 57 7,615,390.48 7,615,390.48
giul39 39, 86 735.72 735.72
pioro40 40, 89 6,114.33 6,114.33
germany 50, 88 341,960.77 341,960.77
ta2 65, 108 21,345,067.48 21,345,067.48

The software used, XpressMP, works to a precision of six decimal places but any
difference below this precision level is inconsequential in any case. These results
suggest that the LP bound provided by F2 is not stronger than the F1 bound.

We also ran a branch and cut implementation for F1 and F2 adding SECs
as necessary. The relaxed LP of each model was solved, subtours were detected
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Table 3. Branch and cut comparison

Problem Size F1 IP F1 F1 F1 F2 IP F2 F2 F2
Obj SECs Nodes time(s) Obj SECs Nodes time(s)

dfn-bwin 10,45 105,810 11 35 0.99 105,810 10 68 1.24
pdh 11,34 1,355,139 16 67 0.70 1,355,139 15 64 0.96
di-yuan 11,42 412,300 0 5 0.21 412,300 0 2 0.28
dfn-gwin 11,47 15,724 3 13 0.42 15,724 4 13 0.53
polska 12,18 3,487 3 19 0.35 3,487 4 15 0.36
atlanta 15,22 55,452,500 14 65 0.90 55,452,500 30 58 1.23
new york 16, 49 1,512,400 185 252 4.82 1,512,400 241 307 8.30
ta1 24,51 11,867,165 2,801 3,941 62.98 11,867,165 3,713 3,951 103.02
france 25,45 16,800 33,534 13,583 447.28 16,800 41,678 12,674 276.48
janos-us 26,42 16,259 1,768 4,626 123.28 16,259 1,617 3,848 106.28
norway 27,51 572,210 791 1,617 68.91 572,210 1,793 2,510 270.76
sun 27,51 572 4,988 5,870 156.55 572 2,093 3,470 297.92
nobel-eu 28,41 - 7,422 12,134 3,600 - 3,356 5,424 3,600
cost266 37, 57 11,432,070 14,167 40,353 1,430.38 11,432,070 4,482 19,360 953.17
giul39 39, 86 990 34,592 14,194 3,600 1,122 11,095 10,944 3,600
pioro40 40, 89 12,283 43,027 47,561 3,600 11,405 14,189 17,856 3,600
germany 50, 88 580,080 46,871 19,296 3,600 582,230 19,984 8,797 3,600
ta2 65, 108 - 8,547 329 3,600 - 3,048 3,126 3,600

using a modified version of the Stoer Wagner Min Cut Algorithm and added
to the problems. The Stoer Wagner min cut algorithm is described in [17]. We
allowed a maximum run time of one hour and report the best integer solution
found by that time for the larger problems. We confirmed for both F1 and F2
that they produce the desired topology. Results are shown in Table 3. This table
shows from left to right the problem name and size (in nodes, edges), the next
four columns show the results for F1: the IP objective function value, the number
of SECs added by the branch and cut algorithm, the number of nodes in the
branch and bound tree and the time (seconds). The following four columns show
the results for F2.

We note that for problem instances solved in less than one hour, F1 had a
faster run time in most cases. We see for the larger problems that in general for
F1, more nodes are evaluated within the time limit and produces a better IP
bound. Neither formulation found a solution for the largest problem ta2 within
the time limit or for nobel-eu.

Figure 1 (left) shows the resulting topology for F1 on the 50 node germany
problem, and (right), the topology from F2. The tertiary ring edges are shown
with heavy black dashed lines, local rings as coloured lines and spur arcs as
dashed red lines. For clarity, we omit any edges of the graph that are not part
of the solution topology.
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Fig. 1. Left: F1 germany solution . Right: F2 germany solution.

7 Conclusion

We have presented two new formulations for the Ring Spur Assignment Problem.
The main difference between the two formulations is that decisions for spurs
are dis-aggregated by ring in the second formulation, leading to an extended
formulation. Numerical experiments tend to show that the two linear relaxations
are equivalent, and the compact formulation allows problems to be solved faster.

In our future work, we will try to tighten the linear relaxation by finding new
classes of valid inequalities. In particular, it would be interesting to find out if
some stronger inequalities can be found for the extended model, as it inherently
contains more structure than the compact one.
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Abstract. In this paper, we propose a chance-constrained mathematical program
for fixed broadband wireless networks under unreliable channel conditions. The
model is reformulated as an integer linear program and valid inequalities are de-
rived for the corresponding polytope. Computational results show that by an exact
separation approach the optimality gap is closed by 42 % on average.

1 Introduction

Fixed broadband wireless (FBW) communications is a promising technology for de-
livering private high-speed data connections by means of microwave radio transmis-
sion [2]. Microwave, in the context of this work, refers to terrestrial point-to-point
digital radio communications, usually employing highly directional antennas in clear
line-of-sight and operating in licensed frequency bands. The rapid and relatively cheap
deployment is especially interesting for emerging countries and remote locations as
well as for private and isolated networks in urban areas (e.g., connected hospitals, parts
of a harbour) where classical copper/fiber lines are too costly [9]. In contrast to wired
networks, the capacity of a microwave link is not constant, but depends on the used
modulation scheme, which in turn depends on the condition of the channel. Varying
channel conditions result in varying link capacities.

In this paper, we extend our earlier study [3] of planning FBW networks under unre-
liable channel conditions. We restate a chance-constrained optimization model and, for
the case where the outage probabilities are independent, an integer linear programming
(ILP) formulation (Section 2). We generalize two classes of cutset-based valid inequali-
ties (Section 3) and propose to separate them exactly. Preliminary computational results
confirm the importance of these cuts (Section 4).

2 Mathematical Formulation

The minimum cost design of a fixed broadband wireless network can be formulated as
follows, cf. [4] for technical details. The network’s topology is modeled as a
digraph G = (V,E) with V , the set of radio base stations and E , the set of directional
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c© Springer-Verlag Berlin Heidelberg 2011



38 G. Claßen et al.

microwave radio links. The traffic requirements are modeled by a set K. For each k ∈ K,
sk denotes the origin, tk the destination, and dk ≥ 0 the expected demand.

For each microwave link uv ∈ E , the capacity is basically determined by the channel
bandwidth (e.g., 7 MHz, 28 MHz) and the modulation scheme (e.g., 16-QAM, 128-
QAM) used to transmit data. Where exactly one channel bandwidth has to be chosen at
design stage, adaptive modulation is performed at runtime, depending on the channel
conditions, i.e., if the receiving base station observes a deterioration in signal quality,
the modulation scheme is lowered to avoid outage of the link.

Let Wuv be the set of bandwidth choices available for arc uv ∈ E . The choice to oper-
ate link uv ∈ E at bandwidth bw

uv, w ∈ Wuv, implies a cost cw
uv. The modulation scheme

is modeled with a random variable ηw
uv with (known) discrete probability, representing

the number of bits per symbol of the current modulation scheme. The capacity of a
microwave link is basically given by the product of bw

uv and ηw
uv.

Given an infeasibility tolerance ε > 0, our aim is to design a minimum cost network
such that its capacity is sufficient with a probability of at least 1− ε . This joint chance
constraint reads

P

(
∑
k∈K

dk f k
uv ≤ ∑

w∈Wuv

ηw
uvbw

uvyw
uv ∀uv ∈ E

)
≥ 1− ε (1)

with binary decision variables yw
uv indicating whether bandwidth w ∈Wuv is chosen for

arc uv ∈ E and flow variables f k
uv denoting the fraction of demand dk, k ∈ K, routed on

arc uv ∈ E .
For independent random variables ηw

uv, we can reformulate the left hand side of (1)
as the product of probabilities by introducing the following notation: For arc uv ∈ E ,
let Mw

uv be the set of modulations in case of bandwidth choice w ∈ Wuv with, for m ∈
Mw

uv, bwm
uv the resulting capacity. Given uv ∈ E , w ∈ Wuv, and m ∈ Mw

uv, let ρwm
uv be the

probability that the link is operated at modulation m or higher.
Now, we may assume that each link is operated at a chosen modulation (or higher)

as long as the overall probability of the assumptions is at least 1−ε . For this, the binary
decision variables y obtain a new index m. The minimum cost fixed broadband wireless
network design problem then reads:

min ∑
uv∈E

∑
w∈Wuv

∑
m∈Mw

uv

cw
uvywm

uv (2a)

s.t. ∑
u∈V :vu∈E

f k
vu − ∑

u∈V :uv∈E
f k
uv =

⎧⎪⎨⎪⎩
1, if v = sk,

−1, if v = tk,

0, otherwise

∀v ∈V,k ∈ K (2b)

∑
w∈Wuv

∑
m∈Mw

uv

ywm
uv = 1 ∀uv ∈ E (2c)

∑
k∈K

dk f k
uv ≤ ∑

w∈Wuv

∑
m∈Mw

uv

bwm
uv ywm

uv ∀uv ∈ E (2d)

∏
uv∈E

( ∑
w∈Wuv

∑
m∈Mw

uv

ρwm
uv ywm

uv ) ≥ 1− ε (2e)

f k
uv ∈ [0,1],ywm

uv ∈ {0,1} (2f)
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Besides the total bandwidth cost function (2a) and the flow conservation constraints (2b),
constraints (2c) ensure that exactly one bandwidth-modulation pair is chosen. Con-
straint (1) is now equivalently modeled in the link capacity constraints (2d) and in the
solution confidence constraint (2e). (2d) ensure that all demands on one link can be
fulfilled by the chosen bandwidth-modulation pair, whereas (2e) guarantees that the
confidence of the solutions is at least 1− ε .

Note that we assume explicitly a hypothesis on the modulation scheme in con-
straints (2d). Obviously, for a given link and bandwidth, the lower the modulation
scheme is, the lower the assumed capacity and the higher the probability that the effec-
tive capacity supports the routed traffic. In other words, more conservative hypotheses
on the modulation schemes lead to more reliable solutions.

Constraint (2e) can be easily linearized: By employing monotonicity of logarithmic
functions and because the logarithm of a product equals the sum of the logarithms, (2e)
is equivalent to

∑
uv∈E

log

(
∑

w∈Wuv

∑
m∈Mw

uv

ρwm
uv ywm

uv

)
≥ log(1− ε). (3)

By constraints (2c), exactly one of the sum elements within each logarithmic function
will be nonzero. Hence, (3) is equivalent to

∑
uv∈E

∑
w∈Wuv

∑
m∈Mw

uv

log(ρwm
uv )ywm

uv ≥ log(1− ε). (4)

3 Valid Inequalities

Constraints (2b), (2c), and (2d) define a classical network design problem studied in-
tensively in the literature, see [10] and the references therein. In particular, cut-based
inequalities have been proven to be effective to enhance the performance of ILP solvers
[1]. Let S ⊂ V be a proper and nonempty subset of the nodes V and S = V \ S its com-
plement. The set E(S,S) := {uv ∈ E : u ∈ S,v ∈ S}, i.e., the set of arcs from S to S
defines a cutset. Similarly, let K(S,S) := {k ∈ K : sk ∈ S,tk ∈ S} be the set of demands
originating in S and terminating in S. Finally, let d(S,S) :=∑k∈K(S,S) dk. An appropriate
aggregation of constraints (2b), (2d), and nonnegativity of the variables results in the
following base cutset inequality:

∑
uv∈E(S,S)

∑
w∈Wuv

∑
m∈Mw

uv

bwm
uv ywm

uv ≥ d(S,S) (5)

Chvátal-Gomory (CG) rounding yields two classes of valid inequalities.

Cutset Inequalities. By dividing (5) by a ∈ {bwm
uv : uv ∈ E(S,S),w ∈Wuv,m ∈ Mw

uv} and
rounding up both sides, the well-known cutset inequalities [10] are obtained:

∑
uv∈E(S,S)

∑
w∈Wuv

∑
m∈Mw

uv

⌈
bwm

uv

a

⌉
ywm

uv ≥
⌈

d(S,S)
a

⌉
(6)
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Shifted Cutset Inequalities. Instead of applying CG-rounding directly, we can first
shift the coefficients of (5). Given a cutset E(S,S), let auv = minw∈Wuvminm∈Mw

uv
bwm

uv

for uv ∈ E(S,S). By (2c) and a(S,S) := ∑uv∈E(S,S) auv, (5) can be rewritten as:

∑
uv∈E(S,S)

∑
w∈Wuv

∑
m∈Mw

uv

(bwm
uv −auv)ywm

uv ≥ d(S,S)−a(S,S) (7)

Now, let a′ ∈ {bwm
uv −auv : uv ∈ E(S,S),w ∈Wuv,m ∈ Mw

uv}. By CG-rounding, we obtain
the following shifted cutset inequalities:

∑
uv∈E(S,S)

∑
w∈Wuv

∑
m∈Mw

uv

⌈
bwm

uv −auv

a′

⌉
ywm

uv ≥
⌈

d(S,S)−a(S,S)
a′

⌉
(8)

It can be shown that (6) and (8) define facets of the convex hull of feasible solutions
under certain conditions (beyond the scope of this paper).

4 Computational Results

Setting. We have performed preliminary computational experiments on a 5× 5 grid
network (|V |= 25, |E|= 80, |K|= 50) based on [8]. We consider two bandwidth choices
for each link: 7 MHz (28 MHz) with cost 1000 (6000) using the 128-QAM (256-QAM)
scheme, with an availability of 99.9 %. In fading conditions, these links will use the
16-QAM (32-QAM) scheme (with 100 % availability).

By assuming the same availability for radio links using the highest modulation
scheme and under the hypothesis that the lowest modulation scheme guarantees an
availability of 100 % (independent of the bandwidth), we can replace (4) by

∑
uv∈E

∑
w∈Wuv

yw2
uv ≤

⌊
log(1− ε)

log(ρ)

⌋
=: N (9)

where ρ is the availability probability of the highest modulation scheme. Note that
a larger infeasibility tolerance ε implies a larger value N, i.e., the reliability of the
solutions decreases. We consider N = 10 (ε = 0.01), 20, . . . , 80 (no reliability).

All computations are performed with CPLEX 12.2 [6] on a Linux machine with
2.67 GHz Intel Xeon X5650 processor and 12 GB RAM.

Optimality gap closed. In this study, we limit ourselves to a comparison of the optimal-
ity gap with/without separation of violated cutset inequalities (6) and/or shifted cutset
inequalities (8). To this end, the separation of these inequalities is done exactly by an
auxiliary ILP (details omitted, cf. e.g., [5,7]). The cutset inequalities are separated only
in the root node of the branch-and-bound tree.

As a reference, we consider the optimality gap, i.e., the difference between LP relax-
ation and best known solution (computed by CPLEX with a time limit of 12 h, optimal
for N = 10,60,70,80). Fig. 1 shows the optimality gap closed, i.e., the percental reduc-
tion of the optimality gap at the end of the root node. For the results in Fig.1(a), we
disabled the internal cuts of CPLEX and separated (i) cutset inequalities (6), (ii) shifted
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Fig. 1. Optimality gap closed

cutset inequalities (8), and (iii) both. Inequalities (8) close the gap with 16 % on aver-
age, whereas inequalities (6) close only 10 %. Obviously, the optimality gap is closed
most by the combination of (6) and (8) (up to 69 % for N = 10 and 21 % on average).
With increasing N, the closure of the optimality gap decreases with hardly any closure
from N = 60. We conjecture that inequalities (6) and (8) are less likely violated since
the constraints (2d) are less restrictive.

In Fig. 1(b), we enabled the internal cuts of CPLEX. The optimality gap closed by
internal cuts is only 10 % on average compared to 42 % by the combination of inter-
nal cuts and cutset inequalities (6) and (8). Note that also CPLEX can separate cutset
inequalities [1]: only for N = 80 and (8), some multi-commodity flow (MCF) cuts are
found. In case both types are separated, on average 54 violated inequalities are found
(17 of type (6) and 37 of type (8)). Again, for increasing N the optimality gap closed
decreases, except for N = 80 where 80 % of the gap is closed (due to the MCF cuts).
For N = 60, the optimality gap is closed less by the combination of (6) and (8) than
only by the shifted cutset inequalities (8). Such a phenomenon can occur due to varying
internal CPLEX cuts.

5 Concluding Remarks

In this paper, we have presented a chance-constrained programming approach for the
assignment of bandwidth in reliable fixed broadband wireless networks. We have pro-
posed cutset inequalities and shifted cutset inequalities to enhance the computability
of this problem. In our computational studies, we have discussed the optimality gap
closed and compared the performance of the different cutset inequalities with and with-
out internal CPLEX cuts. The results show that by the combination of the cutset and
the shifted cutset inequalities, the optimality gap is closed by 42 % on average if the
internal cuts for CPLEX are enabled.

As future work, we intend to investigate more realistic network topologies, different
probability models and the reliability regarding traffic fluctuations.
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Abstract. In this paper, we discuss two Integer Programming Formulations for
the K-rooted Mini-max Spanning Forest Problem. In the first, connectivity is rein-
forced through Generalized Subtour Breaking inequalities while the second uses
Directed cutset constraints. We implement a Branch-and-cut method based on
the first formulation that also computes combinatorial lower bounds from the lit-
erature and implements a Linear Programming based multi-start heuristic. Our
computational results suggest that the Linear Programming lower bounds com-
pare favorably to combinatorial lower bounds. Instances generated as suggested
in the literature were solved easily by the algorithms proposed in this study.

1 Introduction

Let G = (V,E) be a connected undirected graph with set of vertices V = {1, . . . ,n}
and set of edges E (m = |E|) with no loops nor multiple edges. A forest is an acyclic
subgraph of G that consists of a set of mutually disjoint trees and a spanning forest
is a forest where all vertices of V are included in one of its trees. Given that costs
{ci j ≥ 0 : {i, j} ∈ E} are assigned to the edges of E , the cost w(Tk) of a tree Tk =
(Vk,Ek) is given by ∑{i, j}∈Ek

ci j. Given a set of roots {r1, . . . ,rK} ⊂ V , a K−rooted
forest is a spanning forest of G with K trees {Tk = (Vk,Ek) : k = 1, . . . ,K}, each one
rooted at rk ∈Vk. In the K-rooted Mini-max Spanning Forest Problem (K-MMSFP), the
objective is to find a K-rooted forest such that the cost of the most expensive of its trees,
w := max{w(Tk) : k = 1, . . . ,K}, is minimized.

Applications of K-MMSFP (see [8,5] for details) arise when one aims at designing
reliable communication networks to serve a set of stations from two or more gateway
points. The communication network is a spanning forest, where each station is con-
nected, directly or undirectly, to one of the gateways (roots). The edges chosen in the
solution must be such that the costs (which represent a measure of communication fail-
ure) of the trees are not only small but balanced as well. For applications of K-MMSFP
in other domains, like for example, in supply chain networks, see Huang and Liu [2]
and Zhou et al. [10].

J. Pahl, T. Reiners, and S. Voß (Eds.): INOC 2011, LNCS 6701, pp. 43–50, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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K-MMSFP was introduced by Yamada et al. [8], when the problem was proven to
be NP-hard when K ≥ 2. Note that 1-MMSFP is the Minimal Spanning Tree Problem,
for which several polynomial time algorithms, Kruskal’s [3] for instance, are known.
In another contribution, Yamada et al. [9] proposed a Branch-and-bound method where
three types of combinatorial lower bounds were evaluated. The algorithm implements
a depth-first search and performs branching on edges, given more priority to branch on
the least expensive ones.

Recently, Mekking and Volgenant [5] improved on the Branch-and-bound algorithm
in [9]. Instead of branching on edges, the new algorithm branches on vertices. The new
branching scheme was motivated by the fact that, for solving K-MMSFP, it suffices to
have an optimal assignment of vertices to roots. In addition, branching on edges has very
little impact on a solution when the graph density is high. Consequently, combinatorial
lower bounds tend to grow slowly and the search tree tend to be not balanced in edge
based Branch-and-bound algorithms. Because of that, the algorithm in [5], which uses
the same three combinatorial bounds mentioned previously, significantly outperforms
the method in [9].

Yamada et al. [9] pointed out that a prospective approach to the exact solution of
K-MMSFP would be Branch-and-cut methods (see Padberg and Rinaldi [6]), which
are based on the polyhedral structure of the problem. In this paper, we investigate one
of such methods. We discuss Integer Programming formulations for K-MMSFP and
implement a Branch-and-cut method for one of them. Our preliminary computational
results suggest that the Branch-and-cut method introduced here compares favorably to
the method in [5].

The remaining of the paper is organized as follows. In Section 2, we present two
Integer Programming formulations for K-MMSFP. A Branch-and-cut algorithm based
on one of them is described in Section 3, together with a Linear Programming based
multi-start heuristic. Computational results are discussed in 4, where we also conclude
the paper and offer some conclusions.

2 Integer Programming Formulations

In order to present the first Integer Programming formulation for K-MMSFP, consider
the following decision variables: (1) yk

i ∈ {0,1}, which assumes value 1 if vertex i
belongs to tree Tk (0, otherwise); (2) xk

i j ∈ {0,1} to select edges in each tree (assuming
value 1 if edge {i, j} belongs to tree Tk and 0, otherwise) and, finally, (3) w ≥ 0, to
denote the cost of the most expensive tree.

In what follows, given sets M ⊆ E and Q ⊆ V , define xk(M) := ∑{i, j}∈M xk
i j and

yk(Q) :=∑i∈Q yk
i . Assume that x = (x1, . . . ,xK),y = (y1, . . . ,yK), IB = {0,1} and that IR

denotes the set of real numbers. A formulation for K-MMSFP is given by:

min
{

w : (x,y,w) ∈ (IRKm, IBKn, IR)∩PU
}

, (1)

where polytope PU is defined by:

w ≥ ∑
{i, j}∈E

ci jx
k
i j, k = 1, . . . ,K, (2a)
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K

∑
k=1

xk(E) = n−K, (2b)

xk(E(S)) ≤ yk(S \ { j}), S ⊂V,S �= /0, j ∈ S, k = 1, . . . ,K, (2c)
K

∑
k=1

yk
i = 1, ∀i ∈V \ {r1, . . . ,rK} (2d)

yk
rk

= 1, k = 1, . . . ,K, (2e)

yk
i ≥ 0, i ∈V \ {r1, . . . ,rk},k = 1, . . . ,K, (2f)

xk
i j ≥ 0, {i, j} ∈ E,k = 1, . . . ,K. (2g)

Constraint (2b) imposes that n−K edges must be selected in any spanning forest of
G. Generalized Subtour Breaking constraints (GSEC) (2c) guarantee that the subgraph
of G implied by the vertices of V connected to root rk must be connected and cycle-free.
Constraints (2d) guarantee that each vertex of V must be assigned to exactly one tree.
Because of (2b)-(2e), we have that xk(E) = yk(V )−1,∀k = 1, . . . ,K. Finally, constraints
(2a) assure that w must value at least the cost of the most expensive tree.

One important aspect about polytope PU is that it may have extreme points with
0− 1 entries for y and fractional entries for x variables. To illustrate, in Figure 1(a) -
1(d), we indicate three extreme points of PU with the same value of w and node-to-root
assignments, but with different values for the x variables. In the figures, the two roots
are indicated by filled circles and costs are placed close to each edge in Figure 1(a).
Figure 1(b) indicates an integral extreme point whereas Figures 1(c) and 1(d) depict
two extreme points of PU with fractional x entries. In all cases, corresponding y entries
are binary. All x values are indicated close to the edges in Figures 1(b)–1(d) (fractional
x entries are highlighted with dotted lines). Note that, for all points, w = 25. In Figure
1(b), the left-most tree is the one that defines the value of w, while for the right-most
tree, inequality (2a) is slack. For the other extremes points, inequality (2a) is tight for
both values of K. Finally, consider the forest that would be obtained by replacing the
edge with cost 12 by the edge with cost 16 in the right-most tree in Figure 1(b). Note
that a linear convex combination of these two points (with 1

2
′
s as weights) would lead to

w = 26 and, therefore, the point indicated in Figure 1(c) is not such convex combination.

10

18

15

30

11 12

16

(a) Instance with n = 6,K = 2

1 1 1 1

(b) Integral extreme point of PU

1 1 1 0.5

0.5

(c) Fractional extreme point of PU

1 1 10.6

0.4

(d) Fractional extreme point of PU

Fig. 1. A 2-MMSFP instance and three extreme points for PU . Filled circles indicate the two roots.
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In the formulation above, though, we do not need to impose x variables to be integer
constrained, since whenever an extreme point of PU having integral y vector is found
to be an optimal solution to a Linear Programming (LP) relaxation to K-MMSFP, the
corresponding Branch-and-bound node does not require branching. Such observation is
obvious whenever x entries are also binary. So let (x,y,w) denote an extreme point of
PU that solves the LP relaxation to K-MMSFP in a given node, such that x �∈ IBKn. Let
K ⊆ {1, . . . ,K} denote the set of indices of trees whose x entries are not integer. Since
y ∈ IBKn, all we need to do to solve the node is to compute a Minimal Spanning Tree
for the vertices assigned to each root rk ∈ K. For k ∈ {1, . . . ,K} \K, the support graph
associated to (xk,yk) already defines a tree. After all optimal trees are available, the
most expensive one is retrieved as the solution to that node, which, thus, can be pruned
by optimality.

Another way to formulate K-MMSFP is to consider the problem in a directed graph
D = (V,A) (A = {(i, j)∪ ( j, i) : {i, j} ∈ E}) obtained from G by duplicating each of
its edges {i, j} into two arcs (i, j),( j, i) with the same edge cost. For convenience, we
also denote the cost of arc (i, j) ∈ A by ci j. In this case, a solution for K-MMSFP can
be sought as a collection of K arborescences, each one directed out of one of the roots
r1, . . . ,rK . Each vertex of V must be spanned by exactly one of such arborescences.

To formulate the problem in D, let us use variables zk
i j ∈ {0,1} : (i, j) ∈ A,k =

1, . . . ,K, to select the arcs in each arborescence (zk
i j assumes value 1 if arc (i, j) belongs

to the arborescence rooted at rk, 0 otherwise). As before, given L ⊆ A, let zk(L) :=
∑(i, j)∈L zk

i j . Given any set W ⊂V , W �= /0, let W = V \W and let (W,W ) := {(i, j) ∈ A :
i ∈W, j �∈W} denote the arcs in the cut implied by W . The Directed Cutset formulation
for K-MMSFP is given by:

min
{

w : (z,y,w) ∈ (IR2Km, IBKn, IR)∩PD
}

, (3)

where polytope PD is implied by (2d)-(2f) and

w ≥ ∑
(i, j)∈A

ci jz
k
i j, k = 1, . . . ,K, (4a)

zk((V \ {i},{i})) = yk
i , i ∈V \ {r1, . . . ,rK},k = 1, . . . ,K, (4b)

zk((W,W )) ≥ yk
i , W ⊆V \ {i},rk ∈W,k = 1, . . . ,K. (4c)

zk
i j ≥ 0, (i, j) ∈ A,k = 1, . . . ,K. (4d)

Directed cutset constraints (4c) guarantee that the solution is connected and cycle free.
Constraints (4b) impose that there must be exactly one edge incident to vertex i if it
is spanned by the arborescence rooted at rk. As in the case of PU , PD may also have
extreme points with binary y entries and fractional z values. For the same reasons, we
do not need to impose z variables to be integer constrained.

Following results in Goemans [1] (see also Wolsey and Magnanti [4]), it is not dif-
ficult to show that PU and PD are polytope-wise equivalent and, thus, provide the same
Linear Programming bounds for K-MMSFP. In the following, we describe a Branch-
and-cut algorithm based on the undirected formulation. As our computational experi-
ments will show later on, for the instances considered in our test bed, the bounds implied
by PU are stronger than those implied by the three combinatorial lower bounds proposed
by Yamada et al. [9] and later improved by Mekking and Volgenant [5].
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3 A Branch-and-Cut Algorithm Based on the Undirected
Formulation

In this section, we provide the main implementation details on our Branch-and-cut (BC)
algorithm for K-MMSFP, based on formulation PU . The algorithm was implemented
with calls to XPRESS MIP solver (release 19.00) callback routines. All pre-processing,
heuristics and separation of valid inequalities implemented by XPRESS were turned
off. BC implements a best-first search policy. Apart from that, default XPRESS settings
were used.

BC starts solving the LP relaxation

min w : (x,y,w) ∈ PU , (5)

where polytope PU is given by (2a)-(2b),(2d)-(2g) and:

xk
i j ≤ yk

i , k = 1, . . . ,K,{i, j} ∈ E, (6a)

xk
i j ≤ yk

j, k = 1, . . . ,K,{i, j} ∈ E. (6b)

Let (x,y,w)∈ PU be the solution to (5) and Gk = (V k,Ek) : k = 1, . . . ,K be the subgraph
of G implied by (xk,yk) (V k := {i ∈V : yk

i > 0} and Ek := {{i, j} ∈ E : xk
i j > 0}). If for

all k = 1, . . . ,K, the vector (xk,yk) is integer and if there is no GSEC (2c) violated by
(xk,yk), (x,y,w) solves (1). Otherwise, we attempt to strengthen PU , appending violated
GSECs to it.

The exact separation of GSECs can be carried out efficiently, through max-flow (min-
cut) computations, in O(Kn4) time complexity (see [7] and [4] for details). Despite that,
in practice, we found advantageous to separate GSECs through the following heuristic.
For each value of k, we sort the edges in Ek in a non-increasing order of their xk

i j val-

ues. Then, we find a forest of maximum cardinality of Gk, using Kruskal’s algorithm,
giving preference to include edges with higher values of xk

i j. Each edge included during
Kruskal’s method merges two sets of vertices into a a new connected component in the
forest being built. We check for violated GSECs for such connected components gen-
erated after each edge inclusion, until a forest of maximum cardinality has been found.
In our implementation, all GSECs violated by at least 10−3 are appended into PU , and
a new LP is formulated and re-optimized. If no GSECs are found to be violated through
the separation heuristic outlined above, we branch on y variables.

In our BC implementation, before evaluating the LP relaxation at each node, we
first compute the combinatorial lower bounds by Mekking and Volgenant [5]. These
bounds, though weaker than the LP relaxation bounds implied by PU , are very fast
to be evaluated. Therefore, we only compute the LP bounds in a node if none of the
combinatorial bounds allow to early prune that node. In this sense, BC can be seen as
an hybrid algorithm, since the two types of lower bounds are used during the search.
In another perspective, BC can be seen as an improvement over the Branch-and-bound
algorithm in [5] since it uses LP information to bound, to choose variables on which to
branch and the order in which nodes should be investigated.

In order to obtain valid upper bounds for K-MMSFP, we implemented a multi-start
Linear Programming heuristic (LPH), that works as follows. Assume that, in a given
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Branch-and-cut node, (x,y,w) denotes the solution to the LP relaxation at hands, when
no more violated GSECs were found. Due to (2d) and (2e)-(2f), the idea of LPH is to
take the values {yk

i : k = 1, . . . ,K} as probabilities that vertex i will be connected to each
of the roots r1, . . . ,rK . Accordingly, LPH consists of randomly choosing which root will
be assigned to each vertex, according to probabilities given by {yk

i : i ∈V,k = 1, . . . ,K}.
Once the node-to-root assignments are chosen, we run Kruskal’s algorithm for each set
of vertices that are assigned to the same root. Attempting to improve the upper bounds,
LPH is called 10 times at the end of each node in the enumeration tree.

4 Preliminary Computational Results and Conclusions

In this section, we discuss results for 2-MMSFP. The only instance available to us from
previous studies is instance K20,46 (introduced in [8], defined on a planar graph, with
n = 20 and m = 46). Thus, to evaluate BC, additional instances of various types were
generated: two dimensional Euclidean and random costs instances, defined on dense
and on sparse graphs. For each cost type and graph density, bipartite graphs were con-
sidered as well. Euclidean instances considered here have vertices’ coordinates ran-
domly chosen in the interval [0,1000]. Edge costs correspond to the Euclidean distance
between their endpoints rounded down. Random cost instances were generated by as-
signing randomly chosen integers in the interval [0,1000] to edge costs. For each value
of n, instance type and graph density, 3 instances were generated. For each instance, we
evaluated BC with the following n−1 root choices: r1 = 1 and r2 = i, i = 2, . . . ,n (see
Section 5 in [5] for the reasoning why we have chosen such roots).

All algorithms introduced in this paper were implemented in C and computational ex-
periments were conducted in a Intel XEON processor, running at 2.0Ghz, with 8Gbytes
of RAM memory. Computational results reported in Mekking and Volgenant [5] were
obtained in a machine with a speed comparable to a Intel Pentium III with 900 Mhz.
The algorithms in [5] were coded in Delphi Pascal, usually slower than C. In addition,
apart from instance K20,46, instances considered here and in [5] are not the same, though
were generated by the same guidelines. Thus, a direct comparison between computing
times spent by BC and by the Node Based Branch-and-bound algorithm (NBA) in [5]
seems hard to be established with accuracy. We therefore only briefly discuss trends in
the growth of computing times of both algorithms as n increases.

In Table 1, we compare BC with NBA for instance K20,46, for various root choices
(indicated in the first column in the table). In the next two columns, we report on the
number of nodes required by NBA and BC, followed by the time needed by each algo-
rithm to solve each instance (in seconds). In the subsequent three columns, we present
lower bounds for 2-MMSFP: the two strongest lower bounds in [5] (under headings
LB1, LB2) and the LP bound implied by PU , wPU (we do not report the third lower
bound in [5] since for the root node, such bound is always 0). In the last column, we
present the value of the optimal objective function, w∗.

As it can be observed, for the root choices considered in the table, wPU is always
stronger than LB1 and LB2. For instances of this size and density, it seems that NBA
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Table 1. NBA and BC computational results for instance K20,46

# nodes CPU time (s) Root lower bounds
r1,r2 NBA BC NBA BC LB1 LB2 wPU w∗

1, 20 298 31 0.0 0.09 799 631 803.5507 855
2, 19 253 39 0.0 0.07 799 618 801.0098 848
3, 18 359 43 0.0 0.09 799 631 800.7628 848
4, 17 351 39 0.0 0.08 799 631 800.2410 848
5, 16 287 45 0.0 0.09 799 574 799.2847 848
6, 15 269 37 0.0 0.09 799 584 801.0098 848
7, 14 300 41 0.0 0.08 799 660 801.0098 848
8, 13 362 37 0.0 0.08 773 624 797.3352 852
9, 12 319 37 0.0 0.07 807 611 807.7487 848

10, 11 307 29 0.0 0.07 807 635 811.6621 852

outperforms BC. However, K20,46 is indeed very easy to solve. In our view, conclusions
about the merits of BC should be drawn from its capability of solving larger and harder
test instances, presented next.

In Table 2, we present BC results for Euclidean and random costs instances, for
various graph densities. In the first two columns, we report instance data (n or n

2 , n
2 for

bipartite graphs and graph densities from 100% to 25%). The next results in the table are
the average and the maximum times (in seconds) needed by BC to solve the instances.
Similar entries are given on the sequence, for the average and the maximum number of
nodes. In the last column, we report the average duality gap at the root node (the relative
distance to the optimal value, when the separation heuristic was used to compute the
lower bound).

On the average, for Euclidean instances defined on complete graphs with n = 50,80,
NBA in [5] needed to evaluate 1.89×105 and 4.17×106 nodes, respectively, and took,
41.4 and 2313.3 seconds to solve similar sets of instances. BC, on the other hand, took
7.3 and 36.2 seconds, respectively. From n = 50 to n = 80, computing times increased
5 times for BC and 56 times for NBA. The number of nodes investigated in the search
is, on the average, 3 orders of magnitude lower for BC. For bipartite complete instances
with 50 vertices, NBA took 19.3 seconds and investigated 9.66× 104 nodes while BC
needed, on the average, to investigate 136 nodes in 2.5 seconds.

To conclude, BC was able to easily solve instances with up to 80 vertices of various
different types. It seems that the smaller rate of growth in the computing times for BC
is not related only to the computational power available nowadays. This seems to be
true since, for the instances considered here, LP bounds dominate combinatorial bounds
from the literature and the LP based heuristic performs very well. We plan to implement
a Branch-and-cut algorithm based on the directed formulation and to proceed with the
polyhedral study started here.
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Table 2. BC average computational results for 2-MMSFP Euclidean and random cost instances

Euclidean instances
CPU time (s) # nodes root

n den (%) avg max avg max gap (%)
50 100 7.3 24.2 207.8 627 2.82

75 4.3 14.1 190.6 581 2.68
50 2.7 12.9 193.8 803 2.56
25 7.0 44.9 643.2 3539 2.38

25,25 100 2.5 16.6 136.6 771 2.08
75 1.7 5.7 167.4 569 1.60
50 2.3 19.4 220.0 621 2.19
25 1.7 14.0 288.6 2051 1.33

Euclidean instances
CPU time (s) # nodes root

n den (%) avg max avg max gap (%)
80 100 36.2 107.5 319.6 981 1.52

75 50.5 235.1 542.6 2329 1.93
50 17.9 123.9 347.p 1881 1.44
25 27.2 504.2 600.3 6705 1.33

40,40 100 26.1 1065.6 375.8 9117 1.36
75 12.3 31.6 383.7 731 1.52
50 16.1 225.1 565.5 6493 2.59
25 20.3 524.5 824.5 9279 2.97

Random cost instances
CPU time (s) # nodes root

n den (%) avg max avg max gap (%)
50 100 4.2 46.9 178.9 2279 3.36

75 2.2 9.5 140.7 373 2.19
50 1.5 10.2 121.3 593 2.59
25 1.9 16.5 221.4 1919 2.39

25,25 100 2.7 85.5 310.7 7827 3.38
75 1.6 8.0 208.4 763 2.84
50 1.1 4.8 137.8 557 2.05
25 0.7 3.9 158.2 699 2.41

Random cost instances
CPU time (s) # nodes root

n den (%) avg max avg max gap (%)
80 100 30.7 533.9 302.9 6217 1.63

75 18.8 269.2 311.8 4597 1.49
50 42.6 494.3 876.0 9291 2.06
25 25.3 345.24 1056.7 9021 2.25

40,40 100 28.9 433.2 598.4 8921 1.88
75 19.1 218.1 541.1 4267 1.93
50 14.1 112.1 576.6 2665 1.76
25 6.7 55.0 421.9 2911 1.82
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Abstract. The Wireless Network Design Problem (WND) consists in choosing
values of radio-electrical parameters of transmitters of a wireless network, to
maximize network coverage. We present a pure 0-1 Linear Programming formu-
lation for the WND that may contain an exponential number of constraints. Vi-
olated inequalities of this formulation are hard to separate both theoretically and
in practice. However, a relevant subset of such inequalities can be separated more
efficiently in practice and can be used to strengthen classical MILP formulations
for the WND. Preliminary computational experience confirms the effectiveness
of our new technique both in terms of quality of solutions found and provided
bounds.

1 Introduction

Wireless networks have shown a rapid growth over the past two decades and now play a
key role in new generation telecommunications networks. Scarce radio resources, such
as frequencies, have rapidly became congested and the need for more effective design
methods arose. A general planning problem consists in establishing the radio-electrical
parameters (e.g., power emission and frequency) of the transmitters of a wireless net-
work so as to maximize the overall network coverage. To present our original contri-
bution, in this paper we focus only on establishing power emissions. This is actually a
basic problem in all wireless planning contexts that can be easily extended by introduc-
ing additional elements, such as frequencies [4,5].

For our purposes, a wireless network can be described as a set of transmitters B
distributing a telecommunication service to a set of receivers T . Each transmitter b ∈ B
emits a radio signal with power pb ∈ [0,Pmax]. The power pb(t) that receiver t gets
from transmitter b is proportional to the emitted power pb by a factor atb ∈ [0,1], i.e.
pb(t) = atb · pb, commonly called fading coefficient. Among the signals received from
transmitters in B, receiver t can select a reference signal (or server), which is the one
carrying the service. All the other signals are interfering.

A receiver t is regarded as served by the network, specifically by server β ∈ B, if the
ratio of the serving power to the sum of the interfering powers (signal-to-interference
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ratio or SIR) is above a threshold δ [11], (SIR threshold), whose value depends on the
technology and the desired quality of service:

atβ · pβ
μ +∑b∈B\{β}atb · pb

≥ δ (1)

where the system noise μ > 0 is assimilated to an interfering signal with fixed (very
low) power emission.

For every t ∈ T , we have one inequality of type (1) for each potential server β ∈ B: in
particular, we denote by SIR(t,b) the inequality (1) associated with receiver t and server
b. Receiver t is served if at least one of these inequalities is satisfied or, equivalently, if
the following disjunctive constraint is satisfied:

∨
β∈B

(
atβ · pβ − δ · ∑

b∈B\{β}
atb · pb ≥ δ ·μ

)
(2)

Each linear inequality of the above disjunction is obtained by simple algebra from the
SIR expression (1).

If each receiver t ∈ T is associated to a value rt > 0 that expresses revenue obtained
by serving t, the Wireless Network Design Problem (WND) consists in setting the power
emission of each transmitter b ∈ B and the server of each receiver in t ∈ T with the aim
of maximizing the overall revenue of served receivers.

2 A Pure 0-1 Linear Programming Formulation for the WND

The WND is often approached by solving a suitable Mixed-Integer Linear Program
(MILP): first, a binary variable xtb is introduced for every t ∈ T , b ∈ B, with xtb = 1
if and only if b serves t; then, variables xtb are used to replace each disjunction (2)
with a set of |B| linear constraint, that, however, include large positive constants, the
notorious big-M coefficients [5,7]. The (linear) objective function aims to maximize
the overall revenue from coverage, i.e. max∑t∈T ∑b∈B rt ·xtb and requires the additional
constraints:

∑
b∈B

xtb ≤ 1 t ∈ T (3)

to ensure that each receiver is associated to at most one server. A vector x ∈ {0,1}T×B

satisfying (3) is a server assignment.
The resulting MILP presents severe drawbacks, highlighted in several works, e.g.

[5,7,8]. First, the coefficients in the SIR inequalities may vary over a very wide range,
with differences up to 1012 or even larger. This makes the constraint matrix very ill-
conditioned and the solutions returned by solvers are often inaccurate and may contain
errors. Also, the presence of big-M terms results in weak bounds thus leading to very
large search trees. To tackle these problems a number of different approaches were
recently proposed. For a comprehensive introduction to these related works, we refer
the reader to [4,5,7].

In this paper, we propose an alternative pure 0-1 Linear Programming formulation for
the WND, whose defining inequalities are linear constraints in the assignment variables
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xtb. Such inequalities are thus valid for all the formulations that are derived from the
previously introduced MILPs and can be included to strengthen them.

Let now x̃ ∈ {0,1}T×B be a server assignment and let Σ denote the set of all the
SIR inequalities SIR(t,b) and the lower and upper bounds constraints 0 ≤ pb ≤ Pmax on
power emissions. With x̃ we associate the subsystem I(x̃) of SIR inequalities (1) whose
corresponding variables x̃tb are activated, i.e:

I(x̃) = {SIR(t,b) ∈ Σ : x̃tb = 1}
It is easy to check if I(x̃), extended with lower and upper bounds on the variables pb, is
feasible. If this is the case, all of the assigned testpoints can actually be served by the
network, and we say that x is a feasible server assignment.

At this point, we can restate the WND as the problem of finding a feasible server
assignment that maximizes the revenue function. To this aim, a simple characterization
of all the feasible server assignments goes as follows. Denote by IS the set of subsystems
I(x) such that x is not feasible. Then x̃ ∈ {0,1}T×B is a feasible server assignment if and
only if x̃ satisfies the following system of linear inequalities:

∑
(t,b)∈I

x̃tb ≤ |I|−1 ∀ I ∈ IS (4)

The above system is in general very large and the inequalities must be generated dynam-
ically. Unfortunately, the separation of violated inequalities (4) is hard, both theoreti-
cally and in practice [2,10]. Moreover, it may entail some of the numerical difficulties
associate with the MILP formulations for the WND. Still, a relevant subset of these
inequalities can be separated more effectively, as we describe next.

To this end, we proceed in a similar way to [8]. Namely, we generate a new system
Σ ′ obtained from Σ by substituting each (1) with the system:

atβ · pβ
atb · pb

≥ δ ∀ b ∈ B\ {β} (5)

where, to simplify the notation, we assume that B also contains the noise μ as a fictitious
transmitter with fixed power emission. It is not difficult to see that Σ ′ is a relaxation of
Σ and every infeasible subsystem of Σ ′ corresponds to an infeasible subsystem of Σ .
Basically, this relaxation corresponds to considering a receiver as served if the power
emission of its server suffices to contrast each interferer individually and the thermal
noise. Or, alternatively, if its best server is “stronger” than its strongest interferer. In [8]
the authors show that, in most cases of practical interest, this is indeed a good approxi-
mation of the original SIR constraint.

By assuming pb ∈ [ε,Pb], with ε > 0 very small, and by taking the logarithm1 of both
left and right hand side multiplied by 10, the system Σ ′ can be rewritten as:

qb −qβ ≤ wt
βb t ∈ T,β ∈ B,b ∈ B\ {β} (6)

where qb = 10log10 pb for all b ∈ B and wt
βb = �10(log10 atβ − log10 atb − log10 δ )�,

extended with the lower and upper bounds 10log10 ε ≤ qb ≤ 10log10 Pb, for all b ∈ B.

1 This corresponds to rewriting all quantities in dB format.
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In this way, the system Σ ′ is transformed into a system of difference inequalities
(lower and upper bounds can be easily represented in this form as well), where each
constraint (6) is associated with a server β and a receiver t and thus with an assignment
variable xtβ .

Now, given a generic system of difference constraints Σd :

(i) tv − tu ≤ luv, (u,v) ∈ A (7)

where t ∈ IRA and l ∈ ZA, we can consider the associated weighted directed graph G =
(V,A), with weight function l. Then, it is well known that every infeasible subsystem of
(7) contains (the constraints corresponding to) the arcs of a negative directed cycle of
G [9]. Also, denoting by x ∈ {0,1}A the incidence vector of (the arcs corresponding to)
a feasible subsystem of Σd , then x is the set of solutions to:

(i) ∑uv∈C xuv ≤ |C|−1, C ∈ C−

x ∈ {0,1}A
(8)

where C − is the set of negative directed cycles of G.
In [6] we develop an exact approach to the separation of violated inequalities (8.i).

The resulting algorithm can be used to separate the violated inequalities associated
with the system (6) (including upper and lower bounds on the q variables expressed as
difference inequalities) which correspond to negative directed cycles in the associated
directed graph. One of these cycles C corresponds to a subset of constraints of (6)
associated with the pairs IC = {(β1, t1), . . . ,(βm, tm)}⊆ B×T (plus possibly some lower
and upper bound constraints).

One can show that β1 
= β2 
= . . . 
= βm and t1 
= t2 
= . . . 
= tm and the valid constraint:

∑
(t,b)∈IC

xtb ≤ |IC|−1 (9)

may be added to the formulation. In our preliminary results, however, we limit to con-
sider cycle inequalities with |C| = 2 and separate them by enumeration.

3 Preliminary Computational Results

We test the performance of our new approach to WND on a set of 15 realistic instances,
developed with the Technical Strategy & Innovations Unit of British Telecom Italia
(BT Italia SpA). All the instances refer to a Fixed WiMAX Network [1], deployable in
an urban residential area and consider various scenarios with up to |T | = 529 receivers,
|B| = 36 transmitters, |F| = 3 frequencies, |H| = 4 burst profiles (see Table 1). We
remark that the experiments refer to a formulation that extends the basic one considered
in Section 1, by including frequency channels and modulation schemes as additional
decision variables. Such formulation is denoted by (BM) and captures specific features
of so-called Next Generation Networks like WiMAX [1]. For a detailed description of
(BM), we refer the reader to [3].
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Table 1. Comparisons between (BM) and (PI) with and without valid inequalities (8)

(BM) (S-BM) (PI) (S-PI)
ID |T| |B| |F| |H|

UB0 |T ∗| gap% UB0 |T∗| gap% UB0 |T∗| UB0 |T∗|
I1 100 12 1 1 98.36 66 (70) 29.43 96.78 66 (70) 27.68 90.77 75 90.23 75
I2 169 12 1 1 165.47 97 59.81 163.15 97 57.39 153.12 101 152.37 101
I3 196 12 1 1 193.61 102 (105) 77.87 192.02 102 (105) 75.11 179.35 108 177.92 108
I4 225 12 1 1 219.76 92 81.13 218.36 92 79.36 202.44 92 201.54 92
I5 289 12 1 1 287.20 76 (77) 195.44 287.20 76 (77) 194.92 274.62 85 274.13 85
I6 361 12 1 1 352.01 126 (132) 154.87 350.43 140 138.76 337.22 156 336.46 156
I7 400 18 1 1 397.21 166 132.01 396.79 166 131.32 386.07 184 384.95 184
I8 400 18 3 4 400.00 356 12.36 400.00 356 12.36 396.53 372 395.80 372
I9 441 18 3 4 441.00 266 (270) 63.33 441.00 266 (270) 63.33 438.28 295 437.52 295

I10 484 27 3 4 484.00 120 (122) 296.72 484.00 120 (122) 296.72 479.10 242 478.68 242
I11 529 27 3 4 529.00 77 587 529.00 77 587 523.15 168 521.76 168
I12 400 36 1 4 398.04 72 (74) 287.30 396.93 77 (78) 264.85 389.61 102 389.14 102
I13 441 36 1 4 433.21 184 131.03 431.42 184 129.77 414.93 194 413.78 194
I14 484 36 1 4 482.78 209 108.31 481.66 209 107.56 472.44 251 471.58 251
I15 529 36 1 4 517.89 98 (105) 226.44 516.14 114 198.57 503.32 232 502.67 232

For each instance, we present preliminary computational results obtained by solving
the big-M formulation (BM) and its corresponding Power-Indexed formulation (PI) [5].
We consider (BM) and (PI) formulations with and without the valid inequalities (8)
obtained for |C|= 2. Formulations strengthened through (8) are distinguished by adding
S-, i.e. (S-BM) and (S-PI).

Experiments are run by imposing a time limit of 1 hour and by using a machine with
a 1.80 GHz Intel Core 2 Duo processor and 2 GB of RAM. Table 1 reports the perfor-
mance of the four considered formulations over the set of WiMAX instances. We solve
(BM) and (S-BM) by direct application of IBM ILOG Cplex 11.1 and we report i) the
upper bound UB0 obtained at node 0 of the branch-and-bound tree, ii) the value |T ∗|
of the best solution found within the time limit and iii) the final integrality gap gap%.
The presence of two values in some lines of the column |T ∗| of (BM) indicates that
the coverage plans returned by Cplex contain errors and some receivers are actually
not covered. We instead solve (PI) and (S-PI) by the incremental algorithm WPLAN
described in [5] and we report i) the upper bound UB0 obtained at node 0 when consid-
ering the basic set of power levels, and ii) the value |T ∗| of the best solution found by
WPLAN within the time limit.

By adding the new valid inequalities (8) for |C| = 2, in most cases stronger bounds
are obtained at node 0 and smaller integrality gaps are reached within the time limit.
In particular, the benefits are particularly evident in the case of the big-M formulation:
in three cases, namely I6, I12, I15, the value of the best solution is increased, even
eliminating coverage errors (I6, I15).
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Abstract. The Two Level Network Design (TLND) problem arises when local
broadband access networks are planned in areas, where no existing infrastruc-
ture can be used, i.e., in the so-called greenfield deployments. Mixed strategies
of Fiber-To-The-Home and Fiber-To-The-Curb, i.e., some customers are served
by copper cables, some by fiber optic lines, can be modeled by an extension of
the TLND. We are given two types of customers (primary and secondary), an
additional set of Steiner nodes and fixed costs for installing either a primary or a
secondary technology on each edge. The TLND problem seeks a minimum cost
connected subgraph obeying a tree-tree topology, i.e., the primary nodes are con-
nected by a rooted primary tree; the secondary nodes can be connected using both
primary and secondary technology. In this paper we study an important extension
of TLND in which additional transition costs need to be paid for intermediate fa-
cilities placed at the transition nodes, i.e., nodes where the change of technology
takes place. The introduction of transition node costs leads to a problem with a
rich structure permitting us to put in evidence reformulation techniques such as
modeling in higher dimensional graphs (which in this case are based on a node
splitting technique). We first provide a compact way of modeling intermediate fa-
cilities. We then present several generalizations of the facility-based inequalities
involving an exponential number of constraints. Finally we show how to model
the problem in an extended graph based on node splitting. Our main result states
that the connectivity constraints on the splitted graph, projected back into the
space of the variables of the original model, provide a new family of inequalities
that implies, and even strictly dominates, all previously described cuts. We also
provide a polynomial time separation algorithm for the more general cuts by cal-
culating maximum flows on the splitted graph. We compare the proposed models
both theoretically and computationally.

1 Introduction

The Two Level Network Design (TLND) problem arises in the topological design of
hierarchical communication, transportation, and electric power distribution networks.
Probably the most important application of TLND is in the context of telecommunica-
tion networks, where networks with two cable technologies, fiber optic and copper, are
built. In local broadband access networks, if the Fiber-To-The-Home (FTTH) strategy
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is used, every customer is provided with a distinct fiber optic connection. A cheaper
strategy is Fiber-To-The-Curb (FTTC), where the part of the access network closest
to the customer uses copper cables and facilities are installed, to convert optical to
electrical signals and vice versa. In greenfield deployments, i.e. where there is no ex-
isting infrastructure, a mixed strategy of FTTC and FTTH is often preferable. In such
a case, telecommunication companies distinguish between primary and secondary cus-
tomers. The switching centers, important infrastructure nodes and small businesses are
considered as primary customers (i.e., those to be served by fiber optic connections).
Single households are not considered as being consumers of a high potential and hence
they only need to be supplied using copper cables. The secondary technology is much
cheaper, but the guaranteed quality of the connections and bandwidth is significantly
below the quality provided by the primary one.

A large body of work has been done for the TLND and its variations (see below).
In this study we incorporate two realistic features that have not yet been considered
in previous studies of the TLND. Firstly, none of the previous approaches on TLND
considers the cost of establishing intermediate facilities at transition nodes, i.e., nodes
in which the change of technology takes place. Typically, at transition nodes, expensive
switching devices need to be installed and the respective costs should not be neglected.
Secondly, the previous work on the TLND is based on the assumption that all nodes in
the network belong to the customer set. We relax this assumption, allowing the existence
of Steiner nodes as well. We call the new problem the Two Level Network Design
Problem with Intermediate Facilities (TLNDF).

This important problem generalizes problems with tree-star and star-tree topologies,
like e.g., connected facility location, hierarchical network design, Steiner trees or unca-
pacitated facility location. We consider an extended graph, where the installation of
facilities is modeled as arcs. We show that connectivity constraints on this splitted
graph, projected back into the space of the variables of the original model, provide
a new family of inequalities that implies, and even strictly dominates, all previously
described constraints. We also provide a polynomial time separation algorithm for the
more general inequalities by calculating maximum flows on the splitted graph. Finally,
our computational study demonstrates the efficiency and practical applicability of the
new inequalities.

Problem Definition. We consider the following generalization of the two level network
design problem:

Definition 1 (TLNDF). We are given an undirected graph G = (V,E) with a root r ∈V
and a set of customers R ⊆ V \ {r}. To each edge e ∈ E we associate two installation
costs, c1

e ≥ c2
e ≥ 0. These correspond to the primary and secondary technology, respec-

tively. The set of customers, R, is partitioned into the set of primary and secondary
customers P and S, respectively. Our goal is to determine a cost-minimal subtree of G
satisfying the following properties:

(P) each primary node in P is connected to the root node by a path that consists of
primary edges only,

(S) each secondary node in S is connected to the root by a path consisting of primary
and/or secondary edges,
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(F) facility opening costs fi ≥ 0 are payed for each transition node i ∈V and
(E) on each edge e ∈ E at most one of technologies is installed.

Several observations can be made about the solution space of this problem: i) Since c1
e −

c2
e ≥ 0, there always exists an optimal solution which is a Steiner tree with a tree-tree

topology, i.e., it is composed of a rooted subtree of primary edges (primary subtree) and
a union of subtrees of secondary edges (secondary subtrees). Each secondary subtree
is rooted in a (transition) node of the primary subtree. ii) If facility opening costs are
the same for all facility locations, any leaf of the primary subtree will be a primary
node. Otherwise, if facility opening costs are location-dependent, placing facilities at
locations of Steiner nodes may provide cheaper solutions, i.e., a leaf of the primary
subtree may be any node from V \ {r}. iii) This general definition also covers the case
in which potential facility locations are a true subset of V (which can be modeled by
setting fi := ∞ for the non-facility locations).

As noted before, the problem discussed here incorporates two new features com-
pared to the original definition in [2], see also [6]. First, we need to consider additional
transition costs due to the presence of two technologies on the network. The second new
feature is that we allow arbitrary subsets of V \ {r} to be considered as the customer
set. This is because in practical applications nodes like street intersections need to be
considered, too. Following the spanning tree definition of multi-level network design
problems in [1], the TLND problem with Steiner nodes can also be seen as a three-level
network design problem in which the Steiner nodes are assigned to the third group of
customers and the installation costs for the third technology are set to zero.

Literature Review. The concept of two level network design problems (more precisely,
two-level spanning trees) has been developed in the 80’s and early 90’s. The hierar-
chical network design problem, in which R = V \ {r} and |P| = 2, was the “initial”
variant of the TLND introduced by [5]. This problem was later generalized by [6] for
|P|> 2. [2] have proposed several network flow based models for this latter problem set-
ting and have compared the linear programming bounds of the proposed formulations.
In [1], the authors have tested a dual ascent method on the model with the strongest
linear programming bound. A more recent approach based on a different formulation is
described in [10]. The TLND problem belongs to a class of problems with a tree-tree
topology. The reader is referred to [8] where several variants of related problems such as
star-tree, tree-star and star-star problems as well as other variants of tree-tree problems
are described.

The previous studies on TLND do not incorporate additional constraints. As far as
we know, the three exceptions are described in [9,11,7]. In the first one, the authors
considered the TLND with weighted hop constraints defined as follows: given natural
numbers w1 and w2, our goal is to construct a two-level minimum spanning tree such
that for each node k, the unique path from the root to k contains a weighted number of
primary and secondary edges (with weights w1 and w2, respectively) which does not
exceed H. In [11] the two-level minimum spanning tree problem with secondary dis-
tance constraints stating that each secondary node must not be too far from the primary
network, is considered. In the latter work [7], the authors studied the connected facil-
ity location problem (ConFL) wich is a TLNDF variant with a tree-star configuration.
In [16] a hop constrained variant of connected facility location has been studied.
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For a literature overview on capacitated network design problems with two technolo-
gies, we refer to a recent work of [4], where a problem has been studied with capacities
on edges and with fixed installation and non-linear flow costs. In [13] a survivable net-
work design problem with two technologies and facility nodes has been studied.

2 MIP Formulations for the Two Level Network Design Problem

In this section we describe cut based formulations for the TLNDF. We start by giving a
formulation of the original TLND problem without modeling the facility opening costs.

Directed Graphs. It is well known that for rooted spanning or Steiner tree problems,
models with a stronger linear programming bound are obtained by solving the problem
on a directed graph (see, e.g., [17]). Thus, we will work on a directed graph G = (V,A)
that is obtained from the original undirected graph G = (V,E) as follows: For each edge
e = {i, j} ∈ E we include two arcs i j and ji in A with the same cost of the original edge.
Since we are modeling an arborescence directed away from the root node, edges {r, j}
are replaced by a single arc r j only.

To model the TLND problem, we will use the following binary variables:

x1
i j =

{
1, if the primary cable technology is installed on arc i j

0, otherwise
∀i j ∈ A

x2
i j =

{
1, if the secondary cable technology is installed on arc i j

0, otherwise
∀i j ∈ A, j 
∈ P

Observe that in any feasible solution there will be no secondary arcs entering a primary
node (i.e., x2

i j = 0, whenever j ∈ P). Therefore, variables corresponding to such arcs
will not be considered in our models. However, to simplify the notation, we will allow
them in the indexation of the summation terms.

For any W ⊂ V we denote its complement set by W c = V \W . For any M,N ⊂ V ,
M ∩N = /0, denote the induced cut set of arcs by (M,N) = {i j ∈ A | i ∈ M, j ∈ N}. In
particular, let δ−(W ) = (W c,W ) and δ−(i) = (V \{i},{i}). For a set of arcs Â ⊆ A, we
will write x�(Â) = ∑i j∈Â x�

i j, for � = 1,2, and (x1 + x2)(Â) = ∑i j∈Â x1
i j + x2

i j.
The examples described in the next sections use the following symbols: represents

the root node, ◦ represents a Steiner node. � represents a primary customer, � repre-
sents a secondary customer. Whenever we solve a problem as the Steiner tree problem,
terminals are denoted by ♦.

2.1 Modeling the TLND Problem

The following formulation models the TLND with the set of primary nodes P (that may
also be an empty set), and the set of secondary nodes S without facility opening costs.

(TLND) min ∑
i j∈A

(c1
i jx

1
i j + c2

i jx
2
i j)

x1(δ−(W )) ≥ 1 ∀W ⊆V \ {r}, W ∩P 
= /0 (x1)
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(x1 + x2)(δ−(W )) ≥ 1 ∀W ⊆V \ {r}, W ∩S 
= /0 (x12)

(x1 + x2)(δ−(i)) ≤ 1 ∀i ∈V (1)

x1
i j,x

2
i j ∈ {0,1} ∀i j ∈ A (2)

The primary connectivity constraints (x1) ensure that for every primary node i, there
is a path between r and i containing only primary arcs. The secondary connectivity
constraints (x12) ensure that every secondary node is connected to the root by a path
containing primary and/or secondary arcs. The in-degree constraints (1) ensure that the
overall solution is a subtree and they are redundant if the edge costs are non-negative.

This gives a valid model for the TLND. In [1,2] a directed MIP formulation based
on network flows has been presented. It is easy to show that the set of feasible solutions
of the LP-relaxation of the TLND model is the projection onto the space of (x1,x2)
variables of this flow model. This result follows immediately from the max-flow min-
cut theorem. Thus, the two models produce the same linear programming bound.

2.2 Modeling Facility Opening Costs

At each node in which a change of technology takes place, expensive facilities (e.g.,
multiplexors, splitters) need to be installed. In order to model these facility opening
costs, we will use variables zi:

zi =

{
1, if a facility is installed in node i

0, otherwise
∀i ∈V

For a set W ⊆V , we will write z(W ) = ∑i∈W zi.

Basic Coupling Constraints. To ensure that a facility is open, whenever a change of
technology takes place, we request that every secondary arc jk ∈ A used in a solution is
either preceded by another secondary arc entering node j, or there is an open facility at
node j. These constraints are an adaptation of degree-inequalities proposed by [14] for
the Steiner tree problem. Our problem can then be modeled as follows:

(TLNDF) min ∑
i j∈A

(c1
i jx

1
i j + c2

i jx
2
i j)+∑

i∈V
zi fi

z j + ∑
i j∈A,i
=k

x2
i j ≥ x2

jk ∀ jk ∈ A,k 
∈ P (3)

zi ∈ {0,1} ∀i ∈V (4)

(x1), (x12),(1), (2)

In this model, the indegree constraints (1) are not redundant even if the arc- and facility
costs are non-negative. These constraints namely prevent building of secondary cycles
that would satisfy (3) without opening a facility at position j. Together with connec-
tivity constraints (x12), the basic coupling constraints (3) guarantee that if a facility
is installed at node j, then j is the root of a secondary subtree. This model does not
prevent from opening facilities along a secondary path, but this will never be the case
in an optimal solution.
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Generalized x2−z Coupling Constraints. One can generalize the coupling constraints
(3) in the following way: Let k be any secondary customer or Steiner node and W ⊆
V \ {k}. Then, the generalized x2 − z coupling constraints can be written as follows:

z(W )+ x2(W c
k ,W ) ≥ x2(W,{k}) ∀k ∈V \ (P∪{r}),

W ⊆V \ {k},Wk = W ∪{k}. (5)

Note that if W = { j}, for j 
= k, we obtain (3). In [9], the authors consider a similar
generalization technique of degree-constraints by [14] in the context of the two-level
minimum spanning tree problem with weighted hop constraints. The formulation ob-
tained by replacing constraints (3) by (5) is denoted by TLNDF+.

The convex hull of feasible LP-solutions of TLNDF+ is (for some instances even
strictly) contained in the polytope defined by the LP-relaxation of the TLNDF model.

Lemma 1. Let PTLNDF+ and PTLNDF denote the polytopes associated with LP-
relaxations of models TLNDF+ and TLNDF, respectively. Then, PTLNDF+ ⊆ PTLNDF

and there exist instances for which the strict inequality holds.

Proof. Constraints (3) are contained in the set (5): (3) for jk ∈ A,k 
∈ P is derived
from (5) for W = { j}. Figure 1 shows an example where the strict inequality holds:
Consider the LP-optimal solution for TLNDF in which x1

r2 = x1
24 = 1 and x2

45 = x2
57 =

x2
46 = x2

67 = z4 = 0.5. υLP(TLNDF)= 3.25 but constraint (5) is violated forW = {4,5,6}
and k = 7, so υLP(TLNDF+) = 3.5 > υLP(TLNDF). ��
Constraints (5) can be rewritten in several equivalent ways which permit an easier
comparison with other inequalities. In fact, by adding x2(W c,k) to both sides, we can
rewrite (5) as follows:

z(W )+ x2(δ−(Wk)) ≥ x2(δ−(k)) ∀k 
∈ P,∀W ⊆V \ {k},Wk = W ∪{k}. (x2-z)

Generalized x1 − z Coupling Constraints. We have shown how to relate variables z
and x2. We show next how to relate variables z and x1: For a given k ∈ S and W =V \{k}
we can rewrite inequalities (x2-z) as z(V \ {k}) ≥ x2(δ−(k)). By using the in-degree
constraint (1), we obtain:

z(V \ {k})+ x1(δ−(k)) ≥ 1 ∀k ∈ S

The latter constraints can be generalized for subsets W ∩S 
= /0 in the following way:

z(W c)+ x1(δ−(W )) ≥ 1 ∀W ⊆V \ {r},W ∩S 
= /0 (x1-z)

r

2

3

4

5

6

7

Fig. 1. Example for Lemma 1. All primary arc costs are 1, secondary arc and facility costs are
1/2.
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These new inequalities describe the fact that for any subset W containing a secondary
node, either there is a primary path between a node from W and r, or there is an open
facility in the complementary set W c.

Observation 1. The set of inequalities (x1-z) cannot replace the coupling constraints (3)
in the model TLNDF, i.e. (x1-z) are not sufficient for modeling the TLND problem with
facility nodes. However, (x1-z) can be used to strengthen the model TLNDF+.

We denote the model TLNDF+ extended by (x1-z) as TLNDF+
x1−z.

Next, we will show that connectivity constraints (x1), (x12) and both groups of gen-
eralized coupling constraints are special cases of a more general group of constraints.
These can be derived if we model the problem in a new graph obtained by node-splitting
as described below.

3 The Node-Splitting Model

We can model the TLNDF problem as the Steiner arborescence problem in a slightly
modified graph GNS = (VNS,ANS) with the root r′ and the set of terminals RNS, as fol-
lows:

VNS :=V ′ ∪V ′′ ∪S where ANS :=A′ ∪A′′ ∪Az ∪AS where

V ′ := {i′ | i ∈V}, A′ := {i′ j′ | i j ∈ A},
V ′′ := {i′′ | i ∈V}, A′′ := {i′′ j′′ | i j ∈ A},
S is the set of secondary nodes; Az := {i′i′′ | i ∈V},

RNS :=P′ ∪S where AS := {i′i | i′ ∈V ′, i ∈ S}
P′ = {i′ | i ∈ P}; ∪{i′′i | i′′ ∈V ′′, i ∈ S}.

The graph GNS is composed of several components: i) a subgraph G′ = (V ′,A′) which
corresponds to the primary network (it contains nodes and arcs that may be included
in the primary subtree); ii) a subgraph G′′ = (V ′′,A′′) that corresponds to the secondary
network (it contains nodes and arcs that may be contained in the secondary subtrees);
iii) arcs linking nodes in G′ to the corresponding copy in G′′ and representing potential
facilities and iv) another copy of the secondary nodes with arcs incoming from their
representatives in graphs G′ and G′′ (see Figure 2). Arc costs Ci j, i j ∈ ANS are assigned
accordingly to the arcs in G′, G′′. The arcs linking the two subgraphs are assigned costs
Ci′i′′ := fi, for all i ∈V . To the arcs of the set AS costs of zero are assigned.

If, for a primary node i ∈ P, its copy i′′ ∈ V ′′ belongs to the optimal solution, there
will be no ingoing arcs into i′′ (with the only exception of i′i′′). Therefore, we can reduce
the size of GNS, by removing all ingoing arcs of primary nodes in V ′′. This corresponds
to setting x2

i j := 0 for all i j ∈ A such that j ∈ P, as already described in Section 2.
Observe that we need a third copy of secondary nodes in GNS, namely the set S, since it
is not clear for secondary nodes whether they will be connected within the primary or
the secondary subtree.

To provide an ILP model, we assign binary variables Xi j to all arcs i j ∈ ANS. Denote
by X(δ−(W̃ )) the sum of X variables that correspond to the arcs in the directed cut
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(W̃ c,W̃ ) in GNS. Based on the classical cut set model for Steiner trees (cf. [3]) we
derive the following ILP formulation:

(SA) min ∑
i j∈ANS

Ci jXi j (6)

s.t. X(δ−(W̃ )) ≥ 1 ∀W̃ ⊆VNS \ {r′},W̃ ∩RNS 
= /0 (7)

∑
i j∈A

(Xi′ j′ + Xi′′ j′′) ≤ 1 ∀ j ∈V (8)

Xi j ∈ {0,1} ∀i j ∈ ANS (9)

Constraints (7) are the classical connectivity cuts, inequalities (8) state that of all ingo-
ing edges of both copies of a node in G at most one is allowed to be open.

Lemma 2. The TLNDF problem can be modeled as the Steiner arborescence problem
with additional degree constraints on some node pairs on the graph GNS with the root
r′ and terminal set RNS.

Proof. We map each binary solution of formulation SA into the variable space of TLNDF
as follows: Xi′ j′ → x1

i j, Xi′′ j′′ → x2
i j and Xi′i′′ → zi. Let now X be an LP optimal solution

for SA. The mapping of X then satisfies all constraints of TLNDF: Connectivity cuts (7)
imply (x1) and (x12), together with degree constraints (8) they ensure (1). Finally, con-
straints (3) are also satisfied since we have:

z j + ∑
i j∈A,i
=k

x2
i j = Xj′ j′′ +∑

i
=k

Xi′′ j′′ ≥ Xj′′k′′ = x2
jk.

The last inequality is implied by (7) and (8). ��
Let Pro jx1,x2,z(PSA) denote the projection of the polytope obtained as the convex hull
of the LP-solutions of the SA formulation into the space of (x1,x2,z) variables. In this
projection, we set x1

i j := Xi′ j′ , x2
i j := Xi′′ j′′ for all i j ∈ A and zi := Xi′i′′ for all i ∈V .

Theorem 1. The SA formulation is at least as strong as the previously defined formu-
lation TLNDF+

x1−z, i.e., Pro jx1,x2,z(PSA) ⊆ PTLNDF+
x1−z

.

To prove this result, we need to analyze the cut set inequalities defined in the SA model
and their projection onto the original graph G.

Lemma 3. Cut set inequalities (7) such that δ−(W̃ )∩ AS 
= /0 are redundant in the
model SA.

Proof. Consider a cut set W̃ ⊆ VNS \ {r′}, W̃ ∩ S 
= /0, such that δ−(W̃ )∩AS 
= /0. We
will show that in that case, X(δ−(W̃ )) ≥ 1 is dominated by another cut set inequality
X(δ−(Ũ))≥ 1 where Ũ is defined as stated below. We need to distinguish the following
two cases:

i) If for all i ∈ S ∩ W̃ , i′i ∈ δ−(W̃ ) and i′′i 
∈ δ−(W̃ ), a dominating cut is given for
Ũ = W̃ ∪⋃

i∈W̃{i′}.
ii) For all other W̃ the dominating cut is obtained by removing nodes i ∈ S from W̃ if

i′′ ∈ W̃ and i′ 
∈ W̃ and adding nodes i′ and i′′ to W̃ for i ∈ S∩W̃ such that i′, i′′ 
∈ W̃ .
��

We will refer to the cut set inequalities such that δ−(W̃ )∩AS = /0 as the non-dominated
cut set inequalities.
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Fig. 2. a) Instance of TLNDF; b) Transformed instance and illustration of cuts (x1) for W = {1},
(x1-z) for W = {2,3,4} and cuts (x12-z) for W ′ = {3} and W ′′ = {3,4}

Generalized Cut Set Constraints. We will now define the generalized cut set con-
straints for the TLNDF that are obtained by projecting the non-dominated inequalities
among the ones in (7) into the space of (x1,x2,z). For an arbitrary cut set W̃ ⊂VNS\{r′},
W̃ ∩RNS 
= /0, let us denote the projected subsets of the original graph G as follows:

W ′ = {i ∈V | i′ ∈ W̃} and W ′′ = {i ∈V | i′′ ∈ W̃}
Then, the projected cut set inequalities (7), that we will refer to as generalized cut set
constraints, can be written as:

x1(δ−(W ′))+ x2(δ−(W ′′))+ z(W ′′ \W ′) ≥ 1 r 
∈W ′,W ′ ∩W ′′ ∩S 
= /0

or W ′ ∩P 
= /0. (x12-z)

Observe that all the previously studied inequalities are special cases of this constraint
(see Figure 2):

i) If W ′′ = /0, we obtain the primary connectivity constraints (x1).
ii) If W ′ = W ′′, we obtain the secondary connectivity cuts (x12).

iii) If W ′′ = V , we obtain the generalized coupling constraints (x1-z).
iv) For a given k ∈ S, and a subset W ⊆ V \ {r,k}, the generalized (x2-z) constraint

corresponds to (x12-z) for W ′ = {k}, k ∈ S, and W ′′ = W ∪{k}.

This implicitly proves Theorem 1, i.e., the projection of every feasible LP-solution
of the formulation SA is also feasible to TLNDF+

x1−z.
We conclude this section by noting that even more general classes of inequalities can

be obtained by considering non-trivial cases in which W ′ ∩W ′′ 
= /0,W ′,W ′′.

Lemma 4. The generalized connectivity constraints (x12-z) can be separated in poly-
nomial time.

To separate the constraints (x12-z), one needs to apply the max-flow algorithm on the
splitted graph GNS as described in the next section.

4 Computational Study

In this section we report details of the implementation of our Branch-and-Cut algorithm,
how we derived the set of benchmark instances and the computational results.
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4.1 The Branch-and-Cut Algorithm

To implement our models, we used the Gurobi [12] Branch-and-Cut framework, version
3.0.2. All experiments were performed on a Intel Core2 Quad 2.33 GHz machine with
3.25 GB RAM, where each run was performed on a single processor.

Initialization. As the Gurobi MIP solver requires a compact model for initialization,
we used the following Miller-Tucker-Zemlin connectivity constraints (10)-(13) and triv-
ial degree-constraints (14):

ur = 1 (10)

|V |(x1
i j + x2

i j)+ (|V |−2)(x1
ji + x2

ji)+ ui−u j ≤ |V |−1 i j ∈ A, j 
∈ P (11)

|V |(x1
i j)+ (|V |−2)(x1

ji)+ ui−u j ≤ |V |−1 i j ∈ A, j ∈ P (12)

∑
i j∈A:i
=k

x1
i j ≥ x1

jk j 
= r (13)

∑
i j∈A

x1
i j ≥ z j j ∈ F \ {r} (14)

In addition, our model comprises in-degree constraints (1) and coupling constraints (3).

Separation
Separating (x1) and (x12) Cuts: We separate violated cut set inequalities (x1),(x12)
and (x12-z) in every node of the the Branch-and-Bound tree (BnB). To obtain inequal-
ities (x1), we solve a maximum flow problem on the graph G = (V,A). The capacities
on each arc are set to the value of the x1-variable for the respective arc in the current
fractional solution. Cut set inequalities (x12) are obtained in a similar fashion. The ca-
pacities are equal to the sum of variables x1 and x2 for each arc.

Separating (x12-z) Cuts: To obtain violated constraints of the largest and strongest
group (x12-z), we solve the maximum flow problem on the splitted graph GNS. The
weights for arcs in A′, A′′ and Az are set to the value of the corresponding variable in
the current fractional solution. For arcs in AS, the weight is set to 1, as cuts containing
these arcs are dominated by others (cf. Lemma 3).

General Settings: To improve the computational efficiency of our separation, we
search for nested and minimum cardinality cuts. To do so, all capacities in the respective
graph are increased by some ε > 0. Thus, every detected violated cut contains the least
possible number of arcs. The LP is resolved after adding at most 50 violated inequal-
ities of type (x1), (x12) or (x12-z). Finally, we randomly permute the order in which
customers are chosen to find violated cuts. To ensure comparability, we fix the seed
value for the computations reported in Section 4.3.

Primal Heuristic. We use a primal heuristic (PH) to find incumbent solutions. The PH
is entirely carried out on the graph GNS. It consists of the following steps:

1. Construct primary subtree: Primary customers are connected to the root node by
the arcs in the shortest path to the copy of that customer in V ′. For all nodes taken
into the primary subtree, ingoing secondary arcs are removed.



Node Splitting for Two Level Network Design 67

2. Construct secondary subtree:
(a) Using zero costs on all arcs in the primary subtree, the shortest paths P(i′)

and P(i′′) from the root to i′ ∈ V ′ and i′′ ∈ V ′′ are calculated for all i ∈ S. Let
H ′(i) = |P(i′′)∩A′| and H ′′(i) = |P(i′′)∩A′′|.

(b) Let Q = S. For all i ∈ Q such that H ′′(i) = 0 add P(i′) and remove i from Q.
(c) Sort Q according to (H ′,H ′′) in decreasing order and repeat until Q = /0: Add

P(i′′) and remove i from Q.
3. Pruning of primary subtree: Superfluous leaves are iteratively removed from the

primary subgraph: Secondary customers, that are part of the primary and a sec-
ondary subtree in which no facility is installed as well as Steiner nodes are removed.

4. Pruning and repairing of secondary subtree: Superfluous nodes are removed
from the secondary subgraph and infeasible parts of the solution repaired: Steiner
node leaves and secondary customer leaves in V ′′ are iteratively removed, if their
respective copy in the primary subtree is used. For each secondary customer with
in- and out-going arcs in both A′ and A′′, we remove the ingoing arcs in A′′ and
open a facility at this node.

We use the information from the current best LP solution to adjust the weights for
calculating the shortest paths. We set the weight w for an arc in GNS to (1− v)c where
v is the corresponding variable and c is the initial cost.

4.2 Instances

For our computational study we transform instances of the Steiner tree problem (STP)
using the following procedure:

– First, 30% of STP terminals are chosen as primary customers, the remaining 70%
are defined as secondary customers. The primary customer with the lowest index is
set as root node.

– The Steiner nodes in the STP instance are Steiner nodes in the TLNDF instance.
– As potential facility nodes we chose the root node, primary and secondary cus-

tomers.
– Primary edge costs equal edge costs of the STP instance. For each secondary edge e,

the cost c2
e is defined as qc1

e , where q is uniformly randomly chosen from [0.25,0.5].
– Facility opening costs are uniform and equal 0.5 times the average primary edge

costs.

The parameters for generating instances have been carefully chosen so that trivial solu-
tions (e.g., optimal solutions that do not contain secondary subtrees) are avoided. The
sets B, C, D and E of the Steinlib library [15] have been used in our computational
study.

4.3 Results

We compared the computational performance of three different settings (two of which
using cuts derived from the splitted graph):
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Table 1. Computational comparison of three different branch-and-cut settings

#OPT t [s]
|V | |E| ≤ |T | ≤ i) ii) iii) i) ii) iii)

c01-10 500 1000 250 10 10 10 46.52 69.54 73.48
c11-20 500 12500 250 1 3 6 55.84 56.53 20.86
d01-10 1000 2000 500 10 9 10 180.61 253.66 271.11
d11-20 1000 25000 500 2 2 4 172.38 110.89 39.19
e01-10 2500 5000 1250 6 5 5 191.71 81.68 38.60
e11-20 2500 62500 1250 2 3 3 178.42 179.29 80.16

avg gap[%] iii) #OPT found in
|V | |E| ≤ |T | ≤ i) ii) iii) ≤ 1h ≤ 2h ≤ 24h

c01-10 500 1000 250 0.00% 0.00% 0.00% 10 10 10
c11-20 500 12500 250 5.93% 3.88% 1.05% 7 9 10
d01-10 1000 2000 500 0.00% 0.00% 0.00% 10 10 10
d11-20 1000 25000 500 4.19% 4.17% 0.75% 6 6 9
e01-10 2500 5000 1250 0.11% 0.15% 0.20% 6 8 10
e11-20 2500 62500 1250 5.78% 5.34% 5.35% 3 5 5

i) Model TLNDF, in which the basic coupling constraints (3) are inserted at once and
the (x1) and (x12) cuts are separated within the branch-and-bound (BnB) tree.

ii) In the second setting, after all violated (x1) cuts have been detected, (x12) are sepa-
rated. Finally, after no more violated (x1) and (x12) cuts can be found, generalized
connectivity constraints (x12-z) are separated.

iii) In the third setup, we refrained from separating inequalities (x12), i.e., after no
more violated (x1) cuts can be found, generalized connectivity constraints (x12-z)
are separated.

In a preliminary test we tested our three approaches on the instances of set B. The
maximum runtime was 5.28, 8.11 and 4.47 seconds respectively. As a consequence we
only give detailed results for the larger sets C,D and E.

In Table 1 we show the key figures of our computational study. The first column
indicates the group of instances, in columns 2, 3 and 4 we state the (maximum) number
of nodes, edges and terminals (i.e. union of primary and secondary customers) of the
largest instance of each group, respectively. In the third segment of the upper part we
show the number of instances in this group solved to optimality within 1000 seconds
of running time. The last segment shows the average running times for the subset of
instances that was solved to optimality by all three approaches within 1000 seconds.
In segment three of the lower part we state the average gaps of each instance group
after 1000 seconds of running time. In segment four we report the number of optimal
solutions found by approach iii) within 1h, 2h and 24h, respectively. From the number
of instances solved to optimality and the average running times one can see, that for
sparse graphs (.1-10) the approach based only on connectivity cuts (x1) and (x12)
is competitive to the generalized cut set constraints. For denser graphs (.11-20) the
two new approaches (namely ii) and iii) involving (x12-z) cuts) perform much better:
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Table 2. Average running times vs. graph density and vs. number of terminals, respectively.
Values are normalized according to the first column in each segment.

|E|/|V | |T |
1.25 2 5 25 5 10 1

6 |V | 1
4 |V | 1

2 |V |
c01-20 1.0 2.5 18.3 206.7 1.0 1.0 12.2 23.0 100.4
d01-20 1.0 1.3 6.1 158.8 1.0 1.6 43.3 80.4 143.3
e01-20 1.0 345.7 699.9 1195.6 1.0 2.1 296.7 503.1 256.1

For instances with few arcs, there is little difference in the LP bounds provided by the
models with and without constraints (x12-z). Constraints (x1) and (x12) are cheaper to
separate, but as the instances grow larger and denser, the advantage of better LP bounds
provided by cuts (x12-z) outweighs this.

Table 2 illustrates how the running time performance of the approach iii) depends
on the graph density (the second segment) and on the number of terminals (the third
segment). Instances C, D, and E have been divided into groups according to their density
(|E|/|V |) and the number of terminals (|T |), respectively. We observe that the average
running times increase exponentially with the density and the number of terminals.

5 Conclusions

For the TLNDF we have introduced several new families of valid inequalities com-
bining network design and facility location variables. The so-called generalized cut in-
equalities (x12-z) are the strongest among those inequalities and can be derived from a
cut-set model for Steiner arborescence applied on a splitted graph. We have seen that the
separation of (x12-z) cuts is not only computationally tractable, but it also outperforms
the standard compact approach of modeling facility nodes. Finally, we have tested our
approach on a set of 78 benchmark instances with up to 2500 nodes and 62500 edges.
We have been able to solve 60 (66) instances to provable optimality in less than 1h
(2h). From the remaining 12 instances 6 were solved optimally after 1 day and for 6 we
obtained solutions less than 2% from optimum.
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Ivana Ljubić was partially supported by the Austrian Science Fund (FWF): [T334].

References

1. Balakrishnan, A., Magnanti, T.L., Mirchandani, P.: A dual-based algorithm for multi-level
network design. Management Science 40(5), 567–581 (1994)

2. Balakrishnan, A., Magnanti, T.L., Mirchandani, P.: Modeling and heuristic worst-case
performance analysis of the two-level network design problem. Management Science 40(7),
846–867 (1994)



70 S. Gollowitzer, L. Gouveia, and I. Ljubić
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Abstract. The Two Level Network Design problem asks for a cost-minimal
Steiner subtree of a given graph G = (V,E) that connects all primary customers
using a primary technology only, and all secondary customers using either the pri-
mary or the secondary technology. Thereby, the secondary technology is cheaper
but less reliable and hence, hop constraints on the length of each secondary path
are imposed. In addition, in some applications facility opening costs need to be
paid for transition nodes, i.e., for nodes where the change of technology takes
place. We consider various MIP models for this new problem and derive a new
class of strong inequalities that we call generalized cut-jump constraints. We also
show that these inequalities can be obtained by projecting the cut-set formulation
obtained on a graph in which we split the potential facility locations and introduce
layers for installing the secondary technology.

1 Introduction

Two Level Network Design (TLND) problems with a tree structure arise when local
broadband access networks are planned in areas, where no existing infrastructure can
be used, i.e., in so-called greenfield deployments (see, e.g., [1]). Topological network
design for mixed strategies of Fiber-To-The-Home and Fiber-To-The-Curb, i.e., some
customers are served by copper cables, some by fiber optic lines, can be modeled by
an extension of the TLND. Since the secondary technology (e.g., copper) is usually
much cheaper but also less reliable than the primary technology (e.g. optical fiber),
hop-constraints on the length of secondary paths need to be introduced.

Definition 1 (TLNDSH). We are given an undirected graph G = (V,E) with a root r
and a set of customers R ⊆ V \ {r}. To each edge e ∈ E, two installation costs c1

e ≥
c2

e ≥ 0 are associated. These correspond to the primary and secondary technology,
respectively. The primary edges are more reliable, and hence, more expensive. The set
of customers, R, is partitioned into two subsets P and S. We are also given facility
opening costs fi ≥ 0∀i ∈V, and a hop limit H. Our goal is to determine a cost-minimal
subtree of G satisfying the following properties:

J. Pahl, T. Reiners, and S. Voß (Eds.): INOC 2011, LNCS 6701, pp. 71–76, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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(Psub) The subgraph made of primary edges is a tree rooted at r interconnecting the
primary nodes in P.

(S) Each secondary node in S is connected to the root by a path consisting of primary
and/or secondary edges.

(F) Facility opening costs are payed for transition nodes i∈V, i.e., nodes where change
of technology takes place,

(H) for each secondary node v, the number of secondary edges on the path between v
and r may not exceed H, and

(E) on each edge e ∈ E at most one of technologies is installed.

We observe that, since the edge costs are non-negative, there always exists an optimal
solution which is a Steiner tree interconnecting the nodes from R∪{r}. Furthermore,
since c1

e − c2
e ≥ 0, this Steiner tree is composed of a subtree of primary edges (primary

subtree) and a union of subtrees of secondary edges (secondary subtrees). Each sec-
ondary subtree is rooted in a node of the primary subtree. Due to facility opening costs
and hop-constraints, every node from V may be a leaf of the primary subtree.

The TLND with secondary hop constraints has not yet been studied in the literature.
Minimum spanning trees with two technologies and secondary distance constraints
have been introduced in [6]. In [4] the TLND is considered with weighted hop con-
straints defined as follows: the goal is to construct a two level minimum spanning tree
such that for each node k, the r-k path contains a weighted number of primary and
secondary edges (with weights w1 and w2, respectively) which does not exceed H (for
given w1,w2,H ∈ N).

2 MIP Models

There are two challenges in modelling the TLNDSH problem: a) facility nodes and b)
hop constraints. MIP formulations focused on modelling facility nodes are studied in
in [3]. In this short abstract, we mainly concentrate on modeling the hop constraints
on secondary trees. The models will be derived on graph G = (V,A) with the set of
directed arcs A = {i j | {i, j} ∈ E, j 
= r} and with ck

i j = ck
ji = ck

e for k = 1,2 and e =
{i, j}. We use sets IH := {1,2, . . . ,H} and I0

H := IH ∪{0}. For any W ⊂V we denote its
complement set by W c = V \W . For any M,N ⊂V , M∩N = /0, we denote the induced
cut set of arcs by (M,N) = {i j ∈ A | i ∈ M, j ∈ N}. In particular, let δ−(W ) = (W c,W ),
δ+(W ) = (W,W c) and δ−(i) = (V \ {i},{i}). The following binary variables are used
in our models: Variables x1

i j (x2
i j) will indicate if the primary (secondary) technology is

installed on i j ∈ A, while zi will be one if a facility is installed on i ∈ V . For a set of
arcs Â ⊆ A, we write x�(Â) = ∑i j∈Â x�

i j, for � = 1,2, and (x1 + x2)(Â) = ∑i j∈Â x1
i j + x2

i j.
For W ⊆V we define z(W ) = ∑i∈W zi.

A Cut-Jump Model. The first formulation uses a generalization of the well known jump
constraints that are crucial for modelling problems with network design constraints [2].
Let [S0,S1, . . . ,SH+1] be a partition of V , such that the root node r ∈ S0 and SH+1∩S 
= /0
(observe that some of sets Si, for i ∈ {1, . . . ,H} may also be empty). We call JH =
J(S0,S1, . . . ,SH+1) =

⋃
(i, j):i< j−1[Si,S j] where [Si,S j] = {uv ∈ A : u ∈ Si,v ∈ S j} a H-

jump. In fact, without loss of generality, we can consider only SH+1 = {i} for i ∈ S.
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Letting JH denote the set of all possible H-jumps, we derive the following formulation
for the TLNDSH:

(JUMP) min ∑
i j∈A

(c1
i jx

1
i j + c2

i jx
2
i j)+ ∑

i∈V
fizi

x2(JH)+ x1(δ+(S0)) ≥ 1 ∀JH : {r}∪P ⊆ S0, SH+1 = {i}, i ∈ S (1)

z j + ∑
i j∈δ−( j),i
=k

x2
i j ≥ x2

jk ∀ jk ∈ A : k 
∈ P (2)

x1(δ−(W )) ≥ 1 ∀W ⊆V \ {r}, W ∩P 
= /0 (3)

x1(δ−(W )) ≥ z j ∀W ⊆V \ {r} : j ∈W (4)

(x1 + x2)(δ−(i)) ≤ 1 ∀i ∈V (5)

x1
i j,x

2
i j,zi ∈ {0,1} ∀i j ∈ A, ∀i ∈V (6)

The new cut-jump constraints (1) state that each secondary customer is connected to the
root by primary or secondary edges, whereas the length of secondary edges along the
path does not exceed H.

Lemma 1. Formulation JUMP is valid for the TLNDSH.

Proof. To show that the property (S) is satisfied, assume that there exists a secondary
customer i that is not connected to r. Let C be the set of nodes belonging to the same
connected component as i. We now set SH+1 = {i}, SH = C, S0 = V \ (C ∪{i}), and
Sh = /0, for h ∈ {1, . . . ,H −1}. Then constraint (1) is violated, which is a contradiction.
Constraints (5) ensure that each node has an in-degree of at most 1. This guarantees that
no two opposing arcs are installed at the same time, and that a primary and a secondary
arc cannot enter the same node. Inequalities (2) are an adaptation of degree-inequalities
proposed by [7] for the Steiner tree problem. They force opening a facility in each node
whose secondary out-degree is positive, and there are no ingoing secondary arcs. Hence,
together with (5) and (1), (2) ensure that the property (F) is fulfilled.

We now show property (Psub), i.e., that the primary subnetwork is a subtree rooted in
r. Due to the cut set (3), primary customers are connected to the root using primary arcs
only. Assume a solution contains an infeasible path. The case of two or more subpaths
of each technology is impossible due to connectivity cuts (4). So the path consists of two
primary subpaths connected by a secondary subpath: But then inequality (1) is violated
for the following case: Nodes in the primary subpath containing the root node are in S0;
the nodes of the secondary subpath are in set S1; all but the last node in the remaining
primary subpath are in S2 and the last node is in SH+1.

Finally, assume that there exists a binary solution (x1,x2,z) not satisfying property
(H). That is, there is a customer i ∈ S which is connected to r by a path in which more
than H secondary arcs are used. Without loss of generality we can assume that there are
exactly H +1 arcs in this path. Denote the nodes on the secondary path as v1, . . . ,vH+2.
Let S0 denote the set of nodes on that path that are adjacent to primary arcs only. We
now consider the following jump-set: JH = {S0,{v1}, . . . ,{vH+1},{vH+2}}. Obviously,
for JH defined in this way, constraints (1) are violated, which is a contradiction. ��
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3 Layered Graph Models for TLNDSH

In this section we show how to model the TLNDSH as a Steiner Arborescence problem
with additional degree constraints in an adequate layered graph. Similar ideas have been
proposed for the hop-constrained spanning tree problem [5] and the hop-constrained
connected facility location problem [8]. We first consider a layered graph model without
node splitting and then a layered graph model with node splitting.

3.1 Solving the TLNDSH as a Steiner Arborescence Problem with Facility and
Node-Degree Constraints

A first layered graph GL = (V L,AL) with the set of terminals denoted by RL is con-
structed as follows:

V L :=
H⋃

h=0

V h where AL :=
H⋃

h=0

Ah where

V 0 := {i0 | i ∈V}, A0 := {i0 j0 | i j ∈ A},
V h := {ih | i ∈V \P} ∀h ∈ IH−1, Ah := {ih−1 jh | i j ∈ A, j 
∈ P} ∀h ∈ IH−1,

V H := {iH | i ∈ S}, AH := {ihiH | i ∈ S,h ∈ I0
H−1}

RL :={i0 ∈V0 | i ∈ P}∪VH and ∪{iH−1 jH | jH ∈V H , i j ∈ A}.

The costs of the arcs are set as follows: i) arcs in A0 are assigned the primary edge costs;
ii) arcs in Ah for h ≥ 1 are assigned secondary edge costs, with only exception of the
arcs of type (ih, iH), h ∈ I0

H−1, that are assigned a cost of zero. Figure 1a) illustrates a
small segment taken from a layered graph obtained this way.

We associate binary variables to the arcs in AL as follows: variable x1
i j to arc i j ∈ A0,

variable zi to node i ∈V 0, variable x2h
i j to arc ih−1 jh ∈ Ah∀h ∈ IH , and variable x2h

ii to arc

ihiH ∈ AH . Let δ−(W ) = (V L \W ;W ) denote a directed cut in GL and X(δ−(W )) the
sum of all x-variables corresponding to arcs in that cut. Then, the model reads:

(SAz) min ∑
i j∈A

c1
i jx

1
i j + ∑

i j∈A

H

∑
h=1

c2
i jx

2h
i j +∑

i∈V

fizi

s.t. X(δ−(W )) ≥ 1 ∀W ⊆V L \ {r},W ∩RL 
= /0 (7)

zi ≥ x21
i j ∀i0 j1 ∈ A1 (8)

∑
i j∈δ−(i)

(x1
i j +

H

∑
h=1

x2h
i j ) ≤ 1 ∀ j ∈V (9)

x1
i j,x

2h
i j ,zi ∈ {0,1} ∀i j ∈ A,h ∈ I0

H , ∀i ∈V (10)

Consider an optimal binary solution of the SAz formulation. Removing the arcs in
AH and ignoring the indices h of the remaining arcs, one obtains a two-level Steiner
tree with secondary depth less or equal than H in the original graph and with the
cost obtained as a sum of facility opening, primary and secondary edge costs. In other
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words, variables x2h can be projected into the original variable space as follows: x2
i j =

∑H
h=1 x2h

i j ∀i j ∈ A, while the variables x2h
ii are ignored.

Lemma 2.
υLP(SAz) ≥ υLP(JUMP).

Proof. We prove the claimed relation by showing that an LP-optimal solution (x,z)
of SAz can be projected onto an LP-feasible solution (x̄, z̄) of formulation JUMP: For
an LP-optimal solution zi = max j x21

i j holds ∀i ∈V 0. Together with inequalities (7) this
implies

X(δ−(i0)) ≥
{

x1
i j

x21
i j

∀i0 ∈V 0 and (11)

X(δ−(ih)) ≥ x2,h+1
i j ∀ih ∈V h,h ∈ IH−1. (12)

Then inequalities (7) imply constraints (4) and (3). By summing up (12) and (8) we
derive (2). Inequalities (9) imply (5). (8) together with (12) guarantee (4). Finally each
constraint in (1) is the projection of constraint (7) where

W = {i0 | i ∈ Sc
0}∪{ik | i ∈

H⋃
k=h

Sk,k ∈ IH} ⊂V L \{r}. ��

3.2 Generalized Cut-Jump Inequalities

We describe how to eliminate facility constraints (8) from the Steiner arborescence
formulation in order to obtain even a stronger formulation. We do so by splitting the
nodes in V 0 into one primary and one facility copy and obtain a new layered graph
ḠL = (V̄ L, ĀL). The set of nodes in ḠL is then V̄ L = V L ∪V z where V z = {iz | i ∈ V}.
We adapt the sets of arcs in GL by replacing A1 by Ā1 := {iz j1 | i j ∈ A} and adding
Az := {i0iz | i ∈ V}. The costs of arcs in Ah, for h ∈ IH \ {1} are set as above. Arcs
of Az are split facility nodes and therefore ci0iz := fi∀i ∈ V . Figure 1 illustrates this
transformation.

Associating binary variables zi to arc i0iz ∈ Az and using the variables introduced
for formulation SAz we can model the TLNDSH as Steiner Arborescence problem with
node degree constraints on ḠL. We denote it by SA.

In the proof of Lemma 2 we have seen that the cut-jump inequalities are a special
case of Steiner cuts in the layered graph GL. We now show how a more general family
of stronger inequalities can be derived from Steiner cuts in the split layered graph ḠL.

Looking at the valid Steiner cuts in ḠL we can derive two different types of general-
ized cut-jump constraints (GCJ) as follows:

a) Let S′0 be a superset of S0. Then, the following cuts are valid:

x1(δ+(S′0))+x2(J)+ z(S′0 \S0) ≥ 1 ∀{r}∪P ⊆ S0 ⊂ S′0,SH+1 = {i}, i ∈ S, i 
∈ S′0 (13)

b) Let S′0 be a subset of S0. Then the following cuts are valid for TLNDSH:

x1(δ+(S′0))+ x2(J) ≥ 1 ∀{r}∪P ⊆ S0,SH+1 = {i}, i ∈ S,S′0 ⊂ S0 (14)
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a) b)

10 20 30

21 31

32

10 20 30

2z 3z

21 31
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Fig. 1. Illustration of the transformation from layered graph GL to ḠL for H = 2. Node 1 is a
primary customer, thus the copy indexed by 0 is a terminal. Node 2 is a Steiner node and node 3
is a secondary customer, thus the copy with index 2 is a terminal as well. Dotted arcs are the ones
in AH with a cost of 0.

In our future work we intend to examine the (generalized) cut-jump inequalities more
completely, in terms of studying their practical usefulness as well as in finding a suitable
and intuitive interpretation for them. We also plan to implement a branch-and-cut algo-
rithm involving the (generalized) cut-jump inequalities and to investigate the practical
importance of the layered graph models when compared to other, weaker formulations.
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Abstract. In this paper we describe a minimum spanning tree problem with gen-
eralized degree constraints which arises in the design of wireless networks. The
signal strength on the receiver side of a wireless link decreases with the dis-
tance between transmitter and receiver. In order to work properly, the interfer-
ence on the receiving part of the link must be under a given threshold. In order
to guarantee this constraint, for each node we impose a degree constraint that
depends on the ”length” of the links adjacent to the corresponding node, more
precisely, nodes adjacent to long links must have a smaller degree and vice-versa.
The problem is complicated by considering different signal strengths for each
link. Increasing the strength in a link increases the cost of the link. However, it
also reduces the maximum allowed degree on its end nodes. We create two mod-
els using adequate sets of variables, one may be considered an extended version
of the other, and relate, from a theoretical perspective, the corresponding linear
programming relaxations.

1 Introduction

In this paper we consider a wireless network design problem that generalizes a problem
previously defined and studied in [4] (see also [2,3]). These problems also generalize
the well-known degree constrained spanning tree problem (see [1] and the references
inside) in the sense that they consider node degree dependent costs and more compli-
cated degree constraints (the constraint on the degree of a node depends on the edges
adjacent to it in the solution). Section 2 describes and motivates the new problem. Sec-
tion 3 describes several models for the problem.

2 Description and Motivation of the Problem

In point-to-point wireless networks, each network connection is implemented through
a point-to-point wireless transmission system (wireless link, for short) composed by a
pair of transmitter/receiver antennas and signal processing units (one at each side of
the connection) working on a frequency channel, chosen from a possible set of chan-
nels. Thus, consider an undirected graph G = (V,E) where V = {1, . . . ,n} is the set of

J. Pahl, T. Reiners, and S. Voß (Eds.): INOC 2011, LNCS 6701, pp. 77–82, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



78 L. Gouveia, P. Moura, and A. de Sousa

network nodes and E ⊆ V 2 is the set of edges {i, j}, representing each network con-
nection. A network node with wireless links for different neighbour nodes must use
different frequency channels. In most wireless technologies, due to the scarcity of the
spectrum, there is a limited set of available frequency channels and many of them are
partially overlapped between each other. Therefore, in a node using partially overlapped
channels to different neighbour nodes, part of the transmitted signal on one channel is
added as interference to the received signal on the other channel. Note that the signal
strength on the receiver side of a wireless link decreases with the distance between
transmitter and receiver antennas due to attenuation and other propagation effects. In
order to work properly, the received signal must be such that the signal-to-interference-
and-noise ratio (SINR) on the receiver is above a required threshold. Therefore, the
coverage of a wireless link, i.e., the maximum distance between antennas that make the
link work properly, depends on the amount of interference introduced by the other fre-
quency channels on its end nodes. When a given wireless link cannot meet the required
SINR threshold, we can consider three possible cases.

Case 1. Several costs / A single maximum degree parameter: In this case, we assume
that pairs of nodes with higher distance have more expensive wireless links, with a
higher power transmission, in order to raise the SINR over the required threshold.
A parameter D is set as the maximum degree for each node (based on the available
frequency channels) and, for each pair of nodes i and j with a distance equal to
di j, a cost value c{i, j}, which depends on di j, is defined as the least cost wireless
link that can still provide the required SINR whatever the degree of its end nodes
is. This is the case adopted in [4] where 3 types of wireless links were considered,
each one with a different coverage and cost.

Case 2. A single cost / Several maximum degree parameters: In this case, we assume
that there is only one type of wireless link with an associated cost value c and such
that it is not used when the required SINR threshold is not met. For each pair of
nodes i and j with a distance equal to di j, a degree parameter D{i, j}, which depends
on di j, is defined as the maximum degree of both i and j such that interference does
not jeopardize the required SINR threshold for the wireless link to work properly.

Case 3. Several costs / Several maximum degree parameters. In this case, we assume
that there are T types of wireless links with associated (increasing) costs ft ,1 ≤ t ≤
T , and the degree of its endnodes depends on the type of link installed. Consider a
pair of nodes i and j with a distance equal to di j. We define Dt

{i, j}, which depends
on di j, as the maximum degree on both nodes i and j, if we install a wireless link
of type t between these two nodes. Then, we can install a higher cost wireless
link, allowing both nodes to have higher degrees, or install a lower cost wireless
link constraining the degrees of nodes i and j to be lower. That is, we have a cost
model for a wireless link to be installed between two nodes, i and j, which not only
depends on the distance between those two nodes, but also depends on the degree
that nodes i and j will have in the solution of the problem. Then, for each pair
of nodes i and j we define a cost cm

{i, j}, which gives the cost of the cheapest cost
wireless link that can be used, assuming that m is the maximum of the degrees of
nodes i and j.
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Note that cases 1 and 2 are particular cases of case 3. In fact, if we consider just one
type of wireless link we obtain case 2. Also, case 1 is a particular case of case 3 when
we assume that all types of wireless links allow the degree of its end nodes to be the
maximum degree D i.e., the degree parameters Dt

{i, j} are equal to D for all pairs of
nodes i and j and all types t of wireless links. In the next section we describe several
models for this more general case 3.

3 Formulations

In this section we describe two integer linear formulations for the problem. Consider
binary variables x{i, j} indicating whether edge {i, j} ∈ E is selected, as well as binary
variables yd

i indicating whether node i ∈ V has degree equal to d ∈ {1, . . . ,D} in the
solution. These variables were used in the models introduced in the works [2,3,4] where
problems with non linear costs associated to the node degrees were studied. The two
models studied in this paper use the previous two sets of variables. They differ, however,
on the set of variables that characterize the type of links to be installed.

3.1 Model (P1)

Besides the two sets of variables x and y, model (P1) also uses binary variables vm
{i, j}

indicating whether the edge {i, j} ∈ E is selected and the maximum degree between
nodes i and j is m (with m = 2, . . . ,D). Clearly, these variables are not defined for
m = 1, since we cannot have an edge where the degree of both endpoints is equal to 1.
The problem can then be formulated as (P1) (we denote by E(i) ⊆ E the set of edges
incident on node i). The objective cost function is straightforward.

(P1) min ∑
{i, j}∈E

D

∑
m=2

cm
{i, j} · vm

{i, j} (1)

s.to : { {i, j} ∈ E : x{i, j} = 1} is a SpTree (2)
D

∑
d=1

d · yd
i = ∑

{i, j}∈E(i)
x{i, j} i ∈V (3)

D

∑
d=1

yd
i = 1 i ∈V (4)

x{i, j} =
D

∑
m=2

vm
{i, j} {i, j} ∈ E (5)

vm
{i, j} ≤ ym

i + ym
j {i, j} ∈ E;m = 2, . . . ,D (6)

2 · vm
{i, j} ≤

m

∑
d=1

(yd
i + yd

j ) {i, j} ∈ E;m = 2, . . . ,D−1 (7)

x{i, j} ∈ {0,1} {i, j} ∈ E (8)

vm
{i, j} ∈ {0,1} {i, j} ∈ E;m = 2, . . . ,D (9)

yd
i ∈ {0,1} i ∈V ;d = 1, . . . ,D (10)
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Constraints (2), stating that the solution is a Spanning Tree, are given in a generic
form and can be written in several ways (see [5]). Constraints (3) and (4) define the
degree variables yd

i and guarantee that yd
i = 1 iff the number of edges adjacent to node i

is equal to d. Constraints (5) link the two sets of edge variables, x{i, j} and vm
{i, j}, stating

that, if edge {i, j} is selected, then the maximum between the degrees of its endnodes
must be a value in {2, . . . ,D}. Constraints (6) and (7) link the node variables yd

i with the
edge variables vm

{i, j}: for a given edge {i, j}, constraints (6) guarantee that if vm
{i, j} = 1

then one of the nodes i or j must have a degree equal to m, and constraint (7) guarantees
that neither one of these nodes has a degree greater than m. Constraints (8)-(10) define
the domain of the variables.

The variables vm
{i, j} are sufficient to describe the objective function of the problem

since the extra index indicates the maximum degree of the endpoints associated to each
edge. In the next subsection we create a model with edge variables having two extra
indexes, associated to the degrees of each endpoint. We will show that these extra vari-
ables, although leading to a model with more variables, permit us to write a model with
fewer constraints since it is easier (we need fewer constraints) to relate the new vari-
ables with the degree variables yd

i . Furthermore, with the new set of variables we can
derive, hopefully strong, valid inequalities.

3.2 Model (P2)

Besides the x{i, j} and yd
i variables, model (P2) also uses binary variables zpq

{i, j}, indicat-
ing whether the edge {i, j} ∈ E is selected and degree(i) = p and degree( j) = q. Again,
these variables are not defined for (p,q) = (1,1). Before describing the new model, we
note that the two sets of edge variables, vm

{i, j} and zpq
{i, j}, can be related as follows

vm
{i, j} =

m

∑
q=1

zmq
{i, j} +

m−1

∑
p=1

zpm
{i, j} {i, j} ∈ E;m = 2, . . . ,D (11)

(P2) min ∑
{i, j}∈E

D

∑
m=2

cm
{i, j} ·

(
m

∑
q=1

zmq
{i, j} +

m−1

∑
p=1

zpm
{i, j}

)
(12)

s.to : { {i, j} ∈ E : x{i, j} = 1} is a SpTree (2)
D

∑
d=1

d · yd
i = ∑

{i, j}∈E(i)
x{i, j} i ∈V (3)

D

∑
d=1

yd
i = 1 i ∈V (4)

x{i, j} =
D

∑
p=1

D

∑
q=1

zpq
{i, j} {i, j} ∈ E (13)

p · yp
i = ∑

{i, j}∈E(i)

D

∑
q=1

zpq
{i, j} i ∈V ; p = 1, . . . ,D (14)

x{i, j} ∈ {0,1} {i, j} ∈ E (8)
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yd
i ∈ {0,1} i ∈V ;d = 1, . . . ,D (10)

zpq
{i, j} ∈ {0,1} {i, j} ∈ E; p,q = 1, . . . ,D (15)

The objective function follows straightforwardly from the objective function of the
previous model and the linking constraints (11). Note the constraints (14) linking the
degree variables with the new link variables, which are much easier to write in this
model. These constraints state that, if the degree of node i is p then, in the solution,
exactly p edges are incident in that node, whatever the degree of node j is (for p = 1,
the summation on q starts at 2). Note that under (13), constraints (3) for a given node i,
can be obtained by adding constraints (14) for all p = 1, . . . ,D and for the same i. Thus
constraints (14) are a disaggregation of (3) and the latter can be omitted from the integer
model. However, we will come back again to the weaker constraints (3) since we will
see later that we can obtain a different valid model for the problem where we can use
the weaker but more compact set (3) rather than the stronger but less compact set (14).
For the moment, we also point out that there is no dominance relationship between the
linear programming relaxations of the two models (P1) and (P2).

As we have stated before, another advantage of using the new variables is that we
can write, hopefully strong, valid inequalities such as,

D

∑
q=1

zpq
{i, j} ≤ yp

i i ∈V,{i, j} ∈ E(i); p = 1, . . . ,D (16)

The valid inequalities (16) state that if edge {i, j} is in the solution and node i has
degree equal to p, whatever the degree on node j is, then the corresponding y variable
associated to node i and degree p must be equal to 1. We do not need to consider
inequalities (16) for p = 1 because these are implied by constraints (14) for node i
and p = 1. Denoting by (P∗

2 ) the model obtained by adding the inequalities (16) to
model (P2) as well as the definitional constraints (11) (these do not improve the linear
programming bound) we can prove the following result.

Proposition 1. The projection of the set of feasible solutions of the linear programming
relaxation of (P∗

2 ) on the subspace defined by the variables x, y and v is contained in
the set of feasible solutions of the linear programming relaxation of the model (P1).

In the proof of Proposition 1 (not presented here), we did not make use of constraints
(14) of model (P∗

2 ). In fact, it is not difficult to see that, in the presence of the new
constraints (16), we still obtain a valid model by using only the weaker constraints (3)
instead of both (3) and (14) constraints. We denote by (P∗∗

2 ) this model.
Preliminary results show that in almost any case, model (P2) performs better than

model (P1). By including the valid inequalities (16), model (P∗
2 ) is able to reduce the

gaps of model (P2) in most of the cases. The results of model (P∗∗
2 ) show that the

presence of constraints (14) in the model is of significance since the lower bounds
obtained with this model are considerably larger than the ones obtained with the model
(P∗

2 ).
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Abstract. We consider a variant of the the minimum spanning tree with a con-
straint imposing a minimum number of leaves. This paper is motivated by the
computational results taken from a small set of instances with an enhanced di-
rected model where it is shown that the corresponding linear programming bound
values strongly depend on the choice of the root node. Thus, we present a new
formulation for this problem that is based on “intersecting” all the rooted tree
models at the same time. We will show that the linear programming bound of the
new model is, in general, substantially better than the linear programming bound
obtained by the best directed model. The computational results indicate that the
model is too large to solve efficiently medium sized instances. In order to over-
come this disadvantage, we present an iterative procedure that starts with a single
rooted model and sequentially adds other rooted models. The idea of this method
is to obtain an intermediate intersection model (that is, a model where only some
of the rooted models are considered in the intersection) and such that the corre-
sponding linear programming bound will be close to the bound obtained by the
model which results from intersecting all the rooted models. The computational
results show that the iterative procedure is worth using and should be further in-
vestigated when using the reformulation by intersection for other problems.

1 Introduction

Consider a graph G = (V,E) with costs ci j associated to each edge. In this paper we
consider a variant of the the minimum spanning tree which includes a constraint im-
posing a minimum number of leaves. Let L represent the lower bound imposed on
the number of leaves. This problem was first studied by Luı́s Gouveia and Lucinda
Fernandes [1], who have also presented some models for the related maximum leaf
spanning tree problem (see [2,3,6] for more work on the problem). The problem stud-
ied earlier was defined as having a root node and the leaf constraint was defined only
for the remaining nodes. The problem studied here is “unrooted” and all the nodes are
considered for the leaf constraint.

It is well known that, for tree design problems, models with a better linear program-
ming (LP) relaxation are obtained by selecting a root node and modelling the solution
as a directed tree (see, e.g., [7]). This paper is motivated by the computational results
taken from a small set of instances with an enhanced directed model. The results show
that the corresponding LP bound values strongly depend on the choice of the root node.
Thus, following [4], we present a new formulation for this problem that is based on
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the technique of reformulation by intersection. More precisely, we describe a model
that considers all the rooted tree models at the same time linked by adequate coupling
constraints (the “intersection” constraints). We will show that the LP bound of the new
model is, in general, better than the LP bound obtained by the best directed model.

Using previous results known from Kipp Martin [5] (see also [4]), the intersection
model, although relatively huge, does not need to include the exponentially sized set
of subtour elimination constraints (SEC) that are required in each single rooted model,
since those constraints are redundant (this is one of the important outcomes of the in-
tersection technique). However, the computational results still indicate that the model
is too large to solve medium sized instances (e.g., more than 60 nodes).

In order to overcome the large number of constraints and variables (o(n3)) still re-
maining in the model, we also present an iterative procedure that starts with a single
rooted model and sequentially adds other rooted models. The idea of this method is
to obtain an intermediate intersection model (that is, a model where only some of the
rooted models are considered in the intersection) and such that the corresponding LP
bound will be close to the bound obtained by the model which results from intersecting
all the rooted models. The computational results show that the iterative procedure is
worth using and should be further investigated when using the reformulation by inter-
section for other problems.

2 The Directed Model and the Reformulation by Intersection

We use, as a starting point, a directed formulation that is similar to the one proposed by
Luı́s Gouveia and Lucinda Fernandes [1]. We denote the root node by r, and consider
the binary variables x(i, j) which indicate whether arc (i, j) is in the solution and binary
variables y(i) which indicate whether node i is a leaf (degree 1 in the solution).

We use x(S,T ) to denote the summation of variables associated with arcs whose start
node is in S and whose end node is in T . That is,

x(S,T ) = ∑
(i, j)∈A:i∈S, j∈T

x(i, j)

For the particular case when S and T are the same, we use an abbreviated notation
x(S). Similarly for the summation of leaf variables associated with nodes in a certain
set S,

y(S) =∑
i∈S

y(i)

Let d(i) denote the degree of node i and δ (i) represent the set of nodes adjacent to
node i. We denote by (Subr) the directed model presented below:

x(V −{i},{i}) = 1,∀ i ∈V −{r} (1)

x(U) ≤ |U |−1,∀U ⊆V −{r}, |U | ≥ 2 (2)

x({i},V −{i})≤ (d(i)−1)(1− y(i)),∀ i ∈V −{r} (3)

x({r},V −{r})≤ 1 +(d(r)−1)(1− y(r)) (4)

y(V ) ≥ L (5)
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y(i) ∈ {0,1},∀ i ∈V (6)

x(i, j) ∈ {0,1},∀(i, j) ∈ A (7)

Constraints (1), (2) and (7) ensure that vector x defines a directed tree with root node
r. The cardinality constraint (5) gives the lower bound on the number of leaves and
constraints (3) and (4) link arc and leaf variables. Observe that constraints for the root
node, (4), need to be different from the ones considered for other nodes, (3), since in
the directed model the leaf variables are defined in terms of the outgoing arcs on each
node. Note that constraints (3) and (4) only guarantee that the set of nodes with leaf
variables equal to one is a subset of the leaf nodes in any feasible solution. To guarantee
that leaf variables exactly define the set of leaves in a spanning tree, other constraints
such as a set of constraints given in [Luı́s Gouveia and Lucinda Fernandes] [1] need to
be included in the model. However, they are not necessary for modelling this problem
since the cardinality lower bound (5) guarantees that at least L such variables will be
equal to one.

Since this model is based on a procedure of choosing a node to be the root, we can
write different directed models by selecting different root nodes. The following result,
not proven here, states that the LP bound provided by the directed model is independent
of choice on the root node.

Result 1: v(Subr1
L) = v(Subr2

L), ∀r1,r2 ∈V

Some computational results also show that the LP bound of this formulation is, in gen-
eral, still far from the optimal value. In order to tighten the LP relaxation of the model,
we add a set of constraints proposed by [Lucena et al.] [6] for the problem of determin-
ing spanning trees with a maximum number of leaves.

x(i, j)+ y(i) ≤ 1,∀(i, j) ∈ A : i 
= r (8)

For a given arc (i, j), these constraints state that either the arc is in the solution or
node i is a leaf, but not both. As before, we need to consider a slightly different set of
constraints for the root node with a similar interpretation.

x(r, j)+ y(r)+ y( j) ≤ 2,∀ j ∈ δ (r) (9)

We denote by (Sub+r) the formulation obtained by adding constraints (8) and (9) to
model (Subr). Results taken from a few instances indicate that the LP gaps substantially
decrease by using this additional set of linking constraints. More interesting for the
development of the paper is that the LP bounds are no longer independent of the choice
of the root node. This suggests the use of the so-called reformulation by intersection
(see [4]) leading to an enlarged model which considers the models for all possible roots
combined together by suitable coupling constraints.

Consider the undirected variables u(i, j) indicating whether edge {i, j} is in the so-
lution, directed variables z(i, j,r) indicating whether arc (i, j) is in the directed tree
rooted in node r, as well as the following constraints linking the directed variables with
the undirected variables.

u(i, j) = z(i, j,r)+ z( j, i,r) ,∀{i, j} ∈ E(V −{r}),r ∈V (10)
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u(r, j) = z(r, j,r) ,∀ j ∈ δ (r),r ∈V (11)

Constraints (10) indicate that an edge {i, j} is in the solution if and only if for each
root r, the edge is used in any of the two possible directions, (i, j) or ( j, i). Constraints
(11) have a similar interpretation but use the fact that for any root r, arcs with the root
as end node are not allowed.

Set notation, as introduced before for variables x and y, are also considered for the
new variables. Furthermore, we use z r(S,T ) to represent the summation of the new
rooted arc variables associated with root r and with arcs whose start node is in S and
whose end node is in T .

The intersection model includes constraints from all directed models, as well as con-
straints (10) and (11) which guarantee that all directed trees have common edges.

z r(V −{i},{i}) = 1,∀ i ∈V −{r},r ∈V (12)

z r({i},V −{i})≤ (d(i)−1)(1− y(i)),∀ i ∈V −{r},r ∈V (13)

z r({r},V −{r})≤ 1 +(d(r)−1)(1− y(r)),∀r ∈V (14)

z(i, j,r)+ y(i) ≤ 1,∀(i, j) ∈ A : i 
= r,r ∈V (15)

z(r, j,r)+ y(r)+ y( j) ≤ 2,∀ j ∈ δ (r),r ∈V (16)

y(V ) ≥ L (5)

u(i, j) = z(i, j,r)+ z( j, i,r) ,∀{i, j} ∈ E(V −{r}),r ∈V (10)

u(r, j) = z(r, j,r) ,∀ j ∈ δ (r),r ∈V (11)

y(i) ∈ {0,1},∀ i ∈V (6)

z(i, j,r) ∈ {0,1},∀(i, j) ∈ A,r ∈V (17)

u(i, j) ∈ {0,1},∀{i, j} ∈ E (18)

Let this model be denoted by Int(V ), where V indicates that all possible rooted
models are being considered. Note that this model does not include the subtour elim-
ination constraints from each directed model, since they are redundant in the model.
This fact was first shown by Kipp Martin [5] where he shows that the projection of the
LP relaxation of the system defined by (12), (10), (11), (17) and (18) into the space
defined by the undirected variables u(i, j) gives a complete description of the spanning
tree polytope defined by:

u(E) = |V |−1 (19)

u(S)≤ |S|−1,∀S ⊂V : |S|> 2 (20)

u(i, j) ∈ {0,1},∀{i, j} ∈ E (18)

Constraints (20) are usually designated by subtour elimination constraints (SECs).
We obtained a model that is compact and that can be used directly by any MIP

package. The results given in Section 4 show that the LP bounds of the new model
are significantly better than the ones obtained by using the single rooted models and in
several cases, the bound given by the intersected model is better than the bound obtained
by the best single rooted model.

Still, the model remains huge in the number of variables and constraints (O(n3)),
and is difficult to use for solving medium sized instances (e.g., more than 60 nodes).
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As mentioned in the introduction, this suggests the use of an iterative procedure where
directed models associated with different root nodes are added in an iterative fashion.

3 The Iterative Procedure

We start by examining the intermediate model in the iterative procedure, more precisely
the model that is obtained by intersecting some, but not all, of the directed models. For
simplicity, we denote by R the current root node set. Clearly, the intermediate model
may not even be valid for the corresponding integer problem since it lacks all the con-
straints associated to the variables z(i, j,k) with k not in R.

The main idea is to know how to augment an intermediate model by selecting a
new root and adding the corresponding constraints. This augmentation process will
iteratively improve the LP bound given by the resulting model and is divided into two
phases: i) adding implicitly violated SECs and ii) adding implicitly violated leaf linking
constraints (15).

3.1 Phase 1: Adding Violated SECs

In a given intermediate model, some of the SECs may be not redundant and their in-
clusion may be needed to make the model valid. In the next result, we consider the
intersected model restricted to a subset of root nodes and show which SECs are redun-
dant in the model. The proof is similar to the proof given in [4] for the multi-weighted
Steiner tree case.

Result 2: Let (u,z r,y) be a feasible solution for the model Int(R). Then,
subtour elimination constraints, for subsets that intersect R, are
redundant.

Proof: Consider a root node r ∈ R, which also belongs to subset U . Then,

u(U) = z r(U) = ∑
i∈U−{r}

z r(U −{i},{i})≤ ∑
i∈U−{r}

z r(V −{i},{i}) = |U |−1

This proves the redundancy when root node belongs to U . On the other hand, if
r ∈ R∩UC, by intersection constraints,

xr(U) = xr′(U),

with r′ ∈ R∩U , and this proves the result. �

The previous result means that subtour elimination constraints on the undirected vari-
ables for subsets U included in V\R may not be redundant in the model. Thus, the
augmenting step is based on: i) finding SECs such that U is included in V\R and that
are violated by the current solution and, consequently, ii) choose an adequate root k
in order to guarantee that those constraints are no longer violated. The previous result
shows that by selecting a root k (and adding the corresponding equations (12), (10),
(11) and (17) to the model) included in V\R will guarantee that SECs for sets of node
including k will then become satisfied.
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To find such a violated constraint and a corresponding node k, we solve a max flow
problem between a source node r in R (it is easy to show that finding a violated SEC
does not depend on the choice of a source node in R) and a node k not in R. If the value of
the maximum flow is less than 1, then a cut [V\S,S] with r in V\S and k in S is violated.
Using the indegree constraint (12) for the nodes in S and the equality constraints (10)
and (11) for the same k, we obtain a violated SEC for the set S. By the previous result, if
we add node k to the root set R (meaning that we add all constraints involving variables
z(i, j,k) for the chosen node k), that constraint, as well as all SECs including node k,
will be satisfied by the new model. Note that some of these constraints, the ones with
set of nodes intersecting R were already satisfied. However, the new SECs associated to
sets U ⊆V\R, with k ∈ R, will now become satisfied.

We repeat this procedure for all nodes k not in R and the process is repeated for the
new LP solution. The process stops when violated SECs are no longer found by the max
flow routine, or when all roots have been included in R.

3.2 Phase 2: Adding Violated Leaf Linking Constraints

Let R∗ be the set of roots obtained when the process previously described stops. We
know that all SECs are implicitly satisfied. However, it may happen (confirmed by our
computational experiments) that the current LP bound is not equal to the LP bound
obtained by the model with all roots included, Int(V ), and, in some cases, the bounds
are still significantly different. This is explained by the fact that model Int(V ) also
includes, for all possible roots, the constraints linking the two sets of variables, (15)
and (16). The iterative process previously described only seeks for violated SECs and
will produce a bound at least equal to the optimal minimum spanning tree value but not
necessarily a bound equal to the LP bound produced by the intersection model with all
roots for the problem with the additional constraints. Thus, some of the models with
roots not in R∗ may still help to increase the lower bound.

To choose a root k to include in the intersection model in order to improve the LP
bound, we use the following heuristic approach. Given the optimal solution (u∗,z∗,y∗)
for an intermediate relaxed intersection model, and for each k not in R, we evaluate
feasible upper and lower bound values, LB(i, j) and UB(i, j), for the new arc variables
z(i, j,k), in the following way:

1. for any j and k we set z(k, j,k) := u∗ (k, j) (in this case, UB(k, j) = LB(k, j) =
u∗ (k, j));

2. for (i, j) such that i, j 
= k, we define upper bounds for each variable z(i, j,k) given
by UB(i, j) := min{u∗ (i, j);1-y∗ (i) } (this follows from the equalities (10) and the
inequalities (15));

3. for (i, j) such that i, j 
= k, we define lower bounds for each variable z(i, j,k) given
by LB(i, j) := u∗ (i, j)-UB( j, i) (this also follows from equalities (10));

4. for (i, j) such that i, j 
= k, we may improve the lower bounds for each variable
z(i, j,k) by setting LB(i, j) := min{LB(i, j), 1−∑l 
=i LB(l, j)} ( this follows from
the indegree constraints (12)).

Then, we search for feasibility by checking if lower and upper bounds on the vari-
ables are consistent with the indegree constraints (12). If that consistency does not hold,
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the assignment of new z(i, j,k) values is not possible to achieve with the incumbent so-
lution (u,x,y). Due to the fact that all SECs are satisfied (and thus, it would be possible
to find z(i, j,k) values to satisfy equalities (12), (10) and (11) ) we conclude that some
of the linking constraints (15) and (16) for that given root node k must be violated and
we include k in the set of roots.

4 Computational Results

We performed some computational experiments to evaluate the proposed approach. We
generated random instances with 30, 40, 50 and 60 nodes, and with densities of 15%
and 50%. For each pair number of nodes / density, 5 instances were generated and the
reported results are averages based on those 5 instances. All results for linear relaxations

Table 1. Results obtained for the rooted models

L=20 L=25
Sub+r Subr Opt Sub+r Subr Opt

Instance r LP Gap LP Gap r LP Gap LP Gap
1 1 3337,5 4,31% 3062 12,21% 3488 1 4752,049 7,31% 3062 40,28% 5127

2 3339,678 4,25% 3062 12,21% 3488 2 4781,595 6,74% 3062 40,28% 5127
3 3312 5,05% 3062 12,21% 3488 3 4744,692 7,46% 3062 40,28% 5127
4 3334,321 4,41% 3062 12,21% 3488 4 4754,212 7,27% 3062 40,28% 5127
5 3339,588 4,25% 3062 12,21% 3488 5 4813,2 6,12% 3062 40,28% 5127

21 3348,455 4,00% 3062 12,21% 3488 12 4844,909 5,50% 3062 40,28% 5127
2 1 2042,5 2,18% 1939 7,14% 2088 1 2331,207 3,79% 1939 19,98% 2423

2 2027,363 2,90% 1939 7,14% 2088 2 2308,625 4,72% 1939 19,98% 2423
3 2030,675 2,75% 1939 7,14% 2088 3 2311,879 4,59% 1939 19,98% 2423
4 2040,667 2,27% 1939 7,14% 2088 4 2332,469 3,74% 1939 19,98% 2423
5 2039,112 2,34% 1939 7,14% 2088 5 2330,909 3,80% 1939 19,98% 2423
6 2026,441 2,95% 1939 7,14% 2088 11 2335,457 3,61% 1939 19,98% 2423

3 1 18447,2 0,53% 18175 2,00% 18546 1 20607,88 1,99% 18175 13,56% 21027
2 18473,5 0,39% 18175 2,00% 18546 2 20722,4 1,45% 18175 13,56% 21027
3 18467 0,43% 18175 2,00% 18546 3 20679,67 1,65% 18175 13,56% 21027
4 18473,5 0,39% 18175 2,00% 18546 4 20779,63 1,18% 18175 13,56% 21027
5 18424,5 0,66% 18175 2,00% 18546 5 20636,33 1,86% 18175 13,56% 21027
8 18484 0,33% 18175 2,00% 18546 15 20866 0,77% 18175 13,56% 21027

4 1 7342,375 6,81% 6335 19,60% 7879 1 12304,07 6,73% 6335 51,98% 13192
2 7320,613 7,09% 6335 19,60% 7879 2 12278,12 6,93% 6335 51,98% 13192
3 7425,25 5,76% 6335 19,60% 7879 3 12042,1 8,72% 6335 51,98% 13192
4 7441,364 5,55% 6335 19,60% 7879 4 11980,23 9,19% 6335 51,98% 13192
5 7207,753 8,52% 6335 19,60% 7879 5 11946,08 9,44% 6335 51,98% 13192

10 7493,031 4,90% 6335 19,60% 7879 6 11921,72 9,63% 6335 51,98% 13192
5 1 5730,115 2,90% 5252 11,00% 5901 1 7866,412 7,88% 5252 38,49% 8539

2 5786,25 1,94% 5252 11,00% 5901 2 7881,959 7,69% 5252 38,49% 8539
3 5789,25 1,89% 5252 11,00% 5901 3 7851,442 8,05% 5252 38,49% 8539
4 5803,833 1,65% 5252 11,00% 5901 4 7890,556 7,59% 5252 38,49% 8539
5 5821,833 1,34% 5252 11,00% 5901 5 7791,143 8,76% 5252 38,49% 8539

25 5858,25 0,72% 5252 11,00% 5901 25 7931,452 7,11% 5252 38,49% 8539



90 L. Gouveia and J. Telhada

Table 2. Comparison between single rooted models and the intersection model

L=20 L=25
Instance r Sub+ Gap Int Gap Opt r Sub+ Gap Int Gap Opt

1 21 3348,455 4,00% 3481,5 0,19% 3488 12 4844,909 5,50% 4978 2,91% 5127
2 1 2042,5 2,18% 2080 0,38% 2088 11 2335,457 3,61% 2378,039 1,86% 2423
3 8 18484 0,33% 18494,5 0,28% 18546 15 20866 0,77% 21027 0,00% 21027
4 10 7493,031 4,90% 7852,5 0,34% 7879 1 12304,07 6,73% 12857,27 2,54% 13192
5 25 5858,25 0,72% 5901 0,00% 5901 25 7931,452 7,11% 8176,108 4,25% 8539

were performed with CPLEX 11.2 and the iterative process was implemented with the
BCL language in a machine with an Intel T9400@2.53GHz, with 4Gb of RAM.

Table 1 presents results for (Subr) and (Sub+r) in 5 instances with 30 nodes, a den-
sity of 50%, and considering L to be equal to 20 and 25. The first column indicates to
which instance the figures correspond. For each instance, and for each value of L con-
sidered, results are presented for 6 possible roots. Among those 6 roots is the one that
produced the best result for Sub+r

L, which is highlighted in bold text.
One can check the improvement in the LP bound which results from including the

additional linking constraints, (15) and (16), which lead to model (Sub+r). In the case
of L = 25, that improvement is very significant. A second observation is on the value of
the LP bound provided by model (Sub+r) which strongly depends on the choice of the
root (see, e.g., instance 4 with L = 20).

Table 2 shows results for the same instances reported in table 1. As before, the first
column indicates the instance and, in the next columns, two sets of results are pre-
sented, for each of the cases L = 20 and L = 25. The figures illustrate the improvement

Table 3. Results obtained for the intersection model and the iterative process

Int(V )L Iterative Process
|V | D L LP Value CPU (in sec.) � subtours � leaves Value CPU (in sec.) Gap � opt.
30 0,15 20 9811,80 0,992 1,6 20,6 9811,80 1,804 0,00% 4
30 0,5 20 7561,90 3,342 3,4 12,4 7561,90 4,027 0,24% 1
30 0,5 25 9883,28 4,116 12,6 17,4 9883,28 14,103 2,31% 1
40 0,15 25 12795,60 8,302 1,6 6,4 12795,60 0,571 0,00% 5
40 0,15 30 15119,58 10,248 1,6 25 15119,58 7,524 0,08% 3
40 0,5 25 11912,90 31,358 3,6 10,6 11912,90 4,325 0,00% 4
40 0,5 30 12448,68 41,978 4,2 24 12448,68 22,225 0,02% 3
40 0,5 35 14470,28 42,856 21,8 18,2 14470,28 106,200 2,28% 0
50 0,15 35 13709,13 46,780 1,4 41,2 13709,13 14,656 0,17% 2
50 0,15 40 16286,66 74,998 10,4 39,6 16286,66 47,188 2,78% 0
50 0,5 35 16394,45 85,384 9,6 35,2 16394,45 37,525 0,05% 3
50 0,5 40 18188,58 109,544 33 17 18188,58 206,134 1,38% 0
50 0,5 45 24035,60 122,764 36,2 13,8 24035,60 1517,208 7,37% 0
60 0,15 40 21875,27 80,572 2 40,4 21875,27 15,550 0,04% 4
60 0,15 45 23792,56 142,726 10,8 41,2 23792,56 57,054 0,65% 0
60 0,15 50 27383,87 101,648 25,6 34,4 27383,87 206,640 4,56% 0
60 0,5 40 11249,77 321,006 10,2 41,4 11249,77 336,243 0,06% 2
60 0,5 45 11610,97 357,530 12,4 47,6 11610,97 896,300 0,16% 1
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obtained by the intersection model compared with the best rooted model, in terms of the
corresponding LP relaxations. In fact, even for two instances it was possible to reach
optimality with the intersection model.

The results obtained by the intersection model and the iterative process are presented
in table 3. The first three columns indicate the characteristics of the networks and the
bound considered for the required number of leaves. The fourth and fifth columns in-
dicate the average results of the LP value and respective CPU time given by the inter-
section model. The next four columns show the results given by the iterative process,
including the average number of roots considered in the first phase, the average number
of roots considered in the second phase, the lower bound obtained at the end of the pro-
cedure, as well as the corresponding CPU time. To better evaluate the relative quality
of these two lower bounding procedures, in the last two columns we report the average
gap and the number of integer optimal solutions achieved within each set of 5 instances.
Note that, since the lower bound given by the two methods was equal for all cases, we
include only one column for each of these two values.

Observe that, in many cases, the iterative process is able to achieve the same lower
bound with much less computational effort. For example, this happens for instances
with 40 nodes and a density of 50%, in the case of L being 25 or 30. At present, we are
running the proposed approach for larger instances (e.g., 80 nodes). The results obtained
by the iterative procedure suggest that it may be worth using this type of approach for
other related network optimization problems.

Acknowledgments

We would like to thank the important suggestions made by the anonymous referee,
which improved in a considerable way this work. The authors also wish to acknowledge
the financial support of Centro de Investigação Operacional, through project MATH-
LVT-Lisboa-152.

References

1. Fernandes, L.M., Gouveia, L.: Minimal spanning trees with a constraint on the number of
leaves. European Journal of Operational Research 104, 250–261 (1998)

2. Fujie, T.: An Exact Algorithm for the Maximum Leaf Spanning Tree Problem. Computers &
Operations Research 30(13), 1931–1944 (2003)

3. Fujie, T.: The Maximum-Leaf Spanning Tree Problem: Formulations and Facets. Net-
works 43(4), 212–223 (2004)

4. Gouveia, L., Telhada, J.: The Multi Weighted Steiner Tree Problem: A Reformulation by
Intersection. Computers & Operations Research 35(11), 3599–3611 (2008)

5. Kipp Martin, R.: Using separation algorithms to generate mixed integer model reformula-
tions. Operations Research Letters 10(3), 119–128 (1991)

6. Lucena, A., Maculan, N., Simonetti, L.: Reformulations and Solution Algorithms for the
Maximum Leaf Spanning Tree Problem. Computational Management Science 7(3), 289–311
(2010)

7. Magnanti, T.L., Wolsey, L.: Optimal Trees. In: Ball, M.O., Magnanti, T.L., Monma, C.L.,
Nemhauser, G.L. (eds.) Network Models, Handbooks in Operations Research and Manage-
ment Science, vol. 7, pp. 503–615. North-Holland, Amsterdam (1995)



A Polyhedral Approach for Solving Two Facility
Network Design Problem

Faiz Hamid and Yogesh K. Agarwal

Indian Institute of Management Lucknow, Prabandh Nagar,
Off-Sitapur Road, Lucknow 226013, India

{faiz,yka}@iiml.ac.in

Abstract. The paper studies the problem of designing telecommunication net-
works using transmission facilities of two different capacities. The point-to-point
communication demands are met by installing a mix of facilities of both capaci-
ties on the edges to minimize total cost. We consider 3-partitions of the original
graph which results in smaller 3-node subproblems. The extreme points of this
subproblem polyhedron are enumerated using a set of proposed theorems. We
introduce a new approach for computing the facets of the 3-node problem based
on polarity theory after obtaining the extreme points. The facets of the subprob-
lem are then translated back to those of the original problem using an extended
version of a previously known theorem. We have tested our approach on several
randomly generated and real life networks. The computational results show that
3-partition facets reduce the integrality gap by approximately 30-50% compared
to that provided by 2-partition facets. Also there is a substantial reduction in the
size of the branch-and-bound tree if these facets are used.

1 Introduction and Problem Formulation

We consider the network design problem (NDP) or network loading problem (NLP)
which involves determining the mix of facilities of two capacities (high and low) on
the edges of a given graph in order to satisfy the point-to-point demands at minimum
cost. Applications of this problem and its variants arise frequently in the telecommu-
nications industry for both service providers and their customers. The tariffs of these
facilities are complex and offer strong economies of scale. The problem of designing a
network becomes “hard” to solve when more than one type of facility is involved due
to complexity of the cost structure.

In [9], the authors consider a single facility NDP, develop facets and completely
characterize the convex hulls of the feasible solutions for two subproblems. The poly-
hedral properties of a single facility NDP are also studied by [1]. [10] study polyhedral
properties of the two-facility undirected NDP and introduce three basic classes of valid
inequalities: cut inequalities, 3-partition inequalities and arc residual capacity inequal-
ities. [2] discusses the polyhedral properties of the flow formulation for a special NLP
over a “cutset”. [6] compare cutting plane algorithms based on the flow and capacity
formulation. A new family of mixed-integer rounding inequalities is proposed in [7].
[4] presents a cutting plane algorithm based on cut inequalities.

J. Pahl, T. Reiners, and S. Voß (Eds.): INOC 2011, LNCS 6701, pp. 92–97, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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[5] study polyhedra based on directed demand, flow costs, and existing capacities. In
[3], a new class of tight metric inequalities is introduced, that completely characterize
the convex hull of the integer feasible solutions of the NDP. A detailed discussion on
polyhedral terminology can be found in [11].

The multicommodity capacitated NDP we consider is defined on an undirected net-
work G = (V,E), where V is the set of nodes and E the set of edges. The communication
demands between origin-destination pairs are represented by the set of commodities K.
Each commodity k ∈ K has demand dk that must flow between the origin O(k) and the
destination D(k). We assume the larger modularity size to be an integral multiple of
the smaller one (a realistic assumption). By rescaling demands, the smaller modularity
size can be made equal to 1. Installing one LC facility on edge (i, j) provides one unit
capacity at a cost ai j. Whereas, installing a single HC facility on edge (i, j) provides
C units of capacity at a cost bi j. The two-facility network design problem (TFNDP) is
formulated mathematically as the following mixed-integer programming model:

Minimize ∑
(i, j)∈E

(ai jxi j + bi jyi j) (1)

subject to

∑
j∈V

f k
ji − ∑

j∈V

f k
i j =

⎧⎨⎩−dk if i = O(k)
dk if i = D(k) ∀i ∈V,∀k ∈ K
0 otherwise

(2)

∑
k∈K

( f k
i j + f k

ji) ≤ xi j + Cyi j ∀(i, j) ∈ E (3)

xi j,yi j ≥ 0 and integer ∀(i, j) ∈ E

f k
i j, f k

ji ≥ 0 ∀(i, j) ∈ E,∀k ∈ K

In the above formulation there are two kinds of variables: integral capacity variables
xi j and yi j that define the number of LC and HC facilities loaded on the edge (i, j), and
continuous flow variables f k

i j that model the flow of commodity k on edge (i, j) in the
direction i to j. Constraints (2) correspond to the flow conservation constraints for each
commodity at each node. Capacity constraints (3) model the requirement that the total
flow (in both directions) on an edge cannot exceed the capacity installed on that edge.

2 Solution Approach and Strategy

We consider the projection of the original problem polyhedron from the plane of integer
and continuous to pure integer variables, eliminating the continuous variables corre-
sponding to commodity flows. By virtue of Japanese Theorem [8], any feasible solution
of this projection polyhedron is guaranteed to permit a feasible multicommodity flow
for the original problem. The facial structure of the projection polyhedron is studied
and facets are derived. According to a theorem proposed in [1], a facet inequality of
the k-node subproblem resulting from a k-partition translates into a facet of the original
problem for single facility NDP. We extend this theorem for the TFNDP and use it to
translate the facets of 3-node TFNDP to those of the original TFNDP. The strategy that
we adopt to generate facets of the TFNDP is discussed in detail in this section.
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2.1 Shrinking the Original NDP Graph

First we shrink the original NDP graph by considering the partition of the set of nodes
into three subsets {V1,V2,V3}. Nodes present within the same subset of the partition
merge to a single node. The demand pairs from Vi to Vj gets aggregated.

Each partition gives a different 3-node subproblem of the same original NDP. There-
fore, the number of 3-node subproblems increases exponentially with the increase in
number of nodes. For smaller size networks we can enumerate all the partitions (exact
separation) and check all of them in each iteration if they are violated or not. How-
ever, for larger problems we use a separation heuristic based on neighborhood search,
discussed below, to generate only violated 3-partitions.

Separation Heuristic - We start with a randomly generated 3-partition and evalu-
ate all its neighbors obtained by shifting and exchange of one node from each subset.
The neighbor with the maximum (demand-capacity) violation is selected as the next
solution. The process is repeated until there is no further increase in the violation. The
search can be made more intense by increasing the number of random restarts.

2.2 Enumeration of the Extreme Points of the Subproblem Polyhedron

After obtaining a 3-partition we systematically enumerate all the extreme points of this
3-node problem polyhedron. Using a set of theorems we can identify whether a given
solution is an extreme point or not. Some of these theorems are presented below. It is
found that there are maximum of 126 extreme points of this polyhedron depending on
the demands between the three nodes.

Theorem 1. A non minimal solution cannot be an extreme point.

Theorem 2. Simultaneous diversion of traffic from two or more edges will not produce
an extreme point.

Theorem 3. Let δi j = max(si j,xi j) where si j is the amount of spare capacity available
on edge (i, j) of the 3-node problem and xi j is the number of LC facilities installed on
the edge. A solution will not be an extreme point solution if δi j > 0 ∀ (i, j).

2.3 Computation of Facets of the Subproblem

We use polarity theory [11] to find only the most violated facet of a 3-node problem
polyhedron, P, avoiding generation of all the facets. To the best of our knowledge this
approach has not so far been used to generate facets. The extreme points of the polar
polyhedronΠ give the facets of polyhedron P and vice-versa. This was done by solving
the following subproblem:

zp = Minimize απ
subject to πxk ≥ 1, k ∈ K

πi ≥ 0, i = 1, . . . ,6
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where, α is the aggregated capacity across the subsets of a given 3-node problem, π the
vector of the coefficients of the violated facet being generated and xk the k-th extreme
point of the polyhedron P. The constraints correspond to the extreme points of the
polyhedron P obtained in previous step. This is a simple linear programming problem
with a maximum of 126 constraints over six variables. If zp < 1, a violated facet is
found for the given partition with respect to the given capacity aggregation.

We now present the algorithm to solve the problem.

Step 1. Solve LP relaxation.
Step 2. Generate 3-node subproblem.
Step 3. List extreme points.
Step 4. Compute violated facet.
Step 5. Translate the facets to that of original NDP.
Step 6. Add it to the LP problem and re-solve.
Step 7. Go back to Step 2 to generate a new 3-node subproblem. If all the partitions

have been scanned for generating violated facets, stop.

3 Computational Study

We have tested our approach on several randomly generated networks and also on prob-
lem instances available at www.sndlib.zib.de. The routing cost and pre-installed capac-
ity, if present, in the SND.LIB problem instances were ignored for our purpose. The
smaller size networks (8 to 10 nodes) we considered had fully connected topology and
were solved to optimality using exact separation. However, for larger size networks the
separation was done using the heuristic mentioned in Section 2.1. The algorithm was
implemented in Visual C++ 2008 and callable library of CPLEX 12.1 was used for
optimization. The CPLEX generated cuts were suppressed while running branch-and-
bound (B&B). All computations were carried out on a Pentium 4 processor with 3.0
GHz clock speed.

The value of C, ratio of HC and LC facility cost (HC/LC), and the demand between
node-pairs were treated as input parameters for the experiments. Our objective of this
study was to observe the effectiveness of the 3-partition facets in getting tighter lower
bound compared to that provided by 2-partition facets as described in [10]. The per-
formance measures used were (1) bound value for LP relaxation with 2-partition facets
(ZLP2F ), (2) bound value for LP relaxation with 3-partition facets (ZLP3F ), (3) percent-
age gap reduction (= (ZLP3F −ZLP2F)/(ZIP −ZLP2F)×100), (4) percentage node count
reduction of the B&B tree of IP with 2-partition facets (IP2F) due to introduction of
3-partition facets and (5) optimality gap at the termination of the B&B.

From the computational results (Tables 1, 2 and 3) it is evident that the 3-partition
facets reduce the integrality gap by approximately 30-50% compared to that provided
by 2-partition facets. Also there is a substantial reduction in the size of the branch-and-
bound tree if these facets are used.
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Table 1. Average performance measures on smaller networks — fully connected topology, solved
to optimality using exact separation

S.
Nodes Edges C

HC/ Demand ZLP ZLP2F ZLP3F Gap B&B Node Count
No. LC Min Max % % % Redc.% IP2F IP3F Redc.%

1 8 28 10 3.5 0.5 2.0 64.1 81.8 91.2 51.7 669 218 67.4
2 9 36 10 3.5 0.5 1.5 59.2 78.9 87.3 39.8 3451 1207 65.0
3 9 36 10 3.5 0.5 2.5 66.5 84.3 92.0 49.0 9905 2476 75.0
4 9 36 10 3.5 0.5 3.5 73.1 85.7 91.9 43.4 19690 6512 66.9
5 10 45 20 8.0 0.5 1.5 43.8 70.7 84.4 46.8 35560 9323 73.8
6 10 45 20 11.0 0.5 1.5 51.7 78.4 90.8 57.6 406581 133607 67.1
7 10 45 20 14.0 0.5 1.5 65.8 88.8 98.5 86.4 338385 21998 93.5

Table 2. Average performance measures on larger networks — Nodes = 25, Edges = 50, C = 10,
Min Demand = 0.05, Max CPU Time = 1800 sec, solved using heuristic separation

S. HC/ Dem ZLP ZLP2F ZLP3F Gap� B&B Node Count CPU Time(sec) Opt. Gap %
No. LC Max % % % Redc.% IP2F IP3F 2F 3F 2F 3F

1 3.5 1.0 87.4 95.2 96.7 31.3 72195 46826 1800 1694 1.5 0
2 3.5 3.0 96.2 98.8 99.2 33.3 180983 44505 1800 499 0.4 0
3 3.5 5.0 97.9 99.4 99.6 33.3 133146 57055 921 484 0 0
4 5.0 1.0 88.9 94.1 95.7 27.1 123199 62342 1800 1800 2.0 1.1
5 5.0 3.0 96.7 98.6 98.9 21.4 200448 152813 1800 1800 0.3 0.2
6 5.0 5.0 98.0 99.3 99.4 15.0 197992 181155 1800 1800 0.2 0.1

� Gap Redc. % is computed w.r.t. best known integer solution.

Table 3. Performance measures on SND.LIB problem instances — Max CPU Time = 3600 sec

Prob
Nodes Edges

ZLP Z�
LP2F Z§

LP3F Gap� B&B Node Count CPU Time(sec) Opt. Gap %
Name % % % Redc% IP2F� IP3F§ 2F� 3F§ 2F� 3F§

Atlanta 15 22 93.0 97.9 99.2 61.9 1368 85 3 2 0.0 0.0
NewYork† 16 49 7.0 63.8 79.0 42.0 588680 472523 3600 3600 16.0 3.2
Norway 27 51 36.0 73.6 87.8 53.8 82618 13602 3600 1028 9.3 0.0
Cost266‡ 37 57 67.5 85.4 89.8 30.1 48219 17614 3600 3600 5.9 5.5

� Gap Redc. % is computed due to polar 3-partition facets over 2-partition facets w.r.t. best known integer solution.
† With 3-partition facets, the problem could be solved to optimality in 1.2 hrs. However, the problem with 2-partition facets
had an optimality gap of 12.7% even after 3 hrs.
‡ After 3 hrs, the optimality gap for problems with 2- and 3-partition facets were 4.2% and 2.5%, respectively.

4 Conclusion

In this paper we addressed the problem of network design with facilities of two dif-
ferent capacities. We fully characterized and enumerated all the extreme points of the
3-node problem polyhedron. A new approach for computing facets is introduced and
a new family of facets is identified. The 3-partition based facets strengthen the lin-
ear programming formulation to a great extent. Computational results show that these
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facets significantly reduce the integrality gap and also the size of the branch-and-bound
tree. Thus our approach provides both a very good lower bound and a starting point
for branch-and-bound. The results assure that our approach can be an effective tool for
solving real life problems. The future work is to develop viable heuristic based on this
approach to solve larger real life problems. We are also trying to explore whether this
approach can be extended to 4-partition based facets.
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Abstract. Due to the emergence of bandwidth-requiring services, telecommuni-
cation operators are being compelled to renew their fixed access network, most
of them favouring the Fiber To The Home (FTTH) technology. For long, net-
work design strategies have been driven by mere deployment CAPital EXpendi-
tures (CAPEX). Today however, the feedback and the experience gathered from
the management of former networks strongly push for the consideration of other
sources of cost for the design of networks. This paper focuses on the optimiza-
tion of FTTH networks deployment under Operations, Administration and Main-
tenance (OA&M) considerations. Mixed integer formulations are first argued for
the modelling of these decision problems. Then, numerical tests performed on
real-life data prove the efficiency of branch and bound approaches for such mod-
els. Assessment of the economic impact of OA&M considerations is also made.

1 Introduction

For the past few decades, the business model of telecommunication operators has been
based on the design of innovative value-added services that require high level of band-
width. The consequent need for bandwidth upgrade in networks has been handled in
different manners according to the type of network (core versus access networks, mo-
bile versus fix networks). Like most telecommunication operators concerned with fixed
access networks, Orange has adopted the FTTH technology with a specific point to
multipoint architecture: the Passive Optical Networks (PON). Beyond technical chal-
lenges, tremendous amounts of money are at stake, and that makes its deployment a
major issue for the coming years [7]. Literature related to optical access network de-
sign is quite abundant [1,3,4,5,6]. However, to our knowledge, all the models tackle the
decision from a mere CAPEX costs perspective (costs of the equipments, costs of the
deployment intervention resources, etc.) whereas major sources of costs are not direct
one-shot CAPEX costs but indirect recurrent costs linked to OA&M [2]. This includes,
but is not limited to Information System costs, monitoring and supervision costs, pre-
ventive and curative maintenance costs. This paper focuses on the decision problem of
FTTH PON network optimization with the aim of taking into account several engineer-
ing rules motivated by OA&M considerations. The remaining of this paper is organised
as follows. Section 2 is dedicated to the mathematical modelling of PON network de-
sign problems. Numerical results assessing branch and bound solving approaches and
the impact of OA&M on CAPEX costs are presented in Section 3, before concluding in
Section 4.

J. Pahl, T. Reiners, and S. Voß (Eds.): INOC 2011, LNCS 6701, pp. 98–104, 2011.
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2 Mathematical Modelling

2.1 K-Level PON Network Design

PON are specific multi-level point to multipoint architectures dedicated to optical fibers.
Precisely, their basic principle is the following: each optical fiber originating from the
core1 network (the optical entry point of the core network being called a NRO) will go
through a sequence of passive network elements called optical splitters before reaching
multiple subscriber households in the end. When going through a splitter, an incoming
fiber is ”divided/multiplied” into several outgoing fibers, this multiplicative factor being
a positive integer (called capacity of the splitter). We stress the fact that all fibers coming
out from a splitter are not necessarily used. Finally, in the following, the number of
levels of a PON architecture will refer to the size of the sequence of splitters. For the
sake of clarity, an illustration is given in Figure 1.

Fig. 1. Example of a PON architecture with three levels of splitters with respective capacities 4,
2 and 4

In such context, the PON design problem consists of delivering fibers to a set of
located households and can be seen as a joint problem of spitters (of each level) loca-
tion and fibers (of each level) routing. We take as basis the model introduced by [5,6]
for a two-level architecture and, due to space limitations, refer to these articles for de-
tailed aspects. We first propose to extend this formulation to a K-level architecture.
Let G = (V,E) be an undirected graph representing an existing infrastructure (e.g. the
legacy copper network) and be, e ∈ E be the remaining capacity (in number of fibers).
Concerning the demand for fibers, let D ⊂ V denote the set of demand nodes with an
associated demand ai, ∀i ∈ D (we assume that individual household demands for one
fiber have already been aggregated by building or neighborhood). As decision variables,
we denote by zk

i the number of splitters of level k = 1..K installed at site i ∈V , knowing
that only the set of sites S k ⊂V is eligible to store level-k splitters, of capacity mk and
unitary cost Ck. Likewise, we denote by fk

i j the number of fibers of level k = 1..K + 1

going from site i to site j (uk
i being the number of unused fibers), of unitary routing

1 A core network is the central part of an end to end network, generally interconnecting large
cities.
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cost dk
i j. The K-level PON design problem can be formulated as follows (denoted as

PON K):

min
f,z

∑
k=1..K

∑
i∈S k

Ck zk
i + ∑

[i, j]∈E
∑

k=1..K+1
dk

i j(f
k
i j + fk

ji)

such that :

∑
j|[i, j]∈E

f1
ji = z1

i + ∑
j|[i, j]∈E

f1
i j ∀i ∈ S 1 (1)

∑
j|[i, j]∈E

fk
ji +mk−1 zk−1

i = zk
i + ∑

j|[i, j]∈E

fk
i j +uk

i ∀k = 2..K, ∀i ∈ S k (2)

∑
j|[i, j]∈E

fK+1
ji +mK zK

i = ai + ∑
j|[i, j]∈E

fK+1
i j +uK+1

i ∀i ∈ D (3)

∑
k=1..K+1

(fk
i j + fk

ji) ≤ bi j ∀[i, j] ∈ E (4)

zk
i , uk+1

i = 0 ∀k = 1..K, ∀i /∈ S k (5)

zk
i , uk+1

i , fk
i j ∈ N ∀k = 1..K, ∀i ∈ S k, ∀[i, j] ∈ E

2.2 PON Network Design under OA&M Constraints

We propose models for PON design problems taking OA&M concerns into account.
As we think that OA&M costs are not comparable with deployment CAPEX costs, we
favor an integration of such considerations through additional constraints to PON K .

OA&M and the ”Splitter Delocation” Rule: Considering both network administra-
tion (ease of fault detection) and customer relationship (equity in user experience), net-
work managers appreciate that subscribers of the same area (building or neighborhood)
have the same ”connection”. This is classically achieved by mono-routing strategies in
multiflow-based network design problems. When dealing with PON architectures, such
a strategy would imply that both optical routes and location of splitters be the same and
would be detrimental in terms of costs. Therefore, they push for the following compro-
mise: when a demand at a given demand node exceeds a certain value (called delocation
threshold) then all clients of this node must be ”served” by fibers of the last2 levels ini-
tiated by splitters located at the demand node. Let {e0 = +∞,e1, ...,eK} be the set of
delocation thresholds (positive integers sorted in decreasing order). For any demand
node i ∈ D , let kmax

i denote the maximum index k such that the threshold ek exceeds the
demand value ai (kmax

i = maxk=1,...,K (ai < ek)), then the ”splitter delocation” rule can
be formulated as follows:⎧⎨⎩

fk+1
[i,i] = zk+1

i ∀k = (kmax
i + 1) , ...,K, with the convention zK+1

i = ai

zk
i =

⌈
ai

∏K
j=k mj

⌉
∀k = (kmax

i + 1) , ...,K
(6)

OA&M and the ”Household Grouping” Rule: PON deployment strategies driven by
CAPEX costs can lead to an important scattering of the splitters among the eligible

2 ”last” is to be defined demand node by demand node, according to the demand value.
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storing sites. Be they CAPEX costs optimum, those deployment schemes should be
avoided regarding the future maintenance costs (technicians rounds). Therefore, con-
sidering PON deployments, network managers push for the following requirement: a
site can be chosen for storing splitters of a given level only if these installed split-
ters ”deliver” fibers for a minimum number of households (called household grouping
threshold for this level). Let us introduce the household grouping thresholds for level
k = 1..K, denoted by HGk and let vk

i be a binary variable equal to 1 if the site i ∈ S k is
opened to splitters of level k, 0 otherwise. The OA&M household grouping constraints
can thus be formulated by means of the following logical constraints:

(
vk

i = 1
)
⇒

(
HGk ≤

K

∏
j=k

m jzk
i

)
∀k = 1, ...,K,∀i ∈ S k (7)

Proposition 1. Constraints (7) can be linearized as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zk

i ≤ Mk
i vk

i ∀k = 1..K, i ∈ S k , with Mk
i =

{
∑
j 
=i

bi j, k = 1

mk−1Mk−1
i , ∀k ≥ 2⌈

HGk

∏K
j=k m j

⌉
vk

i ≤ zk
i ∀k = 1..K, i ∈ S k

(8)

Furthermore, such constraints can lead to the installation of ”artificial” splitters, these
splitters being unused but installed simply in order to satisfy the previous constraints.
We thus have to introduce the following constraints:

uk
i ≤ mk −1∀k = 1, ...,K,∀i ∈ S k (9)

In the following, PON K
OAM refers to the PON K model with (6), (8) and (9).

3 Numerical Tests

Tests are performed on 10 real-life instances. These are selected so as to be represen-
tative of two types of areas where FTTH PON deployment is impending: first local
areas of very high density of population (Net1-Net5) and second, local areas of mod-
erate density of population (Net6-Net10). Features of these instances are synthesized in
columns ”instance” of Table 1. Objectives of these tests are first to assess the efficiency
of branch and bound approaches for PON K

OAM. Then, we give an insight into the
CAPEX overcosts implied by OA&M. Note that CPLEX is used for MIP solving.

3.1 Numerical Results

In this section, results are presented for the whole set of instances, on the basis of a
2-level architecture with m1 = m2 = 8. The computation time limit is set to 1 hour.
Furthermore, we instantiate OA&M rules as follows: first, the ”splitter delocation” rule
with the thresholds set {e0 = e1 = +∞, e2 = 1}, which means that all the level-2 split-
ters are forced to be located at the demand node they serve, and that the location of
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Table 1. Computational results

Instance PONK problem PONK
OAM problem Overcost (%)

Name |V | |E| Demand UBK LBK gapK UBK
OAM LBK

OAM gapK
OAM (UBK

OAM−LBK

UBK
OAM

)

Net 1 52 65 1828 32933 32933 0.00 36294 36294 0.00 9.26
Net 2 235 313 12604 243182 242711 0.19 256723 256414 0.12 5.46
Net 3 322 421 16068 315282 314503 0.25 333294 332362 0.28 5.64
Net 4 392 537 22326 440180 438797 0.31 461903 460952 0.21 5.00
Net 5 229 297 11946 230444 230010 0.19 243974 243667 0.13 5.72
Net 6 602 730 8778 185222 183494 0.93 208813 204615 2.01 12.13
Net 7 234 297 2345 48593 48199 0.81 56011 55481 0.95 13.95
Net 8 955 1173 14000 296608 293222 1.14 334011 328842 1.55 12.21
Net 9 449 562 5652 115188 114030 1.01 130866 129241 1.24 12.87
Net 10 117 160 1147 22948 22731 0.94 25029 25029 0.00 9.18

the level-1 splitters remains unconstrained (whatever the demand value); second, the
”household grouping” rule with the set

{
HG1 = 200,HG2 = 1

}
. As for results, three

indicators are given in each column ”PONK
OAM problem” and ”PONK problem” (given

as a reference): ”UB” refers to the best solution found and ”gap” (in %) to the relative
difference between the best upper and lower bound (noted ”LB”).

Our first observation is that branch and bound approaches prove efficient for solv-
ing PON K

OAM (mean final gap of 0.6%), despite hardly ever proving the optimality
of the best solution found (only on the smallest instance of each category). Second, re-
sults suggest that the introduction of OA&M constraints has little impact on practical
complexity (the two problems having the same theoretical one). Concerning overcosts,
we observe a mean ”Max overcost” of 9.1% for this OA&M setting (note that this no-
ticeably varies with the type of area: mean ratio of 0.5). This suggests that OA&M
considerations do not induce too overcostly deployments. This is analysed next.

3.2 Impact of OA&M Constraints

We base this sensitivity analysis on the OA&M setup previously defined. Computation
time is limited to 10 minutes. We focus on instances Net4 and Net9 (1 of each category),
for which we observe the evolution of the overcost with respect to (i) the architecture
for the ”splitter delocation” (SD) rule, (ii) the grouping threshold for the ”household
grouping” (HG) rule (see. respectively Figures 2 and 3). These results first enable us
to highlight the partial contribution of each rule and the fact that, within the previous
setting, the SD rule is far more detrimental (in terms of CAPEX overcosts) than the
HG rule. Concerning the SD rule, two main observations are drawn: first, the induced
overcosts are almost linear with respect to the level-2 splitters capacity; second, a drastic
difference exists between the two (type of) instances, suggesting that the SD rule has a
reasonable impact on overcosts for areas of high density (< 10% even when m2 = 32)
whereas a potentially highly detrimental one on those of lower density. This leads us to
recommend further analysis before imposing it for operational deployments on areas of
moderate population density. Concerning the HG rule, we first highlight the moderate
we first highlight the moderate overcosts induced, whatever the type of instance (< 10%
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Fig. 2. Impact of the SD rule according to
PON architectures (the cumulative splitting
ratio is 1:64 and the HG rule is relaxed)

Fig. 3. Impact of the HG rule according to
the household threshold of level-1 splitters
(the SD rule is relaxed)

even for thresholds > 3500). Consequently, and due to the strictly concave curves, we
recommend operational units not to hesitate considering quite high thresholds (between
1500 and 2000), thinking of maintenance round costs savings due to the decrease in the
number of splitters storing sites. Second we stress the fact that very high thresholds lead
to problem infeasibility, which was expected regarding the capacity constraints.

4 Conclusions

This paper focuses on FTTH PON design problems, which are of major importance for
telecommunication operators. Mixed integer formulations have been proposed, with the
aim of introducing specific constraints derived from OA&M considerations. Numerical
tests performed on real-life data prove the efficiency of branch and bound approaches
and a short insight into the overcosts induced by OA&M enables us to draw initial
operational recommendations, whose confirmation and extension appear a natural and
necessary prospect for this work.
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Abstract. Network virtualization is a main paradigm of Future Internet research.
It allows for automatic creation of virtual networks with application specific re-
source management, routing, topology and naming. Since those virtual networks
need to be implemented by means of the underlying physical network, the Virtual
Network Mapping Problem (VNMP) arises. In this work, we introduce the Vir-
tual Network Mapping Problem with Delay, Routing and Location Constraints
(VNMP-DRL), a variant of the VNMP including some practically relevant as-
pects of Virtual Network Mapping that have not been considered before. We de-
scribe the creation of a benchmark set for the VNMP-DRL. The main goal was to
include VNMP-DRL instances which are as realistic as possible, a goal we met
by using parts of real network topologies to model the physical networks and by
using different classes of virtual networks to model possible use-cases, instead of
relying on random graphs. As a first approach, we solve the VNMP-DRL bench-
mark set by means of a multicommodity flow integer linear program.

1 Introduction

Network virtualization has been identified as a main paradigm of Future Internet re-
search [3,4] because it helps to overcome the ossification of the internet [15]. In this
context, ossification means that it is very hard or even impossible to replace or funda-
mentally change a widespread technology, such as internet protocols. With the help of
virtualization, such changes can be implemented in an incremental and non-disruptive
manner. Another viewpoint is that virtualization is not only useful to switch technolo-
gies, but allows the coexistence of different technologies with different tradeoffs, each
targeting a different user group. Network virtualization techniques have already been
successfully used in scientific network testbeds such as GENI [2], PlanetLab [8] or
G-Lab [17]. Its area of application is the splitting of a shared underlying network in-
frastructure (substrate) into virtual networks (slices), which are under the full control of
different research groups for their experiments. The properties of the slices can be con-
trolled by the experimenters and are not simply the result of the used substrate network.
It is even possible to implement custom resource management, routing and naming on
a per slice basis. One main idea of Future Internet research is that these mechanisms
can be directly transferred to the internet, to be able to create application specific virtual
networks, specifically tailored to each application. Network virtualization also enables
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application specific choice of internet service provider, depending on the network char-
acteristics of those providers and the application’s requirements.

In such a scenario, the question naturally arises of how to map a set of virtual net-
works, each with its specific performance requirements, onto the existing network,
which is the core of the Virtual Network Mapping Problem (VNMP). As is often the
case, the problems are hidden in the details. For the VNMP, there is no standard set of
requirements of virtual networks or properties of the substrate network, or even a clearly
specified aim. For our work, we use the common properties of bandwidth (supplied by
links of the substrate network and required by links of virtual networks) and CPU power
(supplied by the substrate nodes and required by the virtual network nodes to implement
custom protocols). In addition, we use communication delay on arcs (transporting data
across a link in the substrate network incurs a delay and each virtual link has a specified
maximum allowed value for such delay) and routing capacity on nodes (in most cases,
routers can not route the full bandwidth with which they are connected). One additional
class of constraints we consider is the possible placement of virtual nodes. In practice,
users of a virtual network are located at specific positions in the substrate network and
cannot be relocated to positions where it would be more suitable. Our goal will be to use
the cheapest subset of substrate resources to satisfy all virtual network demand. We call
this problem the Virtual Network Mapping Problem with Delay, Routing and Location
constraints (VNMP-DRL).

Formally, the VNMP-DRL is defined as follows: We are given a directed multigraph
G = (V,A) with node set V and arc set A representing the substrate network. Addition-
ally given is the available CPU power of a substrate node ci ∈N+, ∀i∈V , the amount of
bandwidth units that can be routed by a substrate node ri ∈N+, ∀i ∈V , the cost of using
a substrate node as host for virtual nodes pV

i ∈ N+, ∀i ∈V , the delay of a substrate arc
de ∈N+, ∀e∈A, the available bandwidth of a substrate arc be ∈N+, ∀e∈A and the cost
of using a substrate arc to implement virtual connections pA

e ∈ N+, ∀e ∈ A. The slices
are given by (the components of) the directed graph G′ = (V ′,A′) (the virtual network
graph), with node set V ′ and arc set A′. Associated with the slices is the required CPU
power by a virtual node ck ∈ N+, ∀k ∈V ′, the allowed delay on the path implementing
a virtual connection d f ∈ N+, ∀ f ∈ A′ and the required bandwidth on the path imple-
menting a virtual connection b f ∈N+, ∀ f ∈ A′. The set M ⊆V ′ ×V defines the allowed
mappings between virtual and substrate nodes. The functions s : A∪A′ → V ∪V ′ and
t : A∪A′ →V ∪V ′ associate each arc of G and G′ with their source and target nodes re-
spectively. The objective is to find an assignment of the virtual nodes to substrate nodes
(subject to the allowed mappings and CPU constraints) and for each virtual arc a path
in the substrate network from the location of the virtual source node to the location of
the virtual target node in the substrate network (subject to routing, bandwidth and delay
constraints), so that the total cost of used substrate nodes and arcs is minimized.

2 Related Work

On the topic of network virtualization, its application and available technologies, see [6]
for a survey. The VNMP has been solved in diverse variants [7,10,11,14,16,19,20,22]
and under various names (Virtual Network Mapping, Virtual Network Assignment, Net-
work Testbed Mapping) in the literature. The solution methods that have been applied
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to VNMP variants include (quadratic) mixed integer programming [7,10,14], approx-
imation algorithms [10], simulated annealing [16], distributed algorithms [11], multi-
commodity flow algorithms [19,20] or algorithms especially tailored to the considered
problem variant [22].

One type of virtual network demand considered by nearly all works is the required
bandwidth, but how it is taken into account varies. One method is to use traffic bounds
to describe a whole range of bandwidth requirements that all have to be feasibly routed
(e.g. [10,14]), another is to specify the node-to-node communication demand in the
form of a traffic matrix (e.g. [19]). If another requirement is taken into account, it is
usually the required CPU processing power of each virtual node (e.g. [20]).

In most cases, the aim of optimization is a tradeoff between the cost of the mapping
and load balancing on the substrate nodes ([7,11]) but also other aspects are taken into
consideration, such as reliability requirements [20], configuration costs [14] or node and
link stress (the amount of virtual nodes or links mapped to a single substrate node or link)
[22]. The considered substrate sizes vary between 20 [14] and 100 [22] nodes and are
either real topologies or generated by tools such as GT-ITM [21]. The requested virtual
networks are mostly random graphs and consist of about ten nodes. All the cited works use
undirected or directed graphs to model thesubstrate and virtual networks, to the best of our
knowledge this is the first work to consider substrate multigraphs. We chose multigraphs
because there may be multiple connections between nodes of the substrate networks with
different characteristics, and one has to be able to represent those in a natural manner.

3 The Model

In this section we present a multicommodity flow based mixed integer programming
formulation for the VNMP-DRL. It utilizes the decision variables xki ∈ {0,1}, ∀k ∈
V ′, ∀i ∈ V to indicate where the virtual nodes are located in the substrate graph and
y f

e ∈ {0,1}, ∀ f ∈A′, ∀e∈A to indicate if a virtual connection is implemented by using a
substrate connection. Further auxiliary decision variables are z f

i ∈ {0,1}, ∀ f ∈ A′, ∀i ∈
V to indicate that a substrate node is used to route a virtual connection, uV

i ∈ {0,1}, ∀i∈
V to indicate that a substrate node hosts at least one virtual node and uA

e ∈ {0,1}, ∀e∈ A
to indicate that a substrate arc is used for at least one virtual connection.

Now follows the multicommoditiy flow (MCF) based integer linear programming
model we use to solve the VNMP-DRL.

(FLOW) min ∑
i∈V

pV
i uV

i +∑
e∈A

pA
e uA

e (1)

∑
(k,i)∈M

xki = 1 ∀k ∈V ′ (2)

∑
e∈A|t(e)=i

y f
e + xs( f )i− ∑

e∈A|s(e)=i

y f
e − xt( f )i = 0 ∀i ∈V, ∀ f ∈ A′ (3)

∑
e∈A|t(e)=i

y f
e + xs( f )i ≤ z f

i ∀i ∈V, ∀ f ∈ A′ (4)



108 J. Inführ and G.R. Raidl

Table 1. Summary of the used variables, constants and functions of the MCF formulation of the
VNMP-DRL (i ∈V , e ∈ A, k ∈V ′, f ∈ A′, l ∈ A∪A′)

Symbol Meaning Symbol Meaning Symbol Meaning

G(V,A) Substrate graph G′(V ′,A′) Virtual graph xki Map node k to i

ci Av. CPU ck Req. CPU y f
e Use arc e for f

de Delay d f Max. allowed delay z f
i Use node i for f

be Av. bandwidth b f Req. bandwidth uV
i Use node i

ri Av. routing capac-
ity

M Set of allowed map-
pings

uA
e Use arc e

pV
i Node price s(l) Source node of arc l

pA
e Arc price t(l) Target node of arc l

∑
(k,i)∈M

ckxki ≤ ci ∀i ∈V (5)

∑
f∈A′

b f z f
i ≤ ri ∀i ∈V (6)

∑
f∈A′

b f y f
e ≤ be ∀e ∈ A (7)

∑
e∈A

dey f
e ≤ d f ∀ f ∈ A′ (8)

xki ≤ uV
i ∀i ∈V, ∀k ∈V ′ (9)

y f
e ≤ uA

e ∀e ∈ A, ∀ f ∈ A′ (10)

xki = 0 ∀(k, i) ∈ (V ′ ×V)\M (11)

xki ∈ {0,1} ∀(k, i) ∈ M (12)

y f
e ∈ {0,1} ∀e ∈ A, ∀ f ∈ A′ (13)

z f
i ∈ {0,1} ∀i ∈V, ∀ f ∈ A′ (14)

Equalities (2) ensure that each virtual node is mapped to exactly one substrate node,
subject to the mapping constraints. The flow conservation constraints (3) make sure that
for each virtual connection there is a connected path in the substrate network. Linking
constraints (4) make certain that variables z f

i are equal to one when the corresponding
node is used to route the traffic of a particular virtual connection. Inequalities (5)–(8)
ensure that the solutions are valid with regard to CPU, routing capacity, bandwidth and
delay constraints. Linking constraints (9) and (10) force variables uV

i and uA
e to be (at

least) one when the corresponding substrate node or arc is used by any virtual node or
arc. Constraints (11) exclude any forbidden mappings from the solution. Note that while
the model only includes integrality constraints for xki, y f

e and z f
i (12)–(14), constraints

(9) and (10) together with the objective function (1) also cause variables uV
i and uA

e to
be integral (and binary). Table 1 gives a short reference of the used variables, constants
and functions.
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4 Generating the Benchmark-Instances

This section describes how the VNMP-DRL benchmark set was created, by first illus-
trating how the components of a benchmark instance were created and then how they
were combined to form a complete instance. The main goal was to create hard VNMP-
DRL instances which are as realistic as possible, to serve as a common basis for the
comparison of different VNMP-DRL solution approaches. The benchmark set can be
obtained at [13].

4.1 Substrate Network

The substrate networks were based on real internet topology maps. The base data came
from the Rocketfuel project [18] and the scan-lucent map (the union of the topolo-
gies measured by the SCAN [9] and Lucent [5] internet mapping projects). To create
networks of the required size, nem-0.9.6 was used to extract subgraphs which retain
the main characteristics of the source graph. In the cases where that was not possible
(when the required network size exceeded 30 percent of the source network size), nodes
with in- and out-degree of at most one were randomly deleted until the target size was
reached. In absence of such nodes, random nodes were deleted. No measures to en-
sure connectivity were taken because the source networks were not always connected
themselves.

Since the Rocketfuel graphs (rf) have assigned latencies to their arcs, those were
used as delay values de. For the graphs generated from the scan-lucent (sl) map delay
values were chosen uniformly at random between 1 and 10. Arcs which were the only
connection of a node were assigned a bandwidth be of 25. The other arcs were assigned
a bandwidth value of 25 times the minimum of the in-degree of their source node and
the out-degree of their target node, but at least 25. The routing capacity ri of a node was
calculated as the minimum of the sum of the incoming and outgoing bandwidth. The
available CPU capacity of a node ci was set to be the same as the routing capacity. The
costs of nodes and edges are chosen uniformly at random between 1 and 20.

Figure 1 shows a generated substrate graph based upon the rf1221 topology of size
20.

4.2 Slices

In this work, we used four different slice-types to represent possible use-cases in the
virtual network setting with different sets of requirements regarding needed bandwidth,
needed processing power per node and maximum delay. Those types were web slices
to represent general http-traffic, stream slices to represent video streaming, P2P slices
to represent P2P networks and VoIP slices to represent voice chat.

Web Slice. The general characteristics of web slices were chosen to be low bandwidth
requirements, short delays (for fast responses) and no special CPU requirements. Web
slices were modeled by a star graph, where the central node represented a web server
and the leafs were the users. All edges were assigned a bandwidth requirement of 1 and
a maximum allowed delay of 25. All nodes were assigned a CPU requirement of 1, except
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Fig. 1. Example substrate graph of size 20, generated from the rf1221 topology map. The node
labels are the routing capacity ri and the available CPU ci, the arc labels are the bandwidth be

and the delay values de.

the root node which was assigned the sum of the outgoing bandwidth as CPU require-
ment. The allowed mapping calculated for web slices placed the leaf nodes of the star
at a random location at the edge of the substrate network (which was defined as the set
of nodes with minimal degree), while the central node was placed at a random location
at the core of the network (which was defined as not being the edge). Figure 2a shows a
generated web slice of size 5.

Stream Slice. The general characteristics of stream slices were chosen to be medium to
high bandwidth requirements, no relevant delay bounds and 3 units of CPU processing
power per routed bandwidth. The idea of the stream slices was to use a random tree
graph, where the root node is the source of the video stream, the leafs are the customers
receiving specific channels of the video stream and the intermediate nodes split the
video stream and forward only the channels which are watched by the customers. The
stream splitting is the reason for the high CPU requirements in relation to bandwidth
units. This is an example of a customized routing protocol which delivers more features
than currently possible. The delay bound of the arcs of the stream slices was set to 1000,
which effectively means that they are not relevant. The number of channels in the video
stream was chosen uniformly at random between 10 and 20, while the total bandwidth
requirement of the stream was chosen from a discrete N(5,1) distribution, but at least 3
and at most 7. Each child node in the stream network only received a random fraction
of the channels the parent received (between 0.3 and 1), but it was made sure that all
channels that a node received were forwarded. The bandwidth requirements of each arc
were set to �(bandwidthPerChannel∗ forwardedChannels� and the CPU requirement
of each node to three times the received bandwidth. The calculated allowed mapping
for stream slices placed the root node at a random location at the core of the substrate
network and the leaf nodes at a random location at the edge of the substrate network.
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The leaf nodes were placed in a way so that the distance between siblings was less or
equal to four hops in the substrate network. The placement of the intermediate node
was not constrained, i.e. they were allowed to be mapped anywhere. Figure 2b shows a
generated stream slice of size 5.

P2P Slice. The general characteristics of P2P slices were chosen to be medium band-
width requirements, no relevant delay bounds and medium CPU requirements. The net-
work structure of a P2P slice was generated by the small world iterator of the boost
graph library [1], after which every arc was duplicated and reversed. The bandwidth
requirement of each arc was chosen uniformly at random between 1 and 3, the delay
bound was set to 1000 and the CPU requirement of the nodes was chosen uniformly at
random between 1 and 5. The CPU requirement was chosen independent of the routed
bandwidth to model that some traffic may be encrypted or compressed and therefore
has a higher computational demand. All nodes of the P2P slice were only allowed to
be mapped to one random node at the edge of the substrate network. Figure 2c shows a
generated P2P slice of size 5.

VoIP Slice. The general characteristics of VoIP slices were chosen to be medium band-
width requirements, medium delays and high CPU requirements. The networks struc-
ture of VoIP slices was generated in the same way as P2P slices. The bandwidth re-
quirement of each arc was chosen uniformly at random between 1 and 3 and the delay
bound was set to 50. The CPU requirement was set to the minimum of incoming and
outgoing bandwidth, so that “super-nodes” (which route a lot of VoIP traffic) have high
CPU requirements. Figure 2d shows a generated VoIP slice of size 5.

4.3 VNMP-DRL Instance

To generate a complete VNMP-DRL instance, first a specific topology map is used to
create a substrate graph (in conjunction with its associated costs) of the required size.
Then the virtual graph is build by adding slices (of random type and size between 10 and
20 percent of the substrate graph size) to the virtual graph, until the problem becomes
“too hard” (see next paragraph). If that happens, the last added slice is removed and a
new one is generated and added. If this process fails to find an addable slice 40 times in
a row, the generation process is finished. From this generated instance, five variants are
constructed by only using 50 to 90 percent of the added slices (in ten percent increments,
each variant includes all the slices used by a smaller variant), so the complete generation
process creates six problem instances of incremental difficulty.

We tried different criteria to define “too hard”, for instance only solving the LP-
relaxation of FLOW and rejecting virtual graphs which cause the relaxation to be un-
solvable or only calculating the root node of the branch-and-bound tree and rejecting
virtual graphs which are by then proven to be unsolvable. However, preliminary runs
showed that the instances that were generated in this way were either extremely easy to
solve to optimality (without branching) or provably unsolvable. Especially for larger in-
stance sizes the fraction of generated unsolvable instances became unmanageable. The
hardness definition we used in the end was that if CPLEX 12.2 [12] is not able to find
an integer solution after 300 seconds once in five tries, the virtual graph is rejected as
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(a) Web (b) Stream

(c) P2P (d) VoIP

Fig. 2. Examples of generated slices of size 5

“too hard”. In each of the five trials, the sequence in which the slices are added to the
virtual graph is permuted, because preliminary runs showed that in some cases a bad
sequence can double the time needed to solve the LP relaxation and that time is missed
afterwards when trying to find an integer solution.

The used substrate sizes for instance creation were 20, 30, 40, 50, 70 and 100. For
each of the seven topology maps (six rf and one sl) the problem generation procedure
described previously was used ten times, so in total 420 instances per size were created,
with the exception of substrate size 100, for which only 300 instances were created
because two of the rocketfuel topology maps contain less than 100 nodes.
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5 Computational Results

All results presented in this section have been achieved by using CPLEX 12.2 to solve
the (FLOW) problem. Each computational experiment has been performed on one core
of an Intel Xeon E5540 multi-core system with 2.53 GHz and 3 GB RAM per core.
A time limit of 10000 seconds was used. The reported gaps are the optimality gaps
calculated by CPLEX.

5.1 Created Benchmark-Set

The basic properties of the generated benchmark instances are shown in Table 2. It can
be seen that while the substrate grows, the number of slices contained in the virtual
network graph does not grow and for the sizes 70 and 100 is even less than the number
of slices of instances of size 20. The total size of the virtual network however does not
shrink. From this we can conclude that because larger instances include larger slices
(keep in mind that slices are created with a size between 10 and 20% of the substrate
size), fewer slices can be mapped onto the substrate network, even though it is bigger
and should be able to carry more slices. Also noteworthy is the slice composition devel-
opment. From the description of the instance generation procedure, one would expect
an equal number of slice types in every virtual network graph. It seems to be the case
that it is harder to find P2P and VoIP slices that can be mapped, than it is for the other
slice types. For VoIP slices, this effect gets worse as the substrate size grows. Also
finding mappable Web slices gets harder with increasing substrate size. The reason for
this behaviour could be, that Stream slices are not delay bound, while Web and VoIP
slices are, so when the substrate grows, so does the average delay between two points
at the edge of the substrate network and so paths within the delay bounds become more
scarce.

The influence of the choice of topology source for the substrate network on the gen-
erated benchmark instances can be seen in Table 3. Note that the average substrate size
for the rf1775 and rf3967 instances is smaller than those of the other instances because
those topologies were too small to create instances of size 100. It can be seen that the sl
instances are the source of the sparsest substrate graphs in the benchmark set. This leads
to the highest number of slices in the virtual network graph, but web and stream slices

Table 2. Overview of the properties of the created benchmark instances: Average size of substrate
graph G = (V,A), average size of virtual network graph G′ = (V ′,A′), average number of slices
contained in G′ (#S) and average fraction of slice types contained in the virtual network graph
(Web, Stream, P2P, VoIP)

Size |V | |A| |V ′| |A′| #S Web Stream P2P VoIP
20 20 53.3 72.4 81.9 14.5 0.36 0.36 0.13 0.15
30 30 87.3 101.1 117.9 20.2 0.31 0.37 0.19 0.14
40 40 126.9 104.8 145.7 18.7 0.28 0.42 0.18 0.12
50 50 172.9 111.8 174.2 16.7 0.27 0.44 0.19 0.11
70 70 253.1 100.8 140.9 10.5 0.25 0.54 0.14 0.07

100 100 386.4 119.0 156.9 8.7 0.19 0.59 0.16 0.06
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Table 3. Influence of the chosen topology source on the created benchmark instances: Average
size of substrate graph G = (V,A), average size of virtual network graph G′ = (V ′,A′), average
number of slices contained in G′ (#S) and average fraction of slice types contained in the virtual
network graph (Web, Stream, P2P, VoIP)

Top. source |V | |A| |V ′| |A′| #S Web Stream P2P VoIP
rf1221 51.7 164.7 120.5 163.3 17.4 0.34 0.43 0.12 0.11
rf1239 51.7 202.0 75.8 95.3 11.1 0.35 0.44 0.10 0.12
rf1755 42.0 141.2 108.6 147.0 18.4 0.31 0.42 0.14 0.13
rf3257 51.7 197.4 76.5 112.9 11.3 0.29 0.38 0.19 0.14
rf3967 42.0 140.4 93.7 141.6 16.1 0.07 0.56 0.26 0.12
rf6461 51.7 207.3 73.3 113.1 11.0 0.10 0.54 0.29 0.07

sl 51.7 125.0 157.2 176.4 21.7 0.47 0.37 0.09 0.07

are highly overrepresented. Also note that it seems to be very hard to find mappable
web slices when using rf3967 and rf6461 as substrate topology source, even though it
is not problematic for all other topology sources.

5.2 Solving the VNMP-DRL

The results of solving the benchmark instances with the FLOW formulation are sum-
marized in Table 4. It can be seen that in general, the generated instances are not very
hard to solve, with at least 74.3% instances solved to optimality per substrate size. In-
terestingly, the hardest instances turned out to be those of size 50 (or 70 when regarding
the average gap). In total, the results show that up to substrate sizes of 100 nodes it is
possible to solve the VNMP-DRL to proven optimality within one hour on average.

Table 5 shows the influence of the chosen source topology on the solution charac-
teristics of the instances. Unsurprisingly, instances based on the sl topology map are
the easiest to solve, as the substrate graphs are very sparse, which reduces the routing
and mapping possibilities. But also the rf instances vary a lot, which indicates that the
hardness of the VNMP-DRL is very sensitive to the choice of the substrate topology.

Table 4. Results of solving the VNMP-DRL with the FLOW formulation: Number of instances
(# Inst.), fraction of instances solved to optimality (# Opt [%]), average gap, average number of
branch-and-bound nodes and average required CPU time

Size # Inst. # Opt [%] gap [%] BB-Nodes t [s]
20 420 100.0 0.00 53.5 8
30 420 93.8 0.12 1352.3 758
40 420 85.7 0.36 1955.3 1842
50 420 74.3 0.52 1176.8 3320
70 420 82.9 0.60 420.0 2465

100 300 90.7 0.20 218.1 1859
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Table 5. Influence of the substrate topology source: Number of instances (# Inst.), fraction of
instances solved to optimality (# Opt [%]), average gap, average number of branch-and-bound
nodes and average required CPU time

Top. source # Inst. #Opt [%] gap [%] BB-Nodes t [s]
rf1221 360 87.8 0.19 961.2 1781
rf1239 360 94.2 0.14 193.0 902
rf1755 300 80.7 0.70 2336.7 2736
rf3257 360 85.3 0.29 400.9 2087
rf3967 300 73.7 0.79 2153.1 3145
rf6461 360 89.2 0.17 644.8 1650

sl 360 100.0 0.00 24.7 20

Table 6. Influence of pS: Number of instances (# Inst.), fraction of instances solved to optimality
(# Opt [%]), average gap, average number of branch-and-bound nodes and average required CPU
time

pS # Inst. #Opt [%] gap [%] BB-Nodes t [s]
0.5 400 97.2 0.05 547.1 555
0.6 400 95.5 0.07 766.8 862
0.7 400 91.2 0.17 912.7 1449
0.8 400 85.8 0.33 941.3 1935
0.9 400 81.8 0.44 1026.1 2397

1 400 75.0 0.77 1175.4 3010

The influence of the fraction of the set of slices (denoted as pS), created during
instance creation, on the hardness of the created instances is presented in Table 6. It can
be seen that the complexity of the instances can be selected very well by an appropriate
choice of pS. From another point of view this means that the more slices are added,
the harder the instance gets. This seems like an obvious statement, but there were some
instances in the benchmark set for which the pS=0.8 or pS=0.9 variants were harder to
solve than the pS=1 variant, probably because the pS=1 variants were so densely packed
with slices that the number of routing possibilities was greatly reduced.

6 Conclusion and Future Work

In this work, we introduced the Virtual Network Mapping Problem with Delay, Routing
and Location constraints (VNMP-DRL). We presented a method for creating realistic
benchmark instances for this problem and solved those instances by means of a multi-
commodity flow based integer linear program. Even this simple approach was able to
solve more than 74% of problem instances to proven optimality in less than one hour
on average. The biggest influence on instance hardness was shown to be the topology
map used to create the instance. Larger problem instances were not harder to solve than
smaller instances on average, instances of size 100 were about as easily solved as in-
stances of size 40. We were able to show that the fraction of slices used of the complete
set of slices found during instance creation can be used to control instance hardness.
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Future work will include improvements of the instance creation method, so that
larger instances are actually harder than smaller instances and scaling the substrate
network size up to 1000 nodes. Another venue is the application of more advanced
ILP solution methods like branch-and-price to improve solution time and quality and
eventually of heuristic methods to solve large problem instances. One simplifying as-
sumption of VNMP-DRL was that the set of slices is known in advance, so future
research could target the online aspect of this problem. Another interesting research di-
rection could be analyzing the effect of rising delays with rising link utilization, which
is currently not modelled.
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Abstract. Robust optimization is an emerging approach in integer programming
taking data uncertainty into account. Recently, the adjustable Γ -robustness ap-
proach of Bertsimas and Sim [3, 4] has been applied to network design problems.
In this paper, we consider this so-called Γ -robust network design problem. We
investigate its polyhedral structure and present robust versions of the cutset in-
equalities as well as computational results on their effectiveness.

1 Introduction

The classical network design problem aims at finding a cost-minimal network config-
uration, i. e., integer link capacities and a routing hosting all traffic demands. Given
one traffic matrix only, this problem has been studied extensively in the literature, see
[14] and the references therein. Being already a complex task, it does not take traf-
fic fluctuations in real-life networks into account. Instead of accepting expensive and
resource-inefficient network designs due to (highly) overestimated traffic values, we
consider in this paper the Γ -robust network design problem (Γ -RNDP) which has been
applied successfully, e. g., by [10, 11] following [4] and [2]. In this approach, two val-
ues are given for every demand: a (nominal) default value and a peak value. Further,
at most Γ demands are assumed to be at their peaks simultaneously in realistic traffic
scenarios.

This paper complements [11] introducing the Γ -robust model and [10] analyzing the
design w. r. t. real-life traffic measurements. Here, we focus on the effectiveness of the
robust version of the well-known cutset inequalities.

In Section 2, we describe the Γ -RNDP and investigate the Robust-Γ Cutset Polyhe-
dron in Section 3. Next in Section 4, we evaluate the effectiveness of separating valid
inequalities for this polyhedron, including an exact separation for the natural extension.
We close with concluding remarks in Section 5.

2 Γ -Robust Network Design

The classical network design problem is described on an undirected graph G = (V,E)
representing the network topology. Capacity can be installed in batches of C > 0 units
on each link e ∈ E with costs κe per batch. For every commodity k in a set K of point-
to-point demands, a (bifurcated) routing has to be defined from source sk ∈ V to target
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tk ∈V such that its traffic volume dk can be carried. This problem can be formulated as
integer linear program:

min∑
e∈E

κexe (1a)

s.t. ∑
j∈V :i j∈E

( f k
i j− f k

ji) =

⎧⎪⎨⎪⎩
1 i = sk

−1 i = tk

0 else

, ∀i ∈V, k ∈ K (1b)

∑k∈K dk( f k
i j + f k

ji) ≤Cxe, ∀e ∈ E (1c)

f ,x ≥ 0, x ∈ Z|E| (1d)

where xe denotes the number of batches installed and f k
i j the flow percentage.

In practice, actual traffic demands dk fluctuate and are not known a-priori. Robust
network design addresses this issue by taking data uncertainty into account. Follow-
ing [3, 4], (1c) is reformulated by assuming the existence of a default value d̄k > 0 and
a deviation d̂k > 0 for every k ∈ K such that the actual demand dk ∈ [0, d̄k + d̂k]. Note
that these intervals do not have an impact compared to the original proposed symmetric
intervals [d̄k− d̂k, d̄k + d̂k]. Given a parameterΓ ∈ {0,1, . . . , |K|}, the Γ -robust network
design problem is to find a minimum-cost installation of capacities such that a routing
exists not exceeding the link capacities if at most Γ commodities are at their peaks si-
multaneously. By varying Γ , we may adjust the robustness. Based on [3, 4], a compact
linear formulation of the Γ -RNDP can be obtained by LP duality (introducing new dual
variables pk

e and πe, cf. [11]), replacing (1c) by

Γπe +∑k∈K
d̄k( f k

i j + f k
ji)+∑k∈K

pk
e ≤Cxe, ∀i j ∈ E (2a)

−πe + d̂k( f k
i j + f k

ji)− pk
e ≤ 0, ∀i j ∈ E,k ∈ K (2b)

p,π ≥ 0 (2c)

3 Valid Inequalities

In deterministic network design, cutset inequalities are of particular importance, see
[14] and the references therein. In this section, we generalize the cutset inequality to
robust network design and provide a complete description in a particular case.

The Robust-Γ Cutset Polyhedron. We consider a proper and nonempty subset S of
the nodes V and the corresponding cutset δ (S) := {i j ∈ E : i ∈ S, j �∈ S} and denote by
QS ⊆K the subset of commodities with source sk and target tk in different shores of the
cut. W. l. o. g., we assume QS �= /0, sk ∈ S for all k∈QS, and denote by d̄S :=∑k∈QS

d̄k > 0
the aggregated default cut-demand with respect to S.

Let ρ : QS �→ {1, . . . , |QS|} be a permutation of the commodities k ∈ QS such that
d̂ρ

−1(1) ≥ d̂ρ
−1(2) ≥ . . .≥ d̂ρ

−1(|QS|). Let J = {−Γ , . . . , |QS|−Γ }. We define Qi := {k ∈
QS : ρ(k) ≤ i +Γ} for i ∈ J as the commodities corresponding to the i +Γ largest d̂k,
and di := d̄S + d̂(Qi). Aggregating (2a), adding (2b) for e ∈ δ (S) and k ∈ Qi ⊆ QS,
Q �= /0, and relaxing the backward flow variables results in
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Cx(δ (S))+ iπ(δ (S))≥ di. (3)

Next, we consider XΓ (S) = {(x,π) ∈ Z|δ (S)|
+ ×R|δ (S)|

+ : (x,π) satisfies (3) ∀i ∈ J} and
the polyhedron defined by conv(XΓ (S)). Every valid inequality for conv(XΓ (S)) is also
valid for the Γ -robust formulation (2).

We define r(d,c) := d− c(
⌈

d
c

⌉− 1) as the remainder of the division of d by c with
r(d,c) = c in case c divides d. Setting ri := r(di,C) and applying Mixed Integer Round-
ing to (3) results in

rix(δ (S))+ max(0, i)π(δ (S))≥ ri

⌈
di

C

⌉
. (4)

In particular, for i = 0 this inequality reduces to

x(δ (S))≥
⌈

d0

C

⌉
(5)

which defines a facet of conv(XΓ (S)) if and only if r0 <C. This generalizes the classical
cutset inequality [12], stating that the capacity on the cut should be at least the default
cut demand plus the Γ largest deviations among QS.

Introducing index sets J− = {−Γ , . . . ,−1} and J+ := {1, . . . , |QS|−Γ }, we consider
two arbitrary base constraints corresponding to i, j ∈ J− (or i, j ∈ J+) with i < j in the
following. The valid inequalities defined below cut off fractional points (x,π) of the
LP relaxation with x ∈ [

⌊
bi, j

⌋
,
⌈
bi, j

⌉
] where bi, j := ( jdi− id j)/(( j− i)C) denotes the

x-value at the intersection of the two base inequalities. We define ri, j := r( jdi− id j,( j−
i)C).

Lemma 1. For i, j ∈ J− with i < j, and for k, � ∈ J+ with k < �, the following inequali-
ties are valid for conv(XΓ (S)):

(−C j + ri, j)x(δ (S))− i jπ(δ (S)) ≥ ri, j
⌈
bi, j

⌉− jdi (6)

(Ck + rk,�)x(δ (S))+ k�π(δ (S)) ≥ rk,�
⌈
bk,�

⌉
+ kd� (7)

Only linearly many of the inequalities (6) and (7) are non-redundant. To identify these,
we define the function π(k,x) := (dk−Cx)/k for all k ∈ J−∪ J+ and x ∈R+.

Lemma 2. Let a ∈ Z+, i = argminα∈J− π(α,a + 1), j = argminα∈J− π(α,a),
k = argmaxα∈J+ π(α,a), and � = argmaxα∈J+ π(α,a+1). Then the following holds

1. If i �= j, inequality (6) for i, j dominates all other inequalities (6) on [a,a + 1].
2. If i = j, base inequality (3) dominates all inequalities (6) on [a,a + 1].
3. If k �= �, inequality (7) for k, � dominates all other inequalities (7) on [a,a + 1].
4. If k = �, base inequality (3) dominates all inequalities (7) on [a,a + 1].

For the deterministic model, ineq. (5) completely describes the cutset polyedron.

Theorem 1. If |δ (S)|= 1, then inequalities (3)–(7) completely describe conv(XΓ (S)).
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Analog to the deterministic case, it can be shown that these inequalities are facet-
defining for the general robust network design polytope under mild conditions [14].

Separation. To separate inequalities (4)–(7) we consider the following heuristic dating
back to [5, 9] and used by [14] for the deterministic model (1): by contracting edges
with large slacks in (2a) and (2b), we shrink the network until 5 nodes or only edges
with positive slacks are left. Then, we enumerate up to |V |2 cuts in the resulting graph
and separate violated inequalities. Further, violated inequalities are separated for all
cuts δ (S) with |S|= 1.

In addition, we implemented an ILP based exact algorithm to separate inequali-
ties (5). We define binary variables βi (i ∈ V ) with βi = 1 iff i ∈ S, αk with αk = 1 iff
k ∈ QS, γk with γk = 1 iff commodity k ∈ QS deviates from its default, and zi j (i j ∈ E)
with zi j = 1 iff i j ∈ δ (S). In addition, let d determine the worst-case total demand value
crossing the cut, and let R be the right-hand side value of the corresponding cutset in-
equality (5). We minimize the feasibility of (5) such that a negative objective value
yields a violated cut. Then, the separation problem reads

min ∑i j∈E
zi j−R (8a)

s.t. max{βsk −βtk ,βtk −βsk} ≤αk ≤min{βsk +βtk ,2−βsk−βtk} ∀k ∈ Q (8b)

max{βi−β j,β j−βi} ≤zi j ≤min{βi +β j,2−βi−β j} ∀i j ∈ E (8c)

d/C ≤R ≤(d +C−1)/C (8d)

∑k∈Q
γk ≤Γ (8e)

d =∑k∈Q (d̄kαk + d̂kγk) (8f)

γk ≤αk ∀k ∈ Q (8g)

αk,βi,γk,zi j ∈ {0,1},rhs ∈ Z, d ≥ 0 ∀k ∈ Q,∀i j ∈ E,∀i ∈V (8h)

with (8b), (8c), (8g) defining the dependencies between αk, βi, γk, and zi j, and (8d)
guaranteeing the round-up of R. The total demand d is calculated by (8f), the number
of deviating commodities limited by (8e).

4 Computations

In this section, we summarize the results of our computational study on the impact of
separating violated inequalities (5)–(7) on the integrality gap closed.

Test instances. We consider live traffic data of the U. S. Internet2 Network (ABI-
LENE) [1] (|V |= 12, |E|= 15, |K|= 66), the European research backbone GÉANT [8]
(|V |= 22, |E|= 36, |K|= 461), the German research backbone [7] mapped on the net-
works GERMANY17 (|V |= 17, |E|= 26, |K|= 136), and GERMANY50 [13] (|V |= 50,
|E| = 89, |K| = 1044). Traffic measurements with a granularity of 5 minutes (ABI-
LENE, GERMANY17, GERMANY50) or 15 minutes (GÉANT) are given. We consider
one (two) time period(s) of 1 day (week) each for GERMANY17 and GERMANY50
(ABILENE and GÉANT). All demands are scaled such that the maximum total demand
of each network equals 1 Tbps. For each network and each point-to-point demand the
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Fig. 1. Additional gap closed by separating (5)–(7) with setting (ii) [black] and setting (iii) [grey]

arithmetic mean (95%-percentile) of the corresponding traffic matrices is taken as de-
fault (peak) value. We set C = 40 Gbps.

Setting. We implemented model (2) in C++ using IBM ILOG CPLEX 12.1 [6]. We
added a separator as described in Section 3. It is called at the root node of the branch-
and-cut tree. All computations were done on a Linux machine with 2.93 GHz Intel Xeon
W3540 CPU, 12 GB RAM, and a time limit of 12 h per instance.

We compare three settings: solving the Γ -RNDP with (i) CPLEX alone, (ii) addi-
tional heuristical separation of (5)–(7) in a branch-and-cut, and (iii) an additional exact
separation if none has been found in (ii). In all settings, only the root node is solved and
the achieved bounds on the optimal value are evaluated.

Results. Figure 1 shows the additional optimality gap closed (i. e., the percentual de-
crease in the gap between best known/optimal primal bound and dual bound by sepa-
rating (5)–(7)) for each network, Γ = 0,1, . . . ,10, and settings (ii) (black bars) and (iii)
(black+grey bars). The additional gap closed seems to be more related with the network
(topology) than with Γ , e. g., by trend separating (5)–(7) is more effective for ABILENE

or GERMANY17 than for GÉANT or GERMANY50. Still, for most networks and val-
ues Γ the gap can be closed by at least 10%. The added value of exact separation is
unpredictable. For ABILENE1 the gap can be closed completely in most cases.

The additional computational effort in (ii) and (iii) results in increased average root
node solving times of 2.8 resp. 3.1 times the one in (i). However, in a full cut-and-
branch approach without node limit, the separation yields a significant speed-up in the
geometric mean (e. g., 42,6% for GEANT1, or 64,8% for GEANT2).

Among all separated cuts, 99.9% are of type (5) and 0.1% are of type (4). No violated
cuts of types (6) and (7) have been found by the heuristic.

In summary, the separation of violated robust cutset inequalities is beneficial, speed-
ing-up the solving process by closing the optimality gap in the root node by 10% or
more already.

5 Concluding Remarks

In this paper, we have considered the Γ -robust network design problem (Γ -RNDP)
presented by [11]. We have shown a generalization of the well-known class of cutset in-
equalities and given a complete non-redundant description in a particular case. Further,
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we have presented their effectiveness in a computational study with realistic real-life
traffic data of several research backbone networks using both an heuristical and an ex-
act ILP-based separation approach.

In the future, the polyhedral structure of the Γ -RNDP has to be studied further to
identify more classes of valid (and facet-defining) inequalities.
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13. Orlowski, S., Wessäly, R., Pióro, M., Tomaszewski, A.: SNDlib 1.0–Survivable Network
Design Library. Networks 55, h276–h286 (2009)

14. Raack, C., Koster, A.M.C.A., Orlowski, S., Wessaely, R.: On cut-based inequalities for ca-
pacitated network design polyhedra. Networks 57, 141–156 (2010)

www.internet2.edu/network
http://www.ibm.com
http://www.dfn.de
http://www.geant.net
http://dx.doi.org/10.1109/NGI.2010.5534462


Stabilized Branch-and-Price for the Rooted
Delay-Constrained Steiner Tree Problem

Markus Leitner, Mario Ruthmair, and Günther R. Raidl

Institute of Computer Graphics and Algorithms, Vienna University of Technology,
Favoritenstraße 9-11, 1040 Vienna, Austria

{leitner,ruthmair,raidl}@ads.tuwien.ac.at

Abstract. We consider the rooted delay-constrained Steiner tree problem which
arises, e.g., in the design of centralized multicasting networks where quality of
service constraints are of concern. We present a mixed integer linear program-
ming formulation based on the concept of feasible paths which has already been
considered in the literature for the spanning tree variant. Solving its linear re-
laxation by column generation has, however, been regarded as computationally
not competitive. In this work, we study various possibilities to speed-up the solu-
tion of our model by stabilization techniques and embed the column generation
procedure in a branch-and-price approach in order to compute proven optimal so-
lutions. Computational results show that the best among the resulting stabilized
branch-and-price variants outperforms so-far proposed methods.

1 Introduction

When designing a communication network with a central server broadcasting or multi-
casting information to all or some of the participants of the network, some applications
such as video conferences require a limitation of the maximal delay from the server to
each client. Beside this delay-constraint minimizing the cost of establishing the network
is in most cases an important design criterion. As another example, consider a package
shipping organization with a central depot guaranteeing its customers a delivery within
a specified time horizon. Naturally the organization aims at minimizing the transporta-
tion costs but at the same time has to hold its promise of being in time. Such network
design problems can be modeled using an NP-hard combinatorial optimization problem
called rooted delay-constrained Steiner tree problem (RDCSTP) [14]. The objective is
to find a minimum cost Steiner tree on a given graph with the additional constraint that
the total delay along each path from a specified root node to any other required node
must not exceed a given delay bound.

More formally, we are given an undirected graph G = (V,E) with node set V , edge
set E , a fixed root node s ∈ V , a set T ⊆ V \ {s} of terminal or required nodes, a set
S =V \(T ∪{s}) of optional Steiner nodes, a cost function c : E→Z+, a delay function
d : E → Z+, and a delay bound B ∈ Z+. A feasible solution to the RDCSTP is a Steiner
tree GS = (VS,ES), s ∈VS, T ⊂VS ⊆V, ES ⊆ E , satisfying the constraints ∑e∈pS(t) de ≤
B, ∀t ∈ T , where pS(t) ⊆ E denotes the edge set of the unique path from root s to
terminal t. An optimal solution G∗S = (V ∗S ,E∗S ) is a feasible solution with minimum
costs c(G∗S) = ∑e∈E∗S ce.
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c© Springer-Verlag Berlin Heidelberg 2011



Stabilized Branch-and-Price for the RDCSTP 125

After discussing existing related work in Section 2 we describe a mixed integer linear
programming (MIP) formulation involving exponentially many path variables as well
as its solving by branch-and-price in Section 3. Section 4 details two different column
generation stabilization techniques. Computational results in Section 5 show that the
best among the resulting stabilized branch-and-price variants outperforms so-far pro-
posed methods. We conclude in Section 6 and sketch potential future work.

2 Previous and Related Work

Kompella et al. [14] introduced the RDCSTP, proved its NP-hardness and presented
a construction heuristic based on the algorithm by Kou et al. [15] for the Steiner tree
problem (STP) on graphs. Manyem et al. [21] showed that the problem is not in APX.
There are many recent publications dedicated to this problem and its more special vari-
ants. Several metaheuristics have been applied to the RDCSTP, such as tabu-search [29],
GRASP [30,33], path-relinking [11], variable neighborhood descent (VND) [24], and
variable neighborhood search (VNS) [33]. A hybrid algorithm in [34] combines scatter
search with tabu-search, VND, and path-relinking. More heuristic approaches can be
found for the spanning tree variant with T = V \{s}, e.g. a GRASP and a VND in [26]
and an ant colony optimization and a VNS in [27]. Furthermore, preprocessing methods
are presented in [27] to reduce the size of the input graph significantly in order to speed
up the solving process.

Exact methods based on integer linear programming (ILP) have been explored by
Leggieri et al. [16] who describe a compact extended node-based formulation using
lifted Miller-Tucker-Zemlin inequalities. Since the used Big-M inequalities usually
yield rather weak linear programming (LP) relaxation bounds this formulation is im-
proved by directed connection cuts. Several ILP approaches for the spanning tree vari-
ant have been examined by Gouveia et al. in [12] based on a path formulation solved
by three different methods. Standard column generation turns out to be computationally
inefficient while a Lagrangian relaxation approach together with a fast primal heuristic
exhibits better performance. The third approach reformulates the constrained shortest
path problem for each node on a layered graph and solves it using a multi commodity
flow (MCF) formulation. Since the size of the layered graph and therefore the efficiency
of the according model heavily depends on the number of achievable discrete delay val-
ues, this approach can in practice only be used for instances in which this number is
quite restricted. Additionally an MCF model usually suffers in practice from the huge
amount of flow variables used, altogether leading to a slow and memory-intensive solv-
ing process. Nevertheless solving these layered graph models turned out to be highly
effective on certain classes of instances. In [28] not just the constrained shortest path
problem but the whole RDCSTP is modeled on a layered graph which reduces to solv-
ing the classical STP on this graph. The acyclicity of the layered graph allows to elim-
inate sub-tours using a compact formulation for the STP without additional variables.
However, the well-known directed cut formulation on this graph with an exponential
number of constraints yields a tighter or at least equal LP bound than all other known
formulations for the RDCSTP. This result was shown by Gouveia et al. [13] for the
hop-constrained minimum spanning tree problem where de = 1, ∀e ∈ E , and can be
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generalized to the RDCSTP in a natural way. To overcome the issue of an excessive
number of layers in case of a huge set of achievable delay values, a strategy based on
iteratively solving smaller layered graphs is presented in [28] obtaining lower and upper
bounds to the optimal costs. By successively extending these smaller graphs appropri-
ately, the bounds are tightened to finally converge to an optimal solution. In practice,
this approach usually yields very small gaps even on instances where the directed cut
formulation on the layered graph is not able to derive an optimal LP value.

Recently, we [20] proposed stabilized column generation approaches for the RDC-
STP. The current article significantly extends this work by embedding column genera-
tion in a branch-and-bound approach to compute proven optimal solutions, describing
an additional pricing strategy and many other aspects in more detail. We also present
more extensive results including a comparison to the above mentioned layered graph
approaches.

3 Branch-and-Price

In this section we present the details of a branch-and-price approach for solving the
RDCSTP, which is based on a MIP formulation utilizing variables corresponding to
feasible paths for each terminal. This model is a straightforward modification of the
one discussed by Gouveia et al. [12] for the spanning tree variant of the RDCSTP, i.e.
for the case of T = V \{s}. Our directed formulation uses an arc set A containing an arc
(s, j) for each edge {s, j} ∈ E incident to the root node and two oppositely directed arcs
(i, j), ( j, i) for all other edges {i, j} ∈ E , i, j �= s. Note that we assume the edge cost and
delay functions to be correspondingly defined on the set of arcs, too, i.e. ci j = ce and
di j = de, ∀(i, j) ∈ A, e = {i, j} ∈ E .

The integer master problem (IMP) defined by (1)–(6) is based on variables xi j ∈
{0,1}, ∀(i, j) ∈A, indicating which arcs are included in the directed solution. Each such
directed solution must form an outgoing arborescence rooted at node s. We further use
path variables λp ∈ {0,1}, ∀p ∈ P =

⋃
t∈T Pt , where Pt ⊆ 2A is the set of feasible paths

from the root node s to terminal t. A path p ∈ Pt to terminal t ∈ T , which is represented
by its arc set, is feasible if and only if it satisfies the delay bound, i.e. ∑(i, j)∈p di j ≤ B.
Variable λp is set to one if path p∈ P is realized. Dual variables are given in parenthesis
in model (1)–(6).

(IMP) min ∑
(i, j)∈A

ci jxi j (1)

s.t. ∑
p∈Pt

λp ≥ 1 (μt) ∀t ∈ T (2)

xi j− ∑
p∈Pt |(i, j)∈p

λp ≥ 0 (π t
i j) ∀t ∈ T, ∀(i, j) ∈ A (3)

∑
(i, j)∈A

xi j ≤ 1 (γ j) ∀ j ∈V (4)

xi j ∈ {0,1} ∀(i, j) ∈ A (5)

λp ≥ 0 ∀p ∈ P (6)
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The convexity constraints (2) ensure that at least one path is realized for each ter-
minal, while the coupling constraints (3) link paths to the corresponding arc variables.
Inequalities (4) restrict the in-degree of each node and thus together with inequalities
(2) and (3) ensure that the directed solution is an arborescence with root s. Given strictly
positive edge costs, removing inequalities (4) would also yield a valid model. We did
nevertheless include them to stay consistent with the model by Gouveia et al. [12]. Fur-
ther note that only lower bounds are given for variables λp, ∀p ∈ P, in inequalities (6).
These variables will become automatically integral due to the remaining inequalities.

Since the number of feasible paths for each terminal t ∈ T and thus the total number
of variables in the model is in general exponentially large, we cannot solve the IMP
directly. Hence we embed delayed column generation – see e.g. [5,7] – in a branch-
and-bound procedure to solve the IMP, i.e. we apply branch-and-price. Branching is
performed on arc variables xi j, ∀(i, j) ∈ A. The restricted master problem (RMP) which
then needs to be solved in each node of the branch-and-bound tree is defined by con-
sidering only a subset P̃t ⊆ Pt , P̃t �= /0, ∀t ∈ T , of path variables and by replacing the
integrality conditions on arcs (5) by xi j ≥ 0, ∀(i, j) ∈ A. Further variables are added on
demand according to the solution of the pricing subproblem which will be discussed in
the following.

3.1 The Pricing Subproblem

Let P̃ denote the set of paths for which corresponding variables have already been in-
cluded in the RMP. We further denote by μt ≥ 0, ∀t ∈ T , the dual variables associ-
ated to the convexity constraints (2) and by π t

i j ≥ 0, ∀t ∈ T , ∀(i, j) ∈ A, the dual vari-
ables associated to the coupling constraints (3). In the pricing subproblem, we need
to identify at least one path variable λp, p ∈ P \ P̃, yielding negative reduced costs
c̄p =−μt +∑(i, j)∈pπ t

i j or prove that no such variable exists.
Thus, the pricing subproblem is formally defined as

(t∗, p∗) = argmint∈T,p∈Pt
− μt + ∑

(i, j)∈p

π t
i j. (7)

It can be solved by computing a resource constrained shortest path on a graph (V,A)
with non-negative arc costs π t

i j, ∀(i, j) ∈ A, for each terminal t ∈ T . Computing a mini-
mum cost resource constrained shortest path between two nodes is NP-hard in the weak
sense [10] and can thus be solved in pseudo-polynomial time, see [9] for a survey. We
use the dynamic programming based algorithm from [12] in our implementation which
has computational complexity O(B · |A|).

For solving the RMP of the currently considered branch-and-bound tree node, we
need to add path variables and resolve the RMP as long as at least one path variable
p ∈ P with negative reduced costs c̄p exists. We compare two pricing strategies, which
both require a single run of the dynamic program from [12] for each terminal t ∈ T . In
the first approach we add the variable corresponding to the cheapest feasible path for
each terminal in case it has negative reduced costs. Thus at most |T | path variables are
added in each pricing iteration. The second approach follows [12] and potentially adds
multiple path variables for a single terminal in each iteration: We consider all nodes
v ∈ V adjacent to terminal t and all delay values b = 1, . . . ,B− dvt for which a path
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from s to v in conjunction with arc (v, t) is a feasible path to t. In case a shortest path p
to v of total delay b, 0 < b≤ B−dvt , exists and p′ = p∪{(v, t)} yields negative reduced
costs, the corresponding variable is added to the RMP.

4 Column Generation Stabilization

It is well known that basic column generation based approaches typically suffer from
computational instabilities often leading to long running times. Vanderbeck [31] de-
scribes five major causes of these instabilities including primal degeneracy, the tailing-
off, and the heading-in effect. In order to improve the efficiency of such methods, sev-
eral so-called column generation stabilization techniques aiming to reduce the effects
of these problems have been proposed. These can be classified into problem specific
techniques, such as the usage of dual-optimal inequalities [3,6] and problem indepen-
dent approaches, see e.g. [2,25,32,23]. The latter are often based on the concept of
stability centers which are current estimates of good dual variable values. The boxstep
method [22] restricts each dual variable value to a small trust region around its current
stability center. Other methods penalize deviations from the current stability center, e.g.
by using piecewise linear penalty functions [3,8]. Except for the weighted Dantzig-
Wolfe decomposition approach, these so far proposed stabilization methods, however,
usually need to add additional constraints and variables to the RMP. Recently, we pro-
posed a stabilization technique [18,17,19] which does not modify the RMP, but is based
on using alternative dual-optimal solutions within the pricing subproblem. This method
turned out to significantly accelerate the column generation process for a survivable
network design problem by reducing the necessary number of iterations as well as the
total number of included variables.

In the following we will show how this technique can be applied to the RDCSTP
before we discuss two alternative stabilization approaches based on piecewise linear
penalty functions. The latter two will then be used to compare our method.

4.1 Alternative Dual-Optimal Solutions

In order to describe our stabilization approach, we briefly discuss the dual of the RMP
(8)–(13); primal variables are given in parenthesis.

max∑
t∈T

μt + ∑
j∈V

γ j (8)

s.t. ∑
t∈T

π t
i j + γ j ≤ ci j (xi j) ∀(i, j) ∈ A (9)

μt − ∑
(i, j)∈p

π t
i j ≤ 0 (λp) ∀t ∈ T, ∀p ∈ P̃t (10)

μt ≥ 0 ∀t ∈ T (11)

π t
i j ≥ 0 ∀t ∈ T, ∀(i, j) ∈ A (12)

γ j ≤ 0 ∀ j ∈V (13)
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Inequalities (9) are capacity constraints imposing upper bounds on the sum of dual
values ∑t∈T π t

i j for each arc (i, j) ∈ A, while inequalities (10) ensure that the sum of
dual arc costs π t

i j along each included path is at least μt .
Let (μ∗,π∗,γ∗) denote the current dual solution computed by an LP solver for the

RMP and A′ = {(i, j) ∈ A | �p ∈ P̃ : (i, j) ∈ p} be the set of arcs which are not used
in any of the so far included path variables. Since only the capacity constraints (9)
are relevant for these arcs, any dual variable values π t

i j
∗ ≥ 0 are optimal as long as

∑t∈T π t
i j
∗ ≤ ci j−γ j

∗, ∀(i, j) ∈A′, holds. In case the capacity constraints are not binding,
it is further possible to increase dual variable values π t

i j
∗, t ∈ T , for arcs (i, j) ∈ A \A′

while maintaining dual optimality.
Let δi j = ci j−γ j−∑t∈T π t

i j
∗, ∀(i, j) ∈ A, denote the slack of each capacity constraint

(9). Then, obviously any values π t
i j ≥ π t

i j
∗, ∀(i, j) ∈ A, ∀t ∈ T , are dual-optimal as long

as ∑t∈T π t
i j ≤ ∑t∈T π t

i j
∗ + δi j, ∀(i, j) ∈ A, holds. Note that state-of-the-art LP solvers

usually yield minimal optimal dual variable values, i.e. π t
i j
∗ = 0, ∀t ∈ T , ∀(i, j) ∈ A′.

Based on these observations our stabilization approach aims to choose alternative dual-
optimal solutions by distributing the slack δi j to the relevant dual variables π t

i j
∗, ∀t ∈ T .

We expect that increasing the dual variable values resulting in higher arc costs in the
pricing subproblem facilitates the generation of meaningful path variables. One main
advantage of choosing such alternative dual-optimal solutions for solving the pricing
subproblem is that on the contrary to most other stabilization approaches we do not
modify the RMP or increase its size by adding further variables or constraints.

Our first strategy is based on simply distributing the potential increase δi j equally
among all relevant dual variables, i.e. we use alternative dual variables π̄ t

i j = π t
i j
∗ +

δi j
|T | , ∀t ∈ T , ∀(i, j) ∈ A. In our previous work for a survivable network design prob-
lem [18,17,19], however, it turned out to be beneficial to initially use different dual-
optimal solutions, one for each terminal t, and let them finally converge towards π̄ t

i j,
∀t ∈ T , ∀(i, j) ∈ A. Given an exogenous parameter Q ≥ 2, denoting a total number of
major iterations, the approach is iterated with parameter q = 1, . . . ,Q, indicating the
current major iteration. Thus, parameter q is initially set to one (first major iteration)
and gradually incremented by one in case no negative reduced cost path has been found.
Let t ′ ∈ T be the terminal currently considered in the pricing subproblem. Then the re-
sulting dual variable values, which are denoted by π̂ t

i j, ∀t ∈ T , ∀(i, j) ∈ A, are defined
as follows:

π̂ t
i j =

{
π t

i j
∗+ δi j

|T | +
Q−q
Q−1

(
δi j− δi j

|T |
)

if t = t ′

π t
i j
∗ otherwise

, ∀t ∈ T, ∀(i, j) ∈ A (14)

This approach divides the interval
[
δi j
|T | ,δi j

]
into Q−1 equally sized sub-intervals defin-

ing the dual variable values used for each value of q, 1≤ q≤ Q. Note that for each ter-
minal t ∈ T the resulting vector π̂ is a dual-optimal solution. After Q major iterations,
i.e. if q = Q, π̂ t

i j = π̄ t
i j holds for each terminal t, i.e. we essentially use the same dual

solution for all terminals. Thus, we can terminate the column generation process of the
current node if q = Q and no path variables have been added. Since most path variables
are usually already generated in the root node of the branch-and-bound tree, we do not



130 M. Leitner, M. Ruthmair, and G.R. Raidl

Fig. 1. 5-Piecewise and 3-Piecewise Linear Dual Penalty Functions g(π) and h(π)

reinitialize parameter q. Hence, dual variable values π̄ t
i j, ∀t ∈ T , ∀(i, j) ∈ A, are used in

all further nodes of the branch-and-bound tree.

4.2 Piecewise Linear Stabilization

As mentioned before, successful stabilization techniques are often based on penalizing
deviations from a current stability center by adding a stabilization term to the primal
problem, i.e. a penalty function to the dual problem. Amor et al. [4] compared the
performance of a Bundle-type approach and k-piecewise linear penalty functions us-
ing three and five pieces, respectively. They concluded that using five-piecewise linear
penalty functions as originally proposed in [2] yields good results if all parameters are
chosen carefully. We also adopted this approach in order to compare its performance to
the previously described stabilization technique based on alternative dual-optimal so-
lutions. Given the current stability center π l ∈ R|T |·|A|+ of major iteration l ∈ N, l ≥ 1,
and a correspondingly defined penalty function g(π) – see Figure 1 – dual variable
values outside the trust region

[
δ l

1,δ
l
2

]
are penalized according to ζ1, ε1, ε2, and ζ2,

respectively.
Let π t

i j
∗, ∀t ∈ T , ∀(i, j) ∈ A, denote the dual variable values when the column gen-

eration approach on the penalized model at major iteration l terminates. If there exists
at least one dual variable value in the penalized region, we need to update the stability
center according to the current dual solution, i.e. π l+1 = π∗, correspondingly set γ l+1

1 ,
δ l+1

1 , δ l+1
2 , and γ l+1

2 , and continue the column generation process. As has been shown
previously [2] this process, which needs to be repeated until each dual variable value
lies within an unpenalized region, terminates after finitely many steps yielding the LP
relaxation of the current branch-and-bound node.

In our case, however, preliminary tests with various settings showed that due to a
typically large number of relatively time consuming updates of the stability center this
concept does not seem to pay off. Since the analysis in Section 4.1 shows that high dual
variable values facilitate the generation of reasonable path variables, we further apply
a second variant of this concept where only dual variable values smaller than δ l

1 are
penalized using the penalty function h(π) shown in Figure 1.

5 Computational Results

All described variants of the branch-and-price approach – denoted by BP throughout
all tables – have been implemented in C++ using ZIB SCIP 2.0.1 [1] with IBM CPLEX
12.2 as embedded LP solver. We further decided to additionally test corresponding
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Table 1. Median CPU-Times in Seconds for CG with Different Pricing Strategies and Stabiliza-
tion Techniques based on Alternative Dual-Optimal solutions

OPT MPT CGG LagG
dual solution π∗ π̄ π̂ π∗ π̄ π̂ - -

Set B |V | |E| - - Q=2 Q=5 Q=10 - - Q=2 Q=5 Q=10 - -
C2 3 41 279 1 1 1 2 2 0 0 1 1 1 2 4

5 41 321 7 4 5 5 6 3 2 2 3 4 173 46
7 41 321 25 7 8 6 8 11 3 4 4 5 3658 76
9 41 321 62 10 10 8 9 33 7 6 5 6 8367 64

E2 3 41 597 5 5 5 7 8 2 2 2 4 5 13 12
5 41 680 229 72 93 47 54 166 55 43 22 31 10045 208
7 41 680 10000 983 989 246 243 10000 1600 871 113 102 10149 205
9 41 680 10000 1326 1434 229 131 10000 3119 2142 657 110 10162 243

C100 100 41 561 173 36 35 31 31 41 9 10 9 12 10026 809
150 41 572 808 61 71 48 46 118 24 14 16 16 10034 544
200 41 572 3245 105 97 62 60 567 32 30 22 21 10061 711
250 41 572 8742 103 113 64 63 3137 40 24 17 21 10076 1066

E100 100 41 651 520 82 93 56 54 201 62 26 17 19 1033 976
150 41 672 3814 286 278 170 131 2911 376 227 126 67 10106 1817
200 41 672 10000 1869 1501 325 192 10000 4098 1626 238 158 10096 2972
250 41 672 10000 1589 1851 439 201 10000 10000 3453 734 159 10104 4008

C1000 1000 41 572 138 47 38 37 31 17 7 9 12 15 8186 668
1500 41 589 648 74 63 64 60 115 22 29 22 28 10024 942
2000 41 589 1730 136 144 131 90 599 80 47 38 36 10037 2389
2500 41 589 6952 141 145 96 91 1336 56 47 45 54 10037 1256

E1000 1000 41 632 387 82 74 66 58 183 58 41 28 27 10065 2846
1500 41 668 2830 268 343 268 148 2413 348 154 99 69 10031 3041
2000 41 668 10000 671 1038 265 177 10000 1516 765 232 180 10083 5882
2500 41 668 10000 863 1035 420 316 10000 4121 1365 315 278 10070 5726

T10 16 96 469 1 1 1 1 1 0 0 0 0 0 - -
30 100 932 23 6 6 6 6 3 1 1 1 2 - -
50 100 1269 188 17 18 18 16 15 1 1 2 2 - -

100 100 1695 2173 38 40 37 31 125 2 2 3 4 - -
T30 16 98 482 3 3 3 3 4 1 1 1 2 2 - -

30 100 932 68 26 25 24 24 17 4 4 6 8 - -
50 100 1269 663 97 92 88 77 118 13 12 14 15 - -

100 100 1695 9973 345 370 311 269 1906 32 38 27 28 - -
T50 16 99 486 7 6 5 6 7 3 2 2 4 5 - -

30 100 932 114 45 43 36 40 38 11 11 13 18 - -
50 100 1269 1128 159 167 135 140 249 30 28 31 38 - -

100 100 1695 10000 693 766 725 511 7739 192 106 112 92 - -
T70 16 99 487 11 8 8 9 12 4 3 4 6 8 - -

30 100 932 177 60 62 59 56 51 19 20 24 28 - -
50 100 1269 1706 247 250 193 171 438 67 68 70 67 - -

100 100 1695 10000 1179 1036 1041 822 9017 402 436 240 249 - -
T99 16 100 490 17 11 13 15 19 7 4 7 10 12 - -

30 100 932 320 108 98 83 93 147 49 42 45 50 - -
50 100 1269 2952 409 343 292 263 858 159 134 111 124 - -

100 100 1695 10000 1584 1759 1574 1275 10000 1166 1120 835 629 - -
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pure column generation – denoted by CG in the following – implemented by solely
using CPLEX in order to analyze an eventually existing overhead of SCIP compared
to CPLEX. Each computational experiment has been performed on a single core of an
Intel Xeon E5540 processor with 2.53 GHz and 3 GB RAM per core. An absolute time
limit of 10000 CPU-seconds has been applied to all experiments.

First, we tested our approaches on instances originally proposed by [12] for the span-
ning tree variant of the RDCSTP, i.e. T =V \{s}. The three main instance sets R, C and
E each have different graph structures defined by their edge cost functions: R has ran-
dom edge costs, C and E both have Euclidean costs fixing the source s near the center
and near the border, respectively. Each main instance set consists of different subsets
of five complete input graphs with 41 nodes varying in the number of possible discrete
edge delay values; e.g. C100 denotes the set of instances with 100 different integer
delay values: de ∈ {1, . . . ,100},∀e ∈ E . Additionally we ran tests on instance sets Tα
consisting of 30 randomly generated complete graphs with |V |= 100 where α denotes
the number of terminal nodes |T |. Here all delays and costs are uniformly distributed in
{1, . . . ,99}. For each instance set we tested our approaches on different delay bounds
B. Since we consider these larger randomly generated instances Tα and since all in-
stances with random costs from [12] could be solved relatively fast, we do not report
here our detailed results for the latter. All preprocessing methods described in [27] are
used to reduce the input graphs prior to solving. To build an initial set of paths a simple
construction heuristic is applied on Steiner tree instances: the delay constrained short-
est paths from the root to all terminal nodes are iteratively added to the tree dissolving
possible cycles. On instances where T = V \ {s} we apply the Kruskal-based heuristic
followed by VND as introduced in [26].

Table 1 details median CPU-times in seconds for determining the LP relaxation of the
IMP by unstabilized column generation, denoted by π∗, and when using stabilization
based on alternative dual-optimal solutions π̄ and π̂ , respectively. Here, OPT denotes
the first described pricing strategy where at most one path per terminal is added in each
iteration and MPT the one potentially adding multiple paths for a single terminal, com-
pare Section 3.1. We further report average numbers of nodes |V | and edges |E| for each
instance set after preprocessing. Finally, average CPU-times in seconds for the concep-
tually identical column generation approach by [12] – denoted as CGG – as well as the
Lagrangian approach LagG from the same authors are given in Table 1. The results of
the latter two have, however, been computed on a different hardware and are thus not di-
rectly comparable. We observe that MPT outperforms OPT in almost all cases. Hence,
we do not consider OPT in all further experiments. We further conclude that all stabi-
lization strategies based on alternative dual-optimal solutions significantly outperform
standard column generation. Note that already our unstabilized column generation vari-
ant needs significantly less iterations than the conceptually identical one discussed by
[12]. We believe that next to different CPLEX versions these differences mainly come
from choosing a better set of initial path variables, more sophisticated graph preprocess-
ing, and the fact that we use the dual simplex algorithm which turned out to perform
better than the primal one in our case.

Table 2 shows more detailed results for the variants of column generation using alter-
native dual-optimal solutions. Next to median CPU times in seconds (ttotal), numbers of
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Table 2. Median CPU-times, Median Times for Reaching the LP Value, Average Pricing Itera-
tions, and Included Path variables for CG and Stabilization based on Alternative Dual-Optimal
Solutions

ttotal [s] tbest [s] Iterations Variables
dual solution π̄ π̂ π̄ π̂ π̄ π̂ π̄ π̂

Set B - Q=5 Q=10 - Q=5 Q=10 - Q=5 Q=10 - Q=5 Q=10
C2 3 0 1 1 0 0 0 10 32 48 697 648 641

5 2 3 4 1 1 2 29 63 89 2645 2024 1901
7 3 4 5 2 3 2 58 82 122 4812 3312 3014
9 7 5 6 2 1 1 104 106 130 7252 4700 3808

E2 3 2 4 5 1 2 2 18 46 74 1814 1639 1596
5 55 22 31 54 12 16 122 154 203 11413 7740 7186
7 1600 113 102 1597 100 86 383 342 365 36396 17908 13459
9 3119 657 110 2746 45 43 570 565 495 59749 33377 18123

C100 100 9 9 12 5 2 2 33 68 101 16788 12828 10783
150 24 16 16 16 3 3 48 79 113 33938 28465 23247
200 32 22 21 15 2 2 65 104 131 52273 39777 33140
250 40 17 21 17 2 2 63 89 132 56258 43697 40100

E100 100 62 17 19 34 8 9 43 90 127 27737 15702 12177
150 376 126 67 184 25 9 59 114 147 75041 40916 28441
200 4098 238 158 4069 71 82 89 149 194 142512 58547 45980
250 10000 734 159 7804 76 50 98 194 201 209531 99451 61488

C1000 1000 7 12 15 6 2 3 24 60 97 30898 26540 23374
1500 22 22 28 11 4 6 33 72 110 69064 59589 53193
2000 80 38 36 52 10 9 44 81 118 103734 86713 75027
2500 56 45 54 45 6 6 42 89 124 127440 112045 100876

E1000 1000 58 28 27 50 6 6 31 83 112 43492 29744 24004
1500 348 99 69 303 22 19 54 119 151 116867 78501 59886
2000 1516 232 180 740 13 14 83 141 162 239176 148387 113407
2500 4121 315 278 2128 18 19 92 136 190 334410 187341 156620

T10 16 0 0 0 0 0 0 11 28 43 348 306 290
30 1 1 2 0 0 0 19 37 59 1400 1221 1083
50 1 2 2 0 0 0 20 42 63 2427 2153 1894

100 2 3 4 0 1 1 20 42 66 3456 3249 2779
T30 16 1 2 2 0 0 1 14 39 61 982 852 787

30 4 6 8 2 1 1 29 61 88 4946 4300 3876
50 13 14 15 5 2 3 43 73 108 11489 10370 9303

100 32 27 28 13 4 5 44 81 120 23889 23430 20989
T50 16 2 4 5 1 2 2 15 44 69 1458 1239 1144

30 11 13 18 6 5 5 32 67 101 7271 6404 5566
50 30 31 38 15 5 6 50 86 122 18202 16611 15131

100 192 112 92 87 11 13 63 107 148 46145 43165 40350
T70 16 3 6 8 2 3 3 15 50 76 1864 1611 1492

30 19 24 28 14 7 10 30 74 109 9269 7999 7012
50 67 70 67 32 11 12 50 97 140 23640 22124 19302

100 402 240 249 263 34 33 74 127 173 65179 63348 57621
T99 16 4 10 12 3 4 3 16 52 76 2397 2049 1887

30 49 45 50 33 15 19 33 82 115 12063 9991 8717
50 159 111 124 91 20 28 54 110 153 33106 27500 24996

100 1166 835 629 750 73 67 88 160 202 99801 88283 78012
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Table 3. Median Total CPU-Times and Updates of the Stability Center for CG and Piecewise
Linear Stabilization Techniques

3PL 5PL
ttotal [s] ttotal [s] Updates ttotal [s] Updates
π∗ sml lrg sml lrg sml lrg sml lrg

Set B - S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2
C100 100 56 204 255 138 173 18 23 9 11 10000 10000 10000 10000 51 78 48 47

150 133 674 493 575 470 15 20 8 11 10000 10000 10000 10000 39 62 22 33
200 1056 2482 2554 3008 2728 18 20 10 11 10000 10000 10000 10000 24 40 14 22
250 3485 10000 9474 10000 7350 16 20 10 12 10000 10000 10000 10000 15 24 9 14

E100 100 463 692 627 522 639 19 24 10 12 10000 10000 10000 10000 35 62 18 29
150 4018 10000 10000 10000 10000 18 19 9 10 10000 10000 10000 10000 21 35 10 17
200 9137 10000 10000 10000 10000 7 7 4 4 10000 10000 10000 10000 14 25 6 11
250 9861 10000 10000 10000 10000 5 6 3 3 10000 10000 10000 10000 9 15 4 7

T10 30 4 6 6 5 5 3 3 2 2 52 79 21 34 26 50 11 20
50 17 24 28 21 22 3 3 2 2 242 322 102 137 29 56 12 22

T30 30 20 43 51 39 40 12 15 7 8 2281 2797 1250 1525 105 181 50 85
50 137 353 355 301 325 12 17 6 9 10000 10000 8409 9961 89 113 64 87

T50 30 49 132 135 98 117 22 29 11 16 10000 10000 6586 7294 87 126 84 136
50 364 986 957 695 856 24 33 12 17 10000 10000 10000 10000 28 47 18 29

pricing iterations (Iterations) and total number of included path variables (Variables) we
also report median CPU times for finding the correct LP value (tbest), i.e. the remaining
time is needed for proving this value. We do not report on our experiments for Q=2 in
Table 2 since we already observed from Table 1 that Q=2 is not competitive compared
to Q=5 and Q=10, respectively. From these results we conclude that using π̂ clearly out-
performs π̄ regarding the total CPU-time as well as the time for finding the correct LP
value. Especially for harder instances – i.e. those requiring more time – Q=10 performs
significantly better than the other configurations. Using π̄ usually leads to a smaller
number of total pricing iterations than all variants of π̂ while the latter reduce the total
number of included variables. Hence, we observe that π̂ allows for finding more mean-
ingful path variables already in the beginning of the column generation process. Since
the best performing variants – i.e. using π̂ and Q ∈ {5,10} – exhibit a quite significant
tailing-off effect there is potential for further possible improvement e.g. by computing
additional (Lagrangian) bounds or performing early branching in branch-and-price.

Next, we analyze and compare the performance of the two column generation vari-
ants using piecewise linear stabilization terms. Table 3 reports median CPU-times in
seconds and performed updates of the stability centers for different instance sets from
both types. 3PL denotes the approach penalizing only small values and 5PL the full
approach using a 5-piecewise linear penalty function. For both variants the initial sta-
bility center is chosen according to the first strategy for using alternative dual-optimal
solutions, i.e. π1 = π̄ , and we tested various settings of the inner trust region radius
π t

i j
l−δ t

i j
l
1
= δ t

i j
l
2
−π t

i j
l = ri

ci j
|T | and the outer trust region radius π t

i j
l−γt

i j
l
1
= γt

i j
l
2
−π t

i j
l =

ro
ci j
|T | , ∀t ∈ T , ∀(i, j) ∈ A, respectively. For 5PL we used symmetric penalty functions,

i.e. ε = ε1 = ε2 and ζ = ζ1 = ζ2, and identical penalty slopes for all dimensions. Among
the various tested configurations we report here experiments with smaller (sml) and
larger (lrg) trust region radii ri = 1, ro = 3 and ri = 2, ro = 6, respectively. Furthermore,
we tested penalty slopes S1 where ε = 0.3 and ζ = 1, and S2 where ε = 0.5 and ζ = 1.5.



Stabilized Branch-and-Price for the RDCSTP 135

Table 4. Number of Instances Solved to Proven Optimality, Average Optimality Gap, Root Node
Gap, Number of Branching Nodes, Median Total CPU-Time, and Median Time for Solving the
Root Node for BP Compared to Layered Graph Approaches SL and DL

Σ Opt gap [%] ttotal [s] gaproot [%] Nodes troot [s]
Set B SL DL BP SL DL BP SL DL BP BP BP BP CG

C2 3 5 5 5 0.0 0.0 0.0 0 0 1 0.0 1.0 1 1
5 5 5 5 0.0 0.0 0.0 0 3 5 0.7 5.0 3 4
7 5 5 5 0.0 0.0 0.0 1 5 9 1.0 13.0 5 5
9 5 5 5 0.0 0.0 0.0 3 12 8 0.6 5.0 5 6

E2 3 5 5 5 0.0 0.0 0.0 0 1 4 0.0 1.0 4 5
5 5 5 5 0.0 0.0 0.0 3 31 34 2.5 5.2 25 31
7 5 5 5 0.0 0.0 0.0 18 522 743 2.3 14.2 122 102
9 5 5 4 0.0 0.0 0.1 48 893 914 2.3 7.6 149 110

C100 100 5 5 5 0.0 0.0 0.0 130 33 9 0.1 4.2 9 12
150 5 5 5 0.0 0.0 0.0 1383 208 18 0.0 1.0 18 16
200 3 5 5 0.9 0.0 0.0 7552 1219 21 0.1 3.8 21 21
250 1 5 5 10.7 0.0 0.0 10000 1415 35 0.1 2.2 20 21

E100 100 5 5 5 0.0 0.0 0.0 1212 766 22 0.9 2.4 20 19
150 0 3 5 6.8 0.3 0.0 10000 8299 122 0.3 4.6 70 67
200 0 0 4 13.1 2.6 0.1 10000 10000 453 0.8 9.0 361 158
250 0 0 4 12.2 3.0 0.1 10000 10000 993 0.9 8.0 303 159

C1000 1000 4 5 5 1.8 0.0 0.0 2509 20 13 0.0 1.0 13 15
1500 0 5 5 12.2 0.0 0.0 10000 175 40 0.2 2.6 33 28
2000 0 4 5 100.0 0.0 0.0 10000 5203 75 0.6 19.8 61 36
2500 0 5 5 100.0 0.0 0.0 10000 2163 53 0.0 3.0 53 54

E1000 1000 1 5 5 11.3 0.0 0.0 10000 1296 24 0.1 1.4 24 27
1500 0 3 5 34.8 0.7 0.0 10000 3127 63 0.3 4.2 63 69
2000 0 1 5 100.0 1.3 0.0 10000 10000 223 0.5 2.2 223 180
2500 0 1 4 100.0 2.2 0.1 10000 10000 1588 0.6 9.4 642 278

T10 16 30 30 30 0.0 0.0 0.0 0 0 0 0.1 1.3 0 0
30 30 30 30 0.0 0.0 0.0 3 4 1 0.1 1.5 1 2
50 30 30 30 0.0 0.0 0.0 16 16 2 0.2 1.2 2 2

100 30 30 30 0.0 0.0 0.0 106 44 3 0.0 1.1 3 4
T30 16 30 30 30 0.0 0.0 0.0 0 1 2 0.2 1.5 2 2

30 30 30 30 0.0 0.0 0.0 4 8 8 0.0 1.5 8 8
50 30 30 30 0.0 0.0 0.0 25 52 21 0.5 2.7 17 15

100 30 29 30 0.0 0.2 0.0 186 103 43 0.9 4.2 39 28
T50 16 30 30 30 0.0 0.0 0.0 0 1 4 0.1 1.6 5 5

30 30 30 30 0.0 0.0 0.0 5 15 17 0.5 6.3 15 18
50 30 30 30 0.0 0.0 0.0 34 67 52 0.8 6.1 39 38

100 29 27 28 0.2 0.2 0.1 319 505 217 0.9 6.6 151 92
T70 16 30 30 30 0.0 0.0 0.0 0 2 8 0.1 1.8 8 8

30 30 30 30 0.0 0.0 0.0 5 24 33 0.7 8.1 27 28
50 30 30 30 0.0 0.0 0.0 34 84 76 0.5 3.5 66 67

100 28 26 27 0.1 0.3 0.6 388 519 426 1.1 6.9 315 249
T99 16 30 30 30 0.0 0.0 0.0 1 2 11 0.5 4.0 11 12

30 30 30 30 0.0 0.0 0.0 7 26 54 0.9 14.6 42 50
50 30 30 29 0.0 0.0 0.1 36 76 167 0.5 7.4 117 124

100 28 28 26 0.3 0.2 0.3 298 675 867 0.8 4.5 516 629
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In Table 3 we observe that 3PL and 5PL are clearly not competitive to all approaches
based on alternative dual-optimal solutions. Although the number of updates of the
stability center was not too high, the additional overhead due to these updates and the
additional variables and constraints in the model lead to long running times which are
usually even higher than those of unstabilized column generation. As we could not
identify better parameter values in further tests we conclude that using piecewise linear
stabilization does not seem to be promising for the RDCSTP.

Table 4 compares number of instances solved to proven optimality, average remain-
ing gaps, and median CPU-times in seconds for the full branch-and-price approach
using alternative dual-optimal solutions π̂ and ten major iterations (Q=10) to the theo-
retically stronger static (SL) and dynamic (DL) layered graph approach from [28] (rerun
with CPLEX 12.2). SL starts with the same primal solution as BP whereas DL does not
use any initial heuristics here. Directed connection cuts are separated in SL and DL only
for the instance sets from [12]; Tα instances are solved faster when omitting them. We
additionally report the average number of considered branch-and-bound nodes, the av-
erage integrality gap at the root node and the median time needed for solving the root
node of the branch-and-bound tree for BP as well as the corresponding CPU-time of
the column generation approach.

We conclude that due to the stabilization based on alternative dual-optimal solutions
the proposed branch-and-price approach outperforms both layered graph approaches in
many cases and performs particularly good when the delay bound is not too strict as
well as when the relative number of terminal nodes is not too high. Thus we consider it
a good complement to the layered graph approaches from [28].

6 Conclusions and Future Work

In this paper we presented a branch-and-price approach for the RDCSTP. Column gen-
eration stabilization methods based on alternative dual-optimal solutions and piecewise
linear penalty functions have been applied to accelerate the approach. We further com-
pared the performance of two different pricing strategies. We conclude that when using
stabilization based on alternative dual-optimal solutions our method outperforms so-far
proposed exact methods for the RDCSTP in many cases and allows for computing proven
optimal solutions solutions to medium sized instances within reasonable time. In future,
we want to compare our approach to further stabilization techniques such as e.g. inte-
rior point stabilization [25] or weighted Dantzig-Wolfe decomposition [32,23] as well
as combine promising aspects of different stabilization techniques potentially yielding
an additional speed-up. We further want to study the impact of different possibilities for
choosing an initial set of columns as well as aim at reducing the tailing-off effect.
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Abstract. This paper presents the main findings when approaching an
optimization problem proposed to us by a telecommunication company
in Austria. It concerns deploying a broadband telecommunications sys-
tem that lays optical fiber cable from a central office to a number of
end-customers, i.e., fiber to the home technology. End-customers repre-
sent buildings with apartments and/or offices. It is a capacitated network
design problem that requires an installation of optical fiber cables with
sufficient capacity to carry the traffic from the central office to the end-
customers at minimum cost. This type of problem arises in the design
of a Local Access Network (LAN) and in the literature is also named
Single-Source Network Loading. In the situation motivating our work
the network does not necessarily need to connect all customers (or at
least not with the best available technology). Instead, some nodes are
potential customers. The aim is to select the customers to be connected
to the central server and to choose the cable capacities to establish these
connections. The telecom company takes the strategic decision of fixing
a percentage of customers that should be served, and aims for minimiz-
ing the total cost of the network proving this minimum service. For that
reason the underlying problem is called the Prize-Collecting LAN prob-
lem (PC-LAN). We propose a sophisticated heuristic to solve real-world
instances with up to 86 000 nodes and around 1 500 potential customers.

1 Introduction

This paper models the fiber-to-the-building/fiber-to-the-home strategy applied
by telecommunication companies when designing the new generation of local
access networks. Customer nodes are associated to physical locations represent-
ing buildings, business locations or single households. There are three features
associated to each potential customer node. One is called prize and it represents
the number of subscribers (e.g., apartments and/or offices) in the building. An-
other is called demand and gives the number of optical fibers required by the
potential customer. The third feature is called cost and represents the setup cost
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of installing a device if the customer is connected and receives its service. The
available hardware (i.e., splitter devices) determines the demand and the cost
of each customer node. Usually, several splitter devices with various splitting
ratios (e.g., 1:4, 1:16, 1:32) are available. Their costs obey economies of scales.
For example, to connect 16 subscribers, a device must be installed that costs
¤2000 and 1 optical fiber should come in that building. To connect a building
with 17 subscribers, a device that costs ¤3000 and 2 fibers are needed and this
larger device is sufficient to support up to 32 subscribers. We are not allowed to
connect only a fraction of subscribers at the customer node. Instead, decisions
have to be made whether all subscribers or none of them are going to be served.
This allows for preprocessing of input data and exact calculation of customers’
demands and the corresponding set-up costs.

The customers selected for being served must be connected by cables to the
server (the center). The company provides different types of cables. Each type
of cable is characterized by two features. One is its capacity and represents the
number of optical fibers. The other is its cost. Clearly, for connecting two sites
one may need several cables. Each combination of cables leads to a module with
a given capacity and cost. The capacity of a module is simply the sum of the
fibers included in the cables. The cost of a module is the sum of the cable costs
plus the installation on the roads taking into account the length. The goal is
to decide the modules to be installed so that the whole demand can be routed
through the network at minimum cost.

The flow between the center and a customer is allowed to split apart, thus we
are speaking of a bifurcated formulation. An optimal solution of the problem is
not necessarily a tree in the graph. Obviously, if there is only one module per
edge providing sufficient capacity to route the total flow through it, then the
optimal solution will be a tree.

There are works in the literature focusing on other aspects of fiber-to-the-
home (see e.g. [5] where more than one server in two layers are considered). The
literature also contains several approaches for solving problems arising in LAN
design. See e.g. recent works in [3,4] or [2] for a more general multiple-source
multiple-sink setting. However, the previously published articles deal with prob-
lems where all customers must be served. In this work we develop a sophisticated
heuristic for the Prize-Collecting variant of the problem.

2 Problem Definition

We are given an undirected and connected graph G = (V, E) with a node r ∈ V
representing the center (central server, access to the backbone network,. . .) and
a set of potential customers D ⊆ V \ {r}. To each potential customer k ∈ D, a
positive demand dk, a positive prize pk and a positive setup cost ck are assigned.
We denote by p0 the minimum customer prizes the company wants to collect.

It is possible to install combinations of different cable types with positive costs
and capacities on every edge. Each combination is called a module. We assume
that modules Ne = {n1, n2, . . . , n|Ne|} are given for each edge, with capacities
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ue,n ∈ R>0 and costs ce,n ∈ R>0 for each 1 ≤ n ≤ |Ne|. Module indices are
sorted such that ue,n < ue,n+1. The optimization problem of our interest is the
selection of the customers to be served, the single-source multiple-sink routing,
and the edge capacity design. To this end we allow an installation of at most
one module on every edge.

We now show a Single Commodity Flow (SCF) formulation of the PC-LAN
problem. This and other models have been derived from the ones given in [3]
for the problem where all customers must be in the network. We make use of a
binary variable yk to model whether a potential customer k must be served or
not. The SCF formulation uses a bidirected problem representation and models
the flow on every arc as the total amount of flow routed from the center towards
the customers. The arc set is denoted by A. To model a non-decreasing step
cost function on every edge, binary variables need to be used. Binary variables
xa,n decide whether the module n shall be installed on the arc a, whereas flow
variables fa ≥ 0 describe the amount of flow on arc a ∈ A. Then the model is:

min
∑
a∈A

∑
n∈Na

ca,nxa,n +
∑
k∈D

ckyk

subject to

∑
a∈δ+(i)

fa −
∑

a∈δ−(i)

fa =

⎧⎪⎨⎪⎩
−diyi, i ∈ D∑

k∈D dkyk, i = r

0, otherwise

∀i ∈ V

∑
k∈D

pkyk ≥ p0∑
n∈Na

xa,n ≤ 1 ∀a ∈ A

0 ≤ fa ≤
∑

n∈Na

ua,nxa,n ∀a ∈ A

xa,n ∈ {0, 1} ∀a ∈ A, ∀n ∈ Na

yk ∈ {0, 1} ∀k ∈ D.

3 Heuristic

We now describe the main elements of the heuristic approach that we are devel-
oping to solve large-sized instances of the PC-LAN problem. In a first phase we
select a set of customers. In a second phase we construct the network iteratively
by using shortest path calculations on the graph with adapting edge weights. In
a third phase, we locally improve the solution. The three phases are repeated
within an reactive search framework.

Selection of Customers: Given pre-installed capacities ze on the edges, we sort
the potential customers according to the ratio between the prize of the customer
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and the setup cost plus the cost of the shortest path from the center to the cus-
tomer site. The calculation of the shortest paths is described below. Customers
are then chosen so that they satisfy the coverage constraint

∑
k∈D pkyk ≥ p0.

Network Construction: The input to the network construction heuristic is the
undirected graph G, a vector b ∈ R|V |

≥0 with bk = dkyk for a potential customer
k ∈ D and bi = 0 otherwise. The heuristic subsequently modifies b and creates a
flow vector f ∈ R|E|

≥0 and a design vector z ∈ N|E|, where ze denotes the module
to be installed on the edge e and 0 if no module is installed. We randomly pick
a node v with positive bv > 0 and define the edge weights for the shortest path
problem as we = ce,ne(fe+bv)− ce,ze. Here ne represents a function that gives the
most appropriate module for some required capacity, i.e. the cheapest module
with sufficient capacity, or simply the largest module if there is no module with
sufficient capacity. More formally, we have ne(U) = argmin{n∈Ne|ue,n≥U} ce,n

if ∃n ∈ Ne|ue,n ≥ U , and ne(U) = |Ne| otherwise. Hence we is the cost for
expanding the installation on e from the currently selected module ze, to the
module ne(fe + bv). An edge e is saturated if we already use the largest module
ze = |Ne| and all available capacity is being used ue,ze = fe. Once an edge
is saturated it is not considered in subsequent computations. Now that we are
given a node v and edge weights w we can compute the shortest path P =
〈(r, i1), (i1, i2), . . . , (im, v)〉 from r to v in G. We transport the demand along this
path f ′

e = fe + bv for all e ∈ P , and make the necessary installation z′e = ne(f ′
e).

We mark this customer as done b′v = 0 and start the next iteration.
If the edge e = (i, j) on P is about to be saturated in the current iteration,

we transport the maximum possible amount and leave the appropriate demands
on each ends of the arc. More formally, if ue,ne(fe+bv) < fe + bv then we take
the maximum u = ue,ne(fe+bv) − fe, transport it along the edge f ′

e = fe + u and
change the demand vector to b′i = bi + u and b′j = bj + bv − u. Now the edge is
saturated and we continue with the next node.

After the construction has produced a feasible solution we take z and y to
define input parameters for a minimum cost flow problem. To this end, for each
edge e with ze > 0 the capacity is set to ue,ze and the cost is set to ce,ze/ue,ze .
The minimum cost flow problem is solved and produces a new flow vector f ′.
Using f ′ we define a new design z′ with z′e ≤ ze for all e.

Local Improvement: Given a feasible solution associated to the vector (z, y, f),
we attempt the following local improvement. Pick the edge e maximizing ce,ze

or ce,ze/fe, alternating between these two criteria. The flow f is split into a
set of paths. Take all those paths that use the edge e and remove all the flow
along these paths from f to produce a smaller flow f ′. The values of f ′ define
pre-installed modules ze on the edges. The customers whose flows have been
just canceled out are removed. Now we re-enter the selection phase and choose
the remaining set of customers to ensure the coverage constraint. This is done
repeatedly to eventually get a better solution. The procedure stops after 10 edges
have been considered without improving the objective value.
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Reactive Search (RS): To enable a clustering of demands we do not install
the modules along the whole path right to the center but instead stop at some
earlier node j. Two criteria are used to select j: (1) j is the first node with a
positive demand bj > 0 encountered along the path, or (2) j is at most m edges
away from v. Observe that the demands are clustered if criteria (1) is applied
and m is set to a small number. The idea of this clustering is to merge customers
that are close to each other with respect to the stepwise edge cost function.

To decide whether we activate or not criteria (1) and the best value m for cri-
teria (2) we employ a learning adaptation mechanism known as Reactive Search
Optimization [1]. The Network Construction procedure is applied repeatedly.
Initially five prespecified settings are used. Then we go from a diversification
of the settings towards an intensification, i.e. from randomly perturbed settings
towards settings that have produced the best objective values so far.

Primal Heuristic: In order to use the previous framework within a branch-and-
cut, for a given fractional solution (x̄, ȳ) we: a) sort the customers according to
the ȳk values and b) pre-install capacities ze according to the x̄a,n values before
entering the network construction phase.

4 Results

We have implemented the heuristic on a computer Intel Xeon 2.6 Ghz with 3
Gb RAM. In addition we extended the branch-and-cut framework from [3] using
CPLEX 12.1. We initiated our evaluation on the small instances in [4]. Most of
these instances can be solved to optimality which allows to measure the quality of
the heuristic approach. To produce instances for the PC-LAN problem from the
60 instances used in [4] we have defined ck = dk/2 , pk = dk , p0 = 0.7

∑
k∈D pk.

Table 1 displays results of our experiments. Each line shows the average values
over 5 instances. The instances are grouped according to the number |V | of nodes
(i.e., 20, 30 or 40), the position of the center (central or random) and the demand
level (high or low). |N | denotes the average number of modules available over
all edges. The columns UB0 refer to the initial heuristic approach where the RS
is executed until 50 consecutive iterations without improvement. The columns
UB1 refers to the primal heuristic applying the RS on the fractional solutions
generated while solving the root node. The RS is repeated while there is an
improvement in the solution. The columns BEST refer to the best known solution
obtained by running the branch-and-cut framework with our primal heuristic
within 1000 seconds. Over the 60 instances this best known was optimal in 42
cases. The gap in UB0 and UB1 is computed over the solution obtained in BEST,
while the gap in BEST is between the best upper and lower bounds. Based on
this experiment the construction heuristic UB0 already produces good results
on these small instances. To conclude, Table 2 shows the performance of the
approach on the three real world instances. The branch-and-cut framework did
not solve the root node within two hours. It remains an open question whether
the presented gaps are due to the lower bounds. Still the feasible solutions are
of reasonable quality for practical purpose.
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Table 1. Results for instances from [4]

|V | |E| |D| |N | UB0 UB1 BEST
gap0 time0 gap1 time1 gap time

20.0 40.2 9.2 27.6 c h 1.2 0.1 0.8 4.3 0.0 18.5
20.0 40.2 9.0 12.6 c l 0.0 0.0 0.0 3.9 0.0 17.7
20.0 39.8 9.2 23.2 r h 0.5 0.0 0.1 4.3 0.0 64.3
20.0 39.8 10.0 13.0 r l 3.5 0.0 0.1 3.9 0.0 22.0

30.0 58.4 15.8 47.4 c h 0.3 0.2 0.3 10.6 0.2 489.8
30.0 58.4 16.0 24.2 c l 0.2 0.1 0.2 8.9 0.0 467.8
30.0 59.2 12.2 33.4 r h 0.1 0.1 0.1 6.1 0.0 182.5
30.0 59.2 14.4 22.2 r l 0.1 0.1 0.1 7.3 0.0 46.2

40.0 80.0 19.2 49.4 c h 0.6 0.2 0.4 17.7 0.4 968.8
40.0 80.0 19.2 27.4 c l 1.1 0.1 1.0 13.1 0.5 665.5
40.0 80.6 18.2 46.2 r h 1.1 0.2 1.0 13.1 0.7 905.8
40.0 80.6 20.6 31.4 r l 0.9 0.1 0.8 14.9 0.4 876.3

Table 2. Results for real-world instances

|V | |E| |D| |N | UB0 time0 UB1 gap1

86 745 116 750 1 157 9.0 2 881 000 1 517 2 814 139 50
48 247 65 304 720 9.0 1 499 750 290 1 499 750 26
77 329 107 696 1 498 9.9 3 280 373 2 361 3 280 373 54
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Abstract. A two layer network design problem arising from the design of an op-
tical network is considered. Two versions of the optical network design problem
are studied and polyhedral results for the capacity formulation of the problems
are presented.

1 Introduction and Motivation

An optical network is a two layer network where the lower layer is called physical or
optical while the upper layer (service layer) is called logical. The nodes of the logical
layer are a subset of the nodes of the physical layer (usually the assumption that the two
sets coincide is made). The edges of the physical network corresponds to fiber cables,
the edges of the logical network, or lightpaths, are logical connections correspond-
ing to physical paths. Given the physical and the logical network, both with capacity
installation costs for the edges, and given a set of point-to-point traffic demands (or
commodities) in the logical network, the two layer network design problem consists of
choosing minimum costs integer capacities for the edges of both layers so that all the
demands can be routed simultaneously on the network.

Several problems related to the design of an optical network have been studied in the
literature. See for example [10,4,5,6,22,15,12,11,19] and references therein. In [10] the
authors present polyhedral results for a two layer problem where only the dimensioning
of the logical layer is required, while the physical capacities are given. In [9] a prob-
lem with survivability requirements is considered. In [5] a branch-and-cut-and-price
approach is proposed. In [22] heuristics to be used within a branch-and-cut algorithm
are discussed. In [15] the authors use single layer cuts to solve a survivable two layer
network design problem. In [11,19] computational results for the capacity formulation
of the two layer network design problem with and without survivability requirements
are presented, but no polyhedral results are given. For a survey on technical details of
optical networks and on optimization problems arising from telecommunications net-
works see [23,24].

While the polyhedron of single layer network design problem has received a lot of
attention in the literature (see for example [17,18,8,13,7,2,1,3] and references therein),
the two layer network design problem has received only a limited attention and, to our
knowledge, no polyhedral result is known for the capacity formulation of the problem
addressed in this paper. Here two versions of the problem are considered. The two mod-
els depend on the definition of the lightpaths and have already been considered in the
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literature, see for example [22,15,11,19] and references therein, but no polyhedral con-
tribution has been given for them so far. In [22,15,19] and references therein several
variants of the two layer network design problem using the first model are addressed,
but the facet defining status of the inequalities used in the computational experiments
is not proved. In [11,19] the authors present computational experiments based on a
Benders decomposition approach for the two layer network design problem with and
without survivability requirements using the second model, but no polyhedral contribu-
tion is given. In this paper the polyhedral properties of the capacity formulation of both
problems are studied. The paper is organized as follows. In Section 2 we present the
mathematical formulation of the considered problems, in Sections 3 polyhedral results
are given.

2 Formulation of the Problem

Depending on the definition of the lightpaths, two different models can be used to for-
mulate the problem. If the physical path corresponding to the lightpaths is known in
advance, then we have an explicit lightpath model. If the paths corresponding to the
lightpaths are not known in advance and they have to be computed during the opti-
mization process, then we have an implicit lightpath model. In the second case the
assumption that the cost of a lightpath does not depend on its routing is made. For ap-
plications of the explicit model see for example [22,15,19] and references therein. For
applications of the implicit model see for example [11,19] and references therein.

Let G(V,E) be an undirected graph without loops and parallel edges corresponding
to the physical network and let H(V,L) be an undirected graph corresponding to the
logical network. Capacity on logical and physical edges can only be installed in batches,
let B≥ 1 be the capacity batch for physical edges while the batch for the logical edges
is set to one. Let cE

e and cL
� be the cost of installing a capacity batch on edge e ∈ E and

�∈ L, respectively. Let K be the set of commodities, where each commodity k is a triple
(sk,tk,dk), i.e. sk is the source node, tk is the destination node and dk is the demand. For
the explicit model, let Le be the set of lightpaths using physical edge e∈ E . Let xe be an
integer variable representing the number of capacity batches installed on physical edge
e ∈ E , and let y� be an integer variable representing the number of capacity batches
installed on logical edge � ∈ L.

If we use the explicit model, the capacity formulation of the problem is the following
(see [19]).

(ECF) min∑
e∈E

cE
e xe +∑

�∈L

cL
� y�

∑
�=(i, j)∈L

μi jy� ≥ ∑
k∈K

πμ
k dk μ ≥ 0 (1)

∑
�∈Le

y� ≤ Bxe e ∈ E (2)

x ∈ Z|E|+ ,y� ∈ Z|L|+
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Constraints (1) are metric inequalities [21,14], constraints (2) are capacity constraints
for the physical layer. For the implicit model, the capacity formulation is the following
(see [11] and references therein).

(ICF) min∑
e∈E

cE
e xe +∑

�∈L

cL
� y�

∑
�=(i, j)∈L

μi jy� ≥ ∑
k∈K

πμ
k dk μ ≥ 0 (3)

∑
e∈E

ηeBxe ≥ ∑
�∈L

πη� y� η ≥ 0 (4)

x ∈ Z|E|+ ,y� ∈ Z|L|+

Constraints (3) and (4) are metric inequalities for the logical and the physical layer.
Given a graph R, let us denote by MetR the set generated by all non-zero metrics on

R. As pointed out in [16], μ vectors corresponding to metrics are enough to guarantee
feasibility, therefore we can restrict to μ ∈ MetH for constraints (1) and (3), and to
η ∈MetG for constraints (4).

3 The Polyhedron

Let ELPol be the convex-hull of integer feasible solutions of (ECF) and let ILPol be
the convex-hull of integer feasible solutions of (ICF).

Theorem 1. ELPol and ILPol are full-dimensional.

A edge e ∈ E is a physical bridge if its removal physically disconnects at least one
origin-destination pair in the physical network. A edge � ∈ L is a logical bridge if its
removal disconnects at least one origin destination pair in the logical network.

Theorem 2. Inequalities xe ≥ 0 and y� ≥ 0 are facet-defining both for ELPol and for
ILPol if and only if e is not a physical bridge and � is not a logical bridge.

Theorem 3. Let aT x + gT y≥ b be a valid inequality for ELPol or ILPol, then a≥ 0.

Theorem 4. Let aT x+gT y≥ b be a facet-defining inequality for ILPol, then a ∈MetG.

Theorem 5. Let aT x+gT y≥ b be a valid inequality for ELPol or ILPol having a = 0,
then g≥ 0.

Let SL(H,K) be the convex-hull of integer feasible solutions of the single layer problem
corresponding to the logical layer. Any inequality that is valid for SL(H,K) is also valid
for ELPol and ILPol, moreover the following result holds.

Theorem 6. All facet-defining inequalities of SL(H,K) are facet-defining for ELPol
and ILPol.

Let μ ∈MetH , we define Rμ as Rμ = min{μT y : y ∈ SL(H,K)}. Inequalities μT y≥ Rμ
are called tight metric inequalities [3].
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Theorem 7. All facet-defining inequalities aT x + gT y ≥ b for ELPol or ILPol having
a = 0 are tight metric inequalities.

Let P = {P1, . . . ,Ps} be an s-partition of the nodes, i.e. Pi ⊆ V for all i ∈ {1, . . . ,s},
∪s

i=1Pi = V , Pi∩P j = /0 for all i, j ∈ {1, . . . ,s}, i �= j. Let G(P,EP) and H(P,LP) be the
physical and logical graphs obtained shrinking all the nodes in a subset into a single
node. The parallel edges are replaced by a single edge for the implicit model, they are
not replaced by a single edge to avoid losing the correspondence between logical and
physical edges for the explicit one. Any inequality that is valid for the s-node problem
is valid for the original problem (in the implicit case each edge must be replaced by the
sum of the parallel edges that were shrunk). The following theorem holds.

Theorem 8. Let aT x+gT y≥ b a facet-defining inequality for the s-node problem, then
it is facet-defining for ELPol and ILPol.

Theorem 9. Inequality (2) ∑�∈Le y� ≤ Bxe is facet-defining for ELPol.

Let {S,V −S} be a 2-partition of the nodes and let Δ(S) =
⌈
∑k∈δK(S) dk

⌉
where δK(S)

is the set of the demands having sk and tk is different subsets of the partition.

Theorem 10. The inequality:

∑
e∈δE (S)

xe ≥ �Δ(S)/B� (5)

is facet-defining for ILPol if and only if: (i) Δ(S) > 0, (ii) the subsets are connected
both in the physical and in the logical network, (iii) Δ(S)/B is not integer.

Theorem 11. Let S ⊆ V. If S and V − S are connected then inequality ∑e∈δE (S) Bxe ≥
∑�∈δL(S) y� is facet-defining for ILPol.

It is easy to see that the physical connection of the subsets is also a necessary condition
for B∑e∈δE (S) xe ≥ ∑�∈δL(S) y� to be facet-defining. The proofs of the above results can
be found in [20].
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22. Orlowski, S., Koster, A., Raack, C., Wessäly, R.: Two-layer network design by branch-and-
cut featuring MIP-based heuristics. In: Proceedings of the INOC 2007, Spa, Belgium (2007),
http://www.poms.ucl.ac.be/inoc2007/Papers/author.89/
paper/paper.89.pdf
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Université Libre de Bruxelles, Brussels, Belgium

mposs@ulb.ac.be
2 Zuse Institute Berlin (ZIB), Takustr. 7, D-14195 Berlin, Germany

raack@zib.de

Abstract. Affinely-Adjustable Robust Counterparts are used to provide tractable
alternatives to (two-stage) robust programs with arbitrary recourse. We apply
them to robust network design with polyhedral demand uncertainty, introduc-
ing the affine routing principle. We compare the affine routing to the well-studied
static and dynamic routing schemes for robust network design. It is shown that
affine routing can be seen as a generalization of the widely used static routing
still being tractable and providing cheaper solutions. We investigate properties on
the demand polytope under which affine routings reduce to static routings and
also develop conditions on the uncertainty set leading to dynamic routings be-
ing affine. We show however that affine routings suffer from the drawback that
(even strongly) dominated demand vectors are not necessarily supported by affine
solutions.

1 Introduction

In the classical deterministic network design problem, a set of point-to point commodi-
ties with known demand values is given, and capacities have to be installed on the
network links at minimum cost such that the resulting capacitated network is able to
accommodate all demands simultaneously by a multi-commodity flow. In practice how-
ever, exact demand values are usually not known at the time the design decisions must
be made. Robust optimization overcomes this problem by explicitly taking into account
the uncertainty of the data introducing so-called uncertainty sets. A solution is said to
be feasible if it is feasible for all realizations of the data in a predetermined uncertainty
set D . Introducing even more flexibility, two-stage robust optimization allows to ad-
just a subset of the problem variables only after observing the actual realization of the
data. [3]. In fact, it is natural to apply this two-stage approach to network design since
very often first stage capacity design decisions are made in the long term while the ac-
tual routing is adjusted based on observed user demands. This second stage adjusting
procedure is called recourse which in the context of network design relates to what is
known as traffic engineering. Unrestricted second stage recourse in robust network de-
sign is called dynamic routing, see [5]. Given a fixed design, the commodity routing
can be changed arbitrarily for every realization of the demands. In [5] it is shown that
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allowing for dynamic routing makes robust network design intractable. Already decid-
ing whether or not a fixed capacity design allows for a dynamic routing of demands in
a given polytope is N P-complete (on directed graphs).

This paper is motivated by the scarcity of works using affine routing. Following
[3], we introduce affine routing as a generalization of static routing allowing for more
routing flexibility but still yielding polynomially solvable robust counterparts, (in oppo-
sition to the N P-hard scheme from [9], among others). In this context affine routing
provides a tractable alternative in between static and dynamic routing. Affine routing
has been used implicitly already in [8] for a robust network design problem with a
particular uncertainty set. The contributions of this paper consist of a theoretical and
empirical study of network design under the affine routing principle for general poly-
hedral demand uncertainty sets D . Section 2 introduces the mathematical models and
defines formally static, affine and dynamic routings. In Section 3 we present our main
results. Proofs are omitted due to space restrictions. We also conducted numerical com-
parisons of static, affine and dynamic routings, which are not presented due to space
restrictions.

2 Robust Network Design with Recourse

We are given a directed graph G = (V,A) and a set of commodities K. A commodity
k ∈ K has source s(k) ∈V , destination t(k) ∈V , and demand value dk ≥ 0. A flow for k
is a vector f k ∈ RA

+ satisfying:

∑
a∈δ+(v)

f k
a − ∑

a∈δ−(v)
f k
a = dkψvk for all v ∈V, (1)

where δ+(v) and δ−(v) denote the set of outgoing arcs and incoming arcs at node
v, respectively. For node v ∈ V and commodity k ∈ K we set ψvk := 1 if v = s(k),
ψvk := −1 if v = t(k), and ψvk := 0 else. Flows are non-negative. A multi-commodity
flow is a collection of flows, one for each commodity in K. A circulation (or cycle-flow)
is a vector g ∈RA satisfying

∑
a∈δ+(v)

ga− ∑
a∈δ−(v)

ga = 0 for all v ∈V. (2)

A circulation is not necessarily non-negative. A value ga < 0 can be seen as a flow from
the head of arc a to its tail. We call a circulation g non-negative if g≥ 0 and positive if
additionally g �= 0. Notice that any two flows f̂ k, f k for k only differ by a circulation,
that is, there always exists a circulation g such that f̂ k = f k + g.

In the sequel we assume that d ∈ D ⊂ RK with D being a polytope. A capacity
allocation x ∈ RA

+ is said to support the set D if there exists a routing f serving D such
that for every d ∈D the corresponding multi-commodity flow f (d) is not exceeding the
arc-capacities given by x. The problem can be written as the following (semi-infinite)
linear program:

(RND) min ∑
a∈A

κaxa
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∑
a∈δ+(v)

f k
a (d)− ∑

a∈δ−(v)
f k
a (d) = dkψvk, v ∈V,k ∈ K,d ∈D (3)

∑
k∈K

f k
a (d)≤ xa, a ∈ A,d ∈D (4)

f k
a (d)≥ 0, a ∈ A,k ∈ K,d ∈D (5)

xa ≥ 0, a ∈ A,

where κa ∈ R+ is the cost for installing one unit of capacity on arc a ∈ A.
Most authors ([2,1], among others) use a simpler version of (RND) introducing a

restriction on the second stage recourse known as static routing (also called oblivious
routing). Each component f k : D → RA

+ is forced to be a linear function of dk:

f k
a (d) := yk

adk a ∈ A,k ∈ K,d ∈D . (6)

By combining (6) and (3) it follows that the multipliers y ∈ RA×K
+ define a multi-

commodity (percentage) flow. For every k ∈ K, the vector yk ∈ RA
+ satisfies (1) setting

dk = 1. The flow y is called a routing template since it decides, for every commodity,
which paths are used to route the demand and what is the percental splitting among
these paths.

Ben-Tal et al. [3] introduce Affine Adjustable Robust Counterparts restricting the
recourse to be an affine function of the uncertainties. Applying this framework to (RND)
means restricting f k to be an affine function of all components of d giving

f k
a (d) := f 0k

a + ∑
h∈K

ykh
a dh ≥ 0, a ∈ A,k ∈ K,d ∈D , (7)

where f 0k
a ,ykh

a ∈ R for all a ∈ A,k,h ∈ K, also see [8]. In what follows, a routing f
serving D and satisfying (7) for some vectors f 0 and y is called affine. We see that affine
routing generalizes static routing allowing for more flexibility in reacting to demand
fluctuations, but it is not as flexible as dynamic routing.

The difficulty of model (RND) is that it contains an infinite number of inequalities.
However, it is easy to see that (RND) can be discretized by restricting the model to
the extreme demand scenarios that correspond to vertices of D (for all three routing
schemes).

3 Affine Routings

In this section, we study properties and consequences of the affine routing principle.
First we show that affine routing has a nice interpretation as paths and cycles:

Lemma 1. Let D be a demand polytope and let ( f 0,y) ∈RA×K×RA×K×K be an affine
routing serving D . If D is full-dimensional, then ykk ∈ RA is a routing template for
k ∈ K and f 0k ∈RA,ykh ∈RA are circulations for every k,h ∈ K with k �= h.

We illustrate in Example 1 that affine routing can be as good as dynamic routing in terms
of the cost for capacity allocation and that f 0 and ykh may not describe circulations when
D is not full-dimensional.
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(a) edge costs (b) static (c) dynamic (d) yk1k1

(e) yk1k2 (f) yk2k2

Fig. 1. Static, dynamic, and affine recourse

Example 1. Consider the network design problem for the graph depicted in Figure 1(a)
with two commodities k1 : a→ b and k2 : a→ c. The uncertainty set D is defined by the
extreme points d1 = (2,1),d2 = (1,2) and d3 = (1,1), and the capacity unitary costs are
the edge labels of Figure 1(a). Edge labels from Figure 1(b) and 1(c) represent optimal
capacity allocations with static and dynamic routing, respectively. They have costs of
10 and 9, respectively. Then, Figure 1(d)-1(f) describes coefficients ykh for an affine
routing feasible for the capacity allocation 1(c). If we remove d3 = (1,1) from the set
of extreme points, the dimension of the uncertainty set reduces to 1. The affine routing
prescribed by yk2k2

ac = 1, f 0k1
ab = 3 and yk1k2

ab =−1 serves all demands in the convex hull
of d1 = (2,1) and d2 = (1,2) but f 0k1 and yk1k2 do not describe a circulation.

Compact reformulations. Reformulating by dualizing constraints is a standard tech-
nique in robust optimization that results in so-called robust counterparts. Applying this
technique to (RND) with affine routing yields the following result.

Proposition 1. If D is a full-dimensional polytope and either the number of its vertices
or the number of its facets is polynomial in (|A|, |V |, |K|), then (RND) with the affine
recourse (7) can be solved in polynomial time in (|A|, |V |, |K|).
Proposition 1 implies that given a capacity allocation x, the existence of an affine routing
can be answered in polynomial time as long as D can be described in a compact way,
which is also true in the static case but is in contrast to the N P-complete results for
dynamic routing [5].

Domination of demands. For static and dynamic routings, not all extreme points of
D have to be considered in a discretization of D . Given two demands vectors d1 and
d2, Oriolo [6] says that d1 dominates d2 if any x ∈ RA

+ supporting d1 also supports d2.
Hence, removing dominated (extreme) points from D is not changing the problem in the
dynamic case. Oriolo defines similarly the concept ot total domination for static routing.
For general affine routings, however, there is no notion of domination of demands:

Proposition 2. Let d1,d2 ∈RK
+, d1 �= d2. There exists (x, f 0,y) that satisfies (3)–(5),(7)

for d1 but not for d2.
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Relation to static routing. Notice that if a flow f k for k contains a positive circulation,
that is, there exists a positive circulation g such that f k− g is a flow for k then f k can
be reduced to f k − g without changing the flow balance at s(k) and t(k). Moreover,
the percental splitting among the used paths is unchanged. In this spirit we call any
routing f cycle-free if for all d ∈ D and all commodities k ∈ K the commodity flows
do not contain positive circulations. Of course every optimal capacity allocation has a
cycle-free (static, affine, or dynamic) routing.

Let ek be the k-th unit vector in RK
+ and Dk

0 be the set obtained from D by removing
d ∈D with dk > 0, that is, Dk

0 := {d ∈D : dk = 0}. We can prove the following:

Proposition 3. Let D be a demand polytope. If 0∈D and for each k ∈K there is εk > 0
such that εkek ∈D , then all cycle-free affine routings serving D are static.

Proposition 4. Let D be a demand polytope and let G be acyclic. If dim(Dk
0) = |K|−1

for all k ∈ K, then all cycle-free affine routings serving D are static.

Theorem 1. Let D be a demand polytope. If all cycle-free affine routings serving D
are static then dim(Dk

0) = |K|−1 for all k ∈ K.

Combining Proposition 4 with Theorem 1, we have complectly described polytopes for
which cycle-free affine routings and static routings are equivalent, assuming that G is
acyclic. However, we can show that Proposition 4 is wrong for general graphs.

Relation to dynamic routing. Theorem 3 identifies demand polytopes for which affine
routing is no better than static routing. However, we saw in Example 1 that affine routing
may also perform as well as dynamic routing does, yielding strictly cheaper capacity
allocations. For general robust optimization problems, [4] show that affine recourse is
equivalent to dynamic recourse when D is a simplex. Here we show that in the context
of robust network design this condition is also necessary.

Theorem 2. Given a demand polytope D , all dynamic routings serving D are affine
routings if and only if D is a simplex.

An insight into the numerical computations. We compared numerically static, affine,
and dynamic routings on networks giul39, janos-us, and sun from SNDlib [7]. These
experiments showed that the static-dynamic gap is small (usually below 10%) and that
solutions based on affine routings tend to be as cheap as those based on dynamic rout-
ings. In addition, affine routing enables us to solve problems with more commodities
and more complex uncertainty polytopes than using dynamic routing.
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Abstract. We consider the weight-constrained minimum spanning tree problem
which has important applications in telecommunication networks design. We dis-
cuss and compare several formulations. In order to strengthen these formula-
tions, new classes of valid inequalities are introduced. They adapt the well-known
cover, extended cover and lifted cover inequalities. They incorporate information
from the two subsets: the set of spanning trees and the knapsack set. We report
computational experiments where the best performance of a standard optimiza-
tion package was obtained when using a formulation based on the well-known
Miller-Tucker-Zemlin variables combined with separation of cut-set inequalities.

1 Introduction

Consider an undirected complete graph G = (V,E), with node set V = {0,1, . . . ,n−1}
and edge set E = {{i, j}, i, j ∈ V, i �= j}. Associated with each edge e = {i, j} ∈ E
consider nonnegative integer costs ce and nonnegative integer weights we. The Weight-
constrained Minimum Spanning Tree problem (WMST) is to find a spanning tree T =
(V,ET ), ET ⊆ E , in G of minimum cost C(T ) =∑e∈ET

ce and with total weight W (T ) =
∑e∈ET

we not exceeding a given limit H. This combinatorial optimization problem is
weakly NP-hard [1].

The WMST is known under several different names. It was first mentioned in [1] as
the MST problem subject to a side constraint. In this paper the authors propose an exact
algorithm that uses a Lagrangian relaxation combined with a branch and bound strategy.
A similar approach can also be found in [10]. Approximation algorithms were devel-
oped in [9,4,3]. In [3] the results in [9] are improved. A branch-and-bound algorithm
for the weight-constrained maximum spanning tree problem was developed in [11].

The WMST appears in several real applications and the weight restrictions are mainly
concerned with a limited budget on installation/upgrading costs. A classical application
arises in the areas of communication networks and network design, in which informa-
tion is broadcast over a minimum spanning tree. The upgrade and/or the design of the
physical system is usually restricted to a pre-established budget.
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In this paper we intend to fill a gap, i.e., the lack of research on formulations and
valid inequalities for the WMST problem. Firstly we discuss extended formulations
that are adapted from formulations for the Minimum Spanning Tree problem: the multi-
commodity flow formulation and formulations based on the well-known Miller-Tucker-
Zemlin (MTZ) inequalities. These formulations are compared, from the computational
point of view, with the classical cut-set formulation for the MST. Computational ex-
periments show that interesting results can be obtained when a MTZ based reformula-
tion [2] is combined with separation over the cut-set inequalities. Secondly, we discuss
valid inequalities for the set of feasible solutions that take into account properties from
the two subsets, the knapsack set and the set of spanning trees, simultaneously. These
inequalities adapt for the WMST problem the well-known cover, extended cover and
lifted cover inequalities.

In Section 2 we discuss formulations for the WMST problem while in Section 3 we
discuss valid inequalities. In Section 4 we report some computational experiments.

2 Formulations

A natural way to formulate the WMST problem is to use a formulation for the Minimum
Spanning Tree (MST) problem [6] and add the weight constraint ∑(i, j)∈A wi jxi j ≤ H.

It is well-known (see [6]) that oriented formulations (based on the underlying di-
rected graph) for the MST lead, in general, to tighter formulations (formulations whose
lower bounds provided by the linear relaxations are closer to the optimum values). Thus,
in this section we consider the corresponding directed graph, with root node 0, where
each edge e = {0, j} ∈ E is replaced with arc (0, j) and each edge e = {i, j} ∈ E, i �= 0,
is replaced with two arcs, (i, j) and ( j, i), yielding the arc set A = {(i, j), i∈V \{0}, j∈
V, i �= j}. These arcs inherit the cost and weight of the ancestor edge.

The two classical formulations on the space of the original variables (the binary vari-
ables xi j, for all (i, j) ∈ A, indicating whether arc (i, j) is chosen or not) for the WMST,
one using the circuit elimination inequalities and the other the cut-set inequalities to
ensure connectivity/prevent circuits can be considered. The linear relaxation of both
models provide the same bound [6]. We use the formulation with the cut-set inequal-
ities, Cut-Set formulation, denoted by CS. As the number of cut-set inequalities in-
creases exponentially with the size of the model, these inequalities are introduced in the
model as cuts using separation. However, it is well-known that in order to ensure con-
nectivity/prevent circuits, instead of using one of those families of inequalities with an
exponential number of inequalities, one can use compact extended formulations. That
is the case of the well-known Multicommodity Flow (MF) formulation where connec-
tivity of the solution is ensured through the flow conservation constraints together with
the connecting constraints [6] and the case of the well-known MTZ formulation where
connectivity of the solution is ensured through the node position variables [2].

As stated above, all these four formulations can be used directly to formulate the
WMST by adding the weight constraint. Next we propose one more extended formu-
lation, based on the MTZ variables, requiring some additional elaboration. In addition
to the binary variables xi j defining the topology of the solution, we consider variables
pi, i ∈ V, which specify the weighted-position of node i in the tree, i.e. the sum of
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the weights of the arcs in the path between the root node and node i. The Weighted
Miller-Tucker-Zemlin (WMTZ) formulation is as follows:

min ∑
(i, j)∈A

ci jxi j

s.t. ∑
i∈V

xi j = 1 j ∈V \ {0} (1)

∑
(i, j)∈A

wi jxi j ≤ H (2)

wi jxi j + pi ≤ p j + H(1− xi j) (i, j) ∈ A (3)

0≤ pi ≤H i ∈V (4)

xi j ∈ {0,1} (i, j) ∈ A. (5)

Constraints (1) ensure that there is one arc incident to each node, with the exception
of the root node. Constraint (2) is the weight constraint. Constraints (4) impose bounds
on variables pi. Constraints (3) prevent circuits and act as the well-known subtour elim-
ination constraints given in [7] for the Traveling Salesman Problem: adding (3) for a
circuit C (xi j = 1,(i, j) ∈ C ) one obtains ∑(i, j)∈C wi j ≤ 0. On the other hand for any
feasible weighted tree one can always find values for p j,∀ j ∈ N, such that (3) and (4)
are satisfied. Setting p j to the weight of the path from the root node to any node j,
(p j = pi + wi j for all (i, j) such that xi j = 1 and p0 = 0), then constraints (4) and (3),
for all (i, j) such that xi j = 0, are implied by the knapsack constraint (2).

Following Gouveia [2], constraints (3) can be lifted into several sets of inequalities.
Computational results indicate that among all the lifted inequalities better computa-
tional results are obtained when the following inequalities

(H−wji)x ji + wi jxi j + pi ≤ p j + H(1− xi j) (i, j) ∈ A (6)

are incorporated in the formulation. Thus, henceforward we consider the WMTZ for-
mulation with inequalities (3) replaced by (6).

3 Valid Inequalities

In order to strengthen the formulations presented in the previous section we discuss
classes of valid inequalities.

We denote by X the set of feasible solutions to WMST. Set X can be regarded as
the intersection of two well-known sets: X = XT ∩XK , where XT is the set of spanning
trees and XK is the binary knapsack set defined by (2) and (5). Valid inequalities for XT

and valid inequalities for XK are valid for X . While the polyhedral description of the
convex hull of XT , PT = conv(XT ) is well-known, see [6], for the polyhedral characteri-
zation of the convex hull of knapsack sets, PK = conv(XK), only partial descriptions are
known. This polyhedron is probably one of the most combinatorial optimization poly-
hedra studied. Kaparis and Letchford [5] present a very complete study on separation
of valid inequalities for PK. As in general P = conv(X) is strictly included in PT ∩PK ,
there are fractional solutions that cannot be cut off by valid inequalities derived for PT
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or PK . Hence, here we focus on valid inequalities derived for P that take into account
properties from the two sets, simultaneously.

We call a set C ⊂ E a Tree-Completion (TC) cover if for every spanning tree T =
(V,ET ) such that C ⊂ ET , W (T ) = ∑e∈ET

we > H.

Proposition 1. Given any TC cover C, the tree completion cover inequality (TCCI)
∑e∈C xe ≤ |C|−1 is valid for X .

It can be checked that every cover inequality is a Subtour breaking Constraint (SC),
or a TCCI or it is dominated by a SC or a TCCI. As for cover inequalities, TCCI are
in general weak. One possible approach to strengthen these inequalities is by lifting.
Given a TCCI, ∑e∈C xe ≤ |C| − 1, a valid inequality ∑e∈C xe +∑e∈E\C βexe ≤ |C| − 1,
with βe ≥ 0,e∈ E \C, is called a lifted TCCI (LTCCI). One first approach to lift a TCCI
is to adapt the well-known extended cover inequalities.

Proposition 2. Let C ⊂ E be a TC cover and let C′ = {e ∈ E|we ≥ max{wf : f ∈
C} and C∪{e} forms a cycle}. The extended TCCI (ETCCI),∑e∈C xe +∑e∈C′ xe≤ |C|−
1, is valid for X .

LTCCIs can also be obtained via sequential lifting where the coefficientsβe are computed
one at a time. Given a TCCI, ∑e∈C xe ≤| C | −1, and a LTCCI ∑e∈C xe +∑e∈Rβexe ≤
|C| − 1, one can lift x f , with f ∈ E \ (C ∪ R), by computing β f , such that: 0 ≤ β f ≤
f (C,R,β ) = min{|C | −1−∑e∈C xe−∑e∈Rβexe : x ∈ X ,x f = 1}.

In order to derive LTCCIs no variables are fixed a priori (no restrictions are consid-
ered). However, a new class of lifted inequalities can be derived by the “usual” lifting
procedure where the lifting is done by fixing the value of a set of variables, deriving
a valid inequality for the restricted set that results from the variable fixing, and then
sequentially lift each variable whose value has been fixed. We call the inequalities ob-
tained by this procedure the Generalized Lifted TCCI Inequalities (GLI). To derive a
GLI one fix a set E0 of variables to zero, a set E1 of variables to one, then generate
a LTCCI for the restricted set (XR = X ∩{x : xe = 0,e ∈ E0,xe = 1,e ∈ E1}) and lift
sequentially all the variables with null coefficient in the LTCCI.

4 Computational Experiments

To compare the proposed formulations and test the valid inequalities, a test set of in-
stances was generated. The costs and weights of a first test set with up to 100 nodes,
were generated based on Pisinger’s [8] spanner instances. In a second set of instances,
with nodes from 150 to 300, the costs were based on Euclidean distances while weights
were randomly generated in [1,100]. In all instances H was fixed to the average be-
tween the minimum and the maximum weight spanning tree. All the tests were run
on a Intel(R) Core(TM)2Duo CPU 2.00GHz with 1.99Gb of RAM and using the op-
timization software Xpress 7.1. To solve large size instances we focused on the com-
parison of the two hybrid procedures that result from the MTZ and WMTZ formulations
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Table 1. Average gaps and average running times with formulations MTZ, WMTZ, MF and CS
and the two hybrid procedures MTZ+C and WMTZ+C

LPgap time LPgap time LPgap time LPgap time LPgap time LPgap time
|V | MTZ MTZ WMTZ WMTZ MF MF CS CS MTZ+C MTZ+C WMTZ+CWMTZ+C

10 10.3 0.08 10.3 0.09 1.2 0.02 1.2 0.01 1.2 0.08 1.2 0.01
20 7.4 0.84 7.4 0.99 1.0 0.72 1.0 0.12 1.0 0.05 1.0 0.05
40 3.7 2236 3.7 2276 0.5 12.3 0.5 71.2 0.5 0.27 0.5 0.12
60 2.2 4335 2.2 4329 0.5 144.2 0.5 6269 0.5 0.6 0.5 0.36
80 1.7 4655 1.7 2868 1.0 306 1.0 * 1.0 1.46 1.0 1.25
100 1.3 4333 1.3 4326 0.3 3517 0.3 * 0.3 4329 0.3 2173

150 0.03 4.5 0.03 3.6
200 0.04 13.0 0.04 11.6
250 0.04 37.2 0.04 25.0
300 0.05 44.2 0.05 41.4

strengthened at the root node of the Branch and Bound with the cut-set inequalities,
MTZ+C and WMTZ+C. Using the two hybrid procedures we solved all the generated
instances up to 300 nodes. Table 1 gives the average integrality gap and the average run-
ning times (in seconds) for a set of 5 instances for each number of vertices. An asterisk
means that some of the 5 instances were not solved within a time limit of one day.

For valid inequalities we tested separation heuristics for TCCIs, ETCCIs, LTCCIs
and GLIs. Since the tested separation heuristics for GLIs provided no improvement
when compared to the LTCCIs case, we do not discuss here the separation of GLIs. For
separation of TCCIs we: (i) sort the edges accordingly to a given order; (ii) following
that order, include one edge at a time into set C and check whether C defines a TC
cover, and, if so, checks if the TCCI cuts off the fractional solution; (iii) if no cuts
were found, and there are different orders to be tested, then return to (i) and use the
next order to find cuts, otherwise STOP. For Step (i) we tested four (non-increasing)
orderings of the edges based on the values: x∗e (fractional solution); we; (1−x∗e)/we and
wex∗e . Although not reported here, tests using only one ordering showed that the best
bounds were obtained using wex∗e . Separation of ETCCIs was done similarly. When a
cut from a TCCI is found we lift the TCCI into an ETCCI. For LTCCIs, when a cut from
a TCCI is found we lift the variables accordingly to the order used to find the TCCI. The
lifting coefficient of xe is given by βe = max{0,� f (C,R,β )�} where f (C,R,β ) denotes
the value of the linear relaxation of f (C,R,β ).

For a selected set of 21 instances from 10 to 80 nodes we obtained an average inte-
grality gap of 2.1%, 0.94%, 0.9% and 0.75% with the linear relaxation (LP), LP with
TCCI cuts, LP with ETCCI cuts and LP with LTCCI cuts, respectively. To obtain the
linear relaxation we used the MF formulation. For the linear relaxation of f (C,R,β ) we
used the WMTZ formulation.
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Abstract. We consider the minimum connected dominating set problem. We
present an integer programming formulation and new valid inequalities. A branch-
and-cut algorithm based on the reinforced formulation is also provided. Com-
putational results indicate that the reinforced lower bounds are always stronger
than the bounds implied by the formulation from which resulted one of the best
known exact algorithms for the problem. In some cases, the reinforced lower
bounds are stronger than those implied by the strongest known formulation to
date. For dense graphs, our algorithm provides the best results in the literature.
For sparse instances, known to be harder, our method is outperformed by another
one. We discuss reasons for that and how to improve our current computational
results. One possible way to achieve such goals is to devise specific separation
algorithms for some classes of valid inequalities introduced here.

1 Introduction

Let G = (V,E) be a connected undirected graph with a set of vertices V = {1, . . . ,n}
and edges E (m = |E|). Given i ∈ V , assume that Γi ⊆ V denotes the union of {i} with
the set of vertices of V that share an edge with i. A set W ⊆V is a dominating set of G if,
for every i ∈V , there is k ∈ Γi∩W . Given any set W , let E(W ) = {{i, j} ∈ E : i, j ∈W}
be the subset of edges of E with both endpoints in W . A dominating set W is connected
if the subgraph GW = (W,E(W )) of G is connected. In the Minimum Connected Domi-
nating Set Problem (MCDSP), one wishes to find a connected dominating set of G with
minimum cardinality. MCDSP was shown to be NP-hard in [6].

MCDSP is closely related to the Maximum Leaf Spanning Tree Problem [7] (ML-
STP), which consists in finding a spanning tree of G with as many leaves as possible.
It should be clear that, given a dominating set W , a spanning tree T (W ) = (W,ET ) of
GW could be found efficiently. Such a tree could be enlarged into a spanning tree T of
G, where all vertices in V \W are leaves. Thus, for every connected dominating set W
of G, a spanning tree of G with at least n− |W | leaves could be efficiently found. In
particular, if W is a minimum connected dominating set, a spanning tree of G with the
maximum possible number of leaves results from the procedure outlined above.
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Applications for MCDSP (and MLSTP, too) arise, e.g., in the design of ad-hoc wire-
less sensor networks, where network topologies may change dynamically [1] as well as
the design of fiber optics networks where regenerators of information may be required
at some vertices [3]. Polyhedral investigations for MLSTP were conducted in [4] and
exact algorithms have been proposed in [5,9]. Two integer programming (IP) formu-
lations were proposed for MLSTP in [9]. MCDSP has been tackled by approximation
algorithms in [7,11]. Although not explicitly stated, the underlying problem associated
with the Regenerator Location Problem (RLP) in [3] is a MCDSP.

Here we present an IP formulation, valid inequalities and a branch-and-cut (BC) al-
gorithm [12] for MCDSP. Exploring specific properties of MCDSP, new valid inequal-
ities are proposed. Lower bounds obtained by the reinforced formulation significantly
improves on the original bounds. For some instances, such bounds are stronger than the
best known bounds reported in [9]. Preliminary results obtained with the BC algorithm
implemented here suggest that the formulation might be promising. Though, our current
BC implementation is outperformed by the overall best exact algorithm for MLSTP in
[9], for sparse instances.

The paper is organized as follows. In Section 2, we present the IP formulation for
MCDS. We discuss a BC algorithm in Section 3. Computational results are reported in
Section 4. We conclude the paper in Section 5.

2 Integer Programming Formulation

In order to present an IP formulation for MCDSP, let us use the following decision
variables: yi ∈ {0,1}, i ∈ V : to select which vertices are to be included (yi = 1) or not
(yi = 0) in the dominating set; xe ∈ {0,1}, e ∈ E: to choose edges that guarantee that
the dominating set is indeed connected. In what follows, assume that IB = {0,1} and
that IR denotes the set of real numbers. An IP formulation for MCDSP is:

min
{
∑
i∈V

yi : (x,y) ∈R0∩ (IRm
+, IBn)

}
, (1)

where polyhedral region R0 is implied by:

∑
e∈E

xe = ∑
i∈V

yi−1, (2a)

∑
e∈E(S)

xe ≤ ∑
i∈S\{ j}

yi, S⊂V, j ∈ S (2b)

∑
j∈Γi

y j ≥ 1, i ∈V (2c)

xe ≥ 0, e ∈ E (2d)

0≤ yi ≤ 1, i ∈V. (2e)

The idea behind the formulation above is to use variables x to select edges that guar-
antee that a spanning tree must be found in the subgraph GW = (W,E(W )), implied
by a dominating set W . More precisely, constraint (2a) guarantees that the number of
selected edges is exactly one unity less than the number of vertices in a connected dom-
inating set. Generalized Subtour Breaking Constraints (GSEC) (2b) guarantee that the
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selected edges imply a tree. Constraints (2c), on the other hand, make sure that the set
of vertices selected in a solution is dominating.

Formulation R0 embeds two basic structures. On the one hand, constraints (2a),
(2b), (2d) – (2e) fully characterize the tree polytope of G [10]. The other structure,
implied by constraints (2c) and (2e), is that of the Covering Problem. Facet defining
inequalities for the covering polytope are widely recognized as difficult to separate [2].
In the sequence, we show how formulation R0 can be strengthened by other means,
using problem specific arguments.

Firstly, we claim that (2c) can be lifted to

∑
j∈Γi

y j− ∑
e∈E(Γi)

xe ≥ 1,∀i ∈V. (3)

To show that (3) is valid for MCDSP, consider a connected dominating set W . Since
|W ∩Γi| ≥ 1 and since the edges in E(W ) selected to span the set must imply a tree, we
have that the number of selected edges in E(Γi) must be at most |Γi|−1. Otherwise, at
least one cycle must be included in the solution.

Constraints (3) can also be viewed as a strengthened version of the Generalized Sub-
tour Breaking constraints (2b). To verify that, let S = Γi, for which the corresponding
GSEC reads as: ∑e∈E(Γi) xe ≤ ∑ j∈Γi\{k} y j,k ∈ Γi. Since at least one vertex in Γi must be
chosen, the latter can be replaced by the stronger form ∑e∈E(Γi) xe ≤∑ j∈Γi

y j−1, which
is precisely (3). The previous observation leads to a lifting of (2b) as follows. Assume
that, for any given way, we can certify that, out of those vertices in a particular given
set C ⊂V , at least one vertex must be included in a connected dominating set. Clearly,
for sets satisfying such property, GSECs (2b) can be replaced by the stronger version:

∑
e∈E(C)

xe ≤ ∑
j∈C

y j−1. (4)

To present another valid inequality for MCDSP, assume that given S ⊂ V , S �= /0,
Γ (S) :=

⋃
i∈SΓi and that (S,V \S) := {{i, j} ∈ E : i ∈ S, j �∈ S} denotes the edges in the

cut implied by S. Whenever Γ (S) �= V and Γ (V \S) �= V , at least one edge in (Γ (S),V \
Γ (S)) must be chosen. This is true since the vertices in a connected dominating set
cannot be exclusively confined to S or to V \ S. Mathematically, we have that:

∑
e∈(S,V\S)

xe ≥ 1,∀S ⊂V : Γ (S) �= V,Γ (V \ S) �= V. (5)

Therefore, a strengthened formulation R1 for MCDSP can be obtained by constraints
(2a)-(2b),(2d),(2e), (3),(4) and (5).

3 Branch-and-Cut Algorithm

In this section, we provide the main implementation details on a preliminary BC algo-
rithm for MCDSP, based on formulation R1. The algorithm was implemented with calls
to XPRESS MIP solver (release 19.00) callback routines. The algorithm implements a
best-first search strategy. All other default XPRESS settings were used.
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The algorithm starts solving the LP relaxation

min ∑
i∈V

yi : (x,y) ∈P, (6)

where polytope P is given by (2a),(2d),(2e), (3) and xi j ≤ yi,{i, j} ∈ E, as well as
xi j ≤ y j,{i, j} ∈ E.

Let (x,y) ∈P be the solution to (6) and G = (V ,E) be the subgraph of G implied
by (x,y) (V := {i ∈ V : yi > 0} and E := {{i, j} ∈ E : xi j > 0}). If (x,y) is integer and
if there is no GSEC (2b) violated by (x,y), (x,y) solves (1). Otherwise, we attempt to
reinforce P , appending violated valid inequalities to it.

The exact separation of GSECs can be carried out efficiently, through max-flow (min-
cut) computations, in O(n4) [13]. Despite that, in our current implementation, we do not
use any exact separation algorithm. Here, the algorithm of [13] is only used to present
a tighter approximation of the bounds implied by R1. In practice, in our BC method,
we found advantageous to separate GSECs only through the following heuristic. We
sort the edges in E in non-increasing order of their xi j values. Then, we find a forest of
maximum cardinality of G, using Kruskal’s algorithm [8], giving preference to include
edges with higher values of xi j. Each edge included during Kruskal’s method merges
two sets of vertices into a new connected component in the forest being built. We check
for violated GSECs for the connected components generated after each edge inclusion,
until a forest of maximum cardinality has been found. If no violated GSECs are found
with the separation heuristic, we branch on y variables.

Whenever (with the GSEC separation heuristic outlined above) we find a set C whose
corresponding GSEC is violated, we attempt to lift the inequality to (4), by checking
whether at least one vertex in C must be in a connected dominating set for G. One
simple test allowing to conclude so is the following. Whenever Γ (V \C) �= V , (4) holds
for C. Apart from that, specific separation algorithms for inequalities (4) are not yet
implemented as well as separation algorithms for inequalities (5).

Initial valid upper bounds for MCDSP are computed with the dynamic greedy heuris-
tic introduced in [9]. It is oriented towards generating spanning trees of G with as
many leaves as possible or, equivalently, to enforce that these trees contain as few inner
vertices as possible. The heuristic works with two sets: D , to represent vertices in a
connected dominating set and L , to represent those vertices which have at least one
neighbor in D . The procedure is initialized by D = {v} and L =Γv \{v} for any v∈V .
The basic operation is to try to push vertices from L into D , until a connected dom-
inating set is found. Assuming that i is moved from L to D , in the next iteration we
have: D ← D ∪{i} and L ←L \ {i}∪ (Γi \D). Preference is given to include in D
vertices with as many neighbors as possible, not already included in L . The heuristic
stops when V = L ∪D , when D represents a connected dominating set and L denotes
the set of leaf implying vertices in the tree.

4 Preliminary Computational Results

The algorithms introduced here were implemented in C and all computational testings
were conducted in a Intel XEON machine running at 2Ghz, with 8 Gbytes of RAM



166 L. Simonetti, A.S. da Cunha, and A. Lucena

Table 1. MCDSP lower bounds and Branch-and-cut results

Lower Bounds OPT Branch-and-cut tDGR(s)
n density (%) R0 R1 DGR STR t(s) BLB BUB

30 10 8.60 14.40 14.12 14.34 15 0.01 15 15 0.01
20 5.09 6.18 5.68 6.49 7 0.02 7 7 0.10
30 2.92 3.60 3.05 3.50 4 0.05 4 4 0.03
50 1.95 2.38 1.86 2.11 3 0.04 3 3 0.08
70 1.36 1.83 1.30 2.00 2 0.02 2 2 0.01

50 5 15.55 31.00 31.00 31.00 31 0.02 31 31 0.01
10 9.17 10.68 10.37 11.15 12 0.42 12 12 0.36
20 4.76 5.24 4.88 5.52 7 0.66 7 7 1.32
30 3.28 3.69 3.26 3.93 5 0.25 5 5 1.21
50 1.98 2.44 1.82 2.20 3 0.25 3 3 0.51
70 1.45 1.84 1.31 2.00 2 0.29 2 2 0.04

70 5 17.10 26.31 25.29 26.44 27 1.42 27 27 0.26
10 9.82 11.23 10.90 11.40 13 34.29 13 13 4.73
20 4.92 5.37 5.12 5.63 7 2.16 7 7 16.30
30 3.27 3.62 3.20 3.86 5 1.00 5 5 2.90
50 2.05 2.44 1.95 2.05 3 0.70 3 3 1.33
70 1.43 1.91 1.35 2.00 2 0.79 2 2 1.92

100 5 18.00 21.63 20.79 22.04 24 342.25 24 24 12.50
10 10.05 10.98 10.62 11.07 13 32.11 13 13 9.36
20 5.24 5.52 5.15 5.62 8 174.93 8 8 86.16
30 3.37 3.74 3.33 - 6 193.65 6 6 258.15
50 2.10 2.51 1.97 - 4 35.41 4 4 132.55
70 1.45 1.94 1.36 2.05 3 12.03 3 3 154.10

120 5 19.12 22.74 22.48 22.87 35 - 24.34 26 2.65
10 9.79 10.66 10.33 10.87 13 - 12.79 15 65.49
20 5.14 5.35 5.07 - 8 610.89 8 8 393.47
30 3.40 3.76 3.31 - 6 475.54 6 6 653.70
50 1.99 2.49 1.37 2.15 4 168.55 4 4 815.64
70 1.44 1.92 - - 3 31.67 3 3 356.31

150 5 19.60 21.72 21.35 21.94 26 - 23.74 27 2954.00
10 10.27 10.69 10.56 10.84 14 - 12.47 15 3247.89
20 5.05 5.37 4.95 - 9 - 6.97 9 -
30 3.42 3.81 3.33 - 6 1954.00 6 6 2317.35
50 1.98 2.47 1.90 - 4 481.61 4 4 2756.36
70 1.44 1.99 1.37 - 3 43.75 3 3 1828.86

200 5 20.35 22.52 22.17 22.69 - - 23.78 29 -
10 10.16 10.53 10.39 - - - 11.9 16 -
20 4.95 5.26 4.87 - - - 6.41 9 -
30 3.35 3.77 3.23 - - - 4.56 7 -
50 2.01 2.53 1.93 - 4 2249.43 4 4 20155.00
70 1.44 2.00 1.37 2.03 3 271.91 3 3 8154.13
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memory. In order to evaluate BC and the quality of the lower bounds of the proposed
reinforced model, we considered those MCDSP instances introduced in [9], for which
n∈ {30,50,70,100,120,150,200} and graph densities range from 5% to 70%. For each
value of n and graph density, BC was allowed to run for at most 3600 seconds, after
which, the problem is left unsolved.

Detailed computational results are reported in Table 1. In the first two columns of
the table, we report n and the graph density. In the subsequent four columns, we present
lower bounds for MCDSP: the lower bound implied by R0, an approximation of the
lower bound implied by R1, followed by the lower bounds implied by the Directed
Graph Reformulation (DGR) and by the Steiner Arborescence Reformulation (STR) in
[9]. In the next column, we report the optimal objective function value (OPT) for the
instance, whenever available (an entry ”-” in that column indicates that the correspond-
ing optimal value is yet unknown). In the next three columns, we present results for
our BC method: t(s), the time (in seconds) it takes to solve the instance and the best
lower (BLB) and upper (BUB) bound found after the search. Whenever BC does not
solve the instance within the imposed time limit, an entry ”-” is given in that column. In
the last column of the table, we report tDGR(s), the time (in seconds) needed by the BC
algorithm in [9] (based on DGR) to solve the instance. These times were obtained in a
machine whose speed is directly comparable to the one used in our testings. We do not
compare our method with the BC algorithm in [3], since instances in that study were
not available to us.

As can be seen from Table 1, optimizing over R1 allows significantly stronger lower
bounds, when compared to the bounds implied by R0. We should recall that the bounds
reported in column R1 are not the true bounds provided by that formulation, since in-
equalities (4) and (5) are not separated yet (only GSECs were separated exactly, for the
sake of approximating the bounds given by R1). In many cases, these approximations
are stronger than the best lower bounds in [9], given by STR. Note also that the new
reinforced lower bounds are always at least as strong as the bounds implied by DGR,
the formulation from which resulted the best exact algorithm for MSLTP in [9].

For small instances, with up to 70 vertices, the BC algorithm implemented here is
always faster than the BC algorithm based on DGR. Similar conclusions can be drawn
for larger dense instances. However, despite the potential benefits of optimizing over
R1, for sparse larger instances, the BC procedure implemented here is outperformed
by the one based on DGR. For example, note that when n = 120 and graph density
is 10% or less, the algorithm implemented here failed on solving the problem within
the imposed time limit, whereas the algorithm in [9] solved such instances quite eas-
ily, in less than 66 seconds. One possible explanation is the following. Cuts based on
GSECs are usually denser than directed cutset counterparts. As a consequence, solving
the LP relaxations involved in the formulation discussed here is likely to be more time
consuming than solving DGR relaxations.

5 Conclusions

Our computational results indicate that the (approximated) lower bounds implied by
the reinforced formulation are stronger than the bounds given by the formulation from
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which resulted one of the best exact solution approaches in MCDSP literature. Our
method is at least as fast as the Branch-and-cut algorithm in [9] for dense graphs. De-
spite the potential benefits of optimizing over a better approximation of the convex hull
of feasible solutions, our Branch-and-cut method is outperformed by the best solution
algorithm in [9] for sparse problems.

We believe that our computational results could be improved significantly, if specific
separation algorithms for the new valid inequalities were implemented. In addition, the
valid inequalities suggested here for an undirected formulation for MCDSP have direct
counterparts for MCDSP formulated in a directed graph. Such inequalities should be
easier to separate over a directed structure. Consequently, a Branch-and-cut algorithm
based on a directed version of the formulation provided here could also benefit from the
stronger lower bounds introduced in this study. Benefits of such directed Branch-and-
cut implementation could arise also from other two different sources. Firstly, directed
cutsets are typically sparser than GSECs. Consequently, the time needed to solve the
Linear Programming relaxations may decrease. Secondly, directed cutsets can be sepa-
rated in O(n3) time, while GSECs take O(n4), in the worst case.
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Abstract. With the explosive growth of traffic data, telecommunication networks
have evolved toward a model of high-speed IP routers interconnected by intelli-
gent optical core networks. This IP-over-optical architecture is particularly con-
sidered as an important opportunity for telecommunication carriers who want to
vary services and add more multimedia applications.

In our work, we are interested in the problem of survivability in multilayer
IP-over-optical networks. Given a set of traffic demands for which we know a
survivable logical routing in the IP layer, our purpose is to determine the corre-
sponding survivable topology in the optical layer. We show that the problem is
NP-hard even for one demand. We formulate the problem in terms of 0−1 linear
program based on path variables. We discuss the pricing problem and prove that
it reduces to a shortest path problem. Using this, we propose a Branch-and-Price
algorithm. Some preliminary computational results are also discussed.

1 Introduction

Telecommunication networks have witnessed within the past years an explosive growth
of traffic data. This rapid evolution has induced a need to a new promising architec-
ture that enable an efficient management of huge amount of data. Telecommunica-
tion networks have hence evolved toward a multilayer architecture consisting of high-
speed routers interconnected by intelligent optical core networks. The IP-over-WDM
networks are composed of a virtual (IP/MPLS) layer over a physical (WDM) layer.
Multilayer Network Design problems has recently interested many researchers [3,5].
Moreover, survivability of this networks has become unavoidable in order to ensure a
continuously routing of data in case of failures [2].

The problem that we are studying belongs actually to the multilayer survivability
context. Consider an IP-over-WDM network consisted of an IP/MPLS layer over a
WDM layer. The logical layer is composed of IP routers which are interconnected by
virtual links and the optical layer consists of a number of Optical Cross Connects OXC
interconnected by physical links. To each IP router corresponds an OXC. Consider also
a set of demands and for each demand two node-disjoint paths routing it in the vir-
tual layer. Finally, for each physical link we associate a cost corresponding to its cost
of installation. The Multilayer Survivable Optical Network Design (MSOND) problem
is to find, for each demand, two elementary node-disjoint physical paths routing it in

J. Pahl, T. Reiners, and S. Voß (Eds.): INOC 2011, LNCS 6701, pp. 170–175, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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the optical layer going in order through the OXCs corresponding to the routers in the
logical paths and such that the total cost of installation is minimum. Apart from the
importance of MSOND in the telecommunication context, our problem is very interest-
ing and raised from challenging classical problems. In fact, for a single demand (Single
Commodity MSOND or SC-MSOND), the problem can be seen as a Steiner cycle that
should visits specific nodes with some precedence constraints between them. This is
in a close relationship with classical problems such as the shortest path with specified
nodes [4], the Steiner cycle [6] and the travelling salesman problem with precedence
constraints [1].

The paper is organized as follows. In the following section we give some definitions
and notations that are necessary for the sequel. In Section 3, we prove that MSOND is
NP-hard even for a single commodity. Section 4 will be devoted to present the path for-
mulation, discuss the corresponding pricing problem and give some preliminary results.
We conclude in Section 5 by some future works and perspectives.

2 Notations

We associate to the logical layer an undirected graph G1 = (V1,E1) where nodes corre-
spond to routers and edges to possible links between these routers. We associate to the
optical layer an undirected graph G2 = (V2,E2) where nodes correspond to the OXCs
and edges to the physical links between these OXC. To every router vi ∈V1 we associate
an OXC wi ∈V2. We assume that between nodes of G1 there exist traffic demands. Let
us denote by K the set of these demands. Denote by (Ok,Dk) the pair of routers origin-
destination for k ∈K and by O′k and D′k the corresponding OXCs in the optical layer. Let

L1
k = (v1,1

k , ...,v1, j
k , ...,v

1,l1,k
k ) and L2

k = (v2,1
k , ...,v2, j

k , ...,v
2,l2,k
k ) be the two paths routing

demand k∈K in G1. These paths pass through terminal routers vi, j
k for which are associ-

ated terminal optical end-nodes OXCs wi, j
k (k ∈K, i∈ {1,2}, j = 1, ..., l1,k + l2,k). Denote

by Tk the set of these terminals. The other nodes in V2 are called Steiner nodes for the
demand k ∈ K and are denoted Sk = V2\Tk . Denote by Tk = {T q

k ,q = 1, ...,nk,nk =
l1,k + l2,k− 2,k ∈ K} the set of sections between the different pairs of terminals OXC.
A graph Gq,k is the induced graph obtained from G2 by deleting all terminals Tk of the
demand k but extremities of section q or T q

k . Graph G2 is assumed to be complete with
infinite capacities on the edges. Let c(e) > 0 be the cost of an edge e ∈ E2.

3 Complexity

In this section, we study the complexity of the problem MSOND. We are in particu-
lar interested in the problem SC-MSOND (case of |K| = 1). The SC-MSOND can be
defined as follows:

Input: an undirected graph G′ = (V ′,E ′), a cost w′e ≥ 0 associated to each e′ ∈ E ′ and
T ′ = (v1, ...,vl) terminals.

Output: An elementary cycle going in order through the terminals T ′ such that the total
cost is minimum.
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The corresponding decision problem is to find if there exists an elementary cycle
going in order through the terminals T ′ such that the total cost is at most equal to a
positive integer U ′. Recall that T ′ constitutes the terminals corresponding actually to
the source, the destination and intermediary nodes used in the two paths between the
source and the destination. Since the two given paths are vertex disjoint, we have always
|T ′| ≥ 3.

Theorem 1. SC-MSOND Problem is NP-hard.

Proof. We prove that the decision problem associated to SC-MSOND is NP-hard by
proposing a polynomial reduction from the decision problem associated to Weighted
Min-Sum Vertex Disjoint Paths WMSVDP proved to be NP-hard in [7,8]. This problem
can be defined as follows:

Input: an undirected graph G = (V,E), a cost we ≥ 0 associated to each e ∈ E and
T = {(si,ti) ∈ V, i = 1, ...,k} pairs of origin-destination, we assume that k is fixed and
greater than or equal to 3.

Output: Does it exist k vertex disjoint paths P1, ...,Pk, Pi is a path from si to ti, i = 1, ...,k
such that the total cost is at most equal to a positive integer U .

Consider an instance (G,W ,T ) of the WMSVDP. We construct from (G,W ,T ) an
instance (G′,W ′,T ′) of MSOND as follows. We add to a copy of the graph G, k ver-
tices u1, ...,uk and 2k edges {ti,ui},{ui,si+1}, i = 1, ...,k (s1 = sk+1). Denote Eu the
added edges. Let w′e = we if e ∈ E and 0 otherwise (see Figure 1). Finally we set
T ′ = (s1,t1,u1,s2, ...,s j,t j,u j...,sk, tk,uk,s1) the terminals.

In the following we show that there exist k vertex disjoint paths between the pairs of
T in G such that the total cost is at most equal to U if and only if there exists in G′ an
elementary cycle going in order through the terminals T ′ such that the total cost is at
most equal to U .

Consider first a solution of WMSVDP in G with a total cost C≤U . The solution con-
sists of k vertex disjoint paths between the pairs (si, ti), i = 1, ...,k. These paths plus the set
of edges Eu constitute by construction an elementary cycle in G′ going in order through
the terminals of T ′. And since, the weights of all edges in Eu is equal to 0, the cost of the
cycle is equal to C which is at most equal to U . Consider now an elementary cycle in G′
going in order through the terminals T ′ with a total cost C′ ≤U . Consider the sections
between the terminals (si,ti), i = 1, ...,k. Since the cycle is elementary, these sections are

t2s2t1s1

sk
tk

s3

t3

u2

u3uk−1

uk

u1

0

t2s2t1s1

sk
tk

s3

t3

0

0

0

0

0

0

0

Fig. 1. WMSVDP reduction to SC-MSOND
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vertex disjoint. Moreover, as the weights of all edges in Eu are 0, the total weight of the
sub-paths between (si,ti), i = 1, ...,k is exactly equal to C′ which is at most equal to U .

Corollary 1. Since SC-MSOND is a particular case of MSOND, MSOND is NP-hard.

4 Path Formulation

We denote by Pq
k the set of paths routing the section q of demand k calculated in the

reduced graph Gq,k previously defined. We associate for each path p ∈ Pq
k a binary

variable xq,k
p which takes 1 if p ∈ Pq

k is selected to rout section q of demand k and 0
otherwise. Let ye = 1 if the edge e ∈ E2 is installed and 0 if not. We define coefficients
a = (aq,k

p ,k ∈ K,q ∈ Tk, p ∈ Pq
k ) and b = (bq,k

p ,k ∈ K,q ∈ Tk, p ∈ Pq
k ) as follows. aq,k

p (w)
characterize the degree of a vertex w in a path p routing section q of demand k: it is
equal to 1 if w is one of the extremities of section q, 2 if w belongs to p and 0 otherwise.
bq,k

p (e) designs the belonging of an edge e to the path p routing section q of demand k:
it is equal to 1 if e belongs p and 0 otherwise. The MSOND problem is equivalent to
the following 0−1 linear program.

min ∑
e∈E2

c(e)ye

∑
p∈Pq

k

xq,k
p = 1 ∀k ∈ K,∀q ∈ Tk (1)

∑
q∈Tk

∑
p∈Pq

k

aq,k
p (w)xq,k

p ≤ 2 ∀w ∈V2,∀k ∈ K (2)

∑
p∈Pk

bq,k
p (e)xq,k

p ≤ ye ∀e ∈ E2,∀k ∈ K,∀q ∈ Tk (3)

0≤ xq,k
p ≤ 1 ∀k ∈ K,∀q ∈ Tk,∀p ∈ Pq

k (4)

xq,k
e ∈ {0,1} ∀k ∈ K,∀q ∈ Tk,∀p ∈ Pq

k (5)

0≤ ye ≤ 1 ∀e ∈ E2 (6)

ye ∈ {0,1} ∀e ∈ E2 (7)

Constraints (1) ensure routing of the demands through terminals with respect to the
order constraints since paths are calculated in reduced graphs. Constraints (2) ensure
the elementarity and disjunction of the two paths. Constraints (3) force routing variables
to be equal to 0 if design variables are equal to 0 as well. Finally, constraints (4), (6)
and (5), (7) represent, respectively, the trivial and integrity constraints.

4.1 Pricing Problem

Let us denote by πq,k, λ k
w and β q,k

e the dual variables associated respectively with con-
straints (1), (2) and (3), with respect to primal variable xq,k

p . The reduced cost of the

variable xq,k
p is given by Rq,k

p = −(πq,k +∑w∈V2
λ k

waq,k
p (w) +∑e∈E2

bq,k
p (e)β q,k

e ). Here,
the pricing problem is to find, for each section q of a demand k, a path of Pq

k such as
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Rq,k
p = minp′∈Pq

k
Rq,k

p′ and Rq,k
p < 0. This can be seen as a shortest path problem in a re-

duced graph Gk,q with weights λ k
w on vertices and β q,k

e on edges. λ k
w can be after split

and hence weights are then only on edges. As dual variables λ k
w and β q,k

e are negative,
edge weights are non negative and the shortest path pricing problem can be solved in
polynomial time.

4.2 Preliminary Results

We compute two relaxations of the previous program. The first relaxing both integer
constraints and the second relaxing only x variables integrality. Results are reported
in Table 1. The columns represent the numbers respectively of nodes in G2, nodes in
G1, demands, generated paths for the first and second relaxations and finally the gaps
of these relaxations comparing to the optimal value obtained by a Branch-and-Cut al-
gorithm based on a cut formulation of the problem. The results show that branching
only on y variables is interesting for small instances but is inefficient for larger ones.
In addition, both relaxations are weak with a mean gap of near to 25% and have to be
strengthened mainly by identifying and adding new valid inequalities.

Table 1. Preliminary computational results

V1 V2 K paths1 paths2 gap1 gap2
6 4 4 55 65 21.26 0.00
7 4 3 99 202 21.26 0.00
7 4 5 147 227 21.26 0.00
8 5 4 340 1533 21.44 0.00
8 5 6 214 908 27.16 0.00

10 7 8 2260 18947 12.57 0.00
12 10 8 11163 348697 24.71 0.00
12 10 12 2619 195999 22.63 100.00

V1 V2 K paths1 paths2 gap1 gap2
13 8 12 2474 228436 27.29 100.00
14 12 18 3620 2071 20.16 17.89
16 13 16 4890 4324 25.68 24.88
16 13 18 8071 5179 26.17 24.73
17 15 18 10403 7773 24.72 23.81
17 15 20 11474 6377 30.68 29.61
18 15 25 18478 8044 25.08 23.03
20 17 25 23168 14506 25.43 25.04

5 Conclusion

In this paper, we study the problem of Multilayer Survivable Optical Networks Design.
We prove that this problem is NP-hard and we propose a path-based formulation to
it. We discuss the corresponding pricing problem and give some preliminary computa-
tional results for two relaxations of the formulation. Current experimentations concern
the test of different branching rules to achieve the Branch-and-Price algorithm. These
results will be shown later.
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Abstract. The HSNDP consists in finding a minimum cost subgraph containing
K edge-disjoint paths with length at most H joining each pair of vertices in a
given demand set. The only formulation found in the literature that is valid for
any K and any H is based on multi-commodity flows over suitable layered graphs
(Hop-MCF) and has typical integrality gaps in the range of 5% to 25%. We pro-
pose a new formulation called Hop-Level-MCF (in this short paper only for the
rooted demands case), having about H times more variables and constraints than
Hop-MCF, but being significantly stronger. Typical gaps for rooted instances are
between 0% and 6%. Some instances from the literature are solved for the first
time.

1 Introduction

Let G = (V,E) be an undirected graph with n vertices, numbered from 0 to n− 1, and
m edges with non-negative costs ce, e ∈ E; D ⊆ V ×V be a set of demands; and K ≥
1 and H ≥ 2 be natural numbers. The Hop-constrained Survivable Network Design
Problem (HSNDP) consists in finding a subgraph of G with minimum cost containing,
for each demand d = (u,v) ∈ D, K edge-disjoint (u,v)-paths with at most H edges.
If all demands have a common vertex, w.l.o.g. the vertex 0, we say that the demands
are rooted, otherwise they are unrooted. When |D| = 1, the HSNDP is polynomial for
H ≤ 3 and NP-hard for H ≥ 4 (see [1]). When the cardinality of D is not constrained,
the problem is NP-hard even if D is rooted, K = 1 and H = 2 (see [3]). In this short
paper we only consider the case of rooted demands.

2 Hop Multi-Commodity Flow Formulation (Hop-MCF)

An extended formulation was recently proposed for the general HSNDP [2]. As D here
is assumed to be rooted, a demand (0,d) ∈D will be identified by its destination vertex
d. Let V ′=V−{0} and E ′ = E \δ (0), where δ (i) represents the set of edges adjacent to
a vertex i. For each demand d ∈D, define the hop layered directed graph Gd

H = (V d
H ,Ad

H),
where V d

H = {(0,0)}∪{(i,h) : i ∈V ′; 1≤ h≤H−1}∪{(d,H)}. Assuming that G is a
complete graph, Ad

H =

J. Pahl, T. Reiners, and S. Voß (Eds.): INOC 2011, LNCS 6701, pp. 176–181, 2011.
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1,1

2,1

3,1

4,1 4,34,2

3,2

2,2

1,2

0,0

Fig. 1. Example of auxiliary graph Gd
H : G complete, n = 5, d = 4, and H = 3

{[0, j,1] = [(0,0),( j,1)] : j ∈V ′}
∪ {[i, j,h] = [(i,h−1),( j,h)] : i, j ∈V ′ − {d}, i �= j; 2≤ h≤ H−1}
∪ {[i,d,h] = [(i,h−1),(d,h)] : i ∈V ′ − {d}; 2≤ h≤ H}.

Each arc in Ad
H is identified by a triple [i, j,h], giving its origin, destination and hop.

When G is not complete, if (i, j) /∈ E , arcs of form [i, j,h] and [ j, i,h] are omitted from
Ad

H . Figure 1 depicts an example of such auxiliary network. For each d ∈ D, and for
each arc [i, j,h] in Ad

H , define binary flow variables f dh
i j . For each edge (i, j) in E , define

design binary variables xi j. Let δ−(i,h,d) and δ+(i,h,d) denote, respectively, the set
of arcs in Ad

H entering and leaving vertex (i,h). The Hop-MCF formulation follows:

min ∑
(i, j)∈E

ci jxi j (1)

s.t.

∑
a∈δ−(i,h,d)

fa− ∑
a∈δ+(i,h,d)

fa = 0 d ∈D;(i,h) ∈V d
H , i /∈ {0,d} (2)

H

∑
h=1

∑
a∈δ−(d,h,d)

fa = K d ∈D (3)

f d1
0 j ≤ x0 j d ∈D;(0, j) ∈ δ (0) (4)

H−1

∑
h=2

( f dh
ji + f dh

i j )≤ xi j d ∈D;(i, j) ∈ E ′ \ δ (d) (5)

H

∑
h=2

f dh
jd ≤ x jd d ∈D;( j,d) ∈ δ (d)\ δ (0) (6)

3 Hop-Level Multi-Commodity Flow Formulation (HL-MCF)

It is well-known that directed formulations of network design problems, when available,
are much stronger that their undirected counterparts. The relative weakness of known
HSNDP formulations, including Hop-MCF, is related to the impossibility of directing
the solutions, since both orientations of an edge can be used in the paths for different
demands. The proposed formulation tries to remedy this difficulty by introducing the
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concept of solution level. Given a solution T , we can partition V into L + 2 levels,
according to their distances to 0 in T . In the rooted case, L is set as equal to H, in the
unrooted case (not presented here) L is usually greater than H. Level 0 only contains
vertex 0; level l, 1 ≤ l ≤ L, contains vertices with distance l; and level L + 1 contains
the vertices that are not connected to 0 in T . Besides variables x, HL-MCF also has:

– Binary variables wl
i , i ∈ V ′,1 ≤ l ≤ L + 1, indicating that vertex i is in level l;

constant w0
0 is defined as 1.

– Binary variables yl1l2
i j indicating that edge (i, j) belongs to T , i is in level l1 and j in

level l2. For each (0, j) ∈ δ (0) there is a single variable y01
0 j . Each e = (i, j) ∈ E ′ is

associated with a set of 3(L− 1) variables {yll
i j : 1 ≤ l ≤ L− 1}∪{yl(l+1)

i j ,yl(l+1)
ji :

1≤ l ≤ L−1}.
– Binary flow variables gdhl1l2

i j associated to |D| auxiliary hop-level networks.

The x and (w,y) variables are linked by the following constraints:

L+1

∑
l=1

wl
i = 1 i ∈V ′ (7)

w1
j = y01

0 j = x0 j (0, j) ∈ δ (0) (8)

L−1

∑
l=1

yll
i j +

L−1

∑
l=1

(yl(l+1)
i j + yl(l+1)

ji ) = xi j (i, j) ∈ E ′ (9)

y11
i j + y12

i j ≤ w1
i

y11
i j + y12

ji ≤ w1
j

(i, j) ∈ E ′ (10)

yll
i j + yl(l+1)

i j + y(l−1)l
ji ≤ wl

i

yll
i j + yl(l+1)

ji + y(l−1)l
i j ≤ wl

j

(i, j) ∈ E ′; l = 2, . . . ,L−1 (11)

y(L−1)L
ji ≤ wL

i

y(L−1)L
i j ≤ wL

j

(i, j) ∈ E ′ (12)

wl
i ≤ ∑

( j,i)∈δ (i), j �=0

y(l−1)l
ji i ∈V ′; l = 2, . . . ,L (13)

It can be checked that for any fixed binary solution x there is a single (w,y) solution that
satisfies (7–13), that solution is binary and every vertex is assigned to a single level.
However, a fractional x usually forces a (w,y) solution that splits vertices and edges
into different levels. In order to profit from that splitting, for each d ∈D, we define hop-
level directed graphs Gd

HL = (V d
HL,Ad

HL), where V d
HL = {(0,0,0)}∪{(i,h, l) : i ∈V ′; 1≤

h≤ H−1; h≤ l ≤ L}∪{(d,H, l) : 1≤ l ≤ L}, and Ad
HL =

{[0, j,1,0,1] = [(0,0,0),( j,1,1)] : j ∈V ′}
∪ {[i, j,h + 1, l, l′] = [(i,h, l),( j,h + 1, l′)] : i, j ∈V ′, i �= d; 1≤ h≤ H−2;

1≤ l ≤ h; max(l−1,1)≤ l′ ≤ l + 1}
∪ {[i,d,H, l, l′] = [(i,H−1, l),(d,H, l′)] : i ∈V ′, i �= d;

1≤ l ≤ L−1; max(l−1,1)≤ l′ ≤ l + 1}
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2,1,1 3,1,1 4,1,1 2,2,1 3,2,1 4,2,1

4,3,3

4,3,1

4,3,21,2,2 2,2,2 3,2,2 4,2,2

1,2,11,1,1

0,0,0

Fig. 2. Example of auxiliary graph Gd
HL: G complete, n = 5, d = 4, and H = L = 3

Again, if G is not complete, the arcs corresponding to missing edges are removed. Each
arc in Ad

HL is identified by a tuple [i, j,h, l1, l2], giving its origin, destination, hop, origin
level and destination level. For each such arc, we define a binary flow variable gdhl1l2

i j .

Let δ−(i,h, l,d) and δ+(i,h, l,d) denote, respectively, the set of arcs in Ad
H entering and

leaving vertex (i,h, l). The new formulation HL-MCF is (1), subject to (7)–(13) and to
the following constraints:

∑
a∈δ−(i,h,l,d)

ga− ∑
a∈δ+(i,h,l,d)

ga = 0 d ∈ D;(i,h, l) ∈V d
HL, i /∈ {0,d} (14)

H

∑
h=1

∑
a∈δ−(d,h,l,d)

ga = K.wl
d d ∈ D; 1≤ l ≤ L (15)

gd101
0 j ≤ y01

0 j d ∈ D;(0, j) ∈ δ (0) (16)

H−1

∑
h=l+1

(gdhll
ji + gdhll

i j )≤ yll
i j d ∈ D;(i, j) ∈ E ′ \ δ (d);1≤ l ≤ L−2 (17)

H−1

∑
h=l+2

gdh(l+1)l
ji +

H−1

∑
h=l+1

gdhl(l+1)
i j ≤ yl(l+1)

i j d ∈ D;(i, j) ∈ E ′ \ δ (d);1≤ l ≤ L−2 (18)

H

∑
h=l+1

gdhll
jd ≤ yll

jd d ∈ D;( j,d) ∈ δ (d)\ δ (0);1≤ l ≤ L−2 (19)

H

∑
h=l+1

gdhl(l+1)
jd ≤ yl(l+1)

jd d ∈ D;( j,d) ∈ δ (d)\ δ (0);1≤ l ≤ L−2 (20)

The HL-MCF formulation has O(|D|.H.L.m) variables and O(|D|.H.L.n) constraints,
an increase by a factor of L = H (in both dimensions) with respect to Hop-MCF. It can
be proved that HL-MCF is at least as strong as Hop-MCF in terms of bounds provided
by their linear relaxations.
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4 Computational Experiments

The experiments were performed with CPLEX 12.1 MIP solver over a single core of an
Intel i5 2.27GHz CPU. The first tests were on the rooted instances used in [2], complete
graphs with 21 vertices associated to random points in a square, euclidean distances.
The root vertex is in the center on instances TC-5 and TC-10, and on a corner on in-
stances TE-5 and TE-10. The numbers 5 and 10 refer to the number of demands. We
also added instances TC-20 and TE-20 with 20 demands. The average gaps of formula-
tions Hop-MCF and HL-MCF are listed in Table 1.

– Formulation HL-MCF is very strong when K = 1 or H = 2, all problems are solved
to optimality with almost no branching. The rooted case with K = 1 is equivalent
to the hop-constrained Steiner tree problem, for which very strong formulations are
already known [3]. But for H = 2 and K > 1, HL-MCF is much stronger than any
other known formulation.

– When K = 2 and H = 3, HL-MCF is much stronger than Hop-MCF, the decreased
gaps more than compensate for having to solve larger LPs. For example, instance
TE-20 can be solved to optimality in 162 seconds using HL-MCF, but can not be
solved in 1 hour with Hop-MCF.

– When K = 2 and H = 4 or when K = 3 and H = 3, HL-MCF is significantly stronger
than Hop-MCF. However, the decreased gaps and smaller enumeration trees are
roughly compensated by the burden of the larger LPs; the overall results are com-
parable.

– In the remaining three cases, HL-MCF is only slightly stronger than Hop-MCF,
which performs much better on solving those instances to optimality.

Table 1. Average percentage gaps on instances TC-5, TC-10, TC-20, TE-5, TE-10, TE-20

K H = 2 H = 3 H = 4 H = 5
Hop 1 14.99 23.91 25.82 26.94
HL 0.00 0.00 0.83 1.93
Hop 2 12.92 13.13 13.05 9.60
HL 0.40 2.83 5.62 5.08
Hop 3 7.38 7.64 7.00 6.01
HL 0.08 3.27 5.20 5.27

The remaining experiments were performed on rooted instances from [4], defined
over complete graphs with up to 40 vertices, for cases K = 2 and H = 2,3. Table 2
compares the performance of CPLEX MIP solver over formulations Hop-MCF and
HL-MCF, in terms of duality gap, number of nodes in the branch tree and total time to
solve the instance. The root gaps of the branch-and-cut in [4] for some instances are
also presented.
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Table 2. Results on the rooted instances from Huygens et al.[4] (K = 2)

H = 2 H = 3
n |D| HL-MCF Hop-MCF [4] HL-MCF Hop-MCF [4]

Gap Nds T(s) Gap Nds T(s) Gap Gap Nds T(s) Gap Nds T(s) Gap
20 5 0.00 1 0.12 6.30 2 0.03 0.9 3.23 6 2.75 8.15 12 0.66 5.2

10 0.00 1 0.12 12.73 22 0.44 6.8 4.09 16 10.6 12.52 181 26.0 6.8
15 0.00 1 0.13 12.90 55 0.40 9.2 3.82 141 76.6 16.33 6788 1635 -

30 8 0.22 2 1.05 9.28 5 0.99 3.3 5.28 14 25.2 10.75 53 8.45 5.3
15 0.00 1 0.37 14.27 36 0.44 7.4 4.23 86 217 18.36 7026 2110 -
22 0.08 1 0.99 18.31 685 8.29 - 3.37 1608 6754 22.01 - >24h -

40 10 0.00 1 0.97 12.64 22 0.46 7.4 2.24 5 100 8.84 117 43.7 7.4
20 0.00 1 1.09 14.96 263 5.47 - 6.23 6819 21866 18.06 - >24h -
30 0.00 1 0.51 16.60 8456 198 - 4.11 23014 83150 20.98 - >24h -

Avg. 0.03 1 0.59 13.11 1061 23.8 5.8 4.07 3523 12466 15.11 - - 6.18
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Abstract. One of the most important problems when deploying inter-
domain path selection with quality of service requirements is being able
to rely the computations on metrics that hold for a long period of time.
Our proposal for achieving such assurance is to compute bounds on the
metrics, taking into account the uncertainty on the traffic demands. In
particular, we will explore the computation of the maximum end-to-end
delay of traversing a domain considering that the traffic is unknown
but bounded. Since this provides a robust quality of service value for
traversing the Autonomous System (AS), without revealing confidential
information, we claim that the bound can be safely conceived as a met-
ric to be announced by each AS to the entities performing the path
selection, in the process of interdomain path selection. We show how the
maximum delay value is obtained for an interdomain bandwidth demand
and we propose an exact method for solving the optimization problem.
Simulations with real data are also presented.

1 Introduction

New Internet market proposals are emerging, mainly due to the new techno-
logical offers and the positioning towards them of all the involved actors [23].
Value-added services with real time requirements, such as videoconferencing and
telepresence, are showing up as the new stars of the Internet for Service Providers
(SPs) and Customers. The Network Providers interests are moving towards ob-
taining new revenues and business opportunities out of these new services, that
rely completely on their deployed network infrastructure. Network Providers
must be able to assure Quality of Service (QoS), so as to fulfil the Customers
expectations and to be able to trade among SPs, for instance by means of Ser-
vice Level Agreements (SLAs), which means, in turn, that SPs can offer better
services to their Customers.

This arising scenario becomes more complex when the services provided tra-
verse several domains, or Autonomous Systems (ASs), in its way from the SP
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to the Customer. In this case, QoS must be provided all throughout the path,
involving different ASs, which raises several technical, economical and political
issues. Concerning the technical aspect, achieving scalability, preserving con-
fidentiality and providing interoperability is of paramount importance in any
technical solution [25].

In the framework of an alliance of ASs, carriers work together in order to
achieve a common interest. In this scenario QoS values related to each domain
are exchanged, and Traffic Engineering decisions are taken according to them.
Different mechanisms have been proposed for the selection and establishment
of interdomain QoS constrained tunnels, that mainly rely on RSVP-TE [4] and
the PCE architecture [1] (e.g. [22,6,21]). These mechanisms are based on metrics
announced by each AS but they do not specify how to compute such metrics.
The complexity resides mainly in the fact that the announced metrics have to
hold for some period of time, ideally as long as the service is provided. Hence,
ASs must be able to provide QoS values that are guaranteed to hold for a certain
period of time.

We shall put our focus on point-to-point services with QoS requirements. In
this case the service may be abstracted to a QoS guaranteed tunnel (for instance
an MPLS tunnel [10]). The path traversed by the tunnel must fulfil the QoS
parameters required by the service.

In particular, our attention will be focused on those services for which available
bandwidth and end-to-end delay are critical parameters. The end-to-end delay
is compounded of the sum of the delays introduced by each transit AS and the
terminal ones, from source to destination. As illustrated in Fig. 1, where we show
a situation with two terminal ASs and one transit AS, the delay in each of the
ASs depends on the traffic already present in the AS (t∗ flows in Fig. 1), the
topology, the routing configuration, and the traffic coming from the new tunnel
(flow u in Fig. 1).

But, why do not simply advertise an instantaneous value of the metric? The
main fact that makes an instantaneous value of the metric a non appropriate
one is the existence of uncertainty, which implies that the value can change in

Fig. 1. Scenario
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the immediate future. We could, however, follow a dynamic approach, in which
network state is continuously monitored and metric value is updated. These
reactive approaches make it possible to tightly follow the variations of the traffic
but they require a monitoring infrastructure to be present and some sophisticated
algorithms to process the measurement data. Moreover, reactive approaches are
able to detect variations in the traffic demand such as abrupt changes but they
are not able to forecast them [8]. On the contrary, proactive mechanisms provide
pessimistic values of QoS metrics but they are able to provide metrics values
which are likely to hold for a given period of time since in that case uncertainty
is taken proactively into account. In this work we will use the robust approach,
in which a bound for the metric is provided.

In this context, uncertainty can be classified into two types: network state un-
certainty and traffic uncertainty. Uncertainty in network state refers to the situa-
tion where the topology changes or is partially known. This may be due to infor-
mation arriving out of date or not synchronized to the entity performing the com-
putation, or simply to link failures. In the literature some approaches have been
proposed for performing QoS routing under this kind of uncertainty [19,12,18].
However, in the present paper we will assume that the topology does not change,
and considering this uncertainty is left for future work.

On the other hand, we will consider uncertainty in the traffic. This refers
to the fact that the flows traversing the domain are not perfectly known. This
can be due to the fact that changes occur rather frequently. The reason of these
changes may be several, for instance, external routing modification, the presence
of unexpected events such as network equipment failures outside the domain,
large-volume network attacks or flash crowd occurrences [24].

In summary, we shall focus on the computation of a bound for the end-to-end
delay of traversing an AS, from a given Origin to a Destination node, as a func-
tion of the AS parameters we mentioned before: the routing configuration, the
traffic demands and the traffic injected through the new tunnel. We will con-
sider the situation where traffic variation is the principal cause of delay variation
and we will assume that the topology and the routing configuration are fixed.
However, we will consider that traffic is non-static, and that it is contained in a
so-called uncertainty set [5]. The question of how to choose this set is discussed
later in the paper.

2 Problem Statement

In this section we formally present the problem of finding the maximum end-to-
end delay experienced by a bounded amount of traffic traversing an AS through
a particular path. As mentioned before, we will consider that traffic varies within
an uncertainty set. First, let us introduce the notations that are going to be used
throughout the paper and state some assumptions.
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2.1 Assumptions and Notations

The network is compounded of n nodes and of a set L of links, L = {l1 . . . l|L|},
where the notation |·| refers to the cardinality of the set. Traffic demands will
be represented by the so-called traffic matrix TM = {tmi,j}, where tmi,j is the
amount of traffic from node i to node j. We shall use as well the term Origin
Destination (OD) flows to refer to them. We reorder every traffic demand and
rewrite the OD flows (tmi,j) in vector form as t, t = {tk}, k = 1 . . . n(n − 1).
The amount of traffic coming from the interdomain injected into the new tunnel
will be u.

The link load Y is a vector containing in the i-th entry the load on link i
without considering u. With these definitions we can see that Y = R.t where
R, a |L| ×m matrix (m = n(n − 1)), is the routing matrix, which means that
{Ri,j} = 1 if flow j traverses link i, and 0 otherwise.

The flow that carries u will traverse the AS from an origin to a destination
node following a certain path. We will call this path P . We will equally refer to
the set of links that belong to that path as P , in this case P is a subset of L.

The mean link delay is approximated by the M/M/1 model, that is to say
Dl = K

cl−yl
, where cl is the capacity of the link l and K the mean packet size.

We then approximate the mean delay of a path by the sum of the delays of the
links it traverses:

DelayP =
∑
l∈P

K

cl − yl
. (1)

The propagation delay may be ignored in our formulation since it does not
change with the load and may be added as a constant later on. Moreover, the
M/M/1 model is used for illustrative purposes only. In fact, any convex function
may be used instead. See [17] on how to obtain a good approximation of the
delay function based on measurements. We will as well ignore the constant K in
the following formulations, for the sake of notations simplification.

2.2 Modelling Traffic Uncertainty

As mentioned above, we will not make any assumptions on the traffic matrix
except that it always belongs to a certain uncertainty set. In particular we will
follow the approach presented in [5] and define the uncertainty set as a polytope
formed by the result of the intersection of several half-spaces. Consequently, all
constraints can be written as A × t ≤ b, where A is a certain matrix which can
be defined after different models, and b is a given bound. We now present four
examples of polytope definition.

The Hose Model. This particular case of the general polytope definition was
presented in [9] in the context of VPN services specification. It establishes that
the input and output total traffic on each node is bounded. That is to say:∑

i tmi,j ≤ b+
j and

∑
i tmj,i ≤ b−j ∀ i ∈ N , j ∈ {N \ i}, where b−j , b+

j are given
bounds on the total ingress and egress traffic and N is the set of network nodes.
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Links Capacity Model. This model results of the application of bounds on
the total traffic traversing the different links of the network, yi ≤ bi. These
constraints can also be written as Rh × t ≤ b, where b = {bi} are historical
maximums taken for instance form measurements, and Rh is the routing matrix
at the moment when the measurements were taken. This approach is used for
example in [13] where a polyhedral definition of the traffic matrix is preferred
to its estimation because of non stationarity artifacts and estimation errors.

Known Statistical Values. If mean, variance and covariance values of link
loads are known, we can compute the variance ellipsoid as {w = �+α | αT Ωα ≤
1} where � is the expected value of the link loads, and Ω its covariance matrix.
Therefore, the variables w describe an ellipsoid. Several half-planes tangent to the
ellipsoid can be defined in order to obtain linear constraints. Figure 2 illustrates
this example. The polytope can then be written as A × R × t ≤ b, were R is
the routing matrix and A and b define the polytope in which the ellipsoid is
inscribed.

Fig. 2. Example for defining a polytope after known statistical values

Prediction Based Model. This model consists of defining bounds on the
value of traffic demands which are based on traffic prediction. The prediction of
future demands is based on past observations. For example artificial intelligence
methods such as neural networks or time series analysis can be used in order to
forecast the future values of the traffic demand; see for example [11] for prediction
based on a seasonal ARIMA model.

2.3 Mathematical Formulation

The problem consists on, given a path, computing the maximum end-to-end
delay of that path, allowing the traffic matrix t to vary within a polytope. That
is to say that we will work with a maximization problem with linear constraints.
Let us introduce the m-dimensional column vector wl, l ∈ P , as wl = {wl,i} =
Rl,i/cl.

The optimization problem is described by Problem 1, where A and b define
the polytope.
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Problem 1

max
t

∑
l∈P

1/cl
1

1− wT
l t− u/cl

s.t. A× t− b ≤ 0.

Please note that if some additional linear constraints must be taken into account
they can be integrated in the definition of the polytope A × t ≤ b. Example of
such constraints can be wT

l t+u/cl < 1, for l ∈ P , which simply states that there
should be enough link capacity in order to accommodate all the traffic, including
the new tunnel.

The objective function in the maximization problem defined by Problem 1 is
not a concave function, consequently, the problem is not a convex one. On the
contrary, the problem is the maximization of a convex function over a polytope.
This is a very difficult problem, all the more so since the objective function is
not strictly convex.

Intuitively we can see that the function is not strictly convex due to the
difference between the number of links and the number of OD flows. Indeed,
while the number of links grows linearly with the number of nodes in the network,
the number of OD flows squares with the number of nodes in the network. This
means that for different values of the vector t the objective function of Problem
1 can have the same value, while its gradient remains always non-negative.

More formally, we state the following proposition.

Proposition 1. The function f(t), objective function of Problem 1, is a convex
function over the set S = {t ∈ �m|A× t ≤ b}, but not a strictly convex one.

Proof. We explore if the following inequality holds [20]

f(t1) ≥ f(t2) +∇f(t2)T (t1 − t2), t1, t2 ∈ S. (2)

Applying the definition of f to Eq. (2) we obtain the following inequality for
t1, t2 ∈ S :∑

l∈P

1/cl

1− wT
l t1 − u/cl

≥
∑
l∈P

1/cl

1− wT
l t2 − u/cl

+
∑
l∈P

1/cl × wT
l (t1 − t2)

(1 − wT
l t2 − u/cl)2

. (3)

Let us now define gl(t), an auxiliary function in order to simplify the notations,
as

gl(t) = 1− wT
l t− u/cl, t ∈ S. (4)

Substituting the latter definition in Eq. (3) and performing some regular math
operations we obtain the following inequality∑

l∈P

(gl(t2)− gl(t1))2

gl(t1)gl(t2)2
≥ 0, t1, t2 ∈ S. (5)

Each term on Inequality (5) is either zero or greater than zero for all t1, t2 ∈ S.
Therefore, the function f is convex over S. It remains to show if the function
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is strictly convex or not. Which is equivalent to showing if there exist t1 and t2
∈ S such that < wl, t2− t1 > is equal to zero for all l ∈ P , that is to say, having
all vectors wl, l ∈ P orthogonal to the vector (t2 − t1), or not. Since the vectors
wl do not form a basis of �m it is possible to find t1 and t2 ∈ S such that their
difference is orthogonal to all vectors wl, l ∈ P . ��

Proposition 1 showed that f is a convex function, but not a strictly convex one.
However, in the following section we reformulate the problem and show a way
to find its solution.

3 Finding the Solution

We now state the problem in a different way which will allow us to find its
solution. We aim at formulating the problem in such a way that the objective
function is strictly convex and the dimension of the problem is reduced. For
doing so we shall decompose the vector t over a particular basis of �m.

The procedure consists in decomposing the vector t over the vectors wl, l ∈
P , and their orthogonal complement. We define the matrix W1 as an m by |P |
matrix, whose columns are the vectors wl, with l ∈ P , and W2, an m by m−|P |
matrix such that it verifies

WT
1 ×W2 = 0. (6)

Provided that the columns of W1 are linearly independent, it can be proven
that the columns of the matrix W defined after W1 and W2 as

W = [W1W2] = [w1, . . . , wl, . . . , w|P |, . . . wm] (7)

represent a basis of �m.
We shall decompose the vector t over the defined basis using the auxiliary

variables x ∈ �|P | and h ∈ �m−|P | as

t = W1x + W2h. (8)

By multiplying both sides of Eq. (8) by wT
l , and using Eq. (6) we obtain

wT
l t = wT

l W1x = vT
l x, (9)

where we have set vT
l = wT

l W1, for all l ∈ P . Note that both vl and x are column
vectors of dimension |P |.

Equation (9) will directly lead us to rewriting the objective function of Prob-
lem 1 as a function of x. We shall now redefine the polytope by writing it in the
basis W which leads to defining a new matrix denoted D and computed as A×W .
The polytope over the new basis can be compactly written as D[xT hT ]T ≤ b.

All in all, Problem 1 can be rewritten in the form of Problem 2. Please note
that the objective function depends only on the variable x.
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Problem 2

max
x

∑
l∈P

1/cl
1

1− vT
l x− u/cl

s.t. D

(
x
h

)
≤ b

Let us call the objective function of Problem 2 as J(x) and the new polytope
as V (i.e. V =

{
[xT hT ]T ∈ �m : D[xT hT ]T ≤ b

}
). Let us as well define the

polytope Vx as

Vx =
{
x ∈ �|P | | ∃ h ∈ �m−|P | : D[xT hT ]T ≤ b

}
. (10)

Let W1 = span{w1 . . . w|P |}, where span refers to the set of all linear combina-
tions of vectors w1 . . . w|P |. Clearly Vx is the projection of V onto W1.

Since V is a convex polytope by definition, it is easy to check that Vx is also
a convex polytope. More precisely, Vx is the convex hull of the projection of the
extreme points of V onto W1 [7].

Then, since J(x) does not depend on h, Problem 2 can be represented in the
space W1 as follows:

Problem 3

max
x

J(x)

s.t. x ∈ Vx.

The following statement summarizes our development of the problem.

Proposition 2. The optimization problem defined by Problem 1 is equivalent to
the one defined by Problem 3.

We now show that J(x) is a strictly convex function over Vx, which will in turn
allow us to prove that the solution of Problem 3 is attained at an extreme point
of the polytope Vx.

Proposition 3. The function J(x), objective function of Problem 2, is a strictly
convex function over the set Vx defined as in (10).

Proof. We define λl(x) as

λl(x) = (1− vT
l x− u/cl)−2, ∀l ∈ P (11)

and the matrix Λ as
Λ(x) = diag(λ1, . . . , λ|P |). (12)

For all x ∈ Vx and l ∈ {1 . . . |P |}, λl(x) > 0. Thus, Λ(x) is a positive-definite
matrix1.
1 A n × n real symmetric matrix M is positive-definite if zT Mz > 0 for all non-zero

vectors z, z ∈ �
n.
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In addition, we can check that [v1 . . . v|P |] = WT
1 W1 is also a positive-definite

matrix. Thus, the Hessian of J(x), which is

∇2J(x) = (WT
1 W1)Λ(x)(WT

1 W1) (13)

is as well a positive-definite matrix. ��
We are now able to show that the solution to Problem 3 is attained at an extreme
point of Vx.

Theorem 1. The solution of Problem 3 is attained at an extreme point of the
polytope Vx, defined by the set (10).

Proof. We prove by contradiction that the maximum of J(x) over Vx must be
reached at an extreme point of Vx. Since, by Proposition 3, J is a strictly convex
function, inequality (14) holds [20].

J(Φ) > J(θ) +∇J(θ)T (Φ− θ), ∀ θ, Φ ∈ Vx. (14)

Now, let θ̄ ∈ Vx be an optimal point of Problem 3. Therefore, θ̄ is a strict
maximum, since J is strictly convex, and, for all Φ ∈ Vx \ {θ̄}, we must have:

J(Φ)− J(θ̄) < 0. (15)

Together with inequality (14), we get

∇J(θ̄)T (Φ− θ̄) < 0, ∀Φ ∈ Vx \ {θ̄}. (16)

By contradiction we suppose that θ̄ is not an extreme point of Vx. Then there
exists μ ∈ �|P | such that ||μ|| > 0 and θ̄ + μ, θ̄ − μ ∈ Vx. By letting Φ = θ̄ − μ
and Φ = θ̄ − μ at a time, we would get:

∇J(θ̄)T μ < 0 and −∇J(θ̄)T μ < 0, (17)

which is not possible. ��
Problem 3 allows us to work with a strictly convex function, and to reduce the
dimension of the feasible region, in some cases, considerably. According to Prepo-
sition 2 along with Theorem 1, finding the extreme points of the polytope Vx

renders the solution of Problem 1. Therefore, we need to be able to perform the
projection of a polytope, and afterwards enumerate its extreme points. Methods
for doing so are available (see for instance [14]), although these can be compu-
tationally expensive tasks. In the following section we explore this solution by
performing simulations in real topologies.

4 Simulations

To evaluate the proposed method we present some simulation studies. The sim-
ulations are carried out using two different research networks. Namely, the Abi-
lene network, whose topology, historical traffic demands and routing matrix are
available from [26], and the GÉANT network [3]. All results are computed on a
regular computer (Intel Pentium Dual-core 1.86GHz, 2GB of RAM). For com-
puting the polytope projection and enumerating its extreme points we use the
MPT library [2] and the ET library [16], distributed along with the former.
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4.1 The Abilene Network

The Abilene network consists of 30 internal links and 12 routers, all exchang-
ing traffic among them. Figure 3 shows a traffic trace of Abilene’s network. In
this example we can see how the traffic matrix is prone to sudden traffic vari-
ations. Figure 3(a) shows the traffic for some OD flows corresponding to 2016
consecutive measurements, while Fig. 3(b) shows the link load.

Mon Tue Wed Thu Fri Sat Sun
0

1

2

3

4

5

6x 10
5 Traffic volume for some OD flows, 1 week

Time (days)

T
ra

ffi
c 

(b
ps

)

(a) Traffic volume per OD flow
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(b) Link load

Fig. 3. Example of traffic variation in the Abilene network, one week of traffic

For illustrative purposes we compute results for three different types of ser-
vices. Namely, a VoIP service with 1 Mbps of bandwidth, a broadcast quality
HDTV service with 19.4 Mbps and a VPN service with a demand of 270 Mbps.
We compute the maximum delay suffered by a flow traversing the AS through
a particular path and carrying each one of these services at a time. The path is
chosen arbitrarily, from one origin to one destination node. Please note that this
choice and its impact on the delay are out of the scope of the present paper.

In the first place, we define the polytope using the Links Load model. That
is to say, the polytope is defined by imposing bounds on each link load, which
are based on the maximum values obtained historically.

The values obtained for the defined path and the three services are shown
in Fig.4(a) (dotted line) along with the current delay value. The current delay
value corresponds to a value obtained instantaneously. For this particular case
the maximum delay value is approximately 3 times more than the current one
which illustrates the weakness of the current value as a metric on which rely. We
will come back to this kind of comparisons later on this section.

In the second simulation, we define the polytope based on the Known Statis-
tical Values model, introduced in Sect. 2.2. We compute the variance ellipsoid
using a historical traffic trace (the same trace used for the first simulation) and
we approximate the ellipsoid by a polytope, by intersecting several half spaces
tangent to it. The maximum delay of traversing the AS is computed for the same
path used in the previous simulation.

The results are shown on Fig. 4(a) (dashed line) for a flow traversing the same
path as in the previous simulation and carrying the three defined services, one
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Fig. 4. Simulations in the Abilene network

at a time. We can see that in this case the bound obtained is smaller than the
one obtained in the first place and closer to the instantaneous value.

We now compare the two bounds with the real delay suffered by the path
during the two weeks after the computation of the polytopes, in all the cases
assuming an interdomain bandwidth demand of 1 Mbps. The results are shown
in Fig. 4(b) which illustrates the behaviour of the bounds with respect to the
real values. We can see that there is a trade-off between assuring a delay value
for most of the time, by using a big polytope, or having a tighter bound most of
the time, but having delays that outstrip the bound. Nevertheless, the polytope
could be reduced in a safe way if we had additional information, for example by
using as well the hose model which imposes bounds to the traffic coming from
other clients, which may be limited by a contract and traffic shaping.

The time consumed to perform the computations varied between 48 minutes
and 36 hours, which for a moderately sized network is rather high. In fact, even if
in several topologies we were able to find the exact solution through these means,
it is still an open question whether there exists an algorithm for enumerating all
extreme points of a polytope of an arbitrary dimension in running polynomial
time [15]. We will, on the next subsection, empirically explore the time consumed
by the method in a larger network.

4.2 The GÉANT Network

In order to test the proposed solution on a larger topology, we use the GÉANT
network. This network is compounded of 23 nodes and 74 links. Thus, we can
define up to 506 independent OD flows. As we have already mentioned the com-
putation complexity of the proposed solution is likely to grow with the dimension
of the network (i.e. the number of links in the path and the number of OD flows
in the network). The simulations with this network aid as to assessing the per-
formance of the method when the number of OD flows grows. We perform the
simulations considering several subsets of OD flows, containing each of them 170,
200, 230 and 260 OD flows. The polytope is defined using the Links Load model
and historical data.
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Fig. 5. Computation time as a function of the number of OD flows considered on the
GÉANT Network

Figure 5 shows the time consumed by each phase of the procedure, that is
to say obtaining the polytope in the new basis, projecting the polytope and
finding its extreme points. We can see that in all the cases, when we increase
the number of OD flows considered, the task that consumes most of the time is
the projection of the polytope.

The procedure has shown rather high computational times, though it was
still feasible in all the tests. It is because of this that we think of this method as
of great aid when developing approximated, but less time consuming, methods,
since it provides the ground truth, thus a validation tool for such methods.

5 Conclusion and Future Work

In this work we have addressed the problem of the existence of uncertainties
on the traffic demands in the context of interdomain QoS provisioning. The
uncertainty was modeled as a polytope and different examples for building it
were mentioned. We have focused our attention on the computation of a ro-
bust value of the end-to-end delay of traversing an AS under traffic uncertainty,
which means obtaining a value that does not change when traffic demands do
so, assuming the demands remain inside the uncertainty set. This bound was
conceived as a metric to be used in the interdomain path selection process, since
it provides a value that the AS can guarantee for a certain period of time, while
it can be advertised without reveling confidential information. The problem was
mathematically formulated and an exact solution, based on the projection of the
polytope onto a subspace of smaller dimension, was proposed. Simulations with
real data were performed and shown.

The theoretical study suggested that the computational times could be rather
high, simulations with large network confirmed this. In order to find a remedy to
this situation, we are currently studying alternative solutions based on heuristics
and numerical approximation methods. The exact method proposed in this paper
will be extremely useful as a tool of validation of the approximated solutions. In
addition, as future work, we shall address the case of having uncertainty on the
AS topology in addition to traffic uncertainty. For instance, taking into account
the case of link or node failures, and being able to provide even in those cases a
tight end-to-end delay bound.
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Abstract. In this work we propose a novel approach addressing the need for a
spatially equitable distribution of the flows when routing multiple commodities
on a capacitated network. In our model, the spatial distribution of the flows is
considered by partitioning the area in which the network is embedded by means
of a grid of uniform size cells and then computing the impact of the network flows
on each cell by a weighted linear combination of the flows interesting each cell.
A spatially equitable distribution of the flows is therefore obtained when all the
multicommodity demands are satisfied in such a way to minimize the maximum
impact registered on the cells of the grid. We refer to this problem as the spa-
tially equitable multicommodity capacitated network flow problem and propose
a minimax linear programming formulation. The need to find a proper trade-off
between the total routing cost and the spatial equity is treated as well by consid-
ering both the objective functions and computing pareto-optimal solutions for the
bicriteria optimization problem. Computational results obtained on a real traffic
network are presented and discussed in the paper.

1 Introduction

In this paper we consider the problem of distributing network flows in a spatially eq-
uitable way while satisfying given multicommodity demands on a capacitated network.
This topic was previously treated in the literature concerning hazardous material road
trasportation by introducing the concept of spatially dissimilar paths [2] in order to
reduce the exposure of the population to the risk associated to accidents. In their ap-
proach this issue is addressed by computing a set of k-shortest routes between an origin-
destination pair and then seeking for the dissimilar paths by applying a p-dispersion
algorithm. The dissimilarity measure in this approach is based on the length of the arcs
shared by each couple of paths. In [5] two main contributions are introduced in this
field. The first is the use of the Buffer Zones of a path, defined as the area obtained by
moving a circle along a path whose center is the vehicle while the radius is proportional
to the impact area due to possible accidents. Buffer Zones are therefore considered in
order to take into account the exposure during a shipment for the population when com-
puting path dissimilarities in the p-dispersion method. The second contribution consists
in selecting the routes among a set of pareto-optimal paths according to a multicriteria

J. Pahl, T. Reiners, and S. Voß (Eds.): INOC 2011, LNCS 6701, pp. 196–209, 2011.
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shortest path problem considering concurrently the risk and the length of the paths. The
Buffer Zones method addresses one of the main drawbacks of the approach previously
presented in [2], in which routes may be spatially very close to one another. Never-
theless the effectiveness of the latter approach in obtaining an equitable distribution of
the flows from the spatial point of view suffers some limits depending on the topology
of the network: in those cases in which the spatial distribution of the arcs on the net-
work area in not uniform, that is in particular the case for urban areas, the overlapping
between the Buffer Zones can interest several times the same areas, even if the dimen-
sion of the overlapping can by tiny with respect to the total length of the paths. This
turns out in providing low similarity measures between the paths, but at the same time
it can produce an overload on those shared portions of the networks. In [4] a different
approach is considered: in addition to the main objective of selecting a set of paths of
minimum total risk, a link-based risk equity is considered as well by imposing a thresh-
old for the maximum risk sustained by the population living in the proximity of each
populated link of the network. A path-based mixed integer programming formulation
is provided in that paper, together with two heuristic methods and a Lagrangian relax-
ation providing effective lower bounds on the optimal solution value. In this paper we
generalize the scope of the spatially equitable distribution of the flows: the suitability
of the spatial dissimilarity of the flows can interest several different aspects in the real
applications of network flow models, and is not always limited to the population liv-
ing at the boundaries of the network roads as assumed in the previous contributions on
this topic. In the specific field of transportation networks, e.g. the spatial distribution
of the flows influences the concentration of the polluting emissions, the exposure to
acoustic noises, as well as the risk associated to accidents occurring when transporting
materials that are airborne when released. We propose a novel approach based on an
extension of the topology considered in the network optimization problem: the area in
which the network is embedded is partitioned by a grid of cells of uniform dimension,
and the impact of the flows on each cell is considered to be proportional to the length
of the portion of the arcs that interest the cell itself. In this way, it becomes possible
to consider an explicit measure for the cell load when routing the flows in the con-
text of the multicommodity capacitated network flow problem, and a spatially equitable
distribution of the flows can be obtained by minimizing the maximum cell load while
satisfying the multicommodity demands and respecting the capacity constraints on the
network links. This approach generalizes the contributions in the literature on the link-
based balanced network flow problem (see e.g. [1,8]). The remainder of the paper is
organized as follows. In Section 2 the spatially equitable multicommodity network flow
problem is introduced and formulated as a minimax linear programming problem. In
Section 3 the computational results obtained by testing the proposed optimization prob-
lem on a real urban transportation network are presented and discussed. In Section 4
we extend the model to the bi-objective case considering concurrently the minimization
of the maximum cell load and the total routing costs. Finally, we discuss further lines
of research for the proposed optimization problem, aiming at the real suitability of the
model for practical purposes.
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2 The Spatially Equitable Multicommodity Network Flow
Problem

Recall the definition of the capacitated multicommodity network flow problem: we
are given a directed graph G = (V,A) with |V | = n and |A| = m, with arc capaci-
ties ui j > 0, ∀(i, j) ∈ A, arc costs ci j ≥ 0, ∀(i, j) ∈ A, and a set D of commodities,
each associated with a certain amount of demand di, a source node si ∈ V , and a
destination node ti ∈ V \ {si}, ∀i ∈ D. The goal is to minimize the total routing cost
TC = ∑k∈D∑(i, j)∈A ci jxk

i j while satisfying all the demands without violating arc capac-
ity constraints. The capacitated multicommodity network flow problem can be therefore
formulated as follows:

min TC = ∑
k∈D

∑
(i, j)∈A

ci jx
k
i j (1)

s.t. ∑
j∈FS(i)

xk
i j− ∑

j∈BS(i)
xk

ji =

⎧⎪⎨⎪⎩
dk, i = sk,∀k ∈D

0, ∀i ∈V\{sk,tk},∀k ∈ D

−dk, i = tk,∀k ∈D

(2)

∑
k∈D

xk
i j ≤ ui j ∀(i, j) ∈ A (3)

xk
i j ≥ 0 ∀(i, j) ∈ A,∀k ∈D

where the minimization of the total routing costs is subject to the satisfaction of the de-
mand and the conservation of the flows (2) and to the constraints on the arc capacities
(3). In order to introduce the spatially equitable multicommodity network flow prob-
lem, we first consider a set Z of cells of uniform size and dimension overlapped to the
underlying network, as depicted in Figure 1. Then, a set of weights {wz

i j} can be defined
as follows:

wz
i j = ci j · lz

i j ∀z ∈ Z,∀(i, j) ∈ A (4)

where lz
i j, defined in [0,1], expresses the fraction of the arc (i, j) that is embedded in the

cell z. With this notation in mind, the spatial distribution of the flows in our approach
is considered by introducing a linear measure of the impact fz that the routed flows
produce on a certain cell z ∈ Z, namely the cell load, as follows:

fz = ∑
k∈D

∑
(i, j)∈A

wz
i j · xk

i j ∀z ∈ Z (5)

The objective of a spatial equity in the distribution of the multicommodity network
flows can be now obtained if we consider the following minimax linear model in which
the objective function λ to be minimized is defined as the maximum among the cell
loads fz, ∀z ∈ Z, registered over all the cells, while satisfying all the demands on the
capacitated network. We refer to this problem as the spatially equitable multicommodity
capacitated network flow problem that can be formulated as follows:
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Fig. 1. A grid of uniform cells overlapped to the underlying road transportation network of the
city of Salerno, Italy

min λ (6)

s.t. ∑
j∈FS(i)

xk
i j− ∑

j∈BS(i)
xk

ji =

⎧⎪⎨⎪⎩
dk, i = sk,∀k ∈ D

0, ∀i ∈V\{sk,tk},∀k ∈D

−dk, i = tk,∀k ∈D

(7)

∑
k∈D

xk
i j ≤ ui j ∀(i, j) ∈ A (8)

∑
k∈D

∑
(i, j)∈A

wz
i jx

k
i j = fz ∀z ∈ Z (9)

fz ≤ λ ∀z ∈ Z (10)

xk
i j ≥ 0 ∀(i, j) ∈ A,∀k ∈D (11)

fz ≥ 0 ∀z ∈ Z (12)

λ ≥ 0

where constraints (9) assign the cell load of each cell z to the variable fz, while con-
straints (10) define the maximum cell load λ = maxz∈Z fz to be minimized as an objec-
tive function.

3 Computational Results on a Real Traffic Network

A set of computational tests was performed in order to verify the effectiveness of the
proposed optimization problem with respect to the purposes, considering as a basic in-
stance the real traffic network of the city of Salerno, Italy. The network presents a set
of 556 nodes and 1186 arcs, and a set of 100 commodities was generated at pseudo-
random with fixed demand equal to 10. The real lengths of the traffic roads were used
for the set of arc costs {ci j}while the arc capacities {ui j}were fixed equal to 100 and 50
in two separate sets of experiments. The considered traffic network is depicted in Fig-
ure 1 and was processed by using the open-source Geographical Information System
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Table 1. Sketch of the computation of the lz
i j coefficient for some arcs of the network

Arc ID Origin node Destination node Arc Length Intersection Intersection Coefficient
(i, j) ∈ A i ∈V j ∈V (m) Zone (z ∈ Z) Length (m) lz

i j

1 1 2 223.89 4866 25.76 0.11504
1 1 2 223.89 4867 1.50 0.00671
1 1 2 223.89 4996 86.08 0.38448
1 1 2 223.89 4995 84.58 0.37777
1 1 2 223.89 4997 25.97 0.11600
2 3 4 69.86 4235 26.06 0.37310
2 3 4 69.86 4363 43.79 0.62691
3 5 6 141.65 4368 30.52 0.21545
3 5 6 141.65 4496 52.91 0.37355
3 5 6 141.65 4497 53.28 0.37617
3 5 6 141.65 4625 4.93 0.03484
4 5 7 125.75 4368 70.16 0.55791
4 5 7 125.75 4369 55.59 0.44210
... ... ... ... ... ... ...

(GIS) software Quantum GIS (www.qgis.org). Given a grid of cells Z, the set of coeffi-
cients {lz

i j} must be preliminarily computed to assess the portion of each arc (i, j) ∈ A
that is embedded in each zone z ∈ Z in order to compute the set of weights {wz

i j}, as
reported in (4). In the implementation of the model, this task was performed by using
the fTools plugins in the Quantum GIS environment. More in detail, two overlapped
layers are considered in the GIS project: a polygon vector layer containing the cells of
the grid and a linear vector layer containing the arcs of the network. The intersection
process between the latter and the former layers gives rise to a new linear vector layer
(intersection layer) in which each arc of the original network is repeated several times,
one for each cell of the grid that contains a portion of the arc itself. It is also possible
to compute the length of each portion of arc that belongs to the new intersection layer
by exporting the geometrical features of the intersection layer within the underlying
database containing the attribute table. Finally, each coefficient lz

i j can be obtained by
considering the ratio between the length of the portion of arc (i, j) ∈ A associated to
the zone z ∈ Z in the intersection layer and the length of the associated arc (i, j) in
the linear vector layer containing the original network. A sketch of the results of this
geometrical analysis within the GIS environment is presented in Table 1. Since in this
computational test we are assuming that the arc costs ci j are equal to the arc lengths,
the arc intersection lengths directly coincide with the weights wz

i j. Nevertheless this is
not always valid, since arc costs could differ in general from the length of the arcs,
depending on the purposes and the field of application of the model.

In Table 2 the computational results are presented at varying the size of the cell side,
ranging from 100 to 1000 meters. In this case, cell grids covering the whole network
area were filtered keeping only those cells containing at least a portion of road, while
the empty cells were disregarded in the model. All the numerical results are expressed
by comparing the results provided by the minimization of the maximum cell load λ
with those obtained by minimizing the total routing cost function TC. In Table 2 and
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Table 2. Comparison of the computational results on different sizes of the cell side for arc capac-
ities equal to 100

Cell side (m) ‖Z‖ MCLD (%) ACLI (%) RT
100 1284 47.34 2.87 16.51
120 1006 57.85 5.34 10.83
140 799 55.92 16.56 3.38
160 682 58.57 21.54 2.72
180 560 58.88 21.56 2.73
200 486 52.59 23.02 2.28
300 265 53.28 24.18 2.20
400 172 55.84 31.26 1.79
500 122 42.61 20.89 2.04
600 94 43.68 24.76 1.76
700 73 41.89 22.30 1.88
800 59 42.53 26.62 1.60
900 51 41.42 32.45 1.28
1000 45 36.37 21.72 1.67

Table 3 the numerical results are presented as follows. For each cells size, the number
of cells containing at least one portion of arcs, namely |Z|, is considered. The value
MCLD (Maximum Cell Load Decrease) expresses the reduction of the maximum cell
load that is obtained with the spatially equitable model with respect to the minimum
routing cost model, and is computed as follows:

MCLD =
λ TC−λ ∗

λ TC

being λ ∗ the value of the objective function for the minimax model and λ TC the maxi-
mum cell load fz, z ∈ Z, obtained by minimizing the total routing cost function TC. The
value ACLI (Average Load Cell Increase) expresses the increase of the mean cell load
arising from the equitable distribution of the flows in comparison with the minimum
routing cost model, and can be expressed as follows:

ACLI =
f̄z
∗ − f̄z

TC

f̄z
TC

where f̄z
∗ = ∑z∈Z fz

‖Z‖ is the average value of the cell loads obtained with the minimax

model and f̄z
TC = ∑z∈Z fz

‖Z‖ is the average value of the cell loads arising from the mini-

mization of the total routing cost function. Finally, the ratio RT = MCLD
ACLI is computed

and presented in the last column. In Table 2 the results obtained by fixing all the arc ca-
pacities equal to 100 are presented, while Table 3 refers to the case with arc capacities
equal to 50.

All the instances were solved at the optimum within a CPU time ranging from some
seconds to a few minutes by the IBM ILOG CPLEX 12 software running on a 2.4
GHz intel core i5 with 4Gb DDR Ram. The running time increases with the number
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Table 3. Comparison of the computational results on different sizes of the cell side for arc capac-
ities equal to 50

Cell side (m) ‖Z‖ MCLD (%) ACLI (%) RT
100 1284 69.74 10.23 6.82
120 1006 68.99 10.51 6.56
140 799 60.93 18.33 3.32
160 682 67.92 19.83 3.42
180 560 56.62 17.67 3.20
200 486 61.97 22.29 2.78
300 265 58.77 23.59 2.49
400 172 55.84 31.26 1.79
500 122 37.44 23.67 1.58
600 94 41.10 24.59 1.67
700 73 47.92 18.39 2.60
800 59 38.38 26.25 1.46
900 51 34.13 20.12 1.70

1000 45 35.48 18.20 1.95

of cells associated with each instance. By analyzing the numerical results, it turns out
how the increase in the number of cells gives rise to better results, providing a higher
relative decrease of the maximum cell load and higher values for the ratio RT between
MCLD and ACLI as well. The comparison between the results in Table 2 and Table 3
show the effects of reducing arc capacities from 100 to 50: some of the MCLD values
improve significantly, but the concurrent higher relative increase in the ACLI values
influences the RT ratios, that are lower for the case with arc capacities equal to 50.
The results of the application of our model to the considered traffic network can be
graphically observed as well in Figure 2 and Figure 3, in which the intensity of the
grayscale represents the cell load value for the cases of the minimum total routing cost
variant and the spatially equitable variant of the considered multicommodity capacitated
network flow problem.

3.1 Evaluating the Spatial Concentration of the Flows

A further set of experiments was performed in order to verify the outcomes of the pro-
posed optimization problem on the spatial concentration of the flows at varying the
size and the number of the cells in the grid. The considered measure for the spatial
concentration of the flows is defined as the ratio between the cell load fz interesting a
given cell z ∈ Z and the area of the cell z. The experimental testbed was built in such
a way to guarantee a fair comparison in terms of the total area covered by the grid of
cells, independently on the size of the cells, therefore a different approach was adopted
with respect to the results presented so far in this section. The whole rectangular area
containing the traffic network was partitioned in a grid of 128 ·128 rectangular cells of
uniform size, referred to as the basic grid, and composed by an overall number of cells
equal to 16384 as presented in Figure 4. The area of each cell in the basic grid is equal
to 4895 square meters, while the total area of the grid covers 80199680 square meters.
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Fig. 2. Graphical representation expressing the cell load values fz in grayscale when minimizing
the total routing costs TC for the grid with 300 meters side cells on the traffic network of Salerno

Fig. 3. Graphical representation expressing the cell load values fz in grayscale when minimizing
the maximum cell load λ = maxz∈Z fz for the grid with 300 meters side cells on the traffic network
of Salerno

We will refer to those cells as the basic cells that will be used as reference area units
in the spatial concentration test. In order to perform a fair comparison of the effects of
varying the size of the grid cells on the spatial concentration of the flows, we consider
different grids composed by a set of macrocells, defined as a uniform partition of the
basic cells. All the macrocells are therefore composed by a regular number of basic
cells and have the same shape. The set of macrocells in a grid is indicated with Z′ and
indexed by z′. Each macrocell grid covers the same overall area with respect to the basic
grid. In particular, in our test we consider two macrocell grids, presented in Figure 5 and
in Figure 6. The macrocell grid in Figure 5 (Instance 2) is composed by 4096 macro-
cells, where each macrocell contains 4 basic cells. The macrocell grid in Figure 6 (In-
stance 3) is composed by 1024 macrocells, and each macrocell contains 16 basic cells.
An additional instance (Instance 4) was considered (see Figure 7) presenting one single
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Fig. 4. Instance 1: basic grid composed by 16384 cells overlapped to the traffic network of Salerno

macrocell, containing all the 16384 basic cells. The purpose of the test consists in the
minimization of the maximum macrocell load on the considered instances, followed by
a comparison among the measures of the spatial concentration on the basic cells for
the different cases. The spatially equitable multicommodity capacitated network flow
problem is applied on the described cases as follows: the whole set of basic cells is
considered for all the four instances as the set Z of the cells in the model (6)-(12), hence
the variables fz still represent the load on each basic cell. The minimization of the max-
imum macrocell load for each instance is ensured by modifying constraints (10) in such
a way that for each macrocell z′ ∈ Z′ the sum of the loads fz for all the basic cells z
belonging to the macrocell z′ must be less than or equal to λ :

∑
z∈z′

fz ≤ λ ∀z′ ∈ Z′ (13)

Fig. 5. Instance 2: grid composed by 4096 macrocells each one containing 4 basic cells over-
lapped to the traffic network of Salerno
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Fig. 6. Instance 3: grid composed by 1024 macrocells each one containing 16 basic cells over-
lapped to the traffic network of Salerno

Fig. 7. Instance 4: grid composed by a single macrocell containing all the 16384 basic cells over-
lapped to the traffic network of Salerno

Thus, an index SCmax = maxz∈Z fz
basic cell area can be introduced to compare the maximum spa-

tial concentration of the flows on the basic cells arising from the application of the
model on different macrocell grids. Similarly, an index SCmean = ∑z∈Z fz

total area can be de-
fined to compare the average spatial concentration of the basic cell loads. In particular,
the application of the spatially equitable network flow model to the Instance 4 (Figure
7) corresponds to the minimization of the total routing cost, being the macrocell equal
to the whole area embedding the network. The results of the spatial concentration test
on the considered instances are presented in Table 4 and Table 5 for the cases with arc
capacities equal to 100 and 50 respectively.

The analysis of the spatial concentration indexes suggests very interesting results
concerning the effectiveness and suitability of the proposed spatially equitable network
flow optimization problem, confirming at the same time the empirical evidence pro-
vided by the previous tests. The average spatial concentration increases are very low for
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Table 4. Comparison of the spatial concentration indexes for different macrocell grids with arc
capacities equal to 100

Instance number ‖Z′‖ SCmean SCmax

1 16384 0.02306 2.823
2 4096 0.02827 2.855
3 1024 0.02758 4.939
4 1 0.02282 4.993

Table 5. Comparison of the spatial concentration indexes for different macrocell grids with arc
capacities equal to 50

Instance number ‖Z′‖ SCmean SCmax

1 16384 0.02508 2.823
2 4096 0.02711 4.300
3 1024 0.02857 5.732
4 1 0.02368 10.325

both the arc capacity settings. The maximum spatial concentration regularly improves
with the density of the grid, with a 43% decrease between Instance 4 and Instance 1 for
high arc capacities and a 73% decrease between Instance 4 and Instance 1 for low arc
capacities. The latter observation suggests in particular the suitability of the model for
congested urban areas with reduced arc capacities.

4 A Bi-objective Approach Balancing Spatial Equity and Total
Routing Costs

As described in the previous section, depending on the structure of the network and
the distribution of the demands, the spatial equitable distribution of the flows yields in
general an increase in the total routing costs. Depending on the purposes and the ap-
plication context of the model, the increase in the total routing cost can be controlled
by considering concurrently both the objective functions, namely the minimization of
the maximum cell load and the total routing cost. In this case the network optimization
problem falls in the class of multi-objective multicommodity network flow problems
(see e.g. [6] for a review on this topic), and the proper trade-off between the two criteria
can be individuated by studying the pareto efficient solutions through a convex com-
bination of the objective functions at varying the weights, according to the following
formulation:
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Fig. 8. Numerical results for the mean cell load and the maximum cell load at varying γ1 and γ2
coefficients for the traffic network of Salerno with a 500 meters cell side grid

min γ1λ + γ2 ∑
k∈D

∑
(i, j)∈A

ci jx
k
i j (14)

s.t. ∑
j∈FS(i)

xk
i j− ∑

j∈BS(i)
xk

ji =
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dk, i = sk,∀k ∈ D

0, ∀i ∈V\{sk,tk},∀k ∈D

−dk, i = tk,∀k ∈D

(15)

∑
k∈D

xk
i j ≤ ui j ∀(i, j) ∈ A

∑
k∈D

∑
(i, j)∈A

wz
i jx

k
i j = fz ∀z ∈ Z (16)

fz ≤ λ ∀z ∈ Z (17)

xk
i j ≥ 0 ∀(i, j) ∈ A,∀k ∈D (18)

fz ≥ 0 ∀z ∈ Z (19)

λ ≥ 0 (20)

In Figure 8 the values of the mean cell load and the maximum cell load are depicted for
each optimal solution at varying the convex combination of the γ1 and γ2 coefficients
for the traffic network of Salerno with a 500 meters cell side grid. The full range of the
coefficients was considered in the study, setting γ2 = 1− γ1 and varying γ1 in [0,1].

5 Conclusions and Further Research

In this paper we proposed a minimax approach in the field of multicommodity capac-
itated network flow problems with the aim to provide a spatially equitable distribution
of the flows with respect to the area in which the network is embedded. The model
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is based on the introduction of a grid of cells overlapped to the network area and on
the definition of a weighted linear combination of the flows interesting each cell as a
measure of the impact of the routed flows on the area underlying the cell itself. A spa-
tially equitable distribution of the flows is obtained by imposing the minimization of
the maximum load registered among the whole set of grid cells. The contribution of our
approach is twofold: first, it addresses the need for a spatial equitable distribution of the
flows avoiding the excessive spatial concentration of the negative outcomes associated
to the routed flows, independently on the spatial position of the arcs and the nodes of
the network, differently from the previous approaches proposed in the literature in this
field that are based on path dissimilarity measures and link load minimization. Sec-
ond, the arising mathematical programming formulation falls in the class of the linear
programming problems, avoiding the need for heuristic approaches in the path selec-
tion process that characterizes the previous path-based models based on the discrete
p-dispersion optimization problem. The preliminary computational results obtained on
a real urban traffic network confirm the suitability and the efficiency of the proposed
approach, showing that it is possible to spread the flows in a spatially equitable way
with relatively low increases in the value of the total routing cost function. The size of
the grid cells influences both the relative value of the maximum cell load decrease and
the ratio between the latter and the relative increase of the total routing cost function:
better results correspond to dense grids with small size cells. The computational results
are also influenced by the capacities of the arcs: the effectiveness of the model in reduc-
ing the spatial concentration of the flows is higher for the cases with low arc capacities,
suggesting the suitability of the optimization problem for highly congested urban areas.
The right choice of a proper trade-off between the spatial equity in the flow distribution
and the overall routing cost can be achieved by considering a bi-objective model and
selecting a solution among the set of the pareto-optimal solutions obtained by varying
the coefficients in the convex combination of the two considered objective functions.
The computational results were obtained for all the instances in very low computational
times. Still, the size of the cells influences the computational effort required for solving
the model at the optimum, being the number of variables and constraints of the LP for-
mulation related to the number of cells considered in each instance. Therefore, in the
follow-up of the research on this topic, it can be worth to design efficient algorithms and
approximation schemes to solve the spatially equitable multicommodity network flow
problem on very large scale instances, that can be useful when applying the model on
big urban areas. Further developments of this work from the modeling point of view can
be considered assuming that the effects of the flows routed within each cell z∈ Z interest
also to a certain extent the population belonging to the cells in the neighborhood of the
cell z itself. This issue can be easily considered and implemented by adding a weighted
sum of the adjacent cell loads on the left hand side of each constraint of the set (10).
Possible extensions of the practical suitability of the optimization problem proposed in
this paper will be enabled by considering multiple decision maker optimization models
as well, in particular in the field of bilevel network design and toll setting problems (see
e.g. the contributions in [7,3]).
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Abstract. We present the Minimum Cut with Bounded Size problem and two
efficient algorithms for its solution. In this problem we want to partition the n
vertices of a edge-weighted graph into two sets S and T , with S including a given
source s, T a given sink t, and with |S| bounded by a given threshold B, so as
to minimize the weight δ (S) of the edges crossing the cut (S,T ). If B is equal
to n− 1 the problem is well-known to be solvable in polynomial time, but for
general B it becomes NP-hard. The first algorithm is randomized and, for each
ε > 0, it returns, with high probability, a solution S having a weight within ratio
(1 + εB

logn ) of the optimum. The second algorithm is a deterministic bi-criteria
algorithm which can return a solution violating the cardinality constraint within
a specified ratio; precisely, for each 0 < γ < 1, it returns a set S having either (1)
a weight within ratio 1

1−γ of the optimum or (2) optimum weight but cardinality

|S| ≤ B
γ , and hence it violates the constraint by a factor at most 1

γ .

1 Introduction

Graph cuts are very well-studied objects in computer science, modelling a large vari-
ety of basic problems in algorithm design, in combinatorial optimization and in many
application areas like communications and electrical networks. Recently unbalanced
graph cuts have received some attention [4,5,7]. Combinatorial optimization problems
with cardinality constraints have also recently received attention [2,9].

Here we address the following problem: given an undirected graph G = (V,E), with
vertex set V of cardinality n, and edge set E where each edge (i, j) has a non-negative
weight wi j , and given an integer B, 0 < B < n, an identified source s ∈ V and sink
t ∈ V , find a cut (S,V \ S) separating s from t, with s ∈ S, such that the cardinality of
S is not greater than B, and minimizing the weight δ (S) of the edges crossing the cut,
i.e., having one endvertex in S and the other in V \ S. We call this problem Minimum
Cut with Bounded Size (MINCUTBS for short). When B is equal to n−1 it is the well
known s−t Minimum Cut problem, which is solvable in polynomial time [6], otherwise
the problem becomes NP-hard, as explained below.

The MINCUTBS problem, besides the classical applications, has interesting appli-
cations in the control of disasters, epidemic outbreaks, etc.. In these contexts node s
represents, for instance, the infected node where the disaster arises, and the goal is to
minimize the cost of treating the disaster, subject to the request of preserving unin-
fected both node t and all other nodes except at most B ones. Hence new applications
areas include control of disasters in telecommunication networks, in social or biological
networks, as well as in the web graph.
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In this paper we present two polynomial-time algorithms for solving MINCUTBS.
The first algorithm is randomized and, for each ε > 0, it returns, with high probability, a
solution S having a weight within ratio (1+ εB

logn ) of the weight of an optimum solution
S∗. This algorithm is derived from the algorithm in [5] which solves a problem related
to MINCUTBS, that we call Minimum Cut with Exact Size (MINCUTES for short). In
MINCUTES one wants to find a cut of minimum weight, where the cardinality of one
shore of the cut is required to be exactly equal to a given integer k. In Section 2 we show
how this algorithm can be extended to solve our problem and how the approximation
results obtained for MINCUTES can also be fully extended to MINCUTBS.

The second algorithm is a bi-criteria algorithm that, for each 0 < γ < 1, returns a set
S, with s ∈ S, t �∈ S, having either (1) δ (S)≤ 1

1−γ δ (S∗) and |S| ≤ B or (2) δ (S)≤ δ (S∗)
and |S| ≤ B

γ , where S∗ denotes an optimum solution for MINCUTBS. Therefore this al-
gorithm can return a solution violating the cardinality constraint within a factor at most
1
γ . This algorithm, described in Section 3, has been inspired by the one in [4] devoted
to the solution of a companion problem, that we call Minimum Size with Bounded Cut
(MINSIZEBC for short). The latter problem looks for a cut (S,V \ S) with s ∈ S, sep-
arating s from t and minimizing the cardinality of S among those having the weight
δ (S) of the edges crossing the cut not greater than B. This problem and MINCUTBS
obviously have the same formulation in recognition form. Hence, as MINSIZEBC is
NP-hard [4], the same is true for MINCUTBS. We show that, quite surprisingly, the
fast parametric algorithm in [8], used in [4] for solving MINSIZEBC, can also be used,
on the same parameterized network but in a different way, to solve also MINCUTBS. In
the same section we highlight the differences and the similarities between our algorithm
for solving MINCUTBS and the one in [4] for solving MINSIZEBC.

We conclude this section by saying that throughout the paper we often refer to a cut
(S,V\S) simply as S, we denote by δ (S) the weight of the edges crossing S and by
w(S) the sum of the weights of the edges having both endvertices in S. We call a cut
separating s from t an s− t cut. Extensive testing of these algorithms is planned.

2 The Randomized Algorithm

We start from the randomized algorithm presented in [5]. Here the authors solve, with
high probability, the problem of finding, in an undirected graph having non negative
edge weights, a cut S with |S| = B and δ (S) ≤ (1 + εB

logn )δ (S′), where S′ denotes an
optimum cut among those having one of the two shores of the cut of cardinality equal to
a given integer B, and ε is any fixed positive constant. We show here that their algorithm
can be modified to find, with high probability, an s− t cut having the source side S of
cardinality at most B and having weight δ (S) ≤ (1 + εB

logn )δ (S∗). The algorithm in [5]
works in iterations, where each iteration consists of a “contraction stage” followed by
a “combining stage”. In our modified version, which is described below, we maintain
unaltered the “contraction stage” but we modify instead the “combining stage” where,
instead of cuts S with |S|= B, we consider s− t cuts S with s ∈ S and |S| ≤ B. For a full
comprehension of what follows the reader is invited to consult [5]. A brief explanation
is given below.
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Algorithm 1

- initialize n clusters, each containing a distinct vertex of G;
- while G still contains edges do { /* begin contraction stage */

. choose at random one edge of G;

. contract in a single cluster the two clusters that contain the endvertices
of the edge;

. remove from G (updating G) self-loops, i.e., edges having both
endvertices in the new cluster but retain parallel edges, i.e., edges
having the endvertices in different clusters;

/* the clusters now contain vertices of G having
no edges adjacent to any two of them */

. let C = C1, ...,CL be the current set of clusters, with s ∈C1;

/* end contraction stage - begin combining stage*/

. find, if it exists, a subset Q⊆C such that, if we let Q̃ = ∪Ci∈QCi then:

i) |Q̃| ≤ B, s ∈ Q̃,t /∈ Q̃;
ii) ∑Ci∈Q δ (Ci) is minimal;

and compute the weigth of the s− t cut Q̃; /* end combining stage */
}

- return the s− t cut Q̃ of minimum weight among those found in the combining
stages.

In the contraction stage an edge of G is chosen at random, it is “contracted”, and G
is “updated”. Precisely, the endpoints of the chosen edge are merged in a newly created
vertex, and loops and parallel edges that may result from the contraction are treated as
described in the algorithm, where the name cluster (that corresponds to a newly created
vertex) is used as a synonym of independent set, i.e., set of vertices having no edge
adjacent to any two of them. In the combining stage instead we find, in the graph G of
the current iteration, a set of clusters which include s but not t, have at most B vertices,
and minimize the sum of the weights of the edges crossing each cluster.

The implementation of this algorithm and the analysis of its performance can be done
as in [5], yielding the conclusion expressed in Theorem 1. Two crucial observations
allow to reach such conclusion. The first is about the implementation of the combining
stage and the running time of the algorithm. The combining stage can be implemented
using a dynamic programming table T as in [5], but here each table entry T (i,k) ,
i = 1, ...,L, 1 ≤ k ≤ B has a different meaning. Precisely, if the clusters are labelled by
1,2, ...,L in an arbitrary way, with cluster C1 containing s, then T (i,k) describes the
minimal ∑Cj∈Q δ (Cj), over all subsets Q of the clusters C1, ...,Ci for which it happens

that s ∈ Q̃, t /∈ Q̃ and |Q̃| ≤ B, with Q̃ = ∪Cj∈QCj. It is straightforward to see that each
table entry in row i can be computed from the entries in row i− 1 and the preceding
entries in the same row, and that the entries in the first row are easy to initialize. The
size of the table is LB = O(n2) and hence T (L,B), which is the desired output of the
combining stage, can be computed in polynomial time. The second observation is about
the success probability. It can be shown that Lemma 5 in [5] becomes here the following
lemma.
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Lemma 1. For every (not necessarily fixed) ρ > 0, Algorithm 1 outputs an s− t cut S
having s ∈ S, |S| ≤ B, and δ (S)≤ (1 +ρB)δ (S∗), with probability at least e−2/ρ .

The proof of the correctness of this lemma follows closely the one in [5]; the important
thing that must be modified is the cut initially fixed for the analysis, that must be an
s− t cut S having s ∈ S, |S| ≤ B, and optimum weight δ (S∗).

If now we take ρ = ε
logn , for any ε > 0, the probability of success of the algorithm

becomes at least n−2/ε ; hence if we repeat the algorithm n2/ε times, taking from all the
repetitions the cut of minimum weight, the next result follows.

Theorem 1. For every fixed ε > 0, there is a polynomial-time randomized algorithm
that finds, with high probability, a solution S to MINCUTBS having a weight δ (S) within
ratio (1 + εB

logn ) from the optimum weight δ (S∗).

Notice that if B = O(logn) this algorithm is a PTAS, but in this case we could solve the
problem exactly with simple enumeration. Hence this algorithm becomes interesting
when B = Ω(logn), where the approximation ratio becomes O( B

logn ).

3 The Bi-criteria Algorithm

Now we start the presentation of a deterministic, bi-criteria algorithm for MINCUTBS.
This algorithm returns a solution S that either approximates the weight of an optimum
solution or violates, within a specified performance guarantee, the constraint on the car-
dinality bound but has optimum weight. Theorem 2 gives the performance guarantees
of this algorithm, which has been inspired by and is based on the one in [4] for solving
MINSIZEBC. The results in Theorem 2 show that the algorithm is a ( 1

1−γ ,
1
γ ) bi-criteria

approximation algorithm, if we define an (α,β ) bi-criteria approximation algorithm
for MINCUTBS to be an algorithm returning a solution S having δ (S) ≤ αδ (S∗) and
|S| ≤ βB. We highlight here differences and similarities between our algorithm and the
algorithm in [4] for solving MINSIZEBC. The differences lie in the performance guar-
antees, since the latter algorithm is a ( 1

γ ,
1

1−γ ) bi-criteria approximation algorithm, if
we define an (α,β ) bi-criteria approximation algorithm for MINSIZEBC to be an al-
gorithm returning a solution S having δ (S) ≤ αB and |S| ≤ β |S̄|, where S̄ denotes an
optimum solution for MINSIZEBC. The similarities are due to the fact that, quite sur-
prisingly, the methodology used in [4] for finding a cut having size and weight within
performance guarantees of the corresponding values in an optimum solution S̄ for MIN-
SIZEBC, can be modified to find a cut having size and weight within performance guar-
antees of the corresponding values in an optimum solution S∗ for MINCUTBS. Before
proceeding with the description of the algorithm we notice that bi-criteria algorithms,
even if variously defined, have already appeared in the literature, dealing with problems
whose solutions need to be evaluated with respect to two cost criteria [1,3].

Let 0 < γ < 1. The algorithm essentially uses the algorithm in [8] applied to graph
Gλ , which is obtained from G by adding, for each vertex v ∈V −{t}, a new edge from
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v to t of weight λ (if an edge to t already exists it increases its weight by λ ). Obviously
the weight of an s− t cut S of Gλ is δ (S) + λ |S| and it is not difficult to see that,
as λ increases, the source side of a minimum s− t cut of Gλ decreases in cardinality,
until it contains the single vertex s. To reach this conclusion it is enough to add the
two inequalities δ (S)+λ |S| ≤ δ (S′)+λ |S′| and δ (S′)+λ ′|S′| ≤ δ (S)+λ ′|S|, where
S (resp. S′) denotes a minimum s− t cut of Gλ (resp. Gλ ′), with λ < λ ′. The algorithm
of [8] has very interesting properties. It starts with the parameter λ = 0 and in a single
run is able to output minimum s− t cuts of Gλ , for all values of λ ≥ 0; the source sides
of all these cuts form a finite nested family of vertex sets S0 ⊃ S1 ⊃ ... ⊃ Sk, with S0

a minimum s− t cut of G and Sk = {s}; moreover for any sequence of successive sets
S j,S j+1, j = 0, ...,k− 1, there is a value of λ , say λ ∗j , for which both S j and S j+1 are

minimum s− t cuts of Gλ ∗j . An important observation concerning the weights of the
edges crossing these successive cuts is that, if i < j, it can be shown that δ (Si) < δ (S j).

We now describe our bi-criteria algorithm; of course the computation at step 2 is
done with the algorithm in [8].

Algorithm 2

1. form graph Gλ ;
2. compute the nested family S0 ⊃ S1 ⊃ ...⊃ Sk of the source sides

of optimum minimum s− t cuts of G λ , for all values of λ ≥ 0;
3. if |S0| ≤ B then return S0; /* an optimum solution has been found*/
4. find j such that |S j|> B≥ |S j+1|;
5. if |S j| ≤ B

γ then return S j else return S j+1.

The following theorem gives the performance of this algorithm.

Theorem 2. For each 0 < γ < 1, Algorithm 2 outputs an s− t cut S of G, with s ∈ S,
such that either (i) δ (S)≤ 1

1−γ δ (S∗) and |S| ≤ B or (ii) δ (S)≤ δ (S∗) and |S| ≤ B
γ .

Proof. (sketched) If the algorithm returns at Step 3, of course the optimum solution
satisfies both (i) and (ii). Otherwise let j be the integer computed at Step 4. By def-
inition δ (S∗) ≤ δ (S j+1), and since S0 is a minimum s− t cut of G obviously δ (S0)
≤ δ (S∗). Hence from the inequality δ (S0) ≤ δ (S∗) ≤ δ (S j+1) we derive that there
exists an integer i ≤ j such that δ (Si) ≤ δ (S∗) ≤ δ (Si+1). It cannot be that i < j; oth-
erwise from the inequalities |S∗| ≤ B < |S j| and δ (S∗) ≤ δ (Si+1) ≤ δ (S j) it would
follow that S∗ would have been a better cut than S j for all values of λ , and the algo-
rithm would have generated S∗, not S j (and S∗ �= S j since S∗ ≤ B < |S j|). Hence i = j
and δ (S j) ≤ δ (S∗)≤ δ (S j+1). Now, at Step 5 of the algorithm, if |S j| ≤ B

γ then the set

S j returned by the algorithm satisfies (ii). It remains to be shown that when |S j| > B
γ

then δ (S j+1) ≤ 1
1−γ δ (S∗), so that the set S j+1 returned by the algorithm satisfies (i)

(it does satisfy |S j+1| ≤ B, from Step 4). This part of the proof is omitted due to space
constraints, but can be done along the lines of that of Theorem 2 in [4].
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Abstract. Consider a telecommunications network with given link capacities
and a set of commodities with known demands that must be routed over the net-
work. We aim to determine a single routing path for each commodity such that
the whole set of paths does not violate the link capacities and the number of rout-
ing hops is minimized in a lexicographical sense, i.e., minimizing the number of
paths with the worst number of hops; then, among all such solutions, minimizing
the number of paths with the second worst number of hops; and so on. We present
two approaches for solving this problem. The first approach is iterative where a
sequence of hop constrained problems is solved and the optimal solution value of
each iteration defines a new constraint added to the problems of subsequent iter-
ations. The second approach is based on defining a single integer programming
model for the whole problem. In this approach, we consider appropriate cost pa-
rameters associated with the number of hops of each routing path such that the
cost of a path with h hops is higher than the cost of all paths with h−1 hops. In
both cases, we propose multi-commodity flow and hop-indexed models and com-
pare them both in terms of linear programming relaxation values and in terms of
efficiency.

1 Introduction

In a telecommunications network, the minimization of the number of hops in the paths
supporting traffic has a positive impact on the performance of the network due to two
main reasons: delay and robustness. Concerning delay, a data packet traveling through
a set of links from its origin node to its destination node suffers a total delay given
by the queuing and transmission delays on intermediate nodes and by the propagation
delays on links. Usually, the first two factors are dominant and, in some cases, it is even
possible to guarantee a bound on the maximum packet delay which is proportional to the
number of routing nodes [15]. Therefore, it is desirable to route demand commodities on
the smallest possible number of links. Concerning robustness, when a network element
fails, all commodity demands whose routing paths use the failed element are affected
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and, therefore, the probability of a commodity being affected by a failure is lower if its
routing path has fewer hops.

The problem addressed in this paper arises in the context of a traffic engineering
task over pre-dimensioned networks. We consider the networks which are solutions of
a network design problem studied in [5], where the aim was to find minimum cost
networks guaranteeing the existence of D hop-constrained node disjoint paths for every
commodity k in a set of commodities K, accommodating a given estimated demand
matrix T . The hop-constrained paths guarantee a worst case delay performance for the
network design solution. The D node disjoint paths, together with the demand reserved
on each path, guarantee a desired degree of survivability. In this paper we consider the
traffic engineering problem for the D = 1 case only and the case with D > 1 will be
addressed as subsequent work.

The constraint on the maximum number of H hops for each path in the network
design problem means that some paths may have fewer hops. Moreover, since the esti-
mated demand matrix T that was used in the design problem may be different from the
one that should be accommodated by the network when it is put in operation, it becomes
interesting to consider the problem of routing a new demand matrix R while optimizing
the number of hops of all routing paths.

In [6,7], two hop related objective functions are considered: the minimization of the
average number of hops and the minimization of the worst case number of hops. The
first objective gives the best overall average performance but it may be unfair for some
of the commodities: it leads to solutions where many commodities are supported by
routing paths with a number of hops close to the minimum but some commodities may
be supported by routing paths having a large number of hops. One way of optimizing the
fairness criterion is to consider the minimization of the worst case number of hops (the
second objective studied in [6,7]). Nevertheless, this objective does not account for the
minimization of the number of hops of the routing paths that can have fewer hops than
its worst value. Here, we generalize the “worst case” objective function by minimizing
the number of routing hops in a lexicographical sense, i.e., minimizing the number of
paths with the worst number of hops; then, among all such solutions, minimizing the
number of paths with the second worst number of hops, and so on. As will be seen
in the computational results, optimal solutions of this objective function exhibit a very
small penalty on the optimal average number of routing hops, which means that we can
improve the routing fairness without jeopardizing the overall average performance.

Consider the vector of routing hops (hk : k ∈ K) where hk is the number of hops of
the routing path of commodity k ∈ K. Let [hk]k∈K be the vector obtained by rearranging
the previous vector in a non-increasing order. Given two vectors [ak]k∈K and [bk]k∈K ,
the first vector is said to be lexicographically smaller than the latter if either a1 < b1 or
there exists an index l ∈ {1, . . . , |K|−1} such that ai = bi for all i≤ l and al+1 < bl+1.
Our problem can now be stated as follows. Given an undirected graph G = (V,E), repre-
senting a network where V and E denote, respectively, the sets of nodes and edges, with
installed edge capacities be,e∈ E , a set of commodities K where each commodity k∈K
has demand rk, origin node sk and destination node tk, the traffic engineering problem
addressed in this work consists of routing the demand matrix R through paths that lex-
icographically minimize [hk]k∈K . Figure 1 illustrates two feasible solutions considering
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Fig. 1. Example of Two Feasible Solutions

an instance with |K| = 3 and H = 4, where thick, dashed and dotted lines represent
the paths of each commodity. Clearly, the solution represented on the right is the best
one, in lexicographic terms, since it has a vector [ak]k∈K =

[
4 3 3

]
while the solution

represented on the left has a vector [bk]k∈K =
[

4 4 2
]
. Note that in regard to both the

average and maximum number of hops minimization criteria considered in [6,7], these
two solutions have the same objective function value.

There are very few references dealing with delay optimization and the reader is re-
ferred to [9,13,18] for heuristic techniques dealing with delay related traffic engineer-
ing methods. The concept of lexicographical minimization is similar to that of max-min
fairness (MMF) previously applied to routing, load balancing and resource allocation
on telecommunication networks [11,12,17] (see [16] for more general issues on MMF)
but, as far as we are aware, has never been applied to the minimization of the number
of routing hops.

We present two approaches for solving this problem. The first approach is iterative
where a sequence of hop constrained problems is solved and the optimal solution value
of each iteration defines a new constraint that is added on the problems of the subse-
quent iterations. The second approach is based on defining a single integer program-
ming model to the whole problem. In this second approach, we consider appropriate
cost parameters associated to the number of hops of each routing path in such a way
that the cost of a path with h hops is higher than the cost of all paths with h−1 hops.

This paper is organized as follows. In Section 2, we present the iterative approach
based on solving sequentially an auxiliary hop constrained problem. We present two
different models for the auxiliary problem and compare their linear programming (LP)
relaxations. In Section 3, we describe the single model approach to the problem. In
Section 4, we present and discuss the computational results. Finally, Section 5 presents
the main conclusions and future work.

2 The Iterative Approach

The reasoning behind this approach is straightforward. Given the lexicographic mini-
mization objective described in the previous section, we start by minimizing the number
of commodities with H hops. Letting Fh represent the number of commodities with h
hops, we then solve a second problem minimizing the number of commodities with
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H− 1 hops with the constraint that the commodities with H hops do not exceed FH .
The iterative procedure continues until all commodities have been accounted for, that
is, ∑h=1,...,H Fh = |K|.

Let us denote the auxiliary problem to be solved in each step of the iterative approach
by Restricted-Hop(H∗). This problem consists of minimizing the number of commodi-
ties with H∗ hops (with H∗ < H) subject to the traffic engineering problem constraints
stated in the previous section, together with the extra constraints that guarantee that the
number of commodities with H∗+ 1, . . . , and H hops is, respectively, not greater than
the values FH∗+1, . . . , and FH . We note that hop-constrained network design problems
have been studied in the past in many settings (see, for instance, the surveys in [3] and
[10], and several other papers such as [1,5,8,14]). However, this work appears to be the
first time where such problems have been studied with this kind of objective. Letting
P(H∗) denote a valid model for this auxiliary problem (models for this problem will
be described in the following subsections), the iterative approach can be specified as
follows.

Initialization:
Fh = 0,h = 1, . . . ,H
H∗ = H

Iteration:
Do while ∑

h=1,...,H

Fh < |K|
Find the optimal solution of P(H∗)
FH∗ = number of commodities with H∗ hops
H∗ = H∗ −1

End do

Following the model sequence of previous works on network design with hop con-
straints, we present next two valid models for the Restricted-Hop(H∗) problem. The first
one is a straightforward multi-commodity flow model with a cardinality constraint for
the hop limit and constraints linking the flow variables with an auxiliary set of variables.
The second one uses hop-indexed variables and is based on a better polyhedral repre-
sentation of the underlying hop-constrained shortest path problem. As we shall show
next, the relevant advantage for problems with the proposed type of objective functions
is that these hop-indexed variables let us model the objective functions in a straightfor-
ward way permitting us to get rid of the auxiliary variables and to obtain models with a
stronger LP relaxation.

2.1 The MCF(H∗) Model

Consider binary variables: yk
i j = 1 if edge {i, j}, traversed from i to j, is in the path

supporting commodity k, and 0 otherwise (∀{i, j}∈E;k∈K), and uhk = 1 if commodity
k is supported by a path with h hops, and 0 otherwise (∀h = 1, . . . ,H;k ∈ K).

We denote by MCF(H∗) the following model:

Min ∑
k∈K

uH∗k
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subject to:

∑
j∈V

yk
i j−∑

j∈V
yk

ji =

⎧⎨⎩
1, i = sk

0, i �= sk, tk
−1, i = tk

,k ∈ K (1)

∑
(i, j):{i, j}∈E

yk
i j ≤ H,k ∈ K (2)

∑
(i, j):{i, j}∈E

yk
i j = ∑

h=1,...,H

huhk,k ∈ K (3)

∑
h=1,...,H

uhk = 1,k ∈ K (4)

∑
k∈K

uhk ≤ Fh,h = H∗+ 1, . . . ,H (5)

∑
k∈K

rk

(
yk

i j + yk
ji

)
≤ be,e = {i, j} ∈ E (6)

yk
i j,y

k
ji ∈ {0,1},{i, j} ∈ E;k ∈ K (7)

uhk ∈ {0,1},h = 1, . . . ,H;k ∈ K (8)

For a given H∗ = 1, . . . ,H, the objective function that we wish to minimize expresses
the number of commodities with H∗ hops. Constraints (1) are the usual flow conserva-
tion constraints, they guarantee a path for each commodity, starting on sk and ending
on tk, and constraints (2) guarantee that the path supporting each commodity has at
most H hops. The linking constraints (3) define the new variables uhk and together with
the cardinality constraints (4) state that each commodity has either 1,2, . . . , or H hops.
Constraints (5) guarantee that the number of commodities with more than H∗ hops,
that is, H∗+ 1, . . . , and H hops (with H∗ < H) is not greater than FH∗+1, . . . , and FH ,
respectively. Note that, according to the iterative approach described before, when find-
ing the optimal solution of MCF(H∗), the values of FH∗+1, . . . , and FH are determined
in previous iterations. Finally, constraints (6) guarantee that the total demand that tra-
verses each edge does not exceed the capacity installed in that edge. Constraints (7) and
(8) represent the variables domain. Note that in the iterative procedure we may write
FH∗ = ∑k∈K uH∗k.

2.2 The HOP(H∗) Model

We now model the Restricted-Hop(H∗) problem using a different set of (flow) variables,
the so-called hop-indexed variables which also indicate the position of an arc in the
path: zhk

i j = 1 if edge {i, j} is traversed from i to j in position h in the path supporting
commodity k, and 0 otherwise (∀{i, j} ∈ E ∪{tk, tk};h = 1, . . . ,H;k ∈ K).

Note the existence of “loop” variables zhk
tktk

, with h = 2, . . . ,H, which are necessary
to model paths that have less than H hops (the reader is referred to [4,6,7] for an expla-
nation of these variables). Let HOP(H∗) denote the following model:

Min ∑
k∈K

∑
j∈V\{tk}

zH∗k
jtk
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subject to:

∑
j∈V

z1k
sk j = 1,k ∈ K

∑
j∈V

zh+1,k
i j −∑

j∈V
zhk

ji = 0, i �= sk;h = 1, . . . ,H−1;k ∈ K (9)

∑
j∈V

zHk
jtk = 1,k ∈ K

∑
k∈K

∑
j∈V\{tk}

zhk
jtk ≤ Fh,h = H∗+ 1, . . . ,H (10)

∑
k∈K

rk

(
∑

h=1,...,H

zhk
i j + ∑

h=1,...,H

zhk
ji

)
≤ be,e = {i, j} ∈ E (11)

zhk
i j ,z

hk
ji ∈ {0,1},{i, j} ∈ E;k ∈ K;h = 1, . . . ,H (12)

zhk
tktk ∈ {0,1},k ∈ K;h = 2, . . . ,H (13)

For a given H∗ = 1, . . . ,H, the additional (hop count) information contained in the
new variables permits us to minimize the number of paths with H∗ hops by simply
minimizing the number of edges { j, tk} that are traversed from j to tk, with j �= tk,
in position H∗. Constraints (9) guarantee the existence of a path from sk to tk with at
most H hops for every commodity k ∈ K (note that these constraints contain the loop
variables zhk

tktk
mentioned above). Similarly to constraints (5) of the MCF(H∗) model,

constraints (10) state that the number of commodities with H∗ + 1, . . . , and H hops
(with H∗ < H) is not greater than FH∗+1, . . . , and FH , respectively (note, however, that
as stated for the objective function, the variables zhk

jtk
are sufficient for expressing these

constraints). As before, note that these values are given by the optimal solutions of the
HOP(h) models, with h = H∗+ 1, . . . ,H. Constraints (11) are capacity constraints and
(12) and (13) represent the variables domain. Similarly to the observation made at the
end of the previous subsection, note that we may now write FH∗ = ∑k∈K ∑ j∈V\{tk} zH∗k

jtk
in the iterative procedure.

2.3 Comparing the LP Relaxations of MCF(H∗) and HOP(H∗)

We will show next that the LP relaxation bound of the HOP(H∗) model is at least as
good as the LP relaxation bound of the MCF(H∗) model. For this proof, we intro-
duce the following intermediate hop-indexed model, denoted by HOPi(H∗), that uses
the variables uhk needed for the first model but unnecessary for the model with hop-
indexed variables:

Min ∑
k∈K

uH∗k
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subject to:

(9)

∑
(i, j):{i, j}∈E

∑
h=1,...,H

zhk
i j = ∑

h=1,...,H

huhk,k ∈ K (14)

∑
h=1,...,H

uhk = 1,k ∈ K (4)

(5), (11)-(13), (8)

The first result follows from the well known fact (see, e.g., [4]) that the projection
in the space of the yk

i j variables of the polyhedron defined by (9), zhk
i j ,z

hk
ji ≥ 0 ({i, j} ∈

E;k∈K;h = 1, . . . ,H), zhk
tktk
≥ 0 (k∈K;h = 2, . . . ,H) and∑h=1,...,H zhk

i j = yk
i j is contained

in the polyhedron defined by (1), (2) and yk
i j,y

k
ji ≥ 0 ({i, j} ∈ E;k ∈K). In the following,

let PL represent the LP relaxation of model P and v(PL) its optimal value.

Result 2.1: v(HOPi(H∗)L)≥ v(MCF(H∗)L).
In contrast to results obtained from pure network design problems with hop constraints
(the objective function involves the minimization of edge costs), for all the instances
tested in this work, we have obtained equality between the two LP bounds. These results
are not surprising due to the different objective functions and most of all to the fact that
the dimensioned networks already allow feasible paths satisfying the hop constraints.
Thus, it is quite natural to expect that for many optimal solutions obtained by the model
MCF(H∗)L in our experiments, constraints (2) are non binding. What can be gained by
using the hop-indexed variables model is explained in the second result.

To prove this result, we start by adding the constraints

∑
j∈V\{tk}

zhk
jtk = uhk,h = 1, . . . ,H;k ∈ K (16)

to the intermediate model. Clearly we will obtain a model whose LP relaxation is not
worse. We will show that the model with these extra constraints is precisely the model
HOP(H∗). Constraints (16) are equivalent to

(h−1) ∑
j∈V\{tk}

zhk
jtk

+ ∑
j∈V\{tk}

zhk
jtk

= huhk,h = 1, . . . ,H;k ∈ K (17)

By using the flow conservation constraints (9) for the same j and h, we may rewrite
the first expression on the left hand side and then by adding for all h these modified con-
straints we obtain (14). Thus these constraints are redundant in this augmented model.
Finally, by using (16), the uhk variables can be eliminated and we obtain the model
HOP(H∗). We have just proven that

Result 2.2: v(HOP(H∗)L)≥ v(HOPi(H∗)L).
Computational results given in Section 4 will show that this dominance is strict for sev-
eral instances. As a corollary we get

Result 2.3: v(HOP(H∗)L)≥ v(MCF(H∗)L).
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3 The Single Model Approach

In order to model the problem with a single model, let Ah represent the cost of a com-
modity with h hops such that Ah > |K|Ah−1,h = 2, . . . ,H. In this way, we ensure that
the cost of a path with h hops is higher than the sum of the costs of all paths with h−1
hops. As a consequence, we guarantee that for any two vectors [ak]k∈K and [bk]k∈K such
that either a1 < b1 or there exists an index l ∈ {1, . . . , |K|−1} such that ai = bi for all
i ≤ l and al+1 < bl+1, [ak]k∈K is selected as the optimal solution (that is, the lexico-
graphically minimum vector). In Figure 1, letting A1 = 1, and, thus, A2 = 4, A3 = 13
and A4 = 40, the cost of the left solution is equal to 84 whereas the cost of right solution
is equal to 66.

Using the same variables defined in the previous section, we present two valid mod-
els for our problem, the MCF and HOP models, that are similar to the models discussed
in the previous section. For the objective function of these models, the coefficients of
the uhk and zhk

jtk
variables use the proposed cost structure. Due to the similarity of the

models with the ones presented in the previous subsection, we simply present the mod-
els and the main result comparing the corresponding LP relaxations.

The MCF Model
Min ∑

k∈K
∑

h=1,...,H

Ahuhk

subject to:

(1)-(4), (6)-(8)

The HOP Model
Min ∑

k∈K
∑

j∈V\{tk}
∑

h=1,...,H

Ahzhk
jtk

subject to:

(9), (11)-(13)

Using the same reasoning as in Subsection 2.3, we can state the following result

Result 3.1: v(HOPL)≥ v(MCFL).
Computational results reported in the next section show that this dominance is strict for
several instances.

4 Computational Results

In our computational tests, we have considered the network topologies obtained by
solving the network design problem described in [5] applied to the NSFNet and EON
backbone optical networks. These instances were determined with H = 4, D = 1 and
different traffic demand matrices T , randomly generated using uniform distributions
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in the intervals [0,0.4], [0,0.6], [0,0.8], and [0,1.0], where the values are normalized
with respect to the capacity of each network link. For the NSFNet network we have
considered |K| = 28 commodities and, for the EON network, |K| = 45 commodities.
The models of both approaches presented in this paper were solved through the branch-
and-cut algorithm of the CPLEX 10.2 software package. The results were obtained on
an Intel Core 2 Duo at 2.0 GHz with 640 MB of RAM.

Similarly to the tests reported in [6,7], here we also consider two main scenarios for
the new demands rk. The first considers that the actual demands are smaller than the
initial estimates. In this case, the demands rk range from 90% to 97.5% of the original
demands in 2.5% steps, that is, rk = (1− δ )tk, with δ = 0.025,0.05,0.075,0.1. The
second scenario assumes that the total demand of the initial estimate is roughly correct
but the individual values are different from the initial ones. In this set, each demand
rk is randomly generated with a uniform distribution between (1− ε)tk and (1 + ε)tk,
with ε = 0,0.05,0.1,0.15,0.2 (ε represents the maximum relative error of the initial
estimated demands tk). Note that in the first scenario, all problems are feasible but in
the second, some instances might be infeasible for ε > 0 (we only report the results
of the feasible cases). Table 1 contains the results of the NSFNet network and Table 2
(for demand matrices T in [0,0.4] and [0,0.6]) and Table 3 (for demand matrices T in
[0,0.8] and [0,1.0]) contain the results of the EON network.

These tables show the results of the iterative approach (columns MCF(H∗) and
HOP(H∗)) and the single model approach (columns MCF and HOP). In the iterative
approach, all instances required three iterations, that is, since H = 4, both models were
solved with H∗ = 4,3,2 (the number of commodities with one hop is automatically
determined). Therefore, for each instance and each model, we present three values (in
percentage) which are the corresponding three LP relaxation gaps. Below these percent-
age values, we present the total CPU time, in seconds, taken in solving the LP relaxation
of the MCF(H∗) and HOP(H∗) models (given by the sum of the CPU times taken by
each iteration) and, separately, the total CPU time taken in finding the integer optimal
solution of the same models. Similarly, in the single model approach, for each instance
and each model, we present the corresponding LP relaxation gap as well as the CPU
time taken in finding the LP relaxation and integer optimal solutions. Concerning the Ah

costs, we have considered A1 = 1, A2 = 29, A3 = 813 and A4 = 22765 for the NSFNet
network (with |K| = 28 and H = 4) and A1 = 1, A2 = 46, A3 = 2071 and A4 = 93196
for the EON network (with |K|= 45 and H = 4).

In all tables we have an extra column C showing the increase (in percentage) on the
average number of hops of our solutions over the minimum average number of hops
(computed with the model presented in [6,7] which dealt specifically with the average
number of hops minimization).

The analysis of the results obtained for the NSFNet and EON networks allows to
conclude that, in LP relaxation terms, the dominance of the HOP(H∗) and HOP mod-
els with respect to the MCF(H∗) and MCF models, respectively (Results 2.3 and 3.1),
is strict for several instances. This dominance is identified by the gap values highlighted
in bold in Tables 1, 2 and 3. Regarding the iterative approach results, observe that dom-
inance can be quite significant and also that the corresponding gap reaches 0% for some
instances.
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Table 1. Computational Results for the NSFNet Network

T MCF(H∗) HOP(H∗) MCF HOP C

[0,0.4] δ = 0.1 0%; 0%; 0% 0%; 0%; 0% 0% 0% 0%

0.07; 0.23 0.04; 0.1 0.02; 0.04 0.01; 0.02

δ = 0.075 0%; 0%; 0% 0%; 0%; 0% 0% 0% 0%

0.07; 0.19 0.05; 0.12 0.01; 0.06 0.02; 0.03

δ = 0.05 0%; 0%; 0% 0%; 0%; 0% 0% 0% 0%

0.09; 0.25 0.05; 0.15 0.01; 0.04 0.01; 0.03

δ = 0.025 0%; 16.7%; 9.1% 0%; 16.7%; 0% 15.1% 15.1% 0%

0.06; 0.32 0.03; 0.11 0.01; 0.2 0.01; 0.02

ε = 0 0%; 16.7%; 9.1% 0%; 16.7%; 0% 15.1% 15.1% 0%

0.06; 0.29 0.05; 0.1 0.01; 0.08 0.02; 0.03

ε = 0.05 100%; 25%; 15.4% 100%; 0%; 7.7% 83.2% 83.2% 0%

0.06; 0.52 0.06; 0.2 0.02; 0.46 0.01; 0.13

[0,0.6] δ = 0.1 0%; 7.2%; 2.4% 0%; 6.1%; 0% 6.2% 5.4% 0%

0.07; 0.2 0.04; 0.06 0.01; 0.03 0.01; 0.02

δ = 0.075 0%; 5.7%; 2% 0%; 5.1%; 0% 4.9% 4.5% 0%

0.06; 0.15 0.03; 0.05 0.01; 0.03 0.01; 0.02

δ = 0.05 0%; 20.2%; 9.9% 0%; 20.1%; 0% 18.1% 18.1% 0%

0.04; 0.17 0.04; 0.06 0.01; 0.06 0.01; 0.02

δ = 0.025 0%; 19.1%; 8.7% 0%; 19.1%; 0% 17.0% 17.0% 0%

0.05; 0.18 0.03; 0.06 0.01; 0.06 0.01; 0.02

ε = 0 0%; 38.5%; 29.2% 0%; 38.5%; 0% 35.4% 35.4% 1.9%

0.07; 0.16 0.03; 0.06 0.02; 0.09 0.01; 0.03

[0,0.8] δ = 0.1 0%; 0%; 15.1% 0%; 0%; 15.1% 1.2% 1.2% 2%

0.05; 0.21 0.03; 0.14 0.01; 0.05 0.01; 0.03

δ = 0.075 0%; 0%; 14.6% 0%; 0%; 14.6% 1.2% 1.2% 2%

0.06; 0.27 0.06; 0.07 0.01; 0.04 0.01; 0.04

δ = 0.05 0%; 28.6%; 28.4% 0%; 28.6%; 10% 26.6% 26.6% 4%

0.06; 0.32 0.04; 0.13 0.01; 0.17 0.02; 0.09

δ = 0.025 0%; 37.5%; 41.8% 0%; 37.5%; 11.1% 35.0% 35.0% 3.9%

0.06; 0.9 0.05; 0.14 0.01; 0.94 0.01; 0.09

ε = 0 100%; 25%; 19.8% 100%; 0%; 15.3% 83.3% 83.3% 0%

0.07; 0.44 0.07; 0.22 0.03; 1.01 0.01; 0.26

[0,1.0] δ = 0.1 0%; 4.1%; 2% 0%; 2%; 1.3% 3.6% 1.9% 0%

0.06; 0.29 0.04; 0.06 0.01; 0.03 0.01; 0.03

δ = 0.075 0%; 2.6%; 1.3% 0%; 1.3%; 0.8% 2.4% 1.2% 0%

0.07; 0.17 0.04; 0.05 0.01; 0.03 0.01; 0.02

δ = 0.05 0%; 1.3%; 0.7% 0%; 0.7%; 0.4% 1.2% 0.6% 0%

0.07; 0.13 0.04; 0.04 0.01; 0.04 0.01; 0.02

δ = 0.025 100%; 33.4%; 30.8% 100%; 22.5%; 23.1% 81.3% 81.3% 0%

0.07; 0.32 0.05; 0.14 0.01; 0.12 0.01; 0.03

ε = 0 100%; 32%; 30.2% 100%; 21.9%; 23.1% 81.1% 80.8% 0%

0.07; 0.33 0.06; 0.11 0.02; 0.1 0.01; 0.04



226 L. Gouveia, P. Patrı́cio, and A. de Sousa

Table 2. Computational Results for the EON Network with T in [0,0.4] and [0,0.6]

T MCF(H∗) HOP(H∗) MCF HOP C

[0,0.4] δ = 0.1 0%; 0%; 4% 0%; 0%; 4% 0.4% 0.4% 0%

0.16; 4.64 0.1; 0.19 0.05; 0.13 0.02; 0.05

δ = 0.075 0%; 16.7%; 11.7% 0%; 15.3%; 8% 15.5% 14.3% 0%

0.16; 0.78 0.11; 0.24 0.05; 0.15 0.02; 0.05

δ = 0.05 0%; 16.7%; 11.3% 0%; 14%; 8% 15.4% 13.1% 0%

0.14; 4 0.1; 1.21 0.03; 0.12 0.02; 0.05

δ = 0.025 0%; 28.6%; 11.3% 0%; 25.2%; 4.3% 26.1% 23.1% 0%

0.15; 8.9 0.11; 0.96 0.03; 0.67 0.03; 0.1

ε = 0 100%; 50%; 14.2% 100%; 30.6%; 4.3% 89.2% 88.6% 0%

0.17; 10.43 0.13; 1.07 0.03; 3.11 0.02; 1.3

ε = 0.05 100%; 50%; 14.5% 100%; 31.2%; 4.3% 89.2% 88.7% 0%

0.17; 13.59 0.17; 2.61 0.06; 8.03 0.06; 1.01

ε = 0.10 0%; 0%; 4% 0%; 0%; 4% 0.4% 0.4% 0%

0.16; 0.57 0.11; 0.25 0.04; 0.15 0.05; 0.1

ε = 0.15 0%; 16.7%; 11.5% 0%; 14.5%; 8% 15.5% 13.6% 0%

0.18; 3.4 0.11; 0.28 0.05; 0.19 0.04; 0.05

ε = 0.20 0%; 16.7%; 14.8% 0%; 15.5%; 11.5% 15.8% 14.7% 1.2%

0.16; 2.85 0.1; 1.01 0.05; 0.24 0.02; 0.06

[0,0.6] δ = 0.1 0%; 22.3%; 10.8% 0%; 19.9%; 9.1% 20.4% 18.3% 1.3%

0.2; 7.76 0.12; 1.81 0.06; 0.21 0.02; 0.15

δ = 0.075 0%; 21.1%; 10% 0%; 17.1%; 9.1% 19.3% 15.8% 1.3%

0.18; 1.33 0.14; 0.49 0.05; 0.31 0.03; 0.13

δ = 0.05 0%; 19.6%; 9.3% 0%; 14.5%; 9.1% 17.8% 13.4% 1.3%

0.18; 3.7 0.12; 1.56 0.06; 0.21 0.02; 0.08

δ = 0.025 0%; 17.3%; 12.2% 0%; 11.9%; 12.2% 15.7% 11.3% 1.2%

0.21; 4.04 0.12; 2.05 0.05; 0.36 0.02; 0.09

ε = 0 0%; 14.9%; 14.5% 0%; 9.5%; 14.4% 13.8% 9.3% 0%

0.21; 5.01 0.12; 0.41 0.06; 0.21 0.03; 0.1

ε = 0.05 0%; 25.3%; 19.5% 0%; 20.3%; 17.4% 23.4% 19.3% 1.2%

0.19; 5.8 0.13; 1.29 0.06; 0.93 0.02; 0.26

ε = 0.10 0%; 21.7%; 7.2% 0%; 21.7%; 4.8% 19.7% 19.7% 0%

0.17; 1.31 0.12; 0.78 0.08; 0.15 0.02; 0.08

ε = 0.15 0%; 19.1%; 13.2% 0%; 15.2%; 13% 17.4% 14.2% 2.5%

0.2; 1.53 0.13; 1.34 0.07; 0.38 0.03; 0.13

ε = 0.20 0%; 56.6%; 53.9% 0%; 55.4%; 17.6% 53.9% 52.9% 2.3%

0.18; 37.07 0.16; 2.1 0.06; 6.48 0.02; 1.67
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Table 3. Computational Results for the EON Network with T in [0,0.8] and [0,1.0]

T MCF(H∗) HOP(H∗) MCF HOP C

[0,0.8] δ = 0.1 0%; 36.2%; 9.4% 0%; 36.2%; 0% 32.9% 32.9% 0%

0.25; 1.93 0.16; 1.79 0.07; 0.73 0.05; 0.78

δ = 0.075 0%; 35.6%; 8.3% 0%; 35%; 0% 32.2% 31.5% 0%

0.22; 2.73 0.15; 0.45 0.08; 0.35 0.06; 0.24

δ = 0.05 0%; 35.1%; 12% 0%; 32%; 5.3% 31.8% 28.9% 0%

0.25; 8.43 0.14; 0.52 0.07; 0.3 0.06; 0.15

δ = 0.025 0%; 34.3%; 11% 0%; 29%; 5.3% 30.8% 26.1% 0%

0.25; 2.8 0.15; 1.58 0.07; 0.29 0.03; 0.09

ε = 0 0%; 31.5%; 18.6% 0%; 26.1%; 14.3% 28.5% 23.8% 0%

0.26; 22.17 0.12; 2.04 0.08; 0.48 0.03; 0.3

ε = 0.05 0%; 32%; 9.9% 0%; 26.6%; 5.3% 28.6% 23.8% 0%

0.22; 20 0.16; 2.15 0.06; 0.63 0.05; 0.09

ε = 0.10 0%; 35.2%; 9.3% 0%; 35.2%; 0% 32.1% 32.1% 0%

0.21; 1.75 0.15; 0.34 0.06; 0.68 0.03; 0.1

ε = 0.15 0%; 36.1%; 9.4% 0%; 36.1%; 0% 32.8% 32.8% 0%

0.2; 0.83 0.12; 0.44 0.06; 0.26 0.03; 0.1

ε = 0.20 0%; 31.5%; 15.2% 0%; 29.4%; 10% 28.5% 26.6% 0%

0.21; 8.25 0.12; 0.56 0.06; 0.39 0.02; 0.16

[0,1.0] δ = 0.1 0%; 25%; 11.5% 0%; 25%; 5.6% 23.2% 23.2% 0%

0.2; 6.64 0.12; 2.41 0.08; 0.59 0.03; 0.15

δ = 0.075 0%; 25%; 15% 0%; 24.3%; 10.5% 23.2% 22.6% 0%

0.27; 1.62 0.13; 2.67 0.08; 0.49 0.02; 0.15

δ = 0.05 0%; 40%; 26.3% 0%; 37.7%; 11.8% 37.4% 35.4% 0%

0.22; 12.5 0.14; 2.67 0.08; 0.71 0.03; 0.62

δ = 0.025 0%; 48.8%; 36.3% 0%; 46.7%; 7.1% 46.1% 44.1% 0%

0.26; 15.75 0.19; 2.97 0.11; 6.35 0.03; 3.85

ε = 0 0%; 51.4%; 47.3% 0%; 49.5%; 14.3% 48.8% 47.1% 0%

0.28; 18.79 0.2; 3.25 0.07; 5.54 0.05; 2.44

ε = 0.05 0%; 51.6%; 47% 0%; 49.8%; 14.3% 48.9% 47.3% 0%

0.33; 10.75 0.16; 1.87 0.06; 1.97 0.05; 1.48

ε = 0.10 0%; 14.3%; 11.1% 0%; 14.3%; 10% 13.3% 13.3% 0%

0.25; 22.08 0.17; 0.49 0.06; 0.38 0.05; 0.26

ε = 0.15 0%; 33.2%; 15.8% 0%; 30.8%; 5.9% 30.8% 28.5% 0%

0.27; 7.05 0.19; 0.54 0.08; 2.56 0.06; 1.25
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Table 4. Average CPU Time (in Seconds) Taken in Finding the Integer Optimal Solution

MCF(H∗) HOP(H∗) MCF HOP

NSFNet 0.29 0.1 0.18 0.05
EON 8.02 1.33 1.28 0.51

As for the CPU times, even though the order of magnitude of CPU times of the LP
relaxations is rather small, these times are smaller for the HOP(H∗) and HOP models.
On the other hand, considering the CPU times taken in finding the integer optimal so-
lutions, the HOP(H∗) and the HOP models are markedly faster. In order to highlight
these results, Table 4 shows the CPU time taken in finding the optimal solutions aver-
aged over all NSFNet instances and all EON instances. These results show the superior
efficiency of HOP based models over MCF based models and, also, that the single
model approach is preferable over the iterative approach.

To conclude this section, we now compare the average number of hops of the paths
determined in this work to the optimal values given in column C of all tables. For all
instances tested, the average number of hops increased at most 4.0% and for most of
the instances the increase was 0%. These results show that the optimal solutions for
the lexicographical minimization of routing hops exhibit a very small penalty on the
optimal average number of routing hops, which means that we can improve the routing
fairness without jeopardizing the overall average performance.

5 Conclusions and Future Work

In this paper, we have addressed the problem of determining a single routing path for
each commodity over a telecommunications network aiming to minimize the number
of routing hops in a lexicographical sense. We have presented two approaches: an iter-
ative approach and a single model approach. In both cases, we have exploited a multi-
commodity flow model and a hop-indexed model. We have shown that the LP bound of
the hop-indexed model is at least as good as the multi-commodity model. The com-
putational results showed that this dominance is strict for several instances and, as
a consequence, the approaches based on the hop-indexed model were more efficient.
The computational results also showed that the single model approach has significantly
shorter running times.

As mentioned previously, this work has only addressed the D = 1 case (which also
explains why all instances are easy to solve) but we intend to address the D = 2,3,4
cases in the near future. We emphasize, however, that the case with D = 1 is of interest
alone since the objective function under study is, as far as we know, new in the context
of these problems, and the D = 1 case is suitable for understanding the behavior of hop-
indexed models in the context of more “standard” models as the MCF model. Lastly,
since the LP gaps are often quite large, we are investigating valid cut inequalities in
order to obtain better formulations.



Lexicographical Minimization of Routing Hops in Telecommunication Networks 229

References

1. Ben-Ameur, W., Kerivin, H.: Routing of Uncertain Traffic Demands. Optim. Eng. 6, 283–313
(2005)

2. Botton, Q., Fortz. B., Gouveia, L., Poss, M.: Benders decomposition for the hop constrained
survivable network design problem. CIO working paper (March 2010)

3. Dahl, G., Gouveia, L., Requejo, C.: On Formulations and Methods for the Hop-Constrained
Minimum Spanning Tree Problem. In: Resende, M., Pardalos, P. (eds.) Handbook of
Optimization in Telecommunications, pp. 493–515. Springer, Heidelberg (2006)

4. Gouveia, L.: Using Variable Redefinition for Computing Lower Bounds for Minimum
Spanning and Steiner Trees with Hop Constraints. INFORMS J. Comput. 10, 180–188 (1998)

5. Gouveia, L., Patrı́cio, P.F., de Sousa, A.F.: Hop-Constrained Node Survivable Network
Design: An Application to MPLS over WDM. Netw. Spat. Econ. 8(1), 3–21 (2008)

6. Gouveia, L., Patrı́cio, P.F., de Sousa, A.F.: Optimal Survivable Routing with a Small Number
of Hops. In: Raghavan, S., Golden, G., Wasil, E. (eds.) Telecommunications Modeling, Pol-
icy, and Technology. Operations Research/Computer Science Interfaces Book Series, vol. 44,
pp. 253–274. Springer, Heidelberg (2008)

7. Gouveia, L., Patrı́cio, P.F., de Sousa, A.F.: Models for Optimal Survivable Routing with a
Minimum Number of Hops: Comparing Disaggregated with Aggregated Models. Int. Trans.
Oper. Res. (2011), doi: 10.1111/j.1475-3995.2010.00766.x

8. Huygens, D., Labb, M., Mahjoub, A.R., Pesneau, P.: The two-edge connected hop-
constrained network design problem: Valid inequalities and branch-and-cut. Netw 49(1),
116–133 (2007)

9. Juttner, A., Szviatovski, B., Mecs, I., Rajko, Z.: Lagrange relaxation based method for the
QoS routing problem. In: Infocom Proc., vol. 2, pp. 859–868 (2001)

10. Kerivin, H., Mahjoub, A.R.: Design of Survivable Networks: A Survey. Netw. 46(1), 1–21
(2005)
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Abstract. In a directed flow network we assign capacities on vertices as well
as on edges. We consider a (δ ,η)-balanced flow problem of single commodity
case. A (δ ,η)-balanced flow is defined as a flow such that the flow value at each
edge is not more than δ · f and the flow value at each vertex is not more than η · f ,
where f is the total amount of the flow. Based on (δ ,η)-balanced flow, the (δ ,η)-
capacity is defined for a mixed cut in a network. A mixed cut in a network is a set
of edges and vertices removal of those separates the network. Then the max-flow
min-cut theorem for this (δ ,η)-balanced flow is proved for the single commodity
case in a directed network. The theorem for (δ ,η)-balanced flow is not easily to
be proved by only applying the max-flow min-cut theorem of ordinary flows.
Then we show a method for evaluating the maximum (δ ,η)-balanced flow. The
algorithm gives the maximum value of (δ ,η)-balanced flow between s and t in
N with at most |V | · |E| evaluations of maximum flow in a network, where V is
the vertex set of N and E is the edge set of N, respectively. Each evaluations of
the maximum flow is performed in N with altered capacities on edges and on
vertices. We can apply all the results to undirected networks.

1 Introduction

A flow in a network is a non-negative combination of flows along paths. Depending on
the paths the flow goes along, an edge failure may cause almost entire loss of the flow.
This situation is not preferable for some applications. This motivated the definition of
a multi-route flow [16,17,18]. Later, a δ -reliable flow is defined as a generalization of
the multi-route flow [19]. A δ -reliable flow is a flow for which an edge failure causes a
loss of at most δ of the entire flow. We say it is a δ -condition. Node failures of a flow
are considered similarly to edge failures. If we care about only node failures, it is easy
to solve the problem as a δ -reliable flow. Also if we require the amount of loss a node
failure causes is at most the same value of an edge failure, it is solved easily. In addition
to the δ -condition, we admit a node failure to the loss of at most η of the entire flow,
where 0 < δ < η ≤ 1. We call it an η-condition. We say that such a flow satisfying
both of δ -condition and η-condition is a (δ ,η)-balanced flow, or a (δ ,η)-reliable flow.

Since δ < η , it is not a straight forward extension of a δ -reliable flow, which we
can solve by using the same method. We construct a flow with value f satisfying δ -
condition, which means at most δ f of the flow goes through each edge. Then, we hap-
pen to decrease the entire flow to f ′ < f for satisfying η-condition. Now, for satisfying

J. Pahl, T. Reiners, and S. Voß (Eds.): INOC 2011, LNCS 6701, pp. 230–242, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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δ -condition the flow value at each edge is at most δ f ′ < δ f . Therefore, the current flow
with valuer f ′ may not satisfy δ -condition. The flow is decreased again for satisfying
δ -condition and then it may not satisfy η-condition, and so on. We have to consider
both of δ -condition and η-condition simultaneously for constructing a (δ ,η)-balanced
flow. We prove a max-flow min-cut theorem for a (δ ,η)-balanced flow. The theorem for
(δ ,η)-balanced flow is not easily to be proved by only applying the max-flow min-cut
theorem for ordinary flow. Then we give a method for evaluating a maximum (δ ,η)-
balanced flow between a pair of vertices s and t in a network. The algorithm gives the
maximum value of (δ ,η)-balanced flow from s to t in N with at most |V | · |E| evalu-
ations of maximum flow in a network, where V is a vertex set of N and E is an edge
set of N, respectively. Each evaluation of the maximum flow is done in N with altered
capacities of edges and vertices. We can apply all the results in this paper to undirected
networks.

The problem to construct a balanced flow corresponds to, for example, the design
of a reliable data communication channel for reliable data flow in a network. Usually,
a network is designed to satisfy some specified performance objectives under normal
operating conditions, without explicit consideration of network survivability. The net-
work performance in the event of a failure is difficult to predict. Setting the objectives
of survivability performance will enable us to ensure that, under given failure scenar-
ios, network performance will not degrade below predetermined levels [21,22]. The
design of such a reliable communication channel corresponds to a balanced flow prob-
lem in a network. For reliability of network flows we can refer to many researches e.g.
[3,4,5,12,20].

Single commodity multiroute flows are studied by [1,16,18]. Multi-commodity mul-
tiroute flow problem is considered in [7]. There is a study of multiroute flow prob-
lem based on different cuts [8]. Other multiroute flow problems are considered in
[6,9,10,15]. [7,8,10] gives good reference of multiroute flow problem.

A multiroute flow corresponds to a generalized fan [11] in graph theory. On the
basis of [11], m-route flow is proved to be a δ -reliable flow where δ = 1/m [17,18].
A δ -reliable flow is an extension of a multiroute flow [19] and is the basis of a (δ ,η)-
balanced flow we define in this paper.

This paper is organized as follows. In Section 2 the terms used in this paper are
defined. In Section 3, the definitions of the (δ ,η)-balanced flow and the (δ ,η)-capacity
of a cut are given. Then the max-flow min-cut theorem for the (δ ,η)-balanced flow is
covered in Section 4. Section 5 shows the main algorithm for obtaining the maximum
(δ ,η)-balanced flow between a pair of vertices.

2 Preliminaries

2.1 Flow Network

Let G = (V , E) be a graph with the vertex set V and the edge set E . Then N = (G,c) is a
network, where we say c is a capacity function such that c(x) is non-negative real value
and indicates the capacity of edge x or that of vertex x in G (i.e. x ∈ V ∪E). We set ci(x)
= 0 if x �∈V ∪E . If G is directed, N is directed, otherwise N is undirected. Unless stated
otherwise, networks we consider are directed.
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Definition 1. Let Na = (Ga, ca) and Nb = (Gb, cb) be two networks. If Gb is a subgraph
of Ga and cb(x) ≤ ca(x) for each edge x and for each vertex x of Gb, we say Nb is a
subnetwork of Na.

Definition 2. Let N1 = (G1, c1), N2 = (G2, c2), · · ·, Nn = (Gn, cn) be networks. Let Vi

and Ei be the vertex set and the edge set of Gi; let V and E be the vertex set and the
edge set of G. The sum of networks N1, N2, · · ·, Nn is N = (G, c) such that

V = V1∪V2∪·· ·∪Vn,

E = E1∪E2∪·· ·∪En,

c(x) = c1(x)+ c2(x)+ · · ·+ cn(x) for all x ∈ E ∪ V .

Definition 3. A network is λ uniform or uniform with value λ if each edge and each
vertex has capacity λ .

Let V1 be a nonempty subset of vertex-set V of network N, and V2 be the complement
of V1. In a directed network N, a cut (V1,V2) of N is the set of edges, each of which is
directed away from a vertex of V1 and directed toward a vertex of V2. The set of edges
directed away from v is called the out-incidence cut of v, and the set of edges directed
into v is the in-incidence cut of v. Then, Io(v) stands for the out-incidence cut of v and
Ii(v) the in-incidence cut of v.

We denote by Ū the complement of a subset U of V . When s ∈ V1 and t ∈ V̄1, we say
(V1,V̄1) is a s-t cut. The sum of edge capacities of an edge set S is called the capacity of
the edge set, and is indicated by c(S). The capacity of a cut (V1,V̄1) is simply represented
by c(V1,V̄1) instead of c((V1,V̄1)).

The capacity of a vertex also restricts the amount of flows passing through the vertex.
Clearly, no vertex, even s nor t can convey a flow with the value greater than c(Ii(v))
and c(Io(v)). If the capacity of each vertex v denoted as c(v) satisfies

c(v)≥max{c(Ii(v)),c(Io(v))},
we say c is affluent at v. Moreover, a network N = (G,c(∗)) is smooth if c is affluent at
each vertex in G. In this paper, if c is affluent at v we set

c(v) = max{c(Ii(v)),c(Io(v))}. (1)

If N is smooth, we set equation (1) holds at each vertex of N. In a smooth network we
can define the value of an ordinary flow between any pair of vertices without care of
capacities of vertices in the network.

Definition 4. In a directed network N = (G, c(∗)), let V1 and V2 be two nonempty
proper subsets of the vertex set V of G such that V1 ∩ V2 = /0. The mixed cut is the set
consisting of edges each of which is directed away from a vertex in V1 toward a vertex
in V2, and vertices in V −V1−V2. The symbol (V1,V2) is used for this mixed cut. The
capacity c(V1,V2) is defined as

c(V1,V2) = ∑
e∈E(V1,V2)

c(e)+ ∑
v∈V (V1,V2)

c(v),

where E (V1,V2) is the set of edges in (V1,V2), and V (V1,V2) is the set of vertices in
(V1,V2).



A Method for Obtaining the Maximum (δ ,η)-Balanced Flow in a Network 233

When s ∈ V1 and t ∈ V2, we say (V1,V2) is an s-t mixed cut. If V1 ∪ V2 = V , i.e. V2 =
V̄1, the mixed cut (V1,V2) coincides with the ordinary cut (V1,V̄1).

2.2 Definition of Flow

A flow from a vertex s to a vertex t is usually defined as a function f from the edge set
of a network to nonnegative real numbers[2,14]; however, the following definitions are
used here. Henceforth, N is assumed to be a directed network.

Definition 5. A path-flow from a vertex s to a vertex t with the value λ is a uniform
network P = (Gp, cp) of value λ such that Gp is a directed path from s to t. We also say
that P is an s-t path-flow.

Definition 6. A flow from a vertex s to a vertex t is defined as a network F = (G f , c f )
which is the sum of s-t path-flows P1, P2, · · ·, Pn. The value of F is defined as the sum of
the values of these path-flows. We also say that F is an s-t flow.

Note that a path flow and a flow are both smooth networks. Let a flow F be a subnetwork
of N; then F is a flow in N. There is no essential difference between the definition 6
and the ordinary one using a flow function f . Let F = (G,c) be a flow from s to t. For
each vertex v of the vertices except s and t in F , we have that c(v) = c(Ii(v)) = c(Io(v)).
Moreover, we have that c(s) = c(Io(v)), and c(t) = c(Ii(v)). In the figure of a flow we
omit the value at each vertex.

From the max-flow min-cut theorem, the maximum flow value from s to t is equal to
the minimum capacity of s-t cuts in N [2,14].

2.3 Cut-Flow

Definition 7. [18] Let (V1,V̄1) be a cut of a network N. A cut-flow of (V1,V̄1) is a
subnetwork Fc = (G f , c f ) of N such that each edge of Gf is in (V1,V̄1). The value of Fc

is defined by c f (V1,V̄1).

Since Fc = (G f , c f ) is a subnetwork of N, c f (e) ≤ c(e) for each edge e in G f . The
maximum value of cut-flow of (V1,V̄1) is equal to c(V1,V̄1). A cut-flow of (V1,V̄1) can
be considered to be a flow between a pair of vertex sets, instead of between a single pair
of vertices.

Definition 8. [18] Let (V1,V2) be a mixed cut of a network N. A cut-flow of (V1,V2) in
N is a subnetwork Fc = (Gc, cc) of N such that each edge of Gc is an edge in (V1,V2)
and each vertex of Gc is a vertex in (V1,V2). The value of Fc is defined by cc (V1,V2).

It can be easily seen that the maximum value of a cut-flow of a mixed cut (V1,V2) is
equal to c(V1,V2).

3 (δ ,η)-Balanced FLOW

3.1 (δ ,η)-Balanced Flow

From now on δ and η always satisfy that 0 < δ ≤ η ≤ 1.
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Fig. 1. (0.4,0.5)-balanced flow D0

Definition 9. A (δ ,η)-balanced flow is a flow F = (GF, cF(∗)) from a vertex s to a
vertex t, such that

cF(e) ≤ δ f ,

for each edge e in F, and

cF(v) ≤ η f ,

for each vertex v in F except s and t where f is the value of F,

A single edge-failure causes, at most, a fraction δ of a (δ ,η)-balanced flow to fail,
while a single-vertex failure does at most a fraction η of the flow to fail. Therefore, at
least (1− δ )· (value of the flow) survives an edge failure, and at least (1−η)· (value
of the flow) survives a vertex failure. Even when n edges and m vertices fail, at most
(nδ + mη)· (value of a (δ ,η)-balanced flow) fails. Thus (δ ,η)-balanced flow has a
specified reliability against edge and vertex failures.

Example: A smooth network D0 of figure 1 is a flow with the value 10 from s to t.
As denoted before, the capacity of each vertex v satisfies equation (1). The capacity
of each edge in D0 is not greater than 4 (= 0.4 × 10), as well as each capacity of
the vertex except s and t in D0 is not greater than 5 (= 0.5 × 10). Therefore, D0 is a
(0.4,0.5)-balanced flow.

3.2 (δ ,η)-Capacity of a Mixed Cut

Definition 10. A (δ ,η)-balanced cut-flow of a mixed cut (V1,V2) in N is a cut-flow Fc

= (Gc, cc(∗)) of (V1,V2) in N such that

cc(e) ≤ δ fc,

cc(v) ≤ η fc

for each edge e and each vertex v of Gc, where fc is the value of Fc.

Definition 11. The (δ ,η)-capacity of a mixed cut is the maximum value of (δ ,η)-
balanced cut-flow of the mixed cut.
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Since the (δ ,η)-capacity is the value of a cut-flow, then

c(δ ,η) (V1,V2)≤ c(V1,V2)

where c(δ ,η) (V1,V2) stands for the (δ ,η)-capacity of (V1,V2).
Let F be a (δ ,η)-balanced flow from s to t in N with the value f . Suppose that a

subnetwork F1 consists of the edges and the vertices of an s-t mixed cut (V1,V2) in F
and that its capacities of edges and vertices are the same values as in F . Then F1 is a
cut-flow of (V1,V2) with the value f1 (≥ f ). Since each edge capacity is less than δ f
(≤ δ f1) and each vertex capacity is less than η f (≤ η f1), F1 is a (δ ,η)-balanced cut-
flow of (V1,V2). Consequently, the value of a (δ ,η)-balanced flow from s to t is not
greater than the (δ ,η)-capacity of (V1,V2).

3.3 Evaluation of (δ ,η)-Capacity of a Mixed Cut

Let the edges of a mixed cut (V1,V2) in N = (G, c) be e1, e2, · · ·, ep and, the vertices of
(V1,V2) be v1, v2, · · ·, vq, such that

c(V1,V2) =
p

∑
i=1

c(ei)+
q

∑
j=1

c(v j); (2)

c(ei) ≥ c(ei+1), for 1≤ i≤ p−1; (3)

c(v j) ≥ c(v j+1), for 1≤ j ≤ q−1. (4)

Let F = (G′, c′) be a cut-flow of a mixed cut (V1,V2) in N = (G, c). Then, F is a
(δ ,η)-balanced cut-flow of (V1,V2) if and only if

c′(ei) ≤ min{c(ei),δc′ (V1,V2)}, for i = 1,2, · · · , p, (5)

c′(v j) ≤ min{c(v j),ηc′ (V1,V2)}, for j = 1,2, · · · ,q. (6)

We can easily show the following lemmas.

Lemma 1. A necessary and sufficient condition for a value θ to be the value of a (δ ,η)-
balanced cut-flow of (V1,V2) is

θ ≤
p

∑
k=1

min{c(ek),δθ}+
q

∑
�=1

min{c(v�),ηθ}. (7)

That is, the value of a (δ ,η)-balanced cut-flow θ must satisfy inequality (7). Con-
versely, if θ satisfies inequality (7), there exists a (δ ,η)-balanced cut-flow F with this
value θ .

Let θmax is the maximum value of θ that satisfies inequality (7). Since c(δ ,η) (V1,V2),
the (δ ,η)-capacity of (V1,V2), is the value of a (δ ,η)-balanced cut-flow, c(δ ,η) (V1,V2)
satisfies inequality (7). We have

θmax ≥ c(δ ,η) (V1,V2) ,
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Since from lemma 1 there exists a (δ ,η)-balanced cut-flow with the value θmax of
(V1,V2) in N,

θmax ≤ c(δ ,η) (V1,V2) .

Consequently, θmax is equal to c(δ ,η) (V1,V2).

Lemma 2. Let θ be a value such that θ ≤ θmax. Then θ satisfies inequality (7).

Inequalities (3) and (5) indicate that there is some index i such that the capacity of the
cut-flow edges subsequent to i are bounded by c(ek) and the capacity of ones equal
to and preceding i are bounded by δθ . Similarly, inequalities (4) and (6) imply that
there is some index j such that the capacity of the cut-flow vertices subsequent to j are
bounded by ηθ and the capacity of ones equal to and preceding j are bounded by c(vk).

Intuitively thinking, the maximum θ can be obtained by making inequality (7) an
equality; this, in turn, causes inequalities (5) and (6) to be equalities. Then, let I be the
set of all pairs of (i, j) such that iδ + jη < 1, i ∈ {0, . . . , p}, and j ∈ {0, . . . ,q}, and
solve the following equation to obtain a θ value for each pair (i, j) ∈ I

θ = (iδ + jη)θ +
p

∑
k=i+1

c(ek)+
q

∑
�= j+1

c(v�).

Note that if (i, j) ∈ I then θ ≥ 0. If the obtained θ satisfies

c(ei)≥ δθ ≥ c(ei+1), and

c(v j)≥ ηθ ≥ c(v j+1),

then θ also satisfies the equality of inequality (7) and is expected to be the maximum.
On the basis of the results and intuitive discussion above, we describe a method to

obtain the (δ ,η)-capacity of a cut with 1/δ + 1/η (at most p + q) evaluations of θ .

Algorithm #1: Evaluation of the (δ ,η)-capacity of a mixed cut.
In the following, the sequence θi, j, for (i, j) ∈ I , is the θ sequence of (V1,V2) defined
as follows:

θi, j = ψ(i, j)

{
p

∑
k=i+1

c(ek)+
q

∑
k= j+1

c(vk)

}

= ψ(i, j)

{
c(V1,V2)−

i

∑
k=1

c(ek)−
j

∑
k=1

c(vk)

}
, (8)

where ψ(i, j) = 1
1−iδ− jη .

1. Set β = 0.
2. Iterate the next procedure until it stops.

Procedure A:
(a) Set α to be the minimum i ((i,β ) ∈ I ) such that

c(ei+1) ≤ δψ(i,β )

{
p

∑
k=i+1

c(ek)+
q

∑
�=β+1

c(v�)

}
= δθi,β . (9)



A Method for Obtaining the Maximum (δ ,η)-Balanced Flow in a Network 237

(b) If c(vβ+1) > ηθα ,β , then set β to be the minimum j ((α, j) ∈ I ) such that

c(v j+1) ≤ ηψ(α, j)

{
p

∑
k=α+1

c(ek)+
q

∑
k= j+1

c(vk)

}
= ηθα , j. (10)

(c) If c(eα+1) ≤ δθα ,β , then terminate the procedure. Otherwise, go back to (a).
(end of procedure)

3. The (δ ,η)-index (τ ,ρ) is defined as that τ = α , ρ = β . Then θτ,ρ = c(δ ,η) (V1,V2)
= θmax, the (δ ,η)-capacity of (V1,V2).

(end of algorithm)
Note that the indices α and β never decrease in the algorithm #1. Therefore, θi, j is

evaluated 1/δ times in step 2(a) of this algorithm, as well as, θi, j is evaluated 1/η times
in step 2(b). This algorithm terminates after at most 1/δ + 1/η iterations of step 2.

Example: In a network N of figure 2, let V1 = {s, va, vb}, V2 = {vd , ve, t}. Then
(V1,V2) = {e1,e2,vc}. By using the above algorithm, we can evaluate c(0.4,0.5) (V1,V2)
as follows.

1. Set β = 0.
2. (a) Since θ0,0 = 16, we have 6≤ 0.4 ·16, that is, c(e1)≤ δθ0,β . We set α = 0.

(b) Since c(v1) = 9, we have 9 > 0.5 · 16, that is, c(v1) > ηθ0,0. Then c(v2) = 0
and θ0,1 = 14. Therefore 0≤ 0.5 ·14, that is, c(e2)≤ δθ0,β . We set β = 1 and
iterate the procedure A again.

(c) Since c(e1) = 6, we have 6 > 0.4 ·14, that is, c(e1) > δθ0,1.

(a) Since θ1,1 = 10 and c(e2) = 1, we have 1≤ 0.4 ·10, that is, c(e2)≤ δθ1,1. We
set α = 1.

(b) Since c(v2) = 0, we have c(v2) ≤ ηθ1,1, that is, 0 ≤ 0.5 ·10.

3. The (δ ,η)-index (τ ,ρ) is defined as that τ = 1, ρ = 1. Then c(0.4,0.5) (V1,V2) = θ1,1

= 10.

Therefore, we obtain a value of 10 as the (0.4,0.5)-capacity of (V1,V2) with τ = 1 and
ρ = 1. Since D0 of figure 1 is a (0.4,0.5)-balanced flow with value 10 in N, D0 is a
maximum (0.4,0.5)-balanced flow from s to t in N.

Theorem 1 shows that algorithm #1 is correct. We can conclude that the maximum
θ satisfies the equality of inequality (7). The maximum θ is also obtained from evalua-
tions of all θi, j, which needs at most pq times of evaluations of θi, j .

For the proof of theorem 1 we show some lemmas which are useful for the following
sections.

Lemma 3. 1. For any β (0 ≤ β < 1/η) there always exists a (i,β ) (∈ I ) satisfying
inequality (9).

2. For any α (0 ≤ α < 1/δ ) there always exists a (α , j) (∈ I ) satisfying inequality
(10).

3. There always exists a (α,β ) (∈ I ) satisfying both of inequalities (9) and (10).
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Fig. 2. Network N

Lemma 4. For (i, j) ∈ I ,
1. if c(ei+1) > δθi, j

c(ek+1) > δθk, j for 1≤ k ≤ i−1,

2. if c(v j+1) > ηθi, j ,

c(v�+1) > ηθi,� for 1≤ �≤ j−1.

From lemma 4, at least α or β increases at each iteration of step 2 in algorithm #1
until the algorithm stops. Furthermore, from lemma 3, (α,β ) is always in finite set
I . Algorithm #1 finds (δ ,η)-reliable capacity, and terminates in a finite number of
iterations. The (δ ,η)-index (τ,ρ) is always in I .

Lemma 5. For any mixed-cut with p edges and q vertices, θτ,ρ = 0, if and only if, (p,q)
∈ I .

Lemma 6. Let (τ ,ρ) be (δ ,η)-index of a mixed cut (V1,V2). Then,

c(ei) > δθτ,ρ , for 1≤ i≤ τ;

c(v j) > ηθτ,ρ , for 1≤ j ≤ ρ .

From the definitions of τ and ρ , we also have the following inequalities:

c(ei) ≤ δθτ,ρ , for τ + 1≤ i≤ p; (11)

c(v j) ≤ ηθτ,ρ , for ρ + 1≤ j ≤ q. (12)

Theorem 1. The output θτ,ρ of algorithm #1 is the (δ ,η)-capacity of (V1,V2).

4 Max-Flow Min-Cut Theorem of (δ ,η)-Balanced Flow

In this section we prove the max-flow min-cut theorem for (δ ,η)-balanced flow.

Lemma 7. Let (τ ,ρ) be (δ ,η)-index of a mixed cut (V1,V2). For any (i, j) (∈ I ),
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1. If τ ≤ i and ρ ≤ j,

θi, j ≥ θτ,ρ ,

2. otherwise,

θi, j > θτ,ρ .

Using the lemmas proved so far, and the max-flow min-cut theorem for ordinary flow,
we can prove the max-flow min-cut theorem of (δ ,η)-balanced flow.

Theorem 2. There exists a (δ ,η)-balanced flow D = (GD, cD) with the value μ from
s to t in a network N if and only if the (δ ,η)-capacity of any s-t mixed cut in N is not
less than μ .

5 How to Obtain the Maximum (δ ,η)-Balanced Flow

We develop a method for evaluating the maximum value of (δ ,η)-balanced flow be-
tween a specified pair of vertices. The method consists of calculations of the maximum
value of ordinary flows between the pair of vertices.

We recall the set I of all pairs of (i, j) such that iδ + jη < 1, i ≥ 0, and j ≥ 0. For
I , let J = {δ i+ jη : (i, j) ∈I }. We denote J as follows.

J = {ω0(= 0),ω1, . . . ,ωr−1},
such thatωk−1 <ωk where r = |J |. We define a function ordδ ,η : I →{0,1, . . . ,r−1}
andΨ(k) as follows.

ordδ ,η(i, j) = k←→ δ i+η j = ωk, Ψ(k) =
1

1−ωk
.

Note that

Ψ(ordδ ,η(i, j)) =
1

1− iδ − jη
= ψ(i, j).

There may be exist (i1, j1) and (i2, j2) ((i1, j1) �= (i2, j2)) such that ordδ ,η(i1, j1) =
ordδ ,η(i2, j2). For k = 0, 1, . . ., r−1 we also define (α(k),β (k)) as an arbitrary (i, j) ∈
I such that ordδ ,η(i, j) = k. Note that

α(k)δ +β (k)η = ωk, ψ(α(k),β (k)) =Ψ(k).

For any k ≥ 1, and a given network N = (G,c), we denote Nk = (G,ck) as the
network in which capacity function ck is defined for each edge e and for each vertex v
in G except s and t as follows.

ck(e) = min{c(e),δξk} for each edge e in G

ck(v) = min{c(v),ηξk} for each vertex v in G except s and t,

where ξk is defined as equation (13) in the following algorithm #2.

Algorithm #2: Evaluation of the maximum value of (δ ,η)-balanced flow.
Let s and t be the distinct vertices in a given network N. We will obtain the maximum
value of (δ ,η)-balanced flow between s and t.
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1. Let N0 = N. Evaluate the maximum value μ0 of the ordinary flows from s to t in N.
Set ξ1 = μ0, and k = 1.

2. Repeat the following procedure B until the procedure stops.
Procedure B: Calculate the maximum value of the ordinary flows from s to t in Nk.
Then set μk be the value.

(a) If μk = ξk, output ξk as the maximum value of (δ ,η)-balanced flows between
s and t and stop. (end of algorithm #2)

(b) Otherwise, set

ξk+1 =
μk−ωkξk

1−ωk
=Ψ(k)(μk−ωkξk)

= ψ(α(k),β (k)) · [μk−{α(k)δ +β (k)η}ξk], (13)

and k = k + 1. (end of procedure)

(end of algorithm)

Theorem 3. Algorithm #2 gives the maximum value of (δ ,η)-balanced flow between
s and t in N with at most |V | · |E| evaluations of maximum ordinary flow in a network,
where V is the vertex set of N and E is the edge set of N, respectively. Each evaluation
of the maximum flow is applied in N with altered capacities of edges and vertices.

6 Example

By using algorithm #2 we evaluate the maximum (0.4,0.5)-balanced flow from s to t in
N of figure 2.

1. Let N0 = N. The maximum flow from s to t in N0 is evaluated as 13. mixed-cut(
V (0)

1 ,V (0)
2

)
is a minimum s-t mixed-cut in N0, where V (0)

1 = {s} and V (0)
2 =

{va,vb,vc,vd ,ve,t}. Set ξ1 = μ0 = 13, and k = 1. Moreover, we have

I = {(0,0),(1,0),(2,0),(0,1),(1,1),}, J = {0,0.4,0.5,0.8,0.9}.

2. Procedure B:

First iteration. Since ξ1 = 13, N1 is obtained as figure 3. The maximum flow

from s to t in N1 is evaluated as 11.5, and μ1 = 11.5. mixed-cut
(

V (1)
1 ,V (1)

2

)
is a

minimum s-t mixed-cut in N1, where V (1)
1 = {s,vb} and V (1)

2 = {va,vd ,ve, t}. We
have μ1 �= ξ1. Since ω1 = 0.4, we set

ξ2 =
μ1−ω1ξ1

1−ω1
=

11.5−0.4×13
1−0.4

=
11.5−5.2

0.6
= 10.5,

and k = 2.
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Fig. 3. Network N1

Fig. 4. Network N2

Fig. 5. Network N3

Second iteration
Since ξ2 = 10.5, N2 is obtained as figure 4. The maximum flow from s to t in N2

is evaluated as 10.25, and μ2 = 10.25. mixed-cut
(

V (2)
1 ,V (2)

2

)
is a minimum s-t

mixed-cut in N2, where V (2)
1 = {s,vb} and V (2)

2 = {va,vd ,ve, t}. We have μ2 �= ξ2.
Since ω2 = 0.5, we set

ξ3 =
μ2−ω2ξ2

1−ω2
=

10.25−0.5×10.5
1−0.5

=
10.25−5.25

0.5
= 10,

and k = 3.
Third iteration. Since ξ3 = 10, N3 is obtained as figure 5. The maximum flow from

s to t in N3 is evaluated 10, and μ3 = 10. mixed-cut
(

V (3)
1 ,V (3)

2

)
is a minimum s-t

mixed-cut in N3, where V (3)
1 = {s,vb} and V (3)

2 = {va,vd ,ve, t}. Since μ3 = ξ3, we
have μ3 = ξ3 = 10 as the maximum value of (0.4,0.5)-balanced flow between s
and t.
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Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008,
Part I. LNCS, vol. 5125, pp. 472–484. Springer, Heidelberg (2008)

9. Du, D.: Multiroute Flow Problem, Ph.D. thesis, The University of Texas at Dallas (2003)
10. Du, D., Chandrasekaran, R.: The multiroute maximum flow problem revisited. Networks 47,

81–92 (2006)
11. Egawa, Y., Kaneko, A., Matsumoto, M.: A mixed version of Menger’s theorem. Combina-

torica 11, 71–74 (1991)
12. Evans, J.R.: Maximum Flow in Probabilistic Graphs – The Discrete Case. Networks 6, 161–

183 (1976)
13. Ford, L.R., Fulkerson, D.R.: Maximum flow through a network. Canad. J. Math. 8, 399–404

(1956)
14. Ford Jr., L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton

(1962)
15. Kar, K., Kodialam, M., Lakshma, T.V.: Routing restorable bandwidth guaranteed connections

using maximum 2-route flows. IEEE/ACM Transactions on Networking 11, 772–781 (2003)
16. Kishimoto, W., Takeuchi, M., Kishi, G.: Two-Route Flows in an Undirected Flow Network.

IEICE Trans. J75–A, 1699–1717 (1992) (in Japanese)
17. Kishimoto, W., Takeuchi, M.: On M-route flows in a network. In: Proceedings of Singapore

ICCS/ISITA, vol. 3, pp. 1386–1390 (1992)
18. Kishimoto, W., Takeuchi, M.: On m-Route Flows in a Network. IEICE Trans. J76–A, 1185–

1200 (1993) (in japanese)
19. Kishimoto, W.: Reliable Flow with Failures in a Network. IEEE Trans. Reliability 46, 308–

315 (1997)
20. Kulkarni, V.G., Adlakha, V.G.: Maximum Flow in Planar Networks with Exponentially

Distributed Arc Capacities. Communications in Statistics-Stochastic Models 1, 263–289
(1985)

21. Wu, T.H.: Fiber Network Service Survivability. Artech House, Boston (1992)
22. Zolfaghari, A., Kaudel, F.J.: Framework for Network Survivability Performance. IEEE J.

Select. Areas in Commun. 12, 46–51 (1994)

http://www.theoryofcomputing.org/articles/main/v004/a001/


Quickest Cluster Flow Problems on Tree Networks

Kathrin Leiner and Stefan Ruzika

University of Kaiserslautern, Germany
{leiner,ruzika}@mathematik.uni-kl.de

Abstract. In this publication we examine a dynamic network flow problem,
called the quickest cluster flow problem. This problem is motivated by evacuation
planning and yields improved lower bounds on evacuation times. Our approach
models people moving in groups rather than individually which can be observed
even in the situation of an emergency. To the best of our knowledge, this fact
has received little attention in dynamic network flow literature. Interrelations of
this new model to existing network flow models like multicommodity flows are
pointed out. The quickest cluster flow problem is proven to be NP-hard even on
tree networks. We restrict the cluster sizes to pairwise divisible values and obtain
an exact greedy-based algorithm.

1 Introduction

Dynamic network flow models can be used for macroscopic modeling of evacuation
scenarios. In particular quickest flow problems, which can be interpreted as asking for
the minimal time horizon needed to evacuate a specified number of people, are very use-
ful in security research. The resulting time computed with a quickest flow algorithm is
a lower bound on the time needed to evacuate this number of people in reality, provided
the network models the area appropriately [5].

[7] stated that people arriving in groups, e.g. families or cliques of friends, do not
split up even in case of an emergency. This gives reason to the approach of improv-
ing the lower bounds provided by dynamic network flow algorithms. To this end we
model different sizes of (unsplittable) flow units, so-called clusters, where the size of
the cluster resembles the size of the respective group. This model is called the cluster
flow model and has been introduced by [4].

Our research in this area is motivated by the evacuation of the area around a soccer
stadium located in a densely populated neighborhood. In case of emergency it is not
sufficient to only evacuate the stadium itself. In order to avoid blocking of the streets
around the stadium, evacuees have to depart to areas of safety at sufficient distance from
the stadium. We do not assign specific targets to the evacuees since we model the fact
that each person leaves the endangered area as fast as possible in an arbitrary direction.

In an evacuation scenario, people tend to avoid taking detours and choose the shortest
path leading to their destination, even if this path is crowded and takes a longer time
to traverse [6]. This means there will essentially be a single path to each destination
used in an evacuation progress. This observation motivates the examination of quickest
cluster flow problems on tree networks. More precisely, we consider directed out-trees
with a single source (the root node representing the stadium) and multiple sinks (the
leaves of the tree representing the areas of safety).

J. Pahl, T. Reiners, and S. Voß (Eds.): INOC 2011, LNCS 6701, pp. 243–255, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In [4] a polynomial time 2-approximation is derived for the quickest cluster flow
problem on general networks with one cluster size and single flow units (clusters of
size 1). This approach can easily be generalized to a D-approximation for D different
sizes of cluster flow units.

This paper is organized as follows: In Section 2 we state some basic definitions for
(dynamic) network flows as well as the notation that will be used in the remainder
of the paper. In Section 3 we introduce cluster flow problems, in particular quickest
cluster flow problems. We prove NP-hardness of the quickest cluster flow problem even
on tree networks. Afterwards we relate the cluster flow problem to other network flow
problems. In Section 4 we state an exact pseudopolynomial greedy-based algorithm for
the special case of the quickest cluster flow problem on trees with pairwise divisible
cluster sizes. This algorithm exploits the tree structure of the network, especially the
fact, that the path from the source node to any sink node is unique.

2 Preliminaries and Notation

A (discrete-time) dynamic network N = (G = (V,A), τ,u) is a directed graph G consisting
of a node set V with |V | = n and an arc set A with |A| = m as well as a capacity function
u : A→N and a travel time function τ : A→N. The travel time τ(a) of an arc a= (v,w) ∈
A is the number of time steps that flow units need to traverse arc a, i.e., a unit of flow
starting at node v at time θ will arrive at node w at time θ + τ(a). One specific node
s ∈ V is called the source node of N. In all problems examined in this paper, there will
be a single source node. This node will distribute flow into the network. Analogously,
a set of nodes T ⊂ V with |T | ≥ 1 is called the set of sink nodes of N. Only nodes
t ∈ T may receive flow from the network without sending it onward. For simplicity we
assume that the arc set A does not contain any outgoing arcs from sink nodes. The nodes
v ∈ V � {T ∪ {s}} are called transshipment nodes.

In the following we denote by δ+(v) the set of all arcs emanating from node v ∈ V .
Analogously, δ−(v) denotes the set of all arcs entering it. Additionally, for notational
ease we define f (a, θ)� 0 for negative values θ ∈ Z.

A (discrete-time) dynamic network flow problem asks for a feasible dynamic flow
with certain properties. A dynamic flow f : A×{0, . . . ,T } →N with time horizon T ∈ N
is given by flow values f (a, θ) that represent the number of flow units travelling from
node v to w on arc a = (v,w) starting at time θ ∈ {0, . . . ,T }. The dynamic flow f is called
feasible, if it fulfills the capacity constraints

f (a, θ) ≤ u(a) (1a)

for each arc a ∈ A and θ ∈ {0, . . . ,T }, the flow balance constraints for transshipment
nodes ∑

a∈δ+(v)

f (a, θ)−
∑

a∈δ−(v)

f (a, θ− τ(a)) = 0 (1b)

for all v ∈ V � {T ∪{s}} and all time steps θ ∈ {0, . . . ,T }, and the flow balance constraints
for source and sink nodes

T∑

θ=0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

a∈δ+(v)

f (a, θ)−
∑

a∈δ−(v)

f (a, θ− τ(a))

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = b(v) (1c)
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where b(v) ∈ Z is the demand or supply of any node v ∈ {T ∪{s}}. The source node s ∈ V
has a positive supply value b(s) > 0. Analogously, for any t ∈ T it holds that b(t) < 0,
i.e., these nodes request flow units from the network.

In the quickest flow problem (QFP), we are given a discrete-time dynamic network
with a source node s ∈ V and a single sink node t ∈ V as well as a supply value b ∈N and
ask for the minimal time horizon T ∗ needed to send b units of flow from s to t and the
corresponding flow values at each time step θ ∈ {0, . . . ,T ∗}. The quickest flow problem
can be formulated as follows:

T ∗ = min T

s.t. f (a, θ) ≤ u(a) ∀a ∈ A, θ ∈ {0, . . . ,T } (2a)∑

a∈δ+(v)

f (a, θ)−
∑

a∈δ−(v)

f (a, θ− τ(a)) = 0 ∀v ∈ V � {T ∪ {s}}, (2b)

θ ∈ {0, . . . ,T }
T∑

θ=0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

a∈δ+(v)

f (a, θ)−
∑

a∈δ−(v)

f (a, θ− τ(a))

⎞⎟⎟⎟⎟⎟⎟⎟⎠ =
⎧⎪⎪⎨⎪⎪⎩

b if v = s

−b if v = t
(2c)

f (a, θ) ∈ N ∀a ∈ A, θ ∈ {0, . . . ,T } (2d)

[2] showed that this problem can be solved in strongly polynomial time.
In Section 3 we point out the relationship of cluster flow problems to other network

flow problems. Therefore we need to define cluster flow problems also for static (non-
dynamic) networks. A static network is defined as a network N with cost function k :
A → Z instead of a travel time function and capacity function u : A → N as in the
dynamic case. Analogously to dynamic flows, a feasible static flow f : A→ N has to
fulfill the (static) capacity constraints

f (a) ≤ u(a) (3a)

for all a ∈ A and the (static) flow balance constraints
∑

a∈δ+(v)

f (a) −
∑

a∈δ−(v)

f (a) = b(v) (3b)

for all v ∈ V . Based on the feasibility constraints (3a) and (3b), the (static) minimum
cost flow problem is to find a feasible static flow f with minimum cost

∑

a∈A

k(a) f (a). (3c)

We examine network flow problems on special networks called directed out-tree net-
works (or shorter: tree networks). A tree network is a network with a single source s ∈ V
and multiple sinksT = {t1, . . . , t|T |} ⊂ V . In this case the underlying graph of the network
is a directed out-tree rooted at s, i.e., a cycle-free, connected graph with root node s and
leaves ti ∈ T , where each arc a = (v,w) ∈ A is oriented such that any s-ti path for ti ∈ T
is directed (cf. [1]).
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3 Quickest Cluster Flow Problems

Cluster flow problems are dynamic network flow problems which aim at routing not
only flow units of size 1 but of possibly many other sizes that do not split up on their
way from source to a sink. In this context each unsplittable unit is called a cluster. In an
evacuation scenario, a cluster may represent a group of people, for instance a family or
a clique of friends that does not split up even in an emergency situation [7]. We focus on
dynamic cluster flow problems with single-source and multiple sinks because of their
relevance in the context of evacuation problems.

A (dynamic) cluster flow consists of flow values fd(a, θ) for each cluster size d ∈D⊂
N, each arc a ∈ A, and time step θ ∈ {0, . . . ,T }. In analogy to general dynamic flows, a
cluster flow is called feasible, if it fulfills the capacity constraints

∑

d∈D
d fd(a, θ) ≤ u(a) (4a)

for all a ∈ A and θ ∈ {0, . . . ,T } as well as the flow balance constraints
∑

a∈δ+(v)

fd(a, θ)−
∑

a∈δ−(v)

fd(a, θ− τ(a)) = 0 (4b)

for all v ∈ V � {T ∪ {s}}, θ ∈ {0, . . . ,T }, and d ∈ D and

T∑

θ=0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

a∈δ+(s)

fd(a, θ)−
∑

a∈δ−(s)

fd(a, θ− τ(a))

⎞⎟⎟⎟⎟⎟⎟⎟⎠= bd, (4c)

∑

t∈T

T∑

θ=0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

a∈δ+(t)

fd(a, θ)−
∑

a∈δ−(t)

fd(a, θ− τ(a))

⎞⎟⎟⎟⎟⎟⎟⎟⎠= −bd (4d)

for all d ∈ D, where bd is the number of clusters of size d that shall be routed, s ∈ V is
the source node and T ⊆ V is the set of sink nodes. Constraint (4d) implies that it is not
specified, to which one of the sources ti ∈ T a cluster is sent. Constraint (4a) models the
fact that the different clusters have to share the capacity on each arc, where a cluster of
size d needs d times as much capacity as a single flow unit.

A (single-source) quickest cluster flow instance consists of a directed network N =
(G = (V,A), τ,u) with one source s ∈ V and several sinks T = {t1, . . . , t|T |}, a set of cluster
sizes D = {d1, . . . ,d|D|}, and demand values bd for all d ∈ D. Thereby each value bd

gives the number of clusters of size d that should be sent. The quickest cluster flow
problem asks for a feasible dynamic cluster flow with minimal time horizon T ∗. A
feasible cluster flow sends each of the bd clusters of size d ∈ D on a single path from
the source s to a sink ti ∈ T . Recall that it is not specified to which sink node ti ∈ T a
cluster is routed. This problem can be formulated as follows:
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T ∗ = min T

s.t.
∑

d∈D
d fd(a, θ) ≤ u(a) ∀a ∈ A, θ ∈ {0, . . . ,T } (5a)

∑

a∈δ+(v)

fd(a, θ)−
∑

a∈δ−(v)

fd(a, θ− τ(a)) = 0 ∀v ∈ V � {T ∪ {s}}, (5b)

θ ∈ {0, . . . ,T },d ∈ D
T∑

θ=0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

a∈δ+(s)

fd(a, θ)−
∑

a∈δ−(s)

fd(a, θ− τ(a))

⎞⎟⎟⎟⎟⎟⎟⎟⎠= bd ∀d ∈ D (5c)

∑

t∈T

T∑

θ=0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

a∈δ+(t)

fd(a, θ)−
∑

a∈δ−(t)

fd(a, θ− τ(a))

⎞⎟⎟⎟⎟⎟⎟⎟⎠= −bd ∀d ∈ D (5d)

fd(a, θ) ∈ N ∀a ∈ A, θ ∈ {0, . . . ,T }, d ∈ D (5e)

Notice that this is not a linear integer program as the parameter T to be minimized in
the objective function appears in the summation limits of constraints (5c) and (5d) and
determines the number of constraints of type (5a), (5b), and (5e).

Next, we establish a close relationship between cluster flow problems and multi-
commodity flow problems. In the minimum cost multicommodity flow problem we are
given a static network N = (G = (V,A),k,u) and a set of source-sink pairs (commodities)
C = {(si, ti)|i ∈ {1, . . . , p}}, for some p ∈ N, with si, ti ∈ V , each with a specified value bi

of flow units (all of the same size 1) that have to be sent from si to ti. The total amount
of flow of all commodities on each arc must not exceed the capacity value on this arc.
The minimum cost multicommodity flow problem asks for a multicommodity flow with
minimal cost. Let fi(a) denote the flow value of commodity (si, ti) on arc a ∈ A. Then,
the minimum cost integral multicommodity flow problem can be formulated as follows:

min
∑

a∈A

k(a)
∑

(si,ti)∈C
fi(a)

s.t.
∑

(si,ti)∈C
fi(a) ≤ u(a) ∀a ∈ A (6a)

∑

a∈δ+(v)

fi(a) −
∑

a∈δ−(v)

fi(a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

bi if v = si

−bi if v = ti
0 else

∀v ∈ V, (si, ti) ∈C (6b)

fi(a) ∈ N ∀a ∈ A, (si, ti) ∈C (6c)

To relate cluster flows and multicommodity flows, we need to define static minimum
cost cluster flow problems. A static cluster flow consists of |D| functions fd : A→ N
giving the number of clusters of size d ∈ D on each arc a ∈ A. The cluster flow is said
to be feasible, if it fulfills the capacity constraints

∑

d∈D
d fd(a) ≤ u(a) (7a)
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for all a ∈ A and the flow balance constraints

∑

a∈δ+(v)

fd(a) −
∑

a∈δ−(v)

fd(a) = bd(v) (7b)

for all v ∈ V and d ∈ D, where bd(v) ∈ Z gives the number of clusters of size d ∈ D
that the node v ∈ V receives from or distributes into the network. Note that in this case,
it is exactly specified to which sink the clusters have to be routed. By introducing a
supersink (cf. [5]), however, we can still model the case with unspecified sink.

Then the minimum cost cluster flow problem can be stated as follows: Given a static
network N = (G = (V,A),k,u), find a feasible static cluster flow satisfying the demands
at minimal cost

∑

a∈A

∑

d∈D
k(a) d fd(a). (7c)

Note that this problem is already mentioned in [1] as a generalization of multicommod-
ity flow problems. The following proposition substantiates this:

Proposition 1. The integral single-source minimum cost multicommodity flow problem
is a relaxation of the minimum cost cluster flow problem.

Proof. Consider the static minimum cost cluster flow problem. As we have seen above
this problem can be formulated as

min
∑

a∈A

∑

d∈D
k(a) d fd(a) (8a)

s.t.
∑

a∈δ+(v)

fd(a) −
∑

a∈δ−(v)

fd(a) = bd(v) ∀v ∈ V (8b)

∑

d∈D
d fd(a) ≤ u(a) ∀a ∈ A (8c)

fd(a) ≥ 0, ∀a ∈ A, d ∈ D (8d)

fd ∈ N ∀a ∈ A, d ∈ D, (8e)

where bd(v) ∈ Z is the demand or supply of each node v ∈ V and each cluster size d ∈D.
Set hd(a)� d fd(a) for each a ∈ A and d ∈ D. Additionally, set b′d(v) � dbd(v) for

all v ∈ V and d ∈ D. Since fd(a) is the number of clusters of size d on arc a ∈ A, the new
variables hd(a) can be interpreted as the number of single flow units bound in clusters
of size d on arc a. This way, constraints (8b) alter to

∑

a∈δ+(v)

hd(a)
d
−
∑

a∈δ−(v)

hd(a)
d
=

b′d(v)

d
(8b’)
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for all v ∈ V and d ∈ D. Multiplying each of these constraints by d yields the following
equivalent formulation:

min
∑

a∈A

∑

d∈D
k(a) hd(a) (9a)

s.t.
∑

a∈δ+(v)

hd(a) −
∑

a∈δ−(v)

hd(a) = b′d(v) ∀v ∈ V (9b)

∑

d∈D
hd(a) ≤ u(a) ∀a ∈ A (9c)

hd(a) ≥ 0, ∀a ∈ A, d ∈ D (9d)

hd(a) ∈ dN ∀a ∈ A, d ∈ D (9e)

Relaxing constraints (9e) to
hd(a) ∈ N (9e’)

for all a ∈ A and d ∈ D leads to a minimum cost integral multicommodity flow formu-
lation (cf. formulation (6)). �

This combinatorial relaxation can be interpreted as dropping the cluster affiliations of
the flow units.

Corollary 1. The integral single-source quickest multicommodity flow problem is a re-
laxation of the quickest cluster flow problem.

Proof. A quickest cluster flow problem, in analogy to the general quickest flow prob-
lem, can be solved as a minimum cost cluster flow problem in a static network, precisely
the time-expanded network with turnstile-costs (cf. [5]). Then the result follows directly
from Theorem 1. �

Remark 1. In a single-sink network, the relaxation of a minimum cost cluster flow prob-
lem described in the proof of Proposition 1 corresponds to a classical minimum cost
flow problem. Because of Corollary 1 this implies that this relaxation of a single-sink
quickest cluster flow problem is equivalent to a quickest flow problem.

Theorem 1. The decision version of the quickest cluster flow problem is NP-complete
even on tree networks.

Proof. Reduction from bin packing, which is an NP-complete problem [3].

Bin Packing: Given: Set C of L items, sizes s(c) ∈ N for all c ∈ C, bin size B ∈ N,
integral number Q ∈ N.

Question: Is there a partition C1 ∪C2 ∪ · · · ∪CQ of the set C such that
∑

c∈Ci
s(c) ≤ B

for all i ∈ {1, . . . ,Q}?
We construct a quickest cluster flow instance in a tree network from a bin packing

instance: Graph G has node set V = {s, t1, t2, . . . , tQ}, where s is the source node, ti are
sink nodes for all i ∈ {1, . . . ,Q}, and arc set A = {a = (s, t)|t ∈ {t1, . . . , tQ}} with u(a) = B
and τ(a) = 1 for all a ∈ A. Let D = {d1, . . . ,d|D|} be the set of different item sizes of the
set C. For i ∈ {1, . . . , |D|} let bi = |{c ∈C|s(c) = di}|.
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Claim. There is a feasible quickest cluster flow solution with time horizon T ≤ 1 if and
only if the bin packing instance is a YES-instance.

Proof of the Claim. Assume there is a quickest cluster flow solution in the instance
constructed from a bin packing instance as described above. Let Ci� {c ∈C| the QCFP-
solution routes c to sink ti}∀i ∈ {1, . . . ,Q}. Since all clusters are routed exactly once in
the cluster flow solution and T ≤ 1, this is a partition of the set C into Q subsets. Since
the capacity u(a) is equal to B and the cluster sizes correspond to the item sizes, it holds
that ∑

c∈Ci

s(c) ≤ u(a) = B (10)

for all i ∈ {1, . . . ,Q}. Because of the partition C = {C1, . . . ,CQ} we can conclude that the
bin packing instance is a YES-instance.

On the other hand, let the partition C = {C1, . . . ,CQ} with the property
∑

c∈Ci

s(c) ≤ B (11)

for all i ∈ {1, . . . ,Q} be a valid partition for the bin packing instance. For i ∈ {1, . . . ,Q}
send a cluster of size s(c) to sink ti for any c ∈ Ci. Since B = u(a) for all a ∈ A this is a
feasible solution for the cluster flow instance. Since we have Q subsets and also Q sinks
and the travel time on each arc a ∈ A is 1, the time horizon T of the constructed solution
is 1. �

4 Quickest Cluster Problems with Divisible Cluster Sizes

Since for the general quickest cluster flow problem neither an exact combinatorial algo-
rithm nor an integer programming formulation has been developed so far, we examine
the special case of pairwise divisible cluster sizes.

A setD of different cluster sizes is said to be pairwise divisible if and only if it holds
that

di|di+1 (12)

for all i ∈ {1, . . . , |D| − 1}, i.e., each cluster size is a divisor of any larger size occurring
in the set of clusters.

We show that for the quickest cluster flow problem on tree networks with pairwise
divisible cluster sizes a greedy-approach works, i.e., sending the largest clusters as fast
as possible, then the second largest with respect to the remaining capacities and so on.

This can be realized by adding a super-sink and then using a quickest flow algorithm
for instances with time-dependent capacities, as it is stated in [8], for any d ∈ D after
scaling the capacities appropriately in each step. This algorithm has a worst-case com-
plexity of O(nmbmaxT 2), where T is an upper bound on the minimal time horizon and
bmax is the maximum number of clusters of any size. It has to be executed logdmax times
in order to achieve an optimal quickest cluster flow on a tree network with pairwise di-
visible cluster sizes, resulting in an overall complexity of O(log(dmax)nmbmaxT 2).

In the following we derive a faster algorithm for quickest cluster flow problems on
tree networks.
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4.1 Assumption

We assume that bd > 0 for all d ∈D, i.e., for every cluster size in the list there is actually
a cluster to be sent. If this is not the case for any d ∈D, the cluster size d can be removed
from the setD.

Since in a tree network, every path P between two nodes v,w ∈ V is unique, the travel
time between these nodes is constant. We denote this travel time value, i.e., the sum of
the transit times of all arcs contained in the path by τ(v,w) or τ(P).

The algorithm starts with a 0-flow and iteratively increments cluster flow of the
largest remaining cluster on the currently quickest s-ti-path Pi. To achieve this, the
sinks are ordered with respect to their earliest arrival time τdi currently available for a
cluster of size d. In order to obtain these earliest arrival times, the residual capacities
uθi of any s-ti-path Pi starting at time step θ ∈ N are stored in a table. This table is ex-
panded dynamically whenever a new layer is needed. This may occur only once in each
iteration. Thus, the size of the table is bounded by |T | and the number of iterations. If
the quickest s-ti-path Pi is found, the number of clusters to be sent on this path is set to
the minimum of the number of remaining clusters of the current size and the number of
clusters this path can carry. After increasing flow on some path the residual capacities
of the path itself as well as the capacities of all other affected paths are updated. Since in
a tree network every s-v-path is unique for v ∈ V , only paths with the same starting time
as the one with modified flow are affected. Algorithm 1 formalizes this description.

In the algorithm, setting fd(t, θ) to some value x ∈ N is understood as follows: If the
path from s to t consists of arcs a1,a2, . . . ,al ∈ A, the flow values on these arcs are set to
x in the following way:

fd

⎛⎜⎜⎜⎜⎜⎜⎜⎝ai, θ+

i−1∑

j=1

τ(a j)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = x (13)

for all i ∈ {1, . . . , l}.

Theorem 2. The output of Algorithm 1 is an optimal solution for the quickest cluster
flow problem for any input instance on a tree network with pairwise divisible cluster
sizes.

Proof. Let f with time horizon T ∗ be the dynamic cluster flow output by Algorithm 1.
Assume there is another feasible dynamic cluster flow g with time horizon T < T ∗.

Let Ĉ be the overall set of clusters that are routed, i.e., Ĉ consists of bd clusters of
size d for any d ∈ D. For c ∈ Ĉ let d(c) denote the cluster size of c.

Let C = {c1, . . . ,cl} be the set of clusters that are routed differently by the dynamic
cluster flows f and g. Thereby we distinguish only different cluster sizes, not specific
clusters of the same size.

Each cluster that is shipped by the flow f such that it arrives at its sink later than time
T is contained in the set C, since the time horizon of the flow g is T .

Let (P f
i , θ

f
i ) be the path and the corresponding starting time such that a cluster ci ∈C

is routed on P f
i at time θ f

i in the cluster flow f . Analogously, let (Pg
i , θ

g
i ) denote the path

and starting time of cluster ci in g. Note that by definition of C it holds that (P f
i , θ

f
i ) �

(Pg
i , θ

g
i ) for all ci ∈C.
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Input: Dynamic tree network N, cluster sizesD = {d1, . . . ,dK }, supplies {bd1 , . . . ,bdK }
Output: fd(ti, θ) for d ∈ D, ti ∈ T , θ ∈N giving a quickest cluster flow for the input

instance, optimal time horizon T ∗

Dorg �D;
f � 0;
T ∗ = 0;
uθi � min

a=(v,w)∈Pi

{ua} for θ = 0,1,2, . . . ; i = 1, . . . , |T |;

whileD � ∅ do
dmax �max {d ∈ D};
while bdmax > 0 do

foreach t j ∈ T do
θdmax

j �min
θ

{
uθj ≥ dmax

}
;

τdmax
j � θdmax

j +τ(s, t j);

end

τi �min
{
τdmax

j | t j ∈ T
}
;

fdmax (ti, θ
dmax
i )�min

⎧⎪⎪⎨⎪⎪⎩bdmax ,

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
u
θ
dmax
i

i
dmax

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭;

if T ∗ < τi then T ∗ � τi;
bdmax � bdmax − fdmax

(
ti, θ

dmax
i

)
;

u
θdmax

i
i � u

θdmax
i

i −dmax fdmax

(
ti, θ

dmax
i

)
;

foreach t j ∈ T \ {ti} with Pi∩P j � ∅ do

u
θdmax

i
j �min

⎧⎪⎪⎨⎪⎪⎩u
θdmax

i
j , min

a=(v,w)∈Pi∩P j

⎧⎪⎪⎨⎪⎪⎩u(a)−
∑

d∈Dorg

d fd
(
a, τ(s,v)+ θdmax

i

)⎫⎪⎪⎬⎪⎪⎭

⎫⎪⎪⎬⎪⎪⎭;

end
if bdmax = 0 thenD�D�dmax;

end
end

Algorithm 1. Algorithm for quickest cluster flow problems on trees with pairwise
divisible cluster sizes

Following this notation it holds that

max
ci∈C

{
θ

g
i + τ(P

g
i )
}
≤ T <max

ci∈C

{
θ

f
i + τ(P

f
i )
}
= T ∗. (14)

Consider a rearrangement of the elements of the set C such that θ f
1 + τ(P

f
1) > T for

c1 ∈ C. Then (P f
1 , θ

f
1 ) � (Pg

1, θ
g
1) and θg1 + τ(P

g
1) ≤ T . Since θg1 + τ(P

g
1) < θ f

1 + τ(P
f
1) and

due to the fact that the algorithm did not choose the path (Pg
1, θ

g
1) (or an alternative path

with equal or lower arrival time) for the cluster c1, there is another cluster c2 ∈ C with
d(c2) > d(c1) routed on (P f

2 , θ
f
2 ) in the flow f that blocks some arc necessary to route

c1 on (Pg
1, θ

g
1). There must be at least one such cluster c2 with d(c2) > d(c1), since if

d(c2) < d(c1), the cluster c2 would have been routed after routing c1 by the algorithm,
so c1 would have been assigned this path in f , too. If d(c2) = d(c1), however, the cluster
c2 would not be contained in the set C of clusters routed differently in f and g.
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It follows that in the flow g, the cluster c2 is routed on a path (Pg
2, θ

g
2) with θg2 + τ(P

g
2)≤

T . Since the algorithm has chosen (P f
2 , θ

f
2 ) instead of (Pg

2, θ
g
2), the path (P f

2 , θ
f
2 ) must

have been one of the paths with minimal arrival time available for a cluster of size d(c2)
in that iteration with only clusters of smaller or equal size remaining to be routed.

By the same argumentation as above it follows that if θg2 + τ(P
g
2) < θ f

2 + τ(P
f
2) the

capacity of the path (Pg
2, θ

g
2) was occupied by (at least) one cluster c3 with d(c3) > d(c2).

If, however, θg2 + τ(P
g
2) > θ f

2 + τ(P
f
2), the capacity of (Pg

2, θ
g
2) can be occupied in f by

a cluster c3 larger than c2 or by a set of clusters {c3,1, . . . ,c3,J} with d(c3, j) < d(c2)
for j ∈ {1, . . . , J} but

∑J
j=1 d(c3, j) ≥ d(c2). For each of these clusters c3, j it holds that

d(c3, j)≥ d(c1), since otherwise c1 would have been routed on this path by the algorithm.
Choose any c3 ∈ {c3,1, . . . ,c3,J}.

Carrying on this argumentation, we obtain a sequence (ci)i of clusters contained in
C with cluster sizes d(c j) ≥ d(c1) for all c j ∈ (ci)i. This sequence can be chosen such
that each c j ∈C is contained at most p ∈N times if d(c j) = pd(c1). Since the number of
elements in C is finite it follows that there is a final element cL with size d(cL) in the
sequence (ci)i. Then no cluster cL+1 can be found in the set C that blocks the capacity
on the path (Pg

L, θ
g
L) in the flow f . Since d(cL) ≥ d(c1) and θgL + τ(P

g
L) < θ f

1 + τ(P
f
1 ), the

path (Pg
L, θ

g
L) would have been chosen to route the cluster c1 instead of (P f

1 , θ
f
1 ) in the

algorithm. Since this argumentation holds for any c1 ∈ C with θ f
1 + τ(P

f
1 ) > T ∗ there

cannot be a feasible dynamic cluster flow with a time horizon smaller than T ∗. �

We estimate the worst-case complexity of Algorithm 1: The outer while-loop must
be executed |D| times. This number is polynomial in the input size, as the cluster sizes
are pairwise divisible; hence, the cardinality of the set of cluster sizesD can be at most
log(dmax). The inner while-loop is called at most bmax�max{bd |d ∈ D} times in each
iteration. In this loop we have to examine all sinks (two times), where in the second
loop we calculate a minimum over all arcs a ∈ A and sum over log(dmax) values. Hence
this results in a worst-case complexity of O(log(dmax)bmax|T |m) ∈O(log(dmax)bmaxnm),
which makes it a pseudopolynomial algorithm.

4.2 Examples

In the following we see two examples for which Algorithm 1 will not output an optimal
solution. In such cases as non-divisible cluster sizes or different graph topologies, the
algorithm can still be used as a heuristic for the quickest cluster flow problem.

Figure 1 shows a tree network, in which Algorithm 1 does not result in a quickest
cluster flow for not pairwise divisible cluster sizes D = {d2 = 3,d1 = 2} and demands
b2 = 2,b3 = 2. Algorithm 1 might route the two clusters of size 3 to t1, because this is the
fastest path to a sink, resulting in a temporary time horizon of 2. Then no time horizon
smaller than 3 can be achieved by routing the clusters of size 2 as fast as possible with
respect to the remaining capacities. A smaller time horizon, however, could be achieved
by routing one the clusters of size 3 to t2 instead. Then both clusters of size 2 could be
sent to t1, resulting in an overall time horizon of 2.

In Figure 2 a non-tree network is depicted, where Algorithm 1 does not result in
a quickest cluster flow even for pairwise divisible cluster sizes D = {d2 = 2,d1 = 1},
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s

t1

t2

(1,4)

(2,3)

Fig. 1. Example for cluster flows with non-unit clusters. The arc-labels represent transit times and
capacities (τ(a),u(a)).

s t

v

w

(1,2)

(2,2)

(1,2)

(2,1)

(4,2)

Fig. 2. Example for cluster flows on non-tree networks. The arc-labels represent transit times and
capacities (τ(a),u(a)).

b2 = 2, b1 = 5. The algorithm given above will send the larger clusters on the path s-
v-w-t, resulting in a temporary time horizon of 5. Then no way of sending the clusters
of size 1 yields a time horizon smaller than 7. A better solution consists of sending the
clusters of size 2 on the path s-w-t. Then the temporary time horizon is 6 and hence
larger than in the previous solution, but the smaller clusters can also be sent within the
time horizon of 6, so the overall time horizon is smaller.

5 Conclusions

Macroscopic models based on dynamic network flows are frequently applied in trans-
portation and evacuation planning [5]. The corresponding mathematical programming
problems can often be efficiently solved by dedicated algorithms making use of the
combinatorial structure. The solutions obtained provide provable system optimal char-
acteristics, e.g., lower bounds on transportation or evacuation times. Increasing the de-
gree of detail covered by the mathematical model allows for more precise statements.
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However, there is typically a trade-off between ease of solution and complexity of the
model. In this article, we elaborate on the so-called quickest cluster flow problem [4].
In this problem, different kinds of flow commodities which use different amounts of
resources available in the network, are taken into account. In evacuation modeling, this
may represent different sizes of groups of evacuees which tend to stay together during
the egress movement [7]. We relate the quickest cluster flow problem to other existing
network flow models and prove NP-hardness. We propose an exact algorithm for some
special case on tree networks, prove its correctness, and analyze its running time.

Currently we are working on approximation approaches for different classes of quick-
est cluster flow problems, for example problems with non-divisible cluster sizes on trees
as well as divisible cluster sizes on more general networks. Additionally, we are inves-
tigating the complexity status of the problem mentioned in this paper which is still
unsolved up to now.
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Abstract. Research on flows over time has been conducted mainly in two sep-
arate and independent approaches, namely discrete and continuous models, de-
pending on whether a discrete or continuous representation of time is used. Re-
cently, Borel flows have been introduced to build a bridge between these two
models. In this paper, we consider the maximum Borel flow problem formulated
in a network where capacities on arcs are given as Borel measures and storage
might be allowed at the nodes of the network. This problem is formulated as
a linear program in a space of measures. We define a dual problem and prove a
strong duality result. We show that strong duality is closely related to a MaxFlow-
MinCut Theorem.

1 Introduction

Network flows over time (also called dynamic network flows in the literature) form a
fascinating area of study. In contrast to classical static flows, transit times are introduced
on the arcs to describe how long it takes to traverse an arc. This would imply that
flows on arcs are not constant but may change over time. Ford and Fulkerson [5,6]
study the maximum flow over time problem and show that this problem can be solved
efficiently by one minimum cost flow computation on the given network. In the model
studied by Ford and Fulkerson [5,6], time is represented in discrete time steps and arc
capacities are constant over time. In contrast to this, Anderson, Nash, and Philpott [1]
study the maximum flow over time problem in a network with time-varying transit and
storage capacities for the case where time is modeled as a continuum. They establish
a MaxFlow-MinCut Theorem for the case that transit times are zero and the transit
capacities are bounded measurable. This result was later extended to arbitrary transit
times by Philpott [8].

Since the seminal research of Ford and Fulkerson in the 1950s, many authors have
extensively studied flows over time from different viewpoints, but in two separate ways
with respect to time-modeling, leading to discrete and continues models. Fleischer and
Tardos [4] point out a close correspondence between these two models. Recently, Koch,
Nasrabadi, and Skutella [7] introduced the notion of Borel flows to unify discrete and
continuous flows over time into a single model. They establish a MaxFlow-MinCut
Theorem for the maximum Borel flow problem.

Developing a duality theory for various classes of optimization problems has re-
ceived a great deal of attention because of its importance in designing solution algo-
rithms. In the classical static network flows, it is known that the dual problem for the
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maximum flow problem corresponds to the cuts and strong duality is equivalent to the
MaxFlow-MinCut Theorem. Anderson and Philpott [2] explore this relationship for the
maximum flow over time in the continues model for the special case where transit time
are zero and the arc and node capacities are piecewise analytic. The aim of this paper
is to establish a strong duality result for the maximum Borel flow problem and examine
its relationship to the MaxFlow-MinCut Theorem. Due to page limitations, the proofs
of lemmas and further details will be presented in the full version of the paper.

2 The Maximum Borel Flow Problem

We consider a directed graph G = (V,E) with node set V and arc set E . Let s ∈V be a
source and t ∈ V be a sink in G. Each arc e ∈ E has an associated transit time τe ∈ R
specifying the required amount of time for traveling from the tail to the head of e.
More precisely, if flow leaves node v at time θ along an arc e = (v,w), it arrives at w at
time θ + τe. Consider the real line R as the time domain. A Borel flow x is defined by
a family of Borel measures xe : B −→ R+,e ∈ E , where B is the Borel σ -algebra on
R. We refer readers to [7] for the motivation of Borel flows. A member B ∈B is called
a Borel set or measurable set. The value xe(B) gives the amount of flow entering arc e
over the Borel set B.

The maximum Borel flow problem is to find a Borel flow that maximizes the total flow
value subject to arc and node capacity constraints. This problem can be formulated as
the following infinite dimensional linear program:

max ∑
e∈δ+(s)

|xe|− ∑
e∈δ−(s)

|xe|

s.t. ∑
e∈δ+(v)

xe− ∑
e∈δ−(v)

(xe− τe)+ yv = 0 ∀v ∈V \ {s, t} ,

0≤ xe ≤ ue ∀e ∈ E ,

0≤ Yv ≤Uv ∀v ∈V \ {s, t} .

(MBFP)

Here, the value |xe| denotes the total amount of flow entering arc e, i.e., |xe| := xe(R).
Hence, the objective function equals the net outflow of s. Furthermore, the arc capacities
are given by Borel measures ue, e ∈ E, and the node capacities are given by right-
continuous functions Uv, v ∈V \ {s, t}, of bounded variation. We assume that |ue|< ∞
for each arc e ∈ E . The value ue(B) is an upper bound on the amount of flow that is able
to enter arc e over the Borel set B and the value Uv(θ ) is an upper bound on the amount
of flow that can be stored at node v at time θ . We assume that there is no initial storage
at any node and flow must not remain at any node except s and t. Hence, we must
have Uv(−∞) := limθ→−∞Uv(θ ) = 0 = limθ→−∞Y (θ ) =: Uv(∞) for each v ∈V \{s, t}.
We notice that xe − τe is a shifted measure defined by (xe− τe)(B) = xe(B− τe) for
all B ∈B, where B− τe := {θ − τe | θ ∈ B}. For each v ∈ V \ {s, t}, Yv is a right-
continuous function of bounded variation and yv is a signed Borel measure derived
from the formula yv

(
(−∞,θ ]

)
= Yv(θ ). The value Yv(θ ) represents the amount of flow

stored at node v at the point in time θ ∈ R and the value yv(B) gives the overall change
in storage at v over the Borel set B.
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In order to state a MaxFlow-MinCut Theorem, we require a definition of s-t-cuts.
For a right-continuous function M : R→ R≥0 of bounded variation, we shall use M�0

to denote the set of all points θ ∈ R where M or its left limit is positive at θ , that is,
M�0 :=

{
θ ∈R |M(θ−) > 0 or M(θ ) > 0

}
. Here, M(θ−) denotes the limit of M at θ

from the left, i.e., M(θ−) := limϑ↗θ M(ϑ). We now define an s-t Borel cut S := (Sv)v∈V

by measurable sets Sv, one for each v ∈ V so that Ss = R, St = /0 and for every node
v ∈V \ {s,t} the set Γv := Sv∩U�0

v is a countable union of pairwise disjoint intervals.
Let S = (Sv)v∈V be an s-t Borel cut and consider a node v. By definition, Γv is ex-

pressible as
⋃

i∈Jv
Iv,i, where Jv is a countable set of indices and Iv,i, i ∈ Jv, are pairwise

disjoint intervals. Each interval Iv,i is supposed to be inclusion-wise maximal, i.e., there
is no interval I⊆Γv strictly containing Iv,i. Let αv,i and βv,i be the left and right boundary
of the interval Iv,i, respectively. An interval Iv,i can be of the form (αv,i,βv,i), [αv,i,βv,i),
(αv,i,βv,i], or [αv,i,βv,i]. Therefore we partition the set Jv of indices into four subsets.
Let J1

v (J2
v , J3

v , and J4
v ) be the set of indices i for which Iv,i is open (left-closed & right-

open, right-closed & left-open, and closed, respectively). With these constructions, the
capacity cap(S) of S is defined by

cap(S) := ∑
e=(v,w)∈E

ue
(
Sv∩ (Sw− τe)c)+

∑
v∈V\{s,t}

(
∑

i∈J1
v ∪J2

v

Uv(βv,i−)+ ∑
i∈J3

v∪J4
v

Uv(βv,i)
)

.
(1)

We set the capacity cap(S) to ∞ if any infinite sum does not converge. We refer to an s-t
Borel cut whose capacity is minimum among all s-t Borel cuts as a minimum Borel cut.
The following theorem is due to [7].

Theorem 1. The MaxFlow-MinCut Theorem holds for Borel flows, i.e., there exists an
s-t-flow over time x and an s-t-cut over time S for which val(x) = cap(S).

3 Dual Formulation and Strong Duality

In the context of static network flows, the MaxFlow-MinCut Theorem is equivalent to
strong duality. Here we wish to establish a similar result for Borel flows. To do this, we
need a dual problem for (MBFP). In order to state a dual formulation, we require the
concept of a function of σ -bounded variation. Let f be a real-valued function on R.
The total variation of f within a bounded interval [a,b] is defined by

V ( f ; [a,b]) := sup
{ n

∑
i=1

(
f (ai)− f (ai−1)

)| {a1, . . . ,an} is a partition of [a,b]
}

.

The function f is called of bounded variation on [a,b] if V ( f , [a,b]) < ∞. The func-
tion f is said to be of bounded variation on R if there exists a constant K < ∞ such
that V (M; [a,b]) < K for any (bounded) interval [a,b]⊂ R.

The function f is said to be of σ -bounded variation if it can be decomposed into
a countable sum of functions of bounded variation on R. Similarly, f is said to be
σ -monotonic increasing if it can be decomposed into a countable sum of monotonic



Strong Duality for the Maximum Borel Flow Problem 259

increasing and bounded functions on R. These two definitions can be regarded as the
extension of finite measures to σ -finite measures and because of that we have used the
symbol σ .

It is a well-known result that a function is of bounded variation if and only if it is the
difference between two monotonic increasing and bounded functions (see, e.g., Chapter
6 in [3]). This implies that a function is of σ -bounded variation if and only if it is the
difference between two σ -monotonic increasing functions. Let f : R→ R be a func-
tion of σ -bounded variation with f (∞) = 0 where f (∞) := limθ→∞ f (θ ). Notice that
this limit exists since f is of σ -bounded variation. Then there exist functions f (+) and
f (−) (subsequently referred to as the Jordan decomposition of f ) that are σ -monotonic
increasing on f with f (+)(∞) = f (−)(∞) = 0 and f (θ ) = f (+)(θ )− f (−)(θ ) for θ ∈R.
The functions f (+) and f (−) are called the positive and negative parts of f , respectively.

We now consider a dual problem for (MBFP) as follows:

min ∑
e∈E

∫
R
ρe due + ∑

v∈V\{s,t}

∫
R

Uv dπ (−)
v

s.t. ρe(θ )−λv(θ )+λw(θ + τe)≥ 0 ∀e = (v,w) ∈ E, θ ∈ R ,

ρe(θ )≥ 0 ∀e ∈ E, θ ∈R ,

λs(θ ) = 1 ∀θ ∈ R ,

λt(θ ) = 0 ∀θ ∈ R ,

πv := λv|U�0
v

of σ -BV on R ∀v ∈V \ {s, t} ,

(MBFP∗)

where ρe,e ∈ E and λv,v ∈V \{s, t} are measurable functions. We should mention that
this problem generalizes the dual problem studied by Anderson and Philpott [2] for the

continuous-time maximum flow problem. Note that π (−)
v denotes the negative part of

πv and πv := λv|U�0
v

is given for each v ∈V \ {s, t} as follows:

πv(θ ) :=

{
λv(θ ) if θ ∈U�0

v ,

0 otherwise .

It follows from this definition that πv(∞) = 0 since Yv(∞) = 0 due to our assumption.
Furthermore, the dual variable ρe,e ∈ E can be eliminated from (MBFP∗). In fact, if
we know optimal values for the dual variables λv, v ∈ V , we can compute the optimal
values for ρe,e ∈ E by

ρe(θ ) = max{0,λv(θ )−λw(θ + τe)} ∀e = (v,w) ∈ E, θ ∈R.

The integrals in the objective function of (MBFP∗) should be explained. For each e∈ E
the first integral involves the function ρe as the integrand and the measure ue as the
integrator and is understood in the sense of Lebesgue-Stieltjes. Since ρe is supposed to
be measurable and μe is a Borel measure, the first integral is well defined and exists.

The second integral for each v∈V \{s, t} involves two functions Uv and π (−)
v (Uv as the

integrand and π (−)
v as the integrator) and is regarded as a generalization of the Riemann-

Stieltjes integral. More precisely, if π (−)
v = ∑i∈Nπ

(−)
v,i where π (−)

v,i , i ∈ N are monotonic
increasing and bounded, then
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R

Uv dπ (−)
v := ∑

i∈N

∫
R

Uv dπ (−)
v,i .

Each left integral of the above equation is treated as the Riemann-Stieltjes integral as
developed in [3, Chapter 7]. However, although Uv is supposed to be of bounded varia-

tion and right-continuous and π (−)
v,i is monotonic increasing and bounded, the Riemann-

Stieltjes integral
∫
RUv dπ (−)

v,i need not exist for some i ∈ N as Uv and π (−)
v,i may have

common discontinuous from the left or from the right at some points. In such a case,
the integral does not exist (see [3, Theorem 7.29]) and we replace Uv by another func-
tion, say Ūv, defined by

Ūv(θ ) :=

{
Uv(θ−) if Uv is discontinuous at θ and πv,i is right-continuous at θ ,

Uv(θ ) otherwise .

Note that the function Ūv differs from Uv only at those points θ for which Uv and π (−)
v,i

share a common discontinuity from the left or from the right at θ . Then the integral∫
RUv dπ (−)

v,i is defined by ∫
R

Uv dπ (−)
v,i :=

∫
R

Ūv dπ (−)
v,i

Note that the left integral of the above equation is guaranteed to exist (see [3, Theorem
7.29]). In what follows, each integral with a measure as the integrator is regarded in the
sense of Lebesgue-Stieltjes and each one with a function as the integrator is regarded in
the sense of Riemann-Stieltjes as defined above.

The first result that we would like to have between (MBFP) and (MBFP∗) is weak
duality. To state this and subsequent results, we introduce some notation. For a given
optimization problem (OP), we use the notation V [OP] to denote its optimal value and
use the notation V [OP,x] to denote the objective function value for a given feasible
solution x.

Lemma 1. Suppose that x is feasible for (MBFP) and λ is feasible for (MBFP∗). Then
V [(MBFP),x]≤V [(MBFP∗),λ ].

A stronger result than weak duality is to prove the existence of a feasible solution x for
(MBFP) and a feasible solution λ for (MBFP∗) in which V [(MBFP),x]=V [(MBFP∗),λ ].
The arc capacities ue,e ∈ E are finite and this guarantees the existence of an optimal
solution x, say, for (MBFP). Moreover, by Theorem 1, there exists an s-t Borel cut S for
which val(x) = cap(S). It thus enough to show that S corresponds to a feasible solution
λ with cap(S) = V [(MBFP∗),λ ].

Lemma 2. Given an s-t Borel cut S = (Sv)v∈V , letλv : R→R be the indicator function of
Sv and ρe : R → R be the indicator function of Sv ∩ (Sw − τe)c for each
arc e = (v,w) ∈ E. Then λ := (λv)v∈V , ρ := (ρe)e∈E is a feasible solution for (MBFP∗)
and moreover, V [(MBFP∗),λ ] = cap(S).

Combining Theorem 1 and Lemma 2, we get the main result of this paper.
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Theorem 2. Strong duality holds between (MBFP) and (MBFP∗), i.e., there exists a
feasible solution x for (MBFP) and a feasible solution λ for (MBFP∗) in which
V [(MBFP),x] = V [(MBFP∗),λ ].
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Abstract. This paper introduces a new problem, involving the optimal location of
a limited number of gateways on the nodes of an uncapacitated network. A mul-
ticommodity flow, where each commodity is of single-origin-single-destination
type, moves on the network according to its linear objective function c. Gateways
are used by the network administrator to reroute flows by obliging each commodity
to detour from its c-optimal path and pass by its assigned gateway. Gateways are
located and assigned by the administrator so that the resulting c-optimal flows on
the detours minimize the administrator’s objective function r. Gateways thus pro-
vide the administrator with a mechanism for indirect flow control, so that the flow
value according to r is improved with respect to the unregulated scenario. To the
authors knowledge, this is a new combinatorial optimization problem, that we call
the gateway location problem for multicommodity flow rerouting. We present three
alternative formulations and discuss pros and cons of each. Interesting applications
arise in the field of hazardous material transportation. The discussion is supported
by computational results on realistic instances from this field.

1 Introduction

When routing flows on a network, different decision makers may have different perspec-
tives on the evaluation of the routing, due to the different criteria according to which
the routing is judged. We are concerned with the situation where two classes of deci-
sion makers, which for simplicity we identify as the network administrator and a set of
network users, operate at different decision levels. The administrator operates indirectly
by issueing directives which network users must comply to, when routing their flows on
the network infrastructure. The administrator, in this way, implicitly defines the set of
the feasible solutions on which the network users will optimize their objective function,
say c. In turn, the effect of a specific directive can be evaluated from the administrator
point of view only a posteriori, by computing the value of the administrator’s objective
function, say r, on the users selected c-optimal routes.

Several examples arising in the field of transportation fit into this picture, depending on
the kind of directives the administrator may impose: just to mention a few, in road pricing
problems, the administrator sets tolls on some arcs, wishing to maximize total income,

J. Pahl, T. Reiners, and S. Voß (Eds.): INOC 2011, LNCS 6701, pp. 262–276, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Modeling the Gateway Location Problem for Multicommodity Flow Rerouting 263

while network users select their itineraries wishing to minimize a generalized cost, which
depends on both tolls and travel costs [13]. Other applications of toll pricing aim at reduc-
ing traffic congestion in certain areas so to achieve system optimal flows [1]. In network
design problems, the administrator alters the network infrastructure by setting arcs ca-
pacity or modifying traffic signals, while users reroute their commodity in response, each
pursuing hisown selfish objective [10].Optimalparking sitecapacitiesand farescan beset
by predicting user behaviors, as in [11]. Finally, in hazardous material transportation, the
administrator may forbid transit on some arcs, in the attempt to reduce total risk. This, in
turn, depends on the minimum cost itineraries on the current subnetwork [6]. Toll-setting
policies have also been investigated to the same purpose in [14].

In this paper, we propose a new tool for the administrator indirect control over user
flows, as an alternative to modifying the network topology or the arc costs and capac-
ities. It consists of imposing check points along the routes, so called gateways, and
stating the rule that each commodity, on its route from origin to destination, must pass
through a specific gateway. Which path to follow along this way is up to the user, and
it will be the optimal one according to the user objective function. In turn, the adminis-
trator will select the location of each check point and which one has to be assigned to
which user, so that user response will optimize the administrator’s objective function.
We call such problem the Gateway Location Problem for multicommodity flow (GLP).

The notion of gateway path was first introduced by Lombard and Church in [3] in the
context of corridor location, to generate good and spatially different paths, alternative
to shortest origin–destination path. A gateway path is defined as a path from origin to
destination, obliged to go through a prespecified node, i.e., the gateway. The authors
make a smart use of the Dijkstra algorithm to efficiently enumerate the set of all the
shortest gateway paths for a single commodity. In this paper, we build upon this concept
and generalize it in the context of multicommodity flow. Here, gateways are still used
to reroute the flow and steer it away from the original path, hoping not to deteriorate
its cost too much. However, in our problem, gateways have first to be located and then
to be assigned to commodities, having several commodities sharing the same gateway,
thus yielding a global constraints. Moreover, solution quality is evaluated according to
a function potentially conflicting with the cost function which drives the computation
of the shortest gateway paths.

As far as we know, GLP is a new challenging combinatorial optimization problem
which has never been formulated or studied before. We discuss how GLP can be for-
malized providing three different mathematical models, and highlighting pros and cons
of each. In particular, the first one is a new arc based bilevel programming model for
which we present a Mixed Integer Linear Programming reformulation. A second con-
tribution of this paper concerns the effectiveness of GLP as an indirect tool for flow
control. Computational results computed on realistic instances show that this method-
ology can provide network administrators with an effective tool for indirect control of
the network usage that takes into account users behavior, while not excessively penal-
izing the network users objective function.

The rest of the paper is organized as follows. In Sect. 2 a formal description of the
problem is provided and the three models are presented. In Sect. 3 we discuss pros and
cons of each model, while in Sect. 4 computational results on realistic instances are
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reported, supporting our claim that gateways can be an effective tool for indirect flow
control. Conclusions and on going works follow in Sect. 5.

2 Formalizing the Gateway Location Problem

Let us introduce some mathematical notations required to formalize the problem by ei-
ther Mixed-Integer Linear Programming or Bilevel Integer Linear Programming mod-
els. The following notations will be used throughout the paper. Let:

– V = {1 . . . ,n} be the set of commodities, each associated with its origin-destination
pair, 〈o(v),d(v)〉,∀v ∈V . Let O = {o(v), v ∈V} be the set of origins and, likewise,
let D = {d(v), v ∈V} denote the destination set. Let dv be the demand of com-
modity v, ∀v ∈ V . In the following, the terms commodity and vehicle will be used
interchangeably.

– NGTW be the set of the m available locations, each representing a candidate site
where potentially installing one of the k gateways, with k < n and k << m.

– G = (N,A) be a weighted directed graph, such that: NGTW ∪O∪D ⊆ N, that is,
the node set includes the candidate gateway locations as well as all the origins and
the destinations of the vehicles. A ⊆ N×N, and for each arc (i, j) ∈ A a positive
coefficient ci j and a non-negative coefficient ri j are defined, i.e., c is the vector of
the coefficients of the network users objective function, while r is the one of the
network administrator A .

– ρc
v (ρ r

v) be the c-optimal (r-optimal) path from o(v) to d(v) for each v ∈V .
–
{

yh, h ∈ NGTW
}

be a set of binary variables, with yh = 1 if a gateway is located at
node h and 0 otherwise.

–
{

zv
h, h ∈ NGTW , v = 1, . . . ,n

}
be a set of binary variables, with zv

h = 1 if the gateway
assigned to vehicle v is the one located at node h ∈ NGTW .

In some applications the objective functions are commodity dependent, i.e., cv
i j �= cv′

i j

for v �= v′ or rv
i j �= rv′

i j for v �= v′. However, since our discussion can be fully restated and
easily adapted to such a case, hereafter we will omit the commodity index in order to
keep notation simple. Moreover, when casting the model into the framework of hazmat
transportation, c represents the cost function as perceived by the users, such as distance,
travel time, or monetary cost of travel, while r is a function modeling the risk per flow
unit when traversing that arc. To follow such intuition, in our further discussion we will
refer to c as the cost function and to r as the risk function.

In the following, three mathematical programming models are presented, each for-
malizing the problem at a different detail of the decision variables.

The first one is an arc based formulation, where the routes followed by the vehi-
cles for a given gateway assignment are the solution of a minimum cost uncapacitated
multicommodity flow problem. In order to take into account such dependency, an outer
decision problem is added, where gateways are located and assigned according to risk
minimization, thus yielding a bilevel integer linear programming model. We will show
how this model can be reformulated as a single level Mixed Integer Linear Programming
(MILP) model, by exploiting duality. No preprocessing is required for this formulation
to be solved.
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The second formulation deals explicitly with decision variables associated with paths.
Recall that a “gateway path” is any path from an origin o(v) to the corresponding des-
tination d(v) having at least one potential location for a gateway as an internal node.
Each path can be evaluated according to c and to r, so its cost and its risk are known. In
particular, shortest gateway paths are constrained to be c optimal. All gateway paths re-
ferring to the same gateway belong to one cluster. Only k clusters are allowed. For each
commodity one gateway path has to be selected, such that the total risk is minimized.

Finally, if we consider the risk associated with the gateway path of minimum cost
for a given commodity as the risk of assigning that gateway to that commodity, then the
problem reduces to selecting the k gateways of minimum total risk, thus yielding a sort
of k median problem. This last formulation is based on the complete enumeration of
the shortest gateway path for each commodity and for each candidate gateway location
node, therefore it requires a preprocessing phase whose not negligible computational
time adds up to the overall running time.

2.1 A Bilevel Multicommodity Flow Model

This model exploits the potentials of modeling decision variables at their finest granu-
larity, explicitly representing arc flows. Any gateway path of commodity v by gateway
h is made of two subpaths, from o(v) to h and from h to d(v). Since each commodity
routes its flow according to c, it will select the shortest gateway path, made by the short-
est path from o(v) to h and the shortest path from h to d(v). Each subpath is modeled
by a separate family of flow variables, namely: flow variables xv

i j, ∀v ∈ V, ∀(i, j) ∈ A :
j �= d(v) are associated with the path from o(v) to the assigned gateway. Likewise, flow
variables xv

i j, ∀v ∈V, ∀(i, j) ∈ A : i �= o(v) model the path from the assigned gateway to
destination d(v). As usual, δ+

i (x) stands for ∑(i, j)∈FS(i) xi j and δ−i (x) for ∑( j,i)∈BS(i) x ji;
the same notation holds for flow variables xi j.

The model must capture the hierarchical relationship between the routing part and
the location-assignment decisions. Indeed, the network administrator locates gateways
at selected candidate sites and assigns them to commodities, in order to optimize his
objective function r over the c-optimal flows along the shortest gateway paths. This
interaction is captured by the following bilevel multicommodity uncapacitated min cost
flow.

PBL.MCF : min ∑
v=1...n

dv ∑
(i, j)∈A

ri j(ξ
v
i j + ξ v

i j
) subject to:

∑
h=1,...,m

zv
h = 1 ∀v ∈V (1)

yh ≥ zv
h ∀h ∈ NGTW ,∀v ∈V (2)

∑
h=1,...,m

yh = k (3)

zv
h ∈ {0,1} ∀h ∈ NGTW ,∀v ∈V (4)

yh ∈ {0,1} ∀h ∈ NGTW (5)
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where ξ
v
i j, ξ

v
i j
∈ argmin PSP : min ∑

v∈V
∑

(i, j)∈A

ci j(xv
i j + xv

i j) subject to:

δ+
o(v)(x

v) = 1 ∀v ∈V (6)

δ−h (xv)− δ+
h (xv) = zv

h ∀h ∈ NGTW ,∀v ∈V (7)

δ−i (xv)− δ+
i (xv) = 0 ∀i �= o(v),d(v), i /∈ NGTW ,∀v ∈V (8)

xv
i j ≥ 0 ∀(i, j) ∈ A,∀v ∈V (9)

δ−d(v)(x
v) = 1 ∀v ∈V (10)

δ+
h (xv)− δ−h (xv) = zv

h ∀h ∈ NGTW ,∀v ∈V (11)

δ+
i (xv)− δ−i (xv) = 0 ∀i �= o(v),d(v), i /∈ NGTW ,∀v ∈V (12)

xv
i j ≥ 0 ∀(i, j) ∈ A,∀v ∈V (13)

Variables zv
h are decision variables at the outer level, while they act as right hand side

coefficients of the flow balance constraints at the inner level. Cardinality constraints
(3) impose that exactly k gateways are installed at that many locations, while semi-
assignment constraints (1) assign to each commodity one open gateway. Constraints (2)
link the two choices, so that a gateway must be open in order to be assigned. Further-
more, note that due to the lack of capacity constraints, the inner problem is separable
and it corresponds to the solution of 2n shortest path problem. Denote them respectively
as SPv(x) (constraints (6–9)) and SPv(x) (constraints (10–13)). Going into such details
allows to take advantage of the tractability of the shortest path problem. The unimod-
ularity of the flow balance constraint matrix allows us to reformulate the problem as a
one level optimization problem by exploiting linear programming duality.

Reformulating the Problem as a One Level Optimization Problem. Bilevel pro-
gramming is usually hard to tackle, see [2], however it can become more tractable if the
objective function of the inner problem can be restated in terms of a set of constraints
expressing its optimality conditions, taking advantage of linear duality, as here and in
[12]. In particular, let us introduce π+

o(v)v, π+
hv and π+

iv as the dual variables associated

with flow balance constraints (6–8), and π−d(v)v, π−hv and π−iv as those associated with
(10–12), respectively. Dual feasibility constraints of the two shortest path problems
SPv(x) and SPv(x) can now be stated as the usual Bellman’s conditions, in (14–15) and
(16–17), respectively:

π+
jv−π+

iv ≤ ci j ∀(i, j) ∈ A, ∀v ∈V (14)

π+
o(v)v = 0 ∀v ∈V (15)

π−iv −π−jv ≤ ci j ∀(i, j) ∈ A, ∀v ∈V (16)

π−d(v)v = 0 ∀v ∈V (17)

Optimality is reached when the feasible solutions of the primal and the dual problem
have the same objective function value, as stated below.
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∑
(i, j)∈A

ci jx
v
i j = ∑

h∈NGTW

π+
hvzv

h ∀v ∈V (18)

∑
(i, j)∈A

ci jx
v
i j = ∑

h∈NGTW

π−hvzv
h ∀v ∈V (19)

Let us introduce a new set of variables
{
ω+v

h , ω−v
h ≥ 0 ∀h ∈ NGTW , ∀v ∈V

}
to lin-

earize optimality conditions (18–19).

∑
(i j)∈A

ci jx
v
i j = ∑

h∈NGTW

ω+v
h ∀v ∈V (20)

∑
(i j)∈A

ci jx
v
i j = ∑

h∈NGTW

ω−v
h ∀v ∈V (21)

ω+v
h ≤ L+v

h zv
h ∀h ∈ NGTW ∀v ∈V (22)

ω+v
h ≤ π+

hv ∀h ∈ NGTW ∀v ∈V (23)

ω−v
h ≤ L−v

h zv
h ∀h ∈ NGTW ∀v ∈V (24)

ω−v
h ≤ π−hv ∀h ∈ NGTW ∀v ∈V (25)

Thus ω+v
h equals π+

hvzv
h as it is set to 0 by (22) if gateway h is not assigned to commodity

v (zv
h = 0), and it is bounded from above by the dual variable π+

hv in (23) and set equal to
the path cost in (20) if zv

h = 1. Likewise for ω−v
h . L+v

h (L−v
h ) is the cost of any path from

o(v) to h (from h to d(v)). The one level MILP reformulation is:

P1L.MCF : min∑
v∈V

dv ∑
(i, j)∈A

ri j(xv
i j + xv

i j) s.t. (1–5), (6–17), (20–25) (26)

2.2 A Path Based Model

An intermediate level of decision involves variables associated with paths. In particu-
lar, this model potentially considers the set of all elementary gateway paths for each
commodity. Let Pv

h be the set of gateway paths associated with commodity v ∈ V and
gateway h, so that Pv = ∪h∈NGTW Pv

h is the set of all gateway paths for commodity v.
Note that if we consider a gateway path as the pair of the two subpath from o(v) to h
and from h to d(v), then two topologically identical paths p, p′ ∈ Pv are seen as differ-
ent entities if they refer to different gateways. Therefore, selecting a path for a given
commodity means to assign a specific gateway to that commodity.

Each path p is characterized by its cost cp and its risk rp. As in the arc based model,
we assume both the cost and the risk functions to be decomposable on the arcs of the
path. For each commodity v, let us introduce a binary variable wp∀p∈ Pv. A path based
model for GLP can be formulated as follows:

Ppath : min∑
v∈V

dv ∑
p∈Pv

wprp
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∑
p∈Pv

wp = 1 ∀v ∈V (27)

∑
p∈Pv

h

wp ≤ yh ∀h ∈ NGTW ,∀v ∈V (28)

∑
h=1,...,m

yh = k (29)

wp ∈ {0,1} ∀p ∈ Pv,∀v ∈V (30)

yh ∈ {0,1} ∀h ∈ NGTW (31)

π+
jv−π+

iv ≤ ci j ∀v ∈V ∀(i, j) ∈ A : j �= d(v) (32)

π−iv −π−jv ≤ ci j ∀v ∈V ∀(i, j) ∈ A : i �= o(v) (33)

π+
o(v)v = 0 ∀v ∈V (34)

π−d(v)v = 0 ∀v ∈V (35)

∑
p∈Pv

h

wpcp ≤ π+
hv +π−hv ∀h ∈ NGTW , ∀v ∈V (36)

Only a gateway path which labels an internal node h∈NGTW as its gateway can activate,
when selected, the gateway variable yh by constraints (28). Indeed, constraints (27) not
only assign one path to each commodity, but also one gateway, since selecting p ∈ Pv

h
is to assign gateway h to v. Constraints (32–36) model users behavior, since feasible
node potentials at a gateway provide a tight upper bound to the cost of the shortest
gateway path. Note that, the left hand side of constraint (36) is zero when gateway h
is not selected. The choice of the shortest gateway path is thus enforced, but the model
leaves room for formalizing alternative path selection rules.

2.3 A k–Median Like Model

The highest decision level consists of directly assigning gateways to commodities. At
this level there is no possibility of selecting paths, since for each pair h ∈ NGTW , v ∈V
the shortest gateway path is the unique alternative. This fact correctly models users
behavior, but leaves no extra room for variants. A preprocessing phase is required to
carry out the exhaustive computation of each shortest gateway path for each commodity,
and evaluate it according to r. Let ρv

h denote the shortest gateway path by gateway h for
commodity v, and let rρv

h
be its risk, computed according to rρv

h
= ∑(i, j)∈A ri j(xv

i j +
xv

i j) such that xv
i j and xv

i j are the optimal solution to SPv(x) and SPv(x), respectively.
Computing ρv

h for each gateway and for each commodity is polynomial in the size of
the graph G, but such preprocessing has to be considered as part of the solution process
and it grows with the number of potential gateway locations.

Call A =
[
av

h

] ∈ Rn×m, with av
h = dv · rρv

h
, the matrix reporting for each pair h, v

the risk value of the shortest gateway path weighted by the demand of the associated
commodity. The notion of gateway path is no longer explicitly present in the resulting
model, where the problem is to select k columns of A such that is minimum the sum of
the minimum element in each row. Formally:
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Pkm : min ∑
v=1,...,n

∑
h=1,...,m

av
hzv

h

∑
h=1,...,m

zv
h = 1 ∀v = 1, . . . ,n (37)

yh ≥ zv
h ∀v = 1, . . . ,n,∀h = 1, . . . ,m (38)

∑
h=1,...,m

yh = k (39)

zv
h ∈ {0,1} ∀v = 1, . . . ,n, ∀h = 1, . . . ,m (40)

yh ∈ {0,1} ∀h = 1, . . . ,m (41)

This structure highlights common points between GLP and a well known NP-Hard
problem in location science, k–Median. Many solution approaches have been proposed
to it, heuristic [5] and exact [4], most of which are tailored to the case of facilities and
clients being the same set. Advantages and disadvantages of such a compact formulation
are discussed in Sect. 3.

3 Comparing the Three Models

Each of three models here presented provides a valid formulation for GLP. However,
the different granularity of their decision variables, i.e., arcs, paths and gateways, makes
each of them either more or less adapt to be generalized in order to handle specific
side constraints, requires specific preprocessing phases, may impact on their robustness
w.r.t. the uniqueness of the shortest gateway path, or makes the administrator more or
less aware of users costs. Such issues are discussed hereafter.

Let cρc
v and rρc

v be the cost and the risk of ρc
v , respectively. Furthermore, recall that

C∗ = {ρc
v ,v ∈V} would be the users itineraries in the unregulated scenario, i.e., no

rules enforced by the administrator. A gateway path deviation from ρc
v is an interesting

alternative from the administrator point of view, only provided that its risk improves
upon rρc

v
. In this sense, r(C∗) = ∑v∈V rρc

v
should be an upper bound to r(G∗), the op-

timal solution value of GLP. Our models can be extended to ensure this property. For
each commodity, three cases have to be distinguished, depending on how many shortest
gateway paths have a risk below the risk value of the shortest path. i) All the m short-
est gateway paths have a risk higher than or equal to the risk of the shortest path ρc

v ,
i.e., rρv

h
≥ rρc

v
∀h ∈ NGTW . The unregulated scenario can not be improved by enforcing

a detour by any gateway in NGTW : commodity v should be exempted and its vehicle
allowed to travel along its shortest path. ii) k′ gateways, k ≤ k′ < m, are such that the
risk of their shortest gateway path is no lower than rρc

v : exemption may improve the
risk depending on which gateways are opened, so exempting that commodity must be
a decision variable within the model. iii) only k′ < k gateways are such that the risk of
their shortest gateway path is no lower than rρc

v : any selection of k gateways in NGTW

will improve upon the risk of the unregulated scenario.
During the preprocessing phase of the k-median model cases i) is spotted and recov-

ered by exempting the commodity and removing it from the input. However, exemption
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must be encoded into all models as a possible choice to guarantee r(C∗)≥ r(G∗) in all
cases. Our models can be extended accordingly, as described hereafter, in order to allow
the authority to assign to commodity v its shortest path if necessary. Let us introduce
into each model a new set of boolean variables γv∀v ∈V such that γv = 1 if commodity
v is exempted, and 0 otherwise.

Modeling exemption in the arc based model: exempting commodity v in the arc based
model means to allow arc flow variables to take values mapping the shortest origin-
destination path. However, o(v) and d(v) are not connected nor in the subgraph induced

by
{

xv
i j

}
neither in the one induced by

{
xv

i j

}
. Therefore, a variable xv

id(v) for each arc

∈ BS(d(v)) must be introduced so that a flow unit from o(v) is able to reach d(v) in
case of exemption, by setting the incoming flow into d(v) in terms of the xv

id(v) equal to

γv. Likewise, incoming flow into d(v) in terms of the xv
id(v) is set equal to 1− γv so that,

in case of exemption, the subpath modeled by
{

xv
i j

}
connects o(v) to d(v) while the

second one implodes. Accordingly, the right and side of constraint (1) becomes 1− γv

since no gateway must be assigned to commodity v when the vehicle travels along ρc
v .

Dual feasibility constraints and optimality conditions can be accordingly modified.
Modeling exemption in the path based model: the second model based on path se-

lection can be extended to encompass exemption by adding the term ∑v∈V γvrρc
v

to the
objective function. As before, the rhs of constraint (27) becomes 1− γv.

Modeling exemption in the k-median like model: again, the term ∑v∈V γvrρc
v is added

to the objective function and the right and side of constraints (37) becomes 1− γv. This
extension can be seen as adding a column to matrix A whose selection does not increase
the gateway counter.

By encompassing commodity exemption into the models, the optimal solution will
never increase the risk w.r.t. the unregulated scenario, and will never increase the user
cost without a gain in risk. All our three models prove to be easy to extend and such
versions will be used in the experimental campaign. In the following other kinds of
generalizations are discussed.

Imposing to detour by the gateways may concentrate the flow of several commodities
within a restricted area, in the neighborhood of the selected gateways. This fact may be
an issue in the specific framework of hazmat transportation. Knapsack like constraints
can be added to each model to impose a capacity on gateways. In particular, constraints
(2), (28), and (38) can be restated to take capacity into account, as in classical Capac-
itated Facility Location. However, the path based model provides additional flexibility
in formalizing the capacity issue, as it allows to model capacity restrictions on any part
of the network besides gateways: Since the knapsack constraints can be stated directly
on the path selection variables, the impact of a set of paths all insisting on the same re-
gion of the network can be controlled. Moreover, since any gateway path is potentially
represented in the path based model, it is possible to select a gateway path with a higher
cost than ρv

h that allows to comply with the capacity restrictions at a lower total cost.
This can be achieved by relaxing the optimality constraint (36) on the path cost by mul-
tiplying the term π+

hv +π−hv by a factor over 1. We believe that this feature is a strength
of the path based model which can compensate the drawback of requiring either a path
generator engine or a preprocessing phase. In such a phase, users would enumerate all
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paths they would accept as feasible, possibly resulting from a negotiation process in
cooperation with the authority. The user preferences within each set of feasible paths
can be enforced as in [8] and replace optimality, cost binding, constraints (36).

The arc based model is sensitive to adding further constraints on flow variables, that
tend to destroy the integrality property of the shortest path problems, which is required
for the transformation into a one level problem. However, the strength of this model
relies on the fact that it does not require any preprocessing phase to be solved, but only
the instance description in terms of network topology, the cost and risk functions and
the travel demand.

Finally, the k-median model does not allow to choose among alternative paths once
a gateway is assigned to a commodity. In this sense, it is the most rigid model. While
this formulation allows to tackle GLP by any solution approach developed to k–median,
such a compact formulation completely hides the cost structure to the decision maker,
and forbids to formalize within the optimization process any tuning between the two
objective functions.

A weak point of bilevel programming models is stability [2]. While our solutions
proved a posteriori to be stable, as discussed in Sect. 4, the issue should be addressed.
The preprocessing phase of the k-median model can take care of computing, among the
shortest gateway paths of each pair h, v, which is the one of maximum risk (for non-
cooperative users behavior), and use that value as av

h to compute matrix A. While it is a
longest path problem (maximum risk) with resource constraints (not more costly than
cρc

v ) it can be easily solved, since it is sufficient to explore the acyclic subgraph induced
by 0-reduced cost arcs. Therefore, the k-median model yields a correct risk value even
in case of several shortest gateway paths.

The path based model, as it models paths explicitly, does not suffer from instability.
Concerning the arc based model, a perturbation of the cost coefficients, supposedly
strictly positive, of the kind ci j −αri j , with 0 < α << 1, can make the optimal path
unique and model a non-cooperative users attitude towards authority. The parameter α
requires careful calibration, which goes beyond the scope of the paper.

As how to avoid to penalize excessively network users, the three models provide
different solutions. As for the arc based model, an additional constraint for each com-
modity, setting an upper bound ub on the cost of each user’s itinerary, can be added
into the inner problem of the bilevel formulation. Note that such a constraint, whose
coefficients are the same as the coefficients of the user’s objective function, is either
redundant or makes the inner problem infeasible. Therefore, it is still possible to refor-
mulate the extended bilevel model as a single level MILP problem. The threshold ub
may be yielded by negotiations between the user and the network administrator or sim-
ply be a fixed percentage over 100 of cρc

v . The path based model is even more flexible,
since only gateway paths whose cost is within a threshold of cρc

v
may be allowed, thus

guaranteeing a maximum deterioration of users objective function. On the other hand,
the k-median model is completely blind to users cost, although an ad hoc constraint
can be added, bounding the maximum total cost. Preprocessing should then retrieve
information also on cρc

v .
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4 Computational Results

This section is devoted to the results of an experimental campaign, aimed at verifying
the effectiveness of the gateway approach. We tested the multicommodity flow model
and the k-median like model on instances derived from published studies in the field
of hazardous material transportation. In this sector, ruling the transport in urban and
suburban area is still an open problem [9]. Basically, we built our instances on the same
data set described in [7], i.e.: an indirected graph with |N| = 105 nodes and |A| = 134
arcs, being an abstraction of the road network of Ravenna (Italy), as well as a cost and
a risk function, not collinear, defined on the arcs. Travel demand is also taken from [7],
i.e., |V | = 35 commodities with their origin-destination pairs and shipment requests.
On this network, we generated 130 instances of the GLP as follows: 5 different sizes
for the candidate set NGTW have been considered and expressed as a percentage of |N|
(10%, 20%, 30%, 50%, and 100% of the network nodes); for each percentage below
100%, NGTW has been generated three times, and named hereafter as 0, 1 and 2, by
independent random sampling with uniform distribution, and without any relationship
of inclusion among samples of different percentages. For each one of these thirteen
combinations, k varies in 1, . . . ,10, thus yielding a total of 130 instances. We solved both
models using Cplex 12.1 and performed all testing on a AMD Athlon (tm) 64x2 Dual
Core Processor 4200+ (CPU MHz 2211.186). Both models yielded the same results
but differed in computing time. The k-median model solved the biggest instances in
negligible time, including preprocessing, outperforming the arc based model (requiring
just some seconds to solve the whole test bed). It should be mentioned, however, that
efficiency is not the target of this campaign and we did not perform any fine tuning on
the solver parameters to speed up the computation of the arc based model.

Computational experience reported in this section gives evidence of the following
findings: (i) the use of gateways identifies a good strategy in mitigating the transporta-
tion risk, and few open gateways are sufficient to achieve a considerable risk reduction;
(ii) the risk mitigation occurs at the expenses of an increase in transportation costs: such
an increase is however acceptable; (iii) the choice of the candidate gateways represents
a crucial issue in mitigating risk; (iv) the solutions obtained are stable from the risk
point of view.

For each run a significant quality index is the percentage of risk reduction obtained
at a value of k with respect to the risk value obtained at k = 1. Given an instance and
a percentage of candidate gateways, this index clearly does not decrease as k increases.
The value of k beyond which the risk reduction can be considered negligible (i.e., below
0.5%) is said stable. The stability analysis w.r.t. k shows that very good levels of risk
mitigation are achieved with a small number k of open gateways. Specifically, for the
test bed used here, the value of k at which stability occurs is equal to four. In Table 1,
for each value of k, the percentage of runs for which the risk stability occurs at k, is
given. This motivates our choice to further analyze the case k = 4.

Let G
, R
 and C
 denote respectively the optimal solution of the gateway loca-
tion problem (i.e. the gateway path set), the minimum risk path set (over-regulated
scenario) and the minimum cost path set (unregulated scenario); let then c(P) and
r(P) denote respectively the total cost and the total risk of path set P. The quantity
(r(G
)− r(R
))/(r(C
)− r(R
)) · 100 yields an aggregate index of solution quality
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Table 1. Stability Analysis w.r.t. k

k 1 2 3 4 5 6 7 8 9 10
Frequency 0.00 8.33 41.67 50.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 2. % Cost Reduction w.r.t. Over Regulated Scenario

% CostRed
k Inst 0 Inst 1 Inst 2
3 -22.97 -24.51 -23.51
4 -9.41 -20.49 -16.45
5 -9.67 -20.84 -14.76

Fig. 1. Percentage of Risk Reduction w.r.t. Gateways Percentage - k = 4

since it measures the increase in risk with respect to the over-regulated scenario: the
more the index is close to zero, the more the risk of the solution of GLP is close to the
risk of the minimum risk solution. For a percentage of candidate gateways fixed to 30
and for k = 4, such index is equal respectively to 13.15, 13.14 and 16.62 for instances
0, 1 and 2. It is important to note that these values, already low in itself, are in addition
very close to those obtained when all nodes of the network are considered as possible
gateways; indeed, in this case, the average index is equal to 13.14 when k = 4 and it
decreases only to 12.91 when k reaches its upper bound (i.e. 10).

Figure 2 plots for an intermediate percentage of candidate gateways (30%) and
for each instance (namely, 0, 1 and 2) the risk reduction when k varies in the range
{1, . . . ,10}. The maximum reduction of risk achievable on those runs is also reported
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Fig. 2. Percentage of Risk Reduction w.r.t. k - 30% of Candidate Gateways

(it corresponds to the best risk reduction obtained when all nodes are candidate gate-
ways). On the test bed instances, for the 14.29% of vehicles the path of minimum risk is
the same as the path of minimum cost, thus generating an exemption; the risk reduction
reported in this section is computed over the remaining 85.71% of vehicles. The figure
shows that for two of the three instances (namely, 0 and 1) the candidate gateways allow
to get very good risk reduction whereas for instance 2 the risk reduction does not grow
over 7.24 even if a quite high number of gateways is open. This allows us to conclude
that it is more profitable to choose the appropriate pool of candidate gateways rather
than increasing its size. Recall that, in the current experiments, the candidate gateways
are randomly sampled with uniform probability among all the nodes. This represents
the starting phase of the validation of the gateway based approach. Indeed, the selection
of the proper set of nodes that can be successfully used in order to mitigate the risk thus
identifies a promising line of research which is currently under investigation. To ana-
lyze more in depth the relationships between the percentage of candidate gateways and
the risk reduction, we report in Figure 1 the risk reduction obtained for k = 4 when the
percentage of candidate gateways varies in {10%, 20%, 30%, 50%, 100%}, separately
for each instance.

As observed previously, there is a tradeoff between risk reduction and cost increase.
The cost deterioration of our solution versus the unregulated scenario, and the cost save
of our solution versus the over regulated scenario should be both discussed. The cost
deterioration is the average computed on all the vehicles of relative increase of the
gateway path cost w.r.t. the minimum path cost. Specifically, the cost deterioration is
equal respectively to 43.3, 28.66 and 35.51 for the three instances when the 30% of the
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gateways are selected as candidate and k = 4. We believe that a cost deterioration as
high as 35.82 on average can be considered acceptable. That being said, the extension
of models to the case where an upper bound is given on cost deterioration is surely an
interesting line of research we pursue. On the contrary, the cost save is given in Table 2:
analogously to the cost deterioration, it is computed as the average relative decrease of
the gateway path cost w.r.t. the cost of the minimum risk path.

Finally, we report that the solutions obtained with the gateway method are stable
from the risk point of view: we verified experimentally that, fixed the gateway opening
and fixed the assignment of gateways to vehicles, for each vehicle the maximum risk
path among the minimum cost gateway paths coincides exactly with the path returned
by our models.

5 Conclusions and Ongoing Work

In this work we have investigated a new method for indirect control of user flows by
part of the network administrator. It consists of imposing check points along the routes,
so called gateways, by obliging each user to detour from his original optimal path and
pass by the assigned gateway. Gateways are located and assigned by the administra-
tor so that the resulting user optimal flows on the detours minimize the administrators
objective function. To manage this method we have proposed three different models:
a bilevel multicommodity flow model, a path based model and a k-median like model.
Such models present pros and cons concerning to robustness w.r.t. the risk of the short-
est gateway path, exemption treatment, preprocessing phase necessity, possibility to be
generalized in order to handle specific side constraints or the tradeoff risk-cost.

We have tested the multicommodity flow model and the k-median like model on real-
istic instances in the field of hazardous material transportation. The experimental cam-
paign shows that the use of gateways is an effective strategy for mitigating the transport
risk and good levels of risk reduction are already obtained with a low percentage of can-
didate gateways (30%) when they are chosen appropriately. In fact, experiments show
that different choices of equal-sized candidate gateways sets may produce very different
risk mitigation levels. In any case a small number of open gateways (4 for the test bed)
is already sufficient to obtain the maximum reduction of risk achievable from a specific
candidate gateways choice.

On going works focus on the criteria for generating suitable sets of candidate gate-
ways, on the capacitated extensions of the models, on the risk-cost tradeoff, and on
developing appropriate metaheuristics to tackle bigger instances.
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Abstract. We consider the capacity assignment problem in telecommunications
where the demand is uncertain. In our model, given an amount of traffic μ̄ , we
seek for an optimal link capacity assignment that, given an uncertainty set con-
taining possible demand realizations, limits the loss of traffic to μ̄ in any realiza-
tion of the demand. To obtain tractable approximations to this problem, we use
the so-called Affinely Adjustable Robust Counterpart (AARC) concept proposed
by Ben-Tal et al. where the adjustable variables are restricted to depend affinely
on the uncertain data. Borrowing ingredients from earlier works and the AARC
approach, we propose some tractable approximations to this problem.

1 Introduction

Let G be a network with nodes set V and links set A . We denote by K the set of
demands, characterized by K = |K | origin-destination (OD) pairs. Let X = {x ∈ Rn

+ :
xL ≤ x ≤ xU} be the set of feasible capacities, where xL and xU are minimum and
maximum capacity vectors. For a given x ∈ X , let Γ (x) be the set of all possible path
flows respecting the capacity x. In this paper, the set Pk of available paths that can
be used to route the demand k is given in explicit form. For a given path p ∈Pk, δ a

kp
denotes a binary parameter which equals 1 if link a is used by p and 0 otherwise. Let
Np be the total number of available paths. The set Γ (x) can be defined as

Γ (x) =

{
z ∈RNp : z≥ 0, ∑

k∈K
∑

p∈Pk

δ a
kpzkp ≤ xa, a ∈A

}

We propose a simple representation of the uncertain demands. The demand is supposed
to lie somewhere in an uncertainty set. In [11], a general polyhedron uncertainty set was
considered including the so-called hose model. For the applications we have in mind we
consider the uncertainty model already used in [14,2]. Indeed, practitioners can provide
a range around a nominal value ξ n

k for each individual demand, so that the demand
could be set as ξ n

k + ξkξ v
k to capture this information. The quantity ξk ∈ [−1,1] is a

random variable, and ξ v
k the standard deviation (or any other measure of dispersion). A

natural uncertainty set is defined by the constraint

‖ξ‖∞ = max
k∈K

|ξk| ≤ κ
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which limits the perturbations (i.e |ξk| ≤ κ for each k). As it is highly improbable that all
demands be simultaneously at their highest value ξ n

k +κξ v
k , it is reasonable to constrain

the uncertainty set further, by adding the global constraint

‖ξ‖1 = ∑
k∈K

|ξk| ≤ τ.

The demand set is then the collection of vectors of RK with components ξ n
k +ξkξ v

k , k ∈
K , where ξ belongs to the uncertainty set

Ξ = {ξ : ξ ∈ [−1,1]K, ‖ξ‖∞ ≤ κ , ‖ξ‖1 ≤ τ}. (1)

The parameters κ and τ are safety factors to be set by the decision-maker.
A ξ ∈ Ξ and a set of path flows z ∈ Γ (x) induce a mismatch cost f (ξ ,z) which is 0

if

∑
p∈Pk

zkp ≥ ξ n
k + ξkξ v

k for any k ∈K ,

i.e if x is sufficient to accomodate the requirements ξ n
k + ξkξ v

k , k ∈K . Whenever ξ is
fixed, it is of course convenient to choose z so as to minimize this mismatch. For any
x ∈ X and ξ ∈ Ξ , let h(x,ξ ) be the function defined by

h(x,ξ ) = min
z∈Γ (x)

f (ξ ,z).

We consider the total amount of unserved requests as mismatch cost, i.e.,

f (ξ ,z) = ∑
k∈K

max{0, ξ n
k + ξkξ v

k − ∑
p∈K

zkp}.

we consider the following model

min
x

∑
a∈A

caxa

s.t. h(x,ξ )≤ μ̄ , ξ ∈ Ξ ,
x ∈ X ,

(2)

where μ̄ ≥ 0 is a given parameter.

2 Affine Decision Rules

The function h(x,ξ ) is obtained by solving the following problem

h(x,ξ ) = min{g(s,z) : (s,z) ∈Ψ(x,ξ )}
where g(s,z) = ∑

k∈K
sk and,

Ψ (x,ξ ) =

{
(s,z) ∈ R|K | ×Γ (x) :

{
sk ≥ ξ n

k + ξkξ v
k − ∑

p∈Pk

zkp, k ∈K ,

sk ≥ 0, k ∈K

}
,
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The problem (2) can then be rewritten as

min
x

∑
a∈A

caxa

s.t. min
s,z
{g(s,z) : (s,z) ∈Ψ(x,ξ )} ≤ μ̄ , ξ ∈ Ξ ,

x ∈ X ,

(3)

We make a first approximation in contenting ourselves with a solution (s(ξ ),z(ξ )) in
Ψ(x,ξ ) that respect the upper bound μ̄ instead of the minimizer itself. We come to the
following upper approximation to (3)

min
x

∑
a∈A

caxa

s.t. ∑
k∈K

sk(ξ )≤ μ̄, ξ ∈ Ξ ,

∑
k∈K

∑
p∈Pk

δ a
kpzkp(ξ )≤ xa, a ∈A , ξ ∈ Ξ ,

sk(ξ )≥ ξ n
k + ξkξ v

k − ∑
p∈Pk

zkp(ξ ), k ∈K , ξ ∈ Ξ ,

zkp(ξ )≥ 0, k ∈K , p ∈Pk, ξ ∈ Ξ ,
sk(ξ )≥ 0, k ∈K , ξ ∈ Ξ ,
x ∈ X .

(4)

The capacity x, which must be computed at the first stage, in full uncertainty, they
are non-adjustable in the parlance of [5], see also [7]. Second the adjustable variables,
which can be computed after the uncertain parameters are known; these are the path
flows which can be tuned themselves to the observed demand. To obtain a tractable
approximation for problem (2), we first impose as in [14,2], the dependence of path
flows on the random data ξ to follow the affine decision rule in the context of robust
optimization, that is z(ξ ) is an affine function of ξ :

z(ξ ) = z0 + Zξ

where the new variables are now z0 ∈ RNp with components z0,kp, and the Np× |K |
matrix with elements zkp,k′ . Hence,

zkp = z0,kp + ∑
k′∈K

zkp,k′ξk′ . (5)

Likewise, we assume that each sk(ξ ) follows the affine decision rule:

sk(ξ ) = sk,0 + ∑
k′∈K

sk,k′ξk′ . (6)

These auxiliary variables sk(ξ ) represent piecewise linear functions max{0, ξ n
k +ξkξ v

k −
∑

p∈Pk

zkp(ξ )}. As pointed out in [6], working with variables that represent piecewise lin-

ear functions of the data lead to complicated robust counterpart. The affine recourse has
been used with efficiency in the context of telecommunications problems [14,2,18].
This paper is a short version of [15].
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3 Tractable Approximations

Replacing the variables with their affine decision rules, we come to the following ap-
proximation of (4).

min ∑
a∈A

caxa (7a)

s.t. ∑
k∈K

(sk,0 + ∑
k′∈K

sk,k′ξk′)≤ μ̄, ξ ∈ Ξ , (7b)

∑
k∈K

∑
p∈Pk

δ a
kpz0,kp + ∑

k∈K
∑

p∈Pk

∑
k′∈K

δ a
kpξk′zkp,k′ ≤ xa, a ∈A , ξ ∈ Ξ , (7c)

sk,0+ ∑
k′∈K

sk,k′ξk′+ ∑
p∈Pk

z0,kp+ ∑
p∈Pk

∑
k′∈K

zkp,k′ξk′ ≥ ξ n
k + ξkξ v

k , k ∈K , ξ ∈ Ξ ,(7d)

z0,kp + ∑
k′∈K

zkp,k′ξk′ ≥ 0, k ∈K , p ∈Pk, ξ ∈ Ξ , (7e)

sk,0 + ∑
k′∈K

sk,k′ξk′ ≥ 0, k ∈K , ξ ∈ Ξ , (7f)

z0,kp ∈R, k ∈K , p ∈Pk, ξ ∈ Ξ , (7g)

zkp,k′ ∈ R, k ∈K , p ∈Pk, k′ ∈K , ξ ∈ Ξ , (7h)

sk,0 ∈ R, k ∈K , ξ ∈ Ξ , (7i)

sk,k′ ∈ R, k ∈K , k′ ∈K , ξ ∈ Ξ , (7j)

x ∈ X . (7k)

From Theorem 2, Propositions 1 and 4 of [1] , we can express the above problem with
a finite number of linear constraints. For instance, constraints (7b) are replaced with

∑
k∈K

sk,0 + τγ+κ ∑
k∈K

αk ≤ μ̄ ,

γ+αk− ∑
k′∈K

sk′ ,k ≥ 0, k ∈K ,

γ+αk + ∑
k′∈K

sk′ ,k ≥ 0, k ∈K ,

γ ≥ 0, αk ≥ 0, k ∈K .

Proceeding in the same way for all the constraints, results in the first tractable approxi-
mation (Model 1). The second and third approximations (Models 3 and 2) are obtained
by fixing zkp,k′ = 0 and sk,k′ = 0 in (5) and (6) respectively, see [15] for more details. A
fourth model is obtained as the capacity planning problem where the demand is at their
possible maximum value (Model 4). All these models results in LP and MIP which can
be solved using CPLEX. Our preliminary experiments on test problems based on data
from SNDLib (Table 1) show however that CPLEX with barrier option fails on some
instances (on nobel-us and planar) due to lack of memory. We refer to [15] fo the de-
tails of these experiments to respect the limitation imposed on the lenght of the present
paper. Table 1 gives some results obtained on the test problems considered with only
one path per each origin-destination pair. These experiments show that the overspend
from the solutions obtained with the worst case scenario model wich is up to 20.23%
but it may be more important, up to 35% on some instances which are not presented
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Table 1. Numerical results

Test problems Model 1 Model 2 Model 3 Model 4

|V | |A | |K | CPU time Cost CPU time Overs. (%) CPU time Overs. (%) CPU time Overs. (%)

pdh 11 34 24 0.94 6.52E+08 0.2 6.72 0.6 0 0.0 6.72
di-yuan 11 42 22 0.73 5.65E+06 0.19 3.44 0.46 1.1 0.0 3.44
polska 12 18 66 6.69 5.84E+06 5.19 15.53 1.81 12.06 0.0 18.93
nobel-us 14 21 91 25.83 1.07E+08 18.36 17.85 5.4 9.66 0.01 20.23
planar30 30 75 92 29.21 7.63E+07 18.87 13.06 4.4 7.39 0.0 14.22

here. This worst case scenario model is likely to be used in general when faced with
demand uncertainty. We also observed that allowing path flows to be adjustable is also
important even in the case of single routing: the overexpenditure maybe important up
to 28%.
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Abstract. In this paper we present a mathematical model to optimize the av-
erage download time in a Peer-to-peer Video on Demand system, where a set
of resources are available in the cloud to assist the service. First, we propose a
simple optimization model based on a Markov chain. Then, we provide some nu-
merical results based on simulations and optimizations using a GRASP method
on a real scenario.

1 Introduction

Nowadays, lots of applications used to share contents over the Internet are based on the
BitTorrent protocol [3,5]. One of such applications is the GoalBit Video Platform [1],
currently used to share live content over a P2P network. We are working on adding
Video on Demand (VoD) support to GoalBit, using the standard BitTorrent protocol. In
GoalBit, as in BitTorrent, end-users are called peers. They are classified in two groups:
if the peer is downloading a content it is a downloader; when a peer finishes download-
ing it becames a seeder. There is also an entity or node named tracker, which knows
all the peers that are sharing a content (seeding or downloading). GoalBit introduces a
new type of node to the P2P network named super-peer. This kind of node has better
bandwidth than a normal peer, and usually is in the network for very long periods of
time (very stable peers). The super-peers are intended to store and upload the contents
to normal peers (with a very short life in the system). In the current GoalBit protocol
specification, super-peers are nodes managed by the operator of the platform and they
are hosted in the cloud. We are thinking about the possibility of promoting peers to
super-peers in future specifications. For more details about GoalBit specification please
refer to [1].

The work in [3] provides an analysis of the estimated average time to download a file
(content) on a BitTorrent network, assuming that the behavior of peers can be modeled
by a Markov chain. This work is generalized in [5], extending the model for several
concurrent contents, assuming that most BitTorrent users download several files at the
same time. Our goal is to distribute video files over the GoalBit platform depending
on the storage capacity and videos’ popularity, minimizing the average download time
for end-users. To achieve that, we extend those models, so when a video becomes very
popular and lots of users want to watch it, we generate more copies for this video in the
cloud (if we have enough resources), in order to satisfy the users demand and do not

J. Pahl, T. Reiners, and S. Voß (Eds.): INOC 2011, LNCS 6701, pp. 283–288, 2011.
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increase the average download time of the system. When the video becames less pop-
ular, we can remove some copies to free space and resources. All this process is made
automatically and dynamically based on the model that we defined. In Section 2 we
introduce our combinatorial optimization problem based on a fluid model that extends
the previous work [5]. In Section 3 we present a GRASP [4] metaheuristic solution for
that problem. Finally, in Section 4, we show the performance of the solution in a real
scenario, and we present general conclusions of our work.

2 Video-on-Demand Fluid Model

To understand the behavior of peers in a P2P system like GoalBit we should analyze
the evolution, scalability, and sharing efficiency of peers. We extend the stochastic
fluid model presented in [5], providing insightful results for performance issues and
the downloading average time for several contents downloaded simultaneously. Since
each peer can download more than one content at time t, peers are grouped in classes:
{C1,C2, . . . ,CK}, such that a peer is in the class Ci if it is downloading i contents at the
same time. The data and variables of the model are shown in Figure 1.

K available videos
s j size (in kbits) of video j
xi

j(t) downloaders in class Ci downloading video j at time t
yi

j(t) seeders in class Ci seeding video j at time t
zi

j(t) super-peers in class Ci seeding video j at time t
λ i

j arrival rate for peers in class Ci requesting video j
(where ∑i λ i

j is the j-th video popularity)
γ departure rate of seeders
c total download bandwidth for each peer (in kbps)
μ total upload bandwidth for each peer (in kbps)
ρ total upload bandwidth for each super-peer (in kbps)
η video sharing effectiveness between peers (η ∈ [0,1])

Fig. 1. Data and variables of the fluid model

To simplify the model representation we assume the following (as in [5]):

1. Resources are used equitably among the contents that are downloaded or served
simultaneously. If the peer belongs to class Ci, each video that it downloads will
have the i-th part of the peer’s bandwidth. Since videos have different sizes, we
divide the bandwidth (in kbps) by the video size in order to know the download
rate (in files per second) for video j. Therefore, if the peer is in class Ci, the file
portion downloaded per second for content j is ci

j = c
is j

. The same is applied to

μ i
j = μ

is j
and ρ i

j = ρ
is j
∀i, j ∈ {1 . . .K}.

2. Peers in class Ci, that at time t are downloading video j, receive from all other
downloaders an amount of content proportional to the upload bandwidth μ i

j and

their population xi
j(t):

μ i
jx

i
j(t)

∑k μk
j xk

j(t)
∑kημk

j xk
j(t) = ημ i

jx
i
j(t).
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3. Peers in class Ci, that at time t are downloading video j, receive from all the seeders
an amount of content proportional to the download bandwidth ci

j and their popula-

tion xi
j(t):

ci
jx

i
j(t)

∑k ck
j x

k
j(t)

∑k μk
j yk

j(t).

4. Peers in class Ci, that at time t are downloading video j, receive from all the super-
peers an amount of content proportional to the download bandwidth ci

j and their

population xi
j(t):

ci
jx

i
j(t)

∑k ck
j x

k
j(t)

∑k ρk
j zk

j(t).

Supposing that we can model the problem as a Markovian chain, we want to know the
peers’ behavior (how xi

j and yi
j vary as a function of time). Modeling the behavior as a

simple fluid model we get the following equation ∀i, j ∈ {1 . . .K}:
dxi

j

dt
= λ i

j−ημ i
jx

i
j(t)−

ci
jx

i
j(t)

∑k ck
jx

k
j(t)

∑
k

μk
j yk

j(t)−
ci

jx
i
j(t)

∑k ck
jx

k
j(t)

∑
k

ρk
j zk

j(t) (1)

dyi
j

dt
= ημ i

jx
i
j(t)+

ci
jx

i
j(t)

∑k ck
jx

k
j(t)

∑
k

μk
j yk

j(t)+
ci

jx
i
j(t)

∑k ck
jx

k
j(t)

∑
k

ρk
j zk

j(t)− γyi
j(t) (2)

Assuming that the system will reach its steady state, where the number of peers is

stable (
dxi

j
dt =

dyi
j

dt = 0 ∀i, j ∈ {1 . . .K}), we can calculate the steady state value for xi
j(t)

and yi
j(t):

xi
j = max{

λ i
j is j

c
,

iλ i
j

γμη
γs j∑k λ k

j −μ∑k
λ k

j
k − γρ ∑k

zk
j

k

∑k λ k
j

} yi
j =

λ i
j

γ
(3)

Equations (1) and (2) assume that the bandwidth constraint is in the upload capacity of
the system, Equation (3) generalizes this, considering also that the bandwidth constraint
can be at the download capacity of peers.

Based on this model, we want to minimize the average download time of the system,
making an efficient use of resources, trying to find an optimal distribution of files in
super-peers nodes. The average download time for any downloader at steady state can

be computed applying Little’s law: T i
j =

xi
j

λ i
j
. Then, our problem can now be written as a

Combinatorial Optimization Problem (COP), where we have to add new data:

- E p
j indicates if the super-peer p has a copy of video j (p can seed video j). E p

j is
either 0 or 1: 1 if p has video j, 0 otherwise.
- Sp is the storage capacity of super-peer p (in kbits).

The optimization problem is shown in Figure 2.
The problem constraint (1) indicates that no super-peers can store more videos than

its storage capacity. Additionally, in constraint (2) we define that each video must have
at least one replica (each video must be stored in at least 2 super-peers). Also, the
number of video replicas is limited by the peers’ download capacities and the seed-
ers’ upload capacities for this video, as described in constraint (3). Finally, zi

j can be
computed from E p

j as the number of super-peers that hosts content j and other i− 1

contents. Constraints (4)-(7) specify this relationship between zi
j and E p

j using some

auxiliary variables (zi,p
j and ui,p).
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min
E

p
j

K

∑
j=1

K

∑
i=1

λ i
jT

i
j = min

E
p
j

K

∑
j=1

K

∑
i=1

xi
j

s.t.

(1)∑
j

E p
j s j ≤ Sp ∀p (2)∑

p
E p

j ≥ 2 ∀ j (3)∑
k

zk
j

k
≤ (

c
μ
−η)∑

k

xk
j

k
−∑

k

yk
j

k
∀ j (4) zi

j =∑
p

zi,p
j ∀i, j

(5) ui,p =

∣∣∣∣∣∑l E p
l − i

∣∣∣∣∣ ∀i, p (6) zi,p
j ≥ E p

j −ui,p ∀i, j, p (7) E p
j ∈ {0,1},zi

j ∈ {0,P},zi,p
j ∈ {0,1},ui,p ∈R+ ∀i, j, p

Fig. 2. Combinatorial Optimization Problem

3 Model Optimization Based on GRASP

Considering that the number of feasible solutions of the problem increases a lot with
the size of the problem’ instance, we will use a metaheuristic approach in order to solve
it (we did not a complexity analysis of the problem at this time). GRASP [4] is a well-
known metaheuristic that we have been successfully using to solve other similar hard
COPs [2]. It is an iterative process which operates in two phases. In the Construction
Phase an initial feasible solution is built, whose neighborhood is then explored in the
Local Search Phase. In Figure 3 we present a GRASP customization to solve our prob-
lem. During construction phase we must distribute the video files in the super-peers
taking into account the constraints of the problem. First, we sort the files depending on
their sizes, starting by the largest one. Then, we select the 20% larger files (not copied
yet) to create the Restricted Candidate List (RCL), and choose one of them randomly
to be put in at least two super-peers (selecting super-peers with more storage capacity
first). The pseudo-code for this construction phase is shown in Figure 3(a). To improve
the solution constructed in the first phase, a local search is applied as second phase. The
improvement can be done in 2 ways, applying only one per iteration, selected randomly
(both without breaking the problem constraints): (a) inserting a new copy of video k in

Procedure RandomGreedy
Input: data0

1: x← emptySolution(data0)
2: RCL = biggerFiles(data0,x,20%)
2: i = randomSelect(RCL)
3: while i > 0 do
4: sp1 ← fstBestSP(data0,x, i)
5: x← x

⋃
Copy(i, sp1)

5: if checkRestrictions()
6: sp2 ← sndBestSP(data0,x, i)
7: if checkRestrictions()
8: x← x

⋃
Copy(i, sp2)

9: else
10: x← x

⋃
Remove(i, sp2)

11: end if
12: else
13: x← x

⋃
Remove(i, sp1)

14: end if

15: RCL = biggerFiles(data0,x,20%)
16: i = randomSelect(RCL)
17: end while
18: return x

(a) Construction phase

Procedure LocalSearch
Input: x

1: x∗ ← clone(x)
2: i← 0
3: while i≤ imax do
4: xtemp ← randomChange(x)
5: if evaluate(x) < evaluate(x∗ )
6: x∗ ← xtemp
7: i = 0
8: else
9: i ++
10: end if
11: x← xtemp
12: end while
13: return x∗

(b) Local Search phase

Fig. 3. Pseudo-cide for GRASP phases
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the super-peer sp; (b) swaping two videos k1 and k2 from two super-peers spA y spB.
The pseudo-code for this local search phase is shown in Figure 3(b).

4 Numerical Results and Discussion

We implement the COP in Matlab, and we calibrate the GRASP algorithm with gener-
ated instances. In this paper we present an application into a real scenario in order to
show its potential. Using real information got from a local Internet Video-on-Demand
Service Provider we construct a real scenario. From the log information of this service,
we obtained the popularity and the size of the available video content. Specifically, our
scenario has more than 700 videos (K), with an average size of 23 MB (s), 4 super-peers
(P) with 100 GB of storage (S) and an upload rate of 80 Mbps (ρ), a peer download
rate of 8 Mbps (c), and 4 Mbps of upload (μ), using an effectiveness of 50% (η = 0.5),
having a seeders departure rate of 1 every 10 seconds (γ = 0.1).

(a) Average download time (b) COP objective function

Fig. 4. Comparing ideal system and P2P system

A lower boundary of the average download time can be computed as the time needed
in a system with free upload capacity (i.e. when the download time is determined by the

peers download rate). In this ideal scenario, the number of downloaders is xideal
i
j =

λ i
j is j

c

and Tideal
i
j =

xideal
i
j

λ i
j

. With data provided above, we computed an average ideal time of

23.1 seconds.
In order to determine the scalability of the service, we stress the system keeping the

popularity proportional with the real data (i.e. multiplying the real λ by an incremental
factor). These results are shown on Figure 4(a), where we can see that our P2P system
is a bit far from the ideal system (3 times worse), but it is very scalable since the per-
formance is stable regarding to the increment of requests. With 163 requests per second
the average download time is 67 seconds, while with 816 requests the average time is
73 seconds. In Figure 4(b) we show the evolution of the COP objective function for the
ideal system and for the P2P system. Notice that to reach the same level of service (the
same average download time) in a client-server system we should increase the number
of servers (or super-peers) proportionally with the end-user requests, while in the P2P
system we have a natural scalability with the growing resources offered by the users
(downloaders and seeders).
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Therefore, we can conclude that our P2P solution is a good and very scalable ap-
proach. Although in this scenario we have a solution 3 times worse, it is better than a
client-server option where we should increase the number of servers depending on the
number of client requests. We also expect that the efficiency will be more evident in
largest deployments.

Currently, we are working to include this model inside the GoalBit platform to test
it in a real production scenario.
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Abstract. We study the maximum flow problem subject to binary dis-
junctive constraints in a directed graph: A negative disjunctive constraint
states that a certain pair of arcs in a digraph cannot be simultaneously
used for sending flow in a feasible solution. In contrast to this, positive
disjunctive constraints force that for certain pairs of arcs at least one arc
has to carry flow in a feasible solution.

Negative (positive) disjunctive constraints can be represented by a
conflict (forcing) graph whose vertices correspond to the arcs of the un-
derlying graph, and whose edges encode the constraints.

We show that the maximum flow problem is strongly NP-hard, even if
the conflict graph contains only isolated edges and the network consists
only of disjoint paths. For forcing graphs the problem can be solved
efficiently if fractional flow values are allowed. If flow values are required
to be integral we provide the sharp line between polynomially solvable
and strongly NP-hard instances.

1 Introduction

We study two variants of the maximum flow problem (MF ) on directed graphs
where binary disjunctive constraints are given on certain pairs of arcs.

– A negative disjunctive constraint expresses an incompatibility or a conflict
between the two arcs in a pair. From each conflicting pair, at most one arc
can carry flow in a feasible solution.

– A positive disjunctive constraint enforces that in a feasible solution flow has
to be sent over at least one arc from the underlying pair.

We will represent these binary disjunctive constraints by means of an undi-
rected constraint graph: Every vertex of the constraint graph corresponds to an
arc of the original digraph, and every edge corresponds to a binary constraint. In
the case of negative disjunctive constraints this constraint graph will be called
conflict graph, and in the case of positive disjunctive constraints this graph will
be called forcing graph.

Conflict graphs were considered for many other combinatorial optimization
problems in the literature from a complexity and an approximation point of
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view, in particular with respect to special conflict graph classes, e.g. for knapsack
problems [6], bin packing [5], scheduling [2], and minimum spanning trees [3].

In this paper we consider the maximum flow problem with conflict graph
(MFCG) and the maximum flow problem with forcing graph (MFFG). Given
a standard maximum flow problem (MF ) on a directed graph G = (N, A) with
n nodes and m arcs, integer capacities uij for each arc a = (i, j), a designated
source node s and sink node t, we use flow variables xij (or xa) describing the
flow on each arc a = (i, j). Adding to this standard formulation the negative
disjunctive structure defined by a conflict graph H = (A, E) with vertices cor-
responding to the arcs of G gives MFCG:

(MFCG) (a, ā) ∈ E =⇒ (xa = 0 ∨ xā = 0)

MFFG adds to the standard problem MF the following constraints induced by
a forcing graph H = (A, E):

(MFFG) (a, ā) ∈ E =⇒ (xa + xā > 0)

Note that we allow cyclic flows through some parts of the network to fulfill the
forcing condition as long as the flow conservation constraints are met.

We will also use the maximum flow problem with lower bounds (MFLB),
where for certain arcs (i, j) the feasible flow has to reach a given amount lij :

0 ≤ lij ≤ xij ≤ uij (1)

The standard definition of s-t cut (S, S̄) with capacity c(S, S̄) =
∑

(i,j)∈(S,S̄) uij

will be used. For use as a conflict (resp. forcing) graph we introduce a 2-ladder
which is an undirected graph whose components are paths of length one, i.e.
isolated edges connecting pairs of vertices.

In this paper we will fully characterize the complexities of MFCG and MFFG.
MFCG is already strongly NP-hard if the digraph G consists only of disjoint
paths from s to t and the conflict graph is a 2-ladder.

MFFG restricted to integer flow values is solvable in polynomial time on a
class of elementary instances consisting of disjoint paths from s to t, but adding
just one particular arc makes this class strongly NP-hard. Allowing arbitrary
nonnegative flow values in MFFG, there are two possible solution scenarios:
Either we have an optimal solution value equal to the maximum unconstrained
flow fMF or we can fulfill the forcing conditions by diminished the flow by some
arbitrarily small ε > 0 yielding an optimal solution value of fMF − ε. It is
polynomially decidable which of the two cases occurs.

2 MFCG Is Strongly NP-Hard

We derive a strongly NP-hardness result for MFCG even for networks G con-
sisting only of disjoints paths from s to t. Obviously, the maximum flow value
fMF can be computed trivially on such instances by taking the minimum of the
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capacities on each path and summing up over all paths. It seems hard to imagine
an even simpler non-trivial flow network. For the conflict graph it suffices to use
a 2-ladder which is the simplest meaningful disjunctive constraint structure.

Given an undirected graph Γ with vertex set V the strongly NP-complete
independent set problem (IS) asks for a subset of vertices V ′ ⊆ V of cardinality
at least K such that no two vertices in V ′ are adjacent. Let N(j) ⊆ V denote
the neighborhood of vertex j in V .

For an instance of IS we construct the digraph GMFCG for our flow network
as depicted in Figure 1: Introduce two special vertices s and t and for each vertex
j ∈ V a directed path Pj of length |N(j)| from s to t. Denote the |N(j)| arcs of
this path as eji in arbitrary order where i ∈ N(j). Obviously, each edge (i, j) in
Γ implies in GMFCG the occurrence of an arc eji in Pj and of eij in Pi. Define a
2-ladder conflict graph GDIS whose isolated edges have as vertices exactly these
arcs eij and eji of GMFCG induced by an edge (i, j) ∈ Γ . All arc capacities are
set to one. Let I be the instance of MFCG defined by GMFCG and GDIS .
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Fig. 1. The digraph GMF CG induced by the independent set problem on a graph Γ

Theorem 1. MFCG is strongly NP-hard, even if the conflict graph is a 2-
ladder and the network consists only of disjoint paths.

Proof. We show that the following equivalence holds:

∃ a flow f in I with value ≥ K ⇐⇒ ∃ IS V ′ in Γ with cardinality ≥ K.

“⇐=”: For every vertex j ∈ V ′ send one unit of flow over the path Pj , for all other
vertices no flow is sent over Pj . Clearly, this gives a flow with value |V ′| ≥ K. If
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j ∈ V ′ by definition of (IS) no vertex i ∈ N(j) can be in V ′. Therefore, if there
is an arc eji in Pj , no flow will be sent over arc eij of Pi. Hence, the conditions
of the conflict graph GDIS are satisfied and the described flow is feasible for I.

“=⇒”: If f includes some flow over path Pj add vertex j to the independent set
of Γ . Since all arc capacities are one at least K paths must contribute to flow
f and hence the constructed vertex set has cardinality ≥ K. Since f fulfills the
conditions of the conflict graph GDIS a flow over path Pj forbids a flow over any
path Pi for i ∈ N(j). Hence, the resulting vertex set is independent. �

Note that this reduction preserves the solution values and can easily be ex-
tended to the optimization version of the two problems.

The NP-hardness of MFCG can also be deduced from the known NP-
hardness of the shortest path problem on a more general graph with forbidden
pairs of edges. In fact, it follows from this problem that even checking the fea-
sibility of the problem is NP-complete and hence no polynomial approximation
algorithm can exist for MFCG (excluding the trivial zero flow). However, our
construction identifies the most elementary network where NP-hardness holds.

3 MFFG with Integer Flow Values

Assuming that all flow values are integral the positive disjunctive constraint (1)
becomes xa + xā ≥ 1. Let I be an instance defined by a digraph G = (N, A)
consisting of disjoint paths between a source node s and a sink node t and let
H = (A, E) be an arbitrary forcing graph for G. Trivially sending as much flow
as possible over each path solves the general maximum flow problem and also
fulfills all positive disjunctive constraints (at least one unit of flow is routed over
every arc) thus giving an optimal solution for I. Adding to such an instance
just one new arc which destroys the disjoint paths structure makes the problem
already strongly NP-hard, even if the forcing graph is again a 2-ladder.

In our construction we reduce the vertex cover problem on an undirected graph
Γ with vertex set V to an instance I of MFFG defined as follows: The digraph
GMFFG is constructed in the same way as GMFCG in Section 2 (recall Figure 1)
with one additional node v that is joined only to s by the new arc (v, s) with
capacity k. v becomes the new source node of the network. The forcing graph
GDIS is identical to the conflict graph of Section 2.

Vertex cover asks for a subset of vertices V ′ ⊆ V such that for each edge (i, j)
of Γ at least one of the two vertices i and j is in V ′. Similar to the reduction
of the independent set problem in Section 2 the vertex cover is now reproduced
by the forcing graph GDIS as in the proof of Theorem 1. Since vertex cover is
a minimization problem we set the capacity k of the new arc (v, s) in a first
step equal to one and test if the instance I is feasible. If not, we augment the
capacity k by one and iteratively solve I until a feasible solution is found for
the first time. The corresponding capacity kmin is reported as the value of the
minimum vertex cover in Γ .

Theorem 2. MFFG is strongly NP-hard, even for a 2-ladder as forcing graph.
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Every approximation algorithm would identify a feasible solution of MFFG, if
it exists. Hence, we could use such an algorithm to identify the optimal solution
of the vertex cover problem by searching iteratively for the smallest value of
k where such a feasible solution (and hence the smallest vertex cover) exists.
Therefore, there is no polynomial approximation algorithm for MFFG.

4 MFFG with Arbitrary Flow Values

There are two possible solution scenarios for MFFG with arbitrary nonnegative
flow values. Either the maximum flow with value fMF on the digraph G =
(N, A) can be rerouted such that the conditions imposed by the forcing graph
H = (A, E) are fulfilled or the required diversion of tiny amounts of flows to
previously “empty” arcs causes a marginal decrease of the overall flow value
yielding an optimal solution value of fMF − ε for some arbitrarily small ε > 0.
We will show that it is polynomially decidable which of the two cases occurs.

First of all let us point out that it is always possible to construct a feasible
solution for MFFG with value fMF − ε for arbitrarily small ε > 0. This can
be achieved by applying basic results for the maximum flow problem with lower
bounds (MFLB), see [1, Sec. 6.7]. The details of the construction involving the
associated circulation problem are omitted in this short paper.

Now we show how to decide whether also a solution with value fMF exists.
In [7] and [4] it is described how to detect all minimum s-t cuts in a digraph. Since
there may be exponentially many of them, they cannot be all listed explicitly in
polynomial time, but it can be decided efficiently if a given arc belongs to some
minimum cut. For our purpose it is important that a directed acyclic graph
DAGs,t (a so-called Picard-Queyranne Directed Acyclic Graph) is generated
from a maximum flow in the original digraph G and that DAGs,t contains all
minimum s-t cuts in its structure. Every node of DAGs,t corresponds to a subset
of nodes of G. Moreover, the nodes of DAGs,t induce a partition of N .

By the construction of DAGs,t the node containing t has in-degree 0, the node
containing s has out-degree 0. A closure of DAGs,t is a subset C of the nodes of
DAGs,t where for every node A ∈ C if there is an arc from node A to some node
B in DAGs,t then also B ∈ C. It was shown that all the nodes in G induced by
a closure of DAGs,t containing s and not t correspond to the set S of a minimal
s-t cut (S, S̄) in G.

Therefore we first compute the optimal flow value fMF . Then we consider
the corresponding Picard-Queyranne Graph DAGs,t. Since all capacities in G
are integer, any cut that is not minimal must have a value ≥ (fMF + 1). Now
consider all violated positive disjunctive constraints, i.e. all edges E′ ⊆ E in the
forcing graph H where neither of the two arcs of A incident to such an edge in
E′ carries any flow in fMF . We will distinguish the following two cases:

Case 1. ∀ e ∈ E′ joining two arcs of G: For at least one of these arcs, say
a = (i, j), both vertices i and j are in the same subset of nodes of G corresponding
to a node of DAGs,t.
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Then introducing a lower bound of ε for the capacity of all such arcs (i, j) gives
an instance of MFLB which fulfills the positive disjunctive constraints and keeps
the same solution value fMF . This follows from the property of DAGs,t: Since i
and j belong to the same node of DAGs,t the capacities uij did not contribute
to any minimal cut. Therefore, the arcs (i, j) only contributed to cuts with value
≥ (fMF +1). Moreover, only on these arcs lower bounds lij = ε were introduced.
Now considering the cut capacities u(S, S̄) of the new problem MFLB, every cut
containing these modified arcs still has a value ≥ (fMF +1)− ε|A|. By choosing
ε sufficiently small, a feasible solution with value fMF is derived.

Case 2. ∃ e ∈ E′ joining two arcs a = (i, j) and a′ = (i′, j′) of G such that i and
j as well as i′ and j′ are in different subsets of nodes of G induced by the nodes
of DAGs,t.

By the properties of DAGs,t there exist minimum cuts (S, S̄), resp. (S′, S̄′),
for each of the two arcs a, resp. a′, with j ∈ S and i ∈ S̄, resp. j′ ∈ S′ and
i′ ∈ S̄′, since both (i, j) and (i′, j′) carry no flow in fMF . But then the problem
can be similarly transformed to an MFLB instance where the new lower bounds
lij = ε, resp. li′j′ = ε, do contribute to the minimum cut u(S, S̄), resp. u(S′, S̄′),
and decrease its value thus reducing the optimal flow value. It also follows from
the structure of these minimum cuts that no feasible solution to MFFG with
value fMF can exist.

Theorem 3. For MFFG with arbitrary flow values it can be decided in polyno-
mial time if the optimal flow value corresponds to the value fMF of the relaxed
problem MF or if it equals fMF − ε for some arbitrarily small ε > 0. �
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Abstract. We present an algebraic approach for computing the distri-
bution of the capacity of a minimum s-t cut in a network, in which
the arc capacities have known (discrete) probability distributions. Al-
gorithms are developed to determine the exact distribution as well as
upper and lower bounding distributions on the capacity of a minimum
cut. This approach then provides exact and bounding distributions on
the maximum flow in such stochastic networks. We also obtain bounds
on the expected capacity of a minimum cut (and the expected maximum
flow value).

1 Introduction

Network flow models find application in numerous problems arising in trans-
portation, distribution, and communication networks. Additional applications
occur, for example, in scheduling [1], open pit mining [15], and voting [17]. Con-
sequently, a variety of algorithms have been proposed for efficient solution of
deterministic network flow (and minimum cut) problems [1].

In practice, however, links capacities change over time, and so a more realistic
depiction is as a stochastic maximum flow model, in which network arcs assume
different values (capacity, cost) according to known probability distributions.
Although such stochastic flow problems are NP-hard, solution methods have
been proposed by a number of authors, for example by applying intelligent state
space partitioning [3,7,8,13] or by Monte Carlo simulation [2,9]. By contrast, we
study such problems in a distinctly different way: by focusing on the distribution
of the capacity of a minimum cut and by employing an algebraic approach. This
allows us to obtain both exact and approximate distributions for the capacity of
a minimum cut and thus the maximum flow value. We also obtain bounds on the
expected minimum cut capacity and expected maximum flow value in stochastic
flow networks. This work generalizes previous research [6,14] that treats the
important but special case in which arcs have two states, either working or
failed.
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1.1 Formulation

Let G = (N, A) be a directed network with node set N and arc set A, with
distinguished source node s and sink node t. Throughout, we denote n = |N |
and m = |A|. In deterministic networks, each arc a ∈ A would have an associated
capacity ca and the capacity of any s-t cut K is given by c(K) =

∑{ca : a ∈ K}.
In a stochastic network, however, the capacity of each arc a ∈ A is modeled
by the random variable Ya. Here we assume that the arc random variable Ya

follows a discrete probability distribution. Specifically, arc a assumes a finite
number of states 1, 2, . . . , σa; in state k arc a has capacity ca,k with probability
pa,k = Pr[Ya = ca,k].

When information about the state of each arc in G is available, the state
of the entire network is given by the state vector x = [x1, x2, . . . , xm], where
xa ∈ {1, 2, . . . , σa}. We assume that the arc capacity random variables are in-
dependent, so the probability that the network is in state x is given by P (x) =
m∏

a=1

pa,xa. Since the maximum flow and minimum cut depend on the network

state, we focus here on the distribution of the capacity C = C(x) of a minimum
s-t cut in G.

A straightforward approach to calculating the distribution of C is by state
space enumeration, which involves enumerating all possible states x of the given
network. The probability that the minimum cut has capacity w is then

Pr[C = w] =
∑
{P (x) : C(x) = w}.

Since there are an exponential number of states, this is not a practical method.
We discuss next an algebraic approach to this problem.

2 Algebraic Operations and Properties

2.1 The ⊕ and ⊗ Operations

For simplicity (but without loss of generality), we assume now that the arc
capacity levels are nonnegative integers. Thus we can associate with each a ∈ A
an arc capacity polynomial that contains all information about the states and
associated capacities of the arc:

fa = fa(z) =
σa∑

k=1

xa,kzca,k .

This generating function (in the symbolic variable z) has as exponents the ca-
pacity in state k and as coefficients the Boolean variable xa,k indicating whether
arc a is in state k. Of course, Pr[xa,k = 1] = pa,k. We would like to combine
these arc polynomials (generating functions) in order to obtain a corresponding
polynomial for the capacity of a minimum cut:
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fC = fC(z) =
∑
w

φwzw,

where φw is a Boolean expression enumerating all states in which the minimum
capacity cut has capacity w.

The goal of the algebraic approach is to algebraically combine the given arc
polynomials fa using certain algebraic operations ⊕ and ⊗ to determine the de-
sired polynomial fC . These operations (defined originally for stochastic shortest
path problems [4,11]) are best motivated by first considering series and parallel
arcs. Their interpretation will be based on how series and parallel arcs combine
for shortest paths.

Suppose arcs a and b have the arc length polynomials ga =
σa∑

k=1

xa,kzla,k and

gb =
σb∑

k=1

xb,kzlb,k . Consider the case in which arcs a = (i, k) and b = (k, j)

are series arcs; that is, arc a is the only arc entering node k and arc b is the
only one leaving node k. We wish to obtain the polynomial gd resulting from
removing node k and replacing series arcs a and b by an arc d = (i, j) . If arc a
is in state q and arc b is in state r, then the length of the i-j path is given by
la,q + lb,r and the corresponding state indicator variable is xa,qxb,r; this produces
the monomial xa,qxb,rz

la,q+lb,r . Consequently we define

ga ⊗ gb = gd =
σa∑

q=1

σb∑
r=1

xa,qxb,rz
la,q+lb,r .

Now suppose arcs a and b are parallel arcs (joining the same two nodes i and
j) and we wish to replace them by a single arc d joining i and j. If arc a is in
state q and arc b is in state r, then the length of the shortest i-j path is given by
min{la,q, lb,r}, producing the monomial xa,qxb,rz

min{la,q,lb,r}. Consequently we
define

ga ⊕ gb = gd =
σa∑

q=1

σb∑
r=1

xa,qxb,rz
min(la,q,lb,r).

Using these operations, the shortest s-t path length polynomial [4,11] can be
expressed as

⊕
∑

P∈Pst

(
⊗

∏
a∈P

ga

)
, (1)

where Pst is the set of all (simple) s-t paths. These operations take into ac-
count that whereas arcs operate independently of one another, paths may share
common arcs and thus exhibit dependent behavior.

The analogous way to combine series arcs and parallel arcs for arc capacity
polynomials fa and fb is (dually) via fa ⊕ fb for series arcs (select the smaller
capacity arc for the cutset) and fa⊗ fb for parallel arcs (select both arcs for the
cutset). Moreover, the desired minimum cut polynomial fC can be expressed as
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fC = ⊕
∑

K∈Kst

(
⊗

∏
a∈K

fa

)
, (2)

where Kst is the set of all s-t cutsets.

2.2 Properties of ⊕ and ⊗
Useful properties of ⊕ and ⊗ have been established by Altenhöfer [4] and Hast-
ings [11].

Theorem 1. For arc polynomials f, g, h, the following properties hold:

1. f ⊕ g = g ⊕ f , f ⊗ g = g ⊗ f
2. f ⊕ (g ⊕ h) = (f ⊕ g)⊕ h, f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h

3. f ⊕ (f ⊗ g) = f
4. f ⊗ (g ⊕ h) = (f ⊗ g)⊕ (f ⊗ h)
5. f ⊕ f = f

Notice that the other distributive law (analogous to Property 1.4 above) is not
listed, since in fact it does not hold. On the other hand we can demonstrate that
a corresponding majorization result holds instead.

Definition 1. Let X and Y be (real) random variables. We say that X is
stochastically less than Y if Pr[X > t] ≤ Pr[Y > t] for all t. This is denoted by
X ≤st Y .

Suppose X and Y have generating function polynomials fX and fY respectively.
If X ≤st Y holds we write fX ! fY . This relation is a partial order, satisfying
the following properties.

Theorem 2. For arc polynomials f, g, h, the following properties hold:

1. f ⊕ g ! f
2. f ! f ⊗ g
3. f ! f ⊗ (f ⊕ g)
4. f ⊕ (g ⊗ h) ! (f ⊕ g)⊗ (f ⊕ h)
5. f ! g ⇒ f ⊕ h ! g ⊕ h

6. f ! g ⇒ f ⊗ h ! g ⊗ h

The validity of these relations follows from properties of the (ordinary) sum and
minimum of random variables.

3 Exact Calculation

Using these algebraic operations, equation (2) expresses fC in terms of the s-t
cutsets. These cutsets can be enumerated in pseudopolynomial time [16].
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Arc State 1 State 2

a 5 6
b 1 5
c 0 3
d 2 6
e 2 6

Fig. 1. Bridge network

Example 1. Consider the bridge network shown in Figure 1 in which each arc has
two states and the capacities listed. The s-t cutsets are {a, b}, {a, e}, {b, c, d},
and {d, e}. The arc polynomials are given by

fa = xa,1z
5 + xa,2z

6, fb = xb,1z
1 + xb,2z

5, fc = xc,1z
0 + xc,2z

3,

fd = xd,1z
2 + xd,2z

6, fe = xe,1z
2 + xe,2z

6.

Using the cutset enumeration formula (2)

fC = (fa ⊗ fb)⊕ (fa ⊗ fe)⊕ (fb ⊗ fc ⊗ fd)⊕ (fd ⊗ fe)

For example, fa ⊗ fb = (xa,1z
5 + xa,2z

6) ⊗ (xb,1z
1 + xb,2z

5) = xa,1xb,1z
6 +

xa,2xb,1z
7 + xa,1xb,2z

10 + xa,2xb,2z
11 and fa⊗ fe = (xa,1z

5 + xa,2z
6)⊗ (xe,1z

2 +
xe,2z

6) = xa,1xe,1z
7 +xa,2xe,1z

8 +xa,1xe,2z
11 +xa,2xe,2z

12. Since the two terms
fa ⊗ fb and fa ⊗ fe share dependencies, the application of operation ⊕ gives
a simplified (correct) expression, using the Boolean identities xa,1xa,1 = xa,1,
xa,2xa,2 = xa,2, xa,1xa,2 = 0, and xe,1 + xe,2 = 1:

(fa ⊗ fb)⊕ (fa ⊗ fe) = (xa,1xb,1)z6 + (xa,2xb,1 + xa,1xb,2xe,1)z7 +
xa,2xb,2xe,1z

8 + xa,1xb,2xe,2z
10 + xa,2xb,2xe,2z

11.

Using such symbolic calculations, the entire polynomial fC can be calculated:

fC = xb,1xc,1xd,1z
3 + (xc,2xd,1xe,1 + xb,2xc,1xd,1xe,1)z4 + (xa,1xb,1xd,2

+xb,1xc,2xd,1xe,2)z6 + (xa,2xb,1xd,2 + xa,1xb,2xd,2xe,1

+xb,2xc,1xd,1xe,2)z7 + (xa,2xb,2xd,2xe,1 + xb,2xc,2xd,1xe,2)z8

+xa,1xb,2xd,2xe,2z
10 + xa,2xb,2xd,2xe,2z

11.

Consider the coefficient xa,2xb,1xd,2 + xa,1xb,2xd,2xe,1 + xb,2xc,1xd,1xe,2 of z7.
Each of these terms specifies a particular set of network states in which the
minimum cut capacity is 7. For example xa,2xb,1xd,2 indicates that when arc b is
in state 1 and arcs a, d are in state 2, a minimum cut in the resulting deterministic
network has capacity 7. In this term, the absence of state indicators for arcs c
and e indicates that the states of arcs c and e do not affect the capacity of a
minimum cut.

Substituting the probabilities pa,k for each xa,k in the expression for fC yields
a polynomial in which the coefficient of zw is exactly the probability that a
minimum cut has capacity w.
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4 Bounding Distributions

While the algebraic approach can be used to find the exact distribution fC of
minimum cut capacities, it is possible to provide upper and lower bounding
distributions, often with much less effort. One readily computed lower bound is
obtained by ignoring the dependencies that may be present in the terms of (2).
That is, we immediately replace the Boolean arc indicator xa,k by its expected
value pa,k and then carry out the indicated ⊕ operations. To indicate that we
are now taking the minimum of presumed independent random variables, this
operation is denoted ⊕′.

Example 2. Returning to Example 1, we now express the arc polynomials more
succinctly as fa = paz5+qaz6, fb = pbz

1+qbz
5, fc = pcz

0+qcz
3, fd = pdz

2+qdz
6,

fe = pez
2 + qez

6, where qr = 1− pr. Then using the modified ⊕′ operation

(fa ⊗ fb)⊕′ (fa ⊗ fe) = (papbz
6 + qapbz

7 + paqbz
10 + qaqbz

11)⊕′

(papez
7 + qapez

8 + paqez
11 + qaqez

12)
= papbz

6 + (qapb + paqbpe)z7 + qaqbpez
8 + paqbqez

10

+qaqbqez
11.

It will be seen later that the polynomial resulting from using ⊕′ instead of ⊕
in the cutset enumeration formula (2) will in fact provide a lower bound on the
exact cutset distribution, evaluated at the known pa,k.

4.1 Modified Path Enumeration

The s-t cutsets and s-t paths are duals of one another, in the sense that each s-t
cutset must intersect every s-t path. Consequently, we can obtain an algebraic
analogue of the path enumeration expression (1) by interchanging the operations
⊗ and ⊕:

⊗
∏

P∈Pst

(
⊕

∑
a∈P

fa

)
.

In fact it will be useful to generalize this idea to the dualization of all s-j paths,
for j ∈ N , by considering the Modified Path Enumeration polynomial:

fMPE(j) = ⊗
∏

P∈Psj

(
⊕

∑
a∈P

fa

)
. (3)

We will show later that this polynomial provides an upper bound on the poly-
nomial fC(j) based on enumerating all s-j cutsets:

fC(j) = ⊕
∑

K∈Ksj

(
⊗

∏
a∈K

fa

)
. (4)
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Example 3. Consider the bridge network from Example 1, in which the s-t paths
are [a, d], [a, c, e], and [b, e]. Applying (3) and using the properties in Theorems
1–2 gives

fMPE(t) = (fa ⊕ fd)⊗ (fa ⊕ fc ⊕ fe)⊗ (fb ⊕ fe)
" [fa ⊕ (fd ⊗ (fc ⊕ fe))]⊗ (fb ⊕ fe)
= (fa ⊗ fb)⊕ (fb ⊗ fd ⊗ (fc ⊕ fe))⊕ (fa ⊗ fe)⊕ (fd ⊗ fe ⊗ (fc ⊕ fe))
" (fa ⊗ fb)⊕ (fa ⊗ fe)⊕ (fb ⊗ fc ⊗ fd)⊕ [(fd ⊗ fe)⊕ (fb ⊗ fd ⊗ fe)]
= (fa ⊗ fb)⊕ (fa ⊗ fe)⊕ (fb ⊗ fc ⊗ fd)⊕ (fd ⊗ fe) = fC(t).

This verifies that for this example the MPE polynomial majorizes the cutset
polynomial.

4.2 Acyclic Networks

In order to develop further bounds, it is convenient to restrict our attention to
acyclic networks G = (N, A) where the implementation is simpler, in view of the
existence of a topological ordering of the nodes of G. Henceforth, we assume that
nodes are numbered so that if (i, j) ∈ A then i < j. In such networks we can
avoid the enumeration of either paths or cutsets, and can obtain an improved
upper bound on fC(j).

algorithm Acyclic
Input: acyclic G = (N, A); arc polynomials fa; source node s
begin

Label(s) = z∞; Label(j) = z0 for j �= s
for j �= s {in topological order}

for a = (i, j) ∈ A
Label(j) := Label(j) ⊗ (Label(i) ⊕ fa);

end for
end for

end

The outputs of the Acyclic Algorithm are designated fAA(j) = Label(j).

Example 4. We apply the Acyclic Algorithm to the network in Example 1; nodes
have already been numbered in topological order with s = 1 and t = 4.

Initialization: Label(1) = z∞; Label(2) = Label(3) = Label(4) = z0.
Iteration 1 : Label(2) = z0 ⊗ (Label(1) ⊕ fa) = fa.
Iteration 2 : Label(3) = (Label(1) ⊕ fb) ⊗ (Label(2) ⊕ fc)= fb ⊗ (fa ⊕ fc).
Iteration 3 : Label(4) = (Label(2) ⊕ fd) ⊗ (Label(3) ⊕ fe)= (fa ⊕ fd)⊗ ([fb ⊗
(fa ⊕ fc)]⊕ fe).
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Using the distributive properties from Theorems 1-2, we obtain

fAA(t) = (fa ⊕ fd)⊗ ([fb ⊗ (fa ⊕ fc)]⊕ fe)
! (fa ⊕ fd)⊗ (fb ⊕ fe)⊗ (fa ⊕ fc ⊕ fe) = fMPE(t).

Moreover,

fAA(t) = (fa ⊕ fd)⊗ ([fb ⊗ (fa ⊕ fc)]⊕ fe)
= [(fa ⊕ fd)⊗ (fb ⊗ (fa ⊕ fc)]⊕ [(fa ⊕ fd)⊗ fe]
= [fb ⊗ (fa ⊕ fc)⊗ (fa ⊕ fd)]⊕ [(fa ⊗ fe)⊕ (fd ⊗ fe)]
" [fb ⊗ (fa ⊕ (fc ⊗ fd))]⊕ [(fa ⊗ fe)⊕ (fd ⊗ fe)]
= (fa ⊗ fb)⊕ (fb ⊗ fc ⊗ fd)⊕ (fa ⊗ fe)⊕ (fd ⊗ fe) = fC(t).

As seen here, the Acyclic Algorithm not only avoids the need to enumerate paths,
but it provides an improved upper bound on fC . The following result shows that
this holds in general, and indeed for all nodes j.

Theorem 3. fC(j) ! fAA(j) ! fMPE(j) for all j ∈ N .

Proof. We begin by showing inductively that fAA(j) ! fMPE(j) holds for all
j ∈ N . If n = 2, then fMPE(2) = f1,2 = fAA(2).

Assume fAA(j) ! fMPE(j) for any j ∈ N with 1 ≤ |N | ≤ k. Let |N | = k + 1
and let T be the set of sink nodes of G. Define N ′ = N \T and let G′ be the graph
induced by N ′. Because G is acyclic, |T | ≥ 1 and so |N ′| ≤ k. Thus, by induction,
fAA(j) ! fMPE(j) for all j ∈ N ′. Let t ∈ T and let B(t) = {i : (i, t) ∈ A} ⊆ N ′

be the set of immediate predecessors of t. Then

fMPE(t) = ⊗
∏

i∈B(t)

[
⊗

∏
P∈Pi

(
⊕

∑
(j,k)∈P

fj,k ⊕ fi,t

)]

" ⊗
∏

i∈B(t)

[(
⊗

∏
P∈Pi

⊕
∑

(j,k)∈P

fj,k

)
⊕ fi,t

]
= ⊗

∏
i∈B(t)

[fMPE(i)⊕ fi,t]

" ⊗
∏

i∈B(t)

[fAA(i)⊕ fi,t]

= fAA(t),

using the distributive property from Theorem 2 and the induction hypothesis.
Therefore, fAA(j) ! fMPE(j) for all j ∈ N .

As illustrated in Example 4, we can begin with fAA(j), which is in product-of-
sums form, apply both distributive laws, and then expand the polynomial. The
result will be a sum-of-products form whose summands represent the s-j cutsets.
That is, the resulting polynomial is fC(j) and so we have fAA(j) " fC(j). ��
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5 Bounds on Expected Capacity

We present here various bounds on the expected value of the minimum cut
capacity, and consequently the maximum flow value, in a two-terminal flow net-
work. The simplest bound on the expected minimum cut capacity (denoted μC)
is obtained by replacing each arc distribution by its expected capacity and then
solving the resulting deterministic s-t flow problem.

Let K = {K1, K2, . . . , Kr} be the s-t cutsets and let Y = (Y1, Y2, . . . , Ym) be
the vector of arc capacity random variables. The capacity κj of Kj is a linear
function of Y: κj = κj(Y) =

∑{Ya : a ∈ Kj}. Then the minimum cut capacity
C = min{κ1, κ2, . . . , κm} is a concave function of Y. By Jensen’s inequality
[5], C(E[Y]) ≥ E[C(Y)]. In other words, replacing each arc distribution by its
expected value produces a minimum cut capacity μ that is an upper bound on
the true expected (minimum) cut capacity μC .

Another easy upper bound is derived from the MPE polynomial (3), using
the fact that E[g ⊗ h] = E[g] + E[h]. Thus

μMPE = E[fMPE(t)] =
∑

P∈Pst

E

[(
⊕

∑
a∈P

fa

)]
=

∑
P∈Pst

E[min
a∈P

fa]. (5)

Since the arc polynomials fa are assumed to be independent, the calculation of
the last expectation can be done using ordinary polynomials, with pa,k substi-
tuted for xa,k. Since we have the majorization result fC(t) ! fMPE(t), it follows
that E[fC(t)] ≤ E[fMPE(t)] = μMPE and so μMPE is an upper bound on the
true μC .

Using properties of associated random variables, one can show g⊕′ h ! g⊕ h
holds for the generating functions considered here. As a result, replacing ⊕ by
⊕′ in (4) produces

f ′
C(j) = ⊕′ ∑

K∈Ksj

(
⊗

∏
a∈K

fa

)
! fC(j), (6)

and so μ′
C = E[f ′

C(t)] is a lower bound on E[fC(t)] = μC . Because ⊕′ ignores
dependencies, ordinary polynomials with coefficients pa,k can be combined to
calculate μ′

C .

5.1 Fulkerson Bound

We present a bound analogous to the bound on expected shortest path lengths
in acyclic networks introduced by Fulkerson [10]. The basic idea is that instead
of replacing arc weights by expected values, we recursively compute an expected
value μF (j) at each node j based on the weight distribution for arcs (i, j) and the
node expected values μF (i). We can translate this into our algebraic language
by appropriately modifying the Acyclic Algorithm in Section 4.2 to compute
expected minimum capacities μF (j) at each node j, relative to the s-j cuts. Here
we denote by {α} the degenerate distribution with all probability concentrated
at the single value α.
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algorithm Fulkerson Bound
Input: acyclic G = (N, A); arc polynomials fa; source node s
begin

μF (s) = ∞; μF (j) = 0 for j �= s
for j �= s {in topological order}

for a = (i, j) ∈ A
μF (j) := μF (j) + E[{μF (i)} ⊕ fa];

end if
end for

end

Example 5. We apply this algorithm to the network in Example 1, where for
simplicity we assume that each arc assumes its lower capacity with probability p
and its higher capacity with probability q = 1−p : fa = pz5+qz6, fb = pz1+qz5,
fc = pz0 + qz3, fd = pz2 + qz6, fe = pz2 + qz6.

Initialization: μF (1) = ∞; μF (2) = μF (3) = μF (4) = 0.
Iteration 1 : μF (2) = μF (2)+E[{μF (1)}⊕fa] = 0+E[{∞}⊕fa] = E[fa] = 6−p.
Iteration 2 : μF (3) = E[{μF (1)}⊕fb]+E[{μF (2)}⊕fc] = E[fb]+E[{6−p}⊕fc] =
(5− 4p) + (3− 3p) = 8− 7p.
Iteration 3 : μF (4) = E[{μF (2)} ⊕ fd] + E[{μF (3)} ⊕ fe]. The results of the
implied minimizations depend on the value of p, yielding

μF (4) =

⎧⎪⎨⎪⎩
12− 9p + p2 0 ≤ p ≤ 2

7

14− 18p + 8p2 2
7 ≤ p ≤ 6

7

14− 12p + p2 6
7 ≤ p ≤ 1

We can show that the Acyclic Algorithm produces a bound that always improves
upon the Fulkerson upper bound.

Theorem 4. Let G = (N, A) be an acyclic network. Then E[fAA(j)] ≤ μF (j)
for all j ∈ N .

Proof. We prove this by induction on n = |N |. If n = 2, then fAA(2) = f1,2

which gives E[fAA(2)] = E[f1,2] = μF (2).
Now assume that for n ≤ k the stated property holds: that is, E[fAA(j)] ≤

μF (j) for all j ∈ N . Let |N | = k + 1 and let T be the set of sink nodes of
G. Define N ′ = N \ T and let G′ be the graph induced by N ′. By induction,
E[fAA(i)] ≤ μF (i) for all i ∈ N ′. Select t ∈ T and let B(t) = {i : (i, t) ∈ A} ⊆ N ′

be the set of immediate predecessors of t. Since

fAA(t) = ⊗
∏

i∈B(t)

(fAA(i)⊕ fi,t),

E[fAA(t)] = E[⊗
∏

i∈B(t)

(fAA(i)⊕ fi,t)]
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=
∑

i∈B(t)

E[(fAA(i)⊕ fi,t)]

=
∑

i∈B(t)

E[min{fAA(i), fi,t}]

≤
∑

i∈B(t)

min{E[fAA(i)], fi,t}

≤
∑

i∈B(t)

min{μF (i), fi,t}

=
∑

i∈B(t)

({μF (i)} ⊕ fi,t) = μF (t).

The first inequality follows since the function ψ(x) = min{x, α} is a concave
function and the second inequality follows from the inductive hypothesis. This
completes the proof. ��
Notice that Theorem 3 guarantees μC ≤ μAA ≤ μMPE while Theorem 4 shows
μC ≤ μAA ≤ μF . In general neither μMPE nor μF is uniformly better than the
other.

5.2 Numerical Results

We first show here results for the bridge network of Figure 1, where for ease
of presentation each arc assumes its lower capacity with probability p and its
higher capacity with probability 1−p. Thus we can plot the true expected value
μC , as well as various upper and lower bounds on that value, as a function of p.

Throughout this paper we have discussed various methods for obtaining bounds
on the true expected value μC . Section 4 derived bounds on the distribution of
the capacity of a minimum s-t cut, which then allows us to compute a bound
on μC . Additional bounds on this expected value are developed in Section 5. In
particular, the upper bound μ on μC is calculated by replacing arc distributions
by their expected values rather than by computing the expectation of some
distribution. This distinguishes μ from the other upper bounds presented because
it is not calculated using our algebraic operations.

The only lower bound μ′
C presented is obtained from the relation (6) by taking

expected values. It is a comparatively easy bound to compute because it is based
on the operation ⊕′ rather than on ⊕, thus ignoring dependencies among the
cutsets. Because μ and μ′

C share the common property of being readily computed
we found it appropriate to consider these bounds together. Figure 2 shows these
respective upper and lower bounds μ and μ′

C as well as the true μC .
In addition to μ we presented three additional upper bounds on μC , all of

which are based on the algebraic operations ⊕ and ⊗. Figure 3 shows these
upper bounds μAA, μMPE , and μF as well as the true μC . We observe that
μC ≤ μAA ≤ μMPE holds for 0 ≤ p ≤ 1 as implied by Theorem 3, and that
μAA ≤ μF holds for 0 ≤ p ≤ 1 as proved in Theorem 4. Notice that in this
example the bound from the Acyclic Algorithm is especially accurate at larger
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Fig. 2. Estimates of expected capacity of a minimum cut in the bridge network

Fig. 3. Estimates of expected capacity of a minimum cut in the bridge network

values of p. Figure 3 also supports our claim that neither μMPE nor μF can be
said to be uniformly better than the other.

The methods of this paper have also been applied to the 7-node, 13-arc net-
work of [12, p. 593], which contains 16 s-t paths and 18 s-t cutsets. Results are
displayed in Figure 4. The upper bound μMPE is not shown, as it is substantially
dominated by the other bounds. As expected, we see that both μAA and μF pro-
vide upper bounds on the true μC , with μAA ≤ μF . Here the acyclic bound is
quite close to the true expected capacity over the entire range 0 ≤ p ≤ 1.

Larger acyclic networks have also been analyzed using this algebraic approach
to determine exactly and approximately the expected cut capacity. Further re-
search is ongoing to implement this approach for larger, cyclic networks.
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Fig. 4. Estimates of expected capacity of a minimum cut in the second example
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Abstract. In a dynamic network, the quickest path problem asks for a path mini-
mizing the time needed to send a given amount of flow from source to sink along
this path. In practical settings, for example in evacuation or transportation plan-
ning, the reliability of network arcs depends on the specific scenario of interest.
In this circumstance, the question of finding a quickest path among all those hav-
ing at least a desired path reliability arises. In this article, this reliable quickest
path problem is solved by transforming it to the restricted quickest path problem.
In the latter, each arc is associated a nonnegative cost value and the goal is to
find a quickest path among those not exceeding a predefined budget with respect
to the overall (additive) cost value. For both, the restricted and reliable quick-
est path problem, pseudopolynomial exact algorithms and fully polynomial-time
approximation schemes are proposed.

1 Introduction

In dynamic networks, flow units take time to traverse an arc and, there, the quickest path
problem generalizes the shortest path problem. Given an amount of flow U and two
nodes s and t, the goal of the quickest path problem is to find an s-t-path with minimum
transmission time, that is the total travel time from s to t of this path plus the number of
repetitions to send all U flow units along this path (cf. [4]). The quickest path problem
appears in communication networks, transportation networks, and evacuation modeling
(see, among others, [5,7,12]). Polynomial time solution algorithms were established for
this problem by reducing it to the shortest path problem in a modified network ([4],
[14]).

Numerous variants and extensions of the quickest path problem have been consid-
ered, including constrained quickest path problems ([3]), robust quickest path problems
([15]), and extensions of the quickest path problem to a stochastic-flow network ([9]).

In practice, operability of arcs in the network may be subject to their reliability,
i.e. the probability not to fail. To have a calculable probability of a path’s functioning,
it is of interest to comprise path reliability in the quickest path problem. Quickest paths
with reliabilities have been considered by Xue [16] and Bang et al.[1]. There, a most
reliable quickest path and a quickest most reliable path is sought which is to find a
quickest path among the most reliable ones in the first case and a most reliable among
the quickest paths in the latter case. In contrast, the reliable quickest path problem
considered in this article at hand is understood as finding a quickest path among all paths
with at least a desired path reliability predefined by a decision maker. This problem
generalizes the most reliable quickest path problem, since it does not require the path
to have the best possible reliability.
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If usage of an arc is associated with costs and a budget that is not to be exceeded
is given, the restricted quickest path problem is of interest. This problem seeks for a
quickest path among those paths which obey the budget constraint. It is a generaliza-
tion of the restricted shortest path problem which has attracted great attention in the
literature [8,11]. [2] considered the related Minimum Cost Quickest Path Problem with
Multiple Delay Bounds where a minimum cost path among those paths not exceeding a
given transmission time has to be found.

In [10] k paths in a stochastic flow network are sought to maximize the system re-
liability, that is the probability that U units of flow can be sent through k s-t-paths
satisfying a given time constraint T and within a given budget B.

This article is subsequently organized as follows. The next section introduces the
quickest path problem, defines its reliable and restricted variants and depicts the equiv-
alence of the two problems. In Section 3, the restricted quickest path problem is solved
with a pseudopolynomial algorithm and approximated polynomially. Identical results
are deduced for the reliable quickest path problem. The last section gives a conclusion
of the article.

2 Problem Definition

A dynamic network G = (N,A) with node set N and arc set A is equipped with two
kinds of parameters: capacities ui j ∈ Z+ and travel times τi j ∈ Z+

0 for all (i, j) ∈ A. The
former limits the number of flow units that can enter arc (i, j) in a single time step,
the latter is the time needed for a flow unit to traverse arc (i, j). Let s, t ∈ N denote the
source and sink node, respectively. The number of nodes and arcs is denoted n and m,
i.e., it is n = |N| and m = |A|. Given an initial amount of flow U ∈Z+, the Quickest Path
Problem seeks for an s-t-path P with minimum transmission time σ(P) := τ(P)+� U

u(P)�
where τ(P) := ∑(i, j)∈P τi j and u(P) := min(i, j)∈P ui j are the travel time and capacity of
path P, respectively. Let P refer to the set of all s-t-paths in G.

Assume that for each arc (i, j) ∈ A a reliability ri j ∈ (0,1] is given, which describes
the probability that this arc is operational. For a path P ∈P , ∏(i, j)∈P ri j is called the
path reliability and expresses the probability of a path’s functioning. Let R ∈ (0,1]
denote the desired minimum path reliability. The Reliable Quickest Path Problem asks
for the quickest path that has a path reliability of at least R:

min σ(P)
s. t. P ∈P

∏
(i, j)∈P

ri j ≥ R. (1)

Note that the constraint (1) is equivalent to ∑(i, j)∈P ln(1/ri j) ≤ ln(1/R). Since x �→
ln(1/x) is a bijective mapping from (0,1] to [0,∞), the reliable quickest path problem is
equivalent to the Restricted Quickest Path Problem, where cost values ci j ∈ R+

0 for all
arcs (i, j) ∈ A and a budget C ∈ R+

0 are given and the goal is to find a quickest s-t-path
with cost not exceeding the budget C:
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min σ(P)
s. t. P ∈P

c(P) := ∑
(i, j)∈P

ci j ≤C.

Solutions of the restricted and reliable quickest path problem are referred to as re-
stricted quickest paths and reliable quickest paths, respectively.

Given ε > 0, an s-t-path Q is a (1+ ε)-approximation of the restricted quickest path
P
, if c(Q)≤C and σ(Q)≤ (1+ε)σ(P
). Accordingly, Q is a (1+ε)-approximation of
the reliable quickest path P̃, if∏(i, j)∈Q ri j ≥R and σ(Q)≤ (1+ε)σ(P̃). A minimization
problem is said to admit a fully polynomial-time approximation scheme (FPTAS), if
there is a (1 + ε)-approximation algorithm with running time polynomial in the input
size and in 1/ε for all instances of the problem (cf. [13]).

3 Algorithms

The restricted quickest path problem generalizes the restricted shortest path problem:
find an s-t-path P with minimum travel time τ(P) in the set of all paths with costs c(P)
at most C [8]. A restricted quickest path for U = 1 obviously defines a restricted shortest
path. Since the restricted shortest path problem is known to be NP-hard [6], this applies
to the restricted quickest path problem, too. For the restricted shortest path problem on
directed acyclic networks, a pseudopolynomial algorithm has been developed by [8]
who also proposed an FPTAS. [11] suggested an improved FPTAS for general directed
networks with running time O(mn2

ε log n
ε ).

These algorithms for the restricted shortest path problem require the budget C to be
a nonnegative integer. The integer restriction can be avoided by adding a super source S
to N and an artificial arc (S,s) to A with τSs = 0, uSs =∞ and cost cSs = C−$C%. Then,
a restricted shortest S-t-path with budget �C� refers to a solution of the corresponding
restricted s-t-path problem with budget C.

[8]’s exact algorithms for the restricted shortest path problem on directed acyclic
networks are only described for travel times and costs both being integral. However,
examining Algorithm B in [8] reveals that this algorithm only operates on the integer
valued travel times. Thus, the arc costs are not required to be integral and, hence, the
algorithm is capable of computing exact solutions for restricted shortest path problems
as considered in this article. The algorithm has computational complexity O(mB) where
B is an upper bound on the optimal value of the restricted shortest path problem (e.g. the
sum of all arc travel times). The generalization of this algorithm for arbitrary directed
networks runs in O(nmB) [11].

For k ≥ 0 let G(k) be the network with arc set A(k) := {(i, j) ∈ A : ui j ≥ k}. For a
restricted quickest path problem, the corresponding restricted shortest path problem in
G(k) for k ≥ 0 is defined on the same cost values and budget constraint.

The following lemma describes a relation between a restricted quickest path and a
restricted shortest path.

Lemma 1. Let Q be a solution of the restricted quickest path problem. Then, Q solves
the corresponding restricted shortest path problem in G(u(Q)).
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Proof. Let P be a restricted shortest path in G(u(Q)). Then, τ(P)≤ τ(Q), u(P)≥ u(Q),
c(P)≤C, and c(Q)≤C. Since Q is a restricted quickest path, it is

τ(Q)+
⌈

U
u(Q)

⌉
≤ τ(P)+

⌈
U

u(P)

⌉
.

It follows that τ(Q) ≤ τ(P) and, hence, Q is a restricted shortest path in G(u(Q)). ��
Theorem 1. Let u1, . . . ,ul be the distinct capacities in G. For each u j, j = 1, . . . , l, let
Pj be a restricted shortest path in G(u j). Let

Pk ∈ argmin
j=1,...,l

σ(Pj).

Then, Pk solves the restricted quickest path problem.

Proof. Let Q be a solution of the restricted quickest path problem. Let u j0 = u(Q) and
consider the network G(u j0). According to Lemma 1, Q is a restricted shortest path in
G(u j0). Therefore, it is τ(Pj0) = τ(Q) and u(Pj0)≥ u(Q). Thus,

σ(Pk)≤ τ(Pj0)+
⌈

U
u(Pj0)

⌉
≤ τ(Q)+

⌈
U

u(Q)

⌉
and, hence, Pk is a restricted quickest path. ��
Corollary 1. The restricted quickest path problem can be solved in O(nm2B).

Proof. A restricted quickest path can be found by solving l restricted shortest path
problems, see Theorem 1. Since l ≤ m, the computational complexity follows directly
from that of the restricted shortest path problem. ��
For ε > 0, a (1 + ε)-approximation of the restricted shortest path is a path obeying the
budget constraints and having a travel time within a factor (1 + ε) of the optimal travel
time.

Theorem 2. Let ε > 0 and let u1, . . . ,ul be the distinct capacities in G. For each u j,
j = 1, . . . , l let Pj be a (1 + ε)-approximation of the restricted shortest path in G(u j).
Let

Pk ∈ argmin
j=1,...,l

σ(Pj).

Then, Pk is a (1 + ε) approximation of the restricted quickest path.

Proof. Let Q be a solution of the restricted quickest path problem and let u j0 = u(Q).
Then, Q is a restricted shortest path in G(u j0) due to Lemma 1 and from definition it is
τ(Pj0)≤ (1 + ε)τ(Q). With u(Pj0)≥ u(Q) it follows that

τ(Pj0)+
⌈

U
u(Pj0)

⌉
≤ (1 + ε)τ(Q)+

⌈
U

u(Q)

⌉
≤ (1 + ε)

(
τ(Q)+

⌈
U

u(Q)

⌉)
. ��

Corollary 2. The restricted quickest path problem admits an FPTAS running
in O(m2n2

ε log n
ε ).
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Proof. Using Theorem 2, at most m (1+ ε)-approximations of restricted shortest paths

have to be computed, each of which takes O(mn2

ε log n
ε ) [11]. ��

As shown in Section 2, the reliable and restricted quickest path problems are equiva-
lent. Thus, the reliable quickest path problem is also NP-hard. Further, the results on
pseudopolynomial and approximation algorithms arise from the corresponding results
for the restricted quickest path problem.

Corollary 3. The reliable quickest path problem can be solved in O(nm2B). Moreover,

the reliable quickest path problem admits an FPTAS running in O(m2n2

ε log n
ε ).

4 Conclusion

Two variants of the quickest path problem are investigated. The reliable quickest path
problem is of interest in dynamic networks where arcs may have a probability of failure.
The goal of this problem is to find a quickest path among those having at least a desired
path reliability predefined by a decision maker. With a parameter transformation, it is
shown that the reliable quickest path problem is equivalent to the restricted quickest path
problem, where cost values are given for all arcs and the goal is to find a quickest path
among those not exceeding a predefined budget. A pseudopolynomial exact algorithm
and an FPTAS are proposed for both problems. Since the problems are NP-hard, the
presented algorithms are the best achievable.
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Abstract. We develop and discuss an operational planning model aiming at min-
imizing production and distribution costs in large drinking water networks con-
taining buffers with free inflow. Modeling drinking water networks is very chal-
lenging due of the presence of complex hydraulic constraints, such as friction
losses and pump curves. Non-linear, non-convex constraints result from the rela-
tionships between pressure and flow in power terms. Also, binary variables are
needed to model the possibility of free inflow or re-injection of water at reser-
voirs. The resulting model is thus a non-convex Mixed-Integer Non-Linear Pro-
gram (MINLP). A discrete-time setting is proposed to solve the problem over a
finite horizon made of several intervals. A commercial solver, BONMIN, suited
for convex MINLP models is used to heuristically solve the problem. We are able
to find a good solution for a small part of an existing network operated by the
Vlaamse Maatschappij voor Watervoorziening (VMW), a major drinking water
company in Flanders.

1 Introduction

After an optimal design of the drinking water network of water production and distri-
bution systems, further economic efficiency can be reached through optimal manage-
ment of operational activities such as production scheduling and pump switching. Most
drinking water companies neglect these savings by operating their networks based upon
experience. In this regard, an operational support model that minimizes production and
distribution costs over a finite horizon is extremely useful. Distribution and production
in drinking water networks can be modeled as a minimum cost flow problem [1,2] with
many side constraints. The arcs represent pipelines, whereas nodes are used to represent
junctions, buffers etc. Conservation of flow and bounds on the flow rate are imposed as
restrictions. This model is expanded with more complicated constraints resulting from
the network hydraulics.

Early research papers on this subject handle energy-efficient operation of pumps
[8,9], possibly in combination with guaranteed supply by optimal management of water
inventory in buffers [6]. Nonlinearity of the objective function is an immediate conse-
quence of the ’power term’, which is a function of two main variables of the system:
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pump head and flow rate. In [7], an approach to linearize this term is proposed. The re-
sulting MILP for a hydro scheduling commitment was hereby successfully solved. The
optimization of large-scale drinking water network with multiple production centers is
a less studied topic [5,4]. The authors present a complete model for the drinking water
supply in Berlin, using sophisticated functions to describe the friction losses in pipes
as well as accurate mathematical models for pump curves. Their formulation results
in a MINLP model, which is very difficult to solve for such a large network. Hence,
the model is approximated by a practical useful NLP (nonlinear problem) formula-
tion. These authors state however, that more complicated MINLP models will become
practical in the future with improvements in computing technology and mathematical
algorithms.

In [10], the first steps in developing such a model are taken. This paper summarizes
the key aspects of this work. A specific component is free inflow and re-injection of
water at reservoirs, requiring additional binary variables in the model. The relation-
ship between flow and head in pressure losses and the power term lead to nonlinear,
non-convex constraints. The resulting model is tested on a small part of the existing
network of VMW (Vlaamse Maatschappij voor Watervoorziening), the largest drinking
water company in Flanders. The commercial solver BONMIN [3] is used to generate a
suboptimal solution over a horizon of one day, divided in several discrete periods, in a
reasonable computation time.

2 Description of the Model

In this section, the structure as well as the different components in the supply network
are defined. The different hydraulic constraints will be mathematically formulated for
each of these components. Note that we only consider a reduced supply network in
the province West Flanders (Flanders, Belgium) which is showed in Fig. 1. The supply
network is the pipeline structure wherein large volumes of fresh water are sent from
the production station to the buffers, delivery points and junctions with the distribution
network. The latter one consist of the pipes with small diameters through which water is
distributed to the end user. In this report, demand in the distribution network is clustered
in so called demand parameters in the supply network. The supply network is modeled
as a graph G = [K,L], where K denotes the set of nodes and the set L contains all
the pipes in the network. Nodes will be indicated by the superscript i, whereas pipes
connecting nodes i and j are indicated by superscript i j. In what follows, the time
division in discrete periods is explained. An overview of the most important symbols is
given. Next, the constraints in different components in the considered network during
each of these periods, are described. Afterwards, the goal function is defined.

2.1 Discrete Time Setting

As an optimization over a period of at least one day is desired, a day is divided into
discrete periods during each of which the state of the network is assumed to be constant.
Because a calculation of the network state at every hour is very time-consuming, a
division of a day as in Fig. 2 is proposed. This division is based upon a typical hourly
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Fig. 1. Test Configuration with Junctions (V), Reservoirs (R), Water Towers (W) and Production
Centers (WPC)

demand pattern and the different day and night tariffs for electricity. We will denote
an interval by t ∈ [1,T ], where T represents the number of periods. The length of each
period is denoted by τt .

2.2 System Components and Restrictions

Throughout this section restrictions will be written per period, for each t ∈ 1..T . Fur-
thermore, the following notation will be used:

– KB: set of buffers
– LG: set of pipes wherein water flows gravitationally out of a buffer
– LL: set of pipes wherein no pump is active
– LR: set of pipes wherein a raw water pump is active
– LP: set of pipes wherein a pure water pump is active
– H: the piezometric head as the sum of the geometric height h and the manometric

water pressure p / γ (m)
– Q: flow through a pipe (m3/ h)
– B: fluid level in tank at the end of a period (m)
– V : volume in tank at the end of a period (m3)
– M: mean head of water in tank (m)
– ΔH: pump head (m)
– P: power delivered by pump (W)

The main decision variables are Qi j, i j ∈ LR, the amount of water produced in the
water production centers and ΔH, the head delivered by each pump. Knowledge of the



318 D. Verleye and E.-H. Aghezzaf

Fig. 2. Discrete Time Intervals Based Upon Demand Coefficients and Electricity Tariffs

value of these variables will allow operators to optimally control the network. All other
variables are thus dependent on these two decision variables.

Node Modeling. We distinguish following nodes:

1. Junctions and delivery points
2. Buffers
3. Basins

Junctions and delivery points. In this paper, a junction is defined as the place where the
material or diameter of a pipe changes, where the pipe splits up in two or more sections
or where a nonzero demand parameter v (in m3/ h) is assigned to a point in the network.

Apart from conservation of mass, limits to the allowed pressure are also imposed. As
a general rule, no negative pressures are allowed and the manometric pressure cannot
exceed 10 bar. As these limits are calculated in the junctions, we assume that the height
of the actual pipeline is in between that of the endpoints. Otherwise stated, the pipelines
are monotone ascending or descending in between two junctions such that the pressure
limits are respected everywhere.

Delivery points are situated at the border of two different drinking water networks.
If one of the parties has difficulties of delivering water without capacity expansion or
the use of boosters and the other party is able to easily deliver extra water in this point,
a long-term contract can be signed. A delivery parameter, that can be either positive or
negative, is assigned to these nodes.

Buffers. Buffers play a major role in drinking water networks. Apart from their storage
capacity, they are of a major economical importance. At night, when the energy tariff
is low, water can be stored in the reservoir using pumps. The next day this water can
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Fig. 3. Model of a Buffer. Depending on the variable value of the head (H) at the entrance i, water
can flow either in or out.

flow gravitationally back into the network to meet part of the demand. In this way, high
energy costs due to excessive pumping during the day are avoided.

In buffers, we distinguish both pure water tanks and water towers. The latter one can
be interpreted as an elevated tank on an underneath construction, thus falling under the
same category.

The most general representation of a buffer is given in Fig. 3. Despite its complexity,
it is modeled as a single conceptual node. At the entrance (connection (a)) water flows
in or out at a variable head. At the exit (connection (c)) water is pumped out at the
pressure exercised by the fluid level of the tank. Water storage and distribution take
place at the tank itself.

The conservation of mass is expressed as:

∑
k:(k,i)∈L

Qki
t − ∑

j:(i, j)∈LL∪LR

Qi j
t = Ii+

t − Ii−
t (1)

Here, Ii+ and Ii− represent in- and outflow at the buffer, respectively. The necessity of
these two additional variables will soon be explained.

Other relationships that take place at the buffer will be explained using Fig. 3. At (a),
water in the connected pipes will flow either in or out of the buffer, depending on the
head H. Since water can flow freely into the tank, actual inflow only takes place through
connection (a1) in periods where the head is bigger than the height of the inflow point
ip. Under some circumstances, the mean head of the water M in the tank is higher than
the head at the entrance i. As a consequence, water will now be re-injected into the pipe
network through connection (a2). This is expressed by the following relations:

Hi
t ≥ ipi ⇒ Ii+

t ≥ 0

Hi
t ≤Mi

t ⇒ Ii−
t ≥ 0
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By introducing some binary variables, we translate these relations into constraints.
If the head at the entrance of the buffer is in between these values, neither in- nor

outflow will occur. In this case, the operator is nevertheless able to open the bypass
at (a2) in order to allow water to flow into the tank. Doing this has some unwanted
qualitative effects and forces us to add extra binary variables, so we decide not to include
this bypass in our model.

At (c), boosters or fresh water pumps transporting water out of the buffer as well as
pipes in which water flows out gravitationally, induce an outflow Ui−:

∑
j:(i, j)∈LP∪LG

Qi j
t = Ui−

t (2)

An important variable is the tank volume at the end of a period, V i, as it links two
subsequent periods through the filling rate:

V i
t = V i

t−1 +(Ii+
t − Ii−

t −Ui−
t − vi

t)τt (3)

Notice that a buffer may directly be feeding the distribution network with demand vi

through (b).
Necessary initial and terminal conditions are:

V i
0 = V i(0) (4)

V i
T ≥V i(0) (5)

where V i(0) is the tank volume present at the start of the simulation. The second con-
straint prevents the optimal configuration from depleting all buffers in the last period.

The fluid level in the tank at the end of period t is defined as

Bi
t =

V i
t

Ai (6)

The cross section of the tank, Ai, is approximated as a constant circle over the entire
height, despite the fact that the tank is possibly conic. The fluid level is restricted by a
lower bound due to quality considerations and an upper bound equal to the total height
of the tank.

To obtain an approximation of the mean head of the water in the tank during a period,
the mean fluid level is augmented with the geometric height of the tank floor:

Mi
t = hi +

Bi
t + Bi

t−1

2
(7)

Basins. In basins, raw water is captured at surface water treatments. In an optimization
over one period, they act as an infinite source of water. Therefore, no restrictions take
place at this node. By subtracting the outflow, the volume at the end of the optimization
is generated in the output in order to know how much reserve is left.

Pipe Modeling. Friction losses in pipes are calculated by the formula of Darcy-Weisbach
for turbulent flow:

Δp = λ
l
d
ρ

v2

2
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where l denotes the length of the pipe and d is the inner diameter. The (dimensionless)
friction coefficient λ depends on the value of the Reynolds number. Here, we work with
the (simplified) law of Prandtl-Kármán for hydraulically rough pipes:

λ = (2log
k

3.71d
)−2

where k (mm) represents the roughness of the pipe and is dependent of the material.
Substituting v = Q

A , A = πd2

4 , the friction loss equation leads to:

Hi
t −H j

t =
8 li j

36002 gπ2 (di j)5 λ i j Qi j
t |Qi j

t | , ∀(i, j) ∈ LL (8)

for general pipes, and to

Mi
t −H j

t =
8 li j

36002 gπ2 (di j)5 λ i j (Qi j
t )2 , ∀(i, j) ∈ LG (9)

for water flowing gravitationally out of a buffer.
The formulas (8) and (9) will lead to an underestimation of the friction losses for

small values of the flow (up to 20 m3/ h). In the supply network, such small values for
the flow are not common. This justifies the approximation. For a more precise calcula-
tion of the friction losses, see Burgschweiger et al., 2000.

The pressure losses for a specific pipe, calculated according to (8), are displayed in
Fig. 4. This constraint is clearly non-convex.

A pipe that is out of use, must be excluded from the model. Hereto we add a binary
control parameter x for every pipe in the network.
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Fig. 4. Pressure losses in a pipe with l = 5 km, d = 500 mm, k = 0,5
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Pump Modeling. We distinguish:

1. delivery pumps and boosters
2. raw water pumps

Delivery pumps and boosters. Delivery pumps add pressure to distribute the water from
the fresh water basements at the production centers throughout the network. Boosters
are placed on well chosen places in the network where extra pressure is needed due to
friction losses. In the pipes where the pump is active, we find the following equations:

Hi
t −H j

t =
8 li j

36002 gπ2 (di j)5 λ i j (Qi j
t )2−ΔHi j

t , ∀(i, j) ∈ LP : i ∈ K\KB (10)

Mi
t −H j

t =
8 li j

36002 gπ2 (di j)5 λ i j (Qi j
t )2−ΔHi j

t , ∀(i, j) ∈ LP : i ∈ KB (11)

where ΔHi j is the head added by the pump. This head depends on the flow that goes
through the pump and can be derived from the pump curve. The operating point is the
point where this curve and the system curve — the pressure loss curve augmented with
the static hight difference — meet. Figure 5 shows this principle for a delivery pump
which is currently in use by VMW in West Flanders.

To correctly model this curve, an extensive study is needed. However, such a study
does not fit in the scope of this research. Since most of the pumps in the network are
variable speed pumps, we undertake a different approach. The working region of a
variable speed pump is much larger. Moreover, the flow is within a wide range of values

Fig. 5. Operating Ooint of a Pump at a Given Pressure Loss and Static Height Difference



Modeling and Optimization of Production and Distribution of Drinking Water 323

Fig. 6. Pump Curve at Different Frequencies, Fixed Pressure of 90 m

for a fixed value of the pressure, as can be seen from Fig. 6. That is why we force the
outlet pressure of this pumps to be fixed at a value ui j, giving:

ΔHi j
t = xi j(ui j−Hi

t ) , ∀i ∈ K\KB (12)

ΔHi j
t = xi j(ui j−Mi

t ) , ∀i ∈ KB (13)

x is, again, a binary control parameter that takes the value 0 if the pump is not working.
The values for u are divided in a winter and a summer regime and are chosen with the
aid of the experienced operators at VMW.

For pumps with fixed speed, we opt for a linear approximation of the pump curve. De-
parting from three fixed points on the pump curve, namely [q(1),Δh(1)], [q(2),Δh(2)],
[q(3),Δh(3)], with q(1) < q(2) < q(3) and h(1) > h(2) > h(3), we note:

Ui j
t (1)≤W i j

t (1), Ui j
t (2)≤W i j

t (1)+Wi j
t (2), Ui j

t (3)≤W i j
t (2) (14)

Ui j
t (1)+Ui j

t (2)+Ui j
t (3)+Wi j

t (3) = 1 (15)

W i j
t (1)+Wi j

t (2) = 1 (16)

Qi j
t = xi j[Ui j

t (1)qi j(1)+Ui j
t (2)qi j(2)+Ui j

t (3)qi j(3)] (17)

ΔHi j
t = xi j[Ui j

t (1)Δhi j(1)+Ui j
t (2)Δhi j(2)+Ui j

t (3)Δhi j(3)] (18)

In this formulation, the variables U are real, whereas W are binary. W (3) is needed to
allow the solution Q = ΔH = 0.
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The power is given by

Pi j
t =

2,73ΔHi j
t Qi j

t

η i j
t

(19)

for all pure water pumps. Here, η denotes pump efficiency and is dependent on the
pump’s operating point. For simplicity we state η i j

t = η i j = 0,65 which is a rather safe
assumption.

Finally, the flow through the pump has to lie within the allowable range:

xi j Qi j(min)≤ Qi j
t ≤ xi j Qi j(max) (20)

Raw water pumps. Those pumps which push water from the basins all the way through
the treatment at the production center are not explicitly modeled. The reason hereto is
the fact that the total pressure needed through to get water through these treatment steps
is almost constant. We thus consider the cost of the energy delivered by these pumps as
part of the production cost and thus linearly dependent with the production flow. The
only restrictions are the treatment capacities and raw water contracts as an upper bound
to the total produced fresh water.

2.3 Goal Function

As stated before, the goal function consists of two terms: a production and an energy
cost. The production cost, kp (ine/ m3), is time-independent and consists of the costs of
chemicals, taxes and the electricity cost. Not only the energy for lighting and treatment
is considered, but also for operating the raw water pumps at a fixed pressure. The energy
cost of the other pumps is calculated with ke, the time-dependent energy tariff (in e/
kWh). The total cost function that is to be minimized can thus be written as:

Min
T

∑
t=1

(
∑

(i, j)∈LP

Pi j
t

ket

1000
+ ∑

(i, j)∈LR

Qi j
t kpi j

)
τt (21)

3 Testing and Results

The resulting MINLP model is non-convex due to the pressure loss constraint. There-
fore, a global optimal solution is not guaranteed. As a programming language, AMPL is
used and the problem is solved using the open-source solver BONMIN. As this solver is
suited for convex problems, one can expect a heuristic approach of the optimal solution.

Firstly, a configuration is made on which the model will be tested. An optimization
is done over a horizon of two periods. Once the working of the model is validated,
the existing network in West Flanders is optimized. An optimization is executed over
a period of 24 hours. While optimizing over 3 periods does not pose any difficulties,
no solution is found from 4 periods onwards. The reason hereto are the fixed pressure
restrictions at variable speed pumps. During periods of high demand, friction losses
take on high values due to the large pumped flows. In some cases, the fixed pressure
may be insufficient to compensate for these losses. Therefore, restrictions 12 and 13 are
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dropped. This will allow free combinations of flow-head values without considering the
actual operating area of the pump.

The test configuration (see also Fig. 1) consists of 2 production centers, 20 junctions,
1 delivery point and 5 buffers, from which 4 are water towers and one is a reservoir.
All these nodes are connected by 28 pipes, 2 delivery pumps and 2 boosters. In an
acceptable calculation time, we are able to find an optimal solution for a relatively small
network. On a HP Pavilion dv6700, 1.83 GHz Processor with 3 GB RAM we found a
solution within a time of 885 s. Despite the ’free’ behavior of the variable speed pumps,
flow-head values were within decent ranges. Nevertheless, the pump curves should be
mathematically formulated in a future stadium. Not only will this prevent solutions
which are infeasible in practice, the bounds on these two main variables will certainly
allow a faster convergence to a (sub)optimal solution.

Some important results can be derived from the optimal solution. All clean water
tanks maintain a maximum fluid level during all periods, except the final one. This can
be explained through the gain in energy efficiency from the smaller head that delivery
pumps behind those reservoirs have to add. During periods of low energy costs, all
water towers maintain a minimal fluid level. During periods of low energy cost, these
towers are filled back again. These facts lead to the graph in Fig. 7, which displays the
total pumping power together with the energy tariff.

Fig. 7. Pump Power Versus Energy Tariff

4 Conclusion

A model for operative planning in a drinking water network over a finite horizon was
constructed. An important component is the basin with free inflow and outflow possi-
bilities, as it is the major link between subsequent periods. The result is a non-convex
MINLP model that is based on several simplifications, such as an empirical approxi-
mation of the friction coefficient. To solve the problem, we relied on the open-source
solver BONMIN [3], which was able to generate a solution for a part of the existing net-
work within several minutes. The optimal configuration gives good results concerning
the time-dependent electricity tariffs, mostly due to the efficient filling and depleting of
the basins.
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An important step for further improvement is a detailed modeling of the characteris-
tic pump curves. At the same time, the pressure losses should be calculated with more
precision. Additional components such as valves can be modeled as well. Once the
model accurately describes the complete network hydraulics, attempts shall be under-
taken to minimize the calculation time. This can be accomplished by smart reformula-
tions of the complicating constraints. Additionally, the use of other exact and heuristic
methods will be tested.
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Abstract. We consider the problem of designing a network for hazardous mate-
rial transportation where the government can decide which roads have to be for-
bidden to hazmats and the carriers choose the routes on the network. We assume
that the government is interested in minimizing the overall risk of the shipments
whereas the carriers minimize the route costs. In spite of the rich literature on
hazmat transportation and of the relevance of this network design problem, it has
received little attention and only quite recently. In this work we prove that the
version of the hazmat transport network design problem where a subset of arcs
can be forbidden is NP-hard even when a single commodity has to be shipped.
We propose a bilevel integer programming formulation that guarantees solution
stability and we derive a (single-level) mixed integer linear programming formu-
lation that can be solved in reasonable time with a state-of-the-art solver.

1 Introduction

In this work we consider the following Hazmat Transport Network Design Problem
(HTNDP). A given set of hazmat shipments has to be sent over a road transportation
network in order to transport a given amount of hazardous materials from specific origin
points to specific destination points. The government can decide which roads have to be
forbidden to hazmats and the carriers can choose the routes on the resulting network.
In spite of the rich literature on hazmat transportation (see for instance [1,2,3,5]) and
of the relevance of this network design problem, it has received little attention and only
recently, being studied just in [9,6,7,10]. In [9] the problem is formulated as a bilevel
mixed integer program where the leader problem models the government decisions,
while the inner problem corresponds to the carrier route selection. Since the bilevel
program may be ill-posed (this happens when the inner problem has multiple optimal
solutions with different risk values), a heuristic method able to find stable solutions is
presented in [7]. The easier case where the network to be designed is constrained to be a
tree is considered in [6] (here the problem becomes single level since in a tree there is a
unique path between the origin and the destination of each commodity). Finally, in [10]
the authors describe a single level path-based formulation, where a set of acceptable
(economically viable) paths is considered for each carrier. The proposed framework

J. Pahl, T. Reiners, and S. Voß (Eds.): INOC 2011, LNCS 6701, pp. 327–338, 2011.
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can be used to identify road-closure decision based on the risk-cost trade-off between
the regulator and the carriers.

In this paper we consider a generalization of the HTNDP where a subset of roads can
be forbidden by the government. Such a generalization is motivated by the fact that in
Europe the ADR2007 [12] is regulating the hazmat transportation in tunnels, whereas
the hazmat transportation outside tunnels remains unconstrained. Thus in this case just
the tunnel arcs of a road network can be forbidden. We prove that this generalization of
the hazmat transport network design problem is NP-hard even when a single commodity
has to be shipped. We propose a bilevel integer programming formulation that guaran-
tees stability and we derive a single-level mixed integer programming formulation that
is more compact than the one in [9] and can be solved more efficiently with state-of-the-
art solvers such as CPLEX. Our solution method is compared with the exact approach
of [9] and the heuristic of [7] on the benchmark real-world instances introduced in [7].

2 Problem Description

Suppose a transport road network is represented by a directed graph G = (N,A), where
N is the set of nodes corresponding to road intersections, and A is the set of arcs corre-
sponding to road segments of the network. Let T ⊆ A be the set of arcs that can be for-
bidden by the government. K hazardous commodities have to be transported from their
(single) origin to their (single) destination. Let (ok,dk) denote the origin-destination
pair of commodity k = 1, ...,K and ϕk the corresponding transport demand (amount or
number of shipments). Let ck

i j and rk
i j the cost and risk associated to the transport of a

unit flow of commodity k on arc (i, j) ∈ A, respectively. The HTNDP consists in finding
a subnetwork, i.e., a subgraph of G, G′ = (N′,A′), with A \A′ ⊆ T , such that the total
transport risk is minimized when each commodity moves in such subnetwork from its
origin to its destination according to a minimum cost path.

A feasible solution of the HTNDP is called stable if the subnetwork does not admit
for any commodity multiple minimum cost paths having different risk values.

Note that in general the solution of the HTNDP does not coincide with the union
over all the commodities of the minimum risk path for each commodity. Consider for
instance the directed graph depicted in Figure 1 with the given costs and risks, where 4
hazardous commodities with the same transport demands (e.g. ϕk = 1 for k = 1, ...,4)
have to be shipped from the origins to the destinations indicated. In this case if we take
as subnetwork for the hazmat transport the union of the minimum risk paths of every
commodity, depicted in Figure 2 case a), we obtain that each commodity follows the
minimum cost path indicated in the second column of Table 1, with total risk 45. Notice
that in this way some commodity follows a path different from its minimum risk path
since can travel also some arcs that belong to the minimum risk path of some other
commodity. Whereas if we consider the subnetwork depicted in Figure 2 case b) we
obtain that each commodity follows the minimum cost path indicated in the second
column of Table 2, with total risk 22. It is possible to prove that the latter is the optimal
solution of the HTNDP for the instance considered. Moreover it is easy to verify that
both solutions are stable. Notice that the solution a) of Figure 2 becomes unstable if the
cost of arc (3,6) is 18 rather than 1, because for instance for the fourth commodity there
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Table 1. Minimum cost paths in network a) of Figure 2

Commodities Minimum cost paths Cost Risk
(1,7) 1,3,6,7 3 5
(2,5) 2,3,6,7,5 13 15
(8,5) 8,7,5 9 11
(3,5) 3,6,7,5 3 14

Table 2. Minimum cost paths in network b) of Figure 2

Commodities Minimum cost paths Cost Risk
(1,7) 1,3,6,7 3 5
(2,5) 2,3,4,5 30 3
(8,5) 8,9,5 20 12
(3,5) 3,4,5 20 2

will be two minimum cost paths: 3,6,7 and 3,4,5, both with cost 20, but the first path has
risk 14 whereas the second one has risk 2. Like observed in [7] in this case the HTNDP
is ill-posed since the government cannot induce the carriers to use the paths that achieve
the lowest risk and so the government objective function is not single-valued for this
government choice. In such a case it is preferable for the government to find a perturbed
network with a small deviation from the best one and on which the risk of the carriers
is stable.

3 Computational Complexity

In this section, we prove that the HTNDP is strongly NP-hard by a reduction from
3-SAT. The construction was inspired by a similar proof in [11].

Theorem 1. The HTNDP is strongly NP-hard even for a single commodity.

Fig. 1. Instance of the HTNDP with 4 commodities
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Fig. 2. a) minimum risk path network; b) optimal solution of HTNDP

Proof. Let x1, . . . ,xn be n Boolean variables and F =
m∧

i=1
(li1 ∨ li2 ∨ li3) be a 3-CNF

formula consisting of m clauses with literals (variables or their negations) li j. To reduce
3-SAT to an HTNDP instance with one commodity, we construct for each clause a
subnetwork comprising one arc in T (i.e. that can be forbidden) for each literal as shown
in Figure 3. More precisely, we create m + 1 nodes si, i = 1, . . . ,m + 1, and for i =
1, . . . ,m and j = 1,2,3, nodes ui j and vi j. For clause i, we have one arc (si,si+1) /∈ T
with a cost of 4 and a risk of 1, and arcs (si,ui j) /∈ T , (ui j,vi j) ∈ T and (vi j,si+1) /∈ T
for j = 1,2,3, all with cost 1 and risk 0. For i > 1, the subnetwork associated to clause
i shares node si with the subnetwork associated to clause i−1.

We have one commodity with origin s1, destination sm+1 and a requested flow of 1,
i.e. we want to find a single path from s1 to sm+1. The idea of the construction is that, if
the optimal path goes through an arc (ui j,vi j), then the corresponding literal li j is TRUE

(if li j = xk , then xk = FALSE).
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Fig. 3. Subnetwork for clause (li1 ∨ li2∨ li3). The label on an arc a is (ca,ra), i.e. the arc a has
cost ca and risk ra. Dotted arcs can be forbidden.
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Fig. 4. Network for instance (x1∨ x2∨ x3)∧ (x2 ∨ x3∨ x4)∧ (x1∨ x3∨ x4)

If F is satisfiable, we want the optimal path to go through a single arc from T per
subnetwork (i.e., one true literal per clause) and simultaneously, we want to make sure
that the corresponding assignment of variables is consistent; that is, paths that include
a variable and its negation must be ruled out. For that purpose, we assign to every pair
of literals corresponding to a variable and its negation an interclause arc between the
corresponding arcs, with cost 0 and risk 1 (see Fig. 4). These arcs cannot be forbidden.

We next show that F is satisfiable iff there exists an (optimal) path of risk 0. First
suppose there exists an optimal path with risk 0. Clearly, by construction, this path uses
exactly one arc ui j,vi j for each clause i. Without loss of generality, we may assume
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that the only arcs in T that are open are on the path , i.e. li j literals on the path are set
to TRUE. To show that F is satisfiable, it is sufficient to show that a variable and its
negation cannot appear together on this path. If it was the case, a less costly path could
be constructed by using the interclause arc between the occurrences of the variable and
its negation, leading to a positive risk. Hence the path constructed would not be optimal.
Now suppose F is satisfiable. If we open the arcs corresponding to literals that are set
to TRUE, then interclause arcs cannot belong to a path from s1 top sm+1 as it would
mean a variable and its negation are set to TRUE. Since at least one arc must be opened
for each subnetwork corresponding to a clause i, the subpath of cost 3 using that arc is
less costly than the direct arc (si,si+1). It follows that only arcs with risk 0 belong to a
cheapest path and the result follows.

4 A Mixed Integer Linear Programming Formulation

For each arc (i, j) in A and for each k with 1≤ k ≤ K, we define variable

xk
i j =

{
1 if arc (i, j) is used by hazardous commodity k,

0 otherwise,

and for each arc (i, j) in T , we define

yi j =

{
1 if tunnel (i, j) is available for hazmat transportation,

0 otherwise.
.

We start with the following bilevel integer programming formulation of HTNDP:

(P1) min
K

∑
k=1

∑
(i, j)∈A

rk
i jϕ

kxk
i j (1)

s.t. yi j ∈ {0,1} ∀(i, j) ∈ T (2)

where {xk
i j}1≤k≤K,(i, j)∈A is an optimal solution of the follower problem:

(P2) min
K

∑
k=1

(
∑

(i, j)∈A

ck
i jx

k
i j−

1
R ∑

(i, j)∈A

rk
i jx

k
i j

)
(3)

s.t. ∑
i∈δ−( j)

xk
i j− ∑

l∈δ+( j)
xk

jl =

⎧⎨⎩
0, if j �= ok,dk

−1, if j = ok

1, if j = dk

∀ j ∈ N,∀k = 1,. . . ,K (4)

xk
i j ≤ yi j ∀(i, j) ∈ T,∀k = 1, . . . ,K (5)

xk
i j ∈ {0,1} ∀(i, j) ∈ A,∀k = 1, . . . ,K (6)

where constant R is the sum over all the commodities of the maximum risk path values.
This formulation differs from the formulation presented in [9] by the objective func-

tion of the follower problem. It is worth pointing out that, unlike in [7] where a heuristic
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is presented to tackle the stability problem, the objective function (3) allows us to solve
the stability problem in an exact way. Indeed, when the minimum cost path of a carrier
is not unique, our formulation selects, among all of them, one having maximum risk.
This amounts to consider the worst-case scenario in terms of risk.

Instead of linearizing the Karush-Kuhn-Tucker (KKT) conditions of the follower
problem as in [9], we propose a different way to solve the bilevel problem (1)-(6) to
optimality. First, we observe that since the network is uncapacitated, the follower prob-
lem decomposes in K subproblems, corresponding to the K commodities, that can be
solved separately because they do not share any resource. More precisely, the Integer
Linear Programming (ILP) problem to solve for each k, with 1≤ k≤ K, is given by the
objective function contained in the round brackets of (3) subject to constraints (4), (5)
and (6). Since the constraint matrix of every such problem is totally unimodular, we can
substitute constraints (6) on the variables with

0≤ xk
i j ≤ 1 ∀(i, j) ∈ A,∀k = 1, . . . ,K (7)

and obtain K Linear Programming (LP) relaxations. According to the weak and strong
duality theorems, every such LP problem can be replaced with the primal feasibility
constraints, the dual feasibility constraints, and the reverse weak duality inequality.
Specifically, the follower problem is replaced with constraints (4), (5), (7) (correspond-
ing to primal feasibility) and the following constraints:

πk
j −πk

i ≤ ck
i j−

rk
i j

R
∀(i, j) ∈ A\T (8)

πk
j −πk

i ≤ ck
i j−

rk
i j

R
+ M(1− yi j) ∀(i, j) ∈ T (9)

∑
(i, j)∈A

ck
i jx

k
i j−

1
R ∑

(i, j)∈A

rk
i jx

k
i j ≤ πk

dk
−πk

ok
. (10)

Constraints (8) are the classical dual constraints of the minimum cost path problem
(with arc cost ck

i j − (rk
i j/R)): they impose that the difference between the potentials

associated to the head and the tail of each arc (i, j) does not exceed its cost. Constraints
(9) concern the tunnels: they coincide with constraints (8) when the tunnel (i, j) is open
whereas they become redundant when the tunnel (i, j) is closed. Finally, constraint (10)
imposes that the values of the primal and dual objective functions are equal.

Thus we obtain the following (single-level) mixed integer programming (MILP) for-
mulation of HTNDP:

min
K

∑
k=1

∑
(i, j)∈A

rk
i jϕ

kxk
i j (11)

s.t. ∑
i∈δ−( j)

xk
i j− ∑

l∈δ+( j)
xk

jl =

⎧⎨⎩
0, if j �= ok,dk

−1, if j = ok

1, if j = dk

∀ j ∈ N,∀k = 1,. . . ,K (12)

xk
i j ≤ yi j ∀(i, j) ∈ T,∀k = 1, . . . ,K (13)

πk
j −πk

i ≤ ck
i j−

rk
i j

R
∀(i, j) ∈ A\T,∀k = 1,. . . ,K (14)
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πk
j −πk

i ≤ ck
i j−

rk
i j

R
+ M(1− yi j) ∀(i, j) ∈ T,∀k = 1,. . . ,K (15)

∑
(i, j)∈A

(ck
i j−

rk
i j

R
)xk

i j ≤ πk
dk
−πk

ok
∀k = 1,. . . ,K (16)

0≤ xk
i j ≤ 1 ∀(i, j) ∈ A,∀k = 1, . . . ,K (17)

yi j ∈ {0,1} ∀(i, j) ∈ T (18)

Although the constraint matrix is no longer totally unimodular due to constraints (14)-
(15), we have the following simple property.

Proposition 1. The mixed integer programming formulation (11)-(18) of HTNDP ad-
mits an optimal solution with variables xk

i j ∈ {0,1}, for all (i, j) ∈ A and k, 1≤ k ≤ K,
even if they are not constrained to be integer.

Proof. Suppose there exists an optimal solution of (11)–(18) with a fractional variable
xk

i j for at least one arc (i, j) ∈ A and a given commodity k ∈ {1, . . . ,K}. Due to the
flow conservation constraints (12) such a solution corresponds to the superposition of
fractional flows along s different paths Pl , l = 1, . . . ,s, from ok to dk. Let Cl and Rl be the
cost and the risk of these paths Pl, respectively. Since constraints (16) hold and πk

dk
−πk

ok

is a lower bound on the minimum cost path w.r.t. the perturbed costs c̃k
i j = ck

i j− (rk
i j/R),

all paths Pl have to be of minimal perturbed cost. Moreover, since objective function
(11) minimizes the total risk, all paths Pl must have the same risk. Therefore, by sending
the whole flow along a single path Pl with l ∈ {1, . . . ,s}, we obtain a feasible solution
of the same perturbed cost and risk as the original one. This clearly corresponds to an
optimal solution of (11)-(18) where all variables xk

i j are binary.

The advantage of our MILP formulation with respect to the ILP formulation proposed in
[9] is that it contains a much smaller number of binary variables. Indeed, it includes just
|T | binary variables (yi j for all (i, j) in T ), whereas by linearizing the KKT conditions
as in [9] we need K|A|+ |T | binary variables (yi j for all (i, j) in T and xk

i j for all (i, j)
in A, with k = 1, . . .K).

5 Computational Experiments

The ILP linearization of the bilevel formulation of the HTNDP described in subsection
4 has been implemented in AMPL [8] and solved with CPLEX 11.00 on a PC Intel
Xeon with 2.80 GHz, 512KB L2 cache and 2GB RAM. We tested our solution method
on the same set of instances used in [7].

5.1 Instance Testbed

The instances are derived from real data of the city of Ravenna (Italy) used in [6].
The road network is composed of |N| = 105 nodes and |A| = 134 arcs. Based on the
population densities around the arcs and the locations and populations of places of
assembly in the city (such as schools, churches, hospitals, factories, etc.) the authors
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in [6] have calculated an aggregate risk measure by using the population in places
of assembly within 500 m of the arcs, whereas the arc costs are given by the actual
distance. As observed in [7], such a risk measure is not generally colinear to the cost,
thus the HTNDP may have unstable solutions.

Using this road network, 50 instances with aggregate risk have been derived in [7] by
varying the number of commodities K = 20,30,40,50,60 and by generating, for each
value of K, 10 instances by randomly choosing K origin and destination pairs from the
105 vertices of the network. The shipment demands ϕk of each commodity k = 1, . . . ,K
are generated uniformly in the interval [10,100] and rounded to the nearest integer.

5.2 Comparison with Previous Exact and Heuristic Methods

To compare our solution method with the heuristic approach of [7] on an equal footing,
we have added to the ILP model presented in Section 4 the following set of constraints
that was also present in [7] yi j = y ji ∀(i, j) ∈ T . These constraints state that both arcs
(i, j) and ( j, i) have to be open to hazmat transit if any one of them is open. Moreover,
for the same reason we have chosen T = A, i.e., the administrator can forbid any arc of
the road network to hazmat transit (provided that no commodity origin and destination
pair is disconnected).

The results obtained for the testbed of 50 instances described in the previous subsec-
tion are summarized in Table 3. The first column indicates the number K of commodi-
ties, the second column identifies the instance generated for each value of K, the third
column is the ratio between the total risk of the minimum risk paths (over-regulated sce-
nario), R2, and the total risk, R4, given by the best of the two heuristics of [7] (exactly
as in column R2/R4 of Table 3 of [7]). The fourth column reports the same ratio ob-
tained with our exact method rather than with the heuristics (R represents the total risk
of our solution). The fifth column corresponds to the improvement in risk achieved with
our method, namely Δ risk=100*[(R2/R)/(R2/R4)-1]. The successive three columns are
analogous to the three previous ones but they are related to costs. The sixth column re-
ports the ratio between the total cost of minimum cost paths and the total cost of the
best heuristic solution of [7] (exactly the values of column C1/C4 of Table 3 of [7]), the
seventh column reports the same ratio with our solution rather than the heuristic one
and the eighth column is the cost variation Δ cost=100*[(C1/C)/(C1/C4)-1]. Finally,
the last two columns report the CPU time in seconds of the best heuristic of [7] and of
our exact method, respectively.

Note that we omit the comparison with Kara-Verter’s exact method [9] because in
[7] the authors show that when checked for stability (i.e., when the worst risk of each
minimum cost path is considered) the actual total risk of each Kara-Verter’s solution is
never better than those they obtain, with a relative average risk difference of 4.47%.

Compared with the results of [7], our method provides solutions with a lower overall
risk for almost half of the instances (for 24 of them) with an average relative improve-
ment of 0.56%. In general, the risk improvement produces a cost deterioration and in
fact the cost of our solutions is higher in average by a factor of 6.45% w.r.t. the cost
of the heuristic solutions found in [7]. Interestingly, there are 6 instances where we
improve not only the risk but also the transportation cost, obtaining solutions which
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Table 3. Results on Erkut-Gzara’s instance testbed

K Inst. R2/R4 R2/R Δ risk C1/C4 C1/C Δ cost CPU E-G CPU exact
20 1 100 100.00 0.00 50.82 49.49 -2.61 2.12 2.38
20 2 97.79 96.88 -0.93 35.88 34.67 -3.37 4.20 953.14
20 3 100 100.00 0.00 37.96 37.26 -1.84 2.38 3.85
20 4 99.37 99.50 0.13 47.93 41.59 -13.23 2.95 40.08
20 5 100 100.00 0.00 71.24 62.85 -11.78 1.99 1.89
20 6 98.89 99.91 1.03 51.15 51.46 0.61 3.09 40.68
20 7 100 100.00 0.00 52.55 43.54 -17.15 2.26 2.67
20 8 100 100.00 0.00 46.83 43.77 -6.53 2.40 3.01
20 9 99.6 99.41 -0.19 52.65 47.88 -9.06 3.16 61.79
20 10 100 100.00 0.00 65.07 62.21 -4.39 2.49 2.61
30 1 98.57 98.78 0.21 55.79 51.06 -8.48 4.74 58.51
30 2 100 100.00 0.00 49.96 43.81 -12.32 3.70 7.29
30 3 100 100.00 0.00 46.34 41.97 -9.43 3.89 6.28
30 4 98.4 99.19 0.80 61.15 56.23 -8.04 6.12 102.02
30 5 98.9 99.78 0.89 44.30 43.48 -1.86 4.72 132.22
30 6 100 100.00 0.00 45.56 39.52 -13.26 4.12 7.08
30 7 100 100.00 0.00 45.72 37.31 -18.40 3.54 6.72
30 8 100 100.00 0.00 54.82 49.23 -10.19 3.49 7.90
30 9 100 100.00 0.00 46.41 42.14 -9.19 3.59 6.84
30 10 100 100.00 0.00 48.04 48.08 0.08 3.82 7.58
40 1 99.44 99.90 0.47 51.52 45.28 -12.11 9.37 92.27
40 2 98.03 98.24 0.22 50.03 49.58 -0.90 8.88 1119.45
40 3 99.59 99.60 0.01 43.29 40.51 -6.42 7.00 63.19
40 4 89.33 93.18 4.31 44.46 43.61 -1.92 8.57 4024.47
40 5 100 100.00 0.00 48.97 38.50 -21.38 4.87 39.88
40 6 99.31 99.34 0.03 47.99 47.93 -0.12 6.81 2799.95
40 7 100 100.00 0.00 47.00 37.30 -20.65 5.13 10.88
40 8 98.37 99.25 0.89 57.43 51.64 -10.09 6.31 1006.15
40 9 97.19 98.90 1.76 36.40 34.98 -3.90 6.88 1137.27
40 10 100 100.00 0.00 51.04 42.48 -16.77 5.33 13.86
50 1 100 100.00 0.00 50.99 46.99 -7.85 6.63 14.63
50 2 100 100.00 0.00 47.52 44.81 -5.71 6.25 13.80
50 3 99.83 99.72 -0.11 48.43 45.01 -7.07 9.56 642.85
50 4 92.4 96.27 4.19 47.00 54.93 16.87 11.45 823.92
50 5 99.04 99.38 0.34 43.90 39.18 -10.76 9.41 194.28
50 6 99.13 99.29 0.16 48.64 47.58 -2.17 10.47 5164.05
50 7 99.2 99.28 0.08 41.05 38.15 -7.06 8.56 389.72
50 8 98.21 99.07 0.87 54.60 50.96 -6.67 13.26 426.02
50 9 100 100.00 0.00 55.82 45.03 -19.34 6.53 15.53
50 10 98.79 99.77 0.99 50.14 49.01 -2.25 11.11 360.63
60 1 99.41 99.85 0.44 48.90 45.66 -6.62 16.28 623.99
60 2 100 100.00 0.00 54.67 49.77 -8.97 8.17 12.89
60 3 98.94 99.28 0.35 42.45 45.12 6.30 10.80 471.89
60 4 98.53 98.80 0.27 51.34 53.01 3.25 13.70 1461.33
60 5 94.03 98.30 4.54 49.74 53.11 6.77 16.61 10470.50
60 6 100 100.00 0.00 52.68 47.24 -10.34 8.90 30.41
60 7 99.59 99.57 -0.02 56.77 56.47 -0.52 14.08 3001.67
60 8 99.54 99.42 -0.12 49.18 48.81 -0.74 11.21 623.85
60 9 93.08 94.29 1.29 56.73 62.52 10.20 18.27 5145.38
60 10 99.49 99.87 0.38 58.35 56.22 -3.65 15.57 2011.40

Average 0.56 -6.45 7.29 873.21
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dominate the ones of [7]. See the numbers emphasized in bold in the eighth column of
Table 3.

The computational experiments show 5 exceptions. For five instances, the total risk
of the solution found by the heuristic is lower than the one obtained by solving our exact
mixed integer linear formulation. These instances have negative values, emphasized in
bold, in the column Δ risk. In one case (K=60, instance 7) this may be due to machine
rounding error because the difference is of about 10−2. We have carefully checked the
other cases and we believe that either there is an error in the results reported in [7] or
the instances we used are slightly different.

Finally, it is worth pointing out that the optimal solutions are found within a reason-
able CPU time, in average in 873.21 seconds. The heuristic described in [7] is clearly
faster (in average 7.29 sec. on another machine) but does not provide an optimality
guarantee and often yields worse quality solutions.

6 Concluding Remarks

We have investigated the problem of designing a network for hazardous material trans-
portation where the government can decide which roads have to be forbidden to hazmats
so as to minimize the overall risk and the carriers choose the routes so as to minimize
transportation costs. Motivated by the real application of ADR2007 [12], we have con-
sidered a generalized version of the problem where just a subset of roads (e.g., the
tunnels) can be forbidden by the government.

We have proved that the problem is NP-hard even in the case of a single commod-
ity and we have proposed a mixed integer linear programming formulation to solve the
problem to optimality. The advantages of our method with respect to the one in [9]
is that it finds stable solutions and requires a lower computational effort. The advan-
tage with respect to the approach in [7] is that although both look for stable solutions,
our method solves the problem exactly, whereas [7] solves it heuristically. The com-
putational experiments on a testbed of 50 instances show that for 24 instances we ob-
tain solutions with lower overall risk (with an average relative improvement of 0.56%).
Moreover, for 6 instances not only the risk but also the transportation cost is improved.

Our mixed integer linear programming formulation for HTNDP is currently being
tested on instances deriving from hazmat transportation in tunnels, according to [12],
that is where T is a proper subset of the arc set A. Our approach can also be adapted to
deal with the risk-cost trade off, by minimizing the factor by which the minimum cost
route of each carrier is increased due to the forbidden arcs. This is an important issue
to make the administrator decisions economically acceptable. Future work also include
strengthening our mixed integer linear programming formulation in order to speed up
solution for large-size instances.
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Abstract. The inverse shortest path routing problem is to decide if a set of ten-
tative routing patterns is simultaneously realizable. A routing pattern is defined
by its destination and two arc subsets of required shortest path arcs and prohib-
ited non-shortest path arcs. A set of tentative routing patterns is simultaneously
realizable if there is a cost vector such that for all routing patterns it holds that
all shortest path arcs are in some shortest path and no non-shortest path arc is
in any shortest path to the destination of the routing pattern. Our main result is
that this problem is NP-complete, contrary to what has been claimed earlier in
the literature. Inverse shortest path routing problems naturally arise as a subprob-
lem in bilevel programs where the lower level consists of shortest path problems.
Prominent applications that fit into this framework include traffic engineering in
IP networks using OSPF or IS-IS and in Stackelberg network pricing games. In
this paper we focus on the common subproblem that arises if the bilevel program
is linearized and solved by branch-and-cut. Then, it must repeatedly be decided if
a set of tentative routing patterns is realizable. In particular, an NP-completeness
proof for this problem is given.

1 Introduction

In this paper we are concerned with the complexity of the inverse shortest path routing
problem (ISPR), i.e., to decide if a set of tentative routing patterns is simultaneously
realizable. Let G = (N,A) be a digraph. For each destination l ∈ L ⊆ N, a (tentative)
routing pattern is represented by a shortest path graph (SP-graph), defined by an arc
subset pair, (Al, Āl) ⊂ A×A. The arcs in Al are required to be shortest path arcs (SP-
arcs) and the arcs Āl are non-shortest path arcs (non-SP-arcs), i.e., prohibited to be
on shortest paths. A family of SP-graphs, {(Al, Āl) : l ∈ L} is realizable if there is a
strictly positive cost vector, w ∈ RA

+, such that all SP-arcs in all SP-graphs are in some
shortest path to their respective destinations and no non-SP-arc is in a shortest path to
its destination. Our main result is that this problem is NP-complete contrary to what has
been claimed earlier in the literature, e.g. in [5, § 8.3.2].

An important relaxation of ISPR, referred to as compatibility, is to decide if there is
a cost vector, w ∈ RA

+, such that for each l ∈ L there is a node potential, π l ∈ RN , such
that the implied reduced costs are compatible with (Al , Āl), i.e.,

wi j +π l
i −π l

j

⎧⎨⎩= 0 if (i, j) ∈ Al,
> 0 if (i, j) ∈ Āl,
≥ 0 otherwise.

(1)

J. Pahl, T. Reiners, and S. Voß (Eds.): INOC 2011, LNCS 6701, pp. 339–353, 2011.
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This problem has received much attention in the OSPF literature, see Chapter 8 in [5]
and the references therein. Until now, it was believed that compatibility is equivalent to
realizability, we provide a counter example to this below.

The realizability and compatibility problems are significantly different from the or-
dinary inverse shortest path (ISP) problem in [2]. In particular, in ISPR a partial desired
optimal solution is specified via SP-arcs and non-SP-arcs and we must determine if it
can be completed to an optimal solution without implicitly introducing some undesired
non-SP arcs. The introduction of prohibited arcs is actually what makes the problem
hard. Also, the actual cost vector in ISPR is irrelevant, while many ISPs involve the
minimization of a deviation from some ideal cost vector. A counterpart for ISPR would
be to find small integral weights, i.e. a small deviation from 0. This related problem is
considered in [3].

The primary motivation for studying ISPRs is that they naturally arise as crucial
subproblems in bilevel programs where the lower level is a set of shortest path problems.
We refer to these problems as bilevel shortest path problems (BSP). In a BSP, a leader
decides upon a cost vector that implicitly affects the followers response in their resulting
shortest path problems.

To model a BSP, let G = (N,A) be a digraph and K a set of followers. The demand
hk associated with follower k∈K should be sent from the origin o(k) to the destination
d(k). Three sets of variables are used: the leaders control variables, u, the followers flow
variables, x, and the cost variables, w. The cost, wi j, for arc (i, j) ∈ A depends explic-
itly on the leaders control variables, u. The exact relation is application dependent and
modelled via the set W (u) which is assumed to be strictly positive and integral (to ease
the presentation). The follower flow variable, xk

i j, denotes the fraction of the demand,
hk, sent on an arc, (i, j) ∈ A, by follower k ∈K . Finally, the feasible combinations of
leader decisions and follower flow assignments are modelled via the set Π .

The objective is for the leader to maximize his objective function, F(u,x), while
followers minimize their costs by using shortest paths w.r.t. w, i.e. to solve

max F(u,x)
s.t. (u,x) ∈Π ,

w ∈W (u),
xk ∈Sk, k ∈K ,

(2)

where
Sk = argmin ∑

(i, j)∈A

wi j x̄i j

s.t. ∑
j∈δ+(i)

x̄i j− ∑
j∈δ−(i)

x̄i j = bk
i , i ∈ N,

x̄i j ≥ 0, (i, j) ∈ A,

(3)

and

bk
i =

⎧⎨⎩
1 if i = o(k),

−1 if i = d(k),
0 otherwise.

(4)

A large number of practically important optimization problems can be formulated as
BSPs. Prominent applications that fit into the framework include OSPF routing prob-
lems, traffic engineering in IP networks and Stackelberg network pricing games. These
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problems have received much attention in the literature, cf. [5, 9, 11, 13] and the refer-
ences therein.

To arrive at the ISPR subproblem, we adopt the commonly used approach to re-write
the bilevel program into a single-level program with bilinear constraints by utilizing
the complementary slackness optimality conditions. This is feasible since the leaders
optimal decisions guarantee the absence of negative cost cycles in the followers shortest
path problems. Dual feasibility is modelled by introducing node potentials and requiring
appropriate reduced costs for all arcs.

Observe that it is possible to combine all followers with the same destination and
use a common node potential for all of them. Denote the set of destinations by L =
{i ∈ N : i = d(k) for some k ∈K } and by Kl = {k ∈K : d(k) = l} the followers with
destination l. Hence it suffices to use a shortest path indicator variable yl

i j that is set to 1

if xk
i j > 0 for some k ∈Kl and 0 otherwise. This yields the integer bilinear model below.

max F(u,x)
s.t. (u,x) ∈Π ,

w ∈W (u),
∑

j∈δ+(i)
xk

i j− ∑
j∈δ−(i)

xk
i j = bk

i , i ∈ N, k ∈K ,

0≤ xk
i j ≤ yl

i j, (i, j) ∈ A, k ∈Kl,

wi j +πk
i −πk

j ≥ 1− yl
i j, (i, j) ∈ A, k ∈Kl,(

wi j +πk
i −πk

j

)
yl

i j = 0, (i, j) ∈ A, k ∈Kl.

yl
i j ∈ B, (i, j) ∈ A, l ∈ L.

(5)

Note that the shortest path indicator variables yl induce an acyclic SP-graph to node
l via the union of all shortest path intrees.

An issue with BSPs is how to handle the case with multiple shortest paths from
some node to some destination. It is commonly assumed that the leader freely selects an
optimal solution for the follower that best suits his objective. In model (5) it is required
that all arcs with reduced cost 0 actually carry some flow. In the OSPF literature, this
requirement is closely related to the ECMP principle where traffic is divided “evenly”
on all shortest paths.

When it comes to solving model (5) it is not clear how to handle the bilinear con-
straints. Linearizing them with big-Ms typically yields weak (sometimes extremely
weak) LP-relaxations. Regarding the big-Ms, they may have to be as large as 224−1 in
some IP network problems. It is also shown in [3] that it is APX-hard to find an integral
cost vector that minimize the maximal arc cost for a set of realizable SP-graphs, i.e. to
find suitable big-Ms.

We also need to point out that there are differences between applications, e.g. the
actual arc costs in IP routing are insignificant but the complicating issues of arc capacity
and congestion come into play. In other problems, such as the toll setting problem in
[11], the arc cost corresponds to the operators revenue and is of course one of the most
significant aspects. Another factor that typically makes some problems very hard is the
number of followers, in some applications there are many followers, i.e. the OD-matrix
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is dense and sometimes even complete. Clearly, the size of the big-Ms may be an issue
in some applications.

The context of the rest of this paper is that the bilinear constraints in model (5)
have been linearized and that the resulting model is solved by branch-and-cut. This
“requires” that at each node in the enumeration tree it is determined if a partial integral
y solution can be completed to a solution. If this is not the case, valid cuts that prohibit
the routing conflict induced by y should be augmented to the formulation.

From the above it is clear that a very fundamental issue in BSPs is to decide if the
family of SP-graphs induced by a y solution is realizable, i.e. to solve ISPR.

An outline of the paper is as follows. In Section 2 an inadequate formulation of ISPR
from the literature is presented along with a new model for ISPR. In Section 3 the main
result that ISPR is indeed NP-complete is proved. We conclude in Section 4.

2 The Inverse Shortest Path Routing Problems

Recall that G = (N,A) is a strongly connected digraph and L⊆ N a set of destinations.
An SP-graph to destination l ∈ L is a pair of arc subsets, (Al, Āl) such that an arc (i, j) ∈
Al if and only if it is required that (i, j) is in some shortest path to l and (i, j) ∈ Āl if
and only if (i, j) is not allowed to be in any shortest path to l. The arcs in Al and Āl are
called SP-arcs and non-SP-arcs, respectively.

Note that the SP-arcs correspond to the shortest path indicator variables yl
i j equal to

1, or equivalently, the reduced costs zero arcs. Non-SP-arcs similarly correspond to y
variables equal to 0. When y is fractional, the induced SP-graphs may be non-spanning
and disconnected, since the non-binary part of y is ignored.

To formally define realizability the mapping Il : ZA
+ → 2A is introduced. For a cost

vector, w, let Il(w) be the set of all arcs that are on some shortest path to destination l
w.r.t. w. I.e., Il(w) is the reduced cost zero arcs w.r.t. w and destination l. Note that an
arc set Il(w) always induces a spanning SP-graph to destination l since G is strongly
connected.

Definition 1. Let AL =
{
(Al, Āl)

}
l∈L be a family of SP-graphs for the set of destina-

tions, L, and let w ∈ ZA
+ be a cost vector.

– A family of SP-graphs, AL, is compatible with w if for each l ∈ L there exists a
feasible node potential, π l , such that π l is tight w.r.t. w for all arcs in Al and π l is
not tight w.r.t. w for any arc in Āl .

– A family of SP-graphs, AL is fully compatible with w if for all l ∈ L it holds that
Al ⊆Il(w) and Āl ∩Il(w) = /0.

We say that AL is compatible if it is compatible with some w and realizable if it is fully
compatible with some w.

2.1 Mathematical Formulations of ISPR Problems

Given a family of SP-graphs, AL = {(Al, Āl) : l ∈ L}, we consider the ISPR problems
to decide if AL is compatible and if AL is realizable.
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The compatibility problem has earlier been considered in the literature, e.g. in [5]. It
has in fact (incorrectly, as shown in Example 2 below) been believed that the compati-
bility and realizability problems are equivalent.

The model below is widely available in the OSPF literature. It is based on arc
weights, w, and the introduction of a set of node potentials, π l , one for each desti-
nation, l ∈ L. Then, the reduced costs on SP-arcs are forced to 0 and the reduced costs
of non-SP-arcs must be strictly positive.

wi j +π l
i −π l

j = 0, (i, j) ∈ Al, l ∈ L,

wi j +π l
i −π l

j ≥ 1, (i, j) ∈ Āl, l ∈ L,

wi j +π l
i −π l

j ≥ 0, (i, j) ∈ A\ (Al ∪ Āl
)
, l ∈ L,

wi j ≥ 1, (i, j) ∈ A.

(ISPR-C)

Similar, essentially equivalent, models can also be found elsewhere, e.g. in [1,4,7,8,
10,12]. It is well known from the literature that a family of SP-graphs, AL, is compatible
if and only if (ISPR-C) is feasible.

Intuitively, AL is not compatible if a subset of SP-arcs and non-SP-arcs directly
induce a reduced cost routing conflict. Two such conflicts are given in Example 1.

Let us consider the realizability problem. That is, to find a cost vector that induce a
spanning family of SP-graphs that comply with all SP- and non-SP-arcs. A compatible
SP-graph family is realizable if it can be completed to a spanning family of SP-graphs.
Clearly, compatibility is a necessary condition for realizability.

Proposition 1. If a family of SP-graphs, AL, is realizable then it is compatible.

However, compatibility does not in general imply that it is possible to complete a family
of SP-graphs to spanning ingraphs. To derive a model that can be used to decide if a
family of SP-graphs is realizable, the following observation is crucial.

Proposition 2. A family of SP-graphs, AL, is realizable if and only if there is a cost vec-
tor w and tight node potentials, {π l : l ∈ L}, induced by w that are feasible in (ISPR-C).

This proposition yields the straightforward modelling approach to force the existence of
(reverse) arborescences rooted at each destination, l ∈ L, where all reduced costs are 0,
since this yields tight node potentials. We can reuse the shortest path indicator variables
for this purpose, i.e. yl

i j is 1 if the arc (i, j) is in Il(w) and 0 otherwise. The following
bilinear integer program can be used to determine if a family of SP-graphs is realizable.

wi j +π l
i −π l

j + yl
i j ≥ 1 (i, j) ∈ A, l ∈ L,(

wi j +π l
i −π l

j

)
yl

i j = 0 (i, j) ∈ A, l ∈ L,

∑
(i, j)∈A

yl
i j ≥ 1 i ∈ N \ {l}, l ∈ L,

yl
i j = 1 (i, j) ∈ Al, l ∈ L,

yl
i j = 0 (i, j) ∈ Āl, l ∈ L,

wi j ≥ 1 (i, j) ∈ A,
yl

i j ∈ B (i, j) ∈ A, l ∈ L.

(ISPR-R)

The correctness of the model is motivated by the following observations. First, since
all costs are strictly positive, the yl-variables can not induce a directed cycle. Because of



344 M. Call and K. Holmberg

this, the outdegree constraints imply that the yl-variables induce an ingraph that contains
an arborescence rooted at l for each l ∈ L. Hence, the node potentials are tight and
satisfy the resulting (ISPR-C) part of the model.

Theorem 1. A family of partial SP-graphs, AL, is realizable if and only if (ISPR-R)
has a feasible solution.

The major difference between compatibility and realizability is that compatibility, cf.
model (ISPR-C), only take dual feasibility of the shortest path problem into account,
but partly neglects primal feasibility and complementary slackness.

2.2 Incompatible and Unrealizable SP-Graphs

In this section we give three examples of (potential) routing conflicts required later in
the paper. A comprehensive analysis and numerous examples of routing conflicts are
given in [8].

Example 1. The first potential routing conflict in this example is referred to as a valid
cycle in [6, 7, 8]. It will be used in the NP-completeness proof in Section 3.

Consider the SP-graph family, AL, with destinations a,b ∈ L drawn in Figure 1.
Suppose that there are two (start) nodes, s1 and s2 and two (end) nodes, e3 and e4 that
forms the following SP-arc patterns,

Aa = {(s1,e3), (s2,e4)} and Ab = {(s1,e4), (s2,e3)}. (6)

In all feasible solutions to (ISPR-C) (and (ISPR-R)) it must hold that

w13 +πb
1 −πb

3 = w23 +πa
2 −πa

3 = w14 +πa
1 −πa

4 = w24 +πb
2 −πb

4 = 0. (7)

This is direct from the surrogate constraint composed of the corresponding reduced
cost constraints,

0 = w13 +πb
1 −πb

3 + w23 +πa
2 −πa

3 + w14 +πa
1 −πa

4 + w24 +πb
2 −πb

4

− (
w13 +πa

1 −πa
3 + w23 +πb

2 −πb
3 + w14 +πb

1 −πb
4 + w24 +πa

2 −πa
4

)
≤ 0 + 0 + 0 + 0− (0+0+ 0+0)= 0. (8)

Hence, the arcs (s1,e3) and (s2,e4) are induced SP-arcs to destination b and the arcs
(s1,e4) and (s2,e3) are induced SP-arcs to destination a.

A similar, but slightly more complicated example is illustrated in Figure 2. This
result is also required for the proof in Section 3. Now, the SP-graph family, AL, with
destinations a,b,c ∈ L contains the following SP-arc patterns.

Aa = {(s1,e3), (s2,e5)}, Ab = {(s1,e4), (s2,e3)} and Ac = {(s1,e5), (s2,e4)}. (9)

A similar argument as above shows that all feasible solutions to (ISPR-C) satisfy

w13 +πb
1 −πb

3 = w14 +πc
1−πc

4 = w15 +πa
1 −πa

5 =
w23 +πa

2 −πa
3 = w24 +πb

2 −πb
4 = w25 +πc

2−πc
5 = 0. (10)
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Fig. 1. The example setting is illustrated on the left and the induced SP-arcs are drawn on the
right. The SP-arcs to destinations a,b ∈ L, are drawn with solid and dashed arrows, respectively.
In the right part, the upper arcs of parallel arc pairs are the original SP-arcs and the lower are the
induced arcs.
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Fig. 2. The example setting is illustrated on the left and the induced SP-arcs are drawn on the right.
The SP-arcs to destination a,b and c are drawn with solid, dashed and dotted arrows, respectively.
In the right part, the upper arcs of parallel arc pairs are the original SP-arcs and the lower are the
induced arcs.

Hence, the arcs (s1,e5) and (s2,e3) are induced SP-arcs to destination a, the arcs
(s1,e3) and (s2,e4) are induced SP-arcs to destination b and the arcs (s1,e4) and (s2,e5)
are induced SP-arcs to destination c.

We conclude the section with an example of a family of SP-graphs that is compatible
but not realizable. Hence, the inadequacy of model (ISPR-C) and the need for model
(ISPR-R) is well motivated.

Example 2. Consider the graph in Figure 3 and the SP-graphs with arc sets

A0 = {(1,2), (2,3), (3,s)}, Ā0 = {(1,a), (2,a), (2,b), (3,b), (3,c)},
Aa = {(1,a)}, Āa = {(1,2)},
Ab = {(2,b)}, Āb = {(2,3), (2,a)},
Ac = {(3,c)}, Āc = {(3,s), (3,b)}.

(11)

This family of partial SP-graphs is not realizable. Note that the dashed path starting
at node 1 must be augmented to a path that ends in node 0. Any augmentation of the path
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a b c

1 2 3

s0

Fig. 3. A graph and four SP-graphs that can not be realized. All dashed arcs are SP-arcs to desti-
nation 0. The dotted arcs emanating from node 1, 2 and 3, respectively, are SP-arcs to destinations
a,b and c, respectively.

implies that it goes via node 1’, 2’ or 3’. Therefore, the shortest path subpath optimality
property implies that there are two disjoint shortest paths from 1 to 1’, 2 to 2’ or 3 to
3’. This is however not feasible w.r.t. the non-SP-arcs.

Now consider compatibility. Setting the cost on arcs entering node a, b and c to a
large number and the costs on all other arcs to 1 yields a feasible solution to (ISPR-C).
Hence, the instance is compatible but not realizable.

Note that the node potentials in the “feasible” solution are not tight. Also, the tight
node potentials are not feasible w.r.t. the reduced cost constraints. It is easy to generalize
this example to one with arbitrarily many nodes and the same property.

3 Complexity of ISPR Problems

In this section we focus on the complexity of ISPR. From model (ISPR-C) above it is
clear that compatibility can be decided in polynomial time by solving a linear (feasibil-
ity) program. The complexity of the problem to decide if a family of partial SP-graphs
is realizable has been open until now.

To prove that it is NP-complete to decide if a family of SP-graphs is realizable a
polynomial reduction to the exclusive 1 in 3 Boolean satisfiability (X3SAT) problem
will be described. Recall that the X3SAT problem is to decide if a formula (in con-
junctive normal form) where each clause contains three literals has a truth assignment
that makes exactly one literal in each clause is true. Canonical X3SAT instances only
contain sorted clauses where all variables are positive and different and no two clauses
share more than one variable.

Definition 2. An X3SAT instance, I = (X ,C ), with the variable set X = {x1, . . . ,xn}
and clause collection C = {C1, . . . ,Cm} is canonical if

– For each clause C = (xi∨ x j ∨ xk) ∈ C it holds that i < j < k.
– No pair of variables is included in two or more clauses.

It is actually no restriction to only consider canonical X3SAT instances. Indeed, if there
are clauses (a∨ b∨ c) and (a∨ b∨ d), then c = d in all feasible truth assignments and
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one variable and (at least) one clause can be dropped. Since X3SAT is NP-complete,
applying this argument recursively yields the following result.

Theorem 2. It is NP-complete to decide if a canonical X3SAT instance is satisfiable.

The reduction in our proof requires the use of a next operator. Informally, it yields the
modulo-wise next variable in a clause.

Definition 3. If C = (xi ∨ x j ∨ xk) ∈ C is a clause in a canonical X3SAT instance, I =
(X ,C ), then the next operator, n : X×C → X, is defined by

n(x,C) =

⎧⎨⎩
x j if x = xi

xk if x = x j

xi if x = xk.
(12)

Example 3. The X3SAT instance with variable set {a,b,c,d,e, f ,g} and clause collec-
tion {C1,C2,C3,C4}= {a∨b∨c, a∨d∨e, a∨ f ∨g, b∨d∨ f} is in canonical form. It
has three feasible assignments (set {b,e,g} to true, {c,d,g} to true, or {c,d,g} to true).
Note that the instance remains to be in canonical form if the clause (c∨e∨ f ) is added,
but not if the clause (b∨ e∨ f ) is added since C4 already contains both b and f . The
next operator takes the following values for clause C1: n(a,C1) = b, n(b,C1) = c and
n(c,C1) = a.

Before a formal reduction to X3SAT from realizability is given we will briefly describe
the idea behind the graph that is used in the realizability problem. For each clause, ABC
say, a node ABC is created with the purpose to force at least one variable in the clause to
be true. Then, three auxiliary nodes AB,AC and BC are created such that it is guarantee
that at most one of the variables in each pair (hence, also in the clause) is true. To
accomplish these tasks, potential potential routing conflicts of the kind in Example 1 are
created with the SP-arcs and the non-SP-arcs. The actual truth assignment is determined
by arcs from an auxiliary starting node to auxiliary variable nodes. The graph obtained
from clause ABC is given in Figure 4.

We may now formally describe how to construct a realizability instance from a
canonical X3SAT instance that is feasible if and only if the X3SAT instance is. Given
a canonical X3SAT instance, I = (X ,C ), the graph G(I) = (N,A) and the family of
SP-graphs, A (I), is created as follows. For each variable x ∈ X , create three nodes in
G: x+,x− and x. For each clause C ∈ C , create four nodes Ci j,Cik,Cjk and C. Also add
an auxiliary starting node, S.

To determine the set of arcs consider each variable x ∈ X and add the arcs

(S,x+), (x+,x), (S,x−),(x−,x),
(x+,y), (x−,y), (x,y),
(C,x−)(Ci j,x+), (Cik,x+), (Cjk,x+),

(13)

where y �= x is also a variable and C = (xi∨ x j ∨ xk) ∈ C a clause that contains x.
It remains to construct the family of SP-graphs. For each variable, x ∈ X , form an

SP-graph to the node l = x with SP-arcs, Al , non-SP-arcs Āl and unrestricted arcs Ul =
A\ (Al ∪ Āl

)
determined according to the rules below.
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Fig. 4. The SP-graphs associated with variables A,B and C in a realizability instance obtained
from a canonical X3SAT instance with clause ABC. The solid, dashed and dotted arcs are re-
quired to be SP-arcs for destination A, B and C, respectively. Note that appropriate destination
assignments to arc (S,A−), (S,B−) and (S,C−) can be used to create the situation in Figure 2
in Example 1. Similarly, arc (S,A+), (S,B+) and (S,C+) can be used to create the situation in
Figure 1 in Example 1.

1. Add the arcs (x+,x) and (x−,x) to Al as SP-arcs. Also add the arc (y,x) to Al for
each variable y �= x.

2. Add the arcs (S,x+) and (S,x−) to Ul .
3. Add all arcs emanating from S except (S,x+) and (S,x−) to Āl as non-SP-arcs.
4. For each clause C, let y = n(x,C), then add the arcs (C,y−) and (y−,x) to Al .

For each clause C = (xi ∨ x j ∨ xk) add arcs as SP-arcs to the associated SP-graphs
according to the following rules.

5. Add (Ci j,x+
j ) and (x+

j ,xi) to Al if l = xi and (Ci j,x+
i ) and (x+

i ,x j) to Al if l = x j.
6. Add (Cik,x

+
k ) and (x+

k ,xi) to Al if l = xi and (Cik,x
+
i ) and (x+

i ,xk) to Al if l = xk.
7. Add (Cjk,x

+
k ) and (x+

k ,x j) to Al if l = x j and (Cjk,x
+
j ) and (x+

j ,xk) to Al if l = xk.
8. Arcs not put in Al or Āl due to one of the rules above is put in Ul .

Note that the SP-arcs for destination l = x induce a tree that spans all nodes in G
associated with a variable or clause that is connected to x via some clause. Also, S is
not contained in any such tree and all its emanating arcs are in Ul or Āl .

These rules applied to the single clause (A∨B∨C), yields the result in Figure 4.

Theorem 3. Given a canonical X3SAT instance, I = (X ,C ), let G(I) = (N,A) and
Al ∪Ul ∪ Āl be constructed from rules 1-8 above for each variable xl ∈ X. Denote the
induced family of SP-graphs by AL. Then, the X3SAT instance I = (X ,C ) is feasible if
AL is realizable.

To prove this theorem some lemmas are required.

Lemma 1. Given an SP-graph family, AL, and a cost vector, w, that verifies that AL

is realizable, let a,b ∈ L be two destinations. If there are nodes s1,s2,e3,e4 ∈ N such
that the SP-arc sets satisfy Ia ⊇{(s1,e3)}∪{(s2,e4)} and Ib ⊇{(s1,e4)}∪{(s2,e3)}.
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Then, the induced SP-arc sets must also satisfy Ia ⊇ {(s1,e4)}∪{(s2,e3)} and Ib ⊇
{(s1,e3)}∪{(s2,e4)}.
Lemma 2. Given an SP-graph family, AL, and a cost vector, w, that verifies that AL

is realizable, let a,b,c ∈ L be three destinations. If there are nodes s1,s2,e3,e4 and
e5 such that the SP-arc sets satisfy Ia ⊇ {(s1,e3)} ∪ {(s2,e5)}, Ib ⊇ {(s1,e4)} ∪
{(s2,e3)} and Ic ⊇ {(s1,e5)} ∪ {(s2,e4)}. Then, the induced SP-arc sets must also
satisfy Ia ⊇ {(s1,e5)}∪{(s2,e3)}, Ib ⊇ {(s1,e3)}∪{(s2,e4)} and Ic ⊇ {(s1,e4)}∪
{(s2,e5)}.
These lemmas were exemplified along with a proof outline in Example 1 above. They
are used to derive properties of realizable instances obtained from canonical X3SAT
instances as described above. The properties are summarized in Lemma 3 which is the
foundation of the proof of Theorem 3.

Lemma 3. Let AL be an SP-graph family induced by a canonical X3SAT instance,
I = (X ,C ). Let w be a cost vector that verifies that AL is realizable, i.e.,

Al ⊆Il(w) and Āl ∩Il(w) = /0, for all l ∈ L. (14)

Then, the following properties of Il(w) are satisfied for all l ∈ L. Here, shortest paths,
SP-arcs and non-SP-arcs are considered w.r.t. w, i.e., SP-arcs are in Il(w) and non-
SP-arcs are not.

1. For any clause, (A∨B∨C) say, at least one of the arcs (S,A+), (S,B+) and (S,C+)
is an SP-arc to destination A,B and C respectively.

2. For any clause, (A∨B∨C) say, it holds that: (1) at most one of the arcs (S,A+)
and (S,B+) is an SP-arc to destination A and B, respectively, (2) at most one of the
arcs (S,A+) and (S,C+) is an SP-arc to destination A and C, respectively, and (3)
at most one of the arcs (S,B+) and (S,C+) is an SP-arc to destination B and C,
respectively.

3. For any clause, (A∨B∨C) say, exactly one of the arcs (S,A+), (S,B+) and (S,C+)
is an SP-arc to destination A,B and C respectively.

4. For any variable, x say, exactly one of the arcs (S,x−) and (S,x+) is an SP-arc to
destination x.

Proof. All properties essentially follows from Lemmas 1 and 2. By construction, given
a variable x, it holds that an arc, (S, i), emanating from the starting node is a non-SP-arc
unless i equals x+ or x−. Therefore, at least one of the arcs (S,x−) and (S,x+) is an
SP-arcs to destination x. Using this, we prove Property 1-4.

1. Consider a clause, (A∨B∨C) say. Assume that none of the arcs (S,A+), (S,B+)
and (S,C+) is an SP-arc to destination A,B and C, respectively. Then, all the arcs
(S,A−), (S,B−) and (S,C−) must be SP-arcs to destination A,B and C, respec-
tively. Recall that also (ABC,B−), (ABC,C−) and (ABC,A−) are SP-arcs to desti-
nation A,B and C, respectively, by construction. This yields that the requirements
in Lemma 2 are satisfied with start nodes s1 = S and s2 = ABC and end nodes
e3 = A−,e4 = B− and e5 = C−. Therefore, (for instance) the arc (S,A−) is also an
SP-arc to destination C which yields a contradiction.
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2. Consider a clause, (A∨B∨C) say. Assume that both of the arcs (S,A+) and (S,B+)
are SP-arcs to destination A and B, respectively. Recall that also (AB,B+) and
(AB,A+) are SP-arcs to destination A and B, respectively, by construction. This
yields that the requirements in Lemma 1 are satisfied with start nodes s1 = S and
s2 = AB and end nodes e3 = A+ and e4 = B+. Therefore, (for instance) the arc
(S,A+) is also an SP-arc to destination B which yields a contradiction. The cases
AC and BC are proved analogously.

3. Consider a clause, (A∨B∨C) say. Combining the three constraints in 2 yields that
at most one of the arcs (S,A+),(S,B+) and (S,C+) is an SP-arc to destination A,B
and C respectively. Since Property 1 states that at least one of the arc is an SP-arc
to the respective destination, exactly one SP-arc must be so.

4. Consider a variable x and a clause C = (x∨y∨z). At least one of the arcs (S,x−) and
(S,x+) is an SP-arc to destination x. Assume that both are. This yields that (S,y−)
and (S,z−) are SP-arcs to destinations y and z, respectively, from Property 2 with
xy and xz. Since (S,x−) was also assumed to be an SP-arc to destination x the same
situation as in the proof of Property 1 occurs and Lemma 2 yields a contradiction.

Proof (Theorem 3). Given a realizability certificate construct the assignment from the
SP-arcs emanating from the starting node as follows. If (S,x+) is an SP-arc, then set x
to true, otherwise, set x to false. It now follows from Lemma 3 that exactly one variable
in each clause is true and the assignment is feasible.

To complete our NP-completeness proof it is required to construct a realizability cer-
tificate for a given Boolean assignment that satisfies the X3SAT instance.

Theorem 4. Given a canonical X3SAT instance, I = (X ,C ), let G(I) = (N,A) and
Al ∪Ul ∪ Āl be constructed from rules 1-8 above for each variable xl ∈ X. Denote the
induced family of SP-graphs by AL. Then, AL is realizable if the X3SAT instance I =
(X ,C ) is feasible.

Proof. It suffices to find a cost vector, w(X̃), from a given Boolean assignment, X̃ ,
that verifies the realizability of AL in G(I) = (N,A). The rules in Table 1 are used to
determine w from X̃ . Here x and y are different variables and C = (x∨y∨ z) is a clause.
Costs on arcs not covered by a rule below are set to 5.

Table 1. Rules to Determine the Cost Vector From a Truth Assignment

(i, j) if x is true if x is false
(S,x+)
(S,x−)

1
1

1
1

(x+,x)
(x−,x)

1
5

5
1

(x,y) 5 5

(i, j) x is true y is true z is true
(Cxy,x+) 3 1 3
(Cxy,y+) 1 3 3
(Cxz,x+) 3 3 1
(Cxz,z+) 1 3 3
(Cyz,y+) 3 3 1
(Cyz,z+) 3 1 3
(C,x−) 1 2 3
(C,y−) 3 1 2
(C,z−) 2 3 1

(i, j) wi j

(x+,y) 2
(y+,x) 2
(x+,z) 2
(z+,x) 2
(y+,z) 2
(z+,y) 2
(x−,z) 2
(y−,x) 2
(z−,y) 2
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Fig. 5. The part of the graph that involves nodes associated with the clause ABC. When A is true,
the cost of an arc is 1, 2 or 3, if it is solid, dotted or dashed, respectively. An arc that is not drawn
have cost 5.

Since the X3SAT instance is canonical, there is no variable pair that is in two clauses.
This implies that the rules above are unambiguous. The possible source of ambiguity
would be for a clause, C = (x∨ y∨ z), from x−,y− or z− to x,y or z. However, since
no other clause can contain two of the variables x,y or z this is of no concern. This
”independence” property yields that it essentially suffices to consider one clause in
isolation.
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Fig. 6. The parts of the shortest path tree to destinations A (top) and B (bottom) that involve nodes
associated with the clause ABC which is assumed to be satisfied by A. Solid arcs represent SP-arcs
and dotted arcs represent non-SP-arcs. The dotted arcs have not been SP-arcs or non-SP-arcs.
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The cost vector obtained from the rules in Table 1 is illustrated in Figure 5 for the
part of the graph involving the clause ABC when A is assigned to true.

From these rules it is straightforward to derive the tight node potential for any desti-
nation. Due to the independence there are only three cases to consider for each clause,
C = (x∨ y∨ z), depending on which position x has relative to the true variable in C.
The result is illustrated for the clause ABC and destinations A and B when A is true in
Figure 6. From this it is easy to verify that all required SP-arcs are SP-arcs and that no
non-SP-arc is an SP-arc. That is, the family of SP-graphs is realizable.

It follows from Theorems 3 and 4 that realizability is NP-complete. Note that realiz-
ability is NP-complete also when it is required that all shortest paths are unique.

Theorem 5. It is NP-complete to decide if a family of SP-graphs is realizable.

From the proof above it is clear that a stronger statement holds. Namely, it is NP-
complete to decide if a family of SP-graphs is realizable even if for each SP-graph the
SP-arcs form a rooted, non-spanning tree with maximum depth 2.

4 Conclusion

In this paper we consider inverse shortest path routing problems. In particular, we note
that there is a difference between the previously considered compatibility variant of the
problem and the more complete variant, here referred to as realizability. We provide
a mathematical programming formulation for the realizability problem. Most impor-
tantly, it is proved that the realizability problem is NP-complete. This result has signif-
icant theoretical consequences for bilevel programs where the lower level is a shortest
path problem.
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A., Ümit, H.: Optimization of OSPF routing in IP networks. In: Koster, A.M.C.A., Muñoz, X.
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Abstract. Given a (complete) directed network, where a skill level s j is associ-
ated with each node j other than the depot, stating requirements for the associated
service call, and given a set of available technicians, each one operating at a cer-
tain skill level, we address the problem of defining the tour of each technician,
each one starting and ending at the depot, in such a way that each service require-
ment is fulfilled by exactly one technician, and proper skill level constraints are
satisfied. These constraints state that the service requirement at node j can be op-
erated by any technician having a skill level at least s j . Given travelling costs for
the arcs of the network, which are skill level dependent, we want to determine a
minimum cost set of tours which satisfy the skill level constraints. This problem,
named Skill VRP, originates from a real application context and it specializes,
to some extents, the Site Dependent VRP (SDVRP) and, thus, the Periodic VRP.
Furthermore, it shows strict relationships with Home Care Scheduling problems.
Various ILP formulations are proposed for Skill VRP, which are tested on a large
suite of randomly generated instances. The obtained results show that the stated
problem may be very difficult to solve exactly. However, some of the proposed
models produce LP bounds which are very close to the optimum cost, and which
can be determined in an efficient way. Thus, these ILP models constitute a very
promising starting point for the solution of Skill VRP, and for the design of effi-
cient cutting plane approaches for real application extensions.

1 The Skill Vehicle Routing Problem

Let G = (N,A) be a (complete) directed network, with |N| = n and |A| = m. Let each
node j, j �= 1, represent a service requirement, and s j denote the skill level required by
node j for the associated service call. On the other hand, node 1 denotes the depot. As-
sume to have a set T of available technicians, each one operating at a certain skill level,
and st denote the skill level of technician t. Assume also that the service requirement at
node j can be operated by any technician having a skill level at least s j , for j ∈ N \{1},
and S denote the set of skills given by the union of the skill requirement set at the nodes
and the skill set associated with the technicians, i.e. S = {si : i ∈ N}∪{st : t ∈ T}.

Given non-negative skill dependent travelling costs ct
i j for each (i, j) ∈ A and tech-

nician t ∈ T , we study the problem of defining the tour of the technicians, each one
starting and ending at node 1, in such a way that each service requirement is fulfilled

J. Pahl, T. Reiners, and S. Voß (Eds.): INOC 2011, LNCS 6701, pp. 354–364, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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by exactly one technician, and the skill level constraints are satisfied. Hereafter this
problem will be referred to as Skill VRP.

The Skill VRP, for which mathematical models have never been proposed before to
the best of our knowledge, originates from a real application concerning the dispatch of
technicians to customer service requests in after-sales service management, referred to
as field service ([1], [7]). Furthermore it specializes, to some extents, the Site Dependent
VRP (SDVRP) [4], [2] and, thus, the Periodic VRP [4], [3]. In fact, by modelling the
technicians in terms of vehicles, Skill VRP is the special case of the SDVRP where
a suitable ordering among the types of vehicles is imposed (in fact any service call j
can be operated by technicians having a skill level at least s j), whereas in the general
SDVRP no hierarchy among the vehicles does exist. See also [6] for an example of Tabu
Search approach for SDVRP with time windows. Furthermore, the Skill VRP shows
strong resemblance with Home Care Scheduling problems (HCS), where coordinators
have to assign the care of every client to an operator, considering his workload, the
particular skills that the operator should have in order to satisfy the clients needs and
the travel distance of the operator for reaching the clients home. See [5] for an example
of Integer Linear Programming (ILP) model developed to support human resource short
term planning in home care.

In this paper various ILP models and related valid inequalities are proposed for for-
mulating and solving the Skill VRP. The proposed models are based on multicommodity
flow variables and constraints, on increasing disaggregation levels which allow one to
strengthen the associated LP bounds. Furthermore, the models strongly exploit the skill
information at the nodes, which is the key aspect differentiating the proposed models
from more classical VRP models. As shown in the computational section, a deep skill
information consideration revealed to be crucial in determining good LP bounds. The
models have been tested on a large suite of randomly generated instances. The obtained
results show that the Skill VRP may be very difficult to solve exactly on reasonable
sized networks. However, some of the proposed models (the more disaggregated ones)
produce LP bounds which are very close to the optimum cost. The time required to
compute these LP bounds, however, may be still too large. Therefore, some families
of valid inequalities have been proposed to enhance some less disaggregated ILP mod-
els. The obtained results are very good. In fact, the proposed models, when equipped
with those valid inequalities, produce LP bounds near to the optimum at a reasonable
computational cost. The proposed models thus appear to be a very promising starting
point for the solution of the Skill VRP. Further, they appear to be a reasonable basis
for the design of efficient cutting plane approaches, based on the proposed formulation
and valid inequalities, to address real application extensions, which take into account
additional constraints in addition to the investigated skill constraints.

2 ILP Models for the Skill VRP

Let us introduce the design variables which are common to all models. For each (i, j) ∈
A and t ∈ T such that st ≥max{si,s j}, let:

xt
i j =

{
1 if (i, j) belongs to the tour of technician t
0 otherwise.
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Observe that we imposed st ≥max{si,s j} in any feasible solution that uses arc (i, j)
for technician t according to the skill level constraints. This property is peculiar to the
particular structure of the Skill VRP. Next we will present two models for the Skill
VRP, for increasing disaggregation levels of auxiliary multicommodity flow variables
and constraints.

2.1 The Aggregated Formulation

As common in some flow based VRP formulations, let us introduce a flow variable yi j

for each (i, j) ∈ A in addition to the design variables xt
i j, in order to break subtours.

Using these variables we can state the following model, referred to as Agg:

min ∑
(i, j)∈A

∑
t:st≥max{si,s j}

ct
i jx

t
i j (1)

∑
i∈N

∑
t:st≥max{si,s j}

xt
i j = 1 j = 2, ..,n (2)

∑
i∈N:st≥si

xt
i j = ∑

i∈N:st≥si

xt
ji j = 2, ..,n, t : st ≥ s j (3)

∑
j∈N

y1 j = n−1 (4)

∑
i∈N

yi j−∑
i∈N

y ji = 1 j ∈ N \ {1} (5)

yi j ≤ (n−1) ∑
t:st≥max{si,s j}

xt
i j (i, j) ∈ A (6)

yi j ≥ 0 (i, j) ∈ A

xt
i j ∈ {0,1} (i, j) ∈ A, t : st ≥max{si,s j}

Constraints (2) and (3) model the tour of each technician t by taking into account the
skill constraints. The flow constraints (4) and (5) and the successive linking constraints
(6) allow one to break subtours, i.e. tours which are disconnected from the depot. Also in
this case the constraints do incorporate the skill requirements at the nodes. The objective
function (1), to be minimized, gives the cost of the tours.

2.2 The Destination Disaggregated Model

In order to enhance the linear programming (LP) bound of the aggregated formula-
tion, let us disaggregate the auxiliary flow variables yi j by destination. Also this way of
strengthening the LP relaxation of single commodity flow models is well-known. Con-
sider a model where one unit of flow is sent from the depot to each node k ∈V \{1} by
using disaggregated flow variables yk

i j with j �= 1 and i �= k, that specify the amount of
flow traversing arc (i, j) that is destined to that node. The resulting model, referred to
as WeakDestDis, is the following:

min ∑
(i, j)∈A

∑
t:st≥max{si,s j}

ct
i jx

t
i j
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∑
i∈N

∑
t:st≥max{si,s j}

xt
i j = 1 j = 2, ..,n

∑
i∈N:st≥si

xt
i j = ∑

i∈N:st≥si

xt
ji j = 2, ..,n, t : st ≥ s j

∑
(i, j)∈A:
i�=k, j �=1

yk
i j− ∑

( j,i)∈A:
i�=1, j �=k

yk
ji =

⎧⎨⎩1 if i = 1
0 if i �= 1,k
−1 if i = k

k = 2, . . . ,n (7)

yk
i j ≤ ∑

t:st≥max{si,s j}
xt

i j (i, j) ∈ A, k ∈V : k �= 1, i, j �= 1 (8)

xt
i j ∈ {0,1} (i, j) ∈ A, t : st ≥max{si,s j}

yk
i j ≥ 0 (i, j) ∈ A : j �= 1,k �= 1, i

Constraints (7) are the classical flow conservation constraints, stating that one unit
of flow must be pushed to each destination node k. Since this unit of flow is sent from
the depot, we can reinterpret the flow variables as indicating whether arc (i, j) is in the
path to node k. This immediately justifies the linking constraints (8).

However, here we are able to specialize this technique to the particular structure of
the Skill VRP. Constraints (8) can be replaced by the following constraints, that tighten
the LP relaxation of the problem:

yk
i j ≤ ∑

t:st≥max{si,s j ,sk}
xt

i j (i, j) ∈ A, k ∈V : k �= 1, i, j �= 1. (9)

The resulting model is referred to as StrongDestDis. The computational results reported
in Section 4 show that the LP bounds computed via StrongDestDis are substantially
better than the ones obtained by WeakDestDis, by proving that an accurate modelling
of the skill information at the nodes is a crucial aspect for determining good LP bounds.

2.3 Some Valid Inequalities

The LP relaxation of StrongDestDis shows two critical issues that suggested some fam-
ilies of valid inequalities in order to enhance the LP bound. Specifically, by looking at
the xt

i j variables in the LP solution, and specifically at the subgraphs induced by the
positive xt

i j, for each t, we observed the following facts:

1. the LP solution contains two-cycles (i.e. cycle of type (i− j− i)) or composition
of two-cycles in the subgraphs related to technicians t not used in the solution (a
technician t is not used when xt

1 j = 0 for all nodes j other than the depot)
2. the LP solution contains two-cycles (or again composition of two-cycles) also in

the subgraphs of technicians used, i.e. connected to the depot.

In order to eliminate the two-cycles of the first type, the following valid inequalities
have been added to the LP relaxation of StrongDestDis:

∑
(i, j):i, j �=1,st>=max{si,s j}

xt
i j ≤ n ∑

j∈N\{1}:st≥s j

xt
1 j t ∈ T (10)
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In addition, the model has been enhanced via the following families of valid
inequalities:

xt
ik + xt

ki ≤ ∑
j∈N\{1}:st≥s j

xt
1 j t ∈ T, i,k �= 1 : st >= max{si,sk} (11)

xt
ik ≤ ∑

( j,i): j �=k,st≥s j

xt
ji t ∈ T, i,k �= 1 : st >= max{si,sk}. (12)

Both (11) and (12) aim at eliminating the two-cycles of the second type. Hereafter,
these valid inequalities will be referred to as TC (which stands for Two-Cycles) and EC
(which stands for Enhanced Connectivity), respectively.

As reported in Section 4, TC and EC do not behave equivalently when added to
StrongDestDis. Both of them, instead, are implied by the stronger model in Section
3, which is obtained by further disaggregating StrongDestDis. As shown by the com-
putational results in Section 4, this further disaggregation step allowed us to generate
LP bounds which are very close to the optimum values, but this has been achieved at
the expenses of a significant computational effort. This has motivated the proposal of
(11) and (12) as a tool to enhance the more tractable model StrongDestDis, as better
discussed in Section 4.

StrongDestDis equipped with all the families of valid inequalities discussed above is
referred to as TightStrongDestDis.

3 The Destination-Technician Disaggregated Model

In order to strengthen the LP bound, a further disaggregation has been performed by
considering a disaggregation by technician in addition to the disaggregation by destina-
tion. This double disaggregation is innovative, in our opinion, in modelling issues for
VRP.

Consider a model which extends StrongDestDis via disaggregated flow variables ykt
i j ,

with j �= 1, i �= k and t : st ≥ max{si,s j,sk}, where ykt
i j denotes the unit of flow which

is sent from the depot to node k ∈ V \ {1} via technician t, if technician t serves k, and
which holds zero otherwise. The model uses additional variables yt

k, k = 2, ..,n, t : st ≥
sk, where yt

k denotes whether technician t transports one unit of flow from the depot to
node k (equivalently, whether arc (i, j) is in the path from the depot to node k, and this
path belongs to the tour of technician t).

The resulting model, referred to as StrongDestTechDis, is the following:

min ∑
(i, j)∈A

∑
t:st≥max{si,s j}

ct
i jx

t
i j

∑
i∈N

∑
t:st≥max{si,s j}

xt
i j = 1 j = 2, ..,n

∑
i∈N:st≥si

xt
i j = ∑

i∈N:st≥si

xt
ji j = 2, ..,n, t : st ≥ s j
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∑
(i, j)∈A:
i�=k, j �=1,
st≥si,s j

ykt
i j − ∑

( j,i)∈A:
i�=1, j �=k,
st≥si,s j

ykt
ji =

⎧⎨⎩
yt

k if i = 1
0 if i �= 1,k
−yt

k if i = k
k = 2, . . . ,n, t : st ≥ sk (13)

∑
t:st≥sk

yt
k = 1 k = 2, ..,n (14)

ykt
i j ≤ xt

i j (i, j) ∈ A, k ∈V : k �= 1, i, j �= 1, (15)

t : st ≥max{si,s j,sk}
xt

i j ∈ {0,1} (i, j) ∈ A, t : st ≥max{si,s j}
yt

k ∈ {0,1} k = 2, ..,n, t : st ≥ sk

ykt
i j ≥ 0 (i, j) ∈ A : j �= 1,k �= 1, i,

t : st ≥max{si,s j,sk}
Constraints (13) are the flow conservation constraints related to the disaggregated flow
variables ykt

i j . They state that, if yt
k = 1, i.e. technician t serves node k, then one unit

of flow must be pushed from the depot to node k. Constraints (14) guarantee that each
node k is served by exactly one technician, while constraints (15) are the corresponding
linking constraints. The computational results presented in the next section will provide
evidence that the LP bounds produced by StrongDestTechDis are very tigth, and this is
essentially due to the fact that the LP solution contains very few two-cycles (or, again,
compositions of two-cycles) for technicians used, i.e. connected to the depot.

In particular, it is easy to show that StrongDestTechDis implies the following cut
constraints:

∑
i∈N\S, j∈S:st≥max{si,s j}

xt
i j ≥ yt

k S ⊆ N \ {1},k ∈ S, t ∈ T : st ≥ sk. (16)

Moreover, the cut constraints imply EC, as shown by the following lemma:

Lemma 1. Cut constraints, and so model StrongDestTechDis, imply EC.

Proof. Consider EC for given i,k �= 1 and t ∈ T such that st >= max{si,sk}, that is:

xt
ik ≤ ∑

( j,i): j �=k,st≥s j

xt
ji. (17)

Add ∑( j,k): j �=i,st≥s j
xt

jk to both sides of (17). Since ∑( j,k):st≥max{s j ,sk} xt
jk ≥ yt

k is im-
plied by model StrongDestTechDis, then we get the cut constraint for S = {i,k}. ��
The cut constraints imply also TC, as shown below:

Lemma 2. Cut constraints, and so model StrongDestTechDis, imply TC.

Proof. Consider EC for given i,k �= 1 and t ∈ T such that st >= max{si,sk}, that is:

xt
ik ≤ ∑

( j,i): j �=k,st≥s j

xt
ji. (18)
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Recall that EC is implied by the cut constraints by Lemma 1. Add xt
ki to both sides

of (18). Since ∑ j∈N\{1}:st≥s j
xt

1 j ≥ ∑( j,i):st≥s j
xt

ji, we derive

xt
ik + xt

ki ≤ ∑
j∈N\{1}:st≥s j

xt
1 j, (19)

which is the corresponding TC constraint. ��
Thus model StrongDestTechDis appears to be very strong, and this is confirmed by
the computational results in Section 4. Clearly, its main drawback is in its size, which
causes high computational times. Anyway, we will show next that model StrongDest-
Dis, when equipped with the TC and the EC valid inequalities, allows one to obtain
LP bounds which are comparable with those produced by the stronger disaggregated
model, at a reasonable computational time.

4 The Computational Experience

We present here the results of a wide computational experience, on a large suite of
randomly generated Skill VRP instances, aimed at comparing the previously introduced
ILP models both in terms of quality of the returned LP bounds and also in terms of the
required computational times.

4.1 The Instances

We used a test set for VRP which was properly extended with the data relative to the
skills. Specifically, the original instances are characterized by the number of nodes (ei-
ther 20 or 40) and by the type (4 different choices). There are two types of Euclidean
instances referred to as tc and te according to the position of the depot in the grid. In
the tc instances the depot is located on a corner of the grid, while in the te instances
the depot is located in the centre of the grid. In addition, there are two types of random
instances: tra denotes asymmetric instances and trs denotes the symmetric ones. 5 in-
stances are available for each given number of nodes and type, thus summing up to a
total of 40 (2×4×5) instances.

In order to generate the Skill VRP instances we used instance number one (over the
five available) for each type and for each given number of nodes, thus summing up to 8
original instances over 40.

In the instances there is a one-to-one correspondence between skills and technicians,
i.e. we have a technician for each skill. We set both the number of technicians and the
number of skills to 3 where skill 1 denotes the lowest skill and skill 3 is the highest
(w.l.o.g. the depot is assumed to have skill 1).

For each original instance we generated 18 Skill VRP instances according to the
pattern used to assign a skill to the nodes. The patterns used are the following:

50-10-40 (for a total of 6 permutations)
50-20-30 (for a total of 6 permutations)
40-40-20 (for a total of 3 permutations)
30-30-40 (for a total of 3 permutations)
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where the numbers indicate the percentage of nodes requiring a specific skill.
In the Skill VRP instances the costs depend on both the arc and the technician, dif-

ferently from what happens in the original VRP instances, where the costs depend on
the arc only. In particular, we assume that the cost of an arc (i, j) is increasing with the
technician skills, i.e., the more a technician is qualified higher the cost. The formula
used to generate the costs is the following:

ct
i j =

{
ci j if t = 1
ci j ·δ · (t−1) if t > 1,

where ci j represents the cost of arc (i, j) in the original instances. Observe that these
costs satisfy the triangular property for each technician when the original costs do.
Trivially if ci j ≤ cih +ch j, the inequality ci j +δ ·k≤ cih +ch j +2δ ·k holds true. Under
the hypothesis of costs not satisfying the triangular property, the proposed models do
not assure that, for a given technician, the schedule is composed of a single tour: it
might be convenient coming back to the depot more than once.

4.2 Computational Results

Both the instances characterized by 20 nodes that the ones having 40 nodes have been
tested. In Tables 2 and 3, we give a comparison of the models Aggregated, WeakDest-
Dist, StrongDestDis, TightStrongDestDis and StrongDestTechDis on the larger instances,
characterized by 40 nodes, in terms of percentage gap of the LP bound with respect to
the optimum value (computed via the model Aggregated) and of average time required
to solve the continuous relaxation. For the aggregated model also the computational
time required to get the optimum is reported.

It appears that computing the integer solution is computational expensive (see the
average computational times reported under AggIPTime in Table 3). However, by en-
hancing the disaggregation level the proposed models tend to produce very good LP
bounds (see the average gaps in Table 2). In particular, StrongDestTechDis provides an
average gap going from the minimum 0.03 (te family) to the maximum 0.75 (tra fam-
ily). Clearly, the required computational times becomes high when the disaggregation
level increases, reaching an average time of 1033,51 sec. for the trs instances.

On the other hand, the computational time is not an issue for the instances with 20
nodes. Therefore, time is not in Table 1, where a comparison among the LP bounds
produced by a subset of the proposed models is shown.

Finally, Table 4 reports average gaps obtained when the StrongDestDis model is
equipped respectively with the Enhanced Connectivity valid inequalities (StrongDest-
Dis+EC), with the Two-Cycles valid inequalities (StrongDestDis+TC) and with all the
families of valid inequalities proposed in Section 2.3.

5 Conclusions

The problem of defining a set of tour, each one operated by a skilled technician, so as
to fulfill service requirements asking for a particular skill, has been defined and stud-
ied. Three models, characterized by an increasing level of variables disaggregation have
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Table 1. Model Comparison in Terms of Optimality Gap - 20 Node Instances

Instance Agg StrongDestDis
tc20-1-10-2-8.dat 13.62 0.86
tc20-1-10-8-2.dat 18.50 2.74
tc20-1-2-10-8.dat 13.36 0.86
tc20-1-8-10-2.dat 18.59 3.21
tc20-1-2-8-10.dat 12.66 0.00
tc20-1-8-2-10.dat 12.40 0.00
tc20-1-10-6-4.dat 17.58 1.11
tc20-1-10-4-6.dat 15.46 1.10
tc20-1-4-10-6.dat 14.39 1.07
tc20-1-6-10-4.dat 16.70 1.36
tc20-1-4-6-10.dat 12.08 0.00
tc20-1-6-4-10.dat 10.41 0.00
tc20-1-8-8-4.dat 16.42 2.89
tc20-1-4-8-8.dat 12.08 0.00
tc20-1-8-4-8.dat 13.55 0.64
tc20-1-8-6-6.dat 14.73 0.43
tc20-1-6-8-6.dat 14.65 1.07
tc20-1-6-6-8.dat 13.58 0.43
Avg tc20-1 14.49 0.99
te20-1-10-2-8.dat 18.24 0.00
te20-1-10-8-2.dat 20.75 2.11
te20-1-2-10-8.dat 14.97 0.60
te20-1-8-10-2.dat 19.61 0.60
te20-1-2-8-10.dat 13.82 0.00
te20-1-8-2-10.dat 15.24 0.00
te20-1-10-6-4.dat 20.45 2.55
te20-1-10-4-6.dat 19.08 1.78
te20-1-4-10-6.dat 17.27 0.00
te20-1-6-10-4.dat 17.62 2.21
te20-1-4-6-10.dat 14.62 0.00
te20-1-6-4-10.dat 15.20 0.00
te20-1-8-8-4.dat 18.98 0.80
te20-1-4-8-8.dat 14.76 0.20
te20-1-8-4-8.dat 15.16 0.40
te20-1-8-6-6.dat 17.45 1.21
te20-1-6-8-6.dat 15.91 0.80
te20-1-6-6-8.dat 14.96 0.20
Avg te20-1 16.89 0.75
tra20-1-10-2-8.dat 2.29 0.00
tra20-1-10-8-2.dat 11.48 6.42
tra20-1-2-10-8.dat 0.36 0.00
tra20-1-8-10-2.dat 7.78 4.13
tra20-1-2-8-10.dat 0.33 0.00
tra20-1-8-2-10.dat 1.31 0.19
tra20-1-10-6-4.dat 6.18 2.70
tra20-1-10-4-6.dat 2.63 0.87
tra20-1-4-10-6.dat 5.54 2.95
tra20-1-6-10-4.dat 6.23 3.72
tra20-1-4-6-10.dat 2.29 0.00
tra20-1-6-4-10.dat 0.36 0.00
tra20-1-8-8-4.dat 7.88 3.38
tra20-1-4-8-8.dat 0.33 0.00
tra20-1-8-4-8.dat 0.33 0.00
tra20-1-8-6-6.dat 5.50 3.46
tra20-1-6-8-6.dat 4.18 0.00
tra20-1-6-6-8.dat 0.77 0.00
Avg tra20-1 3.65 1.55
trs20-1-10-2-8.dat 14.59 2.39
trs20-1-10-8-2.dat 20.00 5.61
trs20-1-2-10-8.dat 12.64 3.50
trs20-1-8-10-2.dat 18.33 4.97
trs20-1-2-8-10.dat 10.48 1.11
trs20-1-8-2-10.dat 13.47 0.48
trs20-1-10-6-4.dat 19.16 7.21
trs20-1-10-4-6.dat 18.25 5.25
trs20-1-4-10-6.dat 15.57 4.30
trs20-1-6-10-4.dat 16.27 2.38
trs20-1-4-6-10.dat 9.36 0.00
trs20-1-6-4-10.dat 11.15 0.96
trs20-1-8-8-4.dat 18.63 3.98
trs20-1-4-8-8.dat 11.50 0.48
trs20-1-8-4-8.dat 14.20 0.96
trs20-1-8-6-6.dat 15.54 1.19
trs20-1-6-8-6.dat 15.64 3.14
trs20-1-6-6-8.dat 12.07 1.11
Avg trs20-1 14.83 2.72
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Table 2. Model Comparison in Terms of Optimality Gap - 40 Node Instances

Instance AggIPTime Agg WeakDestDis StrongDestDis TightStrongDestDis StrongTechDestDis
tc40-1-20-4-16.dat 740.01 16.67 7.56 2.24 0.21 0.00
tc40-1-20-16-4.dat 138099.46 20.81 12.61 3.55 1.69 0.56
tc40-1-4-20-16.dat 292.92 12.58 3.92 0.33 0.00 0.00
tc40-1-16-20-4.dat 66387.62 20.00 11.48 3.43 1.74 0.25
tc40-1-4-16-20.dat 269.38 11.76 3.08 0.14 0.00 0.00
tc40-1-16-4-20.dat 153.52 13.83 5.60 0.28 0.00 0.00
tc40-1-20-12-8.dat 7154.01 18.52 9.80 3.34 0.84 0.00
tc40-1-20-8-12.dat 4623.10 18.61 9.52 1.75 0.21 0.00
tc40-1-8-20-12.dat 1376.12 15.43 6.72 0.95 0.00 0.00
tc40-1-12-20-8.dat 21599.58 16.09 8.12 2.42 0.00 0.00
tc40-1-8-12-20.dat 269.24 11.74 3.08 0.00 0.00 0.00
tc40-1-12-8-20.dat 293.61 14.38 5.32 0.28 0.00 0.00
tc40-1-16-16-8.dat 8792.80 18.20 8.96 2.52 0.23 0.00
tc40-1-8-16-16.dat 382.51 13.62 4.20 0.28 0.00 0.00
tc40-1-16-8-16.dat 595.59 15.67 7.00 0.77 0.00 0.00
tc40-1-16-12-12.dat 2747.81 16.69 8.40 1.61 0.00 0.00
tc40-1-12-16-12.dat 1680.03 16.34 7.56 1.37 0.00 0.00
tc40-1-12-12-16.dat 536.05 12.91 5.32 0.28 0.00 0.00
Avg tc40-1 14221.85 15.77 7.13 1.42 0.27 0.04
te40-1-20-4-16.dat 199.26 6.33 4.42 1.67 0.00 0.00
te40-1-20-16-4.dat 137139.71 9.08 7.25 5.11 0.89 0.38
te40-1-4-20-16.dat 41.51 2.39 1.07 0.49 0.00 0.00
te40-1-16-20-4.dat 167422.29 10.40 7.65 5.78 0.66 0.24
te40-1-4-16-20.dat 6.35 1.30 0.49 0.39 0.00 0.00
te40-1-16-4-20.dat 63.62 2.66 1.02 0.29 0.00 0.00
te40-1-20-12-8.dat 9104.19 8.66 6.01 3.10 0.28 0.00
te40-1-20-8-12.dat 1163.74 6.91 4.24 2.03 0.00 0.00
te40-1-8-20-12.dat 232.59 4.18 2.92 1.02 0.00 0.00
te40-1-12-20-8.dat 7744.17 7.31 6.18 3.14 0.23 0.00
te40-1-8-12-20.dat 23.42 3.05 1.10 0.58 0.00 0.00
te40-1-12-8-20.dat 18.04 2.85 1.39 1.16 0.00 0.00
te40-1-16-16-8.dat 59379.08 7.39 6.15 4.69 0.51 0.00
te40-1-8-16-16.dat 25.76 2.48 1.19 0.49 0.00 0.00
te40-1-16-8-16.dat 712.57 7.28 5.12 4.22 0.00 0.00
te40-1-16-12-12.dat 1948.18 6.01 4.22 1.77 0.00 0.00
te40-1-12-16-12.dat 917.58 5.00 2.92 1.96 0.00 0.00
te40-1-12-12-16.dat 177.64 4.95 3.90 2.98 0.00 0.00
Avg te40-1 21462.21 5.46 3.73 2.27 0.14 0.03
tra40-1-20-4-16.dat 16.56 5.67 3.27 1.98 1.13 0.85
tra40-1-20-16-4.dat 6071.55 9.35 8.55 5.14 1.42 1.09
tra40-1-4-20-16.dat 8.73 3.44 3.09 2.47 0.18 0.18
tra40-1-16-20-4.dat 1930.30 7.05 6.65 4.42 1.03 1.00
tra40-1-4-16-20.dat 31.45 2.46 1.67 1.20 0.07 0.00
tra40-1-16-4-20.dat 321.51 5.94 4.29 3.70 0.71 0.41
tra40-1-20-12-8.dat 2513.81 9.64 7.73 5.39 2.37 1.86
tra40-1-20-8-12.dat 991.68 7.75 6.35 6.09 1.53 0.49
tra40-1-8-20-12.dat 844.34 6.65 5.29 3.57 1.24 0.83
tra40-1-12-20-8.dat 1122.82 5.78 5.75 5.03 1.41 1.09
tra40-1-8-12-20.dat 19.58 2.58 1.83 1.44 0.00 0.00
tra40-1-12-8-20.dat 5.04 1.70 1.05 0.61 0.00 0.00
tra40-1-16-16-8.dat 2419.07 9.21 8.97 5.89 1.93 1.63
tra40-1-8-16-16.dat 55.96 3.83 2.44 1.98 0.00 0.00
tra40-1-16-8-16.dat 339.80 5.02 4.92 3.43 0.64 0.12
tra40-1-16-12-12.dat 771.73 6.46 6.11 3.33 2.00 1.33
tra40-1-12-16-12.dat 886.28 7.66 6.60 5.45 2.59 2.50
tra40-1-12-12-16.dat 104.89 6.74 4.78 3.53 0.59 0.13
Avg tra40-1 1025.28 5.94 4.96 3.59 1.05 0.75
trs40-1-20-4-16.dat 1042.82 23.00 13.33 6.39 0.98 0.00
trs40-1-20-16-4.dat 24210.90 24.86 17.45 8.11 1.81 0.78
trs40-1-4-20-16.dat 92.81 14.22 5.87 2.08 0.00 0.00
trs40-1-16-20-4.dat 2993.72 19.42 11.67 3.33 0.94 0.15
trs40-1-4-16-20.dat 260.99 12.73 5.57 1.77 0.00 0.00
trs40-1-16-4-20.dat 1514.70 19.17 12.71 4.40 1.56 0.81
trs40-1-20-12-8.dat 12724.45 24.03 15.42 7.39 1.40 0.60
trs40-1-20-8-12.dat 3304.62 23.93 14.54 6.90 0.99 0.72
trs40-1-8-20-12.dat 1438.01 18.77 11.45 5.91 0.32 0.25
trs40-1-12-20-8.dat 9238.33 21.86 14.68 6.24 1.30 1.18
trs40-1-8-12-20.dat 100.96 13.71 5.87 1.28 0.00 0.00
trs40-1-12-8-20.dat 87.79 12.82 5.62 0.89 0.00 0.00
trs40-1-16-16-8.dat 1607.80 20.63 11.96 4.96 0.51 0.00
trs40-1-8-16-16.dat 491.16 17.55 8.31 3.73 0.72 0.20
trs40-1-16-8-16.dat 156.85 18.03 10.27 3.15 0.00 0.00
trs40-1-16-12-12.dat 3191.11 20.67 13.05 6.53 1.63 0.31
trs40-1-12-16-12.dat 5044.69 19.95 12.22 6.15 0.90 0.64
trs40-1-12-12-16.dat 494.40 18.95 10.76 3.89 0.00 0.00
Avg trs40-1 3777.56 19.13 11.15 4.62 0.73 0.31
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Table 3. Comparison in Terms of Average Time

Instance AggIP Agg Disagg WeakDestDis Strong TightStrong StrongTech
DestDis DestDis DestDis

tc40-1 14221.85 0.24 0.94 214.84 324.91 209.27 538.71
te40-1 21462.21 0.32 0.98 162.48 149.87 114.14 454.97
tra40-1 1025.28 0.35 0.72 142.71 112.28 45.86 232.92
trs40-1 3777.56 0.27 1.01 199.88 442.46 206.13 1033.51

Table 4. Comparison in Terms of Gap

Instance StrongDestDis+EC StrongDestDis+TC TightStrongDestDis
tc40-1 0.61 0.56 0.27
te40-1 2.00 0.18 0.14
tra40-1 3.33 1.17 1.05
trs40-1 1.73 2.37 0.73

been formulated and tested on a large suite of randomly generated instances. Compu-
tational results have shown that introducing a greater level of disaggregation permits to
obtain very good LP bounds, unfortunately at the cost of greater computational times
required to solve the models. A model with an intermediate level of disaggregation
equipped with a set of valid inequalities which have proven to be computationally ef-
fective, seems thus to represent a good trade-off between quality of the LP bound and
computational burden. Such a model thus represents a promising starting point to de-
velop exact as well heuristic approaches to solve the problem to optimality.
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Abstract. The article presents a study on a biobjective generalization of the in-
ventory routing problem, an important optimization problem found in logistical
networks in which aspects of inventory management and vehicle routing inter-
sect. A compact solution representation and a heuristic optimization approach are
presented, and experimental investigations involving novel benchmark instances
are carried out. As the investigated problem is computationally very demanding,
only a small subset of solutions can be computed within reasonable time. Deci-
sion support is nevertheless obtained by means of a set of reference points, which
guide the search towards the Pareto-front.

1 Introduction

Many logistical activities are commonly concerned with moving required items through
a graph, often referred to as a “supply chain” or “supply network”. Naturally, numer-
ous aspects influence the way in which such processes are organized, including macro-
and microeconomical conditions, the objectives of the players along the supply chain,
their interrelations, and their technical abilities of communicating and thus exchanging
the required information. Consequently, different implementations of coordination and
replenishment strategies can be found in practice. While some supply chains are or-
ganized in a rather loose fashion, with sporadic interactions among the players, others
consists of permanent, long-term business relations with frequent deliveries.

A more recent and prominent example of how to organize the logistical activities in
a supply chain is the Vendor Managed Inventory-strategy. In this approach, the vendor/
supplier takes considerable control over the inventories held at the downstream entity,
i.e. the buyer/ retailer, by determining the level of inventories and the corresponding
replenishment cycles/ patterns. In this sense, responsibility for adequate inventory lev-
els is shifted upstream, while inventories as such are still held downstream. From an
operations research (OR) point of view, such problems combine decision variables de-
scribing shipping quantities and dates, as well as variables determining the routing of
the vehicles used for transporting the goods. The obtained models therefore lie in the
intersection of two classical OR problems, namely the vehicle routing problem and
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inventory management problems, and have led to what is commonly referred to as in-
ventory routing problems (IRP) [3, 18].

Inventory routing problems have drawn a considerable interest in past years. While ve-
hicle routing and inventory management are challenging issues on their own, both aspect
combined together significantly increase the difficulty of the problem at hand. Contrary to
most vehicle routing problems, dynamically developing inventories require multi-period
models in which deliveries are made over a certain time horizon, avoiding stockouts, if
possible. On the other hand, it may be beneficial to serve customers which are close to
each other together, reducing the traveled distances of the vehicles. Cost minimization in
the IRP thus combines the three components of (i) costs from routing, (ii) held inventory,
and (iii) stockouts. Obviously, the third component is comparably difficult to measure,
and may in practice be replaced by a criterion measuring the service-level, leading to the
introduction of an additional side constraint or to a multi-objective model formulation.
Evaluation of solutions for the IRP nevertheless remains a difficult issue, which is why
some dedicated research is going in this direction [22].

Besides these general problem characteristics, uncertainties about future demand, de-
liveries, production rates, etc. are often present, leading to dynamic, stochastic
models [6].

Due to the difficulty of the obtained formulations, many solution approaches re-
introduce some simplifying assumptions. For example in [5], the amount of goods de-
livered to the customers is chosen such that a pre-defined maximum inventory level
is reached again, while the work of [9] concentrates on the optimization of the deliv-
ery volume only. Other simplifications address the routing, e. g. by direct deliveries to
the customers [4, 14, 17]. Alternative approaches allow the backlogging of parts, thus
treating the problem of stockouts in an particular way [1]. In the case of determinis-
tic demand, cyclic formulations of the IRP lead to the construction of solutions with
constant replenishment intervals [13, 19, 20].

Not surprisingly, solution approaches often employ (meta-) heuristics [10]. Promi-
nent examples include Iterated Local Search, Variable Neighborhood Search, Greedy
Randomized Adaptive Search [8], Memetic Algorithms [7] and decomposition
approaches making use of Lagrangian relaxations [23]. Common to all ideas is that
they have been successfully adopted to the particular chosen problem.

Then however, and in contrast to other domains from operations research/ manage-
ment science, comparably little work has been done with respect to the proposition of a
common ground for experiments, such as the proposition of benchmark instances that
would allow for a detailed comparison of the solution approaches. One of the few ex-
amples is found in the “Praxair”-case, an international industrial gases company facing
an IRP [8]. Besides, a description of how to compute instances is given in [2]. From
this perspective, the definition and publication of benchmark data allowing a future
comparison appears to be a beneficial contribution.

Besides, and with with respect to practical side constraints of such problems, rule-
based solution approaches might provide an interesting field of research [15]. Contrary
to most (meta-) heuristics, which are based on the local search paradigm, rule-based
decision making approaches explicitly state why certain decision are made in particular
situations. In addition to providing a solution methodology, they also contribute to the
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explanation of the choices made by an decision support system, thus allowing an in-
terpretation of the system’s behavior. Moreover, human experts may directly adopt the
decision making rules, an aspect that also contributes to the acceptance of such (semi-)
automated optimization/ approximation approaches.

This article contributes to two of the above mentioned issues of the Inventory Rout-
ing Problem. After the description of the IRP tackled in this paper in the following Sec-
tion 2, we present a compact solution representation and a heuristic solution approach in
Section 3. A set of benchmark instances is introduced in Section 4, and experimental in-
vestigations of the solution approach on the proposed data are carried out and reported.
Conclusions are presented in Section 5.

2 Description of the Investigated IRP

We consider an IRP in which a given set of n customers needs to be delivered with
goods from a single depot. The problem-immanent vehicle routing problem (VRP) as-
pects of the ones of the classical capacitated VRP. This means that we assume a unlim-
ited number of available trucks, each of which has a limited capacity C for the delivered
goods.

Decision variables of the problem are on the one hand delivery quantities qit for each
customer i, i = 1, . . . , n, and each period t, t = 1, . . . , T . On the other hand, a VRP
must be solved for each period t of the planning horizon T , combining the delivery
quantities qit into tours/ routes for the involved fleet of vehicles. We assume qit ≥
0 ∀i, t, thus forbidding the pickup of goods at all times. Following the definition of the
classical capacitated VRP, we do not permit split-deliveries, and therefore qit ≤ C ∀i, t
where C is the truck capacity.

At each customer i, a demand dit is to be satisfied for each period t. Inventory levels
Lit at the customers are limited to a maximum amount of Qi, i.e. Lit ≤ Qi ∀i, t. An
incoming material flow φ+

it and an outgoing material flow φ−
it links the inventory levels

at the customers over the time horizon: Lit+1 = Lit + φ+
it − φ−

it ∀i, t = 1, . . . , T − 1.
The incoming material flow is given by φ+

it = qit iff qit ≤ Qi − Lit−1, and
φ+

it = Qi −Lit−1 otherwise. This implies that the maximum inventory levels are never
exceeded, independent from the choice of the shipping quantities qit. On the other hand,
delivery quantities qit with qit > Qi − Lit−1 can be excluded when solving the prob-
lem. Obviously, as all inventory levels Lit ≥ 0, any delivery quantity qit > Qi will not
play a role also.

The outgoing material flow assumes φ−
it = dit iff dit ≤ Lit−1 + φ+

it , and φ−
it =

Lit−1 + φ+
it otherwise. The latter case is also referred to as a stockout-situation, and

the stockout-level can be computed as dit − Lit−1 − qit. As we however assume dit to
be known in advance, we can easily avoid such situations by shipping enough goods in
advance or just in time.

Two objective functions are considered, leading to a biobjective formulation. First,
we minimize the total inventory as given in expression (1). Besides, the minimization
of the total distances traveled by the vehicles for shipping the quantities in each period
are of interest. While the solution of this second objective as such presents anNP-hard
problem, we denote this second objective with expression (2).
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min
n∑

i=1

T∑
t=1

Lit (1)

min
T∑

t=1

VRPt(q1t, . . . , qnt) (2)

The two objectives are clearly in conflict to each other. While large shipping quanti-
ties allow for a minimization of the routes, small quantities lead to low inventory levels
over time. In between, we can expect numerous compromise solutions with intermedi-
ate values.

Without any additional information or artificial assumptions about the tradeoff be-
tween the two functions, no sensible aggregation into an overall evaluation is possible.
Consequently the solution of the problem at hand lies in the identification of all optimal
solutions in the sense of Pareto-optimality, which constitute the Pareto-set P .

Treating the IRP as a biobjective optimization problem has several advantages. First,
no cost functions need to be found for the aggregation of inventory levels and rout-
ing distance. This is particularly important as some components of such underlying
cost functions might vary over time, with fuel prices as a prominent example. Besides,
eliciting sensible statements about tradeoffs between objectives from a decision maker
can be a complicated and time consuming process. Second, it allows the analysis of
the problem on a more tactical planning level. In such a setting, the effect of a reduced
routing on inventory levels can be studied. This might be especially interesting for com-
panies who want to investigate the possibilities and consequences of reducing emissions
of logistical activities, such as CO2, over a longer time horizon.

3 Solution Representation and Heuristic Search

The solution approach of this article is based on the decomposition of the problem into
two phases. First, quantity decisions of when and how much to ship to each customer
are made. This is done such that only customers running out of stock are served, i.e. we
set qit > 0 iff dit > Lit−1 ∀i, t. Second, the resulting capacitated VRPs are solved for
each period t by means of an appropriate solution approach.

Solving the IRP in this sequential manner has several advantages. Most importantly,
we are able to introduce a compact encoding for the first phase, which allows an intuitive
illustration of how the results of the procedure are obtained. We believe this to be an
important aspect especially for decision makers from the industry. Besides, searching
the encoding is rather easy by means of local search/ metaheuristics.

3.1 Solution Encoding

Alternatives are encoded by a n-dimensional vector π = (π1, . . . , πn) of integers. Each
element πi of the vector corresponds to a particular customer i, and encodes for how
many periods the customer is served in a row (covered). In the following, we refer to
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these values πi as a customer delivery ‘frequency’. Precisely, if dit > Lit−1, then qit

may be computed as given in expression (3).

qit = min

{
t−1+πi∑

l=t

dil − Lit−1, Qi − Lit−1, C

}
(3)

A day-to-day delivery policy is obtained for values of πi = 1. On the other hand,
large values πi ship up to the maximum of the customer/ vehicle capacity, and inter-
mediate values lead to compromise quantities in between the two extremes. Obviously,
such an encoding may easily interpreted by practitioners, thus providing a practical
benefit.

On the basis of the delivery quantities, and as mentioned above, VRPs are obtained
for each period which do not differ from what is known in the scientific literature.

3.2 Heuristic Search

Throughout the optimization runs, an archive P̂ of nondominated solutions is kept that
presents a heuristic approximation to the true Pareto set P . By means of local search,
and starting from some initial alternatives, we then aim to get closer to P , updating P̂
such that dominated solutions are removed, and newly discovered nondominated ones
are added.

In theory, any local search strategy that modifies the frequency values of vector π
might be used for finding better solutions. Clearly, values πi < 1 are not possible,
and exceptional large values do not make sense either due to the upper bounds on the
delivery quantities as given in expression (3).

Construction Procedure. First, we generate solutions for which the delivery frequency
assumes identical values for all customers, starting with 1 and increasing the frequency
in steps of 1, up to the point where the alternative cannot be added to P̂ any more. Then,
we construct alternatives for which the frequency values are randomly drawn between
two values: j and j+1, thus mixing the frequency values of the first phase and therefore
computing some solutions in between the ones with purely identical frequencies. The
so obtained values of π are then used to determine the delivery quantities as described
above.

The vehicle routing problems are then solved using two alternative algorithms. On
the one hand, a classical savings heuristic [12] is employed, which allows for a compara-
ble fast construction of the required routes/ tours. On the other hand, the more advanced
record-to-record travel algorithm [16] is used. Having two alternative approaches is
particularly interesting with respect to the practical use of our system. While the first
algorithm will allow for a fast estimation of the routing costs, improved results are pos-
sible by means of the second approach, however at the cost of more time-consuming
computations.

Improvement Procedure. The improvement procedure put forward in this article is
based on modifying the values within π, and re-solving the subsequently modified
VRPs using the algorithms mentioned above. For any element of P̂ , we compute the
set of neighboring solutions by modifying the values πi by ±1 while avoiding values
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of πi < 1. The maximum number of neighboring solutions therefore is 2n. Search for
improved solution naturally terminates in case of not being able to improve any element
of P̂ . In this sense, the approach implements the concept of a multi-point hillclimber
for Pareto-optimization.

Contrary to searching all elements of P̂ , a representative smaller subset of P̂ can be
taken for the improvement procedure. This reduces the computational effort to a con-
siderable extent. One possibility is to assume a set of reference points, and to select the
elements in P̂ that minimize the distance to these reference points. As a general guide-
line, the reference points should be chosen such that the solutions at the extreme ends
of the two objective functions (1) and (2) are present in the subset. A favorable imple-
mentation of the distance function lies in the use of the weighted Chebyshef distance
metric, as it allows for a selection of convex-dominated alternatives and thus provides
some theoretical advantages over other approaches.

4 Experimental Investigation

4.1 Proposition of Benchmark Data

Using the geographical information of the 14 benchmark instances given in chapter 11
of [11], new data sets for inventory routing have been proposed. While the classical
VRP commonly lacks multiple-period demand data, we filled this gap by proposing
three demand scenarios, each of which contains a total of T = 240 demand periods for
all customers.

Scenario a: The average demand of each customer is constant over time. Actual (inte-
ger) demand values for each period however are drawn from an interval of ±25%
around this average.

Scenario b: We assume an increasing average demand, doubling from the initial value
at t = 1 to t = 240. Again, the actual demand is drawn from an interval of ±25%
around this average.

Scenario c: In this scenario, the average demand doubles from t = 1 to t = 120,
and goes back to its initial value in t = 240, following the shape of a sinus curve.
Identical to the above presented cases a deviation of ±25% around these values is
allowed.

The resulting set of 42 benchmark instances have been made available to the scien-
tific community under http://logistik.hsu-hh.de/IRP [21].

4.2 Implementation of a Decision Support System

A test program has been developed and is used to test new and innovative strategies.
Fig. 1 shows a typical screen shot of our solver. The upper part on the left gives the
name of the instance and the vehicle capacity. Then below, the decision maker is able
to display the different alternatives computed by the software.

For the current alternative, and the current period, a text window gives the inventory
level, the number of vehicle used and information on the tours. The box in the bottom

http://logistik.hsu-hh.de/IRP
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Fig. 1. Screen shot of the Inventory Routing Solver

left part represents the evolution of the total inventory over all periods. The large win-
dow on the right presents the current alternative and period routing. Green bars are the
stock level at the customer location at the end of the period.

4.3 Results

Initial Solutions. Fig. 2 presents typical output of the frequency policies. The top left
black dot is the day-to-day delivery policy, which clearly minimizes the inventory cost
but has a routing cost which is important. Black dot on the bottom right represents
the other alternative which apply the order-up-to-level policy. A large cloud of small
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crosses in the center results from a totally random frequency strategy. The black dots
represent the solutions when all customers are served with the same frequency. To fill
the gaps, a controlled random frequency (random frequencies but between two consec-
utive frequency values) is used and produces the results represented by white circles.

Using the work done in [16], the routing cost can be improved. Fig. 3 shows the pre-
vious approximate Pareto-front resulting from the left figure with an improved routing.
With low frequencies, the routing cost can be reduced greatly.

Results of Local Search. Running the multi-point hillclimber introduced in Section 3.2
on all elements of P̂ turns out to be not feasible for most of the proposed benchmark
instances. On the one hand, the computations are too time consuming: Even when only
making use of the savings approach for the vehicle routing part, T = 240 periods
need to be solved. On the other hand, P̂ is quickly populated with several thousands
of solutions, and the computational effort for checking the neighborhood of all these
solutions grows too large.

Fig. 4 shows the obtained set of local optima for the smallest instance, scenario a,
GS-01-a.irp. While the results seem to form a line/ Pareto-front, they are, indeed,
2485 discrete alternatives.

4.4 The Decision Maker’s Point of View

Of course, from a theoretical point of view, having the previous results are good, even
excellent. Producing 2485 alternatives ensures us to have a better coverage of the Pareto
front and hence not miss any of the good solutions. But, from the decision maker point
of view, this is also a very important drawback. The decision maker would wish to
choose one alternative among a few, not among too many.

We have then oriented our research towards the selection of representative alterna-
tives. This is a very complicated task and can lead to errors or bad solutions. It is the
reason why this specific study is still a prospective research part and will be improve in
the future.

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 140000

 0  100000  200000  300000  400000  500000  600000  700000  800000

T
ot

al
 r

ou
tin

g 
co

st

Total inventory cost

Inventory-Routing alternatives

Improved controlled frq.
Improved identical frq.

Former Pareto front
New Pareto front

Fig. 3. Improvements by means of the record-to-record travel algorithm



The Biobjective Inventory Routing Problem 373

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 140000

 0  100000  200000  300000  400000  500000  600000  700000

T
ot

al
 r

ou
tin

g 
co

st

Total inventory cost

Inventory-Routing alternatives

Initial Pop.
Final Pop.

Fig. 4. Results for instance GS-01-a.irp. Initial population and final set of local optima after
applying local search.

The Global Strategy. The global strategy that we have implemented is the following.
Among the initial population, we select a subset of solutions that, in our opinion, is a
representative subset of the alternatives at the current stage. The number of solutions
in this subset is a parameter that the decision maker will be able to adjust. From this
subset, we start the local search on each of the alternatives and improve the solutions.
We keep in an archive all the non-dominated solutions produced during this second
phase. The local search is run until no more improvements are found.

With this new subset of alternatives, we start again the procedure by selecting a
subset of alternatives and by again running the local search over these solutions. This
methods converges rather quickly (in the number of steps) but is still time consuming.
Nevertheless, it comes closer to an acceptable running time for a decision maker and
moreover to a good final number of alternatives for the decision maker. This will be
explained with the help of Fig. 5 in the sequel.

The subset of alternatives that we select is part of the critical step. We use the refer-
ence point technique that seems to be the most appropriate in that kind of situations. To
make the technique consistent, the two objectives have been normalized. Fig. 5 depicts
a typical situation. The complete set of non-dominated solutions is represented by the
white circles and the two extreme solutions by black squares (the two solutions sur-
rounded by circles at the top left corner and the bottom right corner). The two extreme
solutions plus the “ideal point” (the solution circled in the bottom left corner of the fig-
ure) having the best value in terms of routing cost and inventory cost compose the three
initial reference points.

Then, depending on the number of final alternatives that the decision maker wants,
we split the two axes (represented by the dotted line between circles) in equal propor-
tions. In the case presented in Fig. 5, the two axes have been split in 5, generating four
additional references points for the the vertical axe and four additional reference points
for the horizontal axe. These new points are represented on the figure by the black
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Fig. 5. The reference set point selection and directions of search

diamond. With each of the 11 reference points, we will select in the complete solu-
tion set, the solution that minimizes the Chebyshef distance metric. This will give us
at most 11 solutions that will be used in the sequel for improvement as mentioned in
Section 3.2. The direction of search is indicated on the figure with the arrows.

Further Experiments. To see how the search evolves, the different steps for a single
run over instance GS-01-a.irp are reported int Table 1. The first column are the
different steps identification (step 0 stands for the initial solutions). The second column

Table 1. Evolution of the search for instance GS-01-a.irp

Steps # evaluations Subset size Cumulative CPU (s)
0 235 28 34.79
1 1233 105 221.29
2 2179 150 387.58
3 3022 173 535.42
4 3962 198 699.27
5 4799 200 844.52
6 5733 221 1006.00
7 6564 241 1152.02
8 7320 243 1276.47
9 8149 258 1424.31
10 9074 261 1592.00
11 9765 275 1702.35
12 10355 280 1795.94
13 10944 275 1883.19
14 11532 272 1977.23
15 11819 268 2035.96
16 12105 274 2094.83
17 12390 272 2153.83
18 12574 269 2205.63
19 12660 272 2232.77
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reports the cumulative number of evaluation done during the search. The third column
represents the size of the subset before the local search improvement phase. And the
last column reports the cumulative CPU time (in seconds) of the different steps.

We can see that at step 0, i.e. we have generated 28 solutions. Among these solutions,
a maximum subset of 11 solutions are selected and improved by the local search phase
producing a subset of 105 non-dominated solutions for the next step. Again, from the
105 solutions, we selected 11 representatives and improve them with the local search
producing 150 solutions. At the end, after 19 steps, the set of non-dominated solutions
comprises 272 solutions from which we can select only 11 to present to the decision
maker.

As one can see, the cumulative CPU time is still large but remain acceptable since
this problem is solved in a strategic phase for the company. As mentioned before, the
number of reference points selected by the decision maker is the parameter that can be
adapted. It clearly influences the running time of the algorithm as shown in Table 2.

Table 2. Evolution of running time with the number of reference points for instance
GS-01-a.irp

# RP # Steps # evaluations Subset size Cumulative CPU (s)
3 14 2885 113 360.30
5 19 5429 159 802.59

11 19 12660 272 2232.77

Another good result from the method is that the quality does not depend of the num-
ber of alternatives we are going to present to the decision maker. On the same instance
GS-01-a.irp, we draw the final approximate Pareto sets obtained at the end of the
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Fig. 7. Complete display of the subsets over the search for instance GS-01-a.irp and the
zooming section

search with different reference set sizes. The three solutions proposed when the refer-
ence set size is 3 (RF=3) on the figure are included in the two other sets. Other solutions
of R=5 are not dominated by the solutions proposed when RF=11. We also expect to
obtain these results with the complete set of instances.

Finally, it is interesting to see the evolution of the search over the different steps.
The complete figure showing the total set of generated solutions during the search is
not worth to display since too many solutions are close to each other making the fig-
ure overloaded. Instead, we display only the subsets of solutions that we select over
the search. For the same instance GS-01-a.irp, they are represented on Fig. 7. Be-
cause the figure contains different alternatives, it is necessary to have a closer look. We
decided to zoom a specific section showed in Fig. 7.
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The result is shown in Fig. 8. On purpose, we have drawn the different solutions
with a line, showing the path followed by the search over the different steps. Again, the
conclusion drawn from this figure is that the solutions generated over time are not domi-
nated by the ones of the previous iterations (otherwise they would have been eliminated
from the search). Moreover, the improvement is done on both objectives, following
more or less the direction imposed by the weighted Chebyshef distance measure.

5 Conclusions

In this paper, we have presented a practical bi-objective framework for solving the in-
ventory routing problem. We have generated a set of new instances that are available on
the internet. Preliminary experiments indicate the good general impression of the solv-
ing method and need to be confirmed by further experiments. Nevertheless, with the
reference set strategy, we have been able to overcome the long computational running
times, and at the same time the too numerous solutions that need to be presented to the
decision maker at the end.
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Abstract. In the European Union working hours of truck drivers must
comply with regulation (EC) No 561/2006 which entered into force in
April 2007. The regulation has a significant impact on travel times in-
cluding the driving time and the time required for compulsory breaks
and rest periods. Recently, several approaches for solving vehicle routing
and scheduling problems have been proposed in which European Union
legislation must be complied with. All of these approaches restrict the
application domain by constraining the maximum amounts of driving
time and working time by the “weekly” limits of 56 hours and 60 hours
imposed by regulation (EC) No 561/2006. In this paper it is shown that
the amounts of driving time and working time a driver may accumulate
within a period of six days can be significantly higher due to inconsistent
definitions in the regulation. Problem transformation rules are presented
which can be embedded in the previously developed approaches to exploit
these inconsistencies.

1 Introduction

The vehicle routing problem is the problem of determining a set of vehicle routes
to service a set of customers at minimal costs. There are many applications of
the vehicle routing problem and a multitude of variants of the classical vehicle
routing problem have been proposed considering various problem characteristics
found in real-life applications. Many of these variants are discussed in [5]. The
scope of this paper is an extension of the vehicle routing problem in which each
customer must be visited within a given time window and working hours of truck
drivers must comply with applicable legislation. In the European Union regula-
tion (EC) No 561/2006 regulates working hours of truck drivers. The combined
vehicle routing and truck driver scheduling problem in the European Union has
been introduced by [1] and studied by [3] and [4].

The most prominent rules of regulation (EC) No 561/2006 are that a truck
driver may not drive for more than four and a half hours without taking a break
period of at least 45 minutes, and that a driver may not drive for more than
9 hours without taking a daily rest period of at least 11 hours. The regulation
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defines a week as the period of time between 00.00 on Monday and 24.00 on
Sunday and a weekly rest period as a period of rest of at least 45 hours. Some of
the constraints of the regulation are imposed on the time between two weekly
rest periods and some on the time during a week. A driver may drive for up to
56 hours and work for up to 60 hours during a week. At most 144 hours (six days)
may elapse between the end of a weekly rest period and the start of the next
weekly rest period. Twice a week, a driver may drive up to 10 hours without
taking a daily rest period. Three times in between two weekly rest periods a
driver may take a reduced daily rest period of at least 9 hours. It most be
noted that several other constraints are imposed by the regulation. For brevity
and w.l.o.g. these other constraints will not be considered in the remainder of
this paper. For a comprehensive discussion of the entire set of rules imposed by
regulation (EC) No 561/2006 the reader is referred to [2].

If we only consider a planning horizon of six days which does not include the
night from Sunday to Monday, the inconsistent definition regarding weeks and
the time between two weekly rest periods has no ramification on the feasibility
check of a vehicle route. The heuristics for the combined vehicle routing and
truck driver scheduling problem presented by [1], [3] and [4] as well as the exact
truck driver scheduling method presented by [2] take advantage of this and make
such a restriction.

In the general case, however, the planning horizon may begin at any time of
the week. Let us for example consider a planning horizon of six days starting at
0.00 on Thursday. The driver may have up to 7 daily driving periods and 6 daily
rest periods within the planning horizon. Without making use of the options to
extend the daily driving time or reduce the daily rest, the driver can drive up
to 7 · 9 = 63 hours (the total amount of break required is 7 · 3

4 = 5 1
4 hours and

the total amount of rest is 6 · 11 = 66 hours). As the planning horizon ranges
across two weeks, the driver may have four extended daily driving times of
10 hours: two in the first week and two in the second week. Thus, a total of
4 ·10+3 ·9 = 67 hours of driving can be accumulated (the total amount of break
required is 4 · (2 · 3

4 )+3 · 3
4 = 8 1

4 hours and the minimum amount of rest required
is 3 · 9 + 3 · 11 = 60 hours). The “weekly” driving limit of 56 hours imposed by
the regulation can therefore be exceeded by almost 20 percent. Similarly, the
accumulated amount of working time within six days can exceed the “weekly”
working limit of 60 hours significantly. In the next section we see how we can
check feasibility of a vehicle route with a planning horizon starting at any time
of the week.

2 Problem Transformation

The approaches for combined vehicle routing and truck driver scheduling pre-
sented by [1] and studied by [3] and [4] consist of a heuristic framework to
determine potential vehicle routes and a feasibility check determining whether
all customers in the route can be visited within the given time windows and
without violating the regulation. Let us denote with n1,n2, . . . ,nλ the locations
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of a vehicle route and with δμ,μ+1 the driving time required for moving from a
node nμ to a node nμ+1. At each location nμ some stationary work of duration
wμ shall be conducted. This work shall begin within a given time window de-
noted by [tmin

μ ,tmax
μ ]. Let s0 denote the state of the driver at the beginning of

the planning horizon of six days. With each period of driving, conducting other
work, taking a break or rest, or waiting idle, the state of the driver is changed.
The European Union truck driver scheduling problem (EU-TDSP) is the problem
of determining whether state s0 can be successively changed into a state s with
the following characteristics

1. the driver has visited λ locations
2. at the μth location the driver conducted some stationary work of duration

wμ
3. the stationary work at location nμ started within time window [tmin

μ , tmax
μ ]

4. the total amount of driving between location nμ and nμ+1 is δμ,μ+1
5. the driver complies with regulation (EC) No 561/2006

A mathematical formulation of the EU-TDSP including all the constraints of
the regulation (EC) No 561/2006 is given by [2] who also presented an exact
approach that can be used if

μ<λ

∑
μ=1

δμ,μ+1 ≤ 56 and
μ<λ

∑
μ=1

δμ,μ+1 +
μ≤λ
∑
μ=1

wμ ≤ 60.

The same assumption has been made by [1], [3], and [4]. All of these approaches
determine a set of labels for each location in the tour representing different driver
states. If this assumption can not be made, the approaches may determine labels
representing driver states violating the regulation. However, we can transform
the problem representation in such a way that these approaches can still be used.
For this we have to make sure that the accumulated amount of driving time and
the accumulated amount of working time are not exceeded in both weeks that
may belong to the planning horizon.

Let λ ′ be the index for which

μ<λ ′

∑
μ=1

δμ,μ+1 ≤ 56 and
μ<λ ′+1

∑
μ=1

δμ,μ+1 > 56.

Then, the accumulated amount of driving time exceeds 56 hours on the trip
from location nλ ′ to location nλ ′+1. We have to make sure that the accumulated
amount of driving time in the first week of the planning horizon does not exceed
56 hours. This can be achieved by inserting a virtual location n′ between locations
nλ ′ and nλ ′+1. The time window of this location begins at the beginning of the
second week and ends at the end of the planning horizon. The working time at
location n′ is set to zero, the driving time from nλ ′ to n′ is set to 56−∑μ<λ ′

μ=1 δμ,μ+1,

and the driving time from n′ to nλ ′+1 is set to ∑μ<λ ′+1
μ=1 δμ,μ+1−56. By this, we

ensure that the accumulated amount of driving in the first week cannot exceed
56 hours if all time window restrictions are satisfied.
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Analogously, let λ ′′ be the index for which

μ<λ

∑
μ=λ ′′

δμ,μ+1 > 56 and
μ<λ

∑
μ=λ ′′+1

δμ,μ+1 ≤ 56.

Then, the accumulated amount of driving time (when counting backwards) ex-
ceeds 56 hours on the trip from location nλ ′ to location nλ ′+1. We have to make
sure that the accumulated amount of driving time in the second week of the
planning horizon does not exceed 56 hours. This can be achieved by inserting
a virtual location n′′ between locations nλ ′′ and nλ ′′+1. The time window of this
location starts at the beginning of the planning horizon and ends at the end of
the first week. The working time at location n′′ is set to zero, the driving time
from nλ ′′ to n′′ is set to ∑μ<λ

μ=λ ′′ δμ,μ+1−56, and the driving time from n′′ to nλ ′′+1

is set to 56−∑μ<λ ′
μ=λ ′′+1 δμ,μ+1.

By inserting the virtual locations n′ and n′′ in the route of a vehicle we make
sure that the accumulated amount of driving time does not exceed the limit
imposed for either week of the planning horizon. Similarly we can make sure
that accumulated amount of working time does not exceed the limit imposed for
either week of the planning horizon.

Let λ ′′′ be the index for which

μ<λ ′′′

∑
μ=1

δμ,μ+1 +
μ≤λ ′′′

∑
μ=1

wμ ≤ 60 and
μ<λ ′′′+1

∑
μ=1

δμ,μ+1 +
μ≤λ ′′′+1

∑
μ=1

wμ > 60.

If ∑μ<λ ′′′
μ=1 δμ,μ+1 +∑μ≤λ ′′′

μ=1 wμ + δλ ′′′,λ ′′′+1 > 60 then the accumulated amount of
working time exceeds 60 hours on the trip from location nλ ′′′ to nλ ′′′+1 and we
insert a virtual location n′′′ between these locations. The time window of this
location begins at the beginning of the second week and ends at the end of the
planning horizon. The working time at location n′′′ is set to zero, the driving
time from nλ ′′′ to n′′′ is set to 60− (∑μ<λ ′′′

μ=1 δμ,μ+1 +∑μ≤λ ′′′
μ=1 wμ), and the driv-

ing time from n′ to nλ ′+1 is set to ∑μ<λ ′′′
μ=1 δμ,μ+1 +∑μ≤λ ′′′

μ=1 wμ + δλ ′′′,λ ′′′+1− 60. If

∑μ<λ ′′′
μ=1 δμ,μ+1 +∑μ≤λ ′′′

μ=1 wμ + δλ ′′′,λ ′′′+1 ≤ 60 then the limit of 60 hours is reached
during the stationary work conducted at location nλ ′′′+1. Instead of inserting a
virtual location n′′′ between locations nλ ′′′ and nλ ′′′+1, we increase (if necessary)
the beginning of the time window of location nλ ′′′+1 to the beginning of the
second week reduced by 60− (∑μ<λ ′′′

μ=1 δμ,μ+1 +∑μ≤λ ′′′
μ=1 wμ + δλ ′′′,λ ′′′+1).

Analogously, let λ ′′′′ be the index for which

μ<λ

∑
μ=λ ′′′′

δμ,μ+1 +
μ≤λ
∑

μ=λ ′′′′
wμ > 60 and

μ<λ

∑
μ=λ ′′′′+1

δμ,μ+1 +
μ≤λ
∑

μ=λ ′′′′+1

wμ ≤ 60.

If ∑μ<λ
μ=λ ′′′′+1 δμ,μ+1 +∑μ≤λ

μ=λ ′′′′+1 wμ + δλ ′′′′,λ ′′′′+1 > 60 then we insert a virtual
location n′′′′ between locations nλ ′′′′ and nλ ′′′′+1. The time window of this location
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starts at the beginning of the planning horizon and ends at the end of the first
week. The working time at location n′′′′ is set to zero, the driving time from
nλ ′′′′ to n′′′′ is set to ∑μ<λ

μ=λ ′′′′+1 δμ,μ+1 +∑μ≤λ
μ=λ ′′′′+1 wμ + δλ ′′′′,λ ′′′′+1− 60, and the

driving time from n′′′′ to nλ ′′′′+1 is set to 60− (∑μ<λ
μ=λ ′′′′+1δμ,μ+1 +∑μ≤λ

μ=λ ′′′′+1 wμ).

If ∑μ<λ
μ=λ ′′′′+1 δμ,μ+1 +∑μ≤λ

μ=λ ′′′′+1 wμ + δλ ′′′′,λ ′′′′+1 ≤ 60 then the limit of 60 hours is
reached (when counting backwards) during the stationary work conducted at
location nλ ′′′′. Instead of inserting a virtual location n′′′′ between locations nλ ′′′′
and nλ ′′′′+1, we decrease (if necessary) the end of the time window of location
nλ ′′′′ to the end of the first week reduced by wλ ′′′′ − (60− (∑μ<λ

μ=λ ′′′′+1 δμ,μ+1 +

∑μ≤λ
μ=λ ′′′′+1 wμ + δλ ′′′′,λ ′′′′+1)).
By making these modifications to the problem representation before invoking

the feasibility check presented by [1], [2], [3], or [4] we can make sure that the
accumulated amounts of driving time and working time do not exceed the limit
imposed for either week of the planning horizon even if conditions (1) and (2) are
not satisfied. By this the inconsistencies in the time frames used by the regulation
can be exploited without the need to modify the existing methods for checking
feasibility of a vehicle route. [3] and [4] also presented variants of their methods
which make use of the provision of the regulation that a driver may drive up to
10 hours twice a week without a daily rest period. If the planning horizon ranges
across two weeks the driver may drive up to 10 hours four times within the
planning horizon. To fully consider this provision of the regulation, the number
of extended daily driving times can be increased to four and the approaches need
to verify that only two extended daily driving times are are used in each week.
If necessary, the “weekly” limits can be adjusted to consider previous activities
conducted by the driver and the resulting impact on the maximum amount of
driving and working time within the planning horizon.

3 Conclusions

In the European Union a truck driver may only accumulate 56 hours of driving
time and 60 hours of working time within a week. This paper shows that, due
to inconsistent definitions of the regulation, the amount of driving and work-
ing time within a period of six days can be significantly higher if the planning
horizon ranges across two weeks. Although driving on weekends is restricted in
some member states, there are various exemptions from weekend driving bans.
The significant increase in accumulated driving and working time may promote
driving on weekends.

Recently, several approaches for combined vehicle routing and truck driver
scheduling in the European Union have been proposed. These approaches only
consider a planning horizon starting on Monday or later and ending on Sun-
day of the same week or earlier. This paper shows that the feasibility check of
these approaches can also be used for a planning horizon starting on any day
of the week. This only requires relatively simple modifications of the problem
representation.
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Abstract. The Hamiltonian p-median problem (HpMP) was introduced by
[Branco90]. It is closely related to two well-known problems, namely the Trav-
elling Salesman problem (TSP) and the Vehicle Routing problem (VRP). The
HpMP is to find exactly p node-disjoint cycles of minimum edge cost, such that
each node of the graph is contained in exactly one cycle. We present three new
models for the HpMP problem which differ with regard to the constraints that
enforce a maximum number of cycles. We demonstrate that one of the models
(SEC) is dominated by another model (PCON) with regard to the LP relaxation.
Further, we introduce a class of symmetry breaking constraints. We present re-
sults regarding the quality of the lower bounds provided by the respective LP
relaxations for two of the models, and provide computational results that demon-
strate the computational efficiency.

1 Introduction

We consider the Hamiltonian p-median problem (HpMP) on an undirected graph. It is
a generalization of a well-known problem, namely the Travelling Salesman problem
(TSP). This problem has been studied in numerous variants, with single and multiple
salesmen, time-dependent, capacitated and many more. Considering the HpMP as a
generalization of the TSP it is the following: For p salesmen without a given start posi-
tion, find a tour for each of them such that each city is visited by exactly one salesman
and the distance of all tours is minimal.

The HpMP is also connected to a generalized Vehicle Routing problem (VRP) which
allows several depots and in which we assume distinct depots for all vehicles in a fleet
of size p, and require every customer to be visited by exactly one vehicle. We obtain the
HpMP by considering the problem of simultaneously locating p depots and considering
the sum of costs for routing the vehicles from all depots.

In this article, we consider the HpMP on an undirected graph and assume a minimum
tour length of 3 nodes.

Definition 1 (HpMP). Given an undirected graph G = (V,E), find exactly p node-
disjoint cycles of minimum edge cost, such that each node is contained in exactly one
cycle and each cycle contains at least 3 nodes.

J. Pahl, T. Reiners, and S. Voß (Eds.): INOC 2011, LNCS 6701, pp. 385–394, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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As this problem generalizes an NP-hard problem, it is itself NP-hard in the general case.
Furthermore, [?] shows that the HpMP is NP-hard for each p.

A relaxation of the HpMP is the problem of partitioning the nodes into (any number
of) disjoint cycles such that the total distance is minimized. This is a relaxation of
the TSP obtained by removing the subtour elimination constraints and is known as
the 2-matching problem. We obtain a description of the convex hull of the 2-matching
problem by adding the 2-matching inequalities (see for instance [NW99, p. 276]) and
the problem can hence be solved in polynomial time. In order to obtain exactly p cycles,
we have to introduce constraints that enforce this.

There are several possible applications of the HpMP. Consider, for instance, the as-
signment of p guards to n objects and assume that each guard cycles among the assigned
protection objects. A similar problem is the assignment of p maintenance/inspection ve-
hicles that need to maintain/inspect n machines. [Glaab98] present an application where
p lasers are used to visualize a set of cuts to be performed on leather. In all of these appli-
cations, however, it might be more adequate to minimize (or put a bound on) the longest
cycle. This is an extension of the HpMP which we will consider in future research.

Literature: The HpMP belongs to a class of problems denoted location routing prob-
lems (LRPs, see [nagy2007] for a survey). These problems combine the problem of fa-
cility location with the problem of finding an optimal routing. An early work on a LRP
closely related to the HpMP is a paper by [Laporte83]. The article contains, among oth-
ers, a mixed integer linear program (MILP) for the problem of finding at most p cycles
of minimum cost.

The HpMP was first introduced by [Branco90]. The authors consider the HpMP on a
directed graph and present two models and several heuristics for the problem. The first
model (P1) is a partitioning problem where the nodes are partitioned into p subsets. For
each set of each partition the TSP solution is assumed to be given as data. The second
model (P2) is more similar to the models presented here. One variable is assigned to
each combination of edge and cycle, and vertex and cycle of the graph. The number of
variables is therefore |E|p + |V |p. The constraints that guarantee a maximum number
of cycles (7) depend on the variables and the model can therefore not be formulated as
a MILP. [Glaab00] introduce a model where the variables corresponding to the nodes
are dropped and constraints that guarantee the maximum number of cycles based on
partitions are suggested. Finally, [Zohrehbandian07] presents a model of the HpMP as
an extended VRP where a virtual depot is added for each cycle. The number of variables
is 2|E|p + |V |. The models for the HpMP presented in our paper have one variable for
each edge, and for each combination of node and cycle, hence the number of variables
is |E|+ p|V |.

A related problem to the HpMP is the subject of [Bauer02]. Here the problem is to
find a minimum cost cycle with a constraint on the number of edges denoted the car-
dinality constrained circuit problem. The authors present mixed integer programming
formulations based on connectivity, discuss a number of facet defining inequalities and
devise separation algorithms for them.

Finally, a topic which is relevant to the HpMP is the question of how many nodes in
a given graph can be covered by p node disjoint cycles, and is the subject of a publi-
cation by [Wong03]. Given a graph with n≥ 3p nodes and minimum degree d ≥ 2p, the
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authors prove that the graph contains p node disjoint cycles that cover at least min{2d,n}
nodes. In the article the authors also present counter examples that show that this is a
minimum requirement on the node degree. This implies that we have to require a node
degree of at least max(n/2,2p) to ensure that a feasible solution of the HpMP exists.

2 MILP Models

We present three new MILP models for the HpMP that differ with respect to the con-
straints that enforce a maximum number of cycles. The first model, SEC, uses an exten-
sion of the subtour eliminating constraints of the TSP. The second model, PCON, uses a
class of connectivity constraints based on node partitions. The connectivity constraints
in PCON dominate the constraints of SEC. The third model NCON uses a class of node
based connectivity constraints. We demonstrate that neither PCON nor NCON is dom-
inant. Constraints similar to (SEC) and (PCON) were both introduced in [Glaab00].
The constraints (NCON) are a generalization of the connectivity based approach used
in [Bauer02].

2.1 Notation

For a graph G = (V,E) the set of edges is given as E = {e = i j | i, j ∈ V, i < j}. We
write the set of adjacent edges of node i ∈V as δ (i) := {e = ( j,k) ∈ E | i = j∨ i = k}.
Furthermore, we define an index set for an integer k as Ik := {1, . . . ,k}.

Let C ⊆ E such that |C|= |V | denote a subset of edges defining at least k +1 vertex-
disjoint cycles covering every node of G, and Ck+1 denote the set of all subsets C as
just described. By PC we denote the partition of the nodes in V into subsets containing
exactly the nodes of one cycle in C respectively.

The set of partitions of the node set V into k + 1 sets of size greater than or equal to
3 is denoted by

P3
k+1 :=

{
{S1, . . . ,Sk+1} |

k+1⋃
i=1

Si = V, |Si| ≥ 3, Si∩S j = /0 ∀i �= j, i, j ∈ Ik+1

}
.

The set of edges between the sets of such a partition P = {S1, . . . ,Sk+1} ∈ P3
k+1 is given

by
EP := {i j | i ∈ Sv, j ∈ Sw, Sv �= Sw, Sv, Sw ∈ P}.

We will use the following variables:

xi j =

{
1, if edge i j is in the solution,

0, otherwise,
i j ∈ E,

zm
i =

{
1, if node i is in cycle m,

0, otherwise,
i ∈V, m ∈ Ik.

2.2 Subtour Elimination Constraints

Subtour elimination constraints have proven successful for solving problems of a num-
ber of classes, especially the TSP. Thus, using them for the subtour partitioning problem
suggests itself. Formulation SEC is based on an adapted variant of the classical SECs.
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(SEC) min∑
e∈E

cexe

∑
m∈Ik

zm
i = 1, i ∈V, (1a)

∑
i∈V

zm
i ≥ 3, m ∈ Ik, (1b)

∑
e∈δ (i)

xe = 2, i ∈V, (1c)

∑
e∈C

xe ≤ |V |−2, C ∈ Ck+1, (SEC)

zm
k + xe ≤ 1 + zm

l , e = i j ∈ E, {k, l} ∈ {{i, j},{ j, i}}, m ∈ Ik, (1d)

xe ∈ {0,1}, e ∈ E, (1e)

zm
i ∈ {0,1}, i ∈V, m ∈ Ik. (1f)

Equalities (1a) ensure that each node is in exactly one cycle. Inequalities (1b) ensure
that each cycle contains at least three nodes. Constraints (1c) ensure that every node has
2 active incident edges. The subtour elimination constraints (SEC) eliminate solutions
with more than k cycles. They limit the number of active edges in each subset of edges
forming more than k cycles. Inequalities (1d) link variables x and z and thereby force a
pair of nodes with an active edge between them to be in the same cycle.

2.3 Formulations Based on Connectivity Concepts

Another successful concept in the realms of network design problems (and others) is
connectivity. We propose two different connectivity concepts for the HpMP, based on
partitions and node variables respectively.

Partition Based Connectivity. We can replace constraints (SEC) from the first pro-
posed formulation by the following inequalities, based on partitions of the node set of
the underlying graph,

∑
e∈EP

xe ≥ 2, P ∈ P3
k+1. (PCON)

We denote this formulation by PCON. The partition based connectivity constraints
(PCON) make sure that for every partition of the node set into k + 1 subsets, at least
2 edges between these sets are active, thereby ensuring that an optimal solution con-
tains no more than k tours.

Denote by υLP(P) the optimal solution value of the linear programming relaxation
of formulation P. Then we have the following

Lemma 1. Constraints (PCON) dominate the subtour elimination constraints (SEC),
i.e.

υLP(PCON)≥ υLP(SEC)
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Proof. By summing the constraints (1c) for all nodes we obtain

∑
e∈E

xe = |V |. (2)

Using equality (2), we can rewrite constraints (PCON) as follows:

|V |−2≥ ∑
e�∈EP

xe ≥ ∑
e∈C

xe C ∈ Ck+1, P = PC (3)

The first inequality is equivalent to constraints (PCON). The second inequality holds
because the edges not in EPC are a superset of those forming the cycles C. ��
An example for which the second relation in (3) is strict is shown in Figure 1. In this
example k = 3 and dashed edges denote corresponding variables values of 0.5. The
partition constraint for

P = {{1,2,3},{4, . . . ,7},{8, . . . ,11},{12, . . . ,15}}

is violated but all constraints (SEC) are satisfied.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig. 1. Example for the proof of Lemma 1

Generalized Partition-Based Subtour Elimination Constraints We can generalize
constraints (PCON) for partitions into more than k + 1 sets:

∑
i j∈EP

xi j ≥ 1 + u, P ∈ P3
k+u. (4)

This set of constraints contains inequalities (PCON) as special cases and therefore dom-
inates them.

Node Based Connectivity. We can replace inequalities (PCON) by constraints that
ensure connectivity between each two nodes that are in the same cycle:

∑
e∈δ (S)

xe ≥ 2(zm
i + zm

j −1), S ⊂V : 3≤ |S| ≤ |V |−3, i /∈ S, j ∈ S. (NCON)

We refer to the formulation obtained by replacing (PCON) with (NCON) as NCON.

Lemma 2. Formulations PCON and NCON are not comparable with respect to their
LP lower bounds.
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Proof. Consider the graph K15 = (V,E), i.e. a complete graph with V = {1, . . . ,15} and
let k = 3. A feasible solution for the LP relaxation of NCON is the following: The ac-
tive edges form cycles as in Figure 2a. The node variables have the following values:
z1

i = 1 for i ∈ {1, . . . ,3}, z2
i = z3

i = 0.5, for i ∈ {4, . . . ,15} and zm
i = 0 otherwise. How-

ever, constraint (PCON) is violated for the partition {{1, . . . ,3},{4, . . . ,7},{8, . . . ,11},
{12, . . . ,15}}.

Consider now the solution depicted in Figure 2b. Dashed edges denote correspond-
ing variable values xe of 0.5 and node variables have the values z1

i = z2
i = 0.5, for

i∈ {1, . . . ,7}, z3
i = 1, for i∈ {8, . . . ,15} and zm

i = 0 otherwise. No partition of the nodes
into more than 3 subsets can be found such that the respective constraint (PCON) is vio-
lated. However, constraint (NCON) is violated for S = {8,9,10,11} and i ∈
{12,13,14,15}. ��

a)
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Fig. 2. Illustration of the examples used in the proof of Lemma 2

2.4 Symmetry Breaking and Valid Inequalities

By assigning nodes to numbered cycles our models allow a lot of symmetries. Espe-
cially in a branch-and-bound scheme this could lead to extremely long running times,
as for each node up to k branches are needed. We eliminate symmetries using the fol-
lowing strategy. All cycles are indexed by the lowest index of all contained nodes.

zm
i ≤

i−1

∑
j=1

zm−1
j i = 3, . . . ,n−3, m = 2, . . . ,k. (5)

Symmetry breaking constraints (5) state that, if for a given node i there is no node with
a lower index in the cycle indexed by m−1, node i cannot be in cycle m. Accordingly,
for a graph with node set V = {1, . . . ,n} node 1 will always be in cycle 1. Node 2 will
either be in cycle 1 or 2. If node 2 is in cycle 1, node 3 should be in cycle 1 or 2 and so
on. As a consequence we can fix a number of node variables z to zero.

zm
i = 0 i ∈ Ik−1, m = i+ 1, . . . ,k. (6)

We indicate adding constraints (5) and (6) to a model M by writing M+.
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3 Computational Study

In this section we compare the models NCON, PCON, and the one comprising all con-
straints from both of these models. We denote this model by PNCON. We will investigate
the importance of the symmetry breaking constraints (5) and (6). The models are com-
pared with respect to running time, quality of the lower bound provided by the respective
LP relaxation and the number of branch-and-bound nodes needed to solve the problems.

3.1 Branch-and-Cut Framework

We used the Branch-and-Bound framework provided by IBM CPLEX (version 12.2)
and IBM Concert Technology. In the following we describe the separation of con-
straints (PCON) and (NCON) and a primal heuristic.

Separation of Inequalities (PCON). We compute the connected components of the
support graph, i.e. the graph containing edges for which the corresponding variable is
greater or equal to some ε in the current solution. If there are more then k connected
components, there is a violated partitioning constraint for the partition into the node
sets of the connected components. In this case, the constraint added states that the sum
of the edges between the components should be greater than or equal to 2.

Note that this separation procedure is not exact. An exact separation would require
setting ε = 1 and at this point we do not know how to choose the partition optimally such
that the obtained partition based subtour elimination constraint is the most violated one.

Separation of Inequalities (NCON). Given k, the connectivity constraints state that the
sum of the values of the edges in the cut (S : S̄) has to be greater or equal 2(zk

i + zk
j−1)

for all pairs i and j such that i ∈ S and j �∈ S. Thus we calculate the minimum cut
(=maximum flow) between the nodes in each such pair on the support graph. For each
m ∈ Ik we check whether constraint (NCON) is violated and, if that’s the case, add it to
the model.

Primal Heuristic. We use a simple primal heuristic to generate a starting solution
before solving the model. It consists of the following steps:

1. Compute a minimum spanning tree T of G.
2. Remove the most expensive edges from T , such that k connected components are

left.
3. For each component C with less than 3 vertices search the components with more

than 3 vertices for the vertex closest to any of the nodes in C and add this vertex to
C.

4. Run the nearest neighbour heuristic for the Travelling Salesman problem on the
nodes of each component.

5. Number the cycles according to the rules specified in Section 2.4.

3.2 Instances

For our computational experiments we use randomly generated instances. The node
were chosen randomly on a square of [0,100]2 and as weight for each edge we used the
Euclidean distance of the adjacent nodes. We generated 5 instances for each value of
|V | in {20,40,60,80} respectively.
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3.3 Results

All experiments were performed on a 2.67 GHz machine with 4 GB RAM. Each run
was performed on a single processor.

LP bounds. We first test the strength of the proposed models by comparing the lower
bounds provided by their LP relaxations. We test 6 settings. Models PCON, NCON and
PNCON, with and without symmetry breaking constraints (5) and (6) respectively. We
test on all 20 test instances with k ∈ {3,4,5} and the 2 larger groups (|V | ∈ {60,80})
with k = 10. We compute LP gaps in Table 1 as (OPT−υLP(.))/OPT.

The symmetry breaking constraints have a marginal effect on the LP gaps. For some
test instances NPCON yields a better LP bound than NPCON+. This is due to the fact
that the symmetry breaking constraints affect which inequalities from set (PCON) are
found to be violated.

Symmetry Breaking. To show the importance of the symmetry breaking constraints
we compare the runtimes of the 3 model setups with and without symmetry breaking
constraints. We test this only on the two smaller instance groups (|V | ∈ {20,40}) with
k ∈ {3,4,5}. The reason is that the model (NCON) without symmetry breaking con-
straints was already unable to solve some instances in the group with |V | = 40 within
the allotted time. The results of the tests are reported in Table 2.

Adding the symmetry breaking constraints improves the performance of NCON
and PNCON. For PCON, we observe an improvement on the smaller test instances
but a worsening on the larger test instances. This behaviour is not surprising as con-
straints (PCON) only involve variables linked to edges but not to cycle indices whereas
constraints (NCON) share the symmetry in the cycle index with variables z.

Table 1. Results showing the mean LP gap in percent for NCON, PCON and NPCON with and
without symmetry breaking constraints. ∗ indicates that, for this group of test problems, some
of the 5 instances were not solved within the allotted 1 h of cpu time. The LP bound for these
instances was computed using the best feasible solution found (in all cases by PCON+).

NCON PCON NPCON
|V | k sym. no sym. sym. no sym. sym. no sym.
20 3 3.5 4.1 3.7 3.9 3.5 3.9
20 4 3.4 3.9 3.4 3.7 3.2 3.7
20 5 3.6 4.3 3.5 4.1 3.3 4.1
40 3 3.7 4.4 3.2 3.2 3.3 3.2
40 4 3.7 4.1 3.6 3.6 3.4 3.6
40 5 2.8 3.5 2.8 2.8 2.5 2.8
60 3 4.4 5.0 3.9 3.9 3.9 3.9
60 4 4.2 4.7 3.8 3.8 3.7 3.8
60 5 3.6 3.9 3.1 3.1 2.9 3.1
60 10∗ 4.0 4.1 3.3 3.3 3.5 3.3
80 3∗ 2.7 2.9 2.5 2.5 2.3 2.5
80 4∗ 3.3 3.4 2.9 2.9 3.0 2.9
80 5∗ 3.0 3.2 3.2 3.2 2.9 3.2
80 10∗ 5.9 6.0 6.0 6.0 5.9 6.0
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Table 2. Results showing the mean and worst case cpu-times for the NCON, PCON and the
NPCON with and without symetry breaking constraints. ∗1 out of 5 instances was not solved
within the allotted 1 h cpu-time. †2 out of 5 instances were not solved within the allotted 1 h
cpu-time.

NCON PCON NPCON
sym. no sym. sym. no sym. sym. no sym.

|V | k mean w.c. mean w.c. mean w.c. mean w.c. mean w.c. mean w.c.
20 3 0.50 1.00 2.72 7.91 0.43 0.58 1.03 3.27 0.60 1.44 2.09 8.32
20 4 0.79 2.44 5.73 11.92 0.70 1.93 1.70 6.04 0.87 2.43 3.28 12.39
20 5 1.58 3.25 14.27 22.29 1.23 2.93 5.84 13.41 1.34 3.05 7.76 19.57
40 3 11.51 39.12 860.47∗ 3600.13 30.03 123.85 18.21 73.52 84.42 412.71 145.25 680.38
40 4 37.04 119.44 1428.26∗ 3600.13 52.32 200.52 45.12 102.28 130.58 531.04 134.55 546.32
40 5 92.69 360.17 1507.31† 3600.17 45.23 181.98 27.82 88.13 111.65 527.65 102.03 454.08

Overall Performance. We compare the runtime and number of branch-and-bound
nodes needed by the 4 approaches PCON+, PCON, NCON+ and PNCON+ to solve
the instance/k combinations from Section 3.3. The results are reported in Table 3. We
note that PCON and PCON+ are the best models with respect to runtime. NCON+ and
NPCON+ run out of memory on several of the larger instances. NCON+, however, uses
fewer B&B nodes in the solution of the problems. We also conclude that complexity is
stronger correlated with the number of nodes |V | than with the number of subtours k.

Table 3. The results show the mean cpu-time and number of B&B nodes used to solve the test
instance within each group. ∗indicates that some instances within the group were not solve within
the allotted 1h cpu-time. †incicates that CPLEX ran out of memory on some instances within the
group, these results were not included into the mean.

NCON+ PCON+ PCON PNCON+

|V | k time nodes time nodes time nodes time nodes
20 3 0.50 20 0.43 29 1.03 72 0.60 21
20 4 0.79 18 0.70 26 1.70 66 0.87 17
20 5 1.58 22 1.23 31 5.84 182 1.34 19
40 3 11.51 30 30.03 450 18.21 431 84.42 299
40 4 37.04 94 52.32 604 45.12 500 130.58 314
40 5 92.69 161 45.23 351 27.82 303 111.65 221
60 3 796.45 576 318.81 1772 413.45 2017 1237.06† 856
60 4 2281.16∗† 1417 587.86 1813 857.21 2460 2144.96∗ 788
60 5 2130.10∗ 782 758.78 1481 502.32 1143 1838.75∗ 665
60 10 1056.03∗ 171 867.69∗ 469 2216.53∗ 3256 1103.20∗ 177
80 3 2244.99∗† 502 1830.88∗ 4493 1973.30∗ 4449 2012.02† 542
80 4 3602.40∗† 443 2375.51∗ 3278 2159.20∗ 3182 3601.64∗ 428
80 5 3601.46∗ 361 2368.62∗ 2430 2368.12∗ 3115 3586.56∗† 447
80 10 3076.29∗ 128 2230.13∗ 377 2136.47∗ 1091 2762.51∗ 122

4 Conclusions

The approaches we tested have proven to be efficient for medium sized instances. To
solve larger instances further enhancements seem necessary. We believe that efficient
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branching rules based on the structure of the problem could improve model NCON+
considerably. A better separation of constraints (PCON) should improve the runtimes
and lower bounds for model PCON and PCON+. Another open question is whether
other objectives like the length of the longest cycle influence the difficulty of the prob-
lem. In future work we also intend to perform computational and theoretical compar-
isons of the models presented here with models in the literature.
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Università degli Studi di Firenze, Via di S. Marta 3, 50139 Firenze, Italy
2 Canada Research Chair in Logistics and Transportation and CIRRELT,
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Abstract. We introduce a parallel iterated tabu search heuristic for solving eight
different variants of the vehicle routing problem. Through extensive computa-
tional results we show that the proposed heuristic is both general and competitive
with specific heuristics designed for each problem type.

1 Introduction

We present a simple parallel iterated tabu search heuristic (ITS/N) for several variants of
the Vehicle Routing Problem: the Capacitated VRP (CVRP), the Periodic VRP (PVRP),
the Multi-Depot VRP (MDVRP), and the Site-Dependent VRP (SDVRP), all with or
without time window constraints. We build on the previous work of [7] and [9,10], and
on the Iterated Local Search (ILS) framework [15], adding some improvements and an
original parallel evolution of ILS to be used on multi-core computers and clusters.

The VRP is a hard combinatorial optimization covered by an extensive literature of
both exact and heuristic methods [27,12,14]. It can be modelled on a complete directed
graph G = (V,A), where V = {v0,v1, . . . ,vn} is a vertex set and A = {(vi,v j) : vi,v j ∈
V, i �= j} is the arc set with associated non-negative travel costs ci j. Vertex v0 is the depot
while vertices v1, . . . ,vn represent customers with a non-negative demand qi and a non-
negative service duration di that must be satisfied by a fleet of m vehicles. Vehicles must
respect a maximum capacity Qk and a route duration limit Dk. The solution consists in
the determination of m vehicle routes of minimum total cost such that each route starts
and ends at the depot and each customer is visited by exactly one vehicle.

In the PVRP, we consider a planning horizon of t days during which each customer
i requires fi visits. These visits must follow an allowable combination of visit days
as specified by the set Ci. For example, on a weekly planning horizon a customer i
with fi = 2 and Ci = {{Mon,Wed},{Tue,Thu},{Wed,Fri}} must be visited either on
Monday and Wednesday, on Tuesday and Thursday, or on Wednesday and Friday. The
PVRP consists in assigning an allowable visit combination to each customer and in
designing vehicle routes for each day as in the VRP. For a review of the PVRP see [11].

As shown in [7,8], the MDVRP and SDVRP can be seen as special cases of PVRP.
In the VRPTW, PVRPTW, MDVRPTW, and SDVRPTW variants, service at customer
i must start within a time window [ei, li].

Recent successful heuristics for the VRP were introduced by [22], [25] and [19] (de-
noted by NB09 in the following). The Adaptive Large Neighbourhood Search (ALNS)
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of [22] has been applied not only to the VRP but also to the MDVRP, the SDVRP,
the VRPTW, and the Open VRP. Heuristics for the PVRP were introduced, e.g., by
[2,6,7,1,13], the best of which being that of [13] (denoted by HDH). Effective heuristics
for the MDVRP were designed by [4,26,7,22] while [18,5,8,22] introduced heuristics
for the SDVRP. For both the MDVRP and the SDVRP, the best results were obtained
by the ALNS heuristic of [22].

The VRPTW is the most studied variant of the VRP and a very large number of
heuristics have been proposed to solve the problem; see, e.g., [17] and [20] (denoted by
NBD). For a survey of heuristics for the VRPTW, we refer to [3]. The PVRPTW, MD-
VRPTW and SDVRPTW have received less attention than their counterparts without
time windows. The PVRPTW and MDVRPTW were first addressed with a tabu search
heuristic by [9,10] (denoted by CLM). An improved VNS heuristic for the PVRPTW
was recently introduced by [21] (denoted by PR08) while [24,23] introduced a VNS
(denoted by PHDR) for the MDVRPTW. To the best of our knowledge, only [9,10]
addressed the SDVRPTW.

2 Short Description of the Iterated Tabu Search Heuristic

A common Iterated Tabu Search (ITS) heuristic is presented that solves all eight prob-
lem variants considered. The ITS is based on the ILS framework [15] and consists in an
alternation between TS phases and perturbations.

In our implementation of ITS, since the heuristic allows intermediate infeasible so-
lutions, the classical framework is slightly adjusted to check whether the solution is
feasible before it can replace the best solution s∗. Moreover, when the improved solu-
tion is not accepted the search returns to s∗. We stop the algorithm when the number of
iterations λ (neighborhood explorations) exceeds a limit η .

In the perturbation mechanism (inspired by [22]) a cluster is constructed by choosing
a seed customer at random and by identifying the π closest customers to the seed, where
π is randomly selected in the interval [0,�√n�]. These π + 1 customers are removed
from their routes, assigned a new visit combination randomly chosen in the set Ci, and
reinserted in the solution so as to minimize the cost.

The algorithm described in [7,8,9,10] is used as the improving strategy, during route
manipulations, and in the construction of the initial solutions. The only notable differ-
ence is that the search parameters controlling the intensity of the diversification and
the penalty on repeated moves that lead to infeasibility are randomized in the interval
[0,1), and the tabu list tenure is sampled in [0,

√
nmt) at each ITS iteration. Moreover

the stopping criterion has been replaced by a maximum number of iterations without
improvement equal to

√
(η−λ )π .

The most important difference between the tabu search (TS) heuristic used here and
the one introduced by [7] is the use of an intra-route optimization mechanism. During
the course of the search, we sequentially remove and reinsert each customer every 200
iterations.

The ITS uses an acceptance criterion to accept non improving solutions with de-
creasing probability from the start to the end of the ITS algorithm. This mechanism
ensures diversification in the initial phase of the execution and intensification around
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the best solution towards the end. Whenever an improving solution is found during a
call to the TS heuristic, it replaces the current best solution s∗. However, the working
solution s̃ returned by the TS heuristic at the end of an improvement phase corresponds
to the last solution visited by the search and not necessarily to the best one seen during
this improvement phase. This solution s̃ is accepted with probability 1− (λ/η)2.

The sequential algorithm described in the previous paragraphs (ITS/1) is extended to
a parallel version with some modifications. In the parallel algorithm (ITS/N) each pro-
cess generates a different starting solution and proceeds with ITS iterations. To further
improve differentiation, every time a TS phase starts, each process chooses the search
parameters independently using random distributions.

At the end of each improvement phase each process p ∈ {1,2, . . . ,N} decides whe-
ther to accept the working solution s̃ or to revert to the j-th best solution, with j = $√p%.
The working solution is accepted with probability 1− (λ/η)2. This mechanism is used
to balance the exploration of the best solutions found during the search.

At the beginning the algorithm can broadly explore different parts of the space, while
near the end all processes will eventually try to improve the best solutions.

At the end of each parallel execution of TS, with 10% probability, a crossover opera-
tion is performed which is similar to the perturbation, but uses current visit combination
information from another randomly chosen solution.

3 Computational Results

The algorithm was coded in C++ using GCC v4.x and the COIN-OR METSlib frame-
work [16]. The sequential algorithm was run on an Intel Xeon CPU X7350 at 2.93GHz,
while the parallel runs were made on the Cottos cluster of the RQCHP, a Linux clus-
ter with 128 nodes, each node equipped with dual Xeon E5472 processors running at
3GHz interconnected using Infiniband.

We solved the relevant instances available at
http://neumann.hec.ca/chairedistributique/data and report results
averaged over instance groups. Table 1 reports results for CVRP and VRPTW over 10
runs for the ITS/1 algorithm. Regarding the CVRP we report the average and minimum
gaps using 105 and 106 iterations, while for the VRPTW only the best solution is shown.
Tables 2–3 report the results for the multi-level problems. In these tables 105 and 106 refer
to ITS/1 with a different number of iterations. Columns /8 and /64 refer to the ITS/8 and
ITS/64 using 125000 iterations for each core. Experiments with less than 64 cores were
run ten times whereas those involving 64 cores were run five times. It is worth noting
that the overall number of iterations when using 8 cores is the same as for the sequen-
tial algorithm with η = 106 or for the minimum over 10 runs with η = 105, so a direct
comparison is possible. The results show that the parallel algorithm is usually better than
the sequential algorithm which, in turn, is better than 10 independent runs of the same
algorithm using 1/10 of the iterations. The Our best column reports the best average gap
obtained overall considering two more independent runs using 32 and 64 cores and 106

iterations per core.
In conclusion we proposed simple modifications to the unified algorithm described

in [7,9,10] for solving many VRP variants. The modifications consist in: i) embedding

http://neumann.hec.ca/chairedistributique/data
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Table 1. CVRP and VRPTW results: comparison with respect to best known solutions (% gaps
and absolute values)

CVRP NB09 ALNS 50K ITS

avg. best avg. best Avg. 105 Avg. 106 Best 106

CMT 0.03 0.00 0.31 0.11 0.60 0.27 0.07
GWKC 0.12 0.02 1.02 0.49 1.30 0.79 0.41

VRPTW
Group

NBD avg. NBD best ALNS avg. ALNS best Best 106

R1 11.92 11.92 12.03 11.92 12.00
1210.34 1210.34 1215.16 1212.39 1209.19

R2 2.73 2.73 2.75 2.73 2.73
951.71 951.03 965.94 957.72 951.17

C1 10.00 10.00 10.00 10.00 10.11
828.38 828.38 828.38 828.38 849.56

C2 3.00 3.00 3.00 3.00 3.00
589.86 589.86 589.86 589.86 589.86

RC1 11.50 11.50 11.60 11.50 11.50
1384.30 1384.16 1385.56 1385.78 1385.90

RC2 3.25 3.25 3.25 3.25 3.25
1119.43 1119.24 1135.46 1123.49 1120.53

Table 2. PVRP, MDVRP, and SDVRP: Average gaps with respect to best known solutions

PVRP Average gaps (%) Minimum gaps (%)

HDH ITS HDH ITS

107 109 105 106 /8 /64 105 106 /8 Our Best

a 1.39 0.33 0.54 0.23 0.11 -0.08 0.03 0.15 -0.02 -0.12 -0.21
b 1.53 0.44 1.40 0.59 0.58 0.18 0.00 0.81 0.20 0.21 -0.17

ab 1.42 0.36 0.75 0.31 0.22 -0.02 0.02 0.31 0.04 -0.04 -0.20

t (s) 185 91 144 213

MDVRP Average gaps (%) Minimum gaps (%)

ALNS ITS ALNS ITS

25K 50K 105 106 /8 /64 105 106 /8 Our Best

a 0.54 0.35 0.39 0.14 0.11 0.00 0.00 0.12 0.01 0.07 -0.03
b 0.47 0.34 0.85 0.33 0.25 -0.02 0.00 0.29 0.05 0.20 -0.14

ab 0.52 0.34 0.53 0.20 0.15 -0.01 0.00 0.18 0.02 0.11 -0.07

t (s) 118 237 110 149 197

SDVRP Average gaps (%) Minimum gaps (%)

ALNS ITS ALNS ITS

25K 50K 105 106 /8 /64 105 106 /8 Our Best

a 0.69 0.52 0.88 0.20 0.19 -0.05 0.00 0.13 -0.06 -0.09 -0.16
b 1.01 0.80 1.99 0.79 0.72 0.19 0.00 0.92 0.25 0.24 -0.13

ab 0.80 0.62 1.26 0.40 0.37 0.03 0.00 0.40 0.05 0.02 -0.15

t (s) 81 162 154 238 348
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Table 3. PVRPTW, MDVRPTW, and SDVRPTW: Average gaps with respect to best known
solutions. When using the forward time slack, [21] report only best solutions found, not averages.

PVRPTW Average gaps (%) Minimum gaps (%)

PR08 ITS PR08 ITS

RVNS/2 105 106 /8 /64 105 106 /8 Our Best

a - 1.02 0.03 0.08 -0.45 0.00 0.32 -0.49 -0.44 -1.01
b - 1.25 -0.10 -0.01 -0.80 0.00 0.23 -1.05 -0.67 -1.50

ab - 1.13 -0.04 0.03 -0.62 0.00 0.28 -0.75 -0.55 -1.25

t (s) 293 456 679

MDVRPTW Average gaps (%) Minimum gaps (%)

PHDR ITS PHDR ITS

108 105 106 /8 /64 105 106 /8 Our Best

a 0.82 1.45 0.66 0.58 0.14 0.00 0.60 0.28 0.12 -0.10
b 1.40 1.99 0.62 0.56 0.06 0.00 0.82 -0.03 0.08 -0.20

ab 1.11 1.72 0.64 0.57 0.10 0.00 0.71 0.12 0.10 -0.15

t (s) 149 180 249 394

SDVRPTW Average gaps (%) Minimum gaps (%)

CLM ITS CLM ITS

105 106 105 106 /8 /64 105 106 /8 Our Best

a 1.44 0.49 0.63 -0.25 -0.23 -0.72 0.00 -0.28 -0.72 -0.76 -1.05
b 1.62 0.52 0.57 -0.40 -0.54 -0.90 0.00 -0.48 -1.00 -1.01 -1.33

ab 1.53 0.50 0.60 -0.33 -0.39 -0.81 0.00 -0.38 -0.86 -0.89 -1.19

t (s) 13 160 272 336

the existing algorithm into an ILS framework achieving significant improvement over
the traditional approach; ii) a straightforward parallel computing extension that further
improves the results. On the 260 benchmark instances tested we found 58 new best
solutions using the sequential algorithm and 90 overall.
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Abstract. This paper addresses an extension of the TSP where a vehicle with
a limited capacity must transport certain commodities from their origins to their
destinations. Each commodity has a weight, and the objective is to find a min-
imum length Hamiltonian tour satisfying all the transportation requests without
ever violating the capacity constraint. We propose for this problem a heuristic ap-
proach that combines mathematical programming and metaheuristic techniques.
The method is able to improve the best known solutions for a set of instances
from the literature in a reasonable amount of computation time.

1 Introduction

The Multi-Commodity One-to-One Pickup-and-Delivery Traveling Salesman Problem
(m-PDTSP) is a routing problem that generalizes the classical Traveling Salesman Prob-
lem (TSP). We are given a set of locations and the non necessarily symmetric travel
distances among them. One specific location is considered to be the depot of a capaci-
tated vehicle, while the other locations correspond to customers. The depot is denoted
by 0, and the customers by i ∈ {1, ...,n}. The capacity of the vehicle is denoted by Q.
There is a set of m different commodities or products, and each of them must be trans-
ported from a given pickup customer (origin) to a given delivery customer (destination).
The origins and destinations of different commodities are not necessarily disjoint. Each
product k ∈ {1, ...,m} has a known weight qk. All locations must be visited by the ve-
hicle, even if some are neither origin nor destination of a commodity. The m-PDTSP
consists of finding a minimum length Hamiltonian route for the vehicle that satisfies all
the transportation requirements without ever exceeding the vehicle capacity. This prob-
lem is of interest when designing a capacitated network with a ring topology to satisfy
a set of customer-to-customer requests.

The m-PDTSP is NP-hard since it can be seen as the capacitated version of the Asym-
metric Traveling Salesman Problem with Precedence Constraints, also known as the
Sequential Ordering Problem [1,6]. It was introduced by Hernández-Pérez and Salazar-
González [9], who presented two different mathematical formulations and described an
exact branch-and-cut algorithm, and it is related to many other problems in the liter-
ature such as the Traveling Salesman Problem with Pickup and Delivery [11] and the
One-commodity Pickup-and-Delivery Traveling Salesman Problem [7,8]. For a com-
plete survey on pickup and delivery problems see [2] and [12,13].

In this paper we present a heuristic method that provides good feasible solutions
for the m-PDTSP. The method combines mathematical programming techniques with
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typical metaheuristic ingredients, such as neighborhood definitions, local searches and
diversification mechanisms, and so it can be considered a matheuristic [10]. The compu-
tational experiments compare the heuristic results with those given by the exact branch-
and-cut algorithm described in [9].

2 The Heuristic Algorithm

The algorithm we propose for solving the m-PDTSP is a MIP-based greedy randomized
adaptive search procedure (GRASP). GRASP is a multi-start metaheuristic algorithm,
where each iteration consists of two phases: constructing a feasible solution and im-
proving it. Both phases are repeated until a stopping criterion is satisfied. In our case,
the stopping criterion is a time limit.

To generate an initial solution we apply a randomized greedy heuristic in the spirit
of the nearest neighborhood heuristic for the TSP. Starting from the depot, it extends
a partial route randomly choosing at each iteration one of the three nearest customers
such that the extended route is feasible, i.e., it is a simple path where the destination
of a commodity is not visited before its origin, and the load of the vehicle is below its
capacity limit. If a feasible solution is not found, the procedure restarts from the depot.

The improvement phase starts from a feasible solution given by the constructive
algorithm, and tries to improve it using a modification of the branch-and-cut algorithm
described in [9]. The modification consists of fixing variables to get an easier-to-solve
model. More precisely, a given percentage of binary variables, corresponding to arcs
of the initial solution, are fixed to 1. Then, the relaxed MIP model is solved using the
branch-and-cut approach in [9] with a time limit. The process that combines fixing
variables and solving the corresponding MIP model is repeated until there is no further
improvement or a time limit is reached.

Note that fixing some variables to predefined values (hard fixing) and solving the
relaxed model serve to explore the neighborhood of a given feasible solution. This is
also the idea of the Local Branching strategy described in [4]. The difference is that
in Local Branching, the neighborhoods are defined by introducing linear inequalities
(called local branching cuts) in the mathematical model. These cuts produce a vari-
able soft fixing effect, i.e., they limit the distance between the current solution and the
solution of the new model. Soft fixing does not reduce the number of variables in the
model, and it does increase the number of constraints. According to our preliminary
experiments on the m-PDTSP, the use of local branching cuts resulted in MIP models
as hard to solve as the original one, even for medium-sized instances. Thus we opted by
a variable hard fixing strategy related to the Relaxation Induced Neighborhood Search
(RINS) methodology [3].

Moreover, each solution found, either by the construction algorithm or by the branch-
and-cut algorithm, is submitted to edge-exchange procedures such as the standard TSP
2-opt and 3-opt. These exchange procedures have been modified in order to keep the
feasibility of the solutions in the spirit of [5].

The whole scheme of the heuristic is outlined in Algorithm 1.



A Matheuristic for the m-PDTSP 403

Algorithm 1. MIP-based GRASP for the m-PDTSP
repeat

s0 ← GenerateInitialSol()
s0 ← 2-and-3-opt(s0)
sbest ← s0
slocal best ← s0
while there is solution improvement and LS timeLimit not reached do

Fix variables(slocal best )
s′ ← solveMIP()
s′ ← 2-and-3-opt(s′)
if s′ is better than slocal best then

slocal best ← s′
end if

end while
if slocal best is better than sbest then

sbest ← slocal best
end if

until timeLimit reached
return sbest

3 Computational Results

The algorithm was implemented in C++ and the program was run on a personal com-
puter with Intel Core 2 CPU at 2.4 GHz under Windows XP, using CPLEX 12.1 as MIP
solver. Computational experiments were carried on the subset of hardest instances used
in [9]. These are randomly generated instances with node coordinates in [−500,500]×
[−500,500], qk ∈ [1,5], and Euclidean distances. Class 2 groups instances with n = 25,
m = 15 and Q ∈ {15,20,25,30}, and Class 3 instances with n = 30, m = 15 and
Q∈ {5,10,15,20}. There are 10 instances for each combination of n, m and Q. In order
to potentially know the optimal solution for these instances, the exact branch-and-cut
method in [9] was executed with a time limit of 7200 seconds on each of them. If the
time limit was reached, there is no guarantee to have the optimal solution.

As for the heuristic parameters, we set the total time limit to 180 seconds for each
run, and the time limit for the improvement or local search phase and the branch-and-
cut procedure to 120 seconds. The choice of the percentage of variables to fix is an
important issue, since the resulting model is very sensitive to this parameter. A large
figure results in an easy to solve but probably infeasible model. If the figure is too low,
the relaxed model may be hard to solve. According to our computational experience,
fixing a number of variables equal to 20% of the number of nodes proved effective for
the instances in our test bed. Finally, a CPLEX parameter was modified in order to make
more emphasis in getting feasibility than optimality.

We ran the heuristic ten times over each instance. The results are summarized in Ta-
ble 1. Column headings stand for: number of nodes (n), number of commodities (m),
vehicle capacity (Q), instance name (#), percentage deviation between the best and the
average heuristic value and the value reported in [9] (best/B&C and aver/B&C, re-
spectively), and finally, number of times, over 10, that the heuristic solution equals or
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improves the branch-and-cut solution for each instance (#improv). A bold figure in Col-
umn # indicates that the optimal solution value is known for that instance; an asterisk
indicates that the branch-and-cut procedure in [9] was unable to find any feasible solu-
tion within the time limit of 2 hours. This is the case for two instances, one in Class 2
and another in Class 3. We do not report any deviation percentage for those instances,
since there is not a value to compare with. Note that the heuristic is able to find a feasible
solution for those two instances the ten times it is run on each of them.

Negative figures in Columns best/B&C and aver/B&C mean that the heuristic al-
gorithm outperforms the branch-and-cut method, and therefore, new best known so-
lutions have been found for the corresponding instances. A zero deviation percentage
means that the heuristic result equals the branch-and-cut result. For all instances, the
best heuristic value either coincides with the optimal value, when it is known, or it is
better than the result reported in [9]. Even taken in average, the heuristic value is equal
or better than the branch-and-cut value for 49 out of the 80 instances in the tables, and

Table 1. Heuristic results

Class 2 instances Class 3 instances
n m Q # best/B&C aver/B&C # improv n m Q # best/B&C aver/B&C # improv

25 15 15 0 -2.74 -1.56 8 30 15 5 0 0.00 0.00 10
1 0.00 0.00 10 1 0.00 0.03 9
2 -3.91 -3.47 10 2 0.00 5.27 2
3 -15.58 -11.31 10 3 -1.66 1.53 3
4 -2.89 -2.38 9 4 0.24 5.58 0
5∗ - - 10 5 0.00 5.31 3
6 0.00 0.05 7 6 0.00 2.07 1
7 0.00 0.00 8 7 0.00 9.10 1
8 -21.91 -19.11 10 8 0.00 1.20 2
9 -26.95 -24.73 10 9 -1.79 0.65 5

25 15 20 0 0.00 0.92 8 30 15 10 0 -1.77 2.74 3
1 0.00 0.00 10 1 -48.89 -46.60 10
2 -1.73 -0.65 9 2 -34.27 -30.61 10
3 -7.83 -6.97 10 3 -5.46 -1.03 8
4 0.00 0.00 10 4 -13.26 -9.27 10
5 -11.45 -6.60 10 5 -43.82 -40.60 10
6 0.00 0.00 10 6 -44.76 -39.41 10
7 0.00 2.65 7 7 0.00 1.02 7
8 -12.09 -11.01 10 8 -34.46 -30.59 10
9 0.00 2.27 4 9 -37.56 -32.47 10

25 15 25 0 0.00 0.00 10 30 15 15 0 0.00 4.56 4
1 0.00 0.00 10 1 -24.37 -19.79 10
2 0.00 0.00 10 2∗ - - 10
3 0.00 0.14 9 3 0.00 1.09 7
4 0.00 0.00 10 4 -1.08 0.43 5
5 0.00 0.00 10 5 0.00 1.64 4
6 0.00 0.00 10 6 -4.19 -0.99 7
7 0.00 0.00 10 7 0.00 0.00 10
8 0.00 0.40 7 8 0.00 1.73 6
9 0.00 0.08 9 9 -32.44 -27.89 10

25 15 30 0 0.00 0.00 10 30 15 20 0 0.00 2.01 5
1 0.00 0.00 10 1 0.00 1.32 8
2 0.00 0.00 10 2 0.00 4.02 2
3 0.00 0.00 10 3 0.00 0.00 10
4 0.00 0.00 10 4 0.00 1.20 2
5 0.00 0.00 10 5 0.00 0.64 4
6 0.00 0.00 10 6 0.00 1.04 6
7 0.00 0.00 10 7 0.00 0.00 10
8 0.00 0.00 10 8 0.00 0.00 10
9 0.00 0.00 10 9 0.00 3.12 3
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it substantially improves the branch-and-cut result many times (deviation below -20%),
while when it is worse, the deviation error is never higher than 10%.
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M. Angélica Salazar-Aguilar1, André Langevin2, and Gilbert Laporte3

1 CIRRELT, HEC Montréal, Canada H3T 2A7
angelica.salazar@cirrelt.ca
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Abstract. A synchronized arc routing problem (SyARP) for snow plowing oper-
ations is introduced. Given a network of streets and a fleet of snow plowing vehi-
cles, the SyARP consists of determining a set of routes such that all streets, some
of which have multiple lanes, are plowed by using synchronized vehicles, and the
ending time of the longest route is minimized. A mathematical formulation and
an adaptive large neighborhood search heuristic are proposed. The performance
of the proposed solution procedure is evaluated over a large set of instances. Com-
putational results reveal that the proposed procedure yields good quality feasible
solutions.

1 Introduction

The problems encountered by winter road maintenance planners are complex and site
specific because of the variation of climatic conditions, demographics, economics, and
technology [1,6,7]. The cost of snow plowing operations can often be reduced through
the application of appropiate operational research techniques [2,3]. We introduce a
synchronized arc routing problem (SyARP) arising in snow plowing operations. We
first define the problem, and we then present a model, an adaptive large neighborhood
heuristic and illustrative computational results. This work is preliminary. The definitive
version will be submitted for publication later.

2 Problem Description

Given a network of streets and a fleet of snow plowing vehicles based at a depot, the
SyARP consists of finding a set of routes such that all streets, some of which have
multiple lanes, are plowed by using synchronized vehicles, and the ending time of the
longest route is minimized. The street segments have one or two directions, and for each
direction the number of lanes goes from 1 to 3. All lanes belonging to the same segment
(in the same direction) must be plowed simultaneously. This means that the number of
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vehicles that service a given segment (i, j) is equal to the number of lanes that go from i
to j. Deadheading is allowed, so that any vehicle can traverse any arc without providing
service to it.

2.1 Mathematical Model

Let G = (V,A) be a directed multi-graph where V = {0,1, ...,n} is the vertex set and
A = {(i, j) : i, j ∈V and i �= j} is the arc set. Vertex 0 is the depot. An additional vertex
0′ is used to represent an artificial depot. Artificial arcs (0′,0) and (0,0′) are used to
start and end the routes. Let R be the set of available vehicles. The maximal number
of arcs included in any route is given by e and we define K as {1, ...,e}. Let ni j be the
number of lanes on arc (i, j). Each arc (i, j) ∈ A has two associated times called ti j and
t ′i j for service and traversal. We define the decision variables

xk
i jr =

⎧⎨⎩1 if arc (i, j) is traversed by vehicle r and appears
in the k-th position of the route while deadheading

0 otherwise.

yk
i jr =

⎧⎨⎩
1 if arc (i, j) is serviced by vehicle r and appears

in the k-th position of the route
0 otherwise.

Note that variables y1
0′0r and yk

00′r should be equal to zero given that the artificial arcs
do not need service.

tk
i jr is the starting time of service or traversal of arc (i, j) by vehicle r

and this arc appears in the k-th position of the route.
wk

i jr is the waiting time of vehicle r after service or traversal of arc (i, j)
when it appears in the k-th position of the route.

The objective is to minimize the makespan:

Minimize z = max
r∈R,k∈K

{
tk
00′r

}
(1)

subject to:
x1

0′0r +y1
0′0r = 1 r ∈ R (2)

∑
(0, j)∈A

x2
0 jr +y2

0 jr = 1 r ∈ R (3)

∑
k∈K

xk
00′r +yk

00′r = 1 r ∈ R (4)

∑
k∈K

∑
r∈R

yk
i jr = ni j (i, j) ∈ A (5)

(tk
i jr + ti j)yk

i jr +(tk
i jr + t ′i j)x

k
i jr +wk

i jr =

∑
( j,h)∈A∪(0,0′)

tk+1
jhr (xk+1

jhr +yk+1
jhr )

r ∈ R,(i, j)∈ A;
k ∈ K \{1,e} (6)

∑
(i, j)∈A∪{(0′,0),(0,0′)}

xk
i jr +yk

i jr ≤ 1 r ∈ R;
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k ∈ K (7)

yk
i jr

(
tk
i jr− ∑

q∈R
∑

c∈K\{1}
tc
i jqyc

i jq

)
/ni j = 0 (i, j) ∈ A,r ∈ R;

k ∈ K \{1} (8)

∑
(i, j)∈A

(xk
i jr +yk

i jr) ≤ ∑
( j,h)∈A∪(0,0′)

(xk+1
jhr +yk+1

jhr ) r ∈ R, j ∈V ;

k ∈ K \{1,e} (9)
xk

i jr ∈ {0,1} r ∈ R,k ∈ K,

(i, j) ∈ A;
yk

i jr ∈ {0,1} r ∈ R,k ∈ K,

(i, j) ∈ A;
tk
i jr ≥ 0 r ∈ R,k ∈ K,

(i, j) ∈ A;
wk

i jr ≥ 0 r ∈ R,k ∈ K,

(i, j) ∈ A.

Objective (1) is the makespan. Constraints (2)-(4) guarantee that all routes start and
end at the depot. Constraints (5) state that all lanes of arc (i, j) should be serviced.
Constraints (6) ensure time consistency of service and traversal times. Constrains (7)
guarantee that at most one arc appears in each position of a route. Constraints (8) ensure
that each vehicle servicing an arc (i, j) starts at the same time as all vehicles that service
the same arc. Constraints (9) ensure that each vertex is connected to some vertex; note
that when a vertex j is reached in the k-th position of route r, the outgoing arc ( j,h)
should be in the (k + 1)-th position of the route.

3 Summary of the Adaptive Large Neighborhood Search Heuristic

The proposed solution procedure consists of a generation of initial solutions method
which provides initial solutions to the ALNS. The adaptive large neighborhood search
(ALNS) heuristic was proposed in [4] and extends the LNS heuristic proposed by [5].

3.1 Initial Solutions Generator

In the SyARP, one of the hardest constraints is the synchronization of routes. In our ini-
tial solutions we tackled this constraint by sending fleets of vehicles in such a way that
each fleet has as many vehicles as the number of lanes of the arcs that they will service.
Therefore, given the maximum number of lanes l̄ and the total of available vehicles |R|, a
classification of the arcs according to the number of lanes and different fleet distributions
is carried out at the beginning of this procedure. For instance, suppose that we have an in-
stance with 12 available vehicles and arcs having one, two or three lanes. This means that
we need at least 6 vehicles to service the different type of arcs. In this case, we would send
at least three fleets, one fleet with one vehicle, another one with two vehicles, and the last
one with three vehicles. The rest of the vehicles would be distributed in fleets with differ-
ent sizes and all combinations of fleets which require 12 vehicles would be considered to
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generate multiple initial solutions. In this example, with 12 available vehicles and maxi-
mum three lanes, we have seven possible combinations of fleets: (1,1,3), (1,4,1), (2,2,2),
(3,3,1), (4,1,2), (5,2,1), and (7,1,1). The fifth combination (4,1,2) means that four fleets
of one vehicle each are needed to service the arcs with one lane, one fleet of two vehicles
is needed to service the arcs with two lanes, and two fleets of three vehicles are needed
to service the arcs with three lanes. Therefore, our solution procedure provides routes for
each fleet in the given distribution of vehicles. Each of these solutions is an input to the
improvement phase which we now describe.

3.2 Improvement Phase

Given a initial solution I, the improvement phase of our ALNS heuristic is applied un-
til a stopping criterion is reached. All multiple initial solutions are successively used
as input. At the end of the procedure we report the best solution. During the iterative
process, each destroy/repair operator d has a given weight ρd which is adjusted dy-
namically during the search. At the first iteration all operators d have the same weight
ρd . In the following iterations, these weights are adjusted dynamically, based on the
past performance of the operator. The selection of an operator d is done by following
a roulette wheel principle. An operator is applied until 3 consecutive non-improving
solutions are found. A non-improving solution can be accepted if its value does not
exceed that of the incumbent solution by more than 10%. For each operator d, at most
50 non-improving solutions can be accepted. We have developed 5 destroy/repair oper-
ators. For each of these, the insertion of any sequence of arcs is allowed if and only if
the fleet size associated with a given arc is at least equal to the number of lanes.

N1: Best Arcs Sequence Removal-Best Insertion. The goal of this destroy/repair
operator is to reduce the ending time of the longest route. A good removal and insertion
of arcs reduces directly the makespan. Therefore, a sequence of arcs is removed from
the longest route and is inserted in another route. The insertion point is after the arc that
has the shortest path from the initial arc of the sequence.

N2: Random Arcs Sequence Removal-Insertion. The goal of this destroy/repair op-
erator is to diversify the search. A sequence of arcs is removed from the longest route
and is inserted in another route. The insertion point is randomly chosen.

N3: Best Interchange of Arc Status (Serviced-Traversed). This destroy/repair opera-
tor attempts to intensify the search process. An arc (i, j) serviced by the longest route
is randomly chosen. If another route uses this arc just for traversal, the statuses of this
arc in these routes are interchanged. The routes are reoptimized by computing shortest
paths in the links affected by the change in arc (i, j).

N4: Worst Interchange of Arc Status (Traversed-Serviced). This destroy/repair oper-
ator attempts to diversify the search. The route with the shortest ending time is chosen
and an arc (i, j) which is just traversed by the route is randomly selected. Another route
servicing the arc (i, j) is identified and an interchange of statuses in the arc (i, j) is
carried out in both routes.

N5: First Traversed-First Serviced. This destroy/repair operator attempts to inten-
sify the search process. All routes in the current solution are reoptimized. Recall that
each arc can be traversed several times by the same route but it should receive service
just once. Therefore, this procedure is applied to each route pr in such a way that the
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arcs that are both serviced and traversed by pr are reordered to attempt a makespan
reduction. Thus, each arc that is both serviced and traversed by pr will be forced to be
serviced the first time that this arc is used by route pr.

4 Preliminary Computational Results

The algorithm was coded in C++ and compiled on a 2191.72 MHz AMD Opteron(tm)
Processor 248 with 1GB of RAM under the Linux operating system. Three instance
sets with 42, 180, and 300 vertices were generated on the same grid shape. The mini-
mum number of arcs for each set was 113, 499, and 795, respectively. Fifteen instances
were generated for each set and all arcs have one, two or three lanes. The number of
available vehicles for each set was 12, 18, and 25, respectively. The maximum num-
ber of iterations in the improvement phase was set to 1500. Because this problem has
never addressed in the literature, no comparative data and no competing heuristic exist.
We have evaluated the performance of our ALNS heuristic by using different combi-
nations of our destroy/repair operators. For each instance, we have identified the best
found solution over the different combinations of neighborhoods used in our ALNS
heuristic. Using these values, we then computed the percentage of gap associated to
each combination of neighborhoods. Tables 1, 2, and 3 display these results for vari-
ous neighborhood choices (”N” is the set of all neighborhoods). For instances with 42
and 180 vertices (Tables 1 and 2), the ALNS with all proposed destroy/repair opera-
tors found the best solution most of the time. In contrast, Table 3 shows that for largest
instances the best solutions were found with ”N1”, ”N2”, and ”N3” only.

Table 1. % of Gap with respect to the best found solution, instances set (42,12)

Gap(%) N1 (N1,N2) N\(N4,N5) N\(N5) N
Min 3.26 3.26 0.00 0.00 0.00
Ave 11.81 11.45 5.08 4.82 0.68
Max 18.89 18.89 12.13 10.56 7.07

Table 2. % of Gap with respect to the best found solution, instances set (180,18)

Gap(%) N1 (N1,N2) N\(N4,N5) N\(N5) N
Min 3.00 3.68 0.00 0.00 0.00
Ave 11.26 11.45 1.95 1.54 1.01
Max 21.30 21.33 9.34 7.19 4.15

Table 3. % of Gap with respect to the best found solution, instances set (300,25)

Gap(%) N1 (N1,N2) N\(N4,N5) N\(N5) N
Min 1.46 1.46 0.00 0.00 0.00
Ave 9.66 9.97 1.40 1.78 2.58
Max 21.75 25.70 5.71 5.56 7.82



An ALNS for a Snow Plowing with Synchronized Routes 411

5 Conclusions

We have introduced a synchronized arc routing problem for snow plowing operations.
A mixed integer non-linear problem has been proposed. A solution procedure based on
adaptive large neighborhood search metaheuristic was developed. Five destroy/repair
operators were developed. The performance of the proposed ALNS procedure was eval-
uated over large instances. The best set of operators depend on the instance size.
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Abstract. In this paper we present a novel column generation (CG) formulation
and a branch-and-price (BP) algorithm for the Vehicle Routing Problem with
Cross-Docking (VRPCD). Our BP algorithm is compared with a previous algo-
rithm to solve the VRPCD and the computational results show that our approach
dominates the other in terms of the quality of lower and upper bounds and also
can evaluate optimal solutions faster.

1 Introduction

Supply chain management (SCM) is a set of approaches used to efficiently integrate
suppliers, manufacturers, warehouses and stores in order to minimize system-wide costs
while satisfying service level requirements [17]. A lot of tools have been proposed to
help the SCM in the last few years aiming to reduce production and inventory costs for
different kinds of manufacturing business.

Among problems solved by SCM tools, the vehicle routing problem (VRP) is one of
the most important, since the problem of transporting goods from suppliers to customers
can arise in different parts of supply chains and implies elevated costs. Furthermore,
VRP can be integrated with other supply chain problems, increasing complexity of the
solutions. The inventory routing problem (IRP) is an example of such integration and
concerns assigning routes for vehicles as well as warehouses to store undelivered goods
within a time interval (varying from weeks to months). Different authors deal with IRP,
we refer to [5], [13] and [16] for details.

In the last few years, several studies were conducted in different areas of SCM aiming
to improve its efficiency and effectiveness. A novel distribution strategy were proposed
for helping in the transportation of goods without inventory: the Cross-Docking (CD)
warehouse [1]. Items delivered to a CD warehouse by inbound vehicles are immediately
sorted out, reorganized based on customer demands and loaded into outbound vehicles
for delivery without the items being actually held in inventory at the warehouse. If any
item is held in storage, it is usually for a brief period of time that is generally less than
24 hours [19]. The problem of assigning routes for vehicles and organizing loads at CD
is called vehicle routing problem with Cross-Docking (VRPCD).

A formal definition of VRPCD is given using a directed graph G = (V,A) where
V = {{0},S,C}, S = {1, . . . ,n} is a set of suppliers, C = {1′, . . . ,n′} is a set of customers
and 0 denotes the CD. Assume that A = AS ∪AC (AS ∩AC = /0), where AS = {(i, j) :
i, j ∈ {0,1, . . . ,n}} denotes the set of arcs connecting the suppliers as well as the CD
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and AC = {(i, j) : i, j ∈ {0,1′, . . . ,n′}} denotes the set of arcs connecting the customers
and CD. Let us assign costs {ci j ≥ 0 : (i, j) ∈ A} to the arcs of G. Consider that P =
{pi ← (i, i′,qi) : i = 1, . . . ,n} denotes a set of requests, each one representing a given
(unsplitable) load qi > 0 to be shipped from a supplier i to a customer i′. Consider as
well that a set of K homogeneous trucks (or vehicles) of capacity Q are available to
guarantee that all requests will be satisfied (collected and delivered). Finally, assume
that before delivering goods to customers, each vehicle must necessarily stop at CD, in
order to allow loads to change trucks and eventually make their delivery easier.

The VRPCD consists in finding routes for all K vehicles to visit once suppliers and
customers in order to collect and delivery items, respectively, without exceeding the
vehicle capacity. Each route must start and end at CD, furthermore, items can change
from vehicles at CD to facilitate its delivery, but whenever a load qi moves from/to
vehicle k to/from another vehicle k′, a cost ci ≥ 0 is incurred at CD. Thus, the objective
of VRPCD is to find routes such that the total cost (given by the sum of the arcs traversed
by the vehicles and the costs of changing loads at CD) is minimized. In Figure 1, we
depict a set of routes for vehicles k1 and k2, where requests p1, p2 changed from vehicle
k1 to k2 and request p4 from k2 to k1.

1

2

3

4

5

1’

2’

3’

4’

5’

CD

k1 k1

k2 k2

(a) Vehicles routing

k2 k2

k1 k1
1 5 2 45

3 4 2 3 1

1 2

4

unloading loading

(b) Loads change at CD

Fig. 1. An example of a VRPCD solution

The costs incurred to change items at CD define the VRPCD structure. Suppose we
assign costs ci = 0, ∀pi ∈ P to change items at CD. This problem can be reduced to
a 2-VRP that consists in finding 2K minimum cost routes for visiting suppliers and
customers, disregarding costs of changing items at CD. On the other hand, if such costs
are assigned as ci > Uc, ∀pi ∈ P, where Uc is a threshold to ensure that no item will
be changed at CD in the optimal solution, the VRPCD is reduced to a vehicle routing
problem with pickups and deliveries (VRPPD). According to [2], in VRPPD each vertex
either has a pickup or a delivery request but not both. Solutions for VRPPD concerns
collecting items using a vehicle k at suppliers and delivering them to the respective
customers using the same vehicle. In this paper we addressed the VRPCD with costs
0 < ci < Uc, since solutions for 2-VRP and VRPPD are well known in the literature.

In the case where the routing costs are disregarded (ci j = 0, ∀(i, j) ∈ A), the VRPCD
is reduced to the truck scheduling problem. In this problem we deal only with the
scheduling of loads at CD, aiming to organize items from inbound trucks into outbound
trucks in order to optimize Cross-Docking operations (cost/time). Different works ad-
dressed the truck scheduling problem, see [3], [4] and [19] for details.
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The main challenge of VRPCD is to integrate routing and scheduling decisions in
order to minimize some objective function. A slightly different variant of the proposed
VRPCD was introduced by [10]. The authors addressed the VRPCD with time windows
constraints at vertices, but they neglected costs of changing items at CD. A mathemati-
cal formulation to solve the problem was presented and a heuristic algorithm based on
Tabu search was implemented in order to approximate results for larger instances. The
results were reported using random generated instances with 10, 30 and 50 vertices and
the results achieved 5% from optimal values in the worst case.

Another work on VRPCD was presented by [18] with similar characteristics from
that introduced in [10], however including operational constraints from a real world
problem obtained from a logistic company. The authors also presented a mathematical
formulation and a tabu search heuristic to solve the problem. Experimental results were
conducted based on real data instances with up to 200 pairs of nodes and the solutions
from heuristic were within 5% from optimal values.

An exact algorithm for VRPCD was introduced in [15]. The authors proposed a
CG formulation to evaluate tighter lower bounds and implemented a branch-and-price
algorithm to solve VRPCD instances derived from [18]. They used integer decision
variables λ and γ to denote respectively routes for suppliers and customers, indexed
for K vehicles in order to catch loads changing at CD. Even though this formulation
suffers with a large symmetry, their computational results dominates those obtained
using a Linear Programming based Branch-and-bound method that relies on a previous
network flow formulation solved with CPLEX MIP package.

The aim of this paper is to present a novel exact algorithm to solve the VRPCD. For
this purpose we introduce a newer CG formulation that does not suffer with symmet-
rical solutions and also a branch-and-price algorithm based on such formulation. The
remaining of the paper is organized as follows. In Section 2 we introduce the proposed
CG formulation for VRPCD, while in Section 3 we present a mathematical formula-
tion and algorithms used to solve the CG subproblem. The Branch-and-price algorithm
is described in Section 4 and the computational results are reported in Section 5. We
conclude this work on Section 6 where we also provide further research directions.

2 Column Generation Formulation

We propose a mathematical formulation for VRPCD based on Dantzig-Wolfe decom-
position using a directed graph G′ = (V,A′) where

A′ = (A \ (AS0∪A0C)) ∪ ASC

AS0 = {(i,0)∀i ∈ S}, A0C = {(0, j)∀ j ∈C}, ASC = {(i, j) : i ∈ S, j ∈C}.
We also assign costs ci j = ci0 +c0 j, ∀(i, j) ∈ ASC. Note that arcs from suppliers to depot
and from depot to customers in A are replaced to arcs connecting suppliers to customers
in A′, and for this reason routes in G′ must leave CD to collect items at suppliers and
visit customers immediately latter, returning to CD at end of route. We model change
of items at CD by adding a cost ci if a given vehicle (route) visits a customer i′ without
visiting the respective supplier i of a request pi ∈ P.
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Let R be the set of all feasible routes in G′ visiting a vertex i ∈V \ {0} at most once
and do not exceeding the capacity limit of vehicles. For each route r ∈ R let cr denote
its cost, given by the sum of its arcs. Assume we are given parameters air indicating
if route r ∈ R visits or not vertex i ∈ V (with value 1 or 0, respectively) and bir =
max(0,ai′r− air) that assumes value 1 if and only if route r visits customer i′ and do
not visit the respective supplier i of a given request pi ∈ P. The CG formulation is
accomplished by using decision variables λr indicating if a route r is used or not in
the solution, with value 1 or 0, respectively, and decision variables τi to control the
changing of items at CD, assuming value 1 if vertex i′ of request pi is visited on route
r but vertex i is not, and 0 otherwise. An integer programming formulation for VRPCD
based on CG follows.

min ∑
r∈R

crλr + ∑
pi∈P

ciτi (1)

∑
r∈R

λr = K (2)

∑
r∈R

airλr = 1 ∀i ∈V \ {0} (3)

τi−∑
r∈R

birλr ≥ 0 ∀pi ∈ P (4)

λ ∈ B|R|,τ ∈ B|P| (5)

The objective function (1) minimizes the sum of routing costs plus load/unload costs at
CD. Convexity constraint (2) assures that all K vehicles are used in the routing solution,
while equalities (3) impose that each vertex must be visited exactly once. Inequalities
(4) control load/unload operations at CD, enforcing τi = 1 if and only if some route
visits a customer without visiting the respective supplier. Finally, constraints (5) define
decision variables bounds.

Assume we relax the integrality of variables λ and τ and replace the set of all feasible
routes R for a restricted set R̂, obtaining a Restricted Linear Master Problem (RLMP).
Assigning dual variables α ∈ R, {θi ∈ R : i = {1, . . . ,n,1′, . . . ,n′}} and {χi ∈ R+ : i =
{pi, . . . , pn}} respectively to constraints (2), (3) and (4), we obtain a dual formulation
of RLMP given by (6)–(8):

max Kα + ∑
i∈V\{0}

θi (6)

α + ∑
i∈V\{0}

airθi− ∑
pi∈P

birχi ≤ cr ∀r ∈ R̂ (7)

χi ≤ ci ∀pi ∈ P (8)

Suppose w is the optimal value obtained by solving RLMP for a given set R̂. If we take
the optimal dual variables values and rewrite inequality (7) in terms of network arcs,
we can identify negative reduced cost routes looking for r ∈ R\ R̂ satisfying

∑
(i, j)∈r

ci j−∑
i∈V

airθi + ∑
pi∈P

birχi < α (9)
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The CG subproblem consists of minimizing the LHS of inequality (9). Suppose r∗ is
the minimum cost route obtained by solving the above subproblem. If r∗ satisfies (9),
we do R̂← R̂∪ r∗ and start a new iteration of CG. Otherwise, CG stops and w = wCG is
an lower bound for VRPCD.

3 Column Generation Subproblem

The CG subproblem described in Section 2 is a slight variant of the Elementary Short-
est Path Problem with Resource Constraints (ESPPRC). Such a variant occurs due to
changing costs incurred when a route (elementary path) visits a customer vertex i′ with-
out visiting the respective supplier i of a given request pi. ESPPRC appears as subprob-
lem in many CG based algorithms, in particular, vehicle routing problems. Dynamic
Programming (DP) is the most common algorithm to solve ESPPRC. Feillet et al. [6]
were the first to introduce a DP algorithm for ESPPRC, while the better results in the
literature are reported by Salani’s algorithm [14]. However, DP algorithms present some
shortcomings when routes are long and the resources are not tighter, slowing conver-
gence to optimal solutions.

Besides of DP algorithms shortcomings, our CG subproblem demands new domi-
nance rules to prevent DP algorithm to discard feasible solutions as well as to ensure
that all feasible solutions are evaluated. After a first experience implementing a DP al-
gorithm to our subproblem we decided to change the algorithm paradigm due to the
large computing time to solve even small size instances.

Aiming to overcome DP shortcomings, [11] introduced a branch-and-cut (BC) algo-
rithm to solve the Elementary Shortest Path Problem with Capacity Constraint (ESP-
PCC), a particular case of ESPPRC with a single resource, that arises as a CG subprob-
lem of the capacitated vehicle routing problem (CVRP). The results of BC algorithm
outperform those obtained by DP algorithm to ESPPCC, specially for instances where
capacity constraints are not tight.

After analysing the arguments above we decided to implement a BC algorithm to
solve our CG subproblem. We also implemented a heuristic algorithm based on GRASP
(Greedy Randomized Adaptive Search Procedure) metaheuristic to solve the subproblem,
in order to obtain negative reduced cost routes faster. In the next subsections we present
the implementation issues related to the BC and the heuristic algorithms. In what follows,
we modify graph G′ by adding vertex 0′, an artificial copy of the depot, in order to look
for paths instead of routes. We also embed the optimal values of dual variables θ on arcs
costs of A′ obtaining c′i j = ci j−θ j,∀(i, j) ∈ A′ to facilitate algorithms implementations.

3.1 Branch-and-Cut Algorithm

We introduce a mathematical formulation to solve the CG subproblem using decision
variables xi j to control whether an arc (i, j) ∈ A′ is selected or not in the solution,
assuming respectively value 1 or 0. Decision variables yi indicate if a vertex i ∈ V is
visited or not, with value 1 or 0, respectively. We also introduce a decision variable ti
assuming value 1 if, for a given request pi, the customer i′ is visited and its respective
supplier i is not, 0 otherwise. The integer programming formulation is given by (10) –
(19) in the following.
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min ∑
(i, j)∈A

ci jxi j + ∑
pi∈P

citi (10)

∑
j∈S

x0 j = 1 (11)

∑
i∈C

xi0′ = 1 (12)

∑
j∈Γ+

i

xi j =−yi ∀ i ∈V \ {0,0′} (13)

∑
h∈Γ−i

xhi =−yi ∀ i ∈V \ {0,0′} (14)

∑
i∈W, j∈V−W

xi j ≥ y j ∀0 ∈W ⊂V, ∀ j ∈V \W (15)

ti ≥ yi− yi′ ∀pi ∈ P (16)

∑
i∈S

yiqi ≤ Q (17)

∑
i′∈C

yi′qi′ ≤ Q (18)

x ∈ B|A|,y ∈ B|V |,t ∈ B|P| (19)

The objective function (10) minimizes the sum of arcs costs plus changing costs. Equal-
ities (11) and (12) ensure that exactly one arc is used to leave and arrive the depot and
its artificial copy, respectively. From (13) and (14) we have the couple constraints to
assure together that if any arc of a given vertex is used such a vertex must be visited.
Directed cutset constraints (15) enforce connectivity and subtour elimination on solu-
tion. Inequalities (16) controls variables ti associated with changing costs, while (17)
and (18) are capacity constraints used respectively to prevent a vehicle from collect-
ing (or delivering) more loads than its capacity. Decision variables space is given by
constraints (19).

The above model holds an exponential number of constraints due to (15). Our BC
algorithm concerns solving model (10)-(19) disregarding constraints (15) and adding
violated constraints by demand, until no such constraints are found. For BC implemen-
tation we use callbacks routines of CPLEX optimization software (release 12) keeping
all default parameters, except pre-processing and heuristic routines to prevent improper
feasible solutions, since we deal only with a subset of constraints.

To identify violated constraints, we use CPLEX cut callback routine to take values
of decision variables y∗i and x∗i j and build a graph Go = (Vo,Ao), where

Vo = {0}∪{i : y∗i > 0} and Ao = {(i, j) : x∗i j > 0}.

Then, we solve |Vo|− 1 max-flow (min-cut) problems on Go from vertex s = 0 to t =
{i : i ∈Vo \ {0}}, assigning arcs capacities Ci j = x∗i j, ∀(i, j) ∈ Ao.

Let f (0, i) be the max-flow from vertex 0 to i on Go and fi j be the flow passing
through arc (i, j) ∈ Ao in the max-flow solution. Suppose ∃ i ∈ Vo : f (0, i) < y∗i , exist a
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set W leading to a violated constraint of (15). If we build a graph Gr = (Vo,Ar), where
Ar = {(i, j) : Ci j− fi j > 0, ∀(i, j) ∈ Ao}, set W is composed by vertices i∈Vo for which
exist a path from 0 to i on Gr. We add only the most violated constraint calculating
z = argmini∈V\W (y∗i − fi) generating constraint

∑
i∈W, j∈V−W

xi j ≥ yz.

3.2 Heuristic Algorithm

GRASP metaheuristic [7] consists basically in embedding random characteristics within
greedy procedures, aiming to achieve good quality local minima. A construction phase
builds feasible solutions using greediness plus randomization characteristics, while lo-
cal search procedures are used to improve such solution. Solutions are built at construc-
tion phase using a Restricted Candidate List (RCL) and a parameter 0≤α ≤ 1 to control
the greediness to choose its elements. After that, local search procedures are applied to
the solution in order to achieve a local minimum. This procedure is repeated until a
stopping criterion is achieved and the best solutions are stored along the iterations.

In the construction phase, the algorithm generates a feasible solution starting by
vertex 0 and filling up RCL with the best adjacent vertices, according to the parameter
α . A candidate from RCL is randomly selected and a new iteration starts. Suppose
vertex i is selected to be adjacent of 0, we include arc (0, i) in the solution and start a
new iteration looking for the best adjacents of vertex i to fill the RCL. These steps are
repeated until select vertex 0′ for the path.

Before to explain the implementation issues about the algorithm, let us first introduce
an important notation used along this section. The subset Γ+

i ⊂ V denotes a set of
feasible vertices for which i ∈ V can visit (feasible adjacent vertices of i) in a given
iteration. Similarly, Γ−i ⊂ V is the set of vertices able to visit i. Therefore, j ∈ Γ+

i if,
and only if, (i, j) ∈ A′, j was not visited yet and the load q j does not exceed the residual
capacity of vehicle.

The algorithm fills the RCL based on visiting costs estimative for adjacent vertices.
Suppose i is the last vertex of a given path, the estimated visiting cost a j, ∀ j ∈ Γ+

i is
calculated as

a j =

⎧⎪⎨⎪⎩
ci j + mink∈Γ+

j
(c jk); if j ∈ S

ci j + mink∈Γ+
j

(c jk)+ b jc j; if j ∈C

ci0′ ; if j = 0′

Minimum $a j%= min j∈Γ+
i

(a j) and maximum �a j�= max j∈Γ+
i

(a j) estimative costs are

calculated and the RLC is composed by adjacents of i with values within $a j% ≤ a j ≤
$a j%+α × (�a j�− $a j%). Note that, assigning α = 0 we perform a greedy construc-
tion phase, while α = 1 makes the search totally random. The algorithm chooses one
element of RCL randomly and continues until reaches vertex 0′.

Local search movements are applied to each solution from the construction phase
leading to its local minimum. The local search implemented in our algorithm is a Vari-
able Neghborhood Decent (VND) [12]. Instead of using a single neighborhood, VND
uses H not necessarily related neighborhoods, applying to a given solution a larger
number of movements. Suppose f (x) is a cost function for a given solution x and
N1,N2, . . . ,NH are neighborhoods of x, Algorithm 1 describes the VND local search.
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Algorithm 1. VND Local Search
Require: Initial solution x0
Ensure: Local minimum solution x∗o

x← x0; k← 1;
while h≤ H do

if ( ∃s ∈ Nh(x) : f (s) < f (x) ) then
x← s; k← 1; break;

end if
end while
return x

In our heuristic we define H = 3 neighborhoods to be used within VND, which
are described as N1, N2 and N3 in the following. Let Vr be a set of vertices visited
by a given route r. N1 is an insertion neighborhood composed by routes r′ on which
Vr′ = Vr∪{i} : i ∈V \Vr. Solutions r′ ∈ N2 consists in removing one vertex of solution
r for which Vr′ = Vr \{i} : i ∈Vr and finally N3 is a swap neighborhood where vertices
visiting order of a route r is changed. The movements are performed in the respective
neighborhood only if they are feasible using the best improving strategy.

To help intensification of solutions obtained with GRASP heuristic we implemented
a path-relinking algorithm [8]. Path-relinking uses solutions from a set of good quality
solutions, named elite set, to guide the search of other solutions along solutions space.
For our GRASP implementation, path-relinking consists in using an initial solution i
obtained from each iteration of GRASP (construction phase + VND local search) and
applying movements according to the neighborhoods N1,N2 and N3 to convert it on
a solution e, chosen from elite set. Different strategies are available to build the set
of elite solutions, as well as to choose a solution from this set as guiding, but in our
implementation we store in elite set only the overall minimum cost solution. Suppose
I ⊂ R is the set of intermediate solution obtained by converting i into e using path-
relinking movements. If ∃ i∗ ∈ I : f (i∗) < f (i), we apply VND local search on i∗ to
ensure it achieves its local minimum.

4 Branch-and-Price Algorithm

Our Branch-and-price (BP) algorithm for VRPCD first evaluates the linear relaxation
value (wCG) of model (1)–(5) using the CG approach described in Section 2. For this
purpose we start R̂ with K randomly generated routes, one for each vehicle, to compose
a feasible solution for VRPCD. Each iteration of CG begins looking for negative re-
duced cost routes using the heuristic algorithm. If such routes are found, all of them are
added to R̂ and a new iteration starts. In the case of the heuristic algorithm is not able
to find negative reduced cost routes in a given iteration, the BC algorithm is called to
evaluate the optimal route r∗. If r∗ has negative reduced cost, it is included in R̂ and the
above steps are repeated, otherwise we achieved wCG.

Along CG steps the BP algorithm also evaluates a subestimate for wCG. Such esti-
mative is described in details in [9] and is calculated as w−CG = wCG−K f (r∗), where
f (r∗) is a cost function for the optimal route r∗ calculated with BC. Although wCG is
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a tighter lower bound for VRPCD, w−CG can be useful to keep a valid lower bound for
VRPCD even if we stop the CG early.

After CG evaluates wCG, if all variables λ present integer values (variables τ are
also integer due to constraints (4)), wCG is the optimal solution for VRPCD and BP
algorithm stops. Otherwise, we must resort to branching. In our BP implementation we
branch on arc variables xi j obtained from RLMP as

xi j = ∑
r∈R̂

ai jrλr

where parameter ai jr indicates whether a route r pass through the arc (i, j) ∈ A′ or not,
assuming value 1 or 0, respectively. To select the branching variable we evaluate the
violation level vi j of arcs as

vi j = min(|xi j−0.5|)
and calculate the greater violation value v∗i j = min({vi j : (i, j) ∈ A′}). We compose the
set of candidate arcs for branching B = {(i, j) ∈ A′ : vi j = v∗i j}. If |B| = 1 we branch
on the most violated arc, creating two nodes on BP tree by fixing xi j = 1 and xi j = 0.
Otherwise, if |B| > 1 we decide for which arc to branch using the dual information.
Such decision is made adding on RLMP the constraint

∑
r∈R

ai jrλr = v∗i j ∀(i, j) ∈ B

and branching on that arc with the greater absolute dual value. For node selection on
BP tree, we use the best bound strategy.

Aiming to improve upper bound values, we implemented a column generation heuris-
tic (CGH) for VRPCD. Let R̂∗ be the set of routes priced out on RLMP to achieve wCG

for a given node. We replace set R on model (1)–(5) to R̂∗ and solve the resulting integer
programming problem to obtain an upper bound uCG for the problem.

5 Computational Results

We conducted computational experiments to evaluate the performance of the proposed
algorithms BC, GRASP and BP. Our test set is built upon VRPCD instances introduced
in [18], where real world data belonging to a Danish Logistics Consultant were used to
build five instances with |P| = 200 requests: 200a, 200b, 200c, 200d and 200e. Since
such instances are out of reach for exact solution approaches, we extracted for each
instance in [18] smaller subsets of requests with |P| ∈ {10,15,20,25,30}. Arc costs on
our test set are based on Euclidean distance while costs to change items at CD are fixed
as ci = 30, ∀ pi ∈ P, except if we state otherwise on the text. These instances are avail-
able to download at http://www.dcc.ufmg.br/˜fsantos/instances/.

The algorithms discussed here were coded in C++, using ILOG CPLEX release 12.1
as the LP and MIP solver. Computational experiments were conducted with a Intel
Core 2 Quad machine running at 2.2 GHz, with 4 Gbytes of RAM memory, under
Linux Operating System. A time limit of four hours was imposed on the execution of
the algorithms.



Novel Column Generation Algorithm for VRPCD 421

Table 1. GRASP performance according to the number of iterations

1000 it 10000 it 20000 it 30000 it optimal
instance cost time cost time cost time cost time cost time

30a 208.93 0.42 201.68 4.27 199.96 8.71 199.28 13.23 193.23 221.3
30b 90.19 0.30 73.95 3.39 72.81 7.03 70.91 10.87 61.73 1488.1
30c 10.16 0.26 7.62 3.01 7.40 6.08 7.14 9.02 -70.77 360.6
30d 240.93 0.36 204.22 4.00 188.12 8.19 182.01 12.57 172.12 147.0
30e -328.25 0.29 -340.76 3.52 -343.70 8.02 -345.22 13.31 -355.92 2068.4

average 44.39 0.32 29.34 3.63 24.91 7.60 22.82 11.8 0.07 857.1

We started evaluating the performance of BC and heuristic algorithms, in particular
we evaluated the heuristic concerning its parameters: number of iterations (it) and α . In
order to obtain negative arcs costs we introduced dual costs on vertices obtained from a
CG iteration before to achieve wCG. We report in Table 1 the average results of 50 runs
of the heuristic algorithm solving instances with 30 requests (60 vertices). We show for
each instance the minimum route cost and the execution time attained by the heuristic
algorithm for the number of iterations varying from 1000 to 30000, with parameter α
fixed in 0.5. The two last columns of Table 1 show respectively the optimal route value
and the execution time to achieve it with the BC algorithm.

Results from Table 1 show that the quality of solutions improves along the iterations
while the execution time increases. Note that, near optimal solutions can be obtained
faster using the heuristic algorithm, furthermore for instances 30a, 30b, 30d and 30e
the optimal value was achieved in up to 10 runs of the heuristic when the number of
iterations is 10000 or higher. For BP implementation we decided to fix the number of
iterations in 10000 because the improvements are not attractive for higher number of
iterations due to the increasing on execution time.

In Figure 2 we depict the quality of solutions in terms of parameter α when the
heuristic runs over 10000 iterations. On axis x, α starts with value 0 and ends with 1
with step 0.1, while axis y presents the distance of solutions from the optimal value in
percentual figures.
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The parameter α controls the greediness to build solutions in the construction phase
of GRASP heuristics. According to Figure 2, building solutions randomly (α = 1) is the
worst strategy. On the other hand, building such solutions according to a greedy strategy
(α = 0) presents results within 20% from optimal values. However, the algorithm per-
forms better with α on the interval [0.2,0.6] and for this reason on BP implementation
it must choose randomly a value for α within this interval before each iteration.

We conducted the next experiment aiming to compare our BP algorithm with that
presented in [15]. We labeled both algorithms as NBP (Novel Branch-and-Price) and
PBP (Previous Branch-and-Price proposed in [15]) in order to facilitate explanations.
For all instances of our test set we evaluated the LP bound wCG and the execution time
tw for the root node and also the best lower (BLB) and upper (BUB) bounds achieved
within the time limit (4 hours), besides of the associated percentual duality gap, defined
as BUB−BLP

BUB . The results reported on table 2 present on columns 3− 7 values obtained
using NBP while in columns 8−12 are the values from PBP. A superscript symbol ‘∗’
implies wCG achieved with integer variables leading to the optimal solution for VRPCD,
while ‘−’ indicates that the lower bound w−CG is used instead of wCG because it could
not be evaluated within the time limit.

Table 2. Computational Results for the proposed BP the BP proposed in [15]

NBP PBP proposed in [15]
|P| instance wCG tw BLB BUB GAP wCG tw BLB BUB GAP

10

a 1783.1∗ 18s 1783.1 1783.1 0.0% 1678.0 0.9s 1783.1 1783.1 0.0%
b 1739.0 14s 1741.4 1741.4 0.0% 1637.1 0.7s 1741.4 1741.4 0.0%
c 1978.6∗ 10s 1978.6 1978.6 0.0% 1888.1 1s 1978.6 1978.6 0.0%
d 1766.8 24s 1770.2 1770.2 0.0% 1677.4 0.8s 1770.2 1770.2 0.0%
e 2192.3∗ 12s 2192.3 2192.3 0.0% 2079.0 1.1s 2192.3 2192.3 0.0%

15

a 2587.7∗ 43s 2587.7 2587.7 0.0% 2436.1 1.2s 2560.4 2587.7 1.0%
b 2671.2∗ 49s 2671.2 2671.2 0.0% 2495.6 1.1s 2662.3 2671.2 0.3%
c 2943.3 44s 2948.3 2948.3 0.0% 2852.2 1.3s 2948.3 2948.3 0.0%
d 2553.5 29s 2568.2 2568.2 0.0% 2432.2 1s 2545.7 2568.2 0.8%
e 2959.1 101s 2964.5 2964.5 0.0% 2809.0 1.4s 2964.5 2964.5 0.0%

20

a 3170.5 102s 3173.3 3178.9 0.1% 2989.3 4.2s 3082.0 3236.6 4.7%
b 3397.8∗ 1274s 3397.8 3397.8 0.0% 3185.5 1.5s 3312.4 3518.0 5.8%
c 3724.3 196s 3727.2 3773.7 1.2% 3568.1 1.8s 3670.5 3801.2 3.4%
d 3105.5 119s 3111.7 3126.5 0.4% 2936.7 3.4s 3021.6 3234.6 6.5%
e 3685.1∗ 1410s 3685.1 3685.1 0.0% 3508.5 2s 3644.9 3685.1 1.0%

25

a 3972.3 1201s 3975.8 4012.2 0.9% 3736.0 10s 3797.6 4243.2 10.5%
b 4326.5 12655s 4326.5 4398.5 1.6% 4076.2 5s 4138.0 4642.3 10.8%
c 4525.8 7317s 4525.8 4605.6 1.7% 4258.5 4 4386.3 4612.4 4.9%
d 3888.6 1812s 3890.5 3949.8 1.5% 3675.0 12s 3725.9 4258.4 12.5%
e 4480.2 10501s 4480.2 4519.3 0.8% 4244.0 4s 4322.3 4649.7 7%

30

a 4360.1 8708s 4360.1 4456.9 2.1% 4114.1 28s 4166.9 4894.6 14.8%
b 4801.5− 14400s 4801.5 5173.1 7.1% 4768.4 21s 4834.9 5337.5 9.4%
c 4455.8− 14400s 4455.8 5241.2 14.9% 4771.1 12s 4827.8 5417.9 10.8%
d 4354.5 13785s 4354.5 4393.7 0.8% 4099.1 30s 4127.0 4977.6 17.0%
e 4671.7− 14400s 4671.7 5301.1 11.8% 4929.8 12s 4990.4 5580.7 10.5%
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For all instances on which NBP can evaluate wCG the values are tighter than those
evaluated with PBP, however the execution time for NBP grows almost one order of
magnitude if the number of requests increases 5 units. In average NBP spends 99% of
execution time on CG subproblem, in particular 95% is due to BC algorithm. If we drop
the heuristic algorithm from NBP the execution time increases in average 500% and if
we solve the CG subproblem using Dynamic Programming NBP is not able to achieve
wCG even for problems with 20 requests within 4 hours. These results emphasize how
much difficult is our CG subproblem. Moreover, wCG are worth the time because from
those 22 instances on which NBP is able to evaluate wCG within the time limit, 7 are
optimal and in average wCG is 1% from the optimal value for the others. For instances
30b, 30c and 30e a single BC execution can spend hours and for this reason NBP could
not evaluate wCG within the time limit, and we report w−CG. On the other hand, PBP
evaluates loosen wCG values faster for all instances. This occurs because PBP evaluates
two CG subproblems, one for suppliers and other for customers, dealing with small
subgraphs for each pricing. However this approach implies symmetry on solutions and
for this reason wCG are not as tighter as those evaluated with NBP.

Analysing overall solutions for VRPCD the results show that NBP performs better
than PBP because it finds feasible solutions with lower cost for all instances. For the
most of instances, such solutions are evaluated using the CGH described in Section 4.
A similar heuristic is also used to evaluate feasible solutions for PBP, but the quality
of routes priced out for NBP is greater because it acomplishes suppliers and customers
together and for this reason achieves better feasible solutions on CGH. Considering
only those instances solved at optimality by both algorithms, NBP also dominates PBP
in terms of time need to achieve the optimal solution, in average 684 seconds for NBP
against 3678 for PBP. Finally, the average duality gap attained by NBP for instances
with 10,15,20,25 and 30 requests are respectively 0.0%,0.0%,0.34%,1.3% and 7.34%
while PBP achieves for the same instances gaps 0.0%,2.5%,4.28%,9.14% and 12.5%.

We finished our computational experiments illustrating how NBP and PBP algo-
rithms perform dealing with VRPCD for different costs to change loads at CD. We
assigned changing costs as ci = {10,30,50}, ∀pi ∈ P and evaluated wCG for instances
with 20 requests with both algorithms. Results of such comparisons are in Table 3. For
each instance we report the optimal value followed by the lower bound implied by wCG

and the upper bound (UCG) calculated using the CGH for ci = {10,30,50}. Values from
PBP are shown within brackets.

Table 3. Comparing lower and upper bounds from NBP and PBP (within brackets) for different
costs to load/unload items at CD

ci = 10 ci = 30 ci = 50
instance optimal wCG UCG optimal wCG UCG optimal wCG UCG

20a 3068.2
3059.3 3069.3

3178.9
3170.5 3216.3

3232.5
3220.5 3258.9

(2989.3) (3081.1) (2989.3) (3216.5) (2989.3) (3406.1)

20b 3297.8
3277.3 3352.7

3397.8
3397.8 3397.8

3444.6
3439.5 3444.6

(3185.5) (3311.9) (3185.5) (3442.6) (3185.5) (3539.9)

20c 3692.4
3646.3 3715.8

3766.1
3724.3 3786.9

3805.1
3764.2 3814.4

(3568.1) (3701.0) (3568.1) (3779.5) (3568.1) (3847.3)

20d 3045.9
3030.2 3086.3

3124.2
3105.5 3124.2

3124.2
3105.5 3124.2

(2936.7) (3069.6) (2936.7) (3236.6) (2936.7) (3417.4)

20e 3592.4
3585.5 3592.4

3685.1
3685.1 3685.1

3765.1
3755.6 3765.1

(3508.5) (3595.7) (3508.5) (3688.3) (3508.5) (3807.8)
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These results illustrates clearly that PBP is plagued by a deep symmetry problem.
For each instance, the lower bound wCG evaluated with PBP keeps constant regardless
the value assigned for ci. Moreover, the upper bound UCG increases according to ci

values enforcing a large duality gap. Concerning NBP, values for both wCG and UCG

are closer from the optimal values for all instances, since the pricing problem evaluates
routes for suppliers and customers together.

6 Concluding Remarks

We presented in this work an exact solution approach for VRPCD, a recent problem
that integrates routing and scheduling decisions in supply chains. Aiming to improve
previous results reported in [15] we presented a novel column generation algorithm to
fix shortcomings from the previous algorithm. The resulting column generation sub-
problem of our algorithm implies a huge computational complexity and for this reason
we implemented a branch-and-cut algorithm to obtain optimal solutions and a heuris-
tic algorithm based on GRASP metaheuristic to approximate such solutions faster. We
evaluated the performance of our algorithms using a real based data set introduced in
[18] and the overall results outperformed those obtained from the previous algorithm
concerning both lower and upper bounds.

In the current step of research we are evaluating another column generation formu-
lation to prevent symmetrical solutions as well as to facilitate the resulting subproblem.
As further research we plan to investigate state space relaxation approaches toward to
solve the subproblem faster, since it spends up to 99% of the execution time for the
larger instances.
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Abstract. Revenue Management (RM) provides the opportunity to generate ad-
ditional income by segmenting the overall market and by defining adequate prices
for products from a given product portfolio. Typical application fields for RM are:
service and leisure industries but also production-to-order-applications. In the last
years RM-techniques have penetrated into ‘non-traditional’ sectors. Among them
is the freight transport sector. Air cargo represents the most prominent example
but also in maritime contexts, RM-tools are used. However, the application cir-
cumstances in road-based freight transportation are quite different compared to
the aforementioned applications. The road network is close-meshed so that the
number of possible services in a given network is extremely large. A further chal-
lenge is that the requests under consideration are subject of high uncertainty. On
the one hand, the announced weight and volume often differs from the actual di-
mensions of an accepted request to be served by a given network. On the other
hand, a lot of dispatchers grant ad-hoc discounts on the prices defined within the
RM system. Thus, inconsistencies between calculated and actual dispatching-
relevant data occur. This contribution addresses the revealing and understand-
ing of impacts of imprecise demand forecast on the performance of the RM-tool
capacity control.

1 Introduction

Revenue Management (RM) provides the opportunity to generate additional income
by segmenting the overall market and by defining adequate prices for products from a
given product portfolio. Typical application fields for RM are: service and leisure in-
dustries but also production-to-order-applications. In the last years RM-techniques have
penetrated into ‘non-traditional’ sectors. Among them is the freight transport sector. Air
cargo represents the most prominent example but also in maritime contexts, RM-tools
are used.

Recent studies (e.g. [13]) suggests the application of RM in road-based freight trans-
portation with the objective to earn additional revenues from performing transport ser-
vices in a road-based network. Two basic ideas are followed. At first it is tried to filter
the incoming stream of requests and to reject unprofitable requests (capacity control).
At second it is tried to increase the number of sold requests by segmenting the corre-
sponding market (price segmentation).

Capacity control subsumes efforts to scan an incoming stream of consecutively ar-
riving requests for the utilization of scarce resources with the goal to filter the most

J. Pahl, T. Reiners, and S. Voß (Eds.): INOC 2011, LNCS 6701, pp. 426–438, 2011.
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profitable requests out from the proposed stream ([10]). Basic components of capac-
ity control systems are the control of utilized resource capacities and the prediction of
expected future profits (revenues).

In road-based freight transportation (road haulage), freight forwarding companies as
well as freight carriers work together to fulfill the transport demand of customers. A
freight forwarder receives the customers’ demand and organizes a transportation chain
through a given transportation network. Often, a forwarding company has no own trans-
port equipment or is not able to use own equipment to realize the complete transport
chain from the customer-specified pickup location to the desired delivery point. In this
case, the freight forwarder organizes parts or the overall transport chain by hiring third
parties that fulfill the physical movement of goods. The third parties are involved into
the transshipment facilities and the transport operations. The latter operations are ful-
filled by freight carriers who are engaged by the freight forwarder to move customers’
goods with their equipment (trucks, trailers, vans, ...). Here, the demand is expressed as
a request that can only be fulfilled in complete or not at all.

There are several impediments preventing the transfer of RM-tools from the afore-
mentioned successfully served application areas. This contribution reveals the specific
challenges and shortcomings but also addresses proposals to handle these challenges.
We address two challenges (i) the management of the extreme large portfolio of possible
transport services in a network and (ii) the impreciseness of demand forecasts which are
typically caused by a volatile market (number of expected requests) but also on orga-
nizational deficiencies like ad-hoc discounts granted by dispatchers to customers. For
coping with (i) we use the concept of so-called ”flexible products” for the control of
road-transport capacities. The resulting mathematical decision models are then evalu-
ated in computational simulation experiments in order to prove the following research
hypothesis: In early stages of a booking period, imprecise demand forecasts have small
impacts but in later stages of the selling interval, forecast errors have severe impacts on
earned revenues.

We start our report with the description and analysis of the decision situation (Sec-
tion 2). Afterwards, we present capacity control approaches for the investigated dy-
namic decision problem (Section 3). A comprehensive simulation study incorporating
the proposed capacity control approaches is reported, the observed results are discussed
and an answer to the motivating research hypothesis is derived (Section 4).

2 Decision Situation

We survey literature related to our investigation subject (Subsection 2.1). An informal
description of the analyzed scenarion is given (Subsection 2.2) and a decision model is
proposed (Subsection 2.3).

2.1 Literature

There is a very high number of scientific publications dealing with operational transport
process planning in road-based freight transportation. These contributions are classified
into three classes according to the investigated subproblem.
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The most often referred subproblem class in operational freight transportation com-
prises the vehicle routing problem and its variants ([7]), in which least cost routes and
schedules are compiled for the available trucks. The externalization of subsets of re-
quests (subcontracting) is also investigated [11]. Often, these two subproblems of oper-
ations transport process planning are considered as an integrated problem [12,15]. The
third referred subproblem is the request acceptance problem. Here, the dispatcher has to
select a subset of requests from a given request portfolio. Chosen requests are compiled
into routes or externalized and fulfilled but unchosen requests are rejected.

Static and dynamic request acceptance situations are distinguished. In a static situa-
tion, the overall requests portfolio is known at the time when the acceptance decision is
made. Typically, variants (extensions) of the vehicle routing problem like the selective
vehicle routing problem [24,1], the profitable salesman problem [4] or pickup and de-
livery selection problems [22] are investigated. If the portfolio is not known completely
at the acceptance decision time, the acceptance problem is dynamic. Whenever addi-
tional requests are released, it has to be decided again, which subset of the additional
requests is accepted and which requests are rejected. Dynamic acceptance problems
belong to the class of capacity control problems [23] which are an important decision
problem class in operational revenue management [3]. The basic challenge in capacity
control is to filter an incoming stream of requests so that a scarce resource is used in
the most profitable way by the selected requests. Network capacity control considers
several linked resources simultaneously [9].

The major challenge in capacity control is that a once made acceptance decision
cannot be revised later on. However, if flexible products are offered, it is possible to alter
the request fulfillment process after a request has been definitively accepted ([14,6]). In
road based freight transportation, a product is flexible, if there are two or more routes or
services to fulfill a request. This dispatching option enables a network service provider
to increase its profitability [16].

Capacity control problems are typically represented as dynamic programming (DP)
models. However, the tree structure to store and evaluate all future system states in the
DP is too large to be efficiently handled. Thus, so called deterministic linear programs
(DLP) are used [10] as decision models. In a DLP, the evaluation of the future states
is simplified. Only real-valued expected values (e.g. the expected number of upcom-
ing requests or the expected sum of expected revenues collectible from the upcoming
requests) are considered to represent future system states.

Capacity control strategies represent rules that describe under which circumstances a
request is accepted [17]. Two forms of strategies are discussed in the scientific literature.
At first, quotas are determined for products specifying the maximally allowed number
of accepted requests [18]. A proposed request is accepted without individual inspection
as long as the quota is not exceeded. At second, in a bid-price approach [9], each request
is individually checked for profitability at its arrival time. However, the determination
of the required margin costs (least prices) for requests is a very challenging problem.
Several approximation concepts are proposed [1,9].

The application of capacity control techniques for road-based freight transport is
reported only in very few contributions. The consulting study of [13] concludes that
road-based freight carriage companies would like to apply capacity control techniques.
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Their primary goal is to reduce the portion of empty trips among the necessary opera-
tions. [20] report a first outline of a capacity control system applied to a single vehicle
freight transportation planning scenario. The achieved revenues and capacity utiliza-
tions after the completion of the selling are compared. Within this report we perform
an online evaluation of the network capacity control system introduced for road-based
transportation in [19] in order to explain the observed results.

In the following we give a description of the problem and of the capacity control
system introduced in [19].

2.2 Dynamic Decision Problem

A freight carrier is confronted with an incoming stream of consecutively arriving re-
quest proposals originated by freight forwarders searching for transport resources. Each
request expresses the indivisible demand for the movement of goods of a certain quan-
tity through the network N := (V ,A ) formed by the set of pickup and delivery points
V and connections between these nodes collected in the set A .

The definition of N is based on planned transportation services necessary to fulfill
demand specified in longer term contracts. A regular visit of the nodes in V by a truck of
the carrier is necessary for loading and/or unloading goods according to the previously
mentioned contracts. To enable the fulfillment of the long term contracts the carrier op-
erates regular transport services. A service S is an ordered sequence S = (s1,s2, . . . ,sn(s))
of nodes taken from V . It is fulfilled by a truck that offers a given capacity CAPS. This
truck visits the nodes s1,s2, . . . ,sn(s) in the defined sequence. The services are collected
in the set S .

The arcs a(S,1) :=(s1,s2), a(S,2) :=(s2,s3), ..., a(S,n(s)−1) := (sn(s)−1,sn(s)) form
the arc set A . Each arc (si,s j) has been indexed with the donating service S in order to
have several copies of (si,s j) offered by different services in the set A . An arc a ∈ A
is referred to as resource a and its capacity C(a) is initialized by C(a) := CAPS. For a
given resource a ∈ A s(a) refers to the service that provides a. All resources are stored
in A .

Products are derived from the specified services running in N . A product p is an
ordered pair of two nodes p := (u,v) ∈ V ×V so that there is at least one service
s∗ ∈ S that is able to pick up some goods at u and moves them without transshipment
to v where the goods are unloaded. All derived products are collected in the set P .
The binary indicator SPR(s, p,a) is set to 1 if and only if service s ∈ S offers product
p ∈ P and, doing so, uses the resource a ∈ A .

A request r expresses the demand for a specific product p := P(r) ∈ P . The carrier
expects a profit REV(P(r)) from the execution of request r.

At time tk (k=0,1,...,Kmax) several spot-market requests are proposed to the carrier
by one or more forwarding companies. These requests are proposed in addition to the
regular demand described in the long-term contracts. The carrier is free to decide if it
wants to take the fulfillment responsibility for a spot-market request. However, the car-
rier has to decide immediately about the acceptance of the recently proposed requests.
We assume that the acceptance of a spot-market request does not lead to considerable
additional accountable costs. Thus, the carriers profit is lifted by the collected revenue
REV(P(r)) associated with the spot-market request r. The carriers’ goal is now to filter
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the most profitable requests from the stream of consecutively arriving requests con-
sidering the already made irreversible decisions as well as the scarce capacity of the
available resources. Therefore it decides about the acceptance/rejection of the currently
appeared requests guided by a capacity control strategy. The carrier relies its decisions
on calculated bid-prices of the available resources or on previously fixed product- and
service-specific quotas. Thus, the carriers’ decision problem can be interpreted as a
dynamic bid-price and/or quota determination problem.

At the decision time tk, the carrier knows the achievable revenues REV (P(r)) associ-
ated with a request r, the number Y k(P(r)) of requests for product P(r) already accepted
not later than tk−1, the expected demand-to-come DTCk(P(r)) for product P(r) in the
remaining booking phase [tk,tKmax ] as well as the remaining capacity of the available
resources. It must be found out if r is accepted or if the potentially scarce capacity
of the resources will be assigned to later arriving requests, which are more profitable
but whose appearance is unsure (which results in the rejection of the currently waiting
request r). Although the carrier is unable to revise the acceptance decision of a once
accepted or rejected request it may revise the assignment of an already accepted request
r∗ from a service s′ to another service s∗ if the product P(r∗) is flexible, e.g. if two or
even more services offer product P(r) and provide free capacity.

2.3 Model-Based Determination of Quotas and Bid-Prices

We represent the previously outlined dynamic decision problem as an online decision
model M = (M1,M2, . . . ,MKmax ) [21]. Whenever additional requests arrive at time tk we
adjust the stored bid-prices BP(a) of all resources a∈A and the service-specific quotas
Q(p,s) (p ∈ P , s ∈ S ) for the products to the current workload and to the expected
future demand.

In order to define the decision model instance Mk at time tk we introduce the two
decision variable families yk

p (p ∈ P) and zk
p,s (p ∈ P , s ∈ S ) to code the revenue

maximal quotas for each product p (the y-variables) and the service-specific quotas (the
z-variables).

∑
p∈P

REV (p) · yk
p → max (1)

∑
p∈P

SPR(s(a), p,a) · zk
p,s(a) ≤C(a) ∀a ∈ A (2)

∑
s∈S

zk
p,s = yk

p ∀p ∈ P (3)

yk
p ≥ Y k(p) ∀p ∈ P (4)

yk
p ≤ Y k(p)+ DTCk(p) ∀p ∈ P (5)

yk
p,z

k
p,s ≥ 0 ∀p ∈ P,s ∈ S (6)

The total sum of revenues is maximized (1) by finding adequate quotas yk
p for each

product p ∈ P . [5] propose the linear constraints (2) - (6) to encode the collections
of feasible quotas yk

p as well as zk
p,s. Constraint (2) ensures that the capacity of the

considered resources is not exceeded. All accepted requests must be distributed among
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the available services that can fulfill the considered request (3) and it is guaranteed for
each already accepted request that enough capacity is reserved for each product p so that
there is at least one service for fulfilling the already accepted requests associated with
product p (4). We do not reserve capacity for more requests than expected to appear
during the remaining booking phase [tk,tKmax ] (5). [9] explains why it is unnecessary to
enforce the integer-property of the quota decision variables in the model.

Model (1)-(6) is a DLP. Information about the uncertainty and value of the upcoming
spot-market requests are compressed in the expectation values DTCk(p) (p ∈ P).

We (re-)solve the instance Mk of this program at every time point tk (k = 1, . . . ,Kmax)
to update the so far used quotas Q(p,s) with respect to the meanwhile arrived requests
and to the still available resources. After the solution of (1) - (6) has been determined,
we update the quotas Q(p,s) by setting Q(p,s) := zk

p,s (∀p ∈ P , ∀s ∈ S ).
If we use a simplex algorithm to solve the DLP (1) - (6) we are able to get shadow

prices of all resources a ∈ A from the final simplex tableau. For a given resource a its
shadow price spk(a) equals the entry in the final simplex tableau that is found in the
objective function row in the column of the slack variable belonging to the restriction
of a’s capacity in the constraint family (2). The shadow price spk(a) of a resource a
represents opportunity costs for the utilization of one unit of resource a. Hence, the
shadow price of resource a represents the least necessary revenue that must be earned if
one unit of this capacity is used in order to increase the overall sum of earned revenues.
Consequently, the shadow price of a resource a represents a reasonable bid price for
resource a at time tk. We update BP(a) at time tk by setting BP(a) := spk(a)∀a ∈ A .

In conclusion, the solving of the DLP (1)-(6) enables an update of service-specific
product quotas as well as resource specific bid-prices. The updated values of Q(p,s)
and of BP(a) are calculated under consideration of all knowledge acquired until time tk

and consideration of the forecast for the remaining booking period from tk to tKmax .
The definition of artificial benchmark instances that enable a parameterizable evalu-

ation of the dynamic decision situation is given in [19].

3 Capacity Control System

We start with an outline of the proposed capacity control system (Subsection 3.1). Next,
a decision model for the tentative assignment of already accepted requests is proposed
in Subsection 3.2. The definition of control policies completes the description of the
capacity control system (Subsection 3.3).

3.1 Outline of the System

The procedure capacity control() whose pseudo-code is shown in Fig. 1 is used to
process the online model (M1, . . . ,MKmax ). At first, the network N is determined, the
decision times are fixed and the capacity control strategy is specified (a). Next, the iter-
ation counter k is initialized (b) and the set of already accepted requests is inaugurated
(c). For every decision time tk the loop (d)-(o) is executed. The current time is fetched
first (e). Then a tentative resource allocation is made for the already accepted requests in
order to determine the still available capacities of the resources in A (f). It is continued
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(a) procedure capacity control(N ,{t1,t2, . . . ,tKmax}, strategy);
(b) k := 1;
(c) ACC := /0;
(d) while(k ≤ Kmax) do;
(e) current time := tk;
(f) make tentative assignment(ACC, N );
(g) Mk:=define parameter update model(ACC);
(h) (Q,BP):=update control parameters(Mk);
(i) REQk:=fetch waiting requests();
(j) if (strategy == QUOTA) then process by quota(REQk,N , Q);
(k) if (strategy == BP) then process by bp(REQk,N , BP);
(l) propagate decisions();
(m) update(ACC);
(n) k := k +1;
(o) wend;

Fig. 1. Pseudo-code of the capacity-control system

with the definition of the current instance of the parameter update model (1)-(6) in line
(g). This model is solved (h) and the quotas as well as resource bid prices are updated.
Now, the currently waiting spot-market requests are collected in the set REQk (i). If a
quota-based capacity control strategy is used then the waiting requests are processed
calling the decision making procedure process by quota() (j) but if a bid-price-based
capacity control strategy is incorporated then the processing of the fetched requests is
done by calling the procedure process by bp() (k). After all requests have been pro-
cessed the acceptance decisions are send back to the customers (l). The set ACC of
already accepted requests is updated (m) and the iteration counter is increased by 1 (n).

3.2 Resource (Re-)Allocation

When the acceptance decision is made for a request then it is ensured that enough ca-
pacity is available and a tentative resource allocation is made. Since the demand forecast
and/or the expected revenue differ from the actually appearing demand it is necessary
to evaluate and re-work the assignment regularly in order to ensure an optimal resource
utilization. Therefore, the procedure make tentative assignment(ACC, N ) is called. Its
general function is described in this subsection.

At time tk we have to assign each accepted request r ∈ ACC to an appropriate service
s ∈ S operating in the considered network N . For coding the necessary allocation
decisions we introduce the family xk

rs (r ∈ ACC,s ∈ S ) of binary decision variables.
We define xk

rs to be 1 if and only if request r is assigned to service s at time tk. In a
preprocessing step, we determine the value of the indicators ρ(r,s). If service s offers
the product of request r we set ρ(r,s) to 1 otherwise we set ρ(r,s) to 0 (operability).

It is necessary to assign each request to exactly one service. In order to be able to
allocate resources belonging to service s for request r it is necessary to limit the entirety
of selectable services. Only those services offering product P(r) become potential can-
didate services for request r. The capacity of the transport resources a ∈ A are limited
and only CAP(a) capacity units can be moved at the same time by a resource.
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∑
s∈S

xk
rs = 1 ∀r ∈ ACC (7)

xk
rs ≤ ρ(r,s) ∀r ∈ ACC,s ∈ S (8)

∑
s∈S

∑
r∈R

SPR(S(a),P(r),a) · xrs ≤C(a)∀a ∈ A (9)

xk
rs ∈ {0,1} ∀r ∈ ACC,s ∈ S (10)

Every assignment scheme that respects the constraints (7)-(10) is a feasible one. A
partition of the current portfolio of accepted requests is achieved by incorporating con-
straint (7). The consideration of constraint (8) ensures that request r is executable by
service s. Constraint (9) must be satisfied in order to respect the limited capacities of
the resources.

∑
r∈ACC

∑
s∈S

BP(r,s)xk
rs → min (11)

Among the available allocations represented by the feasible assignment schemes we are
looking for the most beneficiary one. In our investigation, we evaluate an allocation by
its profit. Therefore, we determine the assignment specific costs BP(r,s) that account
if resources of service s are allocated for the fulfillment of request r. We approximate
BP(r,s) by summing up the current bid-prices of resources belonging to service s and
being deployed in the fulfillment of r. The overall costs for an assignment scheme are
achieved by summing up the BP(r,s)-values for each selected assignment. We select
the assignment scheme that minimizes this sum (11) while fulfilling (7)-(10).

3.3 Control Policies

This subsection outlines the procedure that processes the additionally arrived requests
and that determines the required acceptance decisions.

Quota-Based Control (QUOTA). By solving the DLP (1)-(6) we determine service-
and product-specific contingents Q(p,s) (quotas). In order to gain the maximal possi-
ble revenues from the stream of spot-market requests the following acceptance rule is
applied: an additionally arrived request for product p using service s is accepted as long
as the contingent Q(p,s) is not completely exhausted.

At first, the procedure process by quota() determine an arbitrarily generated order
of the requests contained in REQk. These requests are then processed one after another.
In order to decide whether request r is accepted, the procedure process by quota first
determines the product P(r) of request r. Next, it checks if there are still service(s)
available that can fulfill r. For that purpose, it tests consecutively for all available ser-
vices s, if Q(P(r),s) > 0. Let s∗ be the first service whose quota is still available. If such
a service does not exist, r is rejected. Otherwise, r is accepted and the quota is updated
by Q(P(r),s∗) := Q(P(r),s∗)−1. Request r is tentatively assigned to service s∗.
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Bid-Price Control (BP). Also the procedure process by bp first sequentializes the
waiting requests and then processes the requests one after another. According to com-
monly used acceptance policies for flexible products [16], the carrier accepts r if and
only if there is at least one service s∗ available that can be used to fulfill r and that
has a bid-price BP(r,s) below the revenues REV (r) associated with the fulfillment of r.
Hence, r is accepted if and only if BP(r,s∗) ≤ REV (r) and if CAP(s∗) > 0 for at least
one service s∗. Request r is then tentatively assigned to the service s� that leads to the
highest positive contribution margin REV (r)−BP(r,s∗).

4 Computational Experiments

We report on computational simulation experiments in which the capacity control sys-
tem developed in Section 3 is evaluated. The booking processes for the demand scenar-
ios introduced in [19] are simulated. The metrics used to represent the simulation results
are introduced in Subsection 4.1 and the observed results are presented and discussed
in Subsection 4.2.

4.1 Metrics for Evaluation

We execute a comprehensive evaluation of the two capacity control policies QUOTA
and BP introduced in Subsection 3.3. To facilitate such an evaluation, we define dif-
ferent performance indicators in order to represent the policy behavior during the nor-
malized booking period [0,1] with the acceptance decision times 0,0.1, . . . ,1.0. In or-
der to evaluate the performance of the two sophisticated acceptance strategies BP and
QUOTA, we compare them with two benchmark strategies. The first benchmark strat-
egy is FCFS (first-come / first-serve) and for the second benchmark strategy BPexact

we assume that an exact forecast of the future demand is available for the BP-strategy.
For the reason of simplicity, we restrict the presentation of the observed results to some
meaningful configurations. Actually, we compare FCFS and BPexact with QUOTA and
BP in the event that α = 0.6 and β = 0.2.

Firstly, we fetch the sum of revenues revt(i,φ ,α,β ) gained up to time t for the
i-th realization (draw) of a demand pattern and with the applied control policy φ ∈
{QUOTA,BP} and the forecast of quality (α,β ). For each simulation experiment
configuration (φ ,α,β ) we calculate the average revt(φ ,α,β ) over all demand pat-
tern draws. Let revmax(α,β ) be the maximum of the set {revt(φ ,α,β ) | t ∈ {0,0.1,
. . . ,1.0}, φ ∈ {QUOTA,BP}}. The normalized sum of gained revenues for the config-

uration (φ ,α,β ) is then defined as rt(φ ,α,β ) := revt (φ ,α ,β )
revmax(α ,β ) . These values vary between

0 and 1.
The capacity utilization rate capt(φ ,α,β ) represents the average of the capacity uti-

lization observed for all demand pattern i if the control policy φ is applied. Similarly to
the normalized sum of gained revenues we calculate the normalized capacity utilization
rate ct(φ ,α,β ).

A third performance indicator is the normalized bid price bpt(φ ,α,β ) for the uti-
lization of one capacity unit. Finally, the forth and last observed performance indicator
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is the normalized acceptance rate at(φ ,α,β ) that expresses the portion of requests ac-
cepted at time t among the requests released at this time. We observe the development
of performance indicator values during the booking phases’ progress (online analysis).

4.2 Results

The so far presented and analyzed simulation results generated by the application of
the previously described capacity control system [19] are the outcome of offline eval-
uations of QUOTA and BP. The indicator variable values determine the control policy
performance after the complete booking period has been processed. In order to find
out the reasons for the quite different final indicator variable results we perform online
evaluations throughout the booking phase. Now, we fetch the current indicator values
at the time points t = 0,0.1, . . . ,1.0 during the booking phase. The development of the
performance indicators during this period can then be captured.

All four observed acceptance strategies are able to collect revenues throughout the
overall booking period from t = 0 to t = 1.0. However, they exhibit a different behavior
with respect to the overall sum of collected revenues and the part of the booking period
where the revenues are collected (left picture in Fig. 2). The highest sum of revenues
is collected by the BP-strategy if an exact demand forecast is exploited and the lowest
sum is earned by FCFS, which leads to a portion of 70% of the revenue sum observed
for BPexact . For the first half of the booking period (0 ≤ t ≤ 0.5), FCFS collects more
revenues than all other strategies but during the second half of the booking period FCFS
is outperformed by all other strategies so that finally, FCFS captures the least sum of
revenues. During the interval from 0.5 to 0.75 QUOTA as well as BP outperform even
BPexact . QUOTA exhibits the best performance. However, during the last quarter of
the booking period, QUOTA as well as BP are finally outperformed by BPexact . The
QUOTA-strategy reaches 81% of the revenues of BPexact but BP approximates BPexact

by 88%. In conclusion, imprecise demand forecasts interfere with the achieved sum
of revenues but the “more intelligent strategies” outperform the greedy FCFS-strategy
significantly. Finally, the BP acceptance strategy is working better than the QUOTA-
strategy. This verifies the initially stated research hypothesis.

rt (BP,0.6,0.2)
rt (QUOTA,0.6,0.2)

rt (FCFS)

rt (BPexact )

time t
0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0

ct (BP,0.6,0.2)
ct (QUOTA,0.6,0.2)

ct (FCFS)

ct (BPexact )

time t
0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0

Fig. 2. Development of the normalized sum of gained revenues rt(φ ,0.6,0.2) (left picture), of the
normalized capacity utilization degree ct(φ ,0.6,0.2) (right picture)
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A first attempt is made to explain the quite different behavior of the acceptance
strategies. We compare the development of the capacity utilization during the progress
of the booking period (right picture in Fig. 2). At first, we see that BPexact leads to a
significantly lower capacity utilization rate than FCFS, BP and QUOTA. At the end of
the booking period the three last-mentioned strategies achieve a normalized capacity
utilization rate above 95% but BPexact does not climb over 95%. FCFS, BP as well as
QUOTA demonstrate a significantly greedier behavior and they reserve more capacity
in the first three quarters of the booking period. Vice-versa, after three quarters of the
booking periods length is over, these three acceptance strategies have already exhausted
95% of the normalized capacity. At the same time, BPexact has only spent 80% of the
capacity and has enough remaining capacity for incorporating profitable requests.

The inspection of the acceptance rate development during the booking period sup-
ports the theory that the earning of additional revenues is prevented by missing capacity
at the end of the booking period. In the left picture of Fig. 3 we have compiled the ac-
ceptance rates of the four acceptance strategies over the length of the booking period.
In the event that the demand forecast is close to be perfect (BPexact ) the acceptance
rate remains stable throughout the booking period. In average, 50% of the incoming re-
quests are identified to be profitable. If one of the three other strategies is applied then a
drastic reduction of the acceptance rate is detected. While FCFS accepts alle incoming
requests at the entry of the booking period this rate declines down to 10% at the end
of the booking period. The two ’intelligent’ strategies BP and QUOTA demonstrate an-
other development trail. At the beginning, they selects around 70% of the requests for
acceptance but at the end of the booking period they do not allow more than 18% of the
proposed requests to be accepted.

We have calculated the bid-prices also for the situation in which we use the QUOTA
acceptance strategy. The right picture in Fig. 3 reveals the impacts of demand forecast
impreciseness. An underestimation of the future demand leads to very low bid prices
of the remaining capacity. This observation is true for both reservation strategies BP
as well as QUOTA. In the event that the expected demand is underestimated then the
bid-prices decrease from time t = 0.6 because the small number of expected upcoming

at (BP,0.6,0.2)
at (QUOTA,0.6,0.2)

at (FCFS)

at (BPexact )

time t
0.2 0.4 0.6 0.8 1.00
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0.4

0.6

0.8

1.0

bpt (BP,0.6,0.2)
bpt (QUOTA,0.6,0.2)

bpt (BPexact )
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Fig. 3. Development of the normalized acceptance of a capacity unit at(φ ,0.6,0.2) (left picture)
and of the normalized average bid-price rate bpt(φ ,0.6,0.2) (right picture)
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requests is tried to be exploited at maximal intensity. It becomes more and more unlikely
that the remaining capacity can be exhausted with the still expected additional requests.
Thus, the capacity is not identified anymore as scarce so that the corresponding bid-
price collapses. Immediately after the failure of the demand forecast becomes obvious
(because further unexpected requests arrive) scarceness of the resources is expected and
the bid-prices of the capacity increase again. However, since the remaining capacity
is too low caused by the too aggressive acceptance of requests at the beginning, no
significant additional revenues can be realized.

5 Conclusions

Within the reported research we have proposed a capacity control system for support-
ing the sales and capacity management of scheduled services in road-based freight
transportation. A quota-based capacity control strategy as well as a bid-price-founded
capacity control strategy have been proposed. Within comprehensive computational
simulation experiments their general applicability has been proven. We were able to
proof our research hypothesis that impacts of demand forecast errors will become ef-
fective during the second half of the booking period.

Future research efforts are currently in progress with the goal to find out the impacts
of wrong demand volume forecasts on revenues. In additional we want to integrate
the service generation with the acceptance strategies in order to exploit the maximal
revenue increase potentials in road-based freight transportation. Another research trail
is the development of countermeasures to be applied online during the selling interval
as soon as a wrong demand forecast is revealed.
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Abstract. We study a multi-criteria variant of the problem of routing hazardous
material on a geographical area subdivided in regions. The two objective func-
tions are given by a generally defined routing cost and a risk equity equal to the
maximum, over each region, of the risk perceived within a region. This is a mul-
ticommodity flow problem where integer variables are used to define the num-
ber of trucks used for the routing. This problem admits a straightforward path
formulation, for which a branch-and-price problem where, for each node of the
branch-and-bound tree, column generation is used to obtain a lower bound.

1 Introduction

The transportation of hazardous materials (hazmat from now on) has received a large
interest in recent years, this results from the increase in public awareness of the dangers
of hazmats and the enormous amount of hazmats being transported [3]. The main target
of this problem is to select routes from a given origin-destination pair of nodes such that
the risk for the surrounding population and the environment minimum, without produc-
ing excessive economic costs. When solving such a problem by minimizing both cost
and the total risk, typically several vehicles share the same (short) routes which results
in high risks associated to regions surrounding these paths whereas other regions are
less affected. In this case, one may wish to distribute the risk in an equitable way over
the population and the environment. The computation of routes with a fairly distributed
risk consists in generating dissimilar origin-destination paths, i.e paths which relatively
don’t impact the same zones. We classify solution approaches in two sets, resolution-
equity-based methods and model-equity-based methods.

In resolution-equity-based methods, equity constraints are taken into account in the
resolution process. These methods are based on a dissimilarity index which permits
to indicate when two paths are considered as dissimilar. The iterative penalty method
[10] consists of computing iteratively a shortest path and penalize its arcs by increasing
their weights for discouraging the selection of the same arc set in the generated paths
set in the next iteration. The Gateway shortest-paths method [13] consists of generating
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dissimilar paths by forcing at each time a new path to go through a different node (called
the gateway node), the dissimilarity index is defined as the absolute difference between
areas under the paths (areas between paths and the abscissa axis). The minimax method
[12] consists of selecting k origin-destination shortest-paths and select among them
iteratively a subset of dissimilar paths by means of a dissimilar index defined as the
length of common parts between the paths. The p-dispersion method [1] generates an
initial set U of paths and determines a maximal dissimilar subset S, i.e., the one with the
maximum minimum dissimilarity among its paths, the dissimilarity index is the length
of common parts or the common impact zones between the paths. The efficiency of
these methods is based on the dissimilarity index and the initial set of paths [3].

Model-equity-based methods consist of taking into account equity constraints in the
model formulation. In [8,9], the authors propose an equity shortest path model that
minimizes the total risk of travel, while the difference between the risks imposed on
any two arbitrary zones does not exceed a given threshold, the authors solve the la-
grangean relaxation of the problem and a gap-closing procedure is presented. In [3] is
proposed a multi-commodity flow model for routing of hazmat, where each commodity
is considered as one hazmat type. The objective function is formulated as the sum of
the economical cost and the cost related to the consequences of an incident for each
material (commodity). To deal with risk equity, the costs are defined as functions of the
flow traversing the arcs, this imposes an increase of the arc’s cost and risk when the
number of vehicles transporting a given material increases on the arc.

Our problem is similar to that proposed in [3]. We consider the problem where a set of
given quantities of hazmats has to be routed over a transportation network from specific
origin points to specific destination points. Our goal is the minimization of the total
routing cost and the maximization of the risk equity, the latter broadly defined as the
risk shared by a set of regions that compose the geographical area under consideration.
Thus our focus is a multi-criteria optimization problem which we describe more in detail
below. The originality of our work is the integration of the objective of minimization of
the maximum of risk imposed on all regions during the transportation activity into the
multi-commodity flow model which can be solved using a Branch-and-Price algorithm.

This paper is organized as follows. In Section 2, the problem is described and an
optimization model is given. In Section 3 a path formulation of the problem is given
and a column generation procedure is described. We present in Section 5 a branch-and-
price procedure, in Section 5 we present some preliminary experiments and we close
the paper in Section 6.

2 Description of the Problem

Let the transportation network be represented as a directed graph G = (N,A), with N
being the set of n nodes and A the set of m arcs. Let C be the set of commodities, given
as a set of point-to-point demands to transport a certain amount of hazmats. For any
commodity c ∈C, let sc and tc be respectively the source node and the destination node,
and let Dc be the amount of hazmats to be shipped, by means of a set of trucks of given
capacity Fc, from sc to tc. We for now assume that each commodity is associated with a
unique type of hazmat.
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We assume that the risk is computed on each arc of the network and is proportional
to the flow traversing such an arc. We consider a set Q of regions, each given as subsets
Nq of nodes for each q ∈ Q of the transportation network, and we define rcq

i j as the risk
imposed on region q ∈ Q when the arc (i, j) ∈ A is used for the transportation of one
unit of hazmats of type c. We remark that we employ a notion of spread risk, in that
an accidental event on arc (i, j) within region q ∈ Q may strongly affect another region
q′ ∈ Q.

2.1 Multiple Objective Functions

The problem of transporting hazmat is multi-objective in nature: one usually wants to
minimize two (or more) objectives, namely the total cost of transportation, computed as
a function of the amount of hazmat transported throughout the network and the trucks
used for the transportation, and the distributed risk, which can be defined as a measure
of risk that is shared among different regions. More specifically, for a given solution
each region q ∈ Q will be affected by a risk which is dependent on the transportation
patterns in all other regions, and which can be summarized by a quantityωq. The second
objective will then be maxq∈Qωq, and has to be minimized.

2.2 An Optimization Model

We introduce a flow variable f c
i j defining the portion of commodity c being transported

on arc (i, j). These variables are subject to flow conservation constraints

∑
j∈δ+(i)

f c
i j − ∑

j∈δ−(i)
f c

ji = bc
i ∀i ∈ N,c ∈C

where δ−(i) and δ+(i) are the forward and backward star of i, i.e.,

δ−(i) = { j ∈ N : ( j, i) ∈ A}, δ+(i) = { j ∈ N : (i, j) ∈ A},

and

bc
i =

⎧⎨⎩
1 if i = sc

−1 if i = tc

0 otherwise.

Also, yc
i j defines the number of trucks to be used on arc (i, j) for commodity c. The link

between variables f and y is given by the constraint

Dc f c
i j ≤ Fcyc

i j ∀(i, j) ∈ A,c ∈C.

The first objective is a function of both f and y variables and is to be minimized:
∑c∈C∑(i, j)∈A(αc

i j f c
i j +β c

i jy
c
i j), with α and β suitable cost coefficients which we assume

nonnegative. We define the risk ωq imposed on a region q ∈ Q as a linear combination
of the flow variables:

ωq := ∑
c∈C

∑
(i, j)∈A

rcq
i j f c

i j
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and add a new variable z := maxq∈Qωq, which therefore is subject to the constraints

z ≥ ∑
c∈C

∑
(i, j)∈A

rcq
i j f c

i j ∀q ∈ Q.

The y variables represent trucks that transport hazmat from each source to each desti-
nation, and are therefore subject to flow conservation constraints. We write such con-
straints here for each commodity and for all intermediate nodes of each commodity, as
the source and destination flow balance is redundant here (i.e., it is strictly dependent
on the flow variables f ):

∑
j∈δ+(i)

yc
i j − ∑

j∈δ−(i)
yc

ji = 0 ∀i ∈ N \ {sc, tc},∀c ∈C

The optimization model is therefore as follows:

min ∑c∈C∑(i, j)∈A(αc
i j f c

i j +β c
i jy

c
i j) (1)

min z (2)

s.t. ∑ j∈δ+(i) f c
i j −∑ j∈δ−(i) f c

ji = bc
i , ∀i ∈ N,c ∈C (3)

∑ j∈δ+(i) yc
i j −∑ j∈δ−(i) yc

ji = 0 ∀i ∈ N \ {sc, tc},∀c ∈C (4)

Dc f c
i j ≤ Fcyc

i j ∀(i, j) ∈ A,c ∈C (5)

z ≥ ∑c∈C∑(i, j)∈A rcq
i j f c

i j ∀q ∈ Q (6)

f c
i j ∈ [0,1] ∀(i, j) ∈ A,c ∈C (7)

yc
i j ∈ Z ∀(i, j) ∈ A,c ∈C. (8)

Notice that constraints (4) and (5) guarantee that a sufficient number of trucks is al-
located for each commodity regardless of the flow of hazmat. The path formulation
described below is unable to provide such a guarantee and will therefore have to be
modified.

3 Column Generation Formulation

The above arc-flow formulation is polynomial in |N|, |A|, |Q|, and |C|, but its size can
make it impractical to solve real-world instances of our problem. A common approach
is to use a path-flow formulation [7]. In these formulations, for each commodity c a
variable is associated with every path from sc to tc. We denote by Pc the set of paths
from sc to tc for a commodity c ∈ C and by Pc

i j the set of paths in Pc containing arc
(i, j) ∈ A. A new path variable fp, ∀p ∈ Pc,∀c ∈C, represents the portion of commod-
ity transported on path p.

As for the flow of hazmat, in this formulation the number of trucks, previously de-
noted by variables yc

i j, might be dependent on path variables fp. They are by definition
the number of trucks to be used on arc (i, j) ∈ A for commodity c ∈C. In practice, each
truck drives on the whole path p, hence there should be a variable yp that counts the
number of trucks and that is related to variable fp as follows:

Fcyp ≥ Dc fp ∀p ∈ Pc,c ∈C. (9)
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This constraint substitutes the flow conservation constraint (4) and the “capacity” con-
straint (5). Let us write this path formulation for completeness:

min ∑c∈C(∑p∈Pc αp fp +∑(i, j)∈Aβi jyc
i j) (10)

min z (11)

s.t. ∑p∈Pc fp ≥ 1 ∀c ∈C (12)

Fcyp −Dc fp ≥ 0 ∀p ∈ Pc,c ∈C (13)

z−∑c∈C∑p∈Pc rq
p fp ≥ 0 ∀q ∈ Q (14)

fp ≥ 0 ∀p ∈ Pc,c ∈C (15)

yc
p ∈ Z ∀p ∈ Pc,c ∈C, (16)

where αp =∑(i, j)∈pαc
i j are cost coefficients on the path p ∈ Pc and rq

p = ∑(i, j)∈p rcq
i j is

the risk imposed on region q ∈ Q when the path p ∈ Pc is used for the transportation
of one unit of hazmats of type c. Constraint (12) is the path-flow counterpart of the flow
conservation constraint (3) and requires that, regardless of the set of paths used, each
commodity is fully routed. Constraints (13) and (14) are straightforward extensions of
(5) and (6) respectively, given that the flow of commodity c ∈C on arc (i, j) ∈ A is equal
to ∑p∈Pc

i j
fp.

When restricting to a single-objective optimization problem, this model is an integer
multicommodity flow problem. Regardless of considering only one objective, problem
(11)-(16) contains V =∑c∈C |Pc| variables, which can be exponential in |N|. Therefore,
solving it by introducing all path variables is in general impractical using the usual
combinatorial optimization methods.

Column generation algorithms are very well suited for solving this kind of problems
[4]. They use a relatively small initial set of columns to solve a problem, and iteratively
introduce a new column when necessary to improve the objective function. Specifically,
given a set of columns with negative reduced cost (among those that haven’t been con-
sidered yet), one can introduce one or more such variables and apply a primal simplex
method to resolve the amended problem. The problem with an initially small subset of
columns is called the restricted master problem, while the problem of finding a variable
(column) with negative reduced cost is called the pricing problem.

Constraint (13) introduces a major issue in the problem. In principle, introducing y
variables indexed on paths rather than arcs and commodities allows to further reduce the
number of columns, as we only need 1 + 2∑c∈C |Pc| variables. However, analogously
to columns, we do not want to have exponentially many rows (there are exponentially
many paths). The above constraint could be dynamically generated, hence instead of
column generation we would need row-column generation. One huge problem here is
that to dynamically generate paths one needs to know all dual variables σp, for each
p ∈ Pc and for all c ∈ C, to solve a pricing problem, and most of these dual variables
are not available since we didn’t generate all of them.

One possible way to deal with this is to use surrogate constraints: rather than impose
all such constraints or generate them dynamically, we consider a cover of such set of
constraints and impose conic combinations thereof (see for instance [14]). More specif-
ically, for each (i, j) ∈ A, consider all constraints (9) summed up for all paths containing
(i, j). We obtain
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Fc ∑
p∈Pc

i j

yp ≥ Dc ∑
p∈Pc

i j

fp ∀(i, j) ∈ A,c ∈C. (17)

The problem has now |C|(1 + m)+ |Q| rows and 1 + 2∑c∈C |Pc| variables. Since we
relax all of the path constraints (9), the model (10)-(16) constitutes a relaxation of (1)-
(8). Column generation can be applied safely now, although it has to be applied to both
f and y variables, and it converges to a dual feasible solution which gives a lower bound
but not necessarily an optimal solution of the continuous relaxation of (1)-(8).

Suppose an integer solution is found as the optimal solution of the LP relaxation
(solved with column generation). If at least one of the constraints (13) is violated, we
are stuck with a solution that has no physical value but that cannot be proven primal
infeasible unless a constraint is added. What we can do is therefore to create a second
branching rule which discriminates between integer feasible solutions and eliminates
the integer (but infeasible) solution just found. We will detail this procedure later in this
paper, and instead provide insight on how to generate variables.

3.1 Handling One Objective Only

We consider from now on a continuous relaxation of (11)-(16) amended by the surrogate
constraints:

min z (18)

s.t. ∑p∈Pc fp ≥ 1 ∀c ∈C (19)

Fc∑p∈Pc
i j

yp ≥ Dc∑p∈Pc
i j

fp ∀(i, j) ∈ A,c ∈C (20)

z−∑c∈C∑p∈Pc rq
p fp ≥ 0 ∀q ∈ Q (21)

fp ≥ 0 ∀p ∈ Pc,c ∈C (22)

We associate the dual variables vector μ ∈ R|C|
+ with constraints (19), σ ∈ Rm|C|

+ with

constraints (20), and λ ∈ R|Q|
+ with constraints (21). We first analyze this problem con-

sidering the single objective (11). Let us define the subset of paths P̄c ⊂ Pc,∀c ∈ C.
The restricted master problem (RMP from now on) of (11)-(16), generated on a re-
stricted subset of variables fp, p ∈ P̄c,c ∈C, is as follows:

min z (23)

s.t. ∑p∈P̄c fp ≥ 1 ∀c ∈C (24)

Fc∑p∈Pc
i j

yp −Dc∑p∈P̄c
i j

fp ≥ 0 ∀c ∈C,(i, j) ∈ A (25)

z−∑c∈C∑p∈P̄c rq
p fp ≥ 0 ∀q ∈ Q (26)

fp ≥ 0 ∀p ∈ Pc,c ∈C. (27)

It is barely worth noting here that (23)-(27) is a restriction of the continuous relaxation
of (11)-(16), which therefore provides neither a lower nor an upper bound. Only by
applying column generation to (23)-(27), i.e., by iteratively amending columns with
negative reduced cost, can we find a lower bound of (11)-(16).
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The reduced cost of variables fp, for each c ∈C, p ∈ Pc, is as follows:

h( fp) = −μc + Dc∑(i, j)∈pσ c
i j +∑q∈Q rq

pλq

= −μc + Dc∑(i, j)∈pσ c
i j +∑q∈Q∑(i, j)∈p rcq

i j λq.
(28)

Suppose an optimal primal solution ( f̄ , ȳ, z̄) and an optimal dual solution (μ̄ , σ̄ , λ̄ ) is
given. At each iteration of the column generation algorithm, we look for a negative
reduced cost variable by solving the problem:

min
c∈C,p∈Pc

h( fp),

which provides the column with most negative reduced cost. The pricing problem con-
sists of finding the path p that minimizes (28), and is equivalent to solving a short-
est path problem on a graph G where each arc (i, j) ∈ A has weight wi j = Dcσ̄ c

i j +
∑q∈Q rcq

i j λ̄q. The path must have an origin-destination pair among those defined by
the commodities in C. Suppose that, for the shortest path obtained, −μ̄c + DcLc +
∑q∈Q rq

pλ̄q < 0. Then variable fp has a negative reduced cost and can be introduced
in the model.

One may also look for a negative reduced cost variable for each commodity, and add
at most |C| such variables. Although this usually speeds up convergence in terms of
number of iterations, adding many column every time slows the primal simplex used to
obtain a new solution. We obtain |C| origin-destination shortest path problems, therefore
the pricing problem becomes |C| times slower — this is negligible given that most of
the CPU time is usually spent on the primal simplex.

Notice that y variables do not need to be generated for the risk-objective problem:
they only appear in the surrogate constraint, which makes them completely useless
given that their value can be decided from an optimal f . This only happens if we con-
sider the second objective function, while the first does contain those variables and
would force us to generate them as well. Actually, no f variable is needed either as long
as the y variables are only contained in the capacity constraint. The next subsection
should shed light on this and introduce another use for y variables.

3.2 Risk on Trucks

Another consideration is on risk equity associated to trucks: is the risk (especially the
perceived one) only related to the real quantity, or portion, of hazmat transported, or is
it also related on the trucks? If both quantity of hazmat and number of trucks should
be considered, then the risk equity constraint would change. In this case, we could
probably use a parameter scq

i j with an analogous meaning to that of parameter r, i.e., the
influence of one truck driving through (i, j), transporting commodity c ∈ C, on region
q, and modify (26) as follows:

z ≥ ∑
c∈C

∑
p∈P̄c

(rq
p fp + sq

pyp) ∀q ∈ Q.

where, similarly to r, we define sq
p := ∑(i, j)∈p scq

i j . This provides a motivation for the
generation of both f and y variables. In fact, now the procedure to generate y variable
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can be defined as one that aims at finding a path p such that the reduced cost of the
corresponding yp is minimum:

min
c∈C,p∈Pc

h(yp) = min{−Dc ∑
(i, j)∈p

σ c
i j + ∑

q∈Q

sq
pλq : p ∈ P}

which provides a more difficult problem given that now the shortest path has to be found
on a network with possibly both positive and negative weights.

4 Branch-and-Price for Single Objective Problems

In order to find an optimal integer solution to problem (10)-(16), the column generation
approach outlined above must be coupled with a branch-and-bound algorithm. This
class of algorithms, better known as branch-and-price, solve each branch-and-bound
node by applying column generation on each lower bounding (continuous) subproblem
[2]. For the single objective routing problem, we outline below an implementation of a
branch-and-price, which we have implemented in ABACUS.

If only integer variables yc
i j are not dynamically generated (but this no longer seems

to be the case), the branching rule is rather simple: consider an optimal solution ( f̄ , ȳ, z̄)
obtained after column generation at a branch-and-bound node. If, for all c ∈ C and
(i, j) ∈ A, we have ȳc

i j ∈ Z, then the node can be fathomed as the solution is integer
feasible. Otherwise, we select an arc (i, j) ∈ A and a commodity c ∈C such that ȳc

i j /∈ Z

and generate two new branch-and-bound nodes with the amended constraints yc
i j ≤

⌊
ȳc

i j

⌋
and yc

i j ≥
⌈

ȳc
i j

⌉
, respectively.

If we use yp variables instead, we need to take special care in branching rules: given
that these variables are generated, the branching rules have dual variables that need to be
taken into account in the pricing problem. Furthermore, simple branching rules would
not work and the branch-and-bound algorithm would not converge: the branching rule
yp ≤ k, with k ∈ Z, does not impose anything on the pricing problem, which might
generate another variable that uses the same path as p with reduced cost. Another issue
is making sure that the pricing problem remains a shortest path problem. One common
branching rule for these cases is that used by Barnhart et al. [2].

5 Preliminary Experiments and Perspectives

In a first time, we test the efficiency of our model. We implement the formulation (11)-
(16) in AMPL (A Modeling Language for Mathematical Programming) [6]. We report
a sampling of our computational experiences with the model. We consider an instance
with N = 31, |C|= 3 and |Q|= 16 (figure 1). We focus on risk equity objective function
(11). Figure 2 present the solution obtained.

Throw our experimentations, we remarked that improving the equity of the risks
imposed results in increased in the total risks imposed. When distributing the risk in an
equitable way, routes can be longer, this increases both the total risk and the economic
costs. We present on Table 1 the solution values generated by the weights (γ,δ ), where
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Fig. 1. Transportation risk model: network used in sample problem
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Fig. 2. Transportation risk model: solution of a sample problem

γ is the weight on the equity objectives and δ is weight on the total risk objectives ( the
objective function became: γz+ δ (∑c∈C,(i, j)∈A,q∈Q rcq

i j f c
i j)).

The tradeoffs among risk and the equity of the risk imposed are complex and the
number of options are extremely large. Distributing the risk in an equitable way can
result in an increase in the total risk and economic cost. In this case, it seems to be
not realistic to consider the model with only one objective function. In a branch-and-
price algorithm, we can consider two possibilities for considering more than one objec-
tive function, (1) the weighting method can be applied, and (2) the total risk objective
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Table 1. Weighting approach

(γ ,δ ) (0,1) (0.3,0.7) (0.5,0.5) (0.7,0.8) (1,0)
z 18 16.0 13.8 11.7 10.3
total risk 124 124.7 126.5 129.3 152.6

function can be taken into account during the column generation algorithm, where the
pricing problem will compute Pareto optimal paths considering both the reduced cost
and the total risk generated by the path.

6 Conclusion

The transportation of hazmats is an important optimization problem in the field of sus-
tainable development and in particular the equitable distribution of risks is of high inter-
est. Within this study, we formalize this transportation problem as the minimization of
two objectives (risk equity and economic cost) and show that a third objective function
(total risk) has to be taken into account. Note that, for the moment an actual imple-
mentation has to prove in the future what is the effectiveness of the algorithm, which
additional accelerating techniques of column generation can be used for solving large
instances and how can we take into account many objective functions.
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Abstract. The Dial-a-Ride is a transport system on demand. A fleet of vehi-
cles, without fixed routes and schedules, carries people from their pickup points
to their delivery points, during a pre-specified time interval. It can be modeled
as an N P-hard routing and scheduling problem, with a suitable mixed inte-
ger programming formulation. Exact approaches to this problem are too limited
to tackle real-life instances: time dependent network, requests received on-line,
different objective functions. In this paper we propose an algorithm to solve the
off-line Dial-a-Ride Problem (DARP), based on a Granular Tabu Search method.
This algorithm was fast and effective, when tested on instances created ad hoc
using the Milan network.

1 Introduction

The Dial-a-Ride (DAR) system concerns the management of a fleet of vehicles in or-
der to satisfy transport demands. The customer requests the service by calling a central
unit and specifying: the pick-up point, the delivery point (respectively, origin and des-
tination), the number of passengers and some limitations on the service time (e. g., the
earliest departure time). Such transportation system is called on demand: the routes and
schedules of the vehicles change dynamically on the basis of the current requests of
the users. By better exploiting vehicle capacity, they offer the comfort and flexibility
of private cars and taxies at a lower cost. DAR is suited to service sparsely populated
areas, weak demand periods or special classes of passengers with specific requirements
(elderly, disabled). Several models of the DAR service have been proposed in the lit-
erature: with or without time windows, with a fixed or unlimited fleet of vehicles, and
so on. In the “static” DAR, the customer asks for service in advance and the vehicles
are routed before the system starts to operate; in the “dynamic” DAR, the customer can
call during the service time and the routes are updated on-line. Different objective func-
tions have been taken into account: minimization of the number of vehicles used or
the total travel time, maximization of the number of customers served or the level of
service provided to the user. This paper addresses the static DARP with time windows
and a fixed fleet of vehicles. Each request corresponds to a single passenger, and the
objective function maximizes firstly the number of customers served, then it minimizes
the number of vehicles used and finally it maximizes the level of service provided on
average to the customers. The DARP is N P-hard in the strong sense, as it generalizes
the Pickup and Delivery Problem with Time Windows (PDPTW) [6]. Nevertheless, exact
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algorithms for the multi-vehicle case [1,6] have been developed. However, heuristics
and matheuristics are needed [3,8,9,13], while exact methods are useless, for dealing
with the dynamic problem with time dependent network.

This paper describes a fast and effective matheuristic for improving the feasible ini-
tial solution obtained at the end of the algorithm described in [16] to solve the off-line
DARP. The algorithm is based on a Granular Tabu Search where the proposed procedure
for obtaining the granular graph is different from the one proposed in [14], since it is
based on the reduced costs matrix obtained by solving a simpler, but useful, subprob-
lem. The algorithm transforms the original graph of nodes (i.e. pick-up and delivery
nodes for each customer) into a graph of customers, which is smaller than the origi-
nal one. A value is assigned to each arc of the auxiliary graph, measuring the distance
between each pair of customers. Then, a classical assignment problem is defined and
solved on this graph. The solution obtained gives several information on the instance.
The most useful one is the reduced costs matrix which shows how close customers are
to each other (a short edge has a reduced cost equal zero). The set of arcs is therefore
ordered by increasing value of the reduced costs. The proposed Granular Tabu Search
exploits this information to guide the local search.

The paper is organized as follows. The problem is described in the next section to-
gether with its mixed linear programming formulation. In Section 3 the general Gran-
ular Tabu Search approach is described. Section 4 explains the problems addressed for
applying the Granular Tabu Search to the DARP and how they have been solved. The
whole algorithm used is described in Section 5. Computational results and conclusions
close the paper.

2 The Problem

Let R = {1...n} be a set of requests (customers). For each request i two nodes (i+ and
i−) are defined: a load qi must be taken from i+ to i−. Let N+ = {i+|i ∈ R} be the set of
pick up nodes and N− = {i−|i ∈ R} the set of delivery nodes. A positive amount qi+ = qi

is associated with the pick up node, a negative amount qi− =−qi with the delivery node.
A time window is also associated with each node (i.e. pick up node [ei+ , li+] and delivery
node [ei− , li− ]). The fleet of vehicles is denoted as V ; all vehicles have the same capacity
Q and time window [e0, l0]. Let G = (N,A) be a directed graph, whose set of vertices is
defined as N = N+∪N−∪{0}, where node 0 is the depot. The set of arcs A is defined as
A = {(i, j) : i, j ∈ N, i �= j} with a distance di, j or a travel time ti, j assigned to each arc
(i, j) ∈ A. Another set E = {(i, j) : i, j ∈ N+∪N−, i �= j} represents the subset of arcs
whose extremes are customer nodes. The problem consists in finding a set of routes
starting and ending at the depot, such that an objective function is optimized. The pick
up node of each customer must be visited before the delivery node in the same route.
Capacity and time window constraints must also be respected. The variables xv

i, j are
equal to 1 if vehicle v uses arc (i, j) ∈ A and equal to 0 otherwise; pi represents the
departure time from node i ∈ N+ ∪N−; yi is the load of the vehicle leaving node i.

maxz(P) = max

(
α1 ∑

i∈N+
∑
v∈V

∑
j∈N

xv
i, j −α2 ∑

v∈V
∑

j∈N+
xv

0, j −α3 ∑
i∈N−

Si

)
(1)
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subject to

∑
v∈V

∑
j∈N

xv
i, j ≤ 1 ∀i ∈ N+ (2)

∑
j∈N

xv
i, j − ∑

j∈N

xv
j,i = 0 ∀v ∈V, ∀i ∈ N+∪N− (3)

∑
j∈N

xv
i+, j −∑

j∈N

xv
i−, j = 0 ∀v ∈V, ∀(i+, i−) ∈ N+ ∪N− (4)

xv
i, j(yi + q j) ≤ y j ∀v ∈V, ∀(i, j) ∈ E (5)

qi ≤ yi ≤ Q ∀i ∈ N+ (6)

0 ≤ yi ≤ Q−qi ∀i ∈ N− (7)

xv
i, j(pi + ti, j) ≤ p j ∀v ∈V, ∀(i, j) ∈ E (8)

ei ≤ pi ≤ li ∀i ∈ N (9)

pi+ + ti+,i− ≤ pi− ∀i =
(
i+, i−

) ∈ N+ ∪N− (10)

∑
v∈V

∑
j∈N+

xv
0, j ≤ |V | (11)

xv
i, j ∈ {0,1} ∀v ∈V, ∀(i, j) ∈ A (12)

Expression (1) represents the three-level objective function addressed in this paper. The
first term is the number of serviced customers. The second term represents the mini-
mization of the number of used vehicles. The third term represents the level of service
(indicated in the following with S) over the set of served customers. The three terms are
suitably weighted with α1,α2,α3 in order to guarantee that the first term is the main
objective, the second term is the second one and the last term is the third. A reason-
able measure of the quality of service perceived by a customer i is introduced as the
ratio between the service time offered by the DAR system for the trip and the minimum
time the customer would need to go from the origin to the destination (i.e. the value
associated to the arc (i+, i−)). More precisely, the quality of service for customer i is

defined as Si = (ai−−ei+)
ti+ i−

, where ai− is the arrival time in node i−, (ai− − ei+) denotes

the total time needed to reach the destination using the DAR transportation system and
ti+i− denotes the minimum time needed to go from the origin to the destination directly.
Obviously Si ≥ 1 ∀i and the higher its value, the lower the service quality for customer
i. Moreover, it is important to stress that the maximum number of vehicles is fixed and
that even finding a feasible solution is itself a NP− complete problem.

The first three groups of constraints ensure that each customer is served by at most
one vehicle. Constraints (2) make sure that at most one vehicle exits from each origin
node i+. Constraints (3) impose that the number of vehicles entering and exiting each
node be the same. Finally constraints (4) establish that the same vehicle, if any, visits
the pickup and the delivery node. Constraints (5), (6) and (7) ensure the feasibility of
the loads. The number of passengers in a given vehicle varies according to the number
of people boarding it or getting off it. The vehicle capacity cannot be exceeded. The
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last three classes of constraints impose the feasibility of the schedule. Constraints (8)
represent the compatibility requirements between routes and schedules. Constraints (9)
ensure that the begining of service time takes place during the time window: when the
vehicle arrives at node i before ei the driver must wait; it is unfeasible to arrive at node
i after li. Constraints (10) imply that for each trip the delivery node is visited after the
pickup node. Finally, constraint (11) imposes a limit on the number of used vehicles
(i.e. fleet size). Constraints (8) and constraints (5) can be linearized respectively as
M(1− xv

i j) ≥ pi + ti j − p j and O(1− xv
i j) ≥ yi + q j − y j. The former equations are a

generalization of the classical TSP subtour elimination constraints proposed by Miller,
Tucker and Zemlin [11].

3 The Granular Search Approach

Tabu Search (TS) is a memory-based search method introduced by Glover [10]. It is
an iterative improvement procedure that starts from any initial solution and attempts to
determine a better solution. Generally, TS is characterized by its ability to avoid local
optima and prevent cycling by using flexible memory of search history. The Granular
Tabu Search (GTS) [14] is a TS, but with a particular focus on the computational time.
The method uses a drastically restricted neighborhood obtained from that standard by
removing the moves that involve only elements which are not likely to belong to high-
quality feasible solutions. This neighborhood is called a granular neighborhood. This
method was applied in [14] to the Vehicle Routing Problem (VRP). The authors initially
verify that good solutions rarely contain long edges. Thus, the proposed algorithm re-
duces the graph used by the TS in a simple and straightforward way. Given the best solu-
tion found so far, the edges longer than a certain threshold are removed from the graph.
Therefore, the local search explores a smaller, but promising neighborhood. From time
to time, when no improving solutions are found, the threshold is increased until the
original graph is restored and whenever the best solution found so far is improved, the
graph is reduced again.

This approach needs to be reviewed when the problem to solve is a routing and
scheduling problem. This family of problems needs a different definition of the distance
among customers, taking into account the spatial and the temporal dimension. Indeed,
two customers (i and j) close together in terms of travel time, but far away in terms of
time windows (i.e. the distance ei − e j is wide and greater than li − ei) will rarely be
adjacent in the optimal solution. Therefore, a useful definition of the distance between
customers for routing and scheduling problems must consider the time windows.

4 Applying Granular Search to DARP

In the DARP each customer is identified with a pair of nodes: the pick-up node and the
delivery node. It means that in a two dimensional plane the spatial distance between
customers must be measured in terms of distance between directed segments. In addi-
tion, the time window associated with each costumer makes even harder the definition
of the distance (spacial and temporal). Thus, for applying a GTS algorithm guided by
the reduced cost to the DARP, a further improvement is necessary. The purpose is to deal
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with a graph of customers instead of a graph of nodes, by associating a cost function to
each arc of this smaller graph. This function measures the distance between each pair of
customers so that solving an assignment problem for creating clusters of customers is
useful on this graph. The solution of the assignment problem can be easily transformed
into an initial feasible solution of the addressed problem, as described in [16]. Then, the
GTS improves this initial solution. Therefore, we explain in the next how the distance
between pairs of customers is defined and how the auxiliary graph is obtained (i.e. a
method to deal with customers without neglecting their own initial characteristics: a
pick-up node and a delivery node for each customer and a time window associated to
each node).

• The average departure time p̄i, j: The value p̄i, j is the average departure time from
the node j− in a four nodes (i.e. two customers) sequence starting as earliest as pos-
sible from i+. It measures the spatial and temporal distance between customer i and
customer j. The value p̄i, j sums up most of the information necessary to evaluate the
feasibility and the cost of any possible path to go directly from customer i to cus-
tomer j, starting with node i+: {i+, i−, j+, j−}, {i+, j+, i−, j−} and {i+, j+, j−, i−},
as shown in Figure 1. To compute p̄i, j constraints(8) and (9) are used. They impose
that for any pair of consecutive nodes i, j in a sequence, the departure time from j is
p j = max

{
pi + ti, j,e j

}
. When the sequence is made by only two nodes, the equation

becomes p j = max
{

ei + ti, j,e j
}

= ei + ti, j + w̃i, j, where w̃i, j = max
{

0,e j − ei − ti, j
}

is
the a priori waiting time at node j.

j−i+ j−i+j−i+

i− j+ i− j+ i− j+

possible waiting time possible waiting timepossible waiting time

i+i− j+j− j+j−

i−j+

t

t

t
i+j+

i−j−

t

t
j−i−

i+j+

t

t
t

j+i−t

Fig. 1. Possible paths to go directly from customer i to customer j

For a generic sequence of s nodes Π = {π1, . . . ,πs}, the departure time in node
s can be determined using the following equation: pπs = pπ1 + Tπ1,πs +Wπ1,πs , where
Tπ1,πs is the total travel time along the sequence and Wπ1,πs is the total waiting time.
Applying this equation to the first sequence shown in Figure 1, gives the expression
p1

j− = ei+ + ti+,i− + ti−, j+ + t j+, j− + wj+ , and similar expressions can be written for the

other two sequences by obtaining the value of p2
j− and of p3

i− . It is important to remark

that there is only one possible waiting time, i.e. wj+ in node j+, since the sequence starts
in i+ and the waiting time before the delivery nodes does not exist: ei− = ei+ + ti+i− . If
ei− > ei+ + ti+i− , the customer would wait before getting down, which makes no sense;
if ei− < ei+ + ti+i− , the time window can be reduced [5], since part of it will be never
used. So pi− = ai− , where ai− is the arrival time in node i. Then, the coefficient p̄i, j

representing the average departure time from node j−, can be defined as p̄i, j =
∑3

r=1 prkr

∑3
r=1 kr

,
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where kr = 1 if pr �= ∞, kr = 0 otherwise. Of course, when ∑3
r=1 kr = 0 the procedure

sets p̄i, j =∞: there are no feasible ways to go from customer i to customer j. The value
p̄ j,i is defined in the same way and in general p̄i, j �= p̄ j,i.

• The auxiliary graph and the assignment problem: The auxiliary graph, Ĝ = (R̂, Â),
is simpler and smaller than the initial one, since it has a node for each customer without
any time window associated and the value p̄i, j associated to each arc (i, j). This smaller
graph is used for building clusters of customers. The method chosen for creating the
clusters is based on the idea of defining and solving an assignment problem on this
simpler graph. In order to make the solution of the assignment problem useful, it would
be desirable to enlarge the auxiliary graph with the minimum number of vehicles (i.e.
minimum number of clusters) necessary to satisfy the requests. Since this number is
unknown we settle for a lower bound. When the fleet includes homogeneous vehicles
and all the vehicles are based on a common depot the lower bound of the fleet size can
be calculated. It is necessary to identify the maximal set of customers which cannot be
loaded by the same vehicle, since going from customer i to customer j violates some
time windows. This value, indicated with m, is calculated as the maximal clique on the
incompatible graph (see for example [16]). Then, the set of nodes of the graph is defined
as R̂ = R∪{n + 1, ...,n + m}, while Â = {(i, j) : i, j ∈ R̂, i �= j} is the set of arcs. The
cost function p̄i, j is assigned to each arc, if i and j are both customers. When i and j
are both vehicles p̄i j = ∞. The values given to p̄i j, when i ∈ V and j ∈ N or viceversa
is p̄i j = ti j + wj.

It is easy to show that the assignment problem is a useful relaxation of the DARP. In-
deed, the constraints involving the time windows, namely constraints (8) and (9), can be
relaxed, since they are used in the computation of p̄i j. Moreover, the minimization of the
objective function takes care of the right part of constraints (9) (i.e. pi ≤ li). Constraints
(4) and constraints (10) are irrelevant to this graph Ĝ, hence removed. Constraints (2),
(3), (5), (6) and (7) have to be taken into account. The last three constraints, ensuring
the feasibility of the loads, are relaxed and the feasibility of the solution obtained is
verified at a later stage. Constraints (2) and (3), are replaced by the classical assignment
constraints and the problem to solve becomes a standard assignment problem whose
size is n + m.

The solution of the assignment problem is a set of clusters of sequenced customers:
some of these clusters contain the depot (i.e. the vehicle) while the rest of them, called
subtours, are composed by customers only. The solution of the assignment problem
can be easily transformed in an initial feasible solution of the addressed problem. It is
enough to make the paths starting and ending from the depot feasible, and to insert in
these main routes the customers in the subtours (see [16]). In addition, the assignment
problem gives the reduced cost value for each arc (i, j) calculated as c̄i, j = p̄i, j −ui−v j

where ui and v j are the dual variables of the assignment problem. The reduced costs
matrix is useful for knowing how much it costs to replace an edge, actually in the
solution, with another one outside. There are several possible solutions with similar
costs, because there are at least n+m−1 arcs not used in the solution but with a reduced
cost value equal 0. In other words the solution of the assignment problem proposes how
the customers in the same cluster may be served by the same vehicle. Nevertheless,
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there are pairs of customers that in the current solution are placed in different clusters,
but that could be served by the same vehicle without increasing the solution value.

5 The Proposed Granular Tabu Search

The main components of a GTS are: the neighborhood, the method to obtain the granular
neighborhood, the diversification/intensification procedure, the stopping criteria and the
aspiration criteria. The algorithm stops after a predefined number of iterations or when a
maximum number of iterations without improvement is reached. The other components
are described in the following sections.

• The neighborhood structure: The neighborhood N(s) of the current solution s con-
sists in all the solutions that can be obtained applying a single move to s. This space
includes only feasible solutions and the possible moves are: (i) move a request from
a route into another one, (ii) insert an unserved request in a route and (iii) remove a
request from a route (clearly it becomes unserved). More complex transformations can
be achieved through sequences of the described simple moves: for example rerouting
a customer in the same route is obtained combining the move remove with the move
insert. By considering the moves just defined, the neighborhood can be described using
the graph Ĝ = (R̂, Â), but with the attention of removing from Â arcs connecting two
requests served by the same vehicle.

Table 1. A Small Example with Four Customers and Two Vehicles

request pick-up node i+ delivery node i− ei+ li+ ei− li−
1 a b 7000 8000 7484 8553
2 c d 7400 8400 8116 9474
3 e f 7500 8500 8012 8121
4 f e 22000 23000 22447 23416

Table 1 reports the data (nodes and time windows) of an example used in the fol-
lowing, constituted by four customers (1,2,3,4). A possible feasible solution is the
following: requests 1 and 2 served by vehicle (A) and requests 3 and 4 served by vehi-
cle (B). The graph Ĝ = (R̂, Â) associated to this solution is reported in Figure 2, without
the copy nodes of the depot.

Each arc of this graph identifies two new different, partially routed, clusters of cus-
tomers. For example arc (3,2) suggests {d,4,d},{d,1,3,2,d} and {d,1,d},{d,3,2,
4,d}. In a similar way arc (2,3) suggests {d,4,d},{d,1,2,3,d} and {d,1,d},{d,2,3,
4,d)}. Let’s notice that the difference is the order of visiting the pickup nodes of clients
2 and 3. Arc (3,2) states node 3+ before node 2+, while arc (2,3) imposes 2+ before 3+.
The arc under consideration suggests the position of the pickup node of the moved client,
then the algorithm looks for the best position for inserting the delivery node. The local
search algorithm explores all the possible feasible positions for inserting thedelivery node
and in the worst case the complexity is O(n). In Figure 3 the initial solution (i.e. the com-
plete sequence of pick-up and delivery nodes) is reported and Figure 4 shows an example
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Fig. 2. The graph Ĝ = (R̂, Â)
associated to the solution {d,1,2,d},
{d,3,4,d}, without the copy nodes of
the depot
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(b) move node 2 into the route of node 3

Fig. 4. Two possible feasible solutions induced by arc (3,2), node 3+ always before node 2+

of two solutions generated by arc (3,2). Each iteration of the Tabu Search optimization
process requires the evaluation of the whole neighborhood: any possible feasible move
obtained by using the arcs in the graph Ĝ = (R̂, Â).

• The granular neighborhood: The local search on a granular neighborhood considers
only moves which are generated by arcs belonging to the granular graph. The way used
to reduce the graph is important, as suggested in [14]; for building an effective GTS

any edge extracted from the granular graph should completely identify a move. This is
the case for the proposed GTS. The information used for reducing the neighborhood are
obtained by the reduced costs matrix given by the solution of the assignment problem.
An arc having a reduced cost value equal zero means that two customers are close to
each other and, if they are located in two different vehicles, this suggests a potentially
interesting move. The threshold starting value is 0, but it can be modified to obtain the
diversification and intensification strategies. Figure 5 reports the reduced costs matrix
associated with the example presented in Table 1. The solution can be read on this
matrix by following the cell with value 0. For example from row of Bus A to column of
client 1 and from its row to column of client 2 and then back to the Depot (i.e. column
of Bus A). Figure 6 shows how the neighborhood changes when the threshold change.

• Tabu list and aspiration criteria: In a TS framework, search is guided by a mem-
ory. This memory, called tabu list corresponds to a short term memory [15] and it is
used for avoiding cycling and for helping the search process to escape local minima.
At each iteration the move executed is declared tabu for a given number of iterations
(tabu tenure) [7], forbidding its reversal. Thus, moves involving only tabu arcs can be
executed if they lead to a solution whose objective function value is better than the best
one found so far: this is called aspiration criterion.
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Fig. 6. The granular neighborhood obtained by using two different values for the threshold

The proposed algorithm sets as tabu all the edges involved when moving a customer.
For example, Figure 7 shows which arcs become tabu after the removal of request j
from its route: they are marked with bold arrows. The number of arcs inserted in the
tabu list depends on the position of customer j. The arcs directly connecting nodes to
the depot or joining the origin to the destination of the same request are not considered:
they are useless for an univocal identification of the implemented move.

• Diversification and intensification: Intensification and diversification strategies are
used to improve the effectiveness of the Tabu Search method [7]. Intensification tries
to focus the search on promising portions of the solutions space, while diversification
moves the algorithm to another unexplored region (i.e. trying to make up for the local
search drawbacks). Three diversification strategies have been used in this work:

Tabu tenure dynamic variation: The tabu tenure value (Tt) can be constant or can vary
according to several strategies [7]. In the proposed algorithm this variation is based
on the objective function evolution. If improving moves have been executed for a con-
secutive pre-defined number of iterations (Nit), the search process is probably explor-
ing an interesting portion of the solutions space, thus intensification is required and
the tabu tenure value is reduced. On the contrary, if the objective function value has
not been improved for the same number of iterations (Nit), the search process may
have reached a local minimum, thus diversification is required and the tabu tenure
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Fig. 7. Arcs Saved Into the Tabu List

value is increased. The function used to increase or to decrease Tt is the following:
Tt = Tt ± εTt. The maximal value and the minimal value for Tt are bounded by, re-
spectively, Tt = Tt +ϑTt and Tt = Tt −ϑTt.

Frequency-based penalization: This technique uses a long term memory for recording
the number of times an arc appears in the incumbent solution.

Let s be the current solution and each solution s̄ ∈ N(s) such that f (s̄) > f (s) is
penalized by a factor p(s) = λρ

√
n ·mf (s̄). ρ is the mean value of the number of times

each considered arc has been added to the current solution, λ is a parameter used to
control the intensity of the diversification and

√
n ·m is a scaling factor required to

adjust the penalties with respect to the problem size. This strategy has been proposed
by Taillard [12] and successfully used in many other tabu search algorithms applied to
the vehicle routing problem, for example in [4].

Granularity threshold variation: The granularization process, by reducing the neighbor-
hood, naturally intensifies the search, since few moves are evaluated during each iteration.
However several diversification strategies can also be defined by varying the granularity
threshold (thd) and thus by dynamically changing the neighborhood structure. The step,
identified in the following with δ and used to increase or to decrease the threshold, is

calculated using the following formula δ = γ
(

max(i j)∈Â c̄i, j −min(i j)∈Â c̄i, j

)
. At the be-

ginning thd = 0 and it is increased (i.e. thd = thd +δ ) when at least one of the following
conditions is verified: (a) all the feasible solutions in the current neighborhood are tabu
or (b) the algorithm is unable to improve the best solution found so far for a fixed num-
ber of iterations (FIt). The threshold is set equal 0 again whenever one of the following
conditions is verified: (1) the algorithm improves the best solution found so far or (2) the
algorithm improves the current solution. Three versions of the algorithm have been ob-
tained by combining the methods for changing the threshold (i.e. (a),(b),(1) and (2)). The
Granular Tabu Search Fixed (GTSF) uses conditions (a) and (1), the Granular Tabu
Search Variable Current (GTSVC) uses conditions (a), (b) and (2) and the Granular
Tabu Search Variable Optimal (GTSVO) uses conditions (a), (b) and (1). These three
versions produce different quality solutions within different times, as shown in the next
section.
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6 Computational Study and Conclusions

The algorithms have been tested, by considering non time-dependent and time-dependent
networks. Moreover, the use of different diversification strategies based on the granu-
larity threshold variation gives three different versions of the algorithm (GTSF, GTSVC

and GTSVO) tested and compared both among them and with a TS algorithm. The TS is
obtained by setting thd = ∞.

• Instances: To the best of authors knowledge, there are no benchmark instances for
the DARP with time dependent network and a fleet of vehicles of fixed size. Therefore,
the data set has been created by using the complete network of Milan (about 17000
arcs and 7000 nodes). The set of instances has been generated by choosing randomly
a pair of nodes for each customer. Each customer requires either the latest arrival time
(li−) or the earliest departure time (ei+) and that value is generated randomly. The time
windows construction is basically based on the maximum ride time as described in [16].
Almost all the tests have been performed using instances consisting of 100, 250 and 500
requests with the following characteristics:

– requests temporal clustered: all the earliest departure times required by the cus-
tomers are randomly generated within an interval two hours wide (8.30− 10.30).
The same for customers asking the latest arrival time, but within a different interval
(i.e. 13.30−15.30). The service starts at 7.00 and the nodes (spatial dimension) are
generated by considering the whole network.

– requests spatial clustered: the nodes have been randomly generated from two dif-
ferent areas, smaller than the whole network, each of them with 2 km of radius. The
pick-up nodes are selected in one of them, and the delivery nodes in the other one.
The earliest departure times (latest arrival time) are generated by using the whole
day (i.e. 10 hours). This set of instances are inspired by the class C1 and C2 of the
well known solomon instances for the VRPTW.

– requests without clusters: the requests are randomly generated using the whole net-
work and within a time interval of 10 hours. Nevertheless, using the same data,
two sets have been created using two different values for the maximum ride time
(maxS).
• The first set has been obtained using a large value for maxS (i.e. 2.6 for trip

shorter equal than 10 minutes, 1.9 for trip longer equal than 40 minutes and the
following hyperbole function maxS = 1.5+ 1000

ti+ i−
in between). This corresponds

to wide time windows. This set of instances are inspired by the class R2 and
RC2 of the well known solomon instances for the VRPTW.

• The second set has a smaller value for maxS (i.e. 2.1 for trip shorter equal
than 10 minutes, 1.4 for trip longer equal than 40 minutes and the following
hyperbole function maxS = 1.0 + 900

ti+ i−
in between). This corresponds to tight

time windows. This set of instances are inspired by the class R1 and RC1 of the
well known solomon instances for the VRPTW.

• Implementation, parameters and algorithms compared:A fleet size suitable for
each size of instances has been determined through some preliminary tests: the algorithm
was allowed to use as many vehicles as it needed for serving on average at least 90% of
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the customers. In this way the required fleet size has been estimated to be equal to 6,
12 and 20 vehicles to serve 100, 250 and 500 requests, respectively. The algorithm uses
always the whole fleet of vehicles, therefore the number of vehicles used is reported in
tables only when it is smaller than the whole fleet size (i.e. Table 7, column veh.). The
speed over the non time-dependent network used is 25 km/h. Time-dependent network
has been described considering 3 time intervals whose data are shown in Table 2.

Table 2. Time Intervals

Start time End time Speed (km/h)
7.00 10.00 20
10.00 12.00 25
12.00 17.00 28

Table 3. Parameters Used

tabu tenure
Parameter λ Tt Nit ε ϑ
Value 0.015 7.5log10 n 3 20% 70%

granular threshold objective function
Parameter thd FIt γ α1 α2 α3
Value 0 15 10% 100 10 1

The parameters used are set to the values reported in Table 3. They have been selected
after a preliminary testing phase, in order to provide the best average solution values.

• Commented results: The results are reported in Table 4. The columns in the tables
are as follows: the first one lists the algorithm (or the procedure) used, (n) the number
of clients, (uns.) the percentage of unserved clients and (avg. S) the average level of
service. The computational time is reported in the last column. Moreover, in Tables
from 6 to 9, (iter.) lists the number of iterations. The results reported in the Tables are
obtained as average over five different instances for each type of problem.

The aim of this first test is to evaluate the performance and the quality of results
produced by the different versions of the optimization algorithm: (GTSF, GTSVC and
GTSVO) and to compare them with the TS. The requests have been generated without
clusters and the time windows are wide. Table 4 shows the results obtained after 2500
tabu search iterations with a non time-dependent network. Every optimization algorithm
succeeds in serving much more requests than the initial solution does, while providing a
better level of service to the customers. The number of used vehicles is equal to the fleet
size, since there is always at least one unserved request. TS and GTSVO produce better
solutions as expected, but are very slow. GTSF and GTSVC generate very good solutions,
within shorter computing time. In particular, the GTSVC version of the algorithm is the
best compromise between efficiency and effectiveness.

• Impact of clusters: As a consequence of the previous results, the algorithms com-
pared are: GTSF, GTSVO and GTSVC without the TS. The network is no-time dependent.
A slightly different stopping condition is adopted: instead of using a fixed number of
iterations (2500 or 1000), the algorithms stop when unable to improve the best solution
found so far for a fixed number of iterations (150). In this way the trend of the objective
function is taken into account.

Tables 6, 7, 8 and 9 report the results. The instances with temporal clusters (Table 6)
are more difficult, since the time windows distance between nodes is shorter than the
travel time and therefore there are few feasible solutions. Nevertheless, the optimization
phase is able to strongly improve the initial solution. In the case of requests spatial
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Table 4. Optimization Algorithms Analysis

Algorithm n uns. avg S time (s)
INITIAL SOL. 100 3.4% 0.36769 0.097
GTSF 100 0.4% 0.19034 40.616
GTSVC 100 0.2% 0.16928 63.956
GTSVO 100 0.2% 0.16875 652.762
TS 100 0.2% 0.16862 1092.071
INITIAL SOL. 250 4.0% 0.45250 0.922
GTSF 250 1.0% 0.23460 107.678
GTSVC 250 0.4% 0.19336 218.585
GTSVO 250 0.3% 0.16494 2648.395
TS 250 0.4% 0.18535 6469.919

Table 5. Optimization Algorithms Analysis:
Results with a Time-Dependent Network

Algorithm n uns. avg. S time (s)
INITIAL SOL. 100 2.6% 0.38346 4.328
GTSF 100 0.6% 0.18165 197.341
GTSVC 100 0.4% 0.17711 1209.111
GTSVO 100 0.4% 0.16084 10986.608
INITIAL SOL. 250 4.9% 0.44249 22.450
GTSF 250 1.6% 0.24035 366.703
GTSVC 250 1.5% 0.20855 4798.447
GTSVO 250 1.6% 0.18429 22522.980

Table 6. Results on Instances Temporal
Clustered with 100, 250 and 500 Customers

Algorithm n uns. avg. S iter. time (s)
INIT SOL. 100 27.0% 0.48121 0 0.100
GTSF 100 18.8% 0.39537 342.4 5.219
GTSVC 100 17.4% 0.38231 355.2 7.162
GTSVO 100 16.2% 0.36564 469.8 42.662
INIT SOL. 250 34.1% 0.51788 0 0.922
GTSF 250 24.0% 0.41472 466.0 28.528
GTSVC 250 20.2% 0.42068 877.4 82.672
GTSVO 250 17.3% 0.39979 1147.0 405.025
INIT SOL. 500 41.1% 0.53928 0 4.741
GTSF 500 30.5% 0.44663 717.2 196.662
GTSVC 500 24.8% 0.42300 1589.2 609.969
GTSVO 500 20.0% 0.42835 2289.8 2529.436

Table 7. Results on Instances Spatial Clus-
tered with 100, 250 and 500 Customers

Algorithm n uns. avg. S veh. iter. time (s)
INIT SOL. 100 0.2% 0.46747 5.6 0 0.100
GTSF 100 0.0% 0.17882 5.4 359.4 20.359
GTSVC 100 0.0% 0.14047 5.4 549.6 40.013
GTSVO 100 0.0% 0.12231 5.4 694.8 315.740
INIT SOL. 250 0.0% 0.54006 10.6 0 0.922
GTSF 250 0.0% 0.20251 10.6 568.4 136.797
GTSVC 250 0.0% 0.14714 10.6 1266.0 511.131
GTSVO 250 0.0% 0.11795 10.6 1762.0 4557.998
INIT SOL. 500 0.0% 0.56200 17.6 0 4.741
GTSF 500 0.0% 0.20671 17.4 941.0 888.591
GTSVC 500 0.0% 0.15758 17.4 1757.0 2759.460
GTSVO 500 0.0% 0.12234 17.4 3792.0 39411.360

Table 8. Results Obtained with Requests:
Randomly Generated, wide time Windows
and 100, 250 and 500 Clients

Algorithm n uns. avg. S iter. time (s)
INIT SOL. 100 2.0% 0.47015 0 0.100
GTSF 100 1.2% 0.18717 413.2 15.091
GTSVC 100 1.0% 0.16606 389.2 18.897
GTSVO 100 0.6% 0.15969 586.4 127.956
INIT SOL. 250 4.4% 0.55046 0 0.922
GTSF 250 0.7% 0.25489 623.0 65.400
GTSVC 250 0.5% 0.23167 651.8 109.688
GTSVO 250 0.3% 0.17508 1339.6 1434.552
INIT SOL. 500 13.3% 0.56418 0 4.741
GTSF 500 4.8% 0.36405 900.2 383.906
GTSVC 500 1.6% 0.31724 1761.0 1129.446
GTSVO 500 1.3% 0.26867 2358.0 4249.736

Table 9. Results Obtained with Requests:
Randomly Generated, Narrow Time Win-
dows and 100, 250 and 500 Clients

Algorithm n uns. avg. S iter. time (s)
INIT SOL. 100 5.4% 0.23281 0 0.100
GTSF 100 4.0% 0.20780 296.4 14.869
GTSVC 100 4.0% 0.19339 340.0 22.241
GTSVO 100 3.4% 0.21670 295.6 56.909
INIT SOL. 250 4.9% 0.38327 0 0.922
GTSF 250 3.0% 0.26821 440.2 38.756
GTSVC 250 2.2% 0.25879 522.0 68.681
GTSVO 250 2.2% 0.25013 641.4 397.784
INIT SOL. 500 10.3% 0.48664 0 4.741
GTSF 500 6.1% 0.38374 715.0 260.585
GTSVC 500 5.0% 0.33455 980.4 547.415
GTSVO 500 4.3% 0.33708 1057.4 1678.794
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clustered (Table 7) the algorithms are able to reduce the number of used vehicles. This
is expected, since all the requests are already satisfied in the initial solution which allows
the algorithms in trying to reduce the number of used vehicles and in improving S. The
number of iterations reported in Table 6 and Table 7 are of the same order of magnitude,
but the computational time is different. This is due to the number of feasible solutions
contained in each neighborhood: the more they are, the longer is each iteration. Finally
Table 8 and Table 9 report the results obtained when solving the instances with wide
time windows and instances with tight time windows. The quality of the obtained initial
solutions is similar, but after the optimization phase the number of served clients is
different. Instances with tight time windows are harder to solve as expected, since it is
easier to insert customers when the problem has wide time windows.
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Abstract. Internet energy consumption is rapidly becoming an issue due to the
exponential traffic growth and the rapid expansion of communication infrastruc-
tures worldwide. We address the problem of energy-aware intra-domain traffic
engineering in networks operated with a shortest path routing protocol. We con-
sider the problem of switching off (putting in sleeping mode) network elements
(links and routers) and of adjusting the link weights so as to minimize the en-
ergy consumption as well as maximizing a measure of effectiveness of the rout-
ing weight configuration. We propose a three-phase MILP-based heuristic for
tackling this multi-objective problem with priority (first minimize the energy con-
sumption and then the overall cost of link utilization), which exploits the IGP-WO
heuristic proposed for optimizing the link weights so as to minimize the total cost
of link utilization. For comparison purposes, we also developed a greedy random-
ized search procedure with path-relinking. The computational results for four real
network topologies and different types of traffic matrices show that it is possible
to switch off a substantial number of core nodes during low and moderate traffic
periods, while guaranteeing the same point-to-point service quality and moder-
ately increasing the network total cost of link utilization.

1 Introduction

Data reported in [9] show that in 2007 Internet had been responsible for 5.5% of the to-
tal energy consumption in the world and that the annual increment rate can be estimated
around 20-25%. For these reasons, the issues of energy saving in IP networks and of
power awareness in network design have recently become of great interest in the sci-
entific community and have attracted the interest of device manufacturers and Internet
Service Providers (ISP).

Energy management in the Internet exploits the fact that networks are designed and
dimensioned to serve the estimated peak traffic demand. Usually, during network oper-
ation, traffic load varies remarkably over time and even during peak hours it is usually
well below network capacity. Unfortunately, current network device architectures and
transmission technologies make their power consumption almost independent of the
traffic load. As a result, networks consume energy as if they were always fully loaded.

We consider the most widely used Internal Gateway Protocol (IGP) in IP networks,
namely the Open Shortest Path First (OSPF) protocol. Traffic demands are routed from
origin to destination along the shortest paths computed with respect to the weights as-
signed to the links. If the equal cost multi-path (ECMP) rule is considered, the packets
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are evenly split at nodes where more outgoing links belong to shortest paths to the des-
tination. Link weights are managed by network operators, who may modify them in
order to optimize routing and reduce network congestion.

Let the directed graph G = (V,A) represent the network topology, where V is the set
of nodes and A the set of links. We distinguish two types of nodes: edge nodes and core
nodes. Edge nodes can be both source and destination of traffic demands, while core nodes
play only the role of transit routers. Let D denote the traffic matrix, where di j is the traffic
demand for each pair of edge nodes i and j, and di j = 0 for all other pairs of nodes.

We consider the following extension of the IGP weight optimization problem with
ECMP rule for intra-domain Traffic Engineering, that we refer to as Energy-aware Traf-
fic Engineering (E-TE).

E-TE: Given a directed graph G = (V,A), representing the topology of an IP network
composed by routers and links with capacities on the links, and a traffic matrix D,
decide which network elements (routers and links) to switch off and determine the link
weights so as to minimize the total network energy consumption (primary objective) and
a measure of effectiveness of the routing weight configuration (secondary objective),
while guaranteeing that all the traffic demands are routed and the maximum utilization
constraint is satisfied for each link.

According to the distinction between primary and secondary objectives, we first look
for a sub-network with minimum total energy consumption and then minimize the total
cost of link utilization proposed in [6] on the sub-network corresponding to the active
elements. The unnecessary routers and links can then be excluded from the shortest
path trees, by assigning a very large value to the corresponding link weights. Note that
by switching off a node or a link we do not necessarily mean to turn it completely off
but to put it in sleeping mode.

After a summary of related work in Section 2, a mixed integer programming formula-
tion is presented in Section 3. Since it is very challenging even for small size instances,
in Section 4 we propose a three-phase heuristic for tackling the E-TE problem combin-
ing greedy procedures with the iterative solution of a relaxed MILP-formulation for a
sub-network with increasing traffic matrices. Building on previous work on intra-domain
traffic engineering, we use the IGP-WO algorithm proposed by Fortz and Thorup [6] that,
given a network topology and a traffic matrix, aims at a set of link weights that minimizes
the total cost of link utilization. For comparison purposes we have also implemented a
greedy randomized procedure (GRASP) with path-relinking. In Section 5 we report an
discuss the computational results obtained on four real network topologies with different
types of traffic matrices. Finally, Section 6 contains some concluding remarks.

2 Related Work

Since the seminal work by Gupta and Singh [8], the research community has started de-
veloping technologies for manufacturing energy efficient network devices, methodolo-
gies for power aware network design, and energy management strategies for reducing
energy wastes of networks in operation.

To the best of our knowledge, there are only a few recent works on energy-aware
traffic engineering.
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The approach proposed in [16] aims at switching off the line-cards (network links)
guaranteeing QoS constraints (maximum utilization and maximum path length con-
straints) in a scenario where an hybrid MPLS/OSPF scheme is adopted. The approach
is based on a MIP formulation where the traffic demands are routed through a set of
k-shortest path previously calculated.

In [4] the authors describe some heuristics that, given a traffic matrix and a fully pow-
ered network, are able to switch off nodes and links while respecting traffic constraints.
In [15] some Energy-Aware Traffic Engineering (EATe) techniques are presented for
optimizing links and routers power consumption, by considering their rate-dependant
energy profiles. Assuming that the energy consumption of the network elements de-
pends on the different rates, EATe algorithms try to switch off the underutilized ele-
ments or to reduce their rate, by re-routing part of the traffic in other network portions
without increasing the rate of any element. Unlike in our work, the approaches in [4]
and [15] follow a flow-based strategy that is suitable for the Internet geographic back-
bone where label switching protocols are adopted and not for routing domains based on
shortest paths.

The energy management algorithm for IP networks called Energy Aware Routing
(EAR) algorithm and presented in [5] is able to switch off network elements exploiting
a modified version of the OSPF protocol. EAR algorithm selects a subset of routers,
Importers Router (IR), that do not calculate their own shortest path tree (SPT) but use
that of some neighboring routers, Exporters Routers (ER). In general a small number of
active SPTs reduces also the number of links used that can be switched off. There are
several important differences between our work and [5]. As in the literature on OSPF
traffic engineering [13], we keep the OSPF protocol unchanged and focus on optimizing
the link weights, while in the EAR algorithm the weights are assumed to be given and
the protocol needs to be modified to implement ERs and IRs. Moreover, we explicitly
consider link capacity limitations and minimize the network congestion level in order
to guarantee service quality, while in [5] neither traffic load nor network capacity are
clearly considered.

The reader is referred to [3] and [10] for summaries of the work done over the past
decade on link weights optimization for intra-domain traffic engineering. Different ob-
jective functions have been considered (e.g., link utilization cost function minimization
[6], residual capacity maximization and load balancing maximization) and different
heuristic methods have then been developed (e.g., local search, genetic algorithm, La-
grangian approach). The code of the well-known IGP-WO algorithm [6] is available
from the TOTEM toolbox [2]. To the best of our knowledge, the issue of energy-aware
link weights optimization has not yet been addressed.

3 Mixed Integer Programming Formulation

Let pi j and pk be the power consumption of link (i, j) and node k respectively. Let
ci j be the capacity of the link (i, j). If the binary decision variables xi j and yk repre-
sent the power status (on/off) of links and routers respectively, a Mixed Integer Linear
Programming (MILP) formulation of the part of the E-TE problem involving the the
energy consumption minimization is given by:
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min ∑
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where M is a large enough constant. The objective function (1) aims at minimizing the
total energy consumption of the network. Constraints (2)-(3) ensure that if a node is
switched off all incident links are turned off. Obviously a node can be switched off only
if there are no traffic demands having it as source or destination (edge or core node).
Constraints (4)-(5) are the classical flow conservation constraints, where the (real) pos-
itive variable f t

i j indicates the amount of flow routed through the link (i, j) ∈ A destined
to node t ∈ N. Constraints (6) are the maximum utilization constraints imposing that the
total flow through each link does not exceed the link maximum utilization and forcing
the flow to 0 if the link (i, j) is powered off; the parameter α is comprised between 0
and 1. The binary variables ut

i j = 1 appearing in Constraints (7)-(9) describe the routing
configuration: ut

i j = 1 if and only if the link (i, j) belongs to one of the shortest paths
from node i to node t. Constraints (7) make sure that if ut

i j = 1 then the flow f t
i j des-

tined to node t is equal to the (real) variable zt
i , which is the common value of the flow

assigned to all links outgoing from i and belonging to the shortest paths from i to t. Con-
straints (8) force f t

i j = 0 for all links (i, j) that do not belong to a shortest path to node
t. Finally, the shortest path routing Constraints (9)-(15) assure that the routing vector
u defines shortest paths consistent with the link weight vector ω and forbid switched
off links to belong to a shortest path; moreover the switched off links weights are put
equal to the maximum value wmax. For each pair of nodes j and t, the (real) variable rt

j
corresponds to the length of the shortest path from node j to node t.

Unfortunately, the above MILP-formulation, which is an extension of the one given
in [10] for intra-domain traffic engineering, turns out to be very challenging even for
small size networks. For instance, we did not manage to find a feasible integer solution
for a small network with 10 nodes and 42 links in 10 hours of computing time.

4 Heuristic Algorithms

4.1 Greedy Algorithm with Dual Weights Initialization (GA-DW)

A first simple approach to tackle the E-TE problem is to adopt a greedy strategy. Given
a network topology G and a traffic matrix D, an initial set of links weights with low
total cost of link utilization is obtained by applying the IGP-WO algorithm (see below
for the initialization). Then we sort the network elements (nodes and links) according
to some intuitive criteria, consider them in that order and try to switch off as many of
them as possible.

We use three criteria for sorting nodes. In Least-Link (LL), Least-Flow (LF), and
Sum-of-Weights (SW), nodes are sorted in non-decreasing order according to, respec-
tively, the degree (number of incident links), the total amount of traffic flowing through
them, and the sum of the weights of all the incident (active) links. We consider two cri-
teria for sorting links. In Least-Flow (LF) and Traffic-Engineering (TE), links are sorted
in non-decreasing order according to, respectively, the total amount of traffic flowing
through them and their weight. Two of these criteria, Least-Link (LL) and Least-Flow
(LF), were already used in a different context in [4]. The six combined node-link sorting
policies are given in Table 1. The nodes are always considered before the links because
of their higher energy consumption.
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Table 1. Combinations of sorting criteria, the rows correspond to the link criteria and the columns
to the router criteria

LF LL SW
LF LF-LF LL-LF SW-LF
TE LF-TE LL-TE SW-TE

At each step of the greedy procedure, we verify whether the next available active net-
work element according to the sorting order can be turned off. The considered element
is actually turned off if the OSPF routing determined on the reduced network by the
link weights of the active links, is able to support the traffic matrix (all traffic demands)
without exceeding the link maximum utilization limit α comprised between 0 and 1. A
run terminates when all the network elements have been tested.

The initial set of link weights is determined by applying 150 iterations of IGP-WO
with a maximum weight value of 100. Since the java implementation of IGP-WO in the
TOTEM toolbox [2] is computationally heavy, we speed up the procedure by following
the suggestion in [3]. The idea is to warm-start IGP-WO with the set of link weights
obtained with the procedure described in [14], namely by taking as initial link weights
the values of the dual variables of the following linear programming multicommodity
flow relaxation:

min Φ = ∑
(i, j)∈A

φ (ci j, li j) (19)

s. t.

∑
j∈V

f t
v j −∑

j∈V
f t
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f t
i j (i, j) ∈ A (21)

φ (ci j, li j) ≥ αzli j − βzci j (i, j) ∈ A, z ∈ Z (22)

f t
i j ≥ 0 (i, j) ∈ A, t ∈ V. (23)

The objective function (19) is, as in the IGP-WO algorithm [6], the sum of piecewise
linear convex functions φ (ci j, li j) based on the links utilization. Constraints (20) are
the classic flow conservation constraints, while Constraints (21) force the total flow on
each arc to be equal to the sum of all the flows routed through the arc itself. The dual
variables used as link weights are those corresponding to Constraints (21). Constraints
(22) define the link utilization cost function. Finally Constraints (23) define the positive
flow variables f t

i j , that are equal to the amount of traffic routed through the arc (i, j) and
destined to node t.

In the Greedy Algorithm with Dual Weights Initialization (GA-DW) the greedy pro-
cedure is run six times (once for each combined node-link sorting policy) and the best
solution found is returned. Finally, a set of link weights for the resulting sub-network
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is obtained by executing 150 iterations of IGP-WO so as to reduce the total cost of link
utilization.

Note that the set of values of the link weights is determined only twice: at the begin-
ning for the initial network topology and at the end of the algorithm for the resulting
sub-network.

4.2 Two-Stage Algorithm with Dual Weights Initialization (TA-DW)

Since the problem of finding a minimum energy sub-network of G with an optimized set
of link weights is very challenging, we split it into two stages. The TA-DW procedure
includes a switching-off stage and a feasible routing stage.

The Switching-off Stage, which receives as input the complete network topology G
and the given traffic matrix denoted by D, aims at selecting the set of network elements
that could be switched off. This is achieved by solving within a 3% gap the following
Mixed Integer Linear Program (MILP) that is a subset of the E-TE formulation (1)-(18):

min ∑
(i. j)∈A

pi jxi j + ∑
k∈V

pk,yk (24)

s. t.
xi j ≤ yi (i, j) ∈ A (25)
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f t
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s∈V
dst t ∈ N (27)

∑
j∈V

f t
v j −∑

i∈V

f t
iv = dvt v, t ∈V, t �= v (28)

∑
t∈V

f t
i j ≤ xi jαci j (i, j) ∈ A (29)

xi j,yk ∈ {0,1} (i, j) ∈ A, k ∈V (30)

f t
i j ≥ 0 (i, j) ∈ A, t ∈V. (31)

The objective function (24) aims at minimizing the network energy consumption. Con-
straints (25)-(31) are identical to Constraints (2)-(6) and (16)-(17) of the E-TE formu-
lation. Since the node power consumption pi is in general much larger (about ten times)
than the link power consumption pi j, the formulation will give the priority to switch-
ing off the nodes. Note that the traffic demands routing is considered fully splittable,
see Constraints (31). This formulation falls within the well-known class of capacitated
multi-commodity minimum cost flow problems (CMCF) [7].

The Feasible Routing Stage, which receives as input the sub-network G(D) deter-
mined at the Switching-Off Stage, aims at finding a set of link weights that allows to
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route through the sub-network all the traffic demands according to shortest paths, with-
out exceeding the link maximum utilization α (0 < α ≤ 1). The link weights config-
uration of the second stage is determined by applying 150 iterations of the IGP-WO
algorithm with a maximum weights value of 100. As for GA-DW, IGP-WO is warm-
started using as input the dual weights computed by solving (19)-(23) for the reduced
network G(D) determined at the Switching-Off Stage.

Unfortunately, given the sub-network topology G(D) obtained at the first stage and
its respective traffic matrix D, there is no guarantee that there exists a set of link weights
allowing feasible routing of all traffic demands. This may occur because the first stage
considers a fully splittable routing that can be hardly reproduced by the OSPF protocol.
In case no feasible OPSF weights set exists (or is found), we slightly increase the orig-
inal traffic matrix D by multiplying it with a fixed parameter γ , and we repeat the first
stage with the increased traffic matrix D(γ). γ is equal to 1 at the first iteration, and is
increased by 0.1 every time IGP-WO fails to find a feasible set of link weights. If the
maximum utilization level is greater than α but smaller than α + 0.01, the γ parame-
ter is increased by 0.05 rather than 0.1. This operation clearly leads to a sub-network
G(D(γ)) with more active elements as input of the second stage (the second stage is
always run with the original traffic matrix D). The Feasible Routing Stage ends when a
feasible set of link weights is found.

To check whether some other elements of the resulting sub-network can still be
switched off, we apply a last run of the GA-DW algorithm.

4.3 MILP-Based Algorithm

To achieve high quality solutions in a reasonable computing time, we combine the two
above algorithms. The idea is to achieve a trade-off between the very low computational
load of GA-DW and the robustness of TA-DW.

The resulting MILP-based Algorithm (MILP-BA) is composed of the following two
stages:

– A complete run of GA-DW with a maximum utilization level of α−0.1.
– A complete run of TA-DW, where the nodes switched-off at the first stage, are

forced to remain off. Moreover, the traffic matrix increase criteria are slightly
changed, i.e., the γ scaling parameter that is set to 1 at the first iteration, is in-
creased by 0.05 if the maximum utilization level obtained by IGP-WO is comprised
between α and α + 0.1, or increased by 0.1 if the maximum utilization exceeds
α + 0.1.

On the one hand, GA-DW allows us to reduce the computational load of TA-DW by
substantially reducing the number of variables in the MILP formulation. On the other
hand, by decreasing the maximum utilization α by 0.1 in the first run of GA-DW, we
tend to avoid that GA-DW forces TA-DW to switch off the wrong network elements.
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Table 2. Rocketfuel network topologies

Network Type Nodes Links Edgenode Corenode %Corenode

Ebone Backbone 87 322 31 56 64.4
Exodus Backbone 79 294 38 41 51.9
Sprint Access 52 168 52 0 0
AT&T Access 115 296 115 0 0

5 Computational Experiments

5.1 Network Topologies and Traffic Matrices

We have carried out computational tests on four real network topologies provided by
the Rocketfuel project [1]. Since our algorithms aim at switching-off both nodes and
links, the main focus is on backbone networks that contain edge nodes as well as core
nodes and whose core nodes may be switched-off. However, we have also considered
access networks that only contain edge nodes, which cannot be switched-off. The char-
acteristics of the four network topologies are summarized in Table 2. The two access
networks, Sprint and AT&T, have been used in [16] for testing other energy-aware traf-
fic engineering approaches. Unfortunately, although the network topologies are known,
no accurate information is available concerning link capacities and network equipments.
For the backbone networks, we assume that all the network links have the same capac-
ity, and we equip each node with routers M10i (power consumption pi of 86.4W ), and
each link with a Gigabit Ethernet line card (power consumption pi j of 7.3W ). Since a
router M10i can support at most eight Gigabit Ethernet line cards, the number of routers

in each node directly depends on the degree gi of the node (� 8
gi
� routers in each node).

For the access networks, we use the capacity values and the equipment configuration
kindly provided to us by the authors of [16]. In the case of backbone networks, also the
information on the subdivision between edge and core nodes is missing. Since edges
nodes can be both source and destination of traffic demands and core nodes play only
a role of transit routers, core nodes are the only one that can be powered off. We have
randomly selected a set of edge routers for each one of the three network topologies. To
avoid the trivial and unrealistic cases where core leaf nodes can be easily powered off,
all the leaf nodes are considered as edge nodes. At least one edge node has also been
selected for each city.

As to the traffic matrices, for access networks we have used the same traffic matrices
as in [16]; the matrices have been obtained by multiplying with different scaling factors
the basic matrices computed with the gravity model. For the backbone networks, we
have generated the traffic matrices in two different ways:

1. Constant and Poisson: generated using the Totem toolbox [2], the maximum load
matrices with constant and Poisson traffic distribution that can be supported by the
(complete) networks with OSPF hop-count routing.
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2. LP-based multicommodity flow matrices: generated by scaling with a parameter
β ∈ (0,1) a maximum supported traffic matrix obtained with a linear programming
(LP) formulation. By maximum supported traffic matrix, we mean that all the traffic
demands can only be satisfied by switching on all the network links/routers and
performing fully splittable routing.

For the sake of simplicity, in our tests we have considered the maximum utilization
parameter α = 1.

5.2 Results

The computational experiments have been carried out on an Intel Pentium Duo 3.0GHz
with 3.5GB of RAM. The results are reported in Tables 3 and 5 for backbone networks
and in Table 4 for access networks. The first column indicates the instance considered
(network and matrix). Ex, Eb and Spr are the abbreviations for, respectively, Exodus,
Ebone and Sprint, while Letters C and P, and numbers (30-40-50 in backbone cases,
7-12-14-21-24-36 in access cases) that follow the networks acronyms correspond to the
traffic matrix considered (C for constant matrices, P for Poisson matrices, 30-40-50 for
the maximum supported LP matrices scaled by 0.3, 0.4 and 0.5, 7-12-14-21-24-36 for
the basic gravity matrices scaled by 7, 12, 14, 21, 24 and 36). Note that by multiplying
the Sprint basic matrix by 36 and the AT&T basic matrix by 21, the maximum utiliza-
tion level obtained performing the OSPF routing is above 90%. The columns C−E , L,
Etot

c (W ), Congmin report respectively, the number of core and edge network nodes, the
number of network links, the energy consumption of the complete network and the op-
timized congestion obtained with the complete network. As measure of the congestion
level we use the value of the cost function defined by IGP-WO, namely the total cost of
link utilization. The remaining columns correspond to the solutions returned by the al-
gorithms; Ec (W ) is the energy consumption, gap is the ratio (Ec−Eb

c )/Eb
c , where Eb

c is
the bound on the energy consumption. Note that this energy consumption bound value is
calculated by considering the energy consumption of the optimum solution of the MILP
formulation for the switching-off stage. Cong indicates the solutions congestion level,
Cong% reports the ratio Cong/Congmin. No f f and Lo f f show respectively the number of
nodes and links switched-off, while t and tnor are respectively the total computing time
and the computing time normalized w.r.t. the computing time of GA-DW.

For comparison purposes, we have also adapted the general Greedy Randomized
Adaptive Search Procedure (see e.g. [11]) to the E-TE problem. At each iteration of the
greedy algorithm, the network element to be switched off is randomly selected among
the first k% elements of the ordered list derived from the sorting criterion. This random-
ized greedy procedure is run with the same sorting criterion for a predefined number of
iterations and the best solution obtained is returned as an approximate solution. We have
also endowed our GRASP procedure with a path-relinking feature that allows to inten-
sify the search between elite solutions [12]. Unfortunately, in this case path-relinking
only slightly improved the solution quality.

In Table 3 we compare the results obtained running GA-DW and the corresponding
version GA-RW with random weights initialization on the backbone networks. The
results clearly confirm the impact of this type of link weight initialization. GA-DW
results are better in nine cases out of ten.
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Table 3. Computational results. Comparison between GA-RW (Greedy Algorithm with Random
Weights) and GA-DW on the backbone networks.

GA-RW GA-DW Bound
Inst C−E L Congmin Ec (W ) No f f Lo f f Cong Ec (W ) No f f Lo f f Cong Eb

c (W )

Ex30 41-38 294 155052 5146.1 31 169 381870 5239.8 30 168 354534 4546.2
Ex40 41-38 294 253240 5883.5 25 139 499842 5753.3 26 145 566605 5131.5
Ex50 41-38 294 382600 6620.9 19 109 761000 6418.9 21 113 616497 5536.7
ExC 41-38 294 147639 5130.3 30 183 388132 5058.5 31 181 386235 4537.7
ExP 41-38 294 164764 5440.6 27 176 382164 5346.8 28 177 354508 4653.3
Eb30 56-31 322 111265 5677.9 34 207 306940 5677.9 34 207 300163 5540.4
Eb40 56-31 322 169811 6364.2 28 184 353066 6248.6 29 188 369041 5872.6
Eb50 56-31 322 242613 7324.3 19 159 537422 7136.9 21 161 462120 6327.7
EbC 56-31 322 179798 6616.1 25 185 310032 6313.1 28 191 379940 5865.3
EbP 56-31 322 202439 6537.0 26 184 377949 6320.4 28 190 423698 5865.3

Table 4. Computational results obtained with MILP-BA for the Sprint and AT&T access networks

MILP-BA
Inst C−E L Etot

c (W ) Congmin Ec (W ) Lo f f t (s) Cong Cong%

Spr12 0-52 168 24972 28785 11950 (47.9%) 85 (50.6%) 578 160774 558%
Spr24 0-52 168 24972 59651 13339 (53.4%) 76 (45.2%) 584 476098 798%
Spr36 0-52 168 24972 96214 13795 (55.2%) 73 (43.5%) 1241 412256 428%

AT&T7 0-115 296 43344 38990 30504 (70.4% 82 (27.7%) 1816 215903 553%
AT&T14 0-115 296 43344 77980 31026 (71.6%) 79 (26.7%) 1854 323802 415%
AT&T21 0-115 296 43344 117347 32388 (74.7%) 70 (23.6%) 1990 616849 525%

In Table 5 we report the results obtained running GA-DW, G-GA-DW (the adaptation
of GRASP to E-TE), TA-DW and MILP-BA on the backbone networks.

The solutions obtained with G-GA-DW are of slightly better quality than those pro-
vided by GA-DW but computing times are much higher. In one case the normalized
computing time tnor reaches even the value of 20. This is due to the multi-start strategy
where the greedy is repeated 100 times for each one of the sorting policies.

TA-DW is very heavy computationally (its normalized computing time tnor reaches
the value of 15 in the worst cases) but the quality of the solutions is much better than
those found by G-GA-DW. The gap is small, in average smaller than 5%. However, a
computing time of 2 up to 8 hours is needed to solve the Ebone instances with up to 87
nodes (56 core nodes and 322 links).

MILP-BA turns out to achieve a remarkable trade-off. Computing times are much
smaller than those of TA-DW (maximum value of tnor of 6, and usually smaller than
2), while the solution quality remains the same (except for Ex40). Computing times are
generally less than half-hour, and only about half of the time is used to solve the MILP
formulations.
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Concerning the congestion level, it is worth pointing out that in general the total cost
of link utilization increases reasonably.

Finally, Table 4 contains the results obtained with MILP-BA for the two access net-
works. Also in this case a large number of the links can be switched-off (for Spr12
up to 50% of the links). The lower percentage of energy saving achievable for AT&T
networks (about half compared with that for Sprint networks) is due to the lower link
redundancy and the higher number of leafs that characterize the AT&T topology. The
largest computing times are of the order of 30 minutes. Note that, although the percent-
age increase in congestion is much larger than for backbone networks (up to 8 times),
its absolute value is still reasonable.

6 Concluding Remarks

We have investigated the relevant and challenging problem of energy-aware IP traf-
fic engineering with shortest path routing. We have proposed an efficient three-phase
MILP-based heuristic which aims at minimizing the energy consumption as well as the
total cost of link utilization. The computational results for two real network topologies
and different types of traffic matrices show that it allows to switch off a substantial
number of core nodes during low and moderate traffic periods, while guaranteeing the
same point-to-point service quality and reasonably increasing the network total cost of
link utilization.

We leave as future work the extension to account for single link failure and uncer-
tainty in the traffic matrices.
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Abstract. Recent developments have drawn focus towards the efficient calcula-
tion of flows in AC power grids, which are difficult to solve systems of nonlinear
equations. The common linearization approach leads to the well known and of-
ten used DC formulation, which has some major drawbacks. To overcome these
drawbacks we revisit an alternative linearization of the AC power flow. Work on
this model has already been done in the 1990s but was intractable at that time. In
view of recent developments in the field of integer programming, we show that
this model is computationally tractable.

1 Introduction

A power grid is a transmission network transporting electrical energy from power plants
to some substations near urban or industrial centers. To reduce the loss of energy, dif-
ferent high voltages (at least 110kV) and alternating currents (AC) are used to transport
the power. The so called AC power flow consists of two single power flows called active
and reactive flow.

The network consists of different subnetworks each with its own level of voltage,
whereby a single network contains nodes with a specific demand of active and reactive
power which are connected through lines. The nodes may represent substations which
lead to different networks of a lower voltage level or groups of customers. The lines
may represent underground power cables or overhead power lines.

In this paper, we consider the design of AC power grids, including the placement of
supply equipment (called generators). The potential topology is modelled as an undi-
rected graph N = (V,E), where the set V denotes the demand nodes and E the set of all
possible lines between the nodes. The design problem is to find the minimum cost net-
work which fulfills all demands. Given a selection of the lines, we need to calculate the
power flow in the network. In an AC network, we have an active and a reactive power
flow which periodically reverse their direction. The computation of these bidirectional
power flows involves complex numbers and nonlinear functions.

The most common way to handle the nonlinearities is to use the so-called DC model
which provides linear approximations. Although the DC modelling of the power flow
has proven to be very fast, its major drawback is that information about the reactive
flows is lost. As engineers depend on them, they have shifted their focus towards meta-
heuristics like genetic algorithms to solve power flow problems [7]. In view of recent de-
velopments in integer linear programming, we revisit a less known linearization which
approximates both the active and the reactive power flow.
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This paper gives an overview of our model and some preliminary computational
studies which show some promising results towards future work. We hope that by using
more powerful tools like the generation of valid inequalities, our model can provide an
alternative to the often used DC model.

2 The General Model

Given the potential topology N = (V,E), let the set A consist of both arcs (v,w) and
(w,v) for all {v,w} ∈ E . Additionally, we have a set G of possible generators with
different construction and operating costs cg and maximum power feed Ψg for each
g ∈ G . All these generators operate on the same voltage level U. Generators can be
installed at a subset S ⊆V to fulfill the power requirements.

For every potential line e ∈ E , let ce the operating and construction costs, ĉe a cost
factor for the active power losses, Re the line resistance, and Xe the reactance.

For every line, we compute the conductance Ge = Re/(R2
e + X2

e ) and susceptance
Be = −Xe/(R2

e + X2
e ).

Finally let Pv and Qv denote the active and reactive power demand of node v ∈V .
At each node v ∈ V , we have to calculate the voltage |Uv| · eiϑv , where i denotes the

imaginary unit. |Uv| is called the voltage magnitude and ϑv the voltage angle. Therefore,
we introduce continuous variables Uv and ϑv for each node, which are bounded by Umin

and Umax and accordingly ϑmin and ϑmax. In addition, let Pgenv and Qgenv denote the
active and reactive power feed at node v. For each e ∈ E variables xe ∈ {0,1} denote
whether or not the line is constructed. Variables yvg ∈ Z+

0 denote how many generators
of type g are installed at node v.

Let P(a) and Q(a) be functions (depending on Uv and ϑv, defined below) which
model the active and reactive flow on arc a ∈ A and f (P(e)) a function wich represents
the power losses on line e ∈ E . We consider the following nonlinear model describing
the optimal network design:

min∑
e∈E

(ĉe · f (P(e))+ ce) · xe + ∑
v∈V

∑
g∈G

cg · yvg

∑
(v,w)∈A

P((v,w)) · x{v,w} = Pv −Pgenv ∀v ∈V (1a)

∑
(v,w)∈A

Q((v,w)) · x{v,w} = Qv −Qgenv ∀v ∈V (1b)

∑
g∈G

Ψg · yvg ≥ Pgenv + Qgenv ∀v ∈ S (1c)

x ∈ X

Here the constraints (1a) and (1b) ensure that the active and reactive power demands
are fulfilled at each node. Additionally, they conserve the flow in the network. Con-
straint (1c) guarantees generators are needed at a node before it can feed their power
into the network. Further desired properties regarding the network topology can be
modelled by a set X , e.g., two-connectivity.
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If a node feeds into the network, it will have a fixed voltage magnitude U. As the
variable yvg is integer we need to introduce a binary variable zv which is set to one iff
∑g∈G yvg ≥ 1. For every possible feeding node v ∈ S this leads to the constraints

Uv +(Umin −U) · zv ≥Umin, zv − ∑
g∈G

yvg ≤ 0,

Uv +(Umax −U) · zv ≤Umax, −M · zv + ∑
g∈G

yvg ≤ 0, (1d)

with M sufficiently large. The constraints on the left side guarantee that a node with at
least one generator has a voltage magnitude of U. The other constraints force zv to be
one iff ∑g∈G yvg ≥ 1.

The nonlinear functions for the AC power flow on arc (k, j) ∈ A are [1]:

P((k, j)) = U2
k Gk j −UkUjGk j cos(ϑk −ϑ j)−UkUjBk j sin(ϑk −ϑ j), (2a)

Q((k, j)) = −U2
k Bk j +UkUjBk j cos(ϑk −ϑ j)−UkUjGk j sin(ϑk −ϑ j). (2b)

The difference between the two active flows on a line is called the active power loss.
For a line e = {k, j} with corresponding arcs a+ = (k, j) and a− = ( j,k) it is:

f (P(e)) = P(a+)+ P(a−) = Ge ·
(
U2

k +U2
j −2UkUj cos(ϑk −ϑ j)

)
, (3)

Note that these nonlinear functions are multiplied with a binary variable. Although
recent developments in the field of mixed integer nonlinear programming (MINLP)
have yield some promising results, the resulting MINLP model is very difficult to han-
dle, cf. [2].

3 Linear Approximations of the Power Flow Functions

As one main difficulty lies in the choice of f , P and Q, we now discuss two linear
choices for these functions.

3.1 The DC Power Flow

The most common linearization of (2a) and (2b) is the so called DC power flow model.
To linearize the model, we assume cos(ϑk−ϑ j)≈ 1, sin(ϑk−ϑ j)≈ϑk−ϑ j, Rk j �Xk j,
and |Uk| = |Uj| = U0 with U0 a fitting constant. From Rk j � Xk j it follows that Gk j ≈ 0
and we get the DC power flow equations

P((k, j)) = −U2
0 Bk j · (ϑk −ϑ j), Q((k, j)) = 0.

Notice, for U0 = 1 this reduces to the well-known P((k, j)) = (ϑk −ϑ j)/Xk j.
The above assumptions guarantee that we get a symmetric flow, meaning that Pk j =

−Pjk holds. Therefore, we have no active power losses ( f = 0). This linearization is
used in a variety of different integer linear programs concerning power grid problems,
cf. [3, 4, 6].
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One major advantage of this linear model is, its interpretation as DC power flows
and not just only as an approximation of the AC power flows. The drawback, however,
is the missing insight on the reactive flows Q. We like to stress the fact that the above
assumptions can only be made, if the underlying network fulfills some specific proper-
ties. The checking whether these conditions hold is, however, often forgotten. We refer
to [9] for a discussion of the importance of these conditions.

3.2 Approximation of the AC Power Flow

The following approach was first introduced by Moser [8] and improved by Braun [5],
but to our knowledge no further work has been conducted since then. For each arc
a = (k, j) ∈ A, we introduce new variables ΔUa := Uk −Uj and Δϑa := ϑk −ϑ j.

Like in the DC linearisation we assume cos(Δϑk j) ≈ 1, sin(Δϑk j) ≈ Δϑk j , and
|Uk|= |Uj|= U0, but without setting ΔUk j = 0 and Gk j = 0. This leads to the following
linearisation of the AC power flow equations:

P((k, j)) = |Uk|2Gk j −|Uk||Uj|Gk j cos(Δϑk j)−|Uk||Uj|Bk j sin(Δϑk j)
≈ |Uk|Gk j(|Uk|− |Uj|)−|Uk||Uj|Bk jΔϑk j

= U0Gk jΔUk j −U2
0 Bk jΔϑk j (4a)

Q((k, j)) = −|Uk|2Bk j + |Uk||Uj|Bk j cos(Δϑk j)−|Uk||Uj|Gk j sin(Δϑk j)
≈ |Uk|Bk j(−|Uk|+ |Uj|)−|Uk||Uj|Gk jΔϑk j

= −U0Bk jΔUk j −U2
0 Gk jΔϑk j (4b)

This approximation leads to a symmetric power flow as well (and therefore f = 0), but
it allows the computation of a reactive flow.

4 Linearization of the Network Design Model

In this section, we construct a mixed integer linear program to determine the optimal
network design with respect to the AC power flow. Even by using the linear power flow
equations (4a) and (4b), we have to overcome the fact that the constraints (1a) and (1b)
are nonlinear. Therefore, we substitute these constraints by

∑
(v,w)∈A

P((v,w)) = Pv −Pgenv ∀v ∈V (5a)

∑
(v,w)∈A

Q((v,w)) = Qv −Qgenv ∀v ∈V. (5b)

To guarantee that P((v,w))= Q((v,w))= 0 if x{v,w} = 0, we forceΔU(v,w) =Δϑ(v,w) =
0 iff x{v,w} = 0. For this, we introduce for each a = (v,w) complementary variables ΔŨa

and Δϑ̃a satisfying

ΔŨa = Uv −Uw−ΔUa and Δϑ̃a = ϑv −ϑw −Δϑa. (5c)
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The requirement now holds iff for each a = (v,w) and e = {v,w} the constraints

−ΔUmax · xe ≤ ΔUa ≤ ΔUmax · xe,

−Δϑmax · xe ≤ Δϑa ≤ Δϑmax · xe,

−ΔUmax · (1− xe) ≤ ΔŨa ≤ ΔUmax · (1− xe),

−Δϑmax · (1− xe) ≤ Δϑ̃a ≤ Δϑmax · (1− xe), (5d)

are satisfied, with appropriate values for ΔUmax and Δϑmax, computed from the given
bounds for U and ϑ .

5 Computational Experience and Further Remarks

Note that in the above model there are no explicit bounds on the power flows given.
However, the bounds on the voltage drop imply bounds on the maximal flow per line.
To reduce the running time, we focused our studies on a medium sized 110 kV network
with 28 nodes and 67 possible lines. We used the above model with both approximations
for the power flow equations.

The DC model has proven to be very fast, as the problem was solved within seconds.
As the DC model operates under the assumption of a constant voltage magnitude, the
bounds on the voltage magnitudes are meaningless. Therefore, the optimal solution of
the DC model was the minimum cost circuit of the network.

The overall performance of the linearized AC model was acceptable (but signifi-
cantly slower than the DC model) and the optimal designs produced have the expected
shape, meaning a couple of intersected circuits.

For both solutions, we calculated nonlinear power flows for the computed topologies
using Newton’s method. We observed that the calculated AC power flow approximation
yields a good starting solution for the method. The error margin of the approximation is
small, e.g., less than 6% for the voltage magnitude. Furthermore, the nonlinear solution
fulfills the bounds of the voltage drop. In contrast, the nonlinear power flow solution of
the topology given by the DC model does not satisfy these bounds, and therefore the
topology is not valid for the problem setting.

In the future we like to derive more information from the very fast DC model and
use it for the AC approximation. In addition, much work still has to be done to en-
hance the performance of the AC model. We hope that by deriving valid inequalities the
performance of these problems can be signficantly improved.

Our next focus lies on the calculation of an approximation of the active power loss.
Although our linearization forces the power loss to be zero, we can use a different ap-
proach to successfully approximate the power loss. This model is way more complex
than the above, but surprisingly it seems to outperform it significantly regarding com-
putation time.
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Abstract. In this paper, we present a mathematical formulation for saving en-
ergy in fixed broadband wireless networks by selectively turning off idle commu-
nication devices in low-demand scenarios. This problem relies on a fixed-charge
capacitated network design (FCCND), which is very hard to optimize. We then
propose heuristic algorithms to produce feasible solutions in a short time.

1 Introduction

Fixed broadband wireless communications is a sector of the communication industry
that holds great promise for delivering private high-speed data connections [1]. Such
network comprises remote locations, each of them served by a radio base station (RBS),
connected by means of high-capacity microwave radio links. A bidirectional link con-
necting two RBSs requires a dedicated pair of outdoor units (ODUs), each one directly
coupled to a high-directional antenna.

Commonly, in this context, the network is built in a robust fashion to guarantee fault
protection and to support the extremely bursty traffic behaviors. As a drawback, since
ODUs consume substantial power whenever the link is up, it brings forth important
energy waste to provide extra resources which could be used only in critical situations.
Therefore, the traffic fluctuation over the time offers an opportunity to energy savings
by handling traffic efficiently and turning off devices used to keep microwave radio
links whose capacities are underused.

In this work, we consider the problem of deciding both the network’s configuration
and flows that minimize the total energy expenditure. Particularly, by configuration, we
mean the choice of which communication devices we need to keep on to successfully
meet the traffic requirements. This problem relies on a fixed-charge capacitated network
design (FCCND), which is very hard to optimize [6]. Among others, [4] and [7] tackled
similar problems on different networks. We present an exact formulation for this prob-
lem and propose heuristics that may be employed to produce good feasible solutions in
a short time.

2 Problem Modeling and Linear Formulation

The network topology is modeled by a digraph H = (V,E) where every node v ∈ V
represents a base station and every arc vw ∈ E represents a radio link. Every link has a
� This work has been partially supported by project APRF RAISOM (PACA & FEDER), ANR

DIMAGREEN, and Villum Kann Rasmussen foundation.
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capacity cvw and can be either active (while consuming energy) or not. Traffic demands
are defined by |D| pairs (sd ,td), with sd , td ∈ V and by an average volume per demand
hd . We assume that H is symmetric since in the type of studied networks, radio links are
usually symmetric. This implies that for every node v ∈ V , the entering neighborhood
is the same as the leaving neighborhood, i.e. δ+(v) = δ−(v) = δ (v). Also the cost of
an active link is constant and equal to CL (as shown in [5]). Another assumption that
we consider in this work, and which is not always true, is the possibility of routing the
traffic of the same demand d through different paths from sd to td (multi-routing).

The problem can be formulated as a mixed integer program (MIP). We define two
types of variables: to represent the state of link vw we consider a binary decision vari-
able, being equal to 1 if the link is active and 0 otherwise. Since symmetric links must
be in the same state, and in order to reduce the total number of binary variables, we
use a single variable uvw with v < w (assuming some ordering of the nodes) for the pair
of symmetric links vw and wv. We also employ a variable xd

vw to indicate the volume
fraction of the demand d which is routed through the link vw. In the MIP formulation,
Eq. (1) is the objective function, Eq. (2) are the capacity constraints on the links, and
Eq. (3) are the flow conservation constraints.

min ∑
vw∈E

CL ·uvw (1)

s.t.
D

∑
d=1

xd
vw ≤ cvwuvw ∀vw ∈ E (2)

∑
w∈δ (v)

xd
wv − ∑

w∈δ (v)
xd

vw =

⎧⎪⎨⎪⎩
−hd, if v = sd ,

hd, if v = td ,

0, otherwise

∀v ∈V,∀d = 1, . . . , |D| (3)

xd
vw ∈ [0,hd ] ∀vw ∈ E,∀d = 1, . . . , |D| (4)

uvw ∈ {0,1} ∀vw ∈ E (5)

3 Hybrid Algorithm

The model cited in the previous section is a mixed integer linear program. Even though
it can be handled by a solver like “CPLEX”, this may take a very long time on relatively
large networks (containing more than a hundred nodes). The number of variables and
constraints can be huge and not even fit in memory. For such networks, we built a hybrid
solution by combining a heuristic based on simulated annealing and a linear program
with real variables (Multi Commodity Flow - MCF). The former would be the master
and on every iteration it chooses the links to turn on/off. The latter, which is the slave,
will only find out whether there is a feasible solution with this configuration or not (see
Figure 1). Actually the linear program will have the same formulation except that the
link state variables uvw will now be constant. Therefore there will be no more integer
variables in the program, which makes it faster to solve.

At each iteration of the simulated annealing process, a new network configuration is
generated from the current solution by switching the state (Up Down or Down Up)
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Fig. 1. The framework of the hybrid algorithm

of a couple of symmetric radio links. This couple is randomly chosen. Then, we apply
the filter to check if this new configuration leads to a feasible solution. In the affirma-
tive case, we attribute the total power utilization as energy score value of this solution.
Otherwise, we discard this infeasible solution. We then follow the original description
of the simulated annealing process [9] , where the algorithm replaces the current solu-
tion by the new solution with a probability that depends on the difference between the
corresponding energy score values and a global parameter T (called the temperature).

4 Sparse Cuts-Based Algorithm

As an alternative approach, we propose a heuristic to construct a good configuration.
It is also hybrid since the LP solver is still responsible for testing the feasibility of a
configuration. This method is based on the sparse cuts of the graph. Roughly speaking,
a cut is considered sparse if it has a high average load per link. Since this notion is
mostly studied in the context of undirected graphs, we will consider for this heuristic
the underlying undirected graph of our initial symmetric digraph.

Let us define the sparsity more formally. Let G = (V,E) be the undirected graph. Let
D be the set of demands (pairs of vertices). Let c be the capacity function that given a
subset of edges returns the sum of capacities of all edges in this subset. Let also h be the
function that for a given subset of demands returns the sum of volumes of demands in
this subset. For any cut separating S (a subset of V ) from S̄, let α(S) denote the sparsity
of this cut, with: α(S) = c(E(S, S̄))/h((S ∗ S̄)∩D). If we consider a uniform version
in which all edges have capacity 1 and to every pair of vertices corresponds a demand
with the same volume 1, then the sparsity is α(S) = |E(S, S̄)|/|S| ∗ |S̄|.



Energy Saving in Fixed Wireless Broadband Networks 487

Algorithm 1. Maximize the number of shutdown links
Require: G0 = (V,E) is the initial graph
Require: c is a capacity function on the edges
Require: cutsList is the list of precomputed sparse cuts
Require: D is the set of demands
Ensure: G′ = (V,E ′) with E ′ ⊆ E is a subgraph ensuring the routing of all demands.

nonPotentialLinks ⇐ /0
E ′ ⇐ E
while nonPotentialLinks �= E do

SORT(cutsList) in descending order of average load per link in up state
potentialList ⇐ /0
for i from 1 to SIZE(cutsList) do

potentialList ⇐ potentialList|LINKS(cutsList[i])
potentialList ⇐ potentialList|(E − (potentialList ∪nonPotentialLinks))
for i from SIZE(potentialList) downto 1 do {in LIFO order}

if ROUTING LP((V,E ′ − potentialList[i]),c,D) is feasible then
E ′ ⇐ E ′ − potentialList[i]
nonPotentialLinks ⇐ nonPotentialLinks∪ potentialList[i]
break

else
nonPotentialLinks ⇐ nonPotentialLinks∪ potentialList[i]

As said before, our heuristic is based on sparse cuts; those which have a small spar-
sity. Finding the minimum-sparsity cut, also called the sparsest cut, is a well-known
combinatorial optimization problem in the literature. Although it is NP-complete, many
work targeting improved approximations have been carried out [11,10,3,8], and recently
an approximation that relies on a semi definite program (SDP) relaxation to achieve a√

logn approximation factor has been proposed [2]. In order to obtain many different
sparse cuts, we run the approximation many times while adding each time a small ran-
domness in the objective function of the SDP.

The motivation behind using sparse cuts is the fact that the sparser the cut is, the
more loaded its edges tend to be, and the less efficient deleting one of them would be. So
every link will have an estimated load equal to the average load per link of the sparsest
cut covering this edge. The heuristic will try to remove the links in ascending order
of estimated load. At each iteration, the feasibility of routings will be checked with a
linear program and, after removing a link, the sparsity of the cuts will be updated. An
efficient way to implement this heuristic is described in Algorithm 1 which performs
Ω(m) calls to the LP solver (m being the number of edges).

5 Simulation Results

We will follow the same scenario for the different approaches previously explained: the
exact formulation using the linear program, the hybrid algorithm, and the sparse cuts
based algorithm. The simulations have all been executed on SNDlib topologies which
represent backbones (France with 45 links and Norway with 51 links). The main reason
for this choice is that we were not able to find instances of topologies for fixed wireless
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(a) France H-SA vs E-NLF (b) Norway H-SA vs E-NLF

(c) France H-SC vs E-NLF (d) Norway H-SC vs E-NLF

Fig. 2. The saved power as a function of the execution time

networks in the litterature. Link capacities and energy consumption were set for a typi-
cal fixed wireless network scenario. For the traffic matrix, we consider a uniform traffic
matrix. The demand volume for every topology will take four values. Supposing that P
is the maximum weight that we can achieve for that topology in an all-to-all scheme,
these values would be { 100%P,75%P,50%P,25%P}.

All the simulations have been executed on the same kind of machine equipped with
dual core processors operating at 3GHz and 2GB of RAM. As MIP solver, we used
CPLEX 12.1 to which MIP emphasis was set to ”feasibility over optimality”. In order to
solve SDPs, we use the CSDP software. For notation, we use E-NLF for the exact (node-
link) formulation. The two heuristics are labeled H-SA for the simulated-annealing-
based heuristic and H-SC for the sparse cuts based heuristic.

Since our objective is to show that some heuristics can yield good solutions when
the decision making is constrained by a limited execution time, we are not interested in
the best solutions found by those heuristics. Hence, in Figure 2 we have reported the
behavior of the algorithms before the Exact algorithm finds the optimal solution or near
optimal (for the topology of Norway, in some cases, there was a slight improvement of
the objective function after a thousand of seconds).

6 Conclusion

We first gave a mathematical formulation to the problem of minimizing energy con-
sumption in fixed broadband wireless networks. Then we compared the behavior of
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two heuristic algorithms with that of an LP solver. We found out that heuristics would
give a better solution if the execution time is very limited, especially when the size of
the network increases. Thanks to the sparse cuts based algorithm we were able to ver-
ify that these cuts are an important argument to consider while designing heuristics for
the studied problem. Therefore, one of our perspectives is to find an efficient way of
choosing k cuts out of the sparsest in a given graph.
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Abstract. We consider the incremental connected facility location prob-
lem, in which we are given a set of potential facilities, a set of intercon-
nection nodes, a set of customers with demands, and a planning horizon.
For each time period, we have to select a set of facilities to open, a set of
customers to be served, the assignment of these customers to the open fa-
cilities, and a network that connects the open facilities. Once a customer
is served, it must also be served in subsequent periods. Furthermore, in
each time period the total demand of all customers served must be at
least equal to a given minimum coverage requirement for that period.
The objective is to maximize the net present value of the network, which
is given by the discounted revenues of serving the customers and by the
discounted investments and maintenance costs for the facilities and the
network. We study different MIP models for this problem, discuss some
valid inequalities to strengthen these formulations, and present a branch
and cut algorithm for finding its solution. Finally, we report (prelimi-
nary) computational results of our implementation of this algorithm.

1 Introduction

Practical Problem. The problem under consideration is an optimal design of
a network topology in the context of a multi-period planning of local access net-
works. In this setting, a telecommunication company wants to increase the speed
of broadband connections by combining fiber optic technology with existing cop-
per connections, i.e., by means of the Fiber-to-the-Curb (FTTC) technology.
Street segments along which fiber optic cables can be installed, determine the
core network. Potential optical and existing copper cables intersect at locations
where potential multiplexor devices need to be installed. Between a multiplexor
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and an end-customer, the existing copper connection is used. The existing cop-
per paths are pre-processed building an assignment network whose edges are
assignment links between potential multiplexor locations and end-customers. To
build an FTTC network, one has to decide on which locations to install multi-
plexor devices so that each end-customer is assigned to a multiplexor, and each
multiplexor is connected to the central office by a fiber optic path.

Due to the huge investment needed to build an FTTC network, the deploy-
ment is done in several stages. The company takes the strategic decision of
fixing a minimal percentage of customer demands that should be served at each
of the stages. Thereby, demand of a customer is defined as the number of end-
subscribers (e.g., offices and/or households) behind the customer’s address. The
coverage of customer demands need to be increased over time.

We define the incremental connected facility location problem, denoted as in-
cremental ConFL, as follows: We are given three disjoint sets of nodes: a set
of facilities F , a set of customers R, and a set of Steiner nodes M . We denote
S = F∪M and V = S∪R. The potential connections among the nodes in S build
the core network and are given as the undirected edge set ES . The correspond-
ing directed arc set is AS = {(i, j), (j, i) | ij ∈ ES}. The possible connections
between the facilities F and the customers R are given by the edges ER ⊆ F ×R,
which define the directed arc set AR = {(i, j) ∈ F × R | ij ∈ ER}. Note that it
is sufficient to consider only arcs directed from facilities to customers here. We
let A = AS ∪ AR and E = ES ∪ ER. The considered planning horizon is given
as a discrete set of (not necessarily equally long) time periods T = {1, . . . , T },
T > 1. In addition, we are given fixed costs for edges c : E → R+ and facilities
g : F → R+ for opening the edge or facility for the first time, and maintenance
costs for edges m : E → R+ and facilities mf : F → R+ that arise for each
period an edge or a facility is actually used. The pre-period revenue for serving
the customers is given by p : R → R+. Finally, we are given customer demands
d : R → Z+ and a minimum coverage requirement Dt for each time period t ∈ T .

We seek for a schedule that, for each time period, describes which subset of
facilities to use, which set of customers to serve by these facilities, how to assign
the served customers to the open facilities, and how to build the core network in
order to connect the open facilities. In each time step, the total demand of the
served customers must satisfy the minimum coverage requirement and the chosen
edges in ES must form a network connecting the open facilities. Furthermore, a
customer must be served in all periods after it has been served for the first time.
The goal is to maximize the net present value of the network.

Related Multi-Period Optimization Problems: Facility location problem
over time is a well-studied problem. A recent survey is given in [13]. In a recent
work, [2] consider a multi-period incremental facility location problem, where the
coverage of customer demand needs to be increased over time. The authors com-
bine subgradient optimization and a Lagrangian approach and generate feasible
solutions with a Lagrangian based heuristic.

There has been intense research on multi-period network design problems since
publication of the seminal articles by [6], [7] and [17]. Optimization methods have
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been used for designing networks for telecommunication, transportation [16],
distribution of gas or water [14] and many others.

Most of the literature on applications in the telecommunications sector con-
sider capacitated problems. Recent contributions are, e.g., [5,11]. Much less lit-
erature is available on the Connected Facility Location problem.

Single-Period Connected Facility Location: Early work on ConFL mainly
includes approximation algorithms. The problem can be approximated within
a constant ratio and the currently best-known approximation ratio is provided
by [8]. [12] describes a hybrid heuristic combining Variable Neighborhood Search
with a reactive tabu search method. The author compares it with an exact branch
and cut approach. In [15], a Greedy Randomized Adaptive Search Procedure
(GRASP) for the unrooted ConFL problem is presented. The authors also pro-
vide a transformation that enables solving ConFL as the Steiner arborescence
problem. [3] develop a dual-based local search (DLS) heuristic for a generaliza-
tion of the ConFL problem. The presented DLS heuristic computes lower and
upper bound using a dual-ascent and then improves the solution with a local
search procedure. [9] study MIP formulations for ConFL, both theoretically and
computationally. The authors provide a complete hierarchy of ten MIP formu-
lations with respect to the quality of their LP bounds.

The remainder of this paper is organized as follows. In Section 2 we present in-
teger programming formulations for the incremental ConFL problem and discuss
a class of valid inequalities that may be used to strengthen these formulations.
Section 3 provides a description of the separation subroutines that we imple-
mented in order to solve these models. In Section 4 we describe the benchmark
data sets, details of our implementation of the branch and cut algorithm, and
(preliminary) results of our computational experiments.

2 MIP Modeling

In this section we present two alternative integer programming formulations for
the incremental connected facility location problem.

We assume that one of the facilities, denoted as root r is open and used in all
time periods. This node corresponds to the central office with an uplink to the
backbone network of the area corresponding to the respective instance.

In order to model the connectivity constraints among the open facilities, it is
sufficient to ensure that all other open facilities in F are connected to the root
r [9]. For notational simplicity, we let F denote the set of all facilities except
r throughout the remainder of this paper. Furthermore, we denote δ−(W ) :=
{(i, j) ∈ A | j ∈ W, i �∈ W}∀W ⊂ V and F (j) := {i ∈ F | (i, j) ∈ AR}∀j ∈ R.

In order to describe which customers and facilities are served and used at
each time period, we introduce binary variables yt

j ∈ {0, 1}∀j ∈ R and t ∈ T and
zt

i ∈ {0, 1}∀i ∈ F and for all t ∈ T . These variables are interpreted as yt
j = 1 if

customer j is served in time period t, and 0 otherwise, and zt
i = 1 if facility i is

used in time period t, and 0 otherwise. The assignment of the served customers
to the open facilities and the network connecting the open facilities to the root
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node are modeled together by the arc variables xt
ij ∈ {0, 1} for all directed arcs

(i, j) ∈ A and for all time periods t ∈ T , which are interpreted as xt
ij = 1 if arc

(i, j) is used in time period t, and 0 otherwise. To describe the initial opening
of facilities and edges, we also introduce the facility variables z̃t

i ∈ {0, 1}∀i ∈ F
and all t ∈ T and the aggregated edge variables x̃t

e ∈ {0, 1}∀e ∈ E∀t ∈ T , which
are interpreted as z̃t

i = 1 if facility i is opened for the first time in time period
t,and = otherwise and x̃t

e = 1 if edge e is opened for the first time in time period
t, and 0 otherwise. Observe that variables x̃t

e are associated to edges instead to
arcs of the core network for the following reason: In the general case, a facility
i ∈ F may be opened in period t ∈ T , and closed in period t + k ∈ T (k > 0).
Consequently, an arc that was oriented like (i, j) in period t, may be used in the
opposite direction in period t+k. Since the edge opening costs need to be payed
only once, we have to leave the direction of set-up variables x̃ unspecified.

With these variables and notations, the objective function of the incremental
ConFL problem can be formulated as follows:

f(x, y, z) =
T∑

t=1

(1 + α)−t

[∑
j∈R

pjy
t
j −

∑
e∈E

cex̃
t
e −

∑
(i,j)∈A

mijx
t
ij −

∑
i∈F

giz̃
t
i −

∑
i∈F

miz
t
i

]

For each period t ∈ T , the objective function comprises the collected profit
for customers served in period t decreased by the investment (maintenance)
costs that need to be paid for each edge and facility that are opened (used) in
this period. The following mixed integer programming formulation models the
incremental ConFL:

(CUTF ) : max f(x, y, z)

∑
i∈F (j)

xt
ij = yt

j ∀j ∈ R, t ∈ T (1)

xt
ij ≤ zt

i , ∀(i, j) ∈ AR, t ∈ T (2)

xt
ij + xt

ji ≤
t∑

k=1

x̃k
e ∀(i, j) = e ∈ E, t ∈ T (3)

zt
i ≤

t∑
k=1

z̃k
i ∀i ∈ F, t ∈ T (4)∑

j∈R

djy
t
j ≥ Dt ∀t ∈ T (5)

yt
j ≥ yt−1

j ∀j ∈ R, t ∈ T (6)∑
(u,v)∈δ−(W )

xt
uv ≥ zt

j ∀W ⊆ S\{r}, j ∈ W ∩ F �= ∅, t ∈ T (7)

xt
kl, y

t
j ,z

t
i ∈ {0, 1} ∀(k, l) ∈ A, j ∈ R, i ∈ F, t ∈ T (8)

x̃t
e,z̃

t
i ∈ {0, 1} ∀e ∈ E, i ∈ F, t ∈ T (9)
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Constraints (1) model the fact that a customer is served only if there is a
facility connected to it. Constraints (2) enforce that a facility is open if it is
used to serve a customer. Inequalities (3) and (4) ensure that we open edges
and facilities as soon as they are used. Constraint set (5) expresses the minimum
demand coverage requirement for each time period. Inequalities (6) enforce the
continuance of service for each customer (i.e., if customer j was served in period
t ∈ T , it also need to remain served in all consecutive periods). Finally, the
exponentially large constraint set (7) ensures that, in each time period, all open
facilities are connected to the root node. The inequalities in constraint set (7)
enforce that for every subset W ⊆ S that includes a facility j and does not
include the root node r, at least one of the arcs in the set of all incoming arcs
in W must be used if facility j is open. These inequalities correspond to the
directed cutset inequalities in the Steiner tree formulation [9,12].

Instead of enforcing at least one arc in each directed cut that separates a
chosen facility from the root node, as done by constraints (7), we may model
the connectivity constraints by enforcing at least one arc in every directed cut
that separates a chosen customer from the root node. This leads to the following
alternative formulation for the incremental ConFL problem:

(CUTR) : max f(x, y, z)
(x, y, z) satisfies (1) – (6)∑
(u,v)∈δ−(W )

xt
uv ≥ yt

j ∀W ⊆ V \{r}, j ∈ W ∩ R, t ∈ T (10)

2.1 Valid Inequalities

In this section we provide two new families of valid inequalities that can
strengthen the previous two models. The third group of constraints presented
here are several degree-inequalities that were very useful throughout our com-
putations.

Cover Inequalities: The minimum coverage constraints (5) imply a set of cover
inequalities that can be defined for each single period t ∈ T . We call a subset
of facilities It ⊂ F a cover if its complement, Īt = F \ It, cannot serve enough
customers to satisfy the minimal demand requirements for the time period t.
We denote by COV t ⊆ 2F the family of all covers for period t. We call an
inclusion-wise minimal such facility set It a minimal cover. In other words, It

is a minimal cover if Īt cannot satisfy the minimum demand requirement of
period t even if all the facilities in Īt are open, but for any i ∈ It the facility
set J = Īt ∪ {i} would allow to serve enough customers to meet the minimum
coverage constraint. In such a case, obviously at least one facility from It needs
to be opened. Consequently, the following set of cover inequalities are valid for
all solutions of (CUTF ) and (CUTR):∑

i∈It

zt
i ≥ 1 ∀t ∈ T, It ∈ COV t (11)
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It is easy to verify that the cover inequality for any non-minimal cover It is
dominated by the cover inequality for any minimal cover It

min ⊆ It. Furthermore,
any non-minimal cover It can be easily turned into a minimal cover by iteratively
removing all those facilities, whose removal still results in a cover.

It is also not difficult to construct examples where the addition of cover in-
equalities (11) strengthens the LP relaxations of (CUTF ) and (CUTR). These
inequalities are similar to the cover inequalities studied for knapsack constraints.

The separation of cover inequalities is a modification of the knapsack prob-
lem, and hence it is an NP-hard problem. Our separation algorithm for cover
inequalities is described in Section 3.2.

Cut-Set-Cover Inequalities: The set of cover inequalities (11) also implies
the following exponentially large family of cut-set inequalities, that we will refer
to as cut-set-cover inequalities:∑

uv∈δ−(W )

xt
uv ≥ 1 ∀t ∈ T, It ∈ COV t, W ⊆ S \ {r}, It ⊆ W (12)

These inequalities state that, in each period t ∈ T , we have to establish a path
between the root and at least one of the facilities from the set It. Once the
corresponding covers It become known, the separation of these new inequalities
can be done in polynomial time by means of a maximum flow algorithm, see
Section 3.2.

Again, it is not difficult to show that the addition of the cut-set-cover inequal-
ities (12) strengthens the LP relaxations of (CUTF ) and (CUTR).

In-Arc Inequalities: The requirement that, in each time period, the root node
is connected to any open facility, implies the following in-arc inequalities:

zt
i ≤

∑
(j,i)∈δ−(i)

xt
ji ∀i ∈ F, t ∈ T (13)

xt
ik ≤

∑
(j,i)∈δ−(i):j �=k

xt
ji ∀(i, k) ∈ AS , i �= r, t ∈ T (14)

Inequalities (13) imply that there is at least one arc entering any chosen facility.
Inequalities (13) ensure that there is at least one arc entering any facility or
Steiner node if there is an arc leaving that node.

Note that these inequalities are implied by the cut inequalities (7) or (10),
but not vice versa. However, there is only a polynomial number of inequalities
of type (13) and (14), which makes these inequalities very useful in practical
computations [9,10].

Furthermore, we add the inequalities∑
(j,i)∈δ−(i)

xt
ji ≤ 1 ∀i �= r, t ∈ T (15)

to the LP relaxations of (CUTF ) and (CUTR). The inequalities ensure that the
indegree of every node except the root node is at most 1. These inequalities
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may cut off feasible solutions but as there are no capacity constraints associated
with the facilities and edges, there always exists an optimal solution of incre-
mental ConFL that satisfies these inequalities. Adding these inequalities to the
formulations substantially reduced the solution times in our experiments.

3 Separation Algorithms

In this section we explain separation algorithms for the cover inequalities and
the three groups of cut-set inequalities described above.

3.1 Separation of Cut-Set Inequalities

We now present the separation routine to generate cut inequalities of type (7).
Let x̂t and ẑt by the values of the arc variables and of the facility variables of the
current optimal LP solution. In order to find a violated inequality of type (7),
we compute for each time period t ∈ T and each facility node j ∈ F a minimum
r-j-cut in the digraph G(S, AS) with arc capacities x̂t, solving the correspond-
ing maximum flow problem. Let Γ (r, j) be the set of arcs in the minimum cut
obtained from this maximum flow computation. If the corresponding maximum
flow value is less than ẑt

i , the corresponding cut inequality∑
(u,v)∈Γ (r,j)

xt
uv ≥ zt

j (16)

is violated and we add this inequality to the current formulation.
The separation of the customer based cutset inequalities (10) is carried out

analogously. We now consider the entire digraph G(V, A) with capacities x̂t given
by the LP solution’s arc variable values and solve the maximum flow problem
with the root node r as the source and the customer node j as the sink for
each customer j ∈ R and each time period. Again, let Γ (r, j) be the arcs of the
corresponding minimum cut. If the maximum flow value is less than yt

i , we add
the violated cut ∑

(u,v)∈Γ (r,j)

xt
uv ≥ yt

i . (17)

3.2 Separation of Cover and Cut-Set-Cover Inequalities

Let t ∈ T and let ẑt be the values of the facility variables in the current LP
solution. In order to find a cover It for which the corresponding cover inequality
(11) is violated, we introduce variables αi ∈ {0, 1} for all i ∈ F indicating which
facilities are contained in It and βj ∈ {0, 1} for all j ∈ R indicating which
customers can be served by any of the facilities not in It. Clearly, a cover It that
maximizes the violation of inequality (11) corresponds to an optimal solution of
the following integer program:
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min
∑
i∈F

ẑt
iαi (18)∑

j∈R

djβj ≤ Dt − ε (19)

βj ≥ 1 − αi ∀(i, j) ∈ AR (20)
αi, βj ∈ {0, 1} ∀i ∈ F, j ∈ R (21)

Inequalities (20) guarantee that all clients that have at least one neighboring
facility not in It are served, while constraint (19) ensures that the total demand
of all served clients is strictly less than the demand required to meet the coverage
constraint. Together, these constraints ensure that, for any integer solution of
(18) - (21), the set of facilities i with αi = 1 forms a cover. Note that the
objective value of a solution of (18) - (21) is equal to the left hand side of the
corresponding cover inequality for the current LP solution. Finding a violated
cover inequality thus is equivalent to finding a time period t ∈ T and a solution
of (18) - (21) with objective value strictly less than 1. In our implementation,
we solve this integer program for all t ∈ T .

To separate the cut-set-cover inequalities for a given cover It, we create an
artificial sink node l and connect the nodes in It to l. We then compute a
maximum r-l flow in the graph G(S ∪ {l}, AS ∪ It × {l}) with capacities x̂t for
the arcs in AS and capacity 1 for the artificial arcs in It × {l}. If the maximum
flow value is less than 1, we add the violated cut-set-cover inequality∑

(u,v)∈Γ (r,l)

xt
uv ≥ 1 (22)

where Γ (r, l) is the arc set of a corresponding minimum cut.

4 Experiments

Benchmark Instances: In [9], a set of instances for connected facility location
was generated by combining a set of benchmark instances for the Uncapaci-
tated Facility location (UFL) problem from the UflLib [1] with instances of the
Steiner tree problem (STP) from the OR-library [4]. The ConFL input graphs
are generated in the following way: first f nodes of the STP instance are se-
lected as potential facility locations (where f denotes the number of facilities
in the corresponding UFL instance), and the node with index 1 is selected as
the root. The number of facilities, the number of customers, opening costs and
assignment costs are provided in UFL files. STP files provide edge-costs and
additional Steiner nodes.

We consider a set of 32 instances obtained by combining four UFL instances
mp1,mp2 and mq1,mq2 (of the size 200 × 200 and 300 × 300, respectively) with
eight STP instances {c,d}n, for n ∈ {5, 10, 15, 20}. These instances define the
core networks with between 500 and 1000 nodes and with up to 25,000 edges.
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We extend these instances to include demands and time periods. We generate
demands uniformly between 20 and 40 for each customer and we consider a time
horizon T = 5. In the test instances generated in [9], the facility set F and
customers R induce a complete bipartite graph. We desire a more sparse setting
for our demand satisfaction and the cover set inequalities. Therefore, we only
considered the connections of the first 20 closest facilities for each customer.
Such obtained instances contain up to 1300 nodes and 45,000 edges. Finally, the
minimum coverage required for time period t is defined as

Dt =

∑
j∈R dj

1.25(T − t)
for t ∈ {0, 1, 2, 3, 4} and T = 5.

The experiments were performed on an Intel Core2 Quad 2.66 Ghz systems
with 2GB RAM. Each run was carried out on a single processor.

4.1 Branch and Cut Implementation

To test the effectiveness of the presented formulations and inequalities, we im-
plemented a branch and cut algorithm using CPLEX 12.2 and Python API, a
commercial integer programming solver with a branch and cut framework.

The integer linear programs initially contain all variables and the constraints
(1) – (6). The cut inequalities (7) and (10), the cover inequalities (11), and the
cut-set-cover inequalities (12) are applied in a standard cutting plane approach,
iteratively adding those inequalities that are violated by the current fractional
solution.

We add all indegree constraints (15) to the initial LP formulation. We generate
a cut pool with all the in-arc inequalities (13) and (14), which are added at the
root node if they are violated. We then call the maximum flow separation routine
that generates the inequalities (7). This separation consists of randomly selecting
50 terminals at every time period and generating the violated cuts. We restrict
the number of calls to the separation routine at every node by 10, to enable
branching and avoid multiple calls to the separation routines. In addition to the
above, the separation routine is called at node depth of multiples of 10 and at
every occasion an incumbent is rejected. The intuition behind this scheme is
that it would provide us with a balance between the time spent in generating
the cuts and branching, as branching helps us reducing the search space (due to
the priority strategies described below). The enhanced cuts and customer cuts
are combined in the same separation routine. Each test run was limited to 2000
CPU seconds and the optimality gap at this point of time is reported in the
results.

Branching: The assignment variables xt
ij , when branched (set to 0 or 1), does

not affect the search space as much as the facility variables zt
i . So we give them

the highest priority in the branching. This was also observed in [12], but un-
like the connected facility location problem, in our incremental version of the
problem, we also have uncertainty in determining the set of customers to be
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served at each time period. So, we provide them with the next highest priority
in branching.

Separation Routine: We observed that the cuts generated by the maximum
flow algorithm when the root is treated as source tend to generate cuts that are
closer to the root node and there will be edges repeated in the various minimum
cuts generated for various terminals. In order to avoid this, we treat the root as
the sink and the facilities as the source. This was appropriately captured in the
primal heuristic and the in-arc inequalities as well. We also perform nested cuts,
wherein we resolve maximum flow for the same facility by setting the capacity
of the edges in current minimum cutset to 1. The cover (11) and cut-set-cover
inequalities (12) rely on solving an integer program at every call of the separation
routine, which is run for every time period. The integer program terminates if
the elapsed running time is over 100 seconds or if the objective value drops
below 1. We use this exact separation to test the impact of these inequalities
on the lower bound and in the event they are useful they will be replaced with
heuristic methods similar to the techniques used to generate cover inequalities
for knapsack constraints.

Primal Heuristics: We also implemented and tested a naive primal heuristic.
After our initial runs we decided to turn off the CPLEX heuristics as this was
leading to poor performance. The primal heuristic rounds up all the z variables
that indicate the usage of a facility as well as the y variables, which indicate
the service to a customer. We run a minimum cost flow algorithm with a linear
cost estimator with the open facilities (rounded up values) as sinks and the root
node as source to generate our Steiner tree.

4.2 Results

Our preliminary computational study has shown that CUTR formulation is not
competitive against the CUTF model, due to the size of the support graph and
the large number of cut-set inequalities that need to be separated. This is also
consistent with the results obtained by [9] for the single-period ConFL.

Therefore, in our computational study, we compared the performance of the
following two branch and cut settings:

– CUTF formulation,
– CUTF+ formulation extended by cover inequalities (11) and cut-set-cover

inequalities (12).

For each of the two settings, we report on the following values given in Ta-
ble 1: the overall percentage gap obtained after the time limit of 2000 seconds
calculated as Gap = (UB − LB)/LB , where UB is the best obtained upper
bound, and LB is the global lower bound; the number of all constraints sepa-
rated throughout the execution of the algorithm, denoted by “Cuts”; the number
of branch and bound nodes, denoted by “B&B”.

Comparing the number of inserted cuts by the two approaches, we observe
that the inclusion of coverage-related cuts (i.e., (11) and (12)) reduces the overall
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Table 1. Comparison of two branch and cut settings: plain CUTF model vs. CUTF

extended by cover and cut-set-cover inequalities

CUTF CUTF + (11) + (12)
Instance best LB best UB Gap[%] cuts B&B best UB Gap[%] cuts B&B
c10-mp1 164,136 166,691 1.53 2103 170 166,670 1.52 695 104
c10-mp2 160,278 168,347 4.79 1781 99 168,258 4.74 297 20
c10-mq1 346,866 386,409 10.23 457 11 386,054 10.15 161 0
c10-mq2 348,929 387,501 9.95 559 14 387,088 9.86 136 0
c15-mp1 165,004 166,900 1.14 1539 107 166,985 1.19 212 15
c15-mp2 161,333 168,487 4.25 1508 56 168,525 4.27 299 16
c15-mq1 352,583 386,520 8.78 567 15 386,326 8.73 140 0
c15-mq2 348,640 387,614 10.05 422 10 387,452 10.02 138 0
c20-mp1 155,919 167,227 6.76 334 6 167,184 6.74 121 0
c20-mp2 154,157 168,658 8.60 360 3 168,656 8.60 137 0
c20-mq1 349,075 386,640 9.72 298 0 386,540 9.69 55 0
c20-mq2 348,628 387,792 10.10 311 0 387,681 10.07 60 0
c5-mp1 162,521 166,466 2.37 1927 190 166,320 2.28 590 75
c5-mp2 158,230 168,042 5.84 1630 45 167,892 5.76 347 19
c5-mq1 346,924 386,236 10.18 869 15 385,491 10.00 133 0
c5-mq2 348,453 387,330 10.04 817 15 386,744 9.90 143 0
d10-mp1 164,160 166,945 1.67 2008 45 166,706 1.53 126 10
d10-mp2 155,885 168,381 7.42 1902 21 168,167 7.30 291 15
d10-mq1 342,278 386,234 11.38 508 6 385,844 11.29 121 0
d10-mq2 348,389 387,584 10.11 642 9 387,062 9.99 110 0
d15-mp1 158,402 167,103 5.21 813 15 167,005 5.15 176 6
d15-mp2 158,835 168,398 5.68 1103 15 168,468 5.72 193 1
d15-mq1 346,494 386,579 10.37 407 0 386,258 10.29 95 0
d15-mq2 346,129 387,683 10.72 415 6 387,458 10.67 118 0
d20-mp1 155,821 167,168 6.79 256 0 167,208 6.81 139 0
d20-mp2 154,141 168,661 8.61 291 0 168,675 8.62 175 0
d20-mq1 348,738 386,621 9.80 180 0 386,580 9.79 62 0
d20-mq2 348,365 387,801 10.17 135 0 387,772 10.16 16 0
d5-mp1 163,074 166,680 2.16 2666 50 166,216 1.89 1387 225
d5-mp2 163,182 167,967 2.85 2495 104 167,634 2.66 1172 165
d5-mq1 346,120 386,141 10.36 1230 15 385,396 10.19 185 0
d5-mp1 344,089 387,304 11.16 1541 15 386,517 10.98 166 0

number of cuts generated within a given time limit. This can easily be explained
by the large separation times needed to solve the integer program (18)-(21).
Despite the reduced number of separated inequalities, in 27 out of 32 instances we
obtained reduced duality gaps when the coverage-related inequalities were used.
This indicates the strength of the coverage-related cuts, but also the trade-off
between their strength and their separation time.

We also observe that due to the branching and separation strategies that
we choose, there is no direct correlation between the usage of coverage-related
constraints and the number of branch and bound nodes.

5 Conclusions

In this work we introduce a new combinatorial optimization problem that models
the design of fiber-to-the-curb networks over time. The problem is a multi-period
version of the connected facility location problem that has been intensively stud-
ied in the literature in the last decade. Besides two mixed integer programming
models, we also introduce two new families of valid inequalities derived from the
incremental coverage constraints over time. We provide separation algorithms
needed to detect the new coverage-related inequalities within a cutting plane
framework. The problem is then solved by means of a branch and cut algo-
rithm that makes use of the cut-set inequalities and the new coverage-related
constraints. In the (preliminary) computational study we show that the new
inequalities are useful for small and/or sparser instances, where the obtained
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duality gaps can be significantly reduced. For larger instances, it turns out that
the there is a trade-off between the separation time of the coverage-related family
of inequalities and the obtained improvement of the quality of lower bounds.

In a future work we intend to investigate the performance of the branch and
cut algorithm on a larger set of benchmark instances. We also want to study the
influence of the minimum coverage rate Dt to the quality of lower bounds of the
proposed models. Further problem-related inequalities will be derived as well.
One of the problems addressed by our computational results is the computational
inefficiency of the integer program needed to separate the coverage-related in-
equalities. To overcome this problem, one needs to develop more efficient exact
or heuristic approaches for the separation. Finally, it will be also interesting to
compare decomposition based approaches (e.g., Lagrangian or Benders decom-
position) with the proposed branch and cut framework.
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Abstract. In this study we show by means of computational experiments that
a pseudo-Boolean approach leads to a very compact presentation of p-Median
problem instances which might be solved to optimality by a general purpose
solver like CPLEX, Xpress, etc. Together with p-Median benchmark instances
from OR and some other libraries we are able to solve to optimality many bench-
mark instances from cell formation in group technology which were tackled in
the past only by means of different types of heuristics. Finally, we show that this
approach is flexible to take into account many other practically motivated con-
straints in cell formation.

1 Introduction

The p-Median problem (PMP) is a well-known NP-hard problem which was originally
defined by Hakimi [19] and involves the location of p facilities on a network in such
a manner that the total weighted distance of serving all demands is minimized. Being
a classical problem in combinatorial optimization, the PMP has been widely studied in
literature and applied in cluster analysis, quantitative psychology, marketing, telecom-
munications industry [10], sales force territories design [23], political districting [5],
optimal diversity management [9], cell formation in group technology [33], vehicle
routing [21], and topological design of computer communication networks [25].

The basic PMP model that has remained almost unchanged during recent 30 years
is the so called ReVelle and Swain [27] integer LP formulation (in fact, a Boolean LP
formulation). The PMP has since been the subject of considerable research involving
the development of adjusted model formats (Rosing et al. [29], Cornuejols et al. [13],
Church [11,12]), and recently by AlBdaiwi et al. [2], and Elloumi [15], as well as the
development of advanced solution approaches, e.g. Beltran et al. [7], Avella et al. [4].
For a comprehensive review of the PMP we address the reader to Reese [26], Mladen-
ovich et al. [22] and ReVelle et al. [28].

In this paper we consider an application of PMP to the industrial engineering prob-
lem of cell formation (CF) in group technology. Cell formation suggests decomposition
of a manufacturing system into several subsystems such that these subsystems, manu-
facturing cells, are as independent as possible. This ensures that machines processing
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the same parts are placed closer to each other and time spent by parts on travelling from
one machine to another is substantially reduced. Moreover, smaller systems (cells) are
easier to manage (e.g. scheduling). PMP was applied to cell formation by a number of
authors, e.g. [33]. However, due to NP-hardness of the PMP all of them used heuristics
to solve the resulting PMP instances.

The purpose of this paper is two-fold. First, we show by means of numerical experi-
ments that a pseudo-Boolean approach allows a very compact representation of the PMP
instance data and can be used to derive an efficient Mixed-Integer Linear Programming
(MILP) formulation. Second, we show that the PMP can be used as a flexible frame-
work for cell formation, as in CF applications PMP can be very efficiently solved to
optimality and any real-world constraints can be included. Our experiments show that
even the largest CF instances used in literature can be solved within a second and the
quality of solutions outperforms even the most contemporary heuristics.

In the next section we describe an efficient MILP formulation of the PMP based on
a pseudo-Boolean approach and in Section 3 we conclude that all known reductions
are contained in our model. Section 4 reports our computational study with benchmark
instances. In Section 5 we discuss the possibilities induced by our model in CF appli-
cations and Section 6 summarizes this paper and provides future research directions.

2 The Mixed Boolean Pseudo-Boolean Model (MBpBM)

Recall that given sets I = {1,2, . . . ,m} of sites in which plants can be located, J =
{1,2, . . . ,n} of clients, a non-negative matrix C = [ci j] of costs of serving each j ∈ J
from each i ∈ I, the number p of plants to be opened, and assuming a unit demand at
each client site, the p-Median Problem (PMP) is one of finding a set S ⊆ I with |S|= p,
such that the total serving cost is minimized:

fC(S) = ∑
j∈J

min{ci, j|i ∈ S} (1)

The Combinatorial Formulation of PMP is to find a subset S� such that

S� ∈ argmin{ fC(S) : /0 ⊂ S ⊆ I, |S|= p} . (2)

The objective function fC(S) of the PMP (1) can be reformulated in terms of a pseudo-
Boolean polynomial, pBp, (see Hammer [20] and Beresnev [6]) in the following way.
Consider a vector y = (y1, . . . ,ym) of Boolean variables such that yi = 0 iff i-th location
is opened (i.e. iff i ∈ S). For some client j a corresponding column of C contains the
costs of serving this client from any location. Clearly, the demand of client j cannot be
satisfied cheaper than cπ1 j , j, where π1 j is the index of the smallest entry in j-th column
of the costs matrix. This minimum value is attained only if location π1 j is opened and
yπ1 j = 0. Otherwise, the cheapest way of satisfying client j is to use the second smallest
entry in j-th column. In this case the cost is cπ2 j , j = cπ1 j , j + yπ1 j(cπ2 j , j − cπ1 j , j). If the
location corresponding to the second smallest entry is also closed, the minimum costs
of serving client j is cπ3 j , j = cπ1 j , j + yπ1 j(cπ2 j , j − cπ1 j , j)+ yπ1 j yπ2 j(cπ3 j , j − cπ2 j , j). This
intuition can be extended further and the costs of serving client j can be expressed as:
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cπ1 j , j +
m−1

∑
k=1

(cπk+1, j, j − cπk j, j)
k

∏
r=1

yπr j (3)

This representation naturally induces two objects related to j-th column: a permutation
Π j = (π1 j, . . . ,πm j) that sorts the entries from the corresponding column of the costs
matrix in a nondecreasing order, and the vector of differences Δ j = (δ0 j, . . . ,δm−1, j)
defined as follows:

δ0 j = cπ1 j , j ,

δr j = cπr+1, j , j − cπr j , j for 1 ≤ r ≤ m−1 , (4)

By extending the above reasoning to all clients and defining a permutation matrix Π =
(Π 1, . . . ,Π n) and a differences matrix Δ = (Δ1, . . . ,Δn) the total cost function (1) can
be represented by the following polynomial:

BC,Π (y) =
n

∑
j=1

{
δ0 j +

m−1

∑
k=1

δk j

k

∏
r=1

yπr j

}
. (5)

The expressions αS∏i∈S yi and ∏i∈S yi are called a monomial and a term, respec-
tively. In this paper monomials with the same term are called similar monomials. We
say that a pseudo-Boolean polynomial is in the reduced form if for any two of its mono-
mials the corresponding terms differ. In other words, the algebraic summation of similar
monomials is called reduction.

AlBdaiwi et al. [2] show that the total cost function (5) is identical for all possible
permutation matrices Π , hence we can remove it from notations without any confusion.

The Hammer-Beresnev polynomial BC(y) contains less than m · n monomials and
their number can be further reduced by using that for any feasible solution y to a PMP
instance holds ∑m

i=1 yi = m− p. This implies that any monomial in the pBp expressed as
a constant multiplied by more than m− p variables necessarily evaluates to zero. This
is formalized in Theorem 1 (AlBdaiwi et al. [2]).

Theorem 1. For any PMP instance C with p ≤ m the following assertions hold:

1. The degree of a truncated Hammer-Beresnev polynomial BC,p(y) is at most m− p;
2. Each column of the costs matrix C can be p-truncated by setting all p largest entries

in a column to the value of the smallest entry among these p largest.

The above theorem allows to substitute BC(y) (5) by BC,p(y) defined as

BC,p(y) =
n

∑
j=1

{
δ0 j +

m−p

∑
k=1

δk j

k

∏
r=1

yπr j

}
. (6)

We can reformulate (2) in terms of Hammer-Beresnev polynomials as the pseudo-
Boolean formulation of PMP:

y� ∈ argmin{BC,p(y) : y ∈ {0,1}m,
m

∑
i=1

yi = m− p} . (7)
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Let us denote by |B| the number of monomials in BC,p(y), by Tr ∈ {1, . . . ,m} a set of
indices of variables in the r-th monomial of the pBp and by αr coefficients of the mono-
mials (e.g. α0 = ∑n

j=1δ0 j). Now the truncated reduced Hammer-Beresnev polynomial
can be expressed as

BC,p(y) = α0 +
m

∑
r=1

αryr +
|B|
∑

r=m+1
αr ∏

i∈Tr

yi (8)

and by introducing nonnegative variables zr (r = m + 1, . . . , |B|) we have linearised it
(see e.g., Wolsey[32]) in order to obtain a linear objective function

f (y,z) = α0 +
m

∑
r=1

αryr +
|B|
∑

r=m+1
αrzr . (9)

By introducing for each variable zr = ∏i∈Tr yi the constraints

zr ≥ ∑
i∈Tr

yi −|Tr|+ 1 , zr ≥ 0 (10)

we obtained our Mixed Boolean pseudo-Boolean Model (MBpBM):

α0 +
m

∑
r=1

αryr +
|B|
∑

r=m+1

αrzr −→ min (11)

s.t.
m

∑
i=1

yi = m− p , (12)

∑
i∈Tr

yi −|Tr|+ 1 ≤ zr, r = m+ 1, . . . , |B| , (13)

zi ≥ 0, i = m+ 1, . . . , |B| , (14)

yi ∈ {0,1}, i = 1, . . . ,m (15)

Example 1. Consider a PMP instance from [15] with m = 4, n = 5, p = 2 and

C =

⎡⎢⎢⎣
1 6 5 3 4
2 1 2 3 5
1 2 3 3 3
4 3 1 8 2

⎤⎥⎥⎦ . (16)

A possible ordering and differences matrices for this problem are given by

Π =

⎡⎢⎢⎣
1 2 4 1 4
3 3 2 2 3
2 4 3 3 1
4 1 1 4 2

⎤⎥⎥⎦ and Δ =

⎡⎢⎢⎣
1 1 1 3 2
0 1 1 0 1
1 1 1 0 1
2 3 2 5 1

⎤⎥⎥⎦ . (17)

The Hammer-Beresnev polynomial representing the total cost function for this instance
in the form (5) is

BC(y) = [1 + 0y1 + 1y1y3 + 2y1y2y3]+
[1 + 1y2 + 1y2y3 + 3y2y3y4]+
[1 + 1y4 + 1y2y4 + 2y2y3y4]+
[3 + 0y1 + 0y1y2 + 5y1y2y3]+
[2 + 1y4 + 1y3y4 + 1y1y3y4] .

(18)
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After reduction of similar monomials and truncation we obtain the following pseudo-
Boolean representation of the instance:

BC(y) = 8 + 1y2 + 2y4 + 1y1y3 + 1y2y3 + 1y2y4 + 1y3y4 −→ min

s.t. y1 + y2 + y3 + y4 = m− p = 2, y ∈ {0,1}m . (19)

After introduction of new variables z5 = y1y3, z6 = y2y3, z7 = y2y4, z8 = y3y4 the
MBpBM is:

8 + y2 + 2y4 + z5 + z6 + z7 + z8 −→ min (20)

s.t.
4

∑
i=1

yi = m− p = 2 (21)

z5 + 1 ≥ y1 + y3 (22)

z6 + 1 ≥ y2 + y3 (23)

z7 + 1 ≥ y2 + y4 (24)

z8 + 1 ≥ y3 + y4 (25)

zi ≥ 0, i = 5, . . . ,8 (26)

yi ∈ {0,1}, i = 1, . . . ,4 . (27)

This MBpBM (20)–(27) has the same decision variables yi as the pseudo-Boolean for-
mulation (7), but its objective function is a linear in yi and zi. Note that our model
contains 7 coefficients in the objective function, 5 constraints, 4 Boolean and 4 non-
negative variables, while for the best Elloumi’s model NFexr [15] these numbers are
10, 11, 4 and 7, correspondingly.

In the following Lemma 1 we explain how to reduce the number of Boolean variables
yi involved in the restrictions (13).

Lemma 1. Let /0 �= Tr ⊂ Tq be a pair of embedded sets of Boolean variables yi. Thus,
two following systems of inequalities are equivalent:

∑
i∈Tr

yi −|Tr|+ 1 ≤ zr

∑
i∈Tq

yi −|Tq|+ 1 ≤ zq

zr ≥ 0, zq ≥ 0

and

∑
i∈Tr

yi −|Tr|+ 1 ≤ zr

zr + ∑
i∈Tq\Tr

yi −|Tq \Tr| ≤ zq

zr ≥ 0, zq ≥ 0

(28)

Based on a compact representation of a PMP instance within pseudo-Boolean formula-
tion (7) one may conclude that this formulation has extracted only essential information
to represent the PMP. It means that we are in a position to check whether our MBpBM
is an optimal model within the class of Mixed Boolean LP models. If we were able
to show that the matrix of all linear constraints induced by non-linear monomials con-
tains the smallest number of non-zero entries, then taking into account that the objective
function has the smallest number of non-zero coefficients and linear constraints induced
by non-linear terms one may conclude that our MBpBM is the optimal one [17]. Un-
fortunately, in general this is not the case. It is not difficult to show that the problem of
finding a constraint matrix with the smallest number of non-zero entries is at least as
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hard as the classic set covering problem (see e.g. Garey and Johnson [16]). This means
that to find an optimal model within the class of Mixed Boolean LP models is an NP-
hard problem, even if the number of linear constraints is a linear function on the number
of all decision variables. However, if only numbers of variables, constraints and terms
in the objective function are taken into account, MBpBM is an optimal one [17].

Despite the efficiency of MBpBM it can be further reduced based on a decomposition
of the whole search space into subspaces induced by terms in a pBp. By using upper
and lower bounds on the cost of optimal solutions one may prove that some subspaces
do not contain optimal solutions (see Goldengorin et al. [18]). Suppose, we know from
some heuristic a (global) upper bound fUB on the cost of optimal solutions. Let us
now consider some term T and the set of indices of its variables T . One can also
compute a lower bound f LB

T over a subspace of solutions for which T is nonzero, i.e.
all locations from T are closed. In case f LB

T > fUB one can conclude that for every
optimal solution T evaluates to 0 and a constraint for the corresponding z-variable can
be modified respectively. Moreover, all terms containing T also evaluate to 0 and the
corresponding z-variables and constraints can be dropped. We call the model with this
reduction MBpBMb and the lower bound that we used is given by:

f LB
T = fC(T )+ min

ki∈T

|T |−p

∑
i=1

[ fC(T \ {ki})− fC(T )], (29)

where fC(.) – cost function of the PMP and T denotes the complement of T , i.e. T =
{1, . . . ,m} \T .

3 Reduction Tests for the p-Median Problem

Looking at PMP models described in the literature it can be noticed that all improve-
ments over the classical formulation by ReVelle and Swain [27] are done by application
of various reduction tests to the instances of the problem. These tests can be classified
into the following two broad groups: pure and optimizational.

The first group includes all kinds of tests exploiting structural redundancies in the in-
put data. For example, presence of equal entries in a column of the costs matrix within a
MILP model was first used by Cornuejols [13] and is present in most of the recent mod-
els, including Elloumi’s ([15]), Church’s [11,12] and our MBpBM (11)-(15). Another
pure reduction excludes from the formulation largest p− 1 entries of each column of
the costs matrix. It was used by Avella et al. ([3], reduction test FIX1) and Church [11],
and in our model is done by truncation of the pBp. This reduction has a universal nature
in a sense that it allows truncation of exactly p− 1 entries from each column of the
cost matrix, irrespectively of the particular instance data. The next structural peculiarity
that can be exploited for strengthening the formulation stems from the order in which
potential locations are listed if being sorted by increasing distance from a client. If for
two clients these orders are equal, they may be considered as one aggregated client.
In our model this rule is applied by reducing similar monomials, while in Elloumi’s
NF (reduction rules R2 and R3 in [15]) and Church’s COBRA [11] this is done by
“substitution of equivalent variables” (as it is called in [11]). Finally, we would like to
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Table 1. Effect of reduction tests for selected benchmark instances

instance m p |C| |B| red.(%) instance m p |C| |B| red.(%)

pmed26 600 5 360000 25440 92.93 rw100 100 10 10000 5683 43.17
pmed27 600 10 360000 24117 93.30 100 20 10000 5045 49.55
pmed28 600 60 360000 19142 94.68 100 30 10000 4404 55.96
pmed29 600 120 360000 17724 95.08 100 40 10000 3771 62.29
pmed30 600 200 360000 16920 95.30 100 50 10000 3138 68.62
pmed31 700 5 490000 25940 94.71 rw500 500 10 250000 154622 38.15
pmed32 700 10 490000 26384 94.62 500 50 250000 141991 43.20
pmed33 700 70 490000 21030 95.71 500 100 250000 126281 49.49
pmed34 700 140 490000 18684 96.19 500 150 250000 110487 55.81
pmed35 800 5 640000 27788 95.66 500 250 250000 78946 68.42
pmed36 800 10 640000 28579 95.53 rw1000 1000 10 1000000 625052 37.49
pmed37 800 80 640000 23324 96.36 1000 50 1000000 599698 40.03
pmed38 900 5 810000 29230 96.39 1000 100 1000000 568197 43.18
pmed39 900 10 810000 27638 96.59 1000 300 1000000 441946 55.81
pmed40 900 90 810000 24165 97.02 1000 500 1000000 315682 68.43

mention Elloumi’s reduction rule R1. The essence of this rule is that some z-variables
can be expressed in terms of y-variables in a linear way. Our model implies R1 as we
do not introduce any new variables for linear monomials. Thus, our model incorporates
all known pure reductions by excluding monomials with zero coefficients, truncation
and reduction of similar monomials. The effect of pure reductions can be illustrated
by Table 1 where reduction tests were applied to several selected benchmark instances
that are widely used for testing PMP-related algorithms. The first three columns contain
the title of an instance, numbers of potential locations m and medians p, correspond-
ingly. The next two columns indicate the number of entries in a costs matrix |C| and the
number of non-zero coefficients in the pBp |B|. The last column displays the achieved
reduction (based on truncation and reducing similar monomials) that we computed as
red. = (|C|− |B|)/|C|×100%.

The second group of reduction tests includes optimizational approaches that suggest
(pre-)solving the problem. These are reductions based on comparison of upper and (re-
stricted) lower bounds on the optimal solution. Such a reduction was used by Avella et
al. ([3], reduction test FIX2) and is implemented in our formulation MBpBMb lead-
ing to even more compact model and, as will be shown in the next section, reduced
computing times.

The presented analysis can be summarized as follows: MBpBM in a natural way
incorporates all available in literature pure reductions and can be subjected to optimiza-
tional problem size reduction techniques.

4 Computational Results for Benchmark Instances

In order to show the applicability of our compact MBpBM formulation, a number of
computational experiments were held. We used benchmark instances from two of the
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Table 2. Comparison of computing times for our and Elloumi’s NF formulations, and Avella
et al.’s B&C&P algorithm (15 largest OR-library instances)

instance m p MBpBM MBpBMb Elloumi Avella et al.

pmed26 600 5 163.84 111.81 180.31 187
pmed27 600 10 27.59 21.31 43.73 47
pmed28 600 60 2.48 2.13 3.61
pmed29 600 120 1.78 1.31 2.91
pmed30 600 200 1.50 0.78 4.81
pmed31 700 5 153.22 57.05 90.95 106
pmed32 700 10 33.13 43.39 37.64 65
pmed33 700 70 3.09 2.69 4.73
pmed34 700 140 3.72 1.97 7.11
pmed35 800 5 70.30 154.41 514.72 189
pmed36 800 10 2256.83 4252.13 6737.25 453
pmed37 800 80 3.91 3.08 7.00
pmed38 900 5 1328.34 2041.28 307.00 320
pmed39 900 10 572.81 444.08 473.95 271
pmed40 900 90 5.39 4.02 8.42

Table 3. Comparison of computing times for our and Elloumi’s NF formulations (Resende and
Werneck random instances)

instance m p MBpBM MBpBMb Elloumi

rw100 100 10 678.91 452.52 845.30
100 20 4.00 2.22 5.25
100 30 0.09 0.03 0.13
100 40 0.08 0.02 0.14
100 50 0.06 0.02 0.13

rw500 500 10 – – –
500 100 – – –
500 150 2.97 1.22 12.27
500 200 2.25 0.28 4.11
500 250 1.77 0.13 4.36

rw1000 1000 10 – – –
1000 200 – – –
1000 300 118.91 13.40 234.99
1000 400 11.49 1.16 21.81
1000 500 9.08 0.77 28.47

– Not solved within 1 hour.

most widely used libraries: J. Beasley’s OR-library [24] and randomly generated RW
instances by Resende and Werneck (see e.g. Elloumi [15]).

The experiments were conducted on a PC with Intel 2.33 GHz 1.95 GB and Xpress-
MP as an MILP solver. Tables 2 and 3 summarize the computational results obtained for
the 15 largest OR instances and RW instances, correspondingly. The first three columns
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contain the name of an instance, the number m = |I| = |J| of nodes and the number p
of medians. The next three columns are related to the running times (in seconds) of our
models: MBpBM and its modification with reduction based on bounds. The next col-
umn reflects computing times for Elloumi’s NF that we implemented and tested within
the mentioned environment to ensure consistent comparison. The last column displays
times reported by Avella et al. [4] for their Branch-and-Cut-and-Price (B&C&P) algo-
rithm (Intel 1.8 GHz 1 GB).

Computational experiments with OR and RW instances can be summarized as fol-
lows. Our basic MBpBM formulation outperforms Elloumi’s NF and Avella et al.’s
B&C&P in most of the tested cases. The reduction based on bounds MBpBMb outper-
formed other considered models for all but five ORlib instances (in two of these cases
our MBpBM was faster).

We also mention an instance from TSP library [30] fl1400 with p = 400 unsolved in
Avella et al. [4] and solved to optimality by MBpBM in 598.5 sec. Note that Beltran’s
et al. [7] advanced semi-Lagrangean approach based on Proximal-Analytic Center Cut-
ting Plane Method has not solved fl1400 with p = 400 to optimality and returns an
approximation within 0.11% in 678 sec.

5 Application to Cell Formation

The p-Median Problem (PMP) was applied to cell formation in group technology by
a number of researchers (see [33], [14] and references within). However, to the best
of our knowledge, in all CF related papers PMP (as well as any other model based on
graph partitioning or MILP) is solved by some heuristic method. At the same time, for
the p-Median problem there exist efficient formulations (like MBpBM or the one in
[15]) that allow solving large instances to optimality.

Recall that for a directed weighted graph G = (V,A,C) with |V | vertices, set of arcs
(i, j) ∈ A ⊆ V ×V and weights (distances, dissimilarities, etc.) C = {ci j : (i, j) ∈ A},
the PMP consists of determining p nodes (the median nodes, 1 ≤ p ≤ |V |) such that
the sum of weights of arcs joining any other node and one of these p nodes is mini-
mized. In terms of cell formation, vertices represent machines and weights ci j represent
dissimilarities between machines i and j. These dissimilarities can be derived from the
sets of parts that are being processed by either of the machines (e.g. if two machines
process almost the same set of parts they have small dissimilarity and are likely to be
in the same cell) or from any other desired characteristics (e.g. workers skill matrix,
operational sequences, etc.). Moreover, usually there is no need to invent a dissimilarity
measure as it can be derived from one of the available similarity measures using an ex-
pression d(i, j) = c−s(i, j), where d(., .)/s(., .) is a dis/similarity measure and c – some
constant large enough to keep all dissimilarities non-negative. As can be seen from the
literature, several similarity measures were proposed and the particular choice can in-
fluence results of cell formation. For our experiments we have chosen one of the most
widely used – Wei and Kern’s “commonality score” [31], and derived our dissimilarity
measure as

d(i, j) = r · (r−1)−
r

∑
k=1

Γ (aik,a jk) (30)
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where

Γ (aik,a jk) =

⎧⎨⎩ (r−1), i f aik = a jk = 1
1, i f aik = a jk = 0
0, i f aik �= a jk

(31)

where r - number of parts, ai j - entries of the m× r machine-part incidence matrix (i.e.
ai j = 1 if part j needs machine i and ai j = 0, otherwise).

Thus, if applied to cell formation, the p-Median problem means finding p machines
that are best representatives (centres) of p manufacturing cells, i.e. the sum over all
cells of dissimilarities between such a centre and all other machines within the cell is
minimized. Once p central machines are found, the cells can be generated by assigning
each other machine to the central one such that their dissimilarity is minimum. Note
that the desired number of cells p is part of the input for the model and must be known
beforehand. Otherwise, it is possible to solve the problem for several numbers of cells
and pick the best solution.

Example 2. Let the instance of the cell formation problem be defined by the machine-
part incidence matrix:

1 2 3 4 5
1
2
3
4

⎡⎢⎢⎣
0 1 0 1 1
1 0 1 0 0
0 1 0 1 0
1 0 1 0 0

⎤⎥⎥⎦ (32)

with 4 machines and 5 parts. One can construct the machine-machine dissimilarity ma-
trix C by applying the defined above dissimilarity measure (30):

C =

⎡⎢⎢⎣
6 20 10 20

20 9 19 9
10 19 9 19
20 9 19 9

⎤⎥⎥⎦ (33)

For example, the top left entry a11 is obtained in the following way:

a11 = r(r−1)−
r
∑

k=1
Γ (a1k,a1k) =

= 5(5−1)−Γ (0,0)−Γ (1,1)−Γ (0,0)−Γ (1,1)−Γ (1,1) =
= 20−1−4−1−4−4 = 6

(34)

If one is interested in having two manufacturing cells then the number of medians p in
should be set to 2 and the MBpBM formulation of the given instance of cell formation
is as follows:

f (y,z) = 33 + 4y1 + 1y3 + 20z5 + 20z6 −→ min (35)

y1 + y2 + y3 + y4 = 2 (36)

z5 ≥ y1 + y3 −1 (37)

z6 ≥ y2 + y4 −1 (38)

zi ≥ 0, i = 5,6 (39)

yi ∈ {0,1}, i = 1, . . . ,4 (40)
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Its solution y = (0,0,1,1)T , z = (0,0)T leads to the following cells:

2 4 5 1 3
1
3
2
4

⎡⎢⎢⎣
1 1 1 0 0
1 1 0 0 0
0 0 0 1 1
0 0 0 1 1

⎤⎥⎥⎦ (41)

We conducted numerical experiments in order to compare this approach with other
contemporary ones. The aim of our numerical experiments was twofold. First, we would
like to show that the model based on PMP produces high-quality cells and in many cases
outperforms other contemporary heuristics, thus making their use questionable. Second,
by showing that computation times are negligibly small, we argue the use of heuristics
for solving PMP itself. In order to compare solutions quality two following measures
were used:

GCI = 1− e
o
×100% and η =

1
2

[
α

α + v
+

β
β + e

]
×100%, (42)

where exceptional elements are those nonzero entries of the block-diagonalized
machine-parts incidence matrix that lie outside the blocks, m – the number of machines,
r – the number of parts, o – the total number of ones in the machine-part incidence ma-
trix, e – the number of exceptional elements, v – the number of zeroes in diagonal
blocks, α = o− e and β = mr−o− v.

We compared our experimental results with those reported in four recent papers.
The main focus was made on the largest 24 instances we could find in literature on
CF with m× r ranging from 8× 20 to 50× 150. The first paper [33] uses a p-Median
approach but solves PMP by a heuristic procedure. It uses Wei and Kern’s [31] similarity
measure and GCI as a quality measure. We were not able to derive the value of η
because solutions are not provided in that paper. The second paper [34] applies the
ART1 neural network to cell formation, thus using a completely different approach.
The authors used η-measure to estimate solution quality and included solutions (block-
diagonalized matrices) in their paper, thus making it possible for us to compute GCI.
The third paper [1] demonstrates an application of a decision-making technique to the
cell formation problem. Authors report values of η and we derived values of GCI from
their solutions.

The most recent paper considered in our computational experiments is [8]. It uses a
model that is very similar to the p-Median problem but differs in the following detail: a
restriction specifying the number of cells is replaced by a constraint ensuring that each
cell has at least two machines. We implemented the models for machine cell formation
and part assignment from [8] in Xpress to perform the experiments. Like in the previ-
ous cases we used only machine-part incidence matrices as an input and Wei and Kern’s
(dis)similarity measure. Taking into account that the model from [8] automatically de-
fines the best number of cells, we had to solve our PMP based model for all possible
values of p.

The results of the experiments can be summarized as follows. With regard to the
solutions quality our model outperforms all its considered counterparts both in GCI
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and η measures. Even though there were scarce instances for which our approach was
slightly dominated (this can be explained by the fact that the PMP does not explicitly
optimize the considered quality measures), both average and best improvement of qual-
ity is noticeable. The difference between quality of our solutions and the ones reported
in [33], [34], [1] and obtained by the model from [8] both in terms of GCI and η can be
summarised as follows:

worst average best
ΔGCI −1.90 2.86 15.20
Δη −0.55 3.82 17.41

(43)

Concerning the computing times, we would like to mention that each of the consid-
ered instances was solved within 1 second on a standard PC using Xpress. Even if some
other approach can do faster, the difference is negligible.

5.1 Additional Constraints

Above we considered a PMP approach to the CF problem in its simplest form with only
the machine-part relations taken into account. Yet, in real manufacturing systems there
exist additional factors that must be considered to generate “reasonable” cells. Clearly,
there are three places in our model where additional factors can be incorporated:

– dissimilarity coefficients;
– objective function (structure);
– constraints;

The easiest way of introducing additional factors into the model is via the dissimilarity
coefficients. For example, dissimilarity between a pair of machines can be made depen-
dent not only on the number of parts that need these machines but also on the weight,
volume, processing time of these parts or their operational sequences. Moreover, workers
able to operate these machines can be taken into account. Thus, suitable choice of dis-
similarity coefficients allows to account for capacity, workload and skills issues without
changing the structure of the model. At the same time, a variety of restrictions can be
inserted either by changing the structure of the objective function (e.g. by adding terms
penalising assignment of some machines to the same cell) or by adding new constraints.
It is easy to understand that the only requirement on new constraints is their linearity.
The fact that almost any real-world constraints can be either expressed or approximated
in a linear form makes the PMP-based approach quite flexible. Taking into account that
our model for PMP is very compact, any additional constraints are welcome.

6 Summary and Future Research Directions

The paper presented a new approach to formulation of models for the p-Median problem.
We started with a pseudo-Boolean formulation with just one constraint on the number of
medians. We then reduced the size of the objective function by truncation and reducing
similar monomials, and linearised all non-linear terms in it with additional variables and
constraints. The resulting model, a Mixed Boolean pseudo-Boolean Model, incorporates
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all known reductions and has the smallest number of constraints related to non-negative
variables. As we have shown, the matrix of constraints would be as sparse as possible
if we were able to solve a generalization of the classic set covering problem defined on
the set of all terms involved in the pseudo-Boolean formulation of PMP. Unfortunately,
this set covering problem is NP-hard [16]. Anyway, if we evaluate the size of a model
by the number of non-zero coefficients in the objective function and corresponding
constraints, our MBpBM is the smallest one (within mixed Boolean LP models) and
instance specific! Note, however, that a smaller formulation does not guarantee smaller
solution time (due to NP-hardness of the problem).

The MBpBM can also be applied to cell formation problems, leading to an improved
solutions quality compared to the most contemporary approaches. As well, computing
times for the largest CF instances are within 1 second and thus are competitive with any
heuristic. In the numerical experiments we considered the simplest possible approach to
cell formation aimed at block-diagonalising the machine-part incidence matrix without
taking into account additional real-world factors. There are two reasons for this. First,
we wanted to demonstrate that even a computationally intractable model of cell forma-
tion (at least in its simplest form) can be solved to optimality, and this possibility, to the
best of our knowledge, was overlooked in literature. Second, this choice was partially
governed by available recent papers in the field with which we wanted to compare our
results. At the same time, we showed that several types of constraints can be incorpo-
rated into the PMP-based CF model thus making it more realistic and allowing to use
all the available information about the manufacturing system.

To summarize, in this paper we have shown that our model extends the possibili-
ties of solving p-Median problem instances to optimality by means of general-purpose
MILP software, e.g. Xpress.
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Abstract. One popular approach to overcome the expected congestions due to
the spectacular development of various multimedia applications consists in in-
stalling transparent caches at strategically chosen places inside telecommunica-
tion networks. The problem of locating caches is a difficult optimization problem,
closely related to the p-median problem. In the case where the network is a tree,
some cache location problems have already been investigated. In this paper, we
propose to refine these models by taking into account a dynamic effect due to
cache replacement policies. In our model, only the most popular contents are
stored in the caches. The hierarchical effect of several successive caches is also
captured by the model. A Mixed Integer Programming model and a Dynamic
Programming algorithm are proposed and compared on a preliminary set of nu-
merical experiments.

1 Introduction

One of the major trends in modern telecommunications is the spectacular development
of a wide range of multimedia services. As a direct consequence, one can expect a
huge increase in terms of bandwidth consumption and storage resources. Maintaining a
reasonable level of QoS (Quality of Service) is probably one of the main challenges for
the telecommunication network operators and various service providers.

Many actors in the Internet community are considering various potential solutions to
cope with the problem of traffic increase. The term CDN, for Content Delivery Network
[12], seems to federate most of the current activities related to efficient content distri-
bution. One key feature of a CDN is an equipment called cache. A cache deployed in
some transit node can intercept (i) a request made by clients for certain content, and (ii)
the content itself when it is forwarded back from a central server. The cache will store
some of the content (ii) according to a certain replacement policy and answer directly
some of the requests (i) if it is currently storing the required content. The replacement
policy is an algorithm that tells the cache which content should be removed when a new
content has to be stored and its storage capacity limit is reached. The most well-known
of these policies are LFU (Least Frequently Used) and LRU (Least Recently Used).
The choice of the right policy seems to be essential for a cache to be efficient. A con-
siderable effort has already been spent to analyze, measure and model the efficiency of
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a cache (the so-called hit ratio, i.e., the percentage of requests that can be answered by
the cache) [1,5,6,8,13].

The effect of a cache is to reduce the load on upstream links and to reduce the delays
to access to contents. Apart from its intrinsic efficiency, to be effective, a cache must also
be deployed at the right place in a network (if it is too close to the server, it won’t alleviate
much links, and if it too close to the clients, then the number of caches to deploy might
become huge). The location of caches can hence easily be modeled as an optimization
problem, and cache and content location problems have also been quite intensively inves-
tigated [2,3,4,7,10,11]. Note that most of these optimization model extend a well-known
location problem called p-median [14] and for which polynomial algorithms have been
proposed in the case where the network is modeled by a tree [9,15].

In this paper, we propose an algorithmic approach to determine an optimal archi-
tecture where transparent caches are installed in a tree network. The root of the tree
represents the central server which stores all contents, and each leaf represents a client
(or an aggregated set of clients). We will consider probabilistic requests, weighted by
the amount of clients performing the same demand. We will also include a capacity
constraints on the links. Last and not least, each cache is supposed to contain the most
popular contents taking into account the fact that some content might be already stored
on other caches that are installed in the subtree rooted at the cache.

2 Problem Statement

We consider a telecommunication network that can be modeled by an arborescence (di-
rected tree) T = (V,A) rooted at a special node s ∈ V representing the central server.
Without loss of generality, we will assume throughout the paper that the service is a
Video-on-Demand (VoD) service and the data are hence videos. A subset T ⊂V of ver-
tices, called terminals, represent the clients of a given data service. For each vertex v∈V ,
we denote δ+(v) the set of sons of v in the arborescence (the vertices that come next to
v in the paths from s to the clients). If δ+(v) = /0, then v is a leaf. We denote by L ⊂ V
the set of leaves. We assume that L = T (every leaf is a terminal and every terminal is
a leaf). Let S = V \ T . We associate with each arc a ∈ A, a weight wa ≥ 0 which can
either represent a distance or a unit cost (for transporting 1 Mb of data for instance). We
assume that there is a finite set D = (d1, . . . ,dm) of data (=videos) available in the central
server s. Each client j ∈ T associates to each video k ∈ K = {1, . . . ,m}, a number pk

j ≥ 0,
representing the popularity of the video k (depending on the number of requests of the
video). Remember that a client can represent an aggregation of many clients.

In the cache location problem, we have to decide where to install caches in the network.
We assume that each installed cache has a capacity of p (it can store up to p videos) and
a cost of cv if it is installed on vertex v. In some instances, we might assume that all
installation costs are the same: cv = c for all v ∈ V . To model the behavior of the cache
with respect to the dynamic arrival of requests, we will assume that the videos present in
the cache are the p most popular ones, the popularity being measured at each potential
location (a tree vertex) and taking into account the placement of other caches.

The problem is illustrated on a small 7 nodes instances in Figure 1.
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Fig. 1. A cache location problem instance with m = 2 and p = 1 . The quantities below the leaves
represent the popularities for both videos. The unit bandwidth cost is equal to 1 and each cache
has a cost of 10. On the left, a feasible solution where caches are installed on nodes 1, 2 and 6. The
most popular video is stored in the nodes 2 and 6 whereas the least popular one is stored in the root
node. This solution has a cost of 61. An optimal solution, on the right, has a total cost of 56.

3 A Mixed Integer Programming Model

We use two sets of binary variables: the binary variable y j is equal to 1 iff there is a
cache located at vertex j and the binary variable xk

j is equal to 1 if the video k is in

a cache at node j. The flow variable f k
v represent the popularity of video k at vertex

v. This value results from popularities expressed by the sons of v. Our cache location
problem can then be modeled by the following MIP:

min ∑
j∈V

c jy j + ∑
k∈K

∑
i∈V\{s}

w(δ−(i)i) f k
i , (1)

subject to: xk
j ≤ y j, j ∈V,k ∈ K, (2)

m
∑

k=1
xk

j = py j, j ∈V, (3)

f k
i = pk

i (1− xk
i ), i ∈ T,k ∈ K, (4)

f k
i = (1− xk

i ) ∑
j∈δ+(i)

f k
j , i ∈ S,k ∈ K, (5)

xk
j,y j ∈ {0,1}, f k

j ≥ 0, j ∈V,k ∈ K. (6)

The objective function integrates the installation cost and the access cost. We used
(δ−(i)i) to denote the arc from δ−(i) to i. Constraints (2) and (3) are standard location
constraints stating that a video can only be stored at a node where a cache is installed
and a cache can contain at most p videos. Constraints (4) express the fact that the popu-
larity for video k that is sent by a leaf node i to its parent is pk

i if xk
i = 0 and 0 otherwise.

The next constraints (5) have a similar role for Steiner nodes thus allowing to propa-
gate the popularities along the tree depending on the cache locations. Note that these
constraints are non-linear, but they can easily be linearized using standard techniques.

Additional constraints should be introduced into the model to ensure that, at node i ∈
V , only the p most popular videos can be stored in a cache. To simplify the expressions,
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let Pk
i =∑ j∈δ+(i) f k

j be the potential popularity for video k at node i. The new constraints

should model the fact that, if Pk
i > Pk′

i (video k is more popular than video k′ at node i)
and xk′

i = 1 (video k′ is stored in node i), then we must have xk
i = 1. This can be achieved

by the following constraints:

(xk
i − xk′

i )(Pk
i −Pk′

i ) ≥ 0. (7)

These constraints can also be linearized using standard techniques (For example Big M
linearization).

4 A Dynamic Programming (DP) Approach

Several Dynamic Programming approaches have been proposed for location problems
in trees (for the p-median problem [15] and for caches with a multicast protocol [11]).
We propose an heuristic for our problem based on dynamic programming. Due to space
limitation we only give a sketch of the algorithm. For each node i, the possible values
of the popularities f k

i depend on the popularities propagated by its sons. Then, if we
know for each son of v all possible situations (depending on the caches installed in
the subtree rooted at the son), we can build the set of all possible situations for i. To
reduce the complexity of the procedure, many solutions are eliminated based on cost
consideration and domination between solutions. Unfortunately, this can also eliminate
the optimal solution. However, our numerical experiments show that the best solution
obtained by dynamic programming is very close to the optimal solution.

5 Computational Experiments

In this section, we present some numerical results. The MIP formulation has been
solved using MIP solver (Xpress-MP) and the DP algorithm has been implemented.
Table 1 shows the computing times needed to solve various instances either using the
MIP solver or the DP algorithm. In these tests p = 2 and m = |K| = 5.

Table 1. MIP and DP results

|V | Xpress DP Gap (%)

99 14s 1s 0
106 10s 1s 0
132 73s 1s 0.0008
134 5s 1s 0
236 85s 1s 0
255 76s 1s 0
366 234s 4s 0.004
400 3684s 1s 0
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All tree graphs have been generated with random parameters, following an uniform
ditribution : Number of sons : [1,5], Edge capacity : [10,50], Edge cost :[1,20]. More-
over, cache cost and popularity have been chosen so that the optimal solution is non-
trivial (cost cache : 195, popularity between 1 and 5).

The relative gap between the optimal solution found by the MIP solver and the ap-
proximate solution provided by DP is also shown on Table 1. We clearly see that this
gap is really very small.

Notice the MIP formulation is solved in a brute way without any addition of valid
inequalities. Even, the upper bound provided by DP was used to help the solver to find
the optimal solution.

6 Conclusion

We have proposed a somewhat more accurate model for a the optimal location of trans-
parent caches in a tree, taking into account the propagation of content popularities. We
have given a MIP formulation for this problem and provided a dynamic programming
algorithm. The preliminary computational experiments show that both approaches are
promising and might solve problems with real-size instances. An enforcement of the
MIP formulation using valid inequalities is the next research step. Capacity constraints
can also be taken into account both in the MIP formulation and in the dynamic program-
ming algorithm. Another generalization consists in considering the case where many
servers are available with a rooted tree for each server. Then, a node might belong to
different trees making the problem more complicated.
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Abstract. In this paper the multi terminal q-FlowLoc problem (q-MT-FlowLoc)
is introduced. FlowLoc problems combine two well-known modeling tools: (dy-
namic) network flows and locational analysis. Since the q-MT-FlowLoc prob-
lem is NP-hard we give a mixed integer programming formulation and propose
a heuristic which obtains a feasible solution by calculating a maximum flow in
a special graph H. If this flow is also a minimum cost flow, various versions of
the heuristic can be obtained by the use of different cost functions. The quality of
this solutions is compared.

1 Introduction and Notations

FlowLoc problems combine two well studied modeling tools: network flow and loca-
tional analysis. Network flow models are often used to determine quickest flows or flow
minimizing a given cost function (see [1] for an overview). Location theory on the other
side is often used for finding ”good” locations for facilities (see e.g. [5,6,10]). A field
in which both problems occur is evacuation planning. A network flow represents peo-
ple to be sent from a source to a sink. Depending on the objective function the overall
evacuation time has to be minimized or the flow per time unit has to be maximized (see
[2,3,4,7,8,9]). On the other hand facilities (like first aid wards, fire engines, fish&chip
shops, etc.) have to be placed. Although the placement of the facilities and the accord-
ing reduction of the capacity of some edges have influence on the optimum flow, the
two methods have only been considered in an integrated fashion by the research group
of the authors. FlowLoc problems combine network flows and locational analysis to
obtain results (e.g. lower bounds for evacuation times) taking more factors into account
and hence yielding more realistic results.

In this paper we first introduce notations and definitions. Then we give an IP for-
mulation. In Section 2 a graph H is introduced and it is shown that flows with value q
in graph H represent the feasible solutions of the q-MT-FlowLoc problem. By adding
different cost functions and calculating a minimum cost flow, different solutions can be
obtained. These are compared in Section 3.

Let an undirected network G = (V,E) with capacity function u : E → N, a set P of
facilities and a size function r : P → N be given. Furthermore let nol : E → N be a
function assigning to each edge the maximum number of facilities that can be located
there. Let L = {e ∈ E : nol(e) > 0}⊆E be the subset of edges on which facilities can be
placed. The q-MT-FlowLoc problem asks for an optimal allocation of all facilities p∈P
to edges e ∈ L (see also [7]). This means an allocation maximizing ∑v<w fvw, where fvw

is the flow value between vertex v and w, has to be found. Here facilities can only be
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placed on edges with capacity at least the size of the facility and the capacity ue of edge
e is reduced by the size of the largest facility p̃ placed on it to ue − rp̃. The number of
facilities that has to be placed is denoted with q = |P| and the number of edges on which
facilities can be placed with L = |L|. The special case q = 1 is called 1-MT-FlowLoc
problem or MT-FlowLoc single facility problem and is polynomial solvable (see [11]).
For q > 1 the problem is NP-hard ([7]).

In IP 1 an integer programming formulation for the q-MT-FlowLoc problem is given.
The objective function sums up the flow values of all vertex pairs. There are alterna-
tive objective functions (maximum difference, weighted sum) for the q-MT-FlowLoc
problem but we will restrict ourselves to the sum objective function in this paper. This
objective function can be used if it is not known in advance which vertex is source and
which one sink.

IP 1 q-MT-FlowLoc problem with sum objective function

Variables
fvw: flow value of the flow with source v and sink w
xvw

i j : flow on edge (i, j) of the flow from v to w
yi jp: indicator variable: equal to one, if facility p is placed on edge (i, j), zero
else

Constants
noli j: maximal amount of facilities that can be placed on edge (i, j)
rp: size of facility p
ui j: capacity of edge (i, j)

max ∑
v<w∈V×V

fvw (1)

s.t. ∑
(i,w)∈E

xvw
iw = fvw ∀(v,w) ∈V ×V : v < w (2)

∑
i:(i, j)∈E

xvw
i j − ∑

i:( j,i)∈E

xvw
ji = 0 ∀(v,w) ∈V ×V : v < w,∀i ∈V\{v,w} (3)

∑
p∈P

yep ≤ nol(i, j) ∀(i, j) ∈ L (4)

∑
(i, j)∈L:i< j

yi jp = 1 ∀p ∈ P (5)

xvw
i j + xvw

ji = 0 ∀v < w ∈V ×V,∀(i, j) ∈ E (6)

xvw
i j + rp · yi jp ≤ u(i, j) ∀(i, j) ∈ L,(v,w) ∈V ×V : v < w, p ∈ P (7)

xvw
i j ≤ u(i, j) ∀(i, j) ∈ E\L,(v,w) ∈V ×V : v < w (8)

yi jp = y jip ∀(i, j) ∈ L, p ∈ P (9)

yi jp ∈ B ∀(i, j) ∈ L, p ∈ P (10)

Equation (2) stores the maximum flow value between vertex v and w in variable fvw.
Equation (3) ensures that the flow conservation constraints hold for flow between all
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vertex pairs. Inequality (4) guarantees that the number of facilities placed on edge (i, j)
is less than or equal to nol(i, j). Equations (5) and (9) ensure that every facility p is,
indeed, located somewhere and that it influences the flow in both directions on the edge
in which it is placed, resepectively. Equation (6) is the standard way to model the skew-
symmetry in the undirected graph, and Equations (7) and (8) are capacity constraints.
They guarantee that the flow on each edge and for each vertex pair does not exceed the
capacity of the edge and - if a facility is placed on the edge - that the flow does not
exceed the capacity reduced by the size of the facility.

2 Heuristic

In this section a heuristic is introduced that obtains feasible solutions by solving a maxi-
mum flow problem in a special network. This network represents all possible allocation
of the facilities and all maximum flows correspond to feasible solutions for the q-MT-
FlowLoc problem if the flow value is equal to q and vice versa. The main advantage of
this heuristic is, that it always finds a feasible solution if one exists and that by adding a
cost function to the edges in the network and calculating a minimum cost flow, it is pos-
sible to adapt the heuristic to different needs like objective functions or special graph
classes.

Definition 1. Given the network G = (V,E) and the facilities P with size r : P→ N of a
(multi terminal) q-FlowLoc problem, the q-FlowLoc feasible solution network H with
vertex set VH and edge set EH is defined as follows:

VH = {s}∪{t}∪{pi : 1 ≤ i ≤ L}∪{
e j : 1 ≤ j ≤ L

}
EH = {(s, pi) ∀1 ≤ i ≤ q}︸ ︷︷ ︸

E0
H

∪{(e j, t) ∀1 ≤ j ≤ L
}︸ ︷︷ ︸

E1
H

∪{(pi,e j) ∀i, j with r(pi) ≤ u(e j)
}︸ ︷︷ ︸

E2
H

u(e) =

{
1 e ∈ E0

H ∪E2
H

nol(e j) e ∈ E1
H and e = (pi,e j)

Using network H all feasible solutions for the q-MT-FlowLoc problem can be
determined:

Theorem 1. There exists a feasible solution for the (multi terminal) q-FlowLoc prob-
lem in G if and only if there exists a maximum s-t-flow in H with flow value q. Fur-
thermore there is a one-to-one correspondence between the feasible solutions of the
FlowLoc problem in G and the flows with flow value q in H.

Proof. Let l : P → L be a feasible allocation of the facilities to the edges in G. Then
define flow x : EH → N as follows:

x(e) =

⎧⎪⎨⎪⎩
1 e ∈ E0

H or E2
H and l(pi) = e j∣∣{p ∈ P : l(p) = e j

}∣∣ e = (e j, t) ∈ E1
H

0 else
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For x the capacity constraints are fulfilled since the allocation is feasible and hence
the number of facilities placed on edge e j is less or equal to nol(e j). Furthermore the
flow conservation constraints hold for the vertices vi ∈VH since every facility has to be
placed and for the vertices e j ∈ VH since every facility has to be placed on exactly one
edge.

On the other hand let x be a flow with value q in H, then define l : P → L as follows:
l(pi) = e j, if x(pi,e j) = 1. This edge exists and is unique since the flow has flow value
q and the flow conservation constraint is fulfilled for vertex vi. On each edge e j ∈ L at
most nol(e j) facilities are placed because the capacity on edge (e j, t) ∈ EH is equal to
nol(e j). Facilities are only placed on edges having large enough capacity because of the
definition of the edge set EH . ��

An immediate consequence of Theorem 1 is Heuristic 1, a generic heuristic to find a
feasible solution for the q-MT-FlowLoc problem.

Heuristic 1. for the MTFLMFP with the sum objective function
Require: undirected graph G = (V,E), capacities u : E → N, set of possible locations L ⊆ E, set

of facilities P with size r(p), maximal number nol(e) of facilities that can be placed on edge
e ∈ L

Ensure: allocation l : P → L
1. construct the q-FlowLoc feasible solution network H
2. calculate a maximum s-t-flow x in H
3. construct allocation l : P → L from x (see proof of Theorem 1)
4. return l

The quality of the solution computed in Heuristic 1 can be influenced by computing
special maximum s-t-flows in step (1). For instance a minimum cost s-t-flows sending
q flow units can be calculated. For the cost function there are several choices, some of
which are listed in Table 1. Any combination of the cost functions for edges (pi,e j)
and (e j,t) can be chosen. The idea of the cost functions is, that the larger the capacity
of an edge, the larger the amount of facilities that can be placed on it and the smaller
the facility itself, the smaller is the influence on the maximum flow values. It is not
necessary to assign cost to edges (s, pi) because every flow with flow value q has to use
these edges, so in all cost combinations c(s, pi) = 0.

Table 1. Cost functions for the edges in EH

a b c d e
c(pi,e j) −u(e j) −u(e j)+ r(pi) −u(e j)nol(e j) −nol(e j)(u(e j)− r(pi)) 0

i ii iii iv
c(e j,t) 1 −nol(e j) −u(e j) 0
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3 Comparison of the Cost Functions

To indicate the influence of the cost selection, we list in Table 2 the performance of
the heuristic for randomly generated test graphs (using random graph generator of BGL
[12]) with n = 30 vertices and an edge density of 40%. A maximum of nolmax = 2 fa-
cilities can be placed on a single edge. We tested all combinations of the cost functions
given in Table 1. The number q of facilities and the ratio L% of edges in L to edges in E
is given in the top row of Table 2. The entries in the table give the quotient of the heuris-
tic solution and the optimal solution value computed by IP 1. All cost combinations for
the tested heuristics yield solutions close to the optimum value. No heuristic achieved
outstanding results for all tested parameter combinations. The ”right” choice of the cost
function depends on the observed problem and parameter setting. The heuristic is much
faster in finding a feasible solution (< 1sec) then CPLEX (version 12.1.0, > 5min) in
calculating an optimum solution. This follows from the fact that for obtaining the opti-
mum solution n(n−1) maximum flow problems have to be solved, while the heuristic
only has to solve one maximum flow problem in a smaller graph. The advantage of
graph H is that it is easy to construct and all feasible solutions are represented. Fur-
thermore graph H is independent of the objective function of the FlowLoc problem
and hence suitable for many problems. The cost function can be chosen corresponding
to the objective function of the FlowLoc problem and the parameters of graph G. The
special structure and the small size of H are further advantages.

Table 2. Comparison of Heuristics 1-3 and the different cost function combinations

q,L% 8,40 16,40 5,100 10,100
(a, i) 0.8698 0.8943 0.9017 0.9104
(a, ii) 0.8698 0.8958 0.9041 0.9124
(a, iii 0.8737 0.8943 0.9005 0.9025
(a, iv) 0.8698 0.8943 0.9017 0.9104
(b, i) 0.8662 0.8785 0.9024 0.9061
(b, ii) 0.8662 0.8808 0.9047 0.9171
(b, iii) 0.8753 0.8785 0.9010 0.8995
(b, iv) 0.8662 0.8785 0.9024 0.9061
(c, i) 0.8712 0.8985 0.9017 0.9180
(c, ii) 0.8712 0.8985 0.9014 0.9169
(c, iii) 0.8777 0.8985 0.9005 0.9143
(c, iv) 0.8712 0.8985 0.9017 0.9180
(d, i) 0.8712 0.8985 0.9017 0.9180
(d, ii) 0.8712 0.8985 0.9041 0.9169
(d, iii) 0.8777 0.8985 0.9005 0.9143
(d, iv) 0.8712 0.8985 0.9017 0.9180
(e, i) 0.8730 0.8875 0.8989 0.9117
(e, ii) 0.8745 0.8967 0.9004 0.9122
(e, iii) 0.8775 0.8951 0.9051 0.9052
(e, iv) 0.8730 0.8875 0.8989 0.9117
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4 Conclusion

The q-MT-FlowLoc problem is NP-hard and thus optimum solutions cannot be com-
puted in polynomial time (unless P=NP). The q-FlowLoc feasible solution network in-
corporates all feasible solutions of the q-FlowLoc problem into the s-t-flows with flow
value equal to q. By the use of different cost functions it is possible to obtain solu-
tions for the q-MT-FlowLoc problem with objective value near the optimum. The time
needed to calculate a maximum flow algorithm or a minimum cost flow in the small
graph and the corresponding allocation of the facilities is negligible compared to solv-
ing the IP formulation to obtain a optimum solution. With the help of Heuristic 1 it is
possible to find feasible solutions with reasonable objective values in short time also for
large instances. The goal is now to quantify the performance of the heuristic by using
the structure of the IP.
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Abstract. The design of efficient protocols for mesh-based Peer-to-Peer (P2P)
networks has many challenges, one of them is the bandwidth allocation. On
one hand, users (called peers) demand high Quality of Experience and network
traffic when they watch their streaming contents. On the other, Internet Service
Providers (ISPs) support their business with the capacity of their international
links. A recent strategy considered in order to meet both peers and ISPs require-
ments is the Proactive Provider Participation, shortly named P4P [10]. This ap-
proach allocates the maximum total traffic in the network, reducing at the same
time the percentage use of the most congested links. This paper addresses the bi-
level P4P problem. We introduce a polytime solution which achieves any given
accuracy when only one content is delivered in the network In addition, we de-
sign a greedy randomized technique when multiple contents are shared. Finally,
we apply our algorithm to a real peer-to-peer live video-streaming platform, when
a single content is delivered. The results highly outperform current strategies.

1 Introduction

An important amount of today’s Internet traffic is due to live video streaming [2]. For
this reason, several peer-to-peer streaming networks were developed in the last years.
The most successful ones are PPlive, TVUnetwork, SopCast, with proprietary and un-
published mesh-based protocols [8]. Mesh-based P2P networks are virtual unstructured
networks developed at the application layer, over the Internet infrastructure. Bittorrent
is the best known mesh-based P2P protocol, developed for file sharing purposes [3].
The users, called peers, offer their resources(bandwidth in a streaming application) to
others, basically because they share common interests. They can connect and discon-
nect freely. This makes P2P networks an attractive tool for them, but increases P2P’s
design challenges, because the resource availability depends on them.

In P2P, the cooperation is the key element in order to assure a certain quality of expe-
rience to end-users [8]. There are three main steps in all mesh-based P2P protocols for
cooperation. First, when a peer enters the net it should discover other peers sharing the
same content, which is called swarm selection strategy. Once a new peer knows other
peers in his swarm, he must select the best ones to cooperate, what is called peer selec-
tion strategy. Once a new peer handshakes other peers, it should decide which pieces of
the streaming content should be asked first, called the piece selection strategy [1]. This
paper is focused on the swarm selection strategy and in the peer selection strategy. The
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main issue is to locate the largest amount of traffic in the network without bottlenecks,
and keeping the quality of experience between peers. In Section 2 the mathematical P4P
model, based on [9,10], is explained. Related work on P4P can be found in [11,4,5].

Following the related work, in order to represent the complexity and scale of a real
scenario with millions of peers, the peers are grouped in nodes. Each node is a geo-
graphical subset of Internet (for example: an autonomous system or an ISP point-of-
presence), and they are interconnected by real links. Inside each node could be several
peers sharing contents. Section 3 contains a polytime resolution for one content and a
greedy randomized algorithm [7] for the general P4P problem. In Section 4 we show the
performance of the single content polytime algorithm in GoalBit, which is the first open
source real platform that widely offers live video streaming to final users in Internet [2].
Finally, Section 5 contains the main conclusions of this work.

2 Mathematical Model

Our model is inspired by [9,10], where the authors relax the model into a linear pro-
gramming one. Consider a network with nodes set V = {v1, . . . ,vn} and two one-way
links between each pair of nodes, whose respective capacities are represented by a non-
negative matrix C = (ci, j)1≤i, j≤n. The upload and download bandwidths for each node
vi ∈V are uk

i and dk
i , i = 1, . . . ,n respectively, where k ∈ {1, . . . ,K} represents different

contents (each node vi has K possible contents to download). Each link (i, j) uses a cer-
tain percentage of its capacity due to other applications, which is denoted by bi, j, called

the background traffic. Be P = Pk1
1 , . . . ,Pkm

m a set of oriented paths in the network,

where Pkh
h = (xh, . . . ,yh) (xh is the uploader and yh is the downloader). Be t1, . . . ,tm

their respective traffic magnitudes. In words: xh uploads a traffic magnitude th of con-
tent type kh to yh by the oriented path Pkh

h .
The objective function is to reduce the maximum link utilization ρ in the network.

Constraint (1) imposes that the total traffic generated in the network must be maximized.
Constraints (2) and (3) assure that each node does not upload (respectively download)
more traffic than its capacity (for each content). Constraint (4) states that edge capaci-
ties must not be exceeded. Finally, constraint (5) classifies nodes as uploader or either
downloader for each content.

min
P

max
(i, j):i�= j

ρ(P) = bi, j +
∑

h:(i, j)∈P
kh
h

th

ci, j
, s.t.

P4P Model max
P

m

∑
h=1

th (1)

∑
h:xh=i,kh=k

th ≤ uk
i , ∀i ∈V,k ∈ {1, . . . ,K} (2)

∑
h:yh= j,kh=k

th ≤ dk
j , ∀ j ∈V,k ∈ {1, . . . ,K} (3)

bi, jci, j +
kh

∑
h:(i, j)∈Ph

th ≤ ci, j, ∀i �= j ∈V (4)
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uk
i .d

k
i = 0 ∀i ∈V,k ∈ K (5)

In a real world scenario, the objective function has an economic interpretation: reduce
the bottleneck of the most expensive edges in Internet at the same time fulfilling the
peers demands (Constraint (1)) according with the available resources in the network
(Constraints (2), (3) and (4)). In practice, once we have a set of oriented paths P and
their respective magnitudes, it is possible to converge probabilistically to that traffic
distribution in a real network. The swarm (list of peers) for a peer located at node vi that
asks for content k, is populated with the following probability of peers from node v j:

wk
ji =

∑h:( j,i)∈Pk
h

th

∑x∈V ∑h:(x,i)∈Pk
h

th
. (6)

Note that the numerator of wk
ji represents, for content k, the traffic coming from node v j

to vi, while the denominator adds all incoming traffics for the same content to node vi.
Equation (6) defines how to swarm must be created(i.e., the swarm selection strategy),
where the peers in the swarm must be chosen randomly, according with the empirical
probabilities wk

ji. Moreover, the peer statistically takes in consideration these weights
also in his peer selection strategy in order to have a faster converge. See [6] for details.

3 A Polytime Resolution and Its Generalization

Despite the high complexity of the general P4P formulation, we show that there exists a
fully polynomial time approximation scheme (FPTAS) when one content is distributed
in the network:

Theorem 1. There is a FPTAS for the P4P Problem when K = 1.

Proof. Connect two ideal nodes s and t (one transmitter and the other receiver) to every
node vi with corresponding capacities ui and di. Find the mincut-maxflow φmax via
the classical Ford-Fulkerson [6] (FF) algorithm. Finally, reduce all capacities ci j by a
certain factor ρ . The minimum factor ρmin that preserves φmax can be found iteratively
with a bipartition scheme in the closed interval [max1≤i, j≤n bi, j,1] and calling FF . ��

To the best of our knowledge, there is not an exact resolution in polytime for multiple
contents [6]. A possible heuristic approach is detailed next.

Algorithm RandomList is very simple, and proposes a Greedy Randomized general-
ization for multiple contents. It receives the bandwidth matrices U = (uk

i ) and D = (dk
i )

(that store the bandwidth of every node for each content), the capacity and background
matrices C and B respectively and a probability vector (pk)1≤k≤K , that measures the
priority to the content type k. In each iteration, a content is chosen randomly according
with the priority vector p. Immediately, FF is called in order to find the best bandwidth
allocation for that content. The flows obtained so are added and the bandwidth and
capacities updated (the entry pk = 0). This process is repeated until there is no more
capacity or after all contents were delivered.
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Algorithm 1. P = RandomList(U,D,C,B, p)
1. P = /0
2. while (length(p) > 0 AND C ≥ 0) do
3. k = ChooseContent(p)
4. P = P ∪FF(Uk,Dk,C,B)
5. U pdate(U,D,C,B, p)
6. end while
7. return P

4 Empirical Results

In this work we implemented Algorithm FF when one content is delivered to converge
empirically to the optimum P4P bandwidth allocation in a real P2P video streaming
platform, called GoalBit [2]. GoalBit maintains the BitTorrent’s philosophy, trying to
extend its success to video streaming. The P4P-based strategy we propose acts exactly
in the moment of the peer list conformation, applying FF algorithm to skew routing
to converge to the theoretical P4P solution. Emulations were carried out with infor-
mation provided by The Uruguayan National Telephony Operator ANTEL from their
GoalBit deployment live service. We contrast the swarm and peer selection strategy us-
ing our P4P algorithm(i.e. FF algorithm) versus the Classical GoalBit strategy (based
on BitTorrent). For all emulations we evaluate the quality of experience of final users
(buffering time), the total amount of exchanged traffic and the one which crosses inter-
national links. In particular, we show the results of two emulations for the cases of 60
and 100 simultaneous peers connected in average. Tables 1 and 2 show, for both strate-
gies; the total traffic, incoming and outgoing international links1 traffic. Also, shows the
percentage growth of incoming and outgoing traffic PGin and PGout when the P4P model
is applied, in relation with a Classical strategy. Specifically:

PGin = 100× (
InP4P

InClassic
−1),PGout = 100× (

OutP4P

OutClassic
−1),

where InP4P, InClassic and OutP4P and OutClassic represent the total incoming and outgo-
ing traffic for P4P and Classic respectively. It is desirable to obtain negative percentage
growth, interpreted as a reduction in the international links, and consequently, an im-
provement in relation with the Classical strategy.

It can be seen from Table 1 that the incoming reduction is 47.57%, while the outgoing
reaches 74.96%, keeping the total traffic achieved by the classical strategy. Also, Table 2
shows important reductions for the 100 simultaneous peers case, and an increase in total
traffic is perceived. Fig. 1 shows that the buffer time distributions are quite similar for
both techniques. In both cases, 85% of peers perceived a buffering time lower than
55 seconds. In contrast, for the 100 simultaneous peers case, P4P present much lower
buffering times when compared with the classical strategy (see Fig. 2). 68% of the peers
wait at most 38 seconds to start playing when P4P is applied, but only 27% can start

1 As we can only measure the traffic through the outgoing and incoming links to and from
Uruguay, this will be our reference node.
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Table 1. Link utilization for 60 peers

Model Incoming Outgoing Total

Classic 31656 31366 183069
P4P 7927 16446 183067
% grow traffic -47.57 -74.96 0.0

Table 2. Link utilization for 100 peers

Model Incoming Outgoing Total

Classic 5681 10253 55078
P4P 3657 4451 58893
% grow traffic -56.59 -35.63 6.93

Fig. 1. Buffering time for 60 peers Fig. 2. Buffering time for 100 peers

playing the video during the same time. Many emulations were carried out for different
inputs showing similar bandwidth savings, close to 30% on average [6].

5 Conclusions

In this work, the Proactive Participation Provider (P4P) performance was analyzed, and
contrasted with the Classical GoalBit strategy. In a theoretical aspect, the P4P mathe-
matical model can be solved with the desired precision when only one content is dis-
tributed in the network. However, when multiple contents are distributed the problem
has not been solved exactly so far. Emulations of a real system indicate a 30% link uti-
lization reduction in average with our P4P application, and at the same time the quality
of experience seems to improve. Qualitatively, this highlights the competitiveness of
the P4P optimum bandwidth allocation.
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Abstract. Hub-and-spoke networks have wide (logistical) applications, e. g. , in
air and cargo transportation, post delivery, and telecommunication systems. In
these networks transport volume is specified as flow between several origins and
destinations. Hubs are specific facilities that serve as sorting, handling, transfer,
and distribution points. In hub-and-spoke networks, flows with different origins
and destinations are consolidated in hubs. Consolidation of flows in hubs may
decrease transportation costs but increase additional costs due to establishing and
operating hub facilities. Hub location problems deal with the location of hubs and
allocation of origin-destination nodes to hub nodes in order to route the demand
of each origin-destination pair through the network. In this paper, we extend the
classical capacitated hub location problem. For each potential hub node we con-
sider a set of different capacity levels which can be chosen. Besides, we consider
the choice of different vehicle types of different capacities and costs to model
more realistic costs. We present a single and a multiple allocation version. We
implement the resulting integer programs in GAMS and solve them with CPLEX.

1 Introduction

Hub location research is a very important area of location theory. This is due to the
wide applications of hub-and-spoke networks in transportation and telecommunication
systems [1,3]. In hub-and-spoke networks, origin-destination demand is served via hubs
rather than directly. Hubs act simultaneously as collection, consolidation, transfer, and
distribution points. Hub location problems consider the location of hubs and the allo-
cation of origin-destination nodes to hub nodes in order to route the demand of each
origin-destination pair through the network. These decisions determine the resulting
network structure.

The hub location problem was first formulated mathematically by [12] as a quadratic
integer program. Campbell [2] formulated this problem as a mixed integer LP. Later,
[8,9] formulated a hub location problem as a multi-commodity flow problem. Recent
reviews on hub location problems are given by [1,3]. Both give a review of classical
hub location models, solution approaches and recent trends. They also outline different
variants of basic models in terms of their objectives, network components, and topology,
as well as several constraints (e.g., on nodes and arcs).

Hub location problems can be categorized into five basic variants [3,10]: p-Hub Me-
dian Problem, Hub Arc Location Problems, p-Hub Center Problems, Hub Covering Prob-
lems and Hub Location Problems. In particular, the p-Hub Median Problem has received

J. Pahl, T. Reiners, and S. Voß (Eds.): INOC 2011, LNCS 6701, pp. 535–546, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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most attention in hub location research. It is characterized by a given number p of hubs to
locate. The objective is to minimize the total flow costs between all pairs of nodes. Fur-
thermore, direct connections between origins and destinations are usually not allowed.
Similarly, in p-Hub Center Problems the number of hubs to locate is predisposed. The
objective is to minimize the maximum distance (or costs) between each pair of nodes.
Several variations of this model were considered [3]. In Hub Covering Problems demand
is covered if both origin and destination nodes are within a particular distance around an
allocated hub node. The objective of Hub Arc Location Problems is to locate a given
number q of hub arcs instead of locating hubs [4,5]. The location of hub nodes is im-
plicitly given by the location of hub arcs. The hub network may not be a complete graph.
The objective is to minimize the total transportation costs. In Hub Location Problems the
optimal number of hubs is determined as a part of the problem. In general, the constraint
of using a given number of hubs is left out, when capacities in hubs are introduced. The
objective is to minimize the total costs, whereas the total costs consist of the costs of
hub facilities and transportation costs. Hence, the objective function reflects a trade-off
between lower transportation costs and higher hub cost.

Aforementioned basic variants and in particular p-hub problems have received most
attention in literature. Even these problems are usually N P-hard [3]. The basic mod-
els are extended and modified in several ways. The models differ in their objective as
well as in their constraints. Hub location problems can be classified in single and multi-
ple allocation problems. In single allocation variants each non-hub node is allocated to
a single hub node. In particular, this implies that a single hub node receives the whole
transport flow of an assigned origin node and delivers the whole demand of an assigned
destination node. In multiple allocation variants an origin-destination node may be allo-
cated to several other hub nodes. In general, multiple allocation results in greater routing
flexibility and hence is expected to have a lower objective function value. Furthermore,
models may differ in the consideration of capacities on hub nodes or on arcs. Different
types of capacity are considered in literature [3], e.g. there might be a restriction on the
total flow through hub nodes or only on the collected flow from non-hub nodes. Most
hub location problems take only one hub type into account. Two different hub types
are considered by [11] in the context of air transportation, by [12] in the context of
package delivery, and by [14] in the context of railway logistics. Further modifications
and extensions are possible and result in a huge variety of hub location models. Sur-
veys on different variations and classification schemes are given by [1,3,15]. The single
allocation hub location problem with hub capacities is known as the capacitated single
allocation hub location problem (CSAHLP). The multiple allocation version is known
as the capacitated multiple allocation hub location problem (CMAHLP).

Usually in research a single discount factor between 0 and 1 for all inter-hub flows is
considered. This factor is predetermined and independent of the actual flow volume. So
far, only some research is dedicated to a flow-dependent transport cost structure [13,14].
In all aforementioned work, the capacities of potential hub nodes are predisposed and
hence exogenous decisions. Nevertheless, a strategic network design for hub-and-spoke
networks contains the strategic decision of dimensioning hub facilities, too. So far, only
[6] has dealt with several capacity levels in hubs in a single allocation context with a
predisposed discount factor for collection, transfer, and distribution arcs.
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In this paper, we present a single and a multiple assignment hub location model
with the choice of capacity levels. The number of hubs is not specified explicitly but is
determined implicitly by the optimization. We limit the total flow through hub nodes,
that is, the collected and transferred flow. Besides, we consider the choice of different
vehicle types with different capacities and costs to model more realistic costs. Thus,
the determination of the number of needed vehicles of each type to meet the demand
becomes part of the problem. Hence, the impact of economies of scale on costs will
vary across node pairs. To the best knowledge of the authors, these problems have not
been considered in the literature.

The remainder of the paper is organized as follows. In Section 2, we develop a single
and a multiple allocation version for hub location problems with the choice of different
vehicle types and multiple capacity levels in hubs. We implement the resulting integer
programs in GAMS and solve them with CPLEX for test data sets with 10 to 30 nodes.
The results of our computational tests are presented in Section 3. The paper ends with
conclusions on limitations and further research needs.

2 Formulations

In this paper, we extend the capacitated single assignment hub location problem with
multiple capacity levels (CSAHLPM) introduced by [6]. Instead of predisposed dis-
count factors we introduce the choice of different vehicle types to model more real-
istic costs. Besides, we restrict the total flow through hubs. We consider a single and
a multiple allocation version. Before formulating both problems in Sections 2.2 and
2.3, we introduce some notation. The section ends with an extension of the formulation
CSAHLPM of [6] to multiple allocation.

2.1 Notations

The following notation is introduced:

N = {1, . . . ,n} set of nodes
Γk = {1, . . . ,sk} set of different capacity levels of a hub at node k (k ∈ N)
Wi j transport volume of each origin-destination pair (i, j) (i, j ∈ N)
cq

k cost of a hub at location k with capacity level q (k ∈ N,q ∈ Γk)
γq

k capacity of a hub k with capacity level q (k ∈ N,q ∈ Γk)
U = {1, . . . , ū } set of different vehicle types on arcs
cu

kl cost of a vehicle of type u on arc (k, l) (k, l ∈ N, u ∈U)
bu

kl capacity of a vehicle of type u on arc (k, l) (k, l ∈ N,u ∈U)

Let Oi = ∑ j∈N Wi j be the total flow originating at origin i and D j = ∑i∈N Wi j the
total demand of destination j (i, j ∈ N). Costs cq

k include fixed costs for establishing
and operating a hub with capacity level q at node k (k ∈ N,q ∈Γk). Besides, we assume
γq1

k < γq2
k and cq1

k < cq2
k for q1 < q2 and q1,q2 ∈ Γk. This assumption is helpful to do

some preprocessing tests, cf. Table 2. Hence, it is not necessary to request bu1
kl < bu2

kl
with cu1

kl < cu2
kl for u1 < u2 and u1,u2 ∈U in order to do further preprocessing tests. We

assume ∑k∈N γ
sk
k ≥ ∑k∈N Ok and Wi j = 0 for i = j (i, j ∈ N).
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Each origin-destination path consists of three different components: a collection
movement from an origin to the first hub, transfer movements from the first hub to
the last hub, and a distribution movement from the last hub to the destination. A path
with only one hub-stop is also possible. In this case, the transfer step can be omitted.
We define three different sets of integer decision variables corresponding to the three
components of an origin-destination path.

Xik = flow from origin i to hub k (i,k ∈ N)
Y i

kl = flow from hub k to hub l that originates at origin i (i,k, l ∈ N)
Zi

l j = flow from hub l to destination j that originates at origin i (i, j, l ∈ N)

Each non-negative variable induces a single arc of the network. If the origin or desti-
nation is also a hub node, this arc might be from the particular node to itself. Transfer
arcs connect hub nodes and do not exist if the origin-destination path is routed via ex-
actly one hub. Besides, we have integer variables vu

pq to consider the choice of different
vehicle types u of different capacity on arc (p,q).

vu
pq = number of vehicles of type u on arc (p,q) (p,q ∈ N, u ∈U)

We consider binary decision variables for locating hubs and allocating capacity levels
to the hubs:

Hk =
{

1 if node k is a hub (k ∈ N)
0 otherwise

Hq
k =

{
1 if node k is a hub with capacity level q (k ∈ N,q ∈ Γk)
0 otherwise

2.2 Multiple Allocation Formulation

In this section, we extend the classical capacitated multiple allocation hub location
problem. Instead of discount factors on arcs we introduce the choice of different ve-
hicle types on each arc. We also introduce the choice of different capacity levels in
hubs. The formulation is given as follows:

(FMA) min ∑
k∈N

∑
q∈Γk

cq
kHq

k + ∑
k∈N

∑
l∈N

∑
u∈U

cu
klv

u
kl (1)

s. t. ∑
k∈N

Xik = Oi ∀ i ∈ N (2)

∑
l∈N

Zi
l j = Wi j ∀ i, j ∈ N (3)

Xik +∑
l∈N

Y i
lk = ∑

l∈N

Y i
kl + ∑

j∈N
Zi

k j ∀ i,k ∈ N (4)

Xik ≤ OiHk ∀ i,k ∈ N (5)

Y i
kl ≤ OiHk ∀ i,k, l ∈ N (6)

Y i
kl ≤ OiHl ∀ i,k, l ∈ N (7)
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Zi
l j ≤Wi jHl ∀ i, j, l ∈ N (8)

∑
i∈N

(
Xik +∑

l∈N

Y i
lk

)
≤ ∑

q∈Γk

γq
k Hq

k ∀ k ∈ N (9)

∑
q∈Γk

Hq
k = Hk ∀ k ∈ N (10)

Xkl +∑
i∈N

(Y i
kl + Zi

kl) ≤ ∑
u∈U

bu
klv

u
kl ∀ k, l ∈ N,k �= l (11)

Xik ∈ Z+ ∀ i,k ∈ N (12)

Y i
kl ∈ Z+ ∀ i,k, l ∈ N (13)

Zi
l j ∈ Z+ ∀ i, j, l ∈ N (14)

vu
kl ∈ Z+ ∀ k, l ∈ N, u ∈U (15)

Hk ∈ {0,1} ∀ k ∈ N (16)

Hq
k ∈ {0,1} ∀ k ∈ N,q ∈ Γk (17)

The objective function (1) minimizes the total costs consisting of establishment and
operation costs of hub facilities as well as transportation costs. Constraints (2), (3),
and (4) are flow related constraints. Constraints (2) assure that all flow from each origin
leaves the origin. Constraints (3) ensure that all origin-destination demand arrives at
the proper destination and constraints (4) are the flow conservation constraints in hubs.
If the origin or destination is also a hub node the corresponding arc might be from
the particular node to itself. The flow conservation constraints still have to be valid for
this node. Constraints (5), (6), (7), and (8) ensure that a hub is established for each
collection, transfer or distribution movement. These constraints may be necessary to
assure a feasible solution to the problem [7]. Constraints (9) are capacity constraints for
all incoming flows at hubs, which includes the incoming flows from non-hub nodes and
the flows transferred from other hubs. Constraints (10) ensure that for each hub node
established a single capacity level is chosen. Constraints (11) assure that the flow on an
arc cannot exceed the capacity of vehicles assigned to the corresponding arc. Therefore,
the determination of the number of needed vehicles of each type to meet the demand
becomes part of the problem. Hence, the impact of economies of scale on cost will vary
across all node pairs. Finally, constraints (12)–(17) are domain constraints.

In Table 1 several preprocessing tests for formulation (FMA) are proposed to reduce
the size of the problem. Results of computational experiments are given in Subsection
3.2. In the next subsection we present a single allocation version of the problem above.

2.3 Single Allocation Formulation

The single allocation version is similar to the problem above. In addition, each non-hub
node is restricted to be allocated to a single hub node. In the single allocation case,
however, we can restrict the variables Xik to be binary. Therefore, we can eliminate the
Zi

l j variables and replace the binary variables Hk by Xkk, whereas Xkk is one if node k
becomes a hub and zero otherwise. Accordingly, we have the following new decision
variables Xik = 1 if node i is allocated to a hub node at k and 0 otherwise, for all(i,k∈N).
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Table 1. Preprocessing Tests for (FMA)

Condition Fixed Variables

Test 1 k = l for k, l ∈ N vu
kl = 0 for all u ∈U

Y i
kl = 0 for all i ∈ N

Test 2 i = l for i, l ∈ N Y i
kl = 0 for all k ∈ N

Test 3 Wi j = 0 for i, j ∈ N Zi
l j = 0 for all l ∈ N

The single allocation formulation is given as follows:

(FSA) min ∑
k∈N

∑
q∈Γk

cq
kHq

k + ∑
k∈N

∑
l∈N

∑
u∈U

cu
klv

u
kl (18)

s. t. ∑
k∈N

Xik = 1 ∀ i ∈ N (19)

OiXik +∑
l∈N

Y i
lk = ∑

l∈N

Y i
kl + ∑

j∈N

Wi jXjk ∀ i,k ∈ N (20)

Xik ≤ Xkk ∀ i,k ∈ N (21)

Y i
kl ≤ OiXkk ∀ i,k, l ∈ N (22)

Y i
kl ≤ OiXll ∀ i,k, l ∈ N (23)

∑
i∈N

(
OiXik +∑

l∈N

Y i
lk

)
≤ ∑

q∈Γk

γq
k Hq

k ∀ k ∈ N (24)

∑
q∈Γk

Hq
k = Xkk ∀ k ∈ N (25)

OkXkl +∑
i∈N

Y i
kl + DlXlk ≤ ∑

u∈U
bu

klv
u
kl ∀ k, l ∈ N,k �= l (26)

Xik ∈ {0,1} ∀ i,k ∈ N (27)

Y i
kl ∈ Z+ ∀ i,k, l ∈ N (28)

vu
kl ∈ Z+ ∀ k, l ∈ N, u ∈U (29)

Hq
k ∈ {0,1} ∀ k ∈ N,q ∈ Γk (30)

The objective (18) minimizes the cost for transportation and hubs. Constraints (19) as-
sure that each non-hub node is allocated to a single hub node. Constraints (20) are the
flow conservation equations at hubs. Constraints (21), (22), and (23) ensure that hub
nodes are established for each collection, transfer, and distribution movement. Con-
straints (24) are capacity constraints for hub nodes. The following constraints (25) en-
sure that a single capacity level is chosen for each established hub node. Constraints (26)
assure that the flow on each arc (k, l) cannot exceed the capacity of vehicles assigned to
it. Finally, constraints (27)–(30) are domain constraints.

In Table 2 we present some reprocessing tests for the formulation above. Similar
to the result of [6] we show that constraints (21) are not needed in the case of integer
decision variables:
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Table 2. Preprocessing Tests for (FSA)

Condition Fixed Variables

Test 1 Ok > γq
k for k ∈ N and q ∈ Γk Hq

k = 0
Test 2 Oi +Ok > γsk

k for i,k ∈ N, i �= k Xik = 0
Test 3 Ok > γsk

k for k ∈ N Hsk
k = 0

Xik = 0 for all i ∈ N
Test 4 k = l for k, l ∈ N vu

kl = 0 for all u ∈U
Y i

kl = 0 for all i ∈ N
Test 5 i = l for i, l ∈ N Y i

kl = 0 for all k ∈ N
Test 6 Xik = 0 for i,k ∈ N Y i

kl = 0 for all l ∈ N

Theorem 1. Constraints (21) in formulation (FSA) are redundant.

Proof. Let Xkk = 0, k ∈ N. Due to constraints (25) we have ∑q∈Γk
Hq

k = 0 and hence
Hq

k = 0 for all q ∈Γk. Therefore, constraints (24) imply∑i∈N

(
OiXik +∑l∈N Y i

lk

)
= 0 and

in particular Xik = 0 for all i ∈ N. Let Xik = 1, i,k ∈ N. Then ∑i∈N OiXik > 0 and also,
∑i∈N

(
OiXik +∑l∈N Y i

lk

)
> 0. Hence, constraints (24) imply ∑q∈Γk

γq
k Hq

k > 0. Therefore,
it is∑q∈Γk

Hq
k > 0. Because of constraints (25) it holds Xkk > 0 and thus Xkk = 1. �

Due to this result, we can remove constraints (21) from (FSA). Hence, this reduces the
number of constraints, but the linear relaxation of the problem might be weaker.

2.4 Further Modifications

If we remove the constraints regarding vehicles, introduce costs concerning discount
factors for collection, transfer, and distribution, limit only the incoming flow of non-hub
nodes at hubs, and do not restrict the X , Y , and Z variables to be integer, we get a similar
formulation to the one of [6] in the case of multiple allocation, the (CMAHLPM).

The following notation is introduced:

di j distance from node i to node j (i, j ∈ N)
χ unit costs for collection (origin-hub)
α unit costs for transfer (hub-hub)
δ unit costs for distribution (hub-destination)

In general, α is used as a discount factor to provide reduced costs per unit on arcs
between hubs to reflect the economies of scale. We assume α < χ and α < γ . Besides,
we suppose symmetric distances, i. e., di j = d ji(i, j ∈ N). The triangle inequality holds
for the distances: di j ≤ dik + dk j for all i, j ∈ N and all k ∈ N. Correia et al. consider
in [6] only non-processed flow incoming at the hubs, i. e. incoming flow from non-hub
nodes and the flow originated at the hub itself. Hence, constraints (9) are replaced by
constraints (32). Besides, the flow variables are not restricted to be integer.

The mixed integer formulation for a CMAHLPM version is the following:

min∑
i∈N
∑
k∈N

(χdikXik +∑
l∈N

αdklY
i
kl + ∑

j∈N

δdk jZ
i
k j)+ ∑

q∈Γk

cq
kHq

k (31)
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s. t. (2)− (8),(10),(16),(17)

∑
i∈N

Xik ≤ ∑
q∈Γk

γq
k Hq

k ∀ k ∈ N (32)

Xik ≥ 0 ∀ i,k ∈ N (33)

Y i
kl ≥ 0 ∀ i,k, l ∈ N (34)

Zi
k j ≥ 0 ∀ i, j,k ∈ N (35)

3 Computational Experiments

In this section we present computational experiments for formulations (FMA) and (FSA).
First, we describe the construction of the test data. Afterwards, we present the compu-
tational results. We tested both formulations with the same test data sets.

3.1 Test Data

The test data sets are generated randomly as follows: The integer origin-destination de-
mand Wi j (i, j ∈N) is randomly chosen between 0 and 7. Let V be the total transport vol-
ume, V =∑i∈N ∑ j∈N Wi j. The capacity in hubs is constructed successively. For each po-
tential hub node k ∈ N the lowest capacity level γ1

k is randomly chosen between 40 and
100 % of the total transport volume: γ1

k ∈ [0.4V,V ]. Each capacity level is reduced by 20

% of the capacity of the level directly above: γq
k = 0.8γq+1

k ⇔ γq+1
k = 1.25γq

k , for all
q,q+1∈Γk. The costs of the highest capacity level at a hub is randomly chosen between
10 and 15 Euro multiplied with the corresponding hub capacity: csk

k ∈ [
10γsk

k ,15γsk
k

]
.

The cost (per unit) of a lower capacity level is 10 % higher than the cost of the up-

per level: cq
k = 1.1γq

k
cq+1

k

γq+1
k

. In all test scenarios, we consider only two or three different

vehicle types on arcs. In the case of two vehicle types the capacities are given by 20
for the first (smaller) vehicle and by 30 for the second one. In the case of three vehicle
types the capacities of the vehicles are 15, 23, and 30. Hence, we have bu = bu

kl for all
k, l ∈ N and u ∈U , whereas bu is the capacity of a vehicle of type u on each arc. In each
case, the costs of the first vehicle are randomly chosen between 300 and 20,000 Euro.
The costs from a node k to l are approximately the costs of l to k with a tolerance of 5
%: c1

lk ∈
[
0.95c1

kl,1.05c1
kl

]
. The costs of the other vehicles are constructed successively:

cu+1
kl = 0.9bu+1 cu

kl
bu ,k, l ∈ N,u,u+1∈U . Hence, we have c2

kl = 1.35c1
kl in the case of two

different vehicle types, and c2
kl = 1.38c1

kl and c3
kl = 1.62c1

kl in the case of three different
vehicle types.

We generated several test scenarios in order to test and compare the influence of the
different parameters. The test data sets differ in the number of hub types, the number of
capacity levels and the number of vehicle types, cf. Table 3. These parameters influence
the number of decision variables and constraints as well as the running time and gap,
cf. Subsection 3.2.
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Table 3. Test data sets

Scenario Number nodes Capacity levels Vehicle types

01 10 2 2
02 10 2 3
03 10 3 2
04 10 3 3
05 20 2 2
06 20 2 3
07 20 3 2
08 20 3 3
09 30 2 2
10 30 2 3
11 30 3 2
12 30 3 3

3.2 Computational Results

We implemented the resulting integer programs in GAMS 23.3.3 and solved them with
CPLEX 12.1.0. All tests were carried out on a PC under Windows 7 (64bit) with an
Intel Core i5 650 CPU, 3,2 GHz and 8 GB RAM. We tested all constructed data sets
for both formulations, whereas we set the time limit to 2 hours. The computational
results of testing formulation (FMA) are given in Table 4 and of testing formulation (FSA)
without constraints (21) in Table 5. In both tables we list the gap after a run-time of 2
hours as well as the gap of the first and last feasible solution found. Besides, we specify
the number of constraints and decision variables for both formulations and all tested
data sets, cf. Tables 4 and 5. The gap is calculated by BF−BP

BF , where BF is the objective
function value of the current best integer solution and BP is the best possible integer
solution (i.e. the current best lower bound).

In particular, the number of nodes has a great influence on the number of variables
and constraints, cf. Tables 4 and 5. In both test series feasible solutions are found for
each scenario, but finding optimal solutions is hardly possible for any test scenario.
Only for two small data sets (scenario 03 and 04 in the single allocation case) optimal
solutions are found. In all other tests no (provable) optimal solution is found.

In both test series we observe that the run time until a feasible solution is found
increases with an increasing number of nodes. In the first four scenarios feasible solu-
tions are found immediately, whereas the gap of the first feasible solutions found are
relatively high. Nevertheless, the final gap in each of these scenarios is relatively small.
An increase of the number of nodes by 10 results in larger run-times until feasible so-
lutions are found. In the single allocation case, feasible solutions are found within 19
and 22 seconds for scenarios 05 - 08. In comparison to this, feasible solutions for the
multiple allocation formulation are found relatively late. The run-time until a feasible
solution is found is between 73 and 111 seconds. This disparity in the run-time is more
significantly in the last four scenarios. In the multiple allocation case, feasible solution
are found after run-times between 1,464 and 1,781 seconds, while in the single alloca-
tion case the run-time until feasible solutions are found is between 391 and 663 seconds.



544 J. Sender and U. Clausen

Table 4. Computational results of solving(FMA) optimally (run-time 2h)

Scenario Decision
variables

ConstraintsTime(sec)/gap(%) Time(sec)/gap(%)
(first feasible
solution)

Time(sec)/gap(%)
(last feasible
solution)

01 4,261 3,421 7,200 / 7.45 0 / 66.90 284 / 10.38
02 4,471 3,421 7,200 / 5.46 1/ 44.67 6,514 / 5.51
03 4,291 3,421 7,200 / 3.59 0 / 53.57 44 / 10.15
04 4,481 3,421 7,200 / 1.73 0 / 41.60 2,163 / 2.44
05 32,621 25,641 7,200 / 7.58 73 / 23.99 5,509 / 7.67
06 33,381 25,641 7,200 / 4.89 111 / 19.31 6,486 / 4.92
07 32,801 25,641 7,200 / 2.65 87 / 26.06 5,793 / 2.69
08 33,641 25,641 7,200 / 3.48 85 / 18.70 2,849 / 3.75
09 109,021 84,661 7,200 / 6.88 1,781 / 29.14 6,701 / 7.22
10 111,121 84,661 7,200 / 20.19 1,623 / 38.64 5,744 / 20.22
11 109,081 84,661 7,200 / 18.81 1,464 / 33.76 1,792 / 18.81
12 110,791 84,661 7,200 / 18.46 1,558 / 32.40 7,062 / 18.46

In scenario 05 of the single allocation case the gap of the first feasible solution found is
relatively high with a gap of 79.60 % after a run-time of 19 seconds. However, the sec-
ond feasible solution is found after 21 seconds with a gap of 8.70 %. Similar results can
be observed for scenarios 06 and 07. In these cases, the first feasible solutions are found
after 22 seconds with a gap of 25.25 % and after 21 seconds with a gap of 23.61 %, re-
spectively. However, next feasible solutions are found after a run-time of 25 seconds
with a gap of 10.96 % and after 26 seconds with a gap of 9.27 %, respectively.

In both test series and for all test data sets, only small improvements of the objective
value are observed until the time-limit is reached. For example, in scenario 07 in Table 5
the last feasible solutions is found after 290 seconds with a gap of 0.92 %. Nevertheless,
the gap decreases only by 0.53 % until the time-limit of 7,200 seconds is reached. In
scenario 11 in Table 4 no improvement of the gap is observed after the last feasible
solution is found after 1,792 seconds. Similar results, i. e. only minimal decrease of
the gap, are observed in all test scenarios. Hence, verification of optimality is highly
time-consuming. Remarkable is, that in the multiple allocation case an increase of the
number of hub nodes by 10 results in a great increase of the gap, cf. scenario 09 - 12
in Table 4. In the single allocation case, similar results are observed. In these cases,
however, the gap is relatively small in comparison to the multiple allocation case.

The comparison of the results of both formulations shows that the number of decision
variables and constraints is notably larger in the multiple allocation case. The number of
constraints is about 50 % and the number of decision variables is 70–90 % higher. This
is due to the greater flexibility of multiple allocation formulations. Hence, the greater
flexibility results in higher (final) gaps. In each scenario the gap after a run-time of
2 hours is (significantly) larger in the multiple allocation case, in particular in the last
four scenarios. Nevertheless, a comparison of the optimal objective values shows that in
almost all scenarios, except scenario 10, the objective value after a run-time of 2 hours
is lower in the multiple allocation case while the final gap is significantly larger.
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Table 5. Computational results of solving (FSA) without constraints (21) optimally (run-time 2h)

Scenario Decision
variables

ConstraintsTime(sec)/gap(%) Time(sec)/gap(%)
(first feasible
solution)

Time(sec)/gap(%)
(last feasible
solution)

01 2,441 2,221 7,200 / 2.77 0 / 71.80 6,807 / 2.82
02 2,591 2,221 7,200 / 4.06 0 / 66.78 6,521 / 4.10
03 2,431 2,221 2,158 / 0.00 0 /65.39 949 / 1.94
04 2,611 2,221 4,838/ 0.00 0 / 67.10 4,754 / 0.07
05 17,621 16,841 7,200 / 0.86 19 / 79,60 3,370 / 1.93
06 18,381 16,841 7,200 / 1.53 22 / 25.25 1,874 /1.70
07 17,661 16,841 7,200 / 0.39 21 / 23.61 290 / 0.92
08 18,421 16,841 7,200 / 1.25 22 / 7.30 6,500 / 1.26
09 57,631 55,861 7,200 /1.74 427 / 9.59 6,897/1.80
10 59,371 55,861 7,200 / 7.13 419 / 13.05 7,146/ 7.14
11 57,691 55,861 7,200 / 7.04 391 / 12.89 6,597 /7.20
12 59,431 55,861 7,200 / 7.80 663/15.47 5,793 / 8.51

These results let assume, however, that greater (more realistic) test data sets would
lead to higher computing times and gaps as well as an increasing complexity. Hence,
refinements of the modeling approach and development of specific algorithms to solve
larger problems efficiently are necessary in order to solve realistic test data sets (near-)
optimal. In particular, further research should be done on alternative formulations of
the problems, which should be compared (e.g., in terms of the bound provided by the
linear relaxation). More research should also be done on redundant constraints as well
as constraints which enhance the model.

4 Summary and Outlook

In this paper, we extend the classical hub location problem. We consider a single and
a multiple allocation version of a capacitated hub location problem with several capac-
ity levels in hubs and the choice of different vehicle types on arcs. We formulate the
problem as a multi-commodity flow problem with additional constraints. Additionally,
we present some preprocessing tests for both versions. We implemented the resulting
integer programs in GAMS 23.3.3 and solved them with CPLEX 12.1.0 for test data
sets with 10 to 30 nodes. We compare the computational results. For hardly any test
scenario an optimal solution is found within a run-time of 2 hours. In general, only
small improvements in the objective value are observed after first feasible solutions are
found. The multiple allocation formulation increases the flexibility of the problem but
also increases the number of constraints and decision variables significantly. Therefore,
the tests of the multiple allocation formulation result in higher run-time until feasible
solutions found and hence in higher gaps. A comparison of the optimal objective values
shows that in almost all scenarios the objective values are lower in the multiple allo-
cation than in the single allocation case although the final gaps are larger in the first
test serial. These results lead to the conclusion that larger test data sets would result
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in higher computing times and gaps as well as in an increasing complexity. In order
to find (near-) optimal solutions for realistic data sets refinements of the modeling ap-
proach and development of specific algorithms to solve larger problems efficiently are
necessary. Hence, further research should be done on alternative formulations of the
problems which should be compared (e.g., in terms of the bound provided by the lin-
ear relaxation). More research should also be done on redundant constraints as well as
constraints which enhance the model.
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Abstract. In this paper, we present a two-stage stochastic program for locating
disaster response facilities. Our modeling approach is unique in the literature in
that it explicitly correlates the functioning of a facility with a particular disaster
scenario. In particular, in our model the functioning of a facility is directly af-
fected by its distance from the disaster epicenter. This represents an important
modeling aspect of emergency facility location that to date has been ignored in
the existing literature. To demonstrate the potential contributions of our model,
we present a computational case study of (earthquake) disaster response facility
location for the state of California. Our computational results show the distinct
changes in the optimal location of facilities. Instead of placing facilities directly
on top of some of the highest-risk areas (the traditional k-median solution), our
model tends to place facilities still close to population centers, but farther away
from high-risk areas.

1 Introduction

Recent years have brought forth a number of devastating large-scale emergency situ-
ations, such as Hurricanes Rita and Katrina that affected the United States as well as
portions of the Carribbean in 2005, or the earthquakes in Sichuan, China in 2008, and
in Haiti in 2010. In the United States, this has prompted policy makers at the federal
and at the state level to coordinate the establishment of disaster response facilities. At
these facilities, supplies (food rations, medical items, rescue equipment) are stored for
use in the event of a large-scale emergency. An example of this pre-positioning strategy
is the creation of the Strategic National Stockpile (SNS) [6]. A crucial aspect of such
pre-positioning strategies is the judicious choice of the pre-positioning sites, which is a
facility location problem.

In the existing literature, such emergency facility location has been subject to the
application of traditional techniques using the k-center and k-median models. There
exists literature on facility location with unreliable facilities [2,3,12]; however, these
models are formulated for a conventional facility location setting, and not the scenario
based setup that emerges in disaster response modeling. Emergency location models
presented in [8,9,10,7,1,14] either do not model damage to facilities, or account for it by
modeling the available capacity of a facility as a constant fraction of the total capacity,
or account for the available capacity in a deterministic manner. We provide a model
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that (1) acknowledges the direct effect a disaster can have on the facilities themselves;
(2) includes the inherent stochastic nature of the occurrence and effects of large scale
emergencies; and (3) considers the occurrence of a disaster to possibly encompass more
than one node in the network.

A key consideration that makes emergency facility location significantly different
from a regular k-median approach is the dependence of the availability of a facility
on a particular disaster scenario. Under normal circumstances, there is no demand for
emergency supplies. The occurrence of a disaster generates a localized demand, while
simultaneously reducing the supplying capabilities of facilities in that area. We model
this by correlating the functioning of a facility with each disaster scenario.

Furthermore, we distinguish between potential disaster locations (called epicenters),
the points of interest like cities (the demand points) and the potential facility locations.
As a result, we are able to frame a model in which a disaster at any location can affect
nearby demand points and the disaster response facilities that were built. An implication
of this framework is that now more than one demand point can be affected by a disaster
scenario, unlike a regular k-median formulation [8].

We address the stochastic nature of the problem by formulating it as a 2-stage stochas-
tic programming model, with the setup of the facilities being decided in the first stage.
A number of transportation subproblems are solved in the second stage, depending on
the demand for relief and the reduction in capabilities of the facilities due to structural
damage caused by the disasters.

Some information that our model requires as input from a decision maker are the
potential disaster locations with the probability of a disaster happening there, and an
estimate of the effect a disaster will have on the nearby demand points and facilities.
We provide a case study using our model for locating disaster response facilities to
pre-position supplies for earthquake relief in the state of California.

2 The Stochastic Distance Dependent Model

This section formally presents the mathematical formulation of our problem as a 2-
stage stochastic program with binary first stage. The first stage decision is to choose the
locations of a given number (k) of facilities. The second stage decisions are the amounts
to be routed from the opened facilities to the demand points for each disaster scenario,
once the demands and reduced capability of the facilities are known.

For simplicity, and without loss of generality, the demands Di at demand point i ∈ I
and capacities c f of a facility f ∈ F are represented in the same units. These units could
represent, for example, the number of people whose needs have to be fulfilled, if there
is one emergency supply packet stored per person to be served. The probability of a
disaster occurring at and epicenter e ∈ E is denoted by we. The quantity d̄i f denotes the
travel distance from facility f to demand i, whereas dex denotes the Euclidean distance
between e and x ∈ I ∪F , and is used to estimate the damage at x due to a disaster at e.
The random variable p̃ex, which is a function of dex, denotes the damage at x ∈ I ∪F
as a fraction of the total demand/capacity. It should be noted that given dex, we assume
that we can obtain the distribution of p̃ex.
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In our model, the binary variable x f denotes the decision to open a facility at location
f ∈ F . The variable yei f denotes the amount of service provided by facility f to demand
point i when a disaster occurs at e. We now present our formulation,

min Ep̃[ f (x, p̃)] (1)

s.t ∑
f∈F

x f ≤ k, x ∈ {0,1}|F| (2)

Where for a particular realization p of damage p̃, we have

f (x, p) = ∑
e∈E

∑
f∈F
∑
i∈I

wed̄i f yei f (3)

s.t. ∑
i∈I

yei f ≤ (1− pe f )c f x f ∀e ∈ E,∀ f ∈ F (4)

∑
f∈F

yei f ≥ peiDi ∀e ∈ E,∀i ∈ I (5)

yei f ≥ 0 ∀e ∈ E,∀i ∈ I,∀ f ∈ F (6)

Note that an expectation over all the possible disaster scenarios is already implicit
in the objective function (3) of the subproblem. The only random variables we take an
expectation over in the objective function (1) of the master problem are the damages to
facilities and cities in each of the disaster scenarios.

3 Computational Results

For a computational study of our model, we solve the problem of locating facilities
to pre-position earthquake response supplies such as potable water, tents, food packets
for the state of California, USA. Earthquakes were chosen for their large geographical
impact that can damage facilities as well as multiple cities. We chose California due to
the availability of past earthquake data as well as the presence of significant research in
forecasting the occurrence of earthquakes in California [11].

We use the 20 largest cities (by population) in California as the demand as well
as potential facility locations, with demands proportional to their populations. In ad-
dition, 35 grid points with integer longitude and latitude values within Southern and
Central California serve as additional potential facility locations. The earthquake sce-
narios are constructed by using historic data of the 23 earthquakes of magnitude larger
than 6 on the Richter scale that occurred in and around California since 1973 [13].
An expectation over all these 23 scenarios (assumed equiprobable) is taken in the sec-
ond stage of the stochastic programming formulation. The data used is available at
http://people.tamu.edu/˜anuragverma/SEFLdata.

The damage due to these earthquakes is modeled using the intensity-distance func-
tion provided in [4]. For the purpose of our computational study, we assume the damage
to be proportional to the intensity, and be given as a function of the distance from the
epicenter as pex(dex) = 0.69e(0.364−0.130 ln(dex)−0.0019dex) where dex is measured in kilo-
meters [4]. To incorporate stochasticity of earthquake damages, p̃ex is modeled as a
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(a) k-median locations (b) Locations found by our model

Fig. 1. Locations of 7 facilities with capacity 800,000 as found by the k-median model and our
model

(a) 5 facilities (b) 7 facilities

Fig. 2. Locations of 5 & 7 facilities with capacity 800,000 as found by our model

random variable with values pex, pex/2 and 3pex/2 with probabilities 0.6, 0.2 and 0.2
respectively.

To gauge the effects of capacity and number of facilities on their optimal location,
we ran our model for placing 5,7, and 9 facilities with capacities 700,000, 800,000,
900,000, and 1,000,000 each. To compare the location of facilities suggested by our
model to those in the existing literature, we implemented the regular k-median model
presented in [8], where the damage to facilities is independent of distance from the dis-
aster epicenter and the same in all scenarios. Due to computational time constraints,
the findings we report for our stochastic model in this section are based on the incum-
bent solution found after running the L-shape algorithm [5] for 12,000 seconds on a
workstation with a 2.66 GHz CPU with 4GB memory.
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A snapshot of the results obtained is presented in Figures 1 and 2. From the figures,
it can be observe that Los Angeles (LA) and the San Francisco (SF) Bay Area are
potential high risk areas where a large city is located near an earthquake epicenter. From
figure 1, which compares the placement of 7 facilities with capacities 800,000 using
different models, we can observe that compared to the k-median model, our model
places facilities at a safer distance from the epicenters. More specifically, a facility
placed at an earthquake prone city near SF by the k-median model is moved farther
away to a relatively safer city by our model. Furthermore, one of the two facilities in the
SF Bay Area is moved near LA, which is earthquake prone and has a large population.
Again, in our model facilities are moved from the immediate vicinity of LA to relatively
safer but still close locations.

Figure 2 presents a sensitivity analysis of the solutions to our model. Figures 2a and
2b present the locations of 5 and 7 facilities with capacity 800,000 each. We observe that
when a larger number of facilities is available to be placed, the model places facilities
at more convenient, but riskier locations. This is because in such a situation, the impact
of facility damage is less drastic due to facility redundancy.

4 Conclusion

This paper presents a 2-stage stochastic program for locating disaster response facilities.
Our modeling approach is unique in the literature in that it explicitly correlates the
functioning of a facility with a particular disaster scenario. This represents an important
modeling aspect of emergency facility location that to date has been ignored in the
existing literature.

Our research provides the quantitative tools to aid policy makers in the decision pro-
cess for disaster response facility location. Our computational results show the distinct
changes in the optimal facility locations under our new set of assumptions about dam-
age to facilities. Furthermore, results of a sensitivity analysis on the number of facilities
suggests a direct connection between available capacity and the proximity of optimal
locations to high-risk areas. This suggests that our modeling approach will be especially
useful in light of realistic, tight budgetary constraints.
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Abstract. The economic uncertainty and demand volatility put the maritime car-
riers under operational pressure and the obligation of better planning and better
benchmarking of solutions. One of the ways to tackle uncertainty is to oper-
ate with robust plans. This paper investigates a robust optimization framework
and uses well-known time-expanded networks and appropriate linear programs
to study and solve three variants of a robust optimization empty container repo-
sitioning problem. We propose a new, dynamic generation constraints approach
and effectively solve all these variants for a real world look-like set of instances.
We use a list of global maritime ports to build artificial instances while exploring
computational limits of the classic and dynamic approach. We are able to solve
instances with hundreds of millions of additional, linear constraints. Our experi-
mentation shows that this approach is efficient as well as indispensable for such
big instances.

1 Introduction

Companies throughout the shipping world carefully forecast and plan the use of empty
containers. Despite these efforts, everybody expects small changes on these forecasts
due to uncertainty and volatility of demand. Even a single change can have considerable
negative impact on daily operations of the company. A series of small changes on the
demand can completely destroy the previous plan and the shipping company will fail to
satisfy new demands. As a result, the company could loose new contracts and clients.
One of the efficient ways to address these uncertainties is to operate under robust plans,
slightly more expensive than nominal ones but able to recover from unexpected events.

In this paper we show how to effectively solve three different robust optimization
problems. We construct large real world instances and practically test our approach.
Similar instances of such size have not been solved before. When the number of con-
straints becomes untractable for any existing computer architecture, we show how to
dynamically create and use additional constraints and find optimal solutions.

The rest of the paper is organized as follows. This introduction finishes with the
presentation of related literature and experimental studies. Section 2 presents nominal
and three robust optimization models and the theorems that characterize the additional
constraints. Section 3 presents efficient algorithms to create additional constraints and
report experimental results when the number of constraints is over several millions.

Related Studies: Empty repositioning problems often appear in the operational studies
of railway or maritime traffic or the combination of the two and they received a lot
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of attention both by practitioners and by theoreticians. The first studies appeared in
the sixties and seventies and the topic never went out of focus (for an overview consult
[6]). Most of these studies presume complete and accurate information about the future.
The most popular models, used even today within transportation companies, result in
dynamic programming solutions and/or linear or easy to solve integer programs.

Uncertainty and inaccuracy of data always existed in reality but models start to in-
corporate it for the first time in [7] and than again with works of Powell (e.g. [5]). A
possible remedy for uncertainty, the approach we study here, is robustness of solutions,
or how [3] call it, solutions “immunized against uncertainty”. Beside these general stud-
ies about uncertainty and robustness there are also more practical, though theoretically
less ambitious works, where only the right hand side is uncertain [1,4]. Erera et al. [4]
consider computational properties of the approach. We continue here along this path
studying and solving models for similar, real world instances resulting in huge number
of additional linear constraints.

2 Integer Programming Models

2.1 The Nominal Model

In this section we introduce the nominal model together with all necessary notations.
When possible we use existing notations from [4]. The nominal empty repositioning
problem can be modeled using a time-expanded network G = (N,A) where N is a set of
all depot-timestep combinations. A node representing depot d at time t is noted by vd

t .
The vector b contains time-space net supply forecasts and represents the right-hand side
values of the model. The set A contains two types of arcs: inventory that goes within the
same depot and repositioning between two different depots. For each arc a ∈ A, c(a) is
a unit cost of flow on arc a. In many applications, as well as here, the unit holding costs
at depots are negligible and therefore equal to zero.

The nominal repositioning problem may now be written as:

NP min
x

{cx : Ax = b,x ∈ Z|A|
+ } (1)

where the decision vector x corresponds to the empty container flow on each arc and
A is the node-arc incidence matrix implied by G and thus defining the typical network
flow-balance constraints Ax = b.

Variation of the Nominal model: In [4] the authors add to G a sink node T with
net supply b(T ) =∑vd

t ∈V b(vd
t ) and an arc connecting vd

ρ to T for all d ∈ D. It is easy to
construct unfeasible instances, e.g., when the net supply in the sink node is negative. We
propose therefore a variant of the nominal problem, NP′ introducing a special source
node S and we add an arc connecting S to vd

0∀d ∈ D. In fact, the transportation company
can decide to borrow, buy or rent certain quantity of containers at the initial phase of
the operation (at 0 timestep) and this quantity is modeled by the flow on the arcs going
from node S. The cost on the newly added arcs is considerably bigger than any other
cost in the problem. Finally, we add the only backward arc in the model from T to S
with cost zero. The linear program is still a typical network flow problem.
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2.2 Robustness

The nominal estimate of the net supply b(v) at each node v in V is just an estimate and
therefore uncertain, and we experiment with robust framework developed in [2,4]. The
uncertainty set comprises all sets with at most k nodes whose estimates b(v) oscillate
by at most b̂(v) units.

Robust repositioning plan is typical feasible flow plan which is also recoverable un-
der a limited set of recovery actions and for some predefined uncertain outcome. We
study here three different sets of recovery actions in TRP1, TRP2 and TRP3 as they are
presented in [4].

The nominal model serves as a base for TRP models. The principle of solving other
models is simply adding a set of constraints to ensure the robustness of the nominal
solution.

TRP1 model: TRP1 also known under the name of Inventory Robust Repositioning
Problem is the easiest among the three. Recovery actions set comprises only reposition-
ing actions along the inventory arcs. In other words the company will keep sufficiently
big reserve on every depot in the problem.

The set of additional constraints is described with the following theorem.

Theorem 1. [4] A feasible solution x for the nominal problem 1 is also feasible for
TRP1 if and only if

x(a) ≥ ϑ(V d
t ,k), ∀a = (vd

t ,vd
t+1) ∈ I (2)

where ϑ(V d
t ,k) is node set vulnerability for set of vertices V d

t and k. There is one new
constraint for every depot-timestep. It turns out that T RP1 is polynomially solvable
using standard minimum cost network flow algorithm.

TRP2 model: In this model we suppose that the company tackles the uncertainty at a
given depot not only using its own inventory but also using containers at other depots.
The following theorem describes the set of additional constraints.

Theorem 2. [4] A feasible solution x for the nominal problem 1 is also feasible for
TRP2 if and only if for every set of nodes U ∈ UW2

∑
a∈Δout(U)∩I

x(a) ≥ ϑ(U,k) (3)

W2 represents the subgraph that includes all arcs where the flow could change in the
case of perturbation in the prevision. W2 for TRP2 is a set of all arcs in the model,
except the inventory arcs emanating from timestep zero nodes. Following definitions 3
and 4 in [4], the family UW2 contains all inbound-closed sets U such that Δout(U)∩ I is
competing.

TRP3 model: In this scenario there are two types of depots: those that serve as
providers and those serving as recipients. For the sake of this study we use the formu-
lation of additional constraints as defined for TRP2 at the appropriate network. There
exists also another, more efficient way to define, and construct, these constraints [4].



556 H. Gavranović and M. Buljubašić

Fig. 1. The figure presents two optimal solutions for TRP2 problem. This toy problem has three
ports : Long Beach, Hong Kong and Rotterdam and 4 timesteps. Only non-zero flows are pre-
sented. On the left is the solution with optimal value 2 for k = 6 while on the right is the one with
optimal value 50 obtained for k = 7.

3 A Constraint Generation Linear Programming Approach

The proposed models result in linear programs that may have large, exponential number
of constraints. This could be easily checked experimentally, as reported in figures 2
and 3. This is also already discussed in [4]. Huge number of constraints renders linear
programs difficult, if not impossible to solve efficiently.

On the other hand, the ports in both real and experimental instances studied so far are
naturally divided into several maritime regions resulting in small and tractable number
of constraints. On our experimental machine (CPU:Intel Core i7 920 2.67GHz, RAM
6GB, Ubuntu) IBM-Cplex 11.2 routinely solves in several minutes instances having 60
ports divided in 8 regions with 50 timesteps.

The total number of constraints and therefore the time complexity of the solution is
primarily influenced by the regional division of the ports but also partially by topology
of the networks. The number of additional constraints is dominated by the number of
constraints originated from the biggest region in the instance. This is why, in order to
assess the computational limits of TRP2 and TRP3 models, it is enough to conduct
tests with instances having a given number of ports all in one region. The number of
constraint grows extremely fast and it becomes prohibitive for real world instances with
more than 10 ports in a single region.

Note that all of the models have small, constant number of variables and fast growing
number of additional constraints. We propose a simple yet computationally powerful
and efficient way to solve such huge instances using constraint generation algorithm as
follows
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Algorithm 1. Constraint generation approach
Create Nominal model then choose and add a small subset of constraints and solve the resulting
linear program
while there are unsatisfied constraints do

Choose and add additional small subset of violated constraints
optimize LP with the new set of constraints
check if obtained solution satisfies all constraints

end while
{At the end of the while loop the algorithm checks if all additional linear constraints missing in
the actual model are satisfied for the obtained solution. The constraints are checked one by one
in the order of their creation and subset of violated constraints are kept and add to the model
in the beginning of the next iteration.}

Fig. 2. The figures present number of constraints and solution time TRP2 model for instances
with single region with 50 timesteps. Note that the graphics are semilog and it is not possible to
solve, using classic approach, instances with more than 13 ports. The table presents the number
of iterations in the while loop in the Algorithm 1.

Fig. 3. These are results for TRP3 model. The number of additional constraints is really huge (in
hundreds of millions). The instances have only 10 timesteps. It is not possible to solve, using
classic approach, instances with more than 7 ports.

4 Conclusion

Despite the fact that the number of constraints for robust repositioning problems grows
really fast it is still possible to solve real problems with a large number of ports using a
dynamic generation constraints approach. We solved here the instances with hundreds
of millions of additional, linear constraints. These instances are not solvable using a
classical approach. Generation and checking of additional constraints is embarrassingly
parallelizable procedure. It would be perspective to establish the computational limits
for TRP problems using parallel approach.
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Abstract. In the supply vessel planning problem, a set of offshore installations
receives supplies from an onshore supply depot on a regular basis. This service is
performed by a fleet of offshore supply vessels. The supply vessel planning prob-
lem then consists of determining the optimal fleet size and mix of supply vessels
and the corresponding weekly voyages and schedules. This is a real planning
problem faced by among others the energy company Statoil. In a previous study
this problem was examined and a deterministic voyage based solution approach
presented. In this study we address the problem of creating robust schedules to
the supply vessel planning problem. Several approaches are tested and compared
in a computational study, and the results show that there is an improvement po-
tential if some robustness considerations are made when finding a solution to the
supply vessel planning problem.

1 Introduction

Operators of offshore oil and gas installations need to have a reliable supply service
from land. Interruptions of such service may in the worst case scenario result in tem-
porarily shut-downs, which again will result in millions of USDs in lost income. The
supply vessel planning problem consists of indentifying the optimal fleet of supply ves-
sels to charter in to perform this service from one common onshore supply depot. At
the same time the vessels’ weekly routes and schedules need to be determined. A route
is here defined as a combination of one or more voyages that a vessel sails during a
week. Each voyage starts and ends at the supply depot and visits a number of offshore
installations in between.

We study a real supply vessel planning problem faced by the energy company Statoil.
In this problem, there are a number of practical constraints that must be considered.
Each voyage has a minimum and maximum duration and a minimum and maximum
number of offshore installations to visit. The offshore installations have an estimated
weekly demand for goods (given in square meters of deck capacity onboard a supply
vessel) and require a given number of visits per week. Some of the offshore installations
have opening hours for when to perform unloading and loading operations of a supply
vessel (typically closed for such operations at night). Each offshore installation has a
service time which is the time it takes to unload and load a supply vessel. The departures
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from the onshore supply depot to a given offshore installation should be evenly spread
throughout the week.

The onshore supply depot is open for service eight hours a day (0800-1600), and has
limited capacity so that only a limited number of supply vessels may be prepared for
a new voyage on a given day. The turnaround time for a supply vessel is eight hours,
which means that a vessel needs to be at the supply depot before 0800 to start on a new
voyage the same day.

A supply vessel has a given deck capacity, service speed and time charter rate. The
total demand for all offshore installations visited on a voyage cannot exceed the capacity
of the vessel sailing the voyage.

Fig. 1. A solution to the supply vessel planning problem

A solution to the supply vessel planning problem with three supply vessels and seven
offshore installations (A, B,..., G) is illustrated in Figure 1. For a more thorough descrip-
tion of the supply vessel planning problem, we can refer to [15].

The supply vessel planning problem has similarities with other problems studied in
the literature. It can be classified as a periodic fleet size and mix problem with time
windows and multiple use of vehicles. Versions of the supply vessel planning problem
are studied in [9] and [10]. The routing problem arising in the service of offshore instal-
lations is studied in [14]. Some references to the periodic vehicle routing problem are
[5], [8], [16] and [24]. A recent survey on fleet composition and routing can be found
in [17], and some studies of the vehicle routing problem with multiple use of vehicles
are presented in [3], [4] and [23].

The energy company Statoil, that operates offshore installations in the North Sea and
the Norwegian Sea, experiences that the supply service is highly affected by weather
conditions. Especially during winter season there may be delays in the service due to
rough weather conditions. In a previous study [15], a deterministic solution approach for
the supply vessel planning problem was developed. A version of this model has been
implemented and used by the planners in Statoil. This model has provided valuable
decision support to the planning process, and savings of 3 million USDs were reported.
However, the planners discovered that the planned schedules too often are difficult to
execute in real life, resulting in replanning and extra costs involved when demand from
installations need to be met in order to avoid production shut-downs. This revealed a
need for creating schedules that are more robust and resilient to the prevailing weather
conditions.

The purpose of this paper is to create robust solutions to the supply vessel planning
problem. By robustness we mean the capability for a voyage or schedule to allow for
unforeseen events during execution. Robust solutions will reduce the actual costs of the
supply vessel service by avoiding expensive and unplanned means of bringing critical



Robust Supply Vessel Planning 561

demand to the offshore installations. We aim to achieve robust schedules by combining
simulation with the model from [15], and also testing other simpler approaches.

There are not many contributions in the literature that consider the uncertain elements
in maritime transportation problems. Some references are [6] that studies a world-wide
crude oil supply chain, [7] that tries to avoid vessels staying idle in weekend closed
ports, [11] that combines simulation and optimization for strategic planning in shipping,
and [18] that considers the risk of fluctuations in the spot market. A related topic is
stochastic vehicle routing problems (SVPRs), were customers, demands and/or travel
times are stochastic. A review of such problems can be found in [13], and the SVRP
with stochastic travel and service times was studied in [20]. Some references on the
combination of simulation and optimization are [2] and [12]. In [1] a solution approach
combining optimization and simulation to an inventory routing problem is presented,
and [19] and [21] present optimization and simulation approaches to variations of the
SVRP.

The rest of this paper is organized as follows: A mathematical model for the supply
vessel planning problem is presented in Section 2. Then Section 3 discusses the weather
impact, and Section 4 describes different approaches to create robust schedules to the
supply vessel planning problem. In Section 5 a computational study is provided. Finally
the paper is concluded in Section 6.

2 Mathematical Model

In this section we present the mathematical formulation for the voyage based solution
method from [15]. Let V be the set containing the supply vessels available for time
charter, and let N be the set of offshore installations. Then set Rv is the set of pre-
generated voyages that vessel v ∈ V may sail. Let T be the set of days in the planning
horizon (a week), and L be a set containing all possible voyage durations in days (two
or three) and let H be a set with all possible visit frequency values. Then set Rvl con-
tains all candidate voyages of duration l ∈L that vessel v may sail, and set Nk contains
all offshore installations that require k ∈H visits per week. CTC

v represents the weekly
time charter cost for vessel v, CS

vr the sailing cost for vessel v sailing voyage r ∈ Rv

while Dvr is the duration of voyage r sailed by vessel v in days (rounded up to nearest
integer). Si is the required weekly visit frequency to offshore installation i ∈ N , Fv the
number of days vessel v can be used during a week, Bt the number of supply vessels
that may be serviced at the onshore supply depot on day t ∈T and the binary parameter
Avir is 1 if vessel v visits offshore installation i on voyage r, and 0 otherwise. Further,
Gk ∈ [0, |T |] is a number representing the length of a sub-horizon for the offshore in-
stallations with visit frequency k, and Pk and Pk are lower and upper bounds on the
number of visits during the sub-horizon of length Gk an offshore installation with visit
frequency k should receive. The variables are the binary variables δv that equals 1 if
supply vessel v is chosen for time charter, 0 otherwise, and xvrt that equals 1 if vessel v
sails voyage r on day t, 0 otherwise.

The mathematical formulation then becomes:

min ∑
v∈V

CTC
v δv + ∑

v∈V
∑

r∈Rv

∑
t∈T

CS
vrxvrt , (1)
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subject to

∑
v∈V

∑
r∈Rv

∑
t∈T

Avirxvrt ≥ Si, i ∈ N , (2)

∑
r∈Rv

∑
t∈T

Dvrxvrt −Fvδv ≤ 0, v ∈ V , (3)

∑
v∈V

∑
r∈Rv

xvrt ≤ Bt , t ∈ T , (4)

∑
r∈Rvl

xvrt + ∑
r∈Rv

l−1

∑
ν=1

xvr,((t+ν) mod |T |) ≤ 1, v ∈ V , t ∈ T , l ∈ L , (5)

Pk ≤ ∑
v∈V

∑
r∈Rv

Gk

∑
ν=0

Avirxvr,((t+ν) mod |T |) ≤ Pk, k ∈ H , i ∈ Nk,t ∈ T , (6)

δv ∈ {0,1} , v ∈ V , (7)

xvrt ∈ {0,1} , v ∈ V ,r ∈ Rv,t ∈ T . (8)

The objective function (1) minimizes the sum of the time charter costs and the sailing
costs. Then constraints (2) ensure that all offshore installations get the required number
of visits during the week, and constraints (3) ensure that a vessel is not in service more
days than it is available during a week. These constraints also ensure that δv equals one
if a vessel is in service. Constraints (4) limit the number of vessels to be serviced at
the onshore supply depot on a given weekday, and constraints (5) ensure that a vessel
does not start on a new voyage before it has returned to the onshore supply depot after
the last voyage. Constraints (6) ensure that the visits to the offshore installations are
evenly spread throughout the week. For example, if k = 2 then Gk = 2, Pk = 0 and
Pk = 1, ensuring that there are no more than one visit to the offshore installation during
a three day period. Constraints (7) and (8) set the binary requirements for the δv and
xvrt variables, respectively.

Modification
of input data

Data Data

Data

Model input

• Distance matrix
• Demand
• Opening hours
• Max/min visits on a

voyage
• Cap/speed vessel

• Required number of visits 
• Spread of visits
• Time horizon
• Capacity in depot
• Costs

All candidate voyages 
for the vessels (with 
duration 2 or 3 days) 
are generated

Voyage generator Voyage based 
model

Results:
Optimal fleet
Optimal voyages and 
schedule

Fig. 2. Supply vessel planning model, schematic overview

A version of the mathematical model presented here has been implemented and
is currently used by Statoil in their supply vessel planning process. Figure 2 gives a
schematic overview over the solution method that contains a voyage generator and the
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voyage based model presented here. The voyage generator pregenerates all candidate
voyages for a vessel taking into consideration constraints like opening hours at instal-
lations and loading capacities for the vessels. More information about the voyage gen-
eration procedure can be found in [15].

3 The Weather Impact

The prevailing weather conditions will affect the supply vessels’ sailing speed and the
unloading and loading operations at the offshore installations. This again may have se-
vere consequences for the offshore supply service, especially during the winter season
in the North Sea. The critical factor is the significant wave height (by definition the av-
erage wave height (trough to crest) of the one-third largest waves). If, for example, the
significant wave height is more than 4.5 meters, it will not, due to safety regulations, be
possible to perform offshore loading/unloading operations and a supply vessel will have
to wait until the weather conditions improve before starting such operations. This is called
waiting on weather (WOW). Rough weather conditions with significant wave heights of
less than 4.5 meters can also make offshore loading/unloading operations challenging
and can increase the time to perform such services. Rough conditions will also require
a reduction in sailing speed. Table 1 defines four weather states based on the significant
wave heights, and shows the reduction in sailing speed (in knots) and percentage increase
in service time for loading/unloading operations at offshore installations. These are the
conditions Statoil acts in accordance with in their supply vessel service.

Table 1. Weather states

Weather state Wave height [m] Sailing speed Service time

1 < 2.5 0 kn 0%
2 < 2.5,3.5 ] 0 kn 20%
3 < 3.5,4.5 ] - 2 kn 30%
4 ≥ 4.5 - 3 kn WOW

The weather conditions represent the major uncertain elements in the supply vessel
planning problem and must be taken into consideration when we aim to create robust
solutions to the supply vessel planning problem. We see from Figure 1 that a typical
schedule may be very vulnerable for delays. Only a small decrease in sailing speed,
or increase in service time, may result in delays that will affect later voyages. In the
example in Figure 1, this is especially critical for the voyages sailed by vessel 1 on
Tuesdays and vessel 2 on Wednesdays.

4 Robustness Approaches

The voyage based solution method from [15] does not take into account any robust-
ness considerations, but finds the optimal schedule based on the supply vessels’ service
speeds and the given service times at the offshore installations. Here we present some
robustness approaches that can be added to the model from Section 2.
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4.1 Adding Slack to the Voyages and Schedule

We define slack as a supply vessel’s idle time after finishing a voyage before it has to
start preparing for the next voyage. Consequently, given that a supply vessel need to
start preparing for a voyage at 0800, if it returns to the onshore supply depot at 0430
after last voyage, that voyage will have 3.5 hours slack. When voyages are joint in a
weekly schedule, a voyage may have more than 24 hours slack if a supply vessel has
one or more days idle before starting on a new voyage.

In [15] a robustness approach that required a given number of hours slack for each
voyage was introduced. In this approach, all generated voyages that have less slack than
required are either discarded (if the duration is maximum duration) or get transferred
into a longer voyage with added slack of 24 hours. This is a simple way of assuring that
every voyage allows for some delays due to reduced sailing speed or increased service
time at the offshore installations.

Another simple approach considers the idle days for the supply vessels. For example,
vessel 3 in Figure 1 only sails one voyage of duration two days during the week and
has five idle days. The other two supply vessels do not have any idle days, and also sail
some voyages with little slack that will not allow for much delay. For this schedule, it
would probably be more beneficial if, for example, the voyage sailed by vessel 1 starting
on Thursday was sailed by vessel 3. The solution method from [15] does not consider
such consequences, and given that vessels 1 and 3 have the same sailing costs and both
can sail that voyage, the two different schedules would be valued equally.

Based on the model formulation from [15] described in Section 2, the following may
be added to create a weekly schedule that values idle days as a robustness consideration:

– Add a robustness profit in the objective function for each day a supply vessel is idle
– Add a robustness profit in the objective function for each supply vessel that has at

least one idle day during the week
– Add a robustness profit in the objective function for each supply vessel that sails no

more than two voyages during the week

All of the simple robustness approaches above can easily be implemented in the
voyage based solution method from [15]. The purpose of adding robustness profit for
idle days for supply vessels are to value idle days to some extent over longer voyages
with more slack to each voyage. The robustness profit should not be too high so that
it favors using more supply vessels than necessary. The first approach values each idle
day equally independent on what supply vessel that has it, and may lead to one supply
vessel having many idle days while others have none. The two other approaches give
one fixed robustness profit if the statement occurs for a vessel.

4.2 An Optimization and Simulation Framework for Robust Schedules

Based on the model from [15] we have developed a solution method that combines op-
timization and simulation to provide robust and resilient schedules to the supply vessel
planning problem.

Figure 3 illustrates the overall solution method. It consists of three steps:
Step 1. Generate all candidate voyages the vessels may sail
Step 2. Simulate each candidate voyage and assign a robustness measure
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Model input

•Distance matrix
•Demand
•Opening hours
•Max/min visits on a 
voyage
•Cap/speed vessel

•Statistical weather data
•Speed and service 
punishment

•Required number of visits
•Spread of visits
•Time horizon
•Capacity in depot
•Costs

Step 2: Voyage simulation

Simulation of all candidate 
voyages. Assign a robustness 
measure to each voyage

Step 1: Voyage generation

Generate all candidate 
voyages with duration 2 or 3 
days

Step 3: Voyage based model

Results:

Optimal fleet and optimal 
voyages and schedule taking 
robustness into consideration

Fig. 3. Optimization and simulation for robust schedules, schematic overview

Step 3. Solve the voyage based model with robustness measures assigned to each
voyage

Steps 1 and 3 are equivalent to phases 1 and 2 described in [15]. We now add some
more input data: Statistical data about the uncertain elements of the problem, in this
context weather data. This data is used in Step 2 to calculate a robustness measure for
each candidate voyage. The robustness measure we use is not delivered volume. This is
then used to create a robust weekly schedule for the supply vessel planning problem by
giving it a cost in the objective function in the voyage based model.

Figure 4 shows a flow chart of the simulation procedure. For each simulation, a set
of consecutive weather states are drawn from their respective probability distributions.
There are four weather states as shown in Table 1. In the simulation procedure, we use

Start Select voyage

Simulate voyage

Generate
weather states

Duration <
DMAX?

Remove
installation with
least demand

More
voyages?

More
simulations?

Finish

Store not
delivered volume

Calculate
average not

delivered volume

YesNo

Yes

Yes

No

No

Fig. 4. Flow chart of the simulation procedure
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a time interval of six hours, which means that each weather state lasts for six hours
before the weather conditions may change. Each weather state has a given start state
probability, as shown in Table 2. The next weather state will be dependent only on the
current weather state, a random process recognized as a Markov chain, see e.g. [22].
Table 3 shows the transition probability matrix, which is the probability of moving from
one weather state to another. For example, the probability of moving from weather state
two in one time interval to weather state three in the next is 20.7%. All the probabilities
are calculated from historical weather data provided by Statoil for the winter season in
the North Sea.

Table 2. Start state probabilities

State 1 2 3 4

Probability 22.7% 27.1% 28.2% 22.0%

When the weather states are drawn, a voyage is simulated according to the necessary
reduction in sailing speed and increase in service times the prevailing weather state de-
mands. If the voyage cannot be completed within the maximum duration of that voyage
(i.e. for a voyage with duration two days, the supply vessel needs to be back at the
supply depot before these two days has passed), the offshore installation with the least
demand is removed from the voyage. This procedure continues until the voyage can be
completed. Then the total demand in square meters not delivered, calculated as the sum
of the demand from the removed offshore installations, is stored and a new simulation
started. The average demand not delivered over all simulations for each voyage is the
output from the simulation procedure.

Table 3. Transition probability matrix

State 1 2 3 4

1 82.5% 16.9% 0.6% 0.0%
2 14.0% 60.6% 20.7% 4.7%
3 0.5% 23.9% 57.7% 17.9%
4 0.0% 0.6% 27.9% 71.5%

The objective function (1) from Section 2 is then replaced with:

min ∑
v∈V

CTC
v δv + ∑

v∈V
∑

r∈Rv

∑
t∈T

CS
vrxvrt + ∑

v∈V
∑

r∈Rv

∑
t∈T

CPEvrxvrt (9)

Here, Evr is the average demand not delivered for voyage r sailed by vessel v, and CP

is the penalty cost for each square meter not delivered. This penalty cost is estimated
based on the real cost of not delivered volume: This volume will, depending on the
urgency, have to be delivered by a different supply vessel at a later time that could be
one of the vessels in the fleet, a different vessel that needs to be chartered in on short
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term at a higher costs, or by helicopter at a much higher costs. To reflect these elements,
CP is calculated as the cost of a three day voyage sailed by a vessel chartered in on a
somewhat higher time charter rate divided by the capacity of a vessel.

Based on the simulation procedure described here, a schedule simulation model was
developed to test the schedules we get when using different solution approaches. In the
schedule simulation model, a sequence of weather states for the whole time period of a
schedule is drawn. Then every voyage sailed in the schedule is simulated. Extra slack
in form of idle days for supply vessels is added to the voyage sailed before such an idle
day, giving that voyage 24 hours (or more) of extra slack. The overall average square
meters not delivered is then calculated and multiplied by the penalty cost.

5 Computational Study

The robustness approaches described in Section 4 have been tested on a number of
problem instances based on the real supply vessel planning problem faced by Statoil.
All test results were obtained on a 2.16 GHz Intel Core 2 Duo PC with 2 GB RAM.
The voyage based model was implemented in Xpress-IVE 1.19.00 with Xpress-Mosel
2.4.0 and solved by Xpress-Optimizer 19.00.00. We set a time limit for solving the voy-
age based model to 3600 seconds. The voyage generator and the voyage and schedule
simulating models were both written in C++ using Visual Studio 2005. A description
of the problem instances is given in Section 5.1, followed by the computational results
in Section 5.2.

5.1 Description of Problem Instances

Based on real data provided by Statoil for a supply vessel planning problem, 18 problem
instances have been created. The instances are named based on how many offshore in-
stallations there are, and how many of these that have time windows for visits from sup-
ply vessels, i.e. how many that are closed for loading operations during nights between
1900 and 0700. As an example, problem instance 7-1 has seven offshore installations
and one with such time windows.

The problem instances are created by taking the original supply vessel planning prob-
lem and removing or adding offshore installations. The offshore installations added to
the problem are floating rigs that at some point in time were serviced from the onshore
supply depot. An overview over the total number of offshore installation visits and the
total weekly demand is shown in Table 4. The number of visits for each offshore instal-
lation vary from one to six, and the weekly demands varies from 250 to 960 m2. These
demands are divided by the number of weekly visits to get the demand for each visit.
These again vary from 50 to 334 m2. The service times at the offshore installations vary
from 2.25 to 7 hours.

There are five supply vessels available that may be chartered. Their loading capaci-
ties vary from 900 to 1090 m2, and weekly time charter rates are all somewhat above
USD 100 000 (not necessarily reflecting today’s market), highest for the vessels with
the higher loading capacities. The service speeds for all the supply vessels are 12 knots.

The onshore supply depot has capacity to service three supply vessels every weekday,
except for Sundays when it is closed. The duration of each voyage is two or three days,
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Table 4. Number of visits and weekly demand

# Offshore # visits Weekly
installations demand [m2]

Small 5 23 3248
instances 7 30 4402

Real sized 10 43 5995
instances 13 55 7429

and Mondays to Thursdays only two day voyages can start, three day voyages allowed
on Fridays and Saturdays.

5.2 Numerical Results

The problem instances described in Section 5.1 have been tested using five different
solution approaches:
Basic. Solution method from [15], i.e. solving the model from Section 2
4h. Solution method from [15] with four hours required slack at the end of each sailed

voyage
Max2. Solution method from [15] with an extra robustness profit if a vessel sails no

more than two voyages
SimSol. Solution method as described in Section 4.2 with robustness cost for each

square meter not delivered
Combined. Solution method as described in Section 4.2 with robustness cost for each

square meter not delivered (reduced to 1/3 of the cost used in SimSol) and robust-
ness profit if a vessel sails no more than two voyages (same profit as for Max2)

We also tested the solution method from [15] with an extra robustness profit for each
idle day for a supply vessel and with robustness profit for each supply vessel having at
least one idle day, but this gave overall poorer results than the Basic solution approach.
These results are therefore omitted from this presentation.

The robustness cost used in SimSol and Combined is calculated as described in Sec-
tion 4.2. The robustness profit used in Max2 and Combined is set to an average time
charter rate for half a day (weekly time charter rate divided by 14).

For the solution method from Section 4.2 (used in SimSol and Combined), each
voyage was simulated 100 times for problem instances with 5, 7 and 10 offshore in-
stallations, and 20 times for the instances with 13 offshore installations due to time
restrictions. The total CPU time for the simulations were 5-10 seconds, 2-5 minutes, 1-
2.5 hours, and 33-50 hours for the instances with 5, 7, 10 and 13 offshore installations,
respectively. To calculate the extra cost for not delivered volume for a schedule, we ran
10 000 simulations of each schedule. The total CPU time for 10 000 simulations varied
from 10 seconds for the smaller problem instances to 90 seconds for the larger ones.

Table 5 shows the results from the small problem instances, with five and seven
offshore installations. Listed in the table are the planned costs for the schedules (the
cost of the schedule if there are no delays, robustness cost for not delivered volume
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Table 5. Small problem instances

Problem instance 5-1 5-3 5-5 7-1 7-3 7-5 Total

Basic PlanCost 460027 470500 815594 464452 471230 622331 3304134
ExtraCost 73434 107290 80339 149977 157915 172871 741826
Total 533461 577790 895933 614429 629145 795202 4045960

4h PlanCost 101.40 100.00 100.00 101.34 100.00 100.00 100.38
ExtraCost 105.05 99.36 99.17 67.17 87.66 94.54 89.78
Total 101.90 99.88 99.93 93.00 96.90 98.81 98.44

Max2 PlanCost 100.00 100.00 100.00 100.00 100.00 100.00 100.0
ExtraCost 103.95 101.19 109.40 66.92 87.23 80.43 87.61
Total 100.54 100.22 100.84 91.93 96.79 95.75 97.73

SimSol PlanCost 102.57 101.05 100.17 102.55 101.07 103.38 101.70
ExtraCost 98.37 92.45 101.79 70.87 91.82 72.06 84.80
Total 101.99 99.45 100.31 94.82 98.75 96.58 98.60

CombinedPlanCost 100.00 100.03 100.06 100.00 100.10 100.13 100.06
ExtraCost 110.60 90.88 91.52 68.12 100.03 73.77 86.26
Total 101.46 98.33 99.29 92.22 100.08 94.40 97.53

and/or robustness profit for idle days are not included), the extra cost for square meters
not delivered (average cost over 10 000 simulations) and the total cost for the schedule:
the sum of the planned cost and the extra cost. For the Basic solution approach, costs are
reported in USD. The costs of the other solution approaches are given in percent relative
to the cost of the Basic solution approach. The total costs over all problem instances are
reported in the far right column.

We observe that for the smallest problem instances with only five offshore instal-
lations, the Basic solution approach gives good solutions compared with any of the
suggested robustness approaches. This observation is related to that these schedules are
not very constrained and have a lot of slack.

Although the Basic solution approach gives quite good results for the smaller prob-
lem instances, the overall best cost schedules was achieved using the Combined solution
approach, 2.47 % less overall costs than the Basic approach. The Combined schedules
also beat the Basic schedules for all problem instances except for 5-1.

Table 6 shows the results for the real sized problem instances, which are more inter-
esting from a practical point of view. Where the solution cost is in bold, the Xpress-MP
optimizer did not manage to prove optimal solution within the CPU limitation of 3600
seconds (proven gaps from optimal solution are, however, less than 1 % in all these
cases). We observe that the Basic schedule is quite good for problem instance 10-1,
but quite poor for the other instances. Overall for these problem instances, the SimSol
schedules have the best results, 3.42 % better on average than the Basic schedules. The
SimSol schedules beat the Basic schedules for all problem instances except for 10-1,
while the Combined schedules beat the Basic schedules for all problem instances.
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Table 6. Real sized problem instances

Problem instance 10-1 10-3 10-5 10-7 13-1 13-3 13-5 13-7 Total

Basic PlanCost 626959 627097 628785 819845 640273 641197 645143 651859 5281158
ExtraCost140354 210929 276458 223263 277830 303550 338389 385235 2156008
Total 767313 838026 905243 1043108 918103 944747 983532 1037094 7437166

4h PlanCost 100.08 100.24 100.98 100.00 102.14 102.09 101.57 123.07 103.71
ExtraCost 119.22 73.93 83.77 95.61 89.02 90.47 98.19 63.10 86.53
Total 103.58 93.62 95.73 99.06 98.17 98.36 100.41 100.79 98.73

Max2 PlanCost 100.00 100.00 100.00 100.00 100.08 99.92 99.88 100.00 99.99
ExtraCost 129.41 84.99 84.94 86.79 85.52 93.77 85.80 92.50 90.83
Total 105.38 96.22 95.40 97.17 95.68 97.95 95.03 97.22 97.33

SimSol PlanCost 103.25 103.48 103.71 101.23 103.00 103.54 102.74 101.97 102.81
ExtraCost 101.46 79.25 70.28 76.97 81.39 82.46 82.36 83.78 81.33
Total 102.93 97.38 93.50 96.04 96.46 96.77 95.73 95.21 96.58

CombinedPlanCost 100.27 100.36 101.19 100.41 100.29 101.32 100.98 100.87 100.70
ExtraCost 96.49 89.05 74.08 77.77 91.50 90.19 82.44 96.02 87.13
Total 99.58 97.51 92.91 95.56 97.63 97.74 94.60 99.07 96.77

We observe from the results in Tables 5 and 6 that the Basic schedules seem to be
better when there are few offshore installations and few time windows. Table 7 shows
the results from the problem instances with no time windows. For these instances, the

Table 7. Without time windows

Problem instance 5-0 7-0 10-0 13-0 Total

Basic PlanCost 460000 464290 626781 640273 2191344
ExtraCost 55193 118438 168062 217468 559161
Total 515193 582728 794843 857741 2750505

4h PlanCost 101.40 101.38 100.11 102.18 101.25
ExtraCost 130.90 90.84 80.28 105.01 97.13
Total 104.56 99.24 95.92 102.89 100.42

Max2 PlanCost 100.01 100.00 100.00 100.00 100.00
ExtraCost 131.38 81.91 93.06 111.68 101.73
Total 103.37 96.32 98.53 102.96 100.35

SimSol PlanCost 102.57 102.60 103.25 102.86 102.86
ExtraCost 127.71 87.54 84.01 107.53 98.22
Total 105.27 99.54 99.18 104.04 101.91

CombinedPlanCost 100.01 100.04 100.26 100.21 100.15
ExtraCost 135.16 89.51 87.07 113.48 102.60
Total 103.77 97.90 97.47 103.58 100.65
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Basic schedules were overall the best, with very good schedules for problem instances
5-0 and 13-0 compared with the other solution approaches. We also observe that the
SimSol schedules have the overall worst result.

In general we see that addressing robustness when creating a schedule to the supply
vessel planning problem give added value by having schedules that are more likely to
be successfully executed. The planned cost of the schedule will be slightly higher than
if we do not address robustness, but the simulated extra costs, representing a better es-
timate for the real costs, for not delivering goods to the offshore installation as planned
will be less, resulting in a reduced total cost. However, the way the schedules are created
by the voyage based solution method, there is a possibility that a schedule that does not
address robustness will be better than one that does because we address robustness to
individual voyages, and not the overall schedule.

6 Concluding Remarks

The supply vessel planning problem consists of determining optimal fleet size and mix
of offshore supply vessels and their corresponding weekly routes and schedules to ser-
vice a given set of offshore installations. The problem was addressed and a voyage
based solution model was developed in [15]. A version of this model was implemented
by the supply vessel planners at Statoil and savings of 3 million USDs was reported
from this project. However, during the work with the model, it was realized that the
weather conditions have a big impact on the execution of a schedule. A need for adding
some robustness considerations into the model was thus discovered.

We have addressed the problem of creating robust schedules to the supply vessel
planning problem. Several solution approaches have been implemented and tested:

– Requiring a number of hours of slack for each voyage sailed
– Benefiting schedules where vessels do not sail more than two voyages during a

week
– Punishing voyages based on the average not delivered volume of goods calculated

from simulating the voyages given certain probabilistic weather conditions
The solution approaches were then tested on several problem instances based on real
data provided by Statoil.

From the computational results we see that adding some robustness criteria to the
optimizing procedure of creating a schedule to the supply vessel planning problem gives
a lower predicted cost than if no such criterion is considered. The effect is higher with
increased problem size and more time windows. Variations of our simulation approach
for robust schedules provide the overall best results, with a predicted cost saving of
more than 3% for the real sized problem instances, but also simple approaches give
good results and overall better schedules than not considering robustness.
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Abstract. Not only attempts to reduce costs but also emissions are driving ship-
ping companies to operate their fleet in slow steaming mode. We show a strategic
liner shipping network design decision support system which takes into account
three environmental influences: waves, currents and wind. Our model will an-
swers the question, whether environmental influences and the use of additional
propulsion systems can influence the cost structure or the on-time delivery of a
liner shipping network and its schedule. We will present a variable neighborhood
solution approach, that can solve this this network design problem in reasonable
time.

1 Introduction

Increasing fuel costs and growing ecological concerns are forcing ship owners, opera-
tors as well as forwarding companies, to operate their fleet in a so called slow steaming
mode or even to consider the use of alternative propulsion techniques. The tremendous
rise of bunker fuel costs (over 28% in the last 12 months; [2]) now represents an in-
creasing portion of freight charges. To reduce bunker fuel costs per trip, operators can
decrease their fleets average speed resulting in reduced fuel consumption. Because ship
operators guarantee port visits at a fixed frequency, the increase in travel time due to
a slower speed can lead to a need for additional ships. The majority of liner shipping
companies ensure port visits at a weekly frequency.

The optimal selection of speed combined with the number of vessels needed to per-
form a permanent route roundtrip at minimum costs, is addressed. In addition growing
ecological concerns have an influence on these decisions. Two different sides put pres-
sure on ship operators to reduce emissions. On the one side governments, caused by the
MARPOL Annex VI (International Convention for the Prevention of Marine Pollution
from Ships) controlled by the IMO (International Maritime Organisation) force ships to
use marine diesel fuel that emits less NOX (nitrogen oxides) and SOX (sulphur oxides).
This marine diesel is sold due to its higher quality at a higher price than regular bunker
fuel. On the other side companies (e.g. Tchibo, a German coffee shop chain also of-
fering other goods such as clothing, household items and electronics) intend to reduce
emissions for improving the carbon footprint, when shipping their goods [12]. Due to
the fact that these items are mainly produced in East Asia and therefore transported
by ship to Europe, a large amount of the emissions will be generated by sea transport.
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Besides using fuel that emits less NOX and SOX, reducing the speed of ships will re-
duce emissions most. This is due to the fact that fuel consumption increases with speed
almost to the power of three.

Other approaches to reduce fuel consumption or sulphur emission rely on using al-
ternative propulsion techniques. Recent ideas include the use of solar power, wave pro-
pelled ships or wind dependent propulsion systems. Wind propulsion systems are the
most practical and advanced techniques. The system we are considering in this paper
is a kite system like the one manufactured by SkySails [11]. Depending on the wind
direction and speed, related to the ships direction and speed, these kites can lower the
engine power output when travelling at a given speed and thus reduce fuel consumption.
Other techniques use the effect of Flettner rotors (e.g. E-Ship, [5]).

2 Literature Review and Problem Statement

Little research has been done on ship routing and scheduling and especially few contribu-
tions on the liner shipping network design can be found. A recent classification approach
and literature review on liner shipping problems is given by Kjeldsen 2009 [8].

Several research contributions on fleet design and ship routing make use of a pre-
defined sets of routes from which the most promising routes are selected via a set par-
titioning problem, as done in Fagerholt [6,7] and Cho and Perakis [4]. Fagerholt [6]
formulates the liner shipping task as a multi-trip vehicle routing problem, where cargos
are picked up in production harbours and dropped off at a central depot. The size of a
heterogeneous fleet of vessels is then determined.

A proposal on designing a strategic container liner shipping network and simultane-
ously solving an empty container redistribution planning problem is given by Shintani
et al. [10]. Spare space on ships is used to transport empty containers.

A mathematical model allowing for transhipment and multiple visits of one harbour
in each round trip is presented by Agarwal and Ergun [1]. One round trip is assumed
and speed variation is not accounted for. Three algorithms for this simultaneous ship-
scheduling and cargo-routing problem are given: a greedy heuristic, Column Gener-
ation and Benders decomposition. These are compared with regard to computational
efficiency and solution quality.

The idea to model a liner shipping network problem with a vessel being able to stop
at a port on its inbound and outbound journey was first introduced by Rana and Vickson
[9]. In our approach speed is a variable for each port to port relation. For the first time
we will account for monthly mean weather dependent travel times and resulting travel
costs as well as variable speed settings on arcs between two consecutive harbours for a
strategic liner network design problem.

3 Solution Approach

Our mathematical model for a strategic liner network design problem is capable of
creating round trips for each type of ship specifying the ports to be visited by this
type of ship and its corresponding schedule. This is done for multiple types of ships
simultaneously leading to multiple parallel round trips. Our objective is to maximize the
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profit gained by revenues when transporting cargo from its pick-up port to its destination
port and subtracting all variable speed and type of ship dependent travel costs as well
as fixed charter costs per ship. Not all cargo demand has to be transported. Only cargo
that contributes to the profit will be serviced.

Our mixed integer programming model will addresses the following questions:

– Which harbours on a ships’ route should be visited on a liner round trip?
– Which cargo can be transported from the cargos’ pick-up port to its destination port

along the same round trip?
– How many ships of a specific type are needed to guarantee an e.g. weekly visit to

all ports along a round trip?
– Which average speed should be selected on a trip between two consecutive har-

bours?

For solving this model we created a hybrid algorithm, consisting of a Variable Neigh-
borhood Search (VNS) and a relaxed MIP-model. This approach is comparable to a
Matheuristic as described in Caserta and Voß [3].
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T., Voß, S. (eds.) Matheuristics, Annals of Information Systems, vol. 10, pp. 1–38. Springer,
US (2010)

4. Cho, S.C., Perakis, A.N.: Optimal liner fleet routeing strategies. Maritime Policy & Manage-
ment 23(3), 249–259 (1996)

5. Enercon: Segelrotor-Schiff e-ship 1 in der Erprobung. Windblatt Enercon Magazin, p. 6
(February 2010)

6. Fagerholt, K.: Optimal fleet design in a ship routing problem. International Transactions in
Operational Research 6(5), 453–464 (1999)

7. Fagerholt, K.: Designing optimal routes in a liner shipping problem. Maritime Policy &
Management 31(4), 259–268 (2004)

8. Kjeldsen, K.H.: Liner shipping network design, routing and scheduling. Ph.D. thesis,
CORAL - ASB (2009)

9. Rana, K., Vickson, R.G.: Routing container ships using lagrangean relaxation and decompo-
sition. Transportation Science 25(3), 201–214 (1991)

10. Shintani, K., Imai, A., Nishimura, E., Papadimitriou, S.: The container shipping network de-
sign problem with empty container repositioning. Transportation Research Part E: Logistics
and Transportation Review 43(1), 39–59 (2007)

11. SkySails: Skysails (2011), http://www.skysails.info/
12. Tchibo: Sustainable development report (2009),

http://www.tchibo-nachhaltigkeit.de/controller.aspx?
n=120\&l=2

http://www.bunkerworld.com/prices/index/bwi
http://www.skysails.info/
http://www.tchibo-nachhaltigkeit.de/controller.aspx?n=120&l=2
http://www.tchibo-nachhaltigkeit.de/controller.aspx?n=120&l=2


A VND-ILS Heuristic to Solve the RWA Problem

Alexandre Xavier Martins1, Christophe Duhamel2, Mauricio Cardoso de Souza3,
Rodney Rezende Saldanha4, and Philippe Mahey2

1 Programa de Pós-Graduação em Engenharia Elétrica ,
Universidade Federal de Minas Gerais, Av. Antônio Carlos,

6627, Belo Horizonte, MG, Brasil
xmartins@decea.ufop.br

2 Laboratoire LIMOS, CNRS-UMR6158, Université Blaise Pascal,
Campus des Cézeaux, BP 10125, 63173 Aubiere CEDEX, France

{duhamel,mahey}@isima.fr
3 Departamento de Engenharia de Produção, Universidade Federal de Minas Gerais,

Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brasil
mauricio.souza@pq.cnpq.br

4 Departamento de Engenharia Elétrica, Universidade Federal de Minas Gerais,
Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brasil

rodney@cpdee.ufmg.br

Abstract. The Routing and Wavelength Assignment problem occurs in optical
networks where communication requests fulfilled without inducing wavelength
conflicts. We propose a VND-ILS algorithm which is a hybridization of both the
ILS metaheuristic and the VND local search. Three neighborhood structures are
defined for the VND as well as a perturbation step in the ILS. The efficiency of our
approach is illustrated on classical realistic RWA instances. The computational
results show our method outperforms some of the best existing methods in the
literature.

1 Introduction

Consider a directed graph G = (V,E), where V denotes the set of nodes and E denotes
the set of communication links. Let R be the set of requests. Each request i ∈ R is
defined by an origin and destination pair (si,di) ∈V ×V . The Routing and Wavelength
Assignment (RWA) consists in determining the paths in which each attended request
will be routed and its associated wavelength. A single wavelength must be assigned
along the entire route if no converters are available, this is called continuity constraint.
Besides, lightpaths that share a common physical link cannot be assigned the same
wavelength. This is called the wavelength clash constraint.

Generally the RWA problem can be classified into two types: static, in which the
requests between the node pairs are given in advance; dynamic, in which the on-line
establishment of lightpaths is involved for connection requests that occur dynamically.
This paper addresses the static min-RWA offline variant, where the objective is to min-
imize the number of wavelengths used satisfying all the traffic requests in R.

An instance of the static RWA is illustrated in Fig. 1a, along with the set of traffic
requests. A feasible associated solution is shown in Fig. 1b. The arc (1,7) is used to
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Fig. 1. RWA Problem Example

attend the requests {1,6} and {1,7}. Therefore we only need to use two wavelengths
on it.

According to [2] the min-RWA is NP-hard. Thus, it is very difficult to get an optimal
solution for problems of practical sizes. Approximation algorithms and heuristics are
thus usually applied to compute a good solution in a reasonable amount of time for real
size instances.

In this paper, we present a combination of both the VND and the ILS heuristics
for min-RWA. The VND heuristic performs a local search in the neighborhood of the
current solution while the ILS heuristic is used to disturb an existent solution, allowing
a new search to be done, instead of generating a new solution.

The rest of this paper is organized as follows. Section 2 is dedicated to the heuris-
tics to solve the min-RWA problem. The implemented VND and ILS are depicted, re-
spectively, in Sections 3 and 4. The experimental results are shown in Section 5. Final
remarks are done in Section 6.

2 Related Work

Two strategies are commonly used to solve min-RWA. They both decompose the RWA
into two subproblems: the routing problem and the wavelength assignment problem.
The first strategy solves the wavelength problem after having solved the routing prob-
lem ([1], [6]). The second strategy solves both subproblems at the same time ([9], [4]).

Four constructive heuristics are proposed in [9] based on methods used to solve the
Bin Packing problem: FF-RWA is based on the first fit heuristic; BF-RWA is based
on the best fit heuristic; FFD-RWA is based on the first fit decreasing heuristic; and
BFD-RWA is based on the best fit decreasing heuristic. Computational results show
that FFD-RWA and BFD-RWA outperform the Greedy-EDP-RWA [4]. An efficient im-
plementation of these heuristics is presented in [7] along with a new set of test instances.
The best results were obtained by BFD-RWA.

One of the drawbacks of the BFD-RWA algorithm is that there are many requests
with the same min-length value. To handle this problem [8] proposed a genetic algo-
rithm with random keys to order those requests. The requests are ordered according to
their min-length and to their keys values. The key value to each request is a real number
within [0,1] that is randomly generated in the initial population. The fitness of the chro-
mosome is given by the cost of the solution found by a decoding heuristic that receives
as input the random-keys vector and outputs a feasible solution with its corresponding
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cost. The decoding consists of two steps. First, the requests are sorted in non-increasing
order of the sum of their min-length and key values. Then, the relative order between
requests with the same min-length value is defined by their keys. The objective function
of the resulting order is computed using the BFD-RWA algorithm [9].

3 Variable Neighborhood Descent

The VND technique [5] consists in systematically exploring different neighborhoods of
a solution within a local search in order to reduce the risk of becoming trapped in local
optima. During the exploration, only improving movements are accepted. Whenever
a new improving solution is found, the method restarts with the first neighborhood
structure at the new current solution.

Here, given a solution, the general idea is to choose a graph (ie. a wavelength) with
fewer requests to be eliminated. Instead of trying to remove the graph at once, the idea
is to transfer, one by one, the requests included in this graph.

Let λt be the chosen graph. We must now choose the request to be transferred. The
requests are sorted in non-increasing order of the lengths of their shortest path. Then
the first element, rt , is selected to be transferred.

The first neighborhood consists of a simple reallocation. For each graph, different
from λt , the method tries to shift the request rt ∈ λt into another graph. The search
is stopped as soon as a feasible shift is found. Upon success, the search continues by
selecting another request belonging to λt . If λt is empty, it can be removed. Otherwise,
the method proceeds to the next neighborhood.

The second neighborhood is called when a simple reallocation is not possible. There-
fore, a graph λi is selected and we try to reallocate each of its requests to the other
graphs, different from λt . If at least one change is done it means we can try to reallocate
the request rt to the graph λi. For each iteration of this neighborhood a single graph λi

is selected. The choice is done sequentially. Upon success, the search continues by se-
lecting another request belonging to λt and returns to the first neighborhood. Otherwise,
the method proceeds to the next neighborhood.

Finally, if no reallocation is possible, the method performs the search in the third
neighborhood. The goal here is to exchange the request rt with another request. The
swap is accepted only for requests whose shortest path length is lower than the length of
the shortest path of rt . Upon success, the search continues by selecting another request
belonging to λt and returns to the first neighborhood. Otherwise, the method stops and
the ILS steps goes on.

4 Iterated Local Search

The ILS [3] method aims to disturb a current solution without undermining the gains
already achieved. In this sense we have developed a method that changes the current
solution without adding any other wavelength and without allocating any requests in λt .

The perturbation is done as follows: for each graph, excludingλt , we pull out a chosen
randomly request. The arcs of each request are reactivated. Then the method constructs
an assignment problem (graphs× requests) by checking all possible allocations between
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requests and graphs. The costs of edges in the assignment problem are as follow: ci j =−2
if the request i belongs to the graph j, ci j = −∞ if there is no path for the request i in
the graph j. Otherwise there is a path and the cost is ci j = −(1.0− SP(i)/SP(i, j))+
max(SP(i, i)− SP(i, j),0.0), where SP(i) is the length of shortest path of request i and
SP(i, j) is the length of shortest path of request i in the graph j.

The assignment problem can be solved in polynomial time. After the problem has
been solved, we check whether there has been any change in the current solution. If so,
the method returns to the VND, otherwise another ILS iteration is done.

5 Results

In order to assess the performance of the proposed VND-ILS, one set of computational
experiments is designed. All of the computational tests have been carried out on a com-
puter with a Core 2 Duo processor, 1.97 GHz and 4 GB of RAM memory, running the MS
Windows XP operating system. All of the algorithms have been implemented in C++.

Three sets of test instances were used in the computational experiments. The first set
is a collection of the most studied realistic instances in the literature. The other two tests
(sets Y and Z) correspond to the largest and most difficult instances proposed in [7].

The experiment addresses the performances of the GA-RWA algorithm proposed
in [8] with a time limit of 10 min and the VND-ILS we propose with a time limit of
5 min in order to take into account the processor difference. The VND-ILS algorithm
starts with a solution provided by the BFD algorithm [9]. For each instance, the tables
report the value of the best found solution and the average gap obtained with GA-RWA
over five runs and VND-ILS over thirty runs (each run with a different seed for the ran-
dom number generator) for statistical consistency. The last column presents the lower
bound obtained by solving the linear relaxation of a multicommodity flow formulation
equivalent to min-RWA without the wavelength continuity constraints.

The average gap over the realistic instances, the set Z and the set Y are shown in
Table 1, 2 and 3, respectively. For GA-RWA these gaps are 4.1%, 6.0% and 13.8%
while for VND-ILS these gaps are 0.0%, 3.4% and 9.9%. The column σ shows the
standard deviation for the VND-ILS method. We can see that for realistic instances our
method is able to find all the optimal solutions. Moreover, the VND-ILS has been able
to improve all the upper bounds that could still be improved (on the sets Z and Y, but
also on the first set).

Table 1. GA-RWA vs. VND-ILS, Realistic

Method GA-RWA VND-ILS
Instance λmin gap(%) λmin gap(%) σ LB
ATT 24 20.0 20 0.0 0.0 20
ATT2 113 0.0 113 0.0 0.0 113
Finland 46 0.4 46 0.0 0.0 46
NSF.3 22 0.9 22 0.0 0.0 22
NSF.12 39 2.6 38 0.0 0.0 38
NSF2.12 35 0.6 35 0.0 0.0 35
Average 4.1 0.0
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Table 2. GA-RWA vs. VND-ILS, Set Z

Method GA-RWA VND-ILS
Instance λmin gap(%) λmin gap(%) σ LB
Z.10x10.20 31 15.6 29 7.4 0.0 27
Z.6x17.40 87 4.0 85 1.2 0.0 84
Z.10x10.60 87 13.2 85 10.4 0.0 77
Z.4x25.60 195 2.0 193 0.6 0.3 192
Z.10x10.80 115 12.4 112 9.7 0.3 103
Z.8x13.80 134 3.9 131 1.6 0.2 129
Z.6x17.80 176 3.0 172 0.6 0.0 171
Z.5x20.80 209 2.0 206 0.5 0.0 205
Z.4x25.80 260 1.3 258 0.6 0.5 257
Z.5x20.100 257 2.8 253 1.6 0.3 250
Average 6.0 3.4

Table 3. GA-RWA vs. VND-ILS, Set Y

Method GA-RWA VND-ILS
Instance λmin gap(%) λmin gap(%) σ LB
y.4.20.4 20 6.3 19 0.0 0.0 19
y.3.40.5 59 12.8 56 7.6 0.3 53
y.3.60.5 86 12.5 83 7.9 0.3 77
y.4.60.5 58 18.4 55 12.8 0.4 49
y.5.60.1 36 9.7 35 7.6 0.5 33
y.3.80.1 122 15.5 116 9.5 0.2 106
y.3.80.5 113 8.8 110 4.2 0.3 104
y.4.80.1 73 55.3 70 49.2 0.3 47
y.4.80.5 75 16.0 72 11.3 0.5 65
y.5.80.1 47 11.2 46 8.1 0.5 43
y.5.80.2 60 1.7 59 0.1 0.3 59
y.4.100.1 90 18.4 87 14.5 0.0 76
y.5.100.1 58 5.5 57 4.2 0.5 55
y.5.100.2 74 1.6 73 1.1 0.4 73
Average 13.8 9.9

6 Conclusions

The objective of this work was to propose an efficient VND-ILS with respect to the
computational time and to the solution quality when compared with well known heuris-
tics available in the literature for min-RWA problem.

We take advantage of an existing method to generate initial solutions (the
BFD-RWA). This method was combined with a VND algorithm with three different
neighborhood structures. Moreover, an ILS scheme was developed. This strategy proved
being quite successful. It not only finding the optimal solutions for all realistic instances,
but it also improved the upper bounds for all instances in which it was still possible.
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Abstract. In this paper, we investigate the recoverable robust knapsack problem,
where the uncertainty of the item weights follows the approach of Bertsimas and
Sim [3,4]. In contrast to the robust approach, a limited recovery action is allowed,
i.e., up to k items may be removed when the actual weights are known. This
problem is motivated by the assignment of traffic nodes to antennas in wireless
network planning. Starting from an exponential min-max optimization model,
we derive an integer linear programming formulation of quadratic size. In a pre-
liminary computational study, we evaluate the gain of recovery using realistic
planning data.

1 Introduction

An important problem in the design of wireless networks is the assignment of traffic
nodes, e.g., aggregations of users, to antennas. Each antenna has a limited bandwidth
capacity to be partitioned among the users in the area covered by the antenna. Users, in
general, do not generate a constant traffic rate. Depending on their needs in data traffic
or web browsing the requested bitrate fluctuates (e.g., 64 kbps, 384 kbps, 2 Mbps). In
the network capacity planning phase usually an average traffic volume is considered.
However, during operation, individual users with their actual bitrates need to be admit-
ted to the antenna.

The actual bitrates are difficult to predict in advance, but using historical data average
and peak values can be derived. It is also observed that not all peaks occur simultane-
ously. Therefore, we may assume that the bitrates of only a limited number Γ of users
deviate from their average at the same time. Such behavior is captured by theΓ -scenario
set introduced by Bertsimas and Sim [3, 4].

To ensure a good quality of service for all users at any point in time, a robust assign-
ment is appropriate. Such a robust solution is static over time, neglecting the possibility
to reassign (a limited number of) users to other antennas, according to the current traffic
volume. Focusing on a single antenna, the robust approach reduces to a classical knap-
sack problem with uncertainty in the weights. Including the possibility to change the

� This work was supported by the Federal Ministry of Education and Research (BMBF
grant 03MS616A, project ROBUKOM - Robust Communication Networks,
www.robukom.de).
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assignment during runtime yields a recoverable robust knapsack problem (rrKP): Com-
pared to the planning phase, up to k users can be refused a connection at this antenna
(and should be reassigned to another one).

In this paper, we study the rrKP with Γ -scenarios. In Section 2, we describe the
problem in detail and give an overview on previous work. In the next section, we derive
an integer linear programming formulation. In Section 4, we present the results of pre-
liminary computational experiments on the gain of recovery using data from wireless
network planning. We close with concluding remarks in Section 5.

2 Recoverable Robust Knapsack Problem

Despite its simple structure, the knapsack problem (KP) is weakly NP-hard [10] but
solvable in pseudo-polynomial time [2]. Alternatively, branch-and-cut algorithms can
be used to solve the KP. For a detailed introduction see [11, 13].

Yu [15] defined a robust version of the knapsack problem by introducing uncertainty
in the profit values via a discrete set of scenarios. For sets with an unbounded number
of scenarios, the decision version of the problem is strongly NP-complete and can not
be approximated, mentioned by Aissi et al. [1]. On the other hand, if the set contains
a constant number of scenarios, the problem is only weakly NP-complete, solvable
in pseudo-polynomial time [15] and there exists an FPTAS [1]. A recoverable robust
knapsack problem with discrete scenarios is investigated by [6]. Here, up to k items can
be removed and � items added to a first stage solution.

Recently, Klopfenstein and Nace [12] considered robust knapsacks with uncertainty
in the weights based on Γ -scenarios [3, 4]. We will in the following extend this model
by a recovery action of deleting up to k items.

Definition 1 (Recoverable Robust Knapsack (rrKP)). Let N be a set of n items with
profits pi, nominal (or default) weight wi, and maximum deviation ŵi, i ∈ N. For a given
Γ ∈N, the set SΓ consists of all scenarios S which define a weight function wS : N →N
s.t. wS

i ∈ [wi,wi + ŵi] for all i ∈ N and |{i ∈ N : wS
i > wi}| ≤ Γ . For k ∈ N and a subset

X ⊆ N the recovery set X k
X consists of all subsets of X with at least |X |− k elements,

i.e., X k
X = {X ′ ⊆ X : |X\X ′| ≤ k}. Given a knapsack capacity c ∈ N, the rrKP is to find

a set X ⊆ N with maximum profit p(X) := ∑ j∈X p j s.t. for every scenario S ∈ SΓ there
exists a set X ′ ∈ X k

X with wS(X ′) ≤ c.

Note that k models the quality of service: for k = 0 (the robust case), every user granted
connection is connected, whereas for k = n no service guarantee is given. We now focus
on a compact formulation of an rrKP instance with Γ -scenarios.

3 A Compact ILP Formulation

In this section we present an ILP-formulation for the rrKP. To this end, we define bi-
nary variables xi ∈ {0,1}, i ∈ N, denoting the items in the knapsack. Any 0-1 point x
satisfying the (exponential many) inequalities

∑
i∈N

wixi + max
X̄⊆N
|X̄ |≤Γ

(
∑
i∈X

ŵixi −max
Y⊆N
|Y |≤k

(
∑
i∈Y

wixi + ∑
i∈X̄∩Y

ŵi
))≤ c (1)
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represents a feasible solution. In the following, we characterize the same polytope by a
linear number of constraints. First, we consider a subproblem of finding a scenario S ∈
SΓ that imposes the maximum weight on a chosen subset X ⊆ N. For given parameters
Γ ∈ N and k ∈ N we define the weight of a subset X ⊆ X as

weight(X ,X) = ∑
i∈X

ŵi −max
Y⊆X
|Y |≤k

(
∑
i∈Y

wi + ∑
i∈Y∩X

ŵi

)
.

A maximum weight set Xk
Γ is a subset of X with |Xk

Γ | ≤ Γ and with maximum weight.
The maximum weight set problem (MWSP) is to find for a given set X , and parameters
Γ and k, a maximum weight set Xk

Γ .
As the following example indicates, there is no inclusion relation between optimal

solutions of an MWSP for different Γ values, i.e., in general Xk
Γ � Xk

Γ+1.

Example 1. Consider the set X = {1, . . . ,4} with nominal weights w = {3,3,10,10}
and deviations ŵ = {2,2,5,5} and k = 1. For Γ = 1, the sets X ′ = {1} and X ′′ = {2}
are the maximum weight sets for this instance with weight(X ′,X) =−8. But, X̄ = {3,4}
is the maximum weight set with weight(X̄ ,X) = −5 for Γ = 2, whereas the sets {1,3},
{1,4}, {2,3} and {2,4} have a weight of −8.

Yet, the MWSP can be solved in polynomial time by exploiting linear programming
duality. Computing a maximum weight set is formulated by the following ILP

max
y∈{0,1}|X |

{
∑
i∈X

ŵiyi − max
z∈{0,1}|X |

{
∑
i∈X

(wi + ŵiyi)zi : ∑
i∈X

zi ≤ k
}

: ∑
i∈X

yi ≤ Γ
}

(2)

The variables yi represent the choice, whether an item i is in the maximum weight set
Xk
Γ , and zi, whether the item i is removed due to its high weight.

Given a vector y, (2) can be solved by its linear relaxation, since the matrix is totally
unimodular [14, Sec. 3.2]. By duality, we obtain a compact ILP reformulation:

max ∑
i∈X

ŵiyi − k ·u−∑
i∈X

vi (3a)

s.t. ∑
i∈X

yi ≤Γ (3b)

ŵi · yi −u− vi ≤−wi ∀i ∈ X (3c)

u,vi ≥0 ∀i ∈ X (3d)

yi ∈{0,1} ∀i ∈ X (3e)

where the dual variable u corresponds to ∑i∈X zi ≤ k and vi to zi ≤ 1 for i ∈ X . Next,
we parametrize (3a)–(3e) by the possible u-values and denote with z(u) the value of
(3a)–(3e).

Lemma 1. For a fixed parameter u′, let wi(u′) = min{ŵi,−wi + u′} for all i ∈
{1, . . . ,n′}, X−(u′) = {i ∈ X | wi(u′) < 0}, and X(u′) ⊆ X\X−(u′) maximizing
∑i∈X(u′) wi(u′) with |X(u′)| ≤ Γ . Then

z(u′) = ∑
i∈X(u′)

wi(u′)+ ∑
i∈X−(u′)

wi(u′)− k ·u′
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holds. Furthermore, there always exists an optimal solution (u∗,y∗,v∗) of (3a)–(3e)
with u∗ ∈U := {0}∪{wi : i ∈ X}∪{wi + ŵi : i ∈ X}.

See [5] for the omitted proof. By Lemma 1, inequality (1) is equivalent to

∑
i∈N

wixi + max
u∈U

(
∑

i∈X−(u)
wi(u) · xi− k ·u + max

X ′⊆N
|X ′ |≤Γ

∑
i∈X

wi(u) · xi

)
≤ c . (4)

This inequality can be transformed into the following set of constraints

∑
i∈N

wixi + ∑
i∈X−(u)

wi(u) · xi + max∑
i∈N

wi(u) · xi · yu
i ≤ c + ku ∀u ∈U

∑
i∈N

yu
i ≤ Γ ∀u ∈U

yu
i ∈ {0,1} ∀ i ∈ N, ∀u ∈U.

By dualizing the last part, which is totally unimodular, we get the following ILP

max∑
i∈N

pixi (6a)

s.t. ∑
i∈N:
wi<u

wixi + ∑
i∈N:
wi≥u

uxi +Γξ u +∑
i∈N

θ u
i ≤c + ku ∀u ∈U (6b)

min{ŵi,−wi + u}xi− ξ u −θ u
i ≤0 ∀i ∈ N,∀u ∈U (6c)

xi ∈ {0,1}, ξ u,θ u
i ≥0 ∀i ∈ N,∀u ∈U (6d)

with new dual variables ξ u and θ u
i . The model contains O(n2) variables and O(n2)

constraints depending on the number of different values of wi, ŵi, i ∈ N.

4 Computational Experiments

In this section, we present some preliminary results of computational experiments on
the gain of recovery for the rrKP with Γ -scenarios. As test instances, we consider a
wireless network planning problem based on [8]. Given the planning instances, rrKP
instances were generated for all 51 antennas with 15 to 221 traffic nodes (geometric
mean: 87). Uncertain demands are modeled as in [7].

We implemented formulation (6a)–(6d) of the rrKP in C++ using IBM ILOG CPLEX

12.2 [9] as MIP solver. All computations were carried out on a Linux machine with
2.93 GHz Intel Xeon W3540 CPU, 12 GB RAM, and a time limit of one hour per in-
stance. All instances could be solved to optimality.

We investigate the gain of recovery, i. e., the (percentual) increase in the objective
value by allowing recovery. As values for k and Γ we consider (rounded-up) relative
values of 0 %, 5 %, . . . , 25 % of the number of traffic nodes.

Comparing all test instances, Figure 1 shows the geometric mean resp. maximum
gain of recovery achieved in these instances (normalized to k = 0). Further, the added
value for each value k is shown.
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(a) geometric mean (b) observed maximum

Fig. 1. Gain of Recovery. For each instance, Γ ,and k, the gain of recovery is determined by the
objective value normalized to the corresponding case with k = 0%

Fixing k, we observe that in geometric mean a higher gain of recovery is obtained
by increasing Γ (e. g., k = 20%,Γ = 5% yields 18 %, while k = 20%,Γ = 20% yields
30 %). By evaluating the maximum observed gain of recovery, we estimate the potential
added value by recovery. It ranges from 25 % (k = 5%) to 71 % (k = 25%) in geometric
mean with an absolute maximum of 93 % (Γ = k = 25%).

In summary, the results of our preliminary study show that the recoverable robust
approach gives a promising added value to the robust approach for small k already.

5 Concluding Remarks

In this paper, we considered the recoverable robust knapsack problem (rrKP) with Γ -
scenarios which is a subproblem in wireless network planning under traffic uncertain-
ties. In detail, we introduced a compact ILP-formulation for this problem which is linear
in the input size. Using realistic application-based data, we presented the results of a
preliminary computational study evaluating the gain of recovery.

In the future, the polyhedral structure of the rrKP with Γ -scenarios should be studied
to improve the overall solving process in a branch-and-cut approach.
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6. Büsing, C., Koster, A.M.C.A., Kutschka, M.: Recoverable robust knapsacks: the discrete sce-

nario case. Optimization Letters, Online First (2011), http://dx.doi.org/10.1007/
s11590-011-0307-1

7. Claßen, G., Koster, A.M.C.A., Schmeink, A.: Planning wireless networks with demand un-
certainty using robust optimization. Optimization Online Eprint server (2011), http://
www.optimization-online.org/DB_HTML/2011/03/2954.html

8. Engels, A., Reyer, M., Mathar, R.: Profit-oriented combination of multiple objectives for
planning and configuration of 4G multi-hop relay networks. In: 7th International Symposium
on Wireless Communication Systems (IEEE ISWCS), York, UK, pp. 330–334 (2010)

9. ILOG: CPLEX version 12.2 (2010), http://www.ibm.com
10. Karp, R.: Reducibility among combinatorial problems. Complexity of Computer Computa-

tions, pp. 85–103 (1972)
11. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004)
12. Klopfenstein, O., Nace, D.: Valid inequalities for a robust knapsack polyhedron - Application

to the robust bandwidth packing problem. Networks (to appear, 2010)
13. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations

(1990)
14. Wolsey, L.A.: Integer Programming. Wiley, Chichester (1998)
15. Yu, G.: On the max-min 0-1 knapsack problem with robust optimization applications. Oper-

ations Research 44, 407–415 (1996)

http://dx.doi.org/10.1007/s11590-011-0307-1
http://dx.doi.org/10.1007/s11590-011-0307-1
http://www.optimization-online.org/DB_HTML/2011/03/2954.html
http://www.optimization-online.org/DB_HTML/2011/03/2954.html
http://www.ibm.com


A Tabu Search Heuristic Based on k-Diamonds for the
Weighted Feedback Vertex Set Problem

Francesco Carrabs1, Raffaele Cerulli1, Monica Gentili2, and Gennaro Parlato3

1 University of Salerno, Department of Mathematics
fcarrabs@unisa.it, raffaele@unisa.it

2 University of Salerno, Department of Computer Science
mgentili@unisa.it

3 Liafa, CNRS and University Paris Diderot
gennaro@liafa.jussieu.fr

Abstract. Given an undirected and vertex weighted graph G = (V,E,w), the
Weighted Feedback Vertex Problem (WFVP) consists of finding a subset F ⊆ V
of vertices of minimum weight such that each cycle in G contains at least one
vertex in F . The WFVP on general graphs is known to be NP-hard and to be
polynomially solvable on some special classes of graphs (e.g., interval graphs, co-
comparability graphs, diamond graphs). In this paper we introduce an extension
of diamond graphs, namely the k-diamond graphs, and give a dynamic program-
ming algorithm to solve WFVP in linear time on this class of graphs. Other than
solving an open question, this algorithm allows an efficient exploration of a neigh-
borhood structure that can be defined by using such a class of graphs. We used
this neighborhood structure inside our Iterated Tabu Search heuristic. Our exten-
sive experimental results show the effectiveness of this heuristic in improving the
solution provided by a 2-approximate algorithm for the WFVP on general graphs.

1 Introduction

Given an undirected graph G = (V,E), a Feedback Vertex Set (fvs) of G is a subset
F ⊆ V of vertices such that each cycle in G contains at least one vertex in F , i.e. the
residual graph induced by the set of vertices V \F is acyclic. The Feedback Vertex Prob-
lem (FVP) consists of finding an fvs of minimum cardinality. When a weight w(v) is
associated with each vertex v of G then we have a vertex weighted graph. The Weighted
Feedback Vertex Problem (WFVP) on a weighted graph G consists of finding an fvs of
minimum weight, where the weight of the set is the sum of the weights of its elements.
Both FVP and WFVP are NP-complete problems and have application in several areas
of computer science such as circuit testing, deadlock resolution, placement of convert-
ers in optical networks, combinatorial cut design. This problem becomes polynomial
when addressed on diamond graphs [5], co-comparability graphs [6], convex bipartite
graphs [6], permutation graphs [14], interval graphs [15]. The best known approxima-
tion algorithm for WFVP has approximation ratio 2. The MGA algorithm introduced
in [3] was the first one having such an approximation ratio. Other approximation al-
gorithms for the WFVS are proposed in [1,18] for general graphs and in [2,8,13] for
special graph classes. There are also exact algorithms finding a minimum FVS in a
graph on n vertices in time O(1.9053n) [17] and in time O(1.7548n) [9].

J. Pahl, T. Reiners, and S. Voß (Eds.): INOC 2011, LNCS 6701, pp. 589–602, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In this paper we focus on the weighted feedback vertex set problem (WFVP). In par-
ticular, we introduce an extension of diamond graphs, namely the k-diamond graphs,
and give a linear time algorithm to solve WFVP on it based on a dynamic program-
ming approach. Moreover, we show how this new class of graphs can be used to define
a neighborhood structure (namely, the k-diamond Neighborhood) of a given feasible
solution and, successively, we show how to solve the problem on general graphs by
means of a tabu search technique using the k-diamond neighborhood. Such a class
of neighborhood was already introduced in [4], where, however, the computational
complexity of finding an optimum WFVP on a k-diamond graph was left open and
a heuristic approach was used to solve the problem. We solve such an open problem
(by giving a linear time algorithm) and also show the effectiveness of the chosen neigh-
borhood in improving a given initial feasible solution when explored by means of our
exploration strategy. In order to do this, experimental results are given to show how
our Iterative Tabu Search can improve the initial feasible solution, returned by the 2-
approximate MGA algorithm [3], when the k-diamond neighborhood is defined and
efficiently explored.

The sequel of the paper is organized as follows. Section 2 introduces the basic nota-
tion. Section 3 describes the class of k-diamond graphs and contains the main properties
to solve WFVP in linear time on this class. The role of k-diamonds to define a neigh-
borhood structure is described in Section 4, together with the proposed Iterated Tabu
Search heuristic. Computational results are reported in Section 5. Finally, concluding
remarks are discussed in Section 6.

2 Definitions and Notation

Let G = (V,E,w) be an undirected and vertex weighted graph, where V is the set of n
vertices, E is the set of m edges, and, w(v) is a positive weight associated with each
vertex v ∈V . Given a subset X ⊆V of vertices, let us define its weight W (X) as the sum
of the weights of its elements, i.e. W (X) =∑v∈X w(v) and X̄ = V \X its complementary
set. If X = /0 then W (X) = 0. We denote by G[X ] the subgraph of G induced by the set
of vertices X ⊆V . Formally, G[X ] = (X ,E[X ],w) where E[X ] = {(x,y) ∈ E : x,y ∈ X}. A
tree Tr rooted in r is an acyclic and connected graph. We define a forest F as a graph
where any connected component is a tree. A subset of vertices X is a feedback vertex
set of G if and only if G[X̄ ] is a forest. From now on we denote by F(G) and F∗(G),
any feedback vertex set and the minimum weight feedback vertex set of G, respectively.
When no confusion may arise we simply denote these sets by F and F∗ respectively.
Moreover, we define Fv̄ a feedback vertex set of G not containing vertex v. A vertex
v ∈ F is redundant if and only if F \{v} is a feedback vertex set of G. Any vertex v ∈V
is said to be appended if it is not included in any cycle of G. Obviously, a set of vertices
is an fvs of G if and only if it is an fvs of the graph G′ obtained from G after deleting
all the appended vertices. We say a graph is reduced if it does not contain any appended
vertex. The reduction operation of a graph can be performed in linear time. W.l.o.g.,
from now on we suppose graph G to be a reduced graph. For any additional definition
and notation we refer to [7].
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Fig. 1. (a) A diamond with upper apex r = 1 and lower apex z = 10. (b) A 3-diamond with upper
apices R = {1,8,14} and lower apex z = 19. Note that, as stated by property 1, it is composed by
the three diamonds D1, D8 and D14.

3 The Class of k-Diamond Graphs

In this section we first recall the definition of the class of diamond graphs introduced
in [5], and successively we formally describe the extended class of k-diamond graphs.
Then, we prove the basic properties that are useful to optimally solve WFVP on this
new class in linear time.

A weighted diamond Dr,z = (Vr,Er,w) is an undirected and vertex weighted graph
where (i) each vertex v ∈Vr is included in at least one simple path between r and z and
(ii) Dr,z[z̄] is a tree. The two vertices r and z are called the upper and lower apex of a
diamond Dr,z, respectively, and, the subgraph Dr,z[z̄] is referred to as the tree Tr rooted in
r associated with Dr,z. In Figure 1(a) the diamond D1,10 with upper apex r = 1 and lower
apex z = 10 is shown. Note that by deleting vertex z we obtain the tree T1 = D1,10[1̄0].

As shown in [5], WFVP can be solved in linear time on a diamond graph by a dy-
namic programming algorithm. Let us refer to such an algorithm as DP. In the sequel
we show how to use DP to solve WFVP in linear time on a k-diamond. A k-diamond is
a generalization of a diamond where multiple upper apices are allowed, formally:

Definition 1. A weighted k-diamond DR,z = (VR,ER,w), where k ≥ 1, R = {r1,r2, . . .
,rk} ⊆VR and z ∈VR, is an undirected and vertex weighted graph where (i) each vertex
v ∈VR is included in a simple path between exactly one of the k apices ri ∈ R and z and
(ii) DR,z[z̄] is a forest with k connected components.

Following the definition introduced for diamond graphs, we refer to the set of vertices R
and to vertex z of DR,z as the set of upper apices and the lower apex of DR,z, respectively.
The subgraph DR,z[z̄] is referred to as the forest FR, associated with DR,z, whose con-
nected components are the k trees Tri rooted in ri ∈ R. Figure 1(b) shows a 3-diamond.
The set of upper apices is composed of the three vertices R = {1,8,14}, while the lower
apex is vertex z = 19. The graph obtained from DR,z, after deleting the lower apex, is a
forest with the three connected components T1, T8 and T14 . To keep notation simple, in
the sequel of the paper and when no confusion may arise, we denote a k-diamond DR,z,
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with R = {r1, . . . ,rk}, just by DR and a diamond graph Dr,z by Dr. Note that for k = 1 a
k-diamond is a diamond. Moreover, it is easy to see that the following property holds:

Property 1 (Decomposition). Any k-diamond DR is composed by k distinct diamonds
Dri , with ri ∈ R, having all the same lower apex z.

For instance, the 3-diamond depicted in Figure 1(b) is composed by three diamonds
D1, D8 and D14. We will see in the following how to use the decomposition property
to solve WFVP on DR. By definition of k-diamond, the following properties obviously
hold.

Property 2. The singleton {z} is an fvs of DR.

Property 3. Every cycle of DR contains vertex z and vertices belonging to the same
connected component of FR.

Observe that, by property 2, a minimum weight feedback vertex set F∗(DR) of DR

either contains vertex z or not. Therefore, to find F∗(DR) we can proceed as follows:
(i) compute the minimum weight feedback vertex set F ∗̄

z (DR) that does not contain
z; (ii) if W (F ∗̄

z (DR)) < w(z) then set F∗(DR) = F ∗̄
z (DR) otherwise set F∗(DR) = {z}.

The computation of F ∗̄
z (DR) can be carried out by finding the fvs F ∗̄

z (DRi) of minimum
weight on each of the k diamonds Dri that compose DR as proven by the following
lemma:

Lemma 1. Given the k-diamond DR, let F ∗̄
z (Dri), ∀ri ∈ R, be a minimum weight feed-

back vertex set of diamond Dri not containing vertex z. Then: F∗
z̄ (DR) =

⋃
ri∈R

F∗
z̄ (Dri).

Proof. Let X =
⋃

ri∈R F ∗̄
z (Dri). We need to prove that X is a minimum fvs of DR not

containing z, i.e. X = F ∗̄
z (DR). From property 3 and by definition of F ∗̄

z (Dri), it is evident
that X is an fvs of DR therefore we have only to prove that X is minimum. Let us
suppose, by contradiction, there exists another fvs, say Y , such that z /∈ Y and W (Y ) <
W (X). Let Yi = Y ∩Dri . By property 3, each set Yi is an fvs of Dri that does not contain
vertex z. Therefore, since Y =

⋃
ri∈R Yi and W (Y ) < W (X), there must exist at least a

set, say Yh such that W (Yh) < W (F ∗̄
z (Drh)): a contradiction. ��

Corollary 1. Given the k-diamond DR, a minimum weight feedback vertex set F∗(DR)
is either the set F ∗̄

z (DR) or the singleton {z}.

From Corollary 1, the problem of finding an optimum WFVS on a k-diamond is reduced
to compute F ∗̄

z (Dri) on each of the k diamonds that compose DR. These fvs’s can be
computed using the DP algorithm given in [5]. Fig. 2 reports the pseudo-code of our
algorithm DPmulti that solves WFVP on k-diamonds. Theorem 1 to follow proves that
this algorithm runs in linear time.

Theorem 1. Given a k-diamonds DR = (VR,ER,w), the DPmulti algorithm computes
F∗(DR) in O(|VR|) time.

Proof. The computation of F ∗̄
z (Dri) carried out in step 1 of DPmulti algorithm takes

O(|Vri |) time (see [5]). Since this computation is repeated for each root ri ∈ R, then the



Tabu Search to Solve the Weighted Feedback Vertex Set Problem 593

Procedure: DPmulti

Step 1. for all Dri compute F∗
z (Dri);

Step 2. Set F∗
z (DR) ←

⋃
ri∈R

F∗
z (Dri);

Step 3. if W (F∗
z (DR)) < w(z) then F∗(DR) ← F∗

z (DR) otherwise F∗(DR) ←{z};
Step 4. Return F∗(DR);

Fig. 2. Pseudo code of algorithm DPmulti

total cost of step 1 is equal to O(|VR|) time. The joining operation carried out at step 2
requires O(k) time, while step 3 and step 4 require constant time. Consequently, DPmulti

runs in O(|VR|) time. ��
The next sections contain a description of a general neighborhood structure based on
the class of k-diamonds and introduce an operator that, using DPmulti, efficiently ex-
plores such a neighborhood. This operator will be later embedded into our Iterated
Tabu Search.

4 The Neighborhood Structures and the Iterative Tabu Search

The basic paradigm of tabu search is to use information about the search history to guide
local search approaches to overcome local optimality. Based on some sort of memory
certain moves may be forbidden, we say they are set tabu (and appropriate move at-
tributes are put into a list, the so-called tabu list). The search may imply acceptance
deteriorating moves when no improving moves exist or all improving moves of the
current neighborhood are set tabu. We implemented an extension of the standard Tabu
Search [10,11,12] (TS), namely the Iterated Tabu Search [16] (ITS), whose central idea
is based on the concept of intensification and diversification. The intensification phase
is focused in finding a better (locally optimal) solution in “surroundings”, i.e. neighbor-
hood, of the current solution. The ITS method uses the classical TS to achieve such an
improvement. The Diversification phase is used whenever the tabu memory indicates
that one is trapped in a certain basin of attraction and then allows to escape from the
current local optimum and to move towards new regions in the solution space.

In the following subsections the main components of the algorithm are described: (i)
the neighborhood structures (namely, the k-diamond neighborhood and the 2-exchange
neighborhood), (ii) the corresponding exploration strategies (namely, the Single−Insert
and the Double− Insert operators, respectively); (iii) the tabu list and (iv) the diversifi-
cation phase. The pseudo-code of our Iterative Tabu Search (ITS) is given in Fig. 5.

4.1 The k-Diamond Neighborhood

Given a graph G, let F be any not redundant fvs of G and F = G[F̄] the forest induced
by vertices not in F . By inserting a vertex z ∈ F in F a k-diamond DR is obtained. Let Iz
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be an fvs of DR not containing z, then the set F ′ = Iz∪{F \{z}} is a new fvs of G. Note
that, F ′ could contain redundant vertices. Let Oz be the set of the redundant vertices of
F ′. Note that, by construction of Iz, we have Oz ⊆ F \{z}. Add z to Oz and consider the
vertex set Fnew = Iz∪{F \Oz}. Fnew is a not redundant fvs of G and: if W (Iz) < W (Oz),
its weight is lower than the weight of F . Given a vertex z ∈ F , we define the couple
(Iz,Oz) an exchange set of z, formally:

Definition 2. Given a vertex z ∈ F, the couple (Iz,Oz), where Iz ⊆ V \F, Oz ⊆ F and
z ∈ Oz, is an exchange set of z if the set Iz ∪{F \Oz} is a not redundant fvs of G.

Let us denote by E (F,z) the collection of all the exchange sets associated with z ∈
F , i.e. E (F,z) =

{
(Iz,Oz) : Iz ∪ {F \Oz} is a not reduntant fvs of G

}
. The k-diamond

neighborhood is defined as follows:

Definition 3. Given a graph G and an fvs F, the k-diamond neighborhood N (F) is
the set of all not redundant fvs of G that can be obtained from F through the exchange
sets associated with each vertex z ∈ F:

N (F) =
{

Iz ∪{F \Oz} : (Iz,Oz) ∈ E (F,z),∀z ∈ F
}

Note that, given a vertex z ∈ F , finding the minimum cost set Iz associated with it cor-
responds to find the minimum weight feedback vertex set on the k-diamond associated
with z. Hence, by applying the DPmulti algorithm we can perform an implicit exhaus-
tive exploration on the neighborhood to find a local optimum in polynomial time. This
exploration is carried out by our first operator Single− Insert that is described next.

4.1.1 The Single− Insert Operator
Given a not redundant fvs F of G and the incumbent solution F∗, the Single− Insert
operator builds, for each z ∈ F , the k-diamond DR by introducing z in F = G[F̄ ]. Suc-
cessively, it computes an exchange set (Iz,Oz) where Iz = F ∗̄

z (DR), i.e Iz is the minimum
feedback vertex set of DR not containing z. The operator selects the best exchange set
(I∗z ,O∗

z ) such that W (I∗z )−W (O∗
z ) = min(Iz,Oz):z∈F{W (Iz)−W (Oz)}. More in detail (see

Fig. 3), the operator builds the k-diamond DR (step 1), finds the fvs F ∗̄
z (DR) by apply-

ing algorithm DPmulti and sets Iz ← F ∗̄
z (DR) (step 2). The operator (step 3) finds redun-

dant vertices (if any) of the new fvs Fnew = F \ {z}∪{Iz} to be inserted in Oz (initially
Oz = {z}). To this end, Single− Insert builds the forest F ′ = G[F̄new] and reintroduces,
one by one, each vertex z′ ∈ F \ {z} to check whether z′ is redundant or not. If z′ is
redundant then it is moved from Fnew to Oz. The final fvs Fnew = Iz ∪{F \Oz} is then
obtained after all the vertices in F \ {z} are checked for redundancy. Note that the pair
(Iz,Oz) is the move corresponding to the transition from solution F to its neighbor Fnew.

The weight of the new set Fnew is then compared with the weight of the incumbent
solution F∗ found so far. If W (Fnew) < W (F∗), then the operator sets the best move
(I∗z ,O∗

z ) equal to (Iz,Oz) even if this move is tabu (this represents the application of
an aspiration criterion [12]). Otherwise, if (Iz,Oz) is not tabu and the corresponding
solution is better than the solution associated with (I∗z ,O∗

z ), the algorithm sets (I∗z ,O∗
z )

equal to (Iz,Oz). Finally, if both previous cases do not hold, (Iz,Oz) is neglected.
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Procedure: Single− Insert(G,F, F∗)
Set W (I∗z )← ∞, W (O∗z )← 0
for all z ∈ F do

Step 1. Insert z in G[F̄ ] and reduce the obtained graph to produce the k-diamond DR;
Step 2. Set Iz ← F∗z̄ (DR);
Step 3. Find the set of redundant nodes Oz, add z to Oz, and set Fnew ← Iz∪{F \Oz};
Step 4. if W (Fnew)<W (F∗) do // aspiration criterion //

I∗z ← Iz,O∗z ← Oz;
else if W (Iz)−W (Oz)<W (I∗z )−W (O∗z ) and (Iz,Oz) is not tabu do

I∗z ← Iz,O∗z ← Oz;

end for
return (I∗z ∪{F \O∗z });

Fig. 3. Pseudo-code of operator Single− Insert

4.2 The 2-Exchange Neighborhood and the Double− Insert Operator

Additional neighborhoods similar to the k-diamond neighborhood above described can
be considered if more than one vertex of F is selected to be introduced in F = G[F̄ ].
Indeed, a drawback of the Single− Insert operator concerns the diversification of the
explored solutions. In fact, when there are not redundant vertices, only one vertex (the
lower apex z) is moved from F to F = G[F̄ ]. Hence, in the worst case, several appli-
cations of the operator Single− Insert are necessary to remove more than one vertex
from F . In order to overcome this issue, we consider a new neighborhood, namely the
2-exchange neighborhood, to diversify the explored solutions, that is, we considered the
case when two vertices {zi,z j} are selected to be inserted in F . This neighborhood is
explored by the operator Double− Insert (see Fig. 4) that differs from Single− Insert
since it inserts two lower apices {zi,z j} into F , and finds the fvs Izi,z j by applying algo-
rithm MGA. MGA is a greedy algorithm that selects at each iteration the vertex v such
that the ratio w(v)/d(v) is minimum, where d(v) is the degree of the vertex. When a
vertex is selected, it is removed from G and G is then reduced to obtain the subgraph G′.
The degree of each vertex v in G′ is updated and for each edge (u,v) that was removed
during the reduction process, the weight of its endpoints is decreased by the quantity
w(v)/d(v). The selection of a new vertex is then carried out on G′ until it is not empty.
For more details on MGA the reader can refer to [3].

The Single− Insert operator and the Double− Insert operator will be used during
the intensification phase of Iterative Tabu Search metaheuristic.

4.3 The Tabu List

At iteration t, after a relocation of vertices is carried out according to a resulting ex-
change set (Iz,Oz), the inverse move (Oz, Iz) cannot be carried out for the next Δ iter-
ations, where Δ is the tabu list size. To implement a fast way for storing each move
(Oz, Iz) we use a bit mask and an hash-table. Since both Iz and Oz are vertex sets and
each vertex has a distinct ID, we allocate two bit-mask bl and br whose size is |V |. We
set the bits in bl and br corresponding to the vertices in Oz and Iz, respectively, equal to
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Procedure: Double− Insert(G,F,F∗)
Set W (I∗C)← ∞, W (O∗C)← 0
for all pair C = (zi,z j) with zi,z j ∈ F do

Step 1. Insert zi and z j in G[F̄ ] and reduce it to obtain G′;
Step 2. Apply MGA to find an fvs IC of G′;
Step 3. Find the set of redundant nodes OC, add zi and z j to OC and set Fnew← IC∪{F \OC};
Step 4. if W (Fnew)<W (F∗) do // aspiration criterion //

I∗C ← IC , O∗C ← OC;
else if W (IC)−W (OC)<W (I∗C)−W (O∗C) and (IC ,OC) is not tabu do

I∗C ← IC , O∗C ← OC;

end for
return I∗C ∪{F \O∗C};

Fig. 4. Pseudo-code of operator Double− Insert

1. The two strings are then concatenated to generate the string of bits bl-br, that is the
key associated with the move. This key, that is unique for each move, is given to the hash
function to save the move. To verify if a move is tabu it is sufficient to generate its key
and check whether it is inside the hash table. The key generation, the insertion into the
hash table and the checking operations require O(|Iz|+ |Oz|) time. The keys are saved
inside a FIFO queue whose size is Δ , hence when the queue is full and a new key has
to be inserted, the key on the head is removed from the queue and from the hash table.
This operation requires constant time. We used a reactive tabu list, that uses a list whose
size is dynamically updated during the computation according to the evolution of the
search. The value of Δ ranges between a lower bound β− and an upper bound β+ that
are fixed at the beginning of the computation and never change. Given an initial fvs F ,

we set β− = 5, β+ = max
{

3β−, |F |
3 , |F̄|3

}
and Δ = β− + (β+−β−)

2 . After each iteration
t, if the new solution F ′ found during the intensification phase (steps 4-17 in Fig. 5) is
better than F∗, then Δ is increased by one. Otherwise, if F ′ is worse than F∗ but better
than the solution found at the previous iteration then Δ is not changed. Finally, if F ′ is
worse than the previous one then Δ is decreased by one.

4.4 The Diversification Phase

The diversification phase is implemented using a modified version of the Double−
Insert operator (namely the Multi− Insert operator). Given a solution F , Multi− Insert
differs from Double− Insert since a subset of vertices P ⊂ F with |P| > 2 is inserted
into the forest F = G[F̄] to obtain a new graph G′. There are three main aspects to
take into account in the diversification phase: (i) when to apply the diversification and
on which solution, (ii) the cardinality of the set P, and, (iii) which vertices to introduce
in P. We apply the diversification either to the best solution F∗ found so far (step 23
in Fig. 5) or to the solution F ′ (step 25 in Fig. 5) computed during the intensification
phase. We keep a counter q that ranges from 1 to θ (that is the maximum number of
diversification operations performed by the algorithm) and, as soon as this bound is
reached, the ITS stops. The cardinality of P is computed according to the following
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Procedure: ITS(G,θ ,σ)

1: F ← F∗ ←MGA(G);
2: for q = 1 to θ do
3: // Intensification Phase
4: F ′ ←V ;
5: for h = 1 to σ do
6: F1 ←Single-Insert(G,F,F∗);
7: F2 ←Double-Insert(G,F,F∗);
8: if W (F1)<W (F2) then
9: F ← F1;

10: else
11: F ← F2;
12: end if
13: Save the inverse move into the tabu list.
14: if W (F)<W (F ′) then
15: F ′ ← F; h← 1;
16: end if
17: end for
18: if W (F ′)<W (F∗) then
19: F∗ ← F ′;
20: end if
21: // Diversification Phase
22: if q is even then
23: F ← Diversi f ication(F∗);
24: else
25: F ← Diversi f ication(F ′);
26: end if
27: end for
28: return F∗;

Fig. 5. Pseudo-code of Iterated Tabu Search

formula: max
{

5, |F |×(20+5q)
100

}
. Finally, to remove vertices from F we consider the last

iteration it+(v) when v has been inserted in F : the vertices of F are sorted in increasing
order according to it+(v) and the first |P| vertices of F are selected.

5 Computational Results

The ITS algorithm was coded in C and run on a 2.33 GHz Intel Core2 Q8200 processor.
Since there are no available benchmark instances for the WFVP, we generated instances
for the following class of graphs: random graphs, squared and not squared grids, taurus
and hypercube. Each instance is characterized by the number of vertices, the number
of edges, a seed and a range of values for the weight of the vertices. The weight ranges
are: 10-25, 10-50 and 10-75. For each combination of parameters we generated five
instances with the same characteristics except for the seed. The results reported in the
tables are average values over these five instances. Small instances have 25, 50 and 75
vertices. Large instances have 100, 200, 300, 400 and 500 vertices.
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Tables 1-2-3 report the results of the MGA algorithm and of our ITS algorithm.
The first and second columns in each table report the id and characteristics of each
instance, respectively. For random graphs (Table 1): number of vertices (n), number of
edges (m), the lower (low) and upper (up) bounds for the weight of each vertex. For the
hypercube graphs (Table 2a and 3a) the number of edges is omitted because it depends
on the number of vertices. For the remaining graph classes: x is the number of rows
and y is the number of columns. The third column in each table reports the solution

Table 1. (a) Test results on random graphs: (a) small instances and (b) large instances

(a)

RANDOM GRAPHS: Small Instances
ID Instance MGA ITS GAP

n m low up Value Value Time
1 25 33 10 25 70.8 63.8 0.00 -9.89%
2 25 33 10 50 105.4 99.8 0.00 -5.31%
3 25 33 10 75 133.6 125.2 0.00 -6.29%
4 25 69 10 25 166.8 157.6 0.00 -5.52%
5 25 69 10 50 294.8 272.2 0.00 -7.67%
6 25 69 10 75 455 409.4 0.00 -10.02%
7 25 204 10 25 286.4 273.4 0.02 -4.54%
8 25 204 10 50 527 507 0.01 -3.80%
9 25 204 10 75 829.8 785.8 0.01 -5.30%

10 50 85 10 25 191.4 175.4 0.03 -8.36%
11 50 85 10 50 298.2 280.8 0.03 -5.84%
12 50 85 10 75 377.2 348 0.02 -7.74%
13 50 232 10 25 409 389.4 0.07 -4.79%
14 50 232 10 50 746.8 708.6 0.06 -5.12%
15 50 232 10 75 1018.4 951.6 0.04 -6.56%
16 50 784 10 25 612.6 602.2 0.11 -1.70%
17 50 784 10 50 1204.2 1172.2 0.15 -2.66%
18 50 784 10 75 1685.2 1649.4 0.14 -2.12%
19 75 157 10 25 347.2 321 0.13 -7.55%
20 75 157 10 50 571.2 526.2 0.14 -7.88%
21 75 157 10 75 815 757.2 0.11 -7.09%
22 75 490 10 25 654.2 638.6 0.16 -2.38%
23 75 490 10 50 1286.6 1230.6 0.27 -4.35%
24 75 490 10 75 1870.8 1793.6 0.13 -4.13%
25 75 1739 10 25 903.2 891 0.40 -1.35%
26 75 1739 10 50 1681 1664.8 0.35 -0.96%
27 75 1739 10 75 2479.8 2452.8 0.33 -1.09%

AVG -5.18%

(b)

RANDOM GRAPHS: Large Instances
ID Instance MGA ITS GAP

n m low up Value Value Time
1 100 247 10 25 536.4 501.4 0.33 -6.52%
2 100 247 10 50 910.4 845.8 0.37 -7.10%
3 100 247 10 75 1279.2 1223.8 0.28 -4.33%
4 100 841 10 25 846 828.2 0.27 -2.10%
5 100 841 10 50 1793.2 1729.6 0.60 -3.55%
6 100 841 10 75 2512.2 2425.6 0.35 -3.45%
7 100 3069 10 25 1151.2 1134 0.59 -1.49%
8 100 3069 10 50 2218 2179 0.69 -1.76%
9 100 3069 10 75 3284 3228.8 0.77 -1.68%
10 200 796 10 25 1547.8 1488.4 3.48 -3.84%
11 200 796 10 50 2544.2 2442.6 2.50 -3.99%
12 200 796 10 75 3277.4 3157 2.78 -3.67%
13 200 3184 10 25 2035.6 2003.6 2.78 -1.57%
14 200 3184 10 50 3775.2 3683.6 2.67 -2.43%
15 200 3184 10 75 5259 5158.6 2.76 -1.91%
16 200 12139 10 25 2467.4 2450 11.31 -0.71%
17 200 12139 10 50 4182.2 4149.4 8.91 -0.78%
18 200 12139 10 75 5568.8 5531.4 6.98 -0.67%
19 300 1644 10 25 2136.6 2072.6 10.19 -3.00%
20 300 1644 10 50 4384.6 4239.4 9.12 -3.31%
21 300 1644 10 75 6411.2 6154.4 11.09 -4.01%
22 300 7026 10 25 3267.6 3231 19.59 -1.12%
23 300 7026 10 50 6368.4 6261.4 21.12 -1.68%
24 300 7026 10 75 8825.2 8660.6 17.21 -1.87%
25 300 27209 10 25 3749.2 3729.2 44.74 -0.53%
26 300 27209 10 50 5774.2 5738 29.26 -0.63%
27 300 27209 10 75 10514 10469.6 50.88 -0.42%
28 400 2793 10 25 3097 3015.2 29.99 -2.64%
29 400 2793 10 50 6726.8 6528 35.82 -2.96%
30 400 2793 10 75 9006.8 8730 35.36 -3.07%
31 400 12369 10 25 4514.4 4451.8 55.14 -1.39%
32 400 12369 10 50 6896 6837.4 35.88 -0.85%
33 400 12369 10 75 10788.8 10661.8 48.12 -1.18%
34 400 48279 10 25 5090 5060.8 123.27 -0.57%
35 400 48279 10 50 7142.6 7109.2 85.15 -0.47%
36 400 48279 10 75 15202.4 15114.6 127.31 -0.58%
37 500 4241 10 25 4197.4 4102.8 68.35 -2.25%
38 500 4241 10 50 7447.6 7285 70.14 -2.18%
39 500 4241 10 75 11619.6 11285.6 63.93 -2.87%
40 500 19211 10 25 5817.2 5745.8 99.12 -1.23%
41 500 19211 10 50 7819.2 7725 89.63 -1.20%
42 500 19211 10 75 14335.4 14167.8 80.09 -1.17%
43 500 75349 10 25 6388.6 6366.4 181.71 -0.35%
44 500 75349 10 50 8709 8671.2 155.18 -0.43%
45 500 75349 10 75 16994.6 16939.2 201.96 -0.33%

AVG -2.09%
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Table 2. (a) Test results on small instances:(a) hypercube graphs, (b) taurus graphs, (c) squared
grid graphs and (d) not squared grid graphs

(a)

HYPERCUBE GRAPHS: Small Instances
ID Instance MGA ITS GAP

n low up Value Value Time
1 16 10 25 77.4 72.2 0.00 -6.72%
2 16 10 50 99.8 93.8 0.00 -6.01%
3 16 10 75 99.8 97.4 0.00 -2.40%
4 32 10 25 177.2 170 0.01 -4.06%
5 32 10 50 249.4 241 0.00 -3.37%
6 32 10 75 286.2 277.6 0.00 -3.00%
7 64 10 25 377.6 354.6 0.13 -6.09%
8 64 10 50 486.2 476 0.05 -2.10%
9 64 10 75 514 503.8 0.05 -1.98%

AVG -3.97%

(b)

TAURUS GRAPHS: Small Instances
ID Instance MGA ITS GAP

x y low up Value Value Time
1 5 5 10 25 113.2 101.4 0.00 -10.42%
2 5 5 10 50 135.2 124.4 0.00 -7.99%
3 5 5 10 75 167.4 157.8 0.00 -5.73%
4 7 7 10 25 206 197.4 0.03 -4.17%
5 7 7 10 50 243.4 234.2 0.02 -3.78%
6 7 7 10 75 282.6 269.6 0.02 -4.60%
7 9 9 10 25 324.8 310.4 0.20 -4.43%
8 9 9 10 50 388.4 370 0.17 -4.74%
9 9 9 10 75 448.4 432.2 0.16 -3.61%

AVG -5.50%

(c)

SQUARED GRID GRAPHS: Small Instances
ID Instance MGA ITS GAP

x y low up Value Value Time
1 5 5 10 25 122.4 114 0.00 -6.86%
2 5 5 10 50 208.4 199.8 0.00 -4.13%
3 5 5 10 75 335.2 312.6 0.00 -6.74%
4 7 7 10 25 270.8 252.4 0.03 -6.79%
5 7 7 10 50 464.6 439.8 0.03 -5.34%
6 7 7 10 75 749.4 718.4 0.03 -4.14%
7 9 9 10 25 466 444.2 0.22 -4.68%
8 9 9 10 50 805.8 754.6 0.29 -6.35%
9 9 9 10 75 1209.6 1138 0.13 -5.92%

AVG -5.66%

(d)

NOT SQUARED GRID GRAPHS: Small Instances
ID Instance MGA ITS GAP

x y low up Value Value Time
1 8 3 10 25 104.8 96.8 0.00 -7.63%
2 8 3 10 50 174.8 157.4 0.00 -9.95%
3 8 3 10 75 246.6 220 0.00 -10.79%
4 9 6 10 25 326.4 295.8 0.07 -9.37%
5 9 6 10 50 512 489.4 0.04 -4.41%
6 9 6 10 75 801 755 0.04 -5.74%
7 12 6 10 25 431.6 399.8 0.15 -7.37%
8 12 6 10 50 717.2 673.4 0.12 -6.11%
9 12 6 10 75 1092.8 1017.4 0.10 -6.90%

AVG -7.59%

value returned by MGA. We do not report the computational time of MGA since it is
always negligible. Fourth and fifth columns in the tables report the solution value and
the computational time (in seconds) of our ITS algorithm. Finally, last column reports
the percentage gap between the solution values returned by the two algorithms. This gap
is positive if MGA finds a better solution than ITS and negative otherwise. The last line
of the tables reports the average value of this gap computed on all the instances of the
table. On small instances of random graphs (Table 1) we can see from the gap column
that ITS always finds a better solution than MGA and the CPU time is less than half of a
second. On the 27 instances of Table 1a, this gap is greater than 5% for 15 instances and
in one case (instance 6) it is greater than 10%. On average, the improvement obtained
by ITS is around 5%. It is interesting to observe that as the density of graph increases
the gap decreases. This reveals that the selection criterion applied by MGA (the ratio
between weight and degree of a vertex) is less effective on sparse graphs. This trend
is evident on large instances (Table 1b) where (see for example instances with 500
vertices) the gap for sparse instances is more that 2% and it is less that 0.4% on more
dense instances. The computational time of ITS is less than 1 minute for the first 33
instances and is less that 4 minutes for the remaining large instances.

Consider Table 2 (for small instances) and Table 3 (for large instances) to compare
the algorithms on the other types of graph. Let us analyze the small instances for the
hypercube graphs. From the gap column, we can see that in three cases (instances 1,
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Table 3. (a) Test results on large instances: (a) hypercube, (b) taurus, (c) squared grid and (d)
not squared grid graphs

(a)

HYPERCUBE GRAPHS: Large Instances
ID Instance MGA ITS GAP

n low up Value Value Time
1 128 10 25 784.8 740 1.09 -5.71%
2 128 10 50 1125.4 1071 0.40 -4.83%
3 128 10 75 1196.4 1163.6 0.34 -2.74%
4 256 10 25 1641.2 1542.6 9.41 -6.01%
5 256 10 50 2429.4 2311.4 6.45 -4.86%
6 256 10 75 2673.4 2590.8 3.94 -3.09%
7 512 10 25 3416.4 3240.8 73.51 -5.14%
8 512 10 50 5147.4 4921.8 67.58 -4.38%
9 512 10 75 5789.2 5588.6 51.74 -3.47%

AVG -4.47%

(b)

TAURUS GRAPHS: Large Instances
ID Instance MGA ITS GAP

x y low up Value Value Time
1 10 10 10 25 413 388.8 0.38 -5.86%
2 10 10 10 50 476.4 458.6 0.37 -3.74%
3 10 10 10 75 523 504.8 0.25 -3.48%
4 14 14 10 25 793.8 750.8 5.96 -5.42%
5 14 14 10 50 908.2 875.6 3.68 -3.59%
6 14 14 10 75 1062.4 1017.2 3.59 -4.25%
7 17 17 10 25 1167.4 1110.2 21.98 -4.90%
8 17 17 10 50 1364.8 1307.6 20.93 -4.19%
9 17 17 10 75 1551.4 1502.4 23.18 -3.16%

10 20 20 10 25 1621.2 1548.6 88.75 -4.48%
11 20 20 10 50 1867.2 1803.4 81.03 -3.42%
12 20 20 10 75 2109.6 2042.6 55.19 -3.18%
13 23 23 10 25 2136.4 2043.4 278.08 -4.35%
14 23 23 10 50 2520 2412.2 177.53 -4.28%
15 23 23 10 75 2818.8 2705.4 184.99 -4.02%

AVG -4.15%

(c)

SQUARED GRID GRAPHS: Large Instances
ID Instance MGA ITS GAP

x y low up Value Value Time
1 10 10 10 25 613 570.6 0.54 -6.92%
2 10 10 10 50 1002 948.8 0.41 -5.31%
3 10 10 10 75 1657.4 1566 0.51 -5.51%
4 14 14 10 25 1273.6 1209.4 8.07 -5.04%
5 14 14 10 50 2103 2008.6 8.06 -4.49%
6 14 14 10 75 3618.6 3401.2 7.23 -6.01%
7 17 17 10 25 1917 1834.2 42.63 -4.32%
8 17 17 10 50 3231 3070.6 29.71 -4.96%
9 17 17 10 75 5380.8 5089.8 29.68 -5.41%
10 20 20 10 25 2781 2619.8 85.42 -5.80%
11 20 20 10 50 4516.8 4321.2 103.84 -4.33%
12 20 20 10 75 7650.4 7272.6 127.81 -4.94%
13 23 23 10 25 3626.8 3462.8 371.23 -4.52%
14 23 23 10 50 6171.4 5865.4 291.52 -4.96%
15 23 23 10 75 10195.6 9723.4 240.50 -4.63%

AVG -5.14%

(d)

NOT SQUARED GRID GRAPHS: Large Instances
ID Instance MGA ITS GAP

x y low up Value Value Time
1 13 7 10 25 552 513 0.36 -7.07%
2 13 7 10 50 870 803.4 0.31 -7.66%
3 13 7 10 75 1471 1390.8 0.34 -5.45%
4 18 11 10 25 1284.6 1208 6.78 -5.96%
5 18 11 10 50 2149.2 2049.8 8.77 -4.62%
6 18 11 10 75 3643.6 3431 5.79 -5.83%
7 23 13 10 25 2049.4 1930.6 42.54 -5.80%
8 23 13 10 50 3366.2 3194.8 43.01 -5.09%
9 23 13 10 75 5653 5286.6 34.27 -6.48%

10 26 15 10 25 2690.6 2532.8 104.81 -5.86%
11 26 15 10 50 4387.4 4164.8 82.30 -5.07%
12 26 15 10 75 7427.6 7063.4 85.79 -4.90%
13 29 17 10 25 3443.2 3270 236.94 -5.03%
14 29 17 10 50 5716.6 5430.4 251.17 -5.01%
15 29 17 10 75 9451.8 8993.2 196.66 -4.85%

AVG -5.65%

2 and 7) the gap is greater than 5% while on average it is around 4%. This difference
becomes more significant on the other three classes of graphs: for taurus graph the
average gap is around 5.5%, for the squared grid graphs the average gap is 5.66% and
on the not squared grid graphs it is 7.59% (and, except for instance 5, it is always
greater than 5%). The CPU time of ITS on these four classes of graphs is negligible
being always less than half of a second. Note that, since in these graphs several vertices
have the same degree, the selection criterion applied by MGA is essentially led by the
weight of the vertices and this probably causes its poor results.

On large instances, there is a sensible reduction of the gap between ITS and MGA
for taurus, squared grid and not squared grid graphs, while this gap increases on hyper-
cube graphs. In detail, on the hypercube, the gap is greater than 3% for three instances
(instances 1, 4 and 7) with an average value of 4.47%. The computational time of ITS
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on this class of graphs is, in the worst case, slightly more than 1 minute. On taurus
graphs the average gap is equal to 4.15% and on two instances (1 and 4) it is greater
than 5%. ITS computational time increases to 5 minutes in the worst case. For half of
the squared grid instances, the gap is greater than 5% while the average gap is equal
to 5.14%. These graphs ended to be more expensive for ITS in terms of computational
time. Finally, as already observed for small instances, the not squared grid graphs are
the hardest instances for MGA. Indeed, only in 3 cases (instances 5, 12 and 15) the gap
is less than 5% while the average gap is equal to 5.65%.

6 Conclusions

We addressed a well known NP-complete problem in the literature (the Weighted Feed-
back Vertex Set Problem) with application in several areas of computer science such as
circuit testing, deadlock resolution, placement of converters in optical networks, com-
binatorial cut design. In this paper we presented a polynomial time exact algorithm
(the DPmulti algorithm) to solve the problem on a special class of graphs, namely the
k-diamond graphs. In addition, we proposed an Iterative Tabu Search algorithm con-
sidering two different neighborhood structures one of which is based on the k-diamond
graphs where the DPmulti algorithm was hugely used for a better exploration. We car-
ried out an extensive experimentation to show the effectiveness of our approach when
compared with the well known 2-approximation algorithm MGA. Our approach shows
a very good trade-off between solution quality and computational time: our ITS solves
the problem in less than 1 second for instances up to 100 vertices with an improvement
of the quality of the solution when compared to those returned by MGA. This makes
ITS suitable to be embedded on an exact approach, that is object of our future research.
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Abstract. A cut-complex over the geometric n-cube is an induced subgraph of
the cube whose vertices are strictly separated from the rest of the cube by a hy-
perplane of Rn. A cut is the set of all the edges connecting the cut-complex to
its node-complement subgraph. Here, we will extend the concepts of hyperplane
cuts and cut-complexes to a larger class of cubical graphs called c-cuts, and c-
complexes respectively. Then, we prove connectivity of the c-complexes that is
essential for their characterization. Finally, we outline new open problems regard-
ing the c-cuts and c-complexes over the n-cube.

1 Introduction

The cut number S(n) of the n-cube is the minimum number of hyperplanes in Rn that
slice ( i.e. cutting the edges but missing vertices) all the edges of the n-cube. The cut
number problem for the hypercube of dimensions n ≥ 4 was posed by P. O,Neil about
forty years ago [10], however two different proofs of S(4) = 4 by Emamy [2,3] and
a set of 5 hyperplanes that slice all the edges of the 6-cube ( M. Paterson) [11], are
the only early results for the lower dimensional cubes. Since O,Neil’s paper in 1971
and after about 30 years, Sohler-Ziegler [13] obtained a computational solution to the
5-cube problem that shows S(5) = 5. This settles down the problem for n ≤ 6, but the
problem remains open for n ≥ 7. Of course, finding a short and computer-free proof for
the 5-cube will remain to be a challenging problem. More of Paterson type of cover-
ing cuts can be found in Ziegler [14]. The cut number problem has also been raised by
Grünbaum [8], Klee [9] and as a comprehensive exposition in Saks [11]. In the compu-
tational proof of Sohler-Ziegler [13] and in the other computational results of Ziegler
[14], the authors have used advanced parallel computing to overcome the technical
complexities of the computational process. The parallel algorithms have recently been
improved by T. Schumacher, E. Lübbers, P. Kaufmann, M. Platzner [12]. For more
on related problems and parallel computational results see Emamy-Ziegler [5,6]. On
the other hand, N. Calkin et.al. [1] have applied probabilistic methods on the cuts and
slicing hyperplanes in order to find S(7). A special class of induced subgraphs of the n-
cube called cut-complexes play an important role in any solution to this problem. In fact
Sohler-Ziegler [13] have applied the characterization of all the cuts and cut-complexes
of the 5-cube to prove that S(5) = 5. In this note, we will extend the concepts of hy-
perplane cuts and cut-complexes, to a larger class of cubical graphs called c-cuts, and
c-complexes respectively. And we prove a basic connectivity lemma for the latter class
that is essential to characterize c-complexes. Finally, we outline new open problems
regarding these larger class of cuts over the n-cube.
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2 Terminologies

The n-dimensional cube Qn will refer to the geometric cube embedded in Rn whose
vertex set is Bn = {0,1}n and the adjacent vertices are connected by the straight line
segments in the usual manner. The cut number problem in a covering format can be
stated as follows. Any slicing hyperplane divides the set of 2n vertices of the n-cube
into two disjoint sets S, S′ of vertices that stay in the opposite sides of the hyperplane.
In fact, we have a 2-vertex coloring of the cube in which vertices in S are red and those
of S′ are blue. In this vertex coloring, an edge is called colorful if it has two blue and red
end vertices. A cut is the set of all the colorful edges, that is, they have one end vertex
in S and the other one in S′, and then the subgraph induced by any of the sets S (or S′) is
defined to be a cut-complex. The cut number problem can be redefined as the minimum
number of distinct cuts that cover all the edges of the n-cube. In the latter format, the
class of cuts are determined by the class of slicing hyperplanes. So evidently, for any
specific class of 2-vertex colorings, a new type of cut number problem can be defined
naturally according to the cuts associated with the 2-colorings. In the following, some
specific set of planar vertices (cubical rectangles) will be defined that play an important
role in the definition of this new class of cuts and complexes.

A cubical rectangle is any set {x,y,w,z} of the hypercube vertices that form a plane
rectangle. In the latter definition, any square will be treated as a regular rectangle, and
thus the set of vertices of any 2- dimensional face of the hypercube is considered to
be a cubical rectangle. These cubical rectangles combined with a 2-vertex coloring of
the n-cube will lead us to a new class of cuts that is larger and in fact contains the
class of hyperplane cuts in the following manner. For a 2-vertex coloring, a cubical
rectangle is called alternating if its vertices are colored alternately, i.e., two opposite
vertices of the rectangle are red and the other two are blue. A 2-vertex coloring is
called feasible if it has no alternating cubical rectangle over the n-cube. Let a feasible
2-coloring be given, then the set of all the colorful edges is called a c-cut. Similarly a
c-complex is defined to be the subgraph of the n-cube induced by the vertices of the
same color (either red or blue). Finally, cS(n) is defined to be the minimum number of
c-cuts that can cover all the edges of the cube. Every cut-complex is a c-complex but not
conversely. A computational characterization of cut-complexes can be found in [2,13],
where a basic search algorithm has been implemented to find all the nonisomorphic
cut-complexes of lower dimensional cubes. These algorithms apply the fact that cut-
complexes are connected subgraphs of the n-cube. Thus, it is natural and useful to show
that c-complexes are also connected and so they can be characterized by some search
algorithms.

Remark

Evidently, if C is a c-complex over Qn then its restriction to any face Qm of the n−cube
with 2 ≤ m ≤ n, and its graph node-complement C′ both are also c-complexes. On the
other hand, to characterize c-complexes (or cut-complexes ) it is more convenient that
nonisomorphic complexes to be considered, however this is not exactly the same as
graph isomorphism. Two complexes are isomorphic if there is a hypercube symmetry
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(the hypercube isometries that are generated by rotations and reflections) that takes
one complex to the other one. The characterization methods that have been applied
in [2,13] include search algorithms that are based on the following Lemma 1. It is
an interesting observation that the proof of this lemma applies the separability of cut-
complexes by slicing hyperplanes and does not work for c-complexes. So, any attempt
to characterize c-complexes should begin with such a proof for the c-complexes. In this
context, Lemma 2 is as essential for those characterization algorithm to work. For the
proof and application of Lemma 1, see [2,13].

Lemma 1. For any cut-complex Ck of k vertices, there exists a vertex
w ∈ vert(Qn)− vert(Ck) such that the subgraph induced by Ck ∪ {w} is also a cut-
complex.

Let x,y be two given vertices of the n−cube. In the following lemma cub(x,y) denotes
the smallest face (subcube) containing x,y, and dH(x,y) stands for the hamming distance
between x,y. It is clear that the dimension of the face cub(x,y) is exactly dH(x,y).

Lemma 2. Any c-complex is a connected subgraph of Qn.

Proof. In a given feasible coloring of Qn , let B denote the set of blue and R be the set
of red vertices. To show that the subgraph induced by R is connected, we suppose it is
not connected and obtain a contradiction. Then there exist x,y ∈ R such that any path (
in Qn) connecting these two vertices has at least one interior vertex in B. Let us choose
x,y∈R such that k = dim(cub(x,y)) is minimum, that is dH(x,y) is minimum among all
x,y∈R with such property. Let x1,x2, ...,xk and y1,y2, ...,yk be the k neighbors of x,y in
cub(x,y) respectively. If all of these neighbors are in B, then we have many alternating
rectangles, for instance the one that contains the vertices x,y and two opposite vertices
of cub(x,y) from the list of neighbors. Otherwise, suppose x1 ∈ R. Then, consider
x1,y ∈ R with dH(x1,y) = k−1, and evidently the property that each path connecting
x1, and y has at least one vertex in B. This contradicts the minimality of dH(x,y) and
the proof is complete.

Finally we conclude the note with a few research problems:

Problem 1. Give a complete characterization of c-complexes by a computer-free
method or by an efficient algorithm over the 5-cube.

Problem 2. In Lemma 1, prove a similar result for those of c-complexes.

Problem 3. By a geometric or combinatorial approach, prove that the class of cut-
complexes and c-complexes coincide for the 5-cube.

Problem 4. Find a computer-free proof that shows cS(n) = n for 4 ≤ n ≤ 5.

We proceed with the terminology that is needed to state the rest of the problems. For any
given set of vertices S ⊂ vert Qn, cubS denotes the smallest face of Qn containing S.
In particular for any given induced subgraph C of Qn, cubC stands for the cub(vertC).
An edge uv of C is said to be a leaf of C if the edge has a vertex of degree one in C,
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the other vertex will be called the root of the leaf. Other than a trivial case when the
complex is only one single edge, leaves have always unique roots. A vertex w ∈ C is
called an internal vertex for C, if all of its neighbors in cubC are in C. The proofs of the
following theorems can be found in [4].

Theorem 3. Let uv be a leaf of a cut-complex C in Qn with deg(v) = 1 and n ≥ 2, then
the root u of the leaf is an internal vertex of C′ = C− v in cubC′.

Theorem 4. Let a cut-complex C be given with n≥ 2. Then, dim(cubC)= max{degC(v)
: v ∈C}.
Problem 5. Do Theorems 3 and 4 hold for the c-complexes?

Problem 6. Solve Problems 1 and 3 for dimensions 6 ≤ n ≤ 8.

Problem 7. Find the values of cS(n) for dimensions 7 ≤ n ≤ 8.
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Abstract. Wireless sensor networks involve a large area of real-world contexts,
such as national security, military and environmental control applications, traf-
fic monitoring, among others. These applications generally consider the use of a
large number of low-cost sensing devices to monitor the activities occurring in
a certain set of target locations. One of the most important issue that is consid-
ered in this context is maximizing network lifetime, that is the amount of time
in which this monitoring activity can be performed by opportunely switching the
sensors from active to sleep mode. Indeed, the lifetime of the network can be
maximized by individuating subset of sensors (i.e., covers) and switching among
them. Two important aspects need to be taken into account among others: (i)
coverage: each determined cover has to cover the entire set of targets, and (ii)
connectivity: each cover should provide satisfactory network connectivity so that
sensors can communicate for data gathering or data fusion (connected covers). In
this paper we consider the problem of determining the maximum network lifetime
to monitor all the targets by means of connected covers. We analyze the problem
and propose an exact approach based on column generation and two heuristic
approaches, namely a greedy algorithm and a GRASP algorithm, to solve it. We
analyze the performance of the heuristic approaches by comparing the obtained
solutions with those provided by the exact approach when available. Our prelimi-
nary experimental results show the proposed solution algorithms to be promising
in terms of tradeoff between quality of solutions and computational effort.

1 Introduction

Wireless sensor networks have met a growing interest in the last years due to their
applicability to a large class of contexts, such as traffic control, military and environ-
mental applications. These networks are generally characterized by a large number of
small sensing devices (sensors), often randomly disposed all over the region of inter-
est in order to perform a monitoring activity on a set of target points. One of the key
issues in this scenario involves the maximization of the amount of time during which
this activity can be carried out taking into account the limited power of the battery of
each sensor. This problem is usually known as Maximum Network Lifetime Problem
(MLP). The lifetime of the network can be maximized by individuating subsets of sen-
sors (i.e., covers) and switching among them. Two important aspects need to be taken
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into account among others: (i) coverage: each determined cover has to cover the entire
set of targets, and (ii) connectivity: each cover should provide satisfactory network con-
nectivity so that sensors can communicate for data gathering or data fusion (connected
covers). The MLP is extensively studied in the literature by mainly considering the cov-
erage requirement: exact and heuristic methods to build the set of covers and to assign
them appropriate activation times have been presented in several works ([2],[3],[10]),
and also some variants of the problem solved in a similar way have been proposed ([4],
[7],[11]).
In this paper we consider the problem of determining the maximum network lifetime
to monitor all the targets by means of connected covers. To take into account commu-
nication between sensors, we consider an additional node (root) representing a central
processing station and we assume there exists a communication link among each cou-
ple of sensors (or sensor and root) if they are close enough to communicate directly
between each other. A solution composed by connected covers is such that the sensors
in each cover are connected to the root through a path that uses communication links.

The connectivity requirement has also been addressed in the literature ([1], [6], [9],
[12], [13], [14]). In [12] and [13] the authors propose sufficient conditions in the cover-
age level of each sensor to imply connectivity. The connectivity issue is also considered
in [9] for an unreliable wireless sensor grid network, and a necessary and sufficient con-
dition for coverage and connectivity is presented. In [6], an approximated algorithm is
presented to maximize the lifetime of the network where it is assumed that each sensor
only needs to know the distances between adjacent nodes in its transmission range and
their sensing radii. Existing papers that are nearer to our study are [1] and [14]. The
authors in [14] describe an energy consumption model of the sensors that takes into
account their different role (either a relay role, a source role or both) in the cover. They
define the problem as the Maximum Tree Cover problem and present a greedy heuristic
and an approximation algorithm to solve it. Two solution approaches are presented in
[1] to maximize network lifetime and maintain connectivity: an exact approach based
on column generation and a heuristic algorithm aiming at a distributed implementation.
To our knowledge, there is a lack of contributions regarding metaheuristic approaches
related to the problem.

In this paper we present a GRASP metaheuristic, as well as a greedy heuristic (that
is used as a subroutine inside the GRASP) and an exact method based on column gener-
ation that is used to evaluate the performance of our heuristics. Our column generation
differs from the one proposed in [1] in the subproblem definition as it will be better clar-
ified in Section 3. We evaluate the performance of our algorithms by comparing them
on some benchmark instances. Our preliminary experimental results show the proposed
solution algorithms to be promising in terms of trade-off between solution quality and
computational effort.

The paper is organized as follows. The next section gives the needed notation, intro-
duces the problem and contains the mathematical formulation. The Column Generation
approach is presented in Section 3. Our greedy algorithm and GRASP algorithm are
object of Section 4. Experimental results are shown in Section 5. Further research is
discussed in Section 6.
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2 Notation and Problem Definition

Let N = (T,S) be a wireless sensor network where T ={t1, ..,tn} is the set of target points
and S={s0,s1, ..,sm} is the set composed by the sensor nodes and the special root node
s0. For each si ∈ S, let Tsi ⊆ T be the subset of targets covered by si; we assume Ts0 ≡ /0
since the root node does not have coverage purposes. Given a subset C ⊆ S, we define
the set of targets covered by C as TC =

⋃
si∈C Tsi . By extension, each target in TC is said

to be covered by C. Moreover, for each si ∈ S, let neigh(si) ⊆ S be the set of elements
of S that are close enough to si to allow direct communication. We consider an energy
consumption model of the sensors where it is assumed that the energy requirement to
send data to each communication link is constant. Note that if si ∈ neigh(s j), then s j ∈
neigh(si). Given a subset C ⊆ S, we define neigh(C) =

⋃
si∈C neigh(si). Now, consider

the induced undirected graph G = (S,E) such that the communication link (si,s j) ∈ E
if and only if s j ∈ neigh(si) ∀si,s j ∈ S (see Figure 1A for an example). We define a
set C ⊆ S to be a connected cover of N if: (i) s0 ∈ C, (ii) TC ≡ T , and (iii) C is such
that there exists a path of communication links connecting each of its sensors to s0 (see
Figure 1B-1C).

The Connected Maximum Network Lifetime Problem (CMLP) is defined as fol-
lows: Find a collection of pairs (Cj,wj), j = 1,2, . . . , p, where Cj is a connected cover
and wj is its corresponding activation time, such that the sum of the activation times
∑p

j=1 wj is maximized, and, each sensor is used for a total time that does not exceed its
battery: ∑ j∈{1,..p}|si∈Cj

wj ≤ 1 for each si ∈ S \ {s0}.

Fig. 1. A: An example network N and the corresponding induced graph G. B: Unfeasible (dis-
connected) cover. C: Feasible connected cover.

The problem can be formulated as the classical MLP [2] with the only difference that
each cover considered in the formulation is connected. Let C1, ...,CM be the collection
of all the feasible connected covers in the network, let parameters ai j be equal to 1 if
sensor si belongs to cover Cj and equal to 0 otherwise, and, w1...,wM be the decision
variables denoting the activation times for each cover. The mathematical formulation of
the problem is as follows:

max
M

∑
j=1

wj (1)

subject to
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M

∑
j=1

ai jw j ≤ 1 ∀si ∈ S \ {s0} (2)

0 ≤ wj ≤ 1 ∀ j = 1, ...,M (3)

The objective function (1) maximizes the network lifetime. The set of constraints (2)
state that the total energy consumption for each sensor cannot exceed its battery life that
we normalized to be equal to 1. Finally, constrains (3) are non-negativity constraints and
they define an upper bound for the activation time of each cover.

3 Column Generation Approach

Delayed Column Generation, or simply Column Generation is an efficient technique to
solve linear programming formulations when the set of variables is too large to consider
all of them explicitly. Since most of them will be nonbasic and, therefore, they assume a
value of zero in the optimal solution, the method aims to generate only variables which
have potential to improve the objective function, while the others are implicitly dis-
carded. In particular, the general iteration of the Column Generation considers a primal
problem restricted only to a subset of variables (the so-called Restricted Primal) and
optimally solves it. In order to determine whether the returned solution is optimal for
the entire problem, all the reduced costs of the nonbasic variables should be computed
and it should be verified whether they satisfy the optimality conditions. If this is the
case the algorithm stops, otherwise a new variable (column) is generated, it is added to
the restricted primal and the algorithm iterates. To check for the optimality condition an
additional problem is solved (the so-called Separation Problem) whose solution either
returns a new column to be added to the restricted primal or verifies the optimality of
the current solution.

Let us consider the mathematical formulation given in the previous section restricted
only to a subset p of feasible covers, and, let B and NB be the index sets of the optimal
basic and non basic variables corresponding to the optimal solution of the restricted
primal, respectively. Moreover, let πi, i = 1,2, . . . ,m, be the set of dual optimal multi-
pliers associated with each primal constraint (that is, with each sensor si). The current
primal solution is optimal if the reduced costs associated with the non basic variables
are all non negative, that is, ∑i:si∈Cj

πi − c j ≥ 0 for each j ∈ NB, where c j is the co-
efficient of variable wj in the objective function (1) of the primal problem. Note that,
all the coefficients of the variables in the objective function (1) are equal to 1, there-
fore the optimality conditions reduce to ∑i:si∈Cj

πi −1 ≥ 0 for each j ∈ NB. Instead of
computing all the reduced costs, we could compute the minimum among all of them
and check whether it is greater than or equal to zero. Such a minimum reduced cost
can be computed solving the separation problem (described next), that returns the non
basic connected cover with minimum reduced cost. The proposed formulation for the
separation problem ensures the connectivity of each generated cover by selecting sen-
sors and communication links that define a tree rooted in s0. We consider three types
of variables: the binary variable acti associated with sensor si that is equal to 1 if si is
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activated in the new cover, and it is equal to 0 otherwise; the binary variable xi j associ-
ated with the communication link (si,s j) that is equal to 1 if sensor si and sensor s j are
both active in the cover and the communication link (si,s j) is used in the cover and it
is equal to 0 otherwise; non-negative variable fi j associated with each communication
link (si,s j) that denotes the flow passing through (si,s j). Parameters of the model are
the dual prices πi associated with each sensor, and the binary parameters gki equal to 1
if target point tk is covered by si and is equal to 0 otherwise.

The formulation is a single-commodity formulation to find a tree connecting all the
activated sensors and covering all the targets such that the sum of the cost of the sensors
in the tree is minimized. Such a tree can be found by sending from the root node s0 a
unit of flow to each active sensor.

min ∑
si∈S\{s0}

πiacti (4)

subject to

∑
si∈S\{s0}

gkiacti ≥ 1 ∀tk ∈ T (5)

∑
(s0,si)∈E

f0i = ∑
si∈S

acti (6)

∑
(si,s j)∈E

fi j − ∑
(s j ,si)∈E

f ji = act j ∀s j ∈ S \ {s0} (7)

∑
(si,s j)∈E

xi j = act j ∀s j ∈ S \ {s0} (8)

xi j ≤ fi j ≤ |S|xi j ∀(si,s j) ∈ E (9)

acti ∈ {0,1} ∀si ∈ S \ {s0} (10)

xi j ∈ {0,1} ∀(si,s j) ∈ E (11)

The objective function (4) minimizes the sum of the cost of the active sensors (that is,
the sensors that are selected to be in the cover). Constraints (5) ensure all the targets are
covered by the selected sensors. If a sensor is selected to be in the cover then exactly
one (entering) communication link has to be selected, this is ensured by constraints (8).
Constraint (6) guarantee that the total amount of flow that is sent from the root node
s0 is equal to the total number of active sensors in the cover. To ensure connectivity
among the active sensors, flow conservation constraints are imposed by constraints (7).
Constraints (9) guarantee there is a positive flow only on communication links that are
selected. Finally, constraints (10) and (11) are binary constraints on the variables.

After solving the above separation problem, if its optimal objective function value is
≥ 1, we can safely deduce that the solution found by the master problem was optimal;
otherwise, the returned new column (defined by the optimal solution value of variables
acti) is introduced into the master problem that is solved again and the process is iterated.

We solved the separation problem by solver CPLEX. It is easy to check that there al-
ways exists an optimum solution composed of minimal covers, therefore we added the
following set of constraints ensuring only minimal covers are generated. Let
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{C1,C2, . . . ,Cu} be the set of connected covers generated by the algorithm so far, then
the set of constraints added to the separation problem is the following:

∑
si∈S\{s0}

ai jacti ≤ ∑
si∈S\{s0}

ai j −1 ∀ j = 1, ...,u (12)

These inequalities ensure that the new connected cover returned by the separation prob-
lem differs from the already generated covers in at least one sensor, and, therefore it is not
contained in none of them. One last issue concerns the initialization of the column gen-
eration with the first initial set of connected covers. In the preliminary results presented
in Section 5 we used two different approaches. For small instances, we determined an
initial set of covers by running the subproblem several times associating random weights
with each sensor, while, for large instances we used a heuristic initializations provided
by the GRASP procedure described in Section 4.

The above column generation approach differs from that presented in [1] in the defini-
tion of the subproblem that results from a different energy consumption model associated
with each sensor. The authors in [1] consider all the sensors to be connected to each other
(i.e., the underlying graph is complete) but with different costs depending on the role of
the sensors and on the distance between them. Such an energy consumption model could
be introduced in our definition of the problem and an analysis of such a case is object of
further study as outlined in the concluding section.

4 Greedy and GRASP Algorithms

Here we present a greedy heuristic (namely, the CMLP-Greedy) and a GRASP meta-
heuristic (namely, CMPL-GRASP) designed to solve the CMLP problem.

The greedy algorithm is based on the greedy heuristic presented in [4] for the classical
Maximum Network Lifetime Problem and in [7] for the α-MLP variant. The algorithm
iteratively produces new covers. Each cover is initialized with the root node and new
sensors, chosen among the ones with positive residual energy, are added. Each new sensor
to be included is also chosen such that it is directly connected to at least one element of
the cover, to guarantee connectivity. The algorithm terminates when the sensors with
positive residual energy cannot guarantee either coverage or connectivity.

Algorithm 1 contains a description of our CMLP-Greedy. Line 1 contains the input
parameters. Granularity factor g f ∈ (0,1] represents a maximum amount of activation
time assigned to each generated cover during the algorithm execution. The SR set ini-
tialized in line 2 contains the list of sensors with a residual energy > 0. Parameters Rsi

initialized in lines 3-5 represent the amount of residual energy for each sensor si and the
SOL set initialized in line 6 will contain the final solution. Line 7 checks whether the
remaining sensors can cover the whole set of targets T . Lines 8-9 create a new cover Cl

and initialize it with the root node s0. The TU set initialized in Line 10 contains the tar-
gets that still need to be covered in Cl . The loop in lines 11-26 ensures that new sensors
are added to Cl until either all targets are covered or a new cover cannot be achieved. In
particular, lines 12-13 check whether there exist sensors with residual energy > 0 that
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are not in Cl yet but are connected to at least one of its sensors or the root; let Ssel be the
set of these selectable sensors. If this set is empty, it is impossible to complete Cl and the
current solution SOL is returned. Otherwise, one of the sensors in Ssel will be selected
and included in Cl . As shown in lines 16-21, if Ssel covers targets that are uncovered in
Cl so far, a target tc is selected as critical and a sensor sc covering tc with the greatest
contribution is selected (we will explain such concepts in more detail in the following),
otherwise if Ssel does not cover new targets in Cl but a sensor in Ssel is needed for con-
nection then sc is directly selected. In lines 22-25,Cl and TU are updated according to the
selection of sc. Line 27 sets an activation time for Cl equal to g f if each sensor of Cl has
a residual energy ≥ g f , otherwise the activation time of Cl is equal to the minimum of
their residual energies. Lines 28-33 update the residual energies and check if the set RS

must be updated. Cover Cl is added to SOL in line 34. The final set of covers is returned
in line 36. In our experimentations, we refined the network lifetime associated with the
solution returned by CMLP-Greedy by solving the mathematical model given in Section
2 restricted to the set of generated covers.

Algorithm 1. CMLP-Greedy algorithm
1. input: wireless network N = (T,S), granularity factor g f ∈ (0,1]
2. SR ← S\{s0}
3. for each si ∈ SR do
4. Rsi ← 1
5. end for
6. SOL ← /0
7. while

⋃
si∈SR

Tsi ≡ T do
8. Create a new empty cover Cl
9. Cl ←{s0}

10. TU ← T
11. while TU �≡ /0 do
12. Ssel ← (SR ∩neigh(Cl ))\Cl
13. if Ssel ≡ /0 then
14. return SOL
15. end if
16. if TU ∩TSsel �≡ /0 then
17. Find a critical target tc ∈ TU ∩TSsel

18. Select sc ∈ Ssel s.t. tc ∈ Tsc and sc has the maximum contribution
19. else
20. Select sc ∈ Ssel s.t. sc has the maximum contribution
21. end if
22. Cl ←Cl ∪{sc}
23. for each t j ∈ TU s.t. t j ∈ Tsc do
24. TU ← TU \{t j}
25. end for
26. end while
27. wl = max feasible activation time ≤ g f for Cl
28. for each si ∈Cl \{s0} do
29. Rsi ← Rsi −wl
30. if Rsi = 0 then
31. SR ← SR \{si}
32. end if
33. end for
34. SOL ← SOL∪{Cl}
35. end while
36. return SOL
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Critical Target: A critical target is the target that, among the ones which are covered by
sensors in Ssel , is covered by sensors with the least positive residual energy; that is

tc = arg min
t j∈TU∩TSsel

{
∑

si∈SR|t j∈Tsi

Rsi

}
(13)

Sensor Contribution: If Ssel covers targets that are in TU , and therefore we chose a crit-
ical target tc, we consider the contribution of each selectable sensor si covering tc as the
number of uncovered targets in Tsi , that is,

Contr(si) = |TU ∩Tsi | ∀si ∈ Ssel|tc ∈ Tsi (14)

Otherwise, since none of these sensors covers new targets (as in line 20 of CMLP-Greedy),
the contribution of each selectable sensor si is given by the sum of the number of targets
in TU that can be covered by its neighbors with residual energy, i.e.

Contr(si) = ∑
si′ ∈SR∩neigh(si)

|TU ∩Tsi′ | ∀si ∈ Ssel (15)

If even these contributions are all equal to 0, a sensor belonging to Ssel is chosen randomly.
We embedded CMLP-Greedy into a GRASP scheme (CMLP-GRASP). GRASP is a

metaheuristic consisting in a multi-start iterated local search. At each iteration, a new
starting solution is generated according to a randomized heuristic; this solution is then
refined by the local search phase. The best solution among those computed during the
execution is then returned (for more detail the reader can refer to [5]). In order to im-
plement these two steps, we developed two variants of CMLP-Greedy. CMLP-Greedy’
takes as additional input parameter a positive integer rcl. Each time that a critical target
or a sensor with the greatest contribution has to be selected, instead of performing the
best greedy choice, we create a Restricted Candidate List (RCL) of the best rcl choices
(or less, in case that the number of available choices is smaller than rcl). One element of
RCL is then selected at random. In the local search phase, we build solution neighbor-
hoods using a second variant, CMLP-Greedy”. This variant imposes the inclusion of a
cover (passed as input parameter) as part of the solution, while the others are generated
using CMLP-Greedy.

A high level outline of CMLP-GRASP is given in Algorithm 2. Line 1 describes the
input parameters. Besides the input network and the value rcl, we consider a set of gran-
ularity factor values {g f1, . . . ,g fk} and a maximum number of iterations itmax from the
last improvement in the objective function value (that is in the network lifetime). In lines
2-4 we initialize the best found solution SOL, its value lt and the current iteration number
it. In order to evaluate the objective function lt of each solution generated throughout the
algorithm execution, we solve the mathematical formulation given in Section 2 restricted
to the set of covers composing the solution. The GRASP loop is contained in lines 5-22.
In lines 7-8 a randomized solution is generated using a predefined granularity factor and
evaluated. The local search is performed as described in lines 9-16; a new neighbor is
generated and evaluated for each cover in the current solution and for each granularity
factor value g fi. The best solution found and its value are stored using a steepest descent
approach, as shown in lines 12-14. If the incumbent optimum was improved during a
GRASP iteration, it is updated and the it value is reset, as can be seen in lines 17-20.
Finally, the best solution found is returned in line 23.
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Algorithm 2. CMLP-GRASP algorithm
1. input: wireless network N = (T,S), granularity factors {g f1, . . . ,g fk},g fi ∈ (0,1]∀i = 1, . . . ,k,

max iterations parameter itmax, RCL size rcl > 0
2. it ← 0
3. SOL ← /0
4. lt ← 0
5. while it < itmax do
6. it ← it +1
7. SOL′ ←CMLP-Greedy’(N,g f1,rcl)
8. lt ′ ← Evaluation(SOL′)
9. for each C′

l ∈ SOL′ and each i ∈ 1, . . . ,k do
10. SOL′′ ←CMLP-Greedy”(N,g fi,C′

l)
11. lt ′′ ← Evaluation(SOL′′)
12. if lt ′′ > lt ′ then
13. SOL′ ← SOL′′
14. lt ′ ← lt ′′
15. end if
16. end for
17. if lt ′ > lt then
18. SOL ← SOL′
19. lt ← lt ′
20. it ← 0
21. end if
22. end while
23. return SOL

5 Computational Results

In this section we compare our CG exact procedure and our two heuristic approaches
on a preliminary testbed. As in [4], we generated instances with a small population of
targets and a high number of sensors. Specifically, we consider the sets n = 15 and m =
25,50,75,100,150,200. For each value of m, we generated 5 different test instances. In
each instance, targets, sensors and the root node are randomly disposed on a grid and
communication links as well as target coverages are determined accordingly.

Table 1 contains average instance characteristics, in terms of connectivity among sen-
sors and number of targets covered by each sensor. In particular, the columns labeled
with Sensor Connectivity report the degree of the sensor nodes and of the root node in
the induced graph. The connectivity is expressed in percentage, that is, an element of S
with m communication links would have 100% connectivity. For each scenario (that is,
for each value of m) we report average values of the maximum, minimum and average

Table 1. Instance characteristics (average values)

Sensor Connectivity (%) Sensor Coverage
m max min avg max min avg
25 40.0 7.2 21.6 7.4 1.2 2.8
50 36.4 6.0 21.6 7.4 1.0 2.8
75 37.6 6.1 22.6 7.4 1.0 3.0

100 36.0 7.0 22.0 7.8 1.0 3.0
150 34.9 7.2 22.6 7.8 1.0 3.0
200 35.2 7.4 22.9 7.8 1.0 3.0
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Table 2. Computational results

CMLP-Greedy CMLP-GRASP CG
m sol time sol time sol time

1 0.01 1 1.58 1 0.07
0 0.01 0 0.13 0 0

25 1 0.01 1 1.5 1 0.03
2 0.01 2 7.93 2 0.25
1 0.01 1 1.5 1.66 0.64
2 0.03 2 4.87 2 1.28
2 0.03 2.5 6 2.5 2.49

50 3 0.03 3 5.39 3 1.57
4 0.04 4 9.99 4 3.83
3 0.03 4 12.44 4.66 452.35

CMLP-GRASP + CG
5 0.08 6 39.4 7 2200.16
4 0.09 4 19.78 4 23.1

75 3 0.04 3 6.63 3 7.56
6 0.13 7 42.92 7 50.89
6 0.07 6 31.21 7 143.61
8 0.18 9 53.67 9.68[10] TL
6 0.37 7 53.53 7 64.28

100 6 0.1 7 28.26 7 40.64
9 0.27 9 74.71 9 88.2
8 0.32 8 139.83 8 156.76

12 0.4 15 111.9 15(20) TL
11 0.54 13 108.84 13.43[14] TL

150 10 0.27 12 49.1 14.99[16] TL
12 1.01 13 202.98 13 297.05
13 0.46 14 211.81 14 466.74
18 0.94 20 259.49 20.69(32) TL
17 1.37 18 228.29 18.32 (20) TL

200 13 0.44 14.95 252.2 18.52[19] TL
16 2.1 18 363.79 18 1150.66
18 1.13 19 352.99 19 894.09

Optimal values found after the time limit are reported in square brackets and bold. Upper
bounds are reported in round brackets and italic.

degree of each sensor node. For example, instances with m = 25 are such that the ele-
ment of S with the maximum degree has on average 25× 0.4 = 10 links, the one with
the minimum degree has on average 1.8 links, and finally the average degree is equal to
5.4. Sensor Coverage columns give information about the number of targets covered by
each sensor; that is, they give information about the quantity |Tsi |, si ∈ S. In particular,
for each scenario column max gives the average value (over the five instances) of the size
of the set Tsi whose cardinality is maximum, column min gives the average value of the
size of the set Tsi whose cardinality is minimum, while the last column gives the average
value of the size of all the sets Tsi .
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After a tuning phase, we determined the values to be assigned to the parameters used
by the algorithms. For the CMLP-Greedy heuristic, we set g f equal to 0.2. For CMLP-
GRASP, we used the set of granularity factors {0.2,0.3,0.5,0.7}, and chose rcl = 5 and
itmax = 20. We also considered a one hour time limit for each execution of the Column
Generation algorithm. As already mentioned in Section 3, for larger instances (those
where m ≥ 75), we initialized the Column Generation with heuristic solutions provided
by the GRASP procedure: since good starting solutions help to speed up the convergence
of the method. Computational times reported for the Column Generation on these in-
stances will be therefore the sum of the times of both the procedures. For instances with
m ≤ 50, instead, we obtained better computational times by initializing our CG with
covers generated by repeated executions of the subproblem where a random weight is
associated with each sensor. All tests were performed on a workstation with Intel Core 2
Duo processor at 2.4Ghz and 3GB of RAM. All the procedures have been coded in C++,
using IBM ILOG CPLEX 11.2 and the Concert Technology library to solve the mathe-
matical formulations. Detailed results and computational times can be found in Table 2,
while average values are shown in Table 3.

The Column Generation algorithm is able to find certified optimal solutions for every
instance with up to 75 sensors within the considered time limit; it reaches the time limit
once for m = 100, three times for m = 150 and three times for m = 200. We run again
the procedure for up to 6 hours on these instances, obtaining 4 new optimal solutions (1
for m = 100, 2 for m = 150 and 1 for m = 200). We reported these new optima in square
brackets and bold in Table 2. For the three remaining instances, we reported naive upper
bounds in round brackets and italic in Table 2. Upper bounds are computed considering
the coverage level of the least covered target of the network. For m ≥ 100, the average
values reported in brackets in Table 3 are evaluated considering optimal solutions where
available and upper bounds otherwise. On average, CG solutions found within the 1-hour
time limit are 0.73% worse than this value for m = 100, 8.57% worse for m = 150 and
12.45% worse for m = 200.

As could be easily expected, CMLP-Greedy is the fastest algorithm, computing the
solutions in less than 0.1 seconds on average for instances with up to 75 sensors, and

Table 3. Computational results (average values)

CMLP-Greedy CMLP-GRASP CG
m sol time sol time sol time
25 1 0.01 1 2.53 1.13 0.2
50 2.8 0.03 3.1 7.74 3.23 92.3

CMLP-GRASP + CG
75 4.8 0.08 5.2 27.99 5.6 485.06
100 7.4 0.25 8 70 8.14 [8.2]1 TL
150 11.6 0.54 13.4 136.93 14.08 (15.4)2 TL
200 16.4 1.19 17.99 291.35 18.91 (21.6)3 TL

1 1 optimum found after TL used in the average.
2 2 optima found after TL and 1 upper bound used in the average.
3 1 optimum found after TL and 2 upper bounds used in the average.
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in 1.19 seconds on average for m = 200. It finds the optimum in 11 instances out of
30. On datasets where certified optimal solutions could be computed for each instance
(25 ≤ m ≤ 100), the returned solutions are on average smaller than the optimum of a
percentage between 9.76% (m = 100) and 14.29% (m = 75). While much slower than
CMLP-Greedy, the CMLP-GRASP algorithm retains reasonable computational times,
running on average in less than 5 minutes in the worst case (m = 200). It also provides
better solutions, finding the optimum on 19 instances. On the datasets where we have cer-
tified optimal solutions for every instance, the returned solutions are on average smaller
than the optimum of a percentage between 2.02% (m = 50) and 11.5% (m = 25).

6 Conclusions

We addressed the problem of maximizing network lifetime of a wireless sensor network
when all the targets need to be covered and connectivity among sensors needs to be en-
sured. The problem is studied in the literature but an efficient metaheuristic algorithm
still is missing. In this paper we present a GRASP metaheuristic, as well as a greedy
heuristic (that is used as a subroutine inside the GRASP) and an exact method, based on
column generation, that is used to evaluate their performances.

Our preliminary computational results show the proposed solution algorithms to be
promising in terms of tradeoff between solution quality and computational effort. Our
very next step in this research topic is a wider experimentation of the approaches aimed at
evaluating their performances on different datasets (namely scattering and design datasets
[8]). We also intend, in order to speed up our exact approach, to solve the subproblem
by means of a heuristic approach for generating covers with positive reduced cost, and
use the MIP only when the heuristic fails. Moreover, we will try to enhance the MIP
formulation by improving constraints (9) by means of better upper bounds on the flows.

Additional steps will focus on applying the same approaches to solve the problem
when the energy consumption of the sensors for transmission and connectivity activities
is more detailed. Moreover, we will also investigate how our approaches can be modified
to solve the connected variant of α-MLP [7] when the connected covers are not required
to cover all the targets but only a portion α of them.

References

1. Alfieri, A., Bianco, A., Brandimarte, P., Chiasserini, C.F.: Maximizing system lifetime in
wireless sensor networks. European Journal of Operational Research 181, 390–402 (2007)

2. Berman, P., Calinescu, G., Shah, C., Zelikovsky, A.: Power Efficient Monitoring Manage-
ment in Sensor Networks. In: Proceedings of the Wireless Communications and Networking
Conference, pp. 2329–2334 (2004)

3. Cardei, M., Du, D.-Z.: Improving Wireless Sensor Network Lifetime through Power-Aware
Organization. ACM Wireless Networks 11, 333–340 (2005)

4. Cardei, M., Thai, M.T., Li, Y., Wu, W.: Energy-Efficient Target Coverage in Wireless Sen-
sor Networks. In: Proceedings of the 24th conference of the IEEE Communications Society
(INFOCOM), vol. 3, pp. 1976–1984 (2005)



Approaches to Extend Lifetime and Maintain Connectivity 619

5. Festa, P., Resende, M.G.C.: GRASP: Basic components and enhancements. Telecommuni-
cation Systems 46, 253–271 (2011)

6. Kasbekar, G.S., Bejerano, Y., Sarkar, S.: Lifetime and coverage guarantees through distributed
coordinate-free sensor activation. In: Proceedings of the 15th annual international conference
on Mobile computing and networking, pp. 169–180 (2009)

7. Gentili, M., Raiconi, A.: α-Coverage to Extend Network Lifetime on Wireless Sensor Net-
works. Technical Report 2-2010, Department of Mathematics and Computer Science, Uni-
versity of Salerno (2010)

8. Lopes, L., Gentili, M., Efrat, A., Ramasubramanian, S.: Scheduling Redundant Sensors Op-
timally for Maximum Lifetime. Technical report 11-2010, Department of Mathematics and
Computer Science, University of Salerno (2010)

9. Shakkottai, S., Srikant, R., Shroff, N.: Unreliable sensor grids: coverage, connectivity and
diameter. In: IEEE INFOCOM, pp. 1073–1083 (2003)

10. Slijepcevic, S., Potkonjak, M.: Power Efficient Organization of Wireless Sensor Networks.
In: IEEE International Conference on Communications, vol. 2, pp. 472–476 (2001)

11. Thai, M.T., Wang, F., Du, D.H., Jia, X.: Coverage Problems in Wireless Sensor Networks:
Designs and Analysis. International Journal of Sensor Networks 3, 191–200 (2008)

12. Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R., Gill, C.: Integrated coverage and connectivity
configuration in wireless sensor networks. In: Proceedings of the 1st international conference
on Embedded networked sensor systems, pp. 28–39 (2003)

13. Zhang, H., Hou, J.: Maintaining Sensing Coverage and Connectivity in Large Sensor Net-
works. Ad Hoc & Sensor Wireless Networks 1

14. Zhao, Q., Gurusamy, M.: Lifetime maximization for connected target coverage in wireless
sensor networks. IEEE/ACM Transactions on Networking 16, 1378–1391 (2008)



Computing Upper Bounds for a LBPP with and without
Probabilistic Constraints

Hugo Rodrı́guez1, Pablo Adasme1,2, Abdel Lisser2, and Ismael Soto1

1 Departamento de Ingenieria Eléctrica,
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Abstract. In this paper, we compute upper bounds for a generic linear bilevel
programming problem (LBPP) using the iterative min-max (IMM) algorithm pro-
posed in [4,5]. Neither in [4] nor in [5] the authors give optimal solutions for this
problem or gaps to measure IMM efficiency. To this purpose, we implement the
construction method proposed by Jacobsen [3] to generate valid test instances
with their respective optimal solutions. Afterward, we add to these valid test in-
stances knapsack probabilistic constraints in the upper-level sub-problem as in
[4,5]. The latter allows us to compute upper bounds for stochastic bilevel in-
stances as well. Our numerical results show average relative gaps of 43.97% for
the valid test instances and 28.93% while adding probabilistic constraints.

1 Introduction

In mathematical programming, the bilevel programming problem (BPP) is a hierarchi-
cal optimization problem. It consists in optimizing an objective function subject to a
constrained set in which another optimization problem is embedded. The first level op-
timization problem (upper-level problem) is known as the leader’s problem while the
lower-level is known as the follower’s problem. Applications concerning BPP include
transportation, networks design, management and planning among others. It has been
shown that BPPs are strongly NP-hard even for the simplest case in which all the in-
volved functions are affine [1]. In both papers [4,5], neither optimal solutions nor gaps
have been reported. In this paper, we implement the construction method proposed by
Jacobsen [3] to obtain valid test instances with their respective optimal solutions for
our LBPP. Then, we compute upper bounds by solving these instances with the itera-
tive min-max (IMM) algorithm proposed in [4]. Additionally, we add knapsack prob-
abilistic constraints in the upper-level subproblem same as in [4,5]. The probabilistic
constraints are added in such a way each of them does not cut off the optimal point
previously found by Jacobsen method. As a consequence, we obtain upper bounds for
stochastic bilevel instances as well. The paper is organized as follows. In Section 2, we
state the LBPP and briefly explain Jacobsen construction method. We also introduce
the probabilistic constraints. For sake of clarity in Section 3, we briefly explain how
IMM algorithm computes the upper bounds. In Section 4, we provide optimal solutions

J. Pahl, T. Reiners, and S. Voß (Eds.): INOC 2011, LNCS 6701, pp. 620–625, 2011.
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and upper bounds for the valid test instances with and without probabilistic constraints.
Finally, in Section 5 we give the main conclusions of the paper.

2 Problem Formulation and the Jacobsen Construction Method

In this section, we present a generic LBPP, the knapsack probabilistic constraints and
briefly explain Jacobsen construction method [3]. We consider the generic LBPP [3,4]:

LBP1: max
x

cT
1 x + dT

1 y (1)

s.t. A1x + B1y ≤ b1 (2)

0 ≤ x ≤ �n1 (3)

y ∈ argmax
y

{cT
2 x + dT

2 y} (4)

s.t. A2x + B2y ≤ b2 (5)

0 ≤ y ≤ �n2 (6)

where x ∈ �n1 and y ∈ �n2 are the decision variables. Vectors �n1 and �n2 are vec-
tors of size n1 and n2 with entries equal to one. Matrices A1,B1,A2,B2 and vectors
c1,c2,d1,d2,b1 ∈ �m1 ,b2 ∈ �m2 are input real matrices/vectors defined accordingly.
In LBP1, (1)-(3) correspond to the leader’s problem while (4)-(6) represent the fol-
lower’s problem. In mathematical terms, a solution of a BPP is achieved when both;
the leader and follower find an optimum equilibrium point such that for each valued
vector x found by the leader, vector y corresponds to the optimal solution of the fol-
lower problem. Knapsack probabilistic constraints can also be added to the upper-level
problem of LBP1. Let w = w(ω) ∈ �n1

+ and S = S(ω) ∈ �+ be two random variables
distributed according to a discrete probability distributionΩ . The authors in [4,5] define
the following knapsack probabilistic constraints

P
{

wT (ω)x ≤ S(ω)
}≥ (1−α) (7)

where α represents the risk we take while not satisfying some of the constraints. Since
Ω is discrete, one may suppose that w = w(ω) and S = S(ω) are concentrated in a finite
set of scenarios such as w(ω) = {w1, ..,wK} and S(ω) = {s1, ..sK}, respectively with
probability vector PT = (p1, .., pK) for all k where ∑K

k=1 pk = 1 and pk ≥ 0. According
to [4], constraints in (7) can be transformed into the following pair of deterministic
constraints

wT
k x ≤ sk + Mkzk,k = 1 : K, and PT Z ≤ α (8)

where vector ZT = (z1, ..,zK ,) is composed of binary variables. If zk = 0 the constraint is
included, otherwise it is not activated. Mk for each k = 1 : K is defined as Mk =∑n1

i=1 wi
k−

sk, where wi
k denotes the ith component of vector wk. In this paper, we generate and

randomly add the pair of constraints in (8) in the upper-level problem of LBP1. Putting
it altogether, it yields the following deterministic mixed integer LBPP

LBP2: max
x

(1) s.t. (2)− (3),(8), y ∈ argmax
y

{ct
2x + dt

2y} s.t. (5)− (6)
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Although LBP2 contains binary variables, it can be converted into an equivalent con-
tinuous LBPP (see ref. [33] in [4]).

Jacobsen construction method: an important step within this paper is the generation of
the input data with known optimal solution for LBP1. This step is crucial since it allows
the evaluation of IMM algorithm [4]. We implement Jacobsen construction method as
described in [3]. The method uses linear programming (LP) together with some neighbor
local vertex search. It mainly consists of selecting a random vertex situated approximately
in the middle of Pas the global solution of a LBPP, where P= {Ax+By≤ b,x,y≥ 0}with
A = (A1,A2)T , B = (B1,B2)T , and b = (b1,b2)T . Subsequently, the method systemati-
cally designates a predetermined number of constraints to be assigned to the lower level
problem. As local vertex search strategy, we randomly interchange basic with non-basic
variables until we find a neighbor basic feasible solution.

3 The Iterative Min-Max Algorithm

In order to apply IMM algorithm, model LBP1 (resp. LBP2) should be transformed
into the so called global linear complementary problem (GLCP). In case of LBP2, we
have to reformulate it first as a continuous LBPP due to its binary variables [4]. The
GLCP is a single level formulation. The idea is to replace the follower’s problem with
its initial constraints and complementary slackness conditions. The decision variables
of GLCP are: the leader, the follower and the follower’s dual variables. To show how
IMM algorithm works, we derive the GLCP for LBP2 as

LBP2G: max
x,y,z,λ ,μ1,μ2,μ3

(1)

s.t. (2)− (3),(5)− (6),(8)
(B2)Tλ + μT

3 In2 ≥ d2 (9)

IKμ1 + IKμ2 ≥ �K (10)

λ T (b2 −A2x−B2y) = 0 (11)

μT
1 z = 0; μT

2 (�K − z) = 0; μT
3 (�n2 − z) = 0 (12)

yT ((B2)Tλ + In2μ3 −d2) = 0 (13)

0 ≤ z ≤ �K ; λ ,μ1,μ2,μ3 ≥ 0 (14)

where In2 ,IK represent identity matrices of size n2 and K, respectively. λ ,μ1,μ2,μ3

and (9)-(10) are dual variables and constraints of the follower. This model is a quadratic
problem since the complementary constraints (11)-(13) are quadratic, and thus it is hard
to solve directly. The first step of IMM consists in relaxing these quadratic constraints
into the following Lagrangian function

L (x,y,z,λ ,μ1,μ2,μ3) = cT
1 x + dT

1 y +λ T (b2 −A2x−B2y)+ (15)

+μT
1 z+ μT

2 (�K − z)+ μT
3 (�n2 − z)+

+yT ((B2)Tλ + In2μ3 −d2)
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This allows writing a min-max relaxation for LBP2G as follows

LGN: min
{λ ,μ1,μ2,μ3}

max
{x,y,z}

(15) s.t.(2)− (3),(5)− (6),(8),(9)− (10),(14)

The second step of IMM consists of decomposing LGN into two linear programming
subproblems: LGNs and LGNd as

LGNs: max
{x,y,z,ϕ}

ϕ s.t. (2)− (3),(5)− (6),(8), 0 ≤ z ≤ �K

ϕ ≤ L (x,y,z,λ q,μq
1 ,μq

2 ,μq
3 ) ∀q = 0,1, ..,N −1 (16)

and

LGNd: min
{λ ,μ1,μ2,μ3,β}

β s.t. (9)− (10), λ ,μ1,μ2,μ3 ≥ 0

β ≥ L (xq,yq,zq,λ ,μ1,μ2,μ3) ∀q = 1, ..,N (17)

where ϕ and β are defined as free real variables. Finally, the third step of the algo-
rithm consists in solving iteratively both LGNs and LGNd. At iteration q, the auxiliary
constraint (16) (resp. (17)) is added to LGNs (resp. LGNd) in order to enforce the con-
vergence of their optimal solution values towards the optimal solution value of LGN.
The iteration process stops when either β −ϕ < δ or (β −ϕ)/β < ε for small δ > 0
and ε > 0. The convergence of IMM is proven in [4].

4 Numerical Results

In this section we present numerical results which measure the performance of IMM
algorithm when applied to both; LBP1 and LBP2 respectively. The input data is gener-
ated according to Jacobsen algorithm [3], except for the objective functions of the leader
and follower problems. These data and the data for the probabilistic constraints is gen-
erated exactly as in [4]. This generation procedure ensures that the inducible region of
the generated LBPP is bounded, but it does not guarantee non-emptiness. Jacobsen and
IMM algorithms are implemented using Matlab 7.8. The linear programs are solved
using Mosek [2]. The simulations are run in a 2100 MHz computer with 2 Gb Ram
under windows XP. Table 1 shows the upper bounds for LBP1. Similarly, table 2 shows
numerical results for LBP2. The averages are computed over 100 sample runs for each
instance in both tables. In table 1, columns 2-4 give the size of the instances. Columns 5,
6 and 7 give the average optimal values, average for the upper bounds and the standard
deviation for these upper bounds, respectively. In column 8-10, we provide the minimal
gap, maximal gap and the average relative gaps. The relative gaps are computed, for

each run and for each instance as
(

UB−Opt
UB

)
∗100. Finally, columns 11 and 12 give the

averages regarding the number of LP problems IMM algorithm solves and the cpu time
in seconds it takes to converge. We mainly observe from table 1, that the gaps do not
increase with the size of the instances and that they are not near optimal. On the other
hand, the cpu times show that the algorithm is fast. In table 2, we provide the same
information as in table 1, except for the new added column 2. In this column, we give
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Table 1. Upper bounds for LBP1 using IMM

Instance Size Avg UBs Gaps Avg Avg Cpu
# m1 +m2 n1 n2 Opt Avg Std Min Max Relative(%) # LP Time

1 5 5 5 24.96 43.24 9.87 0.494 95.81 42.85 2.42 0.004
2 5 10 10 42.71 84.51 14.85 7.385 97.14 49.01 2.90 0.008
3 10 15 15 66.44 123.21 19.88 8.627 95.36 46.07 3.86 0.012
4 10 20 20 88.01 170.54 21.22 13.405 91.44 48.28 4.61 0.015
5 15 25 25 99.82 120.72 22.73 6.592 91.61 42.50 5.39 0.021
6 15 30 30 136.18 254.57 28.08 10.561 91.47 46.70 5.71 0.024
7 20 35 35 162.46 300.70 25.45 3.540 84.50 46.19 7.41 0.038
8 20 40 40 180.33 334.57 27.74 15.642 83.56 45.89 7.28 0.048
9 30 45 45 239.52 385.72 31.35 8.153 74.57 37.71 10.41 0.101
10 30 50 50 240.31 421.04 30.67 7.722 79.34 42.86 9.49 0.101
11 40 60 60 315.74 506.87 36.97 9.442 73.01 37.57 14.01 0.220
12 50 100 100 500.18 866.59 52.19 16.523 83.00 42.00 16.81 0.549

Table 2. Upper bounds for LBP2 using IMM

Instance Size Avg UBs Gaps Avg Avg Cpu
# K m1 +m2 n1 n2 Opt Avg Std Min Max Relative(%) # LP Time

1 5 5 10 10 54.26 85.27 13.71 1.536 87.02 35.73 5.61 0.013
2 10 5 10 10 59.79 86.47 14.15 1.880 62.35 30.36 13.61 0.034
3 20 5 10 10 57.26 83.25 16.12 0 91.53 30.24 22.00 0.069
4 50 5 10 10 59.01 85.87 16.11 0.250 80.12 30.53 68.58 0.543
5 5 10 15 15 88.49 127.25 19.71 2.515 90.36 30.14 8.05 0.024
6 10 10 15 15 94.99 127.01 19.84 0.740 83.25 24.56 13.55 0.040
7 20 10 15 15 91.66 127.63 16.93 0.288 89.96 28.21 25.08 0.103
8 50 10 15 15 89.91 127.02 20.07 0.247 79.20 28.70 57.87 0.530
9 5 15 20 20 118.95 169.87 20.05 1.722 84.19 29.66 8.19 0.029
10 10 15 20 20 130.45 170.86 24.88 0.641 78.54 23.29 26.33 0.164
11 20 15 20 20 128.49 172.09 20.01 1.131 83.42 25.13 23.85 0.127
12 50 15 20 20 119.19 173.49 21.18 0.615 86.20 31.04 55.82 0.635

the number of probabilistic constraints we add to each valid test instance previously
generated with Jacobsen algorithm. In table 2, we observe slightly better upper bounds
when compared to table 1. On the opposite, the number of LPs and the cpu times are
larger. This can be explained by the number of constraints which in LBP2 are larger
than in LBP1. Finally, the gaps for LBP2 are not near optimal either.

5 Conclusions

In this paper, we computed upper bounds for a LBPP using IMM algorithm proposed in
[5,4]. We generated valid test instances with Jacobsen construction method [3] together
with their respective optimal solutions. Then, we added to these valid test instances
linear probabilistic constraints in the upper-level sub-problem. Our numerical results
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show average relative gaps of 28.93% and 43.97% with and without using probabilistic
constraints. As future research, valid cuts such as knapsack valid inequalities or cover
ones could be added to reduce these gaps.
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Abstract. Yield management has been successfully applied in the context of air-
line companies. However, so far, application to telecommunication industry have
been scarce. Using Yield management principles, this paper investigates the new
problem of maximizing revenue of telecommunications operator by setting prices
on voice services. This pricing is based on available resource i.e. network load.
We first propose a Mixed Integer Program to model this problem. Then we study
the particular case where demand and load are linear functions of price. Using nu-
merical results, we also study the impact of a Big M constant on computational
effort required to solve the problem.

1 Introduction

For the last three decades, yield management (YM) has attracted interest from theoret-
ical as well as operational point of view. Generally, YM is defined as the application
of information systems and pricing strategies to allocate the right capacity to the right
customer at a right price and the right time in order to maximize revenue.

Airlines were among the first to implement YM [5] and some other industries have
chosen later to implement such a pricing system. A state of the art can be found in [4].

Despite this interest, so far, only a few attempts have been conducted to apply YM to
the telecommunication industry. Humair [2] propose to define basis and model a frame-
work for telecommunications. Several papers propose YM techniques to control the
Internet congestion and mobile network congestion. Manaffar [3] proposes to integrate
pricing with call admission control in mobile networks. Bouhtou et al. [1] studie pricing
for telecommunications and propose bi-level optimization formulations to model com-
petition between operators. Viterbo et al. [6] investigate revenue maximization in the
context of a real-time pricing model for cellular networks.

In this article, we deal with the new problem of pricing a voice telecommunication
service provided by an operator according to available resource. In a way similar to air-
lines, we apply YM principles to sell voice communication on a perishable and limited
resource. The main objective is revenue optimization (versus congestion control). First
we formulate the problem as a Mixed Integer Program (MIP), then we study the partic-
ular case where demand and load functions are linearly dependent on price which leads
to a Mixed Integer Quadratic Program (MIQP). Some preliminary numerical results are
presented in Section 4.
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2 Pricing Problem in Voice Telecommunication Networks

We consider an operator providing voice telecommunication services using a volume
pricing strategy. We apply YM principles, as in airlines, and propose to set dynamic
prices throughout the day, based on available resource capacity, in order to maximize
daily revenue. We split a day in several time slots, with possibly different durations.

We adopt a pricing strategy based on network load. Indeed, we see in fig.1 an exam-
ple of load throughout a day at two different fixed prices. This chart shows that load is
price dependent, and so the importance of choosing a pricing strategy based on network
load.

Fig. 1. Load vs time

Table 1. Price Grid

Load levels Load intervals Prices

0 [0;T h0] r0

1 [T h0;T h1] r1
...

...
...

I [ThI−1;∞[ rI

We consider several load thresholds T hi, and the last one correspond to the network
capacity. Congestion is allowed, but not in two consecutive time slots.

In order to set a price for each time slot based on load, we assign a price to each load
level. So, the daily pricing problem is reduced to finding an optimal price grid such as
table 1. Price ri is applied at time slot t if load of the previous time slot t − 1 was in
level i. Thus, load used to price time slot t depend on price set at t −1. This rule makes
our problem dynamic.

3 MIP Formulation

3.1 Notation

The following notation is used throughout the paper :

1. Input Data :
– T : Number of time slots indexed by t
– I : Number of load thresholds indexed by i
– T hi : Load thresholds
– p−1 : Input representing price of the last time slot of the day before
– ρt(pt−1) : Function representing load at t
– Dt(pt) : Function representing demand (number of seconds consumed) at t
– Rt(pt) : Function representing revenue obtained in period t

2. Variables :
– pt ∈ [Pmin;Pmax] : Variable representing price assigned to time slot t
– ri ∈ [Pmin;Pmax] : Variable representing price assigned to load level i, i.e. be-

tween T hi−1 and T hi



628 M. Bouhtou, J.-R. Medori, and M. Minoux

– β t
i : Boolean variable equals to 1 if load at t is in load level i

– αt
i : Variable equals to load at t if it is in load level i, 0 otherwise.

3.2 General Problem Formulation

Using previous notation, we propose the general voice pricing problem Pb(M) based
on resource capacity, and modeled as a MIP.

The objective function is taken as sum of revenues Rt(pt) on the successive periods.
In constraint (2), we use αt

i to model load at t in load level i. Constraint (3) allows to set
the load level in which the load ρt is. Constraint (4) ensures each period to be assigned
only to one load level. Constraint (5) assigns a time slot to a load level. It allows the
price ri to be equals to price pt if and only if load at t is in the level i (i.e. β t

i = 1). M
represents a Big M constant. Constraint (6) prevents congestion phenomenons to occur
in two consecutive time slots.

Pb(M)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
T−1

∑
t=0

Rt(pt)

subject to
I

∑
i=0

αt
i = ρt(pt−1) ∀t

β t
i Thi−1 ≤ αt

i ≤ β t
i Thi ∀i, t

I

∑
i=0

β t
i = 1 ∀t

(β t
i −1)M ≤ pt − ri ≤ (1−β t

i )M ∀i, t

β t−1
I +β t

I ≤ 1 ∀t �= 0

β t
i ∈ {0;1} ∀i,∀t

αt
i ≥ 0 ∀i,∀t

ri ∈ [Pmin;Pmax] ∀i

pt ∈ [Pmin;Pmax] ∀t

(1)

(2)

(3)

(4)

(5)

(6)

3.3 Linear Demand and Load Model

We focus on the special case where load and demand are linear and decreasing functions
of price, and so revenue is a quadratic function of price.

ρt(pt−1) = dt − ct · pt−1 (7)

Rt(pt) = Dt(pt) · pt = bt · pt −at · p2
t (8)

where at , bt , ct and dt are positive input provided by statistical data. In this case, Pb(M)
becomes a MIQP with T (I + 1) binary variables, T (I + 1)+ T + I + 1 continuous vari-
ables, and 4T (I + 1)+ 3T −1 linear constraints.
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4 Experimentation and Numerical Results

We have built several instances with different numbers of time slots, using data mea-
sured every 30 minutes on a real network. Several tests have been performed to solve
those instances using Mixed Integer quadratic programming solver from Cplex 12.1 on
a workstation with 4 processors Intel(R) Xeon(R) 1.6-GHz, and 4096-KB memory size.

Fig. 2. Revenue vs Number of periods

In this section, we discuss the interest to consider a high number of time slots. As
can be seen in fig. 2, revenue tends to increase as the number of time slots increases.
The increase in optimal solution value is about 17%. This confirms the importance to
consider the problem for a sufficiently large number of time slots. However, the problem
is hard to solve. Results show that for T = 8 to T = 48, integrity gaps become very
high, between 34% and 400%. Moreover, with M = 10000, we only obtain in 4 hours,
approximations with respectively for the instances with T = 42 and T = 48, a 1.41%
and a 2.95% gaps. Thus, we have investigate ways to improve efficiency by choosing a
more accurate value of the Big M constant.

Let (p∗t ,r∗i ) be an optimal solution. we note :

P∗
max = max

t
{p∗t } = max

i
{r∗i } (9)

P∗
min = min

t
{p∗t } = min

i
{r∗i } (10)

When β t
i = 0, equation (5) leads to |pt − ri| ≤ M. As P∗

max −P∗
min represents the highest

difference between two prices, M just have to be greater than P∗
max −P∗

min. So, the idea
in the following is to derive an upper bound to P∗

max −P∗
min, i.e. upper and lower bounds

respectively to P∗
max and P∗

min. As a price is always positive, we consider 0 as the lower
bound of P∗

min.
Let us define P̂t,i, Pt and P̃t such as

ρt(P̂t,i) = T hi (11)

ρt(Pt) = 0 (12)

P̃t = argmax
p

{Rt(p)} =
bt

2at
(13)
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Proposition 1.

P∗
max ≤ min

{
max

t
{Pt} ; max

t
{P̂t,0 ; P̃t}

}
(14)

Proof. Because ρt is positive and decreasing, P∗
max is obviously lower than each Pt . Let

us consider an optimal solution such as P∗
max = ri ≥ maxt{P̂t,0 ; P̃t}. By contradiction,

it is easy to prove that this solution is not optimal, because the solution with the same
prices but maxt{P̂t,0 ; P̃t} instead of ri, is better, and still feasible (any time slot is as-
signed to another load level).

We performed tests on the same instances but with M = P∗
max. Results show that the

choice of the M value does not have any impact on integrity gap. Table 2 represents
computing time and number of generated nodes according to M value for some in-
stances. Computing time and number of generated nodes are globally smaller using M
smaller which validate the interest of our proposition. With an accurate M the instance
with T = 42 has been solved in less than 3 hours, and we obtain for the instance with
T = 48 a better approximate solution at 1.82% (vs 2.95) in about 3 hours (vs 4 hours).

Table 2. Big M influence on computing time and number of nodes

Number of time slots Integrity gap Computing time in seconds Number of generated nodes
M = 10000 M = 430 M = 10000 M = 430

12 339.65% 0.64 0.33 509 408
20 177.15% 11.52 4.51 9000 7500
24 175.84% 26.95 9.98 19400 18600
30 160.34% 353.91 157.11 200100 199000
42 396.5% 14400[1.41%] 9986.65.96 32572500 11000400
48 183.01% 14031.41[2.95%] 7639.57[1.82%] 8006100[2.95%] 7810300[1.82%]

5 Conclusion and Future Research Work

This paper deals with a new problem of yield management in the telecommunication
industry. A MIP formulation has been proposed to model this problem of pricing voice
services based on available resource. We focused our study on the particular case, where
demand and load are functions linearly dependent on price resulting in a MIQP. A study
on the impact of a big M constant has also been carried on and led to improve the
computational efficiency. In future work, we intend to extend this model, considering
for example more general models for load and demand depending on several variables.

References

1. Bouhtou, M., Erbs, G., Minoux, M.: Joint optimization of pricing and resource allocation in
competitive telecommunications networks. Networks 50, 37–49 (2007)

2. Humair, S.: Yield Management for Telecommunication Networks: Defining a New Landscape.
PhD thesis, Massachusetts Institue Of Technology (2001)

3. Manaffar, M., Bakhshi, H., Pilevari, M.: A new dynamic pricing scheme with call admission
control to reduce network congestion. In: Advanced Information Networking and Applications
- Workshops, pp. 347–352 (2008)

4. Bitran, R., Caldentey, R.: An Overview of Pricing Models for Revenue Management. MIT
Sloan Working Paper No. 4433-03 (2002)

5. Smith, B., Leimkuhler, J., Darrow, R.: Yield Management at American Airlines. Interfaces
(1992)

6. Viterbo, E., Chiasserini, C.F.: Dynamic Pricing in Wireless Networks (2001)



UL RSSI as a Design Consideration for Distributed
Antenna Systems, Using a Radial Basis Function Model

for UL RSSI

Sarel Roets1, Praven Reddy1, and Poovendren Govender2

1 Mobile Telephone Network, Johannesburg, South Africa
{roets sa,goven po}@mtn.co.za

2 Ericsson, Ericsson South Africa, Woodmead, South Africa
praven.reddy@ericsson.com

Abstract. This paper aims to develop a non-linear model for the Uplink Re-
ceived Signal Strength Indicator (UL RSSI) during high capacity stadium events.
Radial Basis Functions (RBF’s) are used to aid in developing the model for the
UL RSSI as the amount of users in the stadium changes. Air Speech Equiva-
lent (ASE) is used to model users on the uplink. Furthermore a model is derived
to assist planning engineers to determine a suitable amount of sectors needed
for Distributed Antenna Systems (DAS) that will not cause degradation in the
noise floor. Results for the UL RSSI model prove to follow trending of actual
noise floor characteristics during high capacity stadium events with reasonable
accuracy. The model was used along with a design example and results if im-
plemented should provide Enhanced Uplink/High Speed Uplink Packet Access
(EUL/HSUPA) users with an acceptable Quality of Service.

1 Introduction

With the advent of both social network applications and the smart phone revolution, it
has become increasingly important for operators to handle the increased capacity and
provide higher data rates in the uplink for users through WCDMA’s EUL/HSUPA tech-
nologies. In the WCDMA standard, the User Equipment (UE) can have a minumum
of two radio links, one in the uplink the other in the downlink. The downlink is nearly
orthogonal with users well separated, however the power in the downlink is shared by
the users. The uplink is non-orthogonal, interference limited as every UE has a power
budget and interferes with each other. Improving the uplink has now become more crit-
ical as it dictates at what power level a UE should transmit to be measured/detected by
the NodeB.

During high capacity stadium events it has been seen that the noise on the uplink
increases non-linearly and subsequently the UE has to transmit at higher power levels.
Higher noise levels on the uplink now however tend to decrease the quality of the uplink
and EUL services.

From data acquired during high capacity events it came to light that the model used
for UL RSSI does not indicate the non-linear output from actual data. The motivation
was now to use Neural Networks (NN) to obtain a non-linear model for UL RSSI dur-
ing high capacity stadium events. Our work improves on the model in [1]. An improved
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model representing actual behavior of the noise floor can assist planning engineers in
designing stadium solutions to provide the best possible service to the users. An accu-
rate model can predict what changes in the noise floor for various conditions.

2 WCDMA Network Theory

2.1 WCDMA Network Architecture Overview

According to 3GPP the radio access network for UMTS Radio Access Network
(WCDMA RAN), provides a connection between the Core Network (CN) and the UE
while also interfacing towards the external Network Management Systems (NMS) [2].
The Network Elements (NE’s), RNC, RXI, and Radio Base Station (RBS) manage
the data links between WCDMA RAN and the UE. An architecture diagram for the
WCDMA network is shown in figure 1. Radio Access Bearers (RAB) are setup be-
tween the CN and the UE, as shown in figure 1, for different traffic classes, conversa-
tional (voice), streaming class (video), interactive (internet browsing) and background
(email). The fore-mentioned services utilise a signalling connection between the NE’s.
RRC (radio resource control) signalling protocol messages occur between the UE and
RNC. Non Access Spectrum (NAS) signalling protocol messages occur between the
UE and CN. The RAB contains an Iu bearer from the RNC to the CN, a user plane
Transport Channel (TRCH) on the Iub which forms a radio link between the UE and
RNC [2].

Fig. 1. WCDMA network architecture layout. Architecture is drawn from the Subscriber side up
to the Core Network.
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In the case of an active DAS in figure 1 , minimal RF gain is used from the Node-B.
RF signals are converted to optical frequency via the Master Unit (MU) for distribu-
tion over fiber and converted back to RF when terminating at wideband Remote Units
(RU’s). RU’s are installed close to the antennas to ensure that lost energy is minimized.
The active DAS is ideal for multisector/multioperator applications, offering the most
uniform coverage and optimal trunking efficiency with the best distribution of RF for
HSPA services. The active DAS has a lower noise figure in the uplink when compared
to the high system noise figure on the high loss passive DAS system. Passive DAS de-
signs require the Bidirectional Amplifiers (BDA’s) as close as possible to the antenna
to circumvent the passive attenuation which impacts the noise figure, limiting uplink
performance. In the case of a hybrid DAS, the uplink in the passive portion is the lim-
iting factor and careful consideration should be taken in the choice of value for the
UL Attenuator, as the noise power from the active portion may degrade the passive
portion [3].

2.2 Discussion on HSUPA/EUL

After the Release99 version of WCDMA access networks it was realized that higher
data throughputs was required on the downlink. This new access release for WCDMA
entailed the enhanced downlink capabilities and saw users obtaining speeds of up to
14.4 Mbps. Release5 entailed enhanced capabilities for downlink and was named, High
Speed Data Packet Access (HSDPA). User tendencies after Release5 indicated users
requiring faster speeds on the uplink leading to Release6 and 7 with enhanced uplink
(EUL) capabilities. Enhancements on Release5 uplink to obtain HSUPA are an increase
in peak data rate and cell throughput as well as a shorter round trip time. Various aspects
(for example 2ms TTI and Hybrid Automatic Repeat Request (HARQ) with soft com-
bining, dynamic power allocation and fast link adaptation) were introduced to achieve
the above mentioned performance. Higher modulation schemes are used for HSDPA
users with good channel quality to receive resources (code/power) and not be band-
width limited. EUL uses fast power control in the uplink for link adaptation and does
not require a higher modulation like 16QAM, rather QPSK as it is interference limited.

A higher modulation scheme introduces a higher Peak to Average ratio (PAR), which
means a higher Electromagnetic Interference (EMI) being generated by the UE. Soft
handover reduces intercell interference and provides macro diversity. Improved system
response time is realized as the scheduling and HARQ functionality are present on
the node b instead of the RNC as in R99. In HSUPA/EUL various channels where
introduced as extras like the E-DCH, E-DPDCH, E-DPCCH, E-HICH, E-AGCH, and
E-RGCH. These channels control throughput, signaling and admission control. For the
admission control the UE TX Power and Rise over Thermal (RoT) is considered. RoT is
a measure of the capacity on the Uplink channel as perceived by the Node-B. Each UE
that transmits on the uplink is seen by the UE as interference decreasing the bandwidth
on the uplink.

2.3 Theory on Uplink Noise

The radio link on the uplink is used to communicate from the UE towards the RAN.
To communicate on the uplink a UE is required to transmit at a power larger than the
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thermal noise floor, discussed in section 4.1. When a single UE is present in the cover-
age of a cell, the UE is required to transmit at a power just above the thermal noise floor.
If a second UE is however introduced it contributes to the noise floor in the environment
and the first UE needs to increase its uplink transmission power.

Modelling and measuring the amount of users on the uplink is done by using ASE.
An ASE is used to reserve air-interface resources in both the uplink and downlink [4].
In the case of a speech user, the Orthogonal Variable Spreading Factor, (OVSF), of 128
is used according to [5]. Utilising the OVSF code for a speech user can now indicate
the bits per symbol or data rate used for a spesific service. In [6] the OVSF is expressed
as in (1) where the chip rate is known to be 3.84 Mcps.

OVSF =
ChipRate
DataRate

(1)

Obtaining the data rate from (1) results in (2).

DataRate =
ChipRate

OVSF
=

3.84×106

128
= 30kbps (2)

A date rate of 30 kbps is found for one ASE/Speech user on the uplink according to
[5]. Furthermore accroding to [4] one speech user is equivalent to 1.61 ASE. ASEs are
used to provide a reservation for air-interface resources in both uplink and downlink.
This monitor is based on estimation of the air interface usage per radio link type (Ra-
dio Connection Type) in a cell, separately for the uplink and downlink. The ASE of a
radio link is a relative value, defined as the air-interface load relative to a speech radio
link (12.2 kbps, 50 % activity). The general method of estimating the ASE value for a
specific service is as follows:

ASE =
maxrateradiolink

maxrateradiolinkspeech
× activity f actorradiolink

activity f actorradiolinkspeech
(3)

If the UE is in Soft Handover the UL ASE is distributed evenly between the cells in the
active set, since UL interference in reduced in Soft Handover. The DL ASE values are
naturally unchanged and counted in each cell.

3 Introduction to RBF Neural Networks

A short introduction behind the use and workings of RBF are discussed in this section.
RBF’s can be used to approximate linear or non-linear functions. A RBF has the feature
of monotonicaly decreasing/increasing as the distance from the centre point changes,
according to the radial function. The most widely used radial function is a Gaussian
RBF [7].

h(x) = e
−(x−c)2

r2 (4)

In (4), c is the centre of the radial function and r the radius from the centre for a Gaussian
RBF. The input to the radial function is, x, and the output is h(x). When performing
some function or pattern estimation the trained values for c and r are used to estimate
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Fig. 2. Neural Network layout for a single layered Radial Basis Function

h(x) for any given value for x. A RBF can be used for either a single layer or multi-layer
neural network. For the single layered neural network the network architecture can be
viewed as in figure 2. According to figure 2, a function approximation for a RBF Neural
Network can thus mathematically be expressed as in equation (5).

f (x) =
m

∑
j=1

ω jh j(x) (5)

The term h(x) in (5) refers to (4) which is the Gaussian RBF. Weights, ω , for RBF
functions are representative of the, r and c terms in (4).

Training the weights can be done by using a training set and least squares estimation.
A training set consists of known input and output values for some function, thus x and
h(x) is known in (4) but for various ranges changing x into a vector x [7]. Rewriting the
input x into a vector results in (6).

f (x) =
m

∑
j=1

ωjhj(x) (6)

Training the RBF now uses least squares estimation to minimise the sum-squared error
with respect to the weights of the model [7]. In (7) the sum-squared error is represented
by S.

S =
p

∑
i=1

(ŷi − f (x))2 (7)

When using ridge-regression as in [7], a cost function is introduced into (7) and the new
equation (8) is obtained where C is represents the sum squared error with the additional
cost function.

C =
p

∑
i=1

(ŷi − f (xi))2 +
m

∑
j=1

λ jω2
j (8)
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In (8), λ indicates the regularisation parameter, which is used to minimise the cost
function. According to [7] minimising the cost function results in m linear equation to
be solved. To determine, m, the Optimal Weight Matrix is used which determines the
optimum amount of weights to be used. To find the optimum number of weights, m, one
starts of by differentiating the cost function in (8) as follows:

∂C
∂ω j

= s
p

∑
i=1

( f (xi)− ŷi)
∂ f
∂ω j

(xi)+ 2λ jω j (9)

The model, f also needs to be differentiated as seen in (10).

∂ f (xi)
∂ω j

= h j(xi) (10)

By substituting (10) into (11) and equating to zero the equation in (11) is found.

p

∑
i=1

f (xi)h j(xi)+λ jω̂ j =
p

∑
i=1

ŷih j(xi) (11)

Equation (11) has 1 ≤ j ≤ m constraints, where for each constraint there also exists an
unknown. One can conclude that there is, m, unique solutions. By rewriting (11) into
algebraic notations one can solve (11).

hT
j f +λ jω̂ j = hT

j ŷ (12)

For each value of, j, in (12) from 1 to m a relation can be established between the vector
quantities of hT

j f and hT
j ŷ as in (13).⎡⎢⎢⎢⎣

hT
1 f

hT
2 f
...

hT
mf

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
λ1ω̂1

λ2ω̂2
...

λmω̂m

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
hT

1 ŷ
hT

2 ŷ
...

hT
mŷ

⎤⎥⎥⎥⎦ (13)

Equation (13) can then be rewritten with matrix notation to obtain the following expres-
sion:

HT f +Λω̂ = HT ŷ (14)

In (14), Λ and H can be represented as follows:

Λ =

⎡⎢⎢⎢⎣
λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λm

⎤⎥⎥⎥⎦ and (15)

H =

⎡⎢⎢⎢⎣
h1(x1) h2(x1) . . . hm(x1)
h1(x2) h2(x2) . . . hm(x2)

...
...

. . .
...

h1(xp) h2(xp) . . . hm(xp)

⎤⎥⎥⎥⎦ (16)
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Considering, f to be the composition of two terms, the design matrix (h) and the weight
vector (Λ ).

fi = f (xi) =
m

∑
j=1

ω̂ jh j(xi) = Hŵ (17)

By now substituting (14) into (12) one obtains the solution for ŵ in (18).

HT ŷ = HT f +Λ ŵ

= HT Hŵ+Λ ŵ

ŵ = (HT H +Λ)−1HT ŷ (18)

Both the number of weights/neurons and the values for each of them are determined
through the process discussed above to obtain ŵ in (18). The process to obtain ŵ is
called training and hereafter the values for ŵ is used as a constant vector in (6).

4 Modelling Uplink Noise

4.1 Uplink Noise Floor

In a mobile environment with zero users there exists a noise floor. The noise floor rep-
resents the minumum power at which a UE should transmit to be heard by the network.
Using the ambient temperature as well as the Boltzmann constant a value for the noise
floor on the uplink can be determined as in (19) as discussed in [5].

Nf loor = T ×B

= 290×1.3806503×10−23

= −105dBm (19)

In (19), T represents the temperature in Kelvin and B the Boltzman Constant in units
of m2kg−2K1. For purposes in this paper it is assumed that the ambient temperature
remains constant at 290±3K. The actual stadium installation had the cabinets contained
in a temperature controlled room with similiar specifications.

4.2 Current RoT Model

Currently models for RoT indicate a parabolic relationship between the amount of users
versus the increase in uplink noise. A model is found in [1], indicating the relationship
to be parabolic. When considering a single UE transmitting to the NodeB at a constant
power, the UE can be situated anywhere in the coverage of the NodeB. However if
another UE is now also introduced into the coverage of the NodeB and at a distance
closer to the NodeB than UE 1, noise is introduced into the system. Noise caused by
more than one UE in the coverage area causes cell-breathing leading to UE’s having to
transmit at higher power to be received by the NodeB. According to [1], the effect of
cell breathing can be modelled by (20):

Eb

I0 + N0
=

C
Rb

N0 + α(1+i)(N−1)C
W

=
Gp

NbW
C +α(1 + i)(N−1)

(20)
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In (20), C indicates the required received power from the UE, N0 represents the power
spectral density of the noise, W is the CDMA chip rate, N is representative of the
amount of active users, α indicates the transmitter’s duty cycle, Gp is the processing
gain and i represents the ratio of the interference. If C is now solved from (20) an ex-
pression for the required received power or UL RSSI is found in (21).

C =
N0W ( Eb

I0+N0
)

Gp − ( Eb
I0+N0

)α(1 + i)(N −1)
(21)

For various sets of users the UL RSSI versus users can be plotted according to (21)
producing the results in figure 6. The relationship between the noise rise and uplink
noise is thus a quadratic relationship. To obtain the results in figure 6, the following
assumptions were made with regards to the values used for terms in (21). Assuming the
OVSF is equal to the processor gain a value of 256 for speech users are used in (21) for
Gp. A value of 7 dB for Eb/I0 + N0 is used and 50 % for α . For i a value of 55 % was
used and for the receiver noise, N0, a value of 5 dB.

Fig. 3. Graphical results for 0 to 65 users using the expression for UL RSSI in (21)

4.3 New Proposed Model for RoT

During an event at a stadium with high subscriber capacity it was noticed that UL RSSI
on the DAS in the stadium was limiting the performance of EUL. Data for the amount of
users, ASE, was used along with the data for RoT providing insight into the equivalent
noise rise attributed per voice user on the 3G network. A graphical representation of the
average results for UL RSSI versus ASE or users was found as in figure 4.

Figure 4 results in a 6-th order polynomial function approximation for the UL RSSI
as a function of users. However it was decided not to use this results for benchmarking
further models as it is based on actual data for a full capacity stadium event. The idea
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Fig. 4. UL RSSI for a high capacity stadium during an event as a function of the amount of
equivalent voise users

is to rather use a RBF Neural Network to create a model of the non-linear relationship
between the UL RSSI and the amount of users. Using the average UL RSSI and average
amount of users for the data from figure 4 results in obtaining the (noise per user factor),
k = −1.866 dBm/user.

Using actual data along with the non-linear function abilities associated with neural
networks may now provide an improved model to estimate the effect of the amount of
users on the UL RSSI.

Fig. 5. Actual data plotted over estimated data for a stadium at full capacity during an event. An
average error between the actual data and estimated data is -0.0000048 dBm.
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RBF Approximation of the UL RSSI as a function of ASE. Using both the theory in
sections II/III and the data for figure 4, a RBF was trained with the amount of users as
the input data. The resulting UL RSSI was used as the target data. The training set used
is for a full high capacity stadium during an event. Testing the RBF was done by using
ASE data from the same stadium but from a different event (event data 2). The actual
data was then compared to the UL RSSI estimation from event data 2. An average
error of −0.000048 dBm is observed between the actual data and the RBF estimated
UL RSSI. The model was tested for various other cases with similiar results and was
therefore considered to be valid as a model. The trained neural network consists of 1175
neurons and has an error of ±3 % after using least squared estimation for training the
algorithm.

5 Design Model for DAS System

The main aim of this paper is to design a model to assist Radio Planning Engineers in ef-
fectively designing DAS’s for stadiums. As mentioned in several sections the amount of
users does affect the UL RSSI which in turn influences the performance of EUL/HSUPA.
The aim now is to use the data which can be provided by the new model for UL RSSI
as a function of users to be able to design the layout for a DAS for stadiums.

In this section we derive an expression for the number of subscribers that should be
covered with an acceptable degradation in uplink noise. Stadiums are designed to house
up to 100 000 people and usually a country has several mobile operators. Therefore this
derivation will start by considering the amount of market share a network operator has
as a percentage expression. We are then able to deduce the amount of possible users in
a stadium based on market share.

S×M = N (22)

In (22), S is the stadium capacity, M indicates the network operator’s market share and
N is the amount of possible users in the stadium. Either figure 4 or the RBF model can
now be used to determine how many users one wants to be covered for an acceptable
UL RSSI level on a sector, this amount of users is represented by Nd . Expanding on
(22) to include the amount of desired users for acceptable UL RSSI results in (23).

S×M
Nd

=
N
Nd

= No (23)

where No indicates the amount of sectors required for the design. One determines the
amount of required NodeB’s, Rs to cover the stadium as in (24), by dividing the amount
of sectors by the count of sectors per NodeB, designated by the symbol B in (24). It
should be noted that one NodeB sector may contain several DAS antennas.

N
Nd

B
=

No

B
= Rs (24)

To test and evaluate if the number of sectors will provide coverage with suitable levels
of UL RSSI one can multiply the results of (22) with k. The results provide the noise
rise per user and this should then indicate if suitable design levels were chosen.
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Also one can expand to include the amount of 3G users in the network. The market
share, M in (22) indicates the total market share of the network operator. If the percent-
age of 3G users, G, in the network is included a more accurate design can be realized.
The result of including the percentage of 3G users means that (22) can be substituted
by (25).

S×M×G = N (25)

The model derived in this section should now allow a radio planner to design adequate
coverage without degrading EUL services.

6 Design Results

This paper already provided various results in terms of models and actual data from
major events in stadiums. A design example is presented to highlight the use of our
model in this paper.

Using Figure 4 it was determined that a maximum number of users to be covered
is 45 per cell, thus Nd = 45. The RBF model was then used to determine the effect of
a maximum of 45 users on the UL RSSI, resulting in the relationship in figure 6. At
this stage the planner should recognise that the noise rise due to 45 simultaneous users
has an UL RSSI of −80 dBm, which is in accordance to figure 4. If the degradation
of UL RSSI is acceptable to the planner he/she may continue with the design. Further
inputs to the planner might be that the stadium capacity is 50,000, with a network
operator market share of 45 % and 14 % of the network’s traffic is on 3G. Using (25):

50000×0.45×0.14 = 3150 (26)

According to (26) a possible total of up to 3150 voice users can be expected in the
stadium using the resources of the network operator. Using (23) the amount of required
cells can be determined using Nd = 45.

Fig. 6. Estimated degradation of the UL RSSI with a maximum of up to 45 simultaneous users
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3150
45

= 70 (27)

The result in (27) indicates that 70 sectors is required to cover users within the accept-
able noise rise limits. Using (24) the amount of necessary NodeB’s with three sectors
can be determined as in (28).

70
3

= 23 (28)

The design requires that 23 NodeB’s be installed to provide coverage with acceptable
power levels on the uplink.

7 Conclusion

Data from actual events in a high capacity stadium was used to model the relationship
between UL RSSI and the amount of speech users on 3G. The model proved accurate
and estimations for various stadium designs can now be made. A RBF was used to
create the model for the UL RSSI as it provides non-linear system estimation with ac-
ceptable accuracy and ease of implementation. A design model was derived as the main
objective of this paper and uses data from the UL RSSI model to determine the amount
of sectors required to fulfill design requirements for a stadium DAS. The results of a
design scenario provided the planner with a guideline for the number of users per sector
as well as the amount of NodeBs that are required to meet the design requirements. The
model enables planners to now use the UL RSSI as a design consideration when de-
signing a DAS for stadium events. Meeting the ever demanding requirements of users
now also focusses on providing superior quality on the uplink to fulfill various needs
of the user. Both the model for UL RSSI and the design model proved efficient and
adequate. The authors carry experience from the 2010 Soccer World Cup and maintain
if such design considerations are followed, improved EUL/HSUPA performance can be
provided on a stadium DAS.
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Abstract. For the complex task of scheduling airline crews, this paper discusses
the integration of rostering requirements into the crew pairing optimization pro-
cess. Our approach is based on a network flow model which uses a state expanded
network to represent pairing chains for crew members at different domiciles. We
enhance this model by proposing a refined representation of rest requirements
along with preassignments such as pairings from the previous planning period,
office and simulator activities as well as vacation and part-time leaves. In par-
ticular, we introduce the concept of availability blocks to mitigate the loss of
information following from the aggregated anonymous flow of crew members in
the network model. Experimental results with real world data sets show that the
refined model remains tractable in practical settings.

1 Introduction

Due to its difficulty and due to the amount of costs which can be saved by finding good
solutions, airline crew scheduling is a planning task which has received a lot of attention
in the research literature. In crew scheduling, the crews are assigned schedules (rosters)
for a planning period of usually two weeks or a complete month. Mainly because of the
complexity of the planning task, the planning process is typically divided into at least
two steps which are performed in a sequential order.

In the crew pairing step, an optimal set of pairings covering all flights is generated.
A pairing is a legal sequence of typically up to five duties which starts and ends at a
crew domicile (home base). A duty is a sequence of flights which forms a working day.
After a duty, a crew member has to be awarded a daily rest. The daily rest can occur
either at the domicile of the crew member or at a remote airport within a pairing in
which case expenses for hotel overnights are incurred. At the beginning and at the end
of a pairing as well as between the duties of a pairing, a proceeding (deadhead) can be
used to position the crew.

In the subsequent crew assignment (crew rostering) step, these anonymous pairings
are assigned to crew members. When the rosters are constructed, preassignments such
as simulator activities or vacation blocks have to be respected as well as the need for
weekly rest requirements. A common rule for weekly rests is that a crew member has to
be assigned a weekly rest block within every period of seven or eight days.

The way in which rosters are constructed varies from airline to airline, but it typically
falls in one of the following three categories: In the bidline approach, the airline gen-
erates a set of legal anonymous schedules (bidlines) for which crew members can bid,
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c© Springer-Verlag Berlin Heidelberg 2011



644 M. Römer and T. Mellouli

Fig. 1. A roster with preassignments and two pairing solutions

typically in seniority order. In the preferential bidding approach, crew members bid for
certain properties of the schedule and the rosters are then assigned in a way that crew
satisfaction is maximized in seniority order. In the personalized rostering approach, the
schedules are constructed based on fair share with respect to preferences and to an equal
distribution of the workload among all crew members.

In this paper, we focus on crew scheduling in the personalized rostering process
mainly found at European airlines. In particular, we deal with the interdependencies
between the generation of crew pairings and the following rostering step. To provide an
idea of the problems addressed in this work, we give a simple example in Figure 1.

Figure 1 depicts the rosters for a small crew domicile with four crew members
(CM 1. . . CM 4) before crew scheduling is carried out. The rosters contain several ac-
tivities at the last days of the previous planning period as well as some preassignments
such as standby duties (SB), vacations and simulator trainings (sim) within the current
planning period. The line below the rosters depicts the aggregated available capacities
for every day in the planning period. In addition, there are two sets of pairings which
could result from the pairing optimization step (2d pairing denotes a pairing with a
length of two days). Both solutions are feasible with respect to the aggregated avail-
able capacities. However, it is easy to see that the pairings of the first set do not fit into
the gaps available in the rosters above. In contrast, the second set of pairings exhibits
no conflicts with respect to the preassignments. Yet, a feasible roster also has to fulfill
the weekly rest requirements. When considering the weekly rest rule mentioned above,
there also exists no feasible rostering solution for the second set of pairings.

If such a situation arises in practice, the pairing solution has to be modified in order
to achieve a feasible rostering solution. Such modifications can be achieved by swap-
ping pairings between crew domiciles and/or by breaking and maybe recombining pair-
ings. These local modification steps typically cause higher costs, e.g. since additional
expenses for proceedings are incurred.

In this paper, we propose an approach to integrate characteristics of the crew ros-
tering step into crew pairing optimization and we investigate the sensitivity of this
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integration on the overall crew scheduling process. In the following section, we pro-
vide a description of the relevant planning problems and give a short review of related
work. Our network-based modeling and solution approach is described in Section 3. In
Section 4, we present the results of our computational experiments based on real world
data sets of a medium-sized German airline. In the last section, we give a short summary
and an outlook on further research opportunities.

2 Related Work

In this section, we describe the planning problems arising in short term airline crew
scheduling and review existing work on the topic. To be more specific, we shortly re-
view the crew pairing problem, the crew rostering problem and approaches for inte-
grated crew scheduling.

2.1 Crew Pairing Optimization

In the crew pairing problem (CPP), the flights which fall into the planning period are
sequenced to form an optimal set of legal pairings. The main goal in the CPP is to gen-
erate a cost-minimal set of pairings covering all flights. Depending on the airlines’ crew
payment structure, the cost function of a pairing can be a complex nonlinear function
of the flights and duties it contains. In most European airlines, crews are payed a fixed
salary plus an overtime payment if a threshold of monthly or yearly working time is ex-
ceeded. In this case, the most important pairing-related variable costs are those caused
by proceedings and hotel stays, per diem expenses for working time and rests outside the
domicile and overtime payments. In airlines operating from more than one crew domi-
cile, a second goal is to distribute the flight hours evenly among the domiciles based on
the available capacity. An uneven distribution over several periods would cause bottle-
necks in some domiciles with crew members reaching their yearly maximum flight and
working times. An important difficulty in the CPP stems from the multitude of rules such
as company and governmental rules governing the legality of duties and pairings. While
some rules depend on a simple accumulation of measures such as flight time, there are
also complex path-dependent rules which cannot be expressed linearly in terms of the
flights and their connections and thus are difficult to model.

The CPP has been studied extensively, for surveys on the topic see, e.g., [2,7]. It
is mostly stated as a generalized set partitioning problem in which pairings form the
columns and there is one row for every flight to be covered. Most state of the art
approaches solve the set partitioning model by branch and price (column generation)
approaches in which the variables of the set partitioning problem are generated dynam-
ically within the solution procedure by solving a subproblem, using dual information
from the solution of the set partitioning problem. This solution approach was first pre-
sented in [9] and later refined by several authors.

In most cases, the column generation subproblem is formulated as a variant of a
shortest path problem on a time space network. While every legal pairing forms a path
in such a time-space subproblem network, there are many paths in the network which
violate the complex rule set governing pairing legality. Due to this important circum-
stance, solving a standard shortest path problem is not a feasible approach to generate
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columns (pairings). Instead, most authors propose to solve a resource constrained short-
est path problem in which resource variables and resource extension functions are used
to model the complex legality rules (see e.g. [4]). Another approach considered, e.g., in
[1] is to look for multiple shortest paths on the network and check each path for legality
until a legal pairing is found.

2.2 Crew Rostering

The crew rostering problem (CRP) consists of assigning pairings (and in some cases
additional activities such as standby duties) to individual crew members in a way that
all roster legality rules are fulfilled. In the personalized rostering approach considered
in this paper, the goal is to achieve fairness and equality among the crew members.
Among the many regulations governing the legality of a crew roster, the weekly and
monthly rest requirements can be considered two of the most important rules. A typical
example for a weekly rest requirement we encountered at the airline in our practical
case study is the following rule: every crew member has to have at least two rest days
within every seven day period and one rest block of two sequential days within every
eight day period. In each calendar month, a crew member of the same airline needs to
be granted at least eleven rest days.

Another important aspect in rostering are the preassigned activities such as simula-
tor, office, vacation and part-time leaves: they define the gaps in which the work activ-
ities and rest blocks can be inserted. Some types of preassigned activities are counted
as working time which is the case for flight activities overlapping from the previous
planning period, simulator trainings or office activities. Other activities such as vaca-
tion or part-time leave represent rest time. A detailed description of the CRP as well as
an overview of solution approaches is provided by [8]. Like the CPP, the CRP can be
modeled as a set partitioning problem and solved by column generation (see, e.g. [6]).
Alternative approaches are presented in [3], where a multicommodity flow problem is
solved and in [11], where the authors employ a heuristic approach based on the scatter
search metaheuristic.

2.3 Integration in Crew Scheduling

As described in the introduction, the sequential proceeding in crew scheduling can lead
to problems since important rostering constraints are not accounted for in the pairing
optimization step. Particularly at airlines with small crew domiciles, preassigned activi-
ties and the rest requirements can lead to the situation that the generated pairings are not
directly assignable to form legal rosters. As a consequence, the optimal pairing solution
has to be modified. Often, these mainly local modifications negatively affect the quality
of the pairing solution.

To overcome these problems caused by the sequential planning process, some au-
thors propose approaches for integrated procedures in which rosters are constructed di-
rectly from the flights. An approach based on a branch and price algorithm is presented
in [5] where the authors report significant advantages in solving the integrated problem
in contrast to using a sequential procedure. The biggest instance they solve contains
521 flights within a solution time of 27 hours. In [16], the authors propose a mixed
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integer programming model using pre-generated duties for the integrated crew schedul-
ing problem which is solved with a standard solver after a clique-based reformulation.
However, the instances solved in that work are relatively small (the maximum num-
ber of flights considered was 210). Proceedings required in a multiple crew domicile
case are not considered. Recently, [15] have provided an approach in which they inte-
grate crew pairing and anonymous bidline generation. By applying column generation
in combination with dynamic constraint aggregation, they are able to solve instances
with up to 7527 flights within 44 hours. The authors report significant savings with
respect to the number of bidlines generated in comparison to a sequential approach.

Instead of solving the integrated crew scheduling problem, [12] proposes a partially
integrated approach which consists of solving the crew pairing chain problem (CPCP)
to generate pairings. The author defines a pairing chain as a sequence of pairings spaced
by weekly periods which can be performed by the same crew member. The result of
the CPCP is an optimal set of pairing chains which also accounts for the availability
of crew members at the beginning of the planning period as well as the preassigned
activities and weekly rest requirements. The model proposed in [12] is an aggregated
state expanded multicommodity network model in which a commodity corresponds to
a crew member from a certain crew domicile. The states correspond to the number of
sequential working days in a pairing and flights are represented by pre-generated duty
arcs. A solution of the aggregated network flow model can be interpreted as a set of
possible pairing chains. A concrete solution can be obtained by decomposing the flow
into paths which represent feasible pairing chains.

While the model presented in [12] captures the weekly rest requirements quite pre-
cisely due to the fact that every working block of at most five days has to be followed
by a weekly rest arc, it is not capable of modeling all complex path dependent pairing
legality rules which incorporate more than one duty. In a subsequent work which is pre-
sented in [13] and later refined in [14] the author introduces a different network-based
model for the CPCP in which flights are represented in state-expanded subnetworks in
which all relevant rules are enforced by construction of the network. The weekly rest re-
quirements are approximately modeled by incorporating rest arcs as well as constraints
which enforce that for every seven day period, the number of rest periods is greater
or equal to the number of available crew members at every crew domicile. Since this
model forms the basis for the approach chosen in this paper, we describe it in more
detail in the following section.

3 Modeling and Solution Approach

The approach we propose in this section is based on the second network flow model for
the CPCP of [13,14]. In the first two subsections, we describe the underlying network
structure and give the formulation of the basic model. In the following subsections,
we describe our new modeling approach to handle rest requirements and preassigned
activities and discuss our approach to solve the resulting mixed integer programming
model. Note that while the problem which we model is taken from our concrete case
study, structurally similar problems can be found at many airlines, especially at airlines
from Europe.
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Fig. 2. Sketch of the network structure for a crew domicile

3.1 Network Construction

For every crew domicile k from the set of all domiciles K, a model network Gk =
(Nk,Ak) is constructed. A sketch for such a network is provided in Figure 2. The con-
nections between activities which start and end at the domicile are modeled by a time-
line (connection line) which starts at a source node and ends at a sink node. The supply
/ demand of a node is denoted as bk

i . For the source / sink node of domicile k, the supply
corresponds to the number of crew members cmk / −cmk. All other nodes in the net-
work have 0 demand. Besides the source and the sink, the timeline contains event nodes
which represent points in time at which activities start and end. These timeline nodes
are connected by waiting arcs.

The flight activities are modeled in state-expanded pairing subnetworks which are
connected to the timeline via starting and ending event nodes. In these subnetworks
(loosely depicted in the upper part of Figure 2), every flight can occur several times in
different states. As a simple example, the state of a flight which forms the first flight
in a duty is different from the state of the same flight if it is the third flight within a
duty. Another simple example is that the state of a flight depends on the number of days
already worked within a pairing. In general, the states depend on the rules that govern
the legality of a pairing. As a consequence, the state-expanded subnetworks have the
important property that every path in the subnetwork corresponds to a legal pairing
respecting all contractual and governmental legality rules. The paths can be one to five
days long and can contain proceeding activities as well as overnight stays at hotels.
The times of the end events from the pairing networks correspond to the ready-times
of the crew members after the pairings, that is, the daily rest time is included. The arcs
in the pairing subnetwork alternate between arcs representing flight activities and arcs
representing connections between flights.
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Preassigned activities are modeled as arcs with a fixed flow starting and ending at the
domicile timeline. For every block of assigned working days as well as for each block
of assigned days which count as rest time, such a preassignment arc is introduced.

In addition to the arcs which represent assigned rests, the network contains arcs with-
out upper bound for the flow which represent possible rest blocks: for every possible
two-day and three-day rest block in the planning period, a weekly rest arc is connected
to the timeline. A flow on these arcs (which blocks capacities which cannot be used for
flying) is enforced by the rest-related constraints presented in Section 3.3.

3.2 Basic Model

The flow variables on the arcs (i, j) ∈ Ak are denoted with Xk
i j. Arcs representing ac-

tivities (or rests) are integer variables whereas arcs modeling connections of activities
(including the timeline arcs) are continuous variables. For every node i in the network,
the flow balance constraints have to hold:

∑
j:(i, j)∈Ak

Xk
i j − ∑

j:( j,i)∈Ak

Xk
ji = bi ∀k ∈ K,∀i ∈ Nk (1)

The set Ak
f contains all arcs in the pairing subnetwork of domicile k which represent

flight f from the set F of all flights. Each flight has to be covered by exactly one flow
unit:

∑
k∈K

∑
(i, j)∈Ak

f

Xk
i j = 1 ∀ f ∈ F (2)

In addition, there are constraints which govern the distribution of flight hours among
the crew domiciles. With ak

f h(i j), we denote the flight hours arising at arc (i, j) and with

bk
f hGoal) the flight hour goal of domicile k. By introducing variables Uk

f h and Ok
f h for the

under- and overcovering of the flight hour goals, the following soft constraints can be
formulated:

∑
(i, j)∈Ak

ak
f h(i j)X

k
i j = bk

f hGoal −Uk
f h + Ok

f h ∀k ∈ K (3)

Analogously to the flight hour base constraints, additional base constraints are in-
troduced to approximately model the flight overtime worked in the planning period
measured by the variable Ok

wh. Overtime is caused if crew members exceed their paid
monthly flight time including compensation times for non flying activities.

The objective function consists of a combination of cost minimization and goal pro-
gramming to achieve an even distribution of flight hours among the crew domiciles. It
contains costs for proceedings and accommodation as well as per diem expenses which
are represented in the cost coefficients ck

i j of the flow variables, and overtime costs and
penalties for the deviation from the flight hour goals:

min ∑
k∈K

(
∑

(i, j)∈Ak

ck
i jX

k
i j + ck

f h−Uk
f h + ck

f h+Ok
f h + ck

wt+Ok
wt

)
(4)
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3.3 Weekly and Monthly Rests

The weekly rest requirements are fulfilled if every crew member has at least two rest
days in every seven-day period and at least one rest block of at least two days in each
eight-day period. In the first set of constraints, we aggregate this requirement for each
seven day period. Let Prest be the set of seven day periods within the planning period
T for which weekly rest requirements have to hold. Ak

restIn(p) denotes the set of all arcs

representing a rest block with at least two days overlapping with period p and cmk is
the number of crew members available at domicile k. The aggregated set of weekly rest
constraints can then be stated as follows:

∑
(i, j)∈Ak

restIn(p)

Xk
i j + Bk

p ≥ cmk ∀k ∈ K∀p ∈ Prest (5)

In these constraints, the variable Bk
p is introduced. It represents the number of rest

requirements in the seven-day period p which are fulfilled by starting and ending rest
blocks at the borders of period p. We further define Ak

restStart(t) and Ak
restEnd(t) as the sets

of all arcs representing a rest block starting and ending at day t. Using this notation, we
constrain Bk

p to be the minimum of the number of rest blocks ending and starting at the
borders of period p:

Bk
p ≤ ∑

(i, j)∈Ak
restEnd(t)

Xk
i j ∀k ∈ K∀p ∈ Prest , t = Startday(p) (6)

Bk
p ≤ ∑

(i, j)∈Ak
restStart(t)

Xk
i j ∀k ∈ K∀p ∈ Prest , t = Endday(p) (7)

In addition, we formulate constraints which enforce weekly rests before and after
long working blocks of five days. To this end, we introduce the following sets and
constraints. The set Ak

workEnd(t,d) contains the set of all arcs which end at day t, with
d days of work in sequence. This set includes arcs representing preassigned work as
well as arcs from the pairing subnetworks ending at the domicile timeline. Note that
for every arc representing the end of a pairing it is known how many days the pairing
contains. We then formulate the respective constraints:

∑
(i, j)∈Ak

workEnd(t,5)

Xk
i j ≤ ∑

(i, j)∈Ak
restStart(t+1)

Xk
i j ∀k ∈ K,∀t ∈ T (8)

∑
(i, j)∈Ak

workEnd(t,5)

Xk
i j ≤ ∑

(i, j)∈Ak
restEndt(t−5)

Xk
i j ∀k ∈ K,∀t ∈ T (9)

A similar set of constraints is introduced for working blocks with a length of four
days.

The monthly rest requirements are modeled via the following constraints which guar-
antee that at least sum of all the monthly rest requirements of all crew members, denoted
with bk

restInMonth , is awarded in the planning period.

∑
(i, j)∈Ak

rest

ak
restDays(i j)X

k
i j ≥ bk

restInMonth ∀k ∈ K (10)
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Fig. 3. Unassignable flow decomposition

3.4 Availability Blocks

The network model described so far incorporates necessary conditions formulated on
the aggregated homebase level which have to hold for every feasible rostering solution.
However, due to the loss of identity of the crew members within the aggregated flow
model, there can still arise feasible pairing solutions which cannot be assigned with
respect to the preassignments and the weekly rest requirements.

Such a situation is depicted for a small example in Figure 3: In the upper part, the
preassignment situation before the rostering step is shown, consisting of three part-time
leave blocks and one simulator training, each assigned to a different crew member.
In the network flow model, however, all crew members from the same domicile are
aggregated and form an anonymous flow in which the information that the four activities
are assigned to different crew members is lost. A (decomposed) feasible solution to the
flow model is depicted in the in the lower part of the figure. In the decomposition shown
there, all preassignments are assigned to only two rows. In addition, the only two-day
rest block is assigned to a row in which there is already a part-time block that counts
as rest while the last two rows do not contain any rest. It can easily be seen that the
activities cannot be rearranged in a way that they form feasible rostering solution.

In order to overcome problems of this kind, we introduce the idea of availability
blocks. Availability blocks are periods in which a crew member is available for work
without interruption. The main idea is that the set of pairings which are generated in the
pairing optimization step has to fit into the availability blocks of the crew members. The
number of crew members which are available for a certain availability block depends
on the preassigned activities and on the weekly rest blocks planned within the pairing
optimization model.

Due to the anonymity of the crew members in the aggregated flow, we cannot use
the history of a flow unit to define the available working blocks. Instead, we use the
observation that a crew member will not have two rest blocks shortly after another
to characterize the availability in a period: If we assume that a crew member will be
available for work for at least four days after a weekly rest, we can indirectly calculate
the number of crew members available within a period by subtracting the number of
rest blocks which touch this period from the number of crew members available at the
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homebase cmk. Preassignments such as vacation or part-time off which count as rest
time are also included in this calculation. As an example, the capacity available for
period [5;6] of Figure 3 would be 0.

Arcs which represent rest blocks that have at least one day which overlaps with
period p are defined to be contained in the set ArestTouch(p). If an individual crew member
has two preassigned rest blocks touching period p (and thus violates the assumption
stated above), only one rest block is counted.

The capacity provided by the availability blocks defined in the way described above
can be used by working blocks. Note that every working block does not only need at
least one availability block for its complete period, but also consumes the availability
capacity from the blocks corresponding to all periods which are contained in its working
period. For example, a five-day pairing starting at day t does not only need capacity
from an availability block of five days starting at t, but also reduces the availability in
all one-, two-, three- and four-day blocks it contains. Note that the solution presented
in the lower part of Figure 3 violates this condition: since the available capacity period
[5;6] is 0, no pairing that contains this two-day block can be part of a feasible solution.

We define Ak
work(p) as the set of all arcs which represent working blocks that contain

the complete period p. This set includes the preassigned work activities as well as arcs
from the pairing subnetwork. Here, it is important that for each possible path in the
pairing subnetwork, only one arc is counted. This is achieved by using only the arcs
contained in the sets Ak

workEnd(t,d) defined above for which the period defined by the
days t −d + 1 and t completely contains the period p.

Using these definitions, we can formulate the following set of constraints which en-
force the consistency between availability blocks and working blocks. They are imposed
for every crew domicile k and for the set Pavail of all periods with a length between one
and five days which are completely contained in the planning period T :

∑
(i, j)∈Ak

work(p)

Xk
i j + ∑

(i, j)∈Ak
restTouch(p)

Xk
i j ≤ cmk ∀k ∈ K,∀p ∈ Pavail (11)

3.5 Solution Approach

The model described above forms a mixed integer linear program. Since pairings are
modeled implicitly in the network structure instead of being explicitly enumerated like
in the set partitioning modeling approach, there is no need to resort to a decomposition
approach such as column generation. Instead, owing to the effective aggregated flow
formulation, it can be solved directly using a standard mixed integer linear program-
ming solver. In order to speed up the solution process and to solve large scale instances,
we employ an iterative fixing heuristic which can be characterized as a variant of LP
plunging (see, e.g. [10]): After having solved the LP relaxation of the problem, we fix
variables in the pairing subnetwork which have an integer or near-integer value on the
whole path. Note that the fixation of a single flight arc to one on a path affects several
variables since all other variables which represent the same flight can be fixed to zero.
We repeat this fixing step until certain thresholds with respect to the relative gap to the
first LP solution is reached. Afterwards, the modified mixed integer program is solved
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by a standard MIP solver. In case that the relative gap of the integer solution to the first
LP solution exceeds a certain threshold, we backtrack by undoing the fixation of the
last step and solving the resulting MIP.

4 Computational Results

The basic model described above forms the key part of the crew optimizer, a decision
support system for crew scheduling which has been productive use at a medium-sized
German airline with 38 aircrafts and 11 crew domiciles for several years. One of the
motivations for the refined model described in this work comes from the fact that the
planners at the airline often have to modify the pairing solution in order to obtain a
feasible and balanced rostering solution. Such problems primarily arise at small crew
domiciles with a small number of crew members and at the beginning of the planning
period. In order to mitigate these problems, in the current standard configuration of the
crew optimizer only pairings with a duration of up to three days are generated for small
domiciles and at the first few days of the planning period. This is due to the fact that it
is more likely to find a feasible rostering solution for short pairings than for long ones.

The system also contains a component which can be used to manipulate a given
set of pairings in order to prepare the crew assignment step. This manipulation can
either be carried out manually or by an automatic heuristic. The most important task
of the heuristic is to identify and resolve certain types of capacity conflicts which af-
fect the assignability of the pairings. It resolves these conflicts by local modification
steps such as moving pairings between domiciles or breaking and recombining pair-
ings. Note, however, that it is not capable of providing a solution which is guaranteed
to be assignable. In addition to the conflict resolution, the heuristic tries to improve
the (possibly modified) pairing solution with respect to the measures of costs and goal
variance. Goal variance is defined here as the sum of the quadratic deviations from the
domicile flight hour goals.

We use this postprocessing heuristic and its performance measures to compare the
quality of the pairing solution generated with the new refined model with the current
productive version of the model. In the productive version, the fixed preassignment arcs
are included as well as a simplified version of the weekly and monthly rest constraints.

The experiments were conducted with real world problem instances from our partner
airline including all relevant characteristics such as legality rule sets for duties and
pairings (e.g. EU Ops rules, and airline-specific contractual rules). Table 1 presents the
main characteristics of the problem instances on which we performed our tests.

The experiments were conducted on a personal computer (Intel Core 2, 2.4 GHz,
3GB RAM, Win XP Prof. 32-bit). To solve the linear relaxations within the fixing

Table 1. Characteristics of the solved instances

Name Function # Aircrafts # Flights # Domiciles # Crew Members # Days

CPJul CP 38 2459 11 278 12
FOJul CP 38 2459 11 255 12
CPAug CP 38 2376 11 278 12
FOAug FO 38 2376 11 255 12
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heuristic and for the MIP phase, we used CPLEX 12.2 with two threads and default pa-
rameter settings. Within the final MIP solution phase, we stopped at MIP-gap of 0.3%.
The experimental results are shown in Table 2. The column Gen. shows the time needed
to build the model in minutes. In particular, the construction of the pairing networks
including the calculation of proceeding opportunities, legality checks of the paths rep-
resenting pairings and the aggregation of the network by consolidating equivalent states
consumes a considerable amount of time. The three figures presented in the following
column are the solution time of the first LP, the solution time of the last MIP as well
as the overall time spent for solving the mathematical model. The gap listed in the next
column is the gap between the optimal solution of the first LP relaxation and the final
MIP solution expressed in percent. The following four columns show the costs and goal
deviation before and after the postprocessing heuristic was carried out.

Table 2. Comparison of models and results

Costs GoalDev
Instance Model # Cols # Rows # Nonzeros Gen. Solution time Gap Pre Post Pre Post

CPJul
standard 448286 192622 1231487 25 6.7 / 1.2 / 12.3 0.8 59056 59242 1571 1108
refined 462628 199629 1360321 25 11.3 / 2.1 / 17.2 0.93 59720 59753 812 616

FOJul
standard 469597 199325 1282676 25 7.1 / 0.8 / 12.1 0.91 53047 53544 2467 111
refined 462628 199629 1360321 25 11.3 / 2.1 / 17.2 0.93 52708 52522 1613 279

CPAug
standard 443927 187817 1160869 23 3.8 / 1.8 / 15.4 1.4 62136 62478 3079 1358
refined 470273 202124 1381174 23 13.2 / 0.7 / 21.8 0.6 64179 64287 1439 904

FOAug
standard 446614 187908 1166918 23 4.5 / 1.1 / 9.5 0.82 53831 53871 1003 799
refined 447488 190833 1261031 23 9.1 / 1.2 / 15.1 0.85 52348 52355 1018 328

The experiments show that the mathematical model based on our aggregated state-
expanded network flow approach for crew scheduling can be solved by a state-of-the-
art solver in acceptable times and exhibits a low LP-IP gap. The technique of iteratively
solving the LP relaxation and fixing whole pairings which form paths of the pairing net-
works in the domicile layers preserves this low gap and helps to solve multi-domicile
crew scheduling problems of practical size. This remains true for the refined model
which handles rest requirements and preassignments in a more precise way - the solu-
tion times are only slightly higher in this case. With regard to the quality of the solutions
measured in costs and goal deviation after the postprocessing step, both models behave
similarly, that is, none of the models dominates the other. Surprisingly, for the instance
FOAug, the refined model shows a least costly solution even before the postprocessing
step. We think this is due to the refined and more exact handling of the rest requirements
in this model.

In order to find an explanation for the similarity of the results obtained by both mod-
els, we performed some additional, more qualitative analyses of the pairing solutions.
One observation we made was that in many cases, the solution of the standard model
contained a considerable amount of relatively short pairings which reduces the prob-
ability that unassignabilities arise. In addition, by qualitatively analyzing the pairing
solutions in bottleneck situations (e.g. at small domiciles), we found that the postpro-
cessing heuristic did not recognize all assignability problems which mainly occurred in
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the solutions of the standard model. We will explore this issue further by employing an
automatic assignment heuristic which is under development at the moment and which
will permit a more detailed evaluation of the quality of a pairing solution with respect
to assignability.

5 Conclusions and Outlook

As shown in our computational experiments, the network flow based approach to opti-
mizing crew pairings is able to solve real world instances within an acceptable amount
of time. One aspect contributing to the efficiency of the model is the aggregation of the
crew members in the anonymous flow of the domicile network layers. However, this
aggregation leads to a loss of information which can lead to problems in the subsequent
crew assignment step. In this paper, we proposed the concept of availability blocks to
model preassignments and rest requirements more exactly in order to mitigate these
problems. In our experiments, the refinements of the model only lead to a moderate
increase with regard to the size of the model and to solution times. Since our goal is to
improve the overall crew scheduling process, the next step in our investigations will be
to evaluate the effects of the refined crew pairing model presented on the whole process
by employing an automatic assignment module.
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Abstract. Cover scheduling for wireless sensor networks has attracted a lot of
attention during the last decade. Many heuristic approaches and exact methods
have been proposed for producing covers, i.e. subsets of sensors to be used at
the same time. However, the actual schedule of the generated covers has never
been explicitly addressed to the best of our knowledge. Though, this problem is
of particular relevance when coverage breach is allowed in the aforementioned
problems, i.e., when a full coverage of targets at any time is not mandatory. In
that case, the objective of the wireless sensor network cover scheduling problem
(WSN-CSP) is to schedule the covers so as to minimize the longest period of
time during which a target is not covered in the schedule. In this paper, this prob-
lem is proved NP -Hard, a MILP formulation is provided along with a greedy
heuristic and a genetic algorithm based approach. Computational results show
the effectiveness of the last approach.

1 Introduction

The use of wireless sensor networks (WSNs) has been increasing at a rapid pace in
remote or hostile environments for data gathering [1]. This includes battlefield surveil-
lance, fire monitoring in forests, or undersea tsunami monitoring. In such environments,
sensors are usually deployed in an ad hoc manner or at random when it is not possible
to place them precisely. To compensate for this random deployment, a greater number
of sensors are used than what is actually required. This also increases the fault tolerance
as some targets are redundantly covered by multiple sensors.

In the aforementioned situation, sensors are gathered into a number of subsets (not
necessarily disjoint) such that sensors in each subset cover the targets. Such subsets are
referred to as covers. Covers are activated sequentially in a mutually exclusive manner,
i.e., at any instant of time only sensors belonging to the active cover are used, whereas
all other sensors are not. Using covers significantly increases network lifetime for two
main reasons. First, sensors consume much more energy in an active state than in an
inactive state [12]. Second, a sensor battery has been shown to last longer if it oscillates
frequently between active and inactive states [2, 3].
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One among the most popular objectives is the maximization of lifetime under max-
imum coverage breach limitation [8, 9, 5]. This problems is very efficiently solved in
a previous framework based on column generation [14] and in that work, the effect of
bandwidth is also taken into account: the number of sensors in any cover has to be at
most w, where w is a given integer. The problem of minimizing the coverage breach
under bandwidth constraints is referred to as MCBB, and the problem of maximizing
the network lifetime under bandwidth constraints is referred to as MNLB, as in [4, 15].

The output of the previous framework [14] is the design of the covers and the time
these covers should be used to satisfy one of the two objectives. Once the covers are
determined, they should be scheduled. In the literature, the term ’scheduling’ mostly
means cover generation as in [5], and the actual schedule of the covers is not addressed.
This is fully justified when the targets have to be continuously covered: in that case, the
covers can be scheduled in any order. However, when coverage breach is allowed, then
some targets may not be covered at any time. Scheduling the covers is then to minimize
the longest period of time during which a target is not covered.

1.1 Introductory Example

In the example shown in Figure 1, five covers have been generated. Gray boxes repre-
sent the coverage of the targets. In the current scheduling (in natural order), target T4

is not covered for 8 consecutive time units. Of course, this can be improved by chang-
ing the schedule. Figure 2 gives, for the same example, another order for which the
objective value is 5 (due to targets T2 and T3).

Fig. 1. A first schedule whose objective value is 8. Target T4 is not covered for 8 consecutive time
units because of successive scheduling of covers s3, s4 and s5 (in any order).

1.2 Problem Definition and Notations

Given a set of covers, an usage duration and the set of targets covered for each cover,
the wireless sensor network cover scheduling problem (WSN-CSP) is to find a schedule
that minimizes the longest period of time during which a target is not covered.

More formally, WSN-CSP can be defined as follows. Let m be the number of targets,
and q be the number of covers. For all j ∈ {1, . . . , q} the duration of cover sj is denoted
by pj : we refer to it as a processing time like in a scheduling problem [11]. Processing
times are not necessarily integers and preemption is not allowed. Moreover, the starting
time of cover j is denoted by startj for all j ∈ {1, . . . , q}. For all k ∈ {1, . . . , m}, Ck

is the set of all the covers that cover target k. For all j ∈ {1, . . . , q}, Dj is the set of the
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Fig. 2. An improved schedule of the same covers has an objective value of 5. Targets T2 and T3

have the same maximum non-coverage.

targets that are covered by cover sj . The cover scheduling problem is to schedule the
covers so as to minimize Δmax, the maximum period of time during which a target is
not covered.

In the previous example, m = 4, q = 5, p = {2, 1, 3, 2, 3}, C1 = {s3, s5},
C2 = {s2, s4, s5}, C3 = {s2, s3, s4} and C4 = {s1, s2}. Moreover D1 = {4},
D2 = {2, 3, 4}, D3 = {1, 3}, D4 = {2, 3} and D5 = {1, 2}.

1.3 Organization of the Paper

The rest of the paper is organized as follows. Section 2 addresses WSN-CSP in a partic-
ular case, that is used for proving it to be NP-Hard in the strong sense. A lower bound
is derived for WSN-CSP in Section 3 and a MILP formulation is proposed in Section
4. A heuristic approach is presented in Section 5, whereas Section 6 describes a genetic
algorithm based approach. Section 7 reports computational results and the last section
concludes the paper and provides directions for future work.

2 Complexity Analysis

2.1 The Cover Scheduling Problem in a Particular Case

The following particular case of the cover scheduling problem is considered: m = 2
targets, the q sensors are partitioned in O1 + O12 where O1 is the set of all covers that
cover target t1 only, and O12 is the set of all covers that cover targets t1 and t2. We
assume that O1 ∪ O12 = {1, . . . , q}, with O1 ∩ O12 = ∅. The cardinality of these sets
is defined by q1 = |O1| and q12 = |O12|, so q = q1 + q12.

Moreover, pj is equal to 1 for all the covers in O1, and is a strictly positive integer
for the covers in O12. As a consequence, the network lifetime LT is also integer and is
equal to

LT = q1 +
∑

j∈O12

pj

Target t1 is covered by all the covers, but t2 is covered by the covers in O12 only.
The total amount of time during which t2 is not covered is equal to q1. This duration
can be split in at most q12 + 1 time intervals. Since all the covers duration are integer,
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the minimum duration of the maximum time interval during which t2 is not covered is⌈
q1

q12+1

⌉
.

Lemma 1. The covers in O12 are assumed to be numbered in {1, . . . , q12}. An optimal
schedule to WSN-CSP in this particular case is returned by setting the starting time of
cover sj in O12 as follows:

startj = j

⌈
q1

q12 + 1

⌉
+
∑
z<j

pz ∀j ∈ {1, . . . , q12}

The covers in O1 are scheduled in between, in any order.

Proof.
⌈

q1
q12+1

⌉
is the minimum value for the maximum duration during which t2 is not

covered. It can be seen that the first cover in O12 stats at time
⌈

q1
q12+1

⌉
, and that the time

elapsed between two consecutive covers in O12 is
⌈

q1
q12+1

⌉
by construction. Now, we

can check that the time elapsed between the completion time of the last cover in O12

and LT is also less than or equal to
⌈

q1
q12+1

⌉
. This duration can be written as

LT − q12

⌈
q1

q12+1

⌉
+

q12∑
z=1

pz = q1 − q12

⌈
q1

q12+1

⌉
= (q12 + 1) q1

q12+1 − q12

⌈
q1

q12+1

⌉
= q12

(
q1

q12+1 −
⌈

q1
q12+1

⌉)
+ q1

q12+1

Since
(

q1
q12+1 −

⌈
q1

q12+1

⌉)
is negative or zero, we have

LT − q12

⌈
q1

q12+1

⌉
+

q12∑
z=1

pz ≤ q1
q12+1

≤
⌈

q1
q12+1

⌉
�

Remark 1. It may happen that the computed starting time of the last cover in O12 is
equal to LT . In that case this cover should start at any time t ≤ LT − pq12 provided it
does not overlap another cover.

Finally, as all the covers in O1 have a duration of one unit of time, they can be
scheduled in the q12 + 1 time intervals, that all have an integer duration that is less than

or equal to
⌈

q1
q12+1

⌉
.

2.2 WSN-CSP Is NP-Hard in the Strong Sense

In order to show that WSN-CSP is NP-Hard in the strong sense, we consider the fol-
lowing instance: m = 2 targets, the covers in O12 all have a one duration, the network



The WSN Cover scheduling problem 661

lifetime is LT = q12+(q12+1)B, where B is a given integer with B > 1. The covers in
O1 have an integer duration pj ≤ B for all j ∈ O1, such that

∑
j∈O1

pj = (q12 + 1)B.
This implies that the minimum value for the longest period of time during which t2 is
not covered is B.

Determining whether or not the covers in O1 can be scheduled in those q12 + 1 time
intervals which duration is B is equivalent to address the decision problem version of
the bin packing problem which is: “does there exist a partition of O1 in q12 + 1 sets
such that the sum of the durations of the covers in each set does not exceed B?”

Since a particular instance of the cover scheduling problem is equivalent to the bin
packing problem, the WSN-CSP is NP-Hard in the strong sense.

3 A Lower Bound for WSN-CSP

First, it can be observed that Δmax is lower bounded by the duration of any cover that
does not cover all the targets:

Δmax ≥ max
j∈{1,...,q}
|Dj |<m

pj

This lower bound is likely to be efficient for instances in which the coverage breach
rate is low. We remind that the breach rate is the ratio of non-covered targets at any time
in a solution. A breach rate equal to zero means that all the targets are covered.

Furthermore, for a specific target, the total amount of time during which it is not
covered is equal to the lifetime of the network minus the time this target is covered.
This amount of time can be split into up to |Ck|+ 1 time intervals, by interspersing the
covers that cover that target in an equally distributed separation. In Figure 1, target T1

is not covered for 5 units of time. Hence, by positioning appropriately covers s3 and
s5, the maximum period of time during which target T1 is not covered is 5/3 ≈ 1.67
time units. If we repeat this computation for all targets and take the maximum, we can
deduce that Δmax is lower bounded by

Δmax ≥ max
k∈{1,...,m}

(
LT −∑

j∈Ck
pj

|Ck| + 1

)
This bound is likely to perform well for instances in which the breach rate is high.

So in conclusion, Δmax is lower bounded by Δ

Δ = max

⎛⎝ max
j∈{1,...,q}
|Dj |<m

pj, max
k∈{1,...,m}

(
LT −∑

j∈Ck
pj

|Ck| + 1

)⎞⎠ (1)

Naturally, this bound is not tight as the problem is NP-Hard in the strong sense.

4 A MILP Formulation of WSN-CSP

For solving this problem, we have developed a non-linear programming formulation
which is too difficult to use in practice since even the smallest instances cannot be
solved [13].
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The solution to WSN-CSP can be modeled as a permutation of {1, . . . , q}. For all
(j, i) ∈ {1, . . . , q} × {1, . . . , q}, let xj,i be a binary variable that is set to one if and
only if cover sj is in position i in the solution, and which is set to zero otherwise. The
numerical value for Δmax is fixed by the total duration of a subset of consecutive covers
such that none of them is covering at least one target.

WSN-CSP can be stated as follows:

Minimize Δmax (2)
q∑

i=1

xj,i = 1 ∀j ∈ {1, . . . , q} (3)

q∑
j=1

xj,i = 1 ∀i ∈ {1, . . . , q} (4)

Δmax ≥ Δ (5)∑
j∈S

|S|∑
i=1

pjxj,i+r ≤ Δmax ∀S ⊆ {1, . . . , q}, |S| > 1,

|∪j∈SDj | < m, ∀r ∈ {0, . . . , q − |S|} (6)

xj,i ∈ {0, 1} ∀(j, i) ∈ {1, . . . , q} × {1, . . . , q} (7)

Δmax ≥ 0 (8)

The objective function is to minimize Δmax. Constraints (3), (4) and (7) are those
of the assignment problem. They enforce that x is a valid permutation of {1, . . . , q}.
Constraint (5) is enforcing the lower bound on Δmax defined by Equation (1), and (8)
is a non-negativity constraint on Δmax.

Constraint (6) states that the duration of any subset of covers such that there exists at
least one target that is not covered by any of them, and that are scheduled consecutively,
is less than Δmax. More precisely, any subset S of covers that do not cover at least one
target and that are scheduled consecutively can occupy positions 1 to |S|, or 2 to |S|+1,
etc, up to positions q − |S| to q. Note that the actual order of the covers in S does not
matter. In constraint (6), r is an offset that allows to track the starting position of the
corresponding subset of consecutive covers in the solution: i + r is in {1, . . . , q − |S|}
for i = 1. The case where |S| = 1 is dealt with, with constraint (5). In other words, this
constraint tracks all possible pairs, triplets, or larger cardinality subsets of covers that
do not cover at least one target, at any position it can possibly occupy in the solution.

A practical way of using the above formulation is described in [13].

5 A Greedy Heuristic Approach to WSN-CSP

The proposed cover scheduling heuristic (CSH) for WSN-CSP takes its inspiration from
the lower bound introduced in Section 3. Targets are sorted by decreasing minimum non
coverage time, i.e. the targets that are the most likely to be responsible for the longest
non coverage period of time are processed first. In this heuristic approach, the non-
overlapping constraint on covers is first relaxed. So the covers are allocated unfeasible
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starting times for minimizing the longest period of non coverage time of targets. More
precisely, for each non-processed target k, the covers that cover it but that are still
unscheduled are scheduled so as to minimize the longest non coverage duration. When
all the covers have been scheduled, they are sorted by increasing (unfeasible) starting
times, and are finally scheduled according to that sequence.

The reminder of this section presents CSH in more detail. Let Q = {0, . . . , q + 1}
be the set of covers where two dummy covers s0 and sq+1 have been added to the set of
covers. They both have a zero duration, s0 is scheduled at time 0 and sq+1 is scheduled
at time LT . Moreover, D0 = Dq+1 = {1, . . . , m} as they cover all the targets. These
dummy covers are used for indicating that all targets are considered to be covered at
time zero, and also at time LT . Finally, these two dummy covers are considered to be
already scheduled.

First, the targets are sorted by decreasing uncovered time. For all targets, indexed by
k ∈ {1, . . . , m}, the uncovered time UTk is the total time during which it is not covered
divided by the number of covers that cover it minus one.

UTk =

∑
j /∈Ck

pj

|Ck| − 1
∀k ∈ {1, . . . , m}

Note that |Ck| ≥ 2 for all k because of covers s0 and sq+1.
Algorithm 1 describes CSH, it relies on the following variables. Let schedk be

the number of covers in Ck that have already been scheduled (when processing tar-
get k = 1, sched1 = 2 because of the two dummy covers). SCk is the set of the
scheduled covers in Ck. Initially for k = 1, SC1 = {0, q + 1}. UCk is the set of the
unscheduled covers in Ck. Initially for k = 1, UC1 = C1\{0, q + 1}. Ck is then par-
titioned in two disjoint subsets Ck = SCk ∪ UCk, but UCk might possibly be empty
with no inconvenience. By definition, schedk = |SCk|, for all k ∈ {1, . . . , m}. The
introduction of schedk covers in the schedule creates schedk + 1 time intervals during
which target k is not covered. Some of these time intervals may have a negative du-
ration because of overlapping. Let wz be the magnitude of these time intervals for all
z ∈ {1, . . . , schedk − 1}, computed in Equation (9).

As SCk is sorted by increasing starting times, SCk(schedk−1) is the last element of
SCk, so it is cover q + 1 as this cover is the last one. Thus, startSCk(schedk−1) = LT .
Moreover, Addz is the set of all the covers that are to be added to time interval z, for all
z ∈ {1, . . . , schedk −1} (initially, i.e. at the beginning of the process of target k, Addz

is empty for all z). Note that startSCk(z) is the starting time of the cover in position z
in the ordered set SCk.

wz = startSCk(z) −
(
startSCk(z−1) + pSCk(z−1)

)
−

∑
g∈Addz

pg ∀z ∈ {1, . . . , schedk − 1} (9)

In Algorithm 1, in line 1, Addz(h) refers to the cover index of the element in position
h in Addz , and UCk are sorted by increasing duration of the corresponding covers in
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Algorithm 1. Cover Scheduling Heuristic (CSH)

Input: the set of covers Q and their duration
Output: a sequence of the covers

// Initialization
Compute UTk for all targets1

Sort the targets in decreasing values of UTk and re-index2

// Main loop over all targets
for k = 1 → m do3

Sort SCk by increasing order of the starting times of these covers4

Sort UCk by increasing duration of these covers5

while UCk �= ∅ do6

uc is the last cover index in UCk // i.e. with maximum duration7

compute wz as stated by equation (9)8

compute r = arg max
z∈{1,...,schedk−1}

(
wz

1 + |Addz|
)

9

allocate uc ∈ UCk such that Addr ← Addr ∪ {uc}10

UCk = UCk \ {uc}11

// Schedule the covers in Ck by setting starting times
forall z ∈ {1, . . . , schedk − 1} do12

forall g ∈ {1, . . . , |Addz|} do13

σ = Addz,g // i.e. the cover in position g in Addz14

startσ =
(
startSCk(z−1) + pSCk(z−1)

)
+ g wz

1+|Addz| +
g−1∑
h=1

pAddz(h)
15

SCk ← SCk ∪ Addz16

Addz ← ∅17

// Repairing phase
Since some of the covers may overlap, sort them in increasing order of starting times18

Output the final sequence (will be used for building a semi-active schedule of covers)19

order to use the longest covers for splitting the longest time interval during which target
k is not covered (see lines 7 − 11 in Algorithm 1).

Each time interval z is allocated |Addz | unscheduled covers, and these covers are
scheduled in lines 12 − 17 so as to minimize the maximum amount of time during
which target k is not covered. Finally, lines 18 − 19 allow to build a feasible solution
by sorting the starting times of the covers by increasing order.

6 A Genetic Algorithm Based Approach to WSN-CSP

This section introduces a genetic algorithm based approach for WSN-CSP. The pro-
posed approach is referred to as CSGA (Cover Scheduling Genetic Algorithm) in the
sequel.

CSGA uses permutation encoding, i.e., a chromosome consists of a linear permu-
tation of covers. A permutation of covers specifies the order in which the covers are
scheduled, i.e., a value of j at the position i in the permutation indicates that cover j
will be the ith cover in the schedule.
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The fitness function is same as the objective function of WSN-CSP. In order to com-
pute the fitness of a chromosome, we have to find the maximum duration for which a
target is uncovered in the schedule represented by that chromosome. The complexity of
this fitness evaluation is O(mq).

The probabilistic binary tournament selection is used for selecting the two parents
for crossover, where the candidate with better fitness is selected with probability pb.
The reason for using probabilistic binary tournament selection is that probabilistic bi-
nary tournament is similar to rank selection as far as selection pressure is concerned. At
the same time, it is much more computationally efficient [7]. However, with very small
probability pr, we have selected a parent randomly instead of selecting it through prob-
abilistic binary tournament selection. This has been done with the motive of increasing
the diversity of the population.

The crossover operator used is the cycle crossover operator CX as initially described
in [10]. This crossover operator preserves the absolute positions of the covers in the
schedule from one parent or the other and causes a proper mix of the schedules of
the two parents. Uniform order based crossover [6] was also tried, but, CX gave better
results. Three swap mutations are used inside a single mutation operator to mutate the
chromosomes. We have applied the crossover operator always to generate an offspring,
whereas mutation operator has been used only with probability pm.

CSGA relies on the steady-state [6] population replacement model instead of the
commonly used generational model. Unlike generational replacement, where the en-
tire parent population is replaced with an equal number of newly created children every
generation, in the steady-state population replacement method a single child is produced
in every generation and it replaces a less fit member of the population. In comparison
to the generational method, the steady-state population replacement method generally
finds better solutions faster. This is because of permanently keeping the best solutions
in the population and the immediate availability of a child for selection and reproduc-
tion. Another advantage of the steady-state population replacement method is the ease
with which duplicate copies of the same individuals are prevented in the population. In
the generational approach, duplicate copies of the highly fit individuals may exist in the
population. Within few generations, these highly fit individuals can dominate the whole
population. When this happens, the crossover becomes totally ineffective and the mu-
tation becomes the only possible way to improve solution quality. Under this situation,
improvement in solution quality, if any, is very slow. Such a situation is called the pre-
mature convergence. In the steady-state approach we can easily avoid this situation by
simply checking each newly generated child against current population members and
discarding it if it is identical to any member.

Initial population is generated randomly with the restriction that each member of
the initial population should be unique. The offspring created during each generation
is checked for uniqueness with respect to the existing population members, and, if it
is unique, it is inserted into the population replacing the worst member, otherwise it is
discarded.

With the intent of improving the solution quality even further, we have applied a
local search on the best solution obtained through genetic algorithm. This local search
follows an iterative process. During each iteration, it tries to swap a cover involved in



666 A. Rossi et al.

the longest breach with a cover which covers the target involved in the longest breach.
If such a swap can decrease the longest breach then it is accepted, otherwise original
schedule is restored. This process is repeated till no swap move is possible that can
decrease the longest breach. We have tried this local search inside the genetic algo-
rithm but the resulting approach was found to be too slow. Actually, each swap move
requires evaluating the fitness of the schedule from scratch which takes O(mq) time as
mentioned above. This time complexity of a single swap move makes this local search
inappropriate for use inside the genetic algorithm.

As far as parameter settings of the CSGA are concerned, the population size is fixed
to 400 individuals, pb is set to 0.8, pr is set to 0.01, and pm is taken to be equal to
0.05. The CSGA terminates when the best solution does not improve over 20,000 iter-
ations. CSGA can also terminate when it fails to find a solution different from current
population members in 20 consecutive trials. All these parameter settings are chosen
empirically. Though these settings provide good results, they are in no way optimal for
all instances.

7 Computational Results

The set of instances used in this work is taken from the output of the framework pre-
sented in [14]. In order to produce instances for WSN-CSP, MNLB has been solved
beforehand for different size and parameter values. The number of targets m is taken
in {50, 100, 150, 200}. For each value of m a corresponding value of the number of
sensors is given in {30, 60, 90, 120} and the sensing range will be fixed to 150. Note
that the number of sensors and the sensing range value are not parameters of WSN-CSP,
but have an impact on the number of covers and their duration. For each value of m,
the bandwidth constraint is set to either 5, 10 or equal to the number of targets (i.e. no
bandwidth constraint is enforced) and the breach rate is either set to 0.1 or 0.2. For each
combination of the parameters, 30 randomly generated instances are considered, and
the grand total is 720 instances.

All experiments were carried out on an Intel Core 2 Quad computer with 4 Gb of
RAM running at 2.83 Ghz under Ubuntu 9.04. The code is developed in C and compiled
with gcc version 4 without any special multi-core utilization features. The running times
are not reported in details but the heuristic CSH running time is always less than 0.02s.
The average and maximum CPU time for the CSGA are 5.83s and 40.61s when α = 0.1
and 14.72s and 60.71s when α = 0.2. All our approaches are executed once on each
instance.

Table 1 presents the results obtained by CSH and by CSGA in terms of solution
quality. The first column defines the instance parameters (namely, the number of targets,
the bandwidth constraint and q, the average number of covers). Each row corresponds
to 30 instances for α = 0.1 and 30 instances for α = 0.2. The next four columns
provide the results for the instances where the breach rate is α = 0.1 and the last four
columns correspond to α = 0.2. For each group of four columns, the first figure is the
deviation of CSH over LB in percentage, the second figure is the number of proved
optimal solutions found by CSH over 30 instances (CSH=LB), the third figure is the
deviation of CSGA over LB, and the fourth figure is the number of proved optimal
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solutions over 30 instances. A solution can be proved optimal whenever the objective
value is equal to the lower bound. The last two lines of the Table summarize the results.

Table 1. Results of CSH and CSGA

α = 0.1 α = 0.2
Parameters % CSH # CSH % CSGA # CSGA % CSH # CSH % CSGA # CSGA

m = 50, w = 5, q = 41 56.6 2 1.8 23 90.5 0 3.5 12
m = 50, w = 10, q = 47 64.7 0 1.2 22 78.5 0 2.7 14
m = 50, w = 50, q = 47 50.3 2 0.2 24 94.5 0 3.5 14
m = 100, w = 5, q = 90 76.1 0 0.2 28 133.9 0 9.2 8
m = 100, w = 10, q = 96 88.7 1 0.7 26 126.1 0 7.8 10
m = 100, w = 100, q = 96 78.4 0 0 30 131.0 0 6.8 10
m = 150, w = 5, q = 137 96.6 0 0.5 26 158.4 0 12.2 3
m = 150, w = 10, q = 140 102.1 0 1.0 26 164.3 0 18.9 2
m = 150, w = 150, q = 142 95.2 0 0.6 27 162.8 0 11.4 4
m = 200, w = 5, q = 182 106.7 0 1.1 26 182.0 0 22.2 0
m = 200, w = 10, q = 188 133.9 0 0 27 201.3 0 16.2 3
m = 200, w = 200, q = 189 131.4 0 1.3 24 187.7 0 17.6 2
Total proved opt. sol. 5 309 0 82
Average Deviation to LB 90.1% 0.7% 142.6% 11.1%

Table 1 suggests that the problem difficulty increases with α. Indeed, WSN-CSP is
trivial when α = 0 as the targets are continuously covered by all the covers, and the
gap to the lower bound is maximum for α = 0.2. However, solution quality is assessed
through a lower bound that may not be tight, especially when α is large. Consequently,
the solutions for α = 0.2 may be closer to optimality than they appear in Table 1. This
situation arises in the example introduced in Section 1.1. The optimal objective value
is 5 whereas the lower bound is only 3 in that case. Nevertheless, this bound allows
to prove the optimality of 391 solutions returned by CSGA out of a grand total of 720
instances (≈ 54%).

8 Conclusions and Perspectives

To the best of our knowledge, this paper is the first attempt to address the Cover
Scheduling Problem in Wireless Sensor Networks (WSN-CSP). This problem appears
once the covers have been generated in an earlier stage of the a wireless sensor network
problem (like MCBB or MNLB) in which the breach is non zero and the covers are
non-disjoint. This problem is shown to be NP-Hard in the strong sense, and a MILP
formulation is proposed.

Our practical contribution consists of a greedy heuristic and a genetic algorithm with
local search. Both are tested on a large set of instances and give convincing results. Our
future work will be oriented in two directions. First, we plan to improve the genetic al-
gorithm with dedicated operators for the WSN-CSP. Second, we also intend to propose
more efficient lower bounds for this problem.
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Opérationnelle et d’Aide à la Décision, Toulouse, France, February 24-26 (2010)

15. Wang, C., Thai, M.T., Li, Y., Wang, F., Wu, W.: Optimization scheme for sensor coverage
scheduling with bandwidth constraints. Optimization letters 3(1), 63–75 (2009)

http://www-labsticc.univ-ubs.fr/or/


Author Index

Adasme, Pablo 620
Addis, Bernardetta 18
Agarwal, Yogesh K. 92
Aghezzaf, El-Houssaine 315
Agra, Agostinho 156
Amaldi, Edoardo 327, 464
Amigo, Isabel 182
Arulselvan, Ashwin 490

Belotti, Pietro 439
Benhamiche, Amal 1
Bertinat, Maŕıa Elisa 529
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Saldanha, Rodney Rezende 577
Salles da Cunha, Alexandre 43, 162, 412
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Santos, Fernando Afonso 412
Sassano, Antonio 51
Schauer, Joachim 289
Schönberger, Jörn 426
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